. Peraza, Luminescence of Er 3+ -doped nanostructured SiO 2 -LaF 3 glass-ceramics prepared by the sol-gel method, Opt. Mat, vol.29, pp.1557-1561, 2007.

V. Gueu, H. You, T. Hayakawa, and M. Nogami, Eu 3+ -fluorescence properties in nanocrystallized SnO 2 -SiO 2 glass-ceramics, J. Sol-Gel Sci. Tech, pp.41-231, 2007.

S. Fujihara, C. Mochizuki, and T. Kimura, Formation of LaF3 microcrystals in sol???gel silica, Journal of Non-Crystalline Solids, vol.244, issue.2-3, pp.267-274, 1999.
DOI : 10.1016/S0022-3093(99)00009-5

J. W. Nicholson, Chemistry of glass-ionomer cements: a review, Biomaterials, vol.19, issue.6, pp.485-494, 1998.
DOI : 10.1016/S0142-9612(97)00128-2

G. Laudisio, M. Catauro, A. Costantini, and F. Branda, Sol???gel preparation and crystallisation of 2.5CaO??2SiO2 glassy powders, Thermochimica Acta, vol.322, issue.1, pp.17-23, 1998.
DOI : 10.1016/S0040-6031(98)00487-0

S. Fujihara, S. Koji, and T. Kimura, -nanocrystallized sol???gel silica films, J. Mater. Chem., vol.7, issue.8, pp.1331-1335, 2004.
DOI : 10.1039/B313784H

URL : https://hal.archives-ouvertes.fr/hal-01228948

G. C. Kinowski, O. Righini, and S. Robbe, Enhanced fluorescence from Eu 3+ in low-loss silica glass-ceramic waveguides with high SnO 2 content, App. Phys. Lett, pp.93-211904, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00350398

E. Bernardo, G. Scarinci, and S. Hreglich, Development and mechanical characterization of Al2O3 platelet-reinforced glass matrix composites obtained from glasses coming from dismantled cathode ray tubes, Journal of the European Ceramic Society, vol.25, issue.9, pp.1541-1550, 2005.
DOI : 10.1016/j.jeurceramsoc.2004.05.025

J. Zarzycki, Les verres et l'état vitreux, 1982.

W. Höland, V. Rheinberger, and M. Schweiger, Nucleation and crystallization phenomena in glass-ceramic, Adv. Eng. Mater, issue.310, pp.768-774, 2001.

G. H. Beall and L. R. Pinckney, Nanophase Glass-Ceramics, Journal of the American Ceramic Society, vol.49, issue.3, pp.5-16, 1999.
DOI : 10.1111/j.1151-2916.1999.tb01716.x

P. Thèse-de and . Loiseau, Contribution à l'étude de vitrocéramiques à base de zirconolite (CaZrTi 2 O 7 ) destinées au confinement de radionucléides à vie longue, 2001.

G. H. Beall, Design and Properties of Glass-Ceramics, Annual Review of Materials Science, vol.22, issue.1, pp.91-119, 1992.
DOI : 10.1146/annurev.ms.22.080192.000515

F. A. Hummel, Thermal Expansion Properties of Some Synthetic Lithia Minerals, Journal of the American Ceramic Society, vol.35, issue.1, pp.34-235, 1951.
DOI : 10.1021/ja01265a084

E. J. Smoke, Ceramic Compositions Having Negative Linear Thermal Expansion, Journal of the American Ceramic Society, vol.54, issue.2, pp.87-90, 1951.
DOI : 10.1111/j.1151-2916.1951.tb13491.x

S. Hendy, Light scattering in transparent glass ceramics, Applied Physics Letters, vol.81, issue.7, pp.81-1171, 2002.
DOI : 10.1063/1.1499989

Y. Wang and J. Ohwaki, New transparent vitroceramics codoped with Er 3+ and Yb 3+ for efficient frequency upconversion, Appl. Phys. Lett, issue.24, pp.63-32686, 1993.

