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Preface

This Ph.D. thesis concludes a research accomplished within the Mathematical Physics
Sector of SISSA, International School for Advanced Studies of Trieste, from November
2007 to September 2010. The work has been carried out under the constant supervision
of Prof. Gianfausto Dell'Antonio and in collaboration with Gianluca Panati.

This dissertation is structured according to a �ctitious tripartition.

� The �rst part (Chapters 1 and 2) aims at introducing the reader into the subject
and presenting in a concise but exhaustive way main results achieved and tech-
niques employed. Chapter 1 starts with Avron's tale about the story of the quan-
tum Hall effect (QHE). These introductory pages, aimed to �x the basic physical
notions and the nomenclature of the QHE, can be skipped by the reader expert in
the �eld. The rest of Chapter 1 is devoted to a general and non technical exposition
of the initial motivations (open problems) that inspired this work and of the main
results achieved (solution of the problems). Therefore, Chapter 1 �xes precisely
the scope of this thesis. In Chapter 2, the “Ariadne's thread” of our research project
is unrolled. This chapter contains the rigorous statements of our main results, as
well a consistent presentation of needful mathematical tools. Reading these �rst
two chapters should be enough to have a detailed knowledge about scopes and re-
sults of the thesis.

� The second part (Chapters 3, 4 and 5) contains the technical aspects, that is the
proofs of the main theorems, as well the “paraphernalia” of lemmas, proposition,
notions, needful to build the proofs. Chapter 3 and 4 are largely based on two
papers:

- (De Nittis and Panati 2010): “Effective models for conductance in magnetic
�elds: derivation of Harper and Hofstadter models” . Available as preprint at
http://arxiv.org/abs/1007.4786 .

- (De Nittis and Panati 2009): “The geometry emerging from the symmetries of a
quantum system” . Available as preprint at http://arxiv.org/abs/0911.5270 .

A third paper, containing a compendium of Chapter 2 and Chapter 5, is in prepa-
ration with Gianluca Panati and Frédéric Faure.

� The third part (Appendices A, B and C), containing auxiliary material, aims to
make this dissertation as much self-consistent as possible.

v



In order to help the reader to “navigate” the text, each chapter has been equipped
with a small abstract which describes the content of the sections.

Trieste, Giuseppe De Nittis
October 2010
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Prologue

Despite of its title, this dissertation is not supposed to be a compendium of a young
entomologist's research on new exotic species of colorful butter�ies. The following

pages will not either tell the story of a hunter determined to catch unknown specimen
of enigmatic multicolored insects living in the forest in the heart of Africa or South
America.

The unwary reader, possibly intrigued by the title, would be somehow surprised to
realized that this work is actually a Ph.D. thesis in Mathematical Physics.

Nevertheless, this ambiguity hides some truths. Mathematical ideas �y light with
“butter�y wings” in mathematician's mind. They are painted with the “gaudy colors”
of intuition and imagination. The mathematician spends his time “hunting for new
problems” just like the entomologist does for his preys. Tools he uses to get his “hunting
trophy” are theories, theorems, proofs and so on.

Keeping in mind this analogy, the reader may consider this thesis as the story of my
personal hunt to unveil the secrets of quantum butter�ies .

Well, It is time to cry aloud: - the hunt begins! - .
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Chapter 1

Introduction

On ne connaît pas complètement une science tant qu'on
n'en sait pas l'histoire.

(One does not know completely a science as long as one
does not know its history.)

Auguste Comte
Cours de philosophie positive, 1830-1842

Abstract

The aim of this introductory chapter is to present the scope of this thesis �xing basic
notions and terminology, as well to provide a complete, but non technical, exposition of
the main results. Section 1.1 is devoted to a historical review of the quantum Hall ef-
fect (QHE), trough main steps that lead to its “topological interpretation”. The notions
of topological quantization and topological quantum numbers are expounded using
the Dirac's monopole as a paradigm. This �rst section is “borrowed” from (Avron
et al. 2003, Avron et al. 2001). Thouless et al. showed in the seminal paper (Thouless
et al. 1982) that the quantized values of the Hall conductance are topological quan-
tum numbers. The content of the paper by Thouless et al. is discussed in Section 1.2.
A special attention is paid to the TKNN-equations which are Diophantine equations
for the values of the quantized conductance. TKNN-equations play a crucial rôle in
this thesis. Some assertions in (Thouless et al. 1982) are lacking of rigorous justi-
�cations. These “gaps” in the mathematical structure of the work of Thouless et al.
are listed in Section 1.3. One of the goal of this thesis is to �ll such mathematical
gaps and so Section 1.3 can be considered as our “operation plan”. In this section
we present (quite informally) the main results of this thesis. Quantum butter�ies are
diagrammatic representations of the TKNN-equations. Section 1.4 contains a descrip-
tion of the main features of these charming pictures. A geometric justi�cation of the
TKNN-equations is needed to provide quantum butter�ies with a rigorous geometric
meaning. This is the main goal of this thesis.

1.1 Ante factum: phenomenology of the QHE and topologi-
cal quantum numbers

T he quantum Hall effect (QHE) is the central argument of this thesis. Therefore,
it could be appropriate to start with a brief review of the phenomenology and the

theory of QHE, in order to provide the inexpert reader with basic notions and needed
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terminology. The long story of the QHE, from the �rst experiments up to the brilliant in-
tuition of its “topological interpretation”, has been excellently narrated by J. E. Avron in
the beautiful introductions of (Avron et al. 2003, Avron et al. 2001). Due to the complete-
ness, the synthesis and the charm of Avron's presentations, I realized that it was quite
impossible (at least for me!) to expose in a better way the story of the QHE. Therefore, I
considered more “honest” to borrow the Avron's tale, offering to the reader a moment of
quality literature. The reader expert in QHE is advised to skip directly to Sections 1.2
and 1.3.

The beginning of the story

The story of Hall effect begins with a blunder made by J. C. Maxwell. In the �rst edition
of his book, A treatise on Electricity and Magnetism , discussing about the de�ection of
a current by a magnetic �eld, Maxwell wrote: “It must be carefully remembered, that
the mechanical force 1 which urges a conductor carrying a current across the lines of
magnetic force, acts, not on the electric current, but on the conductor which carries it.
[...] The only force which acts on the electric currents is the electromotive force, which
must be distinguished from mechanical force [...].” (Maxwell 1873, pp. 144-145). Such
an assertion should sound odd to a modern reader, but at that time it was not so obvious
to doubt the Maxwell's words.

In 1878, E. H. Hall, student at Johns Hopkins University, was studying the Maxwell's
treatise for a class by H. A. Rowland and being puzzled by the above Maxwell's remark,
he queried his teacher. Rowland's answer was that “[...] he doubted the truth of Maxwell's
statement and had sometime before made a hasty experiment for the purpose of detecting,
if possible, some action of the magnet on the current itself, though without success. Being
very busy with other matters however, he had no immediate intention of carrying the
investigation further.” (Hall 1879, p. 288). Figure 1.1 shows a sketch of the experimental
setup proposed by Rowland.

At �rst attempt, possibly because of the failure of Rowland's experiment, Hall de-
cided to undertake a new experiment aimed at measuring the magnetoresistence2. Nowa-
days we know that this is a much harder experiment and indeed it failed, in accordance
with Maxwell's prevision. At this point Hall, following an intuition of Rowland, repeated
the initial experiment made by his mentor, replacing the original thick metal bar with
a thin ( d � w in Figure 1.1) gold leaf. The thinness of the sample should compensate
for the weakness of the available magnetic �elds. The result was that the magnetic
�eld de�ected the galvanometer needle showing that the magnetic �eld permanently
altered the charge distribution, contrarily to Maxwell's prediction. The transverse po-
tential difference between the edges, VH in Figure 1.1, is called Hall voltage and the Hall
conductance3 is the longitudinal current I divided by VH .

1The mechanical force which is observed acting on the conductor is known as the ponderomotive force.
2The magnetoresistence is the variation of the electrical resistance due to the magnetic �eld.
3Some authors use the terminology Hall conductivity instead Hall conductance . The two expressions are

both correct. Indeed in two spatial dimensions ( d � w in Figure 1.1) the conductivity (microscopic quantity)
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Figure 1.1 : Sketch of the experimental setup for the Hall effect. A magnetic �eld B normal to a thin bar

of a (conductor) sample induces a Lorentz force on a current I which �ows in the x-direction. This force

separates charges and leads to the emergence of a voltage VH in the (transverse) y-direction. This is the

Hall voltage detected by Hall in 1878 and erroneously predicated to be zero by Maxwell.

As a consequence of the discovery of this new effect, known as (classical) Hall effect
(CHE), Hall obtained a position at Harvard. His paper (Hall 1879) was published in
1879, the year of Maxwell's death. In the second edition of Maxwell's book, which ap-
peared posthumously in 1881, there is a polite footnote by the editor saying: “Mr. Hall
has discovered that a steady magnetic �eld does slightly alter the distribution of currents
in most conductors so that the statement [...] must be regarded as only approximately
true.”

1929 traces a second remarkable year for the story of Hall effect. Since the early ex-
periments, it was clear that the magnitude, and even the sign of the Hall voltage depends
on the material properties of the conductor. Although this peculiarity made the Hall ef-
fect an important diagnostic tool for investigating the carriers of electric current, the fact
that the Hall voltage was found to be positive for some conductors and negative for oth-
ers opened a new problem. One sign is what one would expect for (free) electrons moving
under the combined action of mutually perpendicular electric and magnetic �elds. The
unexpected sign, instead suggested the disconcerting idea that the charge of electrons
was wrong! This phenomenon was called the anomalous Hall effect .

R. Peierls, at that time student of W. Heisenberg, was challenged by his mentor to
solve the problem of the anomalous Hall effect. The right tool was provided by the

� H := j =E H coincides with the conductance (macroscopic quantity) � H := I =VH since the longitudinal density
of current is j := I =w and the transverse electric �eld is given by EH = VH=w (Morandi 1988). In this sense
the quantization of the Hall conductivity is therefore a macroscopic quantum phenomenon.
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new (quantum) mechanics of which Heisenberg was one of the founding father. In fact,
Peierls was enlightened by the results of F. Bloch (also Heisenberg's student) concerning
the quantum mechanical behavior of electrons in a periodic crystalline �eld. Peierls
realized that when the conduction band is only partially full, the electrons behaves as
free particles, and the Hall response is consequently normal (right). However, when
the conduction band is completely full the electrons move in the wrong way because
of diffraction through the lattice. The conductance turns out to be determined by the
missing electrons, i.e. the holes, and the anomaly is solved since the charge of a hole is
opposite (wrong) to the charge of an electron (Peierls 1985, pp. 36-38).

The third step in the story of the Hall effect begins a century after Hall's discovery. In
1980, performing experiments at the Grenoble High Magnetic Field Laboratory (France)
on the Hall conductance of a two-dimensional gas at very low temperature, K. von Kl-
itzing discovered that the Hall conductance, as a function of the strength of the external
magnetic �eld, exhibited a staircase sequence of wide plateaus. Moreover the values of
the Hall resistance 4 turn out to be integer multiples of a basic constant (the von Klitzing
constant)

RK :=
h
e2 ' 25812:807557 
 ; (1.1)

where h ' 6:62606896� 10� 34 J � s is the Planck constant and e ' 1:602176487� 10� 19 C
the elementary electron charge. Von Klitzing was awarded the Nobel prize in 1985 for
the discovery of this new effect (von Klitzing et al. 1980), today named quantum Hall
effect (QHE). The surprising precision in the (measured) quantization of the values of the
resistance during experiments of QHE has provided metrologiste a superior standard of
electrical resistance.

The most remarkable features of the QHE is that the quantization takes place with
extraordinary precision in systems that are imprecisely characterized on the microscopic
scale. Different samples have different distributions of impurities, different geometry
and different concentrations of electrons. Nevertheless, whenever their Hall conduc-
tance is quantized, the quantized values mutually agree with an astonishing precision.
How to explain the robustness of this phenomenon of quantization?

The �rst attempt in this direction was made in 1981 by R. Laughlin. In his paper
(Laughlin 1981), the author considered a cold two-dimensional electron gas such that
the thermal agitation can be neglected (the free particle approximation). In this regime
the time evolution of the system is recovered by the knowledge of the wavefunction of
a single electron. Laughlin suggested to interpret the QHE as the effect of a quantum
pump . He assumed that the electron gas was con�ned on a cylindrical surface with
a strong magnetic �eld applied in the normal direction as shown in Figure 1.3. The
two opposite edges of the surface are connected to distinct electron reservoirs R1 and
R2. The pump effect, which transfers charges from R1 to R2, is driven by a magnetic

4The Hall resistance is de�ned as RH := VH=I . According to Footnote 3, RH is the inverse of the Hall
conductance � H and, due to the two-dimensional geometry, it coincides also with the inverse of the Hall
conductivity. The latter is by de�nition the Hall resistivity � H := E H=j .
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Figure 1.2 : The �gure shows (in red) the quantization of the Hall resistivity � H in a GaAs-GaAlAs het-

erojunction, recorded at a temperature of 30 mK. The diagram includes (in green) also the longitudinal

component of resistivity � L , which shows regions of zero resistance corresponding to each QHE plateau.

The horizontal axis shows the values of the magnetic �eld in units of tesla (T). The values of the Hall re-

sistivity are recorded on the left vertical axis in unit of von Klitzing constant ( RK = h=e2 ). It is apparent

the quantization of the plateaus at � H = 1
n RK with n = 1 ; 2; 3; 4; 6; 8; : : :. The right vertical axis shows the

values of the longitudinal resistivity in units of kilo-ohm (k 
 ).

�ux � through the ring which can be controlled by an external operator. Changing the
intensity of � , an electromotive force is generated around the cylinder and, by Hall effect,
one observes a transfer of charge from one reservoir to the other. The Hamiltonian for
the system is gauge invariant under �ux changes by integral multiples of the magnetic
�ux quantum � 0 := hc=e (Aharonov-Bohm principle, cf. (Schwarzschild 1986)) where c '
299792458m=s is the speed of light in vacuum. Therefore, a cycle of the pump corresponds
to a (adiabatic) change of the �ux from � to � + � 0. A simple calculation shows that
the Hall conductance of the system (measured in units e2=h) is given by the number
of electrons transported between R1 and R2 in a cycle of the pump. Using Laughlin's
words, “ Since, by gauge invariance, adding � 0 maps the system back into itself, the
energy increase due to it results from the net transfer of n electrons [...] from one edge to
the other ” (Laughlin 1981, p. 5633). The quantization of the Hall conductance follows
as a simple consequence of the electric charge quantization.

Nevertheless, the above explanation contains a subtle gap. Admittedly, the mea-
surement of the number of electrons in a reservoir, as well as the number of electrons
transferred from R1 to R2, must be an integer accordingly to the basic principles of
quantum mechanics. However, there is no “a priori” reason why each cycle of the pump
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Figure 1.3 : Schematic representation of the Laughlin's gedanken experiment. A two dimensional surface

with a cylindrical geometry contains a cold gas of electrons. The two opposite edges of the surface are

connected to distinct electron reservoirs R1 and R2 . A strong magnetic �eld B acts orthogonally to the

surface. � denotes a time-dependent magnetic �ux through the loop formed by the surface.

should transfer the same number of particles 5. In a quantum theory the measured Hall
conductance is the average number of particles transferred in a cycle of the pump. Since
in general this number is a �uctuating integer, then its average does not need to be
quantized.

Laughlin's work played a fundamental rôle in the development of the theory of QHE.
However, to �ll the gap in his explanation, one has to explain why averages are also
quantized. The “magic tools” which quantize averages are topological quantum numbers
(Thouless 1998).

However, we are now far from the beginning of the story ... and it is time to go
beyond.

Topological quantization: the missing tool

There are two distinct mechanisms that force physical quantities to assume quantized
values. The �rst mechanism is the orthodox quantization , namely the quantization
emerging from the basic principles of quantum mechanics, according to the original for-

5 Gauge invariance requires that, after a cycle, the pump (i.e. the electron gas without the reservoirs)
is back in its original state. Nevertheless, in a quantum theory, this does not imply that the transported
charge in different cycles must be the same. While in classical mechanics reproducing the state of a system
necessarily implies reproduction of the outcomes of a measure, the same is no longer true in the quantum
world. So the gauge invariance is not suf�cient to state that the number of electrons transferred in every
cycle of the pump is constant.
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mulation given by W. Heisenberg, E. Schrödinger, M. Born, etc. Essentially, the orthodox
quantization is a consequence of the fact that observables are represented by matrices,
and a measurement always yields an eigenvalue of the matrix as outcome. For instance,
the number of charged particles that one �nds in an electrometer is a quantized quan-
tity since the operator “number of particles” (which can be thought as an in�nite matrix)
associated to this observable possesses a spectrum (set of eigenvalues) given by the set
of integers f 0; 1; 2; : : :g.

Topological quantization is a more arcane and deep form of quantization, rather dif-
ferent than the orthodox quantization. The �rst pioneering work, which opened the
exploration of this new paradigm for the quantization, was done by P. A. M. Dirac
(Dirac 1931) with his attempt to explain the quantization of the charge. Dirac proposed
a theory to prove that the existence of a quantum of charge naturally follows from the
�rst principles of quantum mechanics.

He considered a magnetic monopole (i.e. a point-like magnetic charge) whose mag-
netic �eld behaves as B (r ) = qm (r=jr j3) with r 2 R3 and qm the magnetic charge of the
monopole. Due to the divergence of B to be equal to zero almost everywhere except for
the locus of the magnetic monopole at r = 0 , one can locally de�ne a vector potential A
such that B (r ) = r r � A(r ). Nevertheless , the vector potential cannot be de�ned globally
just because the divergence of the magnetic �eld is singular (proportional to the Dirac
delta function) at the origin. With respect to a spherical coordinate system, one has to
de�ne a set of functions for the vector potential on the northern hemisphere, and one
for the southern hemisphere. These two vector potentials are matched at the equator,
and the change between the two functions corresponds to a gauge transformation . The
wave function of a probe charge (i.e. an electrically charged particle) that orbits along
the equator sets a phase shift � � as in the Aharonov-Bohm effect. � � is proportional to
the electric charge qe of the probe particle, as well as to the magnetic charge qm of the
source. As the global phase e i� (r ) of the probe charge wave function should not change
after the full trip around the equator, the extra-phase � � added in the wave function
has to be a multiple of 2� , i.e. Z 3 � �

2� = C qeqm
2� = qeCm where C is a suitable dimensional

constant and Cm := C qm
2� . This is known as the Dirac quantization condition . The possi-

ble existence of even a single magnetic monopole in the universe would imply qe = n1=Cm ,
that is the quantization of the electric charge in units of C � 1

m .

From a topological point of view, if one tries to write the vector potential for the mag-
netic monopole as a single function in the whole space one �nds a singularity on a string
(called Dirac string ) that starts on the monopole and goes off to in�nity. The string
behaves as a thin solenoid carrying a magnetic �ux. Hence, if the �ux is quantized ac-
cording to the Dirac quantization condition, the singularity of the vector potential can be
removed by a gauge transformation. Since only the modulus of the wave function (rather
than its phase) and the electromagnetic �elds (rather than the potentials) have direct
physical meaning, the singularity is only apparent, as it can be removed by a gauge
transform. The string is invisible to a quantum particle, and the magnetic monopole is
all that remains.
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For various theoretical and experimental reasons, Dirac's theory is not a completely
satisfactory solution of the charge quantization problem. However, it is a paradigm of an
interesting mechanism of quantization that has a topological origin. In Dirac's scenario
the quantization of the charge qm is not a consequence of the fact that the extra-phase
� � is associated to an operator with a discrete set of eigenvalues. In fact, qe and qm play
the rôle of ordinary numerical parameters in the theory. Since the quantization of qm

has a topological origin, one refers to it as a topological quantum number (TQN).

A consequence of the Dirac's theory is that every measurement of the charge qe yields
the same value n (in units of C � 1

m ), and not different multiples of a basic unit. Thus, both
the single measurement and the average are quantized with same value n. This is why
topological quantum numbers are responsible for the quantization of expectation values.

The arcane has been revealed ... and now we know the way to go beyond.

1.2 Factum: topological interpretation of the QHE by Thou-
less et al.

Nowadays, topological quantum numbers play a prominent rôle in many problems
arising in solid-state physics (Thouless 1998). Just to mention few examples, they

appear in the contexts of adiabatic evolutions (Berry 1984, Simon 1983), macroscopic
polarization (Thouless 1983, King-Smith and Vanderbilt 1993, Resta 1992, Panati et al.
2009) and quantum pumps (Avron et al. 2004, Graf and Ortelli 2008). However, for the
purposes of this thesis we are mainly interested in the application of the topological
quantization in the context of QHE (cf. (Graf 2007) for a recent review).

B. A. Dubrovin and S. P. Novikov discovered that a two dimensional system of non-
interacting electrons in a periodic potential exhibits an interesting topology (Dubrovin
and Novikov 1980). Novikov refers he queried his colleagues at the Landau Institute
about the physical interpretation of the topological invariants he discovered, but nobody
provided him with a useful insight 6.

Only later in 1982 D. J. Thouless, M. Kohmoto, M. P. Nightingale and M. den Nijs
(TKNN), studying independently the same model considered by Dubrovin and Novikov,
realized that the emerging topological quantum numbers are related with the Hall con-
ductance (Thouless et al. 1982).

As the work of Thouless et al. is the “starting point” for this thesis, it is worth to
go through the major ideas contained in the “TKNN-paper” (Thouless et al. 1982). The
strategy of their proof can be divided into four fundamental steps.

6The reader has to note that the paper of Dubrovin and Novikov was submitted on February 1980, two
months before the submission of the seminal paper of von Klitzing et al. (May 1980). It is not surprising
that nobody in Landau Institute was able, at that time, to recognize the link between the Novikov's work
and the QHE.
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Figure 1.4 : Header of the seminal paper of Thouless et al. that contains the �rst topological explanation

for the QHE.

(I) The analysis of the QHE requires the study of the spectral properties of the two
dimensional single particle Schrödinger operator, given (in suitable units) by

HBL =
1
2

�
� i

@
@x1

+ Bx 2

� 2

+
1
2

�
� i

@
@x2

� Bx 1

� 2

+ V� (x1; x2);

where the potential V� is periodic with respect to � ' Z2 and B is the strength of
an orthogonal uniform magnetic �eld. However, the analysis of such an operator is
a formidable task. The �rst intuition of Thouless et al. was that the relevant phys-
ical features of the system can be captured by simpler (effective) models in suitable
physical regimes, as the ( Harper ) regime of strong magnetic �eld (i.e. V� =B � 1)
or the ( Hofstadter ) regime of weak magnetic �eld (i.e. V� =B � 1). In particular, in
(Thouless et al. 1982) the authors considered explicitly the Harper regime (equiv-
alently the weak periodic potential limit) which leads to study a simpler Hamil-
tonian HHar (Harper Hamiltonia ) and its eigenvalues equation known as Harper's
equation (cf. Figure 1.5).

(II) The geometry of the crystalline structure and the strength of the magnetic �eld are
the two speci�cations of any apparatus for the detection of the Hall effect. Thus,
the �ux of the magnetic �eld through the fundamental cell of the crystal lattice
(conventionally denoted by h� 1

B ) is the natural parameter in the description of the
QHE. When hB takes rational values, the system shows a Z2-symmetry, i.e. there
exists a pair of commuting unitary operators T1 and T2 such that [Tj ; HBL ] = 0 for
j = 1 ; 2. The same is true for the effective Harper Hamiltonian HHar . Thouless et
al. used this information to decompose the operator HHar in a family of Hamiltoni-
ans Ĥ (k) parametrized by the points k := ( k1; k2) of a two dimensional torus T 2 (cf.
Figure 1.6). The decomposition procedure follows by a simultaneous diagonaliza-
tion of HHar together with the unitaries T1 and T2 that implement the Z2-symmetry.
Any spectral projection P of HHar decomposes as ak-dependent family of spectral
projections P(k) of Ĥ (k). The range of P(k), denoted with Im P(k), de�nes a k-
dependent family of vector spaces. The collection (disjoint union)

F
Im P(k) was
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interpreted by Thouless et al. as the total space of an “emerging” vector bundle
over the base space T 2.

(III) The third step consists in the use of the Kubo formula (linear response theory) to
compute the Hall conductance (cf. Figure 1.7). In virtue of the decomposition in-
duced by the symmetry (step II), Thouless et al. showed that Kubo formula reduces
to the following integral:

� B !1
H (P) = �

i
(2� )

Z

T 2
Tr

�
P(k) [@k1 P(k); @k2 P(k)]

�
dk1 ^ dk2

| {z }
=: Tr K (P )

;

where � B !1
H (P) denotes the Hall conductance associated to the spectral projection

P of the Harper Hamiltonian, � is a dimensional constant ( � = e2=h in usual units)
and K (P) is a curvature for the vector bundle associated to P via decomposition.
The integral of the trace of i

2� K (P) (two-form) over the two-dimensional manifold
T 2 de�nes an integer C1(P) called (�rst) Chern number . Since it is known that the
Chern numbers are integer topological invariants (topological quantum numbers),
one has � B !1

H (P) 2 � Z for any spectral projection, that is the quantization (in
units of � ) of the Hall conductance.

(IV) This is the most interesting step contained in the TKNN-paper, at least for the
purposes of this thesis. Thouless et al. , on the basis of (quite obscure) theoretical
motivations, deduced the existence of a duality between the opposite regimes of
strong and weak magnetic �eld. In particular, they claimed that in both regimes
the Hall conductance is (up to a dimensional factor � = e2=h) the Chern number of
a suitable vector bundle de�ned by a spectral projection. Assume that the effec-
tive models for the Hofstadter regime and Harper regimes have the same spectral
structure. Let Pj be the spectral projection de�ned by the energy spectrum up to
the gap Gj and denote with t(Gj ) := � B !1

H (Pj ) (resp. s(Gj ) := � B ! 0
H (Pj )) the Hall

conductance (i.e. Chern number) in the Harper (resp. Hofstadter) regime. Accord-
ing to the content of the TKNN-paper, the integers t(Gj ) and s(Gj ) are related by
means of a Diophantine equation (cf. Figure 1.8)

N t (Gj ) + M s(Gj ) = j j = 1 ; : : : ; N (1.2)

where the integers M and N are �xed by the condition of rationality hB = M=N (c.f.
Section 2.5). We refer to (1.2) as the system of TKNN-equations . The formula (1.2)
is the manifestation of a “mysterious” geometric duality connecting the opposite
regimes of strong and weak magnetic �eld. It is quite surprising that very different
physical regimes are related by a so simple and elegant algebraic formula.
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Figure 1.5 : In the limit of a strong magnetic �eld (i.e. weak periodic potential limit), relevant features of

the dynamics of the system are captured by a simple effective model known as Harper's equation.

Figure 1.6 : The system exhibits a Z2-symmetry under the assumption that the �ux of the magnetic

�eld through the fundamental cell of the crystal lattice takes rational values. This symmetry is used to

decompose the Hamiltonian of the system by means of a simultaneous diagonalization procedure.
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Figure 1.7 : The Kubo formula is used to compute the Hall conductance. The decomposition induced by

the symmetry reduces the Kubo formula to an integral of a curvature, namely a Chern number . The latter

is an integer topological invariant

Figure 1.8 : The TKNN-equation (9) connects the Hall conductance (read Chern number) in the strong

magnetic �eld regime ( t r ) with the one in the weak magnetic �eld regime ( sr ). TKNN-equations are the

manifestation of a geometric duality between the two opposite regimes.
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The strategy used in (Thouless et al. 1982) can be followed for a wide class of pe-
riodic potentials. This explains why the QHE is insensitive to the �ne details of the
microscopic structure of the sample used in the experiment. However, the theory of
Thouless et al. does not explain the quantization of the Hall conductance either in the
case electron-electron interaction is taken into account, or in the case of presence of dis-
order. Both factors play a rôle in the real Hall effect. Much progresses have been made
in understanding this issue, (Laughlin 1983, Kunz 1987, Bellissard 1988b, Bellissard
et al. 1994, Kellendonk and Schulz-Baldes 2004, Combes et al. 2006) but this is out from
the scope of this thesis.

Finally, it is interesting to see how the theory of Thouless et al. has been experimen-
tally veri�ed (Albrecht et al. 2001). The experimental con�rmation testi�es once again
the relevance of the TKNN-paper.

1.3 Overview of the results

A lthough the TKNN-paper is a milestone in the way towards a theoretical explana-
tion of the QHE, the structure of the proof contains many mathematical “gaps”. In

order to make the theory of Thouless et al. rigorous, one needs to complete some missing
“mid-steps” between each of the four steps described in Section 1.2.

In this thesis we propose a rigorous “reinterpretation” of the work of Thouless et al.
Using various mathematical tools (adiabatic theory, differential geometry, non-commuta-
tive geometry, etc.), we derive a series of new and rigorous results which improve and
generalize the theory sketched in (Thouless et al. 1982). For convenience we follow the
above steps subdivision to list the main results of this thesis.

(I) SAPT-type and algebraic-type results

During the last decades, there were many works aiming to a rigorous derivation of the
effective models for the Hamiltonian HBL in the limits of strong and weak magnetic
�elds (Bellissard 1988a, Helffer and Sjöstrand 1989b). However, all the previous deriva-
tions are based on a notion of “approximate model” which turns out to be too weak for
our purpose. As discussed in Section 2.2, a rigorous procedure is needed to obtain effec-
tive models that are unitarily equivalent (in a suitable asymptotic sense) to the original
model. This is a relevant property which assures that the content of physical information
of the original Hamiltonian HBL is fully preserved by the effective Hamiltonians. Space-
adiabatic perturbation theory (SAPT) provides the appropriate mathematical machinery
for a unitarily equivalent derivation of the effective models.

A self-consistent presentation of the results concerning the adiabatic derivation of
the effective Hamiltonians (“SAPT-type” results) is postponed to Section 2.1. Chapter 3
contains the technicality concerning the derivation of the effective models by means of
the mathematical apparatus of SAPT. In particular Theorem 3.3.14 concerns the rig-
orous derivation of the Hofstadter Hamiltonian (effective model for the weak magnetic
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�eld limit), while the Harper Hamiltonian (effective model for the strong magnetic �eld
limit) is derived in Theorem 3.4.8 . The content of our SAPT-type results is summarized
in the following diagram

HHof := } (U0; V0)OO

isospectrality

���
�
�
�
�
�
� L 2(T 2) =: H 0

H phy := L 2(R2) HBL

B !1 ''PPPPPPPPPPPPP

B ! 0
77nnnnnnnnnnnnn

HHar := } (U1 ; V1 ) L 2(R) =: H 1 :

In Hofstadter regime ( B ! 0), the original Hamiltonian HBL , de�ned on the physical
Hilbert space H phy := L 2(R2), is asymptotically unitarily equivalent to an effective op-
erator HHof := } (U0; U0) (Hofstadter-like Hamiltonian) de�ned on the reference Hilbert
space H 0 := L 2(T 2). The unitary operators U0 and V0 act on H 0 according to equation
(2.7), while } denotes a formal polynomial in two variables containing also negative
powers; for instance } (x; y) = x + x � 1 + y + y� 1. Similarly, the asymptotically unitarily
equivalent effective model HHar := } (U1 ; V1 ) (Harper-like Hamiltonian) for the Harper
regime (B ! 1 ), acts on the referenceHilbert space H 1 := L 2(R) and it is given in terms
of a polynomial combination of the unitaries U1 and V1 de�ned by equation (2.15).

From the above diagram some relevant consequences emerge (“algebraic-type” re-
sults). Up to a special condition on the values of the magnetic �elds in the strong
and weak regimes (Assumption 2.3.6), Hofstadter-like Hamiltonians and Harper-like
Hamiltonians share the same algebraic structure, which is the structure of the Non-
Commutative Torus (NCT). This algebraic duality is analyzed in Section 2.3 ( Theo-
rem 2.3.7 ) and its main consequence is the isospectrality between HHof and HHar (arrow

oo //___ in the diagram).

(II) Spectral decomposition and emerging geometry

It is well known that, if a Hamiltonian operator commutes with a family of operators
(symmetries) then their simultaneous diagonalization leads to a decomposition of the
original Hamiltonian into a family of (generally simpler) operators parametrized by a
spectral parameter (e.g. the eigenvalues of the operators that implement the symme-
tries). From a mathematical point of view, this is a sophisticated version of the spec-
tral decomposition theory by von Neumann (Maurin 1968, Dixmier 1981). The so-called
Bloch-Floquet theory (Wilcox 1978, Kuchment 1993) is one of the more fruitful applica-
tion of the above idea. In the TKNN-paper the authors used a similar “decomposition
strategy”, provided that the magnetic �ux per unit cell of the lattice takes a rational
value. However, the subtle point which needs more care is the association of the spectral-
type decomposition coming from the von Neumann theory with a vector bundle structure.
Indeed, it is no obvious that a spectral-type decomposition which is based on a measure-
theoretic structure, can be related in a natural and unique way with a topological object
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like a vector bundle. Thus, the following questions arise: how does the topology (and the
geometry) of the decomposition emerge? To which extent is this topological information
independent by the speci�c decomposition procedure?

In Chapter 4 we provide a complete answer to these questions in a quite general
framework. We introduce the notion of physical frame (De�nition 4.1.2), i.e. a triple
fH ; A; S g with H a separable Hilbert space which corresponds to the set of physical
states, A � B (H) a C � -algebra of bounded operators on H which contains the relevant
physical models, ; S � A0 (A0 is the commutant A) a commutative unital C � -algebra
which describes a set of simultaneously implementable physical symmetries. Assuming
that S is a Zd-algebra (i.e. it is generated by d unitaries U1; : : : ; Ud according to De�nition
4.1.3) with the wandering property (De�nition 4.5.1), we provide a “recipe” ( generalized
Bloch-Floquet transform ) to realize “by hand” the von Neumann spectral decomposition
(Theorem 4.6.4 ). The underlying vector bundle structure is recovered at an algebraic
level and it is uniquely speci�ed by the triple fH ; A; S g (Theorem 4.7.9 ). The element
of the C � -algebra A (up to some extra conditions) are mapped in continuous sections
of the endomorphism bundle ( Theorem 4.7.15 ) providing a unitarily equivalent bun-
dle representation for A (De�nition 2.7.2). In Sections 5.2 we apply the general theory
of Chapter 4 to Hofstadter-like and Harper-like models. The bundle decomposition of
the Hofstadter-like Hamiltonians, as well as that of the Harper-like Hamiltonians, is
established in Theorem 2.7.4 .

(III) Kubo-Chern equivalence

The rigorous justi�cation of the Kubo formula is generally a hard problem. Some rigor-
ous results have been obtained in the context of QHE models (Bellissard et al. 1994, El-
gart and Schlein 2004, Bouclet et al. 2005). However, for a rigorous justi�cation of re-
sults in the TKNN-paper, one has to derive the Kubo formula and prove the equivalence
between transverse conductance and Chern numbers in the Hofstadter regime, as well
as in the Harper regime. This is still an open problem, out of the scope of this thesis. In
the following part of this thesis we assume the pragmatic position that: Chern numbers
associated to spectral projections of a Hamiltonian are, by de�nition, the values of the
transverse conductance (Kubo-Chern equivalence).

(IV) Geometric duality and generalized TKNN-equations

The TKNN-paper contains no prove of the remarkable TKNN-equations. Nevertheless,
according to the interpretation of the authors, the TKNN-equations establish a (alge-
braic) duality between Chern numbers of different vector bundles. Although in the
last decades many works have been aimed to a rigorous derivation of TKNN-equations
(St �reda 1982, MacDonald 1984, Dana et al. 1985, Avron and Yaffe 1986), none of these
results consider to look at the integers sr and t r (cf. Figure 1.8) as Chern numbers of
suitable vector bundles. One of the main result of this thesis is the realization of a
purely geometric proof of the TKNN-equations.
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If a Hamiltonians admits a bundle decomposition, then its spectral projections (into
the gaps) de�ne vector subbundles (Lemma 2.7.3). The isospectrality between Hofstadter-
like and Harper-like Hamiltonians implies a one-to-one correspondence between the
spectral projections of HHof and HHar . Let L 0(P) (resp. L 1 (P)) be the vector bundle
associated with the spectral (gap) projection P of the Hofstadter-like (resp. Harper-like)
Hamiltonian HHof (resp. HHof ). We prove (Theorem 2.8.1 ) that there exists an isomor-
phism of vector bundles between L 0(P) and L 1 (P) established by the formula

f �
1 L 1 (P) ' f �

2 L 0(P) 
 I

where f j : T 2 ! T 2, j = 1 ; 2, are suitable continuous maps, f �
j L ] (P) denotes the pull-

back vector bundle of L ] (P) (] = 0 ; 1 ) via f j and I is a suitable line bundle which
introduces an extra-twist. The above formula is a manifestation of a deep geometric du-
ality which relates the opposite regimes of strong and weak magnetic �eld. The TKNN-
equations are a straightforward consequence of such a geometric duality ( Corollary
2.8.2). Non-ommutative geometry provide the appropriate “language” to explain the ge-
ometric meaning of TKNN-equations and to generalize them to the case of an irrational
magnetic �ux (Section 2.9).

In particular, the set of results presented above �lls the mathematical gaps contained
in TKNN-paper. From this point of view, one of the merits of this thesis is that it endows
the powerful theory of Thouless et al. with the mathematical exactness it deserves.

1.4 Why quantum butter�ies?

T he Hofstadter butter�y or (black and white) quantum butter�y (Figure 1.9) is a
fractal-type diagram showing the collection of the energy spectra of a family of

bounded operators h� , parametrized by � 2 R (universal Hofstadter operators , equation
(2.29)).

Figure 1.9 was �rstly described by D. Hofstadter in 1976, in his Ph.D. thesis under
the supervision of G. Wannier (Hofstadter 1976). Hofstadter was fascinated by M. Az-
bel's suggestion that under certain circumstances the energy spectrum of such quantum
systems can be a fractal set. Indeed, the self-similar character of the Hofstadter butter-
�y turned out to be closely related to the fractal nature of its spectrum (for irrational
values of the parameter � ).

The importance of the Figure 1.9 for this thesis is due to the fact that the spectrum
of h� describes the spectrum of both the Hofstadter Hamiltonian and the Harper Hamil-
tonian . In the �rst case the parameter � is proportional to B , while in the latter to 1=B .
Therefore in both limits � plays the rôle of a small ( adiabatic ) parameter. The exact
relation between h� , the Hofstadter Hamiltonian and the Harper Hamiltonian, as well
the the meaning of � , are clari�ed in Chapter 2 (in particular in Sections 2.1 and 2.3).
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Figure 1.9 : The (black and white) quantum butter�y is the collection of spectra of a one-parameter family

of bounded operators h� with � 2 [0; 1]. If � = M =N (rational condition) then the set � (hM =N ) (vertical axis) is

made up by N energy bands (black segments) if N is odd (e.g. � = 1=3 or 2=3) and by N � 1 if N is even (e.g.

� = 1=2). In the latter case the two central segments touch at 0. For � 2 R nQ the spectrum is of Cantor type

and has zero Lebesgue measure (hence it is not possible to visualize it).

Interestingly, the history of the model that gives rise to the Hofstadter butter�y goes
back to R. Peierls who proposed it as a thesis problem to P. G. Harper. Nevertheless,
neither Peierls nor Hofstadter considered this model in relation with the Hall effect.
Instead, they were interested in its intriguing quantum mechanical spectral features.

In order to understand the structure of the “black-butter�y” (i.e. the black part of
Figure 1.9) we summarize the main results concerning the dependence of the spectrum
� (h� ) on the parameter � .
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(BH-1) For any � 2 R, kh� k 6 4 which implies � (h� ) � [� 4; 4].

(BH-2) For any � 2 R the spectrum is symmetric with respect to the zero energy, i.e.
� (h� ) = � (� h� ).

(BH-3) Since � (h� + n ) = � (h� ) for any integer n 2 Z, one has that it is suf�cient to study
the spectrum for � 2 [0; 1]. Furthermore, the equality � (h� � ) = � (h� ) also implies
isospectrality between h� and h1� � and then the symmetry of Figure 1.9 with re-
spect to � = 1=2.

(BH-4) Assume � 2 Q with � = M=N , M 2 Z, N 2 N n f 0g and M and N coprime. The
spectrum � (hM =N ) is made up by N (resp. N � 1) energy bands if N is odd (resp.
even). Note that in the case of a even N the central gap is “closed” (that is empty).
The “open” (that is non-empty) gaps between two consecutive energy bands have
width larger than 8� N (von Mouche 1989, Choi et al. 1990).

(BH-5) If � 2 RnQ then � (h� ) is of Cantor-type (c.f. De�nition 2.4.1) and has zero Lebesgue
measure.

(BH-6) Let � and � 0 be such that j� � � 0j < C . For any � 2 � (h� ) there exists a � 0 2 � (h� 0)
such that j� � � 0j < 6

p
2j� � � 0j (Avron et al. 1990).

We provide a justi�cation of (BH-1), (BH-2) and (BH-3) at the end of Section 2.3.
Property (BH-5) has been, for a long time, a conjecture known as Ten Martini Prob-

lem7 (TMP). The proof was established only recently by A. Avila and S. Jitomirskaya
(Avila and Jitomirskaya 2009). For a review on the history of the “long way” to the
solution of TMP we refer to (Last 2005, Section 3).

From (BH-4) and (BH-5), it follows that the butter�y (i.e. the black part) in Figure
1.9 has zero Lebesgue measure as subset of the rectangle [0; 1] � [� 4; 4]. This suggests
that all the information is encoded in the gap structure (i.e. the white part).

Point (BH-6) states that the spectrum has a Hölder continuous dependence of order
1=2 on the parameter � . In particular, this implies that for every gap in the spectrum
of h� of length ` and for any � 0 such that 12

p
2j� � � 0j < ` , there is a corresponding gap

in the spectrum of h� 0 of length bigger than ` � 12
p

2j� � � 0j. In other words, the gap
structure of the Hofstadter's butter�y is locally continuous, i.e. any point in the plane
(�; � ) of Figure 1.9 which is in a gap has an open neighborhood entirely contained in a
gap zone. This means that the gap structure of Figure 1.9 is made up by “open islands”
containing no spectral points.

7 The proof of the Ten Martini Problem (TMP) establishes the topological structure of the spectrum of h�

when � 2 R n Q. However, a stronger version of this conjecture, the Strong Ten Martini Problem (STMP),
is still open. The question is to prove that all the gaps prescribed by the Gap Labelling Theory (GLT) are
“open” (i.e. non-empty). The interested reader can �nd in (Shubin 1994, Section 5) a complete explanation
of the relations between GLT, TMP and STMP (and also Super-Strong Ten Martini Problem (SSTMP), a
very strong version of the problem still unsolved). For GLT the reader can refer to the review (Simon 1982,
and references therein).
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Finally, when h� is rational, it follows from the theory of periodic Schrödinger op-
erators that � (h� ) is purely absolutely-continuous. Otherwise, when � 2 R n Q, � (h� ) is
supported on an uncountable set of zero Lebesgue measure, i.e. it is singular-continuous.

Figure 1.9 gives a complete description of the structure of the energy spectrum of h�

but it does not provide more detailed spectral information such as the degree of degen-
eracy of the eigenspaces (i.e. the density of the states). Such information turns out to be
necessary in the analysis of the QHE.

The colored quantum butter�ies (Figure 1.10), are due to J. E. Avron and D. Osadchy
(Avron 2004, Osadchy and Avron 2001) and interpreted by the authors as “thermody-
namic” phase diagram for the Hall conductance (c.f. Section 2.5). Colors represent the
quantized values of the Hall conductance. Warm colors (like red) correspond to posi-
tive values for the Hall conductance, while cold colors (like blue) correspond to negative
values. White means zero Hall conductance.

Diagram (A) in Figure 1.10 describes the situation in the regime of weak magnetic
�eld (Hofstadter regime). In this case, the external magnetic �eld acts as a perturbation
of the band spectrum structure of the periodic Bloch Hamiltonian which describes the
interaction with the crystal. The effect of this perturbation is the creation of new gaps.
When the Fermi energy is placed in one of these gaps the Hall conductance is an integer
which can be coded by a color. In this way any gap is associated to a color as showed
in diagram (A). In this regime the colored butter�y repeats periodically on the � -axis,
with unit period. The white horizontal margins which �ank the colored butter�ies in (A)
mean that the Hall conductance vanishes if the energy band associated to the crystalline
structure is either empty or completely full. This is what Peierls expected, that is -
insulators should have vanishing Hall conductance! -

Diagram (B) in Figure 1.10 describes the situation in the regime of strong magnetic
�eld (Harper regime). In this case, the periodic potential due to the crystalline structure
acts as a perturbation of the Landau Hamiltonian . It is well known that the spectrum
of the Landau Hamiltonian is a collection of equally spaced in�nitely degenerate points,
known as Landau levels. The weak periodic potential splits each of the Landau levels
creating new gaps. Diagram (B) describes the Hall conductance when the Fermi energy
sits within the gaps. Note that, contrary to the weak �eld regime, the color coding of
diagram (B) is not periodic with respect to � . Moreover each butter�y in (A) exhibits
inversion symmetry, while butter�ies in (B) do not have such a symmetry.

Apparent differences between diagrams (A) and (B) in Figure 1.10 suggest that the
regimes of weak and strong magnetic �eld give rise to very different physical scenarios.

Colored quantum butter�ies play a relevant rôle for this thesis. The reason is that
the color-coding of the butter�ies has been computed by Avron using the Diophantine
TKNN-equations. In other words Figure 1.10 is simply a graphic representation of the
duality which relates the opposite regimes of weak and strong magnetic �eld.

The TKNN-equations are the foundation of the arcane beauty of the colored quantum
butter�ies. A purely geometric derivation of the TKNN-equations is needed to “capture”
these “�ashy exotic mathematical insects”.
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Figure 1.10 : [Our elaboration of pictures in (Avron 2004)] . The colored quantum butter�ies are graphic

representations of the TKNN-equations. Diagram (A) is the “phase diagram” for the QHE in the regime

of a weak magnetic �eld (Hofstadter regime). Colors represent different values of the “thermodynamic

function” Hall conductance. The parameter on the horizontal axis is proportional to the strength of the

magnetic �eld ( � / B ). Diagram (B) shows the same phase diagram for the strong magnetic �eld regime

(Harper regime). In this case the parameter on the horizontal axis is proportional to the inverse of the

strength of the magnetic �eld ( � / 1=B ). Butter�y in (A) repeats periodically in � while butter�y in (B)

changes colors at any unit step in � .



Chapter 2

Results and techniques

Pour connaître la rose, quelqu'un emploie la géométrie et
un autre emploie le papillon.

(To know the rose, someone uses the geometry and another
uses the butter�y.)

Paul Claudel
L'Oiseau noir dans le soleil levant, 1927

Abstract

The present chapter aims to expose the main results of this thesis in a rigorous way.
We introduce the principal notions and techniques which are indispensable for a self-
consistent technical presentation of the arguments developed in this work. The �rst
part of this thesis (adiabatic-part) concerns a series of results coming from the ap-
plication of the space-adiabatic perturbation theory (SAPT) (c.f. Chapter 3). These
results are presented in the �rst two sections of this chapter. Section 2.1 is devoted
to introduce the Hofstadter-like and Harper-like Hamiltonians which are the effective
models for the QHE in the limit of weak magnetic �eld (Hofstadter regime) or strong
magnetic �eld (Harper regime), respectively. Section 2.2 aims to explain the relevance
of SAPT for the purposes of this work. In Sections 2.3 and 2.4 we present the algebraic
results of this thesis (algebraic-part). The notion of Non-Commutative Torus (NCT)
is used to prove the isospectrality between Hofstadter-like and Harper-like Hamiltoni-
ans (algebraic duality), as well as to provide a description of the structure of the spec-
trum of such models in terms of “abstract” spectral projections. Section 2.5 contains
a description of the relation between the TKNN-equations and the colored quantum
butter�ies. In Section 2.6 we justify the difference in the coloring of the two butter-
�ies as a consequence of the absence of a unitary equivalence between Hofstadter and
Harper Hamiltonians. The last three sections of this chapter aim to describe the ge-
ometric results of this thesis (geometric-part). In Section 2.7 we discuss the relation
between “abstract” spectral projections and vector bundles. Section 2.8 is devoted to
derive TKNN-equations from a geometric duality between the vector bundles associ-
ated to spectral projections of the Hofstadter and Harper Hamiltonians. In Section
2.9 we present a “non-commutative” generalized version of the TKNN-equations. Open
problems and possible generalizations are listed in Section 2.10.

2.1 Physical background and relevant regimes for the QHE

Schrödinger operators with periodic potential and magnetic �eld have been fascinating
physicists and mathematicians for the last decades. Due to the competition between
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the crystal length scale and the magnetic length scale, these operators reveal striking
features as fractal spectra (Geyler et al. 2000) or quantization of the Hall conductance
(Thouless et al. 1982, Avron et al. 1983, Bellissard et al. 1994, Kellendonk et al. 2002).
The colored quantum butter�ies (c.f. Figure 1.10) summarize these features in pictorial
diagrams.

The mathematical model commonly used for the quantum Hall effect (QHE) (Morandi
1988, Graf 2007) is the two-dimensional Bloch-Landau Hamiltonian

HBL :=
1

2m

�
� i } r r � �q

jqjB
2c

e? ^ r
� 2

+ V� (r ) ; (2.1)

acting in the Hilbert space H phy = L 2(R2; d2r ), r = ( r1; r2) 2 R2. Here c is the speed of
light, h := 2 � } is the Planck constant, m is the mass and q the charge (positive if �q = 1
or negative if �q = � 1) of the charge carrier, B is the strength of the external uniform
time-independent magnetic �eld, e? = (0 ; 0; 1) is a unit vector orthogonal to the sample,
and V� is a periodic potential which describes the interaction of the carrier with the ionic
cores of the crystal. For the sake of a simpler notation, in this introduction we assume
that the periodicity lattice � is simply Z2.

While extremely interesting, a direct analysis of the �ne properties of the operator
HBL is a formidable task. Thus the need to study simpler effective models which capture
the main features of (2.1) in suitable physical regimes, as for example in the limit of weak
(resp. strong) magnetic �eld. The relevant dimensionless parameter appearing in the
problem is hB := � 0=Z � B / 1=B , where � 0 = hc=e is the magnetic �ux quantum , � B = 
 � B
is the �ux of the external magnetic �eld through the unit cell of the periodicity lattice �
(whose area is 
 � ) and Z = jqj=e is the magnitude of the charge q of the carrier in units of
e (the positron charge). It is also useful to introduce the reduced constant } B := hB=2� .

