D. Abrial, D. Calavas, N. Jarrige, and C. Ducrot, Poultry, pig and the risk of BSE following the feed ban in France ??? A spatial analysis, Veterinary Research, vol.36, issue.4, pp.615-628, 2005.
DOI : 10.1051/vetres:2005020

URL : https://hal.archives-ouvertes.fr/hal-00902988

A. Agarwal, S. Gelfand, and . Citron-pousty, Zero-inflated models with application to spatial count data, Environmental and Ecological Statistics, vol.162, issue.2, pp.195-209, 2002.

M. Alfo, L. Nieddu, and D. Vicari, Finite Mixture Models for Mapping Spatially Dependent Disease Counts, Biometrical Journal, vol.14, issue.6, pp.84-97, 2009.
DOI : 10.1002/bimj.200810494

A. Allepuz, A. Lopez-quilez, A. Forte, G. Fernandez, and J. Casal, Spatial analysis of bovine spongiform encephalopathy in Galicia, Preventive Veterinary Medicine, vol.79, pp.2-4174, 2002.

V. Arora and P. Lahiri, On the superiority of the bayesian method over the blup in small area estimation problems, Statistica Sinica, vol.7, pp.1053-63, 1997.

G. A. Avruskin, G. M. Jacquez, J. R. Meliker, M. J. Slotnick, A. Kaufmann et al., Visualization and exploratory analysis of epidemiologic data using a novel space time information system, International Journal of Health Geographics, vol.3, issue.26 1, 2004.

J. Berger and J. Bernardo, On the development of the reference prior method, Bayesian statistics 4, pp.35-60, 1992.

D. Bernadinelli, C. Clayton, C. Pascutto, M. Montomoli, M. Ghislandi et al., Bayesian analysis of space???time variation in disease risk, Statistics in Medicine, vol.43, issue.21-22, pp.2433-2476, 1995.
DOI : 10.1002/sim.4780142112

J. Besag, Spatial interaction and the statistical analysis of lattice systems, Journal of the Royal Statistical Society, vol.35, issue.54, pp.192-236, 1974.

J. Besag, Statistical analysis of non-lattice data. The Statistician, pp.179-95, 1975.

J. Besag, Statistical analysis of dirty pictures*, Journal of Applied Statistics, vol.6, issue.5-6, pp.259-302, 1986.
DOI : 10.1016/0031-3203(83)90012-2

J. Besag and J. Tantrum, Likelihood analysis of binary data in space and time, p.143, 2003.

J. Besag, J. York, and A. Mollié, Bayesian image restoration, with two applications in spatial statistics, Annals of the Institute of Statistical Mathematics, vol.74, issue.1, pp.1-59, 1991.
DOI : 10.1007/BF00116466

N. Best, S. Richardson, and A. Thomson, A comparison of Bayesian spatial models for disease mapping, Statistical Methods in Medical Research, vol.14, issue.1, pp.35-59, 2005.
DOI : 10.1191/0962280205sm388oa

G. Best, R. A. Arnold, A. Thomas, L. A. Waller, and E. M. Conlon, Bayesian model for spatially correlated disease and exposure data, Bayesian Statistics, pp.131-56, 1999.

. Biernacki, Initializing EM using the properties of its trajectories in Gaussian mixtures, Statistics and Computing, vol.14, issue.3, pp.267-279, 2004.
DOI : 10.1023/B:STCO.0000035306.77434.31

G. Biernacki, G. Celeux, and . Govaert, Assessing a mixture model for clustering with the integrated completed likelihood, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.22, issue.7, pp.719-725, 2000.
DOI : 10.1109/34.865189

G. Biernacki, G. Celeux, and . Govaert, Choosing starting values for the EM algorithm for getting the highest likelihood in multivariate Gaussian mixture models, Computational Statistics & Data Analysis, vol.41, issue.3-4, pp.561-575, 2003.
DOI : 10.1016/S0167-9473(02)00163-9

