L. J. Gibson and M. F. Ashby, Cellular material: structure and properties, 1997.

L. J. Gibson and M. F. Ashby, Cellular Solids, 1988.
DOI : 10.1017/CBO9781139878326

J. Zhang and M. F. Ashby, The out-of-plane properties of honeycombs, International Journal of Mechanical Sciences, vol.34, issue.6, pp.475-489, 1992.
DOI : 10.1016/0020-7403(92)90013-7

J. Zhang and M. F. Ashby, Buckling of honeycombs under in-plane biaxial stresses, International Journal of Mechanical Sciences, vol.34, issue.6, pp.491-509, 1992.
DOI : 10.1016/0020-7403(92)90014-8

G. Y. Shi and P. Tong, Equivalent transverse shear stiffness of honeycomb cores, International Journal of Solids and Structures, vol.32, issue.10, pp.1383-1393, 1995.
DOI : 10.1016/0020-7683(94)00202-8

S. Thwaites and N. H. Clark, NON-DESTRUCTIVE TESTING OF HONEYCOMB SANDWICH STRUCTURES USING ELASTIC WAVES, Journal of Sound and Vibration, vol.187, issue.2, pp.253-269, 1995.
DOI : 10.1006/jsvi.1995.0519

D. Prall and R. S. Lakes, Properties of a chiral honeycomb with a poisson's ratio of ??? 1, International Journal of Mechanical Sciences, vol.39, issue.3, pp.305-314, 1997.
DOI : 10.1016/S0020-7403(96)00025-2

C. L. Wu, C. A. Weeks, and C. T. Sun, Improving honeycomb-core sandwich structures for impact resistance, J. Adv. Mater, vol.26, pp.41-47, 1995.

E. Wu and W. S. Jiang, Axial crush of metallic honeycombs, International Journal of Impact Engineering, vol.19, issue.5-6, pp.439-456, 1997.
DOI : 10.1016/S0734-743X(97)00004-3

H. Zhao and G. Gary, Crushing behavior of aluminium honeycombs under impact loading

W. Goldsmith and J. L. Sackman, An experimental study of energy absorption in impact on sandwich plates, International Journal of Impact Engineering, vol.12, issue.2, pp.241-262, 1992.
DOI : 10.1016/0734-743X(92)90447-2

W. E. Baker, T. C. Togami, and J. C. Weydert, Static and dynamic properties of high-density metal honeycombs, International Journal of Impact Engineering, vol.21, issue.3, pp.149-163, 1998.
DOI : 10.1016/S0734-743X(97)00040-7

J. J. Harrigan, S. R. Reid, and C. Peng, Inertia effects in impact energy absorbing materials and structures, International Journal of Impact Engineering, vol.22, issue.9-10, pp.955-979, 1999.
DOI : 10.1016/S0734-743X(99)00037-8

W. Goldsmith and D. L. Louie, Axial perforation of aluminium honeycombs by projectiles

H. Zhao, I. Elnasri, and S. Abdennadher, An experimental study on the behaviour under impact loading of metallic cellular materials, International Journal of Mechanical Sciences, vol.47, issue.4-5, pp.757-774, 2005.
DOI : 10.1016/j.ijmecsci.2004.12.012

S. R. Reid and C. Peng, Dynamic uniaxial crushing of wood, International Journal of Impact Engineering, vol.19, issue.5-6, pp.531-570, 1997.
DOI : 10.1016/S0734-743X(97)00016-X

O. Zhou and R. R. Mayer, Characterization of Aluminum Honeycomb Material Failure in Large Deformation Compression, Shear, and Tearing, Journal of Engineering Materials and Technology, vol.124, issue.4, pp.412-420, 2002.
DOI : 10.1115/1.1491575

P. J. Tan and J. J. Harrigan, Inertia effects in uniaxial dynamic compression of a closed cell aluminium alloy foam, Materials Science and Technology, vol.18, issue.5, pp.480-488, 2002.
DOI : 10.1016/0734-743X(94)00062-2

P. J. Tan, S. R. Reid, Z. Harrigan, S. Zou, and . Li, Dynamic compressive strength properties of aluminium foams. Part I???experimental data and observations, Journal of the Mechanics and Physics of Solids, vol.53, issue.10, pp.2174-2205, 2005.
DOI : 10.1016/j.jmps.2005.05.007

