Spécification du protocole MAC pour les réseaux IEEE 802.11e à différenciation de services sous contrainte de mobilité
Khaled Dridi

To cite this version:

HAL Id: tel-00681041
https://tel.archives-ouvertes.fr/tel-00681041
Submitted on 20 Mar 2012

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Thèse
Présentée à
L’Université Paris Est
Par
Khaled DRIDI
Pour obtenir le diplôme de
Doctorat en Informatique
Spécialité : Réseaux & Télécoms

Spécification du Protocole MAC pour les Réseaux IEEE 802.11e à Différentiation de Services sous Contrainte de Mobilité.

Soutenance Décembre 2011
Devant le Jury composé de :

J. Benothmane Professeur à l’Université Paris-Nord (Paris XIII) Rapporteur
E. Monacelli Professeur à l’Université de Versailles (UVSQ) Rapporteur
F. Rocarie Professeur à l’ESIEE Paris & à F’SATIE/TUT, Afrique du Sud Examinateur
O. Brun Chargé de Recherche à l’Université Paul Sabatier (Toulouse III) Examinateur
K. Djouani Professeur à l’Université Paris-Est (UPEC) Directeur de Thèse
B. Daachi Maître de Conférences à l’Université Paris-EST (UPEC) Co-directeur
Table des matières

<table>
<thead>
<tr>
<th>Liste des figures</th>
<th>vii</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction générale</td>
<td>1</td>
</tr>
</tbody>
</table>

1 Spécification Physiques des Réseaux Locaux IEEE 802.11 | 5 |
 1.1 Introduction | 5 |
 1.2 Standard IEEE 802.11 | 6 |
 1.2.1 Préambule | 6 |
 1.2.2 Architecture en couches | 6 |
 1.2.3 Les bandes de fréquences | 7 |
 1.2.4 Les canaux de transmission | 8 |
 1.3 Couches physiques de l’IEEE 802.11x | 8 |
 1.3.1 FHSS (Frequency Hopping Spread Spectrum) | 9 |
 1.3.2 DSSS (Direct-Sequence Spread Spectrum) | 11 |
 1.3.3 OFDM (Orthogonal Frequency Division Multiplexing) | 13 |
 1.3.4 IEEE 802.11b (Wi-Fi) | 13 |
 1.3.5 IEEE.802.11a | 14 |
 1.3.6 IEEE 802.11g | 16 |
 1.3.7 Vers l’IEEE 802.11e | 17 |
 1.4 Conclusion | 18 |

2 Qualité et Différentiation de Services au niveau MAC | 19 |
 2.1 Introduction | 19 |
 2.2 Protocole IP et services multimédia | 19 |
 2.3 Qualité de service | 20 |
 2.4 Différenciation de services | 21 |
 2.4.1 Présentation | 21 |
2.4.2 Apport de la différentiation de services ... 21
2.4.3 Les Classes de service .. 22
2.5 Architecture IntServ .. 25
 2.5.1 Caractéristiques du protocole RSVP ... 25
 2.5.2 Fonctionnement du RSVP .. 26
 2.5.3 Limitations du protocole RSVP .. 27
2.6 Architecture Diffserv .. 27
 2.6.1 Intégration de la priorité dans la classe de service 27
 2.6.2 Classification et conditionnement du trafic .. 28
2.7 Différenciation de services et les réseaux 802.11 29
 2.7.1 Support de la différenciation de services aux niveaux PHY-MAC 30
 2.7.2 Limitations en QoS dans le 802.11 ... 30
 2.7.3 Apport de la version 802.11e ... 31
2.8 Ordonnancement et gestion de la QoS au niveau MAC 32
 2.8.1 Gestion des files d’attente ... 33
 2.8.2 Lissage du trafic ... 35
2.9 Contrôle d’admission et algorithmes de réservation de ressources 37
2.10 Techniques d’adaptation des liens .. 38
2.11 Conclusion ... 38

3 Ordonnancement de Paquets & Modèle Multi-niveaux 41
 3.1 Introduction ... 41
 3.2 Techniques d’ordonnancement dans les réseaux sans-fil 42
 3.3 Limitations en QoS dans les ordonnanceurs du 802.11 43
 3.3.1 QoS dans la DCF ... 43
 3.3.2 QoS dans la PCF ... 43
 3.4 Algorithme d’ordonnancement de la HCF .. 44
 3.4.1 Formulation du modèle de Délai .. 46
 3.5 Mécanisme FHCF et contrôle des flux à taux variable 47
 3.5.1 Stratégie d’ordonnancement en fonction de la longueur des files 47
 3.5.2 Estimation des variations dans le flux des paquets 48
 3.5.3 Répartition du temps restant non-attribué 51
 3.6 Architecture de l’ordonnanceur Multi-niveaux HCF-T 53
Table des matières

<table>
<thead>
<tr>
<th>Section</th>
<th>Titre</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7</td>
<td>Modèle analytique de l’ordonnanceur multi-niveaux</td>
<td>56</td>
</tr>
<tr>
<td>3.7.1</td>
<td>Conditions d’élaboration du modèle</td>
<td>56</td>
</tr>
<tr>
<td>3.7.2</td>
<td>Choix des paramètres de QoS à prendre en compte dans le modèle</td>
<td>57</td>
</tr>
<tr>
<td>3.7.3</td>
<td>États et transitions pour chaque paramètre</td>
<td>57</td>
</tr>
<tr>
<td>3.7.4</td>
<td>Équations du système et schéma global de la chaîne de Markov</td>
<td>58</td>
</tr>
<tr>
<td>3.8</td>
<td>Structure de l’organigramme de l’HCF-T</td>
<td>61</td>
</tr>
<tr>
<td>3.9</td>
<td>Résultats des Simulations et Analyse</td>
<td>62</td>
</tr>
<tr>
<td>3.9.1</td>
<td>Scénario retenu</td>
<td>62</td>
</tr>
<tr>
<td>3.9.2</td>
<td>Présentation et analyse des résultats</td>
<td>63</td>
</tr>
<tr>
<td>3.10</td>
<td>Conclusion</td>
<td>71</td>
</tr>
<tr>
<td>4</td>
<td>Diversité de Coopération & Techniques de Combinaison de Liens</td>
<td>73</td>
</tr>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>73</td>
</tr>
<tr>
<td>4.2</td>
<td>Intérêt de la coopération pour le maintien de la QoS</td>
<td>74</td>
</tr>
<tr>
<td>4.3</td>
<td>Caractéristiques techniques du lien coopératif</td>
<td>75</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Niveaux de puissance et délai de propagation des canaux</td>
<td>75</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Modélisation du schéma coopératif</td>
<td>76</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Paramétrisation des transmissions dans le canal</td>
<td>76</td>
</tr>
<tr>
<td>4.3.4</td>
<td>Techniques de modulation employées</td>
<td>78</td>
</tr>
<tr>
<td>4.3.5</td>
<td>Modèle du canal coopératif</td>
<td>78</td>
</tr>
<tr>
<td>4.3.6</td>
<td>Réception des données</td>
<td>79</td>
</tr>
<tr>
<td>4.3.7</td>
<td>BER pour une liaison directe</td>
<td>80</td>
</tr>
<tr>
<td>4.3.8</td>
<td>Liaisons relayées ou multi-sauts (Multi-hop)</td>
<td>81</td>
</tr>
<tr>
<td>4.3.9</td>
<td>Protocoles de transmission coopérative</td>
<td>82</td>
</tr>
<tr>
<td>4.3.10</td>
<td>Techniques de combinaisons</td>
<td>83</td>
</tr>
<tr>
<td>4.4</td>
<td>De l’ordonnancement au niveau MAC vers la coopération physique</td>
<td>91</td>
</tr>
<tr>
<td>4.5</td>
<td>Conclusion</td>
<td>92</td>
</tr>
<tr>
<td>5</td>
<td>Constrain de Mobilité & Évaluation de Performances au niveau MAC</td>
<td>95</td>
</tr>
<tr>
<td>5.1</td>
<td>Introduction</td>
<td>95</td>
</tr>
<tr>
<td>5.2</td>
<td>Gestion de la mobilité dans le 802.11</td>
<td>96</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Motivation</td>
<td>96</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Architecture et composants du 802.11 en mobile</td>
<td>97</td>
</tr>
<tr>
<td>5.3</td>
<td>Intégration de la mobilité dans les réseaux sans-fil</td>
<td>98</td>
</tr>
</tbody>
</table>
5.3.1 Catégories des mobilités dans les 802.11 .. 98
5.4 Algorithme d’accès en multi-couvertures ... 100
5.5 Région de stabilité et Métriques d’évaluation .. 102
 5.5.1 Région de stabilité .. 102
 5.5.2 Métriques .. 102
 5.5.3 Débit effectif .. 102
 5.5.4 Délai de bout-en-bout ... 103
 5.5.5 Jitter ... 103
5.6 Scénarios de mobilité .. 105
5.7 Analyse des résultats .. 106
 5.7.1 Mobilité faible (Low Mobility) ... 108
 5.7.2 Mobilité moyenne (Medium Mobility) .. 111
 5.7.3 Mobilité haute (High Mobility) ... 113
5.8 Conclusion ... 116

Conclusion générale et perspectives ... 117
 5.9 Conclusion générale ... 117
 5.10 Perspectives ... 120

Références bibliographiques ... 121
Liste des figures

1.1 Couches Liaison et Physique du 802.11 [66]. .. 7
1.2 Largeur de bande de la FHSS. ... 10
1.3 L’étallement du spectre par FHSS et DSSS. 10
1.4 Décomposition de la bande ISM en sous canaux de 1 MHz. 11
1.5 Spectre de la DSSS. ... 12
1.6 Une seule porteuse. .. 15
1.7 Six porteuses. ... 15
1.8 Exemple du canal OFDM pour la bande L/M. 15
1.9 Schéma synoptique de l’émetteur du 802.11a. 16
1.10 Schéma synoptique du récepteur du 802.11a. 16
1.11 Schéma des classes du trafic de la couche MAC du 802.11e 17
2.1 Sur la différentiation de services. ... 24
2.2 Requête PATH. ... 26
2.3 Requête RESV. ... 27
2.4 Arrivée des paquets dans un edge router. 29
2.5 Classification, marquage et conditionnement du trafic au niveau du edge router. 29
2.6 Principe du Priority Queuing. .. 34
2.7 Principe du Round Robin. ... 35
2.8 Technique de lissage Leaky Bucket. .. 36
2.9 Seau à jetons. .. 36
3.1 Processus du TXOP selon le modèle HCF. .. 46
3.2 Evolution de la longueur de la file dans l’intervalle de service SI. 49
3.3 Courbes de débit pour les trafics CBR et VBR. 50
3.4 Écart entre les longueurs estimée et réelle des files. 50
3.5 Diagramme des TXOPs et du temps restant employé par l’algorithme FHCF. 51
3.6 Niveaux de la fenêtre de contention. ... 54
3.7 Schéma synoptique des transitions entre les différents états. 60
3.8 Organigramme de l’ordonnanceur multi-niveaux ... 61
3.9 Scénario choisi pour la simulation ... 62
3.10 Trafic de priorité Haute .. 64
3.11 Trafic de priorité Moyenne ... 65
3.12 Trafic de priorité Faible .. 65
3.13 Nombre de paquets par trames de polling .. 66
3.14 Spectre de la HCF pour 1Mbits/s .. 66
3.15 Spectre de la HCF pour 2Mbits/s .. 67
3.16 Spectre de la HCF pour 5.5 Mbits/s ... 67
3.17 Spectre de la HCF-T pour 1Mbits/s ... 68
3.18 Spectre de la HCF-T pour 2Mbits/s ... 69
3.19 Spectre de la HCF-T pour 5.5Mbits/s ... 69
4.1 Schéma de propagation .. 76
4.2 Chaîne de transmission .. 77
4.3 (a) Modulation BPSK - (b) Modulation QPSK .. 78
4.4 BER vs SNR pour un canal à évanouissement de Rayleigh 81
4.5 Liaison relayée ... 81
4.6 Technique de combinaison à rapport égal avec un relayage AAF 84
4.7 Technique de combinaison à rapport égal avec un relayage DAF 85
4.8 Technique de combinaison à rapport fixe avec un relayage AAF 86
4.9 Technique de combinaison à rapport fixe avec un relayage DAF 87
4.10 Technique de combinaison à rapport maximal avec le relayage DAF 88
4.11 Technique de combinaison à base du SNR avec un relayage AAF 89
4.12 Technique de combinaison à base du SNR avec un relayage DAF 89
4.13 Technique de combinaison à base du SNR ajusté avec un relayage AAF 90
4.14 Technique de combinaison à base du SNR ajusté avec un relayage DAF 91
5.1 Mouvement d’un noeud entre deux points d’accès ... 97
5.2 Architecture et composants d’un réseau sans fil ... 98
5.3 Débit dans une topologie statique (sans mobilité) .. 107
5.4 Débit dans une topologie dynamique (avec mobilité) 107
5.5 Le Débit pour la mobilité faible ... 109
5.6 Le Délai de bout-en-bout pour la mobilité faible ... 109
5.7 Le Jitter pour la mobilité faible ... 110
5.8 Le Débit pour la mobilité moyenne. .. 112
5.9 Le Délai de bout-en-bout pour la mobilité moyenne. 112
5.10 Le Jitter pour la mobilité moyenne. .. 113
5.11 Le Débit pour la mobilité haute. ... 114
5.12 Le Délai pour la mobilité haute. ... 114
5.13 Le Jitter pour la mobilité haute. ... 115
5.14 Identification du domaine d’application en fonction du régime de la mobilité et de la pertinence de la métrique. ... 116
Introduction générale

Les réseaux sans fil ont connu une évolution importante ces dernières années. Les services autour des techniques de contrôle d’accès au canal sans fil se développent rapidement [31]. Aussi, une pression forte est mise sur les équipementiers et les fournisseurs d’accès afin de garantir des niveaux de qualité de services (QoS) se rapprochant voir équivalents à ceux assurés par les réseaux filaires. Selon le dernier rapport de l’institut Garner (13 janvier 2010) lors du salon mondial N°1 des TIC, CeBIT (Hanover mars 2010), les analystes prédisent que dans deux ans, le nombre d’utilisateurs via des terminaux portatifs (Smartphones, tablettes, PDA, etc) pour l’accès à Internet, dépassera celui des ordinateurs dits de bureau.

Ainsi, l’évolution technologique par une miniaturisation croissante, tout en offrant des capacités de calcul importantes, a permis une portabilité des équipements induisant un aspect de nomadisme lié à la mobilité des individus. Ce qui a permis l’émergence de nouveaux types de services, de plus en plus exigeant en termes de ressources mises à disposition. Aussi, les systèmes de télécoms sans fil ont besoin de nouveaux mécanismes de gestion de trafic et de gestion des ressources ayant pour particularité d’être à la fois fluide, réactif, coopératif, évolutif, équitable, intégrable et auto-adaptatif. En effet, la differentiation de service [97], la mobilité [69] et la coopération [96] reflètent la complexité des réseaux sans fil de nouvelle génération. Cependant, les niveaux de la QoS exigés principalement par les applications de type multimédias ne sont pas encore garantis [55], [74]. Le problème du maintien des niveaux satisfaisants de QoS dans les réseaux sans fil a été le sujet de plusieurs travaux de recherche durant ces dernières années. Cette évolution s’est concrétisée, en fonction du domaine d’application et des contraintes variées comme la maîtrise de l’énergie ou la gestion de la mobilité, par la mise en œuvre d’une multitude de standards (ZigBee, WiFi, WiMax, 3G, LTE,…).

Les travaux développés dans le cadre de cette thèse s’intéressent aux mécanismes qui gèrent la QoS au niveau de la sous-couche MAC. Plus particulièrement, on s’intéresse à l’ordonnancement des trames sous contrainte d’équité ainsi qu’à la coopération multi-utilisateur par l’analyse de l’impact d’une coopération des nœuds sans fil sur le niveau de qualité de service. Par ailleurs, nous nous sommes intéressés aussi à l’analyse de l’impact de la mobilité sur les performances en termes de gestion de la QoS pour différents types de trafics.
Nous nous intéressons ici aux réseaux de la famille IEEE802.11. Ces réseaux ont connu un déploiement à grande échelle, réduisant de fait les coûts des équipements et démocratisant l’accès sans fil à Internet en tout lieu. Cette dynamique a permis l’émergence de nouveaux standards, dont l’objectif est de prendre en compte au mieux les exigences des applications nomades. Le standard 802.11e a été notamment proposé pour pallier l’absence de différenciation de services par les protocoles existants (802.11,a,b,g). C’est dans ce contexte que s’inscrivent les travaux développés dans le cadre de la présente thèse.

Ainsi de nouvelles contraintes sont alors posées, associant à la fois le mécanisme d’ordonnancement des trames et la gestion de QoS au niveau MAC, [26], à la mobilité des individus. Afin de suivre dans un premier temps l’évolution du débit au fil des générations, comme une métrique pertinente, un passage par la couche physique est paru utile. Pour ce faire, nous avons commencé par l’étude des spécifications du 802.11 [95]. L’intérêt majeur des différents groupes de recherche pour les quatre premières familles de standard, se résume à l’augmentation du débit (1-54 Mbits/s) pour une simple chaîne (1Tx-1Rx). Ceci a été rendu possible grâce aux techniques de codage et de traitement du signal employées. Initialement, la version mono antenne SISO, la plus répandue, est la seule utilisée. Tout récemment, l’évolution des radiocom en termes de possibilité d’intégration et de couplage multi-antennes dans un même dispositif de transmission, a ouvert de nouvelles perspectives. Dans sa version 802.11n, l’alternative consiste à accroître la dimension de la matrice des antennes. Sous plusieurs variantes : MIMO, MIMO virtuel et MIMO coopératif, le défi est de taille, car en plus de l’amélioration de la bande passante, il y a la réduction de la puissance de l’émission pour le même taux d’erreur binaire (BER) qu’un système SISO. Cette dernière caractéristique représente un facteur important dans les réseaux de capteurs où l’énergie est une ressource précieuse [102] [65]. Plusieurs recherches par la suite ont montré que, face à un souci de miniaturisation, le modèle coopératif [80] est le plus pertinent. Son évolution est au détriment d’un MIMO physique souvent plus couteux en termes de mise en œuvre. Le gain en performance, éventuellement réduit, reste satisfaisant.

D’autres travaux de recherche s’intéressent plus particulièrement à la couche liaison de données et principalement au niveau MAC où les nouvelles versions du standard ont connu d’importantes évolutions [47] [96] [5]. Le standard 802.11e [97], plus précisément, intègre les derniers protocoles en matière de gestion de QoS au niveau MAC. Après une étude des évolutions proposées par le 802.11e et une identification des interactions avec la couche physique, on s’est intéressé à l’analyse du fonctionnement des mécanismes d’ordonnancement de trames. Dans cette partie on a proposé d’intégrer les mécanismes d’ordonnancement dans des scénarios correspondant aux deux topologies infrastructure et Ad-hoc. En l’occurrence, les mécanismes HCCA et EDCF sont étudiés et évalués. Ce qui a permis
de proposer une version améliorée de la fonction de coordination HCF, proposée par le 802.11e, qu’on a appelée HCF-T [26]. Cette dernière se base sur une combinaison de trois ordonnanceurs indépendants. Les performances de cette nouvelle version sont analysées en termes des métriques définies. Par ailleurs, l’impact de la mobilité sur les paramètres de la QoS a été étudié par une évaluation du mécanisme EDCF dans un contexte Ad-hoc.

L’objectif est de proposer des techniques d’ordonnancement permettant l’optimisation de la gestion du trafic entre les éléments du réseau. En effet, dans le mode infrastructure, les techniques actuelles ne permettent pas de bien suivre le caractère variable des flux provenant de plusieurs catégories de trafic. Les études issues de la théorie des files d’attente ont donné lieu à de nouvelles approches de gestion de flux. Dans un premier temps, on a utilisé certaines de ces approches afin d’implémenter un modèle de protocole intégrant plusieurs niveaux d’ordonnancement. Cette politique de gestion des files d’attente conduit à une meilleure QoS. Entre autres, il est possible de tenir compte de la nature des flux qui peuvent transiter via le point d’accès (CBR et VBR). Par ailleurs et pour les réseaux de type Ad-Hoc, la mobilité des nœuds communicants est importante à traiter et à prendre en considération. Plusieurs applications dans la vie courante intègrent cette caractéristique de mobilité [11]. Il est alors intéressant d’analyser le comportement d’un réseau sans fil sous cette contrainte. Ce comportement peut être traité sous plusieurs angles : la topologie du réseau, la nature de l’application, le maintien en QoS, etc.

Ce mémoire est organisé en cinq chapitres, une introduction et une conclusion générale.

Le premier chapitre est consacré à l’étude du standard, notamment la spécification de la couche physique pour chaque version du 802.11. En particulier les techniques de modulation et du traitement de signal employées. Les améliorations en termes de : débit binaire, largeur de bande passante et nombre de canaux de transmission, sont aussi évoquées. Dans le deuxième chapitre et après avoir introduit le concept de la qualité et la différenciation de service, on s’est intéressés à l’analyse des différentes classes de service utilisées dans les réseaux filaires, avec comme objectif d’introduire les mécanismes de délivrance de la QoS dans réseaux sans fil. Par ailleurs, on présente un récapitulatif de quelques techniques de gestion de priorités, issues principalement de la théorie des files d’attente, employées dans le standard.

Le troisième chapitre est consacré à l’étude du mécanisme d’ordonnancement de paquets au niveau MAC pour le 802.11. Une analyse des protocoles existants est d’abord présentée, avant de détailler l’approche proposée relative à une structure multi-ordonnanceur HCF-T.

La diversité de coopération entre les nœuds constitue le principal contenu du quatrième chapitre.
Ceci se traduit par l’étude des protocoles de coopération les plus répandus à savoir AF et DF au niveau du nœud relais ainsi que les techniques de combinaison des signaux radios au niveau du récepteur. Les performances de la liaison coopérative sont ensuite comparées à celles de la liaison directe.

Dans le cinquième chapitre, on s’est intéressé à une étude complète d’une architecture hybride de réseau. Le comportement du protocole EDCF est analysé dans un scénario où la performance, au sens du maintien de la QoS, est évaluée. La mobilité constitue la principale contrainte dans cette étude. Suivant le niveau des performances, trois modes opératoires de mobilité sont spécifiés.

Finalement, une conclusion générale suivie de perspectives à ce présent travail sont présentées.
Chapitre 1

Spécification Physiques des Réseaux Locaux IEEE 802.11

1.1 Introduction

Dans ce chapitre nous allons mettre l’accent sur quelques éléments essentiels caractérisant le standard IEEE 802.11. On s’intéressera à la couche physique et aux différentes composantes assurant la transmission sans fil des données entre les terminaux du réseau. L’étude des techniques de codage, d’étalement du spectre par saut de fréquence (FH) et par séquence pseudo aléatoire (DS) ont permis d’améliorer les caractéristiques de la couche physique au fur et à mesure de l’évolution du standard [55]. Ces techniques intègrent la catégorie de modulation mono-porteuse. Le passage à des modèles plus complexes employant la modulation multi-porteuses (OFDM) [94], a assuré une bonne orthogonalité entre les porteuses et a doublé la plage de fréquences engagée. Par ailleurs, les systèmes multi-antennes (MIMO), ont permis de repousser les limites du sans-fil en termes de bande passante. Au niveau liaison de données, l’introduction d’une nouvelle structure à quatre files d’attente FIFO de priorités différentes pour la couche MAC du 802.11e a permis de différentier les trafics et améliorer par conséquent la QoS par rapport aux versions précédentes du standard. Les différents paramètres de la couche physique (PHY) et la sous-couche MAC, évoqués dans ce chapitre, seront utilisés dans les simulations des modèles de scénarios proposés.
1.2 Standard IEEE 802.11

1.2.1 Préambule

Le premier standard IEEE 802.11 dédié aux réseaux locaux sans fil (WLANs) a été proposé en 1990. La version finale de ce standard a vu le jour en 1997. Les débits théoriques étaient de 1 à 2 Mbits/s. Ensuite, de nombreuses améliorations ont été apportées au standard par rapport à sa version d’origine. Ces améliorations sont en constante évolution et de nouvelles couches physiques ont vu le jour sous les appellations IEEE 802.11 b/a/g/n résumées comme suit :

- **IEEE 802.11a** : Cette famille de protocoles utilise une nouvelle bande de fréquence, appelée bande U-NII, située autour de 5 GHz. Les débits peuvent atteindre 54 Mbit/s, mais la version 11a n’est pas compatible avec 802.11 (DSSS et FHSS) et 802.11b, du fait de l’utilisation d’une bande de fréquences différente.
- **IEEE 802.11g** : Elle utilise toujours la bande ISM mais avec des débits pouvant atteindre 54 Mbit/s. Ce standard est basé sur la technique de codage de type OFDM déjà utilisée par le 802.11a. L’objectif étant de maintenir une compatibilité avec le 802.11b tout en offrant de meilleurs débits.
- **IEEE 802.11n** : C’est une évolution de la version 11g et 11a en intégrant un module radio multi-antenne dits MIMO. Des débits théoriques peuvent dépasser les 300 Mbits/s. La version 11n [100] sur sa présentation finale sera compatible avec les versions 802.11b/a/g.

1.2.2 Architecture en couches

Le standard IEEE 802.11 définit les deux premières couches du modèle OSI, à savoir la couche physique et la couche liaison de données. Cette dernière est partitionnée en deux sous-couches, la sous-couche LLC (Logical Link Control) et la sous-couche MAC (Medium Access Control), comme le montre le tableau (1.1) suivant:
Selon ce tableau, une des particularités du standard est qu’il définit quatre couches physiques différentes gérées par une seule couche de liaison des données.

1.2.3 Les bandes de fréquences

Les différents modules radios des standards IEEE 802.11a/b/g utilisent des fréquences situées dans des bandes dites sans licence. Ce sont des bandes à accès libre. La configuration de ces bandes dépend du milieu de l’application intérieur ou extérieur (indoor/outdoor).

Les deux bandes sans licence utilisées par l’IEEE 802.11 sont :

- La bande ISM (Industrial, Scientific and Medical)
- La bande U-NII (Unlicenced-National Information Infrastructure).

1.2.3.1 La bande ISM

Elle est utilisée dans toutes les versions du 802.11x, elle correspond à une bande de fréquence de la gamme UHF autour de 2.4 GHz, avec une largeur de bande de 83.5 MHz (2.4 GHz – 2.4835 GHz). Les réseaux locaux sans fil et les dispositifs Bluetooth émettent sur cette bande de fréquences.

La puissance autorisée en PIRE (Puissance Isotrope Rayonnée Equivalente) est de 100 mW (20 dBm) pour la bande (2400 à 2454 Mhz) en intérieur ou extérieur, pour (2454 à 2483,5Mhz) 100mW en intérieur et 10 mW (10dBm) en extérieur. La largeur de bande attribuée pour les WLANs varie cependant suivant les pays (tableau 1.1).
Tableau 1.1: Allocation de la bande ISM selon les pays.

