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Résumé

Cette these propose de relier des observations empiriques sur les fréquences de mots dans
des collections textuelles aux modeles probabilistes de Recherche d’Information (RI).
Concernant les modeles statistiques de fréquences de mots, nous portons notre attention
sur ’étude du phénomene de rafale (a rich get richer phenomenon). Nous établissons une
propriété sur les distributions de probabilité caractérisant leur capacité a modéliser ce
phénomene et nous montrons ensuite que la distribution Beta Négative Binomiale est un
bon modele statistique pour les fréquences des mots.

Nous portons ensuite notre attention sur les modeles probabilistes de RI et leur pro-
priétés fondamentales. Nous introduisons une nouvelle famille de modele probabiliste,
fondé sur la notion d’information de Shannon qui permet d’établir un lien conséquent en-
tre les propriétés importantes des modeles de RI et le phénomene de rafale. Ces nouveaux
modeles obtiennent des résultats comparables aux modeles de réference et les surpassent
avec la boucle de rétro pertinence.

Enfin, les meilleurs performances de nos modeles pour la rétro-pertinence nous ont
conduit & étudier empiriquement et théoriquement les modeles de rétro-pertinence. Nous
proposons un cadre théorique qui permet d’expliquer en partie leurs caractéristiques em-
piriques et leur performances. Ceci permet, entre autres, de mettre en avant les pro-
priétés importantes des modeles de retro-pertinence et de montrer que certains modeles
de référence sont déficients.

Abstract

The present study deals with word frequencies distributions and their relation to prob-
abilistic Information Retrieval (IR) models. We examine the burstiness phenomenon (a
rich get richer phenomenon) of word frequencies in textual collections. We propose to
model this phenomenon as a property of probability distributions and we show that the
Beta Negative Binomial distribution is a good statistical model for words frequencies.

We then focus on probabilistic IR models and their fundamental properties. We then
introduce a novel family of probabilistic models, based on Shannon information. These
new models bridge the gap between significant properties of IR models and the burstiness
phenomenon of word frequencies. These new models yield comparable performances to
state of the art IR models and outperform them when Pseudo Relevance Feedback is
used.

Lastly, the better performances of our models for Pseudo Relevance Feedback (PRF)
lead us to study empirically and theoretically PRF models. We propose a theoretical
framework which explain well the empirical behaviour and performance of PRF models.
Overall, this analysis highlights interesting properties for pseudo relevance feedback and
shows that some state-of-the-art model are inadequate.






Résumé de la These

Introduction

Si la recherche d’information (RI) sur le web est dominée par des systémes apprenant
des fonctions d’ordonnancement a partir de log de données, la RI ad hoc est largement
dominée par des modeles probabilistes avec peu de parameétres a régler, comme Okapi,
les modeles de langues et les modeles DFR (Divergence from Randomness). Ces derniers
sont fondés sur plusieurs distributions de probabilité et hypotheses qui facilitent leur
déploiement en pratique. Si ces modeles semblent bien fondés d’un point de vue RI, les
distributions de probabilités sous-jacentes s’accordent mal avec les données empiriques
collectées dans les collections textuelles.

Il y a eu beaucoup d’études empiriques sur les distributions de fréquences de mots,
dont les modeles de recherche d’information pourraient bénéficier. Quelle connaissance sur
les lois régissant les fréquences de mots devrait étre appliquée au probleme de recherche
d’information ? On pourrait penser qu’un ’bon’ modele statistique de fréquences de mots
devrait conduire a un ’bon’ modele de RI. Il s’avere pourtant que ce n’est pas le cas
ainsi que le suggere ’état de ’art. C’est pourquoi nous nous demandons quelles sont les
proprietés des fréquences de mots qui pourraient étre utiles en RI et s’ il serait possible
de concevoir un modele probabiliste a la fois efficace, performant en RI et motivé par des
études statistiques sur le comportement des mots.

Nous nous interessons plus particulierement & un phénomene important, observé par
Church et Gale [I2] et d’autres, qui est celui du comportement en rafale, ou crépitement
(en anglais burstiness) des mots. Ce phénomeéne décrit le fait que les mots, dans un
document, tendent & apparaitre par paquets. En d’autres termes, une fois que 'on a
observé une occurrence d’un mot dans un document, il est bien plus probable d’observer
de nouvelles occurrences de ce mot.

Pour résumer, nous nous posons donc les questions suivantes:

1. Comment le phénomene de rafale peut etre modélisé dans un cadre probabiliste ?
2. Pouvons nous trouver de 'meilleurs’ modeles probabilistes ?

3. Comment utiliser ces nouvelles distributions pour la RI 7

Résumé des Chapitres

Dans une premier temps, nous examinons dans le chapitre [2 les modeéles proposés pour
modéliser les fréquences de mots, telles que le modele 2-Poisson, Négative Binomiale et
Dirichlet Multinomial. Nous discuterons du phénomene de rafale et d’adaptation pour les
fréquences de mots et des contributions importantes de Katz et Church [45] [13]. Méme
si le phénomene de rafale a été abordé dans differentes études et avec différentes dis-
tributions, notre approche se distingue par la volonté de caractériser les distributions
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qui peuvent naturellement prendre en compte ce phénomene. C’est pourquoi nous pro-
posons une définition formelle de loi de probabilité qui sont ’en rafale’, par extension avec
le phénomeéne que 'on veut modéliser. Cette définition est en fait équivalente a la log
convexité de la fonction de survie P(X > x) de la loi de probabilité considérée.

Ainsi, nous pouvons caractériser les distributions classiques de fréquences de mots
et montrer que la plupart sont inadéquates au regard du phénomene de rafale. Nous
avons alors étudié deux distributions afin de modéliser les fréquences de mots: la loi Beta
Negative Binomiale et la distribution Log-Logistique. Nous avons reconsidéré la distri-
bution Negative Binomiale, dont le comportement en rafale depend de ses parametres,
pour obtenir une distribution de probabilité qui soit toujours en rafale. Nous montrons
ensuite comment et dans quels cas la distribution Log-Logistique peut étre vue comme
une approximation continue de la distribution Beta Negative Binomiale.

Nous verifions ensuite ’adéquation de ces modeles aux données de fréquences & travers
plusieurs expériences et nous validons ainsi ces distributions. Ceci nous ensuite au
probleme de ’application de ces lois de probabilités aux problemes de RI.

Pour cette raison, nous passons en revue les modeles références de RI dans le chapitre
Nous rappelons les hypotheéses principales des modeles BM25, des modeles de langues et
de modeles 'Divergence from Randomness’ (DFR). Nous examinons ensuites les proprietés
fondamentales des modeles de RI dans le chapitre [} comme les effets et conditions sur
la croissance et concavité des fonctions de pondérations et 'effet IDF entre autres. Nous
montrons aussi que le premier principe de normalisation des modeles DFR est une des
conséquences du fait que les lois de probabilités sous-jacente ne sont pas en rafale. Plus
généralement, nous discutons de la relation entre la proprieté de concavité des modeles
de RI et la proprieté de rafale des lois de probabilités des modeles sous-jacents. Tous
les modeles de référence en RI sont des fonctions concaves avec les fréquence des mots
mais toutes les distributions de probabilités utilisées ne sont pas en rafale. On pourrait
considérer que le phenomene de rafale et la concavité des modeles de RI comme deux
versants différents du méme probléme, a savoir comment traiter et ne pas surévaluer ou
sous evaluer les fortes fréquences des mots.

Par conséquent, nous pensons que les modeles probabilistes de RI actuels ne sont
pas compatibles avec les distributions Beta Negative Binomiale et Log-Logistique et nous
introduisons donc une nouvelle famille de modeles probabilistes pour la RI, fondée sur la
notion d’information de Shannon. Lorsque la loi de probabilité sous-jacente est capable
de modéliser le phénomene de rafale, alors le modele devient naturellement valide au sens
des proprietés fondamentales des modeles de RI.

Nous donnons 'exemple de deux modeles dans cette famille. Le premier modele
repose sur une distribution log-logistique et le deuxiéme modele sur une loi que nous
avons appelé Loi de Puissance Lissé (Smoothed Power Law). Ces deux modeles sont
évalués sur plusieurs collections de documents et offrent des performances similaires voire
identique aux modeles de références. Nous étendons ces modeles d’information au cadre
de retro-pertinence (Pseudo Relevance Feedback). Avec cette extension, les modeles que
nous avons proposé surpassent les modeles référence de rétro-pertinence sur plusieurs
collections.

Le bon comportement de nos modeles pour la retro-pertinence nous a amener a ex-
aminer en détail les caractéristiques qui les distingue des modeles classiques. Nous nous
sommes basés sur I’étude des proprietés fondamentales des modeles de RI pour I’étendre au
modele de retro-pertinence. Nous dressons donc une liste de contraintes classiques avant
d’introduire une nouvelle contrainte pour les modeles de rétro-pertinence, contrainte liée
a la fréquence documentaire (DF) des mots dans l’ensemble de rétro-pertinence. Nous
analysons ensuite, d’un point de vue théorique, différents modeles de rétro-pertinence par
rapport a ces contraintes. Cette analyse montre que plusieurs modeles références ne sat-
isfont pas plusieurs contraintes au contraire des modeles d’information. Les contraintes



que nous mentionnons sont validées empiriquement sur plusieurs collection afin de vérifier
leur bien fondé. Au final, nous avons établi un panorama des modeles de retro-pertinence
avec une théorie qui permet d’expliquer les résultats experimentaux de ces modeles.

Conclusion

Nous avons étudier des modeles probabilistes pour les fréquences de mots et pour la
recherche d’information. Puis, nous avons essayé de relier ces modeéles dans le but
d’obtenir a la fois un 'bon’ modele statistique des fréquences de mots et un ’bon’ modele
de recherche d’information.

Nous avons proposé de modéliser le phénomene de rafale comme une proprieté des
distributions de probabilités caractérisant ainsi leur capacité a modéliser ce phénomene.
Ceci nous a amené a considérer de nouvelles distributions comme la Beta Négative Bino-
miale. Nous montrons que cette distribution est un relativement bon modele statistique
pour les fréquences des mots et explique mieux les données que la plupart des distributions
de probabilités utilisées en recherche d’information.

Nous avons ensuite analysé les modeles de RI afin de mieux comprendre leur proprietés
fondamentales. Nous introduisons une nouvelle famille de modeles probabilistes pour la
recherche d’information, fondé sur la notion d’information de Shannon et qui permet
d’établir un lien conséquent entre les proprietés importantes des modeles de Recherche
d’Information et le phénomene de rafale. Par exemple, nous montrons une relation directe
entre entre la concavité des modeles de RI et le comportement en rafale des distributions
modelisant les fréquences des mots. Nos expériences montrent que ces nouveaux modeéles
obtiennent des résultats comparables aux modeles de réferences et les surpassent avec la
boucle de rétro pertinence.

Enfin, les meilleurs performances de nos modeles pour la rétro-pertinence nous ont
conduit & étudier empiriquement et théoriquement les modeles de rétro-pertinence. Nous
proposons un cadre théorique qui permet ainsi d’expliquer en partie leurs caractéristiques
empiriques et leur performances. Ceci permet, entre autres, de mettre en avant les pro-
prietés importantes des modeles de retro-pertinence et de montrer que certains modeles
de référence sont déficients.

Ces nouveaux modeles fondés sur linformation sont performants, intuitifs, aisés a
mettre en oeuvre et ont été extensivement analysés d’un point de vue théorique et pra-
tique.
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Chapter 1

Introduction

The beginning of Information Retrieval can be dated to Luhn’s works in the 50’s. Luhn, a
computer scientist working at IBM, had to deal with new problems raised by libraries and
documentation centers. Since then, information access techniques were developed in order
to face the information society advent. According to Manning et. al [54], Information
Retrieval (IR) can be defined as:

Information Retrieval. Information Retrieval is finding material (usually documents)
of an unstructured nature (usually text) that satisfies an information need from within
large collections (usually stored on computers).

Due to the large amount of information available on computers, users need efficient
methods to access and search various source of information. Information Retrieval orga-
nizes and models unstructured information as opposed to database systems. It enables
users to access a large collection of documents/information in diverse ways. As one of
the first media digitized was texts written in natural language, IR emerged naturally as
a sub-domain of Natural Language Processing (NLP).

The typical ad-hoc IR scenario confronts a user, with his information need expressed
in a given query language to a document representation given as an index. A function
matches the query to the document representation in order to return a ranked list of
objects to the user. An information retrieval system, as shown in figure|[1.1] consists in 3
elements:

e A query model,
e A document model,

e A function, called Retrieval Status Value (RSV), matching queries and documents.
The bigger the function values are, the better documents are supposed to answer
the query.

The very first models in IR regarded words as first order logic predicates. From this
point of view, a document d was considered relevant if it entailed the query ¢ according
to laws of logic.
lifd=gq
0 otherwise

(1.1)

Later, vectorial models represented queries and documents in Euclidean spaces. Each
dimension of the Euclidean spaces corresponds to a given word, or indexing term. Then,
the similarity between a document d and a query g can be calculated by the angle between
these two vectors:

RSV (g, d) = {

-

RSV (q,d) = cos(q,d) (1.2)

15



16 CHAPTER 1. INTRODUCTION

Query Model Index= Document
Model

Mat ction Indexing Document

Between qu documents

User l

Output = Rank Documents

Document Collection

Figure 1.1: Information Retrieval System Architecture. An Information Retrieval system
is composed by a query model, ie a query language/formalism, a component to index
documents and a function matching queries and documents. The output of an IR system
is in general a ranked list of documents.

Lastly, probabilistic models of IR considers queries and documents as the result of
random processes. Many IR problems are tackled with a probabilistic framework. One
way or another, all probabilistic IR models make an assumption which can be formulated
as follows:

Hypothesis. Words and their frequencies, in a document or a collection of documents,
can be considered as random wariables. Thus, it is possible to observe and study word
frequencies as random events.

Hence, probabilistic models rely on the choice of probability distributions to model
documents and queries. Probabilistic models can be specified by 3 elements: a probability
distribution Py, modeling documents, a probability distribution Pgyery modeling queries
and a function H matching these distributions.

Let D be the random variable modeling document d, Q the random variable modeling
query ¢, then an IR model can be defined as follows:

D ~ Pie(|N)
Q ~ Pauery(-6)
RSV(q, d) = H(Pquery(Q = (J|9), Pdoc(D = d|)\))
For example, if Multinomial distributions are chosen for both queries and documents
and if H is the Kullback-Leibler divergence, then the resulting model is equivalent to the
KL retrieval model defined in [46].

This PhD thesis adopts this probabilistic approach to Information Retrieval. We now
proceed to a short discussion on the research questions investigated.
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1.1 Research Questions

A general question raised by this retrieval framework deals with the choice of particular
word frequency distributions. There has been many statistical studies on word frequencies
whose probabilistic IR models could benefit from. What knowledge on word frequencies
can be transferred to the retrieval tasks ? If we were to think in terms of probability,
we would tend to believe that a ’good’ statistical model of word frequencies should yield
a valid and effective IR models. It is however not always the case in IR models, one of
the reason being the significant role of the H function previously mentionned. This is
why we wonder which are the properties of word frequencies that could be useful in IR
and whether it would be possible to design an effective IR, model whose underlying word
frequencies distributions are valid or well motivated from statistical studies. Overall,
these questions implicitly address the feature representation errors in probabilistic IR
models.

Modeling word frequencies in documents is not a specific problem to IR. Many natural
language processing tasks do require a probability model for word frequencies. In addition,
word frequencies can also be studied solely from a statistical perspective, with the goal of
finding a good model of word frequencies where the notion of good model can be defined
in terms of mean squared error, x? statistic or any statistical measure.