P. J. Tan, S. R. Reid, Z. Harrigan, S. Zou, and . Li, Dynamic compressive strength properties of aluminium foams. Part II??????shock??? theory and comparison with experimental data and numerical models, Journal of the Mechanics and Physics of Solids, vol.53, issue.10, pp.2206-2230, 2005.
DOI : 10.1016/j.jmps.2005.05.003

S. L. Lopatnikov and B. A. Gama, Dynamics of metal foam deformation during Taylor cylinder???Hopkinson bar impact experiment, Composite Structures, vol.61, issue.1-2, pp.61-71, 2003.
DOI : 10.1016/S0263-8223(03)00039-4

S. L. Lopatnikov and B. A. Gama, High-velocity plate impact of metal foams, International Journal of Impact Engineering, vol.30, issue.4, pp.421-445, 2004.
DOI : 10.1016/S0734-743X(03)00066-6

D. D. Radford and N. A. Fleck, The use of metal foam projectiles to simulate shock loading on a structure, International Journal of Impact Engineering, vol.31, issue.9, pp.1152-1171, 2005.
DOI : 10.1016/j.ijimpeng.2004.07.012

I. Elnasri, S. Pattofatto, H. Zhao, H. Tsisiris, F. Hild et al., Shock enhancement of cellular structures under impact loading: Part I Experiments, Journal of the Mechanics and Physics of Solids, vol.55, issue.12, pp.2652-2671, 2007.
DOI : 10.1016/j.jmps.2007.04.005

URL : https://hal.archives-ouvertes.fr/hal-00199385

S. Pattofatto, I. Elnasri, H. Zhao, H. Tsisiris, F. Hild et al., Shock enhancement of cellular structures under impact loading: Part II analysis, Journal of the Mechanics and Physics of Solids, vol.55, issue.12, pp.2672-2686, 2007.
DOI : 10.1016/j.jmps.2007.04.004

URL : https://hal.archives-ouvertes.fr/hal-00199386

Z. Zou, S. R. Reid, P. J. Tan, S. Li, and J. J. Harrigan, Dynamic crushing of honeycombs and features of shock fronts, International Journal of Impact Engineering, vol.36, issue.1, pp.165-176, 2009.
DOI : 10.1016/j.ijimpeng.2007.11.008

Y. D. Liu, J. L. Yu, Z. J. Zheng, and J. R. Li, A numerical study on the rate sensitivity of cellular metals, International Journal of Solids and Structures, vol.46, issue.22-23, pp.3988-3998, 2009.
DOI : 10.1016/j.ijsolstr.2009.07.024

T. Wierzbicki, Crushing analysis of metal honeycombs, International Journal of Impact Engineering, vol.1, issue.2, pp.157-174, 1983.
DOI : 10.1016/0734-743X(83)90004-0

J. W. Klintworth and W. J. Stronge, Elasto-plastic yield limits and deformation laws for transversely crushed honeycombs, International Journal of Mechanical Sciences, vol.30, issue.3-4, pp.273-292, 1988.
DOI : 10.1016/0020-7403(88)90060-4

D. Mohr and M. Doyoyo, Experimental Investigation on the Plasticity of Hexagonal Aluminum Honeycomb Under Multiaxial Loading, Journal of Applied Mechanics, vol.71, issue.3, pp.375-385, 2004.
DOI : 10.1115/1.1683715

V. S. Deshpande and N. A. Fleck, Isotropic constitutive models for metallic foams, Journal of the Mechanics and Physics of Solids, vol.48, issue.6-7, pp.1253-1283, 2000.
DOI : 10.1016/S0022-5096(99)00082-4

V. S. Deshpande and N. A. Fleck, High strain rate compressive behaviour of aluminium alloy foams, International Journal of Impact Engineering, vol.24, issue.3, pp.277-298, 2000.
DOI : 10.1016/S0734-743X(99)00153-0

T. Mukai and H. Kanahashi, Experimental study of energy absorption in a close-celled aluminum foam under dynamic loading, Scripta Materialia, vol.40, issue.8, pp.921-927, 1999.
DOI : 10.1016/S1359-6462(99)00038-X