<table>
<thead>
<tr>
<th>Pays</th>
<th>Bande de fréquences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Etats-Unis (FCC)</td>
<td>2.400-2.485 GHz</td>
</tr>
<tr>
<td>Europe (ETSI)</td>
<td>2.400-2.4835 GHz</td>
</tr>
<tr>
<td>Japon (MKK)</td>
<td>2.471-2.497 GHz</td>
</tr>
<tr>
<td>France (ART)</td>
<td>2.446-2.4835 GHz</td>
</tr>
</tbody>
</table>

1.2.3.2 La bande U-NII

La bande sans licence U-NII est située autour de 5 GHz. Elle offre une largeur de bande de 300 MHz (plus importante que l’ISM qui est égale à 83.5 MHz). Cette bande est divisée en trois sous-bandes de 100 MHz distinctes. La première et la deuxième sont employées pour les transmissions indoor. La troisième sous-bande est, quant à elle, employée pour des transmissions outdoor. La disponibilité de ces trois bandes, de même que pour la bande ISM, est liée à la zone géographique concernée. À titre d’exemples, les Etats-Unis utilisent les trois sous-bandes, l’Europe n’utilise que la première et la deuxième, le Japon emploie uniquement la première.

1.2.4 Les canaux de transmission

Un canal de transmission appelé aussi voie et ligne de transmission, est une bande de fréquence attribuée à un système de communication Emetteur/Récepteur. Il doit restituer le même signal d’entrée avec un retard τ dû au temps de propagation. Initialement réservées à un usage militaire, l’utilisation de ces bandes de fréquences a nécessité une régularisation gouvernementale. Toutefois des bandes de fréquences pour un usage libre sont aussi définies.

1.3 Couches physiques de l’IEEE 802.11x

Comme initié précédemment, la version originale du standard 802.11 a défini trois couches physiques, FHSS, DSSS, IR, auxquelles trois nouvelles ont été rajoutées: deux variantes pour la solution 802.11b et une pour le 802.11a/g.
1.3. Couches physiques de l’IEEE 802.11x

1.3.1 FHSS (Frequency Hopping Spread Spectrum)

La FHSS désigne une technique d’étaliment de spectre fondée sur le saut de fréquence, dans laquelle la bande ISM (2.4 GHz) est divisée en 79 canaux ayant chacun 1 MHz de largeur. Pour l’envoi des données, l’émetteur et le récepteur s’accordent sur un ordre de séquences de sauts précis effectué sur les 79 sous-canaux. La couche FHSS définit trois ensembles de 26 séquences, soit 78 séquences de sauts possibles au total.

La transmission de données s’effectue par le biais des sauts (passage d’un sous-canal à un autre). Selon un ordre préétabli, ces sauts ont lieu toutes les 300 ms. Celui-ci est établi de manière optimale de façon à minimiser les probabilités de collision entre plusieurs transmissions simultanées.

Si une station ne connaît pas l’ordre des sauts des canaux, elle ne peut en aucun cas récupérer les données.

Cette technique était utilisée auparavant dans les transmissions militaires pour lutter contre les interceptions et sécuriser par conséquent les transmissions.

<table>
<thead>
<tr>
<th>Pays</th>
<th>Etats-Unis</th>
<th>Europe</th>
<th>Japon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nombre de canaux</td>
<td>79</td>
<td>79</td>
<td>23</td>
</tr>
</tbody>
</table>

Tableau 1.2: Nombre de canaux utilisés pour la DSSS

La modulation GMSK (Gaussian Minimum-Shift Keying) est utilisée pour l’émission de données dans la FHSS. C’est une modulation de fréquence à enveloppe constante. Le débit est compris entre 1 et 2 Mbit/s. L’avantage de la FHSS est qu’elle permet de faire fonctionner simultanément dans une même zone 26 réseaux 802.11 FHSS (correspondant aux 26 séquences), chaque réseau utilise une des séquences prédéfinies. Un autre grand avantage de la FHSS est son immunité face aux interférences. En effet, comme le système fait un saut d’un canal à un autre toutes les 300 ms sur la totalité de la bande, si des interférences surviennent sur une partie de la bande ISM (un ou plusieurs canaux), cela n’engendrera pas une importante perte de performances.

La limitation à un débit de 2 Mb/s représente l’inconvénient majeur de la FHSS. Cette limitation est due à l’attribution de 1 MHz de bande passante par canal combiné à la modulation de fréquence. La FHSS est aussi utilisée dans le Bluetooth avec un ordre de sauts différent à celui du 802.11 afin d’éviter les interférences entre les deux systèmes. Le besoin d’accroître le débit a limité l’emploi de la FHSS dans les équipements Wi-Fi par rapport à d’autres techniques, plus performantes, qui intègrent les versions 802.11b/a/g.
Figure 1.2: Largeur de bande de la FHSS.

Figure 1.3: L’étallement du spectre par FHSS et DSSS.
1.3. Couches physiques de l’IEEE 802.11x

1.3.2 DSSS (Direct-Sequence Spread Spectrum)

Par analogie à la FHSS, la technique d’étallement du spectre DSSS [47] divise la bande ISM en sous-bandes. Cependant, la division se fait en 14 canaux de 20 MHz chacun. Vue la largeur 83.5 MHz de la bande ISM, il n’est pas possible de placer, sans recouvrement, les 14 canaux adjacents (1.4). Ainsi, le spectre détermine une fréquence centrale dans chaque canal espacée de 5 MHz par rapport à ses voisines (tableau 1.3).

![Diagram of ISM band decomposition into 1 MHz subchannels](image)

Figure 1.4: Décomposition de la bande ISM en sous canaux de 1 MHz.

<table>
<thead>
<tr>
<th>Canal</th>
<th>Fréquence centrale (GHz)</th>
<th>Canal</th>
<th>Fréquence centrale (GHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.412</td>
<td>8</td>
<td>2.447</td>
</tr>
<tr>
<td>2</td>
<td>2.417</td>
<td>9</td>
<td>2.452</td>
</tr>
<tr>
<td>3</td>
<td>2.422</td>
<td>10</td>
<td>2.457</td>
</tr>
<tr>
<td>4</td>
<td>2.427</td>
<td>11</td>
<td>2.462</td>
</tr>
<tr>
<td>5</td>
<td>2.432</td>
<td>12</td>
<td>2.462</td>
</tr>
<tr>
<td>6</td>
<td>2.437</td>
<td>13</td>
<td>2.472</td>
</tr>
<tr>
<td>7</td>
<td>2.442</td>
<td>14</td>
<td>2.477</td>
</tr>
</tbody>
</table>

Tableau 1.3: Fréquences centrales du mode DSSS.

Puisque la transmission ne se fait que via un seul canal, la technique DSSS [44] est par conséquent plus sensible aux interférences que la FHSS qui quant à elle s’étale sur toute la largeur de la bande ISM.

Une fois un canal est sélectionné, le spectre du signal radio occupe une bande comprise entre 10 et 15 MHz de chaque coté de la fréquence fondamentale. Cette valeur provient de la densité spectrale de puissance qui affiche en plus du lobe principal, des lobes secondaires suivant le type de modulation.
employé. Ceci limite l’utilisation des canaux adjacents dans une même couverture.

Si nous considérons deux réseaux utilisant la DSSS avec le premier employant le canal 6, les canaux 5 et 7 ne peuvent pas être utilisés par le deuxième. En effet, les spectres se recouvrent. Malheureusement, il en va de même pour les canaux 2, 3, 4, 8, 9 et 10, qui ne peuvent pas être attribués du fait de l’étallement du spectre du canal 6. Les canaux qui peuvent être attribués sont les canaux 1, 11, 12, 13 et 14 [66].

Avec une largeur de la bande de 83.5 MHz, il ne peut y avoir au maximum que trois réseaux 802.11 DSSS qui peuvent émettre simultanément sans risque d’interférences (figure 1.5).

Figure 1.5: Spectre de la DSSS.

Similairement à la FHSS, la configuration de la DSSS varie selon chaque pays, notamment pour le nombre de sous-canaux utilisés comme le montre le tableau 1.4.

<table>
<thead>
<tr>
<th>Pays</th>
<th>États Unis</th>
<th>Europe</th>
<th>Japan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nombre de canaux</td>
<td>1 à 11</td>
<td>1 à 13</td>
<td>14</td>
</tr>
</tbody>
</table>

Tableau 1.4: Nombre de canaux utilisés pour la DSSS.

L’étallement du spectre est réalisé par le biais des codes pseudo-aléatoires PN (Pseudo-Noise) [81] de 11 séquences, appelée code de Barker (1-111-1111-1-1-1). Ces techniques sont employées aussi dans d’autres systèmes, entre autres : les transmissions satellites, le radar à compression d’impulsion et le GPS.

Pour le 802.11, deux schémas de modulation peuvent être utilisés :
1.3. Couches physiques de l’IEEE 802.11x

- DBPSK (Differential Binary Phase Shift Keying) : il s’agit d’une modulation de phase différentielle pour un débit binaire de 1 Mbits/s
- DQPSK (Differential Quadrature Phase Shift Keying) : c’est une autre variante de la modulation de phase M-2 en quadrature pour un débit de 2 Mbits/s.

Avec la DSSS, une partie redondante de l’information est aussi émise. Elle est utilisée pour le contrôle et la correction des erreurs au niveau [52]. Selon ce principe, une variante de cette technique appelée HR-DSSS de High Rate-DSSS ou la bande passante est divisée uniquement en 11 canaux de 22 MHz. Afin d’éviter des interférences inter-bandes, un saut de canaux est employé : 1, 7 et 13 distants de 25 MHz pour DSSS, 6 et 11 distants de 30 MHz pour HR-DSSS. L’inconvénient de la DSSS est quelle ne peut pas éviter les perturbations qui peuvent intervenir lors de la communication de deux dispositifs employant des canaux en recouvrement.

1.3.3 OFDM (Orthogonal Frequency Division Multiplexing)

Cette technique fait appel au multiplexage par la répartition des fréquences sur des porteuses orthogonales [87]. Cette orthogonalité permet de séparer les canaux afin d’éviter les interférences du canal.

L’OFDM est une technique de modulation multi-porteuse développée dans les années 60, mais son utilisation a pris de l’ampleur et est rendue réalisable, par les techniques du traitement de signal, que récemment. Son principe est de partitionner la bande passante en plusieurs sous porteuses ou canaux distincts. Cette distinction est assurée par la propriété d’orthogonalité où l’amplitude maximale d’une porteuse correspond à une amplitude nulle des porteuses voisine.

Tout d’abord, l’OFDM récupère le signal codé sur chaque sous canal et lui applique une transformée de Fourier inverse. Ceci a pour but de générer la fonction spectrale composite à partir de la densité de puissance de chaque sous canal. Au niveau de la réception, c’est l’opération inverse qui est appliquée pour récupérer la décomposition initiale des fréquences.

Un des points forts de l’OFDM est sa robustesse face à l’évanouissement par multi-trajet et son débit binaire pouvant atteindre 54 Mbit/s.

1.3.4 IEEE 802.11b (Wi-Fi)

Le standard a été proposé en 1999 avec une couche PHY qui utilise la technique HR-DSSS. Cette dernière possède une meilleure efficacité spectrale et permet d’offrir des débits supérieurs à ceux de la DSSS : 5.5 Mbit/s et 11 Mbit/s.
Un des avantages du 802.11b est l’adaptation dynamique du débit (Variable Rate Shifting). Ce mécanisme permet, en ajustant la modulation et le codage, d’adapter le débit en fonction des variations du canal. Si l’environnement radio est sans perturbations, le débit est maintenu à son plus haut niveau (11Mbit/s). En revanche, le débit baisse automatiquement dès que l’environnement commence à se dégrader (interférences, charge du réseau, sensibilité du matériel, éloignement du point d’accès, etc).

1.3.5 IEEE.802.11a

Le Wi-Fi5, contrairement au Wi-Fi, n’utilise pas la bande ISM mais plutôt la bande U-NII située autour de 5 GHz et offrant une largeur de 300 MHz. Autre nouveauté technologique c’est l’utilisation d’une technique d’accès multiples par répartition en fréquences orthogonales (OFDM), caractérisée par un faible taux d’interférences inter-symboles. L’adoption de l’OFDM par la couche PHY de cette norme représente une avancée importante par rapport aux formes d’ondes précédemment décrites.

La norme 802.11a permet d’atteindre un haut débit (54 Mbit/s théoriques) et spécifie 8 canaux dans la bande de fréquence des 5 GHz [1].

1.3.5.1 Les Canaux radios

La relation entre la fréquence centrale et le numéro du canal est donnée par l’équation suivante:

\[Fr_{canal} = 5000 + 5 \times N^\circ_{canal} (MHz) \]

avec \(N^\circ_{canal} = 0, 1, \ldots, 200 \)

Cette formule définit un système de numérotation unique pour l’ensemble des canaux espacés de 5 MHz situés dans la bande [5-6] GHz.

Les figures suivantes montrent la forme de la porteuse avec la fréquence centrale et les harmoniques.

Le 802.11a distingue deux bandes de fréquences :

- Bande basse et moyenne L/M (5150-5350) GHz avec 8 canaux.
- Bande haute H (5725-5825) GHz avec 4 canaux.

La bande L/M s’étale sur une bande totale de 200 MHz, les fréquences centrales des canaux situés aux extrémités de cette bande doivent être espacées de 30 MHz des fréquences limites. Tandis que celles de la bande H, qui s’étale sur une bande de 100 MHz, sont espacées que de 20 MHz des fréquences limites.
1.3. Couches physiques de l’IEEE 802.11x

Figure 1.6: Une seule porteuse.

Figure 1.7: Six porteuses.

Figure 1.8: Exemple du canal OFDM pour la bande L/M.
Les schémas synoptiques des étages Emetteur/Récepteur OFDM sont illustrés par les figures 1.9 et 1.10 suivantes:

Figure 1.9: Schéma synoptique de l’émetteur du 802.11a.

Figure 1.10: Schéma synoptique du récepteur du 802.11a.

1.3.6 IEEE 802.11g

La version 802.11g est une transposition de la forme d’onde du 802.11a de la bande U-NII vers la bande ISM. A l’exception de cette différence au niveau de la bande de fréquence des porteuses, la couche PHY est rigoureusement identique à celle du 802.11a.

Nous citons quelques caractéristiques de la version g [3]:

- Compatible avec la version b
- Opère dans la bande $2.4 \leftrightarrow 2.4835\text{GHz}$
- Utilise la OFDM (bien adaptée dans les deux environnements indoor et outdoor).
- Supporte les débits : 6, 9, 12, 18, 24, 36, 48, 54 Mbps
- Occupe une bande passante de 20 MHz
- Assure une meilleure couverture que la version a

1.3.7 Vers l’IEEE 802.11e

L’intégration de nouvelles techniques de traitement de signal combinées à des architectures Multi-antennes (MIMO) a permis d’atteindre des hauts débits de transmission. Ceci, a rendu possible l’intégration de nouvelles variétés d’applications entre autres des flux multimédias. Par conséquent, il est devenu nécessaire de gérer conjointement des flux classiques et des flux multimédias dans le même réseau sans-fil (cas de plusieurs scénarios comme le réseau domestique par exemple). Toutefois, sans un mécanisme fiable de gestion des priorités au niveau MAC entre les flux, le haut débit, à lui seul, ne pourra pas répondre aux exigences de QoS de certaines applications temps réels (voix, audio et vidéo).

Pour répondre à ce besoin, bien prononcé, un nouveau standard 802.11e a été développé. Il est compatible avec les versions précédentes puisque il maintient la même couche physique. Sa particularité se manifeste au niveau de la couche MAC où plusieurs files d’attentes avec un ordre de priorité différent sont spécifiées. Ce nouveau mécanisme permet de différencier entre les flux et d’améliorer par conséquence le niveau de la QoS par rapport aux générations précédentes du standard.

Le schéma suivant montre la classification du trafic au niveau MAC pour le standard 802.11e [99]. Ceci est rendu possible grâce au mécanisme de différentiation de services qui se base sur quatre files d’attente de priorités différentes

![Figure 1.11: Schéma des classes du trafic de la couche MAC du 802.11e](image-url)
Les 4 files d’attente FIFO sont traitées par ordre croissant comme suit:

1. TC-VO : pour le trafic de type voix,
2. TC-VI : pour le trafic de type vidéo,
3. TC-BE : pour un trafic associé à une technique d’accès de type « Best Effort »,
4. TC-BK : pour un trafic de type « Background » (regroupe les signaux de contrôle)

La gestion de la QoS et l’ordonnancement des trames au niveau de la couche MAC du standard 802.11e seront étudiés avec plus de détails dans les chapitres suivants.

1.4 Conclusion

Notre objectif dans ce chapitre est de reprendre, dans un premier temps, la partie physique présentée dans le standard IEEE 802.11. Nous nous sommes intéressés aux spécifications des caractéristiques au niveau signal, à savoir la répartition de la bande passante, le nombre des sous-canaux, le format de l’onde porteuse ainsi que le codage et le type de modulation. L’utilité de cette étude va se manifester par la suite, lors de la construction d’un scénario de réseau. En effet, l’ajustement des paramètres de la couche physique est un facteur déterminant dans le but d’atteindre les meilleurs comportements du protocole d’ordonnancement de la couche MAC en termes de maintien de la QoS, au moment de l’interaction inter-couches PHY-MAC. Par ailleurs, cette partie nous a permis d’étudier différentes catégories de modulations employées au fil des générations du standard. De même, dans le chapitre coopération, afin de comparer les résultats obtenus en employant des techniques de combinaison du signal reçu, les courbes reliant le rapport SNR au taux d’erreur BER représente une base importante d’évaluation des performances. Enfin, les paramètres évoqués dans ce chapitre donneront plus de clarté concernant l’analyse des spectres des différentes métriques présentées et analysées dans le chapitre de la mobilité.
Chapitre 2

Qualité et Différentiation de Services au niveau MAC

2.1 Introduction

Le déploiement des réseaux locaux sans fil a fait naître de nouveaux types d’application. Ceci a permis d’améliorer les échanges de données entre les différents stations du réseau. Ainsi, les exigences du trafic liées à la nature variable du flux multimédia ont rapidement fait sentir le besoin en matière de débit. La diversité de l’information transmise a motivé l’apparition de nouveaux mécanismes afin d’apporter davantage de robustesse dans le fonctionnement du réseau. Ces exigences ont été regroupées sous le concept de Qualité de Service (QoS). Au niveau architecture ce concept est variable pour chaque couche du réseau. Elle est traitée différemment en fonction du niveau de l’information (message, paquet, trame, bit). Pour ce qui est du travail de cette thèse, la QoS est visualisée et mesurée de bout en bout de la chaîne de transmission où les protocoles d’ordonnancement des trames de la couche MAC assurent la gestion.

2.2 Protocole IP et services multimédia

Le rôle du protocole IP est d’assurer une convergence entre les différentes architectures de réseaux existantes. Avec l’arrivée des applications de type multimédia qui sont à la fois accessibles aux entreprises et au grand public (jeux en réseaux, VoIP, vidéo …), de nouvelles exigences de QoS sont apparues. Dans le but de maintenir une continuité des services est satisfaire les utilisateurs, ces nouvelles applications nécessitent une gestion fiable et performante. La qualité d’un trafic VoIP, par exemple, dépend du temps de réponse du système qui est représenté par le délai de transmission.
Par ailleurs, le protocole IP gère de la même manière l’ensemble du trafic (ex. Internet), sans prise en considération des spécificités de chaque trafic, ni de leur exigences (Débit, délai, Jitter...). C’est tout simplement le principe du Best-Effort. Pour cette raison, l’IETF a exploré de nouvelles pistes afin de combler les faiblesses du protocole IP. Deux groupes de travail se sont partagé la mission pour donner lieu à deux modèles de gestion de QoS : IntServ et DiffServ.

2.3 Qualité de service

La Qualité de Service (QoS) regroupe un ensemble de mécanismes et de technologies capables d’assurer un bon acheminement des données, pour différents types de trafics, entre les entités du réseau. Les métriques pertinentes caractérisant ce concept peuvent être résumées dans les points suivants :

- Débit effectif
- Délai de transmission
- Jitter (à-coup ou gigue)
- Taux de perte de paquets

Les réseaux informatiques n’ont pas été initialement prévus pour prendre en compte les paramètres de QoS. Les ressources en bande passante étaient limitées. De ce fait les premières générations de réseaux ont souffert de faibles niveaux de débits et ont subi des délais considérables pénalisant la transmission des données.

Les groupes de recherche ont été contraint de mettre en place de nouveaux mécanismes de gestion des retransmissions et de correction d’erreur afin d’être en accord avec les principes fondamentaux d’Internet (simplicité, fiabilité, universalité).

Afin de garantir cette qualité de service, trois protocoles se sont imposés :

1. Intserv (Integrated Service, protocole inclus dans RSVP (Ressource Reservation Protocol))
2. Diffserv (Differentiated Services)
3. MPLS (Multi-Protocol Label Switching)
2.4 Différenciation de services

2.4.1 Présentation

La différenciation de service consiste à compenser les pertes de données dues aux incidents qui surviennent, de temps à autre, dans le réseau provoquant une baisse de performances. Dans le cas d’une congestion, le réseau ne permet pas de garantir la transmission des flux suite à l’absence d’un mécanisme dynamique de contrôle d’admission. Ce dernier est activé quand une classe de trafic prioritaire fait son apparition dans le réseau.

Les paquets DiffServ sont étiquetés à l’entrée du réseau. En fonction de ce processus, les routeurs aiguillent les paquets vers la file d’attente appropriée. Cette opération d’étiquetage trouve son utilité dans les réseaux pour lesquels il n’est pas possible de signaler l’ensemble des flux. En effet, cette classe de services n’est dédiée qu’à une catégorie de flux pour lesquels la signalisation, avec réservation de ressources, peut être envisagée.

2.4.2 Apport de la différenciation de services

La signalisation est réalisée dans chaque paquet en attribuant une combinaison de bits différents dans le champ type de service. Le point routeur opère indépendamment de l’opération de signalisation du flux. Ceci permet également d’associer les paquets appartenant au même flux et qui peuvent provenir de plusieurs sources. Les routeurs situés aux frontières du réseau assurent le contrôle et la validité de la classe de trafic en cours de transmission. Par ailleurs, le traitement se résume au simple relayage rapide des données.

Contrairement au modèle Intserv qui gère indépendamment les différents flux, le modèle Diffserv sépare quant à lui le trafic par catégorie de classes. Ce type de traitement assure une granularité de données plus fine. Il se présente comme suit : plus le nombre d’utilisateurs est important, plus les catégories de flux sont diverses. Ceci à pour effet d’accroître les variables de classification et d’ordonnancement dans les routeurs. Ce comportement conduit à une charge importante du réseau, affaibliant davantage les performances.

L’avantage de Diffserv est qu’il n’a pas besoin d’actualiser les états des sources et des destinations aux niveaux des routeurs, ce qui réduit la charge du réseau et favorise une meilleure scalabilité.
2.4.3 Les Classes de service

2.4.3.1 Best-Effort

Le principe Best-Effort se comporte de la manière la plus basique pour gérer le trafic. Il simplifie à l'extrême le rôle des équipements d'interconnexion. Ce fonctionnement se résume suivant la logique tout ou rien. Une fois la mémoire d'un routeur est saturée, les paquets sont automatiquement rejettés. Le réseau Internet adopte aussi le contrôle de flux grâce aux différents algorithmes comme l'évitement de congestion déjà présent dans le protocole TCP. L'inconvénient de cette classe de service pour le contrôle du flux se situe essentiellement dans la variation rapide du trafic où le débit augmente puis baisse brusquement.

2.4.3.2 Expedited Forwarding

L'objectif de la classe Expedited Forwarding (EF) est de fournir un service de transfert équivalent à une ligne virtuelle entre les deux extrémités du réseau d'un opérateur. Le débit relatif à cette location est maintenu constant. Une opération d’ajustement ou de rejet des paquets est réalisée à l’entrée du réseau. Pour assurer la robustesse et la performance du réseau, la proportion des paquets rejetés doit être la plus faible possible par rapport au trafic total et par conséquent maintenir les paquets de service EF. Pour atteindre une telle performance, les paquets EF prioritaires ne doivent pas être aiguillés vers des files d’attentes partiellement chargées ou de petite taille. Par ailleurs, les flux ne doivent subir qu’un minimum de perte, le jitter doit être minimal et la bande passante doit rester suffisante. Dans cette optique, il est impératif de mettre en place un mécanisme de contrôle d’accès. Ceci impose que le taux maximal du trafic à la sortie soit inférieur au taux minimal du trafic à l’entrée. Cette condition sous entend l’existence d’une partie de la bande passante réservée au service EF dans les nœuds internes. De plus, le taux du trafic doit être bien calibré dans les nœuds représentant les extrémités. Cette opération de calibrage est employée pour contrôler la conformité des flux utilisateurs.

Cette conformité du trafic au service EF est constamment vérifiée par un token bucket [16]. Ce dernier spécifie sa taille et son débit. Selon ce processus, les paquets EF non conformes sont détruits, en revanche ceux du service Assured Forwarding sont étiquetés pour être rejettés en cas de congestion.

Aussi, il faut choisir les services qui répondent le mieux aux besoins parmi ceux offerts par DiffServ. A titre d’exemple, le comportement de l’EF n’est pas approprié aux flux multimédia à cause de leurs caractéristiques variables dans le temps. Comme l’EF assure des temps de réponses réduits, sa mise en œuvre demeure relativement coûteuse. Pour le cas des flux en streaming, les
2.4. Différenciation de services

variations de délai sont compensées par le buffer du récepteur. La notion de priorité dans les paquets n’est pas admise dans l’EF malgré qu’elle soit un élément important du service que l’on voudrait assurer.

2.4.3.3 Assured Forwarding

La classe Assured Forwarding (AF) définit 3 priorités fixant l’ordre de rejet dans un routeur en cas de congestion. Les priorités sont représentées selon 3 niveaux dépendants de la conformité de la source par rapport au cahier des charges. Actuellement, l’indice retenu utilise deux token buckets. L’attribution des niveaux est réalisée de la manière suivante :

- Le niveau 1 est attribué aux paquets lorsque le trafic est conforme aux deux jetons
- Le niveau 2 est attribué aux paquets lorsque le trafic n’est conforme qu’à un des deux jetons.
- Le niveau 3 est attribué aux paquets lorsque le trafic n’est conforme à aucun des deux jetons.

Contrairement à la première catégorie de paquets du niveau 1, les paquets des deux autres niveaux sont susceptibles d’être rejetés. Le degré de rejet est plus important pour les paquets du niveau 3 que pour les paquets du niveau 2.

La différentiation de l’Assured Forwarding est caractérisée par l’attribution des priorités aux ressources ainsi que la protection des flux TCP vis-à-vis des flux UDP. Ce mécanisme définit quatre classes de service combinées à trois priorités. Ces priorités sont également appelées niveaux de post-précedence. Les classes sont choisies par l’utilisateur et demeurent inchangées le long de la chaîne de transmission. Les paquets du même flux sont regroupés dans la même classe. Chaque classe est dotée d’un algorithme de rejet sélectif faisant la différence entre les trois niveaux de priorité. Si une congestion surgit dans une des classes AF, les paquets sont alors rejetés selon l’ordre de priorité. Cette dernière peut être modifiée par les opérateurs. Les différents niveaux de services de l’AF sont donnés comme suit:

- AF1 (AF11, AF12, AF13)
- AF2 (AF21, AF22, AF23)
- AF3 (AF31, AF32, AF33)
- AF4 (AF41, AF42, AF43)

Les avantages de l’Assured Forwarding sont réunis dans les points suivants :

- Une meilleure différenciation (classe et priorité),
- Un marquage à l’entrée du réseau est une opération moins coûteuse que le shaping,
• Aucune nécessité de coordination entre domaines,
• Utilisation d’un modèle de facturation simple.

