S. Balibar, The Discovery of Superfluidity, Journal of Low Temperature Physics, vol.72, issue.5-6, p.441, 2007.
DOI : 10.1007/s10909-006-9276-7

URL : https://hal.archives-ouvertes.fr/hal-00113242

J. Allen and A. Misener, Flow of Liquid Helium II, Nature, vol.141, issue.3558, p.75, 1938.
DOI : 10.1038/141075a0

P. Nozières and D. Pines, The theory of quantum liquids, 1989.

J. Wilks, The properties of liquid and solid helium, 1967.

G. Chester, Speculations on Bose-Einstein Condensation and Quantum Crystals, Physical Review A, vol.2, issue.1, p.256, 1970.
DOI : 10.1103/PhysRevA.2.256

A. Leggett, Can a Solid Be "Superfluid"?, Physical Review Letters, vol.25, issue.22, p.1543, 1970.
DOI : 10.1103/PhysRevLett.25.1543

Y. Imry and M. Schwartz, On the possibility of Bose-Einstein condensation in a solid, Journal of Low Temperature Physics, vol.42, issue.5-6, p.543, 1975.
DOI : 10.1007/BF01141609

S. Balibar and F. Caupin, Supersolidity and disorder, Journal of Physics: Condensed Matter, vol.20, issue.17, p.173201, 2008.
DOI : 10.1088/0953-8984/20/17/173201

E. Kim and M. H. Chan, Probable observation of a supersolid helium phase, Nature, vol.427, issue.6971, p.225, 2004.
DOI : 10.1038/nature02220

E. Kim and M. H. Chan, Observation of Superflow in Solid Helium, Science, vol.305, issue.5692, p.1941, 2004.
DOI : 10.1126/science.1101501

X. Mi, E. Mueller, and J. Reppy, Arxiv preprint arXiv :1109, 2011.

J. T. West, O. Syshchenko, J. Beamish, and M. H. Chan, Role of shear modulus and statistics in the supersolidity of helium, Nature Physics, vol.14, issue.8, p.598, 2009.
DOI : 10.1103/PhysRevLett.101.155301

N. Prokof-'ev, Advances in, Physics, vol.56, p.381, 2007.

M. Kondo, S. Takada, Y. Shibayama, and K. Shirahama, Observation of Non-Classical Rotational Inertia in Bulk Solid 4He, Journal of Low Temperature Physics, vol.97, issue.5-6, p.695, 2007.
DOI : 10.1007/s10909-007-9471-1

J. Day, O. Syshchenko, and J. Beamish, Intrinsic and dislocation-induced elastic behavior of solid helium, Physical Review B, vol.79, issue.21, p.214524, 2009.
DOI : 10.1103/PhysRevB.79.214524

Y. Mukharsky, O. Avenel, and E. Varoquaux, Search for Supersolidity in 4He in Low-Frequency Sound Experiments, Journal of Low Temperature Physics, vol.77, issue.5-6, p.689, 2007.
DOI : 10.1007/s10909-007-9454-2

A. H. Cottrell, Dislocations and Plastic Flow in Crystals, American Journal of Physics, vol.22, issue.4, 1953.
DOI : 10.1119/1.1933704

J. Beamish and J. Franck, impurities, Physical Review B, vol.28, issue.3, p.1419, 1983.
DOI : 10.1103/PhysRevB.28.1419

Y. Hiki and F. Tsuruoka, Motion of dislocations in helium crystals, Physical Review B, vol.27, issue.2, p.696, 1983.
DOI : 10.1103/PhysRevB.27.696

H. Suzuki, Plastic Flow in Solid Helium, Journal of the Physical Society of Japan, vol.35, issue.5, p.1472, 1973.
DOI : 10.1143/JPSJ.35.1472

]. A. Granato and K. Lucke, Theory of Mechanical Damping Due to Dislocations, Journal of Applied Physics, vol.27, issue.6, p.583, 1956.
DOI : 10.1063/1.1722436

B. Hunt, Relaxation Dynamics Of Solid Helium-4, 2009.

B. Hunt, Evidence for a Superglass State in Solid 4He, Science, vol.324, issue.5927, p.632, 2009.
DOI : 10.1126/science.1169512

P. W. Anderson, Arxiv preprint arXiv :1111, p.1707, 2011.

S. Sasaki, R. Ishiguro, F. Caupin, H. J. Maris, and S. Balibar, Superfluidity of Grain Boundaries and Supersolid Behavior, Science, vol.313, issue.5790, p.1098, 2006.
DOI : 10.1126/science.1130879

M. W. Ray and R. B. Hallock, Mass Flux Through a Cell Filled with Solid 4He Induced by the Thermo-Mechanical Effect, Journal of Low Temperature Physics, vol.103, issue.17, p.421, 2010.
DOI : 10.1007/s10909-010-0223-2

X. Lin, A. Clark, and M. H. Chan, Probable heat capacity signature of the supersolid transition, Nature, vol.83, issue.7165, p.1025, 2007.
DOI : 10.1038/nature06228

L. Yin, J. S. Xia, C. Huan, N. S. Sullivan, and M. H. Chan, Dielectric Constant Measurements of Solid 4He, Journal of Low Temperature Physics, vol.104, issue.5-6, p.407, 2010.
DOI : 10.1007/s10909-010-0275-3

X. Chavanne, Etude du régime turbulent en convection de Rayleigh-Bénard dans l'hélium liquide ou gazeux autour de 5 K, 1998.

