D. Ballerini, LES BIOCARBURANTS Etat des lieux, perspectives et enjeux du développement Chapitre 1: La place des biocarburants dans le contexte énergétique mondial. 5-10, 2006.

J. Pugnet, R. Blanchet, J. Salençon, and A. Carpentier, Le changement climatique -Institut de France -Académie des Sciences, 2010.

K. Olofsson, M. Bertilsson, and G. Liden, A short review on SSF ??? an interesting process option for ethanol production from lignocellulosic feedstocks, Biotechnology for Biofuels, vol.1, issue.1, p.7, 2008.
DOI : 10.1186/1754-6834-1-7

M. Himmel, S. Ding, D. Johnson, W. Adney, M. Nimlos et al., Biomass Recalcitrance: Engineering Plants and Enzymes for Biofuels Production, Science, vol.315, issue.5813, pp.804-807, 2007.
DOI : 10.1126/science.1137016

A. Margeot, B. Hahn-hagerdal, M. Edlund, R. Slade, and F. Monot, New improvements for lignocellulosic ethanol, Current Opinion in Biotechnology, vol.20, issue.3, pp.372-380, 2009.
DOI : 10.1016/j.copbio.2009.05.009

L. Lynd, P. Weimer, W. Van-zyl, and I. Pretorius, Microbial Cellulose Utilization: Fundamentals and Biotechnology, Microbiology and Molecular Biology Reviews, vol.66, issue.3, pp.506-560, 2002.
DOI : 10.1128/MMBR.66.3.506-577.2002

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC134660

M. Mandels and R. E. , Induction of cellulose in Trichoderma viride as influenced by carbon source and metals, J Bact, vol.73, pp.269-278, 1957.

E. T. Reese and M. Mandels, Enzymatic degradation, Cellulose and cellulose derivatives, pp.1079-1094

I. Herpoel-gimbert, A. Margeot, A. Dolla, G. Jan, D. Molle et al., Comparative secretome analyses of two Trichoderma reesei RUT-C30 and CL847 hypersecretory strains, Biotechnology for Biofuels, vol.1, issue.1, p.18, 2008.
DOI : 10.1186/1754-6834-1-18

URL : https://hal.archives-ouvertes.fr/hal-00473787

C. Ayrinhac, A. Margeot, N. Ferreira, F. Chaabane, M. Füü et al., Improved Saccharification of Wheat Straw for Biofuel Production Using an Engineered Secretome of Trichoderma reesei, Organic Process Research & Development, pp.275-278, 2010.
DOI : 10.1021/op100218a

T. Teeri, A. Koivula, M. Linder, G. Wohlfahrt, C. Divne et al., Trichoderma reesei cellobiohydrolases: why so efficient on crystalline cellulose? Biochemical Society Transactions, pp.173-178, 1998.

C. Ting, D. Makarov, and Z. Wang, A Kinetic Model for the Enzymatic Action of Cellulase, The Journal of Physical Chemistry B, vol.113, issue.14, pp.4970-4977, 2009.
DOI : 10.1021/jp810625k

K. Igarashi, M. Wada, R. Hori, and M. Samejima, Surface density of cellobiohydrolase on crystalline celluloses., FEBS Journal, vol.25, issue.13, pp.2869-2878, 2006.
DOI : 10.1271/bbb.65.2050

M. Linder, I. Salovuori, L. Ruohonen, and T. Teeri, Characterization of a double cellulosebinding domain -Synergistic high affinity binding to crystalline cellulose, Journal of Biological Chemistry, vol.271, pp.21268-21272, 1996.

T. Teeri, Crystalline cellulose degradation: new insight into the function of cellobiohydrolases, Trends in Biotechnology, vol.15, issue.5, pp.160-167, 1997.
DOI : 10.1016/S0167-7799(97)01032-9

C. Divne, J. Stahlberg, T. Reinikainen, L. Ruohonen, G. Pettersson et al., The three-dimensional crystal structure of the catalytic core of cellobiohydrolase I from Trichoderma reesei, Science, vol.265, issue.5171, pp.524-528, 1994.
DOI : 10.1126/science.8036495

