. Darcy, La mesure de la masse des échantillons récoltés nous permet aussi de suivre la stabilité du flux d'eau au cours du lessivage. L'analyse des effluents nous renseigne sur la nature et les concentrations des solutés et particules lessivés, ainsi que leur évolution au cours d'une expérience de lessivage et tout au long de l'incubation des sols. Nous avons ainsi suivi le pH, la turbidité, les concentrations en carbone organique dissout et en cuivre total mobile (dissous, libre et sorbé sur les particules mobiles), et le nombre et la nature des bactéries hétérotrophes cultivables totales ([B Tot ]) et résistantes au cuivre

S. Abiven, S. Menasseri, and C. Chenu, The effects of organic inputs over time on soil aggregate stability ??? A literature analysis, Soil Biology and Biochemistry, vol.41, issue.1, pp.1-12, 2009.
DOI : 10.1016/j.soilbio.2008.09.015

URL : https://hal.archives-ouvertes.fr/hal-00730093

G. Aiken, Humic substances in soil, sediment, and water: geochemistry, isolation, and characterization, 1985.

B. Alloway, Heavy metals in soils. 2 e edn, 1995.

Å. R. Almås, J. Mulder, and L. R. Bakken, Trace Metal Exposure of Soil Bacteria Depends on Their Position in the Soil Matrix, Environmental Science & Technology, vol.39, issue.16, pp.5927-5932, 2005.
DOI : 10.1021/es048113w

R. A. Alvarez-puebla, C. Valenzuela-calahorro, and J. J. Garrido, Theoretical study on fulvic acid structure, conformation and aggregation, Science of The Total Environment, vol.358, issue.1-3, pp.243-254, 2006.
DOI : 10.1016/j.scitotenv.2004.11.026

F. Andreux, S. Bruckert, A. Correa, and B. Souchier, Sur une méthodologie de fractionnement physique et chimique des agrégats des sols: origine de la matière organique des fractions obtenues, pp.381-384, 1980.

D. A. Angers and J. Caron, Plant-induced changes in soil structure: Processes and feedbacks, Biogeochemistry, vol.42, pp.55-72, 1998.
DOI : 10.1007/978-94-017-2691-7_3

D. A. Angers, S. Recous, and C. Aita, Fate of carbon and nitrogen in water-stable aggregates during decomposition of 13C15N-labelled wheat straw in situ, European Journal of Soil Science, vol.69, issue.2, pp.295-300, 1997.
DOI : 10.1071/SR9900267

M. Arias, E. Lopez, D. Fernandez, and B. Soto, COPPER DISTRIBUTION AND DYNAMICS IN ACID VINEYARD SOILS TREATED WITH COPPER-BASED FUNGICIDES, Soil Science, vol.169, issue.11, pp.796-805, 2004.
DOI : 10.1097/01.ss.0000148739.82992.59

M. Arias-estévez, J. C. Novoa-munoz, M. Pateiro, and E. Lopez-periago, INFLUENCE OF AGING ON COPPER FRACTIONATION IN AN ACID SOIL, Soil Science, vol.172, issue.3, pp.225-232, 2007.
DOI : 10.1097/SS.0b013e31803063ab

D. Ashworth and B. J. Alloway, Soil mobility of sewage sludge-derived dissolved organic matter, copper, nickel and zinc, Environmental Pollution, vol.127, issue.1, pp.137-144, 2004.
DOI : 10.1016/S0269-7491(03)00237-9

D. J. Ashworth and B. J. Alloway, Complexation of Copper by Sewage Sludge-derived Dissolved Organic Matter: Effects on Soil Sorption Behaviour and Plant Uptake, Water, Air, and Soil Pollution, vol.30, issue.1-4, pp.187-196, 2007.
DOI : 10.1007/s11270-006-9331-7

D. Baize, Teneurs totales en éléments traces métalliques dans les sols: France. Institut national de la recherche agronomique, 1997.

M. Balabane and A. F. Plante, Aggregation and carbon storage in silty soil using physical fractionation techniques, European Journal of Soil Science, vol.47, issue.2, pp.415-427, 2004.
DOI : 10.1046/j.1365-2389.1997.00099.x

J. Balesdent, A. Mariotti, and B. Guillet, Natural 13C abundance as a tracer for studies of soil organic matter dynamics, Soil Biology and Biochemistry, vol.19, issue.1, pp.25-30, 1987.
DOI : 10.1016/0038-0717(87)90120-9

Q. Bao, Q. Lin, G. Tian, G. Wang, J. Yu et al., Copper distribution in water-dispersible colloids of swine manure and its transport through quartz sand, Journal of Hazardous Materials, vol.186, issue.2-3, pp.1660-1666, 2011.
DOI : 10.1016/j.jhazmat.2010.12.042

F. Baptist, L. Zinger, J. C. Clement, C. Gallet, R. Guillemin et al., Tannin impacts on microbial diversity and the functioning of alpine soils: a multidisciplinary approach, Environmental Microbiology, vol.7, issue.3, pp.799-809, 2008.
DOI : 10.1046/j.1462-2920.2000.00072.x

URL : https://hal.archives-ouvertes.fr/halsde-00281689

F. Bartoli and S. Dousset, Impact of organic inputs on wettability characteristics and structural stability in silty vineyard topsoil, European Journal of Soil Science, vol.86, issue.2, pp.183-194, 2011.
DOI : 10.1111/j.1365-2389.2010.01337.x

F. Bastida, E. Kandeler, J. L. Moreno, M. Ros, C. García et al., Application of fresh and composted organic wastes modifies structure, size and activity of soil microbial community under semiarid climate, Applied Soil Ecology, vol.40, issue.2, pp.318-329, 2008.
DOI : 10.1016/j.apsoil.2008.05.007

J. M. Becker, T. Parkin, C. H. Nakatsu, J. D. Wilbur, and A. Konopka, Bacterial Activity, Community Structure, and Centimeter-Scale Spatial Heterogeneity in Contaminated Soil, Microbial Ecology, vol.68, issue.2, pp.220-231, 2006.
DOI : 10.1007/s00248-005-0002-9

E. Besnard, C. Chenu, and M. Robert, Influence of organic amendments on copper distribution among particle-size and density fractions in Champagne vineyard soils, Environmental Pollution, vol.112, issue.3, pp.329-337, 2001.
DOI : 10.1016/S0269-7491(00)00151-2

T. J. Beveridge, Role of Cellular Design in Bacterial Metal Accumulation and Mineralization, Annual Review of Microbiology, vol.43, issue.1, pp.147-171, 1989.
DOI : 10.1146/annurev.mi.43.100189.001051

G. R. Blake and K. H. Hartge, Bulk Density. Dans: Methods of Soil Analysis, Part I. Physical and mineralogical Methods: Agronomy Monograph, pp.363-375, 1986.