V. D. Gonzalez-almeida, A. D. Rodriguez, P. Lozano-gorrin, and . Nunez, Optical properties of Er 3+ ions in transparent glass ceramics, J. Alloys Comp, pp.323-324, 2001.

D. Deng, S. Xu, S. Zhao, C. Li, H. Wang et al., Enhancement of upconversion luminescence in Tm 3+, 3+ /Yb 3+ -codoped glass ceramic containing LiYF 4 nanocrystals, pp.129-1266, 2009.

H. Guo, F. Li, J. Li, and H. Zhang, Luminescent Properties of Eu-Doped Transparent Glass?Ceramics Containing YPO 4 Nanocrystals, J. Am. Ceram. Soc, issue.6, pp.94-1651, 2011.

H. Ma, X. Zhang, and J. Lucas, Infrared transmitting chalcogenide glass ceramics, Journal of Non-Crystalline Solids, vol.317, issue.3, pp.317-270, 2003.
DOI : 10.1016/S0022-3093(02)01819-7

C. Urlacher, C. Marco-de-lucas, and J. Mugnier, Chemical and physical aspects of sol???gel process for planar waveguides elaboration: application to zirconia waveguides, Synthetic Metals, vol.90, issue.3, pp.90-199, 1997.
DOI : 10.1016/S0379-6779(98)80007-6

P. K. Tien and R. J. Martin, EXPERIMENTS ON LIGHT WAVES IN A THIN TAPERED FILM AND A NEW LIGHT???WAVE COUPLER, Applied Physics Letters, vol.18, issue.9, pp.398-401, 1971.
DOI : 10.1063/1.1653716

S. Brunauer, L. S. Deming, W. E. Deming, and E. Teller, On a Theory of the van der Waals Adsorption of Gases, Journal of the American Chemical Society, vol.62, issue.7, pp.62-1723, 1940.
DOI : 10.1021/ja01864a025

S. Brunauer, P. H. Emmett, and E. Teller, Adsorption of Gases in Multimolecular Layers, Journal of the American Chemical Society, vol.60, issue.2, pp.309-319, 1938.
DOI : 10.1021/ja01269a023

E. P. Barret, G. L. Joyner, and P. P. Halenda, The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms, Journal of the American Chemical Society, vol.73, issue.1
DOI : 10.1021/ja01145a126

C. Rayraud, Outil de la recherche, 2008.

J. Pannetier, Technique d'ananlyse des diagrammes de diffraction des rayons X et de neutrons par les poudres, Formation permanente du CNRS, 1995.

J. I. Langford and D. Louër, Powder diffraction, Reports on Progress in Physics, vol.59, issue.2, p.131, 1996.
DOI : 10.1088/0034-4885/59/2/002

E. Duval, A. Boukenter, and B. Champagnon, Vibration Eigenmodes and Size of Microcrystallites in Glass: Observation by Very-Low-Frequency Raman Scattering, Physical Review Letters, vol.56, issue.19
DOI : 10.1103/PhysRevLett.56.2052

A. Diéguez, A. Romano-rodriguez, A. Vilà, and J. R. Morante, The complete Raman spectrum of nanometric SnO2 particles, Journal of Applied Physics, vol.90, issue.3, pp.1550-1557, 2001.
DOI : 10.1063/1.1385573

E. Duval, Far-infrared and Raman vibrational transitions of a solid sphere: Selection rules, Physical Review B, vol.46, issue.9, pp.5795-5797, 1992.
DOI : 10.1103/PhysRevB.46.5795

R. Shuker and R. W. Gammon, Raman-Scattering Selection-Rule Breaking and the Density of States in Amorphous Materials, Physical Review Letters, vol.25, issue.4, pp.222-225, 1970.
DOI : 10.1103/PhysRevLett.25.222

M. Montagna and R. Dusi, Raman scattering from small spherical particles, Physical Review B, vol.52, issue.14, pp.10080-10089, 1995.
DOI : 10.1103/PhysRevB.52.10080

W. Righini, R. R. Kiefer, and . Gonçalves, Low wevenumber Raman scattering of nanoparticles and nanocomposite materials, J. Raman Spectrosc, vol.38, pp.647-659, 2007.

