J. Brodd, K. R. Bullock, R. A. Leising, R. L. Middaugh, J. R. Miller et al., Batteries, 1977 to 2002, batscap.com/ 21 -V. Schwarz, B. Gindroz, « Dossier Stockage de l'Energie, pp.1-11, 2004.
DOI : 10.1149/1.1641042

M. S. Whittingham, « Nanomaterials as anodes for lithium batteries », Lithium Batteries Discussion 5 th, pp.14-2011

K. Padhi, K. S. Nanjundaswamy, and J. B. Goodenough, Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries, Journal of The Electrochemical Society, vol.144, issue.4, pp.1188-1194, 1997.
DOI : 10.1149/1.1837571

M. Delmas, L. Maccario, F. Croguennec, and F. Le-cras, Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model, Nature Materials, vol.129, issue.8, pp.665-671, 2008.
DOI : 10.1038/nmat2230

URL : https://hal.archives-ouvertes.fr/hal-00324979

«. Bonnaterre, Les phosphates métalliques lithiés, une famille pleine d'avenir dans les batteries pour véhicules électriques, 2010.

P. G. Bruce, Chemical and electrochemical processes in the non-aqueous lithium-air battery, 2011.

T. Ogasawara, A. Debart, M. Holzapfel, P. Novak, and P. G. Bruce, Electrode for Lithium Batteries, Journal of the American Chemical Society, vol.128, issue.4, pp.1390-1393, 2006.
DOI : 10.1021/ja056811q

K. M. Abraham and Z. Jiang, A Polymer Electrolyte-Based Rechargeable Lithium/Oxygen Battery, Journal of The Electrochemical Society, vol.143, issue.1, pp.1-5, 1996.
DOI : 10.1149/1.1836378

M. Armand, S. Grugeon, H. Vezin, S. Laruelle, P. Ribière et al., Conjugated dicarboxylate anodes for Li-ion batteries, Nature Materials, vol.94, issue.2, pp.120-125, 2009.
DOI : 10.1038/nmat2372

URL : https://hal.archives-ouvertes.fr/hal-00370487

L. F. Ji and . Nazar, 9821-9826 43 -US 3,043, J. Mater. Chem, vol.20896984, issue.695, 1962.

A. Peled, M. Gorenshtein, Y. Segal, R. Sternberg, T. Ohtsubo et al., Rechargeable lithium???sulfur battery (extended abstract), Journal of Power Sources, vol.26, issue.3-4, pp.269-271, 1989.
DOI : 10.1016/0378-7753(89)80133-8

K. T. Ji, L. F. Lee, and . Nazar, A highly ordered nanostructured carbon???sulphur cathode for lithium???sulphur batteries, Nature Materials, vol.145, issue.6, pp.500-506, 2009.
DOI : 10.1038/nmat2460

L. Gaines and R. Cuenca, « Costs of lithium-ion batteries for vehicles, Argonne National Lab, 2000.
DOI : 10.2172/761281

A. Stwertka, A guide to the elements, 1996.

J. Shim, K. Striebel, and E. Cairns, The Lithium/Sulfur Rechargeable Cell, Journal of The Electrochemical Society, vol.149, issue.10, pp.1321-1325, 2002.
DOI : 10.1149/1.1503076

K. Kumaresan, Y. V. Mikhaylik, and R. E. White, A Mathematical Model for a Lithium???Sulfur Cell, Journal of The Electrochemical Society, vol.155, issue.8, pp.576-582, 2008.
DOI : 10.1149/1.2937304

Y. V. Mikhaylik and J. R. Akridge, Polysulfide Shuttle Study in the Li/S Battery System, Journal of The Electrochemical Society, vol.151, issue.11, pp.1969-1976, 1993.
DOI : 10.1149/1.1806394

P. Leghié, J. P. Lelieur, and E. Levillain, Comments on the mechanism of the electrochemical reduction of sulphur in dimethylformamide, Electrochemistry Communications, vol.4, issue.5, pp.406-411, 2002.
DOI : 10.1016/S1388-2481(02)00333-8

F. Gaillard, E. Levillain, and J. P. Lelieur, Polysulfides in dimethylformamide: Only the radical anions S3??? and S4??? are reducible, Journal of Electroanalytical Chemistry, vol.432, issue.1-2, pp.129-138, 1997.
DOI : 10.1016/S0022-0728(97)00192-7

A. Evans, M. I. Montegro, and D. Pletcher, The mechanism for the cathodic reduction of sulphur in dimethylformamide: low temperature voltammetry, Electrochemistry Communications, vol.3, issue.9, pp.514-518, 2001.
DOI : 10.1016/S1388-2481(01)00203-X

D. H. Han, B. S. Kim, S. J. Choi, Y. Jung, J. Kwak et al., E283-E290 67 -Y, J. Electrochem. Soc. J. Power Sources, vol.151, pp.184-548, 2004.