J. Bithel, The choice of test for detecting raised disease risk near a point source, Statistics in Medicine, vol.14, issue.21-22, pp.21-222309, 1995.
DOI : 10.1002/sim.4780142104

J. Bithel and R. Stone, On statistical methods for analysing the geographical distribution of cancer cases near nuclear installations., Journal of Epidemiology & Community Health, vol.43, issue.1, pp.79-85, 1989.
DOI : 10.1136/jech.43.1.79

J. Bithel, S. Dutton, G. Draper, and N. Neary, Distribution of childhood leukaemias and non-Hodgkin's lymphomas near nuclear installations in England and Wales, BMJ, vol.309, issue.6953, pp.501-506, 1994.
DOI : 10.1136/bmj.309.6953.501

J. Blanchet, Modèles markoviens et extensions pour la classification de données complexes, p.146, 2007.

J. Blanchet, F. Forbes, S. Chopart, and L. Azizi, Le logiciel SpaCEM 3 pour la classification de données complexes. La revue Modulad, pp.147-66, 2009.

D. Boehning, E. Dietz, P. Schlattmann, L. Mendonca, and U. Kirchner, The zero-inflated Poisson model and the decayed, missing and filled teeth index in dental epidemiology, Journal of the Royal Statistical Society: Series A (Statistics in Society), vol.162, issue.2, pp.195-209, 1999.
DOI : 10.1111/1467-985X.00130

D. Boehning, E. Dietz, and P. Schlattmann, Space-time mixture modelling of public health data, Statistics in Medicine, vol.40, issue.17-18, pp.2333-2377, 2000.
DOI : 10.1002/1097-0258(20000915/30)19:17/18<2333::AID-SIM573>3.0.CO;2-Q

P. Burman, -fold cross-validation and the repeated learning-testing methods, Biometrika, vol.76, issue.3, pp.503-517, 1989.
DOI : 10.1093/biomet/76.3.503

URL : https://hal.archives-ouvertes.fr/hal-00819948

P. Caragea and M. Kaiser, Covariates and time in the autologistic model, p.43, 2006.

B. Carlin, J. Clark, and A. Gelfand, Elements of hierarchical bayesian inference, Hierarchical modelling for the environmental sciences : statistical methods and applications, pp.3-24, 2006.

G. Celeux and J. Diebolt, The SEM algorithm : a probabilistic teacher algorithm derived from the mixture problem, Computational Statistics Quaterly, vol.2, issue.1, pp.73-82, 1985.

G. Celeux and G. Govaert, A classification EM algorithm for clustering and two stochastic versions, Computational Statistics & Data Analysis, vol.14, issue.3, pp.315-347, 1992.
DOI : 10.1016/0167-9473(92)90042-E

URL : https://hal.archives-ouvertes.fr/inria-00075196

G. Celeux, F. Forbes, and N. Peyrard, EM procedures using mean field-like approximations for Markov model-based image segmentation, Pattern Recognition, vol.36, issue.1, pp.131-144, 2003.
DOI : 10.1016/S0031-3203(02)00027-4

URL : https://hal.archives-ouvertes.fr/inria-00072526

B. Chalmond, An iterative Gibbsian technique for reconstruction of m-ary images, Pattern Recognition, vol.22, issue.6, pp.747-761, 1989.
DOI : 10.1016/0031-3203(89)90011-3

D. Clayton and L. Bernadinelli, Bayesian methods for mapping disease risk. Geographical and Environment Epidemiology : Methods for Small Area Studies, pp.205-220, 1992.

G. Clayton and J. Kaldor, Empirical Bayes Estimates of Age-Standardized Relative Risks for Use in Disease Mapping, Biometrics, vol.43, issue.3, pp.671-681, 1987.
DOI : 10.2307/2532003

N. A. Cressie, Statistics for Spatial Data New York : Wiley, 1993. 40, 41 L. Cucala. A flexible spatial scan test for case event data, Computational Statistics and Data Analysis, issue.8, pp.532843-50, 2009.