S. J. Blott and K. Pye, GRADISTAT: a grain size distribution and statistics package for the analysis of unconsolidated sediments, Earth Surface Processes and Landforms, vol.58, issue.11, pp.1237-1248, 2001.
DOI : 10.1002/esp.261

N. S. Bolan, D. C. Adriano, P. Duraisamy, A. Mani, and K. Arulmozhiselvan, Immobilization and phytoavailability of cadmium in variable charge soils. I. Effect of phospahte addition, Plant and Soil, vol.250, issue.1, pp.83-94, 2003.
DOI : 10.1023/A:1022826014841

L. Bonten, J. Groenenberg, L. Weng, and W. Vanriemsdijk, Use of speciation and complexation models to estimate heavy metal sorption in soils, Geoderma, vol.146, issue.1-2, pp.303-310, 2008.
DOI : 10.1016/j.geoderma.2008.06.005

D. Borrok, B. F. Turner, and A. B. Fein, A universal surface complexation framework for modeling proton binding onto bacterial surfaces in geologic settings, American Journal of Science, vol.305, issue.6-8, pp.826-853, 2005.
DOI : 10.2475/ajs.305.6-8.826

H. Bossuyt, J. Six, and P. Hendrix, Interactive effects of functionally different earthworm species on aggregation and incorporation and decomposition of newly added residue carbon, Geoderma, vol.130, issue.1-2, pp.14-25, 2006.
DOI : 10.1016/j.geoderma.2005.01.005

H. Bossuyt, J. Six, and P. F. Hendrix, Protection of soil carbon by microaggregates within earthworm casts, Soil Biology and Biochemistry, vol.37, issue.2, pp.251-258, 2005.
DOI : 10.1016/j.soilbio.2004.07.035

P. H. Bourrelier, J. Berthelin, and G. Pedro, Contamination des sols par les éléments en traces: les risques et leur gestion, 1998.

K. K. Brandt, R. J. Frandsen, P. E. Holm, and O. Nybroe, Development of pollution-induced community tolerance is linked to structural and functional resilience of a soil bacterial community following a five-year field exposure to copper, Soil Biology and Biochemistry, vol.42, issue.5, pp.748-757, 2010.
DOI : 10.1016/j.soilbio.2010.01.008

C. Bronick and R. Lal, Soil structure and management: a review, Geoderma, vol.124, issue.1-2, pp.3-22, 2005.
DOI : 10.1016/j.geoderma.2004.03.005

G. G. Brown, I. Barois, and P. Lavelle, Regulation of soil organic matter dynamics and microbial activityin the drilosphere and the role of interactionswith other edaphic functional domains, European Journal of Soil Biology, vol.36, issue.3-4, pp.177-198, 2000.
DOI : 10.1016/S1164-5563(00)01062-1

L. Brun, L. Corff, J. Maillet, and J. , Effects of elevated soil copper on phenology, growth and reproduction of five ruderal plant species, Environmental Pollution, vol.122, issue.3, pp.361-368, 2003.
DOI : 10.1016/S0269-7491(02)00312-3

L. Brun, J. Maillet, P. Hinsinger, and M. Pépin, Evaluation of copper availability to plants in copper-contaminated vineyard soils, Environmental Pollution, vol.111, issue.2, pp.293-302, 2001.
DOI : 10.1016/S0269-7491(00)00067-1

L. Brun, J. Maillet, J. Richarte, P. Herrmann, and J. C. Remy, Relationships between extractable copper, soil properties and copper uptake by wild plants in vineyard soils, Environmental Pollution, vol.102, issue.2-3, pp.151-161, 1998.
DOI : 10.1016/S0269-7491(98)00120-1

J. Buekers, L. Van-laer, F. Amery, S. Van-buggenhout, A. Maes et al., Role of soil constituents in fixation of soluble Zn, Cu, Ni and Cd added to soils, European Journal of Soil Science, vol.27, issue.6, pp.1514-1524, 2007.
DOI : 10.1021/es0200084

J. Buffle, Environmental particles, 1993.

J. A. Buffle, Les substances humiques et leurs interactions avec les ions minéraux, Présenté à Conference Proccedings de la Commission d'Hydrologie, 1977.

R. Calvet, Le sol: propriétés et fonctions, 2003.

M. Carter and B. A. Stewart, Structure and organic matter storage in agricultural soils, 1996.

V. Chaignon, Biodisponibilité du cuivre dans la rhizosphère de différentes plantes cultivées, 2001.

V. Chaignon, F. Bedin, and P. Hinsinger, Copper bioavailability and rhizosphere pH changes as affected by nitrogen supply for tomato and oilseed rape cropped on an acidic and a calcareous soil, Plant and Soil, vol.243, issue.2, pp.219-228, 2002.
DOI : 10.1023/A:1019942924985

V. Chaignon, I. Sanchez-neira, P. Herrmann, B. Jaillard, and P. Hinsinger, Copper bioavailability and extractability as related to chemical properties of contaminated soils from a vine-growing area, Environmental Pollution, vol.123, issue.2, pp.229-238, 2003.
DOI : 10.1016/S0269-7491(02)00374-3

C. Prevost-boure, N. Maron, P. Ranjard, L. Nowak, V. Dufrene et al., Seasonal dynamics of the bacterial community in forest soils under different quantities of leaf litter, Applied Soil Ecology, vol.47, issue.1, pp.14-23, 2011.
DOI : 10.1016/j.apsoil.2010.11.006

URL : https://hal.archives-ouvertes.fr/bioemco-00574895

C. Chenu, Influence of a fungal polysaccharide, scleroglucan, on clay microstructures, Soil Biology and Biochemistry, vol.21, issue.2, pp.299-305, 1989.
DOI : 10.1016/0038-0717(89)90108-9

C. Chenu, Clay- or sand-polysaccharide associations as models for the interface between micro-organisms and soil: water related properties and microstructure, Geoderma, vol.56, issue.1-4, pp.143-156, 1993.
DOI : 10.1016/0016-7061(93)90106-U

C. Chenu and A. Bruand, Constituants et organisation du sol, Sol interface fragile. Stengel,P. et Gelin, S, pp.3-17, 1998.

C. Chenu and A. F. Plante, Clay-sized organo-mineral complexes in a cultivation chronosequence: revisiting the concept of the 'primary organo-mineral complex', European Journal of Soil Science, vol.68, issue.4, 2006.
DOI : 10.1016/0016-7061(79)90005-3

URL : https://hal.archives-ouvertes.fr/bioemco-00176212

C. Chenu and G. Stotzky, Interactions between microorganisms and soil particles: An overview. Dans: Interactions between soil particles ans microorganisms : impact on the terrestrial ecosystem, Huang PM, Bollag JM, Senesi N, pp.3-40, 2002.

C. Chenu, L. Bissonnais, Y. Arrouays, and D. , Organic Matter Influence on Clay Wettability and Soil Aggregate Stability, Soil Science Society of America Journal, vol.64, issue.4, pp.1479-1486, 2000.
DOI : 10.2136/sssaj2000.6441479x

C. Chenu, J. Hassink, and J. Bloem, Short-term changes in the spatial distribution of microorganisms in soil aggregates as affected by glucose addition, Biology and Fertility of Soils, vol.34, pp.349-356, 2001.

J. Chotte, A. Schwartzmann, R. Bally, and L. Jocteur-monrozier, Changes in bacterial communities and Azospirillum diversity in soil fractions of a tropical soil under 3 or 19years of natural fallow, Soil Biology and Biochemistry, vol.34, issue.8, pp.1083-1092, 2002.
DOI : 10.1016/S0038-0717(02)00041-X

B. T. Christensen, Physical fractionation of soil and structural and functional complexity in organic matter turnover, European Journal of Soil Science, vol.11, issue.3, pp.345-353, 2001.
DOI : 10.1086/419172

J. M. Conder, R. P. Lanno, and N. T. Basta, Assessment of Metal Availability in Smelter Soil Using Earthworms and Chemical Extractions, Journal of Environment Quality, vol.30, issue.4, p.1231, 2001.
DOI : 10.2134/jeq2001.3041231x

J. Dawson, C. Campbell, W. Towers, C. Cameron, and G. Paton, Linking biosensor responses to Cd, Cu and Zn partitioning in soils, Environmental Pollution, vol.142, issue.3, pp.493-500, 2006.
DOI : 10.1016/j.envpol.2005.10.029

