. Suffit-À-Éliminer-l-'oxyde-et-une-partie, La répétition de l'étape de lavage à l'acide permet d'éliminer par ailleurs tout le métal qui peut encore être dissous, c'est à dire tout le métal non protégé par du carbone, quelle que soit la forme sous laquelle il se présente : NTC, capsules de graphène, carbone amorphe, etc.). L'utilisation des ultra-sons au cours des étapes d'attaque acide est à proscrire car le temps de décantation qui est ensuite nécessaire (même avec l'aide d'un champ magnétique) est prohibitif et ralentit considérablement la préparation

M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund, Science of Fullerenes and Carbon Nanotubes, pp.33-883, 1995.

M. S. Dresselhaus, G. Dresselhaus, and R. Saito, and their symmetry, Physical Review B, vol.45, issue.11, pp.6234-6242, 1992.
DOI : 10.1103/PhysRevB.45.6234

M. Endo, K. Takeushi, T. Hiraoka, T. Furuta, T. Kasai et al., Stacking nature of graphene layers in carbon nanotubes and nanofibres, Mat. Res. Soc. Symp. Proc., 359, pp.1707-1712, 1995.
DOI : 10.1016/S0022-3697(97)00055-3

K. B. Shelimov, R. O. Esenaliev, A. G. Rinzler, C. B. Huffman, and R. E. Smalley, Purification of single-wall carbon nanotubes by ultrasonically assisted filtration, Chemical Physics Letters, vol.282, issue.5-6, pp.429-434, 1998.
DOI : 10.1016/S0009-2614(97)01265-7

J. M. Bonard, T. Sora, J. P. Salvetat, F. Maier, T. Stockli et al., Purification and size-selection of carbon nanotubes, Advanced Materials, vol.66, issue.10, pp.827-831, 1997.
DOI : 10.1002/adma.19970091014

L. Vaccarini, C. Goze, R. Aznar, V. Micholet, C. Journet et al., Purification procedure of carbon nanotubes, Synthetic Metals, vol.103, issue.1-3, pp.2492-2493, 1999.
DOI : 10.1016/S0379-6779(98)01087-X

B. Y. Chen, M. L. Green, J. L. Griffin, J. Hammer, R. M. Lago et al., Purification and opening of carbon nanotubes via bromination, Advanced Materials, vol.372, issue.12, pp.1012-1015, 1996.
DOI : 10.1002/adma.19960081216

R. Roy, Nanocomposites: Retrospecr and Prospect, MRS Proceedings, vol.7, pp.241-250, 1993.
DOI : 10.1111/j.1151-2916.1950.tb12780.x

J. J. Kingsley and K. C. , A novel combustion process for the synthesis of fine particle ??-alumina and related oxide materials, Materials Letters, vol.6, issue.11-12, pp.427-432, 1988.
DOI : 10.1016/0167-577X(88)90045-6

A. Peigney, . Ch, F. Laurent, A. Dobigeon, and . Rousset, Carbon nanotubes grown in situ by a novel catalytic method, Journal of Materials Research, vol.12, issue.03, pp.613-615, 1997.
DOI : 10.1557/JMR.1997.0092

URL : https://hal.archives-ouvertes.fr/hal-00972028

A. Peigney, . Ch, O. Laurent, A. Dumortier, and . Rousset, Carbon nanotubes???Fe???alumina nanocomposites. Part I: influence of the Fe content on the synthesis of powders, Journal of the European Ceramic Society, vol.18, issue.14, pp.1995-2004, 1998.
DOI : 10.1016/S0955-2219(98)00141-1

URL : https://hal.archives-ouvertes.fr/hal-00959276

A. Muan, On the stability of the phase Fe 2 O 3 .Al 2 O 3, American Journal of Science, vol.256, issue.6, pp.413-422, 1958.
DOI : 10.2475/ajs.256.6.413

A. Peigney, . Ch, A. Laurent, and . Rousset, Influence of the composition of a H2-CH4 gas mixture on the catalytic synthesis of carbon nanotubes-Fe/Fe3C-Al2O3 nanocomposite powders, Journal of Materials Chemistry, vol.9, issue.5, pp.1167-1177, 1999.
DOI : 10.1039/a809114e