A. P. Dempster, N. M. Laird, and D. B. Rubin, Maximum likelihood from incomplete data via the EM algorithm, Journal of the Royal Statistical Society Series B, vol.39, issue.1, pp.1-38, 1977.

L. R. Dice, Measures of the Amount of Ecologic Association Between Species, Ecology, vol.26, issue.3, pp.297-302, 1945.
DOI : 10.2307/1932409

P. G. Diggle, J. Tawn, and R. Moyeed, Model-based geostatistics, Journal of the Royal Statistical Society: Series C (Applied Statistics), vol.47, issue.3, pp.299-350, 1998.
DOI : 10.1111/1467-9876.00113

E. Durand, Modèles statistiques pour la structure génétique des populations : organisation spatiale et liens de parenté, p.46, 2009.

J. B. Durand, Modèles à structure cachée : inférence, sélection de modèles et applications, p.72, 2003.

P. Elliott, J. C. Wakefield, N. G. Best, and D. J. Briggs, Spatial epidemiology: methods and applications, p.15, 2000.
DOI : 10.1093/acprof:oso/9780198515326.003.0001

P. R. Epstein, Climate and health, Science, vol.285, issue.5426 1, 1999.

P. Erdos and A. Rényi, On random graphs, Publicationes Mathematicae, vol.6, pp.290-97, 1959.

C. Fernandez and P. J. Green, Modelling spatially correlated data via mixtures: a Bayesian approach, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.92, issue.4, pp.805-826, 2002.
DOI : 10.1111/1467-9868.00288

J. Ferreira, D. Denison, and C. Holmes, Partition Modelling, p.45, 2002.
DOI : 10.1201/9781420035414.pt2

S. Finch, N. Mendell, and H. Thode, Probabilistic Measures of Adequacy of a Numerical Search for a Global Maximum, Journal of the American Statistical Association, vol.44, issue.408, pp.1-38, 1989.
DOI : 10.1080/01621459.1989.10478867

F. Forbes and N. Peyrard, Hidden markov random field model selection criteria based on mean field-like approximations, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.25, issue.9, pp.1089-1101, 2003.
DOI : 10.1109/TPAMI.2003.1227985

C. Fraley and A. E. Raftery, How Many Clusters? Which Clustering Method? Answers Via Model-Based Cluster Analysis, The Computer Journal, vol.41, issue.8, pp.578-88, 1998.
DOI : 10.1093/comjnl/41.8.578

J. French and M. Wand, Generalized additive models for cancer mapping with incomplete covariates, Biostatistics, vol.5, issue.2, pp.177-91, 2004.
DOI : 10.1093/biostatistics/5.2.177

A. Froment, Une approche ??coanthropologique de la sant?? publique, Nature Sciences Soci??t??s, vol.5, issue.4, pp.5-11, 1997.
DOI : 10.1016/S1240-1307(97)87680-7

A. Gelman, J. B. Carlin, and H. S. Stern, Bayesian data analysis, second edition, p.34, 2003.

S. Geman and D. Geman, Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images, IEEE Transaction on Pattern analysis and Machine Intelligence, vol.6, issue.50, pp.721-741, 1984.

S. Geman and C. Graffigne, Markov random fiels image models and their applications to computer vision, International Congress of Mathematicians, pp.1496-1517, 1987.