J. Rouvinen, T. Bergfors, T. Teeri, J. Knowles, and T. Jones, Three-dimensional structure of cellobiohydrolase II from Trichoderma reesei, Science, vol.249, issue.4967, pp.380-386, 1990.
DOI : 10.1126/science.2377893

G. Beckham, Y. Bomble, E. Bayer, M. Himmel, and M. Crowley, Applications of computational science for understanding enzymatic deconstruction of cellulose, Current Opinion in Biotechnology, vol.22, issue.2, pp.231-238, 2011.
DOI : 10.1016/j.copbio.2010.11.005

B. Nidetzky, W. Zachariae, G. Gercken, M. Hayn, and W. Steiner, Hydrolysis of cellooligosaccharides by Trichoderma reesei cellobiohydrolases: Experimental data and kinetic modeling, Enzyme and Microbial Technology, vol.16, issue.1, pp.43-52, 1994.
DOI : 10.1016/0141-0229(94)90108-2

J. Medve, J. Karlsson, D. Lee, and F. Tjerneld, Hydrolysis of microcrystalline cellulose by cellobiohydrolase I and endoglucanase II from Trichoderma reesei: Adsorption, sugar production pattern, and synergism of the enzymes, Biotechnology and Bioengineering, vol.59, issue.5, pp.621-634, 1998.
DOI : 10.1002/(SICI)1097-0290(19980905)59:5<621::AID-BIT13>3.3.CO;2-N

B. Nidetzky, W. Zachariae, G. Gercken, M. Hayn, and W. Steiner, Hydrolysis of cellooligosaccharides by Trichoderma reesei cellobiohydrolases: Experimental data and kinetic modeling, Enzyme and Microbial Technology, vol.16, issue.1, pp.43-52, 1994.
DOI : 10.1016/0141-0229(94)90108-2

M. Tuohy, D. Walsh, P. Murray, M. Claeyssens, M. Cuffe et al., Kinetic parameters and mode of action of the cellobiohydrolases produced by Talaromyces emersonii, Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, vol.1596, issue.2, pp.366-380, 2002.
DOI : 10.1016/S0167-4838(01)00308-9

J. Stahlberg, G. Johansson, and G. Pettersson, A New Model for Enzymatic-Hydrolysis of Cellulose Based on the 2-Domain Structure of Cellobiohydrolase-I. Bio-Technology, pp.286-290, 1991.

M. Srisodsuk, J. Lehtio, M. Linder, E. Margollesclark, T. Reinikainen et al., Trichoderma reesei cellobiohydrolase I with an endoglucanase cellulose-binding domain: action on bacterial microcrystalline cellulose, Journal of Biotechnology, vol.57, issue.1-3, pp.49-57, 1997.
DOI : 10.1016/S0168-1656(97)00088-6

A. Boussaid and J. Saddler, Adsorption and activity profiles of cellulases during the hydrolysis of two Douglas fir pulps, Enzyme and Microbial Technology, vol.24, issue.3-4, pp.138-143, 1999.
DOI : 10.1016/S0141-0229(98)00096-9

M. Linder and T. Teeri, The roles and function of cellulose-binding domains, Journal of Biotechnology, vol.57, issue.1-3, pp.15-28, 1997.
DOI : 10.1016/S0168-1656(97)00087-4

V. Harjunpaa, A. Teleman, A. Koivula, L. Ruohonen, T. Teeri et al., Cello-Oligosaccharide Hydrolysis by Cellobiohydrolase II from Trichoderma Reesei. Association and Rate Constants Derived from an Analysis of Progress Curves, European Journal of Biochemistry, vol.217, issue.3, pp.584-591, 1996.
DOI : 10.1016/0141-0229(94)90108-2

M. Holtzapple, M. Cognata, Y. Shu, and C. Hendrickson, Inhibition ofTrichoderma reesei cellulase by sugars and solvents, Biotechnology and Bioengineering, vol.6, issue.3, pp.275-287, 1990.
DOI : 10.1002/bit.260360310

M. Holtzapple, H. Caram, and A. Humphrey, Determining the inhibition constants in the HCH-1 model of cellulose hydrolysis, Biotechnology and Bioengineering, vol.35, issue.7, pp.753-757, 1984.
DOI : 10.1002/bit.260260719

Z. Xiao, X. Zhang, D. Gregg, and J. Saddler, Effects of sugar inhibition on cellulases and beta-glucosidase during enzymatic hydrolysis of softwood substrates, Applied Biochemistry and Biotechnology, pp.113-161115, 2004.