A. Dechesne, C. Pallud, F. Bertolla, and G. L. Grundmann, Impact of the Microscale Distribution of a Pseudomonas Strain Introduced into Soil on Potential Contacts with Indigenous Bacteria, Applied and Environmental Microbiology, vol.71, issue.12, pp.8123-8131, 2005.
DOI : 10.1128/AEM.71.12.8123-8131.2005

E. Dellamico, M. Mazzocchi, L. Cavalca, L. Allievi, and V. Andreoni, Assessment of bacterial community structure in a long-term copper-polluted ex-vineyard soil, Microbiological Research, vol.163, issue.6, pp.671-683, 2008.
DOI : 10.1016/j.micres.2006.09.003

K. Denef, J. Six, H. Bossuyt, S. D. Frey, E. T. Elliott et al., Influence of dry???wet cycles on the interrelationship between aggregate, particulate organic matter, and microbial community dynamics, Soil Biology and Biochemistry, vol.33, issue.12-13, pp.1599-1611, 2001.
DOI : 10.1016/S0038-0717(01)00076-1

K. Denef, J. Six, R. Merckx, and K. Paustian, Short-term effects of biological and physical forces on aggregate formationin soils with different clay mineralogy, Plant and Soil, vol.246, issue.2, pp.185-200, 2002.
DOI : 10.1023/A:1020668013524

K. Denef, J. Six, K. Paustian, and R. Merckx, Importance of macroaggregate dynamics in controlling soil carbon stabilization: short-term effects of physical disturbance induced by dry???wet cycles, Soil Biology and Biochemistry, vol.33, issue.15, pp.2145-2153, 2001.
DOI : 10.1016/S0038-0717(01)00153-5

A. Devez, E. Gomez, R. Gilbin, F. Elbaz-poulichet, F. Persin et al., Assessment of copper bioavailability and toxicity in vineyard runoff waters by DPASV and algal bioassay, Science of The Total Environment, vol.348, issue.1-3, pp.82-92, 2005.
DOI : 10.1016/j.scitotenv.2005.01.004

J. Dorioz, M. Robert, and C. Chenu, The role of roots, fungi and bacteria on clay particle organization. An experimental approach, Geoderma, vol.56, issue.1-4, pp.179-194, 1993.
DOI : 10.1016/0016-7061(93)90109-X

J. Ducaroir and I. Lamy, Evidence of trace metal association with soil organic matter using particle size fractionation after physical dispersion treatment, The Analyst, vol.120, issue.3, p.741, 1995.
DOI : 10.1039/an9952000741

C. Dumat, K. Quenea, A. Bermond, S. Toinen, and M. Benedetti, Study of the trace metal ion influence on the turnover of soil organic matter in cultivated contaminated soils, Environmental Pollution, vol.142, issue.3, pp.521-529, 2006.
DOI : 10.1016/j.envpol.2005.10.027

URL : https://hal.archives-ouvertes.fr/hal-00304354

A. P. Edwards and J. M. Bremner, MICROAGGREGATES IN SOILS1, Journal of Soil Science, vol.202, issue.1, pp.64-73, 1967.
DOI : 10.1111/j.1365-2389.1967.tb01488.x

S. A. El-swaify and W. W. Emerson, Changes in the Physical Properties of Soil Clays Due to Precipitated Aluminum and Iron Hydroxides: I. Swelling and Aggregate Stability After Drying1, Soil Science Society of America Journal, vol.39, issue.6, pp.39-1056, 1975.
DOI : 10.2136/sssaj1975.03615995003900060016x

E. T. Elliott, Aggregate Structure and Carbon, Nitrogen, and Phosphorus in Native and Cultivated Soils1, Soil Science Society of America Journal, vol.50, issue.3, p.627, 1986.
DOI : 10.2136/sssaj1986.03615995005000030017x

R. J. Ellis, P. Morgan, A. J. Weightman, and J. C. Fry, Cultivation-Dependent and -Independent Approaches for Determining Bacterial Diversity in Heavy-Metal-Contaminated Soil, Applied and Environmental Microbiology, vol.69, issue.6, pp.3223-3230, 2003.
DOI : 10.1128/AEM.69.6.3223-3230.2003

C. H. Ettema and D. A. Wardle, Spatial soil ecology, Trends in Ecology & Evolution, vol.17, issue.4, pp.177-183, 2002.
DOI : 10.1016/S0169-5347(02)02496-5

F. Fall, S. Nazaret, S. Chotte, J. L. Brauman, and A. , Bacterial Density and Community Structure Associated with Aggregate Size Fractions of Soil-Feeding Termite Mounds, Microbial Ecology, vol.6, issue.2, pp.191-199, 2004.
DOI : 10.1007/s00248-003-1047-2

D. Fernández-calviño, J. C. Nóvoa-muñoz, E. López-periago, and M. Arias-estévez, Changes in copper content and distribution in young, old and abandoned vineyard acid soils due to land use changes. Land Degrad, Dev, vol.19, pp.165-177, 2008.

D. Fernández-calviño, M. Pateiro-moure, E. López-periago, M. Arias-estévez, and J. C. Nóvoa-muñoz, Copper distribution and acid-base mobilization in vineyard soils and sediments from Galicia (NW Spain), European Journal of Soil Science, vol.31, issue.2, pp.315-326, 2008.
DOI : 10.1016/S0269-7491(01)00274-3

E. Ferrand, C. Dumat, E. Leclerc-cessac, and M. F. Benedetti, Phytoavailability of zirconium in relation to its initial added form and soil characteristics, Plant and Soil, vol.88, issue.6, pp.313-325, 2006.
DOI : 10.1007/s11104-006-9079-2

URL : https://hal.archives-ouvertes.fr/hal-00304355

M. M. Fisher and E. W. Triplett, Automated Approach for Ribosomal Intergenic Spacer Analysis of Microbial Diversity and Its Application to Freshwater Bacterial Communities, Applied and Environmental Microbiology, vol.65, pp.4630-4636, 1999.

L. M. Flores-velez, J. Ducaroir, A. M. Jaunet, and M. Robert, Study of the distribution of copper in an acid sandy vineyard soil by three different methods, European Journal of Soil Science, vol.291, issue.4, pp.523-532, 1996.
DOI : 10.1111/j.1365-2389.1996.tb01852.x

A. Food, World reference base for soil resources, 2006: a framework for international classification, correlation and communication, United Nations, 2006.

A. Fordham and K. Norrish, The nature of soil particles particularly those reacting with arsenate in a series of chemically treated samples, Australian Journal of Soil Research, vol.21, issue.4, p.455, 1983.
DOI : 10.1071/SR9830455

W. J. Gale, C. A. Cambardella, and T. B. Bailey, Root-Derived Carbon and the Formation and Stabilization of Aggregates, Soil Science Society of America Journal, vol.64, issue.1, pp.201-207, 2000.
DOI : 10.2136/sssaj2000.641201x

E. Ghabbour and G. Davies, Humic substances: molecular details and applications in land and water conservation, 2005.
DOI : 10.1039/9781847551085

K. E. Giller, E. Witter, and S. P. Mcgrath, Heavy metals and soil microbes, Soil Biology and Biochemistry, vol.41, issue.10, pp.2031-2037, 2009.
DOI : 10.1016/j.soilbio.2009.04.026

K. E. Giller, E. Witter, and S. P. Mcgrath, Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review, Soil Biology and Biochemistry, vol.30, issue.10-11, pp.1389-1414, 1998.
DOI : 10.1016/S0038-0717(97)00270-8

H. B. Goyal, D. Seal, and R. C. Saxena, Bio-fuels from thermochemical conversion of renewable resources: A review, Renewable and Sustainable Energy Reviews, vol.12, issue.2, pp.504-517, 2008.
DOI : 10.1016/j.rser.2006.07.014

J. L. Green, A. J. Holmes, M. Westoby, I. Oliver, D. Briscoe et al., Spatial scaling of microbial eukaryote diversity, Nature, vol.67, issue.7018, pp.747-750, 2004.
DOI : 10.1046/j.1472-765X.1998.00383.x

C. Grosbellet, L. Vidal-beaudet, V. Caubel, and S. Charpentier, Improvement of soil structure formation by degradation of coarse organic matter, Geoderma, vol.162, issue.1-2, pp.27-38, 2011.
DOI : 10.1016/j.geoderma.2011.01.003

G. L. Grundmann, Spatial scales of soil bacterial diversity ?????? the size of a clone, FEMS Microbiology Ecology, vol.48, issue.2, pp.119-127, 2004.
DOI : 10.1016/j.femsec.2004.01.010

V. Guine, Approche expérimentale et théorique de la réactivité de surface et de la mobilité des colloïdes bactériens en milieux poreux.Terre univers Environnement, p.231, 2006.