N. Chiodini, A. Paleari, G. Spinolo, and P. Crespi, Photorefractivity in SiO 2 :SnO 2 glassceramics by visible light, J. Non-Crys, pp.266-271, 2003.

B. N. Bhaktha, C. Kinowski, M. Bouazaoui, B. Capoen, and O. , Controlled growth of
URL : https://hal.archives-ouvertes.fr/hal-00452855

M. Okuno, N. Zotov, M. Schmücker, and H. Schneider, Structure of SiO2???Al2O3 glasses: Combined X-ray diffraction, IR and Raman studies, Journal of Non-Crystalline Solids, vol.351, issue.12-13, pp.1032-1038, 2005.
DOI : 10.1016/j.jnoncrysol.2005.01.014

F. L. Galeener, Band limits and the vibrational spectra of tetrahedral glasses, Physical Review B, vol.19, issue.8, pp.4292-4297, 1978.
DOI : 10.1103/PhysRevB.19.4292

J. M. Nedelec, Elaboration par voie sol-gel et caractérisation de gels de silice dopés et de guides d'ondes plans aluminosilicates photosensibles, Thèse de l'Université des sciences et Technologies de Lille, 1998.

C. Pighini, Synthèses de nanocristaux de TiO 2 anatase à distribution de taille contrôlée, 2006.

M. N. Rumyantseva, A. M. Gaskov, N. Rosman, T. Pagnier, and J. R. Morante, :?? Correlation with Gas Sensor Performances, Chemistry of Materials, vol.17, issue.4, pp.893-901, 2005.
DOI : 10.1021/cm0490470

C. H. Shek, G. M. Lin, and J. K. Lai, Effect of oxygen deficiency on the Raman spectra and hyperfine interactions of nanometer SnO 2, Nanostruct. Mater, issue.7, pp.11-831, 1999.

D. Shuo, L. J. Quan, and L. Y. Long, Enhanced Raman scattering from nano-SnO 2 grains, Chinese Phys, pp.13-1854, 2004.

R. J. Bell, N. F. Bird, and P. Dean, The vibrational spectra of vitreous silica, germania and beryllium fluoride, Journal of Physics C: Solid State Physics, vol.1, issue.2, pp.299-303, 1968.
DOI : 10.1088/0022-3719/1/2/304

G. E. Swann and V. Patwardhan, Application of Fourier Transform Infrared Spectroscopy, Clim. Past Discuss, pp.1629-1653, 2010.

Y. S. Feng, S. M. Zhou, Y. Li, C. C. Li, and L. D. Zhang, Synthesis and characterization of tin oxide nanoparticles dispersed in monolithic mesoporous silica, Solid State Sciences, vol.5, issue.5, pp.729-733, 2003.
DOI : 10.1016/S1293-2558(03)00080-3

M. Kruk and M. Jaroniec, Gas Adsorption Characterization of Ordered Organic???Inorganic Nanocomposite Materials, Chemistry of Materials, vol.13, issue.10, pp.3169-3183, 2001.
DOI : 10.1021/cm0101069

K. S. Sing, D. H. Everett, R. A. Haul, L. Moscou, R. A. Pierotti et al., Reporting physisorption data for gas/solid systems with special III, BIBLIOGRAPHIE, vol.5

J. Del-castillo, V. D. Rodriguez, A. C. Yanes, and J. Méndez-ramos, Energy transfer from the host to Er3+ dopants in semiconductor SnO2 nanocrystals segregated in sol???gel silica glasses, Journal of Nanoparticle Research, vol.85, issue.12, pp.499-506, 2008.
DOI : 10.1007/s11051-007-9283-x

A. Mori, Y. Ohishi, and S. Sudo, Erbium-doped tellurite fiber laser and amplifier, Electro. Lett, issue.10, pp.33-863, 1997.