R. Bezerra and A. Dias, Discrimination Among Eight Modified Michaelis-Menten Kinetics Models of Cellulose Hydrolysis With a Large Range of Substrate/Enzyme Ratios: Inhibition by Cellobiose, Applied Biochemistry and Biotechnology, vol.112, issue.3, pp.173-184, 2004.
DOI : 10.1385/ABAB:112:3:173

M. Gruno, P. Valjamae, G. Pettersson, and G. Johansson, cellulases by cellobiose is strongly dependent on the nature of the substrate, Biotechnology and Bioengineering, vol.66, issue.5, pp.503-511, 2004.
DOI : 10.1002/bit.10838

J. Karlsson, M. Siika-aho, M. Tenkanen, and F. Tjerneld, Enzymatic properties of the low molecular mass endoglucanases Cel12A (EG III) and Cel45A (EG V) of Trichoderma reesei, Journal of Biotechnology, vol.99, issue.1, pp.63-78, 2002.
DOI : 10.1016/S0168-1656(02)00156-6

J. Stahlberg, G. Johansson, and G. Pettersson, Trichoderma reesei has no true exo-cellulase: all intact and truncated cellulases produce new reducing end groups on cellulose, Biochimica et Biophysica Acta (BBA) - General Subjects, vol.1157, issue.1, pp.107-113, 1993.
DOI : 10.1016/0304-4165(93)90085-M

P. Biely, M. Vrsanska, and M. Claeyssens, The endo-1,4-beta-glucanase I from Trichoderma reesei. Action on beta-1, 4-oligomers and polymers derived from d-glucose and d-xylose, European Journal of Biochemistry, vol.44, issue.1, pp.157-163, 1991.
DOI : 10.1111/j.1432-1033.1991.tb21062.x

P. Tomme, H. Vantilbeurgh, G. Pettersson, J. Vandamme, J. Vandekerckhove et al., Studies of the cellulolytic system of Trichoderma reesei QM 9414. Analysis of domain function in two cellobiohydrolases by limited proteolysis, European Journal of Biochemistry, vol.8, issue.3, pp.575-581, 1988.
DOI : 10.1016/0141-0229(87)90045-7

R. Bezerra and A. Dias, Enzymatic kinetic of cellulose hydrolysis, Applied Biochemistry and Biotechnology, vol.87, issue.100, pp.49-59, 2005.
DOI : 10.1007/s12010-005-0005-5

R. Dekker, Kinetic, inhibition, and stability properties of a commercial ??-D-glucosidase (cellobiase) preparation from aspergillusniger and its suitability in the hydrolysis of lignocellulose, Biotechnology and Bioengineering, vol.5, issue.9, pp.1438-1442, 1986.
DOI : 10.1002/bit.260280918

L. Calsavara, D. Moraes, F. Zanin, and G. , Modeling cellobiose hydrolysis with integrated kinetic models, Applied Biochemistry and Biotechnology, pp.77-9789, 1999.

V. Bravo, M. Paez, M. Aoulad, and A. Reyes, The influence of temperature upon the hydrolysis of cellobiose by ??-1,4-glucosidases from Aspergillus niger, Enzyme and Microbial Technology, vol.26, issue.8, pp.614-620, 2000.
DOI : 10.1016/S0141-0229(00)00136-8

W. Grous, A. Converse, H. Grethlein, and L. Lynd, Kinetics of cellobiose hydrolysis using cellobiase composites fromTtrichoderma reesei andAspergillus niger, Biotechnology and Bioengineering, vol.23, issue.4, pp.463-470, 1985.
DOI : 10.1002/bit.260270411

B. Nidetzky, W. Steiner, and M. Claeyssens, : adsorptions of two cellobiohydrolases, two endocellulases and their core proteins on filter paper and their relation to hydrolysis, Biochemical Journal, vol.303, issue.3, pp.817-823, 1994.
DOI : 10.1042/bj3030817