M. Ghosh, K. Natarajan, T. W. Stroud, and B. P. Carlin, Generalized Linear Models for Small-Area Estimation, Journal of the American Statistical Association, vol.86, issue.441, pp.273-82, 1998.
DOI : 10.1080/01621459.1998.10474108

M. Ghosh, K. Natarajan, L. A. Waller, and D. Kim, Hierarchical Bayes GLMs for the analysis of spatial data: An application to disease mapping, Journal of Statistical Planning and Inference, vol.75, issue.2, pp.305-318, 1999.
DOI : 10.1016/S0378-3758(98)00150-5

S. Ghosh, P. Mukhopadhay, and J. C. Lu, Bayesian analysis of zero-inflated regression models, Journal of Statistical Planning and Inference, vol.136, issue.4, pp.1360-75, 2006.
DOI : 10.1016/j.jspi.2004.10.008

W. R. Gilks, S. Richardson, D. J. Spiegelhalter, N. G. Best, L. D. Mcneil et al., Modelling complexity : Applications of gibbs sampling in medicine, Journal of the Royal Statistical Society Series B, vol.55, pp.39-52, 1993.

W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, Markov chain Monte Carlo in Practice, p.29, 1996.

J. Green, Reversible jump Markov chain Monte Carlo computation and Bayesian model determination, Biometrika, vol.82, issue.4, pp.711-743, 1995.
DOI : 10.1093/biomet/82.4.711

J. Green and S. Richardson, Hidden Markov Models and Disease Mapping, Journal of the American Statistical Association, vol.97, issue.460, pp.1055-70, 2002.
DOI : 10.1198/016214502388618870

M. L. Gumpertz, J. M. Graham, and J. B. Ristaino, Autologistic Model of Spatial Pattern of Phytophthora Epidemic in Bell Pepper: Effects of Soil Variables on Disease Presence, Journal of Agricultural, Biological, and Environmental Statistics, vol.2, issue.2, pp.131-56, 1997.
DOI : 10.2307/1400400

W. K. Hastings, Monte Carlo sampling methods using Markov chains and their applications, Biometrika, vol.57, issue.1, pp.97-109, 1970.
DOI : 10.1093/biomet/57.1.97

H. Heisterkamp, G. Doornobs, and N. J. Nagelkerke, Assessing health impact of environmental pollution sources using space-time models, Statistics in Medicine, vol.43, issue.17-18, pp.2569-78, 2000.
DOI : 10.1002/1097-0258(20000915/30)19:17/18<2569::AID-SIM588>3.0.CO;2-K

R. Henderson, S. Shimakura, and D. Gorst, Modeling Spatial Variation in Leukemia Survival Data, Journal of the American Statistical Association, vol.97, issue.460, pp.965-72, 2002.
DOI : 10.1198/016214502388618753

J. A. Hoeting, M. Leecaster, and D. Bowden, An Improved Model for Spatially Correlated Binary Responses, Journal of Agricultural, Biological, and Environmental Statistics, vol.5, issue.1, pp.102-116, 2000.
DOI : 10.2307/1400634

L. Huang, B. Pickle, and . Das, Evaluating spatial methods for investigationg global clustering and cluster detection of cancer cases, pp.5111-5153, 2008.

E. Ising, Beitrag zur theorie des ferromagnetismus. Zeitschrift fur Physik, pp.253-58, 1925.

G. Jean-pierre and . Mina, Physique statistique des phénomènes collectifs en sciences économiques et sociales, Mathématiques et sciences humaines, vol.172, pp.67-89, 2005.

D. Karlis and E. Xekalaki, Choosing initial values for the EM algorithm for finite mixtures, Computational Statistics & Data Analysis, vol.41, issue.3-4, pp.577-590, 2003.
DOI : 10.1016/S0167-9473(02)00177-9

G. Kauermann and J. D. Opsomer, Local Likelihood Estimation in Generalized Additive Models, Scandinavian Journal of Statistics, vol.14, issue.2, pp.317-354, 2003.
DOI : 10.1214/aos/1034276626

J. Kelsall and J. Wakefield, Modeling Spatial Variation in Disease Risk, Journal of the American Statistical Association, vol.97, issue.459, pp.692-701, 2002.
DOI : 10.1198/016214502388618438