K. A. Dannemann and J. Lankford, High strain rate compression of closed-cell aluminium foams, Materials Science and Engineering: A, vol.293, issue.1-2, pp.157-164, 2000.
DOI : 10.1016/S0921-5093(00)01219-3

B. Budiansky and J. W. Hutchinson, Dynamic buckling of imperfection-sensitive structures, Proceedings of 11th international congress of Applied Mechanics, 1964.
DOI : 10.1007/978-3-662-29364-5_85

G. Gary, Dynamic buckling of an elastoplastic column, International Journal of Impact Engineering, vol.1, issue.4, pp.357-375, 1983.
DOI : 10.1016/0734-743X(83)90029-5

C. R. Calladine and R. W. English, Strain-rate and inertia effects in the collapse of two types of energy-absorbing structure, International Journal of Mechanical Sciences, vol.26, issue.11-12, pp.11-12, 1984.
DOI : 10.1016/0020-7403(84)90021-3

L. L. Tam and C. R. Calladine, Inertia and strain-rate effects in a simple plate-structure under impact loading, International Journal of Impact Engineering, vol.11, issue.3, pp.689-701, 1991.
DOI : 10.1016/0734-743X(91)90044-G

Z. Y. Gao, T. X. Yu, and G. Lu, A study on type II structures. Part I:, International Journal of Impact Engineering, vol.31, issue.7, pp.895-910, 2005.
DOI : 10.1016/j.ijimpeng.2004.04.015

Z. Y. Gao, T. X. Yu, and G. Lu, A study on type II structures. Part I:, International Journal of Impact Engineering, vol.31, issue.7, pp.911-926, 2005.
DOI : 10.1016/j.ijimpeng.2004.04.015

X. Y. Su, T. X. Yu, and S. R. Peng, Inertia-sensitive impact energy-absorbing structures part I: Effects of inertia and elasticity, International Journal of Impact Engineering, vol.16, issue.4, p.651, 1995.
DOI : 10.1016/0734-743X(94)00061-Z

X. Y. Su, T. X. Yu, and S. R. Peng, Inertia-sensitive impact energy-absorbing structures part II: Effect of strain rate, International Journal of Impact Engineering, vol.16, issue.4, p.673, 1995.
DOI : 10.1016/0734-743X(94)00062-2

V. S. Deshpande and N. A. Fleck, Multi-axial yield behaviour of polymer foams, Acta Materialia, vol.49, issue.10, pp.1856-1866, 2001.
DOI : 10.1016/S1359-6454(01)00058-1

H. Zhao and S. Abdennadher, On the strength enhancement under impact loading of square tubes made from rate insensitive metals, International Journal of Solids and Structures, vol.41, issue.24-25, pp.6677-6697, 2004.
DOI : 10.1016/j.ijsolstr.2004.05.039

I. W. Hall, M. Guden, and C. J. Yu, Crushing of aluminum closed cell foams: density and strain rate effects, Scripta Materialia, vol.43, issue.6, pp.515-521, 2000.
DOI : 10.1016/S1359-6462(00)00460-7

S. D. Papka and S. Kyriakides, Biaxial crushing of honeycombs, International Journal of Solids and Structures, vol.36, issue.29, pp.4367-4396, 1999.
DOI : 10.1016/S0020-7683(98)00224-8

D. Ruan, G. Lu, L. S. Ong, and B. Wang, Triaxial compression of aluminium foams, Composites Science and Technology, vol.67, issue.6
DOI : 10.1016/j.compscitech.2006.05.005

J. Chung and A. M. Waas, Compressive response of circular cell polycarbonate honeycombs under inplane biaxial static and dynamic loading. Part I: experiments, International Journal of Impact Engineering, vol.27, issue.7, pp.729-754, 2002.
DOI : 10.1016/S0734-743X(02)00011-8

D. Karagiozova and T. X. Yu, Strain localization in circular honeycombs under in-plane biaxial quasi-static and low-velocity impact loading, International Journal of Impact Engineering, vol.35, issue.8, pp.753-770, 2008.
DOI : 10.1016/j.ijimpeng.2007.11.001

URL : https://hal.archives-ouvertes.fr/hal-00499106

C. Chen and N. A. Fleck, Size effects in the constrained deformation of metallic foams, Journal of the Mechanics and Physics of Solids, vol.50, issue.5, pp.955-977, 2002.
DOI : 10.1016/S0022-5096(01)00128-4