P. Tomme, V. Heriban, and M. Claeyssens, Adsorption of two cellobiohydrolases fromTrichoderma reesei to Avicel: Evidence for ?exo-exo? synergism and possible ?loose complex? formation, Biotechnology Letters, vol.255, issue.7, pp.525-530, 1990.
DOI : 10.1007/BF01086347

D. Kim, Y. Jang, and Y. Jeong, Adsorption Kinetics and Behaviour of Two Cellobiohydrolases from Trichoderma Reesei on Microcrystalline Cellulose, Biotechnology and Applied Biochemistry, vol.27, issue.2, pp.97-102, 1998.
DOI : 10.1111/j.1470-8744.1998.tb01380.x

D. Kim and Y. Hong, Description of cellobiohydrolases Ce16A and Ce17A fromTrichoderma reesei using Langmuir-type models, Biotechnology and Bioprocess Engineering, vol.172, issue.2, pp.89-94, 2001.
DOI : 10.1007/BF02931952

J. Woodward, Synergism in cellulase systems, Bioresource Technology, vol.36, issue.1, pp.67-75, 1991.
DOI : 10.1016/0960-8524(91)90100-X

J. Woodward, M. Lima, and N. Lee, The role of cellulase concentration in determining the degree of synergism in the hydrolysis of microcrystalline cellulose, Biochemical Journal, vol.255, issue.3, pp.895-899, 1988.
DOI : 10.1042/bj2550895

J. Woodward, M. Hayes, and N. Lee, Hydrolysis of Cellulose by Saturating and Non???Saturating Concentrations of Cellulase: Implications for Synergism, Bio/Technology, vol.31, issue.3, pp.301-304, 1988.
DOI : 10.1006/abio.1976.9999

B. Henrissat, H. Driguez, C. Viet, and M. Schulein, Synergism of Cellulases from Trichoderma reesei in the Degradation of Cellulose, Bio/Technology, vol.26, issue.8, pp.722-726, 1985.
DOI : 10.1038/nbt0885-722

URL : https://hal.archives-ouvertes.fr/hal-00309711

E. Hoshino, M. Shiroishi, Y. Amano, M. Nomura, and T. Kanda, Synergistic actions of exo-type cellulases in the hydrolysis of cellulose with different crystallinities, Journal of Fermentation and Bioengineering, vol.84, issue.4, pp.300-306, 1997.
DOI : 10.1016/S0922-338X(97)89248-3

R. Drissen, R. Maas, M. Van-der-maarel, M. Kabel, H. Schols et al., A generic model for glucose production from various cellulose sources by a commercial cellulase complex, Biocatalysis and Biotransformation, vol.50, issue.1, pp.419-429, 2007.
DOI : 10.1080/10242420701510668

H. Boer and A. Koivula, The relationship between thermal stability and pH optimum studied with wild-type and mutant Trichoderma reesei cellobiohydrolase Cel7A, European Journal of Biochemistry, vol.27, issue.5, pp.841-848, 2003.
DOI : 10.1046/j.1432-1033.2003.03431.x

D. Ballerini, LES BIOCARBURANTS Etat des lieux, perspectives et enjeux du développement Chapitre 6: La transformation de la biomasse lignocellulosique par voie biochimique, pp.261-262, 2006.

S. Pérez and D. Samain, Structure and Engineering of Celluloses, Structure and Engineering of Celluloses. In Advances in Carbohydrate Chemistry and Biochemistry, vol.64, issue.2010, pp.25-116
DOI : 10.1016/S0065-2318(10)64003-6

P. Larsson, K. Wickholm, and T. Iversen, A CP/MAS13C NMR investigation of molecular ordering in celluloses, Carbohydrate Research, vol.302, issue.1-2, pp.19-25, 1997.
DOI : 10.1016/S0008-6215(97)00130-4

S. Pérez, C. Stinga, N. Samain, and D. , Structure et ingénierie du materiau cellulose, Génie des procédés verts et durables : outils et méthodes »Martine POUX, 2010.