Hofstadter regime, Hofstadter-like Hamiltonians, Hofstadter unitaries

We refer to the limit of weak magnetic �eld as Hofstadter regime . In this limit, corre-
sponding to } B ! 1 , one expects that the relevant features are captured by the well-
known Peierls' substitution (Peierls 1933, Harper 1955, Hofstadter 1976), thus yielding
to consider, for each Bloch band E� = E� (k1; k2) of interest, the following effective model:
in the Hilbert space 1 H 0 := L 2(T 2; d2k), k being the Bloch momentum and T 2 the two-
dimensional torus (c.f. Convention 2.7.1), one considers the Hamiltonian operator

H B ! 0
eff ' = E�

�
k �

�
�q

} B

�
1
2

e? ^ i r k

�
'; ' 2 H 0: (2.2)

In physicists' words, the above Hamiltonian corresponds to replace the variables k1 and
k2 in E� with the symmetric operators ( kinetic momenta )

K 1 := k1 +
i
2

�
�q

} B

�
@

@k2
; K 2 := k2 �

i
2

�
�q

} B

�
@

@k1
: (2.3)

1We use the special symbol H 0 to point out that this is the appropriate Hilbert space to describe the
physics of the QHE in the Hofstadter regime B ! 0.
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Since (formally) [K 1; K 2] = i ( � q=} ) 6= 0 , the latter prescription is formal and (2.2) must be
de�ned by an appropriate variant of the Weyl quantization.

The rigorous justi�cation of the Peierls' substitution and the de�nition and the deriva-
tion of the Hamiltonian (2.2) are the content of Section 3.3.

We call Hofstadter-like Hamiltonian any operator in the form (2.2). It is evident that
any effective Hamiltonian H B ! 0

eff , as well the magnetic momenta K 1 and K 2, depend on
the value of the magnetic �eld through the dimensionless adiabatic parameter � 0(B ) :=
1=2� } B . The name Hofstadter Hamiltonian is used only when the energy band has the
special form E� (k1; k2) = 2 cos k1 + 2 cosk2. From (2.2) it follows that the explicit form of
the Hofstadter Hamiltonian is

(H � 0
Hof ' )(k1; k2) :=

X

� 2f + ;�g

ei�k 1 ' (k1 ; k2 � ��� q� 0) + ei�k 2 ' (k1 + ��� q� 0 ; k2): (2.4)

The Bloch band E� = E� (k1; k2) which de�nes the effective Hamiltonian (2.2) is a
smooth function E� : T 2 ! R and we denote by

E� (k1; k2) =
X

n;m 2 Z

en;m ei (nk 1+ mk 2 ) ; (2.5)

its Fourier series. We introduce the Hofstadter unitaries

U0 := ei K 1 ; V0 := ei K 2 ; U0V0 = e� i 2� (� q � 0 )V0U0 (2.6)

which act on H 0 as
8
><

>:

(U0' )(k1; k2) := eik 1 ' (k1 ; k2 � � � q� 0)

' 2 H 0:

(V0' )(k1; k2) := eik 2 ' (k1 + � � q� 0 ; k2)

(2.7)

Via Peierls' substitution, one obtains that the Hofstadter-like operator H B ! 0
eff associated

to the energy band (2.5) can be written as

H B ! 0
eff =

X

n;m 2 Z

en;m ei�nm (� q � 0 ) Un
0Vm

0 : (2.8)

In particular, for the Hofstadter Hamiltonian (2.4) one has the compact expression

H � 0
Hof = U0 + U� 1

0 + V0 + V� 1
0 : (2.9)

Harper regime, Harper-like Hamiltonians, Harper unitaries

We use the name Harper regime for the limit of a strong magnetic �eld. In this limit,
corresponding to } B ! 0, the periodic potential can be considered a small perturbation
of the Landau Hamiltonian 2, which provides the leading order approximation of HBL .

2The Landau Hamiltonian HL is de�ned by equation (2.1) when V� = 0 . In the same way one obtains
the Bloch Hamiltonian (or periodic Hamiltonian ) HB setting B = 0 in (2.1).
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To the next order of accuracy in } B , to each Landau level there corresponds an effec-
tive Hamiltonian, acting on the Hilbert space 3 H 1 := L 2(R; dx), given (up to a suitable
rescaling of the energy) by

H B !1
eff  = V�

�
� i (�q} B )

@
@x

; x
�

 ;  2 H 1 ; (2.10)

where the right-hand side refers to the ordinary (�q} B )-Weyl quantization of the Z2-
periodic function V� : R2 ! R. We refer to Section 3.4 for a rigorous derivation of
the effective Hamiltonian (2.10).

Each effective Hamiltonian H B !1
eff depends on the value of the magnetic �eld through

the dimensionless adiabatic parameter � 1 (B ) := 2 � } B . We call Harper-like Hamiltonian
any operator of the form (2.10), using the name Harper Hamiltonian for the special
case V� (p; x) = 2 cos(2�p ) + 2 cos(2�x ). From equation (2.10), it follows that the Harper
Hamiltonian acts as

(H � 1
Har  )(x) :=  (x � � 1 ) +  (x + � 1 ) + 2 cos(2�x )  (x): (2.11)

The function V� : R2 ! R which de�nes the effective Hamiltonian (2.10) is a smooth
function V� : R2 ! R which is Z2-periodic with Fourier series denoted by

V� (p; q) =
X

n;m 2 Z

vn;m ei 2� (np+ mq) : (2.12)

The effective Hamiltonian H B !1
eff is obtained from V� via the usual Weyl quantization

which agrees with the formal rule (p; q) 7! (P; Q) where

Q := multiplication by x; P := �
i

2�
(�q� 1 )

@
@x

; [Q; P] =
i

2�
(�q� 1 ): (2.13)

We introduce the Harper unitaries

U1 := ei 2�Q ; V1 := ei 2�P ; U1 V1 = e� i 2� (� q � 1 )V1 U1 ; (2.14)

explicitly de�ned by
8
><

>:

(U1  )(x) := ei 2�x  (x)

 2 H 1 :

(V1  )(x) :=  (x + �q� 1 )

(2.15)

The Harper-like operator H B !1
eff associated to the periodic function (2.12) can be written

in terms of the Harper unitaries as

H B !1
eff =

X

n;m 2 Z

vn;m ei�nm (�� 1 ) Vn
1 Um

1 : (2.16)

In particular, the Harper Hamiltonian (2.11) reads

H � 1
Har = U1 + U� 1

1 + V1 + V� 1
1 : (2.17)

3As in Note 1, we use the special symbol H 1 to point out that this is the appropriate Hilbert space in
the Harper regime B ! 1 .
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The choice of the nomenclature: an historical review

The use of operators of the form (2.2) as tight binding models for electrons in a crystal
traces back to the pioneering works of R. Peierls (Peierls 1933) and P. G. Harper (Harper
1955). However, the study of the spectral properties of such operators began with the
seminal paper (Hofstadter 1976) in which D. Hofstadter described the spectrum of the
Hamiltonian (2.4) producing the beautiful picture known as Hofstadter butter�y (Figure
1.9). In view of that, we call Hofstadter Hamiltonian 4 the operator (2.4) and, more
generally, Hofstadter-like Hamiltonian any operator in the form (2.2). Hofstadter-like
operators are the effective models for the regime of weak magnetic �eld. This justi�es
the name Hofstadter regime for the limit of zero magnetic �eld.

The regime of strong magnetic �eld was originally investigated by A. Rauh (Rauh
1974, Rauh 1975). However the correct effective model, the operator (2.10), was derived
�rstly (but not rigorously) by M. Wilkinson in (Wilkinson 1987). In a remarkable series
of papers (Helffer and Sjöstrand 1988, Helffer and Sjöstrand 1990, Helffer and Sjöstrand
1989a) B. Helffer and J. Sjöstrand studied the spectrum of the operator (2.10) and its
relation with the spectra of a one-parameter family of one-dimensional operators on
`2(Z) de�ned by

(h�
� u)n := un� 1 + un+1 + 2 cos(2��n + � )un ; f ungn 2 `2(Z); (2.18)

where � 2 R is a �xed number ( deformation parameter ) and � 2 [0; 2� ) is the param-
eter of the family. In the work of the French authors, operator (2.18) is called Harper
operator (and indeed it was introduced by Harper in (Harper 1955)). However, in the
last three decades, operator (2.18) has been extensively studied by many authors (see
(Last 2005, Last 1994) for an updated review) with the name of almost-Mathieu oper-
ator . To avoid confusion and make the nomenclature clear, we chose to adhere to the
most recent convention, using the name almost-Mathieu operator for (2.18). We thus de-
cided to give credits to Harper's work by associating his name to operators of type (2.10).
Consequently we refer to the limit of strong magnetic �eld as Harper regime .

The �rst rigorous derivation of the effective models (2.2) and (2.10) was obtained
by J. Bellissard in an algebraic context in (Bellissard 1988a) and subsequently by B.
Helffer and J. Sjöstrand in (Helffer and Sjöstrand 1989b), inspired by the latter paper.
In particular, in (Helffer and Sjöstrand 1989b) it is proven that H B !1

eff (resp. H B ! 0
eff ) has,

locally on the energy axis, the same spectrum and the same density of states of HBL ,
in the appropriate limit. However, although relevant, this property of isospectrality is
weaker than the notion of unitary equivalence.

4We insist on the fact that this nomenclature is far to be unique. For instance, the operator (2.4) (up to
a Fourier transform) is called discrete magnetic Laplacian by M. A. Shubin in (Shubin 1994)
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2.2 Why is space-adiabatic perturbation theory required?

Beyond the spectrum and the density of states, there are other mathematical prop-
erties of HBL which reveal interesting physical features, as for example the orbital

magnetization (Gat and Avron 2003, Thonhauser et al. 2005, Ceresoli et al. 2006) or the
Hall conductance. These properties are not invariant under a loose equivalence relation
as isospectrality, then it is important to show that H B !1

eff and H B ! 0
eff are approximately

unitarily equivalent to HBL in the appropriate limits. This is one of the main goals of
this thesis. The problem is not purely academic, since it is not hard to produce examples
of isospectral operators which are however not unitarily equivalent and which exhibit
differences in the values of the physical observables. In particular, in Sections 2.3 and
2.6, we show that H � 0

Hof and H � 1
Har are isospectral but not unitarily equivalent. Moreover

the TKNN-equations are a �ngerprint of this lack of unitary equivalence. One concludes
that, in the study of phenomena like the conductance, it is not enough to prove that the
effective models are isospectral to the original Hamiltonians.

We thus introduce the stronger notion of unitarily effective model, referring to the
concept of almost-invariant subspace introduced by G. Nenciu (Nenciu 2002) and to the
related notion of effective Hamiltonian, which we shortly review. The common mathe-
matical background for the aforementioned notions is the space-adiabatic perturbation
theory (SAPT) developed by G. Panati, H. Spohn and S. Teufel in (Panati et al. 2003b, Pa-
nati et al. 2003a, Teufel 2003).

Let us focus on the regime of weak (resp. strong) magnetic �eld and de�ne " :=
2�� 0 = 1=} B (resp. � 1 =2� = } B ) so that " ! 0 in the relevant limit. Let � " be an orthogonal
projection in H phy such that, for any N 2 N; N � N0 there exist a constant CN such that

k[HBL ; � " ]k � CN "N (2.19)

for " suf�ciently small. Then Im � " is called an almost-invariant subspace (Nenciu 2002,
Teufel 2003) at accuracy N0, since it follows by a Duhammel's argument that

k(1 � � " ) e� is HBL � " k � CN "N jsj

for every s 2 R, N � N0. Granted the existence of such a subspace, we call ( unitarily )
effective Hamiltonian a self-adjoint operator H "

eff acting on a Hilbert space H ref , such
that there exists a unitary U" : Im � " ! H ref such that for any N 2 N; N � N0, one has

k
�

� " HBL � U � 1
" H "

eff U"
�

� " k � CN
0 "N : (2.20)

The estimates (2.19) and (2.20) imply that

k
�

e� is HBL � U � 1
" e� is H "

eff U"

�
� " k � CN

00"N jsj: (2.21)

When the macroscopic time-scale t = "s is physically relevant, the estimate above is
simply rescaled. The triple (H ref ; U" ; Heff) is, by de�nition, a unitarily effective model for
HBL . To our purposes, it is important to notice that the asymptotic unitary equivalence
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in (2.20) assures that the topological quantities related with the spectral projections of
� " H"

BL � " (K -theory, Chern numbers, . . . ) are equal to those of H "
eff , for " suf�ciently

small. This claim follows by observing that the topological content of a system is pre-
served by (symmetry preserving) unitary equivalences (cf. Chapter 4) and small pertur-
bation (robustness of the topological invariants).

In Chapter 3 we prove that in the limit } B ! 1 the Hofstadter-like Hamiltonian
(2.2) provides a unitarily effective model for HBL with accuracy N0 = 1 , and we exhibit
an iterative algorithm to construct an effective model at any order of accuracy N0 2 N
(Theorem 3.3.14). As for the limit } B ! 0, up to a rescaling of the energy, the non-trivial
leading order (accuracy N0 = 1 ) for the effective Hamiltonian is given by the Haper-like
Hamiltonian (2.10). We also exhibit the effective Hamiltonian with accuracy N0 = 2 ,
i.e. up to errors of order O("2) (Theorem 3.4.8). Moreover, due to the robustness of the
adiabatic techniques, we can generalize the simple model described by (2.1) to include
other potentials, like a periodic vector potential A � , as in (3.1). This terms produces
interesting consequences especially in the Harper regime (c.f. Section 3.4.8) and it could
play a relevant rôle in the theory of orbital magnetization. This kind of generalization
is new with respect to both (Bellissard 1988a) and (Helffer and Sjöstrand 1989b).

A numerical simulation of the spectrum of the Hofstadter operator H � 0
Hof (resp. Harper

operator H � 1
Har ), as a function of the adiabatic parameter � 0 = 1=hB (resp. � 1 = hB ), leads

to a fascinating Hofstadter butter�y (Figure 1.9). This claim will be clari�ed at the end
of Section 2.3. As discussed in Section 1.4, the spectral structure of the butter�y (i.e.
the black part) has zero measure as a subset of the square and so the physically rele-
vant object is its complement, namely the gap structure (i.e. the white part). As pointed
out by J. Avron and D. Osadchy (Avron 2004, Osadchy and Avron 2001), to each open
connected white region ( island ) can be associated a color which codes the value of the
transverse conductance and which can be considered as a label for a thermodynamic
phase of the system. The correspondence color-gap depends on the particular regime,
therefore one has a colored quantum butter�y for the Hofstadter Hamiltonian (diagram
(A) of Figure 1.9) and similarly, a colored quantum butter�y for the Harper Hamiltonian
(diagram (B) of Figure 1.9). With this language in mind and assuming the interpreta-
tion of the colors as topological quantum numbers in the spirit of (Thouless et al. 1982),
the main result of Chapter 3 can be reformulated by saying that the Hofstadter-like
and Harper-like Hamiltonians are “colour-preserving effective models” for the original
Bloch-Landau Hamiltonian HBL . Thus they describe, though in a distorted and approx-
imated way, some aspects of the thermodynamics of the original system. SAPT is a
“colour-preserving” perturbation theory and for this reason a SAPT-type derivation of
the effective models is need to provide a mathematical foundation for colored quantum
butter�ies.
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2.3 Algebraic duality and isospectrality

T he family of the Hofstadter-like Hamiltonians and that of the Harper-like Hamil-
tonians have a common algebraic structure. To explore this algebraic analogy we

need to introduce a C � -algebraic concept, that is the Non-Commutative Torus (NCT).

Basic notions about Non-Commutative Torus

The NCT (also called rotation C � -algebra ) was introduced by Connes in (Connes 1980)
as a simple example of a non-commutative manifold and in the last decades it has been
extensively studied by many authors. We refer to the comprehensive monographes (Boca
2001) and (Gracia-Bondía et al. 2001).

Due to the relevant rôle that the NCT plays in this thesis, we consider appropriate to
introduce this object rigorously. Following (Boca 2001, pp. 1-2), we de�ne the C � -algebra
of the NCT in a formal (and universal) way starting from two “abstract” elements u and
v which are unitary with respect to a formal involution � ,

u = u� ; v = v� ; uv = ei 2�� vu; � 2 R: (2.22)

Last equation in (2.22) says that u and v commute up to a phase and � is called deforma-
tion parameter . The set L � of the �nite complex linear combinations of the monomials
unvm , n; m 2 Z, has the structure of a unital � -algebra with unit u0 = 1 = v0. The NCT-
algebra with deformation parameter � , denoted by A� , is the C � -algebra generated by
the closure of L � with respect the universal norm

kak := sup
�

fk � (a)kB (H ) : � : L � ! B (H) is a � -representation g:

When � 2 Q then A� is called rational NCT-algebra.

The NCT has a “universal behavior” as far as the representation theory is concerned.
Two properties are of particular relevance for our aims (Boca 2001, Remark 1.2):

- Surjective representation property: Let U and V be two unitary operators act-
ing on the Hilbert space H such that UV = ei 2�� VU and denote by C � (U; V) the C � -
algebra generated by them in B (H) (the algebra of bounded operators). The map-
ping � (u) = U, � (v) = V extends algebraically to a representation (i.e. � -morphism)
� : A� ! C � (U; V) � B (H) which is surjective .

- Universal property: If B � is a C � -algebra generated by two unitaries u0 and v0

such that u0v0 = ei 2�� v0u0, and if B � has the surjective representation property , then
the mapping u 7! u0 and v 7! v0 extends to a � -isomorphism between A� and B � .
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R EMARK 2.3.1 (Frame and isomorphisms of NCT-algebra) . Even though the de�nition
of the algebra A� is subordinate to a choice of a pair of generators (u; v), the algebraic
structure of A� is independent of such a choice. Let (u0; v0) be a frame, namely any pair
of unitaries in A� such that u0v0 = ei 2�� v0u0. Each frame de�nes an equivalent system of
generators for A� and the universal property assures that there exists an automorphism
� 2 Aut (A� ) such that � (u0) = u and � (v0) = v. This means that there is no canonical
choice for the system of generators of the NCT-algebra. Having this in mind, we will
refer to the algebra A� assuming a “a priori” privileged choice for the generators (u; v).

Another consequence of the universal property is that the C � -algebras A� and An+ �

are mutually � -isomorphic for any n 2 Z. Moreover, the map c(u) = v and c(v) = u
de�nes a relevant � -ismorphism, called charge-conjugation , between A� and A� � . One
can prove that these two mappings are the only isomorphisms between NCT-algebras
with different deformation parameters. In other words, if �; � 0 2 [0; 1=2] with � 6= � 0, then
A� and A� 0 are not � -isomorphic (Gracia-Bondía et al. 2001, Corollary 12.7 and following
comments).

When the deformation parameter is an integer N 2 Z then AN is � -isomorphic to
the commutative C � -algebra C(T 2) of the continuous function on the two dimensional
torus. In this sense A� , for � =2 Z, is the natural non commutative generalization of the
algebra C(T 2). To prove the latter claim let | i (z) := zi , i = 1 ; 2 for any z := ( z1; z2) 2 S1 �
S1 = T 2 (coordinate functions). The Stone-Weierstrass Theorem (Reed and Simon 1973,
Theorem IV.10) implies C � (| 1; | 2) = C(T 2). If � = N 2 Z then u and v commute and
� (u) = | 1, � (v) = | 2 de�nes a surjective representation � : AN ! C(T 2) (surjective
representation property). On the other hand the Gel'fand-Na��mark Theorem (Bratteli
and Robinson 1987, Theorem 2.1.11A) states that AN is � -isomorphic to C(X ) ,! C(T 2)
where X denotes the Gel'fand spectrum of AN and the injection follows observing that
X � � (u) � � (v) � S1 � S1. ��

The smooth NCT-algebra A1
� is de�ned by

A1
� :=

8
<

:
a =

X

n;m 2 Z

an;m unvm : f an;m g 2 S(Z2)

9
=

;
(2.23)

where S(Z2) is the space of rapidly decreasing double sequences. This means that a 2 A1
�

if for any k 2 N n f 0g one has bounded semi-norms

kakk = sup
m;n 2 Z

jan;m j
�
1 + jnj + jmj

� k < 1 : (2.24)

A1
� is a dense unital � -algebra in A� , stable under the holomorphic functional calcu-

lus, i.e. it is a Fréchet unital pre- C � -algebra (Gracia-Bondía et al. 2001, De�nition 12.6).
Obviously A1

� ' C1 (T 2) if � 2 Z.

Hofstadter representation

The universal property of the NCT-algebra and equation (2.6) imply that the mapping

� 0(u) := U0; � 0(v) := V0; (2.25)
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de�nes a representation, named Hofstadter representation , of A� on the Hilbert space
H 0. The representation

� 0 : A� ! C � (U0; V0) � B (H 0); � (B ) := � �q� 0(B ) = �
�q

hB

is surjective and sometime we use (with a little abuse of nomenclature) the name Hofs-
tadter C � -algebra to denote � 0(A� ) = C � (U0; V0). The representation � 0 encodes the full
algebraic structure of the universal NCT-algebra, indeed

L EMMA 2.3.2. For any value of the deformation parameter � , the Hofstadter representa-
tion is faithful , i.e. � 0 is a � -isomorphism between A� and C � (U0; V0).

The proof of Lemma 2.3.2 is based on the GNS construction and it is postponed to
Section 5.1.2. The above lemma, together with smoothness of the Bloch band E� which
enters into the de�nition of the Hofstadter-like operators imply

COROLLARY 2.3.3. Any Hofstadter-like operator (2.2) is realized as � 0(d) with d a self-
adjoint element (i.e. d = d� ) in the smooth algebra A1

� .

Harper representation

From (2.14) and the universal property of the NCT-algebra it follows that the mapping

� 1 (u) := U1 ; � 1 (v) := V1 ; (2.26)

de�nes a representation, named Harper representation , of the NCT-algebra on the Hilbert
space H 1 . The representation

� 1 : A� ! C � (U1 ; V1 ) � B (H 1 ); � (B ) := � �q� 1 (B ) = � �qhB

is surjective and sometime we use (with a little abuse of nomenclature) the name Harper
C � -algebra to denote � 1 (A� ) = C � (U1 ; V1 ). Similarly to the Hofstadter case, the repre-
sentation � 1 encodes the full algebraic structure of the universal NCT-algebra, indeed

L EMMA 2.3.4. For any value of the deformation parameter � , the Harper representation
is faithful , i.e. � 1 is a � -isomorphism between A� and C � (U1 ; V1 ).

The proof of Lemma 2.3.4 is postponed to Section 5.1.3. The assumption on the regu-
larity of the periodic function V� (c.f. Assumption 3.2.1) together with the above lemma
imply

COROLLARY 2.3.5. Any Harper-like operator (2.10) is realized as � 1 (d) with d a self-
adjoint element (i.e. d = d� ) in the smooth algebra A1

� .
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Algebraic duality and isospectrality

The algebraic structure of the NCT-algebra is common both to the Hofstadter and the
Harper regimes. Indeed, Corollary 2.3.3 states that any Hofstadter-like Hamiltonian is
an element of � 0(A� ) and similarly Corollary 2.3.5 states that any Harper-like Hamilto-
nian is an element of � 1 (A� 0), where the deformation parameters � and � 0 are related
to the adiabatic parameters � 0 and � 1 , respectively. To compare the Hofstadter and
Harper representations, looking for similarities and differences, one needs to assume
� = � 0. This condition can be established in terms of the strength of the magnetic �elds
which characterize the Hofstadter and Harper regimes.

A SSUMPTION 2.3.6 (Algebraic duality condition) . Let B1 (resp. B2) be the strength of
a weak (resp. strong) magnetic �eld, i.e. 0 < B 1 � 1 � B2. Let � 0(B1) = 1=hB 1 be the
adiabatic parameter for the Hofstadter regime and � 1 (B2) = hB 2 the adiabatic parameter
for the Harper regime. The condition � 0(B1) = � 1 (B2) = � �q � , for some � 2 R, is called
algebraic duality condition . In terms of the strength of the magnetic �elds it is equivalent
to set B1B2 = ( � 0=ZS � )2, with j� j =

p
B 1=B 2.

Observe that the sign of � depends on the sign of the charge of the carriers. In
particular, one has � > 0 for electrons (�q = � 1) and � < 0 for holes (�q = +1 ). In view
of that, one calls charge-conjugation transform any operation which induces the change
� 7! � � (cf. Remark 2.3.1).

If Assumption 2.3.6 holds true, then the mutual relations between the universal
C � -algebra A� , its Hofstadter realization � 0(A� ) � B (H 0) and its Harper realization
� 1 (A� ) � B (H 1 ) are summarized in the diagram below:

A�;;
A

{{xxx
xxx

xxx
dd

B

$$HHH
HHH

HHH

� 0(A� ) oo
C

//� 1 (A� ):

(2.27)

Here, the double arrow “ oo //” denotes an isomorphism of C � -algebras. Arrows A and
B express the content of Lemmas 2.3.2 and 2.3.4, respectively. The existence of arrow C
follows by composition of A and B. In summary, the previous lemmas imply the following:

T HEOREM 2.3.7 (Algebraic duality) . If Assumption 2.3.6 holds true, the Hofstadter C � -
algebra C � (U0; V0) and the Harper C � -algebra C � (U1 ; V1 ) are isomorphic.

The �rst consequence of the above result concerns the relations between the spectra
of elements of A� and the spectra of the related representatives via � 0 and � 1 . Given
a a 2 A� , its algebraic spectrum is de�ned as � (a) := C n � (a) where � (a) := f � 2 C :
(a � � 1) � 1 2 A� g denotes the resolvent set. Similarly, if A is a linear (not necessarily
bounded) operator on the Hilbert space H, then the Hilbertian spectrum is de�ned as
� H (A) := C n � H (A) where � H (A) := f � 2 C : (A � � 1H ) � 1 2 B (H)g.
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COROLLARY 2.3.8 (Isospectrality) . Let Assumption 2.3.6 hold true. Then for any a 2 A�

� H 0 (� 0(a)) = � (a) = � H 1 (� 1 (a)) : (2.28)

Proof . The claim follows from two simple observations: 1) in the de�nition of � (a) (resp.
� H (A)) one can change A� with C � (a) which is the commutative C � -subalgebra generated
in A� by a (resp. B (H) with C � (A)) (Bratteli and Robinson 1987, Proposition 2.2.7); 2)
if � : A� ! B (H) is a faithful representation then C � (a) ' C � (� (a)) , which implies
� (a) = � H (� (a)) . �

Universal Hofstadter operator and Hofstadter butter�y

The universal Hofstadter operator is the element of the universal algebra A� de�ned by

h� := u + u� + v + v� : (2.29)

A comparison between equations (2.9), (2.17) and (2.29) shows that H � 0
Hof = � 0(h� ) and

H � 1
Har = � 1 (h� ), provided that the algebraic duality condition � �q � 0 = � = � �q � 1 holds

true. Corollary 2.3.8 states the isospectrality of these operators, namely

� H 0 (H � 0
Hof ) = � (h� ) = � H 1 (H � 1

Har ) if � 0 = � 1 = � �q �: (2.30)

The spectrum 5 of h� (when � takes values in [0; 1]) is described by the Hofstadter but-
ter�y showed in Figure 1.9, and equation (2.30) proves the claim stated in Section 1.4
concerning the isospectrality between the Hofstadter and the Harper Hmiltonians.

We are now in position to justify properties (HB-1), (HB-2) and (HB-3) listed in Sec-
tion 1.4. The �rst follows from (2.29), indeed

kh� k 6 kuk + ku� k + kvk + kv� k = 4 :

Property (HB-2) follows from the fact that (� u; � v) is a frame for A� and the mapping
(u; v) 7! (� u; � v) extends to an automorphism of A� . Property (HB-3) is a consequence
of the isomorphism between A� and A� + n and the fact that the mapping (u; v) 7! (v; u)
extends to an isomorphism between A� and A� � (cf. Remark 2.3.1).

2.4 Band spectrum, gap projections and gap labeling

T he main consequence of Corollaries 2.3.3 and 2.3.5 is that one can investigate the
spectral structure of Hofstadter-like and Harper-like Hamiltonians by looking at

the universal representatives in the algebra A� . In particular, we are interested in self-
adjoint smooth elements, namely in operators d 2 A1

� such that d = d� . Two types of
spectral structures are important for the aims of this thesis.

5In order to fully appreciate the rich and elegant structure of the spectrum of h� , we suggest to look at
some of its numerical drawings like Figure 1.9. A nice selection of numerically computed illustrations has
been provided in (Guillement et al. 1989).
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D EFINITION 2.4.1 (Band spectrum vs. Cantor spectrum) . Let d 2 A� be a self-adjoint
element and denote with � (d) its spectrum. A closed interval I � R is an energy band for
d if I � � (d) and I 0 \ (R n � (d)) 6= ; for any open interval I 0 � I . An open (non-empty)
interval G � R n � (d), delimited by two spectral points is called an (“open”=non-empty)
gap for d. We will say that d has a band spectrum if � (d) is a locally �nite union of energy
bands6, while d has a Cantor spectrum if � (d) is a closed, nowhere dense set, which has
no isolated points (Cantor structure).

An element p 2 A� which is a self-adjoint idempotent, i.e. p� = p = p2, is called an
orthogonal projection . We will denote by Proj (A� ) the set of the orthogonal projections in
A� and with Proj (A1

� ) = Proj (A� ) \ A1
� the set of smooth projections . Obviously Proj (A� )

is non-empty since the trivial projections 0 and 1 are always elements of A1
� . Generally,

A� has also non-trivial projections 7. There exists a deep relation between the structure
of the spectrum of self-adjoint elements of A� and the existence of non-trivial projections.

L EMMA 2.4.2 (Spectral projection) . Let d 2 A� (resp. d 2 A1
� ) be a self-adjoint element

and � (d) � R its spectrum. For any � 1; � 2 2 R n � (d) (with � 1 < � 2) there exists a spectral
projection p[� 1 ;� 2 ] 2 Proj (A� ) (resp. p[� 1 ;� 2 ] 2 Proj (A1

� )). Moreover p[� 1 ;� 2 ] = 0 (resp. = 1) if
and only if [� 1; � 2] \ � (d) = ; (resp. � (d) � [� 1; � 2]).

Proof . let � be a closed recti�able path in C which intersects the real axis in � 1 and
� 2 (see Figure 2.1). The projection p[� 1 ;� 2 ] is de�ned via holomorphic functional calculus
using the Riesz formula

p[� 1 ;� 2 ] :=
1

i2�

I

�
(� 1 � d) � 1 d�:

Obviously p[� 1 ;� 2 ] 2 A� since A� is closed under holomorphic calculus and p[� 1 ;� 2 ] = 0
(resp. 1) if and only if [� 1; � 2] \ � (d) 6= ; (resp. � (d) � [� 1; � 2]) since it depends only on
the germ of the constant function 1 on � (d). Finally, d 2 A1

� implies p[� 1 ;� 2 ] 2 A1
� since

the smooth algebra is stable under holomorphic calculus (Gracia-Bondía et al. 2001,
De�nitions 3.25 and 3.26, Proposition 3.45). �

For the purposes of this thesis we are mainly interested in the spectral structure of
self-adjoint elements in the rational NCT-algebra. We �x the following:

CONVENTION 2.4.3 (rationality condition) . When � 2 Q, its representative is uniquely
�xed as � = M=N with M 2 Z, N 2 N n f 0g and M; N coprime, namely g.c.d(N; M ) = 1 .
According to this convention sign(� ) := M=jM j.

In order to proceed with the analysis of the spectral structure of elements in A� , we
need an additional structure on the NCT. Let (u; v) be a (�xed) system of generators for
A� . The linear map

R
��� : A� ! C de�ned on the monomials by

R
��� (unvm ) := � n;0 � n;0 (2.31)

6Since a single point is a (trivial) closed interval, the pure point spectrum �ts in the de�nition of band
spectrum.

7This claim is no longer true if � 2 Z. In fact, the integrality of � implies A � ' C(T 2) and the latter
C � -algebra has only trivial projections since T 2 is connected.
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extends to A� by linearity. It is by now a known fact that
R
��� is a faithful state (c.f. Ap-

pendix B.1) on A� with the trace property
R
��� (ab� ba) = 0 for any a; b 2 A� (Boca 2001, pp.

1-5) . We refer to
R
��� as the non-commutative integral 8 over A� . In general the de�nition

of
R
��� is not canonical since it is subordinate to the choice of a system of generators (u; v).

It is canonical for irrational � 2 RnQ since in this case there exists a unique tracial state
on A� . In the rational case � = M=N one can prove that (Boca 2001, Corollary 1.22)

R
��� : Prj (AM =N ) !

�
0;

1
N

; : : : ;
N � 1

N
; 1

�
: (2.32)

Moreover, the faithfulness of
R
��� implies that

R
��� (p) = 0 (resp. 1) if and only if p = 0 (resp.

1). The number Rk (p) := N
R
��� (p) is called rank or dimension of the projection p.

In the rational case � = M=N , property (2.32) entails

K � := inf f
R
��� (p) : 0 6= p 2 Proj (A� )g =

1
N

> 0 if � =
M
N

: (2.33)

The number K � is called Kadison constant of the pair (A� ;
R
��� ) and K � > 0 (called Kadison

property ) is the main ingredient to prove that self-adjoint elements in A� have a band
spectrum (Gruber 2001, Theorem 7).

P ROPOSITION 2.4.4 (Gap structure) . Let d 2 A� (resp. d 2 A1
� ) be a self-adjoint element

and assume rationality condition � = M=N .

(i) The spectrum of d consists of at most N intervals, hence it admits at most N +1 gaps
(counting also the unlimited top and bottom gaps).

Let f G0; : : : ; GN0 g, with N0 6 N , be the family of “open” gaps in the spectrum of d. The
labeling of the gaps is �xed in agreement with the ordering � on the family of gaps
corresponding to their order of occurrence on R, namely G0 � : : : � GN0 .

(ii) To each gap is associated a gap projection P j 2 Proj (A� ) (resp. P j 2 Proj (A1
� )) with

the convention that P 0 = 0 and P N0 = 1.

Proof . Let [a; b] be any closed interval with a; b2 R n � (d) and f � 1; : : : ; � r g � [a; b] n � (d)
such that � 0 := a < � 1 < : : : < � r < b =: � r +1 with [� j ; � j +1 ] \ � (d) 6= ; . Following
Lemma 2.4.2 one has that p[a;b] =

L r
j =0 p[� j ;� j +1 ]. The Kadison property (2.33) implies

that 1 >
R
��� (p[a;b]) > (r + 1) K � = r +1

N which forces r 6 N � 1. This means that � (d) \ [a; b]
is at most union of N disjoint energy bands for any pair a; b 2 R n � (d). Point (i) follows
by observing that � (d) is a bounded set.

Now let N0 6 N be the total number of disjoint energy bands in � (d). We label the
energy bands according to their order on R, i.e. I 1 � I 2 � : : : � I N0 , as showed in Figure
2.1. Each of these intervals de�nes, via holomorphic calculus, a band projection pj 2
Proj (AM =N ), 1 6 j 6 N0. Moreover, since the energy bands are mutually non intersecting,

8When � 2 Z, then A � ' C(T 2) and
R
��� coincides with the ordinary integration on T 2 with respect to the

normalized Haar measure.
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pj pk = 0 whenever j 6= k. The gap structure of � (d) consists of N0+1 “open” gaps counting
also the (unlimited) bottom gap which is the open interval from �1 to the minimum of
� (d) and the (unlimited) top gap which is the open interval from the maximum of � (d) to
+ 1 . We can label the gaps by their order of occurrence on the real line, G0 � G1 � G2 �
: : : � GN0 with G0 the bottom gap and GN0 the top gap. To any gap it is associated the
gap projection P j :=

L j
i =0 pi . The trivial projection 0(=: P 0) is associated to the bottom

gap and the trivial projection 1(=: P N0 ) is associated to the top gap. �

Figure 2.1 : Band structure of the spectrum of a self-adjoint element d 2 A � for a rational value � = M =N

of the deformation parameter.

The number

N (Gj ) := Rk(P j ) = N
R
��� (P j ); (2.34)

which coincides with the dimension of P j , provide an alternative increasing labeling
for the gaps of the spectrum of d in the spirit of the celebrated gap labelling Theorem
(Simon 1982, Bellissard 1993).

R EMARK 2.4.5. (Gap structure for irrational deformation parameter) If the spectrum
of d 2 A� is Cantor (which may happen only if � 2 R n Q) then any point in � (d) is an
accumulation point and it is not possible to de�ne the band projections via holomorphic
calculus. Nevertheless, we can yet de�ne the gap projections. Since � (d) is bounded
we can �x �1 < � 0 < min � (d) and for any � 2 R n � (d), � > � 0 we can de�ne the
gap projection P � 2 A� by means of the holomorphic functional calculus. The number

~N (G) :=
R
��� (P � ) de�nes a label for the gap G 3 � which is independent on � . A general

result shows that that for any non-trivial projection p 2 Proj (A� ) there exists a n 2 Znf 0g
such that

R
��� (p) = n� mod Z (Boca 2001, Corollary 11.8). If � 2 RnQ, then n is determined

uniquely and
R
��� maps the set Proj (A� ) onto the countable dense set G� := ( Z + � Z) \ [0; 1]

(Gracia-Bondía et al. 2001, Theorem 12.6). Thus n de�nes uniquely a canonical label
for the element of Proj (A� ) and G� coincides with the maximal set of possible gap-labels
which, however, can be larger than the set of the actual “open” (i.e. non-empty) gaps
in � (d). The strong ten Martini problem consists in proving the existence of a bijection
between G� and the set of the “open” gaps in the (Cantor) spectrum of a self-adjoint
element of A� when � is irrational. ��
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2.5 Colored butter�ies as a gap labeling

T he properties of the spectrum of the universal Hofstadter operator h� (2.29) have
been discussed in Section 1.4. We are mainly interested in the case of rational

values of the deformation parameter. Let � = M=N according to Convention 2.4.3. In
this case the spectral structure of hM =N is well known. With the notation introduced in
Section 2.4 one has that:

- N odd: � (hM =N ) consists of N disjoint energy bands and N + 1 “open” gaps (the
maximum number of disjoint bands and non-empty gaps) ordered as G0 � G1 �
G2 � : : : � GN . Any energy band I j de�nes a non trivial projection pj such
that

R
��� (pj ) = n j =N with nj 2 f 1; : : : ; N � 1g according to (2.32). The equality

1 = P N :=
L N

j =0 pj , the normalization, the faithfulness and the linearity of
R
���

imply N =
P N

j =1 nj , namely nj = 1 for any j = 1 ; : : : ; N . In other words any band
projection has dimension 1, i.e. Rk (pj ) = 1 and the labeling (2.34) for the gaps is
given by N (Gj ) = j , 0 6 j 6 N .

- N even: � (hM =N ) consists of N � 1 disjoint energy bands and only N open gaps G0 �
G1 � G2 � : : : � GN � 1 since the central gap is “closed”. With an argument similar
to that for the odd case one shows that, except for a single band projection which
has dimension 2, all the other N � 2 band projections have dimension 1. A symmetry
argument shows that the “bigger” projection is the central one, namely pN =2. The
automorphism � 2 Aut (A� ) de�ned by (u; v) 7! (� u; � v) maps h� in � h� showing
that the spectrum of h� is symmetric with respect to a re�ection around the zero
energy. Obviously � 2 = id. The application of � to Riesz formula shows that � (pj ) =
pN � j for any j = 1 ; : : : ; N � 1. In particular one deduces the invariance of the central
band projection, i.e. � (pN =2) = pN =2. The �nal argument is the invariance of the
noncommutative integral with respect to � , namely

R
��� � � =

R
��� . This property can be

checked directly on the monomials unvm . The �nal conclusion is that the labeling
of the “open” gaps is given by N (Gj ) = j , if 0 6 j 6 N=2 � 1 and by N (Gj ) = j + 1
if N=2 6 j 6 N � 1.

The system of TKNN-equations (c.f. Section 1.2) proposed by Thouless et al. consists
of a family of Diophantine equations labeled by the “open” gaps in the spectrum of hM =N .
With the notation above introduced, the TKNN-equations can be written as 9

M s(Gj ) + N t (Gj ) = N (Gj ) j = 0 ; : : : ; N0 (2.35)

with N0 = N (resp. N � 1) if N is odd (resp. even). The system is completed by the
constraint

js(Gj )j <
N
2

8 j = 0 ; : : : ; N0: (2.36)

9The reader can check directly from Figure 1.8 that the system (2.35) coincides with the equations de-
rived in (Thouless et al. 1982) up to the change of notation t(Gr ) = t r , s(Gr ) = sr , N = p, M = q.
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Assuming Convention 2.4.3, equation (2.35) is solved by a unique pair of integers s(Gj )
and t(Gj ) for each �xed gap Gj . The existence of a solution is guaranteed by the assump-
tion g.c.d. (N; M ) = 1 , the uniqueness is a consequence of the constraint (2.36).

The integers s(Gj ) and t(Gj ) provide two different labelings for the gap Gj . Figure 2.2
shows a diagrammatic representation in which the labels are coded with colors (warm
colors like red correspond to positive integers, cold colors like blue correspond to negative
integers and white means zero). The butter�y on the left codes the values of s(Gj ), while
the butter�y on the right codes the values of t(Gj ). An immediate consequence of (2.35)
and (2.36) is that, independently of the rational value of deformation parameter � = M=N ,
s(G0) = t(G0) = 0 which explains the white ( = 0 ) as bottom color in both butter�ies, and
s(GN0 ) = 0 , t(GN0 ) = 1 which explains the difference between the top colors.

Figure 2.2 : [Our elaboration of pictures in (Avron 2004)] . The two diagrams showed in Figure 2.2 are the

colored versions of the Hofstadter's butter�y realized by J. E. Avron and D. Osadchy (Avron 2004, Osadchy

and Avron 2001) (cf. Section 1.4). They are known as colored quantum butter�ies . The butter�y on the left

(resp. right) is a thermodynamic phase diagram for the Hall conductance in the Hofstadter (resp. Harper)

regime. Any color codes an integer number which describes the quantized values of the Hall conductance

and gives a labeling for the gaps in the spectrum of h� . To any “open” gap Gj is associated the gap projection

P j . Under the Hofstadter and Harper representations � 0 and � 1 , the projection P j de�nes two distinct

vector bundles over the torus T 2 . The colors code the Chern numbers of these vector bundles, in accordance

with the topological interpretation of the TKNN-equations.

Let P j be the gap projection associated with the gap Gj (Proposition 2.4.4). It is
reasonable to consider the numbers s(Gj ) and t(Gj ) as quantities depending on P j .
Moreover, the physical interpretation proposed in (Thouless et al. 1982) is that s(Gj )
is the Hall conductance related to the energy spectrum up to the gap Gj in the limit
of a weak magnetic �eld (Hofstadter regime), while t(Gj ) is the Hall conductance re-
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lated to the same energy spectrum but in the opposite limit of a strong magnetic �eld
(Harper regime). Thus, one can infer that the relation between s(Gj ) and P j depends
on the Hofstadter representation � 0, namely s(Gj ) := C(� 0(P j )) . Similarly, one can in-
fer that t(Gj ) := C(� 1 (P j )) . The physical interpretation of the integers s(�) and t(�)
leads to consider the colored butter�ies in Figure 2.2 (c.f. Section 1.4) as thermodynamic
phase diagrams (Avron 2004, Osadchy and Avron 2001). In particular, the butter�y on
the left shows the various thermodynamic phases for the Hall conductance (assumed
as thermodynamic function) in the Hofstadter regime. In this case the thermodynamic
coordinates are the energy (proportional to the chemical potential ) on the vertical axis
and the magnetic �eld ( � / B ) on the horizontal axis. For a �xed value of the magnetic
�eld, the color associated to the gap Gj codes (in unit of e2=h) the value of the Hall con-
ductance when the chemical potential lies in the gap Gj . Similarly, the butter�y on the
right shows the various phases for the Hall conductance in the Harper regime. In this
case the thermodynamic coordinates are the energy and the inverse of the magnetic �eld
(� / 1=B ).

However, there is an open question from a mathematical point of view: what is the
meaning of the function C which relates the integers s(�) and t(�) with the gap projec-
tions via the representations � 0 and � 1 ? One of the main results of this thesis is to prove
that the “function” C denotes the (�rst) Chern number of a suitable vector bundle asso-
ciated to the gap projection P j and depending on the particular (Hofstadter or Harper)
representation (cf. Section 2.7). This result leads to a rigorous proof of the topological
interpretation of the TKNN-equations.

2.6 Absence of unitary equivalence

Corollary 2.3.8 states that the Hofstadter-like Hamiltonian � 0(a) and the Harper-like
Hamiltonian � 1 (a) associated to the same universal element a 2 A� are isospec-

tral with spectrum given by � (a), provided that the duality condition (Assumption 2.3.6)
holds true. However, the relation of isospectrality between two operators is quite weak
since it concerns only the equality of the spectra as subsets of C; this property is re-
lated only to the algebraic structure of the operator algebras and does not depend on
the representations. However, for a linear operator acting on a Hilbert space, the notion
of algebraic spectrum can be enriched by means of the underlying Hilbert space struc-
ture. As a matter of fact , the little amount of information in the algebraic spectrum
is improved by the determination of the spectral measure or by analyzing the Lebesgue
decomposition of the spectrum or computing the density of the states, etc. This informa-
tion de�nes the spectral type of an operator. Obviously, two operators which are merely
isospectral, can have different spectral types, while two operators which are unitarily
equivalent have the same algebraic spectrum and the same spectral type. These con-
siderations suggest the following question: under Assumption 2.3.6, do the isospectral
operators � 0(a) and � 1 (a) have the same spectral type?
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A hint to answer the above question comes from the analysis of the colored butter�ies
in Section 2.5. The isospectrality between the effective models H �

Hof and H �
Har (with

� = � �q� 0 = � �q� 1 according to Assumption 2.3.6) leads to the same spectral diagram,
the black and white quantum butter�y showed in Figure 1.9. However, if one looks to
�ner properties like the Hall conductance, then the Hamiltonians H �

Hof and H �
Har produce

different colored butter�ies (cf. Figure 1.10 or 2.2). Since the Hall conductance is a
“spectral quantity” (it depends on the spectral projection associated to the gap), one can
suspect that H �

Hof and H �
Har have different spectral type. This is not so surprising, in fact

H �
Hof and H �

Har are effective Hamiltonians which describe opposite and very different
physical regimes. It is plausible that there exist physical quantities able to discriminate
between the two regimes.

The above considerations suggest that the operators H �
Hof and H �

Har are not unitary
equivalent. A �rst, but partial, indication is given by the following result:

T HEOREM 2.6.1 (Weak “no go”) . Let Assumption 2.3.6 hold true. Then there exists no
unitary map W : H 0 ! H 1 such that W U0 W � 1 = U1 and W V0 W � 1 = V1 .

Proof . We sketch an argument proposed by G. Emch in (Emch 1996). Suppose that such
a W exists. Then W implements unitarily the � -isomorphism de�ned by the arrow C of
diagram (2.27), i.e. W � 0(A� ) W � 1 = � 1 (A� ). Such a unitary equivalence extends to a
unitary equivalence of the related von Neumann algebras (c.f. Section B.1) M 0(A� ) :=
� 0(A� )00and M 1 (A� ) := � 1 (A� )00. However, this is impossible since M 0(A� ) is a standard
von Neumann algebra (c.f. Section 5.1.2) while M 1 (A� ) is not standard (c.f. Section
5.1.3) and the property to be standard (or not) is preserved by unitary equivalences. �

The above “no go” result allows the Hofstadter-like Hamiltonian � 0(a) and the Harper-
like Hamiltonian � 1 (a), related to the same element a 2 A� , to have different spectral
types, but it does not exclude the existence of a special unitary ~W which intertwines
only � 0(a) and � 1 (a) and not the full C � -algebras. To exclude the unitary equivalence
between each pair of operators we need a stronger version of the above “no go” theorem.

The main result of this thesis is to provide a geometric and generalized version of
TKNN-equations which relate some “spectral �ngerprints” of � 0(a) and � 1 (a) for any
(self-adjoint) a 2 A� . These spectral quantities can be de�ned in terms of topological
invariants (TQN) of suitable geometric structures emerging from the spectral decompo-
sition of the algebras � 0(A� ) and � 1 (A� ) (see Section 2.7). The difference between the
topological invariants associated to � 0(a) and � 1 (a) it is enough to exclude the existence
of a special intertwiner ~W (strong “no go” result). The existence of a formula which
relates these invariants is a consequence of a deep duality between � 0(A� ) and � 1 (A� )
which is of geometric type. The proof of this geometric duality is the principal aim of this
thesis.
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2.7 From projections to vector bundles: the “two-fold way”

Section 2.5 ended with the assertion that there exists a relation between gap projec-
tions of the Hofstadter (resp. Harper) Hamiltonian and vector bundles. The present

section aims to explain the nature of such a relation.

Firstly, we need to introduce some notations concerning the theory of vector bundles.
For a detailed and complete exposition about this subject, we refer to (Lang 1985, Chap-
ter III) or (Gracia-Bondía et al. 2001, Chapter 2). Fundamental notions useful for the
purpose of this thesis are sketched in Appendix C.

We use the symbol � : E ! T 2 to denote a Hermitian vector bundle with two-
dimensional torus as base space. To simplify notation we will occasionally use only the
symbol E. The vector bundle has rank N if � � 1(z) ' CN for any z 2 T 2. The symbol �( E)
denotes the (�nitely generated and projective) C(T 2)-module of continuous sections of
the vector bundle. The endomorphism bundle (c.f. Proposition 4.7.13) associated to the
rank N vector bundle E ! T 2 is the rank N 2-vector bundle End (E) ! T 2 with typical
�ber End (CN ) ' Mat N (C) and transition functions induced by the adjoint action of those
of E. The symbol �( End(E)) denotes the corresponding C(T 2)-module of sections.

CONVENTION 2.7.1 (n-dimesional torus) . The manifold T n := S1 � : : : � S1 (n times) is
parametrized by the points (denoted with k) of the square [0; 2� ]n up to the identi�cation of
the opposite edges. Such an identi�cation is made explicit by the map k := ( k1; : : : ; kn ) 7!
z(k) := ( eik 1 ; : : : ; eik n ). We consider T n to be endowed with the �at metric (the product
metric of the canonical Riemannian metric on S1) in such a way that the related volume
form agrees with the normalized Haar measure dz(k) := dn k

(2� )n with dnk := dk1 ^ : : : ^ dkn .
Sometimes we use the short notation L p(T n ) instead L p(T n ; dz) to denote the space of the
p-summable functions with respect to dz.