D. Mohr and M. Doyoyo, A new method for the biaxial testing of cellular solids, Experimental Mechanics, vol.1, issue.7, pp.174-183, 2003.
DOI : 10.1007/BF02410498

D. Mohr and M. Doyoyo, Analysis of the Arcan Apparatus in the Clamped Configuration, Journal of Composite Materials, vol.50, issue.22, pp.2583-1594, 2002.
DOI : 10.1177/002199802761405303

M. Kintscher, L. Kärger, A. Wetzel, and D. Hartung, Stiffness and failure behaviour of folded sandwich cores under combined transverse shear and compression, Composites Part A: Applied Science and Manufacturing, vol.38, issue.5, pp.1288-1295, 2007.
DOI : 10.1016/j.compositesa.2006.11.008

S. T. Hong, J. Pan, T. Tyan, and P. Prasad, Quasi-static crush behavior of aluminum honeycomb specimens under compression dominant combined loads, International Journal of Plasticity, vol.22, issue.1, pp.73-109, 2006.
DOI : 10.1016/j.ijplas.2005.02.002

S. T. Hong, J. Pan, T. Tyan, and P. Prasad, Dynamic crush behaviors of aluminum honeycomb specimens under compression dominant inclined loads, International Journal of Plasticity, vol.24, issue.1, pp.89-117, 2008.
DOI : 10.1016/j.ijplas.2007.02.003

G. Gary and P. Bailly, Behaviour of quasi-brittle material at high strain rate. Experiment and modelling, European Journal of Mechanics - A/Solids, vol.17, issue.3, pp.403-420, 1998.
DOI : 10.1016/S0997-7538(98)80052-1

URL : https://hal.archives-ouvertes.fr/hal-00111597

J. D. Mcgee and S. Nemat-nasser, Dynamic bi-axial testing of woven composites, Materials Science and Engineering: A, vol.317, issue.1-2, pp.135-139, 2001.
DOI : 10.1016/S0921-5093(01)01171-6

W. N. Chen and G. Ravichandran, Dynamic compressive failure of a glass ceramic under lateral confinement, Journal of the Mechanics and Physics of Solids, vol.45, issue.8, pp.1303-1328, 1997.
DOI : 10.1016/S0022-5096(97)00006-9

D. Rittel, S. Lee, and G. Ravichandran, A shear-compression specimen for large strain testing, Experimental Mechanics, vol.30, issue.1, pp.58-64, 2002.
DOI : 10.1007/BF02411052

X. Nie, W. W. Chen, X. Sun, and D. W. Templeton, Dynamic Failure of Borosilicate Glass Under Compression/Shear Loading Experiments, Journal of the American Ceramic Society, vol.79, issue.7, pp.2556-2362, 2007.
DOI : 10.1063/1.364450

H. Huang and R. Feng, A study of the dynamic tribological response of closed fracture surface pairs by Kolsky-bar compression-shear experiment, International Journal of Solids and Structures, vol.41, issue.11-12, pp.2821-2835, 2004.
DOI : 10.1016/j.ijsolstr.2004.01.005

J. Duffy, J. D. Cambellm, and R. H. Hawley, On the Use of a Torsional Split Hopkinson Bar to Study Rate Effects in 1100-0 Aluminum, Journal of Applied Mechanics, vol.38, issue.1, pp.83-91, 1971.
DOI : 10.1115/1.3408771

H. Zhao, G. Gary, and J. R. Klepaczko, On the use of a viscoelastic split hopkinson pressure bar, International Journal of Impact Engineering, vol.19, issue.4, pp.319-330, 1997.
DOI : 10.1016/S0734-743X(96)00038-3

URL : https://hal.archives-ouvertes.fr/hal-00111585

T. Wierzbicki and J. Huang, Initiation of plastic folding mechanism in crushed box columns, Thin-Walled Structures, vol.13, issue.1-2, pp.115-143, 1991.
DOI : 10.1016/0263-8231(92)90005-H

D. Mohr and M. Doyoyo, Nucleation and propagation of plastic collapse bands in aluminium honeycomb, J. Appl. Phy, vol.944, pp.2262-2270, 2003.