A. Sarko and R. Muggli, Packing Analysis of Carbohydrates and Polysaccharides. III. Valonia Cellulose and Cellulose II, Macromolecules, vol.7, issue.4, pp.486-494, 1974.
DOI : 10.1021/ma60040a016

A. Stipanovic and A. Sarko, Packing Analysis of Carbohydrates and Polysaccharides. 6. Molecular and Crystal Structure of Regenerated Cellulose II, Macromolecules, vol.9, issue.5, pp.851-857, 1976.
DOI : 10.1021/ma60053a027

A. Stipanovic and A. Sarko, Packing Analysis of Carbohydrates and Polysaccharides. 6. Molecular and Crystal Structure of Regenerated Cellulose II, Macromolecules, vol.9, issue.5, pp.851-857, 1976.
DOI : 10.1021/ma60053a027

P. Mansikkamaki, M. Lahtinen, and K. Rissanen, Structural Changes of Cellulose Crystallites Induced by Mercerisation in Different Solvent Systems; Determined by Powder X-ray Diffraction Method, Cellulose, vol.30, issue.3, pp.233-242, 2005.
DOI : 10.1007/s10570-004-3132-1

A. Isogai, Cellulosic Polymers, Blends and Composites, Allomorphs of cellulose and other polysaccharides, pp.1-24

T. Jeoh, C. Ishizawa, M. Davis, M. Himmel, W. Adney et al., Cellulase digestibility of pretreated biomass is limited by cellulose accessibility, Biotechnology and Bioengineering, vol.86, issue.116, pp.112-122, 2007.
DOI : 10.1002/bit.21408

L. Fan, Y. Lee, and D. Beardmore, Mechanism of the enzymatic hydrolysis of cellulose: Effects of major structural features of cellulose on enzymatic hydrolysis, Biotechnology and Bioengineering, vol.136, issue.1, pp.177-199, 1980.
DOI : 10.1002/bit.260220113

H. Pala, M. Mota, and F. Gama, Enzymatic depolymerisation of cellulose. Carbohydrate Polymers, pp.101-108, 2007.

S. Park, J. Baker, M. Himmel, P. Parilla, and D. Johnson, Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance, Biotechnology for Biofuels, vol.3, issue.1, 2010.
DOI : 10.1186/1754-6834-3-10

Y. Pu, C. Ziemer, and A. Ragauskas, CP/MAS 13C NMR analysis of cellulase treated bleached softwood kraft pulp, Carbohydrate Research, vol.341, issue.5, pp.591-597, 2006.
DOI : 10.1016/j.carres.2005.12.012

S. Park, D. Johnson, C. Ishizawa, P. Parilla, and M. Davis, Measuring the crystallinity index of cellulose by solid state 13C nuclear magnetic resonance, Cellulose, vol.160, issue.4, pp.641-647, 2009.
DOI : 10.1007/s10570-009-9321-1

M. Kent, G. Cheng, J. Murton, E. Carles, D. Dibble et al., Study of Enzymatic Digestion of Cellulose by Small Angle Neutron Scattering, Biomacromolecules, vol.11, issue.2, pp.357-368, 2010.
DOI : 10.1021/bm9008952

L. Wang, Y. Zhang, P. Gao, D. Shi, H. Liu et al., Changes in the structural properties and rate of hydrolysis of cotton fibers during extended enzymatic hydrolysis, Biotechnology and Bioengineering, vol.66, issue.25, pp.443-456, 2006.
DOI : 10.1002/bit.20730

E. Reese, L. Segal, and V. Tripp, The Effect of Cellulase on the Degree of Polymerization of Cellulose and Hydrocellulose, Textile Research Journal, vol.49, issue.7, pp.626-632, 1957.
DOI : 10.1177/004051755702700806

S. Park, R. Venditti, D. Abrecht, H. Jameel, J. Pawlak et al., Surface and pore structure modification of cellulose fibers through cellulase treatment, Journal of Applied Polymer Science, vol.341, issue.6, pp.3833-3839, 2007.
DOI : 10.1002/app.25457

A. Bommarius, A. Katona, S. Cheben, A. Patel, A. Ragauskas et al., Cellulase kinetics as a function of cellulose pretreatment, Metabolic Engineering, vol.10, issue.6, pp.370-381, 2008.
DOI : 10.1016/j.ymben.2008.06.008