S. F. Sciamanna and S. Lynn, Sulfur solubility in pure and mixed organic solvents, Industrial & Engineering Chemistry Research, vol.27, issue.3, pp.485-491, 1988.
DOI : 10.1021/ie00075a019

V. S. Kolosnitsyn and E. V. Karaseva, Lithium-sulfur batteries: Problems and solutions, Russian Journal of Electrochemistry, vol.44, issue.5, pp.506-50, 2008.
DOI : 10.1134/S1023193508050029

C. Liang, N. J. Dudney, and J. Y. Howe, Hierarchically Structured Sulfur/Carbon Nanocomposite Material for High-Energy Lithium Battery, Chemistry of Materials, vol.21, issue.19, pp.4724-4730, 2009.
DOI : 10.1021/cm902050j

Z. Liang, Y. Wen, H. Liu, L. Zhang, J. Huang et al., Highly dispersed sulfur in ordered mesoporous carbon sphere as a composite cathode for rechargeable polymer Li/S battery, Journal of Power Sources, vol.196, issue.7, pp.3655-3658, 2011.
DOI : 10.1016/j.jpowsour.2010.12.052

D. Aurbach, E. Pollak, R. Elazari, G. Salitra, C. S. Kelley et al., On the Surface Chemical Aspects of Very High Energy Density, Rechargeable Li???Sulfur Batteries, Journal of The Electrochemical Society, vol.156, issue.8, pp.694-702, 2005.
DOI : 10.1149/1.3148721

J. L. Wang, J. Yang, J. Y. Xie, N. X. Xu, and Y. Li, Sulfur???carbon nano-composite as cathode for rechargeable lithium battery based on gel electrolyte, Electrochemistry Communications, vol.4, issue.6, pp.499-502, 2002.
DOI : 10.1016/S1388-2481(02)00358-2

J. Wei, L. Wang, J. Zhou, B. Yang, Y. Schumann et al., CNT enhanced sulfur composite cathode material for high rate lithium battery, Electrochemistry Communications, vol.13, issue.5, pp.399-402, 2011.
DOI : 10.1016/j.elecom.2011.02.001

L. Yuan, H. Yuan, X. Qiu, L. Chen, and W. Zhu, Improvement of cycle property of sulfur-coated multi-walled carbon nanotubes composite cathode for lithium/sulfur batteries, Journal of Power Sources, vol.189, issue.2, pp.1141-1146, 2009.
DOI : 10.1016/j.jpowsour.2008.12.149

S. X. Wu, R. J. Wu, S. Chen, G. Q. Chen, and . Wang, Electrochemical performance of sulfur composite cathode materials for rechargeable lithium batteries, Chinese Chemical Letters, vol.20, issue.10, pp.1255-1258, 2009.
DOI : 10.1016/j.cclet.2009.04.036

Z. Guoping, Y. Qingtang, Q. Zuolong, and . Meizheng, The effect of different kinds of nano-carbon conductive additives in lithium ion batteries on the resistance and electrochemical behavior of the LiCoO2 composite cathodes, Solid State Ionics, vol.179, issue.7-8, pp.263-268, 2008.
DOI : 10.1016/j.ssi.2008.01.015

L. X. Yuan, J. K. Feng, X. P. Ai, Y. L. Cao, S. L. Chen et al., Improved dischargeability and reversibility of sulfur cathode in a novel ionic liquid electrolyte, Electrochemistry Communications, vol.8, issue.4, pp.610-614, 2006.
DOI : 10.1016/j.elecom.2006.02.007

R. Dominko, R. Demir-cakan, M. Morcrette, and J. M. Tarascon, Analytical detection of soluble polysulphides in a modified Swagelok cell, Electrochemistry Communications, vol.13, issue.2, pp.117-120, 2011.
DOI : 10.1016/j.elecom.2010.11.029

S. Wu, R. Wu, J. Chen, S. Chen, and . Chen, Sulfur???Polythiophene Composite Cathode Materials for Rechargeable Lithium Batteries, Electrochemical and Solid-State Letters, vol.13, issue.4, pp.29-31, 2010.
DOI : 10.1149/1.3290668

Y. V. Mikhaylik and J. R. Akridge, Low Temperature Performance of Li/S Batteries, Journal of The Electrochemical Society, vol.150, issue.3, pp.306-311, 2003.
DOI : 10.1149/1.1545452

H. Yamin and E. Peled, Electrochemistry of a nonaqueous lithium/sulfur cell, Journal of Power Sources, vol.9, issue.3, pp.281-287, 1983.
DOI : 10.1016/0378-7753(83)87029-3