P. G. Kik and E. A. Polman, Exciton-erbium energy transfer in Si nanocrystal-doped SiO 2, Mat. Sci. Eng. B-Solid, pp.81-84, 2001.

T. Schmidt, G. Muller, L. Spanhel, K. Kerkel, and A. Forchel, Fluorescence in Concentrated II???VI Semiconductor Cluster Environments, Chemistry of Materials, vol.10, issue.1, pp.65-71, 1998.
DOI : 10.1021/cm9702169

]. S. Selvan, T. Hayakawa, and M. Nogami, Enhanced fluorescence from Eu 3+ -doped silica gel by absorbed CdS nanoparticles, J. Non-Crystalline Solid, issue.5, pp.291-137, 2001.

G. Ehrhart, Elaboration et caractérisation de films vitreux nanostructurés par voie solgel . Mise en évidence du transfert d'énergie entre les particules semi-conductrices de

G. Ehrhart, B. Capoen, O. Robbe, F. Beclin, . Ph et al., Energy transfer between semiconductor nanoparticles (ZnS or CdS) and Eu3+ ions in sol???gel derived ZrO2 thin films, Optical Materials, vol.30, issue.10, pp.1595-1602, 2008.
DOI : 10.1016/j.optmat.2007.10.004

URL : https://hal.archives-ouvertes.fr/hal-00284630

K. Raulin-woznica, Etude du dopage par des ions actifs et des nanoparticules semiconductrices de matériaux sol-gel pour l'optique. Interaction dopant-matrice et croissance localisée de nanoparticules par irradiation laser, Thèse de l'Université des Sciences et Technologies de Lille: Villeneuve d'Ascq, 2008.

J. Castaneda-contreras, M. A. Meneses-nava, O. Barbosa-garcia, R. A. Rodriguez, and M. V. Félix, Visible erbium luminescence in SiO2???TiO2???Er3+ sol???gel powders, Optical Materials, vol.29, issue.1, pp.38-42, 2006.
DOI : 10.1016/j.optmat.2006.03.005

A. Patra, Effect of crystal structure and concentration on luminescence in Er3+:ZrO2 nanocrystals, Chemical Physics Letters, vol.387, issue.1-3, pp.35-39, 2004.
DOI : 10.1016/j.cplett.2004.01.089

. Taylor, Photosensitive erbium doped tin-silicate glass, J. Non-Crys. Solids, issue.311, pp.217-222, 2002.

S. Brovelli, A. Chiodini, A. Lauria, F. Meinardi, and A. Paleari, Energy transfer to erbium ions from wide-band-gap SnO 2 nanocrystals in silica, Phys. Rev. B, pp.73-073406, 2006.

S. Brovelli, N. Chiodini, F. Meinardi, A. Monguzzi, A. Lauria et al., nanoparticles embedded in silica: A time-resolved infrared luminescence study, Physical Review B, vol.79, issue.15, pp.153108-153112, 2009.
DOI : 10.1103/PhysRevB.79.153108

M. Nogami, T. Enomoto, and T. Hayakawa, Enhanced fluorescence of Eu3+ induced by energy transfer from nanosized SnO2 crystals in glass, Journal of Luminescence, vol.97, issue.3-4, pp.147-152, 2002.
DOI : 10.1016/S0022-2313(02)00217-X

V. Gueu, H. You, T. Hayakawa, and M. Nogami, Eu 3+ -fluorescence properties in nanocrystallized SnO 2 -SiO 2 glass-ceramics, J. Sol-Gel. Sci. Techn, pp.41-231, 2007.

A. C. Yanes, J. D. Castillo, M. Torres, J. Peraza, and V. D. Rodriguez-et-méndez-ramos, Nanocrystal-size selective spectroscopy in SnO 2 :Eu 3+ semiconductor quantum dots, Appl. Phys. Lett, issue.12, pp.85-2343, 2004.

J. , D. Castillo, V. D. Rodriguez, A. C. Yanes, J. Mendez-ramos et al., Luminescent properties of transparent nanostructured Eu 3+ doped SnO 2 -SiO 2 glassceramics prepared by sol-gel method, Nanotechnology, vol.16, pp.300-303, 2005.