G. Knorr-held and . Rasser, Bayesian Detection of Clusters and Discontinuities in Disease Maps, Biometrics, vol.92, issue.20, pp.13-21, 2000.
DOI : 10.1111/j.0006-341X.2000.00013.x

S. Kullback and R. A. Leibler, On Information and Sufficiency, The Annals of Mathematical Statistics, vol.22, issue.1, pp.79-86, 1951.
DOI : 10.1214/aoms/1177729694

M. Kulldorff, A spatial scan statistic Communication in Statistics-Theory and Methods, pp.1481-96, 1996.

M. Kulldorff, Tests of Spatial Randomness Adjusted for an Inhomogeneity, Journal of the American Statistical Association, vol.101, issue.475, pp.1289-305, 2006.
DOI : 10.1198/016214506000000618

M. Kulldorff and N. Nagarwalla, Spatial disease clusters: Detection and inference, Statistics in Medicine, vol.132, issue.8, pp.799-810, 1995.
DOI : 10.1002/sim.4780140809

H. Kunsch, Intrinsic autoregressions and related models on the two-dimensional lattice, Biometrika, vol.74, issue.3, pp.517-541, 1987.
DOI : 10.1093/biomet/74.3.517

D. Lambert, Zero-Inflated Poisson Regression, with an Application to Defects in Manufacturing, Technometrics, vol.34, issue.1, pp.1-14, 1992.
DOI : 10.2307/1269547

P. M. Lankford, Regionalization: Theory and Alternative Algorithms, Geographical Analysis, vol.58, issue.2, pp.196-212, 1969.
DOI : 10.1111/j.1538-4632.1969.tb00615.x

S. Lauritzen, A. Dawid, B. Larsen, and H. G. Leimer, Independence properties of directed markov fields. Networks, pp.491-505, 1990.

A. B. Lawson and F. L. Williams, An Introductory Guide to Disease Mapping, p.36, 2001.
DOI : 10.1002/0470842571

S. Z. Li, Markov random field modeling in image analysis, p.67, 2001.
DOI : 10.1007/978-4-431-67044-5

B. G. Lindsay, Composite likelihood methods, Contemporary Mathematics, vol.80, pp.221-238, 1988.
DOI : 10.1090/conm/080/999014

Y. Macnab, Spline smoothing in Bayesian disease mapping, Environmetrics, vol.21, issue.18, pp.727-771, 2007.
DOI : 10.1002/env.876

J. B. Macqueen, Some methods for classification and analysis of multivariate observations, 5th Berkeley Symposium on Mathematical Statistics and Probability, 0101.

J. M. Marin and C. Robert, Bayesian Core : A Practical Approach to computational Bayesian Statistics, p.38, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00450489

J. Mclachlan and D. Peel, Finite Mixture Models, p.86, 2000.
DOI : 10.1002/0471721182

A. J. Mcmichael, Human Culture, Ecological Change, and Infectious Disease:. Are We Experiencing History's Fourth Great Transition?, Ecosystem Health, vol.311, issue.2, pp.107-122, 2001.
DOI : 10.1016/S0169-5347(98)01449-9

N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller, Equation of State Calculations by Fast Computing Machines, The Journal of Chemical Physics, vol.21, issue.6, pp.1087-92, 1953.
DOI : 10.1063/1.1699114

S. E. Morris and J. C. Wakefield, Assessment of disease risk in relation to a pre-specified source, Spatial epidemiology : methods and applications, pp.153-84, 2000.
DOI : 10.1093/acprof:oso/9780198515326.003.0009

J. Nott and T. Rydén, Pairwise likelihood methods for inference in image models, Biometrika, vol.86, issue.3, pp.661-76, 1999.
DOI : 10.1093/biomet/86.3.661

M. Paul, D. Abrial, N. Jarrige, S. Rican, M. Garrido et al., Bovine Spongiform Encephalopathy and Spatial Analysis of the Feed Industry, Emerging Infectious Diseases, vol.13, issue.6, pp.867-872, 2007.
DOI : 10.3201/eid1306.061169

URL : https://hal.archives-ouvertes.fr/hal-00378799

. Peyrard, Approximations de type champ moyen des modèles de champ de Markov pour la segmentation de données spatiales, p.70, 2001.