The Hermitian structure on the bundle E and the existence of a volume form on T 2

allows us to de�ne a scalar product on the space of sections �( E) as

hs; r i :=
Z

T 2
(s(z); r (z)) z dz; s; r 2 �( E );

where (� ; �)z denotes the scalar product in the �ber space � � 1(z) ' CN . The completion
of �( E) with respect to the norm kskL 2 :=

p
hs; si leads to the Hilbert space L 2(E) of the

L 2-sections of the vector bundle E. Obviously, �( E) � L 2(E) due to the compactness of
the base manifold. We denote with B (L 2(E)) the C � -algebra of the bounded operators
on the Hilbert space L 2(E). The �ber metric (� ; �)z de�nes a C(T 2)-valued Hermitian
structure on �( E) through f s; r g(z) := ( s(z); r (z)) z for s; r 2 �( E ). This endows �( E) with
the structure of a Hilbert module over C(T 2). Let End C(T 2 ) (�( E)) be the C � -algebra
of the adjontable operators on the C(T 2)-module �( E) (Boca 2001, Proposition 3.1 and
Theorem 3.8). Any element in End C(T 2 ) (�( E)) extends uniquely to a bounded operator on
L 2(E) hence, with a slight abuse of notation, we can write End C(T 2 ) (�( E)) � B (L 2(E)) .
The (localization) isomorphism �( End(E)) ' End C(T 2 ) (�( E)) shows that �( End(E)) is a
unital C � -algebra and justi�es the (abuse of) notation �( End(E)) � B (L 2(E)) .
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D EFINITION 2.7.2 (Bundle decomposition 10 ). Let A � B (H) be a C � -algebra of bounded
operators on the Hilbert space H. We say that A admits a bundle decomposition over X
if there exist a vector bundle E ! X (with X a �nite dimensional compact manifold) and
a unitary map F : H ! L 2(E) such that F A F � 1 � �( End(E)) .

The mere request of a unitary map between H and L 2(E) is trivial since all separa-
ble Hilbert spaces are unitarily equivalent. Nevertheless, such a map transforms A in
a subalgebra of B (L 2(E)) . The non-trivial part of the above de�nition consists in the
(rather strong) request that F A F � 1 � �( End(E)) . The unitarity of the map F assures
that spectral properties of operators in A are preserved after the decomposition. On the
other hand, �( End(E)) is a geometric object and its geometry encodes features of the
original algebra A. In other words, an algebra of operators admits a bundle decompo-
sition if it has a hidden geometric structure which emerges up to a unitary transform.
A general scenario for the appearance of an emerging geometric structure is the exis-
tence of a family of symmetries S for the algebra A. This point of view is developed in
Chapter 4. A triple fH ; A; S g is called a physical frame (De�nition 4.1.2). The content
of Theorems 4.7.9 and 4.7.15 is that (under some technical assumptions) any physical
frame with wandering property (De�nition 4.5.1) induces a bundle decomposition F . In
this case we say that the bundle decomposition F is subordinate to the physical frame
fH ; A; S g. If S is maximal commutative inside the commutant A0, then the physical
frame fH ; A; S g is called irreducible and we refer to the induced F as an irreducible
(subordinate) bundle decomposition.

The interpretation of the spectral properties of A in terms of emerging geometric
quantities is supported by the following general result.

L EMMA 2.7.3. Let A � B (H) be a C � -algebra admitting a bundle decomposition over
X with (rank N ) vector bundle � : E ! X . Then, any projection P 2 A de�nes a vector
subbundle L (P) � E.

Proof . If P 2 A is a projection, then F P F � 1 =: P(�) 2 �( End(E)) is an projection-
valued section, namely P(x) is a projection in End (� � 1(x)) ' Mat N (C) for any x 2 X .
Since any element of �( End(E)) de�nes a bundle map (Gracia-Bondía et al. 2001, Corol-
lary 2.7), we can build the image vector bundle associated to P(�). Let Im (P)x :=
f P(x)v ; v 2 � � 1(x)g � � � 1(x) and consider the total space

L (P) :=
G

x2 X

Im (P)x ' f (x; v) 2 X � E : � (v) = x; P (x)v = vg (2.37)

10The space L 2(E) agrees with the direct integral (c.f. Appendix B.3) of the Hilbert spaces H (z) := � � 1(z),
i.e. L 2(E) =

R�
T 2 H (z) dz. The unitary map F : H ! L 2(E) induces a direct integral decomposition or

more simply a �ber decomposition of the Hilbert space H . Let D � F B (H )F � 1 be the set of decomposable
operators (or operator �elds c.f. Appendix B.3). If F AF � 1 � D , then the C � -algebra A admits a �ber
decomposition, namely F AF � 1 =

R�
T 2 � z (A) dz with � z : A ! B (H (z)) is a representation of A for any z 2

T 2 . However, the �ber decomposition of a C � -algebra is a purely measure-theoretic notion which contains no
topological information. On the contrary, the notion of of bundle decomposition is purely topological and is
related with the de�nition of continuous �eld of C � -algebras (Dixmier 1982). Observing that �( E) is dense
in L 2(E), it follows that the notion of bundle decomposition is stronger than that of �ber decomposition.
Loosely speaking, a bundle decomposition is a continuous �ber decomposition.
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where the symbol
F

x2 X denotes the disjoint union of sets labeled by X . Equation (2.37)
implies that L (P) � E and L (P) \ � � 1(x) = Im (P)x and so de�nes the total space of a
vector subbundle � : L (P) ! X provided that the function x 7! dim (Im (P)x ) = Rk(P(x))
is constant. The latter claim follows by standard arguments showing that the map x 7!
Rk(P(x)) is both lower and upper semicontinuous, hence locally constant (Dixmier and
Douady 1963, Section 1). If X is connected, then x 7! Rk(P(x)) is constant and the
common value, denoted with Rk (P), �xes the rank of the vector subbundle E(P). The
isomorphism which appears in the right-hand side of (2.37) is justi�ed by the fact that
the map (x; v) 7! v de�nes a linear isomorphism between the �ber spaces f xg � Im (P)x

and Im (P)x . �

The relevance of the De�nition 2.7.2 for a geometric derivation of the TKNN-equations
(2.35) is related to the following fundamental result:

T HEOREM 2.7.4 (Bundle decomposition in Hofstadter and Harper representations) . Let
AM =N be the the rational NCT-algebra (according to Convention 2.4.3), � 0 : AM =N ! H 0

the Hofstadter representation and � 1 : AM =N ! H 1 the Harper representation.

(i) The operator algebra � 0(AM =N ) � B (H 0) admits an irreducible bundle decomposi-
tion over T 2 with (rank N ) Hermitian vector bundle E0 ! T 2 (called Hofstadter vec-
tor bundle ) and a unitary transform F0 : H 0 ! L 2(E0). The decomposition is unique
(up to equivalences). The vector bundle E0 is trivial, hence its (�rst) Chern number is
zero, C1(E0) = 0 . Finally, the bundle representation F0 � 0(AM =N ) F0

� 1 is generated
by the endomorphism sections U0(�) := F0 � 0(u) F0

� 1 and V0(�) := F0 � 0(v) F0
� 1

explicitly de�ned (in local coordinates according to Convention 2.7.1 ) by

U0(k) � U(e� ik 1 ); V0(k) � V (eik 2 ); k = ( k1; k2) 2 R2 (2.38)

where U and V are de�ned by (2.40).

(ii) The operator algebra � 1 (AM =N ) � B (H 1 ) admits an irreducible bundle decomposi-
tion over T 2 with (rank N ) Hermitian vector bundle E1 ! T 2 (called Harper vector
bundle ) and unitary transform F1 : H 1 ! L 2(E1 ). The decomposition is unique
(up to equivalences). The vector bundle E1 is non trivial with (�rst) Chern number
C1(E1 ) = 1 . Finally, the bundle representation F1 � 1 (AM =N ) F1

� 1 is generated by
the endomorphism sections U1 (�) := F1 � 1 (u) F1

� 1 and V1 (�) := F1 � 1 (v) F1
� 1

explicitly de�ned by

U1 (k) � U(ei M
N k1 ); V1 (k) � V (eik 2 ); k = ( k1; k2) 2 R2: (2.39)

To complete de�nitions (2.38) and (2.39) we need to introduce the N � N complex
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matrices

U(� ) := �

0

B
B
B
B
B
B
B
B
B
@

1 0 0 : : : 0

0 ei 2� M
N 0 : : : 0

0 0 ei 4� M
N

...
...

...
...

. . . 0
0 0 0 : : : 0

0 0 0 : : : ei 2� (N � 1) M
N

1

C
C
C
C
C
C
C
C
C
A

; V (� ) :=

0

B
B
B
B
B
B
B
B
B
@

0 0 0 : : : 0 �
1 0 0 : : : 0 0

0 1 0
...

...
...

...
. . . . . . 0 0

0 0 0 0 0
0 0 0 : : : 1 0

1

C
C
C
C
C
C
C
C
C
A

(2.40)
with � 2 C. Obviously, U(� ) and V (� ) are unitary if and only if j� j = 1 (i.e. � 2 S1) and

U(� )V (� 0) = ei 2� M
N V (� 0)U(� ); 8 �; � 0 2 C:

The proof of claim (i) is postponed in Section 5.2.1 where the Hofstadter vector bun-
dles is built “by hand”. Similarly, claim (ii) is proved in Section 5.2.2. More generally,
the proof of Theorem 2.7.4 is based on a general technique developed in Chapter 4. The
unitary maps F0 and F1 are called generalized Bloch-Floquet transforms .

The uniqueness claimed in (i) of Theorem 2.7.4 means that any other bundle repre-
sentation ~F0 subordinate to an irreducible physical frame with wandering property is
unitarily equivalent to F0 and selects a vector bundle E0

0 which is isomorphic to E0. In
other words, for the Hofstadter representation there exists a unique bundle decomposi-
tion (up to equivalences) subordinate to an irreducible physical frame with wandering
property. The same holds true for the Harper representation. This form of uniqueness
for the bundle decomposition F0 (resp. F1 ) implies that the geometry of the Hofstadter
(resp. Harper) vector bundle is a �ngerprint for the physics (observables + symmetries)
of the Hofstadter (resp. Harper) regime.

In the Hofstadter case (c.f. Section 5.2.1) the structure of � : E0 ! T 2 is de�ned by
means of a system of N orthonormal sections � 0 := f � 0

0 ; : : : ; � N � 1
0 g, with � j

0 : R2 ! � �
0 (a

suitable “ambient” vector space), subjected to periodic conditions

� 0(k1 + 2 �; k 2) = � 0(k1; k2 + 2 � ) = � 0(k1; k2): (2.41)

Equations (2.41) allows � 0 to be a global frame of sections over the base manifold T 2,
hence the resulting vector bundle is trivial, i.e. E0 ' T 2 � CN . The triviality of the
vector bundle implies automatically the vanishing of all the Chern classes and related
Chern numbers (Husemoller 1994, Proposition 4.1). The triviality of the vector bundle
E0 implies also the triviality of endomorphism bundle End (E0) and in fact the sections
U0(�) and V0(�) are globally de�ned, as showed by equation (2.38).

The structure of the Harper vector bundle � : E1 ! T 2 is de�ned by a system of N
orthonormal sections � 1 := f � 0

1 ; : : : ; � N � 1
1 g, with � j

1 : R2 ! � �
1 (a suitable “ambient”

vector space), subjected to covariance conditions

� 1 (k1 + 2 �; k 2) = G(k2) � � 1 (k1; k2); � 1 (k1; k2 + 2 � ) = � 1 (k1; k2) (2.42)
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where the unitary N � N matrix G(k1; k2) is de�ned by

G(k1; k2) :=

0

B
B
B
B
B
B
B
B
B
@

0 1 0 : : : 0 0
0 0 1 : : : 0 0

0 0 0
. . .

...
...

...
...

...
. . . 1 0

0 0 0 : : : 0 1
eik 2 0 0 : : : 0 0

1

C
C
C
C
C
C
C
C
C
A

: (2.43)

Equations (2.42) show that � 1 de�nes a frame of sections on the base manifold T 2

which is globally de�ned only in the k2-direction, but which is twisted by G(�) in the
k1-direction. The resulting vector bundle E1 is non-trivial with (non-trivial) transition
functions de�ned by means of the matrix-valued function G(�) (c.f. Section 5.2.2). The
Harper vector bundle admits a curvature K Har := � i

N 1N dk1 ^ dk2, called Harper cur-
vature . It follows that the �rst Chern class of the Harper vector bundle is c1(E1 ) =

1
(2� )2 dk1 ^ dk2 which implies C1(E1 ) = 1 .

Any abstract projection p 2 Proj (A� ) de�nes a projection P0 := � 0(p) in the Hofs-
tadter representation and a projection P1 := � 1 (p) in the Harper representation. Let
� = M=N . Theorem 2.7.4 assures that P0(�) := F 0� 0(p)F 0

� 1 is an orthogonal projection in
�( End(E0)) and P1 (�) := F 1 � 1 (p)F 1

� 1 is an orthogonal projection in �( End(E1 )) . Ac-
cording to Lemma 2.7.3, P0(�) de�nes a vector subbundle of the Hofstadter vector bundle,
denoted by L 0(p) � E0, and similarly P1 (�) de�nes a vector subbundle of the Harper vec-
tor bundle, denoted by L 1 (p) � E1 . Then, to any projection in AM =N we can associate in
two ways a vector bundle over the base manifold T 2. This “two-fold way” is summarized
by the following diagram

P0
F 0 :::F � 1

0 //P0(�) Im //L 0(p)
C1 //C0(p)

p 2 Proj (A� )

� 1
&&MMM

MMM
MMM

MMM

� 0

88qqqqqqqqqqqq
B (H) �( End(E)) E ! T 2 Z

P1
F 1 :::F � 1

1

//P1 (�)
Im

//L 1 (p)
C1

//C1 (p):

(2.44)

The last arrows the diagram (2.44), denoted with C1, associate the �rst Chern number
to vector bundles over T 2. We use the short notation C] (p) := C1(L ] (p)) to denote the
�rst Chern number of the vector bundle L ] (p), with ] = 0 ; 1 .

Which kind of relation there exists between the two vector bundles L 0(p) and L 1 (p)
associated to the same p? Can such a relation imply any kind of dependence between
the related Chern numbers?

Our next goal is to provide an answer to these questions.
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2.8 From geometric duality to TKNN-equations

I n this section we present one of the main results of this thesis which address the
question stated at the end of Section 2.7.

We denote by ~� : I ! T 2 the determinant line bundle associated to the Harper vector
bundle � : E1 ! T 2, namely I is the rank 1 Hermitian vector bundle with transition
functions given by the determinant of the transition functions of E1 . One has that
C1(I ) = C1(E1 ) = 1 (c.f. Appendix C and equation (C.9)).

T HEOREM 2.8.1 (Geometric duality) . Let AM =N be the rational NCT-algebra (as in Con-
vention 2.4.3) and p 2 Proj (AM =N ).

(i) The vector bundles L 0(p) and L 1 (p) have the same rank given by the number Rk(p)
which is the dimension of p (c.f. equation (2.34)).

(ii) Let f (n;m ) : T 2 ! T 2, with n; m 2 Z, be the continuous map de�ned by

f (n;m ) (e
ik 1 ; eik 1 ) = ( eink 1 ; eimk 2 ): (2.45)

Then
f �

(N;1)L 1 (p) ' f �
(� M; 1)L 0(p) 
 I (2.46)

where f �
(n;m )L ] (p), ] = 0 ; 1 , denotes the pullback of the vector bundle L ] (p) induced

by the map f (n;m ) , and I is the determinant bundle of E1 (c.f. Appendix C).

The proof of the duality relation (2.46) is postponed to Section 5.3. Claim (i) follows
from (ii) and Proposition 5.2.2.

The geometric duality between the vector bundles L 0(p) and L 1 (p) is the core of a
geometric derivation of the TKNN-equations.

COROLLARY 2.8.2 (Generalized TKNN-equations) . Let AM =N be the rational NCT-algebra
(according to Convention 2.4.3). Any p 2 Proj (AM =N ) de�nes a TKNN-equation

N C1 (p) + M C 0(p) = Rk(p) (2.47)

which relates the Chern numbers C1 (p) and C0(p).

Proof . The derivation of equation (2.47) from the duality formula (2.46) is straightfor-
ward. Observing that isomorphic vector bundles have same characteristic classes, one
has

c1(f �
(N;1)L 1 (p)) = c1(f �

(� M; 1)L 0(p) 
 I ):

Applying formula (C.10) to the right-hand side, one has

c1(f �
(N;1)L 1 (p)) = c1(f �

(� M; 1)L 0(p)) + Rk(p) c1(I ); (2.48)

since the rank of I is 1 and the rank of f �
(� M; 1)L 0(p) coincides with the rank of L 0(p)

which is Rk (p).
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To complete the proof we need to integrate over T 2 both sides of (2.48). From the
left-hand side one obtains

C1(f �
(N;1)L 1 (p)) =

Z

T 2
c1(f �

(N;1)L 1 (p)) I=
Z

T 2
f �

(N;1)c1(L 1 (p)) II= NC1 (p)

where equality I follows from the functoriality of the Chern class (i.e. c1(f � E) = f � c1(E))
and equality II follows from Lemma C.0.2. The same computation for the right-hand
side shows that C1(f �

(� M; 1)L 1 (p)) = � MC 0(p). Finally, C1(I ) = C1(E1 ) = 1 . �

If p = 1, then L 0(1) = E0, L 1 (1) = E1 , Rk(p) = N and equation (2.47) is compatible
with the results obtained in Theorem 2.7.4 , namely C0(1) := C1(E0) = 0 and C1 (1) :=
C1(E1 ) = 1 .

Equation (2.47) de�nes a geometric generalized version of the TKNN-system (2.35).
With the notation introduced in Section 2.5, let P j 2 Proj (A1

M =N
) the gap projection

corresponding to the j -th gap Gj (0 6 j 6 N0) in the spectrum of the universal Hofstadter
operator hM =N 2 A1

M =N
. With the identi�cation t(Gj ) := C1 (P j ) and s(Gj ) := C0(P j ) and

using the labeling N (Gj ) := Rk(P j ) de�ned by (2.34), then equations (2.47) reduce
exactly to the system of Diophantine equations (2.35) proposed by Thouless et al. in
(Thouless et al. 1982).

2.9 A “non-commutative look” to TKNN-equations

T he geometric generalization of the TKNN-equations (2.47) has been derived under
the assumption of rationality for the deformation parameter � = M=N . A natural

question is whether it is possible to give any meaning to (2.47) also in the irrational case
� 2 RnQ. To provide an answer we need to introduce new structures on the NCT-algebra.

Canonical derivations and universal Chern number

In view of Remark 2.3.1, the map � z(u) = z1u, � z(v) = z2v extends to an automorphism
for any z = ( z1; z2) 2 T 2. The map T 2 3 z 7! � z 2 Aut (A� ) de�nes a strongly continuous
action of the commutative group T 2 on A� . Let z(k) = ( eik 1 ; eik 2 ) 2 T 2. For any a in the
dense set L � one de�nes @��� j (a) 2 L � , j = 1 ; 2, as

@��� j (a) := 2 �
d

dkj
� z(k) (a)

�
�
�
�
k=0

: (2.49)

It follows that @��� 1 and @��� 2: (i) are C-linear A� -valued maps; (ii) satisfy the Leibniz's
law @��� j (ab) = @��� j (a) b + a @��� j (b); (iii) are symmetric , @��� j (a� ) = @��� j (a) � ; (iv) commute,
@��� 1 � @��� 2= @��� 2 � @��� 1. We refer to @��� 1 and @��� 2 as canonical derivations . Let (u; v) be a frame
for A� . A simple computation shows that

@��� 1 (unvm ) := i2�n unvm ; @��� 2 (unvm ) := i2�m unvm (2.50)

which proves that @��� 1 and @��� 2 are unbounded. The maximal invariant domain of de�ni-
tion for @��� 1 and @��� 2 coincides with the smooth algebra A1

�
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The universal Chern number is the map

C1 : Proj (A1
� ) ! Z

de�ned by

C1(p) :=
1

i2�

R
��� (p[@��� 1 (p); @��� 2 (p)]) (2.51)

where [@��� 1 (p); @��� 2 (p)] := @��� 1 (p) @��� 2 (p)� @��� 2 (p) @��� 1 (p). Equation (2.51) is called Connes
formula . The integrality of C1 is proved in (Connes 1980), but more details can be found
in (Connes 1994, Chapter III).

The relevance of the map C1 for our purposes is related to the following result (c.f.
Proposition 5.2.2):

P ROPOSITION 2.9.1. For any p 2 Proj (A1
M =N

) one has C0(p) = C1(p).

Constraint for the TKNN-equations of the Hofstadter operator

The �rst interesting consequence of Proposition 2.9.1 concerns the bound (2.36) which
completes the TKNN-system proposed in (Thouless et al. 1982). Let P j 2 Proj (A1

M =N
)

the gap projection corresponding to the j -th gap Gj (0 6 j 6 N0) in the spectrum of
the universal Hofstadter operator hM =N 2 A1

M =N
. With the identi�cation s(Gj ) = C0(P j ),

Proposition 2.9.1 leads to rewrite (2.36) as jC1(P j )j < N=2. The latter bound has been
proved in (Choi et al. 1990, Corollary 3.4). Then, Proposition 2.9.1 provides a purely
geometric justi�cation for the bound (2.36) and, together with Corollary 2.8.2, completes
our purpose to �nd a rigorous geometric derivation of the result claimed in (Thouless
et al. 1982). However, the bound jC1(P j )j < N=2 holds true only for the spectral projec-
tions of the universal Hofstadter operator. In principle, the choice of a different operator
leads to a different bound and each bound depends on the form of the related operator.

Generalization to irrational values of the deformation parameter

By means of the equality C0 = C1, the de�nition Rk (p) := N
R
��� (p) and � = M=N , one can

rewrite the TKNN-equation (2.47) in the following form

C1 (p) =
R
��� (p) � � C1(p): (2.52)

Formally, equation (2.52) contains only quantity de�ned in terms of the abstract algebra
A� , hence it has a perfect meaning for any � 2 R.

The above formula has an interesting application. Let d� 2 A1
� be a self-adjoint

element (not necessarily the universal Hofstadter operator h� ) and P G the gap projection
associated to the gap G � R n � (d� ) and de�ned via Riesz formula according to Lemma
2.4.2. If � = M=N , then the integers C1 (P G) and C0(P G) de�nes two distinct numerical
labels for the gap G. An interesting question is whether these labels, initially de�ned
for rational values of � , are stable for small perturbations of the deformation parameter
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� . A good criterion of stability is given in the following terms. Consider a family of self-
adjoint elements d� := f (u; v) with (u; v) a frame for A� , f 2 C1 (T 2) a �xed real smooth
functions and � 2 I , where I is an interval of R. The functional expression of d� is �xed
and it depends on � only through the fundamental commutation relation between the
generators of A� . Moreover d� 2 A1

� for any � 2 I . Suppose that � G 2 R n � (d� ) for
any � 2 I and denote by P �

G 2 Proj (A1
� ) the related gap projection corresponding to

(�1 ; � G]. The functions � 7! C1(P �
G) is constant in I (Boca 2001, Proposition 11.11).

Moreover, as a consequence of the description of the group K 0(A� ) given in (Pimsner and
Voiculescu 1980), one deduces that

R
��� (P �

G) = m(P �
G) + � C1(P �

G) (2.53)

(Boca 2001, p. 145), where the integer m(�) 2 Z is uniquely determined by the condition
0 6

R
��� (�) 6 1. Since C1(P �

G) is constant in I , one infers that also m(P �
G) is constant under

small perturbations of � . Since C0 = C1 in view of Proposition 2.9.1 and C1 =
R
��� � � C1 = m

(comparison between (2.52) and (2.53)), it follows that the integers C0 and C1 are “stable
labels” for “stable gaps”. In other words equation (2.52) is meaningful also for irrational
values of the deformation parameter provided that there exists a stable “open” gap under
small perturbation of � .

Cohomological interpretation

A �nal remark concerns the link between the “non-commutative version” of the TKNN-
equation (2.52) and the geometry of the NCT-algebra. Indeed equation (2.52) is re-
lated to the periodic cyclic cohomology of the algebra A1

� which is the Z2-graded group
P H � (A1

� ) := P H ev(A1
� ) � P H od(A1

� ) with P H ] (A1
� ) ' C2, ] = ev; od (Connes 1994)

(c.f. Appendix B.4 for the basic de�nitions). Since the two independent generators of
P H ev(A1

� ) are exactly the noncommutative trace
R
��� and the universal Chern number

C1, it follows that the integer valued function C1 is an element of the even part of the
periodic cyclic cohomology group of A1

� .

2.10 Prospectives and open problems

A s usual, the solution of a problem opens the way to new speculations and stimulating
challenges. This is true also for this thesis. During our investigation, we collected

interesting problems closely related with the arguments of this thesis, that we have
not had the time to examine. At the same time, we realized that some of our results
could have relevant generalizations by means of interactions with other mathematical
�elds. We sketch below a short list containing the main open problems and the more
stimulating prospectives of further generalizations.

� Proof of the Kubo-Chern equivalence for the Harper and Hofstadter regimes (c.f.
Section 1.3), supposedly by means of SAPT techniques.
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� Derivation of the effective model for the Bloch-Landau Hamiltonian HBL (2.1) with
a perturbed magnetic �eld B + �B in the limit �B ! 0. This problem is related with
the non-triviality of the Bloch vector bundle in view of the absence of time-reversal
symmetry.

� Derivation of the effective models for the Harper and Hofstadter regimes taking
into account also of the effects due to disorder (random or aperiodic potential). The
�rst step should be the generalization of SAPT to the cases of aperiodic or random
potentials using non-commutative tools à la Bellissard (Bellissard et al. 1994).

� Generalization of the TKNN-equations to higher dimensional Harper representa-
tions (work in progress with Giovanni Landi) and possible applications to the cou-
pling of Landau bands in presence of a periodic vector potential (c.f. Section 3.4.8)
and to the study of hexagonal lattices (graphene) (Bellissard et al. 1991).





Chapter 3

Derivation of Harper and Hofstadter models

Pour bien savoir les choses, il en faut savoir le détail; et
comme il est presque in�ni, nos connaissances sont
toujours super�cielles et imparfaites.

(To understand matters rightly we should understand
their details; and as that knowledge is almost in�nite, our
knowledge is always super�cial and imperfect. )

François de La Rochefoucauld,
Ré�exions ou sentences et maximes morales, 1665-1678

Abstract

Some relevant transport properties of solids do not depend only on the spectrum of
the electronic Hamiltonian, but on �ner properties preserved only by unitary equiv-
alence, the most striking example being the conductance. When interested in such
properties, and aiming to a simpler model, it is mandatory to check that the simpler
effective Hamiltonian is approximately unitarily equivalent to the original one, in the
appropriate asymptotic regime. In this chapter, we prove that the Hamiltonian for
the QHE is approximately unitarily equivalent to a Hofstadter-like (resp. Harper-like)
Hamiltonian, in the limit of weak (resp. strong) magnetic �eld. Section 3.1 provides
a brief compendium of the SAPT “philosophy” while Section 3.2 aims to �x the math-
ematical description of the model. Section 3.3 is devoted to the adiabatic theory in the
Hofstadter regime while the Harper regime is expounded in Section 3.4. Finally, in
Section 3.4.8 we show that an additional periodic magnetic potential induces in the
Harper regime a non-trivial coupling of the Landau bands.

3.1 An insight to space-adiabatic perturbation theory

T he results obtained in this chapter are based on the observation that both the Hofs-
tadter and the Harper regime are space-adiabatic limits, and can be treated in the

framework of space-adiabatic perturbation theory , (SAPT) (Panati et al. 2003b, Panati
et al. 2003a), see also (Teufel 2003). As for the Hofstadter regime, the proof follows ideas
similar to the ones in (Panati et al. 2003a). Our generalization allows however to con-
sider a constant magnetic �eld (while in (Panati et al. 2003a) the vector potential is as-
sumed in C1

b (Rd)) and to include a periodic vector potential. Moreover the proof extends
the one in (Panati et al. 2003a), in view of the use of the special symbol classes de�ned
in Section 3.3.4. On the contrary, from the discussion of the Harper regime } B ! 0
some new mathematical problems emerge. Then, although the “philosophy” of the proof
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of Theorem 3.4.8 is of SAPT-type, the technical part is new as it will be explained in
Section 3.4. Notice that the regime of weak magnetic �eld can also be conveniently ap-
proached by using the magnetic Weyl quantization (M �antoiu and Purice 2004, M �antoiu
et al. 2005, Iftimie et al. 2007, Iftimie et al. 2009), a viewpoint which is investigated in
(De Nittis and Lein 2010).

For the sake of completeness, we summarize some salient aspects of the SAPT. We
refer to (Teufel 2003) for a complete exposition. Let H be the Hamiltonian of a generic
physical system which acts on the total (or physical) Hilbert space H phy . For the SAPT
to be applicable, three important ingredients needs:

(i) a distinction between fast and slow degrees of freedom which is mathematically
expressed by a unitary decomposition of the physical space H phy into a product
spaceH s 
 H f (or, more generally, a direct integral), the �rst factor being the space
of slow degrees of freedom and the second the space of fast degrees of freedom;
H s

�= L 2(M ) for suitable measure space M is also required;

(ii) a dimensionless adiabatic parameter " � 1 that quanti�es the separation of scales
between the fast and slow degrees of freedom and which measures how far are the
slow degrees of freedom to be “classical” in terms of some process of quantization;

(ii) a relevant part of the spectrum for the fast dynamics which remains separated
from the rest of the spectrum under the perturbation caused by the slow degrees
of freedom.

3.2 Description of the model

T he Hamiltonian (2.1) describes the dynamics of particle with mass m and charge q
which interacts with the ionic structure of a two dimensional crystal and with an

external orthogonal uniform magnetic �eld. A more general model is provided by the
operator

HBL :=
1

2m

h
� i } r r �

q
c

A � (r ) �
q
c

A (r )
i 2

+ V� (r ) + q � ( r ) (3.1)

still called Bloch-Landau Hamiltonian and, with an abuse of notation, still denoted
with the same symbol used in (2.1). The vector-valued function A := ( A1; A2) is a vec-
tor potential corresponding to an (orthogonal) external magnetic �eld B = r r ^ A =
(@1A2 � @2A1) e? , � is a scalar potential corresponding to a (parallel) external electric
�eld E = �r r � and A � and V� are internal periodic potentials which describe the elec-
tromagnetic interaction with the ionic cores of the crystal lattice. The external vector
potential is assumed to have the following structure

A (r ) = A0 (r ) + AB (r ) ; (3.2)

where A0 is a bounded function and AB describes a uniform orthogonal magnetic �eld of
strenght B , i.e. in the symmetric gauge

AB (r ) =
B
2

e? ^ r =
�

�
B
2

r2;
B
2

r1

�
; r r ^ AB = B e? ; r r � AB = 0 : (3.3)
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The evolution of the system is prescribed by the Schrödinger equation

i }
d
ds

 (r; s) = HBL  (r; s); (3.4)

where s corresponds to a microscopic time-scale.

Mathematical description of the crystal structure

The periodicity of the crystal is described by a two dimensional lattice � � R2 (i.e. a
discrete subgroup of maximal dimension of the addictive group R2), thus � ' Z2. Let
f a; bg � R2 be two generators of � , i.e.

� = f  2 R2 :  = n1a + n2b; n1; n2 2 Zg:

The fundamental or Voronoi cell of � is M � := f r 2 R2 j r = l1 a + l2 b; l1; l2 2 [0; 1]g and
its area is given by 
 � = ja ^ bj. We �x the orientation of the lattice in such a way that

 � = ( a1b2 � a2b1) > 0. We say that a function f � : R2 ! C is � -periodic if f � (r +  ) = f � (r )
for all  2 � and all r 2 R2. The electrostatic and magnetostatic crystal potentials V�

and A � are assumed to be � -periodic according to the previous de�nition.
An important notion is that of dual lattice � � which is the set of the vectors  � 2 R2

such that  � �  2 2� Z for any  2 � . Let f a� ; b� g � R2 be de�ned by the relations
a� � a = b� � b = 1 and a� � b = b� � a = 0 ; these vectors are the generators of the lattice � � ,
i.e.

� � = f  � 2 R2 :  � = m1 2�a � + m2 2�b � ; m1; m2 2 Zg:

The Brillouin zone

M � � := f k 2 R2 j k = k1 a� + k2 b� ; k1; k2 2 [0; 2� ]g

is the fundamental cell of the dual lattice � � . The explicit expressions for the dual gen-
erators f a� ; b� g in terms of the basis f a; bg is

a� =
e? ^ b
ja ^ bj

=
1


 �
(b2; � b1); b� = �

e? ^ a
ja ^ bj

=
1


 �
(� a2; a1): (3.5)

It follows from (3.5) that the surface of the Brillouin zone is 
 � � = (2 � )2ja� ^ b� j = (2� )2=
 � .
Given a � -periodic function f � , we denote its Fourier decomposition as

f � (r ) =
X

 � 2 � �

f ( � ) ei � �r =
X

m1 ;m 22 Z

f m1 ;m 2 ei 2� (m1 a� + m2 b� )�r : (3.6)

A Z2-periodic function f : R2 ! C is a function periodic with respect to an orthonormal
lattice, namely such that f (x1 + 1 ; x2) = f (x1; x2 + 1) = f (x1; x2) for any x1; x2 2 R. If one
changes the variables as x1 := a� � r and x2 := b� � r one has that f � (r ) := f (a� � r; b� � r ) is
� -periodic in r . Every � -periodic function can be obtained in this way.
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Assumptions on the regularity of the potentials and self-adjointness

We denote by Cn
b (R2; R) the space of real-valued n-times differentiable functions (smooth

functions if n = 1 ) with continuous and bounded derivatives up to order n. Concerning
the internal potentials A � and V� we need to assume that:

A SSUMPTION 3.2.1 (Internal potentials, strong form) . The � -periodic potential V� and
the two components of the � -periodic vector potential A � are functions of class C1

b (R2; R).

Sometime we can relax the above assumption and we can consider the weaker ver-
sion:

A SSUMPTION 3.2.2 (Internal potentials, weak form) . The two components of the � -
periodic vector potential A � are in C1

b(R2; R). The � -periodic potential V� veri�es the
condition

R
M �

jV� (r )j2 d2r < + 1 .

Assumption 3.2.2 implies that V� is uniformly locally L 2 and this implies also that V�

is in�nitesimally bounded with respect to � � r (Reed and Simon 1978, Theorem XIII.96).
Concerning the external potentials A and � , we need to assume that:

A SSUMPTION 3.2.3 (External potentials) . The scalar potential � is of class C1
b (R2; R).

The vector potential A consists of a linear term AB of the form (3.3) plus a bounded term
A0 which is of class C1

b (R2; R).

When the external potentials A and � vanish, the Bloch-Landau Hamiltonian (3.1)
reduces to the periodic Hamiltonian (or Bloch Hamiltonian )

Hper :=
1

2m

h
� i } r r �

q
c

A � (r )
i 2

+ V� (r ): (3.7)

The domains of self-adjointness of HBL and Hper are described in the following proposi-
tion. Its proof, together with some basic notion about the Sobolev spaceH 2(R2) and the
magnetic-Sobolev spaceH 2

M (R2), is postponed to Section A.1.1.

P ROPOSITION 3.2.4. Let Assumptions 3.2.2 and 3.2.3 hold true. Then both HBL and
Hper are essentially self-adjoint operators on L 2(R2; d2r ) with common domain of essential
self-adjointness the space of smooth functions with compact support C1

c (R2; C). Moreover
the domain of self-adjointness of Hper is H 2(R2) while the domain of self-adjointness of
HBL is H 2

M (R2).

3.3 Space-adiabatic theory for the Hofstadter regime

3.3.1 Adiabatic parameter for weak magnetic �elds

T he SAPT for a Bloch electron developed in (Panati et al. 2003a) is based on the
existence of a separation between the microscopic space scale �xed by the lattice

spacing ` :=
p


 � , and a macroscopic space scale�xed by the scale of variation of the
“slowly varying” external potentials. The existence of such a separation of scales is
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expressed by introducing a dimensionless parameter " � 1 (adiabatic parameter ) to
control the scale of variation of the vector potential and the scalar potential � appearing
in (3.1), namely by setting A = A("r ) and � = �( "r ). In particular the external magnetic
and electric �elds are weak compared to the �elds generated by the ionic cores.

It is useful to rewrite the ( " -dependent) Hamiltonian (3.1) in a dimensionless form.
The microscopic unit of length being `, we introduce the dimensionless position vector
x := r=̀ and the dimensionless gradient r x = `r r . Moreover, since the vector poten-
tial has the dimension of a length times a magnetic �eld, then A("x ) := "=̀B A("`x ) is
a dimensionless function, with B a dimensional constant which �xes the order of mag-
nitude of the magnetic �eld due to A. Similarly for A � (with " = 1 ). Factoring out the
dimensional constants one �nds

HBL :=
1
E0

HBL =
1
2

2

6
6
6
4

� i r x �
q
 � B �

c}| {z }
=: } � 1

�

A � (x) � �q
jqj
 � B

c}| {z }
= } � 1

B

1
"

A ("x )

3

7
7
7
5

2

+ V� (x) + � ("x ) ; (3.8)

where E0 := } 2=m
 � is the natural unit of the energy �xed by the problem, V� (x) :=
1=E0 V� (`x ) and � ("x ) := q=E0 �( "`x ) are both dimensionless quantities. The constant } �

will play no particular rôle in the rest of this paper, so it is reabsorbed into the de�nition
of the dimensionless vector potential A � , i.e. formally } � = 1 .

Comparing the dimensional Hamiltonian (3.8) with the original Hamiltonian (3.1),
or observing that the strenght of the magnetic �eld goes to zero (at least linearly) with
" , it is physically reasonable to estimate "} B / 1. This is rigorously true in the case of a
uniform external magnetic �eld.

The external force due to A and � are of order of " and therefore have to act over a
time of order " � 1 to produce a �nite change, which de�nes the macroscopic time-scale.
The macroscopic (slow) dimensionless time-scale is �xed by t := " E0

} s where s is the
dimensional microscopic (fast) time-scale. With this change of scale the Schrödinger
equation (3.4) reads

i"
d
dt

 = HBL  (3.9)

with HBL given by equation (3.8).

R EMARK 3.3.1. Observe that from the de�nition of the dimensionless periodic potential
A � and V� it follows that they are periodic with respect to the transform x 7! x +  =̀ .
This means that A � and V� are periodic with respect to a “normalized” lattice whose
fundamental cell has surface 1. ��

3.3.2 Separation of scales: the Bloch-Floquet transform

T o make explicit the presence of the linear term of the external vector potential, we
can rewrite the (3.8) as follows

HBL =
1
2

�
� i r � A � (x) � A0 ("x ) � �q

1
2

e? ^ "x
� 2

+ V� (x) + � ("x ) ; (3.10)
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where the adiabatic parameter " expresses the separation between the macroscopic
length-scale, de�ned by the external potentials, and the microscopic length-scale, de-
�ned by the internal � -periodic potentials. The separation between slow and fast degrees
of freedom can be expressed decomposing the physical Hilbert space H phy = L 2(R2; d2x)
into a product of two Hilbert spaces or, more generally, into a direct integral. To this
end, we use the Bloch-Floquet transform (Kuchment 1993). As in (Panati et al. 2003a)
we de�ne the (modi�ed) Bloch-Floquet transform Z of a function  2 S(R2) to be

(Z  )(k; � ) :=
X

 2 �

e� i (� +  )�k  (� +  ); (k; � ) 2 R2 � R2: (3.11)

Directly from the de�nition one can check the following periodicity properties:

(Z  )(k; � +  ) = ( Z  )(k; � ) 8  2 � ; (3.12)

and
(Z  )(k +  � ; � ) = e� i� � �

(Z  )(k; � ) 8  � 2 � � : (3.13)

Equation (3.12) shows that for any �xed k 2 R2, (Z  )(k; �) is a � -periodic function and
can be seen as an element of H f := L 2(V ; d2� ) with V := R2=� a two-dimensional slant
torus ( Voronoi torus ). The torus V coincides with the the fundamental cell M � endowed
with the identi�cation of the opposite edges and d2� denotes the (normalized) measure
induced on V by the identi�cation with M � . The Hilbert space H f is the space of fast
degrees of freedom, corresponding to the microscopic scale. Equation (3.13) involves a
unitary representation of the group of the (dual) lattice translations � � on the Hilbert
space H f , namely

� � 3  � ��! � ( � ) 2 U (H f)

where � ( � ) is the multiplication with e i� � �
. It will be convenient to introduce the Hilbert

space
H � :=

�
 2 L 2

loc

�
R2; d2k; H f

�
:  (k �  � ; �) = � ( � )  (k; �)

	
(3.14)

equipped with the inner product

h ; ' i H � :=
Z

M � �

( (k); ' (k))H f d2k

where d2k := d2k
(2� )2 is the normalized measure. There is a natural isomorphism from

H � to L 2
�
M � � ; d2k; H f

�
given by restriction from R2 to M � � , and with inverse given by

� -covariant continuation, as suggested by (3.13). The Bloch-Floquet transform (3.11)
extends to a unitary map

Z : H phy �! H � ' L 2 �
M � � ; d2k; H f

�
' L 2(M � � ; d2k) 
 H f : (3.15)

The Hilbert space L 2(M � � ; d2k) can be seen as the space of slow degrees of freedomand
in this sense the transform Z produces a decomposition of the physical Hilbert space
according to the existence of fast and slow degrees of freedom.

We need to discuss how differential and multiplication operators behave under Z .
Let Q = ( Q1; Q2) be the multiplication by x = ( x1; x2) de�ned on its maximal domain
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and P = ( P1; P2) = � i r x with domain the Sobolev space H 1(R2), then from (3.11) it
follows:

Z P Z � 1 = k 
 1H f + 1L 2 (M � � ) 
 � i r � ; Z Q Z � 1 = i r �
k (3.16)

where � i r � acts on the domain H 1(V ) while the domain of the differential operator i r �
k

is the space H � \ H 1
loc

�
R2; H f

�
, namely it consists of vector-valued distributions which are

in H 1 (M � � ; H f) and satisfy the � -dependent boundary condition associated with (3.13).
The central feature of the Bloch-Floquet transform is, however, that multiplication oper-
ators corresponding to � -periodic functions like A � or V� are mapped into multiplication
operators corresponding to the same function, i.e.

Z A � (x) Z � 1 = 1L 2 (M � � ) 
 A � (� ) Z V� (x) Z � 1 = 1L 2 (M � � ) 
 V� (� ): (3.17)

Let H Z := Z HBL Z � 1 be the Bloch-Floquet transform of the Bloch-Landau Hamilto-
nian (3.10). According to relations (3.16) and (3.17) one obtains from (3.10) that

H Z =
1
2

�
� i r � + k � A � (� ) � A0 (i" r �

k ) � �q
1
2

e? ^ (i" r �
k )

� 2

+ V� (� ) + � (i" r �
k ) : (3.18)

The domain of self-adjointness of H Z is Z H 2
M (R2) � H � , i.e. the image under Z of the

second magnetic-Sobolev space.

3.3.3 The periodic Hamiltonian and the gap condition

W hen " = 0 the Bloch-Landau Hamiltonian (3.10) reduces to the periodic Hamilto-
nian

Hper =
1
2

[� i r x � A � (x)]2 + V� (x) : (3.19)

According to (3.18) the Bloch-Floquet transform maps Hper into a �bered operator. In
other words, denoting H Z

per := Z Hper Z � 1, one has H Z
per =

R�
M � �

Hper(k) d2k where, for
each k 2 M � �

Hper(k) =
1
2

[� i r � + k � A � (� )]2 + V� (� ): (3.20)

The operator Hper(k) acts on H f = L 2(V ; d2� ) with self-adjointness domain D := H 2(V )
(the second Sobolev space) independent of k 2 M � � . Moreover it is easy to check that the
Bloch-Floquet transform induces the following property of periodicity, called � -equivariance :

Hper([k] �  � ) = � ( � ) Hper([k]) � ( � ) � 1 2 � � 8 � 2 � � : (3.21)

where the notation k := [ k] �  � denotes the a.e.-unique decomposition of k 2 R2 as a
sum of [k] 2 M � � and  � 2 � � .

R EMARK 3.3.2 (Analiticity) . For any k 2 R2, let I (k) be the unitary operator acting on
H f as the multiplication by e � i� �k . Obviously I (k) = I ([k] �  � ) = I ([k])� ( � ) � 1. A simple
computation shows that

Hper(k) = I (k) Hper(0) I (k) � 1 (3.22)
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where the equality holds on the �xed domain of self-adjointness D = H 2(V ). The � -
equivariance property (3.21) follows immediately from (3.22). Moreover from (3.22) is
evident that Hper(k) de�nes an analytic family (of type A) in the sense of Kato (Reed and
Simon 1978, Chapter XII). Finally a short computation shows

(@k j Hper)(k) = � iI (k) [� j ; Hper(0)] I (k) � 1 = I (k) ( � i r � � A � (� )) j I (k) � 1

and (@2
k j

Hper)(k) = 1D , (@2
k1 ;k2

Hper)(k) = 0 on the domain D. ��

The spectrum of Hper , which coincides with the spectrum of H Z
per , is given by the

union of all the spectra of Hper(k). The following classical results hold true:

P ROPOSITION 3.3.3. Let V� and A � satisfy Assumption 3.2.2, then:

(i) for any k 2 R2 the operator Hper(k) de�ned by (3.19) is self-adjoint with domain
D = H 2(V ) and is bounded below;

(ii) Hper(k) has compact resolvent and its spectrum is purely discrete with eigenvalues
En (k) ! + 1 as n ! + 1 ;

(iii) let the eigenvalues be arranged in increasing order and repeated according to their
multiplicity for any k 2 M � � , i.e. E1(k) 6 E2(k) 6 E3(k) 6 : : : then En (k) is a
continuous � � -periodic function of k.

The above result differs from the standard theory of periodic Schrödinger operators
just for the presence of a periodic vector potential A � . Since we were no able to �nd a
suitable reference in the literature, we sketch its proof in Appendix A.1.1.

We call En (�) the n-th Bloch band or energy band. The corresponding normalized
eigenstates f ' n (k)gn2 N � D are called Bloch functions and form, for any k 2 M � � , an
orthonormal basis of H f . Notice that, with this choice of the labelling, En (�) and ' n (�) are
continuous in k, but generally they are not smooth functions if eigenvalue crossings are
present.

We say that a family of Bloch bands fEn (�)gn2I , with I := [ I + ; I � ] \ N, is isolated if

inf
k2 M � �

dist

0

@
[

n2I

fEn (k)g;
[

j =2I

fE j (k)g

1

A = Cg > 0: (3.23)

The existence of an isolated part of the spectrum is a necessary ingredient for an adia-
batic theory. We introduce the following:

A SSUMPTION 3.3.4 (Constant gap condition) . The spectrum of Hper admits a family of
Bloch bands fEn (�)gn2I which is isolated in the sense of (3.23).

Let PI (k) be the spectral projector of Hper(k) corresponding to the family of eigenval-
ues fEn (k)gn2I , then PZ

I :=
R�

M � �
PI (k) d2k is the projector on the isolated family of Bloch

bands labeled by I . In terms of Bloch functions (using the Dirac notation), one has that
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PI (�) =
P

n2I j' n (�)ih' n (�)j. However, in general, ' n (�) are not smooth functions of k at
eigenvalue crossing, while PI (�) is a smooth function of k because of the gap condition.
Moreover, from the periodicity of Hper(�), one argues PI ([k] �  � ) = � ( � ) PI ([k]) � ( � ) � 1.
In general the smoothness of PI (�) is not enough to assure the existence of family of or-
thonormal basis for the subspaces Im PI (�) which varies smoothly (or only continuously)
with respect to k 2 M � � . Then we need the following assumption.

A SSUMPTION 3.3.5 (Continuous frame) . Let fEn (�)gn2I be a family of Bloch bands ( jIj =
m > 1). We assume that there exists an orthonormal basis f  n (�)gm

j =1 of Im PI (�) whose
elements are smooth and (left) � -covariant with respect to k, i.e.  j (� �  � ) = � ( � ) j (�) for
all j = 1 ; : : : ; m and  � 2 � � .

Note that it is not required that  j (k) is an eigenfunction of Hper(k). However, in the
special but important case in which the family of bands consist of a single isolated m-fold
degenerate eigenvalue, i.e. En (k) = E� (k) for every n = 1 ; : : : ; m, then the Assumption
3.3.5 is equivalent to the existence of an orthonormal basis consisting of smooth and
� -covariant Bloch functions.

R EMARK 3.3.6 (Time-reversal symmetry breaking) . As far as low dimensional models
are concerned (d � 3), Theorem 1 in (Panati 2007) assures that Assumption 3.3.5 is true
whenever the Hamiltonian Hper is invariant with respect to the time-reversal symmetry ,
which is implemented in the Schrödinger representation by the complex conjugation op-
erator. However, the term A � 6= 0 in Hper generically breaks the time reversal symmetry.
Therefore, to consider also the effects due to a periodic vector potential, we need to as-
sume the existence of a smooth family of frames. Anyway is opinion of the authors that
the result in (Panati 2007) can be extended to the case of a periodic vector potential, at
least assuming that A � is small in a suitable sense. ��

Let k0 be a �xed point in M � � and de�ne the projection � r := PI (k0). If the Assump-
tion 3.3.4 holds true then the dimension of � r agrees with the dimension of PI (k) for all
k 2 R2. Let f � ngm

j =1 be an orthonormal basis for Im � r and de�ne a unitary map

u0(k) := eu0(k) + u?
0 (k); with eu0(k) :=

X

1� j � `

j� j ih j (k)j; (3.24)

which maps Im PI (k) in Im � r . The de�nition of this unitary is not unique because
the freedom in the choice of the frame and of the orthogonal complement u?

0 (k). From
the de�nition and the � -covariance of  j (�) one has that u0(k) PI (k) u0(k) � 1 = � r and
u0([k] �  � ) = u0([k]) � ( � ) � 1 (right � -covariance).