L’Assured Forwarding a aussi des inconvénients résumés comme suit :

• La qualité offerte dépend énormément du niveau d’agrégation et de la présence de flux concurrents,
• Aucune garantie en matière de délai,
• Présence de plusieurs paramètres à régler,
• Les 3 niveaux de priorité ne suffisent pas pour assurer une bonne différenciation sur des liens non-chargés,
• Un mauvais dimensionnement rend inutile la présence de priorités sur des liens en congestion,
• Le marquage ne suffit pas pour protéger TCP de UDP.

Afin d’assurer une bonne différenciation de services avec l’Assured Forwarding, il est nécessaire d’avoir :

• Un regroupement des flux similaires dans une même classe,
• Des mécanismes de marquage adaptés,
• Des variations du débit, rafales, etc.
• Un marquage en fonction du résultat que l’on veut obtenir.

![Figure 2.1: Sur la différenciation de services.](image)

Les flux TCP et UDP sont distingués par un mécanisme d’ordonnancement situé dans les routeurs. Cette mesure permet d’éviter la contention entre les flux. En conclusion, il est judicieux d’utiliser la classe AF réservée aux flux Audio/Vidéo.
2.5 Architecture IntServ

Le modèle IntServ introduit une architecture qui prend en charge la QoS indépendamment du protocole IP. Pour cela, il intègre un mécanisme spécifique de signalisation pour la préservation des ressources appelé RSVP (*Resource ReSerVation Protocol*).

2.5.1 Caractéristiques du protocole RSVP

a. Le RSVP est un protocole de signalisation qui intervient d’une manière dynamique afin de réserver la bande passante et de garantir le délai de transmission. Ce comportement lui permet d’être efficace pour la gestion des applications à contraintes, entre autres la VoIP.

b. Ce protocole exige que l’appel de la QoS soit au niveau récepteur plutôt que l’émetteur. Cette mesure permet d’empêcher aux applications de monopoliser inutilement les ressources de l’émission au détriment de la performance globale du réseau.

c. Les routeurs d’interconnexion, lors du trafic dans le réseau, interagissent avec les requêtes du RSVP pour établir et maintenir les transmissions. Ces équipements d’interconnexion communiquent via le RSVP pour gérer la QoS attribuée à chaque session.

d. Le RSVP opère comme un protocole de transport au dessus du protocole IP mais n’assure pas le transport de données.

e. Le protocole RSVP transite librement et devient transparent lors d’un passage par des routeurs non RSVP.

f. Il n’est pas un protocole de routage en soit mais opère avec les protocoles de routage.

g. Le RSVP s’adapte dynamiquement aux changements qui peuvent apparaître dans le réseau (nombre de nœuds, routage différent) et assure la réservation des ressources pour les différentes applications.

h. Pour toute application, il est employé par un point réseau pour effectuer la requête correspondante en QoS (bande passante nécessaire, niveau de débit,...)

i. Il assure aussi le maintien et le contrôle de la QoS du service demandé au niveau des routeurs.

Les routeurs lors de la réservation des ressources, mémorisent l’information correspondante à chaque état. Si une route n’est plus employée, ses ressources sont alors libérées. De même, si cette route est modifiée, l’information concernant son état doit être mise à jour. Ceci implique le maintien des échanges étroits entre les routeurs.

Deux types de services sont définis par l’IntServ :
⇒ Service Garanti (GS) : maintien de la bande passante et un délai de transmission limité.
⇒ Charge Contrôlée (CL) : agit comme un Best Effort dans un milieu non surchargé.

2.5.2 Fonctionnement du RSVP

Les différents types de messages du RSVP :

1. PATH : message de l’émetteur vers le récepteur. Chaque routeur traversé appartiendra à ce chemin.

![Figure 2.2: Requête PATH.](image)

2. RESV : suite au message PATH, une requête de réservation des ressources est lancée par le récepteur vers l’émetteur suite au message PATH. Cette requête empruntera le même trajet que PATH mais dans le sens opposé. Elle communiquera aussi aux routeurs impliqués, l’information sur les ressources à réserver.

4. ResvErr : message d’erreur lié à la requête de réservation.

5. PathTear : message aux routeurs pour l’annulation des états liés au trajet.

6. ResvTear : message de fin de session qui indiquera l’annulation de l’état de réservation aux routeurs.

7. ResvConf : message de confirmation au récepteur par le dernier routeur recevant un message RESV.
2.6. Architecture Diffserv

2.6.1 Intégration de la priorité dans la classe de service

Pour gérer la différenciation de service, le groupe de travail Diffserv quand à lui, a préféré de suivre une autre approche. La notion de classe de trafic est adoptée au détriment d’un traitement par flots de données. Le terme *behavior aggregate* (BA) est souvent employé pour faire appel à la classe. Le service différencié de cette architecture vise à réduire les informations d’état qui sont mémorisées dans chaque nœud. Par conséquent, il n’y a pas besoin de maintenir des états pour chaque flux au niveau des routeurs. Ceci permet d’accroître la capacité de gestion dans les équipements d’interconnexion.

En effet, il s’agit de répartir la topologie du réseau en domaines. Selon le positionnement des équipements vis-à-vis de ce domaine, on distingue deux types d’éléments fonctionnels :

1. Les routeurs de bordure (Edge router) se chargent du conditionnement et de la classification
des paquets du trafic entrant. Chaque type de classe est identifié par une valeur codée dans l’en-tête IP. Les paquets arrivants à la frontière comportent dans leur champ type/classe de service (TOS/COS) un indice codé du service différencié (DSCP). Le trafic est identifié par un champ DS. Le contrôle et le marquage du paquet sont effectués par les routeurs périphériques, le paquet est envoyé dans le réseau ou rejeté.

2. Les routeurs centraux ou du cœur du réseau (core router) sont responsables uniquement du transfert des paquets entre les nœuds. Ils agissent selon un comportement spécifique : le PHB (Per Hop Behavior) codé par le DSCP en fonction de la classe introduite dans l’en-tête d’IP (champ DS). Le PHB influe sur la façon dont les buffers du routeur et le lien sont partagés parmi les différentes classes de trafic. Le traitement dépend uniquement de sa classe de trafic et pas de la différenciation des sources.

Le traitement différencié des paquets dans l’architecture Diffserv s’appuie sur les trois étapes suivantes :

- L’organisation des flux en classes de services
- L’ordonnancement par l’attribution des priorités aux classes (Scheduling)
- La gestion du trafic dans les files suivant la classe (Queue management).

La deuxième étape est assurée par les algorithmes d’ordonnancement. Ce dernier effectue le contrôle de la distribution des ressources entre les classes de service. Parmi les plus reconnus des ordonnanceurs, on trouve le WRR et le PQ. Pour les deux, l’envoi est accordé aux paquets appartenant à la file la plus prioritaire.

2.6.2 Classification et conditionnement du trafic

L’opération de classification est basée sur les différents champs de l’entête IP. Une fois terminée, elle aiguille le paquet vers l’opération de marquage appropriée suivant le schéma suivant :

Ensuite, les paquets marqués sont envoyés à leur destination. Arrivant au router de frontière du nœud, selon la classe, un service leur sera affecté. La classification dans ce mécanisme est souvent spécifiée par l’administrateur selon la table de marquage au niveau des routeurs comme elle peut être aussi générée par un algorithme de signalisation, le RSVP, déjà employé dans l’IntServ, afin de marquer les classes à traiter par les routeurs.

D’autres opérations peuvent être intervenir dans le Diffserv, comme l’opération du profilage ou de poursuite du trafic. Elle permet de prendre en considération le débit d’arrivée des paquets pour
ne pas dépasser le seuil maximal autorisé par le réseau pour les paquets entrants. Une mesure du trafic par des métrique permet d’identifier la correspondance d’un flot de données au profil négocié. Si ce flot dépasse le seuil retenu, certains paquets seront marqués comme moins prioritaires, ce qui automatise leur perte en cas de congestion comme le montre le schéma (2.5).

![Diagramme d’arrivee des paquets dans un edge router.](image)

Figure 2.4: Arrivée des paquets dans un edge router.

![Diagramme de classification, marquage et conditionnement du trafic au niveau du edge router.](image)

Figure 2.5: Classification, marquage et conditionnement du trafic au niveau du edge router.

2.7 Différenciation de services et les réseaux 802.11

Le standard de communication IEEE 802.11 des réseaux locaux sans fil couvre la couche Physique (PHY) et la sous-couche MAC. Comme cette dernière (MAC) n’intègre pas la notion de priorité dans sa version originale, il est alors impossible de différencier les flux. En effet ceci est dû au fait que le mécanisme Best-effort n’assure pas la différentiation entre les flux. Le support de la qualité de service dans les réseaux sans fil implique l’ensemble des protocoles qui sont employés dans les
différentes couches du modèle OSI.

2.7.1 **Support de la différenciation de services aux niveaux PHY-MAC**

Du fait de la nature sans fil du support de transmission, l’état des canaux de transmission n’est pas stationnaire car le SNR lié à chaque canal varie dans le temps. Plusieurs paramètres sont à l’origine de cette fluctuation, notamment :

- L’affaiblissement par multi-trajet,
- L’évanouissement du canal (le fading),
- Le bruit additif (AWGN),
- L’impact de la mobilité des nœuds [27], etc.

Afin de maintenir la QoS dans un tel environnement, une estimation du canal est une condition incontournable afin de pouvoir rétablir le signal au niveau du récepteur. L’apport de la QoS pour les transmissions sans fil ne se limite pas à l’amélioration des techniques d’accès au canal et dépasse le cadre du niveau physique. L’exploitation de l’interaction avec les autres couches s’est avérée nécessaire et prometteuse. Plusieurs architectures inter-couches (cross-layers) sont alors proposées dans la littérature [71] [13]. Des modèles plus complexes reliant toute la pyramide des couches jusqu’au niveau applicatif et employant des algorithmes de compression de la source sont aussi traités [22], [25]. Ces schémas de compression associés aux techniques de codage et de correction d’erreur peuvent améliorer la chaîne de la QoS de bout-en-bout. Ceci garantit un meilleur acheminement des données. La limite de la capacité du canal, l’information sur son état actuel ainsi que le codage source employé (travaux du groupe AVLSI) constituent d’autres aspects à prendre en considération.

Ces modèles multicritères liés à la nature du support sans fil rendent difficile la tâche du maintien de la QoS à ce niveau.

2.7.2 **Limitations en QoS dans le 802.11**

Les mécanismes qui régissent le standard 802.11 sont représentés par les protocoles DCF et PCF. Le protocole DCF est simplement associé au Best Effort et il ne fournit aucune garantie concernant la bande passante, le délai et la gigue. Quant au protocole PCF, il est basé sur un système de vote central inefficace. C’est un protocole qui ne fait aucune différence entre les trafics transmis (la VoIP, la vidéo, les données).

En raison de multiples problèmes de synchronisation dans les réseaux sans fil, les techniques d’accès au medium (TDMA ou FDMA) restent loin d’être appropriées. De plus, la plupart des
protocoles qui régissent le niveau MAC, sont conçus autour d’un modèle de réseau à liaison directe (mono-saut). Ceci génère le problème connu sous le nom de « station cachée ». Il se produit lorsque deux stations mobiles, qui se situent hors de portée l’une de l’autre, envoient en même temps un signal à une station tierce couverte par une double portée. Cette réception multiple et synchronne provoque une collision et génère un retard pénalisant le fonctionnement des trois stations. L’emploi du mode d’accès asynchrone par le standard 802.11 (DCF) [24] basé sur la technique d’accès CSMA/CA, favorise un accès distribué. Il utilise un mécanisme d’évitement de collision selon le principe RTS/CTS avec un acquittement de réception ACK.

2.7.3 Apport de la version 802.11e

La version (e) du standard 802.11 concerne les mécanismes de gestion et de maintien de QoS. De nouveaux protocoles sont apparus : EDCA (Enhanced Distribution Channel Access), EPCF et HCF (Hybrid Coordination Function). Les réseaux 802.11e assurent une meilleure transmission de la voix et de la vidéo.

Le protocole EDCF est une amélioration du DCF classique selon les trois principes :

- Des délais d’attente différents selon la priorité du message ; AIFS (Arbitration Inter-Frame Space)
- La gestion des files d’attente en fonction de la priorité du trafic pour chaque station ; (priority queuing model)
- La possibilité pour une station d’émettre plusieurs messages ; TXOP (Transmission Opportunity)

L’EDCF permet de régler les flux en fonction des classes de trafic. Un message de faible priorité peut être émis avec un retard si le réseau gère au même temps d’autres trafics prioritaires. Le standard 802.11e est alors plus flexible, mais sa mise en œuvre est plus complexe car il prend en charge la gestion de la QoS pour chaque classe de trafic.

D’autres travaux de recherche ont été proposés dans la littérature [36] [99], afin d’améliorer le support de la QoS au niveau MAC en fonction des conditions d’utilisation et de la qualité du canal indiquées par la couche PHY. Ils peuvent être classées selon trois catégories. La première catégorie concerne les approches proposées pour assurer une différenciation de services au niveau MAC. La deuxième catégorie concerne les approches visant à proposer des mécanismes de contrôle d’admission et de réservation des ressources. Finalement, la dernière catégorie concerne les approches basées sur l’adaptation de lien de communication.
2.8 Ordonnancement et gestion de la QoS au niveau MAC

Plusieurs travaux ont été publiés sur des approches gérant la différentiation de services. Ces approches ne garantissent pas de QoS mais permettent d’améliorer le support de services meilleurs que des services best effort. Ces approches agissent sur des paramètres comme la taille de la fenêtre de contention, l’algorithme backoff ou l’intervalle inter-trames [37]. L’une de ces approches concerne la fonction EDCF (Enhanced DCF) de la norme 802.11e [2]. Il s’agit de gérer plusieurs catégories de trafic avec des niveaux différents de priorité. Plusieurs paramètres de contention sont utilisés à cet effet comme l’intervalle AIFS (Arbitrary InterFrame Space), les tailles maximale et minimale de la fenêtre de contention (CWmin/CWmax) ainsi qu’un facteur d’expansion de la fenêtre du backoff. Toutes les catégories de trafic continuent à utiliser la même méthode d’accès basée sur la fonction DCF. Cependant, la probabilité d’accès au canal est différente d’une catégorie à une autre. La fonction EDCF permet la combinaison de tous les paramètres de contention en fonction du besoin du service.

Dans le but d’assurer une qualité de service point à point basée sur DiffServ, les trames dans les réseaux locaux sans fil doivent être différenciées suivant les classes de priorité indiquées par les couches supérieures. Quand une trame de données MSDU (MAC Service Data Unit) arrive à la sous-couche MAC, elle est encapsulée dans une MPDU (MAC Protocol Data Unit) par l’ajout d’un champ « en-tête MAC » et d’un champ FCS « séquence de contrôle de trame » [68].

Le standard IEEE 802.11e supportant la QoS au niveau MAC introduit une nouvelle fonction HCF (Hybrid Coordination Function) qui définit deux mécanismes d’accès au médium [58] : accès au canal avec contention et accès contrôlé au canal, en utilisant un algorithme d’ordonnancement simple, qui exploite la HCF en tenant compte des besoins en QoS des différents flux circulant sur le réseau. L’ordonnanceur alloue des temps d’accès au médium en fonction des taux moyens d’arrivée de données.

Le mécanisme basé sur EDCF (Enhanced Distributed Coordination Function) fournit des accès distribués et différenciés au canal sans fil pour des utilisateurs avec des priorités pendant les périodes de contention. EDCF est basée sur des priorités différenciées où le trafic doit être délivré suivant quatre catégories d’accès (ACs) représentant des DCFs virtuelles [54]. L’accès contrôlé au canal est basé sur un principe d’élection avec support de qualité de service pendant les périodes de non contention. Il se réfère à CHCF (Controlled HCF).

Dans [67], les auteurs ont étudié l’algorithme d’ordonnancement basé sur HCF et ont montré qu’il n’était efficace que pour des flux dont les caractéristiques sont strictement CBR. Ils ont ainsi proposé...
un nouvel algorithme d’ordonnancement, appelé FHCF, qui est plus équitable aussi bien pour des flux CBR que pour des flux VBR. Ce nouveau mécanisme utilise des estimations sur les longueurs des files d’attente pour affiner les allocations de temps d’accès des différentes stations du réseau.

Dans [11] et [89], les auteurs ont proposé une approche d’ordonnancement équitable et distribués entre les noeuds du réseau et entre les flux du même noeud. Dans [33], Ge et Hou ont proposé une modification de la fonction DCF, appelé P-DCF, en divisant le trafic en plusieurs classes avec chacune un facteur de persistance P inversement proportionnel à la propriété de la classe de trafic. Dans [70], les auteurs ont proposé une approche de gestion distribuée des files d’attente, appelée DWFQ24. La taille de la fenêtre de contention CW de chaque flux est ajusté en fonction de la différence entre les débits actuel et attendu. Si le débit actuel est inférieur au débit attendu alors la taille de la fenêtre CW est réduite afin d’augmenter la priorité du flux et vice versa.

Dans [21], les auteurs proposent un algorithme de gestion dynamique des priorités des flux de chaque station. Chaque station i calcule son rapport Li (= Ri/Wi) entre le débit actuel et son poids Wi. Une comparaison du rapport Li avec celui des autres permet à la station i d’ajuster sa fenêtre de contention. Une autre classe d’approches basée sur un ordonnancement distribué équitable (DFS : Distributed Fair Scheduling) a été proposée [38], [70].

La priorité des noeuds est fonction de la taille du backoff (BI pour Backoff Interval). La station qui possède le plus petit BI est prioritaire, avec BI donné par :

\[BI_i = \frac{\rho_i \times S_i \times a_i \times L_i}{\phi_i} \quad (2.1) \]

où BIi est l’intervalle backoff, Li est la taille du paquet, \(\phi_i\) est un poids lié au besoin en terme de débit, les variables \(a_i\) et \(S_i\) sont des facteurs de pondération et \(\rho_i\) est un nombre aléatoire entre 0,9 et 1,1 introduit pour éviter les collisions. Un autre algorithme d’ordonnancement distribué appelé DDRR25 a été proposé dans [58]. Au niveau de chaque station i, on associe à chaque flux j un paramètre \(Q_{ij}\) égal au débit dont il a besoin ainsi qu’un compteur de déficit (\(DC_{ij}\)) utilisé pour le calcul du temps d’attente entre l’envoi de deux paquets (\(IFS_{ij}\) : Inter Frame Space). Il existe deux versions avec ou sans utilisation de backoff. En conclusion, les approches basées sur la gestion prioritaire des flux nécessitent moins de modifications au niveau de la norme 802.11 DCF et offrent un meilleur support de la qualité de service pour les applications multimédia.

2.8.1 Gestion des files d’attente

L’algorithme de gestion des files d’attente organise les trames\(^2\) qui s’y trouvent en faisant appel à un ordonnanceur bien précis. Ce dernier a comme tâche de définir l’ordre de l’envoi en choisissant
notamment les paquets à transmettre et ceux à détruire. Les modèles d’ordonnanceur les plus répandus sont les suivants :

2.8.1.1 First In First Out (FIFO)

C’est l’ordonnanceur le plus simple qui gère les paquets selon l’ordre de leur arrivée dans les interfaces d’entrée. Il s’agit là d’un modèle donnant un temps de réponse le plus réduit relativement à la vitesse de transmission des paquets. C’est un ordonnanceur efficace s’agissant des réseaux à forte capacité donnant lieu à des files d’attente pratiquement vide pour la plupart du temps. En revanche dans le cas du burst, ce type d’ordonnanceur se trouve rapidement débordé et présente un taux de perte important de paquets. Ce qui peut se répercuter sur les flux prioritaires.

2.8.1.2 Priority Queuing

Ce modèle d’ordonnanceur améliore le fonctionnement du précédent par l’introduction de la notion de priorité au flux circulant. Plusieurs files sont alors définies pour chaque classe de trafic. Les paquets prioritaires subissent moins de perte en cas de congestion. Ce processus permet si nécessaire, l’interruption d’une file de faible priorité. Le principe de ce modèle d’ordonnancement est repris dans la figure (2.6).

![Priority Queuing Diagram](image)

Figure 2.6: Principe du Priority Queuing.

2.8.1.3 Round Robin

De la même manière que l’ordonnanceur précédent, chaque classe de flux est affectée à une file d’attente. Ensuite les paquets sont prélevés à tour de rôle et de façon circulaire et équitable.
2.8. Ordonnancement et gestion de la QoS au niveau MAC

2.8.1.4 Weighted Round Robin

Il s'agit là du même principe que le round robin avec une notion supplémentaire relative au nombre de prélèvements réalisés à chaque passage dans une file d’attente.

2.8.1.5 Class Based Queuing

C'est une variation du WRR qui intègre un classifier à l’entrée des files afin d’aiguiller les paquets en fonction de leur classe dans la file correspondante. En plus de ce classifier, un Round Robin est maintenu en sortie des files afin d’éviter qu’une même classe ait un passage permanent et monopolise ainsi l’accès aux ressources.

2.8.2 Lissage du trafic

2.8.2.1 Leaky Bucket

Dans cette technique de lissage, les flux peuvent entrer dans la file (seau) avec des débits différents mais ressortent avec un débit constant. Trois paramètres caractérisent le fonctionnement de cette approche (figure 2.8):

- Un compteur C incrémenté à chaque arrivée d’un paquet dans la file.
- Un seuil S qui, une fois dépassé, le paquet concerné est systématiquement rejeté ($\tau = C$).
- Un taux de sortie de la file (τ) décémenté à chaque arrivée d’un paquet dans la file.

2.8.2.2 Token Bucket

Dans cette approche de lissage, le trafic ne sera pas transmis directement mais doit d’abord être régulé par un mécanisme à jetons. Chaque jeton est composé d’un nombre précis de bits. Le taux
Figure 2.8: Technique de lissage Leaky Bucket.

de sortie des jetons τ représente le débit moyen et le seuil S la taille des flux arrivant. Tant que le stock en jetons est maintenu dans la file, ce mécanisme est actif et par conséquent le trafic est alors transmis. Le nombre de jetons est accumulé davantage lorsque le trafic est réduit suite à une faible charge dans le réseau.

Figure 2.9: Seau à jetons.
2.9 Contrôle d’admission et algorithmes de réservation de ressources

La différenciation des services au niveau MAC ne suffit pas à elle seule pour garantir un niveau de QoS donné. Les différentes techniques proposées dans ce cadre ne permettent de supporter que des services nécessitant au mieux une charge réseau moyenne. D’où la nécessité de disposer de mécanismes de contrôle d’admission et de réservation de ressources réseau en fonction des services applicatifs et leurs besoins en QoS. Cependant la mise en œuvre de ce type de techniques reste difficile. Ceci est dû, principalement, au fait que les noeuds réseaux ne disposent pas de connaissances précises sur l’état du canal de communication. Plusieurs approches ont été proposées dans ce cadre. Les approches orientées contrôle d’admission modifient légèrement la norme à la différence de certaines approches orientées vers la réservation de ressources réseau. Par ailleurs, et afin de pouvoir contrôler l’accès au canal, il est nécessaire de disposer d’informations sur l’état du canal. Ces informations peuvent être obtenues à partir de mesures effectuées aux niveaux physique et MAC ou à partir de calcul. Barry et al. proposent dans [9] une méthode basée sur la modification des limites maximale et minimale de la fenêtre de contention pour pouvoir supporter deux classes de service, haute priorité et best effort. Par l’émulation de la sous-couche MAC (Virtual MAC) et l’application d’une source virtuelle (VS) qui vont permettre d’observer et d’évaluer l’état du canal en suivant en parallèle et d’une façon passive les paquets réels. Des simulations ont été réalisées sur des délais et des débits estimés (estimation de ressources disponibles) des deux classes de trafics (temps réel et best effort). Ces simulations sont basées sur la supposition qu’on a deux valeurs de CWmin et CWmax correspondant aux deux niveaux de priorités. Kazantzidis et al. [45] ont proposé une heuristique basée principalement sur un paramètre calculé en temps réel concernant le débit disponible. Une implémentation de cette heuristique dans le cas des réseaux ad hoc utilisant le protocole de routage AODV (Ad Hoc On Demand Distance Vector) a été présentée. Nous pouvons citer les travaux de Li et Parabhakaran [54], qui ont proposé une approche de contrôle d’admission et de réservation prioritaire de ressources. Banchs et Pérez [8], [7] ont proposé une extension de la fonction DCF appelée ARME. La fenêtre de contention est ajustée en fonction de la charge du réseau. Liu et al. [56] ont proposé une classe de protocoles de réservation de ressources niveau MAC (AACA-SDT, AACA-MDT, AACA-RDT). Plusieurs autres approches ont été proposées dans la littérature dont l’objectif est d’assurer un contrôle d’admission dynamique et de réservation de ressources en prenant en compte la saturation du réseau, le nombre de stations actives, la longueur moyenne des paquets ou bien de la charge en terme de ressources au niveau de chaque noeud [46], [90].
2.10 Techniques d’adaptation des liens

Dans [PAV 03], Pavon et al. se basent sur le niveau de signal reçu RSS comme métrique de décision pour que la station bascule dynamiquement vers un débit de transmission approprié sachant que le niveau de signal émis est constant et que la relation entre RSS et S/R est linéaire. Dans [48], M. Lampe, et al. proposent la prédiction de taux d’erreurs paquets (PER) comme critère de décision pour l’adaptation de liaison. Cette prédiction se fait moyennant les rapports S/N (Signal/Noise) et C/I (Carrier/Interference) et la fonction de transfert momentanée du canal. Qiao et al. utilisent dans [70] une combinaison du rapport S/N, du comptage d’essais de trames et de la charge moyenne comme métriques pour l’algorithme d’adaptation de liaison. Ce dernier préétablit une table de meilleur débit de transmission pour les tentatives futures. Dans [21], Chevillat et al. se basent sur les acquittements pour évaluer la qualité du canal. Si le nombre de transmissions successives réussies dépasse un seuil S alors le débit augmente. Par ailleurs, si le nombre de transmissions successives échouées dépasse un seuil F alors le débit diminue. Certes, ces recherches ont permis d’améliorer les performances du standard IEEE 802.11. Elles supposent l’existence d’une charge plus ou moins moyenne dans le réseau. Or, actuellement les applications multimédia temps réel sont de plus en plus demandées par les utilisateurs mobiles. Elles généreront des flux de grande charge et auront besoin donc d’un débit plus élevé et d’un accès au canal plus rapide. D’autre part, ces exigences n’intéressent pas seulement les utilisateurs mais aussi les fournisseurs d’accès Internet autour de points d’accès résidentiels 802.11.