E. Berrier, Elaboration par voie sol-gel et étude structural de verres de silice destinés à la fabrication de fibres microstructures, Thèse de l'Université des Sciences et Technologies de Lille: Villeneuve d'Ascq, 2005.

H. You and M. Nogami, Local structure and persistent spectral hole burning of the Eu3+ ion in SnO2???SiO2 glass containing SnO2 nanocrystals, Local structure and persistent spectral hole burning of the Eu 3+ ion in SnO 2 -SiO 2 glass containing SnO 2 nanocrystals, pp.2781-2786, 2004.
DOI : 10.1063/1.1646433

J. Chen, J. Wang, F. Zhang, D. Yan, G. Zhang et al., Structure and photoluminescence property of Eu-doped SnO 2 nanocrystalline powders fabricated by sol?gel calcination process, J. Phys. D: Appl. Phys, pp.41-105306, 2008.

E. A. De-morais, L. V. Scalvi, A. A. Cavalheiro, A. Tabata, and J. B. Oliveira, Rare earth centers properties and electron trapping in SnO 2 thin films produced by sol-gel route, J. Non-Cryst. Solids, pp.35442-35486, 2008.

G. C. Kinowski, O. Righini, and S. Robbe, Enhanced fluorescence from Eu 3+ in low-loss silica glass-ceramic waveguides with high SnO 2 content, App. Phys. Lett, pp.93-211904, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00350398

W. Yi, L. Langsheng, Z. Huiqun, and D. Ruiqin, Anneal and Concentration Effect on PL Properties of Sol-Gel Derived Eu3+ Doped SiO2 Glass, Journal of Rare Earths, vol.24, issue.1, pp.199-203, 2006.
DOI : 10.1016/S1002-0721(07)60359-7

M. Nogami, N. Hayakawa, N. Sugioka, and Y. Abe, Formation of Sm 2+ lons in Sol-Gel- Derived Glasses of the System Na 2 O-Al 2 O 3 -SiO 2, J. the American Ceramic Society, issue.5, pp.79-1257, 1996.

Y. Zhou, Y. L. Lam, S. S. Wang, H. L. Liu, and C. H. Kam, Fluorescence enhancement of Er 3+ -doped sol-gel glass by aluminium codoping, Appl. Phys. Lett, issue.5, pp.71-587, 1997.

R. M. Almeida, X. M. Du, and D. Barbier, Orignac, Er 3+ -doped Multicomponent Silicate Glass Planar Waveguides Prepared by Sol-Gel Processing, Journal of Sol-Gel Science and Technology, vol.14, issue.2, pp.209-216, 1999.
DOI : 10.1023/A:1008794202103

A. Monguzzi and . Paleari, Growth of SnO 2 nanocrystals controlled by erbium doping in silica, Nanotechnology, vol.17, pp.4031-4036, 2006.

Y. Pulcinelli and . Messaddeq, Optical characteristics of Er 3+ -Yb 3+ doped SnO 2 xerogels, J. Alloys and Compounds, vol.344, pp.217-220, 2002.

R. T. Bise and D. J. Trevor, Surface absorption inmicrostructured optical fibers, Opt. fiber commun, Conference, pp.726-729, 2004.

C. , J. Brinker, and G. W. Sherer, Sol-gel Science: The Physics and Chemistry of sol-gel processing, 1990.

X. Zhang, T. Hayakawa, and M. Nogami, Photoluminescence properties and 5 D 0 decay analysis of LaF 3 :Eu 3+ nanocrystals prepared by using surfactant assist, Int. J

G. Dantelle, Vitrocéramiques oxyfluorées transparentes dopées par des ions lanthanides Matériaux nano composites luminescence à 1.5µm, 2006.