3.3.4 � -equivariant and special � -equivariant symbol classes

Proposition 3.3.3 shows that for any k 2 R2, the operator Hper(k) de�nes an un-
bounded self-adjoint operator on the Hilbert space H f with dense domain D :=

H 2(V ). However the domain D can be considered itself as a Hilbert space with respect
to the Sobolev norm k � kD := k(1H f � � � ) � kH f and so Hper(k) can be seen as a bounded
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linear operator from D to H f , i.e. as an element of the Banach space B (D; H f). The
map R2 3 k 7! Hper(k) 2 B (D; H f) is a special example of a operator-valued symbol .
For a summary about the theory of the Weyl quantization of vector-valued symbols, we
refer to Appendices A and B in (Teufel 2003). In what follows we will need the following
de�nition.

D EFINITION 3.3.7 (Hörmander symbol classes) . A symbol is any map F from the (cotan-
gent) space R2 � R2 to the Banach space B (D; H f), i.e. R2 � R2 3 (k; � ) 7! F (k; � ) 2
B (D; H f). A function w : R2 � R2 ! [0; + 1 ) is said to be an order function if there exists
constants C0 > 0 and N0 > 0 such that

w(k; � ) 6 C0
�
1 + jk � k0j2 + j� � � 0j2

� N 0
2 w(k0; � 0) (3.25)

for every (k; � ); (k0; � 0) 2 R2 � R2. A symbol F 2 C1 (R2 � R2; B (D; H f)) is an element of
the (Hörmander) symbol class Sw(B (D; H f)) with order function w, if for every �; � 2 N2

there exists a constant C�;� > 0 such that k(@�
k @�

� F )(k; � )kB (D;H f ) 6 C�;� w(k; � ) for every
(k; � ) 2 R2 � R2.

According to the previous de�nition, the vector-valued map Hper(�) de�nes a Hörman-
der symbol constant in the � -variables and with order function v(k; � ) := 1 + jkj2 (see the
proof of Proposition 3.3.12 below). However, as showed by equation (3.21), the symbol
Hper(�) satis�es an extra condition of periodicity.

D EFINITION 3.3.8 (� -equivariant symbols) . Let � � be a two dimensional lattice (the dual
lattice de�ned in Section 3.2 for our aims) and � : � � ! U (H f) the unitary representation
de�ned in Section 3.3.2. Denote by e� := � jD the bounded-operator 1 representation of � �

in D. A symbol F 2 Sw(B (D; H f)) is said to be � -equivariant if

F (k �  � ; � ) = � ( � ) F (k; � ) e� ( � ) � 1 8  � 2 � � ; k 2 R2:

The space of � -equivariant symbols is denoted as Sw
� (B (D; H f)) .

For the purposes of this work, it is convenient to focus on special classes of symbols.
By considering the kinetic momentum function R2 � R2 3 (k; � ) �7�! � (k; � ) := k � A(� ) 2
R2; with A ful�lling Assumption (B), one de�nes the minimal coupling map by

(k; � )
| �7�! | � (k; � ) := ( � (k; � ); � ) 2 R2 � R2: (3.26)

D EFINITION 3.3.9 (Special � -equivariant symbols) . Let w be an order function, in the
sense of (3.25). We de�ne

Sw
� ;� (B (D; H f)) := f eF = F � | � : F 2 Sw

� (B (D; H f))g:

1Clearly, � ( � ) acts as an invertible bounded operator on the space D, but it is no longer unitary with
respect to the Sobolev-norm de�ned on D.
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We refer to Sw
� ;� (B (D; H f)) as the class of special � -equivariant symbols . The following

result shows that special symbols can be considered as genuine � -equivariant symbols
with respect to a modi�ed order function. The key ingredient is the linear growth of the
kinetic momentum.

L EMMA 3.3.10. With the above notations Sw
� ;� (B (D; H f)) � Sw0

� (B (D; H f)) where w0 :=
w � | � .

Proof . If F 2 Sw
� (B (D; H f)) then also F � | � is � -equivariant, indeed � (k �  � ; � ) =

� (k; � )�  � and (F � | � )(k�  � ; � ) = � ( � ) (F � | � )(k; � ) e� ( � ) � 1. Since | � is a smooth function,
then also the composition F � | � is a smooth function. Observing that (F � | � )(k; � ) =
F (k � A(� ); � ) it follows that

(@k j (F � | � ))( k; � ) = (( @k j F ) � | � )(k; � )

(@� j (F � | � ))( k; � ) = (( @� j F ) � | � )(k; � ) +
2X

i =1

(@� j � i )(k; � ) (( @k i F ) � | � )(k; � )

where @� j � i are bounded functions in view of Assumption 3.2.3. From the �rst equation
it follows that

k@k j (F � | � )(k; � )kB (D;H f ) 6 Cj; 0 (w � | � )(k; � ) j = 1 ; 2

for suitable positive constants Cj; 0. Similarly the second equation implies

k@� j (F � | � )(k; � )kB (D;H f ) 6 [C0;j + K (C1;0 + C2;0)](w � | � )(k; � ):

where K > 0 is a bound for the functions @� j � i . By an inductive argument on the number
of the derivatives one can proof that the derivatives of F � | � are bounded by the function
w0 := w � | � . To complete the proof we need to show that w0 is an order function according
to De�nition 3.3.7. This follows by a simple computation using the fact that � has a
linear growth in k and � . �

In view of Lemma 3.3.10, all the results of Appendix B of (Teufel 2003) hold true for
symbols in Sw

� ;� (B (D; H f)) and in particular the quantization of a symbol in Sw
� ;� (B (D; H f))

preserves the � -equivariance. Moreover, the pointwise product or the Moyal product of
two symbols of order w1 and w2 produce a symbol of order w1w2 (Teufel 2003, Proposi-
tions B.3 and B.4).

R EMARK 3.3.11 (Notation) . In what follows we use the short notation F (� ; � ) := ( F �
| � )(k; � ) to denote the special symbol F � | � 2 Sw

� ;� (B (D; H f)) related to the � -equivariant
symbols F 2 Sw

� (B (D; H f)) . We emphasize on the use of the semicolon “;” instead the
comma “,” and of the symbol of the kinetic momentum � instead the Bloch-momentum
k.

��
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3.3.5 Semiclassics: quantization of equivariant symbols

A s explained in Section 3.3.2, the Bloch-Floquet transform Z provides the separation
between the fast degrees of freedom, associated to the Hilbert space H f = L 2(V ; d2� ),

and the slow degrees of freedom, associated to the Hilbert L 2(M � � ; d2k). A fruitful point
of view is to consider the slow degrees of freedom “classical” with respect to the “quan-
tum” fast degrees of freedom. Mathematically, this is achived by recognizing that the
Hamiltonian H Z de�ned in (3.18) is the Weyl quantization of an operator-valued “semi-
classical” symbol over the classical phase space R2 � R2. As explained rigorously in
the Appendices A and B of (Teufel 2003), the quantization procedure maps an operator-
valued symbol F : R2 � R2 ! B (D; H f) into a linear operator Op " (F ) : S(R2; D) !
S(R2; H f), where S(R2; H ) denotes the space of H-valued Schwartz functions. The quan-
tization procedure concerns only the slow degrees of freedom and at a formal level can
be identi�ed with the prescription

k 7�! Op" (k) := multiplication by k 
 1D ; � 7�! Op" (� ) := i" r k 
 1D : (3.27)

Let us consider the operator-valued symbol H0 : R2 � R2 ! B (D; H f) de�ned by

H0(k; � ) :=
1
2

�
� i r � + k � A � (� ) � A0(� ) � �q

1
2

e? ^ �
� 2

+ V� (� ) + � (� ): (3.28)

The symbol H0 does not depend on " and in view of Proposition 3.3.3 it de�nes an un-
bounded operator on H f with domain of self-adjointness D = H 2(V ) for any choice of
(k; � ) 2 R2 � R2. According to the notation of Section 3.3.4, and comparing (3.28) with
(3.20) we can write

H0(k; � ) = Hper (� (k; � )) + � (� ) = ( H � � | � )(k; � ): (3.29)

where H � (k; � ) := Hper(k) + � (� ). As suggested by equation (3.21), H � is a � -equivariant
symbol. Thus the symbol H0 is � -equivariant with respect to the kinetic momentum � .
The following result establishes the exact symbol class for H0.

P ROPOSITION 3.3.12. If Assumption 3.2.2 and 3.2.3 hold true then H0 2 Sv
� ;� (B (D; H f))

with order function v(k; � ) := 1 + jkj2.

Proof . Using the result of Lemma 3.3.10, we only need to show that H � 2 Sv(B (D; H f)) .
The later claim is easy to verify, indeed the derivative in � are bounded functions, the
second derivative in k is a constant and the derivatives of higher order in k are zero.
Then, we have to check only the growth of the �rst derivative in k. A simple computation
shows that

k(@k j H � )(k; � )kB (D;H f ) = k(@k j Hper)(k) (1H f � � � ) � 1kB (H f )

and since @k j Hper is � -equivariant (see Remark 3.3.2), then

k(@k j H � )(k; � )kB (D;H f ) = k(@k j Hper)([k])� ( � ) � 1(1H f � � � ) � 1kB (H f ) :
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Observing that � ( � ) is the multiplication by e i� � �
in H f and by a simple computation

that (@k j Hper)([k])� ( � ) � 1 = � ( � ) � 1[� 2 �
j + ( @k j Hper)([k])] one has

k(@k j H � )(k; � )kB (D;H f ) 6 C1j �
j j + k(@k j Hper)([k])kB (D;H f ) 6 C1(jkj + C3) + C2

where C1 = 2k(1H f � � � ) � 1kB (H f ) , C2 := max k2 M � � k(@k j Hper)([k])kB (D;H f ) and j �
j j 6 j � j =

jk � [k]j 6 jkj + C3 with C3 := max k2 M � � jkj. The claim follows observing that 1 + jkj 6
2(1 + jkj2). �

Figure 3.1 : Structure of the spectrum of H 0(k; � ). The picture shows schematically a “relevant part of

the spectrum”, consisting of two energy bands f E � ; E � +1 g, with E � + j (k; � ) = E� + j (� (k; � )) + � (� ). Notice

that we assume only a local gap condition, as stated in (3.30), while in the picture a stronger condition is

satis�ed: a gap exists when projecting the relevant bands on the vertical axis.

Equation (3.29) provides information about the dependence on k and � of the spec-
trum of H0. The nth eigenvalue En (k; � ) of the operator H0(k; � ) is related to the nth eigen-
value En (k) of the periodic Hamiltonian Hper(k) by the relation En (k; � ) = En (� (k; � )) +
� (� ). The function En : R2 � R2 ! R is still � � -periodic in k but only oscillating with
bounded variation in � . Assumption 3.3.4 for the family of Bloch bands fEn (�)gn2I imme-
diately implies that

inf
(k;� )2 M � � � R2

dist

0

@
[

n2I

f En (k; � )g;
[

j =2I

f E j (k; � )g

1

A = Cg > 0: (3.30)

This is the relevant part of the spectrum of H0 which we are interested in.
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According to the general theory (Teufel 2003, Appendices A and B), one has that

Op" (H0) =
1
2

�
� i r � + k � A � (� ) � A0 (i" r k ) � �q

1
2

e? ^ (i" r k )
� 2

+ V� (� )+ � (i" r k ) (3.31)

de�nes a linear operator from S(R2; D) in S(R2; H f) and by duality it extends to a con-
tinuous mapping Op " (H0) : S0(R2; D) ! S 0(R2; H f) (with an abuse of notation we use the
same symbol for the extended operator). The � -equivariance assures that Op " (H0)' ([k]�
 � ) = � ( � )Op" (H0)' ([k]) (Teufel 2003, Proposition B.3). Since Op " (H0) preserves � -
equivariance, then it can be restricted to an operator on the domain Z H 2

M (R2) � S 0(R2; D)
which is the domain of self-adjointness of H Z , according to (3.18). To conclude that
Op" (H0), restricted to Z H 2

M (R2), agrees with H Z it is enough to recall that i r �
k is de-

�ned as i r k restricted to its natural domain H 1
�
R2; D

�
\ H � and to use the spectral

calculus. These arguments justify the following:

P ROPOSITION 3.3.13. The Hamiltonian H Z , de�ned by (3.18), agrees on its domain of
de�nition with the Weyl quantization of the operator-valued symbol H0 de�ned by (3.28).

With a little abuse of notation, we refer to this result by writing H Z = Op" (H0).

3.3.6 Main result: effective dynamics for weak magnetic �elds

L et A " and B " be "-dependent (possibly unbounded) linear operators in H . We write
A " = B " + O0("1 ) if: for any N 2 N there exist a positive constant CN such that

kA " � B " kB (H ) � CN "N (3.32)

for every " 2 [0; "0). Notice that, though the operators are unbounded, the difference is
required to be a bounded operator.

We refer to Appendices A and B of (Teufel 2003) for the basic terminology concerning
pseudodifferential operators, and in particular as for the notions of principal symbol ,
asymptotic expansion , resummation , Moyal product .

T HEOREM 3.3.14. Let Assumptions 3.2.2, 3.2.3, 3.3.4 and 3.3.5 be satis�ed and let
f En (�)gn2I (with jIj = m) be an isolated family of energy bands for H0 satisfying con-
dition (3.30). Then:

1. Almost-invariant subspace: there exist an orthogonal projection � " 2 B (H � ), with
� " = Op" (� ) + O0("1 ) and the symbol � (k; � ) �

P 1
j =0 " j � j (k; � ) having principal part

� 0(k; � ) = PI (k � A(� )) , so that

[H Z ; � " ] = O0("1 ):

In particular for any N 2 N there exist a CN such that

k(1 � � " ) e� i t
" H Z

� " k � CN "N jt j (3.33)



3.3. Space-adiabatic theory for the Hofstadter regime 71

for " suf�ciently small, t 2 R.

2. Effective dynamics: let H ref = L 2(M � � ; d2k) 
 H f , � r as de�ned above (3.24) and
� r = 1L 2 (M � � ) 
 � r 2 B (H ref ). Then there exist a unitary operator

U" : H � ! H ref

such that

(i) U" = Op" (u) + O0("1 ), where the symbol u �
P 1

j =0 " j uj has principal part u0 given
by (3.24) with k replaced by � (k; � );

(ii) � r = U" � " U"
� 1;

(iii) posing K := � r H ref , one has

U" � " H Z � " U � 1
" = H "

eff + O0("1 ) 2 B (K)

with H "
eff = Op" (h) and h a resummation of the formal symbol u ] � ] H 0 ] �]u � 1 (thus

algorithmically computable at any �nite order). Moreover,

k(e� i t
" H Z

� U � 1
" e� i t

" H "
eff U" ) � " k � CN

0 "N (" + jt j): (3.34)

R EMARK 3.3.15. The previous theorem and the following proof generalize straightfor-
wardly to any dimension d 2 N. We prefer to state it only in the case d = 2 in view of the
application to the QHE and of the comparison with the results in Section 3, the latter
being valid only for d = 2 . ��

Proof of Theorem 3.3.14

Step 1. Almost-invariant subspace

The proof of the existence of the super-adiabatic projection is very close to the proof of
Proposition 1 of (Panati et al. 2003a), so we only sketch the strategy and emphasize the
main differences with respect to that proof.

First of all, one constructs a formal symbol � �
P 1

j =0 " j � j (the Moyal projection )
such that: (i) �]� � � ; (ii) � y = � ; (iii) H0]� � �]H 0 where � denotes the asymptotic
equivalence of formal series.

The symbol � is constructed recursively at any order j 2 N starting from � 0 and H0. One
�rstly show the uniqueness of � (Panati et al. 2003b, Lemma 2.3). The uniqueness allows
us to construct � locally, i.e. in a neighborhood of some point z0 := ( k0; � 0) 2 R2 � R2.
From the continuity of the map k 7! Hper(k) and the condition (3.23) it follows that
there exists a neighborhood Uk0 of k0 such that for every k 2 Uk0 the set fEn (k)gn2I can
be enclosed by a positively-oriented circle �( k0) � C independent of k. Moreover it is
possible to choose �( k0) in such a way that: it is symmetric with respect to the real axis;
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dist (�( k0); � (Hper(k))) > 1
4Cg for all k 2 Uk0 ; Radius (�( k0)) 6 Cr with Cr independent of

k0; �( k0 �  � ) = �( k0) for any  � 2 � � .
With the notation of Section 3.3.4 we have H0 = H � � | � with H � (k; � ) := Hper(k) + � (� ).
Let e�( k0; � 0) := �( k0) + � (� 0) denote the translation of the circle �( k0) by � (� 0) 2 R and
pose � := e� � | � . From the smoothness of � it follows that there exists a neighborhood
Uz0 � R2 � R2 of z0 such that dist (�( z0); � (H0(z))) > 1

4Cg for all z 2 Uz0 . Moreover �( z0)
is symmetric with respect to the real axis, has radius bounded by Cr and is � � -periodic
in the variable � = k � A(� ) (see Figure 3.1).

We proceed by using the Riesz formula , namely by posing

� j (z) :=
i

2�

I

�( z0 )
d� R j (�; z ) on Uz0

where Rj (�; �) denotes the j -th term in the Moyal resolvent R(�; �) =
P 1

j =0 " j Rj (�; �) (also
known as the parametrix ), de�ned by the request that

(H0(�) � � 1D )]R (�; �) = 1H f ; R(�; �)] (H0(�) � � 1D ) = 1D on Uz0 :

Each term Rj is computed by a recursive procedure starting from R0(�; �) := ( H0(�) �
� 1D ) � 1, as illustrated in (Gérard et al. 1991). Following (Panati et al. 2003a, equations
(30) and (31)) one obtains that

Rj (�; z ) = � R0(�; z ) L j (�; z ) (3.35)

where L j is the (j � 1)-th order obstruction for R0 to be the Moyal resolvent, i.e.

(H0(�) � � 1D )]

 j � 1X

n=0

"n Rj (�; �)

!

= 1H f + " j L j (�) + O(" j +1 ): (3.36)

At the �rst order L 1 = � i
2 f H0; R0gk;� , with f� ; �gk;� the Poisson brackets.

The technical (and crucial) part of the proof is to show that

� j 2 Sv
� ;� (B (H f ; D)) \ S1

� ;� (B (H f))

for all j 2 N, with v(k; � ) := (1+ jkj2). By means of the recursive construction each Rj (�; �)
inherits the special � -equivariance from the principal symbol R0(�; �) = (( H � � | � )( �) �
� 1D ) � 1. The special periodicity in � of the domain of integration �( �) which appears in
the Riesz formula assures also the special � -equivariance of each � j (�).
Since k(@�

z � j )(z)k[ 6 2�C r sup� 2 �( z0 ) k@�
z (Rj )( �; z )k[ ([ means either B (H f) or B (H f ; D),

� 2 N4 is a multiindex and @�
z := @� 1

k1
@� 2

k2
@� 3

� 1
@� 4

� 2
), we need only to prove that Rj (�; �) 2

Sv
� ;� (B (H f ; D)) \ S1

� ;� (B (H f)) uniformly in � . This is the delicate point of the proof.
First of all, from the de�nition of �( z0) it follows that

kR0(�; z )kB (H f ) = [ dist (�; � (H0(z)))] � 1 6 4=Cg
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uniformly in � . Let � 2 N4, with j� j = 1 . One observes that @�
z R0(�; z ) = � R0(�; z )N �

z (�; z )
with N �

z (�; z ) := @�
z H0(z) R0(�; z ). From the relation

@�
z N �

z = N � + �
z � N �

z N �
z

and an inductive argument, it follows the chain rule

@�
z R0 = R0

X
! � 1 :::� j � j

N � 1
z : : : N

� j � j
z

where � 1; : : : ; � j � j 2 N4, j� j := � 1 + : : : + � 4, ! � 1 :::� j � j
= � 1 is a suitable sign function and

the sum runs over all the combinations of multiindices such that � 1 + : : : + � j � j = � with
the convention N 0

z = 1. The chain rule implies that R0 2 S1
� ;� (B (H f)) provided that

kN �
z kB (H f ) = k@�

z H0 R0kB (H f ) 6 C� uniformly in �:

The latter condition is true since k(@�
z H0)(k; � ) R0(�; k; � )kB (H f ) 6 (g � | � )(k; � ), for a

suitable g(k; � ), � � -periodic in k and bounded in � ; the latter claim can be checked as in
Proposition 3.3.12.

Similarly, to prove that R0 2 Sv
� ;� (B (H f ; D)) we need to show that

kR0 N �
z kB (H f ;D ) = k(1H f � � � ) R0 N �

z kB (H f ) 6 C� v0(�)

uniformly in � . Since N �
z is bounded on H f it is suf�cient to show that k(1H f � � � )R0(� ; z)kB (H f ) 6

C0
� v0(z). Observe that k(1H f � � � )R0(�; [� ]�  � ; � )kB (H f ) = k(1H f � � � )� ( � ) � 1R0(�; [� ]; � )kB (H f ) .

The commutation relation

� � � � ( � ) � 1 = � ( � ) � 1 �
j � j2 + i2 � � r � � � �

�

and the straightforward bound

k
�
j � j2 + i2 � � r � � � �

�
(1H f � � � ) � 1kB (H f ) 6 C(1 + j � j2) 6 C0(1 + j� (k; � )j2)

imply
k(1H f � � � )R0(�; z )kB (H f ) 6 C0

� v0(z)k(1H f � � � )R0(�; [� ]; � )kB (H f )

with v0 := v � | � : Finally observe that

k(1H f � � � )R0(�; [� ]; � )kB (H f ) 6 C([� ]; � ) 6 C00: (3.37)

The �rst inequality above follows by an expansion on the Fourier basis, for �xed [� ]
and � ; the second follows from the fact that [� ] takes values on a compact set and the
explicit dependence on � is through the bounded function � . The bound (3.37) implies
that R0 2 Sv

� ;� (B (H f ; D)) \ S1
� ;� (B (H f)) uniformly in � .

To prove that Rj 2 S1
� ;� (B (H f)) , we observe that for any � 2 Nd one has

@�
z Rj (�; z ) = R0(�; z ) M �

z;j (�; z )

where M �
z;j is a linear combination of terms which are product of N �

z and @�
zL j with

j� j; j� j 6 j� j. Thus, it is suf�cient to prove that L j 2 S1
� ;� (B (H f)) for every j 2 N. The
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latter claim is proved by induction on j 2 N. Referring to (3.35), one has trivially that
L 1 2 S1

� ;� (B (H f)) . L j +1 is a linear combination of products of N �
z (with 0 6 j� j 6 j + 1 )

and M �
z;i (with j� j + i = j + 1 and 0 6 i 6 j ). Then the induction hypothesis on L i for all

i = 1 ; : : : ; j implies that L j +1 is in S1
� ;� (B (H f)) .

Finally observing that k@�
z Rj kB (H f ;D ) 6 kM �

z;j kB (H f ) kR0kB (H f ;D ) and using the fact
that R0 2 Sv

� ;� (B (H f ; D)) it follows that Rj 2 Sv
� ;� (B (H f ; D)) \ S1

� ;� (B (H f)) uniformly in
� , for all j 2 N.

As explained in Section 3.3.4, we can apply the result of Proposition B.4 in (Teufel
2003) to special � -equivariant symbols obtaining H0]� 2 Sv2

� ;� (B (H f)) . However the � -
equivariance of H0]� and its derivatives implies that the norms are bounded in z, hence
H0]� 2 S1

� ;� (B (H f)) which implies by adjointness also �]H 0 2 S1
� ;� (B (H f)) . By construc-

tion [H Z ; Op" (� )] = Op" (H0]� � �]H 0) = O0("1 ) where the remainder is bounded in the
norm of B (H � ).

The operator Op " (� ) is only approximately a projection, since Op " (� )2 = Op" (�]� ) =
Op" (� ) + O0("1 ). We obtain the super-adiabatic projection � " by using the trick in
(Nenciu and Sordoni 2004). Indeed, one notices that, for " suf�ciently small, the spec-
trum of Op " (� ) does not contain e.g. the points f 1=2g and f 3=2g. Thus, the formula

� " =
i

2�

I

jz� 1j= 1=2

(Op" (� ) � z) � 1: (3.38)

yields an orthogonal projector such that � " = Op" (� ) + O0("1 ).
Finally, equation (3.33) follows by observing that [H Z ; � " ] = O0("1 ) implies

[e� i t
" H Z

; � " ] = O0("1 jt j)

as proved in (Teufel 2003, Corollary 3.3).

Step 2. Construction of the intertwining unitary

The construction of the intertwining unitary follows as in the proof of Proposition 2 of
(Panati et al. 2003a). Firstly one constructs a formal symbol u �

P 1
j =0 " j uj such that: (i)

uy]u = u]u y = 1H f ; (ii) u]�]u y = � r .
The existence of such a symbol follows from a recursive procedure starting from u0

and using the expansion of � �
P 1

j =0 " j � j obtained above. However, the symbol u which
comes out of this procedure is not unique.

Since u0 is right � -covariant (c.f. end of Section 3.3.3) in � , then one can prove by
induction that the same is also true for all the symbols uj and hence for the full symbol u.
Finally, since u0 2 S1(B (H f)) one deduces by induction also uj 2 S1(B (H f)) for all j 2 N.
The quantization of this symbol is an element of B (H � ; H ref ) satisfying the following
properties:

(i) Op " (u)Op" (u)y = 1H ref + O0("1 ),

(ii) Op " (u)yOp" (u) = 1H � + O0("1 ),



3.3. Space-adiabatic theory for the Hofstadter regime 75

(iii) Op " (u)� " Op" (u)y = � r + O0("1 ).

Nevertheless Op " (u) can be modi�ed by an O0("1 ) term using the same technique of
Lemma 3.3 (Step II) in (Panati et al. 2003b) to obtain the true unitary U" .

Step 3. Effective dynamics

The last step of the proof is identical to the corresponding part of (Panati et al. 2003a,
Proposition 3).

3.3.7 Hofstadter-like Hamiltonians

W e now focus on the special case of a single isolated energy band E � , i.e. m = 1 , and
we comment on the relation between the effective Hamiltonian, the celebrated

Peierls' substitution and Hofstadter-like Hamiltonians (c.f. Sections 2.1 and 2.3).

In this special case, � 0(� ) = j � (� )ih � (� )j and u0(� ) = j� ih � (� )j + u?
0 where  � (k) is

the eigenvector of Hper(k) corresponding to the eigenvalue E� (k). Let h 2 S1(B (H f)) be a
resummation of the formal symbol u]�]H 0]�]u � 1. A straightforward computation yields

h0 = u0 � 0 H0 � 0 uy
0 = j� ih � j j  � ih � j H0 j � ih � j j  � ih� j = E � � r :

Since � r is one-dimensional, h0 can be regarded as a scalar-valued symbol with explicit
expression

h0(k; � ) = E � (k; � ) = E� (k � A(� )) + � (� ):

By considering the quantization of the latter, the effective one-band Hamiltonian reads

Op" (h0) = E � (k; i" r k ) = E� (k � A(i" r k )) + � (i" r k ): (3.39)

The latter formula corresponds to the momentum-space reformulation of the well-known
Peierls' substitution (Peierls 1933, Ashcroft and Mermin 1976).

To illustrate this point, we specialize to the case of a uniform external magnetic �eld
and zero external electric �eld, setting � = 0 and A0 = 0 in (3.28). The leading order
contribution to the dynamics in the almost invariant subspace is therefore given by a
bounded operator, acting on the reference Hilbert space L 2(M � � ; d2k), de�ned as the
quantization (in the sense of Section 3.3.5) of the function E� � | � : (k; � ) 7! E� (k � A(� )) ,
de�ned on Td � Rd.

Loosely speaking, the above procedure corresponds to the following “substitution
rule”: one may think to quantize the smooth function E� : Td ! R by formally replacing
the variables (k1; k2) with the operators (K 0

1 ; K 0
2 ) de�ned by

K 0
1 := k1 +

i
2

(�q" )
@

@k2
; K 0

2 := k2 �
i
2

(�q" )
@

@k1
; (3.40)

regarded as unbounded operators acting on L 2(M � � ; d2k). To make this procedure rig-
orous, one can expand E� in its Fourier series, i.e. E� (k) =

P
n;m 2 Z cn;m ei 2� (na+ mb)�k and
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de�ne the Peierls quantization of E� as the operator obtained by the same series expan-
sion with the phases e i 2� (na+ mb)�k replaced by the unitary operators e i 2� (na+ mb)�K 0

(the
series is norm-convergent, in view of the regularity of E� ). This �xes uniquely the pre-
scription for the quantization.

To streamline the notation, one introduces new coordinates � 1 := 2 � (a � k) and � 2 :=
2� (b � k) such that the function E0

� , E0
� (� 1; � 2) := E� (k(� )) becomes (2� Z)2-periodic. The

change of variables induces a unitary map from L 2(M � �
2; d2k) to L 2(T 2; d2� ) which inter-

twines the operators (3.40) with the operators (recall " = 2� =hB )

K 1 := � 1 + i�
�

�q

hB

�
@

@�2
; K 2 := � 2 � i�

�
�q

hB

�
@

@�1
; (3.41)

so that 2� (a � K 0) 7! K 1 and 2� (b� K 0) 7! K 2.
Let F : T 2 ! C be suf�ciently regular that its Fourier series

F (� 1; � 2) =
X

n;m 2 Z

f n;m ei (n� 1+ m� 2 )

is uniformly-convergent. We de�ne the Peierls quantization of F as

bF :=
X

n;m 2 Z

f n;m ei (nK 1+ mK 2 ) :

Let U0 = ei K 1 and V0 = ei K 2 (Hofstadter unitaries ), acting on H 0 := L 2(T 2; d2� ) as

(U0 )( � 1; � 2) = ei� 1  (� 1; � 2 � �� q� 0) ; (V0 )( � 1; � 2) = ei� 2  (� 1 + �� q� 0; � 2) : (3.42)

where � 0(B ) := 1=hB We regard (3.42) as the de�nition of the two unitaries, so there is
no need to specify the domain of de�nition of the generators (3.41). Thus the Peierls
quantization of the function F de�nes a bounded operator on H 0 given, in terms of the
Hofstadter unitaries, by

bF =
+ 1X

n;m = �1

f n;m ei�nm (� q � 0 ) Un
0 Vm

0 ; (3.43)

where the fundamental commutation relation U0V0 = e� i 2� (� q � 0 ) V0U0 has been used.
Formula (3.43) de�nes a Hofstadter-like Hamiltonian with deformation parameter � �q� 0

(c.f. Section 2.1). Summarizing, we draw the following

CONCLUSION 3.3.16. Under the assumption of Theorem 3.3.14, for every V� 2 L 2
loc(R2; d2r ),

in the Hofstadter regime ( hB ! 1 ), the dynamics generated by the Hamiltonian HBL (2.1)
in the subspace related to a single isolated Bloch band, is approximated up to an error
of order � 0 = 1=hB (and up to a unitary transform) by the dynamics generated on the ref-
erence Hilbert space H 0 := L 2(T 2; d2� ) by a Hofstadter-like Hamiltonian, i.e. by a power
series in the Hofstadter unitaries U0 and V0 de�ned by (3.42).
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3.4 Space-adiabatic theory for the Harper regime

3.4.1 Adiabatic parameter for strong magnetic �elds

W e now consider the case of a strong external magnetic �eld. Since we are interested
in the limit B ! + 1 we set A0 = 0 and � = 0 in the Hamiltonian (3.1). By

exploiting the gauge freedom, we choose

r r � A � = 0 ;
Z

M �

A � (r ) d2r = 0 ; (3.44)

this choice being always possible (Sobolev 1997). Let us denote by Qr = ( Qr 1 ; Qr 2 ) the
multiplication operators by r1 and r2 and with Pr = ( Pr 1 ; Pr 2 ) = � i } r r . Taking into
account conditions (3.44) and A0 = 0 , � = 0 , the Hamiltonian (3.1) is rewritten as

HBL =
1

2m

" �
Pr 1 +

qB
2c

Qr 2

� 2

+
�

Pr 2 �
qB
2c

Qr 1

� 2
#

+ eV� (Qr ) + eW(Qr ) (3.45)

where
eV� (Qr ) = V� (Qr ) +

q2

2mc2 jA � (Qr )j2 (3.46)

and

eW(Qr ; Pr ) = �
q

mc
(A� )1(Qr )

�
Pr 1 +

qB
2c

Qr 2

�
�

q
mc

(A� )2(Qr )
�
Pr 2 �

qB
2c

Qr 1

�
(3.47)

with (A� )1 and (A� )2 the � -periodic components of the vector potential A � . The �rst of
(3.44) assures that eW is a symmetric operator.

R EMARK 3.4.1. Observe that H0
BL := HBL � eW corresponds to a Bloch-Landau Hamilto-

nian without � -periodic vector potential and with a “modi�ed” � -periodic scalar potential
eV� . Then, the presence of a � -periodic vector potential A � can be described through a
non-periodic “perturbation” eW of the Bloch-Landau Hamiltonian H 0

BL . Obviously A � = 0
implies eV� = V� and eW = 0 . ��

It is useful to de�ne two new pairs of canonical dimensionless operators:

(fast )

8
><

>:

K 1 := �
1
2�

b� � Qr � �q
�
}

a � Pr

K 2 :=
1
2�

a� � Qr � �q
�
}

b� Pr

(slow)

8
>><

>>:

G1 :=
1
2

b� � Qr � �q
� 2

}
a � Pr

G2 :=
1
2

a� � Qr + �q
� 2

}
b� Pr

(3.48)

where � :=
p

} B =
p

� 0=2�Z � B according to the notation introduced in Section 3.1. Since
� 2 / 1=B , the limit of strong magnetic �eld corresponds to � ! 0. We consider � as the
adiabatic parameter in the Harper regime. A direct computation shows that

[K 1; K 2] = i� q 1H phy ; [G1; G2] = i� q � 2 1H phy ; [K j ; Gk ] = 0 ; j; k = 1 ; 2: (3.49)
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These new variables are important for three reasons:

(a) they make evident a separation of scales between the slow degrees of freedom
related to the the dynamics induced by the periodic potential and the fast degrees
of freedom related to the cyclotron motion induced by the external magnetic �eld.
Indeed, for V� = 0 , the fast variables (K 1; K 2) (the kinetic momenta ) describe the
kinetic energy of the cyclotron motion, while the slow variables (G1; G2) correspond
semiclassically to the center of the cyclotron orbit and are conserved quantities.

(b) The new variables are dimensionless. According to the notation used in Section
3.3.1 let HBL := 1=E0HBL be the dimensionless Bloch-Landau Hamiltonian with
E0 := } 2=m
 � the natural unit of energy .

(c) The use of the new variables simpli�es the expression of the � -periodic functions
appearing in HBL . Indeed, a� � Qr = G2 + � K 2 and b� � Qr = G1 � � K 1, hence if f �

is any � -periodic function one has

f � (Qr ) = f (G2 + � K 2; G1 � � K 1) (3.50)

where f is the Z2-periodic function related to f � .

In terms of the new variables (3.48), the Hamiltonian HBL reads

HBL =
1
� 2 �( K 1; K 2) + V (G2 + � K 2; G1 � � K 1) +

1
�

W (K 1; G1; K 2; G2) (3.51)

where
�( K 1; K 2) :=

1
2
 �

�
jaj2K 2

2 + jbj2K 1
2 � a � b f K 1; K 2g

�
(3.52)

is a quadratic function of the operators K 1 and K 2 (f� ; �g denotes the anticommutator),
V is the Z2-periodic function related to the � -periodic function 1=E0

eV� and W denotes the
function 1=E0

eW with respect the new canonical pairs, namely

W (K 1; G1; K 2; G2) = f 1 (G2 + � K 2; G1 � � K 1) K 1 � f 2 (G2 + � K 2; G1 � � K 1) K 2 (3.53)

where f 1 and f 2 are the Z2-periodic dimensionless functions

f 1(a� � r; b� � r ) := 2 �
Z 
 �

� 0
(a� � A � )( r ) and f 2(a� � r; b� � r ) := 2 �

Z 
 �

� 0
(b� � A � )( r ):

An easy computation shows that the �rst gauge condition of (3.44) is equivalent to

@f1
@x1

(x1; x2) +
@f2
@x2

(x1; x2) = 0 : (3.54)

Obviously W is a symmetric operator, since eW is symmetric.
The problem has a natural time-scale which is �xed by the cyclotron frequency ! c =

jqjB
mc . With respect to the (fast) ultramicroscopic time-scale � := ! cs, equation (3.4) be-

comes

i
1
� 2

@
@�

 = HBL  ; � 2 =
E0

} ! c
: (3.55)

Thus the physically relevant Hamiltonian is

H �
BL := � 2 HBL = �( K 1; K 2) + � W (K 1; G1; K 2; G2) + � 2 V (G2 + � K 2; G1 � � K 1) : (3.56)
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3.4.2 Separation of scales: the von Neumann unitary

T he commutation relations (3.49) show that (K 1; K 2) and (G1; G2) are two pairs
of canonical conjugate operators. The Stone-von Neumann uniqueness Theorem

(Bratteli and Robinson 1997, Corollary 5.2.15) assures the existence of a unitary map W
(called von Neumann unitary )

W : H phy �!H w := H s 
 H f = L 2(R; dxs) 
 L 2(R; dxf) (3.57)

such that

WG1W� 1 = Qs = multiplication by xs; WG2W� 1 = Ps = � i� q� 2 @
@xs

(3.58)

WK 1W� 1 = Qf = multiplication by x f ; WK 2W� 1 = Pf = � i� q
@

@xf
: (3.59)

The explicit construction of the von Neumann unitary W is described in Appendix A.2.

Let X j := Gj + ( � 1)j � K j with j = 1 ; 2. From (3.58) and (3.59) it follows that

X 0
1 := WX 1W� 1 = Qs � � Q f ; X 0

2 := WX 2W� 1 = Ps + � P f : (3.60)

Since X 1 and X 2 commute, one can use the spectral calculus to de�ne any measurable
function of X 1 and X 2. For any f 2 L 1 (R2; d2x) one de�nes

f (X 1; X 2) :=
Z

R2
f (x1; x2) dE(1)

x1
dE(2)

x2

where dE(j ) is the projection-valued measure corresponding to X j . In view of the uni-
tarity of W, and observing that dE0(j ) := WdE(j )W� 1 is the projection-valued measure of
X 0

j , one obtains that

Wf (X 1; X 2)W� 1 =
Z

R2
f (x1; x2) dE0

x1

(1) dE0
x2

(2) = f (X 0
1; X 0

2):

So the effect of the conjugation through W on a function f of the operators X 1 and X 2

formally amounts to replace the operators X j with X 0
j inside f .

In view of the above remark, one can easily rewrite H �
BL , making explicit the rôle of

the fast and slow variables, obtaining

H W := WH �
BL W� 1 = 1H s 
 �( Qf ; Pf) + � W (Qf ; Qs; Pf ; Ps) + � 2 V (Ps + � P f ; Qs � � Q f)

(3.61)
where, according to (3.53),

W (Qf ; Qs; Pf ; Ps) = f 1 (Ps + � P f ; Qs � � Q f) Qf � f 2 (Ps + � P f ; Qs � � Q f) Pf : (3.62)
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3.4.3 Relevant part of the spectrum: the Landau bands

T he existence of a separation between fast and slow degrees of freedom and the de-
composition of the physical Hilbert space H phy into the product space H w = H s 
 H f

are the �rst two ingredients to develop the SAPT. According to the general scheme, we
“replace” the canonical operators corresponding to the slow degrees of freedom with clas-
sical variables which will be re-quantized “a posteriori”. Mathematically, we show that
the Hamiltonian H W acting in H w is the Weyl quantization of the operator-valued func-
tion (symbol) H � ,

H � (ps; xs) := �( Qf ; Pf) + � W (Qf ; xs; Pf ; ps)| {z }
= W � (ps;x s)

+ � 2 V (ps + � P f ; xs � � Q f)| {z }
= V� (ps;x s)

: (3.63)

The quantization is de�ned (formally) by the rules

xs 7�! Op� (xs) := Qs 
 1H f ; ps 7�! Op� (ps) := Ps 
 1H f :

For every (ps; xs) 2 R2, equation (3.63) de�nes an unbounded operator H � (ps; xs) which
acts in the Hilbert space H f . To make the quantization procedure rigorous, as explained
in Appendix A of (Panati et al. 2003b), we need to consider H � as function from R2 into
some Banach space which is also a domain of self-adjointness for H � (ps; xs). We take
care of this details in the Section 3.4.4.

To complete the list of ingredients needed for the SAPT, we need to analize the spec-
trum of the principal part of the symbol (3.63) as (ps; xs) varies in R2. The principal part
of the symbol, denoted by H0(ps; xs), is given by (3.63) when � = 0 , so it reads:

H0(ps; xs) := �( Qf ; Pf) =
1

2
 �

�
jaj2Pf

2 + jbj2Qf
2 � a � b f Qf ; Pfg

�
: (3.64)

Since the principal symbol is constant on the phase space, i.e. H0(ps; xs) = � for all
(ps; xs) 2 R2, we are reduced to compute the spectrum of � . As well-known (see Remark
3.4.2 below), the spectrum of � is pure point with � (�) = f � n := ( n + 1=2) : n 2 Ng. We
refer to the eigenvalue � n as the n-th Landau level .

The spectrum of the symbol H0 consists of a collection of constant functions � n : R2 !
R, n 2 N, � n (ps; xs) � � n , which we call Landau bands . The band � n is separated by the
rest of the spectrum by a constant gap. In the gap condition (analogous to (3.23)) one
can chooseCg = 1 . Therefore, each �nite family of contiguous Landau bands de�nes a
relevant part of the spectrun appropriate to develop the SAPT.

R EMARK 3.4.2 (Domain of self-adjointness) . We describe explicitly the domain of self-
adjointness of H0(ps; xs). Mimicking the standard theory of Landau levels, one intro-
duces operators

a :=
i

p
2

`

 �

[(a1 + ia2)Pf � (b1 + ib2)Qf ] =
i

p
2

[za Pf � zb Qf ] (3.65)

ay :=
� i
p

2

`

 �

[(a1 � ia2)Pf � (b1 � ib2)Qf ] =
� i
p

2
[za Pf � zb Qf ] ; (3.66)
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Figure 3.2 : Structure of the spectrum of H 0 . The picture shows a “relevant part of the spectrum” consist-

ing of two Landau bands of constant energy � � and � � +1 .

where za := 1
` (a1 � ia2) and zb := 1

` (b1 � ib2). It is easy to check that

aay = �( Qf ; Pf) + �q
1
2

1H f ; aya = �( Qf ; Pf) � �q
1
2

1H f ; [a; ay] = �q 1H f : (3.67)

Without loss of generality, we suppose that �q = 1 . Let  0 be the ground state de�ned
by a 0 = 0 . A simple computation shows that  0(x f) = Ce� (� � i� )x2

f , where C > 0 is
a normalization constant, and � 2 R, � > 0 are related to the geometry of the lattice
� by � := a�b=2jaj2 and � := 
 � =2jaj2. Since  0 is a fast decreasing smooth function, the
vectors  n := ( n!) � 1

2 (ay)n  0, with n = 0 ; 1; : : :, are well de�ned. From the algebraic
relations (3.67) it follows straightforwardly that: (i) a n =

p
n n� 1; (ii) the family of

vectors f  ngn2 N is an orthonormal basis for H f called the generalized Hermite basis ; (iii)
�  n = � n  n ; (iv) the spectrum of � is pure point with � (�) = f � n : n 2 Ng.

Let L � H f be the set of the �nite linear combinations of the elements of the basis
f  ngn2 N. The unbounded operators a, ay and � are well de�ned on L and on this domain
ay acts as the adjoint of a and � is symmetric. Both a and ay are closable and we will
denote their closure by the same symbols. The operator � is essentially selfadjoint on
the domain L (the de�ciency indices are both zero) and so its domain of selfadjointness
F := D(�) is the closure of L with respect to the graph norm k k2

� := k k2
H f

+ k�  k2
H f

.
The graph norm is equivalent to the more simple regularized norm

k kF := k�  kH f :
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The domain F has the structure of an Hilbert space with Hermitian structure pro-
vided by the regularized scalar product ( ; ' )F := (�  ; � ' )H f . ��

3.4.4 Symbol class and asymptotic expansion

I n this section, we �rstly identify the Banach space in which the symbol H � de�ned by
(3.63) takes values and, secondarily, we explain in which sense H � is a “semiclassical

symbol” in a suitable Hörmander symbol class. The main results are contained in Propo-
sition 3.4.3. Readers who are not interested in technical details can jump directly to the
next section. For the de�nitions of the Hörmander classes S1(B (H f)) and S1(B (F ; H f))
we refer to Section 3.3.4.

P ROPOSITION 3.4.3. Assume that Assumption 3.2.1 hold true. Then for any (ps; xs) 2 R2

the operator H � (ps; xs) is essentially self-adjoint on the dense domain L � H f consisting
of �nite linear combinations of generalized Hermite functions, and its domain of self-
adjointness is the domain F on which the operator H0 = � is self-adjoint. Finally, H � is
in the Hörmander class S1(B (F ; H f)) .

In particular, H � (ps; xs) is a bounded operator from the Hilbert space F to the Hilbert
space H f for all (ps; xs) 2 R2. The proof of the Proposition 3.4.3 follows from the Kato-
Rellich Theorem showing that for any (ps; xs) 2 R2 the operator H � (ps; xs) differs from H0

by a relatively bounded perturbation. The latter claim will be proved in Lemmas 3.4.4
and 3.4.5 below.

In view of Assumption 3.2.1, eV� 2 C1
b (R2; R) so its Fourier series

eV� (r ) =
X

n;m 2 Z

wn;m ei 2�n a � �r ei 2�m b � �r

converges uniformly and
+ 1X

n;m = �1

jmj � 1 jnj � 2 jwn;m j 6 C�

for all � 2 N2 (Walker 1988, Theorem 3.6).
Let V be the Z2-periodic function related to 1=E0

eV� , as in Section 3.4.1. In view of
(3.50) one has

W
eV�

E0
(X 1; X 2)W� 1 = V(Ps + �P f ; Qs � �P f) =

+ 1X

n;m = �1

vn;m ei 2� (nPs+ mQ s) ei 2�� (nP f � mQ f )

(3.68)

with vn;m := 1=E0wn;m and where we used the fact that fast and slow variables commute
and [Qs; Ps] = � 2[Qf ; Pf ]. The operator (3.68) can be seen as the Weyl quantization of the
operator-valued symbol

V� (ps; xs) :=
+ 1X

n;m = �1

vn;m ei 2� (nps+ mx s) ei 2�� (nP f � mQ f ) (3.69)
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with quantization rule

Op�

�
ei 2� (nps+ mx s)

�
= ei 2� (nPs+ mQ s) 
 1H f : (3.70)

L EMMA 3.4.4. Let Assumption 3.2.1 hold true. Then V� 2 S1(B (H f)) \ S1(B (F ; H f)) . In
particular V� (ps; xs) is a bounded self-adjoint operator on H f for all (ps; xs) 2 R2.

Proof . It is suf�cient to show that V� 2 S1(B (H f)) since

k@� V� kB (F ;H f ) = k(@� V� ) � � 1kB (H f ) 6 2k@� V� kB (H f )

in view of k� � 1kB (H f ) = 2 . Let � := ( � 1; � 2) 2 N2, then


 @� 1

ps
@� 2

xs
V� (ps; xs)




B (H f )
6 (2� ) j � j

+ 1X

n;m + �1

jnj � 1 jmj � 2 jvn;m j 6
(2� ) j � j

E0
C�

for all (ps; xs) 2 R2, as a consequence of the unitarity of e i 2�� (nP f � mQ f ) . The self-adjointness
follows by observing that f vn;m g are the Fourier coef�cients of a real function. �

Assumption 3.2.1 implies that the � -periodic functions a� �A � and b� �A � are elements
of C1

b (R2; R). By the same arguments above, one proves that the operators f j (Ps +
�P f ; Qs � �P f), j = 1 ; 2, appearing in (3.62), are the Weyl quantization of the operator-
valued functions

f (j )
� (ps; xs) :=

+ 1X

n;m = �1

f (j )
n;m ei 2� (nps+ mx s) ei 2�� (nP f � mQ f ) j = 1 ; 2 (3.71)

according to (3.70). The coef�cients 1
2�

� 0
Z 
 �

f (j )
n;m are the Fourier coef�cients of a� � A � if

j = 1 and of b� �A � if j = 2 . Thus, equation (3.62) shows that the operator W (Qf ; Qs; Pf ; Ps)
coincides with the Weyl quantization of the operator-valued symbol

W� (ps; xs) := f (1)
� (ps; xs) Qf + f (2)

� (ps; xs) Pf ; (3.72)

de�ned, initially, on the dense domain L .

L EMMA 3.4.5. Let Assumption 3.2.1 hold true. Then f (j )
� 2 S1(B (H f)) \ S1(B (F ; H f)) ,

for j = 1 ; 2. For any (ps; xs) 2 R2, the bounded operators f (j )
� (ps; xs) are self-adjoint while

W� (ps; xs) is symmetric on the dense domain L and in�nitesimally bounded with respect
to � . Finally W� 2 S1(B (F ; H f)) .

Proof . As in the �rst part of the proof of Lemma 3.4.4, one proves that f (j )
� 2 S1(B (H f)) \

S1(B (F; H f)) and its self-adjointness. The operator W� (ps; xs) is a linear combination of
Qf and Pf , which are densely de�ned on L , multiplied by bounded operators. Using (3.54)
one checks by a direct computation that W� (ps; xs) acts as a symmetric operator on L .
Since Qf and Pf are in�nitesimally bounded with respect to � , then the same holds true
for W� (ps; xs), (ps; xs) 2 R2. The last claim follows by observing that

k@� (f (j )
� X f)kB (F ;H f ) = k(@� f (j )

� ) X f � � 1kB (H f ) 6 kX f � � 1kB (H f ) k@� f (j )
� kB (H f ) ;

with j = 1 ; 2 and X f = Qf or Pf . Since kX f � � 1kB (H f ) 6 C and f (j )
� 2 S1(B (H f)) , the claim

is proved. �
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Lemmas 3.4.4 and 3.4.5, together with the fact that H0 � � is clearly in S1(B (F ; H f))
imply the last part of Proposition 3.4.3.