B. Jin, J. U. Kim, and H. B. Gu, Electrochemical properties of lithium???sulfur batteries, Journal of Power Sources, vol.117, issue.1-2, pp.148-152, 2003.
DOI : 10.1016/S0378-7753(03)00113-7

J. Hassoun and B. Scrosati, Moving to a Solid-State Configuration: A Valid Approach to Making Lithium-Sulfur Batteries Viable for Practical Applications, Advanced Materials, vol.183, issue.45, pp.5198-5201, 2010.
DOI : 10.1002/adma.201002584

Y. Yang, M. T. Mcdowell, A. Jackson, J. J. Cha, S. S. Hong et al., S/Silicon Rechargeable Battery with High Specific Energy, Nano Letters, vol.10, issue.4, pp.1486-1491, 2010.
DOI : 10.1021/nl100504q

J. Hassoun and B. Scrosati, A High-Performance Polymer Tin Sulfur Lithium Ion Battery, Angewandte Chemie International Edition, vol.161, issue.13, pp.2371-2374, 2010.
DOI : 10.1002/anie.200907324

J. Hassoun, Y. K. Sun, and B. Scrosati, Rechargeable lithium sulfide electrode for a polymer tin/sulfur lithium-ion battery, Journal of Power Sources, vol.196, issue.1, pp.343-348, 2011.
DOI : 10.1016/j.jpowsour.2010.06.093

H. Takeushi, H. Sakaebe, H. Kageyama, T. Senoh, K. Sakai et al., Preparation of electrochemically active lithium sulfide???carbon composites using spark-plasma-sintering process, Journal of Power Sources, vol.195, issue.9, pp.2928-2934, 2001.
DOI : 10.1016/j.jpowsour.2009.11.011

N. Machida, K. Kobayashi, Y. Nishikawa, and T. Shigematsu, Electrochemical properties of sulfur as cathode materials in a solid-state lithium battery with inorganic solid electrolytes, Solid State Ionics, vol.175, issue.1-4, pp.247-250, 2004.
DOI : 10.1016/j.ssi.2003.11.033

P. Suresh, A. K. Shukla, S. A. Shivashankar, and N. Munichandraiah, Rechargeable lithium cells with dendrite-free electrodeposited lithium on aluminium as negative electrode, Journal of Power Sources, vol.132, issue.1-2, pp.166-171, 2004.
DOI : 10.1016/j.jpowsour.2004.01.029

X. He, J. Ren, L. Wang, W. Pu, C. Wan et al., Li/S Lithium Ion Cell Using Graphite as Anode, ECS Transactions, pp.47-49, 2006.
DOI : 10.1149/1.2424287

J. He, L. Ren, W. Wang, C. Pu, C. Jiang et al., Expansion and shrinkage of the sulfur composite electrode in rechargeable lithium batteries, Journal of Power Sources, vol.190, issue.1, pp.154-156, 2009.
DOI : 10.1016/j.jpowsour.2008.07.034

Y. Peled, A. Sternberg, Y. Gorenshtein, and . Lavi, Lithium-Sulfur Battery: Evaluation of Dioxolane-Based Electrolytes, Journal of The Electrochemical Society, vol.136, issue.6, pp.1621-1625, 1989.
DOI : 10.1149/1.2096981

H. Yamin, J. Penciner, A. Gorenshtein, M. Elam, and E. Peled, The electrochemical behavior of polysulfides in tetrahydrofuran, Journal of Power Sources, vol.14, issue.1-3, pp.129-134, 1985.
DOI : 10.1016/0378-7753(85)88022-8

V. Gutmann, G. Resch, and W. Linert, Structural variability in solutions, Coordination Chemistry Reviews, vol.43, pp.133-164, 1982.
DOI : 10.1016/S0010-8545(00)82094-9

D. Linden, Handbook of batteries, 1995.

E. Peled, The Electrochemical Behavior of Alkali and Alkaline Earth Metals in Nonaqueous Battery Systems???The Solid Electrolyte Interphase Model, Journal of The Electrochemical Society, vol.126, issue.12, pp.2047-2051, 1979.
DOI : 10.1149/1.2128859

A. Zaban, E. Zinigrad, and D. Aurbach, Impedance Spectroscopy of Li Electrodes. 4. A General Simple Model of the Li???Solution Interphase in Polar Aprotic Systems, The Journal of Physical Chemistry, vol.100, issue.8, pp.3089-3101, 1996.
DOI : 10.1021/jp9514279

E. Aurbach, H. Zinigrad, P. Teller, and . Dan, Factors Which Limit the Cycle Life of Rechargeable Lithium (Metal) Batteries, Journal of The Electrochemical Society, vol.147, issue.4, pp.1274-1279, 2000.
DOI : 10.1149/1.1393349