2.11 Conclusion

Les réseaux sans fil sont en plein essor, en offrant des services équivalents aux réseaux filaires avec plus de mobilité. Cependant, l’inconvénient principal des réseaux locaux sans fil est lié au type et à l’utilisation du canal de communication. De capacité limitée, il doit être partagé entre les stations mobiles de façon équitable, ce qui engendre une dégradation des performances surtout dans le cas des flux multimédia à taux binaire variable. Ce type de trafic est supporté à partir du niveau IP. Les paquets sont classifiés et marqués pour être traités d’une façon particulière par les différents nœuds du réseau. Cette classification n’est pas connue par la sous-couche MAC classique puisqu’elle suppose le trafic de même type. Pour assurer une qualité de service au niveau MAC, plusieurs approches ont été proposées dans la littérature afin d’exploiter conjointement des informations obtenues des couches PHY et réseau. Ceci permet de délivrer les paquets de la couche réseau suivant leurs priorités selon la QoS désirée. Les différents aspects présentés dans ce chapitre couvrent l’ordonnancement et la
gestion des priorités des flux ainsi que l’adaptation dynamique des liens de communication. La tendance est d’aller vers une approche intégrant les trois couches basses. Ceci peut être obtenu par la mise en place de mécanismes d’échanges de données entre les différentes couches (cross-layer) pour optimiser les performances locales (au niveau d’une couche) et globales (au niveau du nœud et du réseau) [73].
Qualité et Différentiation de Services au niveau MAC
Chapitre 3

Ordonnancement de Paquets & Modèle Multi-niveaux

3.1 Introduction

Les avancées technologiques des systèmes radio-fréquences ont apporté des améliorations significatives en termes de débit et de bande passante aux supports de transmission. Afin de permettre l’accès au canal sans fil pour les différents utilisateurs au niveau de la sous-couche MAC, le standard 802.11 se base sur deux techniques [95]. La première technique est principale (DCF : Distributed Coordination Function) qui s’active dans la période de contention (CP). La deuxième technique est optionnelle (PCF : Point Coordination Function) et dédiée au polling pendant la période sans contention (CFP).

Malgré le net progrès en terme de gestion du contrôle d’accès au niveau MAC, le standard reste basé sur une seule file d’attente de type FIFO, ce qui ne permet pas de différencier les types de services.

La forte demande des applications multimédias en termes de mobilité, de différenciation des trafics et de QoS, met ce standard constamment à l’épreuve et toujours en évolution. En réponse à ces exigences, une nouvelle version sous la référence IEEE 802.11e a été proposée [97]. Elle intègre un mécanisme de différenciation de services au niveau MAC capable de garantir des niveaux de QoS par une amélioration du processus d’ordonnancement des paquets [29], [84]. Elle utilise une seule fonction de coordination (HCF) qui combine les deux techniques précédentes. Deux méthodes d’accès existent pour la fonction HCF : EDCA une version améliorée de la DCF en mode avec contention, et un contrôleur hybride pour l’accès au canal, appelé HCCA (contrôleur d’accès de la HCF) en mode sans contention.

Pour que la fonction HCF puisse prendre en compte des contraintes de QoS de différents types
de trafic, un algorithme d’ordonnancement au niveau du HCCA a été proposé comme modèle de référence [41]. Chaque QSTA (module QoS au niveau station) nécessitant des conditions strictes de QoS envoie des paquets de requête au QAP (module QoS niveau point d’accès). Le QAP peut allouer des intervalles d’émission de chaque station selon les requêtes. La nouvelle couche MAC est conçue autour de 8 niveaux de priorité, où chaque catégorie de trafic comporte 4 files de type FIFO. Chacune de ces classes se comporte comme une fonction DCF à part entière.

3.2 Techniques d’ordonnancement dans les réseaux sans-fil

Le module ordonnanceur dans les réseaux sans fil gère les files d’attente des trames et détermine l’ordre dans lequel les messages en attente de transmission vont être transmis. Cette opération influe d’une manière significative sur les paramètres de performance tels que le délai, la gigue et la bande passante. Plusieurs algorithmes pour la gestion des files d’attente ont été proposés dans la littérature [59]. Le modèle d’ordonnancement le plus basique (FIFO) consiste à stocker les paquets quand le réseau est surchargé et à les transmettre, lorsque ce dernier n’est pas en état de congestion, dans l’ordre de leur arrivée. Il n’y a donc pas de priorité entre les trames et les sources de trafic importantes en volume. Celles-ci peuvent lourdement pénaliser les applications sensibles en délais d’acheminement (trafic isochrone). Un modèle plus évolué Priority Queuing (PQ) permet d’attribuer de façon stricte une priorité à des trafics importants. La file d’attente à haute priorité est systématiquement privilégiée par le mécanisme de transmission. Le Class Based Queuing (CBQ) a pour but de permettre à plusieurs applications le partage du réseau avec des spécifications minimales (bande passante et délai). Cette idée de partage proportionnel aux besoins de la bande passante entre les applications, représente une amélioration par rapport au mode précédent.

Le RR (Round Robin), que nous avons vu précédemment, est fortement employé dans les réseaux sans fil. Il consiste à scruter les files les unes à la suite des autres dans les stations mobiles. Si la file contient un paquet, ce dernier sera servi. Par contre, si aucun paquet ne se trouve à ce moment, l’ordonnanceur passe directement à la file suivante. C’est ce type de mécanisme qui est utilisé dans le standard 802.11 pour la scrutature des stations durant l’intervalle de service [79]. Par ailleurs plusieurs autres algorithmes ont été proposés dans la littérature [4], le WRR (Weighted Round Robin), le WFQ (Weighted Fair Queuing), l’EDF (Earliest Deadline First), etc.

On se propose dans ce chapitre de développer un algorithme d’ordonnancement multi niveaux pour la fonction de coordination de la couche MAC. L’avantage de cet algorithme est de réduire le nombre de trames de contrôle et de favoriser les trames de données [72]. Il permet également d’alléger
la charge du réseau et de réduire la probabilité de collision entre les noeuds.

3.3 Limitations en QoS dans les ordonnanceurs du 802.11

Un modèle de réseaux supportant la QoS considère un ensemble de paramètres (la largeur de bande, le délai de transmission et la perte de données) et doit satisfaire les exigences strictes de différentes applications.

L'IEEE 802.11 est basé sur un modèle de service dit de meilleur-effort « Best-effort » pour le transfert des trames depuis l'émetteur jusqu'au récepteur. Ce service n'assure aucune garantie en termes de QoS et sert les paquets de l'ensemble des applications de la même manière. Pour cette raison qu'on dit que le modèle de base ne supporte pas la différenciation de service. Par conséquent, tous les types de trafic de données, même ceux dédiés aux applications multimédia, souffrent du même retard et de la variation de la bande passante durant la congestion du réseau. Comparés avec les réseaux câblés, les caractéristiques du canal sans fil ne sont pas constantes et sont souvent sensibles aux variations spatio-temporelles. En contre partie, les éléments du réseau (applications, stations, routeurs...) espèrent maintenir le même niveau de QoS indépendamment de la variation du canal.

Assurer la QoS dans un tel canal, présente un grand défi en raison d’une bande passante limitée et d’un taux d’erreur (BER) plus élevé suite à plusieurs facteurs tels que : la perte de propagation, les interférences, le multi-trajets, le fading du canal, le bruit, etc.

3.3.1 QoS dans la DCF

Cette fonction supporte uniquement la classe de trafic de type « Best-effort service » où le débit, le délai et la perte de paquets ne sont pas garantis. Comme les stations du même réseau interagissent d’une manière concurrentielle pour le partage des ressources et du canal avec une même priorité, il n’y a pas de mécanisme pour différentier les flux prioritaires par rapport aux autres. Ainsi, une étude montre que l’ampleur de la dégradation des paramètres du canal est directement proportionnelle à l’augmentation du nombre de stations [64].

3.3.2 QoS dans la PCF

La faiblesse en terme de qualité de service de la PCF est résumée dans la littérature [63] principalement en trois problèmes :
1. Toutes les communications entre les stations du même BSS transitent par un seul point d’accès AP. Ceci conduit à des pertes dans la bande passante. Si la densité du trafic est importante, la dégradation en ressources du canal sera significative.

2. L’incompatibilité de la coopération entre CP et CFP dans PCF nécessite l’emploi des trames Beacons pour séparer les deux modes. Ces trames sont gérées par le PC de la même manière que les autres (c-à-d attendre la libération du canal pour les envoyer). Ceci qui génère un retard pénalisant le déclenchement de la phase CFP (4.9ms de retard dans le pire des cas avec la 802.11a) [59].

3. En mode PCF le temps de transmission d’une station est inconnu et l’envoi peut être fait en plusieurs fragments ce qui affecte le temps de transmission de l’unité MSDU (Mac service data unit) sans le contrôle du PC. Ceci empêche le PC de maintenir une garantie en QoS pour les autres stations qui sont interrogées durant le reste de la CFP.

3.4 Algorithme d’ordonnancement de la HCF

Le modèle de base de la norme 802.11e a été développé afin de prendre en considération les exigences du trafic en terme de QoS [97].

La définition de la fonction HCF est dédiée de manière générale au mécanisme qui gère la QoS au niveau MAC du 802.11. Cependant, certains auteurs la considèrent pour la phase CFP du mode infrastructure. Dans l’optique d’apporter un éclaircissement relatif à ce point, nous avons tout simplement suivi et retenu les appellations et recommandations admises par le standard à savoir :

- HCCA (phase CFP) pour le mode infrastructure,
- EDCA (EDCF) (phase CP) pour le mode Ad-hoc,
- L’ensemble des deux constitue la HCF.

Dans le mécanisme d’ordonnancement HCF, on s’est intéressé à l’étude du comportement du protocole MAC dans le mode infrastructure où le contrôleur HCCA d’un AP gère le trafic dans le réseau. La notion de classe de priorité est introduite pour le TS de chaque station.

Le calcul du TXOP présenté dans cette partie prend en considération les spécifications de chaque trafic TS (débit moyen, taille de la MSDU et SI max). Toutefois, le modèle que nous avons adopté pour l’étude de l’ordonnancement maintient un seul TS différent pour chaque station durant la phase sans contention.
Les TSs sont de nature CBR et ils sont distingués par trois niveaux de priorités (L-M-H). Les TSs de priorités différentes, émis par les stations, transitent par une seule file FIFO. Cette configuration est favorable pour pouvoir évaluer séparément le mécanisme d’ordonnancement HCCA au niveau du point d’accès.

Le QSTA de chaque station qui sollicite le contrôleur HCCA doit, avant tout, envoyer un paquet de demande de QoS au QAP, cette demande comporte principalement les paramètres suivants : le débit moyen de l’application, la taille du MSDU et la valeur max du SI requise. Pour chaque demande en QoS, le QAP détermine d’abord la valeur minimale des intervalles de service SIs sollicitées par les différents trafics, puis il choisit la durée de la super-trame qui possède le plus grand sous-multiple, ce dernier doit être inférieure au plus petit des SIs2. En suite, la super-trame est coupée en plusieurs SIs et les QSTAs sont scrutés un par un selon l’algorithme RR durant chaque SI. Une fois le SI est déterminé, le QAP évalue l’ensemble des TXOPs alloués aux différents TSs de chaque QSTA.

Le TXOP correspond au temps de transmission du nombre de paquets arrivant dans la file, pour un TS donné, pendant un intervalle SI.

Le nombre de paquets arrivant dans une file TS (j) d’un QSTA (i) durant un SI est :

\[N^j_i = \frac{\rho^j_i SI}{M^j_i} \]

où \(\rho^j_i \) est le débit d’une application et \(M^j_i \) est la taille du MSDU.
Les TXOPs \(T^j_i \) sont évalués comme suit :

\[T^j_i = N^j_i \left(\frac{M^j_i}{R} + 2 \times SIFS + ACK \right) \]

où R est le débit physique de transmission.

Cet algorithme (figure 3.1) peut être efficace si le trafic reste constant (flux CBR) et respecte strictement sa demande en QoS. Cependant, quelques applications temps-réel, comme la vidéoconférence, peuvent générer des flux VBR. En effet, avec les flux VBR, ce mécanisme peut provoquer un étalement de la longueur de la file et augmenter les pertes en paquets de données, chaque fois que le flux est appelé à varier. Ceci s’explique par l’incapacité des allocations TXOP, déjà attribuées à priori selon les exigences en QoS, d’admettre des variations instantanées des pics en débit.

Il est alors important de penser à un nouveau mécanisme d’ordonnancement pour avoir plus de flexibilité vis-à-vis des différentes fluctuations du trafic.

Le principe de la fonction de coordination HCF qui intègre le 802.11e est représenté par l’organigramme suivant :
3.4.1 Formulation du modèle de Délai

Selon le standard 802.11e, le délai t^d généré lors d’une transmission peut être écrit comme suit :

$$ t^d = \sum_{j=1}^{i} T_j - \frac{q_i^M_i}{\rho_i} $$

(3.3)

Avec $q_i^M_i$ la longueur de la file TS et T_i : TXOP d’ordre i et qui est égal à :

$$ T_i = \frac{q_i^b M_i}{b} + \frac{\rho_i}{b} T_i - \frac{q_i^M_i}{b} $$

(3.4)

Le délai maximal D_i obtenu à partir de t^d est égal à :

$$ D_i = SI - T_i + \frac{q_i^M_i}{\rho_i} $$

(3.5)

Le délai est important si quelques paquets restent dans la file d’attente à la fin de l’interrogation. Ainsi D_i peut être exprimé en fonction de la file d’attente avant polling comme suit :

$$ D_i = SI + \frac{q_i^b M_i}{\rho_i} - \frac{b}{\rho_i} T_i $$

(3.6)

Cette équation montre que pour réduire le délai maximal D_i, nous pouvons jouer sur les valeurs des deux paramètres de l’équation : l’intervalle SI et la file d’attente avant polling q_i^b.

- Pour SI : indépendamment de T_i, réduire l’intervalle de service implique l’augmentation du nombre de SIs dans l’intervalle entre les deux beacons limitant la supertrame, ce qui va accroître la fréquence de polling et solliciter davantage le contrôleur HC.

- Pour q_i^b: Nous pouvons modifier le délai max des paquets si on est capable de contrôler la longueur de la file et gérer le nombre de paquets envoyés avant le polling. Cette longueur est initialement définie par les flux TSs, ceci dit, si le trafic n’est pas CBR, q_i^b peut varier considérablement.
Dans le but de prendre en considération la contrainte de variation du flux (VBR), pour promouvoir le fonctionnement de la HCF, une nouvelle version de l’algorithme est présentée dans [67] sous l’appellation de FHCF. Nous décrirons le principe de celle-ci dans le paragraphe suivant.

3.5 Mécanisme FHCF et contrôle des flux à taux variable

Cette version d’algorithme prend en considération l’information de la longueur de la file pour supporter, en plus des flux CBR, les flux vidéo à taux variable VBR [67]:

- Le QAP utilise une fenêtre des erreurs cumulées durant les estimations précédentes des trafics dédiés à chaque station afin d’ajuster le calcul du TXOP qui sera attribué par la suite au QSTA,
- Ensuite, le QSTA redistribue le temps non utilisé à tous les trafics par le biais de l’ordonnanceur du noeud principal.

3.5.1 Stratégie d’ordonnancement en fonction de la longueur des files

Si on se positionne dans le cas où une application ne respecte pas les caractéristiques d’un trafic CBR, le mécanisme HCF ne sera pas capable de satisfaire les exigences en délais. Cette incapacité est due principalement à une moyenne non contrôlée de la longueur de la file.

Le nouveau mécanisme introduit les modifications suivantes :

> Un QAP utilise l’information de la longueur de la dernière file envoyée par le QSTA durant le polling afin d’estimer la longueur de la file au début du prochain SI.
> Comparaison de cette estimation avec la longueur idéale pour calculer le TXOP.
> Le QAP modifie par la suite ce TXOP par la redistribution du temps restant du CAP aux différents QSTA suivant les variations du flux (le débit d’envoi et la taille du paquet).

3.5.1.1 Utilisation d’un estimateur de la longueur des files Q dans SI

Le QSTA envoie le paquet QoS à QAP qui l’utilise pour enregistrer la longueur de la file q^e_i du trafic en cours ainsi que le temps de réception t^e_i.

A la fin de chaque période CFP, le QAP dispose d’un couple (q^e_i, t^e_i). C’est à ce niveau qu’il peut estimer la longueur de q^{si+1}_i du $i^{ème}$ trafic qui passera au prochain SI selon les paramètres QoS (débit,
taille de l’unité de données des services MAC (MSDU)).

\[q_{est}^i = \frac{\rho_i (SI - t_i^e)}{M_i} + q_i^e \]

(3.7)

3.5.1.2 Comparaison avec la longueur idéale de la file

L’expression du délai maximum de la HCF montre que ce dernier peut être minimisé si nous arrivons à avoir \(q_i^e = 0 \) durant un même TXOP comme proposé dans le standard 802.11e. Pour satisfaire cette condition dans le FHCF, le QAP calcule, au début de la période \(SI \), la distribution de la longueur idéale de la file selon l’ordre du polling et les paramètres de la qualité de service de chaque trafic accepté.

Par analogie à l’équation de la valeur estimée de la file, la longueur idéale (correspond à une longueur nulle après le calcul du TXOP) que peut avoir la file est donnée par la formule suivante:

\[q_{ideal}^i = \rho_i \left(SI - \sum_{j=1}^{i} N_j \cdot \left(\frac{M_j}{N_i} + 2 \cdot SIFS + ACK \right) \right) \approx \frac{\rho_i \cdot SI}{M_i} \left(1 - \sum_{j=1}^{i} \frac{\rho_j}{b} \right) \]

(3.8)

Trois cas possibles sont alors générés :

1. \(q_{est}^i = q_{ideal}^i \): la longueur de la file sera égale à zéro à la fin du TXOP et les délais les plus bas des paquets sont obtenus.
2. \(q_{est}^i > q_{ideal}^i \): plusieurs paquets sont arrivés en avance dans la file.
3. \(q_{est}^i < q_{ideal}^i \): le QSTA est scruté plus tard que prévu et la longueur estimée de la file est inférieur à la longueur idéale, parce que le TXOP réel a terminé après le TXOP estimé.

3.5.2 Estimation des variations dans le flux des paquets

Dans le cas d’un flux réel, bien que la demande en QoS est bien précisée pour les stations, les exigences en termes de la valeur moyenne du débit, de la taille du paquet et du maximum de l’intervalle \(SI \), peuvent ne pas être satisfaites. Par conséquent, la longueur estimée de la file précédente peut être erronée à cause des variations du débit d’émission [67]. Un exemple du débit pour les deux types de trafic, à taux constant et à taux variable consécutifs, est illustré par la figure (3.3).

Le débit d’émission pour les flux VBR suit en général une loi gaussienne où la taille des paquets subie des fluctuations [40]. Si l’estimation de la longueur de la file précédente n’est pas prise en compte, quelques paquets peuvent ne pas être transmis au prochain TXOP. Ceci est dû au débit élevé de l’émission par rapport à celui calculé en fonction des paramètres de QoS. Dans ce cas, la latence de ces paquets est supérieure à la durée SI et le délai de transfert ne peut pas être contrôlé.
3.5. Mécanisme FHCF et contrôle des flux à taux variable

Figure 3.2: Evolution de la longueur de la file dans l’intervalle de service SI.

L’algorithme utilise l’information de la longueur de la file déjà scrutée selon un ordre i pour un trafic donné. Cette ordre est envoyé par QSTA au début de chaque TXOP. Le QAP enregistre durant un intervalle SI_i la valeur absolue $|\Delta_i^n|$ qui est la différence entre la longueur réelle q_i^{re} au début de scrutination du trafic i et l’estimation de cette file q_i^{est}.

$$\Delta_i^n = q_i^{re} - q_i^{est}$$ \hspace{1cm} (3.9)

Si le débit d’émission suit une loi gaussienne, Δ_i aura la même distribution avec une valeur moyenne nulle. La probabilité de Δ_i pour N paquets est :

$$P_{\Delta_i}(N) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{N^2}{2\sigma^2}\right)$$ \hspace{1cm} (3.10)

Dans le but d’avoir un modèle simplifié, les données sont prises en considération sous forme d’un flux binaire continu sans être coupées en paquets. Par conséquent, δ_i est considéré comme la différence entre la quantité réelle de données et celle estimée. La densité de probabilité de δ_i est :

$$P_{\delta_i}(y) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{y^2}{2\sigma^2}\right)$$ \hspace{1cm} (3.11)

Où y est la quantité de données additionnelle.

En valeur absolue $|\delta_i|$, la densité de probabilité est donc écrite sous forme :

$$P_{\delta_i}(y) = \begin{cases} 2P_{\delta_i}(y) & \text{si } y \geq 0 \\ 0 & \text{si } y < 0 \end{cases}$$ \hspace{1cm} (3.12)
Et l’espérance est égale à:

\[
E(|\delta_i|) = \int_{0}^{\infty} \frac{2y}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{y^2}{2\sigma^2}\right) dy = \sqrt{\frac{2}{\pi}} \sigma
\]

(3.13)

L’étude de cette équation montre que la valeur moyenne de $|\delta_i|$ est une fonction de la variance de la distribution δ_i. Comme $|\delta_i|$, la valeur moyenne $|\Delta_i|$ augmente avec la variance du débit d’émission. Ainsi, pour permettre au QSTA d’envoyer plus de paquets en raison des fluctuations dans le débit d’envoi, l’ordonnanceur QAP enregistre la valeur précédente de $|\Delta_i|$ dont la moyenne est la plus proche de $|\Delta_i|$ estimée.

![Figure 3.3: Courbes de débit pour les trafics CBR et VBR.](image)

Avec ce mécanisme, QAP est donc capable d’estimer la longueur de la file $Q_i^{est}(n)$ au début du prochain polling du trafic à l’aide de l’estimation linéaire de la longueur de la file $q_i^{b,est}(n)$ du polling précédent :

\[
Q_i^{est}(n) = q_i^{b,est}(n) + \sum_{j=n-w}^{n-1} |\Delta_j| \over w
\]

(3.14)

L’écart entre les valeurs estimée et idéale de la longueur de la file devient:

\[
q_i^{b,est}(n) + \sum_{j=n-w}^{n-1} |\Delta_j| \over w - q_i^{b,ideal}(n)
\]

(3.15)
3.5. Mécanisme FHCF et contrôle des flux à taux variable

L'algorithme FHCF se base sur le temps d'allocation TXOP pour estimer le nombre de paquets à additionner pour optimiser la contenance de la file. L'évolution linéaire du système permet d'avoir :

\[q_i^{b, est}(n) - q_i^{b, ideal}(n) = q_i^{est}(n) - q_i^{ideal}(n) \]

(3.16)

Ce qui fait que le nombre de paquet estimé est égal :

\[\Delta_i^{est} = q_i^{est}(n) - q_i^{ideal}(n) + \sum_{j=n-w}^{n-1} |\Delta_j^i| \]

(3.17)

3.5.3 Répartition du temps restant non-attribué

Cet algorithme consiste à redistribuer une partie du temps restant \(T^r \) de chaque QSTA afin d’absorber certains pics du débit : \(T^r = T_{CAP} - \sum_{i=1}^{K\times p} T_i \).

Où :

- \(T_{CAP} \) est la limite maximale de la période des accès contrôlés CAP dans SI,
- \(K \) : le nombre des QSTAs,
- \(p \) : les nombre de TSs dans chaque QSTA,
- \(T_i \) : TXOP attribué au \(i^{\text{ème}} \) TS pour être interrogé (\(T_i \) peut être 0 si le trafic n’a pas été accepté ou si le présent TS ne nécessite pas un TXOP pour envoyer ses paquets).

![Diagramme des TXOPs et du temps restant employé par l’algorithme FHCF.](image)

Figure 3.5: Diagramme des TXOPs et du temps restant employé par l’algorithme FHCF.

Après avoir \(T^r \), la FHCF effectue les calculs suivants :

1. L’algorithme calcule d’abord le temps additionnel requis (qui peut être positif ou négatif) pour chaque TS de QSTA selon l’estimation \(\Delta_i^{est} \):

\[t_i^{est} = \Delta_i^{est} \left(\frac{M_i}{R} + 2 \times SIFS + ACK \right) \]

(3.18)
2. Puis il calcule séparément T_P et T_N qui correspond à la somme des valeurs poistives et négatives conséquitives.

Si $T_P - T_N > T^r$ implique que l’ordonnanceur n’est pas capable d’attribuer le temps qu’il a prévu suivant son estimation, et qu’il faut réduire ce temps additionnel. D’une part, l’ordonnanceur réduit chaque temps additionnel équitablement selon un pourcentage β (choisit négatif pour correspondre à la réduction). D’autre part, les temps additionnels négatifs sont augmentés aussi par le même pourcentage β.

β est la solution de:

$$
(1 + \beta) T_p - (1 - \beta) T_N = T^r \\
\beta = \frac{(T_P - T_N) - T^r}{T_p - T_N}
$$

3. l’algorithme déduit enfin le temps additionnel effectif et l’attribue au trafic TS, comme suit:

$$
i_{add}^i = \begin{cases}
(1 + \beta) t_{est}^i & \text{si } t_{est}^i \geq 0 \\
(1 - \beta) t_{est}^i & \text{si } t_{est}^i < 0
\end{cases}
$$

Une fois le QAP entreprend le polling d’une station (QSTA), l’ordonnanceur calcule les TXOPs ainsi que les temps additionnels effectifs. Ces deux valeurs seront distribuées par la suite à l’ensemble des trafics de la station en cours.

L’étude de l’algorithme FHCF nous a permis de détailler un modèle équitable du mécanisme d’ordonnancement de paquets avec support de la QoS pour l’IEEE 802.11.

Cette analyse, bien quelle soit une amélioration de la fonction HCF du standard 802.11e, l’attribution des TXOPs reste centralisée sur un seul ordonnanceur. De plus, il faut prendre en compte le temps nécessaire pour effectuer des estimations cycliques qui sollicite une puissance supplémentaire du contrôleur. En conséquence, l’implémentation d’autres ordonnanceurs, dans la structure de l’algorithme, s’impose.

Le calcul donné dans la partie FHCF nous révèle l’incapacité de la HCF classique à suivre la variation du flux. Concernant cette partie et en suivant le standard, le calcul du TXOP est maintenu. La FHCF propose le suivi du contenu des files et l’information qui en résulte est nécessaire pour mieux gérer le trafic et éviter d’introduire des délais supplémentaires dans la chaîne de transmission. Dans cette optique, nous avons proposé un deuxième ordonnanceur qui ajuste la durée du TXOP en se basant sur l’état des files d’attente en termes de paquets restants.

Dans la suite de ce chapitre, et en partant de la solution d’ajustement du contenu des files d’attente combiné à un ordonnancement multi-niveaux de paquets, nous obtenons une amélioration du comportement de la HCF.
3.6 Architecture de l’ordonnanceur Multi-niveaux HCF-T

Dans notre cas nous nous sommes intéressé à évaluer le comportement du réseau en présence de trois flux CBR qui sont échangés entre trois STA et un AP. Pour intégrer la notion de différentiation de service nous avons attribué à chaque STA un niveau de priorité différent.

Lors de notre étude de la couche MAC du standard 802.11e, la fonction HCF qui alterne l’accès entre les modes de contention (CP et CFP), introduit la notion du TXOP pour l’attribution du temps de transmission (organigramme HCCA du HCF). Malgré l’amélioration du comportement par rapport au couple de fonctions PCF/DCF sans TXOP du 802.11, certaines faiblesses, entre autres, la non adaptabilité au taux de variation du flux ont été soulevées [67].

Aussi pour un cycle de TXOP exécuté, nous avons constaté que l’envoi des paquets ne permet pas de traiter tout le contenu des files. En effet, un nombre de paquets reste jusqu’à la prochaine activation du HCCA. Ceci multiplie la fréquence d’envoi pour chaque trafic et génère un délai supplémentaire dans la chaîne.