Word frequency distributions can be studied from different perspectives. The very first
models of word frequency were typically interested in modeling the frequency spectrum
or grouped frequency distribution. With one or several documents, these models first
collect statistics on the number V(m) of different words that appear exactly m times and
fit a probabilistic model to these observed counts. For example, the number V(1) is the
number of words that appear only 1 time (hapax legomena). If the word probability and
retrieval both appear k times, then observing these two words in a text is considered as
the same statistical event: the observation of a word that appear k times. So, these models
group words by frequency in a text. This is typically what addresses the Yule-Simon, the
Waring-Herdan-Muller model and to some extent the Zipf Law [4].

However, this is not the kind of model we are interested in the present study. We
adopt the approach used in many IR or NLP tasks [37, [I3] where each different word is
modeled independently. So, for each different word w, the distribution of the occurrences
of w in a corpus of documents is the object under study.

While this approach is common to many IR and NLP tasks, there does not seem to be
a consensus on the distributions to use in order to model word occurrences. Probabilistic
IR models typically rely on a mixture of 2-Poisson distribution (Okapi [72]), Multinomial
distributions (Language Models [46]) or Poisson and Geometric distributions in the Diver-
gence From Randomness framework [2]. But, Church [I3], among others, emphasized one
peculiarities of word frequency : burstiness. Actually, burstiness was originally defined
by Katz by the following statement:

burstiness, i.e. multiple occurrences of a content word or phrase in a single
text document, which is contrasted with the fact that most other documents
contain no instances of this word or phrase at all”

Burstiness has then implications on the distributions to use and several studies high-
lighted that common distributions used in IR may not be appropriate to model correctly
word frequency data. In a nutshell, the common distributions used in IR are criticized for
their limited variance while several alternative distributions such as the Negative Binomial
[13] or the Dirichlet Compound Multinomial [53] can account for more variance.

A naive question could be the following: how come that state of the art model do not
account for burstiness ? Maybe one could think that burstiness is not important in IR
tasks and that it is not necessary to account for this phenomenon. Burstiness make large
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frequencies not such a rare event. Distributions with more variance can generally better
estimate the probability of a large number of occurrence, ie a large deviation from the
mean frequency. Hence, models accounting for burstiness are not so much ’surprised’ to
observe large frequencies.

How large frequencies are managed in IR models ? It turns out that IR models have
found a different way to address burstiness. All IR models are concave functions with
term frequency. Concavity in term frequency prevents IR models from assigning a too
large score to a document because of one large frequency in a document. Hence, IR
models are not so much ‘surprised’ to observe large frequencies.

Intuitively, burstiness and the IR model concavity in term frequency seem to be two
sides of the same coin.

This PhD thesis fits in with the probabilistic approach to Information Retrieval and
draw inspiration, at its beginnings, from Church seminal paper on Poisson mixtures [13].
First of all, we were primarily interested in finding better probabilistic models of words fre-
quency that address the burstiness phenomenon. Above all, we tackle this problem from
a different perspective compared to related works: we propose to characterize burstiness
as a property of probability distribution. Therefore, this property enable to distinguish
bursty probability distributions from non-bursty. In addition, the Negative Binomial pro-
posed by Church has been reconsidered and extended toward the Beta Negative Binomial
and the Log-Logistic distribution, a continuous counterpart. Both of these distributions
are bursty according to our definition of burstiness.

Having suggested new probability distributions, the remaining task was to apply these
models in IR or NLP tasks. It turns out this was not as straightforward as initially
thought. This is why we had to reexamine IR models foundations in order to better
understand the different aspects involved for ranking documents. In particular, the Di-
vergence From Randomness framework [2] caught our attention as a starting point for
our analysis. As the application of the proposed distributions in this framework revealed
problematic, we then introduced a new family of IR models, information-based models,
which require and rely on bursty distributions. This family can be seen as a simplification
of the Divergence From Randomness framework in order to comply with our proposed
distributions.

Finally, the good performance of information-based models for Pseudo Relevance Feed-
back (PRF) E| lead us to experimentally and theoretically analyze PRF models. As a
result, we establish a list of axiomatic constraints for pseudo relevance feedback models
aiming at capturing ‘good’ properties of PRF models. Our theoretical analysis provide
an explanation on why the information-based models perform better than other models
in PRF settings.

In a nutshell, this PhD thesis investigated the following research questions:

1. How can burstiness be modeled in probabilistic models ?

2. Can we find better probabilistic model accounting for the burstiness phenomenon
of words frequencies ?

3. How could these new models be used for ad-hoc information retrieval ?

1.2 Contributions

We now proceed to a brief summary of the main contributions presented in this thesis.

1. Our first proposal is to define burstiness as a property of probability distributions:

I Pseudo Relevance Feedback aims at automatically expanding the initial query with terms found in
the top retrieved documents.
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Burstiness. Let X a random variable defined on R with distribution P. The dis-
tribution P is bursty iff Ve > 0, the function g. defined by:

€>0, ge(r) =P(X >z +¢lX >2)

is a strictly increasing function of x. A distribution which verifies this condition is
said to be bursty. The same definition applies to discrete distributions except that
eeN.

This definition directly translates the notion of adaptation: a word is bursty if it
is easier to generate it again once it has been generated a certain number of times.
Moreover, it enables to characterize most distributions proposed so far to model
word frequencies.

Then, we propose two models of word frequencies: the Beta Negative Binomial
distribution, a discrete model, and the Log-Logistic distribution a continuous one.
Finally, several experiments demonstrate the appropriate behavior of these distribu-
tions to model burstiness: the Beta Negative Binomial and the Log-Logistic distri-
butions are sound models of word frequencies: they enjoy good theoretical properties,
as bursty distributions, and they fit well word frequencies empirically.

2. Our second main contribution is the definition of novel family of IR model: information-
based model. We propose the family of IR models satisfying the following equation:

RSV (q.d) =Y —qulog P(T,y > tu|\w)

weq

where T, is a random variable modelling normalized term frequencies and A, is a
set of parameters of the probability distribution modelling word w in the collection.
This ranking function corresponds to the mean information a document brings to
a query or, equivalently, to the average of the document information brought by
each query term. This model has interesting properties that connect the burstiness
property of probability distributions to important property of IR models. We then
propose two effective IR models within this family: the log-logistic and the smoothed
power law models. Regarding performances, both the log-logistic and smooth power
law models yield state of the art performance, without pseudo relevance feedback,
and significantly outperforms state of the art models with pseudo relevance feedback.

3. We have conducted a theoretical analysis of PRF models. First, we estbalish a
list of theoretical properties including a novel one, called the Document Frequency
constraint. Second, we have then investigated standard PRF models with respect
to these constraints. This theoretical study has revealed several important points:
a) several state-of-the-art model are deficient with respect to one or several PRF
theoritecal properties, b) information-based model satistfy all the PRF properties.
Thus it provides an explanation on why the information-based models perform better
than other models in PRF settings.

1.3 Outline

Chapter |2 surveys the main probabilistic models of word frequencies. Multinomial mod-
els, including topic models, are briefly reviewed before introducing the burstiness phe-
nomenon. 2-Poisson models, Negative Binomial models, the Katz-Mixture model and
Polya Urn schema are discussed in the context of burstiness. Then, we move on to a
formal definition of burstiness, which relates to the log-convexity of the survival function



20 CHAPTER 1. INTRODUCTION

and which enables to characterize probability distributions as bursty or non-bursty. The
Negative Binomial model is reconsidered with the Beta Negative Binomial distribution
and the Log-Logistic model is proposed as a continuous counterpart. Finally, several
experiments are carried in order to validate of the proposed distributions.

Having introduced the Beta Negative Binomial and Log-Logistic models, we want to
tackle ad-hoc IR with these distributions. Chapter [3] examines the foundations of the
main probabilistic IR models. This chapter draws up a state of the art of probabilistic
IR models including the Probability Ranking Principle, Language models and Divergence
from Randomness models. Among the three families, it is the Divergence From Random-
ness framework that will retain our attention and which will serve us as a starting point
for a formal analysis of IR models hanks to retrieval heuristics constraints in chapter [4]
and to the elaboration of a suitable framework for the BNB and Log-Logistic distribu-
tions. In particular, the role of the first normalization principle is shown to be directly
linked to a particular retrieval constraint, the concavity in term frequency. Finally, DFR
models are shown to be inappropriate when word frequencies are modeled with a Beta
Negative Binomial distribution. This will suggest that the DFR framework may not be
appropriate with our candidate distributions.

Chapter [5] introduces the family of information-based models for ad-hoc IR, which
can be seen as a simplification of the DFR framework. Two effective IR models are
proposed: the Log-Logistic and a novel probability distribution, the Smoother Power
Law. These models yield state of the art performance, without pseudo relevance feedback,
and significantly outperforms state of the art models with pseudo relevance feedback. We
have tested these models with different term frequency normalizations and extended them
with the beneficial use of the g-logarithm.

Finally, chapter[6]analyzes pseudo relevance feedback models in order to establish a list
of axiomatic constraints for pseudo relevance feedback. This chapter introduces conditions
PRF models should satisfy. These conditions are based on standard IR constraints, with
the addition of a Document Frequency (DF) constraint which we have experimentally
validated. We have then investigated standard PRF models wrt to these constraints.
The theoretical study we conduct reveals that several standard PRF models either fail
to enforce the IDF effect or the DF effect whereas the log-logistic and the smoothed
power law models satisfy all the PRF properties. Our theoretical analysis thus provide
an explanation on why the information-based models perform better than other models
in PRF settings.



Chapter 2

Probabilistic Models of Word
Frequencies

Contents
2.1 Introduction . .. .. ... .. ...ttt 211
2.2 Multinomial Document Models . . . .. ... ... ...... 23]
2.2.1 Multinomial Model . . . . . . . . .. ... ...
2.2.2 TopicModels . . . . ... ... ... ... 24
2.2.3  Summary . . ... e 21
2.3 Burstiness Phenomenon . . ... ... ............. 271
2.3.1 Definition of Burstiness . . . . . . ... ... .. ........ 27]
2.3.2 Against the Multinomial Model . . . . . . ... ... ... ... 28
2.3.3 2-Poisson Model . . . ... ... ... ... ... ... 30
2.3.4 Negative Binomial . . . . .. ... ... ... ... ...
2.3.5 K-mixture . . . . . . . ... B4
2.3.6  Pdlya Urn Process and Dirichlet Compound Multinomial . . .
2.3.7 Summary . . . .. ... 38]
2.4 A Formal Characterization of Burstiness . ... ... .. .. 38l
2.4.1 Definition of Burstiness . . . . . .. .. ... .. .. ...... 38]
2.4.2 Beta Negative Binomial . . . . . ... .. ... ... ...... 43
2.4.3 Log-Logistic Distribution . . . . .. ... ... ... ... ... 46l
2.5 Experiments . .. .. ... ...t 48]
2.5.1 Comparison between Poisson, Katz-Mixture and BNB . . . . . 48
2.5.2 X2 Test . ... 56
2.5.3 Asymptotic Behavior . . . . . ... ..o o L. 57l
2.6 Conclusion . .. ... ... it Lsyrd

2.1 Introduction

Word frequency data are generally represented in a term-document matrix X = (Zyq)
where rows stand for words and columns for documents. The term-document matrix
results from the preprocessing of a document collection, which is explained in the appendix
for readers unfamiliar with word frequency data.

21
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The very first models of word frequency were typically interested in modeling the
grouped frequency distribution: the number of different words that appear exactly k
times in a collection of documents. The grouped frequency distribution is not the object
of interest in IR or Natural Language Processing tasks, where documents or the occur-
rences of a word w are the object under study. For most probabilistic models, the different
terms w are supposed to be independent from each other so that most probabilistic mod-
els of word frequency are in general univariate distributions.

We will call X, the random variable for the frequencies of word w. Each words w is
modeled with a distribution P(X,,|\,) in a collection, where A, is a set of parameters
for word w. All words in the collection are in general modeled with the same class of
distribution but with different parameters. For example, if one choose to model word
frequencies with a Poisson distribution, then each word is a represented with its own
Poisson distribution. In a way, these probabilistic models look at the data matrix by line.
We will call X? the random variable for a document, a multivariate distribution where
each marginal is a word frequency random variable X,,.

This chapter review the main probabilistic model of word frequencies, namely the
probability distributions used to model the random variables X,,. We also present state
of the art probabilistic document models, which most of all rely on a Multinomial dis-
tribution to tie all words together in a multivariate distribution. First, several points
concerning the peculiarities of textual data are shortly discussed:

Discrete vs Continuous Word frequencies, ie observations are discrete. So most mod-
els are discrete probability distributions. Nevertheless, document differs in length:
some documents are longer than some others and a normalization of term frequencies
could be used as a preprocessing step. As most normalizations transform frequencies
in continuous values, continuous probability models can also be used.

High Dimensionality Textual data is high-dimensional as many documents and many
different words are observed. Typical IR test collections have sizes around several
hundred thousands documents and the number of different terms is even bigger. It
is common in IR collections that the number of indexing terms reach a million or
more different terms.

Sparsity The observations matrix X is very sparse. Indeed, most words do not occur in
most documents, they mostly occur in the subset of documents. Table shows
the percentage of non-zero observations for two TREC collections. Furthermore,
there are a lot of rare words, which occur only a few times in the collection.

Table 2.1: Sparsity
Collection | Non-Zeros Observations Percentage
TREC-7 3x 1077
TREC-3 4 %1071

Estimation Excepted naive models, probabilistic models of texts suffer from estimation
problems. Often being intractable, the estimation of documents models is approxi-
mated by a simpler function to optimize. Moreover, the high-dimensionality of data
makes the estimation even more costly in computation. Approximations are also
used to speed up the computation procedure due to the huge amount of data. Most
probabilistic models of texts are approximated one way or another.

In a nutshell, textual data is sparse high-dimensional and discrete which renders
models estimation difficult.



2.2. MULTINOMIAL DOCUMENT MODELS 23

In addition to these general features, the phenomenon of burstiness have been
shown to affect word frequencies, as shown by Church and Gale [13]. The term “bursti-
ness” describes the behavior of words which tend to appear in bursts, ie once they appear
in a document, they are much more likely to appear again.

The burstiness phenomenon is the connecting thread of this chapter. Section [2:2]
will begin with Multinomial models of word frequencies, which have been criticized wrt
burstiness. Then, in section the burstiness phenomenon is extensively discussed in
order to introduce other probabilistic models. We then propose a formal definition of
burstiness and suggest two distributions: the Beta Negative Binomial and the Log-Logistic
in section [2.4] The last section deals with experiments validating the Beta Negative
Binomial and Log-Logistic models.

2.2 Multinomial Document Models

2.2.1 Multinomial Model

The Multinomial model is a very popular model. It was first used with naive Bayes
categorization models ([57]) and later in IR through the so-called language models. The
Multinomial distribution is a multivariate generalization of the Binomial distribution and
its density function is as follows:

l! .
P(X40,15) = P(X? = (214, ..., 2014)]0, la) = 7o [T 05

where [z is the document length and 6 encodes the proportion of each word and its
statistical mean. The Multinomial model suppose the length of a document /4 (in tokens)
is known beforehand and that words occurrences are independent from each other. The
independence of word occurrences is expressed by the product [],,, which in probability
theory means independence of events.

A document is simply seen as a bag of tokens, where words occurrences are independent
from each other. This means that different occurrences of the same term are statistically
independent. For example a document could be:

(soviet, president, U S, soviet, cold, war)

So, the occurrence US and soviet are independent from each other. So are the multi-
ple occurrences of the word soviet. Drawing at random from multinomial distribution
amounts to drawing from a urn filled with balls of different colors as figure shown in figure
Z1

The marginal random variables X, are Binomial distributions whose mean and vari-
ance are:

E(Xy) = libw
Var(Xy) = 1g0w(1—0y)

So the variance of the distributions are essentialy controlled by its mean which is one of
the model limitations we will discuss later.