W. Pieczynski, Champs de markov cachés et estimation conditionnelle itérative, Traitement du Signal, vol.11, pp.141-153, 1994.

W. Qian and D. M. Titterington, Estimation of Parameters in Hidden Markov Models, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.337, issue.1647, pp.407-428, 1991.
DOI : 10.1098/rsta.1991.0132

C. Robert and G. Casella, Monte Carlo statistical methods, p.58, 1999.

B. Scherrer, M. Dojat, F. Forbes, and C. Garbay, LOCUS: LOcal Cooperative Unified Segmentation of MRI Brain Scans, 10th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI07), p.56, 2007.
DOI : 10.1007/978-3-540-75757-3_27

URL : https://hal.archives-ouvertes.fr/inserm-00402276

P. Schlattman and D. Boehning, Mixture models and disease mapping, Statistics in Medicine, vol.12, issue.19-20, pp.1943-50, 1993.
DOI : 10.1002/sim.4780121918

G. Schwarz, Estimating the Dimension of a Model, The Annals of Statistics, vol.6, issue.2, pp.131-165, 1978.
DOI : 10.1214/aos/1176344136

D. J. Spiegelhalter, N. G. Best, B. P. Carlin, and A. Van-der-linde, Bayesian measures of model complexity and fit, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.93, issue.4, pp.583-640, 2002.
DOI : 10.1002/1097-0258(20000915/30)19:17/18<2265::AID-SIM568>3.0.CO;2-6

J. Spiegelhalter, N. G. Best, W. R. Gilks, and H. Inskip, Hepatitis b : a case study in MCMC methods, Markov chain Monte Carlo in Practice, p.27, 1996.

M. Stevenson, R. Morris, A. B. Lawson, J. Wilesmith, J. M. Ryan et al., Area-level risks for BSE in British cattle before and after the July 1988 meat and bone meal feed ban, Preventive Veterinary Medicine, vol.69, issue.1-2, p.34, 2005.
DOI : 10.1016/j.prevetmed.2005.01.016

D. Strauss, Clustering on coloured lattices, Journal of Applied Probability, vol.1, issue.01, pp.135-178, 1977.
DOI : 10.2307/3212721

D. Sun, R. K. Tsutakawa, and P. L. Speckman, Posterior distribution of hierarchical models using CAR(1) distributions, Biometrika, vol.86, issue.2, pp.341-50, 1999.
DOI : 10.1093/biomet/86.2.341

D. Sun, R. K. Tsutakawa, H. Kim, and Z. He, Spatio-temporal interaction with disease mapping, Statistics in Medicine, vol.90, issue.15, pp.2015-2050, 2000.
DOI : 10.1002/1097-0258(20000815)19:15<2015::AID-SIM422>3.0.CO;2-E

T. Tango, A class of tests for detecting ???general??? and ???focused??? clustering of rare diseases, Statistics in Medicine, vol.14, issue.21-22, pp.21-222323, 1995.
DOI : 10.1002/sim.4780142105

T. Tango and K. Takahashi, A flexibly shaped spatial scan statistic for detecting clusters, International Journal of Health Geographics, vol.4, issue.11, p.16, 2005.