A. J. Kenyon, Recent developments in rare-earth doped materials for optoelectronics, Progress in Quantum Electronics, pp.225-184, 2002.
DOI : 10.1016/S0079-6727(02)00014-9

X. Orignac, D. Barbier, X. M. Du, R. M. Almeida, O. Mccarthy et al., Sol???gel silica/titania-on-silicon Er/Yb-doped waveguides for optical amplification at 1.5 ??m, Optical Materials, vol.12, issue.1, pp.1-18, 1999.
DOI : 10.1016/S0925-3467(98)00076-7

B. Valeur, Invitation à la fluorescence moléculaire, 2004.

. Th and . Forster, Zwischenmolekulare Energiewanderung und Fluoreszenz, Ann. Phys, vol.47, pp.55-75, 1948.

J. Heitmann, M. Schmidt, M. Zacharias, V. Yu, M. G. Timoshenko et al., Fabrication and photoluminescence properties of erbium doped size-controlled silicon nanocrystals, Materials Science and Engineering: B, vol.105, issue.1-3, pp.214-220, 2003.
DOI : 10.1016/j.mseb.2003.08.048

D. L. Dexter, A Theory of Sensitized Luminescence in Solids, The Journal of Chemical Physics, vol.21, issue.5, pp.836-851, 1953.
DOI : 10.1063/1.1699044

C. Xueyuan, L. Wenqin, L. Yongsheng, and L. Guokui, Recent Progress on Spectroscopy of Lanthanide Ions Incorporated in Semiconductor Nanocrystals, Journal of Rare Earths, vol.25, issue.5, pp.515-525, 2007.
DOI : 10.1016/S1002-0721(07)60555-9

A. A. Bol, R. Van-beek, and E. A. Meijerrink, On the Incorporation of Trivalent Rare Earth Ions in II???VI Semiconductor Nanocrystals, Chemistry of Materials, vol.14, issue.3, pp.1121-1126, 2002.
DOI : 10.1021/cm011195s

L. Sun, C. Yan, C. Liu, C. Liao, D. Li et al., Study of the optical properties of Eu3+-doped ZnS nanocrystals, Journal of Alloys and Compounds, vol.275, issue.277, pp.275-277, 1998.
DOI : 10.1016/S0925-8388(98)00310-7

Y. J. Lu and . Li, Luminescence spectroscopy and visible upconversion properties of Er 3+ in ZnO nanocrystals, J. Phys. Chem. B, vol.108, p.18408, 2004.

Y. S. Liu, W. Q. Luo, R. F. Li, and X. Y. Chen, Spectroscopic evidence of the multiple-site structure of Eu^3+ ions incorporated in ZnO nanocrystals, Optics Letters, vol.32, issue.5, pp.566-571, 2007.
DOI : 10.1364/OL.32.000566

M. J. Digonnet, Rare earth doped fiber lasers and amplifiers, 2001.

E. Desurvire, Erbium-Doped Fiber Amplifiers, 1994.
DOI : 10.1201/9780203904657.ch10

T. J. Stanimirova, P. A. Atanasov, I. G. Dimitrov, and A. O. Dikovska, Investigation on the structural and optical properties of tin oxide films grown by pulsed laser deposition, J. Opt. and Adv. Mater, vol.7, issue.3, pp.1335-1340, 2005.

M. B. Casu, W. Braum, K. R. Bauchspie, S. Kera, B. Megner et al., A multi-technique investigation of TiO 2 films prepared by magnetron sputtering, Surface Science, vol.62, pp.1599-1606, 2008.

C. Strohhöfer and A. Polman, Absorption and emission spectroscopy in Er 3+ -Yb 3+ doped aluminium oxide waveguides, pp.705-712, 2003.