Moreover, the Multinomial distribution is very convenient because its estimation is
straightforward: the maximum likelihood estimator (mle) of @ is:
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A document is represented as A Bag of Words

— g

=
,Orcb 3

burstiness

Random drawing of
words can be tought of
as random drawing of
balls from an urn with

a multinomial
distribution

Figure 2.1: Bag of Word Analogy with a bag of balls. Different words are represented
with balls of different color with possible repetitions

This is simply the proportion of a given word in a sample. However, this estimator need
to be smoothed to take into account unobserved words. Well-known smoothing methods
include Laplace, Jelinek-Mercer and Dirichlet smoothing [57), 85]. Overall, Multinomial
models are simple but convenient. This may explain why they are so popular and why
they often serve as basic units in more complex models such as topic models

2.2.2 Topic Models

Topic models build on the idea of Latent Semantic Analysis [27] in a probabilistic way.
Topic models assume there are some underlying topic/themes in a collection of documents.
For example, a topic could deal with politics, another with science etc. Most topic
models assume a Multinomial distribution for a given topic. So, a topic is specified by a
distribution of words, corresponding to the 6 parameter for Multinomials. For example,
words such as election, president, poll would have high probabilities for a topic dealing
with politics. These topics are estimated from a given set of documents, thanks to the
co-occurrences of words in documents as in Latent Semantic Analysis.

Then, the key idea is to model documents with a mixture of such topics. Figure [2.2
illustrates the principle of topic models. The figure represent topics by different colors
for words, ie blue, red, green to indicate which words are the most likely for this topic.
Recall that each topic has a probability distribution over words, so all words are possible
but some are more likely. So, this figure shows that 3 different topics that will be at
the basis of the document generation process. There are several ways to define mixture
models which correspond to different assumptions:
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Figure 2.2: Principle of a Mixture Model. Different latent topics/themes generate docu-
ments. This mixture model here is polythematic

Monothematic A document can only deal with a single topic. A document can speak
of Politics, or Science but not both at the same time. This correspond to the
mixture of multinomial proposed by Nigam [64]. If the mixture model in the figure
was monothematic, the resulting document would ideally only have either only blue
ball, only red balls or only green balls.

Polythematic A document can deal with several topics at the same time. This assump-
tion correspond to the probabilistic latent semantic analysis (PLSA) [40], and the
latent Dirichlet allocation (LDA) models [7]. The mixture model in the figure in
polythematic: the resulting documents has a combination of blue, red and green
'words’.

After this informal introduction to mixture models, we now move to a formal presen-
tation of Nigam mixture model [64] and the polythematic mixture models.

Mixture of Multinomial

A natural extension to the multinomial model is simply to consider a mixture of Multi-
nomials [64]. The idea underlying this model is to capture several topics or themes in a
collection of documents. These different topics are modeled with K multinomials and a
document is supposed to be monothematic: a document can cover only one topic.

lg!
P(Xd|013"'agKaplv"'apKald):ﬁ E pkHGszcd
wTwan g w

where parameter 6 is the multinomial distribution over words for topic k and p; the
proportion of topic k in the collection of documents. This multinomial mixture is in
general estimated by an EM algorithm [28] as many mixture models.
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Probabilistic Latent Semantic Analysis (PLSA)

The PLSA model goes back over the assumption of monothematicity of documents [40].
In this model, a document can thus express different topics. PLSA can also be thought
of as a probabilistic version of latent semantic analysis. Hoffman [40] regards the corpus
as a set of document-word couples and these couples are supposed to follow a mixture of
multinomials. This enables a document to use different themes to explain different words.
Let d be the index of a document and w the index of a word. Then, the model is defined
by:

P((d,w)ev, B,p1, ..., px) = Y _ pePdlk, @) P(wlk, B) = > prokaBruw
k k

with P(d|k,a) and P(w|k, ) following multinomial distributions. The log-likelihood of
the corpus is defined by:
LL = log P((d,w)|a, )

w,d

To generate a pair (d,w), the PLSA model chooses first a topic k with probability pg
Then, one chooses a document d with probability aiq and a word w with probability
Okw- Conditionally to that topic k, the probabilities of the document and the word
become independent. Parameters (i, can be understood as the probability of word w
in the topic k. Parameters of the model can be estimated by a standard EM. Let I¥ ; a
random variable indicating which topic was used for a given word-document pair. Then,
the EM equations are:

PrOkd Blew
E-step: PI*, =1|d,w),a,3) = ——"CFW
1Y ( wd |( ) ) Zk pkakdﬂkw
M-step: aitt x wadP(Ifjd =1|(d,w), a, B)
[ o Y wuaP(Ily = 1/(d w), . )
d
p?e-i_l X wadp([{f}d = 1‘(d7w)7aaﬂ)
d,w

Hoffmann also present a tempered EM algorithm in order to boost convergence [40].
Gibbs Sampling methods can also be used to estimate the model parameters as shown in
[8] Note that PLSA is not a truly generative model of documents. Theoretically, it is not
possible to compute the probability of a theme given a new document in the collection.
In practice, a ’fold-in’ step is used to approximate this probability.

Latent Dirichlet Allocation (LDA)

LDA [7] is the generative counterpart of f PLSA: The generative process of LDA is the
following:

e For each document d, draw a variable 6 following a Dirichlet, where 6 stands for
the proportion of each topics in this document

e Do [, times

— Draw a topic k from a multinomial with parameter 6

— Draw a word w from topic k (multinomial with parameter ()
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Recall that Dirichlet distribution models multivariate data 6 on the unit simplex such
that >, 6; = 1. The Dirichlet probability density function is given by:

T o)
Plbr,...,Oxc|a) = —2ek=1%1) H gor—1
T, Do) o

The probability of a word given a topic is:
P(wlk, B) = Multinomial(Bk, 1) = Brw

Finally, the likelihood for a document is:

K
«
P(Xa, B.14) = sz 10k) Lo~ H D Oefio )7 d0
k=1 k=1

and the data log-likelihood.
LL = log P(X"|a, 3)
d

Estimation of these models is carried with variational methods or Gibbs Sampling algo-
rithm [7} §]. A comparison of the different estimation methods is proposed in [3].

2.2.3 Summary

Multinomials models are very popular, relatively easy to extend to specific cases and
intuitively easy to understand thanks to their analogy to urn models. However, their
main drawback is the assumption of independence of word occurrences. We will
now examine several experiments and studies aiming at overcoming this limitation. In
particular, we will discuss the burstiness phenomenon which somehow invalidates the
multinomial assumption of independence.

2.3 Burstiness Phenomenon

We want to discuss here the phenomenon of burstiness adressed in many studies of word
frequencies. First of all, we recall Katz’s original definition of burstiness for word fre-
quencies. Then, several arguments against the multinomial model are presented. Several
probability distributions relevant to the bursty behavior of words are reviewed including;:

e the 2-Poisson Model
e the Negative Binomial
e the K-Mixture

e the Pélya Urn Models

2.3.1 Definition of Burstiness

According to Church [13], Katz [45] was the first to introduce the term burstiness. He
distinguished two notions of burstiness which act at different scales:
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LA COMETE HARTLEY 2 AU PLUS PRES DE LA TERRE

La Hartley 2 est passée au plus prés de la Terre le 20
octobre 2010. Observez-la !

Il est rare de veir une daussi prés : seulement 1/8 de
la distance Terre-Soleil | Son éclat reste néanmoins modéré
puisque Hartley 2 est timidement visible & l'eeil nu.

La raison : il s’agit d'une petite dont ke noyau n'excede
pas 1.4 km de diamétre. Ce n'est rien en comparaison de la

= néante Hale-Bopp, visible en plein Paris en 1997. Elle
mesurait 40 km de large.

La Lune génante pour observer la m

Malheureusement, le ciel nocturne est lumineux jusqu'au 30
cctobre 2010 4 cause dune Lune allant de sa phase pleine
vers une phase gibbeuse. L'éclat de celle-ci masque en
grande partie l'objet diffus et peu contrasté que constitue
Hartley 2.

Le centre de la m reste visible en cette période, mais sa
gueue s'efface en présence de la moindre lueur parasite. Elle

Ce cliché trés détaillé de Hartley 2, montre sa chevelure diffuse ainsi

que sa queue de gaz. Elle a été obtenue le 13 octobre avec une
lunette de 100 mm. Crédit : Nick Howes. devient méme incbservable le 28, lorsquielle se trouve & meins

de 7° dune Lune eclairée a 68%.

Période plus favorable a partir du 30 octobre

A partir du 30 octobre 2010, cherchez la en milieu de nuit, juste avant que la Lune ne se lBve. Vous ne perdez presque rien &
attendre cette date.

Figure 2.3: A news article. The occurrences of the ’keyword’ comete are highlighted

”The notion of burstiness is fundamental for the subject matter discussed
here. It will be used for characterization of two closely related but distinct
phenomena:

(a) document-level burstiness, i.e. multiple occurrences of a content word or
phrase in a single text document, which is contrasted with the fact that most
other documents contain no instances of this word or phrase at all; and

(b) within document burstiness (or burstiness proper), i.e. close proximity of
all or some individual instances of a content word or phrase within a document
exhibiting multiple occurrences. A within-document burst always indicate an
instance of a document-level burstiness, but not necessarily vice-versa”

In other words, Katz introduced concepts of burstiness at the document-level (case-
b) and the corpus-level (case-a). At the document level, it means that there is a close
agglomeration of word occurrences in a document. At the corpus level, it means that
there exists few documents with a large number of occurrences for a given term and
a lot of documents with few occurences. We try to illustrate this 'multiple occurrences’
phenomenon in figure 2.3 which shows a news article dealing with astronomy. We borrow
from [42] the figure [2.4]in order to mention that burstiness can also be observed in images
with visual words.

2.3.2 Against the Multinomial Model
Church and Gale in their seminal paper [I3] stressed two important points:

1. The Poisson and Binomial are inappropriate to model text due to their inability to
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Figure 2.4: Illustration of the burstiness for visual keyword

model large deviations from the mean.

”It has been our experience that the observed variance of the frequency
of a word (or ngram) across documents is almost always larger than the
mean, and therefore, larger than what would be expected under either
the Binomial or the Poisson. The errors between the observed variance
and the Poisson prediction tend to be particularly noticeable for content
words in large and diverse collections.”

2. They borrow the concept of Adaptation from speech processing:

"We have found Pr(k > 2|k > 1) to be useful for modeling adaptation
[...] Under standard independence assumptions, it is extremely unlikely
that lightning would strike twice (or half a dozen times) in the same
document. But text is more like a contagious disease than lightning. If
we see one instance of a contagious disease such as tuberculosis in a city,
then we would not be surprised to find quite of few more. Similarly, if a
few instances of “said” have already been observed in a document, then
there will probably be some more.”

The analogy between texts and diseases by Church suggests that once a word appears
in a document, it is much more likely to appear again in this document. In a way, the
notion of adaptation here is closer to the notion of document-level burstiness of Katz,
except it does not encode the notion of proximity within the document. The behavior -
the more we have, the more we’ll get is likely to produce high frequency for a term but it
does not directly says a word does not appear in a lot of documents, namely the definition
of burstiness at the corpus level. Hence, there is not a direct alignment between the notion
of adaptation and burstiness even if they are intimately related. Burstiness, according
to Katz definition is a state of affairs, whereas, adaptation according to Church may be
one ezplanation of burstiness. Roughly speaking, burstiness and adaptation describe the
same phenomenon: words can have high frequencies, ie there are bursts of occurrences
in some documents and the concepts of adaptation and burstiness have somehow been
merged in the literature. Sometimes, it is not a useful distinction to stress, but it is
important to keep in mind the two level of burstiness: at the document level and at the
corpus level.
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Church’s experiments [I2] brought the adaptation phenomenon to light. In a series of
experiments, some documents were split in two parts: from the beginning to the middle
part and from the middle part to the end of the document. This enables to measure the
proclivity of words to reappear in the second part of the document knowing they have
appeared in the first part. These experiments clearly demonstrated the inadequacy of the
binomial model as Church [I2] explains:

”Repetition is very common. Adaptive language models, which allow prob-
abilities to change or adapt after seeing just a few words of a text, were
introduced in speech recognition to account for text cohesion. Suppose a doc-
ument mentions Noriega once. What is the chance that he will be mentioned
again? If the first instance has probability p, then under standard (bag-of
words) independence assumptions, two instances ought to have probability
p?, but we find the probability is actually closer to p/2. The first mention of
a word obviously depends on frequency, but surprisingly, the second does not.
Adaptation depends more on lexical content than frequency; there is more
adaptation for content words (proper nouns, technical terminology and good
keywords for information retrieval), and less adaptation for function words,
cliches and ordinary first names.”

In a way, Church upholds Harter’s experiments [37] in the 70s. Indeed, Harter showed
that content-bearing words are those which diverge the most from a Poissonian behavior.
Here, Church stresses that content-bearing words are the ones that tends to be repeated
the most: "there is more adaptation for content words”.

To sum up, Multinomial distributions have a limited capacity to model over-dispersed
events (high variance) and seem inappropriate to model properly word frequency. We
will now review several distributions addressing the burstiness phenomenon. Somehow,
all these models address the limited variance problem encountered by a single Poisson or
a Multinomial distribution.

2.3.3 2-Poisson Model

Harter [37] observed that specialty, ie content words diverge the most from a Poisso-
nian behavior, whereas non-specialty words are close to a Poissonian behavior. Harter
employed a mixture of two Poisson distributions to model term frequency in a corpora.
The intuition of the 2-Poisson model can be explained in the following way: many words
appear with a relatively weak frequency in many documents and appear with a greater
frequency, or densely, only in one restricted set of documents. This last set is called the
Elz’teﬂ set (noted E) because it is supposed to contain the documents which treat mainly
of the word topic. The idea is thus to model the elite set by a Poisson distribution with
parameter Ag, and the non-elite set by another Poisson distribution of parameter \g.
Implicitly, Ag > Ag. The 2-Poisson model is then a mixture of two Poisson distributions:

—AE \Tuw
% +(1-a)

Top! Tqp!

*/\G)\ Tw
P(Xy = 2w|a, Ap, \a) = a €A

(2.1)
Figure 2.5 shows 2 mixtures of 2-Poissons: the non-elite component is modeled with a

Poisson of mean 3 and the elite component by a Poisson of mean 10. These two mixtures

differs by their mixture parameter.

Eliteness here is directly related to the corpus-level definition of burstiness: there are few

documents that contains a lot of frequencies of a particular term. Hence, the 2-Poisson

mixture model is an attempt to capture burstiness at the corpus-level.

I Elite is not the exact term proposed by Harter but it is the one used later on in the literature
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Figure 2.5: 2-Poisson Mixture Model

One of the first applications of information retrieval was the operation of indexing. The
operation of indexing consists in choosing the terms regarded as good descriptors of the
document: The general idea is the following one: a good descriptor of a document is a
word rather frequent in the document and relatively rare in the collection. Thus, it would
describe relatively well the content of a document and would be rather discriminating
compared to other terms in the collection. Harter used the 2-Poisson mixture model to
suggest indexing terms. The probability a document belongs to the elite set is :

e EALY
P(X = E o—E—
Pld € E|Xy = 74) = <P Xx@de ) _ S 7 S P
o=rul a2 4 (1o a) =55

Harter used this quantity to sort words likely to be indexing terms. He then proposed
to measure a distance between the two Poissons with:

AE — Ag
VAE + Mg

This measure is closely related to the t-test statistic when assessing the significance of the
difference between two sample means. This statistics encodes a measure of separability
of the two Poisson distributions. If the elite set is well distinguishable from the non-elite
set, then the word is likely to be a good descriptor. However, the 2-Poisson requires
to estimate 3 parameters for each word. Harter used a method of moments in order
to estimate these parameters (we describe the method in the appendix). However, this
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estimation raise some problems. Indeed, Harter propose one method which often has
degenerated cases. Sometimes, there is not enough observations to be able to distinguish
the two Poisson distributions.