3.4.5 Semiclassics: the O(� 4)-approximated symbol

I n this section we consider the asymptotic expansion for the symbol H � in the param-
eter � . The Fourier expansion (3.69) for V� and the similar expression for W� , namely

W� (ps; xs) =
+ 1X

n;m = �1

ei 2� (nps+ mx s) ei 2�� (nP f � mQ f )
h
f (1)

n;m Qf + f (2)
n;m Pf

i
; (3.73)

suggest a way to expand the symbol H � in powers of � . By inserting the expansion
ei 2��I n;m =

P + 1
j =0

(i 2�� ) j

j ! I n;m
j , with I n;m := nPf � mQf , in (3.69) and (3.73) and by exchang-

ing the order of the series one obtains the formal expansions

V� (ps; xs) '
+ 1X

j =0

� j Vj +2 (ps; xs) W� (ps; xs) '
+ 1X

j =0

� j Wj +1 (ps; xs) (3.74)

where

Vj +2 (ps; xs) :=
(i2� ) j

j !

+ 1X

n;m = �1

ei 2� (nps+ mx s) I n;m
j vn;m (3.75)

and

Wj +1 (ps; xs) :=
(i2� ) j

j !

+ 1X

n;m = �1

ei 2� (nps+ mx s) I n;m
j

h
f (1)

n;m Qf + f (2)
n;m Pf

i
: (3.76)

In view of (3.54), one easily shows that the operators Wj are (formally) symmetric.
The justi�cation of the formal expansions above requires some cautions: (i) we need

to specify the domains of de�nitions of the unbounded operators I n;m
j and consequently

the domains of de�nitions of Vj and Wj ; (ii) we need to justify the exchange of the order
of the series in the equations (3.69) and (3.73).

As for (i), one notices that

I n;m = � n;m a + � n;m ay; � n;m :=
nzb � mzap

2
: (3.77)

For all (n; m) 2 Z2 the operators I n;m are essentially self-adjoint on the invariant dense
domain L (their de�ciency indices are both zero). The powers I n;m

j are also well de�ned
and essentially self-adjoint on L , as consequence of theNelson Theorem (Reed and Simon
1975, Theorem X.39) since the set f  ngn2 N of the generalized Hermite functions is a total
set of analytic vectors for every I n;m (Reed and Simon 1975, Example 2, Section X.6). The
domain of self-adjointness for I n;m

j is the closure of L with respect the corresponding
graph norm.

The operator Vj (ps; xs) de�ned by equation (3.75) is an homogeneous polynomial of
degree j � 2 in a and ay. It is symmetric (hence closable) and essentially self-adjoint on
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the invariant dense domain L . Analogously, the operators

M j
n;m := I n;m

j
h
f (1)

n;m Qf + f (2)
n;m Pf

i
= I n;m

j
h
gn;m a + gn;m ay

i
; gn;m :=

zaf (1)
n;m + zbf

(2)
n;mp

2
(3.78)

which appear in the right-hand side of equation (3.76), are essentially self-adjoint on L
since the set of the generalized Hermite functions provides a total set of analytic vectors.
Thus we answered to point (i).

Since the generalized Hermite functions are a total set of analytic vectors for any
I n;m , then the series

P + 1
j =0

(i 2�� ) j

j ! I n;m
j  converges in norm for every  2 L . From this

observation, the fact that the series of coef�cients vn;m , f (1)
n;m and f (2)

n;m are absolutely
convergent and that Qf end Pf leave invariant the domain L , one argues that for all  2 L
the double series which de�nes V� (ps; xs) and W� (ps; xs) are absolutely convergent,
hence the order of the sums can be exchanged. Thus the series appearing on the right-
hand side of (3.74) agrees with V� and W� respectively on the dense domain L . By a
density argument, the equality in (3.74) holds true on the full domain of de�nition of V�

(which is H f) and W� respectively.
In view of the above, we write the “semiclassical expansion” of the symbol H � as:

H � (ps; xs) = � +
+ 1X

j =1

� j H j (ps; xs); H j (ps; xs) := Wj (ps; xs) + Vj (ps; xs) (3.79)

with V1 = 0 .
Proposition 3.4.3 shows that the natural domain for the full symbol H � (ps; xs) is the

domain F of self-adjointness of � . However, if we want to truncate the series (3.79) at
the j -th order, we must be careful in the determination of the domain of de�nition of the
single terms and to control the remainder. Every term in the expansion (3.79) is essen-
tially self-adjoint on L . However, the j -th order term H j is the sum of two homogeneous
polynomials in Qf and Pf (or equivalently in a and ay), Wj of degree j and Vj of degree
j � 2. Since Wj = 0 if A � = 0 , one obtains

deg H j =

(
j; if A � 6= 0
j � 2; if A � = 0

where deg H j means the degree of H j as a polynomial in Qf and Pf . If deg H j > 2 then
the operator H j is not bounded by the principal symbol � , and in this sense it cannot
be considered as a “small perturbation” in the sense of Kato. Moreover, some other
problems appear (see Remark 3.4.9). In order to avoid these problems, we truncate the
expansion (3.79) up to the polynomial term of degree 2, i.e. up to order � 2 if A � = 0 and
up to order � 4 if A � 6= 0 .

Hereafter let \ be the indicator function of the periodic vector potential, de�ned as

\ =

(
0; if A � 6= 0
1; if A � = 0 .
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Let eH \
� (ps; xs) := � +

P 2(1+ \ )
j =1 � j H j (ps; xs), namely

eH 1
� (ps; xs) = � + � 2

+ 1X

n;m = �1

vn;m ei 2� (nps+ mx s)
�

1H f + i2��I n;m +
1
2

(i2� )2� 2I n;m
2
�

(3.80)

eH 0
� (ps; xs) = � + �

+ 1X

n;m = �1

ei 2� (nps+ mx s) �
M 0

n;m + � (i2�M 1
n;m + vn;m 1H f )

�
: (3.81)

We call eH \
� the approximated symbol up to order � 2(1+ \ ) . As a consequence of the Kato-

Rellich theorem we have the following result:

P ROPOSITION 3.4.6. Under Assumption 3.2.1 there exists a constant � 0 such that for
every � < � 0 and for every (ps; xs) 2 R2 the operator eH \

� (ps; xs) (both for \ = 0 or 1) is
self-adjoint on the domain F and bounded from below. Moreover eH \

� 2 S1(B (F ; H f)) .

Proof . As proved in Lemma A.1.2, a and ay are in�nitesimally bounded with respect to
� . This fact and Assumption 3.2.1, which assures the fast decay of the coef�cients vn;m

and gn;m (see (3.78)), imply that the operators

+ 1X

n;m = �1

vn;m ei 2� (nps+ mx s) (1H f + i2��I n;m ) ;
+ 1X

n;m = �1

ei 2� (nps+ mx s) �
M 0

n;m + �v n;m 1H f

�

are in�nitesimally bounded with respect to � and are elements of S1(B (F ; H f)) .
The operators I n;m

2 and M 1
n;m are only bounded (and not in�nitesimally bounded)

with respect to � . First of all it is easy to check that ka] 2
 kH f 6 3k�  kH f for every  2 F ,

where a] means a or ay. Then, for every  2 F ,

kI n;m
2 k2

H f
6 j� n;m j4

�
ka2 kH f + kf a; ayg2 kH f + kay2

 kH f

� 2
6 27

d4


 2 (n2 + m2)2 k�  k2
H f

(3.82)
where we used the inequality (� + � +  )2 6 3(� 2 + � 2 +  2), the identity f a; ayg = 2� and
the bound j� n;m j2 6 d2=
 (n2 � m2) with d2 := maxfj aj; jbjg. Assumption 3.2.1 assures that
the operator � 42� 2 P + 1

n;m = �1 vn;m ei 2� (nps+ mx s) I n;m
2, which appears in (3.80), is bounded

by � by a constant � 4C, with C /
P + 1

n;m = �1 vn;m (n2 + m2), and is in S1(B (F ; H f)) . The

claim for eH 1
� follows from the Kato-Rellich theorem �xing � 0 := C � 1

4 .
The claim for eH 0

� follows in the same way proving an inequality of the type (3.82)
for M 1

n;m = cn;m a2 + cn;m ay2
+ 2< (dn;m )� + �q= (dn;m ) where cn;m := � n;m gn;m and dn;m :=

� n;m gn;m . Observe that the series of coef�cients gn;m decays rapidly, then also the serie
cn;m and dn;m have a fast decay and in particular are bounded. This implies that in the
inequality of type (3.82) we can �nd a global constant which does not depend on n and
m. �

It is useful to have explicit expressions of the �rst terms H j , in terms of a and ay.
From equations (3.79), (3.80) and (3.81), using the Fourier expansion of the derivatives
of V and g := 1=

p
2 (zaf 1 + zbf 2), it is easy to check the following:
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- Case 1: A � = 0 - In this situation

eH 1
� = � + � 2H2 + � 3H3 + � 4H4

with

H2(ps; xs) = V (ps; xs) 1H f (3.83)

H3(ps; xs) = �
1

p
2

h
Dz(V ) a + Dz(V ) ay

i
(3.84)

H4(ps; xs) =
1
4

h
jDz j2(V ) 2� + D 2

z(V ) a2 + D 2
z(V ) ay2

i
(3.85)

where Dz is the differential operator de�ned by Dz :=
�

za
@

@xs
� zb

@
@ps

�
and Dz is obtained

by replacing za and zb with za and zb. Since V is real, Dz(V ) = Dz(V ), which shows
that H3 is symmetric. The explicit expression of the second order differential operator
jDz j2 := Dz � Dz is

jDz j2 =
1


 �

�
jaj2

@2

@x2s
� 2a � b

@2

@xs@ps
+ jbj2

@2

@p2s

�
: (3.86)

For a square lattice jDz j2 coincides with the Laplacian @2
ps

+ @2
xs

.

- Case 2: A � 6= 0 - In this situation

eH 0
� = � + �H 1 + � 2H2

with

H1(ps; xs) = g(ps; xs) a + g(ps; xs) ay (3.87)

H2(ps; xs) = V 1H f �
p

2Dz(g) � �
1

p
2

h
Dz(g) a2 + Dz(g) ay2

i
: (3.88)

In the computation of (3.88) we used the �rst of the gauge conditions (3.44) which assures
that

Dz(g) =
1

p
2
 �

�
jaj2

@f1
@xs

+ a � b
�

@f2
@xs

�
@f1
@ps

�
� j bj2

@f2
@ps

�

is a real function. From the de�nition of g; f 1 and f 2 it follows that

g(a� � r; b� � r ) = �
p

2
Z`
� 0

[(A� )1 � i (A� )2] (r ); (3.89)

namely g is the dimensionless Z2-periodic function related to the � -periodic function
(A� )1 � i (A� )2, up to a multiplicative constant.
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3.4.6 Main result: effective dynamics for strong magnetic �elds

W e need a preliminary estimates on the remainder. The difference R \
� := H � � eH \

�
is a self-adjoint element of S1(B (F ; H f)) , which we call the remainder symbol . To

develop the SAPT for the Harper regime we need to estimate the order of the remainder
symbol. The next result shows essentially that

H � (ps; xs) = eH \
� (ps; xs) + O(� 2(\+1) ); � r H � (ps; xs) � r = � r eH \

� (ps; xs) � r + O(� 2(\+1)+1 );
(3.90)

where

� r :=
mX

i =1

j k i ih k i j (3.91)

is the projection on the subspace spanned by the �nite family of generalized Hermite
functions f  k i g

m
i =1 . In other words, the error done by replacing the true symbol H � with

the approximated symbol eH \
� (which has order 2(\ + 1) in � ) is of the same order of the

approximated symbol, so in this sense eH \
� is not a good approximation for H � . On the

other side, what we need to develop the SAPT is to control the operator � r H � � r , which
is well approximated by � r eH \

� � r up to an error of order 2(\ + 1) + 1 in � .

P ROPOSITION 3.4.7. Let Assumption 3.2.1 hold true. Then R \
� has order O(� 2(\+1) ),

i. e. there exist a constant C such that kR \
� (ps; xs)kB (D;H f ) 6 C� 2(\+1) for all (ps; xs) 2 R2.

Moreover kR \
� � r kB (H f ) = k� r R \

� kB (H f ) 6 C� 2(\+1)+1 ; for all (ps; xs) 2 R2, i.e. R \
� � r , � r R \

�

and [R \
� ; � r ] are B (H f)-valued symbols of order O(� 2(\+1)+1 ).

Proof . (Case \ = 1 ) The explicit expression of the remainder symbol is

R1
� (ps; xs) = � 2

+ 1X

n;m = �1

vn;m ei 2� (nps+ mx s)
�
ei 2��I n;m �

�
1H f + i2��I n;m +

1
2

(i2� )2� 2I n;m
2
��

:

(3.92)
and from (3.92) it follows that kR1

� (ps; xs)kB (D;H f ) 6 � 2 P + 1
n;m = �1 jvn;m j� n;m with

� n;m := sup
 2H fnf 0g






�
ei 2��I n;m �

�
1H f + i2��I n;m +

1
2

(i2� )2� 2I n;m
2
��

� � 1 






H f

k kH f

(3.93)

since k kF := k�  kH f and F = � � 1H f . The operators I n;m are essentially self-adjoint
on L and we denote their closure with the same symbol. Since the operators I n;m

2 are
positive, we can consider the resolvent operators Rn;m := ( I n;m

2 + 1H f )
� 1. Let suppose

that

� n;m (� ) :=






�
ei 2��I n;m �

�
1H f + i2��I n;m +

1
2

(i2� )2� 2I n;m
2
��

Rn;m






B (H f )
6 � (� ); (3.94)

for all n; m 2 Z, with sup� � (� ) < + 1 . Then equation (3.93) would imply

� n;m 6 � (� )

 (I n;m

2 + 1H f ) � � 1



B (H f )
:
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Noticing that I n;m
2 = � n;m

2 a2 + � n;m
2 ay2

+2 j� n;m j2 � and observing that k� � 1kB (H f ) = 2 ,

ka2� � 1kB (H f ) = 1 and kay2
� � 1kB (H f ) = 2

p
2, one deduces from inequality (3.94) that

kR1
� (ps; xs)kB (D;H f ) 6 C1

 
+ 1X

n;m = �1

jvn;m j(jnj + jmj)2

!

� 2� (� ) 6 C2� 2� (� )

for suitable positive constants C1 and C2.
It remains to prove the inequality (3.94) and the estimate on � (� ). By spectral calcu-

lus one has that � n;m (� ) = sup t2 � (I n;m ) jZ � (t)j 6 supt2 R jZ � (t)j =: � (� ) where

Z � (t) := 4 � 2� 2
ei 2��t �

�
1 + i2��t �

1
2

(2��t )2
�

(2��t )2 + 4 � 2� 2 :

After some manipulations and the change of variable � := 2 ��t one has that

G� (� ) :=
1

4� 4� 4

�
�
�Z �

� �
2��

� �
�
�
2

6
� 4 + 4 � 2 cos(� ) � 8� sin(� ) � 8 cos(� ) + 8

� 4 < C 3:

Thus � (� )2 = 4 � 4� 4 sup� 2 R G� (� ) 6 4� 4C3� 4, hence kR1
� (ps; xs)kB (D;H f ) 6 C� 4. This con-

cludes the �rst part of the proof.

Since kR1
� � r kB (H f ) 6

P m
i =1 kR1

� j k i ih k i jkB (H f ) , then it is enough to show that for any
Hermite vector  k the inequality kR1

� j k ih k jkB (H f ) 6 Ck � 5 holds true. Observing that
kR1

� j k ih k jkB (H f ) = kR1
�  kkH f , one deduces

lim
� ! 0

� � 5kR1
� j k ih k jkB (H f ) = lim

� ! 0








+ 1X

n;m = �1

vn;m ei 2� (nps+ mx s)

0

@
+ 1X

j =3

(i2� ) j � j � 3

j !
I n;m

j

1

A  k








H f

6
4
3

� 3
+ 1X

n;m = �1

jvn;m j kI n;m
3 kkH f 6

32
3

� 3C0kay3
 kkH f =

32
3

p
(k + 3)! � 3C0 =: Ck

where C0 :=
P + 1

n;m = �1 jvn;m j j � n;m j3 is �nite in view of Assumption 3.2.1.
This shows that for all � 2 [0; � 0) (for a suitable � 0 > 0) the norm kR1

� j k ih k jkB (H f )

is bounded by Ck � 5 and so it follows that kR1
� � r kB (H f ) 6 mC� 5 with C := max 1;:::;m f Ck i g.

Finally k� r R1
� kB (H f ) = k(R1

� � r )ykB (H f ) = kR1
� � r kB (H f ) .

(Case \ = 0 ) The proof proceeds as in the previous case. Divide the remainder symbol
in two terms R0

� = R0
0 + R0

1 where:

R0
0(ps; xs) := �

+ 1X

n;m = �1

ei 2� (nps+ mx s)
�

ei 2��I n;m � 1H f � i 2��I n;m

�
M 0

n;m

R0
1(ps; xs) := � 2

+ 1X

n;m = �1

vn;m ei 2� (nps+ mx s)
�

ei 2��I n;m � 1H f

�
:

The control of R0
1 is easy, indeed kR0

1kB (D;H f ) 6 2kR0
1kB (H f ) 6 4C� 2 where C :=

P + 1
n;m = �1 jvn;m j.

Moreover (with the same technique used for the case \ = 1 ), one can check that for any
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Hermite vector  k the function t1(� ) := 1
� 3 kR0

1(ps; xs) kkH f is bounded by a constant
Ck > 0 in a suitable interval [0; � 0). This assures that kR0

1 � r kB (H f ) is of order O(� 3).
To control R0

0 we need to estimate � n;m := k
�
ei 2��I n;m � 1H f � i 2��I n;m

�
M 0

n;m � � 1kB (H f ) .
Let R0

n;m be the resolvent (I n;m + i1H f )
� 1. It is easy to check that k(I n;m + i1H f )M

0
n;m � � 1kB (H f )

is bounded by a linear expression in jnj and jmj. Indeed, as proved in Proposition
3.4.6, both M 0

n;m and M 1
n;m are bounded by � . Finally, by means of spectral calculus

k
�
ei 2��I n;m � 1H f � i 2��I n;m

�
R0

n;m k2
B (H f )

is bounded by the maximum in � of the function

F� (� ) := 4 � 2� 2 � 2 � 2� sin � � 2 cos� +2
� 2 .

The last part follows observing that M 0
n;m is a linear combinations of a and ay and

so they act splitting a Hermite vector  k as ck
n;m  k� 1 + dk

n;m  k+1 where, for a �xed

k, the coef�cients depend on f (j )
n;m . To conclude the proof it is suf�cient to notice that

t0(� ) := 1
� 2 k

�
ei 2��I n;m � 1H f � i 2��I n;m

�
 kkH f is bounded by a constant Ck > 0 in a suit-

able interval [0; � 0). �

We are now in position to derive the adiabatically decoupled effective dynamics We
recall that the Weyl quantization of the symbol H � is the Hamiltonian (3.61), namely
Op� (H � ) = H W . As for the approximated symbol eH \

� , we pose eH \ := Op� ( eH \
� ). Both H W

and eH \ are bounded operators from L 2(R; dxs) 
 F to H w := L 2(R; dxs) 
 H f .

T HEOREM 3.4.8. Let Assumption 3.2.1 be satis�ed. Let f � n (�)gn2I , with I = f n; : : : ; n +
m � 1g, be a family of Landau bands for � and let � r :=

P
n2I j n ih n j be the spectral

projector of H0 = � corresponding to the set f � n (ps; xs)gn2I . Then:

1. Almost-invariant subspace: there exists an orthogonal projection � \
� 2 B (H w), with

� \
� = Op� (� ) + O0(� 1 ), � (ps; xs) �

P 1
j =0 � j � j (ps; xs), and � 0(ps; xs) � � r , such that

[ eH \ ; � \
� ] = O0(� 1 ); [H W ; � \

� ] = O0(� 2(\+1)+1 ): (3.95)

2. Effective dynamics: let � r := 1H s 
 � r 2 B (H w) and K := Im � r ' L 2(R; dxs) 
 Cm .
Then there exists a unitary operator U \

� 2 B (H w) such that

(i) U \
� = Op� (u)+ O0(� 1 ), where the symbol u �

P 1
j =0 � j uj has principal part u0 � 1H f ;

(ii) � r = U \
� � \

� U \
�

� 1
;

(iii) Let h\ in S1(B (H f)) be a resummation of the formal symbol u]�] eH \
� ]�]u y and de�ne

the effective Hamiltonian by H �
eff := Op� (h\ ). Since [H �

eff ; � r ] = 0 , H �
eff is a bounded

operator on K. Then

U \
� � \

� H W � \
� U \

�
� 1

= H �
eff + O0(� 2(\+1)+1 ) 2 B (K): (3.96)

2'. Effective dynamics for a single Landau band when A � = 0 : Consider a single
Landau band � � (�) = � � , so that � r = j � ih � j. Then, up to the order � 4, one has that

H �
eff = � � 1H s + � 2 V(Ps; Qs) + � 4 � �

2
Y(Ps; Qs) + O0

�
� 5�

(3.97)
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where V (Ps; Qs) := Op� (V ) is the Weyl quantization of the Z2-periodic function V (ps; xs)
related to the � -periodic potential V� , while Y (Ps; Qs) := Op� (jDz j2(V )) is the Weyl quan-
tization of the function jDz j2(V )(ps; xs) de�ned through the differential operator (3.86).

The derivation of the effective dynamics when A � 6= 0 will be considered in Section
3.4.8.

Proof of Theorem 3.4.8

Step 1. Almost-invariant subspace

As explained in the �rst part of proof of the Theorem 3.3.14 one constructs a formal
symbol � (the Moyal projection ) such that: (i) �]� � � ; (ii) � y = � ; (iii) eH \

� ]� � �] eH \
� . Such

a symbol � �
P 1

j =0 � j � j is constructed recursively order by order starting from � 0 = � r

and eH \
� and it is unique (Panati et al. 2003b, Lemma 2.3). The recursive relations are

� n := � D
n + � OD

n (3.98)

where the diagonal part is � D
n := � r Gn � r + ( 1H f � � r )Gn (1H f � � r ) with

Gn :=

2

4

0

@
n� 1X

j =0

� j � j

1

A ]

0

@
n� 1X

j =0

� j � j

1

A �

0

@
n� 1X

j =0

� j � j

1

A

3

5

n

: (3.99)

The off-diagonal part is de�ned by the implicit relation [H0; � OD
n ] = � Fn where

Fn :=

2

4 eH \
� ]

0

@
n� 1X

j =0

� j � j + � n � D
n

1

A �

0

@
n� 1X

j =0

� j � j + � n � D
n

1

A ] eH \
�

3

5

n

: (3.100)

The uniqueness allows us to construct � only locally and this local construction is
explained in the second part of Lemma 2.3 in (Panati et al. 2003b). In our case we
can choose a (ps; xs)-independent positively oriented complex circle � � C, symmetric
with respect to the real axis, which encloses the family of (constant) spectral bands
f � n (�) = � ngn2I and such that dist (� ; � (H0)) > 1

2 (see Figure 3.2). For all � 2 � we
construct recursively the Moyal resolvent (or parametrix ) R\ (� ; �) :=

P 1
j =0 � j R\

j (� ; �) of
eH \

� , following the same technique explained during the proof of Theorem 3.3.14. The
approximants of the symbol � are related to the approximants of the Moyal resolvent by

the usual Riesz formula � j (z) :=
i

2�

H
� d� R \

j (� ; z) where z := ( ps; xs) 2 R2. Some care

is required to show (iii) since, by construction, eH \
� ]� takes values in B (H f) while �] eH \

�
takes values in B (F ). To solve this problem one can use the same argument proposed in
Lemma 7 of (Panati et al. 2003a).

The technical and new part of the proof consist in showing that � 2 S1(B (H f)) \
S1(B (H f ; F )) . The Riesz formula implies k(@�

z � j )(z)k[ 6 2� sup� 2 � k@�
z R\

j (� ; z)k[ for all
� 2 N2 ([ means either B (H f) or B (H f ; F ) and @�

z := @� 1
ps

@� 2
xs

) since � does not depend

on z. Then we need only to show that R\
j (� ; �) 2 S1(B (H f)) \ S1(B (H f ; F )) . The choice
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of � assures kR\
0(� ; z)kB (H f ) = k(� � � 1H f )

� 1kB (H f ) 6 2. Moreover @�
z R\

0(� ; z) = 0 for all

� 6= 0 and this implies that R\
0 2 S1(B (H f)) uniformly in � . Since kR\

0(� ; z)kB (H f ;F ) =

k�(� � � 1H f )
� 1kB (H f ) 6 1 one concludes that R\

0 2 S1(B (H f ; F )) uniformly in � .

By means of equation (3.35), one has R\
j = � R\

0L \
j where L \

j is the j -th order obstruc-

tion for R\
0 to be the Moyal resolvent. In view of this recursive relation, the proof of

R\
j 2 S1(B (H f)) for all j 2 N is reduced to show that L \

j 2 S1(B (H f)) for all j 2 N.
The �rst order obstruction, computed by means of (3.36), is

L \
1(� ; z) = � � 1[( eH \

� (z) � � 1H f )]R
\
0(� ; z) � 1H f ]1 = H1(z) R\

0(� ; z) �
i
2

f �; R\
0(� ; z)gps;x s:

Since � and R\
0 do not depend on z 2 R2 it follows that L \

1 = H1R\
0. The operator H1 is

linear in a and ay (with all its derivative) if \ = 0 or H1 = 0 if \ = 1 . In both cases H1

(with its derivatives) is in�nitesimally bounded with respect to � (Lemma A.1.2). This
shows that L \

1 2 S1(B (H f)) (but not in S1(B (H f ; F )) if \ = 0 ).
We proceed by induction assuming that L \

j 2 S1(B (H f)) for all j 6 m 2 N. The (m+1) -

th order obstruction L \
m+1 can be computed by means of equation (3.36) and the Moyal

formula for the expansion of ] (Teufel 2003, equation (A.9)). After some manipulations,
one gets

L \
m+1 (� ; z) =

1
(2i )m+1

X

� 1+ � 2+ r + l= m+1

06 l6 m; 06 r 6 2(\+1)

(� 1)j � j+1

� 1!� 2!

�
@� 1

xs
@� 2

ps
H r R\

0

�
(� ; z)

�
@� 1

ps
@� 2

xs
L \

l

�
(� ; z):

Since H r R\
0 2 S1(B (H f)) uniformly in � (c.f. Remark 3.4.9) then L \

m+1 2 S1(B (H f)) , and
this concludes the inductive argument.

Finally to prove R\
j 2 S1(B (H f ; F )) , observe that k@�

z R\
j kB (H f ;F ) = k� R\

0 (@�
z L \

j )kB (H f ) 6

C� k� R\
0kB (H f ) 6 + 1 for all j; � 2 N.

R EMARK 3.4.9. It clearly emerges from the proof that the order � 2(\+1) is the best ap-
proximation which can be obtained with this technique. The obstruction is the condition
H r R\

0 2 S1(B (H f)) , which can be satis�ed by the resolvent R\
0 := (� � � 1f) � 1 only for

0 6 r 6 2(\ + 1) . ��

Proposition A.9 of (Teufel 2003) assures that eH \
� ]� 2 S1(B (H f)) and, by adjoint-

ness, also �] eH \
� 2 S1(B (H f)) . By construction [ eH \ ; Op� (� )] = Op� ([ eH \

� ; � ]] ) = O0(� 1 )
where [ eH \

� ; � ]] := eH \
� ]� � �] eH \

� = O(� 1 ) denotes the Moyal commutator . Observing
that [H � ; � ]] = [ eH \

� + R \
� ; � ]] = [ R \

� ; � ]] + O(� 1 ) and since Proposition 3.4.7 implies
[R \

� ; � ]] = [ R \
� ; � r ] + O(� 2(\+1)+1 ) = O(� 2(\+1)+1 ), it follows [H � ; � ]] = O(� 2(\+1)+1 ) which

implies after the quantization [H W ; Op� (� )] = O0(� 2(\+1)+1 ).
The last step is to obtain the true projection � \

� (the super-adiabatic projection ) from
Op� (� ) by means of the formula (3.38). Since � \

� � Op� (� ) = O0(� 1 ), one recovers the
estimates (3.95).
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Step 2. Construction of the intertwining unitary

The construction of the intertwining unitary follows as in the proof of Theorem 3.1 of
(Panati et al. 2003b). Firstly one constructs a formal symbol u �

P 1
j =0 � j uj such that: (i)

uy]u = u]u y = 1H f ; (ii) u]�]u y = � r .
The existence of such a symbol follows from a recursive procedure starting from

u0 (which can be �xed to be 1H f in our speci�c case) and using the expansion of � �
P 1

j =0 � j � j obtained above. However, the symbol u which comes out of this procedure is
not unique. The recursive relations are

un := an + bn with an := �
1
2

An ; bn := [ � r ; Bn ] (3.101)

where

An :=

2

6
4

0

@
n� 1X

j =0

� j uj

1

A ]

0

@
n� 1X

j =0

� j uj

1

A

y

� 1H f

3

7
5

n

(3.102)

and

Bn :=

2

6
4

0

@
n� 1X

j =0

� j uj + � nan

1

A ]�]

0

@
n� 1X

j =0

� j uj + � nan

1

A

y

� � r

3

7
5

n

(3.103)

Since u0 = 1H f 2 S1(B (H f)) , then it follows by induction that uj 2 S1(B (H f)) for all
j 2 N.

The quantization of u is an element of B (H w) but it is not a true unitary. Neverthe-
less Op� (u) can be modi�ed by an O0(� 1 ) term using the same technique of Lemma 3.3
(Step II) in (Panati et al. 2003b) to obtain the true unitary U \

� .

Step 3. Effective dynamics

By construction [H �
eff ; � r ] = Op� ([h\ ; � r ]] ) = [ U \

� � \
�

eH \
� � \

� U \
�

� 1
; � r ] = 0 since � r = U \

� � \
� U \

�
� 1

.

Moreover equation (3.96) follows observing that U \
� � \

� H W � \
� U \

�
� 1

� H �
eff coincides with

the quantization of u]�] R \
� ]�]u y which is a symbol of order O(� 2(\+1)+1 ).

Step 4. The case of a single Landau band when A � = 0

We need to expand the Moyal product h\ =1 = u]�] eH 1
� ]�]u y = � r ]u] eH 1

� ]u y]� r + O(� 1 ) up
to the order � 4. To compute the various terms of the expansion h\ =1 �

P 1
j =0 � j hj it is

useful to de�ne � j := [ u] eH 1
� ]u y]j , so that hj = � r � j � r . Observing that

u] eH 1
� �

0

@
m� 1X

j =0

� j � j

1

A ]u =

0

@u] eH 1
� ]u y �

m� 1X

j =0

� j � j

1

A ]u + O(� 1 ) = � m � m + O(� m+1 )

one obtains the useful formula

� m =

2

4u] eH 1
� �

0

@
m� 1X

j =0

� j � j

1

A ]u

3

5

m

: (3.104)
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At the zeroth order one �nds h0 = � 0 u0 H0 uy
0 � 0 = � r � � r = � � � r since u0 = 1H f and

� 0 = � r . Its quantization is the operator Op � (h0) = � � 1H s acting on K = L 2(R; dxs).
As for the �rst order ( m = 1 ), � 1 = u1H0 + u0H1 � � 0u1 + [ u0]H 0]1 � [� 0]u 0]1 = [ u1; �]

since � 0 = u0H0u� 1
0 = � and H1 = 0 . Then h1 = � r [u1; �] � r = � � (� r u1� r � � r u1� r ) = 0 ,

hence Op� (h1) = 0 .
At the second order ( m = 2 ), one obtains after some manipulations � 2 = H2 + u2 � �

� u2 � � 1 u1 which implies h2 = � r H2� r � � r � 1u1� r . We need to compute u1. Using
equations (3.101), (3.102) and (3.103) one obtains that � 2a1 :=

�
u0]u 0

y � 1H f

�
1 = 0 and

b1 := [ � r ; B1] with B1 = [ u0]�]u 0
� � � r ]1 = � 1 since a1 = 0 . To compute � 1 we use equations

(3.98), (3.99) and (3.100). Since G1 = [ � r ]� r � � r ]1 = 0 it follows that � D
1 = 0 . In the case

of a single energy band in the relevant part of the spectrum, the implicit relation which
de�nes � OD

n can be solved, obtaining the useful equation

� OD
n = � r Fn (� � � � 1H f )

� 1(1H f � � r ) � (1H f � � r )(� � � � 1H f )
� 1Fn � r : (3.105)

Since F1 = [ eH 1
� ]� r � � r ] eH 1

� ]1 = H1� r � � r H1 = 0 , being H1 = 0 , it follows B1 = � 1 = � OD
1 = 0

and consecutively u1 = b1 = 0 . Then h2 = � r H2 � r = V � r , according to (3.83), and its
quantization de�nes on K the operator Op � (h2) = V (Ps; X s).

Considering (3.104) at the third order ( m = 3 ) and using u1 = 0 , one obtains after
some computations � 3 = H3 + u3 � � � u3 � � 1 u2 which implies h3 = � r H3 � r � � r � 1 u2 � r .
Thus we need to compute u2. Since u1 = 0 , it follows � 2a2 = [ u0]u 0

y � 1H f ]2 = 0 ,
B2 = [ u0]�]u 0

y � � r ]2 = � 2 and b2 = [ � r ; � 2]. Since � 1 = 0 , one has that G2 = [ � r ]� r �
� r ]2 = 0 which implies � D

2 = 0 . To compute � OD
2 we need F2 = [ eH 1

� ]� r � � r ] eH 1
� ]2 =

[H2; � r ] = [ 1H f ; � r ] = 0 , where H2 = V 1H f has been used. Then B2 = � 2 = � OD
2 = 0

and consequently u2 = b2 = 0 . Therefore h3 = � r H3� r , and equation (3.84) implies that
� r H3� r = 0 in view of � r a� r = h � jaj � i � r = 0 and similarly for ay. Then Op � (h3) = 0 .

To compute the fourth order, we do not need to compute u3 and � 3. Indeed, by com-
puting (3.104) at the fourth order ( m = 4 ) one �nds � 4 = H4 + u4 � � � u4 + u3 H1 � � 3 u1 =
H4 + u4 � � � u4 since H1 = u1 = u2 = 0 . Then h4 = � r H4� r = � �

2 jDz(V )j2 � r , according to
equation (3.85), and its quantization yields Op � (h4) = � �

2 Y(Ps; Qs).

R EMARK 3.4.10. In the derivation of the effective dynamics, one realizes that � = � r +
O(� 3) and u = 1H f + O(� 3). To �nd a non trivial correction we need to compute the third
order. Let u3 = a3 + b3 and � 3 = � D

3 + � OD
3 . Since u1 = u2 = 0 then � 2a3 = 0 . Moreover

b3 = [ � r ; B3] with B3 = � 3 since a3 = 0 . Since � 1 = � 2 = 0 one has that G3 = 0 which
implies � D

3 = 0 . To compute � OD
3 we need F3 = [ eH 1

� ]� r � � r ] eH 1
� ]3 = [ H3; � r ] since H2 and

its derivatives commute with � r . Now � r � 3(1H f � � r ) = � r F3(� � � � 1H f )
� 1(1H f � � r ) =

� � r H3(� � � � 1H f )
� 1(1H f � � r ) which implies

� 3 = � OD
3 = � (1H f � � r )(� � � � 1H f )

� 1H3� r � � r H3(� � � � 1H f )
� 1(1H f � � r )

u3 = b3 = ( 1H f � � r )(� � � � 1H f )
� 1H3� r � � r H3(� � � � 1H f )

� 1(1H f � � r ):

To give an explicit representation of � = � r + � 3� 3 + O(� 4) and u = 1H f + � 3u3 + O(� 4)

we denote with H (3)
� � H f the three-dimensional vector space spanned by the three
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Hermite vectors  � +1 ,  � and  �� 1. Using the decomposition H f = H (3)
� � H (3)

�
?

and
setting f  � +1 ;  � ;  �� 1g as canonical basis of H (3)

� ' C3 one has that

� 3 =

0

B
@

0 ! � 0
! � 0 � � �

0 � � � 0

1

C
A � 0; u3 =

0

B
@

0 � ! � 0
! � 0 � � �

0 � � 0

1

C
A � 0; (3.106)

where ! � (ps; xs) :=
p

2(n � +1)
3 Dz(V )(ps; xs) and � � (ps; xs) :=

p
2n� Dz(V )(ps; xs) according

to the notation of (3.84). ��

3.4.7 Harper-like Hamiltonians

T he �rst term in (3.97) is a multiple of the identity, and therefore does not contribute
to the dynamics as far as the expectation values of the observables are concerned.

The leading term, providing a non-trivial contribution to the dynamics at the original
microscopic time scale s / � 2� , is the bounded operator V (Ps; Qs) acting on the refer-
ence Hilbert space L 2(R; dxs). This operator is the Weyl quantization of the Z2-periodic
smooth function V de�ned on the classical phase space R2. Hereafter we write xs � x to
simplify the notation.

The quantization procedure can be reformulated by introducing the unitary opera-
tors U1 := e� i 2�Q and V1 := e� i 2�P (Harper unitaries ), acting on H 1 := L 2(R; dx) as

(U1  )(x) = e� i 2�x  (x); (V1  )(x) =  (x � �q� 1 ) (3.107)

where � 1 B := hB = 2 �� 2.

For any Z2-periodic function

F (p; x) =
+ 1X

n;m = �1

f n;m e� i 2� (np+ mx )

whose Fourier series is uniformly convergent, the hB -Weyl quantization of F is given by
the formula

bF (U1 ; V1 ) =
+ 1X

n;m = �1

f n;m e� i�nm (� q � 1 ) Vn
1 Um

1 : (3.108)

where the fundamental commutation relation U1 V1 = e� i 2� (� q � 1 ) V1 U1 has been used.
Formula (3.108) de�nes a Harper-like Hamiltonian with deformation parameter � �q � 1

(c.f. Sections 2.1 and 2.3).
In analogy with Section 3.3.7, we summarize the discussion in the following conclu-

sion.

CONCLUSION 3.4.11. Under the assumptions of Theorem 3.4.8, for every V� 2 C1
b (R2; R),

in the Harper regime ( hB ! 0), the dynamics generated by the Hamiltonian HBL (2.1) re-
stricted to the spectral subspace corresponding to a Landau level � � is approximated up
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to an error of order � 1 := hB (and up to a unitary transform and an energy rescaling)
by the dynamics generated on the reference Hilbert space H 1 := L 2(R; dx) by a Harper-
like Hamiltonian, i.e. by a power series in the Harper unitaries U1 and V1 , de�ned by
(3.107).

3.4.8 Coupling of Landau bands in a periodic magnetic potential

A ccording to Theorem 3.4.8, the �rst non-trivial term which describes the effective
dynamics in the almost invariant subspace related to a single Landau band � � is

of order � 2 / hB . An important ingredient in the proof is that A � = 0 implies H1 = 0 .
Moreover, the second non-trivial correction appears at order � 4 / hB

2 although H3 6= 0 .
Indeed, the correction at order � 3 vanishes since H3, de�ned by (3.84), is linear in a and
ay, hence h � jH3j � i = 0 . This observation suggests that for a family of Landau bands
which contains two contiguous bands f � � ; � � +1 g one has, in general, a second non-trivial
correction of order � 3 / hB

3
2 for the effective dynamics. Indeed, in this case one has

� r H3� r 6= 0 since h � jH3j � +1 i is generally non zero. Nevertheless, also in this case, the
�rst non-trivial correction is of order � 2.

Is there any mechanism to produce a non-trivial correction in the effective dynamics
with leading order � / hB

1
2 ? An af�rmative answer requires H1 6= 0 , and the latter

condition is satis�ed if we include in the Hamiltonian HBL the effect of a � -periodic
vector potential A � (i.e. \ = 0 ). Since in this situation H1 is linear in a and ay, to obtain
a non-trivial effect we need to consider a spectral subspace which contains at least two
contiguous Landau bands.

Our goal is to derive the (non-trivial) leading order for the effective Hamiltonian in
this framework. According to the notation of Theorem 3.4.8, we need to expand the
Moyal product h\ =0 = u]�] eH 0

� ]�]u y = � r ]u] eH 0
� ]u y]� r + O(� 1 ) up to the �rst order � . The

symbols � = � r + O(� ) and u = 1H f + O(� ) are derived as in the general construction
showed in the proof of Theorem 3.4.8. Now K := Im � r ' L 2(R; dxs) 
 C2.

Expanding at zero order one �nds h0 = � 0 u0 H0u� 1
0 � 0 = � r � � r = � r � = � � r and its

quantization is the operator on K de�ned by

Op� (h0) =

 �
n� + 3

2

�
1H s 0

0
�
n� + 1

2

�
1H s

!

= ( n� + 1) 1K +

 
1
21H s 0

0 � 1
21H s

!

(3.109)

As for the next order, from equation (3.104) it follows � 1 = H1 + u1H0 � H0u1 (we use
� 0 = H0) which implies h1 = � r � 1� r = � r H1 � r + � r [u1; �] � r . To conclude the computation
we need u1 and � 1. Using the recursive formulas (3.98), (3.99), (3.100), (3.101), (3.102)
and (3.103), one obtains � 2a1 :=

�
u0]u 0

y � 1H f

�
1 = 0 , b1 := [ � r ; B1] and B1 = [ u0]�]u 0

� �
� r ]1 = � 1 since a1 = 0 . Observing that G1 = [ � r ]� r � � r ]1 = 0 , it follows that � D

1 = 0 and so
u1 = [ � r ; � 1] = [ � r ; � OD

1 ] which implies � r u1� r = 0 . Finally � r [u1; �] � r = � r [u1; � r � � r ]� r = 0
and so h1 = � r H1� r . According to (3.87) the quantization of h1 is an operator which acts
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on K as

Op� (h1) =
p

n� + 1

0

B
@

0 G(Ps; Qs)

G(Ps; Qs)y 0

1

C
A (3.110)

where the operator G(Ps; Qs) is de�ned on L 2(R; dxs) as the Weyl quantization of the Z2-
periodic function g de�ned by equation (3.89). Summarizing, we obtained the following
result:

T HEOREM 3.4.12 (Effective Hamiltonian with a periodic magnetic potential) . Under
the assumptions of Theorem 3.4.8, in the case A � 6= 0 the dynamics in the spectral sub-
space related to a family of two contiguous Landau bands f � � + j (�) = � � + j j j = 0 ; 1g
is approximated by the effective Hamiltonian H �

eff := Op� (h(\ =0) ) on the reference space
K = L 2(R; dxs) 
 C2 which is given, up to errors of order � 2, by

H �
eff = ( n� + 1) 1K +

p
n� + 1

0

B
@

1
2
p

n � +1
1H s � G(Ps; Qs)

� G(Ps; Qs)y � 1
2
p

n � +1
1H s

1

C
A + O0

�
� 2�

; (3.111)

according to the notation introduced in (3.109) and (3.110).

Equation (3.89) shows that g(ps; xs) = g1(ps; xs) � ig2(ps; xs) where the function g1 and
g2 are related to the component (A� )1 and (A� )2 of the � -periodic vector potential by the
relation gj (a� � r; b� � r ) = �

p
2Z`

� 0
(A� ) j (r ), j = 1 ; 2. Let Gj (Ps; Qs) be the Weyl quantization

of gj . By introducing the Pauli matrices

� 1 =

 
0 1
1 0

!

; � 2 =

 
0 � i
i 0

!

; � ? =

 
1 0
0 � 1

!

(3.112)

one can rewrite the effective Hamiltonian (3.111) in the form

H �
eff =

�
(n� + 1) 1C2 +

1
2

� ?

�

 1H s + �

p
n� + 1

2X

j =1

� j 
 Gj (Ps; Qs) + O0
�
� 2�

: (3.113)

Clearly, the operator Gj (Ps; Qs) are Harper-like Hamiltonians and can be represented
as a power series of the Harper unitaries U1 and V1 of type (3.108). In this case the
coef�cients in the expansion are (up to a multiplicative constant) the Fourier coef�cients
of the components (A� ) j of the � -periodic vector potential.

The determination of the spectrum of H �
eff can be reduced to the (generally simpler)

problem of the computation of the spectrum of GGy.

P ROPOSITION 3.4.13. Let H � =1
eff be the �rst order approximation of the effective Hamil-

tonian (3.111) (or (3.113)). Then

� (H � =1
eff ) = ( n� + 1) + S+ [ S� ; S� := f�

p
1=4 + � 2(n� + 1) � : � 2 � (GGy)g

where � (GGy) = � (GGy) [ f 0g if f 0g 2 � (GyG) n � (GGy) and � (GGy) = � (GGy) otherwise.
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Proof . We give only a sketch of the proof. The term (n� + 1) 1K shifts the spectrum by a
constant value (n� +1) , then we can consider only the spectrum of B := H � =1

eff � (n� +1) 1K .
A simple computation shows that

B2 =

 
1
21H s �

p
n� + 1 G

�
p

n� + 1 Gy � 1
21H s

! 2

=
1
4

1K + � 2(n� + 1)

 
GGy 0
0 GyG

!

which implies that � (B2) = f 1=4 + � 2(n� + 1) � : � 2 � (GGy) [ � (GyG)g. The operators
GGy, GyG and B are bounded and self-adjoint. To show that � (GGy) n f 0g = � (GyG) n f 0g,
let � 2 � (GGy) with � 6= 0 and f  ngn2 N � H s n Ker (Gy) be a sequence of non zero
vectors such that k(GGy � � ) nkH s ! 0 (Weyl's criterion ), then k(GyG � � )Gy nkH s 6
kGykB (H s)k(GGy � � ) nkH s ! 0. This implies that � (GGy) [ � (GyG) = � (GGy). Now let
" � (� ) := �

p
1=4 + � 2(n� + 1) � with � 2 � (GGy) and f  ngn2 N a sequence of generalized

eigenvectors for GGy relative to � . Then 	 (� )
n := (( 1=2 + " � ) n ; �

p
n� + 1Gy n ) 2 H s 
 C2 is

a sequence of generalized eigenvectors for B relative to " � . �



Chapter 4

Bloch-Floquet transform and emerging geometry

Diviser chacune des dif�cultés que j'examinerais, en
autant de parcelles qu'il se pourrait, et qu'il serait requis
pour les mieux résoudre.

(Divide each dif�culty into as many parts as is feasible
and necessary to resolve it.)

René Descartes
Discours de la méthode, 1637

Abstract

We investigate the relation between the symmetries of a quantum system and its topo-
logical quantum numbers, in a general C � -algebraic framework. We prove that, un-
der suitable assumptions on the symmetry algebra, there exists a generalization of the
Bloch-Floquet transform which induces a direct-integral decomposition of the alge-
bra of observables. Such generalized transform selects uniquely the set of “continuous
sections” in the direct integral, thus yielding a Hilbert bundle. The proof is construc-
tive and yields an explicit description of the �bers. The emerging geometric structure
provides some topological invariants of the quantum system. In greater detail, the
content of the paper is the following: Section 4.1 provides the the basic notions of
physical frame and G-algebra; Section 4.2 contains some simple guiding examples;
Section 4.3 and 4.4 are devoted to review the von Neumann's complete spectral the-
orem and the Maurin's nuclear spectral theorem; Section 4.5 concerns the notion of
wandering property for a commutative C � -algebra generated by a �nite family of op-
erators; Section 4.6 provides a formula which generalizes Bloch-Floquet transform to
the case of aZN -algebra which satis�es the wandering property; Section 4.7 is devoted
to show how a non trivial topology (and geometry) emerges in a canonical and essen-
tially unique way from the decomposition induced by the generalized Bloch-Floquet
transform.

4.1 Motivation for a “topological” decomposition

T opological quantum numbers play a prominent rôle in solid-state physics (Thouless
1998) A typical way to compute a topological quantum number in presence of sym-

metries is to �brate the C � -algebra of physical observables, and the Hilbert space where
it is represented, with respect to the action of an abelian symmetry group. The proto-
typical example is provided by periodic systems and the usual Bloch-Floquet transform.
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E XAMPLE 4.1.1 (Periodic systems, intro ). The electron dynamics in a periodic crystal is
generated by

Hper := �
1
2

� + V� (4.1)

de�ned on a suitable domain (of essential self-adjointness) in the “physical” Hilbert
space H phy := L 2(Rd; ddx). The periodicity of the crystal is described by the lattice

� := f  2 Rd :  =
dX

j =1

nj  j ; nj 2 Zg ' Zd

where f  1; : : : ;  dg is a linear basis of Rd. The potential V� is � -periodic, i.e. V� ( � �  ) =
V� ( � ) for all  2 � . The Zd-symmetry is implemented by the translation operators
f T1; : : : ; Tdg, (Tj  )(x) :=  (x �  j ). One de�nes the Bloch-Floquet transform 1 (Kuchment
1993), initially for  2 S(Rd) (Schwartz space), by posing

(UBF  )(k; � ) :=
X

 2 �

e� i �k �
Tn j

j  
�
(� ); (k; � ) 2 Rd � Rd; (4.2)

where  =
P

j nj  j . De�nition (4.2) extends to a unitary operator

UBF : H phy �!
Z �

B
H(k) ddk (4.3)

where ddk := dd k=(2� )d , B ' Td is the fundamental cell of the dual lattice � � or Brillouin
zoneand

H(k) :=
�

' 2 L 2
loc(Rd; dd� ) : ' (� +  ) = eik � ' (� ) 8 2 �

	
:

In this representation, the Fermi projector P� = E(�1 ;� ) (Hper) is a decomposable oper-
ator, in the sense that UBF P� UBF

� 1 =
R�

B P(k) dk. Thus, under the assumption that �
lies in a spectral gap, the Fermi projector de�nes (canonically) a complex vector bundle
over B, whose �ber at k 2 B is Im P(k) � H (k) (called Bloch bundle in (Panati 2007)).
Some geometric properties of this vector bundle are physically measurable: for example,
for d = 2 , the Chern number corresponds to the transverse conductance (measured in
suitable units). As far as the time-reversal symmetric Hamiltonian (4.1) is concerned,
such Chern number is zero; however, the generalization of this procedure to the case of
magnetic translations is relevant in the understanding of the QHE. JB

This chapter addresses the following questions:

(Q-I) to which extent is it possible to generalize the Bloch-Floquet transform? how gen-
eral is the decomposition procedure outlined above?

(Q-II) how does the topology (geometry) of the decomposition emerge? is there an explicit
procedure to construct such geometric structure?

