S. Boldo and J. Muller, Some Functions Computable with a Fused-Mac, 17th IEEE Symposium on Computer Arithmetic (ARITH'05), pp.52-58, 2005.
DOI : 10.1109/ARITH.2005.39

URL : https://hal.archives-ouvertes.fr/inria-00000895

J. [. Bertsekas and . Tsitsiklis, Parallel and distributed computation, 1989.

J. Sylvain-collange, D. Flóres, and . Defour, A GPU interval library based on Boost interval, Real Numbers and Computers, pp.61-72, 2008.

M. Ceberio and V. Kreinovich, Fast Multiplication of Interval Matrices (Interval Version of Strassen's Algorithm), Reliable Computing, vol.10, issue.3, pp.241-243, 2004.
DOI : 10.1023/B:REOM.0000032111.16328.b2

]. T. Dek71 and . Dekker, A floating-point technique for extending the available precision, Numer. Math, vol.18, pp.224-242, 1971.

W. Hida, X. S. Kahan, S. Li, E. J. Mukherjee, and . Riedy, Error bounds from extra-precise iterative refinement, ACM Trans. Mathematical Software, vol.32, issue.2, pp.325-351, 2006.

G. Laurent-fousse, V. Hanrot, P. Lefèvre, P. Pélissier, and . Zimmermann, MPFR: A Multiple-Precision Binary Floating-Point Library with Correct Rounding, ACM Trans. Mathematical Software, vol.33, issue.2, 2007.

S. Graillat, J. Lamotte, S. M. Rump, and S. Markov, Interval arithmetic on the Cell processor, 13th GAMM -IMACS International Symposium on Scientific Computing, Computer Arithmetic and Verified Numerical Computations SCAN'08, pp.54-54, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01303667

[. Graillat, H. Diep-nguyen, and J. Lamotte, Error-Free Transformation in Rounding Mode toward Zero, Numerical Validation in Current Hardware Architecture, pp.217-229, 2009.
DOI : 10.1007/978-3-642-01591-5_14

URL : https://hal.archives-ouvertes.fr/hal-01295138

]. E. Han92 and . Hansen, Bounding the Solution of Interval Linear Equations, SIAM Journal on Numerical Analysis, vol.29, issue.5, pp.1493-1503, 1992.

]. N. Hig90 and . Higham, Is fast matrix multiplication of practical use ?, pp.12-14, 1990.

B. Nicholas and J. Higham, Iterative refinement for linear systems and LAPACK, IMA Journal of Numerical Analysis, vol.17, issue.4, pp.495-509, 1997.

[. Hu, R. Baker-kearfott, A. De-korvin, and V. Kreinovich, Knowledge processing with interval and soft computing, 2008.

[. Hida, X. S. Li, H. David, and . Baily, Algorithms for quad-double precision floating point arithmetic, Proceedings 15th IEEE Symposium on Computer Arithmetic. ARITH-15 2001, pp.155-162, 2001.
DOI : 10.1109/ARITH.2001.930115

E. Hansen and S. Sengupta, Bounding solutions of systems of equations using interval analysis, BIT, vol.17, issue.2, pp.203-211, 1981.
DOI : 10.1007/BF01933165

[. Task, P. , and A. /. Ieee, Standard for Binary Floating-Point Arithmetic, pp.754-1985, 1985.

. A. Kdh-+-05-]-j, M. N. Kahle, H. P. Day, C. R. Hofstee, T. R. Johns et al., Introduction to the cell multiprocessor, IBM J. Res. Dev, pp.49-589, 2005.

W. Ulrich and . Kulisch, Computer Arithmetic and Validity: Theory, Implementation , and Applications, de Gruyter Studies in Mathematics, 2008.

P. Langlois, More accuracy at fixed precision, Journal of Computational and Applied Mathematics, vol.162, issue.1, pp.57-77, 2004.
DOI : 10.1016/j.cam.2003.08.017

S. Xiaoye, J. W. Li, and . Demmel, SuperLU_DIST: A scalable distributedmemory sparse direct solver for unsymmetric linear systems, ACM Trans. Mathematical Software, vol.29, issue.2, pp.110-140, 2003.

S. Xiaoye, J. W. Li, D. H. Demmel, G. Bailey, Y. Henry et al., Design, implementation and testing of extended and mixed precision blas, ACM Trans. Mathematical Software, vol.28, pp.152-205, 2002.

R. [. Lawson, D. R. Hanson, F. T. Kincaid, and . Krogh, Basic Linear Algebra Subprograms for Fortran Usage, ACM Transactions on Mathematical Software, vol.5, issue.3, pp.308-323, 1979.
DOI : 10.1145/355841.355847

P. Langlois and N. Louvet, Accurate solution of triangular linear system, 13th GAMM -IMACS International Symposium on Scientific Computing , Computer Arithmetic, and Validated Numerics, 2008.

J. Langou, J. Langou, P. Luszczek, J. Kurzak, A. Buttari et al., Exploiting the Performance of 32 bit Floating Point Arithmetic in Obtaining 64 bit Accuracy (Revisiting Iterative Refinement for Linear Systems) -Article 113, Proc. of the 2006 ACM/IEEE conference on Supercomputing, 2006.