Summary

To sum up, even if the 2-Poisson model assumptions are relatively simple, this model had
a significant influence in the development of IR models. It is at the heart of Okapi [72]
model and has inspired partly DFR models [2] as we will see in the chapter

2.3.4 Negative Binomial

In order to model word frequencies, the 2-Poisson model has been extended to the case of
n components by Margulis [56]. Then, Church and Gale were interested by the Negative
Binomial [I3] which can be viewed as an infinite mixture of Poisson distributions. Church
and Gale compared the Binomial and Poisson distributions with mixtures of Poisson to
model word frequencies. Their results indicate that the Negative Binomial distribution,
which is an infinite mixture of Poisson distributions, fits the data better than a n-Poisson
mixture. The family of Negative Binomial distributions is a two parameter family, and
supports several equivalent parametrizations. A commonly used one employs two real
valued parameters, § and 7, with 0 < # < 1 and 0 < 7, and leads to the following
probability mass function:

P(Xa = alr ) = o2l - )

Vr=0,1,2,---, where I' is the gamma function

Whenever r is an integer, the Negative Binomial can be thought of as a generalization of
the Geometric distribution. It stands for the number of success in a sequence of Bernoulli
trial before r failure occur. We can also understand the Negative Binomial as a 'flatten’
Poisson distribution where the parameter r controls the distribution variance. Figure [2:]
shows the graph of several negative binomial distributions.

The Negative Binomial can also be viewed as an infinite mixture of Poisson distribution:
it can be derived from the following hierarchical model.

A~ Gamma(r,3/(1—0)).
Xw|A ~ Poisson(\)
(2.3)

Then, by integrating out the Gamma distribution:
oo — x =8 r
/ € )\>\ )\,’.716 > K (lfﬂ) dX\
0 x' ( ) ﬁ’r‘
( 6 r+z—1 —)\/B
RO, R °

P(Xw = l"’/’, ﬂ)

o« Gamma(r+z,3)

(1-p)ys™"

AT B (r + )
B I‘(r—i—x)

So, the Negative Binomial can be seen as a compound distribution: a Poisson distribution
marginalized by a Gamma distribution. Several methods have been proposed in order
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Figure 2.6: Negative Binomial Distribution

to estimate the Negative Binomial parameters. Johnson and Kotz [65] introduced two
methods. The first one is the classical method of moments. The second one is a modified
method of moments, where the empirical variance is replaced by the inverse document
frequency. Church and Gale built on this method of modified moment and considered
also the empirical mean and 5 variability measures which are the variance, the IDF, the
entropy, a burstiness measure and an adaptation measure:

Mean E[P(X,]|r,0)] = r%

Variance E[(P(Xy|r,0) — E[P(X,|r,0)])?] = rﬁ
IDF — log, P(X,, > 1) = —log(1 — (1~ B)")
Entropy — Y, P(X,, = z)log, P(X,, = )

Burstiness %
. P(X>
Adaptation ﬁ

Church credits Katz with the burstiness measure which is simply the mean frequency in

documents where the word appears at least once. The measure of adaptation: M

Xu>1)
P(X,, > 2|X, > 1), which is the probability of observing at least 2 occurrences( know)ing
we observed at least one. To conclude on the estimation, Church observed, in practice,
that the generalized method of moments with IDF was more robust than the classical
method of moments.

Summary

The Negative Binomial is a generalization of the 2-Poisson mixture model. Church and
Gale argued that a single Poisson is not enough to model the bursts in frequencies (ie the
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elite set): one need an infinite number of Poisson. The good behavior of the Negative
Binomial distribution for text processing has also been observed in several recent works.
[32] uses respectively a binomial, a Poisson and a Negative Binomial distribution to model
the probability of words given classes in a Naive Bayes classifier. Rigouste [69] reproduces
the experiments reported in [I3] on different collections. The Negative Binomial is shown
to provide a better fit to the data. Church also showed that n Poissons is not enough to
model word frequencies. This may also suggest that n multinomials, as in topic models,
is not sufficient.

2.3.5 K-mixture

Katz, who introduced the concept of burstiness, proposed several models of word fre-
quencies, mainly based on Geometric distributions. The assumption of theses models is

to consider the ratio % to be a constant. We could say that he assumed that

adaptation does not depend on x. Let’s quote Katz [45] before introducing the K-mixture:

When a particular word is used topically, occurrence of its additional in-
stances, in the remainder of the document depends on whether or not there
is anything left to be said about the concept associated with this word, not
on how much has been said so far. Therefore, a high number of instances of
some word that have already occurred in a document would not necessarily
mean that occurring of additional instances is unlikely. For example, ten oc-
currences of a particular word or a phrase in one document is a very infrequent
event in comparison with two occurrences of the same word or phrase in one
document. But nine occurrences took place, the tenth occurrence does not
seem less likely than the third one,when only two have already occurred. |....]
Therefore, it would not be unreasonable to consider the conditional probabil-
ities of repeats in a burst P(k + 1|k) for k > 2, as being independent of the
number k, of previously observed occurrences and approximate them by some
constant. The reasoning for that given above is by no means a proof of such
independence but only an argument that it is sensible approximation to en-
tertain, expecting that a good fit of the model, based on this approximation,
to the data, will justify it.

In a nutshell, Katz suggest to approximate the ratio P(x + 1|z) (with our notation)
by a constant, which implies the choice of the geometric distribution to model repetitions
of a word in a document (ie term frequencies greater than 1). Based on this assumption,
he expects to obtain a good fit to the data with the K-mixture. Formally, the K-mixture
is a mixture between a Dirac distribution and a Geometric distribution. The probability
of a number of occurrence x is given by:

o p

P(X, =z|la,8) = (1 — a)dap0 + (W

LR )" (2.4)

Methods to estimate the parameters of this distribution are presented in [I3] and [55].
We do not detail them and simply give:

Fw*Nw
g = N,
o = M Fu_ Nu P
-~ F,—N, N N F,—N,
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Let’s look at the ratio =2—

B+
ﬁ _ Fw_Nw % 1
B+1 B Ny 7ij\zj\7w+1
_ Fw_Nw
= Fw

% is the parameter of the geometric distribution: it serves to model the extra-occurrences
in documents, where a word appears more than one time. It can be understood as the

average repetition rate when a word appears multiple times.

Summary

The K-mixture is based on a geometric distribution by assuming a constant adaptation
factor. The goal of Katz was to go beyond the 2-Poisson mixture model to obtain a better
word frequency model. According to Church and Gale [13], the K-mixture gives rather
similar fits to the Negative Binomial. And yet, this distribution is simpler to manipulate
and estimate than the Negative Binomial, which offer an interesting alternative to the
latter.

2.3.6 Pdlya Urn Process and Dirichlet Compound Multinomial

The Pélya’s Urn model is a process where balls are drawn from an urn and new balls are
added gradually to the urn. The urn initially contains a black balls and b white balls. For
each draw, the drawn ball is returned to the urn with ¢ balls of the same color. When ¢
is negative, then balls are removed from the urn. If ¢ = 0, then this process amounts to
the Binomial model. If ¢ = —1, then it is a sampling scheme without replacement, ie an
hypergeometric distribution.

We now consider the case where c is positive and [ samples are drawn from this process.
Let Y; the 3" drawn ball. Y; = 1 for black, 0 otherwise. Then, the probability of the
sequence Y7, ..,Y; is given by:

ala+c)..(la+(x—1)c)xbb+c)...0+ (I —2x—1)c)

P, Y = (@+0)(@atbto)-(atb+(—1)0)

where = ). y;, ie the number of black balls drawn after | draws. With the previous
equation, the probability of the sequence (1,1,1,0,0) can be shown to be equal to the
probability of observing (0,0, 1, 1,1). So, the joint distribution is invariant under a permu-
tation of the Y;. Hence Y is an exchangeable sequence. Let X = Z? Y;, the probability
of X is:

B ! ala+c)...(a+ (x—1)c) xbb+¢)... b+ (n —x — 1)c)
ozl —k)! (a+b)(a+b+c).(a+b+ (I—1)c)

P(X =)

These two equations differ only by the factor ﬁ, which accounts for the number
of possible sequences with x black balls.

Beta Binomial Model

When ¢ = 1, the Polya Urn process becomes equivalent to the Beta-Binomial model. The
Beta-Binomial model is defined by the following hierarchical model:

7 ~ Beta(a, b)
X ~ Binomial(m, 1)
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Marginalizing the Beta distribution:

1
P(X = z|a,b,l) = / P(rla,b)P(X = x|m,l)dr
0

! B(x+a,n—x+b)
2!l — z)! B(a,b)

I MNa+2)I'(l —z+b) I'(a+10))
zl(l — z)! F(a+b+1) I'(a)T(b)

(2.5)

The Beta-Binomial model is more general than the Polya urn scheme in the sense that a
and b can have real values instead of integer ones, but it is more restrictive since it assumes
that ¢ = 1. The Beta-Binomial model can be estimated by the methods of moments as
shown by Jansche [41]. First, a different parametrization is used [41]:

- a
po= a+b

- 1
R A |

The mapping to the previous parametrization is given by:

The mean and the variance are then given by:

E(X|p,y,l) = Ip
Var(X|p,v,1) = Ip(1—p)1+ (n—1)y)

Given that the Binomial variance is Ip(1 — p), this shows that the Beta Binomial model
can account for extra variance. Regarding estimation, the method of moments [41] gives:

L Zd Ty
p = Zd I (2.6)
o g(@a—1ap)? /(1 = p)) = D la 27)

T Zd(lol)2 - Zd lq

Furthermore, Jansche [41] proposed to use a mixture of a Dirac distribution modeling
the zeros and a BetaBinomial for the 'true’ occurrences.

Dirichlet Multinomial (DCM)

There exists a multivariate extension to the Beta Binomial model, known as the Dirichlet-
Multinomial distribution. Concerning text modeling, Madsen [563] proposed to use the
Dirichlet Multinomial (which they call Dirichlet Compound Multinomial (DCM) ) in order
to model burstiness in the context of text categorization and clustering. The Dirichlet
Multinomial is defined by:

0 Dirichlet([cvy]) (2.8)
X460 ~ Multinomial(6, I4)

b

M
PXE = o ly) = — LYt V) 11 (2 + )

1, 2! DMy + 20) 42 Tlaw)
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The maximum likelihood estimator of o can be shown to follow the following fixed point
equation (cf Minka [59]):

>a Y (@wd + aw) — V(aw)
2oa V(Twd + 2 o) = U (R, 0wr)

where W is the digamma function. In practice, this estimator is quite slow to converge,
due to the presence of digamma function and to the fact that all dimensions of « are
tied together in the denominator of the previous function. Thus, there are M fixed point
equation to solve.

(2.9)

Oy = Qo

EDCM

To speed up learning time, Elkan [3I] then approximated the DCM distribution by the
EDCM distribution , and showed the good behavior of the model obtained on different
text clustering experiments.

The motivation of the EDCM is the following: most v, values, estimated by maximum
likelihood, are closed to zero (0 < a,, < 1). As,

T
lim L@+ @)

I Ty I'(z)a=0

the DCM distribution could be approximated by:

M
F(Zﬂ;/[:1 Q) Qo

DM + @) oy Tw

The right hand side of this equation is called the EDCM distribution. Elkan admits it is
not a proper distribution but believes that the approximation is good enough to consider
this function as a probability distribution. He then used a maximum likelihood method
to estimate the parameters of the EDCM ’distribution’. Let s = Zle Quy, then s verifies
the following fixed-point equation:

P(X%a,ly) ~ 1!

(2.10)

S al(@wa > 1)

= 2.11

TS (s + 1y — NU(s) (211)
Once s is known, the ay, can be obtained directly by:
I(zwa >1

Qw 2ql@wa>1) (2.12)

TS V(s +1g) — NU(s)

Hence, the EDCM model is much faster to estimate: there is only one fixed point iteration.
Elkan then proposed a mixture of EDCM distribution to model a corpus and derive an
EM-like algorithm to estimate parameters.

Summary

The BetaBinomial model and its multivariate extension can be viewed as simple extension
of standard multinomial models by marginalizing a Beta prior. This lead to distributions
that can account for larger variance compared to the multinomial case. Nevertheless, we
did not find an explicit motivation or argument for the choice of such distributions in [53]
or[3I] compared to the Negative Binomial, except that these distributions are supposed
to better fit textual data than multinomial distributions. Pélya urn behaviour, which
gradually reinforced the word probability, may lead to think that these distributions
account for the adaptation phenomenon.
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2.3.7 Summary

We have discussed in this section the 2-Poisson, Negative Binomial, K-mixture and Polya
Urn models. All these models are claimed to be better suited for the task of modelling
word frequencies and some of them explicitely aim at modelling word burstiness.

2.4 A Formal Characterization of Burstiness

In section [2:3.3] we discussed the notions of burstiness and adaptation . Recall that Katz
gave this definition:

document-level burstiness, i.e. multiple occurrences of a content word or
phrase in a single text document, which is contrasted with the fact that most
other documents contain no instances of this word or phrase at all

whereas Church [I3] compared words to a contagious disease, a behavior he called adap-
tation. Our approach and goals are similar to the ones of Church [I3], and Madsen [53]
but different from Sarkar [74], who studied within document burstiness. Our goal is to
obtain for each word a probability distribution for its occurrences in the collection, with
the requirement that these distributions account for burstiness. To do so, we propose
a definition of burstiness as a property of probability distributions. Then, we suggest a
discrete bursty distribution: the Beta Negative Binomial, and a continuous distribution:
the Log-Logistic distribution

2.4.1 Definition of Burstiness

Several models tried to take into account burstiness, but few formal definitions were
proposed. More formally, for a word probability distribution P(X,,), [I3] measures its
burstiness through the quantity:

EP[Xw]

Bp = —22wl
P P(X, > 1)

where Ep denotes the expectation with respect to P. This measure provides a way to
compare two different word distributions with respect to burstiness, but does not give
a clear measure on whether a given word distribution accounts or not for bursty and
non-bursty words.

To introduce our definition of burstiness, we first discuss an experiment by Manning
[65]. He looked at the term soviet and its successive ratio of P(X,, > x)/P(X,, > x+1).

P(X, > 0)/P(Xy > 1) | P(Xy > 1)/P(Xy 2 2) | P(X, > 2)/P(X, >3) |

23.4 \ 2.38 \ 1.63 \

His point is to criticize the K-mixture assumptions. According to K-mixture assump-
tion, this ratio should be constant. But, for the word sowiet, this ratio decreases, ie its
inverse P(X,, > x4+ 1)/P(X,, > x) increases.

Our definition of burstiness is also motivated by Church comparison of words to a
contagious disease [12].

"But text is more like a contagious disease [...]. If we see one instance
of a contagious disease such as tuberculosis in a city, then we would not be
surprised to find quite of few more”
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Hence, we want to capture behavior such as the more we have, the more we should
get. This lead us to the following definition:

Definition 1. [Discrete case] A discrete distribution P is bursty iff for all integers
(n',n),n’ > n:
PX>n+1X>n)>P(X>n+1/X >n)

This definition directly translates the fact that a word is bursty if it is easier to generate
it again once it has been generated a certain number of times. Note that this definition
can be seen as a generalization Church’s adaptation measure P(X > 2|X > 1) [13]. In
other words, adaptation is measured for all integers n and these adaptation rates should
be increasing for a word distribution to be bursty.

In practice, however, it is not always easy to compute P(X > n+ 1|X > n) and de-
termine whether a particular word distribution can account for burstiness. The following
property can be used to do so:

Property 2. Characterization of Burstiness

Let P(X,,) be a frequency distribution for word w and let a, = %.
(2) If ay, is increasing, then w is bursty under P

(i¢) If ay, is decreasing, then w is not bursty under P

Proof We have: P(X >n+1|X >n) = PI(D)(()?;L,JF)D = >y
= Pxznrn T

Bue P(X >n+1)
n—+
—_—— = a, nln 2.1
P(X=n) On 7T Ot (2.13)
P(X>n+1) _ CPl@izn+2)
m = Qp + Ap Q41 + y m = Ap+1 + Ap4+10n4-2 +

P(X>n+2)  PX>n+1)

PX=n+1)" P(X=n)
and hence: Vn € Nyn > ng, P(X >n+2|X >n+1) > P(X > n+1|X > n) which
establishes ().
Similarly, for (ii) we obtain: Vn € NyP(X >n+2/X >n+1) < P(X >n+1|X > n)
which proves (i1).