L. X. Yuan, J. K. Feng, X. P. Ai, Y. L. Cao, S. L. Chen et al., Improved dischargeability and reversibility of sulfur cathode in a novel ionic liquid electrolyte, Electrochemistry Communications, vol.8, issue.4, pp.610-614, 2006.
DOI : 10.1016/j.elecom.2006.02.007

J. H. Shin and E. J. Cairns, N-Methyl-(n-butyl)pyrrolidinium bis(trifluoromethanesulfonyl)imide-LiTFSI???poly(ethylene glycol) dimethyl ether mixture as a Li/S cell electrolyte, Journal of Power Sources, vol.177, issue.2, pp.537-545, 2008.
DOI : 10.1016/j.jpowsour.2007.11.043

P. Arora and Z. J. Zhang, Battery Separators, Chemical Reviews, vol.104, issue.10, pp.4419-4462, 2004.
DOI : 10.1021/cr020738u

M. Armand, The history of polymer electrolytes, Solid State Ionics, vol.69, issue.3-4, pp.309-319, 1994.
DOI : 10.1016/0167-2738(94)90419-7

N. J. Liang, J. Y. Dudney, and . Howe, « Carbon-sulfur nanocomposites and electrolytes for rechargeable lithium/sulfur battery, Electrochemical Society meeting 219 th, 2011.

K. N. Jung, M. A. Park, K. H. Shin, and C. S. Jin, Preparation and electrochemical properties of PVdF- HFP/MMT-coated separators for lithium/sulfur battery, pp.3-2011, 2003.

B. A. Boukamp, Solid States Ionic, pp.47-55, 2001.

L. L. Zhang, X. S. Zhaot, R. Brousse, P. L. Marchand, P. Taberna et al., 2520-2531 173 -http://www.picacarbon.com/ 174 -http://www.akzonobel.com/ 175, on energy storage beyond lithium ion : Materials perspectives, Oak Ridge, pp.571-577, 2006.

Y. Gofer, M. Ben-zion, and D. Aurbach, Solutions of LiAsF6 in 1,3-dioxolane for secondary lithium batteries, Journal of Power Sources, vol.39, issue.2, pp.163-178, 1992.
DOI : 10.1016/0378-7753(92)80135-X

K. Xu and C. A. Angell, High Anodic Stability of a New Electrolyte Solvent: Unsymmetric Noncyclic Aliphatic Sulfone, Journal of The Electrochemical Society, vol.145, issue.4, pp.70-72, 1998.
DOI : 10.1149/1.1838419

H. Honbo and H. Momose, Analyses of passivation films on lithium and lithium alloys by electrochemical quartz crystal microbalance, Journal of Electroanalytical Chemistry, vol.638, issue.2, pp.269-274, 2010.
DOI : 10.1016/j.jelechem.2009.10.035

J. Saunier and F. Alloin, Block polymethacrylonitrile copolymers based on a central polyether or polyacetal block: A study of the salt/copolymer complexes, Journal of Polymer Science Part B: Polymer Physics, vol.86, issue.24, pp.3665-3673, 2005.
DOI : 10.1002/polb.20667

URL : https://hal.archives-ouvertes.fr/hal-00386431

W. A. Henderson, Glyme???Lithium Salt Phase Behavior, The Journal of Physical Chemistry B, vol.110, issue.26, pp.13177-13183, 2006.
DOI : 10.1021/jp061516t

C. H. Bamford and C. F. Tipper, Non-radical polymerization, 1976.

J. S. Foos and S. M. Erker, Polydioxolane Polymer Electrolyte, Journal of The Electrochemical Society, vol.134, issue.7, pp.1724-1726, 1987.
DOI : 10.1149/1.2100743

URL : http://www.dtic.mil/get-tr-doc/pdf?AD=ADA174092

Y. Yang, F. Mikes, and Y. Okamoto, 5841-5843 197 -http://www.novolyte.com/energy-storage/purolyte-electrolytes.aspx 198 -R, Macromolecules Bouchet, S. Lascaud, M. Rosso, J. Electrochem. Soc, pp.38-150, 2003.

. Dans-cette-indexation-hypothétique, seuls certains composés ont été identifiés Le choix de ces composés s'est basé sur les données les plus pertinentes trouvées dans la littérature, telles que: Il n'existe pas de longueurs de chaine supérieures à celle

. En-revanche, équilibre impliquant l'espèce S4 2-, i.e. formation de S2 ?-, n'est pas observé en solution. L'équilibre impliquant l'espèce S8 2-, i.e. formation de S4 ?-, est très faiblement déplacé vers la production de l'espèce radicalaire, p.66