M. Hall, P. Bansal, J. Lee, M. Realff, and A. Bommarius, Cellulose crystallinity???-???a key predictor of the enzymatic hydrolysis rate, FEBS Journal, vol.36, issue.6, 2010.
DOI : 10.1111/j.1742-4658.2010.07585.x

Y. Zhang and L. Lynd, A functionally based model for hydrolysis of cellulose by fungal cellulase, Biotechnology and Bioengineering, vol.7, issue.5, pp.888-898, 2006.
DOI : 10.1002/bit.20906

R. Gupta and Y. Lee, Mechanism of cellulase reaction on pure cellulosic substrates, Biotechnology and Bioengineering, vol.88, issue.6, pp.1-12, 2008.
DOI : 10.1002/bit.22195

A. Sinitsyn, O. Mitkevich, A. Gusakov, and A. Klyosov, Decrease in reactivity and change of physico-chemical parameters of cellulose in the course of enzymatic hydrolysis, Carbohydrate Polymers, vol.10, issue.1, pp.1-14, 1989.
DOI : 10.1016/0144-8617(89)90028-3

Y. Chen, A. Stipanovic, W. Winter, D. Wilson, and Y. Kim, Effect of digestion by pure cellulases on crystallinity and average chain length for bacterial and microcrystalline celluloses, Cellulose, vol.11, issue.2, pp.283-293, 2007.
DOI : 10.1007/s10570-007-9115-2

C. Walseth, The Influence of the Fine Structure of Cellulose on the Action of Cellulases. TAPPI, pp.233-238, 1957.

B. Philipp, C. Dan, and F. Fink, Acid and enzymatic hydrolysis of cellulose in relation to its physical structure, Proceedings International Symposium on Wood and Pulping chemistry, pp.79-83, 1981.

Q. Gan, S. Allen, and G. Taylor, Kinetic dynamics in heterogeneous enzymatic hydrolysis of cellulose: an overview, an experimental study and mathematical modelling, Process Biochemistry, vol.38, issue.7, pp.1003-1018, 2003.
DOI : 10.1016/S0032-9592(02)00220-0

A. Converse, R. Matsuno, M. Tanaka, and M. Taniguchi, A model of enzyme adsorption and hydrolysis of microcrystalline cellulose with slow deactivation of the adsorbed enzyme, Biotechnology and Bioengineering, vol.9, issue.1, pp.38-45, 1988.
DOI : 10.1002/bit.260320107

H. Ding and F. Xu, Productive Cellulase Adsorption on Cellulose, Amercian chemical society Chapitre, vol.9, pp.154-169, 2004.
DOI : 10.1021/bk-2004-0889.ch009

Y. Zhang and L. Lynd, Toward an aggregated understanding of enzymatic hydrolysis of cellulose: Noncomplexed cellulase systems, Biotechnology and Bioengineering, vol.144, issue.93, pp.797-824, 2004.
DOI : 10.1002/bit.20282

S. Desai and A. Converse, Substrate reactivity as a function of the extent of reaction in the enzymatic hydrolysis of lignocellulose, Biotechnology and Bioengineering, vol.160, issue.29, pp.650-655, 1997.
DOI : 10.1002/(SICI)1097-0290(19971220)56:6<650::AID-BIT8>3.0.CO;2-M

B. Yang, D. Willies, and C. Wyman, Changes in the enzymatic hydrolysis rate of Avicel cellulose with conversion, Biotechnology and Bioengineering, vol.7, issue.35, pp.1122-1128, 2006.
DOI : 10.1002/bit.20942

P. Bansal, M. Hall, M. Realff, J. Lee, and A. Bommarius, Modeling cellulase kinetics on lignocellulosic substrates, Biotechnology Advances, vol.27, issue.6, pp.833-848, 2009.
DOI : 10.1016/j.biotechadv.2009.06.005

H. Chen, M. Hayn, and H. Esterbauer, Purification and characterization of two extracellular ??-glucosidases from Trichoderma reesei, Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, vol.1121, issue.1-2, pp.54-60, 1992.
DOI : 10.1016/0167-4838(92)90336-C

H. Seidle, I. Marten, O. Shoseyov, and R. Huber, Physical and Kinetic Properties of the Family 3 ??-Glucosidase from Aspergillus niger Which Is Important for Cellulose Breakdown, The Protein Journal, vol.23, issue.1, pp.11-23, 2004.
DOI : 10.1023/B:JOPC.0000016254.58189.2a