V. Guine, J. Martins, B. Causse, A. Durand, J. Gaudet et al., Effect of cultivation and experimental conditions on the surface reactivity of the metal-resistant bacteria Cupriavidus metallidurans CH34 to protons, cadmium and zinc, Chemical Geology, vol.236, issue.3-4, pp.266-280, 2007.
DOI : 10.1016/j.chemgeo.2006.10.001

URL : https://hal.archives-ouvertes.fr/insu-00198915

V. Guiné, J. Martins, and J. P. Gaudet, Facilitated transport of heavy metals by bacterial colloids in sand columns, Journal de Physique IV (Proceedings), vol.107, pp.593-596, 2003.
DOI : 10.1051/jp4:20030373

V. Guiné, L. Spadini, G. Sarret, M. Muris, C. Delolme et al., Zinc Sorption to Three Gram-Negative Bacteria:?? Combined Titration, Modeling, and EXAFS Study, Environmental Science & Technology, vol.40, issue.6, pp.1806-1813, 2006.
DOI : 10.1021/es050981l

A. Hartwig, M. Asmuss, I. Ehleben, U. Herzer, D. Kostelac et al., Interference by Toxic Metal Ions with DNA Repair Processes and Cell Cycle Control: Molecular Mechanisms, Environmental Health Perspectives, vol.110, issue.s5, pp.797-799, 2002.
DOI : 10.1289/ehp.02110s5797

T. Hattori, Soil aggregats as microhabitats of microorganisms, pp.23-36, 1988.

R. J. Haynes and R. S. Swift, Stability of soil aggregates in relation to organic constituents and soil water content, Journal of Soil Science, vol.28, issue.1, pp.73-83, 1990.
DOI : 10.1111/j.1365-2389.1990.tb00046.x

C. E. Heijnen and J. A. Van-veen, A determination of protective microhabitats for bacteria introduced into soil, FEMS Microbiology Letters, vol.85, issue.1, pp.73-80, 1991.
DOI : 10.1111/j.1574-6968.1991.tb04699.x

D. Hillel, Environmental soil physics, 1998.

P. Hinsinger, How Do Plant Roots Acquire Mineral Nutrients? Chemical Processes Involved in the rhizosphere. Dans: Advances in Agronomy, pp.225-265, 1998.

M. C. Horner-devine, K. M. Carney, and B. J. Bohannan, An ecological perspective on bacterial biodiversity, Proceedings of the Royal Society B: Biological Sciences, vol.271, issue.1535, pp.113-122, 2004.
DOI : 10.1098/rspb.2003.2549

H. Irving and R. J. Williams, 637. The stability of transition-metal complexes, Journal of the Chemical Society (Resumed), pp.3192-3210, 1953.
DOI : 10.1039/jr9530003192

A. R. Jacobson, S. Dousset, F. Andreux, and P. C. Baveye, Electron Microprobe and Synchrotron X-ray Fluorescence Mapping of the Heterogeneous Distribution of Copper in High-Copper Vineyard Soils, Environmental Science & Technology, vol.41, issue.18, pp.6343-6349, 2007.
DOI : 10.1021/es070707m

URL : https://hal.archives-ouvertes.fr/hal-00199956

D. Janusauskaite, D. Ozeraitiene, and M. Fullen, Distribution of populations of microorganisms in different aggregate size classes in soil as affected by long-term liming management, Acta Agriculturae Scandinavica, Section B -Plant Soil Sc, vol.59, pp.544-551, 2009.

J. D. Jastrow, Soil aggregate formation and the accrual of particulate and mineral-associated organic matter, Soil Biology and Biochemistry, vol.28, issue.4-5, pp.665-676, 1996.
DOI : 10.1016/0038-0717(95)00159-X

J. Monrozier, L. Guez, P. Chalamet, A. Bardin, R. Martins et al., Distribution of microorganisms and fate of xenobiotic molecules in unsaturated soil environments, Science of The Total Environment, vol.135, pp.121-133, 1993.

J. Monrozier, L. Ladd, J. Fitzpatrick, R. Foster, R. Rapauch et al., Components and microbial biomass content of size fractions in soils of contrasting aggregation, Geoderma, vol.50, issue.1-2, pp.37-62, 1991.
DOI : 10.1016/0016-7061(91)90025-O

B. John, T. Yamashita, B. Ludwig, and H. Flessa, Storage of organic carbon in aggregate and density fractions of silty soils under different types of land use, Geoderma, vol.128, issue.1-2, pp.63-79, 2005.
DOI : 10.1016/j.geoderma.2004.12.013

A. Kabata-pendias and H. Pendias, Trace elements in soils and plants. 2 e edn, 1992.

A. Kabata-pendias and H. Pendias, Trace elements in soils and plants. 3 e edn, 2001.

M. Kabir, J. L. Chotte, M. Rahman, R. Bally, and L. J. Monrozier, Distribution of soil fractions and location of soil bacteria in a vertisol under cultivation and perennial grass, Plant and Soil, vol.21, issue.2, pp.243-255, 1994.
DOI : 10.1007/BF00007974

E. Kandeler, D. Tscherko, K. D. Bruce, M. Stemmer, P. J. Hobbs et al., Structure and function of the soil microbial community in microhabitats of a heavy metal polluted soil, Biology and Fertility of Soils, vol.32, issue.5, pp.390-400, 2000.
DOI : 10.1007/s003740000268

F. Kandeler, C. Kampichler, and O. Horak, Influence of heavy metals on the functional diversity of soil microbial communities, Biology and Fertility of Soils, vol.26, issue.3, pp.299-306, 1996.
DOI : 10.1007/BF00335958

A. D. Karathanasis, D. M. Johnson, and C. J. Matocha, Biosolid Colloid-Mediated Transport of Copper, Zinc, and Lead in Waste-Amended Soils, Journal of Environment Quality, vol.34, issue.4, pp.1153-1164, 2005.
DOI : 10.2134/jeq2004.0403

M. Khan and J. Scullion, Effect of soil on microbial responses to metal contamination, Environmental Pollution, vol.110, issue.1, pp.115-125, 2000.
DOI : 10.1016/S0269-7491(99)00288-2

G. Kilbertus, Etude des microhabitats contenus dans les agrégats du sol. Leur relation avec la biomasse bactérienne et la taille des procaryotes présents, Rev. Ecol. Biol. Sol, vol.17, pp.543-557, 1980.

