Machine Learning Methods for Visual Object Detection

Résumé : Le but de cette thèse est de développer des méthodes pratiques plus performantes pour la détection d'instances de classes d'objets de la vie quotidienne dans les images. Nous présentons une famille de détecteurs qui incorporent trois types d'indices visuelles performantes – histogrammes de gradients orientés (Histograms of Oriented Gradients, HOG), motifs locaux binaires (Local Binary Patterns, LBP) et motifs locaux ternaires (Local Ternary Patterns, LTP) – dans des méthodes de discrimination efficaces de type machine à vecteur de support latent (Latent SVM), sous deux régimes de réduction de dimension – moindres carrées partielles (Partial Least Squares, PLS) et sélection de variables par élagage de poids SVM (SVM Weight Truncation). Sur plusieurs jeux de données importantes, notamment ceux du PASCAL VOC2006 et VOC2007, INRIA Person et ETH Zurich, nous démontrons que nos méthodes améliorent l'état de l'art du domaine. Nos contributions principales sont : – Nous étudions l'indice visuelle LTP pour la détection d'objets. Nous démontrons que sa performance est globalement mieux que celle des indices bien établies HOG et LBP parce qu'elle permet d'encoder à la fois la texture locale de l'objet et sa forme globale, tout en étant résistante aux variations d'éclairage. Grâce à ces atouts, LTP fonctionne aussi bien pour les classes qui sont caractérisées principalement par leurs structures que pour celles qui sont caractérisées par leurs textures. En plus, nous démontrons que les indices HOG, LBP et LTP sont bien complémentaires, de sorte qu'un jeux d'indices étendu qui intègre tous les trois améliore encore la performance. – Les jeux d'indices visuelles performantes étant de dimension assez élevée, nous proposons deux méthodes de réduction de dimension afin d'améliorer leur vitesse et réduire leur utilisation de mémoire. La première, basée sur la projection moindres carrés partielles, diminue significativement le temps de formation des détecteurs linéaires, sans réduction de précision ni perte de vitesse d'exécution. La seconde, fondée sur la sélection de variables par l'élagage des poids du SVM, nous permet de réduire le nombre d'indices actives par un ordre de grandeur avec une réduction minime, voire même une petite augmentation, de la précision du détecteur. Malgré sa simplicité, cette méthode de sélection de variables surpasse toutes les autres approches que nous avons mis à l'essai. – Enfin, nous décrivons notre travail en cours sur une nouvelle variété d'indice visuelle – les « motifs locaux quantifiées » (Local Quantized Patterns, LQP). LQP généralise les indices existantes LBP / LTP en introduisant une étape de quantification vectorielle – ce qui permet une souplesse et une puissance analogue aux celles des approches de reconnaissance visuelle « sac de mots », qui sont basées sur la quantification des régions locales d'image considérablement plus grandes – sans perdre la simplicité et la rapidité qui caractérisent les approches motifs locales actuelles parce que les résultats de la quantification puissent être pré-compilés et stockés dans un tableau. LQP permet une augmentation considérable de la taille du support local de l'indice, et donc de sa puissance discriminatoire. Nos expériences indiquent qu'elle a la meilleure performance de toutes les indices visuelles testés, y compris HOG, LBP et LTP.
Type de document :
Thèse
General Mathematics [math.GM]. Université de Grenoble, 2011. English. <NNT : 2011GRENM070>


https://tel.archives-ouvertes.fr/tel-00680048
Contributeur : Abes Star <>
Soumis le : samedi 17 mars 2012 - 12:57:26
Dernière modification le : jeudi 11 juin 2015 - 01:06:33
Document(s) archivé(s) le : lundi 18 juin 2012 - 17:11:26

Fichier

21450_HUSSAIN_2011_archivage1....
Version validée par le jury (STAR)

Identifiants

  • HAL Id : tel-00680048, version 1

Collections

Citation

Sabit Ul Hussain. Machine Learning Methods for Visual Object Detection. General Mathematics [math.GM]. Université de Grenoble, 2011. English. <NNT : 2011GRENM070>. <tel-00680048>

Exporter

Partager

Métriques

Consultations de
la notice

826

Téléchargements du document

833