W. Chirico and R. Brown, Purification and characterization of a beta-glucosidase from Trichoderma reesei, European Journal of Biochemistry, vol.81, issue.2, pp.333-341, 1987.
DOI : 10.1016/0020-711X(82)90109-4

M. Himmel, W. Adney, J. Fox, D. Mitchell, and J. Baker, Isolation and Characterization of 2 Forms of Beta-D-Glucosidase from Aspergillus-Niger, Applied Biochemistry and Biotechnology, vol.39, pp.213-225, 1993.

C. Decker, J. Visser, and P. Schreier, Species:?? Study of Their Physico-Chemical and Biocatalytic Properties, Journal of Agricultural and Food Chemistry, vol.48, issue.10, pp.4929-4936, 2000.
DOI : 10.1021/jf000434d

B. Nidetzky, W. Steiner, M. Hayn, and M. Claeyssens, : a new model for synergistic interaction, Biochemical Journal, vol.298, issue.3, pp.705-710, 1994.
DOI : 10.1042/bj2980705

G. Scacchi, M. Bouchy, J. Foucaut, and O. Zahra, Cinétique et catalyse, Tec et Doc. Cinétique et catalyse. Scacchi G., Bouchy M., Foucaut J-F, and Zahra O, 2004.

J. Medve, J. Stahlberg, and F. Tjerneld, Isotherms for adsorption of cellobiohydrolase I and II fromtrichoderma reesei on microcrystalline cellulose, Applied Biochemistry and Biotechnology, vol.184, issue.25, pp.39-56, 1997.
DOI : 10.1007/BF02788806

H. Ding and F. Xu, Productive cellulase adsorption on cellulose. Chapter 9, 2004.

K. Igarashi, M. Wada, and M. Samejima, Kinetic Analysis of Cellobiohydrolase: Quantification of Enzymatic Reaction at a Solid/Liquid Interface Applying the Concept of Surface Density, Trends in Glycoscience and Glycotechnology, vol.21, issue.117, pp.13-22, 2009.
DOI : 10.4052/tigg.21.13

H. Van-tilbeurgh, R. Bhikhabhai, G. Pettersson, L. Claeyssens, and M. , Separation of endo- and exo-type cellulases using a new affinity chromatography method, FEBS Letters, vol.131, issue.2, pp.215-218, 1984.
DOI : 10.1016/0014-5793(84)80321-X

M. Okazaki and M. Mooyoung, Kinetics of enzymatic hydrolysis of cellulose: Analytical description of a mechanistic model, Biotechnology and Bioengineering, vol.19, issue.5, pp.637-663, 1978.
DOI : 10.1002/bit.260200503

B. Nidetzky and W. Steiner, A new approach for modeling cellulase-cellulose adsorption and the kinetics of the enzymatic hydrolysis of microcrystalline cellulose, Biotechnology and Bioengineering, vol.160, issue.29, pp.469-479, 1993.
DOI : 10.1002/bit.260420410

Y. Lee and L. Fan, Kinetic studies of enzymatic hydrolysis of insoluble cellulose: (II). Analysis of extended hydrolysis times, Biotechnology and Bioengineering, vol.19, issue.4, pp.939-966, 1983.
DOI : 10.1002/bit.260250406

K. Movagarnejad, M. Sohrabi, T. Kaghazchi, and F. Vahabzadeh, A model for the rate of enzymatic hydrolysis of cellulose in heterogeneous solid???liquid systems, Biochemical Engineering Journal, vol.4, issue.3, pp.197-206, 2000.
DOI : 10.1016/S1369-703X(99)00049-2

S. Levine, J. Fox, H. Blanch, and D. Clark, A mechanistic model of the enzymatic hydrolysis of cellulose, Biotechnology and Bioengineering, vol.104, issue.1, pp.37-51, 2010.
DOI : 10.1002/bit.22789

K. Movagharnejad, Modified shrinking particle model for the rate of enzymatic hydrolysis of impure cellulosic waste materials with enzyme reuse by the substrate replacement, Biochemical Engineering Journal, vol.24, issue.3, pp.217-223, 2005.
DOI : 10.1016/j.bej.2005.03.001