M. Kimura, A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences, Journal of Molecular Evolution, vol.206, issue.5, Nov., pp.111-120, 1980.
DOI : 10.1007/BF01731581

M. Komarek, J. Szakova, M. Rohoskova, H. Javorska, V. Chrastny et al., Copper contamination of vineyard soils from small wine producers: A case study from the Czech Republic, Geoderma, vol.147, issue.1-2, pp.16-22, 2008.
DOI : 10.1016/j.geoderma.2008.07.001

M. Komárek, E. ?adková, V. Chrastný, F. Bordas, and J. Bollinger, Contamination of vineyard soils with fungicides: A review of environmental and toxicological aspects, Environment International, vol.36, issue.1, pp.138-151, 2010.
DOI : 10.1016/j.envint.2009.10.005

M. Konert and J. Vandenberghe, Comparison of laser grain size analysis with pipette and sieve analysis: a solution for the underestimation of the clay fraction, Sedimentology, vol.44, issue.3, pp.523-535, 1997.
DOI : 10.1046/j.1365-3091.1997.d01-38.x

J. Kumpiene, A. Lagerkvist, and C. Maurice, Stabilization of Pb- and Cu-contaminated soil using coal fly ash and peat, Environmental Pollution, vol.145, issue.1, pp.365-373, 2007.
DOI : 10.1016/j.envpol.2006.01.037

T. Kunito, K. Saeki, H. Oyaizu, and S. Matsumoto, Influences of Copper Forms on the Toxicity to Microorganisms in Soils, Ecotoxicology and Environmental Safety, vol.44, issue.2, pp.174-181, 1999.
DOI : 10.1006/eesa.1999.1820

T. Kunito, K. Senoo, K. Saeki, H. Oyaizu, and S. Matsumoto, Usefulness of the Sensitivity???Resistance Index to Estimate the Toxicity of Copper on Bacteria in Copper-Contaminated Soils, Ecotoxicology and Environmental Safety, vol.44, issue.2, pp.182-189, 1999.
DOI : 10.1006/eesa.1999.1821

J. Ladd, R. Foster, and J. Skjemstad, Soil structure: carbon and nitrogen metabolism, Geoderma, vol.56, issue.1-4, pp.401-434, 1993.
DOI : 10.1016/0016-7061(93)90124-4

M. A. Larkin, G. Blackshields, N. P. Brown, R. Chenna, P. A. Mcgettigan et al., Clustal W and Clustal X version 2.0, Clustal W and Clustal X version 2.0, pp.2947-2948, 2007.
DOI : 10.1093/bioinformatics/btm404

URL : https://hal.archives-ouvertes.fr/hal-00206210

M. Ledin, Accumulation of metals by microorganisms ??? processes and importance for soil systems, Earth-Science Reviews, vol.51, issue.1-4, pp.1-31, 2000.
DOI : 10.1016/S0012-8252(00)00008-8

D. P. Lejon, R. Chaussod, J. Ranger, and L. Ranjard, Microbial Community Structure and Density Under Different Tree Species in an Acid Forest Soil (Morvan, France), Microbial Ecology, vol.22, issue.4, pp.614-625, 2005.
DOI : 10.1007/s00248-005-5130-8

D. P. Lejon, J. M. Martins, J. Lévêque, L. Spadini, N. Pascault et al., Copper Dynamics and Impact on Microbial Communities in Soils of Variable Organic Status, Environmental Science & Technology, vol.42, issue.8, pp.2819-2825, 2008.
DOI : 10.1021/es071652r

URL : https://hal.archives-ouvertes.fr/hal-00968829

D. P. Lejon, N. Pascault, and L. Ranjard, Differential copper impact on density, diversity and resistance of adapted culturable bacterial populations according to soil organic status, European Journal of Soil Biology, vol.46, issue.2, pp.168-174, 2010.
DOI : 10.1016/j.ejsobi.2009.12.002

D. P. Lejon, J. Sebastia, I. Lamy, R. Chaussod, and L. Ranjard, Relationships between Soil Organic Status and Microbial Community Density and Genetic Structure in Two Agricultural Soils Submitted to Various Types of Organic Management, Microbial Ecology, vol.24, issue.4, pp.650-663, 2007.
DOI : 10.1007/s00248-006-9145-6

C. Lemaitre, Biodétérioration des matériaux, EDP Sciences, 1998.

T. Lenoir and A. Manceau, Number of Independent Parameters in the Potentiometric Titration of Humic Substances, Langmuir, vol.26, issue.6, pp.3998-4003, 2010.
DOI : 10.1021/la9034084

URL : https://hal.archives-ouvertes.fr/hal-00489317

P. Li, X. Wang, T. Zhang, D. Zhou, and Y. He, Effects of several amendments on rice growth and uptake of copper and cadmium from a contaminated soil, Journal of Environmental Sciences, vol.20, issue.4, pp.449-455, 2008.
DOI : 10.1016/S1001-0742(08)62078-1

W. Li, M. Zhang, and H. Shu, Distribution and Fractionation of Copper in Soils of Apple Orchards (5 pp), Environmental Science and Pollution Research - International, vol.12, issue.3, pp.168-172, 2005.
DOI : 10.1065/espr2005.04.243

E. Lugato, G. Simonetti, F. Morari, S. Nardi, A. Berti et al., Distribution of organic and humic carbon in wet-sieved aggregates of different soils under long-term fertilization experiment, Geoderma, vol.157, issue.3-4, pp.80-85, 2010.
DOI : 10.1016/j.geoderma.2010.03.017

E. Madejon, P. Madejon, P. Burgos, A. Perezdemora, and F. Cabrera, Trace elements, pH and organic matter evolution in contaminated soils under assisted natural remediation: A 4-year field study, Journal of Hazardous Materials, vol.162, issue.2-3, pp.931-938, 2009.
DOI : 10.1016/j.jhazmat.2008.05.119

L. Maderova, M. Watson, and G. I. Paton, Bioavailability and toxicity of copper in soils: Integrating chemical approaches with responses of microbial biosensors, Soil Biology and Biochemistry, vol.43, issue.6, pp.1162-1168, 2011.
DOI : 10.1016/j.soilbio.2011.02.004

A. Manceau and A. Matynia, The nature of Cu bonding to natural organic matter, Geochimica et Cosmochimica Acta, vol.74, issue.9, pp.2556-2580, 2010.
DOI : 10.1016/j.gca.2010.01.027

URL : https://hal.archives-ouvertes.fr/insu-00549800

J. C. Marinissen and A. R. Dexter, Mechanisms of stabilization of earthworm casts and artificial casts, Biology and Fertility of Soils, vol.32, issue.2, pp.163-167, 1990.
DOI : 10.1007/BF00335801

P. Marschner, Structure and function of the soil microbial community in a long-term fertilizer experiment, Soil Biology and Biochemistry, vol.35, issue.3, pp.453-461, 2003.
DOI : 10.1016/S0038-0717(02)00297-3

J. M. Martins, J. Monrozier, L. Chamalet, A. Bardin, and R. , Microbial response to repeated applications of low concentrations of pentachlorophenol in an alfisol under pasture, Chemosphere, vol.35, issue.8, pp.1637-1650, 1997.
DOI : 10.1016/S0045-6535(97)00245-2

J. M. Martins, Microbiogéochimie, transfert réactif et impact des micropolluants dans les sols Approche couplée multi-échelles et modélisation, 2008.