Dans la partie analyse des résultats, les courbes du débit effectif montrent que cette imperfection a un impact non négligeable au niveau des performances. Plus encore, ce nombre varie d’une manière aléatoire d’un cycle à un autre. Malgré l’ajustement de la taille de la file, un simple compensateur statique ne semble pas adéquat.

Dans le but d’améliorer le rendement de la HCF sans vouloir modifier le séquencement des fonctions principales du standard, nous avons constaté qu’il est utile d’accompagner l’ordonnanceur TXOP par un module ayant pour rôle de faire le suivi du contenu de la file et d’ajuster la valeur du TXOP en conséquence.

Le fait d’ajuster en plus le TXOP favorise davantage les échanges des informations utiles et minimise par conséquent le contenu des files d’attente. Toutefois, cette opération génère un retard dans le réseau lors de la commutation des stations. De plus, le complément ajustant le TXOP doit être bien évalué en fonction du nombre de paquets restants.

Nous pouvons voir aussi par la suite, dans la partie analyse des résultats, que ce modèle optimise le nombre de paquets par trame afin de favoriser le passage des trames de données entre les nœuds par rapport à celles qui interviennent uniquement pour le contrôle du trafic d’une part, et de ne pas saturer la charge du réseau d’autre part. Ce qui permet de réduire les délais de passage tout en évitant une forte sollicitation du contrôleur. L’impact de cette dernière entraîne aussi la diminution de la probabilité de collisions, la répartition des flux dans le canal et le maintien d’une bonne efficacité spectrale de la bande passante du canal.
Nous avons appliqué trois flux (TS) avec des priorités différentes :

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AIFS</td>
<td>$2 \times ST + SIFS$</td>
<td>$4 \times ST + SIFS$</td>
<td>$10 \times ST + SIFS$</td>
</tr>
<tr>
<td>CW_{min}</td>
<td>3</td>
<td>7</td>
<td>15</td>
</tr>
<tr>
<td>CW_{max}</td>
<td>7</td>
<td>127</td>
<td>1023</td>
</tr>
</tbody>
</table>

\[(3.22)\]

3.6.0.1 Tailles des paquets pour les différents types de flux

- Pour le flux de priorité haute : longueur de paquet = 24360 bits
- Pour le flux de priorité moyenne : longueur de paquet = 16680 bits
- Pour le flux de priorité faible : longueur de paquet = 8340 bits

3.6.0.2 Calcul de la taille de la fenêtre de contention CW

Le modèle proposé par le standard est présenté par une attribution des niveaux statiques fixés a priori en fonction de l’ordre de la tentative de retransmission. La plage de variation est entre 0 et 1023 comme indiqué dans la figure 3.6.

\[
CW_i [TC_i] \geq ((CW_{i-1} [TC_i] + 1) \times PF [TC_i]) - 1
\]

\[(3.23)\]

Figure 3.6: Niveaux de la fenêtre de contention.
PF est le facteur de persistance qui dépend de la catégorie du trafic et sert à déterminer l’incrémentation de la CW dans le cas d’une collision.

Les trafics prioritaires ont un PF plus petit que celui des trafics de faible priorité. Donc, lorsque les collisions se produisent, la CW des trafics de haute priorité augmentera lentement comparant à celle des trafics de faible priorité. Si deux files d’attente dans un nœud entrent en collision, c’est celle qui a la priorité haute qu’elle aura l’opportunité de transmettre TXOP.

3.6.0.3 Backoff en fonction de la taille de CW

Le compteur Backoff est lié à la taille de CW comme le démontre l’équation suivante:

\[
Backoff = \alpha \left(0, \min\left(CW_{\text{min}} \times 2^{\beta}, CW_{\text{max}}\right)\right) \times slot_{time}
\] (3.24)

Où:
\(\alpha(a, b)\): génère un entier aléatoire entre a et b.
\(\min(a, b)\): donne la plus petite valeur entre c et d
\(\beta\): nombre de tentative de retransmission
\(slot_{time}\): laps de temps spécifié dans l’unité MSDU

3.6.0.4 Taille des messages de contrôle du flux

- Longueur de RTS = 160 bit;
- Longueur de CTS = 112 bit;
- Longueur de ACK= 112 bit;

3.6.0.5 BER pour la couche 802.11b

Pour calculer le taux d’erreur binaire pour les différents débits, on s’est basé sur les équations suivantes:

\[
BER_{(1/2Mbit)} = 0.5 \times \exp\left(\frac{-SNIR \times B}{\text{débit}}\right)
\] (3.25)

\[
BER_{(5,5Mbit)} = \frac{3}{8} \times \text{erf}\left(\frac{-SNIR \times B}{\text{débit}}\right)
\] (3.26)

\[
BER_{(11Mbit)} = \frac{15}{64} \times \text{erf}\left(\frac{-SNIR \times B}{\text{débit}}\right)
\] (3.27)
\[SNIR = \frac{\text{Puissance du signal}}{\text{Puissance du bruit} + \text{Puissance d'interférence}} \quad (3.28) \]

Où B est la bande passante.

3.7 Modèle analytique de l’ordonnanceur multi-niveaux

Dans cette section, nous donnons les principales étapes permettant d’aboutir au modèle analytique de l’ordonnanceur proposé.

3.7.1 Conditions d’élaboration du modèle

1. **Le diagramme de transition des états** :

 Pour notre cas, une AC correspond au contenu d’une STA (cas particulier avec une seule AC active par station). Les conditions relatives aux transitions sont données ci-dessous :

 - Un seul compteur Backoff avec les mêmes paramètres d’accès pour chaque AC/STA
 - Les collisions internes sont nulles (prise en considération des collisions externes uniquement)
 - Le temps est divisé en slots (laps de temps), chaque AC/STA définit un état dans un slot \(t \)
 - Si \(t \) décrémenté à \(t - 1 \Rightarrow AC_i \) change son état à \(AC_{i+1} \).

2. **Les états des différentes phases de traitement**

 a) Phase de l’espace AIFS : L’AC observe l’état du canal pour une éventuelle disponibilité d’un \(AIFS(AC) \) complet. Deux envois des AIFS sont possibles :

 1. Un envoi au début de chaque tentative de transmission
 2. Plusieurs envois entre chaque transition blocage/déblocage du Backoff

 b) Phase activation du Backoff :

 1. L’AC active le Backoff
 2. L’AC décrémente le Backoff pour chaque slot de temps
c) Phase blocage du Backoff : Si un ACx occupe le canal et un ACy a déjà activé son Backoff ⇒ le ACy gèle le comptage de son Backoff et attend un nouvel AIFS pour le débloquer.

d) Phase des collisions : Une fois la collision détectée par un AC ⇒ la phase de collision est activée.

e) Phase de transmission de données : L’AC envoie les données de la file d’attente en fonction de la durée du TXOP.

3.7.2 Choix des paramètres de QoS à prendre en compte dans le modèle

Pour le protocole HCF-T du 802.11e, une chaîne de Markov discrète à trois dimensions minimum est nécessaire (prise en considération des évolutions sur 3 paramètres). Il est à noter que la version originale du modèle de Bianchi [14] se base sur un seul paramètre, c’est pour cette raison qu’il n’est pas utilisé pour les modèles à QoS.

Les paramètres de QoS choisis sont donnés dans les points suivants :

1. \(Ac(t) \) : durée occupée par un AC.
2. \(Bo(t) \) : valeur du backoff pour un niveau de retransmission donné.
3. \(Rs(t) \) : reste du temps pour mettre fin à la phase AC en cours.

Comme conditions initiales pour le déroulement du modèle Markovien, les probabilités suivantes sont de valeurs constantes :

a) La probabilité de transition \(P_{tr} \).

b) La probabilité d’occupation du canal \(P_{occ} \).

c) La probabilité pour les collisions externes \(P_{coll} \).

Le processus global comporte les phases \(Ac(t), Bo(t), Rs(t) \) et les probabilités de transition entre les états de la chaîne de Markov.

3.7.3 États et transitions pour chaque paramètre

Pour chaque slot de temps, les états des ACs sont définis par le triplet \((L, M, N) \) comme suit :

1. \(L \) : Variable définie pour les phases suivantes :

\[
\begin{align*}
L &= As \Rightarrow AIFS \\
L &= Boff \Rightarrow Valeur du Backoff \\
L &= Froz \Rightarrow Blocage du Backoff \\
L &= Coll \Rightarrow Collision \\
L &= Tx \Rightarrow Envoi de données
\end{align*}
\]

3. N: Le reste en slot de temps qui, une fois nul, permet de mettre fin à la phase L en cours. La valeur de N dépend de la durée de chaque phase.

Pour la définition des probabilités, $S(t)$ représente l’état en cours à l’instant t du système (L_k, M, N) et $S(t + 1)$ son état suivant à l’instant $t + 1$.

3.7.4 Équations du système et schéma global de la chaîne de Markov

3.7.4.1 Équations du déroulement du processus Markovien:

Pour chaque état de type (L_k, M, N), nous avons la probabilité correspondante $P_{b_{L_k,M,N}}$. Pour identifier cette probabilité dans tous les niveaux de la chaîne de Markov, nous devons cumuler l’ensemble des probabilités de transition vers l’état en question.

L’état stationnaire est considéré connu au début du processus est $P_{b_{Boff,0,0}}$. Avec la condition que la somme totale des probabilités de la chaîne de Markov soit égale à 1.

\[
\sum_{k} P_{b_{L_k,M,N}} = 1
\]

\[
\Rightarrow \sum_{N=0}^{[F_s]} P_{b_{As,0,0,N}} + \sum_{k=0}^{6} W_k \sum_{M=1}^{[F_s]} P_{b_{Ask,M,N}} + \sum_{k=0}^{6} P_{b_{Boffk,0,0}} + \sum_{M=1}^{6} W_k \sum_{k=0}^{6} P_{b_{Boffk,M,M}} +
\sum_{k=0}^{6} W_k \sum_{M=1}^{[B]} \sum_{N=0}^{5} P_{b_{Froz,M,N}} + \sum_{k=0}^{5} \sum_{N=1}^{[T]} P_{b_{collk,0,N}} + \sum_{N=0}^{[T]} P_{b_{Tx,0,N}} = 1
\]

Avec :

- $[T]$: est le temps de transmission équivalent au $TXOP$
- $[C]$: est la durée de la collision

Les expressions des probabilités employées dans cette équation sont données comme suit :

- Premier niveau du Backoff :

\[
P_{b_{Boffk,0,0}} = \sum_{k=0}^{6} P_{occ} \times P_{b_{Boff0,0}}
\]
3.7. Modèle analytique de l’ordonnaceur multi-niveaux

- Evolution du compteur du Backoff ($Boff$) :

$$P_{b_{Boff},M,M} = \sum_{k=0}^{6} \sum_{M=1}^{W_k} \left(\frac{W_k - M + 1}{W_k + 1} \right) \times \frac{1}{1 - P_{occ}} \times P_{b_{Boff},0,0}$$

- Suspension du Backoff ($Froz$) :

$$P_{b_{Froz},K,M,N} = \sum_{k=0}^{6} \sum_{M=1}^{W_k} \sum_{N=1}^{[B]} \left(\frac{W_k - M + 1}{W_k + 1} \right) \times \frac{P_{occ}}{1 - P_{occ}} \times P_{b_{Boff},0,0}$$

- Apparition des collisions ($coll$) :

$$P_{b_{coll},K,0,N} = \sum_{k=0}^{5} \sum_{N=1}^{[T]} P_{occ} \times P_{b_{Boff},0,0}$$

- Premier AIFS envoyé (As) :

$$P_{b_{As},0,0,N} = \sum_{N=1}^{[F_s]} \frac{1}{(1 - P_{occ})^N} \times P_{b_{Boff},0,0}$$

- Fréquence des AIFS après réactivation du Backoff :

$$P_{b_{As},K,M,N} = \sum_{k=0}^{6} \sum_{M=1}^{W_k} \sum_{N=1}^{[F_s]} \left(\frac{W_k - M + 1}{W_k + 1} \right) \times \frac{P_{occ}}{(1 - P_{occ})^N + 1} \times P_{b_{Boff},0,0}$$

- Attribution des TXoP (Tx):

$$P_{b_{Tx},0,0,N} = \sum_{N=1}^{[T]} \frac{1}{(1 - P_{occ})^N} \times P_{b_{Boff},0,0}$$

La partie commune des différentes équations que nous venons de citer, représente l’expression de la probabilité stationnaire définie initialement. Cette dernière pouvant être identifiée en fonction de l’évolution des paramètres du protocole HCF-T, correspond à la somme des probabilités de la chaîne de Markov de chaque état. Le schéma synoptique global des transitions entres les différents états de la chaîne de Markov est donné par la figure (3.7).

où :

- $[Froz]$: phase de suspension du backoff
- $[coll]$: phase de collision
- $[Fs] = Fs + 1$: phase de l’AIFS (la durée de As + un cycle complet de l’AIFS)
Figure 3.7: Schéma synoptique des transitions entre les différents états.
3.8 Structure de l’organigramme de l’HCF-T

L’algorithme de la fonction principale (figure 3.8) qui gère les délais de transmission à l’intérieur de la couche MAC doit assurer les tâches suivantes : le suivi de l’état de la file d’attente, l’ordonnancement des paquets, la gestion du polling, l’attribution des TXOPs et l’envoi des données. Pour cela, une structure à base d’un système d’ordonnancement multi-niveaux a été développée. Trois ordonnanceurs ont été spécifiés :

- Le Premier ordonnanceur: a comme rôle d’allouer les TXOPs après consultation du contenu des files avant polling;
- Le Deuxième ordonnanceur: intervient dans le cas où une présence signalée des paquets restants dans les files d’attente afin d’ajuster la durée des TXOPs. Si la durée de TXOP autorise toujours l’échange, l’envoi des paquets sera maintenu et le compteur sera décrémenté;
- Le Troisième ordonnanceur: calcule la durée du polling une fois le reste du TXOP ne peut plus contenir les délais de passage des paquets.

![Organigramme de l’ordonnanceur multi-niveaux.](image)

Figure 3.8: Organigramme de l’ordonnanceur multi-niveaux.
3.9 Résultats des Simulations et Analyse

3.9.1 Scénario retenu

Pour évaluer le comportement de la fonction HCF, on a étudié le cas d’un réseau 802.11 en mode infrastructure (BSS), il contient trois stations mobiles gérer par un seul point d’accès, chaque station possède un niveau de priorité différent (basse, moyenne et haute), les tests sont effectués selon trois niveaux de débit, le scénario est présenté par la figure (3.9) suivante :

Le tableau suivant donne les paramètres de la couche physique :

<table>
<thead>
<tr>
<th></th>
<th>1/2/5.5/11Mbps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Débit</td>
<td></td>
</tr>
<tr>
<td>La puissance de l’émetteur</td>
<td>200 mW</td>
</tr>
<tr>
<td>La fréquence de la porteuse</td>
<td>2.4 GHz</td>
</tr>
<tr>
<td>Le bruit thermique</td>
<td>-100 dBm</td>
</tr>
<tr>
<td>La sensibilité du récepteur</td>
<td>-85 dBm</td>
</tr>
<tr>
<td>Coefficient d’atténuation du canal (α)</td>
<td>3 (milieu urbain)</td>
</tr>
</tbody>
</table>

Les spécifications des trois catégories de flux sont données comme suit :

<table>
<thead>
<tr>
<th></th>
<th>Haute</th>
<th>Moyenne</th>
<th>Faible</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIFS</td>
<td>2×ST+SIFS</td>
<td>4×ST+SIFS</td>
<td>10×ST+SIFS</td>
</tr>
<tr>
<td>CWmin</td>
<td>3</td>
<td>7</td>
<td>15</td>
</tr>
<tr>
<td>CWmax</td>
<td>7</td>
<td>15</td>
<td>1023</td>
</tr>
<tr>
<td>PF</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Figure 3.9: Scénario choisi pour la simulation.
3.9. Résultats des Simulations et Analyse

La durée DT des TXOP et la taille L des paquets pour chaque flux sont spécifiées dans le tableau suivant :

<table>
<thead>
<tr>
<th>Flux avec la priorité Haute</th>
<th>DT</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flux avec la priorité Moyenne</td>
<td>30ms</td>
<td>16680bits</td>
</tr>
<tr>
<td>Flux avec la priorité Faible</td>
<td>10ms</td>
<td>8340bits</td>
</tr>
</tbody>
</table>

les intervalles inter-trames (IFS) sont définis comme suit :

<table>
<thead>
<tr>
<th>IFS</th>
<th>μs</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIFS</td>
<td>10</td>
</tr>
<tr>
<td>TS</td>
<td>20</td>
</tr>
<tr>
<td>PIFS</td>
<td>$ST+SIFS$</td>
</tr>
<tr>
<td>DIFS</td>
<td>$2\times ST+SIFS$</td>
</tr>
<tr>
<td>Taille des en-tête des trames (pour 1Mb/s)</td>
<td>192bits</td>
</tr>
</tbody>
</table>

3.9.2 Présentation et analyse des résultats

Le simulateur utilisé pour cette partie et Omnet++ avec la librairie Mobility Framework [91]. La nomenclature suivante donne la signification des différents variables et paramètres des simulations:

- $nbrA$: nombre de bits envoyés par la couche Applicationn
- $nbrM$: nombre de paquets envoyés par la couche MAC
- beaconpkt : balise de gestion du trafic envoyée périodiquement par l’AP
- beaconack : balise d’acquittement envoyée par les stations
- framepoll : trame de polling qui autorise une station dans le réseau à prendre la parole
- collsn : nombre de collisions détectées sur le canal
- pktterror : nombre de paquets erronés
- débit : débit de sortie en Mbps
- Host-P : point d’accès (AP)
- Host-L : station de faible priorité avec flux LOW
- Host-M : station de faible priorité avec flux MEDIUM
- Host-H : station de faible priorité avec flux HIGH

Avec le mode HCF-T, la station prioritaire envoie plus de données par rapport au mode HCF. Ceci est rendu possible grâce au mécanisme d’ordonnancement des TXOP privilégiant le passage de données, signalées comme étant de haute priorité, par rapport au reste du trafic. Ce comportement
préserve le débit de l’application dans le but de garantir un certain niveau de QoS. Par ailleurs, en mode HCF, les nœuds emploient plus de trames de polling par rapport au mode HCF-T. Ceci génère des délais supplémentaires souvent pénalisant pour les trames de données des applications prioritaires. Les histogrammes (3.10, 3.11 et 3.12) montrent la répartition des paquets entre les composants du trafic selon les deux algorithmes.

![Histogramme des paquets](image)

Figure 3.10: Trafic de priorité Haute.

Un autre résultat qui mérite bien d’être évoqué, montre l’efficacité de l’algorithme HCF-T dans le maintien d’un débit élevé. En effet, en plus du nombre réduit de trames d’interrogation envoyées, l’HCF-T maximise le nombre de paquets/trame par rapport à la HCF. Il en résulte également la réduction du temps d’occupation du canal par les paquets de contrôle. Par conséquent, la partie importante de la bande passante est alors dédiée aux paquets de données.

La figure 3.13, montre les différences en nombres de paquets (jusqu’à 15 paquets/trame) entre les deux algorithmes, implémentés dans le même nœud, et évalués en employant des débits similaires.

Nombre de paquets par trame de Polling = \(\frac{\text{Nombre de paquets envoyés}}{\text{Nombre de trame de polling envoyées}} \)

L’analyse des échanges du trafic entre les stations montre la présence d’une charge importante du réseau. Comme montré par les spectres des figures 3.14, 3.15, 3.16, des cas de collisions apparaissent de plus en plus entre les nœuds, obligeant les contrôleurs des hosts à activer leur backoff afin de
3.9. Résultats des Simulations et Analyse

Figure 3.11: Trafic de priorité Moyenne.

Figure 3.12: Trafic de priorité Faible.
Figure 3.13: Nombre de paquets par trames de polling.

relancer l’envoi de données. Ce type de mécanisme génère un délai supplémentaire pénalisant le trafic prioritaire.

Figure 3.14: Spectre de la HCF pour 1Mbits/s.

Avec le modèle HCF-T qui comporte un module entier dédié à l’ordonnancement des paquets, le comportement du réseau en terme de gestion du trafic se trouve nettement amélioré. Les spectres des figures (3.17, 3.18, 3.19) montrent que les interférences pour ce mode, sont moindres par rapport au mode précédent. On peut aussi observer que la charge du réseau est plus allégée. Ceci permet de
3.9. Résultats des Simulations et Analyse

Figure 3.15: Spectre de la HCF pour 2Mbits/s.

Figure 3.16: Spectre de la HCF pour 5.5 Mbits/s.
supporter d’autres stations et d’accroître la dimension du réseau tout en minimisant la probabilité de collisions entre les hosts.

Figure 3.17: Spectre de la HCF-T pour 1Mbits/s.

Le modèle HCF-T est basé sur la structure de la HCF afin de ne pas introduire des changements au niveau du standard. Après une analyse du contenu des files suite à l’exécution de la HCF dans un simple scénario, le besoin d’améliorer la structure de la HCF, en intégrant de nouvelles fonctionnalités, se fait sentir. Dans cette partie, nous avons commencé par une étude bibliographique des travaux traitant la problématique d’ordonnancement avec QoS pour le standard 802.11. Deux grandes équipes se distinguent :

• L’INRIA principalement pour le HCCA.
• L’équipe TKN de l’université de Berlin pour l’EDCA.

Par la suite, nous nous sommes intéressés à la version améliorée représentée par la FHCF. Le travail consiste à apporter des modifications à la HCF pour supporter les trafics à taux variables et assurer par conséquent une gestion équitable de l’ensemble des flux. Nous avons étudié ce modèle jusqu’à la partie gestion des files d’attente dynamiques [67]. Le simulateur Omnet++ ne nous a pas permis d’insérer un flux vidéo avec des codecs de type H.264, entre autres les séquences étalonnées de FOREMAN que nous avons choisies pour la validation.

Face à cette limitation et tout en restant avec une structure développée sous omnet++, nous avons orienté notre étude vers un trafic de type CBR généré par trois stations distinguées par des
3.9. Résultats des Simulations et Analyse

Figure 3.18: Spectre de la HCF-T pour 2Mbits/s.

Figure 3.19: Spectre de la HCF-T pour 5.5Mbits/s.
priorités différentes. L’ensemble est géré par un point central où notre algorithme est implémenté dans un scénario en mode infrastructure (HCF-T).

L’intérêt de la FHCF est démontré principalement lors de l’emploi des flux VBR où l’ensemble des entités varient suivant un régime gaussien proportionnel à la nature du flux vidéo. Dans la HCF-T, la manipulation du flux CBR suit une variation linéaire avec un taux de transfert constant. Par conséquent, un comparatif des deux modèles (HCF-T vs FHCF) qui manipulent des flux de nature différente ne peut pas être très significatif.

Pour le reste du développement de la HCF-T, l’analyse de la HCF même avec des flux CBR de priorités différentes au niveau des stations, n’a pas été concluante. Excepté le modèle de gestion de collisions virtuel au niveau de chaque station interagissant localement pour les quatre flux d’une même station, la HCF demeure sans utilité pour un mode mono trafic souvent présent dans un réseau. La tâche principale est dédiée au contrôleur HC qui gère les flux envoyés par les stations. Ceci nous a conduits à développer une structure prenant en charge ce mode de trafic. La HCF classique avec ce scénario (comme nous pouvons le voir dans les résultats des simulations) n’a pas été convaincante. Ceci se manifeste par la présence de collisions et d’une charge croissante du réseau suite aux trames de contrôles et au renvoi de données.

Pour l’approche proposée, on a procédé de la manière suivante:

• Retenir de la HCF ce qui s’adapte au standard du 802.11e et principalement l’ordonnanceur TXOP.
• Rajouter un ordonnanceur qui suit l’ajustement du TXOP en fonction de l’état du contenu de la file. Ce module agit de la même manière que celui de la FHCF sauf qu’il ne compense pas la taille de la file suite à la variation du flux en temps réel. On n’est pas concerné par ce cas du fait qu’il s’agit d’une variation qui n’est pas temporaire et dépend de chaque cycle. Par conséquent, l’ajustement du TXOP est suffisant pour gérer la variation relative au contenu de la file. Un compensateur statique n’est pas adéquat dans la mesure où chaque cycle a sa spécificité en termes de cumul de paquets arrivants avec ceux restants.
• Et enfin, le calcul du polling n’est pas simplement évalué d’une manière statique. Comme on a la valeur du TXOP ajustée en fonction des cycles, la trame de polling envoyée par le contrôleur HC, autorisant les stations à transmettre, doit comporter cette variation du TXOP ainsi que sa durée. Même ce nouveau TXOP ne permet pas aux stations d’envoyer tout leur contenu. Bien que ce cas soit rare, l’ordonnanceur ne tolère pas un deuxième ajustement du TXOP et le reste du contenu de la file doit être vidé par une remise à zéro et une demande d’un nouveau renvoi. Cette imperfection est malheureusement inévitable aux dépens d’une complexité algorithmique.
3.10 Conclusion

Dans ce chapitre on a étudié un algorithme d’ordonnancement dans le but d’améliorer la QoS dans les réseaux sans fil. La couche MAC de la version 802.11e intègre la gestion de la QoS, qui reste valable que pour les flux CBR [5]. Les paramètres de gestion de paquets dans les files d’attentes ont été considérés afin de développer un algorithme structuré sur plusieurs niveaux d’ordonnancement. L’algorithme proposé intègre à la fois le suivi de l’état de la file, l’ordonnancement des paquets, la gestion du polling, l’attribution des TXOPs et l’envoi des données. Le scénario mis en place en mode infrastructure BSS, nous a permis de simuler un cas de réseau où plusieurs catégories de trafic interagissent pour partager le même canal. Les résultats de simulation montrent bien qu’avec un minimum de polling, l’accès privilégié des trafics prioritaires est maintenu. Ceci allège la charge du réseau tout en diminuant la probabilité des collisions. Comme perspective à ce travail, on propose d’intégrer un ordonnancement adaptatif dans un modèle de réseau supportant la diversité de coopération.
Chapitre 4

Diversité de Coopération & Techniques de Combinaison de Liens

4.1 Introduction

Dans le présent chapitre, nous allons étudier les modes de transmission du message envoyé qui peuvent être appliqués dans un réseau sans fil de type 802.11. Notre analyse concerne essentiellement la diversité de coopération des nœuds du même réseau par le biais des protocoles de relayage et des différentes techniques de combinaison au niveau récepteur dans un canal sans fil.

Cette étude entre dans le cadre du projet RADIC-SF «Réseaux A DIversité de Coopération-Sans Fil». L’objectif de ce projet est d’étudier l’apport de la coopération des nœuds au niveau physique sur les performances du mécanisme d’ordonnancement des trames au niveau de la couche MAC.

On a commencé notre étude par une analyse des travaux présentés dans la littérature en termes de technologie multi-antennes (MIMO) réel et coopératif (virtuel). Après la spécification du modèle de base d’une liaison directe, on s’est intéressé sur l’étude des liens relayés (multi-sauts) et l’impact de la coopération des nœuds sur la qualité du signal reçu. Deux familles de protocoles de transmission coopérative sont ainsi considérées : AAF (Amplify And Forward) [17] et DAF (Decode And Forward) [57].