1We point on the fact that the Bloch-Floquet transform UBF de�ned by equation (4.2) differs from its
modi�ed version Z (sometime called Zack transform ) de�ned in Section 3.3.2 by equation (3.11). The com-
parison between UBF and Z is discussed in (Panati 2007).
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(Q-III) to which extent is this topological information unique? More precisely, does it de-
pend on the Hilbert space representation of the algebra of observables?

As for question (Q-III), we observe that the datum of a C � -algebra and a symme-
try group does not characterize the topological information. For instance the Hofstadter
and Harper representation of the NCT-algebra, although isomorphic (Section 2.3) are not
unitarily equivalent (Section 2.6). Both representations can be �bered with respect to a
Z2-symmetry, but the corresponding Chern numbers are different (Section 2.8). This ob-
servation leads naturally to investigate the last question above, which can be rephrased
as: under which conditions two isomorphic representations of a C � -algebra induce the
same topological invariants? The long-term goal is to understand how and under which
conditions the symmetries of a physical system are related to observable effects whose
origin is geometric (e.g. topological quantum numbers).

Our stage is a general framework: H is a separable Hilbert space which corresponds
to the physical states; A � B (H) is a C � -algebra of bounded operators on H which
contains the relevant physical models (the self-adjoint elements of A can be thought of
as Hamiltonians); the commutant A0(the set of all the elements in B (H) which commute
with A) can be thought of as the set of all the physical symmetries with respect to the
physics described by A; any commutative unital C � -algebra S � A0 describes a set of
simultaneously implementable physical symmetries.

D EFINITION 4.1.2 (Physical frame) . A physical frame is a triple fH ; A; S g where H is
a separable Hilbert space, A � B (H) is a C � -algebra and S � A0 is a commutative
unital C � -algebra. The physical frame fH ; A; S g is called irreducible if S is maximal
commutative (c.f. Appendix B.1). Two physical frames fH 1; A1; S 1g and fH 2; A2; S 2g
are said (unitarily) equivalent if there exists a unitary map U : H 1 ! H 2 such that
A2 = UA1U � 1 and S 2 = US 1U � 1.

We focus on triples fH ; A; S g whose C � -algebra S describes symmetries with an in-
trinsic group structure. In these cases S is related to a representation of the group in H ,
as stated in the following de�nition.

D EFINITION 4.1.3 (G-algebra) . Let G be a topological group and G 3 g 7! Ug 2 U (H) a
strongly continuous unitary representation of G in the group U (H) of the unitary opera-
tors on H. The representation is faithful if Ug = 1 implies g = e (e is the identity of the
group) and is algebraically compatible if the operators f Ug : g 2 Gg are linearly indepen-
dent in B (H). Let S (G) be the unital C � -algebra generated algebraically by f Ug : g 2 Gg
and closed with respect to the operator norm of B (H). When the representation of G is
faithful and algebraically compatible we say that S (G) is a G-algebra in H .

Questions analogous to (Q-I) have been often investigated in the literature, the von
Neumann's and Maurin's theorems being the cornerstones in the �eld (see the short
review in Sections 4.3 and 4.4). Topological questions analogous to (Q-II) have been par-
tially investigated in (Godement 1951). Our goal is however slightly different: we aim to
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obtain an explicit description of the decomposition and a computable recipe to describe
the induced geometry. The price to pay is, of course, to assume stronger hypotheses than
the mentioned theorems.

Our explicit answer to question (Q-I) consist of a generalization of the Bloch-Floquet
transform, see Section 4.6, with a completely satisfactory answer under the (admittedly
strong) hypothesis that S is a Zd-algebra satisfying the wandering property (Theorem
4.6.4). Questions (Q-II) and (Q-III), which are (partially) new with respect to the clas-
sical literature, are addressed in Section 4.7, in particular by Theorem 4.7.9. Loosely
speaking, the answer is that a physical frame, with S a Zd-algebra satisfying the wan-
dering property, induces canonically a geometric structure (Hilbert bundle), and that
equivalent physical frames induce isomorphic Hilbert bundles. Notice that it is crucial
that the unitary equivalence intertwines the symmetry algebras.

The previous questions are not purely academic. The technique we develop in this
work is the key to prove a geometric duality between the Harper and the Hofstadter
models (Theorem 2.8.1), which allows a rigorous proof of the celebrated TKNN formula
(Corollary 2.8.2).

4.2 Some guiding examples

A simple prototypical example: symmetries induced by a �nite group

I t is well known that every �nite commutative group is isomorphic to a product group
F = Zp1 � : : : � ZpN , where Zpj := f [0]; : : : ; [pj � 1]g is the cyclic group of order pj 2 N.

For every t := ( t1; : : : ; tN ) 2 bF, with bF :=
Q N

j =1 f 0; : : : ; pj � 1g, let gt := ([ t1]; : : : ; [tN ])
be any element in F. The set of indices bF coincides with the dual group of F. The
order of the group is equal to the order of its dual, jFj = jbFj = p1 : : : pN . Let U : F !
U (H) be a faithful and algebraically compatible unitary representation on a separable
Hilbert space H. In particular U1 := U([1];[0];:::; [0]) ; : : : ; UN := U([0];[0];:::; [1]) is a minimal
family of generators for the F-algebra S (F). Using a multiindex notation we can write
Ugt = U t1

1 : : : U tN
N =: U t for all gt 2 F. The condition Upj

j = 1 implies that if Uj has an
eigenvalue then it should be a root of the unity of order pj , i.e. a suitable integer power
of zj := exp i (2� =pj ). Some relevant questions arise in a natural way: is it possible to
compute algorithmically the eigenvalues and the eigenspaces of the generators Uj ? Is it
possible to diagonalize simultaneously the C � -algebra S (F) and to compute its Gel'fand
spectrum (the set of the simultaneous eigenvalues)? The answers to these questions are
implicit in the following formula:

Pt :=
1

jFj

X

gn 2 F

z� it �n Ugn :=
1

p1 : : : pN

X

n2 bF

(e� i 2�
p1

t1 )n1 : : : (e
� i 2�

pN
tN )nN Un1

1 : : : UnN
N : (4.4)

For all t 2 bF equation (4.4) de�nes an orthogonal projection; indeed it is immediate to
check that: (i) P y

t = Pt (the adjoint produces a permutation of the indices in the sum);
(ii) Pt Pt0 = � t;t 0Pt (since

P
06 n6 pj � 1 zj

t j n j = pj � t j ;0); (iii) from the property of algebraic
compatibility it follows that Pt 6= 0 for all t 2 bF; (iv)

L
t2 bF Pt = P0 = 1; (v) Uj Pt = zj

t j Pt
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for all j = 1 ; : : : ; N . We will refer to Pt as the t-th Bloch-Floquet projection . The family
of the projections f Pt gt2 bF induces an orthogonal decomposition of the Hilbert space H
labeled by the set bF. Let H(t) := Im (Pt ), then the map

H
US ( F )
�!

M

t2 bF

H(t) (4.5)

de�ned by (US (F ) ' )( t) := Pt ' =: ' (t) is called (discrete) Bloch-Floquet transform . The

transform US (F ) is unitary since k' k2
H =

P
t2 bF kPt ' k2

H . Every Hilbert space H(t) is
a space of simultaneous eigenvectors for the C � -algebra S (F), and the corresponding
eigenvalues are generated as functions of zt1

1 ; : : : ; ztN
N . In particular the Gel'fand spec-

trum of S (F) (which coincides with the joint spectrum of the generating family U1; : : : ; UN )
is (homeomorphic to) the dual group bF. Finally the transform US (F ) maps the Hilbert
space H into a “�bered” space over the discrete set bF. The Hilbert structure is obtained
“gluing” the �ber spaces H(t) by the counting measure de�ned on bF (direct integral, Ap-
pendix B.3). The canonical projection

L
t2 bF H(t) �! bF endows the �bered space with the

structure of vector bundle (with 0-dimensional base). JB

Two examples of physical frame

I n the rest of this work we will generalize the previous decomposition to cases in which
the C � -algebra of the symmetries is more complicated than the one generated by a �-

nite group. However, this simple example encodes already many relevant aspects which
appear in the general cases.

E XAMPLE 4.2.1 (Periodic systems, part one). Let Hper be the operator de�ned by (4.1).
The Gel'fand-Na��mark Theorem (c.f. Appendix B.2) shows that there exists a isomor-
phism between the commutative C � -algebra C0(� (Hper)) and a commutative non-unital
C � -algebra A0(Hper) of bounded operators in H . The elements of A0(Hper) are the opera-
tors f (Hper) 2 B (H), for f 2 C0(� (Hper)) , obtained via the spectral theorem. Let A(Hper)
be the multiplier algebra of A0(Hper) in B (H). This is a unital commutative C � -algebra
which contains A0(Hper) (as an essential ideal), its Gel'fand spectrum is the (Stone- �Cech)
compacti�cation of � (Hper) and the Gel'fand isomorphism maps A(Hper) into the unital
C � -algebra of the continuous and bounded functions on � (Hper) denoted by Cb(� (Hper))
(c.f. Section B.2 for details). We assume that A(Hper) is the C � -algebra of physical mod-
els.

Let f T1; : : : ; Tdg be the translation operators corresponding to f  1; : : : ;  dg, de�ned in
Example 4.1.1. Since [Ti ; Tj ] = 0 for any i; j , it follows that the unital C � -algebra S T

generated by the translations, their adjoints and the identity operator is commutative.
Moreover, since [Hper ; Tj ] = 0 it follows that S T � A(Hper)0. Then the translations S T

are simultaneously implementable physical symmetries for the physics described by the
Hamiltonian (4.1). Thus fH phy ; A(Hper); S T g is a physical frame. It is a convenient model
to study the properties of an electron in a periodic medium. JB
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E XAMPLE 4.2.2 (Mathieu-like Hamiltonians, part one ). Let T := R=(2� Z) be the one-
dimensional torus. In the Hilbert space H M := L 2(T ; ds) consider the Fourier orthonor-
mal basis f engn2 Z de�ned by en (s) := (2 � ) � 1

2 eins . Let u and v be the unitary operators
de�ned, for any g 2 H M , by

(ug)(s) := g(s + 2 �� ); (vg)(s) := eis g(s); uv = ei 2�� vu (4.6)

with � 2 R the deformation parameter . The commutation relation in (4.6) shows that
the unitaries u and v de�ne a representation (called Mathieu representation ) of the the
NCT-algebra A� on the Hilbert space H M (c.f. Section 2.3). We denote with A�

M := � M (A� )
the unital C � -subalgebra of B (H M ) generated by u := � M (u) and v := � M (v). With an
innocent abuse of nomenclature, we refer to A�

M as the Mathieu C � -algebra and we call
Mathieu-like operator any element in A�

M . This name is due to the fact that the universal
Hofstadter operator h� 2 A� de�ned by equation (2.29) is mapped by � M in the almost-
Mathieu operator

(h�
0g)(s) := g(s � 2�� ) + g(s + 2 �� ) + 2 cos(s)g(s): (4.7)

The action of u and v on the elements of the Fourier basis is given explicitly by uen =
ei 2��n en and ven = en+1 for all n 2 Z and a simple computation shows that equation
(4.7) coincides with equation (2.18) (with � = 0 ) up to a Fourier transform. The Mathieu
representation � M is faithful only when � =2 Q.

We focus now on the commutant A�
M

0
. Let h 2 B (H M ) be a bounded operator such

that [h; u] = 0 = [ h; v] and let hen =
P

m2 Z hn;m em , hn;m 2 C, be the action of h on the
basis vectors. The relation [h; v] = 0 implies hn+1 ;m+1 = hn;m and the relation [h; u] = 0
implies e i 2� (n� m)� hn;m = hn;m for all n; m 2 Z. If � =2 Q then e i 2� (n� m)� 6= 1 unless n = m,
hence hn;m = 0 if n 6= m and the condition hn+1 ;n+1 = hn;n implies that h = � h1 with
� h 2 C. This shows that in the irrational case � =2 Q the commutant of the Mathieu
C � -algebra is trivial.

To have a non trivial commutant we need to assume that � := p=q with p; q non zero

integers such that gcd (q; p) = 1 . In this case the condition h 2 A
p=q

M

0
implies that hn;m 6= 0

if and only if m� n = kq for some k 2 Z, moreover hn;n + kq = h0;kq =: h0
k for all n 2 Z. Let w

be the unitary operator de�ned on the orthonormal basis by wen := en+ q, namely w = vq.

The relations for the commutant imply that h 2 A
p=q

M

0
if and only if h =

P
k2 Z h0

k wk .
Then in the rational case the commutant of the Mathieu C � -algebra is the von Neumann
algebra generated in B (H M ) as the strong closure of the family of �nite polynomials in w.
We denote by S q

M := C � (w) the unital commutative C � -algebra generated by w. Observe

that it does not depend on p. The triple fH M ; A
q=p

M ; S q
M g is an example of physical frame.

JB

4.3 The complete spectral theorem by von Neumann

T he complete spectral theorem is a useful generalization of the usual spectral decom-
position of a normal operator on a Hilbert space. It shows that symmetries reduce
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the description of the full algebra A to a family of simpler representations. The main tool
used in the theorem is the notion of the direct integral of Hilbert spaces (c.f. Appendix
B.3). The “spectral” content of the theorem amounts to the characterization of the base
space for the decomposition (the “set of labels”) and of the measure which glues together
the spaces so that the Hilbert space structure is preserved. These information emerges
essentially from the Gel'fand theory (c.f. Appendix B.2). The de�nitions of decomposable
and continuously diagonal operator are reviewed in Appendix B.3.

T HEOREM 4.3.1 (von Neumann's complete spectral theorem) . Let fH ; A; S g be a phys-
ical frame and � the basic measure carried by the spectrum X of S (c.f. Appendix B.2).
Then there exist

a) a direct integral H :=
R�

X H(x) d� (x) with H(x) 6= f 0g for all x 2 X ,

b) a unitary map FS : H ! H, called S -Fourier transform 2,

such that:

(i) the unitary map FS intertwines the Gel'fand isomorphism C(X ) 3 f G7�! A f 2 S
and the canonical isomorphism of C(X ) onto the continuously diagonal operators
C(H), i.e. the following diagram commutes

f 2 C(X )
G

xxqqqqqqqqqq

''PPP
PPP

PPP
PPP

S 3 A f
F S :::F S

� 1
//M f (�) 2 C(H)

(ii) the unitary conjugation FS : : : F � 1
S maps the elements of A in decomposable opera-

tors on H; more precisely there is a measurable family x 7! � x of representations of
A on H(x) such that FS A FS

� 1 =
R�

X � x (A) d� (x);

(iii) the representations � x are irreducible if and only if the physical frame fH ; A; S g is
irreducible.

R EMARK 4.3.2. For a complete proof of the above theorem one can see (Maurin 1968,
Theorem 25, Chapter I and Theorem 2, Chapter V) or (Dixmier 1981, Theorem 1, Part
II Chapter 6). For our purposes it is interesting to recall how the �ber Hilbert spaces
H(x) are constructed. For  ; ' 2 H let �  ;' = h ;' � the relation which links the spectral
measure �  ;' with the basic measure � . For � -almost every x 2 X the value of the
Radon-Nikodym derivative h ;' in x de�nes a semi-de�nite sesquilinear form on H, i.e.
( ; ' )x := h ;' (x). Let I x := f  2 H : h ; (x) = 0 g. Then the quotient space H=I x

is a pre-Hilbert space and H 0(x) is de�ned to be the its completion. By construction
H 0(x) 6= f 0g for � -almost every x 2 X . Let N � X be the � - negligible set on which H 0(x)
is trivial or not well de�ned. Then H :=

R�
X H(x) d� (x) with H(x) := H 0(x) if x 2 X n N

and H(x) := H if x 2 N where H is an arbitrary non trivial Hilbert space. ��

2 According to the terminology used in (Maurin 1968).
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The previous theorem provides only a partial answer to our motivating questions.
Firstly, it provides only a partial answer to question (Q-I), since no explicit and com-
putable “recipe” to construct the �ber Hilbert spaces is given. More importantly, Theo-
rem 4.3.1 concerns a measure-theoretic decomposition of the Hilbert space, but it does
not select a topological structure, yielding no answer to question (Q-II). In more geomet-
ric terms, the elements of

R�
X H(x) d� (x) can be regarded as L 2-sections of a �bration

over X , while the topological structure is encoded by the (still not de�ned) space of con-
tinuous sections . We will show in Section 4.7 that the Bloch-Floquet transform provides
a natural choice of a subspace of

R�
X H(x) d� (x) which can be interpreted as the subspace

of continuous sections, thus yielding a topological structure.

Given the triple fH ; A; S g, the direct integral decomposition invoked in the state-
ment of Theorem 4.3.1 is essentially unique in measure-theoretic sense. The space X
is unique up to homeomorphism: it agrees with the spectrum of C(H) in such a way
that the canonical isomorphism of C(X ) onto C(H) may be identi�ed with the Gel'fand
isomorphism. As for the uniqueness of the direct integral decomposition, the following
result holds true (Dixmier 1981, Theorem 3, Part II Chapter 6).

T HEOREM 4.3.3 (Uniqueness) . With the notation of Theorem 4.3.1, let � be a positive
measure with support X ,

Q
x2 X K(x) a �eld of non-zero Hilbert spaces over X endowed

with a measurable structure, K :=
R�

X K(x) d� (x), C(K) the commutative unital C � -
algebra of continuously diagonal operators on K and C(X ) ! C(K) the canonical isomor-
phism. Let W be a unitary map from H onto K transforming A f 2 S into M 0

f (�) 2 C(K)
for all f 2 C(X ), i.e. such that the �rst diagram commutes.

M f (�) 2 C(H)
77

F S :::F S
� 1

ooooooooooo gg

PPP
PPP

PPP
PPP

S 3 A f

W :::W � 1 ''NNNNNNNNNNN
oo G f 2 C(X )

wwooo
ooo

ooo
ooo

M 0
f (�) 2 C(K)

H??
F S

~~
~~

~~
~

W (�)

���
�
�
�
�
�
�

H

W ��@@
@@

@@
@

K

Then, � and � are equivalent measures (so one can assume that � = � up to a rescaling
isomorphism). Moreover there exists a decomposable unitary W (�) from H onto K, such
that W (x) : H (x) ! K (x) is a unitary operator � -almost everywhere and W = W (�) � F S ,
i.e. the second diagram commutes.

COROLLARY 4.3.4 (Unitary equivalent triples) . Let fH 1; A1; S 1g and fH 2; A2; S 2g be two
equivalent physical frames and U the unitary map which intertwines between them. Let
H1 and H2 denote the direct integral decomposition of the two triples and let FS 1 and FS 2

be the two S -Fourier transforms. Then W (�) := FS 2 � U �F S 1
� 1 is a decomposable unitary

operator from H1 to H2, so that W (x) : H 1(x) ! H 2(x) is a unitary map for � -almost every
x 2 X .
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4.4 The nuclear spectral theorem by Maurin

T he complete spectral theorem by von Neumann shows that any physical frame
fH ; A; S g admits a representation in which the Hilbert space is decomposed (in

a measure-theoretically unique way) in a direct integral FS : H !
R�

X H(x) d� (x), the
elements of S are simultaneously diagonalized and the C � -algebra A is decomposed on
the �bers. In this sense the map FS jx restricted to the point x 2 X generalizes the
rôle of the projection (4.4). The contribution of Maurin is a characterization of the �ber
spacesH(x) as common generalized eigenspaces for S .

A key ingredient of the Maurin's theorem is the notion of (nuclear) Gel'fand triple .
The latter is a triple f � ; H ; � � g with H a separable Hilbert space, � � H a norm-dense
subspace such that � has a topology for which it is a nuclear space and the inclusion map
{ : � ,!H is continuous, and � � is the topological dual of � . Identifying H with its dual
spaceH � , one gets an antilinear injection {� : H ,! � � . The duality pairing between � and
� � is compatible with the scalar product on H, namely h{� ( 1);  2i = (  1;  2)H whenever
 1 2 H and  2 2 � . Hereafter we write h 1;  2i for h{� ( 1);  2i . If A is a bounded operator
on H such that Ay leaves invariant � and Ay : � ! � is continuous with respect to the
nuclear topology of � , one de�nes Â : � � ! � � by posing hÂ � ; ' i := h� ; Ay ' i for all
� 2 � � and ' 2 � . Then Â is continuous and is an extension of A, de�ned on H, to � � .
References about the theory of Gel'fand triples can be found in (de la Madrid 2005).

Assume the notation of Theorem 4.3.1. Let f � k (�) : k 2 Ng be a fundamental family of
orthonormal measurable vector �elds (see Appendix B.3) for the direct integral H de�ned
by the S -Fourier transform FS . Any square integrable vector �eld ' (�) can be written
in a unique way as ' (�) =

P
k2 N b' k (�) � k (�) where b' k 2 L 2(X; d� ) for all k 2 N. Equipped

with this notation, the scalar product in H reads

h' (�);  (�)i H =
Z

X

dim H (x)X

k=1

b' k (x) b k (x) d� (x):

For any ' 2 H let ' (�) := FS ' be the square integrable vector �eld obtained from ' by
the S -Fourier transform. Denote with A f 2 S the operator associated with f 2 C(X )
through the Gel'fand isomorphism. One checks that

\(FS A f ' )k (x) = ( � k (x); f (x)' (x)) x = f (x) b' k (x) k = 1 ; 2; : : : ; dim H(x): (4.8)

Suppose that f � ; H ; � � g is a Gel'fand triple for the space H. If ' 2 � then the map
� 3 ' 7! b' k (x) := ( � k (x); ' (x)) x 2 C is linear; moreover it is possible to show that it is
continuous with respect to the nuclear topology of � , for an appropriate choice of � . This
means that there exists � k (x) 2 � � such that

h� k (x); ' i := b' k (x) = ( � k (x); ' (x)) x k = 1 ; 2; : : : ; dim H(x): (4.9)

Suppose that A f : � ! � is continuous with respect to the nuclear topology for every
f 2 C(X ). Then from equations (4.8) and (4.9) one has that the extended operator
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Â f : � � ! � � , namely hÂ f � ; ' i := h� ; A f ' i for all � 2 � � and ' 2 � , satis�es

hÂ f � k (x); ' i = h� k (x); A f ' i = f (x) b' k (x) = hf (x)� k (x); ' i k = 1 ; 2; : : : ; dim H(x)
(4.10)

for all ' 2 � . Hence,
Â f � k (x) = f (x) � k (x) in � � .

In this sense � k (x) is a generalized eigenvector for A f . These claims are made precise in
the following statement.

T HEOREM 4.4.1 (Maurin's nuclear spectral theorem) . With the notation and the as-
sumptions of Theorem 4.3.1, let f � ; H ; � � g be a nuclear Gel'fand triple for the space H
such that � is S -invariant, i.e. each A 2 S is a continuous linear map A : � ! � . Then:

(i) for all x 2 X the S -Fourier transform FS jx : � ! H (x) such that � 3 ' 7! ' (x) 2
H(x) is continuous with respect to the nuclear topology for � -almost every x 2 X ;

(ii) there is a family of linear functionals f � k (x) : k = 1 ; 2; : : : ; dim H(x)g � � � such
that equations (4.9) and (4.10) hold true for � -almost all x 2 X ;

(iii) with the identi�cation � k (x) $ � k (x) the Hilbert space H(x) is (isomorphic to) a
vector subspace of � � ; with this identi�cation the FS -Fourier transform is de�ned
on the dense set� by

� 3 '
F S jx7�!

dim H (x)X

k=1

h� k (x); ' i � k (x) 2 � � (4.11)

and the scalar product in H(x) is formally de�ned by posing (� k (x); � j (x)) x := � k;j ;

(iv) under the identi�cation in (iii) the spaces H(x) become the generalized common
eigenspaces of the operators in S in the sense that if A f 2 S then Â f � k (x) =
f (x) � k (x) for � -almost every x 2 X and all k = 1 ; 2; : : : ; dim H(x).

For a proof we refer to (Maurin 1968, Chapter II). The identi�cation at point (iii) of
the Theorem 4.4.1 depends on the choice of a fundamental family of orthonormal mea-
surable vector �elds f � k (�) : k 2 Ng for the direct integral H, which is clearly not unique.
If f � k (�) : k 2 Ng is a second fundamental family of orthonormal measurable vector �elds
for H, then there exists a decomposable unitary map W (�) such that W (x)� k (x) = � k (x)
for � -almost every x 2 X and every k 2 N. The composition U := FS

� 1 � W (�) � F S is
a unitary isomorphism of the Hilbert space H which induces a linear isomorphism be-
tween the Gel'fand triples f � ; H ; � � g and f 	 ; H ; 	 � g where 	 := U� . One checks that 	
is a nuclear space in H with respect to the topology induced from � by the map U (i.e.
de�ned by the family of seminorms p0

� := p� � U � 1). 	 � , the topological dual of 	 , is Û� � ,
in view of the continuity of U � 1 : 	 ! � . The isomorphism of the Gel'fand triples is
compatible with the direct integral decomposition. Indeed if #k (x) $ � k (x) is the identi-
�cation between the new orthonormal basis f � k (x) : k = 1 ; 2; : : : ; dim H(x)g of H(x) and
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a family of linear functionals f #k (x) : k = 1 ; 2; : : : ; dim H(x)g � 	 � then equation (4.9)
implies that for any ' 2 	

h#k (x); ' i := ( � k (x); ' (x)) x =
�
� k (x); W (x) � 1' (x)

�
x = h� k (x); U � 1' i = hÛ � k (x); ' i :

(4.12)

P ROPOSITION 4.4.2. Up to a canonical identi�cation of isomorphic Gel'fand triples the
realization (4.11) of the �ber spaces H(x) as generalized common eigenspaces is canonical
in the sense that it does not depend on the choice of a fundamental family of orthonormal
measurable �elds.

From Proposition 4.4.2 and Corollary 4.3.4 and it follows that:

COROLLARY 4.4.3. Up to a canonical identi�cation of isomorphic Gel'fand triples the
realization (4.11) of the �ber spaces H(x) as generalized common eigenspaces is preserved
by a unitary transform of the triple fH ; A; S g.

Theorem 4.4.1 assumes the existence of a S -invariant nuclear space and the related
Gel'fand triple. If S is generated by a countable family, such nuclear space does exist
and there is an algorithmic procedure to construct it (Maurin 1968, Chapter II, Theorem
6).

T HEOREM 4.4.4 (Existence of the nuclear space) . Let f A1; A2; : : :g a countable family of
commuting bounded normal operators on the separable Hilbert space H which generate
(together with their adjoints and the identity) the commutative C � -algebra S . Then there
exists a countable S -cyclic system f  1;  2; : : :g which generates a nuclear space � � H
such that: a) � is dense in H ; b) the embedding { : � ,! H is continuous; c) the maps
Am

j : � ! � are continuous for all j; m 2 N.

R EMARK 4.4.5. We recall that a countable (or �nite) family f  1;  2; : : :g of orthonormal
vectors in H is a S -cyclic system for S if the set f Ayb

Aa k : k 2 N; a; b 2 N1
�n g is dense

in H , where N1
�n is the space of N� valued sequences which are de�nitely zero (i.e. an = 0

for any n 2 N n I with jI j < + 1 ) and Aa := Aa1
1 Aa2

2 : : : AaN
N for some integer N .

Any C � -algebra S (not necessarily commutative) has many S -cyclic systems. Indeed
one can start from any normalized vector  1 2 H to build the closed subspace H 1 spanned
by the action of S on  1. If H 1 6= H one can choose a second normalized vector  2 in the
orthogonal complement of H 1 to build the closed subspace H 2. Since H is separable, this
procedure produces a countable (or �nite) family f  1;  2; : : :g such that H = H 1 �H 2 � : : :.
Obviously this construction is not unique. The nuclear space � claimed in Theorem 4.4.4
depends on the choice of a S -cyclic system and generically many inequivalent choices are
possible. ��

4.5 The wandering property

A n interesting and generally unsolved problem is the construction of the invariant
subspaces of an operator or of a family of operators. Let S be a C � -algebra contained
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in B (H). If  2 H then the subspace S [ ] generated by the action of S on the vector  is
an invariant subspace for the C � -algebra. The existence of a particular decomposition of
the Hilbert space in invariant subspaces depends on the nature of the C � -algebra. The
problem is reasonably simple to solve for the C � -algebras which satisfy the wandering
property.

D EFINITION 4.5.1 (wandering property) . Let S be a commutative unital C � -algebra
generated by the countable family f A1; A2; : : :g of commuting bounded normal operators
and their adjoints (with the convention A0

j := 1) in a separable Hilbert space H. We
will say that S has the wandering property if there exists a (at most) countable family
f  1;  2; : : :g � H of orthonormal vectors which is S -cyclic (according to Remark 4.4.5)
and such that

( k ; Ayb
Aa h)H = kAa kk2

H � k;h � a;b 8 h; k 2 N; 8 a; b2 N1
�n ; (4.13)

where Aa := Aa1
1 Aa2

2 : : : AaN
N , � k;h is the usual Kronecker delta and � a;b is the Kronecker

delta for the multiindices a and b.

Let H k := S [ k ] be the Hilbert subspace generated by the action of S on the vector
 k . If S has the wandering property then the Hilbert space decomposes as H =

L
k2 N H k

and each H k is a S -invariant subspace. We will refer to H k as a wandering subspace
and to f  1;  2; : : :g as the wandering system . In these subspaces each operator A j acts as
a unilateral weighted shift and this justi�es the use of the adjective “wandering” (Nagy
and Foias 1970, Chapter 1, Sections 1 and 2). The wandering property implies many
interesting consequences.

P ROPOSITION 4.5.2. Let S be a commutative unital C � -algebra generated by the (at
most) countable family f A1; A2; : : :g of commuting bounded normal operators and their
adjoints in a separable Hilbert space H. Suppose that S has the wandering property with
respect to the family of vectors f  1;  2; : : :g, then:

(i) the generators can not be selfadjoint, and An
j 6= 1 for every n 2 N n f 0g;

(ii) every generator which is unitary has no eigenvectors;

(iii) if S is generated by N unitary operators then S is a ZN -algebra.

Proof . To prove (i) observe that the condition A j = Ay
j implies that A j  k = 0 for all  k

in the system and the S -cyclicity imposes A j = 0 . As for the second claim, by setting
b = 0 and h = k in equation (4.13) one sees that Aa = 1 implies a = 0 .

To prove (ii) observe that if f U; A1; A2; : : :g is a set of commuting generators for S
with U unitary, then each vector ' 2 H can be written as ' =

P
n2 Z Un � n where

� n =
P

k2 N; a2 ZN � k;a Aa k . Clearly U' =
P

n2 Z Un � n� 1 and equation (4.13) implies
that k' k2

H =
P

n2 Z k� nk2
H . If U ' = �' , with � 2 S1, then a comparison between the

components provides � n� 1 = �� n , i.e. � n = � � n � 0 for all n 2 Z. This contradicts the
convergence of the series expressing the norm of ' .
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To prove (iii) observe that the map ZN 3 a := ( a1; : : : ; aN ) 7! Ua = Ua1
1 : : : UaN

N 2 U (H)
is a unitary representation of ZN on H which is also (strongly) continuous since ZN

is discrete. To show that the representation is algebraically compatible, suppose that
P

a2 ZN � aUa = 0 ; then from equation (4.13) it follows that 0 = ( Ub k ;
P

a2 ZN � aUa k )H =
� b for all b 2 ZN , and this concludes the proof. �

Proposition 4.5.2 shows that the wandering property forces a commutative C � -algebra
generated by a �nite number of unitary operators to be a ZN -algebra. This is exactly
what happens in the cases in which we are mostly interested

E XAMPLE 4.5.3 (Periodic systems, part two ). The commutative unital C � -algebra S T

de�ned in Example 4.2.1 is generated by a unitary faithful representation of Zd on H phy ,
given by Zd 3 m 7! Tm 2 U (H phy ) where m := ( m1; : : : ; md) and Tm := Tm1

1 : : : Tmd
d .

The C � -algebra S T has the wandering property. Indeed let Q0 := f x =
P d

j =1 x j  j :
� 1=2 6 x j 6 1=2; j = 1 ; : : : ; dg the fundamental unit cell of the lattice � and Qm :=
Q0 + m its translated by the lattice vector m :=

P d
j =1 mj  j . Let f  kgk2 N � L 2(Rd) be a

family of functions with support in Q0 providing an orthonormal basis of L 2(Q0) up to the
natural inclusion L 2(Q0) ,! H phy . This system is S T -cyclic since H phy =

L
m2 Zd L 2(Qm ).

Moreover, it is wandering under the action of S T since the intersection Q0 \ Q m has zero
measure for every m 6= 0 . The cardinality of the wandering system is @0. Proposition
4.5.2 assures that S T is a Zd-algebra. Moreover, as a consequence of Proposition 4.5.7
below, the Gel'fand spectrum of S T is homeomorphic to the d-dimensional torus T d and
the normalized basic measure is the Haar measure dz on T d. JB

E XAMPLE 4.5.4 (Mathieu-like Hamiltonians, part two ). The unital commutative C � -
algebra S q

M � B (H M ) de�ned in Example 4.2.2 is generated by a unitary faithful repre-
sentation of the group Z on the Hilbert space H M . Indeed, the map Z 3 k 7! wk 2 U (H M )
is an injective group homomorphism. The set of vectors f e0; : : : ; eq� 1g � H M shows that
the C � -algebra S q

M has the wandering property. In this case the cardinality of the wan-
dering system is q. Proposition 4.5.2 assures that S q

M is a Z-algebra. Moreover, Propo-
sition 4.5.7 below will show that the Gel'fand spectrum of S q

M is homeomorphic to the
1-dimensional torus T and the normalized basic measure on the spectrum coincide with
the Haar measure dz on T . The �rst claim agrees with the fact that the Gel'fand spec-
trum of S q

M coincides with the (Hilbert space) spectrum of w, the generator of the C � -
algebra, and � (w) = T . The claim about the basic measure agrees with the fact that
the vector e0 is cyclic for the commutant of S q

M (which is the von Neumann algebra gen-

erated by A
p=q

M ). Indeed, a general result (c.f. Appendix B.2) assures that the spectral
measure � e0 ;e0 provides the basic measure. To determine � e0 ;e0 let F (w) :=

P
k2 Z � kwk

be any element of S q
M . From the de�nition of spectral measure it follows

� 0 = ( e0; F (w)e0) =
Z

T
F (z) d� e0 ;e0 (z) =

X

k2 Z

� k

Z 2�

0
eikt de� e0 ;e0 (t): (4.14)

where the measure e� e0 ;e0 is related to � e0 ;e0 by the change of variables z(t) := eit (c.f.



112 4. Bloch-Floquet transform and emerging geometry

Convention 2.7.1). Equation (4.14) implies that e� e0 ;e0 agrees with dt=2� on C(T ), namely
the basic measure � e0 ;e0 is the normalized Haar measure. JB

It is easy to provide examples of commutative unital C � -algebras which have the
wandering property but which are generated by a family of non unitary or non invertible
operators.

E XAMPLE 4.5.5. With the notation of Example 4.2.2 let ew be the operator de�ned on the
Fourier basis f engn2 Z of H M by ew en = w[n] en+ q where [n] means n modulo q and w[n] 2 C.
The operator ew is a bilateral weighted shift completely characterized by the fundamental
weights w0; : : : ; wq� 1. The adjoint of ew is de�ned by ewy en = w[n� q] en� q = w[n] en� q and
an easy computation shows that ew is normal, indeed ewy ew en = ew ewy en = jw[n]j2en . If
jw[j ]j 6= 1 for some j = 0 ; : : : ; q � 1 then ew is not unitary. However, the commutative

unital C � -algebra eS q
M generated by ew has the wandering property with respect to the

�nite system of vectors f e0; : : : ; eq� 1g. JB

E XAMPLE 4.5.6. Let H 2M := H M � H M , e(1)
n := en � 0 and e(2)

n := 0 � en where
f engn2 Z is the Fourier basis of H M according to the notations of Example 4.2.2. Obviously
f e(1)

n ; e(2)
n gn2 Z is a basis for H (2)

M . The operators w(1) := w � 0 and w(2) := 0 � w are not
invertible, are normal and commute. Let S q

2M be the commutative C � -algebra generated
by w(1) , w(2) . It is immediate to check that S q

2M has the wandering property with respect

to the �nite system of vectors f e(1)
n ; e(2)

n gn=0 ;:::;q� 1. JB

In the relevant cases of commutative unital C � -algebras generated by a �nite set
of unitary operators the wandering property provides a useful characterization of the
Gel'fand spectrum and the basic measure. We �rstly introduce some notation and termi-
nology. Let G be a discrete group and `1(G) be the set of sequences c = f cggg2 G such that
kck`1 =

P
g2 G jcgj < + 1 . Equipped with the convolution product (c � d)g :=

P
h2 G chdg� h

and involution cy := f c� ggg2 G , `1(G) becomes a unital Banach � -algebra called the group
algebra G. The latter is not a C � -algebra since the norm k � k`1 does not verify the C � -
condition kc � c� k`1 = kck2

`1 . In general there exist several inequivalent ways to complete
`1(G) to a C � -algebra by introducing suitable C � -norms. Two of these C � -extensions are
of particular interest. The �rst is obtained as the completion of `1(G) with respect to the
universal enveloping norm

kcku := supfk � (c)kH : � : `1(G) ! B (H) is a � � representation g:

The resulting abstract C � -algebra, denoted by C � (G), is called the group C � -algebra of
G (or enveloping C � -algebra).

The second relevant extension is obtained by means of the concrete representation of
the elements `1(G) as (convolution) multiplicative operators on the Hilbert space `2(G).
In other words, for any � = f � ggg2 G 2 `2(G) and c = f cggg2 G 2 `1(G) one de�nes the
representation � r : `1(G) ! B (`2(G)) as

� r (c)� := c � � =

(
X

h2 G

ch � g� h

)

g2 G

:
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The representation � r , known as left regular representation , is injective. The norm
kckr := k� r (c)kB (`2 (G)) de�nes a new C � -norm on `1(G), called reduced norm , and a new
C � -extension denoted by C �

r (G) and called reduced group C � -algebra . Since k � kr � k � k u

it follows that C �
r (G) is � -isomorphic to a quotient C � -algebra of C � (G). Nevertheless,

if the group G is abelian, one has the relevant characterization C �
r (G) = C � (G) ' C( bG)

where bG denotes the dual (or character) group of G. For more details the reader can
refer to (Dixmier 1982, Chapter 13) or (Davidson 1996, Chapter VII).

P ROPOSITION 4.5.7. Let H be a separable Hilbert space and S � B (H) a unital commu-
tative C � -algebra generated by a �nite family f U1; : : : ; UN g of unitary operators. Assume
the wandering property. Then:

(i) the Gel'fand spectrum of S is homeomorphic to the N -dimensional torus T N ;

(ii) the basic measure of S is the normalized Haar measure dz on T N .

Proof . We use the short notation Ua = Ua1
1 : : : UaN

N for any a = ( a1; : : : ; aN ) 2 ZN .
To prove (i) one notices that the map F : `1(ZN ) ! B (H), de�ned by F (c) :=

P
a2 ZN ca Ua, is a � -representation of `1(ZN ) into B (H). As in the proof of Proposition

4.5.2, one exploits the wandering property to see that for any c 2 `1(ZN ),
P

a caUa = 0
implies c = 0 . Thus F is a faithful representation. Moreover kF (c)kB (H ) 6 kck`1 for all
c 2 `1(C). Finally, the unital � -algebra L1(ZN ) := F (`1(ZN )) � B (H) is dense in S (with
respect to the operator norm), since it does contain the polynomials in U1; : : : ; UN , which
are a dense subset of S .

In view of the fact that ZN is abelian, to prove (i) it is suf�cient to show that S '
C �

r (ZN ). Since `1(ZN ) and L1(ZN ) are isomorphic Banach � -algebras, and L1(ZN ) is dense
in S , the latter claims follows if one proves that kckr = kF (c)kB (H ) for any c 2 `1(ZN ).
Let f  kgk2 N be the wandering system of vectors for S . The wandering property assures
that the closed subspace S [ k ] =: H k � H is isometrically isomorphic to `2(ZN ), with
unitary isomorphism given by H k 3

P
a2 ZN � aUa k 7! f � aga2 ZN 2 `2(ZN ). Then, due

to the mutual orthogonality of the spaces H k , there exists a unitary map R : H !
L

k2 N `2(ZN ) which extends all the isomorphisms above. A simple computation shows
that RF (c)R � 1 =

L
k2 N � r (c) for any c 2 `1(ZN ). Since R is isometric, it follows that

kF (c)kB (H ) = k
L

k2 N � r (c)kL
k 2 N `2 = k� r (c)k`2 , which is exactly the de�nition of the norm

kckr .
To prove (ii) let � k := �  k ; k be the spectral measure de�ned by the vector of the

wandering system  k . The Gel'fand isomorphism identi�es the generator Uj 2 S with
zj 2 C(T N ). It follows that for every a 2 ZN one has

� a;0 = (  k ; Ua k ) =
Z

T N
za d� k (z) :=

Z 2�

0
: : :

Z 2�

0
za1

1 (t) : : : zaN
N (t) de� k (t); (4.15)

where the measure e� k is related to � k by the change of variables z(t) := eit (c.f. Con-
vention 2.7.1). Equation (4.15) shows that for any k 2 N the spectral measure e� k agrees
with dz(t) := dt1 :::dt N =(2� )N .
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Let A f be the element of S whose image via the Gel'fand isomorphism is the function
f 2 C(T N ). Then

(Ub j ; A f Ua k )H = � j;k ( k ; A f Ua� b k )H =
Z

T N
f (z) � j;k za� b dz:

So the spectral measure � Ub j ;Ua  k
is related to the Haar measure dz by the function

� j;k za� b. Let ' :=
P

k2 N;a2 NN � a;k Ua k be any vector in H . Notice that, in view of the
wandering property, one has � k;a 2 `2(N) 
 `2(ZN ). Then a direct computation shows

that � ';' (z) = h';' (z) dz, where h';' (z) =
P

k2 N jF (k)
' (z)j2 with F (k)

' (z) :=
P

a2 NN � k;aza:

Since F (k)
' 2 L 2(T N ) , one has jF (k)

' j2 2 L 1(T N ). Let h(M )
';' (z) =

P M
k=0 jF (k)

' (z)j2. Since

h(M +1)
';' > h(M )

';' > 0 and
R

T N h(M )
';' (z) dz =

P M
k=0

P
a2 NN j� k;a j2 6 k' kH for all M , one

concludes by the monotone convergence theorem that h';' 2 L 1(T N ). �

Not every commutative C � -algebra generated by a faithful unitary representation of
ZN has a wandering system. In this situation, even if the spectrum is still a torus, the
basic measure can be inequivalent to the Haar measure.

E XAMPLE 4.5.8. Let R� the unitary operator on L 2(R2) which implements a rotation
around the origin of the angle � , with � =2 2� Q. Clearly RN

� = RN� 6= 1 for every
integer N , hence the commutative unital C � -algebra R � generated by R� is a unitary
faithful representation of Z. The Gel'fand spectrum of R � , which coincides with the
spectrum of R� , is T . Indeed, the vector  N (�; � ) := eiN� f (� ) (in polar coordinates) is an
eigenvector corresponding to the eigenvalue e iN� . The spectrum of R� is the closure of
f eiN� : N 2 Zg, which is T in view of the irrationality of � . The existence of eigenvectors
excludes the existence of a wandering system (see Proposition 4.5.2). Moreover, since R�

has point spectrum it follows that the basic measure is not the Haar measure. Indeed,
the spectral measure �  N ; N corresponding to the eigenvector  N is the Dirac measure
concentrated in f eiN� g � C. JB

4.6 The generalized Bloch-Floquet transform

T he aim of this section is to provide a general algorithm to construct the direct in-
tegral decomposition of a commutative C � -algebra which appears in the von Neu-

mann's complete spectral theorem. The idea is to generalize the construction of the
Bloch-Floquet projections (4.4) by a consistent reinterpretation of it. In the spirit of
Maurin's theorem, Bloch-Floquet projections should be reinterpreted as “projectors on
an appropriate distributional space”. In this approach a relevant rôle will be played by
the wandering property. We consider a commutative unital C � -algebra S on a separable
Hilbert space H generated by the �nite family f U1; U2; : : : ; UN g of unitary operators ad-
mitting a wandering system f  kgk2 N � H . According to the results of Section 4.5, S is a
ZN -algebra with Gel'fand spectrum T N and with the Haar measure dz as basic measure.
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Construction of the nuclear space

Consider the orthonormal basis f Ua kgk2 N;a2 ZN , where f  kgk2 N is the wandering sys-
tem, and denote by L � H the family of all �nite linear combinations of the vectors
of such basis. For every integer m > 0 denote by H m the �nite dimensional Hilbert
space generated by the �nite set of vectors f Ua k : 0 6 k 6 m; 0 6 jaj 6 mg, where
jaj := ja1j + : : : + jaN j. Obviously H m � L . Let denote by Dm the dimension of the space
H m . If ' =

P
k2 N;a2 ZN � k;aUa k is any element of H then the formula

p2
m (' ) := Dm

X

0 6 k 6 m
0 6 jaj 6 m

j(Ua k ; ' )H j2 = Dm

X

0 6 k 6 m
0 6 jaj 6 m

j� k;a j2; (4.16)

de�nes a seminorm for every m > 0. From (4.16) it follows that pm 6 pm+1 for all m. The
countable family of seminorms f pm gm2 N provides a locally convex topology for the vector
spaceL . Let denote by � the pair fL ; f pm gm2 Ng, i.e. the vector space L endowed with the
locally convex topology induced by the seminorms (4.16). � is a complete and metrizable
(i.e. Fréchet) space. However, for our purposes, we need a topology on L which is strictly
stronger than the metrizable topology induced by the seminorms (4.16).

The quotient space � m := L=Nm , with Nm := f ' 2 L : pm (' ) = 0 g, is isomorphic
to the �nite dimensional vector space H m , hence it is nuclear and Fréchet. This follows
immediately observing that the norm pm on � m coincides, up to the positive constant
p

Dm , with the usual Hilbert norm. Obviously � m � � m+1 for all m > 0 and the topology

of � m agrees with the topology inherited from � m+1 , indeed pm+1 j � m
=

q
D m +1

D m
pm . We

de�ne � to be
S

m2 N � m (which is L as a set) endowed with the strict inductive limit
topology which is the stronger topology which makes continuous all the injections {m :
� m ,! � . The space � is called a LF-space according to the de�nition in (Treves 1967,
Chapter 13) and it is a nuclear space since it is the strict inductive limit of nuclear
spaces (Treves 1967, Proposition 50.1). We will say that � is the wandering nuclear
spacede�ned by the ZN -algebra S on the wandering system f  kgk2 N.

P ROPOSITION 4.6.1. The wandering nuclear space � de�ned by the ZN -algebra S on
the wandering system f  kgk2 N veri�es all the properties stated in Theorem 4.4.4.

Proof . A linear map | : � ! 	 , with 	 an arbitrary locally convex topological vec-
tor space, is continuous if and only if the restriction | j � m

of | to � m is continuous for
each m > 0 (Treves 1967, Proposition 13.1). This implies that the canonical embedding
{ : � ,! H is continuous, since its restrictions are linear operators de�ned on �nite di-
mensional spaces. The linear maps Ua : � ! � for all a 2 NN are also continuous for the
same reason. Finally � is norm-dense in H since as a set it is the dense domain L . �

The strict inductive limit topology which de�nes � is stronger than the topology in-
duced by the seminorms (4.16) which de�nes the Fréchet space � . The space � is com-
plete but not metrizable since every � m is closed in the topology of � m+1 (Treves 1967,
Theorem 13.1).
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The transform

We are now in position to de�ne the generalized Bloch-Floquet transform US for the C � -
algebra S . The Gel'fand spectrum of S is T N and the Gel'fand isomorphism associates
to the generator Uj the function zj 2 C(T N ). For any t 2 [0; 2� )N and for any ' 2 � we
de�ne (formally for the moment) the Bloch-Floquet transform of ' at point t as

� 3 '
US j t7�! (US ' )( t) :=

a2 ZNX

a2 ZN

z� a(t) Ua' (4.17)

where za(t) := eia 1 t1 : : : eia N tN and Ua := Ua1
1 : : : UaN

N . The structure of equation (4.17)
suggests that (US ' )( t) is a common generalized eigenvector for the elements of S , indeed
a formal computation shows that

Uj (US ' )( t) = zj (t)
X

a2 ZN

z� 1
j (t)z� a(t)Uj Ua' = eit j (US ' )( t): (4.18)

This guess is clari�ed by the following result.

T HEOREM 4.6.2 (Generalized Bloch-Floquet transform) . Let S be a ZN -algebra in the
separable Hilbert space H with generators f U1; : : : ; UN g and wandering system f  kgk2 N,
and let � be the corresponding nuclear space. Under these assumptions the generalized
Bloch-Floquet transform (4.17) de�nes an injective linear map from the nuclear space
� into its topological dual � � for every t 2 [0; 2� )N . More precisely, the transform US jt
maps � onto a subspace � � (t) � � � which is a common generalized eigenspace for the
commutative C � -algebra S , i. e. Ûj (US ' )( t) = eit j (US ' )( t) in � � . The map US jt : � !
� � (t) � � � is a continuous linear isomorphism, provided � � is endowed with the � -weak
topology.

Proof . We need to verify that the right-hand side of (4.17) is well de�ned as a linear
functional on � . Any vector ' 2 � is a �nite linear combination ' =

P �n
k2 N

P �n
b2 ZN � k;b Ub k

(the complex numbers � k;b are different from zero only for a �nite set of the values of the
index k and the multiindex b). Let � =

P �n
h2 N

P �n
c2 NN � h;c Uc h be another element in � .