A. Matynia, T. Lenoir, B. Causse, L. Spadini, T. Jacquet et al., Semi-empirical proton binding constants for natural organic matter, Geochimica et Cosmochimica Acta, vol.74, issue.6, pp.1836-1851, 2010.
DOI : 10.1016/j.gca.2009.12.022

URL : https://hal.archives-ouvertes.fr/insu-00549804

R. G. Mclaren and D. V. Crawford, STUDIES ON SOIL COPPER, Journal of Soil Science, vol.7, issue.4, pp.443-452, 1973.
DOI : 10.1111/j.1365-2389.1973.tb02311.x

M. Mench, J. Vangronsveld, V. Didier, and H. Clijsters, Evaluation of metal mobility, plant availability and immobilization by chemical agents in a limed-silty soil, Environmental Pollution, vol.86, issue.3, pp.279-286, 1994.
DOI : 10.1016/0269-7491(94)90168-6

R. Milleret, R. Le-bayon, F. Lamy, J. Gobat, and P. Boivin, Impact of roots, mycorrhizas and earthworms on soil physical properties as assessed by shrinkage analysis, Journal of Hydrology, vol.373, issue.3-4, pp.499-507, 2009.
DOI : 10.1016/j.jhydrol.2009.05.013

I. Mohamed, B. Ahamadou, M. Li, C. Gong, P. Cai et al., Fractionation of copper and cadmium and their binding with soil organic matter in a contaminated soil amended with organic materials, Journal of Soils and Sediments, vol.335, issue.7, pp.973-982, 2010.
DOI : 10.1007/s11368-010-0199-1

C. M. Monreal, H. Schulten, and H. Kodama, Age, turnover and molecular diversity of soil organic matter in aggregates of a Gleysol, Canadian Journal of Soil Science, vol.77, issue.3, pp.379-388, 1997.
DOI : 10.4141/S95-064

D. Mummey, W. Holben, J. Six, and P. Stahl, Spatial Stratification of Soil Bacterial Populations in Aggregates of Diverse Soils, Microbial Ecology, vol.35, issue.3, pp.404-411, 2006.
DOI : 10.1007/s00248-006-9020-5

D. L. Mummey and P. D. Stahl, Analysis of Soil Whole- and Inner-Microaggregate Bacterial Communities, Microbial Ecology, vol.46, issue.1, pp.41-50, 2004.
DOI : 10.1007/s00248-003-1000-4

P. Nannipieri, J. Ascher, M. T. Ceccherini, L. Landi, G. Pietramellara et al., Microbial diversity and soil functions, European Journal of Soil Science, vol.143, issue.4, pp.655-670, 2003.
DOI : 10.1007/s003740050533

A. Navel, J. M. Martins, L. Ranjard, P. Maron, A. Manceau et al., Control of copper impact on bacterial community by microscale localisation of microorganisms and added copper and organic matter in a vineyard loamy soil, 2011.

O. Nybroe, K. K. Brandt, Y. M. Ibrahim, A. Tom-petersen, and P. E. Holm, DIFFERENTIAL BIOAVAILABILITY OF COPPER COMPLEXES TO BIOLUMINESCENT PSEUDOMONAS FLUORESCENS REPORTER STRAINS, Environmental Toxicology and Chemistry, vol.27, issue.11, p.2246, 2008.
DOI : 10.1897/08-025.1

J. Oades, The role of biology in the formation, stabilization and degradation of soil structure, Geoderma, vol.56, issue.1-4, pp.377-400, 1993.
DOI : 10.1016/0016-7061(93)90123-3

J. M. Oades, Soil organic matter and structural stability: mechanisms and implications for management, Plant and Soil, vol.21, issue.1-3, pp.319-337, 1984.
DOI : 10.1007/BF02205590

J. M. Oades, The retention of organic matter in soils, Biogeochemistry, vol.14, issue.1, pp.35-70, 1988.
DOI : 10.1007/BF02180317

K. Oorts, H. Bossuyt, J. Labreuche, R. Merckx, and B. Nicolardot, Carbon and nitrogen stocks in relation to organic matter fractions, aggregation and pore size distribution in no-tillage and conventional tillage in northern France, European Journal of Soil Science, vol.81, issue.1, pp.248-259, 2007.
DOI : 10.1016/S0038-0717(00)00031-6

P. Padmavathiamma, P. Li, and L. , Phytoremediation of Metal-Contaminated Soil in Temperate Humid Regions of British Columbia, Canada, International Journal of Phytoremediation, vol.3, issue.6, pp.575-590, 2009.
DOI : 10.1016/j.scitotenv.2006.01.016

P. Padmavathiamma and L. Li, Effect of Amendments on Phytoavailability and Fractionation of Copper and Zinc in a Contaminated Soil, International Journal of Phytoremediation, vol.44, issue.7, pp.697-715, 2010.
DOI : 10.1021/ac50043a017

C. Parat, R. Chaussod, J. Leveque, S. Dousset, and F. Andreux, The relationship between copper accumulated in vineyard calcareous soils and soil organic matter and iron, European Journal of Soil Science, vol.33, issue.4, pp.663-670, 2002.
DOI : 10.1016/0269-7491(94)00041-B

URL : https://hal.archives-ouvertes.fr/hal-01505976

D. L. Parkhurst and C. A. Appelo, User's guide to PhreeqC (version 2) -A computer program for speciation batch-reaction, one dimensional transport and invers geochemical calculation, Water Ressources Investigation Report, pp.99-4259, 1999.

J. Pelmont, Biodégradations et métabolismes: les bactéries pour les technologies de l'environnement, EDP sciences, 2005.

U. Pietrzak and D. Mcphail, Copper accumulation, distribution and fractionation in vineyard soils of Victoria, Australia, Geoderma, vol.122, issue.2-4, pp.151-166, 2004.
DOI : 10.1016/j.geoderma.2004.01.005

Z. Piotrowska-seget and J. Kozdroj, Changes in culturable bacterial community of soil treated with high dosages of Cu or Cd, Plant Soil & Environment, vol.54, pp.520-528, 2008.

L. Ramos, L. M. Hernandez, and M. J. Gonzalez, Sequential Fractionation of Copper, Lead, Cadmium and Zinc in Soils from or near Do??ana National Park, Journal of Environment Quality, vol.23, issue.1, p.50, 1994.
DOI : 10.2134/jeq1994.00472425002300010009x

L. Ranjard and A. Richaume, Quantitative and qualitative microscale distribution of bacteria in soil, Research in Microbiology, vol.152, issue.8, pp.707-716, 2001.
DOI : 10.1016/S0923-2508(01)01251-7

L. Ranjard, E. Brothier, and S. Nazareth, Sequencing Bands of Ribosomal Intergenic Spacer Analysis Fingerprints for Characterization and Microscale Distribution of Soil Bacterium Populations Responding to Mercury Spiking, Applied and Environmental Microbiology, vol.66, issue.12, pp.5334-5339, 2000.
DOI : 10.1128/AEM.66.12.5334-5339.2000

L. Ranjard, D. P. Lejon, C. Mougel, L. Schehrer, D. Merdinoglu et al., Sampling strategy in molecular microbial ecology: influence of soil sample size on DNA fingerprinting analysis of fungal and bacterial communities, Environmental Microbiology, vol.62, issue.11, pp.1111-1120, 2003.
DOI : 10.1016/S1369-5274(02)00324-7

L. Ranjard, V. Nowak, A. Echairi, V. Faloya, and R. Chaussod, The dynamics of soil bacterial community structure in response to yearly repeated agricultural copper treatments, Research in Microbiology, vol.159, issue.4, pp.251-254, 2008.
DOI : 10.1016/j.resmic.2008.02.004

L. Ranjard, A. Richaume, L. Jocteur-monrozier, and S. Nazaret, Response of soil bacteria to Hg(II) in relation to soil characteristics and cell location, FEMS Microbiology Ecology, vol.24, issue.4, pp.321-331, 1997.
DOI : 10.1111/j.1574-6941.1997.tb00449.x

L. D. Rasmussen and S. J. Sorensen, Effects of mercury contamination on the culturable heterotrophic, functional and genetic diversity of the bacterial community in soil, FEMS Microbiology Ecology, vol.36, issue.1, pp.1-9, 2001.
DOI : 10.1111/j.1574-6941.2001.tb00820.x