R. Thibshirani and T. Hastie, Local Likelihood Estimation, Journal of the American Statistical Association, vol.4, issue.3, pp.559-568, 1987.
DOI : 10.1080/01621459.1987.10478466

G. Toussaint, The relative neighbourhood graph of a finite planar set, Pattern Recognition, vol.12, issue.4, pp.261-68, 1980.
DOI : 10.1016/0031-3203(80)90066-7

C. Varin, G. Host, and O. Skare, Pairwise likelihood inference in spatial generalized linear mixed models, Computational Statistics & Data Analysis, vol.49, issue.4, pp.1173-91, 2005.
DOI : 10.1016/j.csda.2004.07.021

J. Wakefield, Disease mapping and spatial regression with count data, Biostatistics, vol.8, issue.2, pp.158-83, 2007.
DOI : 10.1093/biostatistics/kxl008

J. C. Wakefield, J. E. Kelsall, and S. Morris, Clustering, cluster detection, and spatial variation in risk, Spatial epidemiology : methods and applications, pp.128-52, 2000.
DOI : 10.1093/acprof:oso/9780198515326.003.0008

L. Waller and C. Gotway, Applied spatial statistics for public health data, p.41, 2004.
DOI : 10.1002/0471662682

L. A. Waller, B. P. Carlin, H. Xia, and A. Gelfand, Hierarchical Spatio-Temporal Mapping of Disease Rates, Journal of the American Statistical Association, vol.26, issue.438, pp.607-624, 1997.
DOI : 10.1080/01621459.1997.10474012

R. Washino and B. Wood, Application of remote sensing to arthropod vector surveillance and control, American Journal of Tropical Medicine and Hygiene, vol.50, issue.6 1, pp.134-178, 1994.

M. A. Wei and . Tanner, A Monte Carlo Implementation of the EM Algorithm and the Poor Man's Data Augmentation Algorithms, Journal of the American Statistical Association, vol.51, issue.411, pp.699-704, 1990.
DOI : 10.1214/aos/1176346060

C. K. Wikle, Spatial Modelling of Count Data, Spatial Cluster Modelling, p.41, 2002.
DOI : 10.1201/9781420035414.ch11

R. L. Wolpert and K. Ickstadt, Poisson/gamma random field models for spatial statistics, Biometrika, vol.85, issue.2, pp.251-67, 1998.
DOI : 10.1093/biomet/85.2.251

. Wu, On the Convergence Properties of the EM Algorithm, The Annals of Statistics, vol.11, issue.1, pp.95-103, 1983.
DOI : 10.1214/aos/1176346060

C. H. Wu and P. C. Doerschuk, Cluster expansions for the deterministic computation of bayesian estimators based on markov random fields, IEEE transactions On Pattern Analysis and Machine Intelligence, vol.17, issue.3, pp.275-93, 1995.

H. Wu and F. W. Huffer, Modeling the distribution of plant species using the autologistic regression model, Environmental and Ecological Statistics, vol.4, pp.49-64, 1997.

H. Xia and B. P. Carlin, Spatio-temporal models with errors in covariates: mapping Ohio lung cancer mortality, Statistics in Medicine, vol.17, issue.18, pp.2025-2068, 1998.
DOI : 10.1002/(SICI)1097-0258(19980930)17:18<2025::AID-SIM865>3.0.CO;2-M

L. Younes, Estimation and annealing for gibbsian fields Annales de l'Institut Henri Poincaré, Probabilités et Statistique, pp.269-94, 1988.

J. Zhang, The mean field theory in EM procedures for Markov random fields, IEEE Transactions on Signal Processing, vol.40, issue.10, pp.2570-2583, 1992.
DOI : 10.1109/78.157297

J. Zhang, The mean field theory in EM procedures for Markov random fields, IEEE Transactions on Signal Processing, vol.40, issue.10, pp.2570-2583, 1992.
DOI : 10.1109/78.157297

P. Zhang, Model Selection Via Multifold Cross Validation, The Annals of Statistics, vol.21, issue.1, pp.299-313, 1993.
DOI : 10.1214/aos/1176349027

S. Zhang, D. Sun, C. He, and M. Schootman, A Bayesian semi-parametric model for colorectal cancer incidences, Statistics in Medicine, vol.92, issue.2, pp.285-309, 2006.
DOI : 10.1002/sim.2221