>

We now generalize the discrete definition to the continuous case as follows :

Definition 3. [General case] Let X a random variable defined on R with distribution P.
The distribution P is bursty iff Ye > 0, the function g. defined by:

ge(z) = P(X >z + € X > 1)

is a strictly increasing function of x. A distribution which verifies this condition is said
to be bursty. (The same definition applies to discrete distributions except that ¢ € N).

This translates the fact that, with a bursty distribution, it is easier to generate higher val-
ues of X once lower values have been observed. We can develop the continuous definition
of burstiness with the following equations:

ge(x) strictly increasing <= A =log g.(z) strictly increasing
<= A=logP(X >z+¢) —log P(X > x) is increasing
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We refer to A as the successive difference in log probability. As A < 0, absolute values
of successive difference A decreases. Figure shows the graph of two distributions: a
Log-Logistic E| and a Gaussian distribution. Distributions are plotted with coordinates
(z,log P(X > x)). The vertical segments indicate absolute values of successive difference,
ie A. A condition for a distribution to be bursty is to be log-convex:

Theorem 4. Let P be a probability distribution of class C?. A necessary and sufficient
condition for P to be bursty is:

0?log P(T > t)

o2 >0

Proof Let f(z) =log P(X > x). As the logarithm is an increasing function, the burstiness
property can be expressed as:

ge(z) strictly increasing <= log g.(x) strictly increasing

YV z,e>0 the function f(x + €) — f(x) grows
Vaz,e>0  fl(x+e)—f'(x)>0
fll@+e) > f(x)
ie f/ grows < f >00
Under regularity assumptions, this conditions is necessary and sufficient and this convex-
ity condition can be observed on the plots.
Application of the Theorems

Using this property, it is easy to see that the Binomial, Poisson and Geometric distribu-
tions cannot account for burstiness.

eP(X,) = Binomial(L, p,,)
P(Xy =n) = (5)p2 (1 — pu)t "

_L—n)pe

(n+1)(1 = pw)

a, is strictly decreasing , which shows that the binomial distributions does not
account for burstiness as claimed in [31].

vn<L,a, =

eP(X,) = Poisson(\,)

A’n
_ —Aw Zw
P(X,=n)=¢e py
Aw
vn, a, =
n+1

a,, is strictly decreasing so the Poisson is not bursty.

eP(X,,) = Geometric(p,)
P(Xw = n) = pw(]- _pw)n

¥, an = (1 - pu)

a,, is constant. Hence Geometric distributions are neutral wrt burstiness.

2this distribution is detailed in section
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Figure 2.7: Geometrical Interpretation of burstiness: top figure shows a bursty distri-
bution (log-logistic) and bottom figure shows that the Gaussian(mean=>5, std=1) is not
bursty
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Negative Binomial
P(Xy=n+1) Bu(ry +n)

P(Xy=n)  n+1
an is strictly increasing iff 7, < 1, strictly decreasing iff r, > 1 and constant else.
This shows that the negative binomial can account for bursty words and non-bursty
words, according to the value of r.

n,a, =

Interestingly, the Beta Binomial model is not guaranteed to be bursty as shown in
table [2.2] although it can account for more variance. We recall here the variance of the
Binomial and Beta Binomial distributions:

Binomial Var(X|p,l) = Ip(1—p)
Beta Binomial Var(X|p,v,l) = Ip(1—p)(1+ (n—1)y)
So, extra-variability offered by the Beta-Binomial model does not always translate in
burstiness. However, with setting such as [; = 20, a = 0.0004, b = 0.005, the Beta

Binomial model seems to be bursty. A formal proof needs to be investigated in order to
find under which settings a Beta Binomial is bursty.

Table 2.2: The BetaBinomial is not guaranteed to be bursty. Beta Binomial with param-
etern=20a=3b="7

x | P(z) | P(x)/P(x—1)
0 | 0.0230 -

1 | 0.0531 2.3077
2 | 0.0806 1.5200
3 | 0.1008 1.2500
4 | 0.1118 1.1087
5 | 0.1138 1.0182
6 | 0.1084 0.9524
7 1 0.0975 0.9000
8 | 0.0834 0.8553
9 | 0.0680 0.8148
10 | 0.0528 0.7765

Summary

To conclude, table 2:3] shows whether standard distributions for text are bursty or not
and the motivation of the previous definitions were:

1. to give a formal proof that state of the art models, such as Poisson and Binomial
models, are unable to model the burstiness phenomenon in a collection of docu-
ments.

2. to understand when a distribution is bursty or not according to its parameter.
For example, the Negative Binomial distribution [I3] can be bursty or non-bursty,
depending on one parameter value.

3. to help designing new distributions for word frequencies by checking their burstiness
property.
Having introduced a formal definition of burstiness, we now present the Beta Negative

Binomial and the Log-Logistic distributions, which are two bursty distributions according
to our definition.
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Table 2.3: Burstiness of Probability Distributions

Distribution Burstiness
Poisson No
Binomial No
Geometric Neutral
Negative Binomial ([13]) Depends on Parameter (Yes if r < 1)
Dirichlet Compound Multinomial ([53]) Depends on Parameter
Log-Logistic Yes (when 5 =1)
Exponential Neutral
Weibull Depends on Parameter
Pareto Yes
Beta Negative Binomial Yes

2.4.2 Beta Negative Binomial

Recall that the Negative Binomial distribution is given by:

NegBin(z|r, 3) = Wu _ By (2.14)

An interesting extension to the Negative Binomial distribution consists in considering that
the parameter (3 arises from a prior Beta(a,b) distribution. In this case, the resulting
distribution has the form:

F'r+x)l'(a+2z) T(a+bI(r+0b)

P(X, =x|r,a,b) =
( #lr;a,b) 2IT(r)T(a)T(b XF(a+b+r+x)

(2.15)

where z = 0,1,2,---, and a and b represent the two parameters of the prior Beta dis-
tribution. Assuming that this prior is uniform (ie @ = b = 1), one obtains the following
one-parameter distribution, which we will refer to as the Beta Negative Binomial
distribution , or BNB in shorﬂ

r

P(Xy = 2lr) = (r+z+1)(r+2a)

(2.16)

Figure displays the probability plot of a BNB for several values of r. Figure 77
compares a Poisson distribution with a BNB distribution, whose parameters are equal to
each other and where the power law behavior of the BNB can be observed: we can notice
that the Poisson law assigns little probabilities to large frequencies, which is not the case
of the BNB distribution.

Regarding the BNB distribution burstiness, a,, = r-ﬁiz is strictly increasing. So, the
BNB distribution can model burstiness.

The maximum likelihood method leads to a fixed point equation.

r
r4aq)(r+aqg+1)

7 = argmax, L(D,r) = argmax,. H (
d

This likelihood can be rewritten in order to distinguish the contribution of zeros and

3This distribution is sometimes referred to as the Johnson distribution, inasmuch as it was studied by
N. Johnson in [43].
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Figure 2.8: Beta Negative Binomial Distribution

non-zeros observations:

L = (N—Ny)log(——=)+ Y [logr—log(r +z4) —log(r + x4+ 1)]
r+1
d,xq>0
Odlog L N — Ny 1 1 1
or r+1 T r+zqg rT+zgtl
d,xq>0
dlog L
ogL _
ar
Ny
o= : - (2.17)
ATt Ldea>0 mrag torFeart
Estimators
The maximum likelihood of the BNB distribution lead to a fixed point equation. We
want to show here that this fixed point equation has a unique solution.
Let f the function defined by:
Rt — R*
Ny
r N—Na,
r4+1

1 1
+ 2 4 2y>0 Taa

r+rqg+1

We can show that f is increasing and f(0) > 0 and Lim, 4 f(r) = +o0
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Let F'= 3, ~0Td, then

1 1
>
r+xzqg ~ r+F
1 1 N, N,
> + ) > + S
r+xqg r+axg+1 r+F r+F+1
d,xq>0
NU)
fr) < 3o N, (2.18)
r+1 r+F + r+F+1
This lead to the following upperbound on f:
1
flr) < N—_N, 1 1
Ny (r+1) + o F T EA
1
fr) < ———
r+F + r+F+1
But let’s define the function g by:
1 1 r?+2Fr+r+F*+F
9(r) = — T~ A FtigrgF (2.19)
oy ol iy s S (T (= 2r+2F +1
Now we want to find a solution for g(r) = r:
2+ 2Fr+r+ F?+F = r(2r+2F+1) (2.20)
P24 2Fr+r+ F24+F = 224+ 2Fr+7r (2.21)
P =F*+F (2.22)
So, let r* = vV F2 + F', then
fe) < g(r) =r" (2.23)

As f is increasing, f(0) > 0 and Lim,_, 4+ f(r) = 400, the previous inequality shows
that f will cross the identity function. Thus, there exists a unique fixed point to the BNB
maximum likelihood.

Note that the BNB distribution has not a finite mean nor variance. So, the methods of
moments can not directly be applied here and alternative methods are needed to estimate
the BNB distribution. Equating P(X > 1) to the empirical mean document frequency
with a generalized method of moments, as proposed by Church for the Negative Binomial

(see section2.3.4), gives

Ny 1
—=1-P =1- 2.24
i O =1- — (224)
which leads to the following estimator.
Ny Ny
Tw = NN YN as N, < N for most words (2.25)

We have compared the maximum likelihood estimator and the mean document fre-
quency ones for two TREC collection. Figure [2.9]shows the comparison for the ROBUST
collection. Overall, there is not a significant difference between these two estimation
methods.
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Figure 2.9: Comparison of r, estimated by maximum likelihood to the generalized
method of moments proposed for all words of the ROBUST collection. Each dot corre-
spond to the estimated values for a given word. Correlation between the estimators is
= 0.986, the mean difference = 1.432¢ — 5 , and mean relative error = 1.3¢ — 3

Summary

Both the BNB distribution and DCM distribution are compound distributions. Table
shows the different distributions involved in these models. The difference between the
BNB and the DCM are:

e The DCM is a multivariate model whereas the BNB is not

e The base distribution is a Negative Binomial for the BNB whereas it is a Binomial
for DCM

e DCM takes into account document length on the contrary to the BNB.

DCM BNB
Base Distribution Multinomial Neg Binomial
Marginalized by | Dirichlet( Multivariate Beta ) Beta

Table 2.4: Comparison between DCM and BNB distributions

Note that there exists a multivariate extension of the Negative Binomial distribution
known as Negative Multinomial [65]. The Negative Multinomial model is parametrized
by the analog of the parameter r in the Negative Binomial. This r parameter is common
for all words which prevents one from finely modeling the behavior of words. The second
parameter is a standard multinomial parameter (0 in the Negative Binomial).

2.4.3 Log-Logistic Distribution

In IR tasks, document length normalization is a key component of an effective retrieval
system. In IR models such as BM25 and DFR models, a normalized continuous term
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+++ r=0.01 Poisson — r=0.01
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log P(X > x)

-10

Figure 2.10: log P(X > x) Poisson(r) and Log-Logistic(r) when r € {1071,1072,1073}

frequency is plugged in a discrete model. Normalization of term frequencies is a standard
preprocessing step and its role is to account for the different document lengths in a collec-
tion. As most normalizations transform the frequencies in continuous values, continuous
distributions seems to be more appropriate to handle word frequency data for several IR,
tasks.

The log-logistic distribution is the probability distribution of a random variable whose
logarithm has a logistic distribution. It is similar in shape to the log-normal distribution
but has heavier tails. Its cumulative distribution function can be written in closed form,
unlike that of the log-normal [44]. The log-logistic distribution is defined Va € [0, +0c0)
by:

8

Prp(T <tlr,p) = PR

Figure [2.10] compares several Poisson distributions with several Log-Logistic distribu-
tions. Tthe figure shows the power-law behavior of the Log-Logistic model.
Setting 3 to 1 leads to a relation between the log-logistic and the BNB distribution:
Vo € Rt
t+1 t r

rrt+l T+t (rHt+D)(r+t)
which is exactly the form of the BNB distribution. This show that the Log-Logistic can be

understood as a continuous variant of the BNB distribution. Furthermore, the following
equation shows that the log-logistic is bursty:

PLL(t§T<t+1|T’) =

(2.26)

r4+t

Ve >0, g(x) = P (T >t T>tr)= ———
€ ge(®) = Prr( + ¢l M= itre
Given the relation with the BNB, we could simply estimate a log-logistic distribution by

_ — Ny
f=1and r= 3.
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Summary

The log-logistic can be seen as a continuous version of the BNB distribution, which in
turn is an extension of the Negative Binomial distribution proposed by Church. The use
of continuous distributions to model word frequencies in not entirely novel as Rennie [68]
proposed a LogLog model. However, continuous distributions are not common for that
purpose.

We proposed here a bursty distribution with a simple estimation procedure. Others
continuous distributions can model word frequencies such as the Pareto distribution for
example. The main benefit of continuous distributions is their ability to model normalized
continuous term frequencies as DFR normalized schemas [2] or pivoted length normaliza-
tion [77]. Then, the probabilistic IR model defined with continuous distributions handle
valid probability values as opposed to several IR models which plug in a normalized term
frequency in discrete models.

2.5 Experiments

The experiments presented here aim at assessing whether BNB and Log-logistic models
are indeed appropriate to model word frequencies. We want to show that their theoretical
properties (both distributions are bursty according to our definition) match empirical
data. So, we want to show that these distributions are able to capture the bursty behavior
of word frequencies. Criterion such as likelihood or x? statistic will be examined in
different experiments in order to validate the proposed models. A last experiment will
look at the burstiness phenomenon against the sample size in order to assess the relation
between variance and burstiness.

2.5.1 Comparison between Poisson, Katz-Mixture and BNB

Let p = % the mean frequency of term w in a corpus. We want to illustrate here 3
different models of term occurrences:

Poisson Xy ~ Poisson(iy)
Katz-Mixture X, ~ K-Mixture(au, Bw)
BNB X, ~ BNB(u)

These 3 models have different burstiness capacity: non-bursty, neutral and bursty.
and [, refer to the parameter described in section [2.3.5] and correspond to the standard
estimation of the Katz-Mixture. For a word in collection, we consider the following
quantities:

Empirical Mean p,, = Ij\, is the empirical mean of the number of occurrences.

Non-Zero Variance The empirical variance of the occurrences samples can be decom-
posed in two parts:

o= (N = N)O = 2+ > (wwa — )?) (2.27)
d,x.,q>0
We considered here the non-zero part of the empirical variance:

o S (G — )? (2.28)

d,%q>0
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Non-Zero Likelihood For each of these models, the likelihood of non-zero observations
will be computed. Recall that the likelihood for these models can be written as :

L(0) = (N = Ny)log P(X,, = 0[0) + > log P(Xy = zu:il6)
d,xa>0

Focusing on non-zeros observations, this leads to:

L*0) = Y logP(Xy = zulf)
d,z.,q>0

Term Rank The rank of term is computed by sorting ., = F—A}” in decreasing order

We now want to explain why we choose to compute non-zero likelihoods and non-zero
variances. First, the Katz-mixture has a perfect fit by construction for the zero probabil-
ity. Given the predominant number of zeros observations, this may bias our conclusion
toward models fitting well the non-zero probability. As the burstiness phenomenon gen-
erates large frequencies, we want to capture the model performance for such events. This
is why we compute the non-zero variance, so that a large variance comes only from a
large frequency namely a large deviation from the mean
To sum up, 7 features can be computed for a word in a collection:

(rankw,um Nw,U*(U)), *Pa Laa L*B)

where subscript of L* indicates the distribution (P=Poisson, G=Geometric, B=BNB).