F. Chen, X. L. Wang, and K. M. Wang, Development of ion-implanted optical waveguides in optical materials: A review, Optical Materials, vol.29, issue.11, pp.1523-1542, 2007.
DOI : 10.1016/j.optmat.2006.08.001

V. Kiisk, I. Sildos, O. Sild, and J. Aarik, The influence of a waveguiding structure on the excitonic luminescence of anatase thin films, Optical Materials, vol.27, issue.1, pp.115-118, 2004.
DOI : 10.1016/j.optmat.2004.02.014

M. Locher, V. Romano, and H. P. Weber, Rare-earth doped sol???gel materials for optical waveguides, Optics and Lasers in Engineering, vol.43, issue.3-5, pp.341-347, 2005.
DOI : 10.1016/j.optlaseng.2004.04.007

O. Péron, C. Duverger-arfuso, Y. Jestin, B. Boulard, and M. Ferrari, Enhanced spectroscopic properties in Er 3+ /Yb 3+ -activated fluoride glass-ceramics planar waveguides, pp.31-1288, 2009.

M. Benatsou and M. Bouazaoui, Fluorescence properties of sol-gel derived Er3+:SiO2???GeO2 planar waveguides, Optics Communications, vol.137, issue.1-3, pp.143-150, 1997.
DOI : 10.1016/S0030-4018(96)00748-1

S. Righini, A. Pelli, L. Chiappini, M. Zampedri, and . Ferrari, Er 3+ /Yb 3+ -activated silicatitania planar waveguides for EDPWAs fabricated by rf-sputtering

A. Martucci, A. Chiasera, M. Montagna, and M. Ferrari, Erbium-doped GeO2???TiO2 sol???gel waveguides, Journal of Non-Crystalline Solids, vol.322, issue.1-3, pp.295-299, 2003.
DOI : 10.1016/S0022-3093(03)00218-7

. Speranza, Erbium activated HfO 2 based glass-ceramics waveguides for photonics, J

C. Righini, S. J. Ribeiro, and Y. Messaddeq, Erbium-activated HfO 2 -based waveguides for photonics, Opt. Materials, vol.25, pp.131-139, 2004.

F. A. Sigoli, R. R. Gonçalves, A. S. De-camargo, L. A. Nunes, Y. Messaddeq et al., Preparation and characterization of erbium and ytterbium co-doped sol???gel SiO2:HfO2 films for planar waveguides, Optical Materials, vol.30, issue.4, pp.600-607, 2007.
DOI : 10.1016/j.optmat.2007.01.012

C. Righini and G. Speranza, Er 3+ /Yb 3+ -activated silica-hafnia planar waveguides for photonics fabricated by rf-sputtering, J. Non-Cryst. Solids, vol.355, pp.1176-1179, 2009.

. Armellini, Er 3+ -doped silica-hafnia films for optical waveguides and spherical resonators, J. Non-Cryst. Solids, vol.355, pp.1853-1860, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00485687

R. M. Almeida, A. C. Marques, R. Cabeça, L. Zampesri, A. Chiasera et al., Photoluminescence of Erbium-Doped Silicate Sol-Gel Planar Waveguides, Journal of Sol-Gel Science and Technology, vol.31, issue.1-3, pp.31-317, 2004.
DOI : 10.1023/B:JSST.0000048010.74400.f0

A. Z. Subramanian, C. J. Oton, J. S. Wilkinson, and R. Greef, Waveguiding and photoluminescence in Er3+-doped Ta2O5 planar waveguides, Journal of Luminescence, vol.129, issue.8, pp.812-816, 2009.
DOI : 10.1016/j.jlumin.2009.02.020

C. Strohhöfer, S. Capecchi, J. Fick, A. Martucci, G. Brusatin et al., Active optical properties of erbium-doped GeO2-based sol-gel planar waveguides, Thin Solid Films, vol.326, issue.1-2, pp.99-105, 1998.
DOI : 10.1016/S0040-6090(98)00535-5

E. Fonthal and . Solarte, CO 2 laser annealing on erbium-activated glass-ceramic waveguides for photonics, pp.1310-1314, 2009.