J. Muller, N. Brisebarre, C. Florent-de-dinechin, V. Jeannerod, G. Lefèvre et al., Handbook of Floating-Point Arithmetic, Nathalie Revol, vol.10, 2010.
DOI : 10.1007/978-0-8176-4705-6

URL : https://hal.archives-ouvertes.fr/ensl-00379167

R. E. Moore, R. Baker-kearfott, and M. J. Cloud, Introduction to Interval Analysis, 2009.
DOI : 10.1137/1.9780898717716

B. Cleve and . Moler, Iterative Refinement in Floating Point, J. ACM, vol.14, issue.2, pp.316-321, 1967.

R. Edgar and M. , Interval arithmetic and automatic error analysis in digital computing, 1963.

A. Neumaier, Interval Methods for Systems of Equations, 1990.
DOI : 10.1017/CBO9780511526473

H. Diep-nguyen, S. Graillat, and J. Lamotte, Extended precision with a rounding mode toward zero environement. Application on the Cell processor, Int. J. Reliability and Safety, vol.33, issue.12, pp.153-173, 2009.

H. Diep-nguyen, Efficient implementation of interval matrix multiplication, Proceedings of PARA 2010: State of the Art in Scientific and Parallel Computing

R. [. Ning and . Kearfott, A Comparison of some Methods for Solving Linear Interval Equations, SIAM Journal on Numerical Analysis, vol.34, issue.4, pp.1289-1305, 1997.
DOI : 10.1137/S0036142994270995

H. Diep-nguyen and N. Revol, Resolve and Certify a Linear System, to appear on Reliable Computing (Special volume for SCAN, 2008.

T. Ogita, Accurate Matrix Factorization: Inverse LU and Inverse QR Factorizations, SIAM Journal on Matrix Analysis and Applications, vol.31, issue.5, pp.31-2477, 2010.
DOI : 10.1137/090754376

. Ois98, . Shin-'ichi, and . Oishi, Finding all solutions of nonlinear systems of equations using linear programming with guaranteed accuracy, J. Universal Computer Science, vol.4, issue.2, pp.171-177, 1998.

T. Ogita and S. Oishi, Fast Inclusion of Interval Matrix Multiplication, Reliable Computing, vol.27, issue.1???2, pp.191-205, 2005.
DOI : 10.1007/s11155-005-3615-2

K. Ozaki, T. Ogita, and S. Oishi, Tight and efficient enclosure of matrix multiplication by using optimized BLAS, Numerical Linear Algebra with Applications, vol.11, issue.3
DOI : 10.1002/nla.724

T. Shi-'ichi-oishi, S. M. Ogita, and . Rump, Iterative refinement for ill-conditioned linear systems, Japan Journal of Industrial and Applied Mathematics, vol.14, issue.2-3, pp.465-476, 2009.
DOI : 10.1007/BF03186544

T. Ogita, S. M. Rump, and S. Oishi, Accurate Sum and Dot Product, SIAM Journal on Scientific Computing, vol.26, issue.6, pp.1955-1988, 2005.
DOI : 10.1137/030601818

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.2.1547

J. Rohn and V. Kreinovich, Computing Exact Componentwise Bounds on Solutions of Lineary Systems with Interval Data is NP-Hard, SIAM Journal on Matrix Analysis and Applications, vol.16, issue.2, pp.415-420, 1995.
DOI : 10.1137/S0895479893251198

J. Rohn, T. Cheap, and . Bounds, The Recent Result by E. Hansen Can Be Made More Efficient, Interval Computations, issue.4, pp.13-21, 1993.

N. Revol and F. Rouillier, Motivations for an Arbitrary Precision Interval Arithmetic and the MPFI Library, Reliable Computing, vol.2, issue.3, pp.275-290, 2005.
DOI : 10.1007/s11155-005-6891-y

URL : https://hal.archives-ouvertes.fr/inria-00544998

S. M. Rump, INTLAB ??? INTerval LABoratory
DOI : 10.1007/978-94-017-1247-7_7

S. M. Rump, Handbook on Accuracy and Reliability in Scientific Computation, ch. Computer-assisted Proofs and Selfvalidating Methods, pp.195-240, 2005.

S. M. Rump, P. Zimmermann, S. Boldo, and G. Melquiond, Computing predecessor and successor in rounding to??nearest, BIT Numerical Mathematics, vol.31, issue.1, pp.419-431, 2009.
DOI : 10.1007/s10543-009-0218-z

URL : https://hal.archives-ouvertes.fr/inria-00337537

R. D. Skeel, Scaling for Numerical Stability in Gaussian Elimination, Journal of the ACM, vol.26, issue.3, pp.494-526, 1979.
DOI : 10.1145/322139.322148

H. Pat and . Sterbenz, Floating-point computation BIBLIOGRAPHY [Str69] Volker Strassen, Gaussian elimination is not optimal, Numer. Math, vol.13, pp.354-356, 1969.

J. Zur-gathen and J. Gerhard, Modern computer algebra, 2003.
DOI : 10.1017/CBO9781139856065

]. J. Wil60 and . Wilkinson, Error analysis of floating-point computation, Numerische Mathematik, vol.2, issue.1, pp.319-340, 1960.

J. H. Wilkinson, Rounding errors in algebraic processes, 1963.

[. Whaley and A. Petitet, Minimizing development and maintenance costs in supporting persistently optimized BLAS, Software: Practice and Experience, pp.101-121, 2005.