Those 7 features were computed on different collections such CLEF 2003 Adhoc- Task
CLEF 2007 Domain Specific (GIRT) and the TREC ROBUST collection.

Figures [2.11], 2.13] and [2.15] show for a given collection the term rank against the log
of document frequency. A dot on these plots has coordinates (rank,,,log N,,) and a color
code indicates which non-zero likelihood is maximal for this word. If L% is the maximum
of the three likelihoods, then the point on this graph corresponding to the word has a black
color (respectively red for geometric and green for poisson). A corresponding graph also
displays the same information without the color code in 3 different subplots. These plots
shows that for similar ranks (ie a vertical line in the plot), words which are better modeled
with a BNB have a lower document frequency. Hence, for a similar mean frequency, these
words appear in less documents. They have relatively higher frequencies in documents
in which they appear than words explained by a Poisson or Geometric distribution for a
similar rank. This shows that the BNB distribution captures words that tend to appear
with high frequency in relatively few documents and suggests that the BNB distribution
is indeed appropriate to model the burstiness phenomenon.

A second phenomenon can also be observed on these figures. There exists different
statistical behaviors for words. Some words are better explained by a Poisson model,
others by a Geometric and others by a BNB distribution.

Figures [2.12] 2.14] and [2.16] show for a given collection the empirical mean against the
non-zero variance. For each word w, a dot of coordinates (x = log t,y = log o*(w)) is
drawn. The color of this point shows which non-zero likelihood is maximal. The same
color code applies. (If L}, is the maximum of the three likelihoods, then the point on
this graph corresponding to the word is black respectively red for geometric and green for
poisson). Theses plots show again that the 3 distributions tested capture different ranges
of variance for a fixed mean. For a similar empirical mean, words with larger non-zero
variance are better explain by a BNB distribution. Large deviations from the mean could
be explained by high frequencies, i.e. a bursty behavior of words in documents.
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Term Rank vs Document Frequency
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Mean vs Variance of Term | Distribution
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Mean vs Variance of Term | Distribution
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Term Rank vs Document Frequency
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2.5.2 x? Test

We illustrate here the fact that the BNB and Log-Logistic distribution, unlike others
like the Poisson distribution, provides a good fit to the data. Instead or relying on the
likelihood as a fit measure, we computed the Chi-square statistics for each term under
both a Poisson hypothesis and a Log-Logistic one (figure . Our goal here is to
see what is the fit between experimental observations and the ones predicted by these
distributions: the Chi-square statistics provides us with a measure of this fit.

The Pearsony? statistic is defined by:

2 (0; — Ey)?
X’ = Z T (2.29)
where O; is an observed frequency and FE; an expected frequency.

We restrict our study to terms appearing at least in 100 documents of the ROBUST’
TREC collection. For each selected term, we want to compare two candidate distributions
modeling the term frequencies in the documents, namely the Poisson and Log-Logistic
distributions. Furthermore, we assume that the parameters of these distributions are set
according to:

F,

e Poisson: 0, = ¢

e Log-Logistic: 7, = %

For each selected word w and document d, x,q is binned into one of the following in-
tervals: [0,3), [3,10) and [10,100). These intervals correspond roughly to low, medium
and high frequency. The number of observations falling into each interval constitutes
statistics that the Chi-Square compares to an expected number predicted by the assumed
distribution. For each selected term, we then compute the Chi-square statistics under a
Poisson hypothesis and a Log-Logistic hypothesiﬂ . We then plotted the term rank EI
against the log of the Chi-Square statistics for both the Poisson and Log-Logistic distribu-
tions. Figure shows the log of the Chi-square statistics against the term rank for the
ROBUST’ TREC collection. One dot with coordinate (x,y) on the graph corresponds to
a given word in the collection, where x is the term rank and y is the log of the Chi-square
statistics for the distribution considered. The horizontal line is the upper critical value
for the Chi-square test at the 0.05 confidence level. Note that the conditions required for
x? test are likely to be not satisfied for all words.

Concerning the Poisson plot, there are 2 main clouds of points. The upper left area
can be explained by words from the interval [10,100): this is an extremely unlikely event
under a Poisson distribution with a very small mean (ex: 0.05). The second area, which
looks like a thick band, corresponds to words from the first two intervals only. As one
can note, the fit provided by the BNB/log-logistic distribution is good inasmuch as the
values obtained by the Chi-square statistics are small. These distributions can thus well
explain the behavior of words in all the frequency ranges. The same does not hold for the
Poisson, for which large values are observed over all the frequency ranges, many words
getting a value above the upper critical value.

Similar results also holds for other collections. Interestingly, we do not exactly ob-
served the same results than with the likelihood. For the likelihood method, some frequent
words were better modeled with a Poisson distribution which is not the case here. The
likelihood somehow computes a global behavior whereas the y? statistic is very sensitive

4Due to relation the Chi-square statistics is the same for the BNB and the log-logistic distribu-
tions on the given intervals.

5To display the results, we first ranked the selected terms by their frequency in the collection in order
to get their term rank, as is done in Zipf’s Law
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to the observation of an unexpected event due to the factor Ei For example, observing a
frequency of 15 under a Poisson distribution of mean 0.0001 is an unlikely event. This also
shows that the fit measure is an important parameter in order to evaluate word frequency
models. Of course, the Poisson distribution is known for a long time to provide a poor
fit to the data. It is however used in some IR models.

2.5.3 Asymptotic Behavior

The following experiments show the evolution of the average word likelihood under a
Poisson model or a BNB model. For n = 1 to 1000, we select n documents randomly
and compute non zero likelihoods. Finally, this experiment is repeated 30 times and the
non-zeros likelihoods are averaged. More formally, we compute the following quantities
for a set S of documents:

p(S) = Zdi‘éﬁw (2.30)

>kPoisson (S) = Z Z I(x’lUd > 0) log PPOiSSOH (xUId‘:uw (S)) (231)
desS w

Lip(S) = D> I(@wa > 0)log Prr(wwaltiw(S)) (2.32)
des w

Figure [2.18 shows the difference of likelihood for three different collections. between
the Poisson model and the BNB model. Those figures show that a Poisson model is much
more appropriate for a small number of document, but a BNB model is more adequate
for a larger sample size. As the sample size increase, the number of zeros observations
also increases. It may also means that the burstiness phenomenon, described here only
occurs at large sample sizes. For small samples, Poisson would fit better the data in term
of non-zero likelihood. If we were to model a single document, then the best fit would
probably be provided by a Poisson or Binomial, hence justifying the idea of Language
Models. In the other hand, if we had to model the frequencies of a word in a collection,
then the bursty distributions would probably be better.

2.6 Conclusion

This chapter surveyed the main probabilistic models of word frequencies, which are sum-
marized in table We mostly examined standard univariate distributions and their
compounds, paying less attention to non-parametric models like Dirichlet processes [79].
Burstiness was introduced in order to reveal limitations of multinomial assumptions, in
particular a limited variance range. Burstiness was discussed informally, with Katz defini-
tion and Church’s experiments. We then reviewed several models adressing the burstiness
phenomenon, including the Negative Binomial distribution and the Dirichlet Compound
Multinomial model.

Contrary to prior studies, we have proposed a definition of burstiness as a property
of probability distributions which relates to the log-convexity of the survival function.
This definition of burstiness is acan also help to determine when a distribution is bursty
or not according to its parameter values. Furthermore, it can guide the design of new
distributions for word frequencies by checking their burstiness property.

Then, we have extented the Negative Binomial model with the Beta Negative Binomial
distribution and the Log-Logistic model was proposed as a continuous counterpart. For
both distributions, we provided constant time estimation procedure as opposed to the
DCM and EDCM models. The resulting distributions provide a good fit to data compared
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to Poisson and Katz-Mixture distributions. Overvall, the proposed models seem to have
a better fit to data than distributions used in standard IR models.

Nevertheless, two important experiments are missing in our experimental design and
are left for future work. First, it would be nice to compare the fit provided by a BNB
model to a DCM or BetaBinomial model. Second, Durot [30] proposed a statistical test
in order decide about the convexity/concavity of a survival function P(X > z). As
concavity is linked to the burstiness property, such a procedure is appealing because it
directly tests the burstiness nature of a data sample. Preliminary experiments indicate
that many words have concave empirical survival function, which suggest again that word
frequencies should be modeled with bursty distributions.

Having discussed the burstiness phenomenon and selected two probability distribu-
tions, the remaining task consist in applying our candidate distributions in IR. This is
why the next chapter reviews the main probabilistic IR models.
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Table 2.5: Main Word Frequencies Probability Distributions with their pdf and estimation
methods
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3.1 Introduction

All information retrieval systems include a query model, a document model and a function
to match queries and documents. These are the 3 required ingredients of an IR engine.
Figure depicts the different components of an IR system. This chapter deals with
the function matching documents and queries in a probabilistic way. Despite the fact
that the machine learning approach to IR has been one of the major breakthrough in IR
recently, we do not give an overview of methods a la Learning to Rank such as RankSVM,
RankBoost, LambdaRank [83] [35, 8T, @]. We first focus on ad hoc retrieval since the
performance of ’generative’ and discriminative approaches are similar in ad hoc scenario
as shown in [6I]. So, we review three families of probabilistic IR models: the Probabilitic
Ranking Principle, the Language models, and the Divergence From Randomness family,
which are state of the art ad hoc information retrieval models.

These three different information retrieval families rely on word probability distribu-
tions with their own specificities. In Okapi, for example, it is assumed that word frequen-
cies follow a mixture of two Poisson distributions. The Divergence from Randomness

63
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(DFR) framework proposed by Amati and van Rijsbergen [2] makes use of several distri-
butions, among which the geometric distribution, the Poisson distribution and Laplace
law of succession play the major role. Language models are, for themselves, built upon the
multinomial distribution, which amounts to consider binomial distributions for individual
words.

Among the three families, it is the Divergence From Randomness framework that
retained our attention fo reasons we will explain later. The DFR framework will serve
us as a starting point for a formal analysis of IR models in the next chapter and to the
elaboration of a suitable framework for the BNB and Log-Logistic distributions. Before
moving on to the detailed presentation of these three families of IR models, we give a
short description of the three main IR models families:

Probabilistic Ranking Principle (PRP): These models suppose the existence of a
class of relevant documents and a class of non-relevant documents for a query. This
idea results in ordering document with the estimated probability of relevance. This
principle will be presented in the part [3.:2 The pre-eminent model in this family is
called BM25 or Okapi

Languages Models (LM): The core idea of languages models is to estimate the prob-
ability a query is generated from a document modle P(g|d). The language models
are nowadays very popular. These models will be the subject of section [3.3]

Divergence From Randomness: These models try to quantify the importance of a
term in a document compared to its behavior in the collection. Thus, the weight
of a term in a document can be measured thanks to a function of the Shannon
information. These models will be presented in the section [3-4]

3.2 Probability Ranking Principle

All the models based on the probability ranking principle [71] make the following assump-
tion:

Hypothesis. The relevance of a document to a query can be encoded by a random vari-
able. The benefit of this formulation is to reconsider certain deficiencies of the concept
of relevance; namely that the relevance is not easily definable and especially partially
observable.

This assumption deals with the function matching queries and documents. We will
note R, the random variable of relevance specific to the request ¢. This assumption,
developed in the 70’s, had a considerable impact on information retrieval models. This
assumption results in ordering the documents by order of decreasing probability of rele-
vance. This principle is called Probability Ranking Principle [(1]. This principle results
in sorting the documents for a request according to the probability P(R = 1|X%) where
X4 = (z,) a representation of a document, in the form of a feature vector. In general X¢
is a vector of words where the component x,,q represents the frequency/presence of the
word w in the document d. The Probability Ranking Principle can be stated as follows
[1]:

The probability ranking principle: If a reference retrieval system’s
response to each request is a ranking of the documents in the collection in
order of decreasing probability of relevance to the user who submitted the
request, where the probabilities are estimated as accurately as possible on
the basis of whatever data have been made available to the system for this
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Query Model Index= Document
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BamEs

Mat ction Indexing Document
Between qu documents

l

Output = Rank Documents

Document Collection

Figure 3.1: Information Retrieval System Architecture. An Information Retrieval system
is composed by a query model, ie a query language/formalism, a component to index
documents and a function matching queries and documents. The output of IR engine is
in general a ranked list of documents.

purpose, the overall effectiveness of the system to its user will be the best that
is obtainable on the basis of those data.

The probability ranking principle is a direct consequence of Bayes decision rule. Let
us suppose that the probability of making a bad decision is following form:

4 | P(R=1|X% if one chooses R=0
Plerror|X*) = { P(R=0/X%) if one chooses R=1

Then, if one decides R = 0 (document non-relevant) and that P(R = 1|X%) > P(R =
0/X9), this decision leads to an error larger than the decision opposite. Thus, it is
enough to choose the assumption which maximizes P(R|X?) to minimize the probability
of error. By supposing that the documents are independent (statistically), this rule
results in ordering the documents by decreasing probability of relevance. Figure tries
to illustrate the Probability Ranking Principle approach to IR.

One of the main limitations of the PRP is the assumption that one can calculate
the probabilities P(R|X?) and this with a certain precision. This assumption is rather
problematic. In general, one does not know which are the relevant documents, nor their
number, or distribution. However, one could test guess these probabilities and, by test
and successive corrections , improve their estimation. Nevertheless, this principle can be
sub optimal as [36] shows, when probabilities are not properly calibrated.

In summary, these probabilistic models try to estimate the probability that a docu-
ment is relevant. By assuming that some relevant and irrelevant documents are known,
an assumed probabilistic model could estimate the probability that a new document is
relevant or not. After a first retrieval step, users can annotate documents and probability
of relevance can be updated.
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P(X | relevant)

VAN

Relevant Documents

P(X| not relevant)

Irrelevant Documents

Decision Boundary

Figure 3.2: The Probability Ranking Principle. Two class of documents exists: relevant
and not relevant. For each class, a probability distribution models documents. When a
new document comes in, class probabilities are computed in order to decide which class
this document belongs to.

It turns out that the PRP can be reformulated in a simplified form after some as-
sumptions:

P(X%=g|R=1)
P(X9=z|R= 0))

This formulation will make possible to simplify this criterion by taking into account new
assumptions on the dependencies between the variables X¢ and R. In particular, one
can suppose independence between the different terms of a document, which is similar
to suppose the orthogonality of the terms in the vectorial model. Then, P(X%R = 7)
can be written like a product of probabilities and the function of score as a sum on the
common terms between the query and the documents. For example, Robertson centered
this function so that empty documents get a null score. Thus, it leads to consider the
following family of retrieval functions:

Sort Documents by decreasing order of: log(

X4 =g|R=1) P(X? =0|R = 0))
Xd =0|R=1) P(Xd =z|R=0)

RSV(g,d)= > 1og(§ E

wegNd

Nevertheless, it always remains to clarify the probability P(X9¢|R), which we will do
for the forthcoming models.

3.2.1 Binary Independence Model (BIR)

The Binary Independence Retrieval (BIR) supposes that the weights of the terms in the
documents and request are binary (X¢ = (1010---010---)). Each term is characterized
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by a binary variable, A,,, which indicates the probability that the word appears in a
document. Moreover, each term is conditionally independent of each other given R. For
two words wi, wa, then P(X¢ =2, X! =ylR=r)=P(X =z|R=r)P(X¢ =
ylR=r)

Let us note a,, = P(A, = 1|R = 1), probability that the word w appear in a relevant
document and b = P(A,, = 1|R = 0) probability that the word w appear in a non-relevant
document.