R. R. Gonçalves, J. J. Guimaraes, J. L. Ferrari, L. J. Maia, and S. J. Ribeiro, Active planar waveguides based on sol???gel Er3+-doped SiO2???ZrO2 for photonic applications: Morphological, structural and optical properties, Journal of Non-Crystalline Solids, vol.354, issue.42-44, pp.4846-4851, 2008.
DOI : 10.1016/j.jnoncrysol.2008.05.055

A. Wang, R. Hui, R. Dahal, J. Y. Lin, and H. X. Jiang, Carrier lifetime in erbium-doped GaN waveguide emitting in 1540 nm wavelength, Applied Physics Letters, vol.97, issue.24, pp.97-241105, 2010.
DOI : 10.1063/1.3527089

H. Lin, S. Jiang, J. Wu, F. Song, N. Peyghambarian et al., glasses for optical waveguide laser and amplifier, Journal of Physics D: Applied Physics, vol.36, issue.7, pp.812-817, 2003.
DOI : 10.1088/0022-3727/36/7/307

A. J. Barbosa, F. A. Dias-filho, L. J. Maia, Y. Messaddeq, S. J. Ribeiro et al., doped phosphoniobate glasses and planar waveguides: structural and optical properties, Journal of Physics: Condensed Matter, vol.20, issue.28, p.285224, 2008.
DOI : 10.1088/0953-8984/20/28/285224

V. A. Rivera, E. F. Chillcce, E. Rodriguez, C. L. Cesar, and L. C. Barbosa, Planar waveguides by ion exchange in Er3+-doped tellurite glass, Journal of Non-Crystalline Solids, vol.352, issue.5, pp.363-367, 2006.
DOI : 10.1016/j.jnoncrysol.2006.01.018

E. Monteil, H. Moser, K. C. Portales, and . Vishunubhatla, Erbium-actived modified silica glasses with high 4 I 13/2 luminescence quantum yield, Opt. Materials, vol.28, pp.1325-1328, 2006.

. Gao, Erbium doped fluoride glass-ceramics waveguides fabricated by PVD, J. Non- Cryst, vol.354, pp.3586-3591, 2008.

G. C. Kinowski, O. Righini, and S. Robbe, Enhanced fluorescence from Eu 3+ in low-loss silica glass-ceramic waveguides with high SnO 2 content, Appl. Phys. Lett, pp.93-211904, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00350398

S. Loridan, Determination of the Maximum Vanadium Oxide Coverage on SnO 2 with a High Surface Area by Raman Spectroscopy, J. Phys. Chem. B, issue.51, pp.106-13273, 2002.

T. Harumoto, J. Iqbal, X. Liu, J. Shi, Y. Nakamura et al., Effects of hydroxyls on the structural and room temperature ferromagnetic properties of Co doped SnO 2 nanoparticles, Appl. Phys. A, pp.97-211, 2009.

L. Abello, B. Bochu, A. Gaskov, S. Koudryavtseva, G. Lucazeau et al., Structural Characterization of Nanocrystalline SnO2by X-Ray and Raman Spectroscopy, Journal of Solid State Chemistry, vol.135, issue.1, pp.78-85, 1998.
DOI : 10.1006/jssc.1997.7596

S. H. Sun, G. W. Meng, G. X. Zhang, T. Gao, B. Y. Geng et al., Raman scattering study of rutile SnO2 nanobelts synthesized by thermal evaporation of Sn powders, Chemical Physics Letters, vol.376, issue.1-2, pp.103-107, 2003.
DOI : 10.1016/S0009-2614(03)00965-5

C. J. Brinker, A. J. Hurd, G. C. Frye, and P. R. Ashley, Sol-Gel Thin Film Formation, J. Ceram. Soc. Jap, issue.10, pp.99-862, 1991.

D. Amalric-popescu and F. Bozon-verduraz, Infrared studies on SnO2 and Pd/SnO2, Catalysis Today, vol.70, issue.1-3, pp.139-154, 2001.
DOI : 10.1016/S0920-5861(01)00414-X

W. Chen, D. Ghosh, and S. Chen, Large-scale electrochemical synthesis of SnO2 nanoparticles, Journal of Materials Science, vol.407, issue.15, pp.5291-5299, 2008.
DOI : 10.1007/s10853-008-2792-x