F. Xu and H. Ding, A new kinetic model for heterogeneous (or spatially confined) enzymatic catalysis: Contributions from the fractal and jamming (overcrowding) effects, Applied Catalysis A: General, vol.317, issue.1, pp.70-81, 2007.
DOI : 10.1016/j.apcata.2006.10.014

T. Bergès, C. Barreau, J. Peberdy, and L. Boddy, Cloning of an Aspergillus niger invertase gene by expression in Trichoderma reesei, Current Genetics, vol.82, issue.1-2, pp.53-59, 1993.
DOI : 10.1007/BF00324665

M. Chauve, H. Mathis, D. Huc, D. Casanave, F. Monot et al., Comparative kinetic analysis of two fungal ??-glucosidases, Biotechnology for Biofuels, vol.3, issue.1, p.3, 2010.
DOI : 10.1186/1754-6834-3-3

A. Sluiter, B. Hames, R. Ruiz, C. Scarlata, J. Sluiter et al., Determination of Structural Carbohydrates and Lignin in Biomass, 2010.

R. Evans and A. Wallis, Cellulose molecular weights determined by viscometry, Journal of Applied Polymer Science, vol.37, issue.8, pp.2331-2340, 1989.
DOI : 10.1002/app.1989.070370822

D. Da-silva-perez and . Van-heiningen, ARP: Determination of Cellulose Degree of Polymerization in Chemical Pulps by Viscosimetry, 7th European Workshop on Lignocellulosics and Pulp, Proceedings, p.4, 2002.

I. Grillo, R. Borsali, P. Rborsali, and R. , SANS and Applications in Soft Condensed Matter 2011:Grillo I. SANS and Applications in Soft Condensed Matter, Soft Matter Characterization, p.723, 2008.

L. Van-nifterik, J. Xu, J. Laurent, J. Mathieu, and C. Rakoto, Analysis of cellulose and kraft pulp ozonolysis products by anion-exchange chromatography with pulsed amperometric detection, Journal of Chromatography A, vol.640, issue.1-2, pp.335-343, 1993.
DOI : 10.1016/0021-9673(93)80199-I

A. Isogai and R. Atalla, Amorphous celluloses stable in aqueous media: Regeneration from SO2???amine solvent systems, Journal of Polymer Science Part A: Polymer Chemistry, vol.29, issue.1, pp.113-119, 1991.
DOI : 10.1002/pola.1991.080290113

L. Schroeder, V. Gentile, and R. Atalla, Nondegradative Preparation of Amorphous Cellulose, Journal of Wood Chemistry and Technology, vol.37, issue.1, pp.1-14, 1986.
DOI : 10.1515/hfsg.1977.31.3.65

T. Wood, Preparation of crystalline, amorphous, and dyed cellulase substrates, Methods in Enzymology, vol.160, pp.19-25, 1988.
DOI : 10.1016/0076-6879(88)60103-0

M. Schulein, Enzymatic properties of cellulases from Humicola insolens, Journal of Biotechnology, vol.57, issue.1-3, pp.71-81, 1997.
DOI : 10.1016/S0168-1656(97)00090-4

S. Lantz, F. Goedegebuur, R. Hommes, T. Kaper, B. Kelemen et al., Hypocrea jecorina CEL6A protein engineering, Biotechnology for Biofuels, vol.3, issue.1, p.20, 2010.
DOI : 10.1186/1754-6834-3-20

URL : http://doi.org/10.1186/1754-6834-3-20

J. Zou, G. Kleywegt, J. Stahlberg, H. Driguez, W. Nerinckx et al., Crystallographic evidence for substrate ring distortion and protein conformational changes during catalysis in cellobiohydrolase Ce16A from Trichoderma reesei, Structure, vol.7, issue.9, pp.1035-1045, 1999.
DOI : 10.1016/S0969-2126(99)80171-3

M. Holtzapple, H. Caram, and A. Humphrey, The HCH-1 model of enzymatic cellulose hydrolysis, Biotechnology and Bioengineering, vol.2, issue.7, pp.775-780, 1984.
DOI : 10.1002/bit.260260723