Dans une liaison de transmission relayée, on a distingué trois points essentiels :

- Au niveau de l’émetteur, le nœud source envoie le même signal à l’ensemble des éléments du réseau. Le signal envoyé peut être traité sous forme de bits ou de symboles en fonction du type de la modulation employée. La séparation des répliques du signal émis n’est pas prise en considération dans cette étude. Toutefois, si on se base sur la répartition du signal envoyé, un codage spatio-temporel est alors nécessaire [42] [82] [43].
• Au niveau du point relai, le signal est traité en fonction des contraintes matérielles liées aux ressources disponibles (complexité et puissance du calculateur, précision des données, niveau du bruit du canal…). Pour cela, deux familles de protocoles de relayages sont présentés : AAF et DAF.

• Au niveau de la réception, le signal doit être restitué. Pour cela, et en fonction de la qualité du canal, différentes techniques de combinaison des signaux sont alors présentées. Nous avons employé les techniques suivantes : combinaison à rapport égal, rapport fixe, rapport maximal, avec estimation du SNR et puis avec SNR pondéré. Pour l’analyse des résultats, les courbes (BER vs SNR) sont tracées.

Dans un premier temps les spécificités de lien coopératif ainsi que les composantes nécessaires pour établir des transmissions sont présentées. Dans un second temps, nous nous intéresserons à la mise en œuvre des techniques de liaisons relayées.

4.2 Intérêt de la coopération pour le maintien de la QoS

Dans le chapitre précédent le mécanisme d’ordonnancement de paquets intégrant les fonctions de coordinations au niveau MAC pour une meilleure garantie de la QoS a été étudié. Le protocole HCF du modèle de référence 802.11e a traité cette problématique par une extension de l’architecture de l’ordonnanceur sous forme de différentes files d’attente. Le nouveau quadruplé est mis en œuvre principalement pour distinguer la vidéo, la voix, les données et les signaux de contrôle. Les analyses de comportement ont montré des résultats satisfaisants en termes de gestion du trafic. De plus, la classification par priorité du trafic est également assurée. Dans ce même cadre, la structure multi-ordonnanceurs (HCF-T) présentée a permis en plus du maintien du débit, de réduire la fréquence des échanges de signaux de contrôle au profit des flux de données, d’alléger la charge du réseau et d’éviter les collisions. Toujours dans l’optique de maintenir un bon niveau de QoS, après l’étage d’ordonnancement, nous avons pris en considération la phase d’acheminement du trafic prioritaire lors de son passage par le canal et ce jusqu’à son arrivée au récepteur. L’étude réalisée dans ce présent chapitre, nous permet de suivre la fiabilité de la QoS obtenue jusqu’au bout de la chaine de transmission au niveau utilisateur. Cette phase de validation se rapproche du nouveau concept de la qualité d’expérience QdE ou QoE (Quality of Experience) qui dimensionne des solutions technologiques selon le besoin de l’utilisateur. Dans cette perspective, nous voulons récupérer le signal déjà traité au niveau MAC pour l’acheminer via un système de transmission au niveau PHY qui soit fiable [108]. Les résultats présentés dans le chapitre précédent sont relatifs à un modèle de couche
physique simple (1Rx, 1Tx).

La technologie actuelle permet de concevoir des modules radios MIMO plus complexes (mRx, nTx) [105], [88] qui sont valables uniquement pour les équipements d’une certaine taille. Comme notre intérêt s’est porté sur la dernière évolution en termes de réseaux mobiles de données par Smartphone, Tablette et PDAphone, cette solution reste limitée à quelques modèles sur le marché. Pour cette raison notre réflexion est orientée vers l’emploi de la communication coopérative [49]. Cette technique établit une diversité de coopération entre les nœuds pour relayer le signal au lieu de mettre plusieurs antennes dans le même équipement. Pour évoluer dans cette nouvelle structure, deux points majeurs sont à étudier [86], [60], [109]. D’une part les protocoles de coopération au niveau des stations relais et d’autre part les techniques de combinaison, afin de rétablir le signal initial, au niveau du récepteur. Nous nous sommes inspirés des modèles les plus utilisés dans la littérature [50] afin d’en sélectionner les plus adéquats pour notre application.

4.3 Caractéristiques techniques du lien coopératif

Comme nous l’avons évoqué dans le premier chapitre, le support de transmission est subdivisé en plusieurs bandes de fréquences appelées canaux de transmission.

4.3.1 Niveaux de puissance et délai de propagation des canaux

Un canal ou voie de transmission, comme nous l’avons décrit précédemment, est une bande de fréquence limitée qui est dédiée à une seule transmission. Elle permet une propagation cohérente des signaux radioélectriques sur le support. Une limite technique est définie dans le but de maintenir un niveau correct de réception P_{sortie}. Ce dernier est caractérisé par un niveau de gain en puissance A_p supérieur au seuil de (3dB). Ceci correspond au minimum à la moitié de la puissance émise $P_{\text{entrée}}$.

$$\frac{P_{\text{entrée}}}{P_{\text{sortie}}} = 2 \implies A_p = 10 \log_{10} \left(\frac{P_{\text{entrée}}}{P_{\text{sortie}}} \right) = 3\text{dB}. \quad (4.1)$$

La qualité d’un canal est liée à sa capacité de restituer à la sortie le même signal d’entrée. Toutefois, un retard τ est inévitable à cause du délai de propagation. Ce dernier n’est pas un défaut en soit mais plutôt une caractéristique importante qui dépend de la nature du milieu et du temps de réponse des équipements de la chaîne de transmission [61], [78].

$$S(t) = E(t - \tau). \quad (4.2)$$
4.3.2 Modélisation du schéma coopératif

4.3.3 Paramétrisation des transmissions dans le canal

L’environnement dans lequel nous nous sommes positionnés pour d’établir le canal de transmission sans fil, est caractérisé par :

1. La propagation est définie dans l’espace libre non guidé
2. Le bruit considéré est un bruit thermique additif (choix d’un AWGN plus adapté pour un tel système)
3. La perte par trajet et l’évanouissement du canal suivent le modèle de Rayleigh [76]. Ils interviennent dans le modèle du système par des facteurs multiplicatifs [39].

L’équation fondamentale d’une transmission sans fil est donnée alors par :

$$ y_d[n] = h_{s,d}[n] \cdot x_s[n] + z_{s,d}[n] = d_{s,d} \cdot a_{s,d}[n] \cdot x_s[n] + z_{s,d}[n] $$

avec :

- s, d : émetteur et récepteur
- $x_s[n]$: symboles émis
- $y_d[n]$: symboles reçus
- $d_{s,d}$: perte en trajet
- $a_{s,d}[n]$: affaiblissement dans l’espace libre
- $z_{s,d}[n]$: bruit

![Figure 4.1: Schéma de propagation.](image)

- L’évaluation des performances est montrée dans les courbes du BER en fonction du SNR tracées sous Matlab. Elle relie le type de modulation avec le protocole de coopération du relai et la technique de combinaison des signaux choisie au niveau récepteur.
4.3. Caractéristiques techniques du lien coopératif

4.3.3.1 Canal de transmission

Pour le canal de transmission, on a choisi les paramètres suivants :

- Seuil d’atténuation du signal : -110 dBm
- Puissance maximale : 250 mW
- Coefficient d’atténuation du canal alpha = 3 (pour le milieu urbain).

4.3.3.2 Paramètres de la couche physique

- Débit binaire : 1/2/5.5/11 Mbps
- Puissance de l’émetteur : 200 mW
- Fréquence de la portée : 2.4 GHz
- Bruit thermique : -100 dBm
- Sensibilité du récepteur : -85 dBm

On s’est basé sur l’équation suivante pour calculer la puissance du signal reçu :

\[P_r = \frac{P_e \times \lambda^2}{16 \times \pi^2 \times d^\alpha} \]

(4.4)
P_r est la puissance du signal reçu.

4.3.4 Techniques de modulation employées

Pour modéliser les transmissions (directe et coopérative), on a choisi la modulation de phase pour les raisons suivantes [19]:

- Robustesse par rapport aux perturbations du canal
- Caractéristiques stochastiques adaptées aux communications numériques.

Par ailleurs, nous avons retenu les modèles à deux niveaux avec opposition de phase $BPSK$ et à quatre niveaux en quadrature $QPSK$ ($2BPSK$ orthogonales) [86] dont les constellations sont données par la figure suivante:

![Figure 4.3: (a) Modulation BPSK - (b) Modulation QPSK.](image)

4.3.5 Modèle du canal coopératif

Les éléments d’un canal de transmission sans fil peuvent être résumés dans les points suivants:

- Bruit blanc gaussien adaptatif ($AWGN$) : C’est un signal de distribution Gaussienne de moyenne 0 et de variance σ_n^2. Il est représenté dans l’équation fondamentale par le vecteur $z_{s,d}[n]$. La puissance de ce bruit est donnée par l’équation suivante :

 $$ N_0 = 2\sigma_n^2 $$

- Le rapport SNR : Il s’agit du facteur indiquant la qualité du signal au niveau de la réception. Il est donné comme suit :

 $$ SNR = \left(\frac{S}{N_0} \right) = \frac{|H_{s,r}|^2 \cdot \xi}{N_0} $$

 Où $\xi = E(|x_s|^2)$ est l’énergie du signal émis.
4.3. Caractéristiques techniques du lien coopératif

- Les pertes en trajet dans l’espace libre et l’évanouissement du signal (fading): Ces deux phénomènes sont regroupés par la composition $h_{s,d}$ suivante:

$$h_{s,d} = d_{s,d} \cdot a_{s,d}$$ \hspace{1cm} (4.7)

L’évaluation de ce facteur est basé sur un modèle sans courbure (surface plane). Le paramètre $d_{s,d}$ est proportionnel à $\frac{1}{R^2}$ supposé constant pendant toute la transmission vu que la distance entre s et d est quasi-stable. Il en résulte que la puissance du signal reçu se trouve atténuée de α proportionnel à $\frac{1}{R^4}$.

Dans un milieu urbain, l’onde directe est souvent interrompue et le signal arrive au récepteur via un trajet multiple, ce qui engendre une atténuation de l’amplitude du signal due au déphasage entre les répliques du signal émis. Les coefficients $a_{s,d}$ peuvent être modélisés par une moyenne nulle et une variance $\sigma^2_{s,d}$:

- $\angle a_{s,d}$ (la phase) est une distribution uniforme sur $[0, 2\pi]$.
- $||a_{s,d}||$ (le module) est une distribution de Rayleigh qui dégrade la qualité du signal même si ce dernier possède un SNR élevé.

Dans un canal à évanouissement rapide (Fast-fading), les caractéristiques du canal varient à chaque émission. Le modèle du système réduit cet effet par une répartition en petites entités tout en supposant que les caractéristiques du canal seront maintenues constantes durant leur passage dans le canal. Ces entités doivent être aussi de longueurs suffisantes pour permettre une bonne estimation du canal [15].

L’amplitude et la phase des coefficients du fading sont connues par le récepteur. On s’intéresse uniquement à la valeur moyenne du taux d’erreur (BER) [104] et non pas à l’information sur la distribution tout au long du signal. Pour obtenir un résultat convainquant, le signal doit être transféré sur plusieurs canaux [98].

D’autres groupes de recherche emploient aussi la probabilité de coupure (Outage probability) [106], le taux d’erreur de symbole (SER) [18] et le taux d’erreur de trame (FER) pour présenter les résultats de la coopération. L’ensemble de ces facteurs prouvent un comportement similaire en fonction du SNR.

4.3.6 Réception des données

Le récepteur détecte le signal reçu symbole par symbole. Dans le cas du $BPSK$ les symboles (1 bit) sont détectés:
\[\hat{y}_d[n] = \begin{cases} +1 & (\text{Re}\{y_d[n]\} \geq 0) \\ -1 & (\text{Re}\{y_d[n]\} < 0) \end{cases} \]

Dans le cas du QPSK il y a deux bits par symbole :

\[\hat{y}_d[n] = \begin{cases} [+1, +1] & (0^\circ \leq \angle y_d[n] < 90^\circ) \\ [-1, +1] & (90^\circ \leq \angle y_d[n] < 180^\circ) \\ [+1, -1] & (-90^\circ \leq \angle y_d[n] < 0^\circ) \\ [-1, -1] & (-180^\circ \leq \angle y_d[n] < -90^\circ) \end{cases} \]

\[(4.8) \]

\[\hat{y}_d[n] = \begin{cases} [+1, +1] & (0^\circ \leq \angle y_d[n] < 90^\circ) \\ [-1, +1] & (90^\circ \leq \angle y_d[n] < 180^\circ) \\ [+1, -1] & (-90^\circ \leq \angle y_d[n] < 0^\circ) \\ [-1, -1] & (-180^\circ \leq \angle y_d[n] < -90^\circ) \end{cases} \]

\[(4.9) \]

4.3.7 BER pour une liaison directe

La qualité du signal reçu dépend du SNR du canal et de la technique de modulation. La probabilité de l’erreur du bit est résumée comme suit :

<table>
<thead>
<tr>
<th>Type de modulation</th>
<th>No fading (P_b = Q\left(\frac{\xi}{2\sigma^2}\right))</th>
<th>Rayleigh Fading (P_b = \frac{1}{2} \left(1 - \sqrt{\frac{\tau_b}{1 + \tau_b}}\right))</th>
</tr>
</thead>
<tbody>
<tr>
<td>BPSK</td>
<td>(P_b = Q\left(\frac{\xi}{2\sigma^2}\right))</td>
<td>(P_b = \frac{1}{2} \left(1 - \sqrt{\frac{\tau_b}{1 + \tau_b}}\right))</td>
</tr>
<tr>
<td>QPSK</td>
<td>(P_b = Q\left(\frac{\xi}{2\sigma^2}\right))</td>
<td>(P_b = \frac{1}{2} \left(1 - \sqrt{\frac{\tau_b}{2 + \tau_b}}\right))</td>
</tr>
</tbody>
</table>

où \(\tau_b \) est la valeur moyenne du SNR définie comme:

\[\tau_b = \frac{\xi}{2\sigma^2} E(a^2) \text{ avec } E(a^2) = a^2. \]

En terme d’évanouissement, la BPSK reste meilleure que la QPSK (de 3dB) (voir figure 4.4).
4.3. Caractéristiques techniques du lien coopératif

4.3.8 Liaisons relayées ou multi-sauts (*Multi-hop*)

Il y a plusieurs approches pour implémenter la coopération dans une transmission sans fil. Le MIMO réel est utilisé pour avoir une diversité spatiale, mais cette solution n’est pas toujours envisageable [30]. L’approche qui nous intéresse est d’utiliser une station mobile comme relais entre l’émetteur et le récepteur pour assurer la coopération.

![Diagram of a relayed link](image)

Figure 4.5: Liaison relayée.

L’émetteur E envoie les données vers un destinataire D. Une autre station relais R reçoit au même temps ce signal et le renvoie de nouveau, après un traitement selon le protocole définit, à la station D. Au niveau de la réception, les deux signaux reçus seront combinés afin de construire le mieux possible le signal initial. Pour effectuer cette opération, des canaux orthogonaux sont employés dans les deux transmissions. Ceci permet d’éviter le recouvrement destructif généré par le multi-trajet et qui est dû principalement au déphasage entre les deux signaux [28].

Figure 4.4: BER vs SNR pour un canal à évanouissement de Rayleigh.
4.3.9 Protocoles de transmission coopérative

Les protocoles de transmission coopérative qui sont utilisés dans la station relais R sont en général soit Amplify and Forward (AAF) soit Decode and Forward (DAF). Ces protocoles décrivent comment les données reçues en R sont traitées avant d’être réexpédiées vers le récepteur D.

1. Amplify and Forward (AAF): Cette méthode est souvent utilisée quand R impose une limitation en puissance et en temps de calcul où les délais de traitement dus au codec sont à minimiser. L’idée derrière ce protocole est d’amplifier le signal reçu par R, déjà atténué, avant d’être renvoyé à nouveau. De ce fait, le bruit qui accompagne le signal informatif lui aussi sera amplifié, ce qui présente le point faible de ce protocole [101]. Supposant que les caractéristiques du canal sont bien estimées, le gain d’amplification sera calculé comme suit:

\[
E[|y_r^2|] = E[|h_{s,r}|^2] \cdot E[|\sigma_s|^2] + E[|z_{s,r}|^2] = |h_{s,r}|^2 \xi + 2\sigma_{s,r}^2
\]

(4.11)

dont s est l’émetteur et r est le relais.

Pour renvoyer les données avec le même niveau d’amplification que l’émetteur, le gain du relais sera :

\[
\beta = \sqrt{\frac{\xi}{|h_{s,r}|^2 \cdot \xi + 2\sigma_{s,r}^2}}
\]

(4.12)

Il est calculé avec une réestimation du canal pour chaque block arrivé [107].

2. Decode and forward (DAF) : Les systèmes de transmission sans fil actuels possèdent suffisamment de puissance de calcul. Ceci implique que le DAF est souvent une méthode préférée. Le signal sera décodé puis réencodé sans amplification de bruit lors du renvoi du signal comme dans le cas du protocole AAF. Le relais R peut décodier complètement le signal original. Cette opération nécessite plus de temps de calcul, mais elle a plusieurs avantages [57].

Deux cas possibles pour implémenter ce protocole: Si le message envoyé contient un code correcteur d’erreur, les bits erronés seront corrigés dans la station relais. Par contre, si ce code n’est pas implémenté, l’opération de sommation des bits (checksum) permet de vérifier si le message contient des erreurs.

Selon l’implémentation choisie, un message d’erreur peut ne pas être renvoyé à la destination. Cependant, il n’est pas toujours possible de décoder complètement un message. Le retard additionnel généré pour un décodage total et pour un traitement d’erreur adéquat n’est pas acceptable (le relais peut ne pas avoir une puissance de calcul suffisante ou bien le message source peut être codé pour protéger des données confidentielles).
Dans ce cas, le signal est simplement décodé puis réencodé symbole par symbole sans qu’une opération de correction d’erreurs ne soit effectuée.

Pour présenter ce mode de coopération, le relais vérifie chaque symbole décodé et veille à son réencodage et à son envoi seulement s’il est détecté correctement.

4.3.10 Techniques de combinaisons

Comme il y a plus d’un seul trajet avec le même flux de données, les signaux arrivés doivent être combinés au niveau récepteur :

4.3.10.1 Combinaison à rapport égal

Dans le cas où le temps de calcul est un critère crucial, ou bien lorsque la qualité du canal ne peut pas être estimée, les signaux au niveau du récepteur sont alors additionnés. C’est la combinaison la plus simple à mettre en œuvre, reste que cette simplicité est au détriment de la performance qui reste moins bonne, particulièrement lorsque le multi-trajet introduit un déphasage important entre les répliques :

\[
y_d[n] = \sum_{i=1}^{k} y_{i,d}[n]
\]

(4.13)

Pour un seul relais, cette formule est simplifiée à :

\[
y_d[n] = y_{s,d}[n] + y_{r,d}[n]
\]

(4.14)

Où \(y_{s,d}\) est le signal reçu de l’émetteur et \(y_{r,d}\) est celui reçu du relais.

4.3.10.2

4.3.10.3 Combinaison à rapport fixe

Le résultat précédent peut être amélioré si, en plus de l’opération d’addition des signaux arrivés, ces derniers seront pondérés avec un rapport constant qui restera inchangé lors de toute la communication. Ce rapport symbolise un niveau de qualité moyen du canal et il ne prend pas en compte les variations temporelles dues au fading ou aux autres sources de perturbation. Les paramètres qui agissent sur la qualité du canal comme la distance entre les différentes stations sont pris en considération. Le rapport varie légèrement est ne nécessite qu’un faible temps de calcul. Le modèle de
Figure 4.6: Technique de combinaison à rapport égal avec un relayage AAF.

cette combinaison peut être exprimée comme suit :

$$y_d[n] = \sum_{i=1}^{k} d_{i,d} \cdot y_{i,d}[n]$$ \hspace{1cm} (4.15)

Où $d_{i,d}$ représente les coefficients de pondération du signal arrivé $y_{i,d}$. Avec une seule liaison, la fonction se simplifie de la manière suivante :

$$y_d[n] = d_{s,d} \cdot y_{s,d}[n] + d_{s,r,d} \cdot y_{r,d}[n]$$ \hspace{1cm} (4.16)

Où $d_{s,d}$ représente les coefficients du lien direct et $d_{s,r,d}$ ceux du lien relayé.

4.3.10.4 Combinaison à rapport maximal

Cette combinaison permet d’avoir de bonnes performances car elle consiste à faire la multiplication de chaque réplique du signal reçu par le conjugué du gain du canal qui lui correspond. Dans cette méthode, le déphasage et les atténuations dans le canal sont supposés connus au niveau du récepteur.

$$y_d[n] = \sum_{i=1}^{k} h_{i,d}^*[n] \cdot y_{i,d}[n]$$ \hspace{1cm} (4.17)

Avec un système à un seul relais, cette équation est écrite :

$$y_d[n] = h_{s,d}^*[n] \cdot y_{s,d}[n] + h_{r,d}^*[n] \cdot y_{r,d}[n]$$ \hspace{1cm} (4.18)
4.3. Caractéristiques techniques du lien coopératif

Dans ce type de combinaison, l’inconvénient majeur est qu’elle prend en considération seulement le lien relayé du dernier canal. D’ailleurs c’est la raison pour laquelle cette combinaison est utilisée uniquement avec le protocole DAF. De plus, si le relais renvoie des paquets incorrects, ceux-ci auront des effets néfastes sur la performance du système en termes de la restitution du signal émis. Ce qui limite l’emploi de cette combinaison que pour les cas où un correcteur d’erreur ECC est présent dans le relais.

Les performances d’une transmission à deux émetteurs à la réception peuvent être exprimées par le BER comme suit:

\[P_b = \frac{1}{4}(1 - \mu)^2 \cdot (2 + \mu) \] (4.19)

avec:

\[\mu = \sqrt{\frac{\gamma_b}{1 + \gamma_b}} \] (4.20)

Où \(\gamma_b \) indique le SNR moyen, défini comme:

\[\gamma_b = \frac{\xi}{2\sigma^2} E(a^2) \] (4.21)

avec:

\[E(a^2) = a^2 \] (4.22)
Figure 4.8: Technique de combinaison à rapport fixe avec un relayage AAF.

4.3.10.5 Combinaison à base du **SNR**

Des performances meilleures sont atteintes si la pondération du signal reçu est manipulée correctement. Le **SNR** est souvent utilisé pour caractériser la qualité de la liaison et il pourra être utilisé pour pondérer les signaux reçus.

\[
y_d[n] = \sum_{i=1}^{k} SNR_i \cdot y_{i,d}[n]
\]
(4.23)

Toujours avec un seul relais, l’équation se simplifie à :

\[
y_d[n] = SNR_{s,d} \cdot y_{s,d}[n] + SNR_{s,r,d} \cdot y_{r,d}[n]
\]
(4.24)

Où **SNR**_{s,d} est le rapport pour le lien direct et **SNR**_{s,r,d} pour le lien relayé.

L’estimation du **SNR** du lien relayé, qui utilise le protocole AAF ou celui du lien direct, est établie par l’envoi des séquences de symboles connues dans chaque bloc afin d’estimer le déphasage.

Si le lien relayé utilise un protocole DAF, le récepteur peut seulement voir la qualité du canal de la dernière transmission. On suppose que le relais envoie quelques informations additionnelles à la destination sur la qualité des liens relayés ce qui permet de bien évaluer le **SNR**.

- **Estimation du SNR utilisant le protocole AAF**

Avec le AAF, le signal renvoyé par relais vers le récepteur est :
4.3. Caractéristiques techniques du lien coopératif

Figure 4.9: Technique de combinaison à rapport fixe avec un relayage DAF.

\[y_{r,d} = h_{r,d} \cdot x_r + Z_{r,d} = h_{r,d} \beta (h_{s,r} \cdot x_s + Z_{s,r}) \] \hspace{1cm} (4.25)

La puissance reçue est alors :

\[E[|y_{r,d}|^2] = \beta^2 |h_{r,d}|^2 (|h_{s,r}|^2 \xi + 2\sigma^2_{s, d}) + 2\sigma^2_{r, d} \] \hspace{1cm} (4.26)

Et le \(SNR \) estimé pour une liaison relayée est :

\[SNR = \frac{\beta^2 \cdot |h_{s,r}|^2 \cdot |h_{r,d}|^2 \cdot \xi}{\beta^2 \cdot |h_{r,d}|^2 \cdot 2\sigma^2_{r, d}} \] \hspace{1cm} (4.27)
Figure 4.10: Technique de combinaison à rapport maximal avec le relayage DAF.

- **Estimation du SNR utilisant le protocole DAF**

Le calcul du SNR d’un lien relayé avec le DAF est plus compliqué à cause de la double opération du codage. Sachant que le BER est directement lié au SNR, nous procédons à l’opération inverse : calcul du BER d’abord puis conversion pour obtenir le SNR qui lui correspond.

Le BER d’une simple liaison est donné par le tableau (4.10). Pour un seul relais, il est calculé comme suit :

\[
BER_{s,r,d} = BER_{s,r} \cdot (1 - BER_{r,d}) + (1 - BER_{s,r}) \cdot BER_{r,d}
\]

(4.28)

Pour le calcul du SNR, les fonctions inverses sont utilisées. Avec une BPSK avec un fading de Rayleigh :

\[
SNR = \frac{1}{2} \left[Q^{-1}(BER) \right]^2
\]

(4.29)

Avec une QPSK le signal change en :

\[
SNR = \left[Q^{-1}(BER) \right]^2
\]

(4.30)
Figure 4.11: Technique de combinaison à base du SNR avec un relayage AAF.

Figure 4.12: Technique de combinaison à base du SNR avec un relayage DAF.
4.3.10.6 Combinaison à base du SNR ajusté

Une autre idée de combinaison intéressante consiste à ignorer un signal entrant une fois les données issues des autres canaux sont de meilleure qualité. Si ces canaux ont plus ou moins la même qualité, les signaux arrivés à destination sont pondérés.

Le modèle d’un tel système est donné par :

\[
y_d[n] = \begin{cases}
 y_{s,d}[n] & (SNR_{s,d} \div SNR_{s,r,d} > 10) \\
 y_{s,d}[n] + y_{s,r,d}[n] & (0.1 \leq SNR_{s,r,d} \leq 10) \\
 y_{s,r,d}[n] & (SNR_{s,d} \div SNR_{s,r,d} < 0.1)
\end{cases}
\] (4.31)

Avec cette technique de combinaison, le récepteur n’a pas besoin de connaître avec certitude les caractéristiques du canal. En effet, une approximation de ce dernier lui est suffisante pour effectuer la correlation des signaux (l’estimation du déphasage est toujours maintenue la plus précise possible, en revanche l’atténuation peut être relativement approchée).

Figure 4.13: Technique de combinaison à base du SNR ajusté avec un relayage AAF.
4.4 De l’ordonnancement au niveau MAC vers la coopération physique

L’évaluation des performances de l’ordonnanceur, au niveau de la fonction de coordination, que nous avons établi précédemment ne se limite pas uniquement au niveau MAC. L’interaction avec la couche physique est très étroite et l’impact est aussi important du point de vue signal. Par conséquent, il est nécessaire d’étudier l’effet de l’ordonnancement sur le fonctionnement de la couche physique. Pour cela, nous avons procédé au tracé des caractéristiques du canal, à savoir vérifier la conformité des courbes (BER, SNR).