D. Karagiozova and T. X. Yu, Plastic deformation modes of regular hexagonal honeycombs under in-plane biaxial compression, International Journal of Mechanical Sciences, vol.46, issue.10, pp.1489-1515, 2004.
DOI : 10.1016/j.ijmecsci.2004.09.010

J. W. Klintworth and W. J. Stronge, Elasto-plastic yield limits and deformation laws for transversely crushed honeycombs, International Journal of Mechanical Sciences, vol.30, issue.3-4, pp.273-292, 1988.
DOI : 10.1016/0020-7403(88)90060-4

M. Y. Yang and J. S. Huang, Elastic buckling of regular hexagonal honeycombs with plateau borders under biaxial compression, Composite Structures, vol.71, issue.2, pp.229-237, 2005.
DOI : 10.1016/j.compstruct.2004.10.014

D. Mohr and M. Doyoyo, Deformation-induced folding systems in thin-walled monolithic hexagonal metallic honeycomb, International Journal of Solids and Structures, vol.41, issue.11-12, pp.3353-3377, 2004.
DOI : 10.1016/j.ijsolstr.2004.01.014

D. Mohr and M. Doyoyo, Large plastic deformation of metallic honeycomb: orthotropic rate-independent constitutive model, International Journal of Solids and Structures, vol.41, issue.16-17, pp.4435-4456, 2004.
DOI : 10.1016/j.ijsolstr.2004.02.062

J. J. Harrigan, S. R. Reid, and C. Peng, Inertia effects in impact energy absorbing materials and structures, International Journal of Impact Engineering, vol.22, issue.9-10, pp.955-979, 1999.
DOI : 10.1016/S0734-743X(99)00037-8

S. R. Reid and C. Peng, Dynamic uniaxial crushing of wood, International Journal of Impact Engineering, vol.19, issue.5-6, pp.531-570, 1997.
DOI : 10.1016/S0734-743X(97)00016-X

P. J. Tan and J. J. Harrigan, Inertia effects in uniaxial dynamic compression of a closed cell aluminium alloy foam, Materials Science and Technology, vol.18, issue.5, pp.480-488, 2002.
DOI : 10.1016/0734-743X(94)00062-2

P. J. Tan, S. R. Reid, Z. Harrigan, S. Zou, and . Li, Dynamic compressive strength properties of aluminium foams. Part I???experimental data and observations, Journal of the Mechanics and Physics of Solids, vol.53, issue.10, pp.2174-2205, 2005.
DOI : 10.1016/j.jmps.2005.05.007

P. J. Tan, S. R. Reid, Z. Harrigan, S. Zou, and . Li, Dynamic compressive strength properties of aluminium foams. Part II??????shock??? theory and comparison with experimental data and numerical models, Journal of the Mechanics and Physics of Solids, vol.53, issue.10, pp.2206-2230, 2005.
DOI : 10.1016/j.jmps.2005.05.003

S. L. Lopatnikov and B. A. Gama, Dynamics of metal foam deformation during Taylor cylinder???Hopkinson bar impact experiment, Composite Structures, vol.61, issue.1-2, pp.61-71, 2003.
DOI : 10.1016/S0263-8223(03)00039-4

S. L. Lopatnikov and B. A. Gama, High-velocity plate impact of metal foams, International Journal of Impact Engineering, vol.30, issue.4, pp.421-445, 2004.
DOI : 10.1016/S0734-743X(03)00066-6

D. D. Radford and N. A. Fleck, The use of metal foam projectiles to simulate shock loading on a structure, International Journal of Impact Engineering, vol.31, issue.9, pp.1152-1171, 2005.
DOI : 10.1016/j.ijimpeng.2004.07.012

I. Elnasri, S. Pattofatto, H. Zhao, H. Tsisiris, F. Hild et al., Shock enhancement of cellular structures under impact loading: Part I Experiments, Journal of the Mechanics and Physics of Solids, vol.55, issue.12, pp.2652-2671, 2007.
DOI : 10.1016/j.jmps.2007.04.005

URL : https://hal.archives-ouvertes.fr/hal-00199385

S. Pattofatto, I. Elnasri, H. Zhao, H. Tsisiris, F. Hild et al., Shock enhancement of cellular structures under impact loading: Part II analysis, Journal of the Mechanics and Physics of Solids, vol.55, issue.12, pp.2672-2686, 2007.
DOI : 10.1016/j.jmps.2007.04.004