A. Raccanelli, L. A. Reichertz, and E. Kreysa, Eliminating the vibrational noise in continuously filled 1 K pots, Cryogenics, vol.41, issue.10, p.763, 2001.
DOI : 10.1016/S0011-2275(01)00157-6

P. Gorla, C. Bucci, and S. Pirro, Nuclear Instruments and Methods in Physics Research Section A : Accelerators, Spectrometers, Detectors and Associated Equipment, p.641, 2004.

J. A. Hoffmann, Superfluid 4He : On sin ? Josephson Weak Links and Dissipation of Third Sound, 2001.

S. Balibar, H. Alles, and A. Parshin, The surface of helium crystals, Reviews of Modern Physics, vol.77, issue.1, p.317, 2005.
DOI : 10.1103/RevModPhys.77.317

P. Wolf, F. Gallet, S. Balibar, E. Rolley, and P. Nozieres, Crystal growth and crystal curvature near roughening transitions in hcp 4He, Journal de Physique, vol.46, issue.11, p.1987, 1985.
DOI : 10.1051/jphys:0198500460110198700

URL : https://hal.archives-ouvertes.fr/jpa-00210148

F. Gallet, S. Balibar, and E. Rolley, The roughening transition of crystal surfaces. II. experiments on static and dynamic properties near the first roughening transition of hcp 4He, Journal de Physique, vol.48, issue.3, p.369, 1987.
DOI : 10.1051/jphys:01987004803036900

URL : https://hal.archives-ouvertes.fr/jpa-00210451

J. Ruutu, He Crystals at mK Temperatures, Physical Review Letters, vol.76, issue.22, p.4187, 1996.
DOI : 10.1103/PhysRevLett.76.4187

E. Rolley and C. Guthmann, Dynamics and Hysteresis of the Contact Line between Liquid Hydrogen and Cesium Substrates, Physical Review Letters, vol.98, issue.16, p.166105, 2007.
DOI : 10.1103/PhysRevLett.98.166105

O. Syshchenko and J. Beamish, Transverse Ultrasound Measurements in 4He Single Crystals, Journal of Low Temperature Physics, vol.71, issue.3-4, p.276, 2008.
DOI : 10.1007/s10909-007-9542-3

A. R. Allen, M. G. Richards, and J. Schratter, Anomalous temperature dependence ofD andT 2 for dilute solutions of3He in solid4He, Journal of Low Temperature Physics, vol.44, issue.3-4, p.289, 1982.
DOI : 10.1007/BF00683732

J. Schratter, A. R. Allen, and M. Richards, Concentration dependence ofD, T 1, andT 2 for dilute solutions of3He in solid4He, Journal of Low Temperature Physics, vol.30, issue.1-2, p.179, 1984.
DOI : 10.1007/BF00681522

D. O. Edwards and S. Balibar, He solid and liquid mixtures, Physical Review B, vol.39, issue.7, p.4083, 1989.
DOI : 10.1103/PhysRevB.39.4083

E. Grilly, Pressure-volume-temperature relations in liquid and solid4He, Journal of Low Temperature Physics, vol.41, issue.1-2, p.33, 1973.
DOI : 10.1007/BF00655035

R. Crepeau, O. Heybey, D. Lee, and S. Strauss, Sound Propagation in hcp Solid Helium Crystals of Known Orientation, Physical Review A, vol.3, issue.3, p.1162, 1971.
DOI : 10.1103/PhysRevA.3.1162

X. Rojas, A. Haziot, V. Bapst, S. Balibar, and H. Maris, Crystals, Physical Review Letters, vol.105, issue.14, p.145302, 2010.
DOI : 10.1103/PhysRevLett.105.145302

URL : https://hal.archives-ouvertes.fr/tel-00129102

A. Clark, Superflow in quantum solids, 2007.

A. S. Rittner and J. D. Reppy, The Annealing Process in Solid 4He, Journal of Low Temperature Physics, vol.97, issue.5-6, p.671, 2007.
DOI : 10.1007/s10909-007-9447-1

F. Tsuruoka and Y. Hiki, Ultrasonic attenuation and dislocation damping in helium crystals, Physical Review B, vol.20, issue.7, p.2702, 1979.
DOI : 10.1103/PhysRevB.20.2702

C. Pantalei, X. Rojas, D. O. Edwards, H. J. Maris, and S. Balibar, How to Prepare an Ideal Helium 4 Crystal, Journal of Low Temperature Physics, vol.313, issue.3-4, p.452, 2010.
DOI : 10.1007/s10909-010-0159-6

E. Grilly, Pressure-volume-temperature relations in liquid and solid3He, Journal of Low Temperature Physics, vol.158, issue.2, p.615, 1971.
DOI : 10.1007/BF00628297

P. On-s-'intéresse-au-potentiel-chimique-À-la-pression, 993 atm (= 25.324 bar), c'est à dire la pression d'équilibre liquide-solide dans l'hélium 4 à basse température (20 mK) Dans ce cas g b 3 est l'énergie libre de Gibbs du solide bcc 3 He pur extrapolé jusqu'à la pression P = P eq . La quantité A(P ) est le paramètre principal de l'approximation de solution régulière, il ne dépend que de la pression. A(P ) = 0.76 K à une pression de 35.8 atm [116]. En utilisant, la dérivée de A par rapport à la pression