P(XY=(21,...,am)|R=1) = Hafc — )7

P(X? = (x1,...,20)|R =0) wa ()

In other words, the documents are modeled by 1ndependent Bernoulli laws. The fact
that a document is relevant or not, is described by different values from the parameters
of these probabilities (a,, or b, ). Under these assumptions, the PRP is expressed as:

g d:0|R:1)P(Xg:1|R:0)

RSV (q,d

wegnNd

Under these assumptions the ranking function is:

1—
RSV (q,d Z log( Gw bu <) (3.1)

1—a b
wegnd w w

The estimate of the probabilities a,, and b,, is done by an iterative processes:
. . N’UJ

1. Initial values are defined (for example af, = 0.5, b)), = 5#)

2. A retrieval step is performed with the parameter current values

3. Parameters are updated. If, V' is the number of relevant document found at this
stage and V,, the number of relevant document containing w, then the re-estimation
of the parameters becomes:

Vw b 7Nw_Vw
VYT N-V

The advantages of this model are a theoretically well-founded and a clear concept of
relevance. Moreover, information retrieval is cast as an iterative process which involves
the user. However, the model is rather sensitive to the initial values and its major
disadvantage remains the binary representation of the occurrences of the words in the
documents, which limits largely its performance.

3.2.2 Okapi/BM25

The BM25 [72] model reconsiders certain deficiencies of the BIR model. First, BM25
supposes that the frequencies of the words are distributed according to a mixture of 2
Poisson distribution. Moreover, it makes the assumption that in the relevant set (R = 1),
the distribution of Poisson representing the Elite component has a weight stronger than
in the not-relevant class. More formally, these assumptions result in:

X4 =z|R =1~ 2Poisson(a, \g, \g) X4 =2z|R =0~ 2Poisson(8, \g, \¢)
a> 0
Recall that Ag > A
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Let us recall reformulation of the PRP by Robertson:

X¢=2R=1)P(X}=0R=0
ZlOg w l‘| ) (w | )

V(
RSV(q,d g:om:l) P(XT =2k =0)

wegnNd

which gives by adding the assumptions on the 2-Poisson model:

A
RsV( | # +(1— a)ﬂ Be e 4 (1 Ble e
Q7 Z Og _AExiE —/\wac ae— AE + (1 a)e*)‘G
weQ Tl T (1-p)*

!
L+

) 2

This model suffers from same the problems as the 2-Poisson model, ie the difficulty in
estimating its parameters. Nevertheless, Robertson studies the properties of the following
weighting function:

—A A
aefiﬂfﬁ +(1- Q)ﬂ Be e 4 (1 - Blere )
perat kEacu, L (1-p)e el ae e 4+ (1 —a)e e

Ty!

h(zy) = log( (3:3)

Knowing that o > (3, one can show that this function is an increasing function of the
frequency of the x,, term. Moreover, the limit of h, when z,, tends towards the infinite,
exists and takes the following value:

—Ae+Xa 1—
lim h(z) = log(% EgZ/\E+/\G i = i;

r— 400

al-—p
Bl—a

The approximation of this limit uses the fact that Ag > Ag The idea of Robertson and
Walker [72] was to find a function which would have similar properties of the function h.
nitially, he proposes to use a function of the type 7(X) = & <% which is increasing but
which tends towards 1. Then, he proposed to multiply this last function by the weights
which the model BIR would give, which is similar to the approximated limit of function

h.

) =~ log( ) (3.4)

. Ty P(X¢=1R=1)P(X=0R=0
W () = IOg((d_|_)(d | ))
Ty + K T P(Xd=0R=1)P(Xd=1R=0)
T a 1-b
% w 1 w w .
W (zw) o1 K og(l_aw b ) (3.5)

Again, a,, and b,, can be estimated repeatedly.
Lastly, Robertson and Walker make some modifications to the original model:

1. It is necessary to take into account the length of the documents in the renormal—
ization of the frequencies . Thus, instead of using a function of the type they
choose a function of the form

a:+K’

(kl + 1)£de
B ((1—0) +b-t) + 244

avgl

where [4 is the length of document d and avgl the mean document length in the
collection. kq is set by default to 1.2 and b to 0.75.

2. They renormalize the frequency of the words of the request in the following way:

(k3 +1)qw
k3+qw

By default, ks = 1000
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Finally, with the initial default values of a,, and b,,, BM25 model can be written as:

(k3 + 1)quw (k1 + 1)Zwa
k3 +quw ki((1—b)+bi) + 2,4

N —-N, +0.5
Ny +0.5

RSV(g,d)= >

wER

log( ) (3.6)

The formula of BM25 is rather complex and involves 3 parameters (k1,k3,b) which
can be possibly optimized on particular dataset. This model appeared around the years
1995 and known a strong success in surveys like TREC. It is still regarded as a model of
reference.

3.2.3 Dirichlet Multinomial and PRP

Xu and Akella [82] proposed recently a retrieval model built upon the PRP with Dirichlet
Multinomial distributions . Xu and Akella first argued that the multinomial model is not
appropriate under the PRP paradigm and that a better model (the DCM) accounting for
burstiness should be used: If the class of relevant document is modeled by a multinomial
distribution with parameter 6z and irrelevant class with parameter 6y, then, the PRP
ranking function gives: ;
Rw
RSV (q,d) = Z GuwTwd log(er)

weq

Then, Xu and Akella [82] explain that this model is inappropriate and that the DCM
distribution should be used:

Consequently, the multinomial distribution is not an appropriate distribution
for the probabilistic model. Because the multinomial distribution assumes
the independence of the word repetitive occurrences, it results in a score func-
tion which incorporates undesired linearity in term frequency. To capture
the concave property and penalize document length in the score function,
a more appropriate distribution should be able to model the dependency of
word repetitive occurrences (burstiness) that is if a word appears once, it is
more likely to appear again. The Dirichlet compound multinomial (DCM)
distribution [11, 10], which is motivated by the Polya urn scheme, is able to
capture word burstiness, and thus better addresses the need to capture score
function concavity and document length.

This is the motivation of the DCM distribution within the PRP. We now detail the
model. First, the irrelevant class is represented by the whole collection. A DCM model
with parameters ((,,) is optimized to fit the collection. Then, the relevant class is modeled
with a DCM distribution whose parameters are (3, + ¢, ), where ¢, are the query word
frequencies. In other words, query term frequencies increase the parameters of the relevant
distribution. The model assumptions can be summarized by:

v>0
Xq=xR=0~DCM((Buw)w,la)  Xa=xz|R=1~DCM((B+Vqw)w;la)

The resulting IR model is then given by:

Twd—1
qu
RSV(g,d) = > Y. log(1—|—’yﬂ ’jr.)
weqnd  j=0 w T J
ldfl

— Z log(l + ’yHZlSZﬂ) (37)
i=0 w Fw
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Xu and Akella proposed several strategies to estimate 3, either with the EDCM distri-
bution or with a leave one out likelihood for the DCM distribution. They also proposed
to approximate the relevant class with the set of documents containing all query terms
in order to optimize 7. Finally, they extended their model for pseudo relevance feedback.
This model has an higher computational cost than other state of the art models, coming
from the estimation of DCM distributions and the double sum (> >") in the matching
function. Overall, the ad-hoc model performs similarly to language models.

The presentation of the PRP under Dirichlet Multinomial models ends the part on
the models developed under the PRP auspices. We now will move to language models for
information retrieval.

3.3 Language Models

Language models comes from the speech processing community and were defined as a
probability distribution on a sequence of words

The core idea of language models in information retrieval is to rank documents by
the probability P(g|d)- the probability the query could be generated from a document
model d. Hence, most relevant documents would be the most likely to generate the
query. Analogies with the vectorial space model [73] [B] are straightforward. Instead
of representing a document by a vector, a document is represented by a probability
distribution; instead of computing euclidean distances, probabilities or KL-divergences
are computed. Figure [3.3] illustrates the principle of language models for IR. Thus, for
each document one need to associate a language model, namely a probability distribution.

Ponte and Croft [67] proposed the first language models for IR, which had then been
extended in many ways [38]. Zhai et al. give a good overview in the language modeling
approach in [85]. Most of theses models make the choice of the multinomial distributions
to model documents.

One of the fundamental assumptions of the language modeling approach is that for
each document there exists a document language model, namely #¢ such that

lg!
P(X? = (24a)l04,10) = = [ [ Owa)™*
( (2wa)|0a; la) Hi:1$Wd!wed( a)

The problem now is to estimate the document language model (6,,4) for each docu-
ment. To do so, the maximum likelihood estimator (m.l.e) is often employed:

gmie _ _Twd _ Twd

wd S Twd la
Then, the probability the query is generated by a document model d can be computed
as follows

RSV (g,d) =log P(q|fa,1g) = > qul0g(0uwa) + h(q) (3.8)

weq

However, the m.l.e raises a major issue: if a query word does not appear in a document,
a zero probability is assigned for the document, so that the log probability is not defined.
To overcome theses issues, smoothing methods are employed to add some background
knowledge during the estimation of the document language model.

3.3.1 Smoothing Methods

The most popular smoothing methods are Dirichlet smoothing and Jelinek-Mercer smooth-
ing . An overview of smoothing methods for language models is presented in [85].
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Figure 3.3: The language modeling approach to Information Retrieval. Document are
represented by bag of words, ie multinomial distributions. Then, KL-Divergence serves
as a distance between queries and documents. In the figure, document a has a lower KL
divergence compared to other documents because it contains more query terms.

Jelinek-Mercer Smoothing
The collection of document can also be represented with a language model. Let C
be the collection of documents, then the (multinomial) language model is given by:

B = P(X, = 1) = szﬁzd =T (3.9)

Jelinek-Mercer smoothing proceeds by interpolating the maximum likelihood esti-
mator (m.l.e.) of the document language model with the collection’s one.

~ mle

Owa = abypa + (1 — Oé)ﬂw (3.10)
which is sometimes noted in the literature as:

P(w|d) = aP™*(wld) + (1 - a)p(w|C)

Thus, o is a parameter of the model. Generally, « is set after maximizing some
b b
performance measure on a given dataset.

The score of a document can be decomposed in two parts: the first part deals with
words that both belongs to the query and document. and the second one with words
which do not appear in the document. Hence, the latter words would be explained
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by the corpus language model. This lead to reformulate the model as:

RSV(¢,d) = Y qulog(6ua)
weq
Rsv(qu) = Z QwIOg(awd)+ Z QwIOg(de)
WEQG,Tgw >0 WEQG,Tgw=0
RSV(g,d) = > qulog(abpi®+(1—a)Bu)+ Y,  qulog((l—a)Bu)
WEQG,Towd >0 WEG,Tdw=0
afme + (1 — a)Buw
RSV(gd) = Y aulo U0 5 0 og((1 - i)
WEQG,T gy >0 w weq
aemle
RSVad) = qulos(i+ 52 1) (3.11)
WEQG,Tgw>0 w

This formulation shows that the trade off between the document language model
and the corpus is set by the factor ﬁ Finally, this formulation is also useful to
implement the model in an efficient way with an inverted index.

Dirichlet Smoothing
The next smoothing methods adopts a Bayesian view for the estimation of language
models. For each document language model, the following a priori is assumed:

013, 1 ~ Dirichiet([18,]) (3.12)

where (,, is defined by equation So, p is the parameter which sets the strength
of this a priori. Knowing that the Dirichlet and Multinomial are conjugated, the
posterior distribution of 8, is given by:

041X, 1, 6, 4 ~ Dirichlet([uB. + Twa)) (3.13)

Finally, the mean value of the posterior distribution is chosen as the language model

of the document.
~ Twd + Nlﬂw

d
6wd_E(0d.|X ,ld,ﬂ,ﬂ)— ld+/1/
The bigger u, the smaller the variance of # and the less the observed frequency x,q
impacts the mean value of 6,,4. The decomposition of the score in two terms can
also be applied in the case of Dirichlet Smoothing:

(3.14)

Twd + 1Bw 1By
RSV(g,d) = > qulog(=——")+ D qulog( )
WEQG,Ldw >0 ld T H WEQG,Tqw=0 ld + H
Twd + ,u'ﬁ’w /Jﬁw
RSV(g.d) = > qulog(=—""")+ > g, log( )
WEQG, Ty >0 1B weq la+p
RSV(q,d) = Z gu log(1 + 224y 4 lylog kg (3.15)
gm0 UBw la+ 1

This formulation shows that p appears as an a-priori score for a document (in
lylog ﬁ) Furthermore, the ratio 4 is the analog of 1= for Jelinek-Mercer smooth-
ing. As a, p is optimized according to some performance criteria. Nevertheless, Zhai
[85] proposed to estimate p as the optimal value of the leave one likelihood of the
document collection. This method is particularly interesting as relevance judgment
are not necessary to carry this estimation.
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Smoothing methods penalize common terms compared to rare terms: this was the
IDF effect in the vectorial model. So, smoothing is a key component of the language
modeling approach. Hence, smoothing sets the discrimination power between terms. In
the Dirichlet case, it also enables to add a prior score on documents.

3.3.2 KL Retrieval model

The basic language model for IR given by equation consists in computing the query
likelihood for each document in the collection. This model can be generalized by consid-
ering the query as a sample from a random variable [46]. As for each document in the
collection, a query is considered as a sample from a multinomial distribution:

ql0q, 1y ~ Multinomial(8y,1,)
Queries and documents can be compared with a probabilistic distance, the KL-divergence:

RSV(Q7 d) = _KL(G% Gd)

P(wl0,)
- %:P(wl%) log m

RSV(q,d) = Y P(w|0,)log P(w|0s) — Y P(wl|0,)log P(w|d,)

RSV (g,d)

RSV(q,d) = > 0Ougloghug — Y uglogbug

RSV(Qa d) = Z ewq IOg Owd + h(Q)

weq
where h(q) is the entropy of the query language model. 6, can be estimated by m.l.e.:

9. — Gw :‘Iw
Y e

Then, the KL retrieval model becomes rank equivalent to the query likelihood mode when
the document and query model are multinomial distributions:

RSV(g,d) =papic D Gwlogbua

weq

So, the KL retrieval model is generalization of the likelihood model. When the query is
represented by a language model (a distribution over words), pseudo feedback and query
expansion methods become more natural, more valid from a theoretical perspective: the
query can then be considered as an incomplete information, which can be updated or
enriched with other sources.

3.3.3 Summary

Language models can easily be understood with a vector space model analogy. Docu-
ments are represented by probability distributions and and probabilities or divergences
are computed between documents and queries instead of distances. Besides, these di-
vergences seems to better fit textual data as language model retrieval model outperform
the cosine retrieval function or several tf-idf retrieval functions. Language models are
relatively easy to extend and to adapt to several problems in information retrieval.
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For example, the Poisson distribution is chosen instead of the multinomial [58]. Several
works extended the language modeling approach to cross-lingual IR [47,[63]. Lastly, some
works try to take into account the document neighborhood or to use topic models in
order to better smooth documents models. To sum up, there exists many extensions
of the language modeling approach. These models are the most popular in the field
nowadays.

3.4 Divergence From Randomness

Divergence From Randomness (DFR) models [2] reconsider the 2-Poisson underlying
idea. Instead of regarding a word as significant or not for a document, these models
try to quantify the importance of a word in a document. Harter and Church [37] [11]
basically observed that ’good keywords’ are far from a Poissonian behavior. The idea of
DFR models build on this observation in order to derive weights for words in documents.
The cornerstone of these model consists in using Shannon information to measure the
importance of a word in a document. and this is why all DFR models relies on a function
of a first information: Inf; = —log P(Xy, = Zwd|\w) to weigh words in documents. As
P(X, = Zwd|Aw) represent the probability of x occurrences of term w in a document
d according to parameters \,, estimated on the collection, the information Inf; has the
following interpretation:

o If P(X,, = Twdi| ) is low, then the distribution of w in d deviates from its distri-
bution in the collection, and w is important to describe the content of d. In this
case, Inf; will be high and word w might be a good descriptor for a document d.

e On the contrary, if P(X,, = Zy4|\y) is high, then w behaves in a documentd as
expected from the whole collection and, thus, does not provide much information
on d (Inf; is low).