URL : https://hal.archives-ouvertes.fr/hal-00199386

Z. Zou, S. R. Reid, P. J. Tan, S. Li, and J. J. Harrigan, Dynamic crushing of honeycombs and features of shock fronts, International Journal of Impact Engineering, vol.36, issue.1, pp.165-176, 2009.
DOI : 10.1016/j.ijimpeng.2007.11.008

Y. D. Liu, J. L. Yu, Z. J. Zheng, and J. R. Li, A numerical study on the rate sensitivity of cellular metals, International Journal of Solids and Structures, vol.46, issue.22-23, pp.3988-3998, 2009.
DOI : 10.1016/j.ijsolstr.2009.07.024

L. J. Gibson and M. F. Ashby, Cellular material: structure and properties, 1997.

V. S. Deshpande and N. A. Fleck, High strain rate compressive behaviour of aluminium alloy foams, International Journal of Impact Engineering, vol.24, issue.3, pp.277-298, 2000.
DOI : 10.1016/S0734-743X(99)00153-0

O. Zhou and R. R. Mayer, Characterization of Aluminum Honeycomb Material Failure in Large Deformation Compression, Shear, and Tearing, Journal of Engineering Materials and Technology, vol.124, issue.4, pp.412-420, 2002.
DOI : 10.1115/1.1491575

B. Budiansky and J. W. Hutchinson, Dynamic buckling of imperfection-sensitive structures, Proceedings of 11th international congress of Applied Mechanics, 1964.
DOI : 10.1007/978-3-662-29364-5_85

G. Gary, Dynamic buckling of an elastoplastic column, International Journal of Impact Engineering, vol.1, issue.4, pp.357-375, 1983.
DOI : 10.1016/0734-743X(83)90029-5

C. R. Calladine and R. W. English, Strain-rate and inertia effects in the collapse of two types of energy-absorbing structure, International Journal of Mechanical Sciences, vol.26, issue.11-12, pp.11-12, 1984.
DOI : 10.1016/0020-7403(84)90021-3

L. L. Tam and C. R. Calladine, Inertia and strain-rate effects in a simple plate-structure under impact loading, International Journal of Impact Engineering, vol.11, issue.3, pp.689-701, 1991.
DOI : 10.1016/0734-743X(91)90044-G

Z. Y. Gao, T. X. Yu, and G. Lu, A study on type II structures. Part I:, International Journal of Impact Engineering, vol.31, issue.7, pp.895-910, 2005.
DOI : 10.1016/j.ijimpeng.2004.04.015

Z. Y. Gao, T. X. Yu, and G. Lu, A study on type II structures. Part I:, International Journal of Impact Engineering, vol.31, issue.7, pp.911-926, 2005.
DOI : 10.1016/j.ijimpeng.2004.04.015

M. Langseth, O. S. Hopperstad, and T. Berstad, Crashworthiness of aluminium extrusions: validation of numerical simulation, effect of mass ratio and impact velocity, International Journal of Impact Engineering, vol.22, issue.9-10, pp.829-854, 1999.
DOI : 10.1016/S0734-743X(98)00070-0

M. Langseth and O. S. Hopperstad, Static and dynamic axial crushing of square thin-walled aluminium extrusions, International Journal of Impact Engineering, vol.18, issue.7-8, pp.949-968, 1996.
DOI : 10.1016/S0734-743X(96)00025-5

X. Y. Su, T. X. Yu, and S. R. Peng, Inertia-sensitive impact energy-absorbing structures part I: Effects of inertia and elasticity, International Journal of Impact Engineering, vol.16, issue.4, p.651, 1995.
DOI : 10.1016/0734-743X(94)00061-Z

X. Y. Su, T. X. Yu, and S. R. Peng, Inertia-sensitive impact energy-absorbing structures part II: Effect of strain rate, International Journal of Impact Engineering, vol.16, issue.4, p.673, 1995.
DOI : 10.1016/0734-743X(94)00062-2

H. Zhao and G. Gary, CRUSHING BEHAVIOUR OF ALUMINIUM HONEYCOMBS UNDER IMPACT LOADING, International Journal of Impact Engineering, vol.21, issue.10, pp.827-836, 1998.
DOI : 10.1016/S0734-743X(98)00034-7