B. Remenant, G. Grundmann, and L. Jocteurmonrozier, From the micro-scale to the habitat: Assessment of soil bacterial community structure as shown by soil structure directed sampling, Soil Biology and Biochemistry, vol.41, issue.1, pp.29-36, 2009.
DOI : 10.1016/j.soilbio.2008.09.005

E. Remon, J. Bouchardon, B. Cornier, B. Guy, J. Leclerc et al., Soil characteristics, heavy metal availability and vegetation recovery at a former metallurgical landfill: Implications in risk assessment and site restoration, Environmental Pollution, vol.137, issue.2, pp.316-323, 2005.
DOI : 10.1016/j.envpol.2005.01.012

URL : https://hal.archives-ouvertes.fr/emse-00497684

A. Richaume, C. Steinberg, L. Jocteurmonrozier, and G. Faurie, Differences between direct and indirect enumeration of soil bacteria: The influence of soil structure and cell location, Soil Biology and Biochemistry, vol.25, issue.5, pp.641-643, 1993.
DOI : 10.1016/0038-0717(93)90206-Q

M. Robert, Le Sol : interface dans l'environnement: ressource pour le développement, 1996.

M. Rousseau, Transport préférentiel de particules dans un sol non saturé: de l'expérimentation en colonne lysimétrique à l'élaboration d, 2003.

L. S. Ruamps, N. Nunan, and C. Chenu, Microbial biogeography at the soil pore scale, Soil Biology and Biochemistry, vol.43, issue.2, pp.280-286, 2011.
DOI : 10.1016/j.soilbio.2010.10.010

URL : https://hal.archives-ouvertes.fr/bioemco-00577735

C. Rumpel, K. Eusterhues, and I. Kogel-knabner, Location and chemical composition of stabilized organic carbon in topsoil and subsoil horizons of two acid forest soils, Soil Biology and Biochemistry, vol.36, issue.1, pp.177-190, 2004.
DOI : 10.1016/j.soilbio.2003.09.005

URL : https://hal.archives-ouvertes.fr/bioemco-00169650

J. Ryan and M. Elimelech, Colloid mobilization and transport in groundwater, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol.107, pp.1-56, 1996.
DOI : 10.1016/0927-7757(95)03384-X

C. Saison, V. Degrange, R. Oliver, P. Millard, C. Commeaux et al., Alteration and resilience of the soil microbial community following compost amendment: effects of compost level and compost-borne microbial community, Environmental Microbiology, vol.59, issue.2, pp.247-257, 2006.
DOI : 10.1016/S0048-9697(02)00390-X

URL : https://hal.archives-ouvertes.fr/hal-00124607

N. Saitou and M. Nei, The neighbor-joining method -A new method for reconstructing phylogenetic trees, Molecular biology and evolution, vol.4, pp.406-425, 1987.

D. Salam and M. El-fadel, Mobility and Availability of Copper in Agricultural Soils Irrigated from Water Treated with Copper Sulfate Algaecide, Water, Air, and Soil Pollution, vol.60, issue.13, pp.3-13, 2008.
DOI : 10.1007/s11270-008-9722-z

S. Sauvé, M. Mcbride, W. Norvell, and W. Hendershot, copper solubility and speciation of in situ contaminated soil: effects of copper level, pH and organic matter, Water, Air and Soil Pollution, pp.133-149, 1997.

D. Schmitt, NOM-facilitated transport of metal ions in aquifers: importance of complex-dissociation kinetics and colloid formation, Water Research, vol.37, issue.15, pp.3541-3550, 2003.
DOI : 10.1016/S0043-1354(01)00525-5

P. J. Schoeneberger, Field Book for Describing and Sampling Soils, Version 2.0. United States Government Printing Office, 2003.

H. Schulten and M. Schnitzer, A state of the art structural concept for humic substances, Naturwissenschaften, vol.133, issue.118, pp.29-30, 1993.
DOI : 10.1007/BF01139754

A. Schäfer, P. Ustohal, H. Harms, F. Stauffer, T. Dracos et al., Transport of bacteria in unsaturated porous media, Journal of Contaminant Hydrology, vol.33, issue.1-2, pp.149-169, 1998.
DOI : 10.1016/S0169-7722(98)00069-2

J. Sebastia, Prise en compte de la réactivité de différentes fractions des matières organiques du sol dans la prévision de la spéciation des métaux, 2007.

J. Sebastia, F. Van-oort, and I. Lamy, Buffer capacity and Cu affinity of soil particulate organic matter (POM) size fractions, European Journal of Soil Science, vol.48, issue.2, pp.304-314, 2008.
DOI : 10.1016/S0038-0717(00)00040-7

T. Sen and K. Khilar, Review on subsurface colloids and colloid-associated contaminant transport in saturated porous media, Advances in Colloid and Interface Science, vol.119, pp.71-96, 2006.

A. Sessitsch, A. Weilharter, M. H. Gerzabek, H. Kirchmann, and E. Kandeler, Microbial Population Structures in Soil Particle Size Fractions of a Long-Term Fertilizer Field Experiment, Applied and Environmental Microbiology, vol.67, issue.9, pp.4215-4224, 2001.
DOI : 10.1128/AEM.67.9.4215-4224.2001

B. Shahnavaz, Communautés bactériennes de sols alpins et filtres environnementaux, 2009.

L. M. Shuman, FRACTIONATION METHOD FOR SOIL MICROELEMENTS, Soil Science, vol.140, issue.1, pp.11-22, 1985.
DOI : 10.1097/00010694-198507000-00003

L. Sigg, P. Behra, and W. Stumm, Chimie des milieux aquatiques chimie des eaux naturelles et des interfaces dans l'environnement, 2001.

J. Six, H. Bossuyt, S. Degryse, and K. Denef, A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics*1. Soil and Tillage Research, pp.7-31, 2004.

J. Six, K. Paustian, E. T. Elliott, and C. Combrink, Soil Structure and Organic Matter, Soil Science Society of America Journal, vol.64, issue.2, p.681, 2000.
DOI : 10.2136/sssaj2000.642681x

V. I. Slaveykova and K. J. Wilkinson, Predicting the Bioavailability of Metals and Metal Complexes: Critical Review of the Biotic Ligand Model, Environmental Chemistry, vol.2, issue.1, p.9, 2005.
DOI : 10.1071/EN04076

L. Spadini, P. W. Schindler, L. Charlet, A. Manceau, and K. V. Ragnarsdottir, Hydrous ferric oxide: evaluation of Cd???HFO surface complexation models combining CdK EXAFS data, potentiometric titration results, and surface site structures identified from mineralogical knowledge, Journal of Colloid and Interface Science, vol.266, issue.1, pp.1-18, 2003.
DOI : 10.1016/S0021-9797(03)00504-6

URL : https://hal.archives-ouvertes.fr/hal-00109233

G. Sposito, The surface chemistry of soils, 1984.

G. Sposito, The chemistry of soils, 1989.

P. Stengel, Utilisation de l'analyse des systèmes de porosité pour la caractérisation de l'état physique du sol in situ, Annales Agronomiques, vol.30, pp.27-49, 1979.