To sum up, Inf; thus captures the importance of a term in a document through
its deviation from an average behavior estimated on the whole collection. Figure [3.4]
illustrates the principle of Shannon Information to measure informative content.

Measuring word importance with Shannon information in this way is a powerful idea
but it contains 2 limitations that are further corrected in DFR models. These corrections
are called 'normalization principle’:

First Normalization Principle . It aims are renormalizing the first information quan-
tity: Inf;. The rationale for this normalization is somehow related to the burstiness
phenomenon. It is well known fact that many words do not follow Poisson distri-
bution. Although the Poisson distribution can help distinguishing good content
words, it can also overestimate the word importance in documents. For instance,
if a word occurs many times in a document, then the Poisson distribution will give
very high values for the information. Therefore, DFR models proceed with a sec-
ond probability model Probs which renormalizes the previous informative content
as follows:

(1 — Proby (twq))Inf; (fua)

Second Normalization Principle It aims at normalizing the number of occurrences of
words in documents by the document length, as a word is more likely to have more
occurrences in a long document than in a short one. The different normalizations
considered in the literature transform raw number of occurrences. DFR models
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Figure 3.4: Shannon Information Illustration. Probability model and its corresponding
information. When an observation is close to the mean/mode of the distribution, then
its information is low. On the contrary, an observation with a low probability gives a lot
of information

usually adopt one of the two following term frequency normalizations:

l
twa = medw (316)
la
l
twd = xwdlog(1+0a?g) (3.17)
d

where avgl is mean document length and ¢ parametrizes the normalization function.

It is important to stress that DFR models use these normalized term frequencies in
discrete distributions in order to compute the Inf; and Proby quantities.
All in all, the resulting DFR models have the general form:

RSV(g,d) = > qu(l — Proby(twa))Infi (uwa)
wegnd

We will discuss the different probability distributions used in DFR models either for
measuring the informative content or for modeling the risk of using a word as document
descriptor .

3.4.1 Inf; Model

Geometric (G)

This model assumes that word frequencies are distributed in the collection according

to a geometric distribution: A, = % (ie the mean frequency)

14+ Ay

w

Infi (twd) = 10g2(1 + /\w) + twd IOgQ( ) (3'18)
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Poisson (P)

Similarly with a Poisson law: A\, = FW“’ (ie the mean frequency)
e_>\w Atwd
Infi(tws) = - logz(ﬁ) (3.19)
tw 1
Infi(twd) = twd logQ()\—d) + ()\w + oo~ twd) log,(e) + 0.51ogs (27t q)
w wd

The last approximation use Stirling approximation

3.4.2 Prob, Model (First Normalization Principle)

Laplace (L)
The Laplace normalization consists in estimating the probability of observing one
more occurrence of a term in a document.

tw
P(Xy = twi|Xw = twa — 1) ~ Bernoulli(—2%—) (3.20)
twd + 1
Probo(tug) = —ud (3.21)
2\lwd - twd+1 .

Binomial Ratio (B)

Let’s suppose the number of documents N,, where a word occurs is known. Then,

all the occurences of the term are suppose to be uniformly distributed among this

set of document. The occurrences follow a Binomial law with parameter NL Then,
the probability to have x,,4 occurrences in a document is given by:

Lowd 1 N, —1

P(Xu) - x’u)d|Nu)aF’LU) = < v )(N)x“}d( ,LZU\[

Fw w w

)Frwo—twa (3.22)

Amati then considers the variation of probability when one extra occurrence is
added to a document.

P(Xy = Twd|Nw, Fiuw) — P(Xy = Twd + 1| Ny, Fy + 1) _1 F,+1 (3.23)
P(Xw:xwd|Nw»Fw) B Nw(xwd+1) .
Using the the normalized frequencies t,,4 instead of x4 leads to the following nor-
malization: Pl
Proby(tyq) =1 — ———— 3.24
2(twa) No(toa + 1) (3.24)

3.4.3 Models

DFR models results from the choice of a first probability model Prob; and renormalization
function Proby. Most DFR models adopts the second term frequency normalization
given by equation [3.17] For example, the Geometric-Laplace model with the second
normalization (called officially GL2) is written as:

avgl

twa = -delog(l‘i’c I ) (325)
d
F,
>\’UJ — W
1 1+ Ay
RSV(q,d) = Z qwm(logQ(l—k)\w)—i—twdlogz( . ) (3.26)

wegnd
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Similarly, the Poisson-Laplace with the second normalization (PL2) is written as:

avgl

twa = Tywalog(l—+c——)
lq
F,
Ao = =2
N
Guw
RSV (q,d) =
(q ) wezqﬁdtwd_Fl(

twd
twd IOgQ(T) + ()\w + 12¢ P

RSV(g.d) ~ ¥ (twdlogﬂtﬁ) 10g5(€) (A — twa) | 0.510g, (27t a)
" - weqﬁdqw twd + 1 twd +1 twa +1

— twa) logy(e) + 0.510gy (27t wq))

)

Amati [2] proposed many others models following this principles such as, PB2, GB2,
I(n)B2, I(F)L2. In practice, these different models get very similar performance, even if
PL2 et I(n)L2 are among the most popular. For all these models, ¢ is the parameter
which normalizes frequencies of word in documents. As most IR models, this parameter
is set empirically according to performance measures.

3.5 Conclusion

We have reviewed in this chapter the main families of probabilistic IR models. The BM25
model follow the Probability Ranking Principle and assume two poisson mixture models
for word frequencies. Language Models are based mostly on multinomial distributions
whereas DFR models involves Poisson or Geometric distributions for instances. All these
"basic’ retrieval models are often extended toward particular IR need, such as accounting
for document structure for instance and we have not mentionned here extensions of these
models as we choose to focus on the assumptions of the particular IR models.

A first conclusion of this chapter is that none of the leading IR model (except the DCM
model use within the PRP cf section ) rely on bursty distributions. Therefore, our
goal will be to try to define well performing IR model relying on bursty distributions. The
BNB and Log-Logistic distributions, we have introduced in the previous chapter, model
term occurrences on the collection whereas language models rather look at what happens
at the document level. PRP models need to choose a distribution of occurrence in the
relevant class and we have no indication that the burstiness phenomenon still hold in
the relevant class. Overall, it is the Divergence From Randomness framework that seems
closer to our requirements. This is why we will discuss and analyze DFR models in the
context of burstiness in the next chapter.

Albeit probabilistic, these three families of IR models relies on a different framework
and the underlying probability laws modeling word occurrences also differs from one
family to another in most cases. However, all the resulting weighting functions do have
some properties in common as we will see in the next chapter. As well as performance,
the easiness to understand and extend an IR model, its assumptions adequacy are other
significant features of an IR model.
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Chapter 4

Retrieval Heuristic Constraints
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4.1 Introduction

Although the main probabilistic IR models differentiate from each other, either by a
underlying theorical framework or by a distinct choice of a word frequency distribution,
all these well performing models share common properties which would allow one to
describe these models in a single framework. This is precisely the aim of retrieval heuristic
constraints , which were pioneered by Fang et al [33].

Heuristic constraints aim at describing formally some constraints that all IR models
share. Describing IR functions with constraints is referred to as the axiomatic approach to
IR. One can view these constraints as 'necessary’ conditions or as general properties that
can help us to understand, from a theoretical point of view, the behavior of IR models. As
an introduction to retrieval constraints, we give some examples of the properties captured
by the main retrieval constraints:

1. It is important that documents with more occurrences of query terms get higher
scores than documents with less occurrences (Term Frequency effect).

2. However, the increase in the retrieval score should be smaller for larger term fre-
quencies, inasmuch as the difference between say 110 and 111 is not as important as
the one between 1 and 2 since the number of occurrences has doubled in the second
case, whereas the increase is relatively marginal in the first case (Concave effect).

79
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3. In addition, longer documents, when compared to shorter ones with exactly the
same number of occurrences of query terms, should be penalized as they are likely
to cover additional topics than the ones present in the query (Document Length
effect).

4. Lastly, it is important, when evaluating the retrieval score of a document, to weigh
down terms occurring in many documents, ie which have a high document/collection
frequency, as these terms have a lower discrimination power (IDF effect).

This chapter is structured as follows: first, the retrieval heuristic constraints are pre-
sented. Then, Divergence From Randomness models are analyzed in order to better assess
the effect of their different components.

4.2 Analytical Formulation of Heuristic Constraints

Axiomatic methods were pioneered by Fang et al [33] and followed by many works in-
cluding [34, 26]. We first present in this section an analytical version of heuristic retrieval
constraints which underlie most IR models. We consider here retrieval functions noted
RSV which the following form:

RSV (g,d) = a(quw)ho(Twd; ld, 7, 0)

weq

where ¢, is the query term frequency, x,,q is the number of occurrence of w in w, l; the
document length, z,, a corpus statistic for word w and @ is a set of parameters.

The function hg, the form of which depends on the IR model considered, is assumed
to be of classE| C? and defined over (R1)3 x Q. € represents the domain of the parameters
in 6. The function a is often the identity function.

In many cases, the above weighting function hy can be written as:

ho(Zwd, ld, 2w, 0) = h(tzy,0) where t(w,d) = t(xywa, lq)

where ¢ is the normalized frequency associated to a given normalization function t(x,1).

Language models [86], Okapi [72] and Divergence from Randomness [2] models as well

as vector space models [73] all fit within the above form. For example, the Jelinek-Mercer
language model can be written as (cf section [3.3.1)):

tal) = 7

h(t, z = p(w]|C), ) = Tlog(At + (1 = A)2)

Similarly, the In.2 DFR model can be written as :

t(z,l) = zlog(l+ cavgl)
Ny t
h(t,z = N A) = i1 log(2)

We recall here Fang’s criteria and provide an analytical version of them which leads
to conditions on h which can be easily tested.

The names of the different criteria are directly borrowed from Fang et al. The presenta-
tion of the conditions is quite short but dense in mathematical notations. Two conditions
deals with the behavior of the function h wrt ¢, ie the behavior wrt to term frequency.

LA function of class C2 is a function for which second derivatives exist and are continuous.
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These conditions are the criterion TFC1 and TFC2. One condition, TDC, encodes the
IDF effect of vectorial models. In addition, the LNC1 conditions ensures that longer
document get penalized compared to shorter ones. Lastly, the conditions TFLNC1 and
LINC2 regulates the interaction between the term frequency and the document length.

4.2.1 TF Effect

The first constraint is:
TFC1: Let gbe a query with only word w, ie ¢ = w and two documents d1 and d2 such
that lj3 = lg2 (same length).

If ©wa1 > Twae, then RSV (dL, q) > RSV (d2,q)
TFCl < V¥(l,2,0), n € N*, ho(n,l, z,0) is increasing in n. A sufficient condition is:

o0t(x,1,0) 0 and Oh(t, z,0)
oz ot
This constraint translates the fact that documents with more occurrences of query terms
get higher scores than documents with less occurrences and is illustrated in figure
For example, the function log(1+ ) captures the increase in term frequency for language

models, whereas for DFR models, it is often a function with a pattern as f7.

v(l, z,0), >0 (TF Effect)

4.2.2 Concave Effect

The next constraint presented by Fang is:
TFC2: Let ¢ = w and 3 documents such that l3; = lgo = lg3 and x,,q1 > 0.
If xwa2 — vwar = 1 and x443 — Twaz = 1, then

RSV (d2,q) — RSV (dl,q) > RSV (d3,q) — RSV (d2, q)

TFC2 < V(I,2,0), n € N*, ho(n + 1,1, 2,0) — ho(n,l, 2,0) is decreasing. A sufficient
condition is:

0?h(t, z,0)
ot?
This constraint guarantees that the increase in the retrieval score should be smaller for

larger term frequencies and is illustrated in figure

We propose to illustrate and to discuss further the implications of the concave effect
with the following developpement. Let a and b be two words with similar idf or collection
frequency, ie z, = zp. Imagine that all documents in the collection have the same length
[, let s a constant, representing the number of occurences of word a and b, ie t, + t, = s.
We want to show that concave functions favor a uniform distribution of occurences in
documents. Let f the univariate function defined by f(¢) = h(t, z,0) Now, consider the
following optimization problem:

Y(z,0), <0 (Concave Effect)

argmax A= ft)+ f(s—1)
subject to t>0,t<s
So, A gives the score of a document whose frequencies for word a and b are equal to t, = ¢

and t, = s —t. The solution of this problem gives the preferred repartition of frequencies
for both words in documents. The Lagrangian of this problem is then:

A=fO)+f(s—t)—M—0(s—1)
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Figure 4.1: Illustration of TF Effect
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Figure 4.2: Illustration of Concave Effect
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Figure 4.3: Illustration of the equipartition property of concave functions as opposed to
convex functions

The Kuhn-Tucker conditions then gives:

ff@)=f(s=t)=A

o O O O

o
A
4]

IN A IA

At +6(s —t)

Either the constraints are active and ¢t = 0 or t = s, or they are inactive and A = d = 0,
which gives f'(t) = f'(s —t) and ¢ = 5. Overall this gives the two possible solutions:

s s
t=— t)=2f(=
S An=2/()
t=0ort=s A(t) = f(0) + f(s)
As f is concave the optimal solution is ¢* = 5. Hence, concave functions favors the

equipartition of frequencies. In other words, concave functions favor documents with as
many occurrences of word a as word b that is to say documents that cover both aspects
of a query. On the contrary, if f was convex, it would favor the other solution, when we
choose only one word. In other words, convex functions favor documents with either word
a alone or word b alone. Note that these arguments are only valid for a fixed document
length [ and a predetermined s and that they could be generalized with more than two
words. Figures illustrates the equipartition property of concave functions.

4.2.3 Document Length Effect

The next constraint deals with penalizing longer documents:
LNC1: Let ¢ = w be a query and d1, d2 two documents.
If, for a word w' € q, Twrg2 = Tywrgr + 1 but for the query word w, T,,q2 = Twq1, then:

RSV (d1,q) > RSV (d2,q)

Y(z,z,0), n € N*, Let b, = ho(z,n, z,0)
LNC1 < VY(z,z2,0), n € N*, ho(z,n, z,0) is decreasing. A sufficient condition is:
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Oho(z,l, z,0)
ol

which translates in the term frequency normalization function as:

Y(z, z,0), <0

at(x, 1,0)

(a,0),

<0 (Document Length Effect)
This constraint penalizes long documents compared to shorter ones. For example, lan-
guage models have a term frequency normalization of the form:

x

t(z,l) ==
l

due to the constraint on the Multinomial parameter. DFR models rather choose a nor-

malization parametrized by the mean document length avgl and an additional parameter

c

l
t(x,l) = xlog(l + c#)

whereas BM25 rely on the pivoted length normalization [77].

4.2.4 IDF Effect

The next constraint aims at capturing the IDF effect of vectorial models.
TDC: Let g a query and wl, w2 two query words.
Suppose that Iy = la2, Twidl + Tw2dl = Twid2 + Tw2d2-

If idf (w1) > idf (w2) and Ty141 > Twid2, then RSV (dl,q) > RSV (d2,q).

A special case of TDC corresponds to the case where w1 occurs only in document d1 and
w2 only in d2. In such a case, the constraint can be written as:

speTDC: Let g a query and wl, w2 two words.
Suppose that lg1 = la2, Twidl = Tw2d2, Twid2 = Tw2d1 = 0.

If idf (w1) > idf (w2), then RSV (dl,q) > RSV (d2,q).
A sufficient condition for speTDC is:

Oh(t, z,0)
0z

This constraint accounts for the IDF effect and is illustrated in figure [I.4] Note that
w < 0 alone is not a sufficient condition. For example, language models with
Jelinek-Mercer smoothing are such that % > 0 even if it does verify the speTDC condi-
tion.

More generally, the situation of the TDC constraint is unclear, and in fact we show that
several state-of-the-art IR models do not comply with the general TD(C constraint,
but do satisfy the speTDC one. We use a similar development to the one illustrating the
equipartition property of concave functions to do so. Let us consider the case where the
weighting function is 