URL : https://hal.archives-ouvertes.fr/hal-00111604

H. Zhao and S. Abdennadher, On the strength enhancement under impact loading of square tubes made from rate insensitive metals, International Journal of Solids and Structures, vol.41, issue.24-25, pp.6677-6697, 2004.
DOI : 10.1016/j.ijsolstr.2004.05.039

L. J. Gibson and M. F. Ashby, Cellular material: structure and properties, 1997.

E. Wu and W. S. Jiang, Axial crush of metallic honeycombs, International Journal of Impact Engineering, vol.19, issue.5-6, pp.439-456, 1997.
DOI : 10.1016/S0734-743X(97)00004-3

D. Mohr and M. Doyoyo, Nucleation and propagation of plastic collapse bands in aluminum honeycomb, Journal of Applied Physics, vol.94, issue.4, pp.2262-2270, 2003.
DOI : 10.1063/1.1592010

J. Zhang and M. F. Ashby, The out-of-plane properties of honeycombs, International Journal of Mechanical Sciences, vol.34, issue.6, pp.475-489, 1992.
DOI : 10.1016/0020-7403(92)90013-7

S. T. Hong and D. Pan, Quasi-static crush behavior of aluminum honeycomb specimens under compression dominant combined loads, International Journal of Plasticity, vol.22, issue.1, pp.73-109, 2006.
DOI : 10.1016/j.ijplas.2005.02.002

B. Hopkinson, A Method of Measuring the Pressure Produced in the Detonation of High Explosives or by the Impact of Bullets, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.213, issue.497-508, pp.437-452, 1914.
DOI : 10.1098/rsta.1914.0010

R. M. Davies, A Critical Study of the Hopkinson Pressure Bar, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.240, issue.821, pp.375-457, 1948.
DOI : 10.1098/rsta.1948.0001

H. Kolsky, An Investigation of the Mechanical Properties of Materials at very High Rates of Loading, Proc. Phys. Soc. B62, pp.676-700, 1949.
DOI : 10.1088/0370-1301/62/11/302

J. Harding, E. O. Wood, and J. D. , Tensile testing of materials at impact rates of strain, ARCHIVE: Journal of Mechanical Engineering Science 1959-1982 (vols 1-23), vol.2, issue.2, pp.88-96, 1960.
DOI : 10.1243/JMES_JOUR_1960_002_016_02

U. S. Lindholm and L. M. Yeakley, High strain-rate testing: Tension and compression, Experimental Mechanics, vol.14, issue.3, pp.1-9, 1968.
DOI : 10.1007/BF02326244

J. Duffy, J. D. Cambellm, and R. H. Hawley, On the Use of a Torsional Split Hopkinson Bar to Study Rate Effects in 1100-0 Aluminum, Journal of Applied Mechanics, vol.38, issue.1, pp.83-91, 1971.
DOI : 10.1115/1.3408771

W. E. Baker and C. H. , Strain-Rate Effects in the Propagation of Torsional Plastic Waves, Journal of Applied Mechanics, vol.33, issue.4, p.917, 1966.
DOI : 10.1115/1.3625202

S. Nemat-nasser, J. B. Isaacs, and J. E. Starrett, Hopkinson Techniques for Dynamic Recovery Experiments, Proc. R. Soc.Lond. A, pp.371-391, 1991.
DOI : 10.1098/rspa.1991.0150

A. M. Lennon and K. T. Ramesh, A technique for measuring the dynamic behavior of materials at high temperatures, International Journal of Plasticity, vol.14, issue.12, pp.1279-1292, 1998.
DOI : 10.1016/S0749-6419(98)00056-4

H. Zhao, G. Gary, and J. R. Klepaczko, On the use of a viscoelastic split hopkinson pressure bar, International Journal of Impact Engineering, vol.19, issue.4, pp.319-330, 1997.
DOI : 10.1016/S0734-743X(96)00038-3

URL : https://hal.archives-ouvertes.fr/hal-00111585

H. Zhao and G. Gary, CRUSHING BEHAVIOUR OF ALUMINIUM HONEYCOMBS UNDER IMPACT LOADING, International Journal of Impact Engineering, vol.21, issue.10, pp.827-836, 1998.
DOI : 10.1016/S0734-743X(98)00034-7

URL : https://hal.archives-ouvertes.fr/hal-00111604

C. Chree, The equation of an isotropic elastic solid in polar and cylindrical co-ords their solutions and applications, pp.250-369, 1889.