F. Stevenson, Humus chemistry: genesis, composition, reactions. 2 e edn, 1994.

M. Sumner, Handbook of soil science, 2000.

M. Tarfa, Towards a metranscriptomic comparison of two alpine soils under contrasted snow cover, 2011.

J. Thioulouse, D. Chessel, S. Dole, and J. M. Olivier, ADE-4: a multivariate analysis and graphical display software, Statistics and Computing, vol.7, issue.1, pp.75-83, 1997.
DOI : 10.1023/A:1018513530268

URL : https://hal.archives-ouvertes.fr/hal-00434994

J. M. Tisdall and J. M. Oades, Organic matter and water-stable aggregates in soils, Journal of Soil Science, vol.29, issue.2, pp.141-163, 1982.
DOI : 10.1111/j.1365-2389.1982.tb01755.x

A. Tom-petersen, H. Hansen, and O. Nybroe, Time and Moisture Effects on Total and Bioavailable Copper in Soil Water Extracts, Journal of Environment Quality, vol.33, issue.2, pp.505-512, 2004.
DOI : 10.2134/jeq2004.5050

A. Tom-petersen, C. Hosbond, and O. Nybroe, Identification of copper-induced genes in Pseudomonas fluorescens and use of a reporter strain to monitor bioavailable copper in soil, FEMS Microbiology Ecology, vol.38, issue.1, pp.59-67, 2001.
DOI : 10.1111/j.1574-6941.2001.tb00882.x

S. Torkzaban, S. Bradford, M. Vangenuchten, and S. Walker, Colloid transport in unsaturated porous media: The role of water content and ionic strength on particle straining, Journal of Contaminant Hydrology, vol.96, issue.1-4, pp.113-127, 2008.
DOI : 10.1016/j.jconhyd.2007.10.006

C. Tournassat, E. Ferrage, C. Poinsignon, and L. Charlet, The titration of clay minerals, Journal of Colloid and Interface Science, vol.273, issue.1, pp.234-246, 2004.
DOI : 10.1016/j.jcis.2003.11.022

URL : https://hal.archives-ouvertes.fr/hal-00109235

L. W. Turchenek and J. M. Oades, Fractionation of organo-mineral complexes by sedimentation and density techniques, Geoderma, vol.21, issue.4, pp.311-343, 1979.
DOI : 10.1016/0016-7061(79)90005-3

R. Vacapaulin, M. Estelleralberich, J. Lugodelafuente, and H. Zavaletamancera, Effect of sewage sludge or compost on the sorption and distribution of copper and cadmium in soil, Waste Management, vol.26, issue.1, pp.71-81, 2006.
DOI : 10.1016/j.wasman.2005.03.008

I. Virto, P. Barre, and C. Chenu, Microaggregation and organic matter storage at the silt-size scale, Geoderma, vol.146, issue.1-2, pp.326-335, 2008.
DOI : 10.1016/j.geoderma.2008.05.021

URL : https://hal.archives-ouvertes.fr/bioemco-00453819

N. Vollandtuduri, Direct analysis of microaggregates shrinkage for drying: Application to microaggregates from a Brasilian clayey Ferralsol, Comptes Rendus Geoscience, vol.336, issue.11, pp.1017-1024, 2004.
DOI : 10.1016/j.crte.2004.03.003

URL : https://hal.archives-ouvertes.fr/hal-00022694

S. A. Wakelin, G. Chu, R. Lardner, Y. Liang, and M. Mclaughlin, A single application of Cu to field soil has long-term effects on bacterial community structure, diversity, and soil processes, Pedobiologia, vol.53, issue.2, pp.149-158, 2010.
DOI : 10.1016/j.pedobi.2009.09.002

L. Weng, W. Vanriemsdijk, and T. Hiemstra, Cu2+ and Ca2+adsorption to goethite in the presence of fulvic acids, Geochimica et Cosmochimica Acta, vol.72, issue.24, pp.5857-5870, 2008.
DOI : 10.1016/j.gca.2008.09.015

C. R. Woese and G. Fox, Phylogenetic structure of the prokaryotic domain: The primary kingdoms, Proceedings of the National Academy of Sciences, pp.5088-5090, 1977.
DOI : 10.1073/pnas.74.11.5088

I. Worms, D. F. Simon, C. S. Hassler, and K. J. Wilkinson, Bioavailability of??trace metals to??aquatic microorganisms: importance of??chemical, biological and??physical processes on??biouptake, Biochimie, vol.88, issue.11, pp.1721-1731, 2006.
DOI : 10.1016/j.biochi.2006.09.008

R. Xu and O. Di-guida, Comparison of sizing small particles using different technologies, Powder Technology, vol.132, issue.2-3, pp.145-153, 2003.
DOI : 10.1016/S0032-5910(03)00048-2

P. Fix and -. , Fraction speciation calculationLog Conc. mol/l" -axis_scale x_axis 1 24 -axis_scale y_axis 0 0.01 -head Fraction Sx-Sy-Sz-SxCu+ SyCu+ SzCu+ SxCa+ SyCa+ SzCa+2 Ca++ Cu++ pH -start ; 10 graph_x "Fraction" 15 graph_y mol, mol mol, p.mol mol

-. Sy and . Syh, 097 #constante de protonation du malate Sy-+ 2H+ = SyH2+ ; log_k 8.556 #deuxième cste de protonation du malate Sz-+ H+ = SzH ; log_k 5.097 #constante de protonation du malate Sz-+ 2H+ = SzH2+ ; log_k 8.556 #deuxième cste de protonation du malate Cu+2 + Sx-= CuSx+, malate cste Ca+2 + Sx-= CaSx+ ; log_k 2.72 # 2.72 malate cste

+. Cu+2 and . Cusy+, 83 # 4.53 malate cste Ca+2 + Sy-= CaSy+

+. Cu+2 and . Cusz+, 83 # 5.53 malate cste Ca+2 + Sz-= CaSz+ ; log_k 2.72 # 2.72 malate cste # Sol NATW solution 1 ; Sx 5.2 ; Sy 3.7 ; Sz 3.4 ; Cu(+2) 0.11 ; pH 7.6; reaction ; Ca(NO3)2 ; 0.14 ; equilibrium_phases ; Fix-pH -6

+. Cu+2 and . Cusy+, 53 # 5.53 malate cste Ca+2 + Sy-= CaSy+

+. Cu+2 and . Cusz+, 72 malate cste # Sol CCTW solution 1 ; Sx 16.0 ; Sy 2.9 ; Sz 3.4 ; Cu(+2) 0.15 ; pH 7.5; reaction ; Ca(NO3)2 ; 0.14 ; equilibrium_phases ; Fix-pH -6.4 HNO3 ; end # > 250 µm #valeur Sx=48 solution 1 ; Sx 26.6 ; Sy 3.8 ; Sz 3.9 ; Cu(+2) 0.15 ; pH 7.5; reaction ; Ca(NO3)2 ; 0.14 ; equilibrium_phases ; Fix-pH -6.3 HNO3 ; end # 250à63 µm solution 1 ; Sx 8.2 ; Sy 4.8 ; Sz 12.4 ; Cu(+2) 0.09 ; pH 7.3; reaction ; Ca(NO3)2 ; 0.14 ; equilibrium_phases ; Fix-pH -6.05 HNO3 ; end # 63à20 µm solution 1 ; Sx 33.9 ; Sy 22.3 ; Sz 11.3 ; Cu(+2) 0.39 ; pH 7.2; reaction ; Ca(NO3)2 ; 0.14 ; equilibrium_phases ; Fix-pH -6.2 HNO3 ; end # 20à2 µm solution 1, 53 # 5.53 malate Ca+2 + Sz-= CaSz+ ; log_k 2.72 # 2 #constante pour les sols contaminés T0 Cu+2 + Sx-= CuSx+, p.53

+. Cu+2 and . Cusy+, 53 # 4.53 malate cste Ca+2 + Sy-= CaSy+

+. Cu+2 and . Cusz+, 53 # 4.53 malate cste Ca+2 + Sz-= CaSz+