Après avoir analysé le comportement de la HCF et proposé une variante HCF-T, celle-ci nous a permis, entre autres, d’améliorer la charge du réseau et de réduire les collisions. Cette caractéristique est importante lors de l’application du modèle coopératif basé sur la combinaison de multiples répliques provenant du même signal. Cette contrainte, selon le scénario à base de trois nœuds avec un ordonnanceur de type HCF, conduit à des conséquences négatives. Plus encore lorsque les nœuds entrent en coopération. Même si, pour minimiser la complexité du modèle coopératif, nous avons configuré uniquement le lien direct entre les stations et le point d’accès (pas de relai via le PA) (half cooperation), la complexité en termes du nombre de liens engagés reste considérable (un facteur...)

Figure 4.14: Technique de combinaison à base du SNR ajusté avec un relais DAF.
en puissance de 2 entre les deux modèles):

\[C_{CoopL} = (C_{sL})^2 \] \hspace{1cm} (4.32)

où \(C_{sL} \) représente la complexité avec un lien simple et \(C_{CoopL} \) la complexité avec des liens coopératifs.

Avec l’HCF-T, la charge du réseau est moins importante et la complexité induite par le nombre de liens coopératifs par rapport à l’HCF se trouve réduite. Notre démarche est résumée dans les points suivants :

1. Besoin d’évaluer l’impact de l’activité de l’ordonnanceur sur la couche physique,
2. Le module radio de base qui intègre le 802.11, excepté la version \(n \) multi-antennes, reste limité en ressources,
3. Le MIMO virtuel représente un modèle coopératif prometteur (performance meilleure que la configuration mono-antenne et plus proche du MIMO réel). Il permet d’exploiter les ressources déjà existantes (emploi de plus de canaux). Ceci introduit plus de complexité dans le traitement qui s’accroît en fonction de la dimension du réseau. Comme nous l’avons vu, la HCF répondra avec plus de charge et une fréquence de collisions plus élevée.
4. L’HCF-T par sa caractéristique de bonne gestion des délais d’occupation du canal, représente alors un bon compromis entre la réduction de la charge du réseau avec une complexité du modèle coopératif moins importante que dans la HCF.

4.5 Conclusion

L’étude menée dans ce chapitre montre l’apport de la diversité de coopération des nœuds dans un réseau. L’évaluation des performances en termes de la qualité du signal (BER vs. SNR) est effectuée en comparaison avec une liaison émetteur-récepteur directe. Le lien coopératif est réalisé, par une troisième station configurée comme un point relais dans une architecture réseau Ad-hoc. Les données sont envoyées de l’émetteur vers le récepteur et via le nœud relais. Ce système est modélisé et simulé dans un scénario pour évaluer l’ensemble des protocoles et les techniques de combinaison appliqués. Pour la plupart des situations et indépendamment de la technique de combinaison utilisée au niveau du récepteur, le protocole AAF a montré de meilleures performances que le protocole DAF [103]. Ce dernier protocole est valable uniquement en cas d’absence d’un code correcteur d’erreur à l’émission, ce qui ne présente pas un intérêt potentiel pour notre application. Le choix de la technique de combinaison a un effet direct sur le taux d’erreur binaire (BER) du côté du récepteur. Avec le
protocole AAF, une combinaison à rapport égal dans le récepteur donne un résultat meilleur que celui donné par la liaison directe (émetteur-récepteur). Plus encore, si le système implémente la combinaison à rapport fixe, celle-ci assure une meilleure performance par rapport à la combinaison précédente. Cependant, l’information de la qualité moyenne du canal lui sera nécessaire. De même si la qualité du canal est bien déterminée, l’emploi d’autres techniques comme celle à rapport signal à bruit (SNR) sera plus avantageux. Enfin, la combinaison à SNR ajusté montre un intérêt majeur car elle se contente que d’une estimation rapide de la qualité du canal sans fil.
Chapitre 5

Contrainte de Mobilité & Évaluation de Performances au niveau MAC

5.1 Introduction

Les réseaux sans fil 802.11 par leur définition, sont déployés initialement pour répondre à des besoins de flexibilité par rapport aux réseaux filaires. Ils sont souvent employés dans des milieux restreints en couverture: habitats, entreprises, et lieux publics. Cette spécificité n’est plus d’actualité car de nos jours et suite à l’émergence importante de nouvelles applications embarquées liées à Internet en l’occurrence, les réseaux sociaux et la voix sur IP (VoIP), ils sont devenus de plus en plus accessibles, voire parfois nécessaires pour notre quotidien. Ils finissent bien par intégrer nos systèmes : nomades, portables et mobiles en introduisant cette notion de mobilité comme une nouvelle exigence. La QoS est dès lors fortement sollicitée et l’offre du réseau cellulaire, même avec sa dernière génération, est loin de pouvoir y répondre. Faire appel à d’autres types de réseaux comme le 802.11x par l’implémentation de la puce WiFi dans ces systèmes est devenue une nécessité. Par ailleurs, des défis se posent face à son incapacité de maintenir la stabilité en QoS sous la contrainte de mobilité. Ceci correspond à notre motivation d’employer le 802.11e dans un milieu mobile. Avant d’étudier des solutions appropriées aux exigences du trafic, nous nous sommes d’abord intéressés à l’analyse de la gestion de la mobilité dans le 802.11. Partant de la base que le standard tolère une mobilité réduite [35], nous avons développé un scénario à base de l’EDCF, pour évaluer la QoS, comme protocole d’accès. L’idée est de faire déplacer un nœud mobile entre deux autres nœuds sans fil, de positions fixes, servent comme passerelle avec le réseau filaire. Le mouvement du nœud mobile réalise un cycle d’allée/retour suivant une trajectoire étudiée et parcourt trois zones : de simple couverture, de double couverture et de non couverture. Plusieurs plages de vitesses ont été testées. Pour l’analyse
de ce modèle, nous avons intégré les métriques de la couche MAC en termes de débit, de délai et de jitter afin d’évaluer l’impact de la mobilité en fonction de la sensibilité du trafic. Aussi et pour les besoins de cette étude, nous avons d’abord identifié la zone de stabilité du protocole EDCF. Ensuite, cette région a été partitionnée en trois domaines opératoires. Chaque domaine comporte une réponse spécifique de l’ordonnanceur en fonction de la nature de l’application et du régime de mobilité imposé par le nœud utilisateur.

5.2 Gestion de la mobilité dans le 802.11

Dans un réseau local, la notion est répertoriée en deux catégories : micro-mobilité et macro-mobilité.

La micro-mobilité peut être définie comme un groupe de nœuds mobiles MNs qui se déplacent entre plusieurs points d’accès (APs) dans un espace limité, appelé ensemble de services étendus (ESS) [32] [85]. Ceci est réalisé en maintenant la connexion au réseau durant la session en cours.

La macro-mobilité admet une dimension plus importante. Le mouvement des MNs dépasse la zone de service d’un seul ESS vers plusieurs ESSs. L’étude des spécifications du standard 802.11 nous mène à vérifier la faisabilité à intégrer la mobilité, sachant qu’apriori, qu’il admet un comportement favorable et est plus adapté à la micro-mobilité plutôt qu’à la macro-mobilité [32] [53].

5.2.1 Motivation

Sans vouloir procéder à des modifications des paramètres propres du standard, l’étude en micro-mobilité comme un mode opératoire principal est maintenue. Toutefois, le nombre de points d’accès est multiplié afin d’élargir la couverture. Cette topologie de réseaux permet de solliciter l’activation du roaming durant le handover entre les APs [12]. Pour les zones de recouvrement, la problématique de sélection et d’association aux points d’accès est résolue par l’algorithme de multi-couvertures.

Pour ce qui est de la macro-mobilité, comme déjà avancé, les spécifications du 802.11 ne supportent pas la mobilité entre plusieurs services ESSs [75] et une intervention auprès des couches supérieures est éventuellement nécessaire. Plus encore, une amélioration du routage IP Mobile lors d’un transfert rapide entre différentes adresses IP sous-réseaux est indispensable.

La figure (5.1) suivante illustre les phases de déplacement en micro-mobilité d’un nœud entre deux stations de base suivant le standard de téléphonie cellulaire.
5.2.2 Architecture et composants du 802.11 en mobile

Un réseau sans fil est composé des éléments suivants :

- Le point d’accès (AP : Access Point) est un élément clé dans le réseau 802.11. C’est une entité de la couche 2 qui regroupe les fonctionnalités des stations mobiles. Il permet aux nœuds associés d’accéder aux services de distribution via le médium sans fil.
- L’ensemble de services de base (BSS : Basic Service Set). Il regroupe les nœuds qui appartiennent à la même zone de couverture et qui sont contrôlés par la même fonction de coordination au niveau MAC. Cette fonction peut être centralisée (cas d’un seul AP) ou distribuée (cas des réseaux ad-hoc). Le BSS peut être considéré comme la zone de couverture autour d’un seul AP. Un nœud est une station (ordinateur portable, PDA, téléphone IP, etc.) communicant avec les autres entités de réseau et desservie par un AP. Quand cette station entre en mouvement changeant sa position voire sa vitesse, on parle alors de station ou de nœud mobile (MN).
- Le système de distribution (DS : Distribution System). Il représente la partie du réseau qui relie les différentes BSSs avec l’intégralité du réseau sans fil afin de construire un ensemble de services étendus (ESS : Extended Service Set).
- Le ESS est constitué d’un ou de plusieurs BSSs interconnectés. Il apparaît comme un seul BSS au niveau de la sous-couche du contrôle du lien logique LLC pour n’importe quel nœud associé à l’un des ses BSSs. Il est considéré comme la zone de couverture résultante fournie par
la contribution des points d’accès APs qui sont en communication entre eux par un réseau de distribution DS. Il peut être composé par un ou plusieurs sous-réseaux IP.

- Le routeur d’accès (AR : Access Router) assure l’interconnexion entre le service étendu et le réseau local. Il se situe à la limite d’accès du réseau et offre la connectivité IP pour les nœuds mobiles.

La figure (5.2) montre une architecture typique des composants du réseau sans fil. Elle est composée de deux ESSs appartenant à des sous-réseaux IP différents.

![Figure 5.2: Architecture et composants d’un réseau sans fil.](image)

5.3 Intégration de la mobilité dans les réseaux sans-fil

5.3.1 Catégories des mobilités dans les 802.11

Une cellule 802.11 est la zone de couverture d’un point d’accès (AP). La mobilité discutée dans le présent chapitre diffère du roaming (l’itinérance), dans lequel une session est terminée et puis simplement redémarrée dans une nouvelle cellule 802.11. Le handover ou handoff [62] (transfert) n’est pas requis dans le roaming, en revanche, il est nécessaire dans la mobilité pour maintenir la continuité de l’ouverture de la session (exemple la VoIP) quand un MN traverse la limite de la couverture de la cellule. Ici, le handover est défini comme un MN qui se déplace d’une cellule à une autre dans la même session ouverte. La mobilité est classifiée en deux types; micro-mobilité et macro-mobilité
5.3.1.1 Mobilité à l’intérieur d’un BSS

C’est la mobilité la plus classique dans les réseaux WLAN. Un nœud mobile MN en mouvement dans la zone couverte par un point d’accès, comme le montre la figure (5.2). La taille de cette zone de couverture dépend essentiellement de plusieurs facteurs, entre autres, la puissance de transmission, l’environnement radio de propagation, la sensibilité de l’antenne, etc. Une fois l’opération d’association est établie avec un AP, le MN est capable de se déplacer à l’intérieur de la zone de service autorisée par le point d’accès où il maintient sa connexion avec le réseau. Ce type de mobilité est le modèle de base que peut offrir un réseau sans fil à ses utilisateurs. Le fait d’éliminer le câblage, les nœuds gagnent plus de liberté. Dans ce cas, les transitions n’apparaissent pas suite à l’absence du handover dans toutes les couches ce qui référencie cette situation par « statique ».

5.3.1.2 Mobilité entre les BSSs à l’intérieur d’un ESS

Cette mobilité est appelée aussi micro-mobilité. Les nœuds mobiles peuvent se déplacer entre les différents BSSs qui appartiennent au même ESS. En général il y a des recouvrements entre les zones de service des APs. Le nœud mobile surveille en permanence la puissance du signal ainsi que la qualité des liens vers tous les points d’accès avec lesquels il peut communiquer. Ainsi dans l’espace ESS, chaque AP est tout le temps averti de la position du nœud. Quand ce dernier se déplace à l’extérieur de la zone de service d’un AP vers un autre, un appel à une transition est activé. Le nœud mobile utilise le service de réassociation pour se lier à un nouveau AP sans perdre la connexion avec le réseau. Cette opération est transparente au niveau utilisateur et la transition nécessite une coopération des APs pour échanger l’information nécessaire afin de réussir le handover. Par contre, le standard IEEE 802.11 ne spécifie pas les détails des communications entre les APs durant la transition. Ce qui pose problème dans le cas où les APs ne sont pas conçus par le même constructeur. Un nouveau protocole inter-points d’accès (IAPP) est alors nécessaire pour résoudre ce problème. Une première version a vu le jour sous la standardisation du IEEE802.11f. D’autres efforts ont été orientés vers d’autres groupes d’IEEE (la sécurité avec le 802.11i et la QoS avec le 802.11e) afin d’améliorer les handovers entre les APs ainsi que l’opération d’authentification [10].

5.3.1.3 Mobilité entre deux ESSs

Cette mobilité appelée aussi macro-mobilité dans laquelle un nœud mobile se déplace entre deux points d’accès qui appartiennent à deux ESSs différents. Ces deux ESSs possèdent des adresses IP sous-réseaux différentes qui peuvent être administrées des organisations différentes comme deux
5.4 Algorithme d’accès en multi-couvertures

Cet algorithme consiste à évaluer le droit d’accès du nœud mobile en fonction de la métrique de la distance entre les différents points du réseau. L’objectif est de pouvoir établir des connexions optimales préservant la continuité du flux et par conséquent maintenir le niveau du débit binaire des applications. Le temps de réponse du Handover est un facteur d’évaluation important lors du passage du nœud mobile par plusieurs points d’accès consécutifs. Il permet en effet d’identifier le comportement du réseau sous la contrainte de la mobilité et de déterminer, par conséquent, la forme de l’allure des courbes du débit.

Le mécanisme est basé sur la mesure des distances quadratiques instantanées entre la position du nœud mobile en mouvement et les zones de couverture susceptibles d’interagir. Le contrôleur par la suite aiguille la connexion vers le point qui répond favorable à la distance la plus courte.

Pour cela, nous avons trois topologies possibles :

- Couvertures espacées
- Couvertures en chevauchement
- nœuds hors couverture

Le séquencement de l’algorithme est donné par les instructions suivantes :

1. \(m_n(x, y) \leftarrow \text{nœud mobile} \)
2. \(b_{s_1}(x_1, y_1) \leftarrow \text{Station de base 1} \)
3. \(b_{s_2}(x_2, y_2) \leftarrow \text{Station de base 2} \)
4. :
5. \(b_{s_n}(x_n, y_n) \leftarrow \text{Station de base } n \)
6. \(\hat{R}_1 \leftarrow \text{couverture de } b_{s_1} \)
7. \(\hat{R}_2 \leftarrow \text{couverture de } b_{s_2} \)
8. :
9. \(\hat{R}_n \leftarrow \text{couverture de } b_{s_n} \)
10. \(d_1 \leftarrow |m_n, b_{s_1}| // \text{distance entre } m_n \text{ et } b_{s_1} \)
11. \(d_2 \leftarrow |m_n, b_{s_2}| // \text{distance entre } m_n \text{ et } b_{s_2} \)
12. :
13. \(d_n \leftarrow |m_n, b_{s_n}| // \text{distance entre } m_n \text{ et } b_{s_n} \)
5.4. Algorithme d’accès en multi-couvertures

14. \(d_1 \leftarrow \sqrt{(x - x_1)^2 + (y - y_1)^2} \)
15. \(d_2 \leftarrow \sqrt{(x - x_2)^2 + (y - y_2)^2} \)
16. :
17. \(d_3 \leftarrow \sqrt{(x - x_3)^2 + (y - y_3)^2} \)
18. \(\text{pour } \{i \text{ allant de } 1 \text{ à } n\} \text{ faire} \)
19. \(\text{pour } \{j \text{ allant de } 1 \text{ à } n\} \text{ faire} \)
20. \(\text{si } \{m_n(x, y) \subseteq (\tilde{R}_i \cap \tilde{R}_j)\} \text{ alors} \)
21. \(\text{si } \{d_i \leq d_j\} \text{ alors} \)
22. \(\text{connecter } m_n(x, y) \text{ à } b_{si} \)
23. \(\text{ sinon} \)
24. \(\text{connecter } m_n(x, y) \text{ à } b_{sj} \)
25. \(\text{finsi} \)
26. \(\text{finsi} \)
27. \(\text{si } \{m_n(x, y) \notin (\tilde{R}_i \cap \tilde{R}_j)\} \text{ alors} \)
28. \(\text{si } \{m_n(x, y) \subseteq \tilde{R}_i\} \text{ alors} \)
29. \(\text{connecter } m_n(x, y) \text{ à } b_{si} \)
30. \(\text{si } \{m_n(x, y) \subseteq \tilde{R}_j\} \text{ alors} \)
31. \(\text{connecter } m_n(x, y) \text{ à } b_{sj} \)
32. \(\text{finsi} \)
33. \(\text{finsi} \)
34. \(\text{fipour} \)
35. \(\text{si } \{m_n(x, y) \notin \tilde{R}_i\} \& (m_n(x, y) \notin \tilde{R}_j) \text{ alors} \)
36. \(\text{Pas de de connexion ni de transmission} \)
37. \(\text{finsi} \)
38. \(\text{fipour} \)

Le modèle de la distance quadratique est adopté suite à une analyse minutieuse de la faiblesse d’EDCF classique pour supporter le rythme croissant de la mobilité. Le temps de réponse du système est relativement lent par rapport à la vitesse de déplacement du nœud mobile. Ceci introduit un décalage entre la position employée dans le cycle d’ordonnancement et la position réelle du nœud mobile. La précision de l’information sur la position est alors nécessaire afin de mieux gérer les connexions et les échanges entre les éléments du réseau. Introduire cette distance peut limiter la connexion afin de ne pas dépasser la zone de couverture et permet de supporter des vitesses de
mobilité plus importantes. Ceci limite par conséquent la perte en paquets repérée avec l’EDCF classique.

5.5 Région de stabilité et Métriques d’évaluation

5.5.1 Région de stabilité

La région de stabilité est la région sur laquelle le protocole EDCF maintient sa performance en termes de gestion du trafic et de qualité de service.

Pour déterminer la limite de la zone de stabilité, nous avons pris la réponse du protocole DCF sans QoS comme modèle de référence.

L’étude des courbes du débit en fonction de la vitesse du mouvement du nœud nous ont montré qu’en fonction du rythme de la mobilité appliqué, l’EDCF dans son comportement, peut basculer en un DCF classique et n’admet aucune différenciation de service. C’est à partir de cet instant que la limite de la zone de stabilité est définie.

Par ailleurs, toutes autres dégradations hors ce cas, sont considérées dans la zone de stabilité et elles sont distinguées par la réponse des métriques (débit, latence et gigue).

5.5.2 Métriques

Une métrique est une entité mesurable affectée à un élément de réseau (segment, lien, canal, etc.) que nous voulons évaluer. Cette mesure sera ensuite traitée par un algorithme, une fonction ou souvent un protocole afin de spécifier l’élément optimal parmi l’ensemble des paramètres pour effectuer la transmission de données. Comme nous l’avons déjà évoqué précédemment, les réseaux sans fil partagent la bande passante d’un canal radio qui est de nature non stationnaire contrairement aux réseaux filaires. Pour s’assurer de maintenir efficacement les ressources du réseau, le protocole au niveau MAC définit principalement trois métriques : Débit effectif, délais de bout-en-bout E2ED et jitter (gigue ou à-coups).

5.5.3 Débit effectif

La quantité de données (en bits ou en octets) qui sont bien reçues par une station de destination ou par une station relai dans le cas du multi-saut, après avoir parcourue un temps bien déterminé est appelé Débit (b/s). Ce paramètre constitue depuis toujours l’élément principal à mesurer dans les
réseaux. Plusieurs variantes de l’unité du débit selon le niveau de la couche ainsi que de l’information à traiter : bit par seconde (bps), octet par seconde (ops), symbole par seconde (sps) et trame par seconde (fps).

\[\text{Débit effectif} = \frac{\sum_n \text{Paquets reçus}}{\sum_n \text{délais}} \text{ (bits/s)} \] (5.1)

5.5.4 Délai de bout-en-bout

Le délai de bout-en-bout (E2ED) ou la latence, c’est le temps pris par un paquet de données depuis son émission jusqu’à sa réception finale, il comporte aussi les temps d’attente et de traitement dus à la chaine de transmission.

\[E2ED = [\text{Temps d’arrivée} - \text{Temps de départ}] \text{ (s)} \] (5.2)

Il est aussi possible de le définir par la moyenne du temps d’aller retour (Round Trip Time RTT) :

\[E2ED = \frac{\sum_n \text{RTT}_n}{n} \text{ (s)} \] (5.3)

5.5.5 Jitter

La variation instantanée du délai E2ED entre les différents envois de paquets est le jitter (gigue ou à-coups). Les applications sensibles aux délais comme l’audio et le vidéo streaming sont affectés par les niveaux de variation du jitter. Cette mesure du jitter permet d’évaluer la performance d’un protocole face à la congestion du trafic.

Selon les exigences, il existe plusieurs méthodes pour évoluer le jitter. Elles sont définies dans les sections suivantes.

5.5.5.1 Jitter combiné avec la latence du paquet

Dans un premier cas, le jitter est évalué en fonction des mesures de l’écart entre le maximum et le minimum de la latence. La plupart des équipements utilisent cette version pour le calcul du jitter car elle est facile à mettre en œuvre.

\[\text{Jitter} = \max (E2ED) - \min (E2ED) \text{ (s)} \] (5.4)
5.5.5.2 Jitter relatif au temps d’arrivée du paquet

Dans un deuxième cas, et à la place de la latence, la formulation du jitter consiste à extraire la
différence entre les temps d’arrivée des paquets.

\[\delta a_n = a_n - a_{n-1} \ (s) \]

(5.5)

Où, \(n \) désigne l’indice du paquet en cours, \(a_n \) est son temps d’arrivée et \(a_{n-1} \) est le temps d’arrivée

du paquet précédent.

\[Jitter_n = \delta a_n - \delta a_{n-1} \ (s) \]

(5.6)

5.5.5.3 Jitter relatif aux latences successives des paquets

Ici, le jitter est évalué par la mesure de la différence entre les latences consécutives du paquet en
cours et le paquet précédent [51].

\[Jitter_n = E2ED_n - E2ED_{n-1} \ (s) \]

(5.7)

avec \(E2ED_n \) donné par l’expression suivante:

\[E2ED_n = a_n - d_n \ (s) \]

Dans un transfert normal du flux (pas d’influence extérieure), le \(E2ED_n \) est toujours positif, puisque

nous avons \(a_n > d_n \).

Ainsi, à partir de l’équation (5.2), le jitter peut être formulé selon différentes expressions:

\[Jitter_n = (a_n - d_n) - (a_{n-1} - d_{n-1}) \ (s) \]

\[Jitter_n = (a_n - a_{n-1}) - (d_n - d_{n-1}) \ (s) \]

\[Jitter_n = \delta a_n - \delta d_n \ (s) \]

La formulation (5.7) est bien proche de (5.6) à un coefficient près \(\delta d_n \). Ce dernier repère le
décalage entre les temps de départ des paquets. Une fois le générateur au niveau de la source envoie
les paquets avec un taux variable, le terme \(\delta d_n \) compensera cette erreur.

5.5.5.4 Jitter relatif aux latences moyenne et actuelle des paquets

Le jitter est évalué ici en calculant la différence entre la latence du \(n^{th} \) paquet et la latence moyenne.
La valeur moyenne est obtenue uniquement durant la période d’analyse requise.
5.6 Scénarios de mobilité

Dans le but de prendre en considération uniquement l’impact de la variation de la mobilité tout en évitant les perturbations dues aux changements de la topologie, nous avons adopté le scénario suivant : un réseau local sans fil 802.11, utilisant deux points d’accès qui sont connectés à une passerelle vers un serveur applicatif ou client. Du côté réseau sans fil, et en premier lieu, une topologie statique comportant un nœud dans la zone de couverture d’un BS. L’utilité de ce scénario est d’avoir un point de référence de QoS qui servira comme repère de comparaison. Ce scénario étendu par la suite par le déploiement d’une zone de recouvrement entre BSs (similaire à l’architecture multi-cellules) où la connexion est gérée par un algorithme multi-couverture. Dans une topologie dynamique, l’algorithme précédant est toujours maintenu, il va suivre le mouvement du nœud mobile avant de s’exécuter en cas de recouvrement. Afin d’attribuer une dimension réelle à l’application et que l’impact de la mobilité soit le plus naturel possible, nous avons introduit une discontinuité entre les deux points d’accès pour introduire le mécanisme du handover. Dans cette partie, nous avons mis en exergue le comportement de l’EDCF au moment de la reconnexion avec un deuxième BS. Ce qui nous permettra d’extraire les temps de réponse qui vont nous servir par la suite pour classifier l’application adéquate au régime de mobilité sollicité.

En se basant sur les spécifications des moyens de mobilité existantes ainsi que la région de stabilité du EDCF en termes de limite en support de QoS, trois plages de vitesses de mobilité sont désignées :

- régions de faible mobilité [5-12] m/s,
- de moyenne mobilité [15-30] m/s,
- de haute mobilité [40-60] m/s.

Ceci correspond à une vitesse de marche d’un individu jusqu’à une vitesse de pointe d’un véhicule à 4 roues.

\[Jitter_n = E2ED_n - E2ED_{moy} \ (s) \]

Vu l’importance du jitter et soucieux de vouloir effectuer des mesures les plus précises possibles de cette métrique, nous avons adopté, pour l’ensemble de nos calculs, la 3ème méthode qui assure une poursuite instantanée du délai de bout-en-bout des paquets.
Par ailleurs, nous avons poussé les tests à des vitesses allant de 60 m/s et jusqu’à atteindre la vitesse de pointe d’un train à grande vitesse (~100 m/s). On peut conclure que dans cette intervalle, l’EDCF affiche un comportement instable en terme de QoS, ainsi que la non adaptation de la couverture du 802.11e à ce type d’application plutôt prévue dans le cas du 802.16e (WiMax) et WiMax Mobile [20].

5.7 Analyse des résultats

Initialement, on s’est intéressé à observer l’impact de la variation de la topologie du réseau et de la position du nœud mobile sur la stabilité du protocole EDCF. Les résultats de l’étude comparative entre un scénario statique (pris comme repère) et un scénario dynamique, montre le degré de la sensibilité du mécanisme de gestion de la QoS par rapport à la mobilité de l’environnement. Le taux de dégradation est peut être critique dans certains cas où le comportement de l’EDCF bascule vers une région d’instabilité [77]. Par conséquent, une perte significative en différenciation de service entraîne l’EDCF au plus bas de son niveau avec un comportement similaire qu’un DCF classique (figures 5.3 et 5.4).