The linearity of the dual pairing between � � and � and the compatibility of the pairing
with the Hermitian structure of H imply

h(US ' )( t); � i :=
�nX

k2 N

�nX

b;c2 ZN

� k;b� k;c

0

@
X

a2 ZN

za(t) (Ua+ b k ; Uc k )H

1

A (4.19)

where in the right-hand side we used the orthogonality between the spaces generated
by  k and  h if k 6= h. Without further conditions equation (4.19) is a �nite sum in k; b; c
(this is simply a consequence of the fact that ' and � are “test functions”) but it is an
in�nite sum in a which generally does not converge. However, in view of the wandering
property one has that (Ua+ b k ; Uc k )H = � a+ b;c, so that (4.19) reads

h(US ' )( t); � i =
�nX

k2 N

�nX

b;c2 ZN

� k;b� k;c zc(t)z� b(t): (4.20)
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Let C' ;k :=
P �n

b2 ZN j� k;bj and C' := max k2 Nf C' ;kg (which is well de�ned since the set
contains only a �nite numbers of non-zero elements). An easy computation shows that

jh(US ' )( t); � ij 6
�nX

k2 N

C';k

0

@
�nX

c2 ZN

j� k;c j

1

A 6 C'

�nX

k2 N

�nX

c2 ZN

j� k;c j :

Let m > 0 be the smallest integer such that � 2 � m . The number of the coef�cients � k;c

different from zero is smaller than the dimension Dm of � m . Using the Cauchy-Schwarz
inequality one has

jh(US ' )( t); � ij 6 C'

p
Dm

0

@
�nX

k2 N

�nX

c2 NN

j� k;c j2

1

A

1
2

= C' pm (� ): (4.21)

The inequality (4.21) shows that the linear map (US ' )( t) : � ! C is continuous when
it is restricted to each �nite dimensional space � m . Since � is endowed with the strict
inductive limit topology, this is enough to assure that (US ' )( t) is a continuous linear
functional on � . So, in view of (4.21), (US ' )( t) 2 � � for all t 2 [0; 2� )N and for all ' 2 � .

The linearity of the map US jt : � ! � � is immediate and from equation (4.20) it
follows that (US ' )( t) = 0 (as functional) implies that � k;b = 0 for all k and b, hence
' = 0 . This prove the injectivity. To prove the continuity of the map US jt : � ! � � , in
view of the strict inductive topology on � , we need only to check the continuity of the
maps US jt : � m ! � � for all m > 0. Since � m is a �nite dimensional vector space with
norm pm , it is suf�cient to prove that the norm-convergence of the sequence ' n ! 0 in
� m implies the � -weak convergence (US ' n )( t) ! 0 in � � , i.e. jh(US ' n )( t); � ij ! 0 for all
� 2 � . As inequality (4.21) suggests, it is enough to show that C' n ! 0. This is true

since ' n :=
P

0<k; jbj6 m � (n)
k;b Ub k ! 0 in � m implies � (n)

k;b ! 0.

Finally, since the map U � a = ( Ua)y is continuous on � for all a 2 ZN then ^(Ua) : � � !
� � de�nes a continuous map which extends the operator Ua originally de�ned on H. In
this context the equation (4.18) is meaningful and shows that � � (t) := US jt (�) � � � is a
space of common generalized eigenvectors for the elements of S . �

The decomposition

The wandering system f  kgk2 N generates under the Bloch-Floquet transform a special
family of elements of � � , denoted as

� k (t) := ( US  k )( t) =
a2 ZNX

a2 ZN

z� a(t) Ua k 8 k 2 N: (4.22)

The injectivity of the map US implies that the functionals f � k (t)gk2 N are linearly
independent for every t. If ' =

P �n
k2 N

P �n
b2 ZN � k;b Ub k is any element in � then a simple

computation shows that

(US ' )( t) =
�nX

k2 N

�nX

b2 ZN

� k;b

X

a2 NN

z� a(t) Ua+ b k =
�nX

k2 N

f ' ;k (t) � k (t) (4.23)
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where f ' ;k (t) :=
P �n

b2 ZN � k;b zb(t). The equalities in (4.23) should be interpreted in the
sense of “distributions”, i. e. elements of � � . The functions f ' ;k : T N ! C, for all k 2
N, are �nite linear combination of continuous functions, hence continuous. Equation
(4.23) shows that any subspace � � (t) is generated by �nite linear combinations of the
functionals (4.22). For every t 2 [0; 2� )N we denote by K(t) the space of the elements
of the form

P
k2 N � k � k (t) with f � kgk2 N 2 `2(N). This is a Hilbert space with the inner

product induced by the isomorphism with `2(N). In other words the inner product is
induced by the “formal” conditions (� k (t); � h(t)) t := � k;h . All the Hilbert spaces K(t) have
the same dimension which is the cardinality of the system f  kgk2 N.

P ROPOSITION 4.6.3. For all t 2 [0; 2� )N the inclusions � � (t) � K (t) � � � holds true.
Moreover the generalized Bloch-Floquet transform US jt extends to a unitary isomorphism
between the Hilbert space H � H spanned by the orthonormal system f  kgk2 N and the
Hilbert space K(t) � � � spanned by the orthonormal frame � (t) := f � k (t)gk2 N.

Proof . The �rst inclusion � � (t) � K (t) follows from the de�nition. For the second
inclusion we need to prove that ! (t) :=

P
k2 N � k � k (t) is a continuous functional if

f � kgk2 N 2 `2(N). Let � =
P

06 h;jcj6 m � h;c Uc h be an element of � m � � then, from the
sesquilinearity of the dual pairing and the Cauchy-Schwarz inequality it follows that

jh! (t); � ij 2 6

 
X

k2 N

j� k j jh(US  k )( t); � ij

! 2

6 k� k2
`2

X

k2 N

jh(US  k )( t); � ij 2 (4.24)

where k� k2
`2 =

P
k2 N j� k j2 < 1 . From equation (4.19) it is clear that h(US  k )( t); � i =

0 if  k =2 � m , then equation (4.21) and C k = 1 imply jh! (t); � ij 6 k� k`2
p

m pm (� ).
This inequality shows that ! (t) is a continuous functional when it is restricted to each
subspace � m and, because the strict inductive limit topology, this proves that ! (t) lies in
� � .

As for the second claim, consider ! n (t) :=
P

06 k6 n � k � k (t). Obviously one has that
! n (t) = ( US ' n )( t) 2 � � (t) since ' n :=

P
06 k6 n � k  k 2 � . Moreover the inequality (4.24)

can be used to show that (US ' n )( t) ! ! (t) when n ! 1 with respect to the � -weak
topology of � � . This enables us to de�ne ! (t) := ( US ' )( t) for all ' :=

P
k2 N � k  k 2

H. The generalized Bloch-Floquet transform acts as a unitary isomorphism between H
and K(t) with respect to the Hilbert structure induced in K(t) by the orthonormal basis
f � k (t)gk2 N. �

T HEOREM 4.6.4 (Bloch-Floquet spectral decomposition) . Let S be a ZN -algebra in the
separable Hilbert space H with generators f U1; : : : ; UN g, wandering system f  kgk2 N and
wandering nuclear space � . The generalized Bloch-Floquet transform US , de�ned on �
by equation (4.17), induces a direct integral decomposition of the Hilbert space H which
is equivalent (in the sense of Theorem 4.3.3) to the decomposition of the von Neumann's
theorem 4.3.1. Moreover, the spacesK(t) spanned in � � by the functionals (4.22) provide
an explicit realization for the family of common eigenspaces of S appearing in Maurin's
theorem 4.4.1.
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Proof . Proposition 4.5.7 assures that the Gel'fand spectrum of S is the N -dimensional
torus T N and the basic measure agrees with the normalized Haar measure dz. On the
�eld of Hilbert spaces

Q
t2 T N K(t) we can introduce a measurable structure by the fun-

damental family of orthonormal vector �elds � (�) := f � k (�)gk2 N de�ned by (4.22). For all
' 2 � the generalized Bloch-Floquet transform de�nes a square integrable vector �eld
(US ' )( �) 2 K :=

R�
T N K(t) dz(t). Indeed equation (4.23) shows that (US ' )( t) 2 K (t) for any

t and k(US ' )( t)k2
t =

P �n
k2 N jf ' ;k (t)j2 is a continuous function (�nite sum of continuous

functions) hence integrable on T N . In particular

k(US ' )( �)k2
K =

Z

T N
k(US ' )( t)k2

t dz(t) =
X

k2 N

Z

T N

0

@
�nX

b;c2 ZN

� k;b� k;c zc� b(t)

1

A

| {z }
= jf ' ;k (x)j2

dz(t) = k' k2
H :

In view of the density of � , US can be extended to an isometry from H to K.
It remains to show that US is surjective. Any square integrable vector �eld ' (�) 2 K

is uniquely characterized by its expansion on the frame � (�), i.e. ' (�) =
P

k2 N b' k (�) � k (�)
where f b' k (t)gk2 N 2 `2(N) for all t 2 [0; 2� )N . The condition

k' (�)k2
K =

Z

T N

X

k2 N

j b' k (t)j2 dz(t) < + 1

shows that b' k 2 L 2(T N ) for all k 2 N. Let b' k (t) =
P

b2 ZN � k;bzb(t) be the Fourier expan-
sion of b' k . Since

X

k2 N

X

b2 ZN

j� k;bj2 =
X

k2 N

kb' kk2
L 2 (T N ) = k' (�)k2

K < + 1

it follows that f � k;bgk2 N;b2 ZN is an `2-sequences and the mapping

' (�) =
X

k2 N

X

b2 ZN

� k;b zb(�) � k (�)
US

� 1

7�! ' :=
X

k2 N

X

b2 ZN

� k;b Ub k (4.25)

de�nes an element ' 2 H starting from the vector �eld ' (�) 2 K. It is immediate to check
that US maps ' in ' (�), hence US is surjective.

If A f 2 S is an operator associated with the continuous function f 2 C(T N ) via the
Gel'fand isomorphism, then US A f US

� 1' (�) = f (�)' (�), i.e. US maps A f 2 S in M f (�) 2
C(K). This allows us to apply the Theorem 4.3.3 which assures that the direct integral
K coincides, up to a decomposable unitary transform, with the spectral decomposition of
S established in Theorem 4.3.1. �

R EMARK 4.6.5 (Generalized Bloch-Floquet transform and S -Fourier transform) . The
generalized Bloch-Floquet transform US can be seen as a “computable” realization of the
abstract S -Fourier transform FS in the von Neumann's theorem 4.3.1. This allows us to
interchange the symbols US and FS , when necessary. From Proposition 4.6.3 and from
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general results about direct integrals (Dixmier 1981, Part II, Chapter 1, Section 8) one
obtains the following identi�cations:

H
US :::US

� 1
//

Z �

T N
K(t) dz(t) '

Z �

T N
H dz(t) ' L 2(T N ; H): (4.26)

��

E XAMPLE 4.6.6 (Periodic systems, part three ). In the case of Example 4.2.1 the general-
ized Bloch-Floquet transform reduces to the usual one given by (4.2)

(US T ' )( t; � ) :=
X

 2 �

z�  (t) T  ' (� ) =
X

 2 �

e� im 1 t1 : : : e� im d td ' (� �  );

where  :=
P d

j =1 mj  j , for all ' in the wandering nuclear space � � H phy , built according
to Proposition 4.6.1 from any orthonormal basis of L 2(Q0). The �ber spaces in the direct
integral decomposition are all unitarily equivalent to L 2(Q0) hence the Hilbert space
decomposition is

H phy
US T :::US T

� 1

//
Z �

T d
L 2(Q0) dz(t)

and the dimension of any �ber is @0. The above equation agrees with the decomposition
(4.3). JB

E XAMPLE 4.6.7 (Mathieu-like Hamiltonians, part three ). In this case the wandering
nuclear space � M is the set of the �nite linear combinations of the Fourier basis f engn2 Z

and for all g(s) =
P �n

n2 Z � neins in � M the Bloch-Floquet transform is

(US q
M

g)( t; # ) :=
X

m2 Z

e� imt wm g(#) =
�nX

n2 Z

� n

 
X

m2 Z

ei [n# + m(q#� t )]

!

:

The collection � M (t) := f � 0
M (t; �); : : : ; � q� 1

M (t; �)g � � �
M , with

� k
M (t; # ) := ( US q

M
ek )( t; # ) = eik#

X

m2 Z

eim (q#� t ) ;

de�nes a fundamental family of orthonormal �elds (or frames). The �ber spaces in the
direct integral decomposition are all unitarily equivalent to Cq hence the Hilbert space
decomposition is

H M

US q
M

:::US q
M

� 1

//
Z �

T
Cq dz(t):

The images of the generators u and v under the map US q
M

: : : US q
M

� 1 are the two t depen-
dent q � q matrices

u(t) :=

0

B
B
B
B
@

1

ei 2� p
q

. . .

ei 2� p
q (q� 1)

1

C
C
C
C
A

v(t) :=

0

B
B
B
B
@

0 eit

1
. . .
. . . . . .

0 1 0

1

C
C
C
C
A

:

For every t 2 R the matrices u(t) and v(t) generate an irreducible representation of the
NCT-algebra Ap=q on the Hilbert space Cq (c.f. Section 5.1.1). JB
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Equivalence of physical frames

The dimension of the vector space H in the decomposition (4.26) is �xed by the cardinal-
ity of the wandering system chosen to de�ne the Bloch-Floquet transform. Observing
that Theorem 4.3.3 assures that the direct integral decomposition is essentially unique
(in measure theoretic sense), one has the following corollary of Theorem 4.6.4.

COROLLARY 4.6.8. Any two wandering systems associated with a given ZN -algebra S
have the same cardinality. Any two wandering systems for S are intertwined by a unitary
operator which commutes with S .

The above result shows that the choice of a wandering system for a ZN -algebra is
essentially unique (i.e. up to unitary equivalence).

The uniqueness of the spectral decomposition (Theorem 4.3.3) together with the iden-
ti�cation between Generalized Bloch-Floquet transform and S -Fourier transform (Re-
mark 4.6.5) imply that the generalized Bloch-Floquet transform (Theorem 4.6.2) and
the related direct integral decomposition (Theorem 4.6.4) depend (up to a decomposable
unitary) only on the equivalence class of physical frames. We can use this fact to prove
the following result.

P ROPOSITION 4.6.9. Let fH ; A; S 1g and fH ; A; S 2g be two physical frames where S 1

and S 2 are two Zd-algebras having wandering systems of the same cardinality N . Then
the two physical frames are in the same equivalence class.

Proof . We need to prove that there exists a unitary map W : H ! H such that A =
W AW � 1 and S 2 = W S 1W � 1. Let f U1; : : : ; Udg and f  1; : : : ;  N g be the generating sys-
tem and the wandering system for S 1 and let f V1; : : : ; Vdg and f e 1; : : : ; e N g be the same
for S 2. Since the two wandering systems have the same cardinality N , one can de�ne
a one-to one correspondence between the two systems by posing  j $ e � ( j ) , with � any
permutation of the indexes f 1; : : : ; N g. Fixed one of this N ! possible correspondences,
we de�ne a unitary map W� on the space H which intertwines the two orthonormal ba-
sis generated by the wandering systems, namely W� (Ua j ) := V a e � ( j ) for all a 2 Nd and
j 2 f 1; : : : ; N g. A simple computation shows that (Ui � W � 1

� Vi W� )Ua j = 0 for all a 2 Nd

and j 2 f 1; : : : ; N g which implies, in view of the completeness of the system Ua j , that
Ui = W � 1

� Vi W� for all i = 1 ; : : : ; d, thus S 2 = W� S 1 W � 1
� .

Let US i : H ! HS i :=
R�

T d H(t) dz(t), i = 1 ; 2 be the generalized Bloch-Floquet trans-
form related to the physical frame fH ; A; S i g. In view of Remark 4.6.5, Theorem 4.3.3
assures that US 2 W� U� 1

S 1
=

R�
T d W� (t) dz(t) : HS 1 ! HS 2 . Finally, the equality

W� A W � 1
� = ( W� U� 1

S 1
)
� Z �

T d
� (1)

t (A) dz(t)
�

(W� U� 1
S 1

) � 1

= U� 1
S 2

0

B
B
@

Z �

T d
W� (t) � (1)

t (A) W� (t) � 1

| {z }
= � (2)

k (A)

dz(t)

1

C
C
A US 2 = A

follows from point (ii) of Theorem 4.3.1. �
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There exists a particular class of C � -algebras which plays a relevant rôle for the
purpose of this thesis.

D EFINITION 4.6.10 (N -homogeneous C � -algebra (Dixmier 1982)) . A C � -algebra A is
said N -homogeneous if all its irreducible representations are of the same �nite dimension
N .

The importance of the above de�nition lies in the following uniqueness result

P ROPOSITION 4.6.11. Let A be a N -homogeneousC � -algebra, � : A ! B (H) a faith-
ful representation and fH ; � (A); S j g, j = 1 ; 2 two irreducible physical frames (De�nition
4.1.2) with S j maximal commutative Zd-algebras in the commutant � (A). If S j has a
wandering system then its cardinality is N . Assuming that both S 1 and S 2 have wan-
dering system, one has that fH ; � (A); S 1g and fH ; � (A); S 2g are in the same equivalence
class.

Proof . If S j admits a wandering system then one can de�ne the generalized Bloch-
Floquet transform US j : H ! HS j according to Theorem 4.6.4. Since R is maximal
commutative, US j decomposes � (A) in a direct integral of irreducible representations
(Theorem 4.3.1). Observing that A and � (A) have the same representation theory, since
� is faithful and observing that the irreducible representations of A are N -dimensional
it follows that the �ber Hilbert spaces in the direct integral HS j are N -dimensional. The
�rst part of the claim follows by noticing that the dimension of the �ber Hilbert spaces
is equal to the cardinality of the wandering system. The second part of the claim follows
from Proposition 4.6.9. �

The above result shows that it is possible to introduce a notion of standard physical
frame (in any faithful representation) for N -homogeneous C � -algebras.

Wannier vectors from an algebraic point of view

Equation (4.25) in the proof of Theorem 4.6.4 provides a recipe to invert the unitary
map US : H ! K :=

R�
T 2 K(t) dz(t). According to (4.25) US

� 1 maps the fundamental
vector �elds � k (�) into the wandering vectors  k , and it intertwines multiplication by
the exponentials za(�) with the unitary operators Ua. We will say that US

� 1(' (�)) is the
Wannier vector (WV) associated to the vector �eld ' (�).

We denote by F :=
Q

t2 T N K(t) the set of all the vector �elds. Let F1 be the set of
square integrable vector �elds ' (�) 2 K whose component functions b' k (�) are of class
C1 (T N ). Similarly let F! be the set of square integrable vector �elds which component
functions are analytic, i.e. of class C ! (T N ). Obviously

US (�) � F! � F1 � K � F:

By ordinary Fourier theory, one observes that if ' (�) 2 F1 then the sequence of co-
ef�cients f � k;agk2 N;a2 ZN which de�nes the component functions b' k (�) decays faster than
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any polynomial . Similarly if ' (�) 2 F! , then the sequence f � k;agk2 N;a2 ZN has an exponen-
tial decay . In analogy with the ordinary Bloch-Floquet theory (Kuchment 1993), these
considerations suggest the name of super-polynomially localized Wannier vectors for the
elements of 
 1

S := US
� 1(F1 ) and exponentially localized Wannier vectors for the ele-

ments of 
 !
S := US

� 1(F! ). The above de�nitions are summarized by the following table.

Symbol decay of f � k;ag Name
� �nite compact supported WV


 !
S exponential exponentially localized WV


 1
S super-polynomial super-polynomial localized WV


 S ? continuous WV
H `2 generic

(4.27)

4.7 Emergent geometry

F rom a geometric viewpoint, the �eld of Hilbert spaces F :=
Q

x2 X H(x) can be re-
garded as a pseudo vector-bundle � : E�! X , where

E :=
G

x2 X

H(x) (4.28)

is the disjoint union of the Hilbert spaces H(x). The use of the pre�x “pseudo” refers to
the fact that more ingredients are needed to turn � : E�! X into a vector bundle. First
of all, the map � must be continuous, which requires a topology on E. As a �rst attempt,
assuming that H(x) � � � for every x 2 X , one might consider � : E�! X as a sub-bundle
of the trivial vector bundle � : X � � � �! X , equipped with the topology induced by the
inclusion, so that � : E�! X becomes a topological bundle whose �bers are Hilbert spaces.
However, nothing ensures that the Hilbert space topology de�ned �berwise is compatible
with the topology of E, a necessary condition to have a meaningful topological theory.

Geometric vs. analytic viewpoint

We begin our analysis with the de�nition of topological �bration of Hilbert spaces. Fol-
lowing (Fell and Doran 1988, Chapter II, Section 13) we have

D EFINITION 4.7.1 (Geometric viewpoint: Hilbert bundle) . A Hilbert bundle is the da-
tum of a topological Hausdorff spaces E (the total space) a compact Hausdorff space X
(the base space) and a map � : E�! X (the canonical projection ) which is a continuous
open surjection such that:

a) for all x 2 X the �ber � � 1(x) � E is a Hilbert space;

b) the application E 3 p 7�! k pk 2 C is continuous;
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c) the operation + is continuous as a function on S := f (p; s) 2 E � E : � (p) = �(s)g to
E;

d) for each � 2 C the map E 3 p 7�! � p 2 E is continuous;

e) let 0x be the null vector in the Hilbert space � � 1(x); for each x 2 X , the collection of
all subsets of E of the form U (O; x; " ) := f p 2 E : � (p) 2 O; kpk < " g, where O is a
neighborhood of x and " > 0, is a basis of neighborhoods of 0x 2 � � 1(x) in E.

We will denote by the short symbol E the Hilbert bundle � : E�! X , when the base
space X and the projection � are clari�ed by the context. A section of E is a function
 : X ! E such that � �  = idX . We denote by �( E) the set of all continuous sections
of E. As showed in (Fell and Doran 1988), from De�nition 4.7.1 it follows that: (i) the
scalar multiplication C � E 3 (�; p ) 7! � p 2 E is continuous; (ii) the open sets of E,
restricted to a �ber � � 1(x), generate the Hilbert space topology of � � 1(x); (iii) the set
�( E) has the structure of a (left) C(X )-module. The de�nition of Hilbert bundle includes
all the requests which a “formal” �bration as (4.28) needs to ful�ll to be a topological
�bration with a topology compatible with the Hilbert structure of the �bers. In this
sense the Hilbert bundle is the “geometric object” of our interest.

However, the structure that emerges in a natural way from the Bloch-Floquet decom-
position (Theorem 4.6.4) is more easily understood from the analytic viewpoint. Switch-
ing the focus from the total space E to the space of sections F, the relevant notion is
that of continuous �eld of Hilbert spaces , according to (Dixmier 1982, Section 10.1) or
(Dixmier and Douady 1963, Section 1).

D EFINITION 4.7.2 (Analytic viewpoint: continuous �eld of Hilbert spaces) . Let X be a
compact Hausdorff space and F :=

Q
x2 X H(x) a �eld of Hilbert spaces. A continuous

structure on F is the datum of a linear subspace � � F such that:

a) for each x 2 X the set f � (x) : � (�) 2 � g is dense in H(x);

b) for any � (�) 2 � the map X 3 x 7! k � (x)kx 2 R is continuous;

c) if  (�) 2 F and if for each " > 0 and each x0 2 X , there is some � (�) 2 � such that
k� (x) �  (x)kx < " on a neighborhood of x0, then  (�) 2 � .

We will denote by the short symbol F� ;X the �eld of Hilbert spaces F endowed with
the continuous structure � . The elements of � are called continuous vector �elds . The
condition b) may be replaced by the requirement that for any � (�); %(�) 2 � , the function
X 3 x 7! (� (x); %(x)) x 2 C is continuous. Condition c) is called locally uniform clo-
sure. Locally uniform closure is needed in order that the linear space � is stable under
multiplication by continuous functions on X . This condition implies that � is a (left)
C(X )-module. A total set of continuous vector �elds for F� ;X is a subset � � � such that
�( x) := f � (x) : � (�) 2 � g is dense in H(x) for all x 2 X . The continuous �eld of Hilbert
spaces is said to be separable if it has a countable total set of continuous vector �elds.
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The link between the notion of continuous �eld of Hilbert spaces and that of Hilbert
bundle is clari�ed by the following result.

P ROPOSITION 4.7.3 (Equivalence between geometric and analytic viewpoint) . Let F� ;X

be a continuous �eld of Hilbert spaces over the compact Hausdorff space X . Let E(F� ;X ) :=
F

x2 X H(x) be the disjoint union of the Hilbert spaces H(x) and � the canonical sur-
jection of E(F� ;X ) onto X . Then, there exists a unique topology T on E(F� ;X ) making
� : E(F� ;X )�! X a Hilbert bundle over X such that all the continuous vector �elds in
F� ;X are continuous sections of E(F� ;X ). Moreover, every Hilbert bundle comes from a
continuous �eld of Hilbert spaces.

Proof . For the details of the proof we refer to (Dixmier and Douady 1963, Section 2) or
(Fell and Doran 1988, Chapter II, Theorem 13.18). Here, we only sketch the main ideas.

We use the shorter notation F� ;X � F. One has to equip the set E(F) :=
F

x2 X H(x)
with a topology which satis�es the axioms of De�nition 4.7.1. Such a topology T is
generated by the basis of open sets whose elements are the tubular neighborhoods
U (O; �; " ) := f p 2 E(F) : � (p) 2 O; kp � � (� (p))k < " g for all open sets O � X , all
continuous vector �elds � (�) 2 � and all positive numbers " > 0. Since �(U (O; �; " )) = O
it is clear that with respect to the topology T the map � : E(F) ! X is a continuous
open surjection. The topology induced by T on H(x) is equivalent to the norm-topology of
H(x). Any vector �eld � (�) 2 F can be seen as a map � : X ! E(F) such that � � � = idX ,
i.e. it is a section of E(F). It follows that � (�) 2 � if and only if � is a continuous section.

Conversely, let � : E ! X be a Hilbert bundle over the compact Hausdorff space
X and let �( E) be the set of its continuous section. Let F(E) :=

Q
x2 X � � 1(x) be the

�eld of Hilbert spaces associated to the bundle E. The compactness of X assures that
E has enough continuous sections, i.e. f � (x) : � 2 �( E)g = � � 1(x) =: H(x) (Fell and
Doran 1988, Douady-Dal Soglio-Hérault theorem, Appendix C). For all � 2 �( E) the
map X 3 x 7! k � (x)kx is continuous since it is composition of continuous functions.
Finally the family �( E) ful�lls the locally uniform closure property (Fell and Doran 1988,
Corollary 13.13, Chapter II). This proves that the set of continuous sections �( E) de�nes
a continuous structure on the �eld of Hilbert spaces F(E). �

We will say that the set E(F� ;X ) endowed with the topology T and the canonical
surjection � de�nes the Hilbert bundle associated with the continuous structure � of F.

Triviality, local triviality and vector bundle structure

A Hilbert bundle is a generalization of a (in�nite dimensional) vector bundle, in the
sense that some other extra conditions are needed in order to turn it into a genuine vec-
tor bundle. For the axioms of vector bundle we refer to (Lang 1985). The most relevant
missing condition, is the local triviality property (c.f. Section C).

Two Hilbert bundles �1 : E1 :! X and �2 : E2 :! X over the same base space X are
said to be (isometrically) isomorphic if there exists a homeomorphism � : E1 ! E2 such
that a) �2 � � = �1, b) � x := � j � � 1

1 (x) is a unitary map from the Hilbert space � � 1
1 (x) to the
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Hilbert space �2
� 1(x). From the de�nition it follows that if the Hilbert bundles E1 and E2

are isomorphic then the map �( E1) 3 � 7! � � � 2 �( E2) is one to one. A Hilbert bundle is
said to be trivial if it is isomorphic to the constant Hilbert bundle X � H ! X where H is
a �xed Hilbert space. It is called locally trivial if for every x 2 X there is a neighborhood
O of x such that the reduced Hilbert bundle EjO := f p 2 E : � (p) 2 Og = � � 1(O) is
isomorphic to the constant Hilbert bundle O � H ! O. Two continuous �elds of Hilbert
spacesF� ;X and F0

� 0;X over the same space X are said to be (isometrically) isomorphic if
the associated Hilbert bundles E(F� ;X ) and E(F0

� 0;X ) are isomorphic. A continuous �eld
of Hilbert spaces F� ;X is said to be trivial (resp. locally trivial) if E(F� ;X ) is trivial (resp.
locally trivial).

P ROPOSITION 4.7.4. Let F� ;X be a continuous �eld of Hilbert spaces over the compact
Hausdorff space X and E(F� ;X ) the associated Hilbert bundle. Then:

(i) if F� ;X is separable and X is second-countable (or equivalently metrizable) then the
topology de�ned on the total space E(F� ;X ) is second-countable;

(ii) if dim H(x) = @0 for all x 2 X and if X is a �nite dimensional manifold then the
Hilbert bundle E(F� ;X ) is trivial;

(iii) if dim H(x) = q < + 1 for all x 2 X then the Hilbert bundle E(F� ;X ) is a Hermitian
vector bundle with typical �ber Cq.

Proof . For the proof of (i) we refer to (Fell and Doran 1988, Proposition 13.21, Chapter
II). The claim (ii) is proved in (Dixmier and Douady 1963, Theorem 5). We only sketch
the proof of (iii).

First of all, we recall that to prove that a Hilbert bundle is a vector bundle we need
to prove the local triviality and the continuity of the transition functions (Lang 1985,
Chapter III). However, if the �bers are �nite dimensional then the continuity of the
transition functions follows from the existence of the local trivializations (Lang 1985,
Proposition 1, Chapter III).

Let F :=
Q

x2 X H(x) with dim H(x) = q for all x 2 X and f � 1(�); : : : ; � q(�)g � � such
that for a �xed x0 2 X the collection f � 1(x0); : : : ; � q(x0)g is a basis for H(x0). Follow-
ing (Dixmier and Douady 1963, Section 1), we show that f � 1(x); : : : ; � q(x)g is a basis
for H(x) for all x in a suitable neighborhood of x0. The function } : X � Cq ! [0; + 1 )
de�ned by } (x; � 1; : : : ; � q) := j� j k

P q
j =1

� j
j � j � j (x)kx , with j� j2 :=

P q
j =1 j� j j2, is continuous

(composition of continuous function). Then the function � : X ! [0; + 1 ) de�ned by
� (x) := inf j � j=1 } (x; � ) is also continuous since the unit sphere in Cq is compact. More-
over � (x0) > 0. Since f � 1(x); : : : ; � q(x)g are linearly independent if and only if � (x) > 0
it follows that the vectors are linearly independent in a suitable neighborhood Ox0 of
x0. In Ox0 we can use the Gram-Schmidt formula to obtain a local set of orthonor-
mal continuous vector �eld f e� 1(�); : : : ; e� q(�)g. This local frame enables us to de�ne a
map hx0 : � � 1(Ox0 ) ! Ox0 � Cq by hx0 (p) := ( � (p); � 1; : : : ; � q) with � (p) = x 2 Ox0 and
p =

P q
j =1 � j e� j (x). The map hx0 is an homeomorphism and for each x 2 Ox0 is a lin-

ear isomorphism between H(x) and Cq. The collection f Ox0 gx02 X is a open covering,
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so we can select by the compactness of X a �nite covering f O1; : : : ; O`g. The family
f (Oj ; hj )gj =1 ;:::;` is a �nite trivializing atlas for the vector bundle. �

Algebraic viewpoint

Roughly speaking a continuous �eld of Hilbert spaces is an “analytic object” while a
Hilbert bundle is a “geometric object”. There is also a third point of view which is of
algebraic nature. We introduce an “algebraic object” which encodes all the relevant
properties of the set of continuous vector �elds (or continuous sections).

D EFINITION 4.7.5 (Algebraic viewpoint: Hilbert module) . A (left) pre- C � -module over
a commutative unital C � -algebra A is a complex vector space 
 0 that is also a (left) A -
module with a pairing f� ; �g : 
 0 � 
 0 ! A satisfying, for �; %; &2 
 0 and for a 2 A the
following requirements:

a) f � ; %+ &g = f � ; %g + f � ; &g;

b) f � ; a%g = af � ; %g;

c) f � ; %g� = f %; � g;

d) f � ; � g > 0 if � 6= 0 .

The map jjj � jjj : 
 0 ! [0; + 1 ) de�ned by jjj � jjj :=
p

kf � ; � gkA is a norm in 
 0. The
completion 
 of 
 0 with respect to the norm jjj � jjj is called (left) C � -module or Hilbert
module over A .

P ROPOSITION 4.7.6 (Equivalence between algebraic and analytic viewpoint) . Let F� ;X

be a continuous �eld of Hilbert spaces over the compact Hausdorff space X . The set of
continuous vector �elds � has the structure of a Hilbert module over C(X ). Conversely
any Hilbert module over C(X ) de�nes a continuous �eld of Hilbert spaces. This corre-
spondence is one-to-one.

Proof . We shortly sketch the proof, see (Dixmier and Douady 1963, Section 3) for de-
tails.

To prove the �rst part of the statement one observes that for all pairs of continuous
vector �elds � (�); %(�) 2 � the pairing f� ; �g : � � � ! C(X ) de�ned �berwise by the inner
product, i.e. by posing f � ; %g(x) := ( � (x); %(x)) x , satis�es De�nition 4.7.5. The norm is
de�ned by jjj � jjj := supx2 X k� (x)kx and � is closed with respect to this norm in view of
the property of locally uniform closure.

Conversely let 
 be a C � -module over C(X ). For all x 2 X de�ne a pre-Hilbert
structure on 
 by (� ; %)x := f � ; %g(x). The set I x := f � 2 
 : f � ; � g(x) = 0 g is a
linear subspace of 
 . On the quotient space 
 =I x the inner product ( ; ) x is a positive
de�nite sesqulinear form and we denote by H(x) the related Hilbert space. The collection
fH (x) : x 2 X g de�nes a �eld of Hilbert spaces F(
) =

Q
x2 X H(x). For all � 2 
 the

canonical projection 
 3 �
| x7�! � (x) 3 
 =I x de�nes a vector �eld � (�) 2 F(
) . It is
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easy to check that the map 
 3 � �7�! � (�) 3 F(
) is injective. We denote by �(
) the
image of 
 in F(
) . The family �(
) de�nes a continuous structure on F(
) . Indeed
f � (x) : � (�) 2 �(
) g = 
 =I x is dense in H(x) and k� (x)k2

x = f � ; � g(x) is continuous.
Finally locally uniform closure of �(
) follows from the closure of 
 with respect to the
norm jjj � jjj := supx2 X

p
f � ; � g(x) and the existence of a partition of the unit subordinate

to a �nite cover of X (since X is compact). �

The Hilbert bundle emerging from the Bloch-Floquet decomposition

We are now in position to provide a complete answer to questions (Q-II) and (Q-III)
in Section 4.1. Before proceeding with our analysis, it is useful to summarize in the
following diagram the relations between the algebraic, the analytic and the geometric
descriptions.

Continuous �eld
of

Hilbert spaces
F� ;X

99A

yyrrrrrrrrrr ff B

&&MMM
MMM

MMM
MM

Hilbert bundle
� : E ! X

�bers of �nite dimension qD
��

oo C //C(X )-module



E��

rank- q
Hermitian

vector bundle
oo F //

projective
�nitely generated

C(X )-module

(4.29)

Arrows A and B summarize the content of Propositions 4.7.3 and 4.7.6 respectively, ar-
row D corresponds to point (iii) of Proposition 4.7.4, and arrow E follows by Proposi-
tion 53 in (Landi 1997). Arrow F corresponds to the remarkable Serre-Swan Theorem
(Landi 1997, Proposition 21), so arrow C can be interpreted as a generalization of the
Serre-Swan Theorem.

Coming back to our original problem, let fH ; A; S g be a physical frame with H a sep-
arable Hilbert space and S a ZN -algebra with generators f U1; : : : ; UN g and wandering
system f  kgk2 N. The Bloch-Floquet decomposition (Theorem 4.6.4) ensures the exis-
tence of a unitary map US , which maps H into the direct integral K :=

R�
T N K(t) dz(t).

Let F :=
Q

t2 T N K(t) be the corresponding �eld of Hilbert spaces. The space K is a sub-
set of F which has the structure of a Hilbert space and whose elements can be seen as
L 2-sections of a “pseudo-Hilbert bundle” E(F) :=

F
t2 T N K(t). This justi�es the use of the

notation K � L 2(E). To answer question (Q-II) in Section 4.1 we need to know how to
select a priori a continuous structure � � K for the �eld of Hilbert spaces F. In view of
Proposition 4.7.3, this procedure is equivalent to select a priori the family of the contin-
uous section �( E) of the Hilbert bundle E inside the Hilbert space L 2(E). We can use
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the generalized Bloch-Floquet transform to push back this problem at the level of the
original Hilbert space H and to adopt the algebraic viewpoint. With this change of per-
spective the new, but equivalent, question which we need to answer is: does the physical
frame fH ; A; S g select a Hilbert module over C(T N ) inside the Hilbert space H?

Generalizing an idea of (Gruber 2001), we can use the transform US and the notion
of wandering nuclear space � to provide a positive answer. The core of our analysis is
the following result.

P ROPOSITION 4.7.7. Let S be a ZN -algebra in the separable Hilbert space H with gener-
ators f U1; : : : ; UN g, wandering system f  kgk2 N and wandering nuclear space � . Let K be
the direct integral de�ned by the Bloch-Floquet transform US : H ! K. Then the Bloch-
Floquet transform endowes � with the structure of a (left) pre- C � -module over C(T N ).
Let 
 S be the completion of � with respect to the C � -module norm. Then 
 S is a Hilbert
module over C(T N ) such that 
 S � H .

Proof . The set � is a complex vector space which can be endowed with the structure of
a C(T N )-module by means of the Gel'fand isomorphism. For any f 2 C(T N ) and ' 2 �
we de�ne the (left) module product ? by

C(T N ) � � 3 (f; ' ) 7�! f ? ' := A f ' 2 � (4.30)

where A f 2 S is the operator associated with f 2 C(T N ). The product is well de�ned
since � is S -invariant by construction. The Bloch-Floquet transform allows us also to
endow � with a pairing f� ; �g : � � � ! C(T N ). Indeed, for any pair '; � 2 � and for all
t 2 T n we de�ne a sesquilinear form

� � � 3 ('; � ) 7�! f '; � g(t) := (( US ' )( t); (US � )( t)) t 2 C: (4.31)

Moreover f '; � g(t) is a continuous function of t. Indeed '; � 2 � means that ' and
� are �nite linear combinations of the vectors Ua k and from equation (4.25) and the
orthonormality of the fundamental vector �elds � k (�) it follows that f '; � g(t) consists of
a �nite linear combination of the exponentials e it 1 ; : : : ; eit N .

Endowed with the operations (4.30) and (4.31), the space � becomes a (left) pre-C � -
module over C(T N ). The Hilbert module 
 S is de�ned to be the completion of � with
respect to the norm

jjj ' jjj 2 := sup
t2 T N

k(US ' )( t)k2
t = sup

t2 T N

 
�nX

k2 N

jf ' ;k (t)j2
!

(4.32)

according to the notation in the proof of Theorem 4.6.4. Let f ' ngn2 N be a sequence in �
which is Cauchy with respect to the norm jjj � jjj . From (4.32), the unitarity of US and the
normalization of the Haar measure dz on T N it follows that k' n � ' m kH 6 jjj ' n � ' m jjj ,
hence f ' ngn2 N is also Cauchy with respect to the norm k � kH , so the limit ' n ! ' is an
element of H . �
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R EMARK 4.7.8 (Wannier vectors ). The proof of Proposition 4.7.7 provides more informa-
tion about the relation of 
 S with respect to the relevant families of Wannier vectors.
According to table (4.27), we can prove that

� � 
 !
S � 
 1

S � 
 S � H :

Indeed equation (4.32) implies the inequality supt2 T N jf ' n ;k (t) � f ' m ;k (t)j 6 jjj ' n � ' m jjj
which assures that f ' n ;k ! f ' ;k uniformly with f ' ;k 2 C(T N ) for all k 2 N. Then the com-
ponents of (US ' )( �) with respect to the fundamental orthonormal frame � (�) := f � k (�)gk2 N

are continuous functions and this justi�es the chain of inclusions claimed above. ��

Once selected the Hilbert module 
 S , we can use it to de�ne a continuous �eld of
Hilbert spaces as explained in Proposition 4.7.6. It is easy to convince themselves that
the abstract construction proposed in Proposition 4.7.6 is concretely implemented by
the generalized Bloch-Floquet transform US . Then, the set of vector �elds � S := US (
 S )
de�nes a continuous structure on the �eld of Hilbert spaces F :=

Q
t2 T N K(t) and, in view

of Proposition 4.7.3, a Hilbert bundle over the base manifold T N . This Hilbert bundle,
denote by ES , is the set

F
t2 T N K(t) equipped by the topology prescribed by the set of the

continuous sections � S . The structure of ES depends only on the equivalence class of the
physical frame fH ; A; S g and we refer to it as the Bloch-Floquet Hilbert bundle .

T HEOREM 4.7.9 (Emerging geometric structure) . Let S be aZN -algebra in the separable
Hilbert space H with generators f U1; : : : ; UN g, wandering system f  kgk2 N and wandering
nuclear space � . Let K be the direct integral de�ned by the Bloch-Floquet transform
US : H ! K and 
 S � H the Hilbert module over C(T N ) de�ned in Proposition 4.7.7.
Then:

(i) the family of vector �elds US (
 S ) =: � S de�nes a continuous structure on F =
� t2 T N K(t) which realizes the correspondence stated in Proposition 4.7.6;

(ii) the Bloch-Floquet Hilbert bundle � : ES ! T N , de�ned by � S according to Proposi-
tion 4.7.3, depends only on the equivalence class of the physical frame fH ; A; S g.

Proof . To prove (i) let I t := f ' 2 � : (( US ' )( t); (US ' )( t)) t = 0g. The space � =I t is a pre-
Hilbert space with respect to the scalar product induced by US jt . The map US jt : � =I t !
K(t) is obviously isometric and so can be extended to a linear isometry from the norm-
closure of � =I t into K(t). The map US jt is also surjective, indeed K(t) is generated by the
orthonormal basis f � k (t)gk2 N and US jt

� 1� k (t) =  k 2 � =I t . Then the �ber Hilbert spaces
appearing in the proof of Proposition 4.7.6 coincide, up to a unitary equivalence, with the
�ber Hilbert spaces K(t) obtained through the Bloch-Floquet decomposition. Moreover
the Bloch-Floquet transform acts as the map de�ned in the proof of Proposition 4.7.6,
which sends any element of the Hilbert module � to a continuous section of F.

To prove (ii) let fH 1; A1; S 1g and fH 2; A2; S 2g be two physical frames related by a
unitary map W : H 1 ! H 2. If S 1 is a ZN -algebra in H 1 then also S 2 = W S 1W � 1 is a ZN -
algebra in H 2 and if f  kgk2 N � H 1 is a wandering system for S 1 then f e k := W kgk2 N �
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H 2 is a wandering system for S 2 (with the same cardinality). The two wandering nuclear
spaces � 1 � H 1 and � 2 � H 2 are related by � 2 = W � 1. Let US j : H j ! Hj , j = 1 ; 2 be
the two generalized Bloch-Floquet transforms de�ned by the two equivalent physical
frames. From the explicit expression of US 2 and US 1

� 1, and in accordance with Corollary
4.3.4, one argues that US 2 � W � U S 1

� 1 =: W (�) is a decomposable unitary which is well
de�ned for all t. Let '; � 2 � 1 then

f ' ; � g1(t) : = (( US 1 ' )( t); (US 1 � )( t)) t = ( W (t)(US 1 ' )( t); W (t)(US 1 � )( t)) t

= (( US 2 W' )( t); (US 2 W� )( t)) t =
�

(US 2 e' )( t); (US 2
e� )( t)

�

t
=: f e' ; e� g2(t)

where e' := W ' and e� := W� are elements of � 2. This equation shows that � 1 and � 2

have the same C(T N )-module structure and so de�ne the same abstract Hilbert mod-
ule over C(T N ). The claim follows from the generalization of the Serre-Swan Theorem
summarized by arrow C in (4.29). �

R EMARK 4.7.10. With a proof similar to that of point (ii) of Theorem 4.7.9, one deduces
also that the Bloch-Floquet-Hilbert bundle ES does not depend on the choice of two uni-
tarily equivalent commutative C � -algebras S 1 and S 2 inside A. Indeed also in this case
the abstract Hilbert module structure induced by the two Bloch-Floquet transforms US 1

and US 2 is the same. ��

Theorem 4.7.9 provides a complete and satisfactory answer to questions (Q-II) and
(Q-III) in Section 4.1 for the interesting case of a ZN -algebras S satisfying the wandering
property. At this point, it is natural to deduce more information about the topology of
the Bloch-Floquet Hilbert bundle from the properties of the physical frame fH ; A; S g. An
interesting property arises from the cardinality of the wandering system which depends
only on the physical frame (c.f. Corollary 4.6.8).

COROLLARY 4.7.11. The Hilbert bundle ES over the torus T N de�ned by the continuous
structure � S is trivial if the cardinality of the wandering system is @0, and is a rank- q
Hermitian vector bundle if the cardinality of the wandering system is q. In the latter case
the transition functions of the vector bundle can be expressed in terms of the fundamental
orthonormal frame of sections � (�) := f � k (�)gk=1 ;:::;q, with � k (�) := ( US  k )( �).

Proof . The claim follows from Propositions 4.7.4 and 4.7.3 jointly with the fact that
the dimension of the �ber spaces K(t) is the cardinality of the wandering system as
proved in Proposition 4.6.3. In the �nite dimensional case the fundamental orthonormal
frame � (�), de�ned by (4.22), selects locally a family of frames and so provides the local
trivializations for the vector bundle. �

Decomposition of the observables and endomorphism sections

According to Theorem 4.6.4, the Bloch-Floquet transform (4.17) provides a concrete real-
ization for the unitary map ( S -Fourier transform) whose existence is claimed by the von
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Neumann's complete spectral theorem. Let hereafter fH ; A; S g be a physical frame with
S a ZN -algebra admitting a wandering system. Point (ii) of Theorem 4.3.1 implies that
under the Bloch-Floquet transform any O 2 A is mapped into a decomposable operator
on the direct integral

R�
T N K(t) dz(t) , i.e. US O US

� 1 =: O(�) : t 7! O(t) 2 B (K(t)) with
O(�) weakly mesurable.

The natural question which arises is the following: there exists any topological struc-
ture in the C � -algebra A compatible with the Bloch-Floquet Hilbert bundle which emerges
from the Bloch-Floquet transform? To answer to this question we �rstly analyze the na-
ture of the linear maps which preserve the (Hilbert module) structure of the set of the
continuous sections.

D EFINITION 4.7.12 (Hilbert module endomorphism) . Let 
 be a (left) Hilbert module
over the commutative unital C � -algebra A . An endomorphism of 
 is a A-linear map
O : 
 ! 
 which is adjointable , i.e. there exists a map Oy : 
 ! 
 such that f � ; O� g =
f Oy� ; � g for all �; � 2 
 . We denote byEnd A (
) the set of all the endomorphisms of 
 .

As proved in (Gracia-Bondía et al. 2001, Section 2.5) or (Landi 1997, Appendix A), if
O 2 End A (
) , then also its adjoint Oy 2 End A (
) and y is an involution over End A (
) .
Moreover, End A (
) endowed with the endomorphism norm

kOkEnd(
) := supfjjj O(� )jjj : jjj � jjj 6 1g (4.33)

becomes a C � -algebra (of bounded operators). For any �; � 2 
 one de�nes the rank-1
endomorphism j� gf � j 2 End A (
) by j� gf � j(&) := f � ; &g � for all & 2 
 . The adjoint of
j� gf � j is given by j� gf � j. The linear span of the rank-1 endomorphisms is a selfadjoint
two-sided ideal of End A (
) (�nite rank endomorphisms ) and its (operator) norm closure
is denoted by End 0

A (
) . The elements of the latter are called compact endomorphisms of

 . Since End 0

A (
) is an essential ideal of End A (
) , it follows that End 0
A (
) = End A (
)

if and only if 1 
 2 End 0
A (
) .

A remarkable result which emerges from the above theory is the characterization of
the compact endomorphisms of the C(X ) Hilbert module �( E) of the continuous sections
of a rank- q Hermitian vector bundle � : E ! X .

P ROPOSITION 4.7.13. Let � : E ! X be a rank- q Hermitian vector bundle over the com-
pact Hausdorff space X and let �( E) be the Hilbert module over C(X ) of its continuous
sections. Then

End 0
C(X ) (�( E)) = End C(X ) (�( E)) ' �( End(E)) (4.34)

where �( End(E)) denotes the continuous sections of the endomorphism vector bundle
�0 : End(E) ! X . The localization isomorphism appearing in right-hand side of (4.34)
preserves the composition and the structure of C(X )-module.

Proof . The localization (right-hand) isomorphism in (4.34) is a consequence of the Serre-
Swan Theorem (Gracia-Bondía et al. 2001, Theorems 2.10 and 3.8). Such a theorem
states that there exists an equivalence of categories between �nite rank Hermitian vec-
tor bundles over a compact space X and Hilbert modules over C(X ) which are pro-
jective and �nitely generated . The latter are modules of the form pC(X ) � M , where
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C(X ) � M := C(X ) � : : : � C(X ) (M -times), p 2 Mat M (C(X )) (M � M matrices with
entries in C(X )) is an orthogonal projection ( p2 = p = py) and M is some positive integer
(M > q ).