P. S. Follansbee and C. Franz, Wave Propagation in the Split Hopkinson Pressure Bar, Journal of Engineering Materials and Technology, vol.105, issue.1, pp.61-66, 1983.
DOI : 10.1115/1.3225620

D. A. Gorham, A numerical method for the correction of dispersion in pressure bar signals, Journal of Physics E: Scientific Instruments, vol.16, issue.6
DOI : 10.1088/0022-3735/16/6/008

J. C. Gong, L. E. Malvern, and D. A. Jenkins, Dispersion Investigation in the Split Hopkinson Pressure Bar, Journal of Engineering Materials and Technology, vol.112, issue.3, pp.309-314, 1990.
DOI : 10.1115/1.2903329

G. Gary, J. R. Klepaczko, and H. Zhao, CORRECTION DE DISPERSION POUR L'ANALYSE DES PETITES D??FORMATIONS AUX BARRES DE HOPKINSON, Le Journal de Physique IV, vol.01, issue.C3, pp.3-403, 1991.
DOI : 10.1051/jp4:1991357

R. D. Mindlin and H. D. Mcniven, Axially Symmetric Waves in Elastic Rods, Journal of Applied Mechanics, vol.27, issue.1, pp.145-151, 1960.
DOI : 10.1115/1.3643889

G. A. Coquin, Attenuation of Guided Waves in Isotropic Viscoelastic Materials, The Journal of the Acoustical Society of America, vol.36, issue.6, pp.1074-1080, 1964.
DOI : 10.1121/1.1919155

H. Zhao and G. Gary, A three dimensional analytical solution of the longitudinal wave propagation in an infinite linear viscoelastic cylindrical bar. Application to experimental techniques, Journal of the Mechanics and Physics of Solids, vol.43, issue.8, pp.1335-1348, 1995.
DOI : 10.1016/0022-5096(95)00030-M

D. R. Bland, The theory of linear viscoelasticity, 1960.

J. D. Achenbach, Wave Propagation in Elastic Solids, Journal of Applied Mechanics, vol.41, issue.2
DOI : 10.1115/1.3423344

K. F. Graff, Wave Motion in Elastic Solid

H. Zhao and G. Gary, CRUSHING BEHAVIOUR OF ALUMINIUM HONEYCOMBS UNDER IMPACT LOADING, International Journal of Impact Engineering, vol.21, issue.10, pp.827-836, 1998.
DOI : 10.1016/S0734-743X(98)00034-7

URL : https://hal.archives-ouvertes.fr/hal-00111604

P. J. Rae and D. M. Dattelbaum, The properties of poly(tetrafluoroethylene) (PTFE) in compression, Polymer, vol.45, issue.22, pp.7615-7625, 2004.
DOI : 10.1016/j.polymer.2004.08.064

S. D. Papka and S. Kyriakides, In-plane biaxial crushing of honeycombs???, International Journal of Solids and Structures, vol.36, issue.29, pp.4397-4423, 1999.
DOI : 10.1016/S0020-7683(98)00225-X

A. Hönig and W. J. Stronge, In-plane dynamic crushing of honeycomb. Part I: crush band initiation and wave trapping, International Journal of Mechanical Sciences, vol.44, issue.8, pp.1665-1696, 2002.
DOI : 10.1016/S0020-7403(02)00060-7

Z. Zou, S. R. Reid, P. J. Tan, S. Li, and J. J. Harrigan, Dynamic crushing of honeycombs and features of shock fronts, International Journal of Impact Engineering, vol.36, issue.1, pp.165-176, 2009.
DOI : 10.1016/j.ijimpeng.2007.11.008

D. Mohr and M. Doyoyo, Deformation-induced folding systems in thin-walled monolithic hexagonal metallic honeycomb, International Journal of Solids and Structures, vol.41, issue.11-12, pp.3353-3377, 2004.
DOI : 10.1016/j.ijsolstr.2004.01.014