Afin de maintenir le mécanisme d’ordonnancement dans la région de stabilité, nous avons proposé une structure hybride du réseau composée par des nœuds sans fil et filaires. Pour cela, nous avons spécifié une solution à deux points d’accès (bs_1 & bs_2) de couvertures non-recouvrantes pour étudier la réponse en QoS de l’EDCF. Pour atteindre de meilleurs résultats d’évaluation, l’étude est ciblée dans la zone de reconnexion du nœud mobile (m_n) avec le point d’accès bs_2 lors d’une session de transfert en cours. Ajoutant à cela, pour pouvoir introduire les différentes catégories d’accès (ACs) requises par le mécanisme et pour éviter l’impact dû aux échanges des paquets de contrôle dans le protocole TCP, nous avons spécifié 4 flux de type CBR à base du protocole de transmission UDP.

Dans la présente étude, et dans le but d’extraire uniquement la contribution de la mobilité, les influences générées par l’évanouissement du canal ainsi que par la non-stationnarité des flux, ne sont pas prises en considération. Dans la partie filaire, les liens sont configurés à 5 Mbps et le lien sans fil pour le nœud en mobilité est fixé à 1 Mbps. Dans toute l’analyse, le protocole de routage DSDV (Destination Sequenced Distance Vector) est le seul utilisé.

Remarque : les influences concernant la nature du protocole de routage ainsi que les métriques de la couche réseau ne font pas l’objet de cette thèse.

Pour prévoir la possibilité de congestion du réseau, nous avons limité arbitrairement la taille des files d’attentes des nœuds mobiles à 50 paquets. Cette limitation permet la génération des paquets
perdus (dropped or lost packets) similaire au cas d’un réseau réel lorsque l’ordonnanceur dépasse la limite de sa capacité.

Figure 5.3: Débit dans une topologie statique (sans mobilité).

Figure 5.4: Débit dans une topologie dynamique (avec mobilité).

Dans les graphes 5.3 et 5.4, nous avons illustré le cas statique comme repère où le mécanisme de la QoS active en plein allure. Le premier graphe montre un fonctionnement normal du protocole, les quatre catégories de flux sont bien distinguées. Le deuxième graphe, sous containte d’une forte mobilité, représente un fonctionnement de l’EDCF hors de la région de stabilité et l’ensemble des quatre flux sont affectés au même niveau de débit (cas extrême similaire au DCF du 802.11b). Ce
cas est ajouté qu’à titre illustratif car nous nous sommes pas orientés vers l’étude dans la région de non stabilité.

Pour tout ce qui suit, nous avons limité les représentations des spectres que pour les deux premières catégories des flux CBR les plus prioritaires (AC0, AC1) partageant 80% de la bande passante disponible. Cette limitation est justifiée par notre volonté de porter plus de clarté dans la présentation des graphes dans la zone des trafics prioritaires (en pratique, ces deux classes de trafic sont réservées principalement aux applications de type vidéo et voix).

5.7.1 Mobilité faible (Low Mobility)

5.7.1.1 Débit

Lorsqu’on considère ce premier cas de mobilité au point de la connexion avec le bs1, le débit reste stable autour de 60 Kbps et 20 Kbps respectivement pour les deux classes prioritaires AC0 et AC1. Cette connexion est suivie par une phase sans transmission correspondant à une zone hors couverture. À la reconnexion avec bs2, le trafic démarre avec un débit bien inférieur. Il correspond pratiquement à la moitié du débit initial (30 Kbps & 10 Kbps). Par la suite, ce niveau augmente graduellement avec le mouvement du nœud. Dans cette classe de mobilité, nous n’avons pas observé de phénomène de saturation rapide des courbes et l’EDCF permet de réagir au mieux aux besoins des applications en augmentant par conséquent les niveaux des débits. Ce régime est favorable pour le plus grand nombre d’applications comme la VoIP par exemple. Il s’opère normalement sans avoir de coupures qui sont dues principalement à un seuillage par saturation. Par conséquent, la QoS est maintenue et le comportement pour rétablir le niveau du débit initial reste le même pour les deux classes ACs, comme illustré dans la figure (5.5).

5.7.1.2 Délai de bout-en-bout

Durant la connexion avec bs2, pour le trafic de type AC0, le délai est autour de 0.2s, ce qui permet de répondre aux exigences des applications de temps réel ainsi que dans la plupart des autres applications qui sont sensibles au retard (delay-dependent applications), comme l’audio et la vidéo streaming. Cependant, l’EDCF n’est capable d’offrir cette qualité de service que pour la classe des trafics AC0. En dépit de cette performance, le protocole montre une légère sensibilité à la mobilité pour la classe de type AC1, comme montré par la figure (5.6). Un niveau de 0.8s de délai est atteint à plusieurs reprises dépassant les 0.2s requises par la VoIP. Heureusement il se stabilise rapidement sur le seuil de 0.5s, favorable au trafic vidéo en CBR-MPEG.
5.7. Analyse des résultats

Figure 5.5: Le Débit pour la mobilité faible.

Figure 5.6: Le Délai de bout-en-bout pour la mobilité faible.
5.7.1.3 Jitter

La figure (5.7) montre le tracé du jitter durant la session de simulation. Les pics négatifs signifient une arrivée en avance, et ceux positifs pour une arrivée en retard des paquets. L'information sur l'intensité de la variation du jitter dans les deux sens est primordiale pour déterminer la qualité d'une transmission (exemple, quantifier la dégradation de la qualité durant une conversation VoIP) contrairement à l'analyse en valeurs absolues, souvent rencontrée dans la littérature, qui ne donne aucune indication sur la nature de l'arrivée des paquets.

Pour les trafics de type AC0, le jitter est borné autour de 0.01s pour toutes les transmissions. Un comportement intéressant du protocole est repéré plutôt dans la partie négative du spectre. Les flux restent quasi stables avant et après le passage de la zone qui sépare les BSs. Cette stabilité illustre bien l'aptitude de l'ordonnanceur de suivre les variations du jitter et d'ajuster en conséquence la taille du buffer afin de réduire l'impact de la mobilité. Cependant, comme nous pouvons le voir sur le même graphe, ce comportement augmente l'impact du jitter pour la classe AC1 (il peut atteindre 0.06s avec une variance en crête-à-crête de 0.12s). En dehors de cette région, l'EDCF est relativement stable pour les flux CBR.

![Figure 5.7: Le Jitter pour la mobilité faible.](image)
5.7.2 Mobilité moyenne (Medium Mobility)

5.7.2.1 Débit

Durant la connexion avec le premier point d’accès bs_1, les niveaux de débits trouvés précédemment pour AC0 et AC1 sont maintenus. La reconnexion avec bs_2 dans la plage de la mobilité moyenne entraîne une légère augmentation pour la classe AC0 avant de se stabiliser à un niveau légèrement en dessous de la valeur maximale (57 Kbps repéré dans le meilleur des cas). Cette limite correspond à la valeur crête-à-crête de la courbe comme le montre la figure (5.8). De se fait, dans ce rythme de mobilité, l’EDCF n’arrive pas à satisfaire la demande croissante en débit pour la catégorie des classes prioritaires AC0. Cependant, le trafic de type AC1 gagne plus de flexibilité et le débit surpasse le seuil initial (un niveau de plus de 20 Kbps est observé pour le cas de 30 m/s de mobilité). Cette montée en débit pour les AC1, avant d’atteindre la stabilisation, est justifiée par la réattribution d’une partie de la bande passante, qui a été cédée par les AC0 aux AC1. Atteindre une telle performance par le protocole est rendue possible grâce au mécanisme d’ordonnancement qui, en plus de la gestion des files d’attente, il optimise la répartition des ressources (la bande passante) disponibles dans le réseau.

Dans ce mode de mobilité, l’EDCF opère avec un service plus avantageux, du point de vue débit, au profit de la classe AC1. Ceci est très sollicité par les applications à taux de débit variable de type VBR [23]. Comme nous pouvons le voir pour cette classe que, contrairement à ce que nous pouvons imaginer, la contribution de la mobilité est plutôt positive. La classe prioritaire (AC0) dans ce mode reste toutefois favorable aux applications de faible priorité comme le transfert de messages et de liens hypertextes similaires aux (HTTP, FTP, et les Data Transfer Protocols).

5.7.2.2 Délai de bout-en-bout

Au niveau délai, la classe AC0 gagne de la priorité et aura plus de stabilité. Deux seuils de délais sont différenciés : seuil bas avec des pics inférieurs à 0.05s et seuil haut avec des pics à ≈ 0.2s. Cette zone qui sépare les deux seuils peut être bien utile pour les trafics sensibles au délai pour une courte durée (transfert en mode rafale ou Burst). Le spectre de AC0 illustré dans la figure (5.9) montre bien que 30000 paquets peuvent être envoyés dans un seul Burst.

Pour AC1 et après la reconnexion, le délai tourne autour d’une moyenne de 0.5s et reste stable jusqu’à la fin de la transmission.

Pour ce mode de mobilité, nous avons constaté un comportement intéressant de l’EDCF en termes de délais. En effet, le protocole maintient une bonne stabilité de transmission pour les deux classes
Figure 5.8: Le Débit pour la mobilité moyenne.

de trafic prioritaires simultanément. Le meilleur résultat est observé pour une mobilité de 30m/s.

Figure 5.9: Le Délai de bout-en-bout pour la mobilité moyenne.

5.7.2.3 Jitter

Suivant les graphes de la figure (5.10), une bonne stabilité est observée dans la partie négative du spectre de AC0 (zone jusqu’au 35000ème paquet). Ce qui signifie qu’il n’y a pas des paquets arrivants
plutôt que les autres. La classe AC1 maintient aussi une bonne stabilité en termes de délai et respecte par conséquent le seuil du jitter recommandé (~0.03s) [83]. La variance en crête-à-crête reste autour de 0.06s. Suit à cette performance, ce mode de mobilité, en plus du Burst, il supporte bien les trafics sensibles au jitter, comme la VoIP, pour les deux classes d’accès AC0 et AC1.

![Figure 5.10: Le Jitter pour la mobilité moyenne.](image)

5.7.3 Mobilité haute (High Mobility)

5.7.3.1 Débit

Dans ce mode, AC0 et AC1 montrent un comportement similaire indépendamment de la mobilité du nœud, comme le montre le graphe de la figure (5.11). L’EDCF ne supporte pas la demande croissante du débit contrairement aux autres modes et reste sur un niveau fixe (15 Kbps et 30 Kbps pour AC0 et AC1 respectivement). Le mécanisme d’ordonnancement n’est pas capable de suivre le mouvement du nœud pour ajuster le niveau du débit qui lui est approprié. Cette attitude est principalement liée à la taille du buffer de l’ordonnanceur ainsi qu’à sa capacité de traitement qui ne peut pas suivre le rythme au-delà d’une certaine vitesse (plus de 40 m/s). Ce niveau bas du débit et justifié d’autre part par l’importante perte de paquets. Par conséquent, tous les types d’application seront pénalisés par un niveau fixe, qui sera déterminé en fonction des paramètres matériels du buffer (la taille ainsi qu’à la stratégie d’ordonnancement pour la gestion de la file d’attente) [34].
5.7.3.2 Délai de bout-en-bout

Dans le régime de forte mobilité, comme nous pouvons le voir dans la figure (5.12), AC0 ne descends pas en dessous de la barre de 0.2s que pour le 1/10ème du nombre total des paquets. Cette dégradation réduit davantage la zone du Burts par rapport à ce que nous avons inspecté dans le régime précédent. Pour le trafic de type AC1 le délai croît vers la limite de (0.9s) et reste inchangé indépendamment de la mobilité dans le réseau.
5.7.3.3 Jitter

Le graphe du jitter affiche des pics de niveaux importants dans les deux sens des spectres (figure 5.13). Une décroissance flagrante de la stabilité de la classe AC0 est localisée, excepté pour la bande de 10000 paquets qui peuvent être transités correctement. Pour le trafic AC1, la barre de 0.06s est rapidement atteinte et une variance crête-à-crête qui dépasse les 0.12s avec une distribution aléatoire dans le sens de la mobilité.

Dans l’étude de ce régime, nous avons limité la haute mobilité à une vitesse de moins de 60m/s pour assurer un minimum de transmission et maintenir cela pour au moins une seule classe de trafic. Nos tests de l’évaluation du comportement sont allés jusqu’à des mobilités plus importantes (vitesse de point d’un TGV) mais au-delà de la limite acceptée, les résultats nous ont révélé une irrégularité du flux et une perte accrue de paquets due à une instabilité dans le fonctionnement de l’ordonnanceur qui admet un comportement chaotique en fin de régime.

![Figure 5.13: Le Jitter pour la mobilité haute.](image)

À la fin de cette étude, nous avons répertorié l’ensemble des résultats sous forme d’un tableau (figure 5.14). Ce dernier sert comme un guide technique des spécifications de la QoS au niveau MAC. Il associe le régime de mobilité avec la pertinence de la métrique afin de permettre à tout utilisateur d’identifier le domaine approprié aux exigences de son application.
5.8 Conclusion

Dans cette étude, nous avons traité la problématique de la mobilité dans les réseaux 802.11. Bien que la portée limitée du standard (300 m effective) qui ne permet pas, à première vue, d’exploiter cette notion de mobilité à grande échelle par rapport au réseau 802.16 (WiMax). Le standard 802.11 répond favorablement à la mobilité jusqu’à une certaine limite. Soucieux de maintenir un niveau satisfaisant en qualité de service, décrite dans la fonction d’ordonnancement au niveau MAC de la version 802.11e, nous avons étudié l’impact de la vitesse de déplacement d’un utilisateur mobile pour différents types de trafic. Les résultats issus des simulations nous ont montré que dans certains cas, la mobilité réduite n’est pas la seule qui peut favoriser le trafic. Nous avons obtenu des résultats meilleurs en stabilité dans la zone des mobilités moyennes et des temps de réponse réduits pour restaurer le niveau de débit initial dans la zone des hautes mobilités. Le sens du mouvement et la nature de la topologie sont des facteurs déterminants de la mobilité [27]. L’intégration des différentes métriques de la couche MAC dans l’évaluation des performances du EDCF a permis de définir des seuils de sensibilité au type d’application en fonction des exigences prescrites. Ces valeurs nous ont été de forte utilité dans la classification des priorités de services en fonction de la métrique choisie à l’intérieur de chaque mode de mobilité.

<table>
<thead>
<tr>
<th>Mobility/Metric</th>
<th>Low</th>
<th>Medium</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Throughput</td>
<td>Best ! for real-time & Video applications</td>
<td>Satisfactory for Data transmission</td>
<td>Satisfactory for Emails, SMS, MMS</td>
</tr>
<tr>
<td>E2ED</td>
<td>Good for all streaming traffics</td>
<td>Satisfactory for CBR-MPEG</td>
<td>Not satisfactory for almost traffic</td>
</tr>
<tr>
<td>Jitter</td>
<td>Good for VOIP traffic</td>
<td>Good for no-streaming traffic</td>
<td>Worst ! Critical level of dropping packets</td>
</tr>
</tbody>
</table>

Figure 5.14: Identification du domaine d’application en fonction du régime de la mobilité et de la pertinence de la métrique.
Conclusion générale et perspectives

5.9 Conclusion générale

Au terme de cette thèse, nous nous proposons de faire un récapitulatif de notre travail, d’analyser globalement les résultats obtenus dans chaque partie et enfin de dresser des perspectives que nous trouvons prometteuses et constituant la suite logique du présent travail.

Nous nous sommes intéressés à l’étude d’un modèle de réseau sans fil WLAN très répandu, appelé l’IEEE 802.11 et communément connu par WiFi. Les nouvelles technologies des télécommunications avec ses aspects miniatures et nomades ont permis l’apparition de nouveaux types d’applications embarquées mobiles et souvent exigeantes en ressources et en qualité de service. Face à de telles exigences, nous avons planifié d’évaluer le standard 802.11 dans sa nouvelle version intégrant la QoS. Le choix d’intervenir au niveau MAC a été le fruit d’une observation minutieuse des trois premières couches à savoir : physique, liaison et réseau.

Dans cette logique, nous avons commencé notre travail par une première étude des différents paramètres du modèle physique et du canal sans fil caractérisant le standard 802.11. En effet, nous avons considéré un certain nombre de techniques issues du traitement de signal, telles que : la modulation, le codage par séquences pseudo-aléatoires, le saut de fréquences, la répartition de la bande passante et l’orthogonalité des canaux de transmission. Ce passage nous a été utile pour la compréhension de la spécificité du modèle physique du 802.11 ainsi que pour valider, par simulation, les modèles proposés où l’ajustement des paramètres influe directement sur les résultats.

La suite de notre étude nous a conduits à analyser le fonctionnement du niveau supérieur, celui de la liaison de données et spécialement la sous-couche MAC. Le contrôle d’accès au medium est un mécanisme complexe à traiter. Nous avons réfléchi à la manière d’établir la qualité de service au niveau MAC. Pour cela, nous avons observé plusieurs approches qui ont été proposées dans la littérature afin d’exploiter les échanges d’informations entre les couches PHY et réseau.

Le mécanisme d’ordonnancement de paquets est défini afin de gérer au mieux le flux de données. Il se base sur les processus stochastiques et la théorie des files d’attente afin d’optimiser la gestion
et la répartition des unités d’information. Cette fonction est présente dans les systèmes de communication où il y a un besoin d’aiguillage de l’information entre les différentes entités internes. La répartition dépend aussi de la nature du flux de données. En présence de plusieurs types de trafic, la differentiation de service devient alors nécessaire. Par conséquent, la notion de classe de service est introduite. Pour cela, nous avons discuté le fonctionnement des deux modèles de référence : IntServ et DiffServ.

Notre étude de la QoS dans les premières versions du standard 802.11 nous a montré certaines limitations. Ceci nous a orientés à l’étude d’une version plus évoluée, celle du 802.11e qui intègre plus de fonctionnalités pour supporter la QoS.

La suite de cette étude a poussé notre curiosité scientifique vers un autre mécanisme, étroitement lié à la differentiation de service au niveau MAC, où le besoin de la gestion de la charge du réseau est à prendre en considération. Ceci est connu sous le nom de contrôle d’admission. Plusieurs modèles sont répertoriés dans la littérature. Néanmoins, l’étude de ce mécanisme nécessite d’apporter des modifications à la structure du standard, ce qui a limité son emploi dans le cadre de notre étude. Nous avons voulu aussi compléter ce chapitre par une discussion sur l’aspect de l’adaptation dynamique des liens dont les paramètres physiques comme le niveau du signal, le taux d’erreur du paquet (PER) et le SNR sont utilisés. Ce mécanisme est en général évalué au niveau des fournisseurs d’accès afin d’améliorer les performances du réseau en ajustant la qualité du signal en fonction de la charge du réseau.

Les différents aspects présentés dans ce chapitre, à savoir : l’ordonnancement, la gestion des priorités des flux et l’adaptation dynamique des liens sont introduits dans l’optique de dimensionner l’environnement qui peut interagir sur le niveau de performances d’un processus de gestion de QoS.

Cette étude nous a mené à développer un mécanisme d’ordonnancement de paquets au niveau MAC et à évaluer les échanges de données MAC-PHY à l’intérieur d’une architecture inter-couches (cross-layer).

Le modèle que nous avons développé (HCF-T) nous a permis d’intervenir dans le processus d’ordonnancement de la fonction de coordination du mode infrastructure au niveau MAC. L’analyse des résultats de la structure multi-niveaux comparée à celle intégrée dans le standard 802.11e nous a montré une meilleure efficacité et une bonne flexibilité d’ordonnancement. Elle a également conduit à une amélioration significative en termes de gestion du trafic, du maintien du débit, d’élimination des collisions et de réduction de la charge du réseau.

Par analogie à cette étude, notre regard est dirigé cette fois-ci vers la structure Ad hoc, très déployée dans la pratique principalement dans les réseaux de capteurs. Notre objectif est centré sur
l’apport de cette architecture pour améliorer la réception du signal après avoir subi un trajet multiple dans le canal. Pour cette fin, nous nous sommes intéressés à la mise en œuvre de deux modules dans la chaîne de transmission et d’étudier leur impact sur le mécanisme d’ordonnancement. Cette modification consiste à :

- Intégrer un protocole de coopération au niveau du point relais ;
- Introduire une technique de combinaison de signaux au niveau du récepteur.

Par rapport à une liaison directe non relayée, une amélioration des résultats en termes du BER, a été constatée par l’implémentation du modèle coopératif.

Nous avons trouvé l’apport de la diversité de coopération avec un seul relais très proche de celui d’un MIMO à double antennes. La liaison indirecte est réalisée dans le réseau ad-hoc par une troisième station comme relai. Le récepteur reçoit simultanément les ondes directe et relayée. Les résultats obtenus nous ont montré la performance des deux protocoles utilisés (AAF et DAF) en fonction des différentes techniques de combinaison que nous avons employées pour restituer le signal initial. Selon la technique de combinaison choisie, le comportement du BER de l’EDCF peut varier. Les meilleurs résultats sont affichés pour les techniques de combinaison à base du SNR étant donné qu’elles prennent en considération la qualité du canal pour chaque lien.

Nous avons voulu conclure notre thèse par le traitement de la mobilité et son impact au niveau MAC du 802.11e. Pour cela, nous avons défini un scénario basé sur l’information de la position, de la vitesse, du sens du mouvement du nœud mobile et de l’interconnexion avec le point d’accès. Différents types de trafic sont introduits afin de prendre en considération la QoS dans le scénario de simulation. L’évaluation du modèle a été faite par les métriques MAC les plus connues : débit effectif, délai, jitter, perte en paquets. Par une analyse des différents résultats, nous avions pu fixer trois régimes de mobilité: faible, moyenne et forte.

En dépit de la limitation évoquée dans les spécifications du standard 802.11, où seulement une mobilité réduite est tolérée, avec notre modèle, nous avons pu obtenir une bonne stabilité du protocole dans la zone des mobilités moyennes. Aussi, pour rétablir le niveau du débit initial, une amélioration est constatée relativement au temps de réponse du protocole dans la zone des hautes mobilités. L’analyse des courbes des différentes métriques évaluées définit des seuils de sensibilité qui dépendent principalement de la nature du trafic selon les exigences prescrites.

Enfin, pour l’évaluation des performances de l’EDCF, nous avons dressé une synthèse exhaustive basée sur les différents types d’application qui peuvent transiter. Pour cela, nous avons proposé sous forme d’un tableau, la classification des priorités de services en fonction de la pertinence de la métrique choisie pour les trois modes de mobilité.
5.10 Perspectives

Les perspectives que nous avons retenues pour la suite de ce travail sont classées par rapport au niveau opératoire. Nous les avons résumées dans les points suivants :

- **Au niveau physique,** suite à la variation du rythme de la mobilité nous avons un phénomène pouvant être présent lors de la réception des signaux. Ce phénomène connu par l’effet Doppler, s’associe aux différentes répliques du signal. Il se manifeste par la variation de la fréquence fondamentale de la modulation. Son intensité varie selon la position et la vitesse du nœud mobile par rapport au point d’accès. De plus, dans la zone de recouvrement, où l’algorithme de multi-couvertures intervient pour établir les associations des nœuds aux points d’accès, son effet demeure significatif. La prise en considération de ce phénomène par l’insertion d’un module, qui agira comme compensateur de fréquences dans l’algorithme, nous paraît intéressant lors de la prise de décision d’association. Ceci permettra d’obtenir de bonnes performances en termes de rétablissement du débit et de perte en paquets.

- **Au niveau MAC,** nous voulons poursuivre l’étude de l’ordonnancement jusqu’à la mise en œuvre d’un modèle qui opère en mode inter-couche (*cross-layer*) reliant directement le processus d’ordonnancement aux performances du canal (BER vs. SNR). Cette étude va permettre de tracer un schéma des régions de stabilité de l’EDCF en fonction de la qualité du canal disponible. Par ailleurs, s’inspirer des mécanismes d’ordonnancement utilisés dans les milieux de déploiement à grande échelle, comme les réseaux de capteurs (WSN), pourra être intéressant afin de pouvoir adapter de nouvelles fonctionnalités et améliorer le comportement de l’EDCF dans la zone de forte mobilité.

- **Au niveau Réseau,** nous avons appliqué pour le scénario (1S-1R-1D) un protocole de routage proactif (DSDV). Les résultats de simulation nous ont montré une meilleure stabilité des métriques par rapport à un routage réactif (AODV). Néanmoins, le temps d’exécution du DSDV reste relativement élevé. Dans l’optique d’accroître la scalabilité de notre modèle, ce type de routage sera pénalisant à la fonction de coordination pour ne pas dépasser les délais de la session. Nos interventions ont été principalement menées, jusqu’à lors, qu’au niveau MAC. Exploiter d’autres techniques de routage dynamique pouvant être plus appropriées aux réseaux de dimension importante, s’avère une perspective prometteuse.
Références bibliographiques

Références bibliographiques

[62] Montavont, N. and T. No

Tsoulos, G.V. *MIMO system technology for wireless communications*. CRC Press, 2006.

Wireless, LAN. “Medium Access Control (MAC) and Physical Layer (PHY) Specifications:

Résumé: Cette thèse a pour objectif de proposer de nouvelles approches d’ordonnancement, de coopération et de gestion de la mobilité dans les réseaux sans fil de type IEEE 802.11. Le maintien de la qualité de service (QoS), au niveau MAC, représente la caractéristique fondamentale de ces approches. L’analyse des mécanismes existants nous a conduits à retenir le protocole EDCF, supportant la QoS, comme une base de travail pour l’ensemble de nos propositions. Dans le but de pallier certaines faiblesses du standard 802.11, une nouvelle architecture à base de multi-ordonnanceurs HCF-T, est proposée. Les performances obtenues sont exprimées en termes de gestion du trafic, de maintien du débit, d’élimination de collisions et de réduction de la charge du réseau. Ensuite, un schéma coopératif est présenté et analysé. Il comporte une étude de deux protocoles de relaiage AAF et DAF ainsi qu’une évaluation d’un ensemble de techniques de combinaison au niveau du récepteur. Concernant la problématique de la mobilité, nous avons retenu et analysé un scénario prenant en considération les différentes situations rencontrées dans un modèle réel. Un algorithme de résolution multi-couvertures est proposé afin de traiter l’accès dans les zones de recouvrement. Cette étude a mené à distinguer trois régimes de mobilité : faible, moyen et fort. Les performances sont évaluées en fonction des métriques MAC et pour chaque mode de mobilité, un schéma de synthèse est établi.

Abstract: This thesis proposes a new approach relating to the packets scheduling algorithm, the cooperation scheme and the nodes’ mobility for IEEE 802.11 wireless network family. Considering the QoS delivery process at the MAC level consists the main feature of the proposal research study. The analysis of the current mechanisms leads to keep the protocol EDCF as the basic model for our work platform. In order to overcome the weakness of the earlier 802.11 standard, a new model based on multi-scheduler algorithm, called HCF-T, is proposed. The achieved performances are summarized following several criteria: traffic control, throughput improving, collisions avoidance, and network load decreasing. Furthermore, in the way of getting better results according to the PHY layer, we presented and analyzed a model of cooperative diversity scheme. It included a couple of relaying protocols AAF and DAF supported by a set of combining techniques to backup the signal at the receiver. To support node’s mobility within EDCF, we built-up a model of WLAN which able to track node motion and control the access as in real condition.

In the case of overlapping APs ranges, we developed a Multi-coverage algorithm aiming to carry out the session associations. As a result, three levels (Low, Medium, and High) of node’s speed are discerned. Finally, EDCF has been implemented on various static and dynamic scenarios. The performances, based on the main MAC-layer metrics, such as throughput, End-2-End delay, and jitter, have been classified and comprehensively evaluated.