The � -functor sends any (rank q) Hermitian vector bundle � : E ! X in the Hilbert
module of its continuous sections �( E) ' pC(X ) � M (isomorphism of Hilbert modules)
and any strong bundle map (i.e. a map which induces the identity in the base space) f :
E ! E in a Hilbert module endomorphism �( f ) 2 End C(X ) (�( E)) ' End C(X ) (pC(X ) � M ).
Any strong bundle map f can be seen as a section of the endomorphism bundle �0 :
End(E) ! X . This identi�cation de�nes an isomorphism (of C(X )-modules preserving
the composition) between the set of the strong bundle maps and �( End(E)) . The equiv-
alence of categories induced by � implies the localization isomorphism End C(X ) (�( E)) '
�( End(E)) . The isomorphism of C(X )-modules (preserving the composition) (Gracia-
Bondía et al. 2001, Lemma 2.18)

End 0
C(X ) (pC(X ) � M ) ' pMat M (C(X ))p

shows that the identity endomorphism is in End 0
C(X ) (pC(X ) � M ) since the C � -algebra

C(X ) is unital. This implies that

End 0
C(X ) (pC(X ) � M ) = End C(X ) (pC(X ) � M )

since the compact endomorphisms form an essential ideal (Gracia-Bondía et al. 2001,
Proposition 3.2). �

In Proposition 4.7.7 we proved that the Gel'fand isomorphism and the Bloch-Floquet
transform equip the wandering nuclear space � with the structure of a (left) pre- C � -
module over C(T N ) by means of the (left) product ? de�ned by (4.30) and the pairing
f ; g de�ned by (4.31). The closure of � with respect to the module norm de�nes a
Hilbert module over C(T N ) denoted by 
 S � H . In this description what is the rôle
played by A? Is it possible, at least under some condition, to interpret the elements
of A as endomorphism of the Hilbert module 
 S ? One could try to answer to these
questions by observing that for any O 2 A, any A f 2 S and any ' 2 
 S one has that
O(f ? ' ) := OA f ' = A f O' . The latter might be interpreted as f ? O (' ), implying
the C(T N )-linearity of O 2 A as operator on 
 S . However it may happen that O' =2 
 S

which implies that O can not de�ne an endomorphism of 
 S . Everything works properly
if one consider only elements in the subalgebra A0 � A de�ned by

A0 := f O 2 A : O : 
 S ! 
 S g: (4.35)

P ROPOSITION 4.7.14. Let 
 S be the Hilbert module over C(T N ) de�ned by means of the
Bloch-Floquet transform according to Proposition 4.7.7. Let A0

s.a. be the C � -subalgebra
of A de�ned by A0

s.a. := f O 2 A : O; Oy 2 A0g (self-adjoint part of A0). Then A0
s.a. �

End C(T N ) (
 S ).
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Proof . Let O 2 A0
s.a.. By de�nition O is a linear map from 
 S to itself; it is also C(T N )-

linear since O(f ? ' ) = OA f ' = A f O' as mentioned. We need to prove that O is bounded
with respect to the endomorphism norm (4.33). From the de�nition (4.32) of the module
norm jjj � jjj it follows that

jjj O' jjj = supt2 T N k(US O' )( t)kt = supt2 T N k� t (O)(US ' )( t)kt 6 kOkB (H ) jjj ' jjj (4.36)

where � t (O) := US jt O US jt
� 1 de�nes a representation of the C � -algebra A on the �ber

Hilbert space K(t) and k� t (O)kB (K (t )) 6 kOkB (H ) since any C � representation decreases
the norm. Thus kOkEnd(
 S ) 6 kOkB (H ) , therefore O de�nes a continuous C(T N )-linear
map from 
 S to itself. To prove that O 2 End C(T N ) (
 S ) we must show that O is ad-
jointable, which follows from the de�nition of A0

s.a.. �

It is of particular interest to specialize the previous result to the case of a �nite
wandering system.

T HEOREM 4.7.15 (Bloch-Floquet endomorphism bundle) . Let fH ; A; S g be a physical
frame where S is a ZN -algebra with generators f U1; : : : ; UN g and wandering system
f  1; : : : ;  qg of �nite cardinality. Then:

(i) A0
s.a. = A0;

(ii) US A0 US
� 1 � �( End(ES )) where � : ES ! T N is the rank q Bloch-Floquet vector

bundle de�ned in Corollary 4.7.11.

Proof . To prove (i) let O 2 A0 and observe that if O k =
P q

h=1

P
b2 ZN � (k)

h;b Ub h then

Oy k =
P q

h=1

P
b2 ZN � (h)

k;b U � b h . Since O k 2 
 S , then f (k)
h (t) :=

P
b2 ZN � (k)

h;b zb(t) is a
continuous function on T N and

jjj Oy k jjj 2 = supt2 T N

 qX

h=1

jf (h)
k (t)j2

!

< + 1 :

Then Oy k 2 
 S for all k = 1 ; : : : ; q. Since Oy(Ub k ) = Ub(Oy k ) 2 
 S for all b 2 ZN it
follows that also Oy 2 A0. Point (ii) is an immediate consequence of Proposition 4.7.14,
Corollary 4.7.11 and Proposition 4.7.13. �

E XAMPLE 4.7.16 (Mathieu-like Hamiltonians, part four ). It is immediate to check that
both u and v preserve the wandering nuclear space � M , so that the full C � -algebra
A

p=q

M consists of endomorphisms for the Hilbert module realized by means of the Bloch-

Floquet transform US q
M

. Theorem 4.7.15 claims that US q
M

maps A
p=q

M in a subalgebra of
the endomorphism bundle associated to the trivial bundle T � Cq ! T . The matrices u(t)
and v(t) in Example 4.6.7 are a representation of the generators u and v as elements of
�( End(T � Cq)) ' C(T ) 
 Mat q(C). JB



Chapter 5

The geometry of Hofstadter and Harper models

On se persuade mieux, pour l'ordinaire, par les raisons
qu'on a soi-même trouvées, que par celles qui sont venues
dans l'esprit des autres.

(People are generally better persuaded by the reasons
which they have themselves discovered than by those
which have come into the mind of others.)

Blaise Pascal
Pensées, 1670

Abstract

This �nal chapter aims to present the proofs of the “geometric” results of this thesis,
that is Theorem 2.7.4 and Theorem 2.8.1. In Section 5.1 we derive the (standard)
physical frames for the Hofstadter and Harper representations. This �rst step shows
that the theory of the (generalized) Bloch-Floquet decomposition, developed in Chapter
4, can be applied successfully to systems in Hofstadter or Harper regime. Employing
the machinery of the Bloch-Floquet decomposition, we derive in Section 5.2 the bundle
decomposition of the Hofstadter (resp. Harper) representation, as well the geometric
structure of the Hofstadter (resp. Harper) vector bundle. The content of these �rst
two sections provides the proof of Theorem 2.7.4. Finally, the proof of Theorem 2.8.1
is achieved is Section 5.3. In this last section, we derive the geometric duality be-
tween vector subbundles of the Hofstadter or Harper vector bundles related to a given
“abstract” projection, according to the “two-fold way” (2.44).

5.1 Standard physical frames

5.1.1 Representation theory of the NCT-algebra

T he representation theory of the NCT-algebra depends heavily on the fact that the
deformation parameter is rational or irrational.

Irrational case

The representation theory of the NCT-algebra is particularly simple when the deforma-
tion parameter is irrational (Boca 2001, Theorem 1.10):

- Simplicity and faithfulness: If � 2 R n Q then the NCT-algebra A� is simple ,
i.e. it has no non-trivial closed two-sided ideals. This implies that any (non-trivial)
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representation � : A� ! B (H) is faithful whenever the deformation parameter is
irrational.

Rational case

The representation theory in the case of a rational deformation parameter is less simple.
First of all, in this case the NCT-algebra has �nite dimensional representations. Let
� = M=N (according to Convention 2.4.3) and de�ne U := U(1) and V := V (1) as in (2.40),
namely

U :=

0

B
B
B
B
B
B
B
B
B
@

1 0 0 : : : 0

0 ei 2� M
N 0 : : : 0

0 0 ei 4� M
N

...
...

...
...

. . . 0
0 0 0 : : : 0

0 0 0 : : : ei 2� (N � 1) M
N

1

C
C
C
C
C
C
C
C
C
A

; V :=

0

B
B
B
B
B
B
B
B
B
@

0 0 0 : : : 0 1
1 0 0 : : : 0 0

0 1 0
...

...
...

...
. . . . . . 0 0

0 0 0 0 0
0 0 0 : : : 1 0

1

C
C
C
C
C
C
C
C
C
A

: (5.1)

A straightforward computation shows that UV = ei 2�� V U, moreover C � (U; V ) =
Mat N (C) (Boca 2001, Lemma 1.8), namely U and V are a frame of generators for Mat N (C).
For any z = ( z1; z2) 2 T 2 the maps � z(u) = z1U, � z(v) = z2V de�ne a surjective repre-
sentation of A� (c.f. Section 2.3, surjective representation property) which is not faithful
since UN = V N = 1. The representation theory of the NCT-algebra for rational values of
the deformation parameter is established in (Boca 2001, Theorem 1.9, Proposition 1.11):

- Irreducible representations and homogeneity: Let � = M=N as in Convention
2.4.3. Each irreducible representation of AM =N is unitarily equivalent to one of the
representations � z : AM =N ! Mat N (C), with z 2 T 2. Moreover, two irreducible
representations � z and � z0 are unitarily equivalent if and only if there exist two
N -th roots of unity ! 1 and ! 2 such that z0

j = ! j zj with j = 1 ; 2. It follows that AM =N

is a N -homogeneousC � -algebra (De�nition 4.6.10).

- Faithfulness condition: A (surjective) representation � : AM =N ! C � (U; V) de-
�ned by � (u) := U, � (v) := V is faithful if and only if C � (UN ; V N ) is isomorphic to
C(T 2).

Canonical bundle representation

Let | 1(�); | 2(�) be the generators of C(T 2), i.e. | i (z) := zi , i = 1 ; 2, for any z = ( z1; z2) 2
T 2. De�ne U(�) := | 1(�) 
 U and V(�) := | 2(�) 
 V . Both U(�) and V(�) are elements in
C(T 2) 
 Mat N (C) ' C(T 2; Mat N (C)) . Let T 2 � CN ! T 2 be the rank N trivial vector
bundle. The C � -algebra C(T 2; Mat N (C)) coincides with the family of continuous sections
of the related endomorphism bundle, i.e. C(T 2; Mat N (C)) = �( End(T 2 � CN )) .

- Canonical bundle representation: Let � = M=N as in Convention 2.4.3. The
map �( u) = U, �( v) = V de�nes a � -isomorphism between AM =N and C � (U(�); V(�)) �
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�( End(T 2 � CN )) (Boca 2001, Corollary 1.12). We refer to � as the canonical bundle
representation .

Any p 2 Proj (A� ) is mapped by � in a projection-valued section �( p) := P(�) 2
�( End(T 2 � CN )) . According to Lemma 2.7.3, the orthogonal projection P(�) de�nes a
vector subbundle L (p) ! T 2 of the trivial vector bundle, whose total space is given by

L (p) =
G

z2 T 2

Im (P)z ' f (z; v) 2 T 2 � CN : P(z)v = vg: (5.2)

Even if L (p) is a subbundle of a trivial vector bundle, its topology can be non-trivial.

P ROPOSITION 5.1.1. Let � = M=N as in Convention 2.4.3. For any p 2 Proj (A1
M =N

) the
associated vector bundle � : L (p) ! T 2 (5.2) has rank Rk(p) := N

R
��� (p) and �rst Chern

number
C1(L (p)) = � N C1(p)

where C1 is de�ned by equation (2.51).

Proof . Let z 7! Rk(P(z)) the function which associates to any z 2 T 2 the dimension of
the orthogonal projection P(z) 2 Mat N (C). Since the range of this map is discrete and
the domain is connected, to prove that it is constant it is enough to prove that it is locally
constant. The latter claim is proved in (Boca 2001, Corollary 1.22). Let Tr N be the trace
on Mat N (C) and observe that

1
N

Z

T 2
Tr N (U(z)nV(z)m ) dz = � n;0� n;0 =

R
��� (unvm )

where dz = dk1^ dk2=(2� )2 is the normalized Haar measure. Since the � -morphism � is
injective, it follows that

R
��� �

� 1
N

R
T 2 Tr N

�
� � . Since Tr N (P(z)) = Rk(P(z)) = c is constant,

it follows that
R
��� (p) = c

N

R
T 2 dz = c

N .

From the de�nition of the canonical derivations (equation (2.50)) it follows that

�( @��� j (a)) = (2 �@k j 
 Id )(�( a)) ; a 2 A1
� ;

where the derivative @k j is de�ned using the parametrization z(k) = ( eik 1 ; eik 2 ). Then,
using (2.51) one has

C1(p) = �
1
N

�
i

2�

Z

T 2
Tr N (P(z(k))[@k1 P(z(k)); @k2 P(z(k))]) dk1 ^ dk2

�
:

The quantity in brackets in the right-hand side coincides with the (differential geomet-
ric) de�nition of the �rst Chern number of the vector bundle (5.2). �

5.1.2 Standard physical frame for the Hofstadter representation

T his section aims to show that the Hofstadter representation admits a natural (or
standard ) physical frame (De�nition 4.1.2) with a Z2-algebra of symmetries. We

start with an analysis of the structure of the Hofstadter representation.
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Faithfulness of the representation and the GNS construction

Every state on a C � -algebra induces a cyclic representation on a suitable Hilbert space.
If the state is faithful then the representation in injective. This is the content of the
GNS Theorem (Bratteli and Robinson 1987, Theorem 2.3.16). We want to build the GNS
representation of A� relative to the faithful state

R
��� de�ned by (2.31). We can use

R
��� to

convert the Banach space structure of the algebra A� into a pre-Hilbert space structure
by means of the positive de�ned scalar product

ha; bi :=
R
��� (a� b): (5.3)

Obviously ha; ai = 0 if and only if a = 0 , since
R
��� is faithful. Each a 2 A� can be identi�ed

with a vector  a of a suitable pre-Hilbert space endowed with the scalar product induced
by (5.3). The completion of the space with respect to the norm induced by (5.3) de�nes a
Hilbert space denoted by H GNS . Any a 2 A� de�nes a linear operator � GNS(a) acting on
on the dense subset f  b : b 2 A� g � H GNS as � GNS(a) b :=  ab. A simple computation
shows that k� GNS(a) bkGNS 6 kak k bkGNS , hence � GNS(a) has a bounded extension to
whole H GNS . By construction the vector $ :=  1 is cyclic, indeed

[� GNS(A� )$ ] := f  a = � GNS(a)$ : a 2 A� g

is dense in H GNS by construction. Moreover

($ ; � GNS(a)$ )H GNS =
R
��� (a) a 2 A� : (5.4)

Equation (5.4) shows that � GNS is an faithful representation since
R
��� is faithful.

Let � n;m 2 H GNS be the vector associated with the element e � i�nm� unvm 2 A� , i.e.
� n;m :=  e� i�nm� un vm . A straightforward computation shows that f � n;m gn;m 2 Z provides
an orthonormal basis for H GNS with respect to the inner product (5.3). The action of
� GNS(u) and � GNS(v) on this basis is given by

(
� GNS(u) � n;m = ei�m� � n+1 ;m

� GNS(v) � n;m = e� i�n� � n;m +1 :
(5.5)

Let f ' n;m gn;m 2 Z be the Fourier basis of H 0 = L 2(T 2; d2k). From (2.7), with � = � �q"0,
it follows

(
U0 ' n;m = ei�m� ' n+1 ;m

V0 ' n;m = e� i�n� ' n;m +1
' n;m (k1; k2) :=

1
2�

ei (nk 1+ mk 2 ) : (5.6)

Then the unitary map W : H GNS ! H 0 de�ned by W� n;m = ' n;m , intertwines the repre-
sentations � GNS and � 0, indeed

W� GNS(u)W � 1 = U0 = � 0(u); W � GNS(v)W � 1 = V0 = � 0(v):

Since � GNS and � 0 are unitarily equivalent and � GNS is faithful it follows that � 0 is
faithful as claimed in Lemma 2.3.2.
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Hofstadter von Neumann algebra

We refer to Appendix B.1 for basic notions about von Neumann algebras. Let M 0(A� ) :=
� 0(A� )00be the von Neumann algebra associated to A� in the Hofstadter representation
(named Hofstadter von Neumann algebra ). The von Neumann density Theorem (Bratteli
and Robinson 1987, Theorem 2.4.11) states that M 0(A� ) � B (H 0) coincides with the
weak (equiv. strong) closure of � 0(A� ). The vector ' 0;0 = 1=2� is cyclic and separating for
M 0(A� ) and the vector state induced by ' 0;0 extends to a faithful normal tracial state
on M 0(A� ) (Boca 2001, Lemma 1.13). According to the usual nomenclature, M 0(A� ) is
a standard and �nite von Neumann algebra. Moreover if � is irrational then M 0(A� ) is
a hyper�nite factor of type II 1 according to the classi�cation of Murray-von Neumann
(Boca 2001, Lemma 1.14 and Corollary 1.16).

The commutant of the Hofstadter representation

The commutant of � 0(A� ), i.e. the von Neumann algebra � 0(A� )0 = M 0(A� )0, plays a spe-
cial rôle in this work. A straightforward computation shows that the unitary operators
bU0 and bV0 de�ned on the Fourier basis of H 0 by

(
bU0 ' n;m = ei�m� ' n� 1;m

bV0 ' n;m = ei�n� ' n;m +1

(5.7)

are element of the commutant since they commute with the generators U0 and V0 of
� 0(A� ). From (5.7) it follows that

bU0bV0 = ei 2�� bV0bU0; (5.8)

namely bU0 and bV0 de�ne an alternative representation of A� on the Hilbert space H 0.

P ROPOSITION 5.1.2. The commutant � 0(A� )0 of the Hofstadter representation � 0(A� ) is
generated in B (H 0) as the weak (equiv. strong) closure of the polynomial algebra spanned
by the unitaries bU0 and bV0.

Proof . Let A 2 � 0(A� )0. For any vector ' n;m of the Fourier basis one has A' n;m =
P

j;k 2 Z a(n;m )
j;k ' j;k with f a(n;m )

j;k gj;k 2 Z 2 `2(Z2). The conditions [A; U0] = 0 = [ A; V0] imply
that

a(n� 1;m)
j � 1;k = e� i� (k� m)� a(n;m )

j;k ; a(n;m � 1)
j;k � 1 = e� i� (n� j )� a(n;m )

j;k : (5.9)

Using the de�nitory equations (5.7), a straightforward computation shows

bU(n� j )
0

bV(k� m)
0 ' n;m = bU(n� j )

0 (ei�n (k� m)� ' n;k ) = ei�n (k� m)� ei�k (n� j )� ' j;k : (5.10)
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Solving (5.10) with respect ' j;k and using (5.9), one has

A n;m =
X

j;k 2 Z

a(n;m )
j;k

�
e� i�n (k� m)� e� i�k (n� j )� bU(n� j )

0
bV(k� m)

0 ' n;m

�

=

0

@
X

j;k 2 Z

a(n;m )
j;k

�
e� i� (k� m)�

� n �
e� i� (n� j )�

� k
bU(n� j )

0
bV(k� m)

0

1

A ' n;m

=

0

@
X

j;k 2 Z

a(0;m� k)
j � n;0

bU(n� j )
0

bV(k� m)
0

1

A ' n;m =

0

@
X

j;k 2 Z

a(0;� k)
� j; 0

bUj
0

bVk
0

1

A ' n;m :

Since the previous equation holds true for any vector ' n;m of the Fourier basis, it follows

that A =
P

j;k 2 Z � j;k
bUj

0
bVk

0 where � j;k := a(0;� k)
� j; 0 = ( ' � j; 0; A' 0;� k )H 0 . �

The Hofstadter physical frame

The separable Hilbert space H 0 and the C � -algebra � 0(A� ) � B (H 0) are two ingredients
for a physical frame (De�nition 4.1.2). To complete the physical frame structure we need
to select a maximal commutative subalgebra inside the commutant � 0(A� )0. Let � = M=N

(as in Convention 2.4.3). In view of the commutation relation (5.8) it is easy to check
that S 0 := C � ( bU0; bVN

0 ) de�nes a commutative C � -subalgebra of � 0(AM =N )0.

L EMMA 5.1.3. The C � -algebra S 0 is maximal commutative inside the commutant � 0(AM =N )0.

Proof . Let A =
P

j;k 2 Z � j;k
bUj

0
bVk

0 be an element in � 0(A� )0such that [bU0; A] = 0 = [ bVN
0 ; A].

A direct computation shows that � j;k 6= 0 only if k 2 N Z, which means A 2 S 0. �

The triple fH 0; � 0(AM =N ); S 0g is a physical frame. We refer to it as the standard
physical frame of the Hofstadter representation (or simply Hofstadter physical frame ).
It is immediate to recognize that the set f ' 0;j gj =0 ;:::;N � 1 � H 0, where ' n;m is de�ned by
(5.6), is a wandering system of cardinality N for S 0. It follows that S 0 is Z2-algebra
(claim (iii) in Proposition 4.5.2). We refer to f ' 0;j gj =0 ;:::;N � 1 as the standard wandering
system for the Hofstadter representation.

Obviously S 0 is not the only maximal commutative C � -subalgebra of � 0(AM =N )0. In-

deed let p; q be two integers such that pq = N , then C � ( bUp
0; bVq

0) is another maximal
commutative C � -subalgebra of � 0(AM =N )0 different from S 0, with a wandering system
of cardinality N given by f ' i;j gi =0 ;:::;p� 1;j =0 ;:::;q� 1. The ambiguity in the choice of the
algebra of symmetry is solved by Proposition 4.6.11. Since AM =N is a N -homogeneous
C � -algebra and � 0 is a faithful representation it follows that there exists a unique equiv-
alence class of irreducible physical frames with wandering property for the Hofstadter
representation. Therefore there is no loss of generality �xing the Hofstadter physical
frame fH 0; � 0(AM =N ); S 0g as the standard representative of this class.
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5.1.3 Standard physical frame for the Harper representation

I n this section we derive the ( standard ) physical frame for the Harper representation.
As in the previous section, we start with an analysis of the structure of the Harper

representation.

Faithfulness of the representation and generalized eigenvectors

We start this section giving the proof of Lemma 2.3.4 which states that the Harper
representation � 1 : A� ! C � (U1 ; V1 ) � B (H 1 ) is faithful.

The claim is certainly true when � 2 R n Q since in this case any representation of
A� is faithful, as explained at the beginning of Section 5.1.1. Then, we can assume that
� = M=N (as in Convention 2.4.3). Under this hypothesis the faithfulness of � 1 follows if
one proves that C � (UN

1 ; VN
1 ) ' C(T 2) (c.f. Section 5.1.1).

The Gel'fand-Na��mark Theorem states that C � (UN
1 ; VN

1 ) ' C(X ) where the Gel'fand
spectrum X is (homeomorphic to) the joint spectrum of UN

1 and VN
1 (Hörmander 1990,

Theorem 3.1.15), the latter being the set of the common generalized eigenvalues of UN
1

and VN
1 (Samoilenko 1991, Proposition 2). In view of that, we have to prove that for

any k = ( k1; k2) 2 [0; 2� ) � [0; 2� ) there exists a sequence f  (k)
j gj 2 N � H 1 of normalized

vectors such that

k(UN
1 � eik 1 1) (k)

j kH 1 ! 0; k(VN
1 � eik 2 1) (k)

j kH 1 ! 0; if j ! + 1 :

This would mean that the joint spectrum of UN
1 and VN

1 is the full torus T 2, thus it yields
C � (UN

1 ; VN
1 ) ' C(T 2). To complete the proof we exhibit the generalized eigenvectors,

namely

 (k)
j (x) :=

r
M
N

jX

n= � j

eink 2 %j

�
x + nM �

1
N

k1

2�

�

where %j (x) :=
q

Nj 2

M (2j +1) %(xj 2) and %is any smooth positive function supported in (� 1; 1)

which satis�es the normalization condition k%k2
H 1

=
R

R %(x)2 dx = 1 . The function %j

is supported in (� 1=j 2; 1=j 2) with square-norm N
M (2j +1) and this is enough to show that

k (k)
j k2

H 1
= M

N

P j
n= � j k%j k2

H 1
= 1 .

Harper von Neumann algebra

Let M 1 (A� ) := � 1 (A� )00be the von Neumann algebra associated to A� in the Harper
representation (called Harper von Neumann algebra ). As usual M 1 (A� ) coincides with
the the weak (equiv. strong) closure of � 1 (A� ) in B (H 1 ). Contrary to the Hofstadter
case, the von Neumann algebra M 1 (A� ) is not standard (whenever � 6= � 1), indeed if
j� j < 1 then M 1 (A� ) has a cyclic but not separating vector, while if j� j > 1 then M 1 (A� )
has a separating but not cyclic vector. The obstruction for M 1 (A� ) to be a standard von
Neumann algebra is discussed by G. G. Emch in (Emch 1996) and follows as a corollary
of two general results, one by M. A. Rieffel (Rieffel 1981, Theorem 3.2) and the second
by M. Takesaki (Takesaki 1969, Theorem 3).
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The commutant of the Harper representation

The latter paper by Takesaki is of particular interest in this work since it provides an
explicit description for the commutant � 1 (A� )0 = M 1 (A� )0. A simple computation shows
that the unitaries

8
>><

>>:

bU1  (x) = ei 2�
� x  (x)

 2 H 1

bV1  (x) =  (x � 1)

(5.11)

are elements of the commutant � 1 (A� )0since they commute with the generators U1 and
V1 of the algebra � 1 (A� ). Moreover,

bU1 bV1 = ei 2�
� bV1 bU1 ; (5.12)

namely the unitaries bU1 and bV1 de�ne a representation of A1=� on the Hilbert space
H 1 . Since Takesaki proves that M 1 (A� )0 = M 1 (A1=� ) (Takesaki 1969, Theorem 3), one
has

P ROPOSITION 5.1.4. The commutant � 1 (A� )0 of the Harper representation of A� is gen-
erated in B (H 1 ) as the weak (equiv. strong) closure of the polynomial algebra spanned
by the unitaries bU1 and bV1 .

The Harper physical frame

Similarly to the Hofstadter case, the separable Hilbert space H 1 and the C � -algebra
� 1 (A� ) � B (H 1 ) are two ingredients for a physical frame. To complete the structure, we
need to select a maximal commutative subalgebra inside the commutant � 1 (A� )0 which
is generated by the unitaries bU1 and bV1 . Let � = M=N (according to Convention 2.4.3).
In view of the commutation relation (5.12), it is easy to check that S 1 := C � ( bU1 ; bVM

1 )
de�nes a commutative C � -subalgebra of � 1 (AM =N )0. With the same proof of Lemma 5.1.3
we have

L EMMA 5.1.5. The C � -algebra S 1 is maximal commutative inside the commutant � 1 (AM =N )0.

The triple fH 1 ; � 1 (AM =N ); S 1 g is a physical frame and we refer to it as the standard
physical frame of the Harper representation (or simply Harper physical frame ). In order
to select a wandering system for S 1 , we introduce the following family of vectors

� j;n (x) :=

8
>>>><

>>>>:

s
N

jM j
if x 2 I j; 0

0 otherwise ;

(5.13)
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where, for any j; n 2 Z, the intervals I j;n are de�ned by

I j;n :=

8
>>>>><

>>>>>:

�
j

M
N

+ nM ; (j + 1)
M
N

+ nM
�

if M > 0

�
(j + 1)

M
N

+ nM ; j
M
N

+ nM
�

if M < 0:

(5.14)

The family f � j gj =0 ;:::;N � 1 � H 1 , with � j � � j; 0, is a wandering system of cardinality N
for S 1 . Indeed, a simple check shows that

R =
N � 1[

j =0

[

n2 Z

I j;n ; ) H 1 '
N � 1M

j =0

M

n2 Z

L 2(I j;n ): (5.15)

The characteristic function of each interval I j;n is obtained as � j;n = bVnM
1 � j and the

family of vectors e i 2� N
M mx � j;n = bUn

1 � j;n , with m 2 Z, provides an orthonormal basis
for L 2(I j;n ). We refer to f � j gj =0 ;:::;N � 1 � H 1 as the standard wandering system for the
Harper representation. It follows that S 1 is a Z2-algebra (claim (iii) in Proposition
4.5.2).

Obviously, as in the case of the Hofstadter representation, S 1 is not the only commu-
tative C � -subalgebra of � 1 (AM =N )0. However, as in the previous case, Proposition 4.6.11,
the N -homogeneity of AM =N and the faithfulness of � 1 assure that there is no loss of
generality �xing the standard physical frame fH 1 ; � 1 (A� ); S 1 g as the representative
of the equivalence class of the irreducible physical frames with wandering property.

5.2 Bundle decomposition of representations

5.2.1 Bundle decomposition of the Hofstadter representation

I n this section we derive the bundle decomposition of the Hofstadter representation
according to De�nition 2.7.2. We use the technology developped in Chapter 4 to de�ne

a generalized Bloch-Floquet transform F0 which provides a direct integral decomposi-
tion of the algebra � 0(AM =N ). A relevant and essentially unique vector bundle structure
emerges from such a decomposition in virtue of properties of F0. The content of this
section provides the proof of claim (i) in Theorem 2.7.4.

The Bloch-Floquet decomposition in the Hofstadter representation

The standard physical frame of the Hofstadter representation fH 0; � 0(AM =N ); S 0g, en-
dowed with the standard wandering system f ' 0;j gj =0 ;:::;N � 1 (c.f. Section 5.1.2) deter-
mines the Hofstadter nuclear space � 0 � H 0, as explained at the beginning of Section
4.6. Explicitly, the space � 0 consists of �nite linear combinations of vectors ' n;m (de�ned
by (5.6)) of the Fourier basis of H 0.



144 5. The geometry of Hofstadter and Harper models

Equation (4.22), specialized to the standard wandering system f ' 0;j gj =0 ;:::;N � 1 of the
C � -algebra S 0, reads

� j
0(k) := ( F0' 0;j ) (k) :=

X

n;m 2 Z

e� ink 1 e� imk 2 bUn
0

bVmN
0 ' 0;j j = 0 ; : : : ; N � 1; (5.16)

where F0 denotes the generalized Bloch-Floquet transform 1 associated to S 0 as in (4.17).
Obviously, (5.16) has meaning in “distributional” sense. Any vector ' i;j of the Fourier
basis de�nes a distribution h' i;j j (Dirac notation) such that h' i;j j' r;s i := ( ' i;j ; ' r;s )H 0 =
� i;r � j;s . With this notation, equation (5.16) reads

� j
0(k) =

X

n;m 2 Z

eink 1 e� imk 2 ei� ( j + mN )n M
N h' n;j + mN j j = 0 ; : : : ; N � 1: (5.17)

For any k 2 R2, equation (5.17) de�nes a frame of N independent distributions � 0(k) :=
f � j

0(k)gj =0 ;:::;N � 1 which span, inside � �
0 (distibution space) the Hilbert space H 0(k) ' CN .

We can equip H 0(k) with the Hermitian structure given by the “orthonormality” of the
frame � 0(k), i.e. by posing (� i

0(k); � j
0(k)) k = � i;j . It follows from Theorem 4.6.4 that F0

extends to a unitary map

F0 : H 0 �!
Z �

T 2
H 0(k) dz(k): (5.18)

We are now in position to exhibit the �ber representation of the algebra � 0(AM =N ) sub-
ordinate to the direct integral decomposition (5.18). Obviously (surjective representation
property, Section 2.3), it is enough to compute the generalized Bloch-Floquet transform
of the generators U0 and V0. Firstly, one observe that

U0 ' 0;j = ei 2�j M
N bU� 1

0 ' 0;j V0 ' 0;j = ' 0;j +1 j = 0 ; : : : ; N � 1: (5.19)

Equipped with the notation

U0(k) := F0 U0 F � 1
0

�
�
k ; V0(k) := F0 V0 F � 1

0

�
�
k ;

a simple computation shows that

U0(k)� j
0(k) = e� ik 1 ei 2�j N

M � j
0(k); V0(k)� j

0(k) =

(
� j +1

0 (k) if j = 0 ; : : : ; N � 2

eik 2 � 0
0 (k) if j = N � 1:

(5.20)
Thus, the matrices which describe the action of U0(k) and V0(k) on the space H 0(k) with
respect to the canonical basis �xed by the frame � 0(k) are

U0(k) $ U(e� ik 1 ) = e� ik 1 U; V0(k) $ V (eik 2 ) (5.21)

1To simplify the notation, we use the symbol F 0 instead US 0 . The change is justi�ed by noticing that
there is a unique equivalence class of irreducible Hofstadter physical frames (c.f. Section 5.1.2), which
allows us to replace S 0 with 0, and by Remark 4.6.5, which allows us to replace U with F .



5.2. Bundle decomposition of representations 145

where U(�) and V (�) are de�ned by (2.40) and U := U(1). Matrices (5.21) provide a frame
for a representation of A� on the Hilbert space H 0(k)

� (k)
0 : AM =N ! C � (U0(k); V0(k)) = End(H 0(k)) ' Mat N (C):

The map F0 induces a �ber representation of AM =N which is unitarily equivalent to � 0,
namely

AM =N
� 0�! � 0(AM =N )

F 0 :::F � 1
0�!

Z �

T 2
� (k)

0 (AM =N ) dz(k):

R EMARK 5.2.1 (Irreducibility of the �ber representations) . Let L (t) be the N � N unitary
matrix de�ned by

L(t) :=

0

B
B
B
B
B
B
B
B
B
@

1 0 0 : : : 0

0 e� i 1
N t 0 : : : 0

0 0 e� i 2
N t 0

...
...

. . .
...

0 0 0 0

0 0 0 : : : e� i N � 1
N t

1

C
C
C
C
C
C
C
C
C
A

; t 2 R:

A straightforward computation shows that

L (t) U(� ) L (t) � 1 = U(� ); L (t) V (� ) L (t) � 1 = e� i t
N V (� eit ): (5.22)

where U(� ) and V (� ) are de�ned by (2.40). In particular

L (� k2) V (eik 2 ) L (� k2) � 1 = ei k 2
N V (1) = ei k 2

N V : (5.23)

It follows that the representation � (k)
0 , de�ned by means of the generators (5.21), is

unitarily equivalent (via L(� k2)) to the irreducible representation generated by e � ik 1 U

and ei k 2
N V (c.f. equation (5.1), Section 5.1.1). The unitary equivalence implies also the

irreducibility of � (k)
0 and this is in accordance with point (iii) of Theorem 4.3.1 in view of

the irreducibility of the Hofstadter physical frame fH 0; � 0(AM =N ); S 0g. ��

Hofstadter vector bundle

According to Theorem 4.7.9, the standard physical frame fH 0; � 0(AM =N ); S 0g (c.f. Section
5.1.2) de�nes a rank N Hermitian vector bundle � : E0 ! T 2 called Hofstadter vector bun-
dle. Moreover, the topology of E0 depends only on the equivalence class of the physical
frame fH 0; � 0(AM =N ); S 0g.
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Bundle decomposition . To complete the proof of (i) in Theorem 2.7.4 we need to show
that the Bloch-Floquet transform F0 induces a bundle decomposition of the C � -algebra
� 0(AM =N ) over the vector bundle � : E0 ! T 2, namely F0 � 0(AM =N ) F � 1

0 � �( End(E0)) . In
view of Theorem 4.7.15 it is enough to show that any element in � 0(AM =N ) preserves the
Hilbert module 
 0, the latter being the closure of the nuclear space � 0 with respect the
module norm jjj � jjj (4.32). Equation (5.19) assures that

U0 : � 0 ! � 0; V0 : � 0 ! � 0

are continuous linear operators, which implies that the dense subalgebra � 0(L M =N ) (�nite
linear combinations of monomials Un

0Vm
0 ) preserves � 0. As for equations (4.36), one can

prove that

jjj O' jjj 6 kOkB (H 0 ) jjj ' jjj ; ' 2 � 0; O 2 � 0(L M =N ): (5.24)

The density of � 0 implies that any O 2 � 0(L M =N ) extends to a bounded operator O : 
 0 !

 0. Let f Ongn2 N � � 0(L M =N ) such that On ! O 2 � 0(AM =N ) with respect to the operator
norm k � kB (H 0 ) . For any ' 2 
 0, inequality (5.24) assures that the sequence f On ' gn2 N �

 0 converges in norm jjj � jjj to an element ~' 2 
 0. Inequality kO' kH 0 6 jjj O' jjj , which
follows from equation (4.32), assures that ~' = O' . This proves that any O 2 � 0(AM =N )
de�nes a bounded operator O : 
 0 ! 
 0.

Topology . The geometric structure of the vector bundle � : E0 ! T 2 can be deduced from
the frame of sections � 0(�) := f � j

0(�)gj =0 ;:::;N � 1. It follows immediately from (5.17), that
the system of orthonormal sections satis�es the periodic conditions

� 0(k1; k2) = � 0(k1 + 2 �n; k 2 + 2 �m ); (n; m) 2 Z2; (k1; k2) 2 R2:

Let H 0(k) � � �
0 be the Hilbert space generated by the orthonormal frame � 0(k). Clearly

H 0(k + 2 � ) = H 0(k) ' CN for any k 2 R2 and  2 Z2, i.e. the Hilbert space H 0(k)
depend only on the equivalence class [k] 2 R2=2� Z2. We use the usual identi�cation
R2=2� Z2 3 [k] 7! z(k) = eik 2 T 2 to denote H 0(z(k)) := H 0(k). The periodic conditions for
the frame � 0(�) imply that the total space E0 :=

F
z2 T 2 H 0(z) is isomorphic to the product

space T 2 � CN . In other words, � 0(�) provides a global trivialization for � : E0 ! T 2,
which turns out to be trivial. The triviality of the vector bundle implies the vanishing
of the Chern classes and related Chern numbers (Husemoller 1994, Proposition 4.1). In
particular C1(E0) = 0 . The bundle decomposition induced by F0 and the triviality of the
Hofstadter vector bundle imply that

F0 � 0(AM =N ) F � 1
0 � �( End(E0)) ' �( End(T 2 � CN )) ' C(T 2; Mat N (C)) ;

namely the elements of F0 � 0(AM =N ) F � 1
0 are globally de�ned continuous functions over

T 2 with values in the algebra Mat N (C). This is in agreement with equation (5.21).
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Uniqueness . The bundle decomposition induced by F0 and the topology of � : E0 ! T 2

depend uniquely on the equivalence class of the physical frame fH 0; � 0(AM =N ); S 0g (The-
orem 4.7.9). In other words, equivalent physical frames de�nes unitarily equivalent
bundle decompositions over isomorphic vector bundles. As discussed at the end of Sec-
tion 5.1.2, for the Hofstadter representation there exists a unique equivalence class of
irreducible physical frames with wandering property. This results implies the unique-
ness of the irreducible bundle decomposition induced by F0 as claimed in point (i) of
Theorem 2.7.4.

The bundle representation e� 0 := ( F 0 : : : F � 1
0 ) � � 0 has some features in common with

the canonical bundle representation � de�ned in Section 5.1.1. The mapping e� 0 allows
us to associate to any projection p 2 Proj (AM =N ) a vector subbundle of � : E0 ! T 2.
According to Lemma 2.7.3, e� 0(p) := P0(�) 2 �( End(E0)) ' C(T 2; Mat N (C)) de�nes a
vector subbundle of E0 with total space

L 0(p) := f (z; v) 2 T 2 � CN : P0(z)v = vg; (5.25)

according to the notation introduced in (2.44), and projection � : L 0(p) ! T 2 de�ned by
�(z; v) = z.

P ROPOSITION 5.2.2. Let � = M=N as in Convention 2.4.3. For any p 2 Proj (A1
� ), let

� : L 0(p) ! T 2 be the Hermitian vector bundle de�ned above. The rank of L 0(p) is given
by Rk(p) := N

R
��� (p). Moreover, denoting by C0(p) := C1(L 0(p)) the �rst Chern number of

the vector bundle L 0, one has that C0(p) = C1(p).

Proof . Let f (� 1;N ) : T 2 ! T 2 be the continuous map de�ned by

f (� 1;N ) (z1; z2) := ( z� 1
1 ; zN

2 ); (z1; z2) 2 T 2:

The pullback vector bundle of L 0(p) induced by f (� 1;N ) (c.f. Appendix C) is the vector
bundle over T 2 which has total space

f �
(� 1;N ) L 0(p) := f (z;p) 2 T 2 � L 0(p) : f (� 1;N ) (z) = �(p)g (5.26)

where p is any point in L 0(p) and � is the canonical projection of L 0(p) over T 2. The
canonical projection of the pullback vector bundle is de�ned by �0(z;p) = z, hence �0� 1(z) =
f zg � � � 1(f (� 1;N ) (z)) and the map bf : f �

(� 1;N )L 0(p) ! L 0(p) de�ned by bf (z;p) = p is a

linear isomorphism between the �bers �0� 1(z) and � � 1(f � 1;N (z)) (and it is also a vector
bundle map). The identi�cation �0� 1(z) ' � � 1(f � 1;N (z)) and the observation that

� � 1(f (� 1;N ) (z)) = f v 2 CN : P0(f (� 1;N ) (z))v = vg

show, according to the notation in (5.25), that

f �
(� 1;N ) L 0(p) ' f (z; v) 2 CN : P0(z� 1

1 ; zN
2 )v = vg: (5.27)
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Let p = Fp(u; v) be the expression of the abstract projection in terms of the abstract
generators of A� . Using equation (5.21), one has that

P0(z� 1
1 (k); zN

2 (k)) = Fp(U(eik 1 ); V (eiNk 2 )) :

By using the results of Remark 5.2.1, we can write

P0(z� 1
1 (k); zN

2 (k)) = L(� Nk2) Fp(z1(k)U; z2(k)V ) L (� Nk2) � 1

= L(� Nk2) P(z1(k); z2(k)) L (� Nk2) � 1

where P(�) := �( p) is the projection-valued section in C(T 2) 
 Mat N (C) associated to the
abstract projection p by means of the mapping � . Since the unitary matrix L (� Nk2) is
globally de�ned, and so de�ne a global change of the orthonormal frame in the �bers, it
follows that

f �
(� 1;N ) L 0(p) ' L (p) (5.28)

where the vector bundle L (p) is de�ned by equation (5.2).
The �rst consequence of the identi�cation (5.28) is that the rank of the vector bun-

dle f �
(� 1;N ) L 0(p) coincides with the rank of the vector bundle L (p) which is Rk (p) by

Proposition 5.1.1. The �rst part of the claim follows by observing that the operation of
pullback does not change the dimension of the �bers.

The second part follows from C1(L (p)) = � N C1(p) proved in Proposition 5.1.1 and
C1(L (p)) = C1(f �

(� 1;N ) L 0(p)) = � NC1(L 0(p)) as a consequence of Lemma C.0.2. �

5.2.2 Bundle decomposition of the Harper representation

W e derive in the present section the bundle decomposition of the Harper representa-
tion using the technology developed in Chapter 4. We de�ne a generalized Bloch-

Floquet transform F1 which provides a direct integral decomposition of the algebra
� 1 (AM =N ) and selects a unique vector bundle structure emerging from such a decompo-
sition. The content of this section provides the proof of claim (ii) in Theorem 2.7.4.

The Bloch-Floquet decomposition in the Harper representation

As explained at the beginning of Section 4.6, we can use the standard physical frame
of the Harper representation fH 1 ; � 1 (AM =N ); S 1 g and the standard wandering system
f � j gj =0 ;:::;N � 1 (see Section 5.1.3) to build the Harper nuclear space � 1 � H 1 . Explicitly
the space � 1 consists of functions supported on a �nite number of intervals I n;j , see
(5.14), such that inside each I n;j � R they are polynomials in e i 2� N

M x . Therefore, the ele-
ments in � 1 are well de�ned compactly supported functions on R, which are everywhere
smooth except at the points x j;n := j M=N + nM , j = 0 ; : : : ; N � 1, n 2 Z.

Equation (4.22), specialized to the standard wandering system f � j gj =0 ;:::;N � 1 of the
C � -algebra S 1 , gives

� j
1 (k) := ( F1 � j ) (k) =

X

n;m 2 Z

e� ink 1 e� imk 2 bUn
1

bVmM
1 � j j = 1 ; : : : ; N; (5.29)
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where F1 denotes the generalized Bloch-Floquet transform associated to S 1 as in (4.17)
(for the notation c.f. Note 1 in Section 5.2.1). The distributions (5.29) can be rewritten
in a more convenient form.

P ROPOSITION 5.2.3. For any (k1; k2) 2 [0; 2� )2 the distributions � j
1 (k) 2 � �

1 act on � 1

as

� j
1 (k; �) =

r
jM j
N

X

m2 Z

e� imk 2 �
�
� �

M
N

�
k1

2�
+ j

�
� mM

�
j = 1 ; : : : ; N (5.30)

where � (� � x0) acts on  2 � 1 as the evaluation in x0 (Dirac's delta), i.e. h� (� � x0);  i =
 (x0).

Proof . For any  2 � 1 one has

hbUn
1

bVmM
1 � j ;  i : =

�
� j ; bU� n

1
bV� mM

1  
�

H 1

= ( sign� )

s
N

jM j

Z M
N

0
e� i 2� N

M nx  
�

x + j
M
N

+ mM
�

dx: (5.31)

Let � : I 0;0 ! C be the function de�ned by

� (x) :=  
�

x + j
M
N

+ mM
�

;

with I 0;0 de�ned by (5.14). The de�nition of � 1 implies that  , when restricted to any

interval I j;n , is a �nite linear combination of the exponentials e i 2� N
j M j x . Then, one has

� (x) :=
�nX

n2 Z

�̂ n ei 2� N
j M j nx ; �̂ n := ( sign� )

N
jM j

Z M
N

0
e� i 2� N

j M j nx � (x) dx (5.32)

for any x 2 I 0;0. A comparison between (5.31) and (5.32) shows that
s

N
jM j

hbUn
1

bVmM
1 � j ;  i = ( sign� )

N
jM j

Z M
N

0
e� i 2� N

j M j (sign� )nx � (x) dx = �̂ (sign� )n :

The above equation implies

h
X

n2 Z

e� ink 1 bUn
1

bVmM
1 � j ;  i =

r
jM j
N

X

n2 Z

�̂ (sign� )n eink 1 =

r
jM j
N

�nX

n2 Z

�̂ (sign� )n e
i 2� N

j M j n
�

j M j
N

k 1
2�

�

=

r
jM j
N

�nX

n2 Z

�̂ n e
i 2� N

j M j n
�

M
N

k 1
2�

�

= �
�

M
N

k1

2�

�

where we used (5.32) whenever M
N

k1
2� 2 I 0;0, i.e. k1 2 [0; 2� ). In view of the de�nition of � ,

one has

h
X

n2 Z

e� ink 1 bUn
1

bVmM
1 � j ;  i =

r
jM j
N

 
�

M
N

k1

2�
+ j

M
N

+ mM
�

:
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Finally, for any  2 � 1 one has

h� j
1 (k);  i =

r
jM j
N

X

m2 Z

eimk 2  
�

M
N

�
k1

2�
+ j

�
+ mM

�
;

which implies (5.30). �

For any k 2 [0; 2� )2, equation (5.30) de�nes a frame of N independent distributions
� 1 (k) := f � j

1 (k)gj =0 ;:::;N � 1 which span, inside � �
1 (distibution space) the Hilbert space

H 1 (k) ' CN . We can equip H 1 (k) with the Hermitian structure given by (� i
1 (k); � j

1 (k)) k =
� i;j . It follows from Theorem 4.6.4 that F1 extends to a unitary map

F1 : H 1 �!
Z �

T 2
H 1 (k) dz(k): (5.33)

Analogously to the case of the Hofstadter representation, we can exhibit the �ber
representation of the algebra � 1 (AM =N ) subordinate to the direct integral decomposition
(5.33) by computing the generalized Bloch-Floquet transform of the generators U1 and
V1 . Let

ei 2�x �
X

n2 Z

an ei 2� N
j M j nx ; an =

iN (1 � ei 2� j M j
N )

2� (jM j � nN )
(5.34)

be the Fourier expansion of e i 2�x restricted to the interval x 2 I 0;0. The symbol � means
that the series converges in L 2-norm. Moreover, the series converges pointwise in the
interior of I 0;0. Observing that

U1 � j (x) = ei 2�x � j (x) = ei 2� M
N j ei 2� (x� j M

N ) � j (x) 6= 0 if x � j
M
N

2 I 0;0

and using the L 2-expansion (5.34), one has

U1 � j (x) � ei 2� M
N j

X

n2 Z

an ei 2� N
j M j n(x� j M

N ) � j (x) = ei 2� M
N j

X

n2 Z

an bU(sign� )n
1 � j (x): (5.35)

It follows that

h
X

n;m 2 Z

e� ink 1 e� imk 2 bUn
1

bVmM
1 U1 � j ;  i

= e� i 2� M
N j

X

`2 Z

a`h
X

n;m 2 Z

e� ink 1 e� imk 2 bUn+( sign� )`
1

bVmM
1 � j ;  i (5.36)

= e� i 2� M
N j

 
X

`2 Z

a` ei (sign� )k1 `

!

h
X

n;m 2 Z

e� ink 1 e� imk 2 bUn
1

bVmM
1 � j ;  i :

In view of (5.34), one has

 
X

`2 Z

a` ei (sign� )k1 `

!

 � e� i M
N k1  ; in � 1 � H 1 :
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The arbitrariness in the choice of the test function  2 � 1 in (5.36) implies
X

n;m 2 Z

e� ink 1 e� imk 2 bUn
1

bVmM
1 U1 � j = ei M

N k1 ei 2� M
N j

X

n;m 2 Z

e� ink 1 e� imk 2 bUn
1

bVmM
1 � j

where the equality is in distributional sense, i.e. as element of � �
1 . Equipped with the

notation
U1 (k) := F1 U1 F � 1

1

�
�
k ; V1 (k) := F1 V1 F � 1

1

�
�
k ;

the above equation reads

U1 (k)� j
1 (k) = ei M

N k1 ei 2� M
N j � j

1 (k); j = 0 ; : : : ; N � 1: (5.37)

The second generator V1 acts on the vectors of the wandering system as

(V1 � j )(x) = � j

�
x �

M
N

�
= � j +1 (x) j = 0 ; : : : ; N � 2

(V1 � N � 1)(x) = � 0(x � M ) = ( bVM
1 � 0)(x)

(5.38)

then

V1 (k)� j
1 (k) =

(
� j +1

1 (k) if j = 0 ; : : : ; N � 2

eik 2 � 0
1 (k) if j = N � 1:

(5.39)

From equations (5.37) and (5.39) one deduces the matrices which describes the action
of U1 (k) and V1 (k) on the space H 1 (k) with respect to the canonical basis �xd by the
frame � 1 (k); explicitly

U1 (k) $ U(ei M
N k1 ) = ei M

N k1 U; V1 (k) $ V (eik 2 ) (5.40)

where U(�) and V (�) are de�ned by (2.40) and U := U(1).

The matrices (5.40) are the frame for a representation of AM =N on the Hilbert space
H 1 (k)

� (k)
1 : AM =N ! C � (U1 (k); V1 (k)) = End(H 1 (k)) ' Mat N (C):

The map F1 induces a �ber representation of AM =N which is unitarily equivalent to � 1 ,
namely

AM =N
� 1�! � 1 (AM =N )

F 1 :::F � 1
1�!

Z �

T 2
� (k)

1 (AM =N ) dz(k):

Analogously to the Hofstadter case, one can prove that the representations � (k)
1 are

irreducible (c.f. Remark 5.2.1). This is in agreement with point (iii) of Theorem 4.3.1 in
view of the irreducibility of the Harper physical frame fH 1 ; � 1 (AM =N ); S 1 g.

Harper vector bundle

According to Theorem 4.7.9, the standard physical frame fH 1 ; � 1 (AM =N ); S 1 g (c.f. Sec-
tion 5.1.3) de�nes a rank N Hermitian vector bundle � : E1 ! T 2 called Harper vector
bundle . Moreover, the topology of E1 depends only on the equivalence class of the phys-
ical frame fH 1 ; � 1 (AM =N ); S 1 g.
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