URL : https://hal.archives-ouvertes.fr/hal-00940033

O. Lourie and H. D. Wagner, Evidence of stress transfer and formation of fracture clusters in carbon nanotube-based composites, Composites Science and Technology, vol.59, issue.6, pp.975-977, 1999.
DOI : 10.1016/S0266-3538(98)00148-1

T. Kuzumaki, K. Mikazawa, H. Ichinose, and K. Ito, Processing of Carbon Nanotube Reinforced Aluminum Composite, Journal of Materials Research, vol.61, issue.09, pp.2445-2449, 1998.
DOI : 10.1016/0008-6223(73)90075-4

L. S. Schandler, S. C. Giannaris, and P. M. Ajayan, Load transfer in carbon nanotube epoxy composites, Applied Physics Letters, vol.73, issue.26, pp.3842-3844, 1998.
DOI : 10.1063/1.122911

J. Fan, M. Wan, D. Zhu, B. Zhang, Z. Pan et al., Synthesis and properties of carbon nanotube-polypyrrole composites, Synthetic Metals, vol.102, issue.1-3, pp.1266-1267, 1999.
DOI : 10.1016/S0379-6779(98)01462-3

I. Musa, M. Baxendale, G. A. Amaratunga, and W. Eccleston, Properties of regioregular poly(3-octylthiophene)/multi-wall carbon nanotube composites, Synthetic Metals, vol.102, issue.1-3, p.1250, 1999.
DOI : 10.1016/S0379-6779(98)01452-0

S. A. Curran, P. M. Ajayan, W. J. Blau, D. L. Caroll, J. N. Coleman et al., A Composite from Poly(m-phenylenevinylene-co-2,5-dioctoxy-p-phenylenevinylene) and Carbon Nanotubes: A Novel Material for Molecular Optoelectronics, Advanced Materials, vol.10, issue.14, pp.1091-1093, 1998.
DOI : 10.1002/(SICI)1521-4095(199810)10:14<1091::AID-ADMA1091>3.0.CO;2-L

C. Bower, R. Rosen, L. Jin, J. Han, and O. Zhou, Deformation of carbon nanotubes in nanotube???polymer composites, Applied Physics Letters, vol.74, issue.22, pp.3317-3319, 1999.
DOI : 10.1063/1.123330

O. Lourie and H. D. Wagner, Evaluation of Young's Modulus of Carbon Nanotubes by Micro-Raman Spectroscopy, Journal of Materials Research, vol.4, issue.09, pp.2418-2422, 1998.
DOI : 10.1103/PhysRevB.51.10048

A. Rousset, Alumina-Metal (Fe, Cr, Fe0.8Cr0.2) Nanocomposites, Journal of Solid State Chemistry, vol.111, issue.1, pp.164-171, 1994.
DOI : 10.1006/jssc.1994.1213

B. J. Kellet, C. Carry, and A. Mocellin, High-Temperature Extrusion Behavior of a Superplastic Zirconia-Based Ceramic, Journal of the American Ceramic Society, vol.1, issue.8, pp.1922-1927, 1990.
DOI : 10.1111/j.1151-2916.1990.tb05246.x

M. I. Mendelson, Average Grain Size in Polycrystalline Ceramics, Journal of the American Ceramic Society, vol.35, issue.2, pp.443-446, 1969.
DOI : 10.1016/S0016-0032(29)91451-4

D. D. Wagmann, J. E. Kilpatrick, W. J. Taylor, K. S. Pitzer, and F. D. Rossini, Heats, free energies, and equilibrium constants of some reactions involving O2, H2, H2O, C, CO, CO2, and CH4, Journal of Research of the National Bureau of Standards, vol.34, issue.2, pp.143-161, 1945.
DOI : 10.6028/jres.034.004

O. Quénard, E. De-grave, . Ch, A. Laurent, and . Rousset, Synthesis, characterization and thermal behaviour of Fe0.65Co0.35-MgAl2O4 and Fe0.65Ni0.35-MgAl2O4 nanocomposite powders, Journal of Materials Chemistry, vol.7, issue.12, pp.2457-2467, 1997.
DOI : 10.1039/a703773b

O. Quénard, . Ch, M. Laurent, A. Brieu, and . Rousset, Synthesis, microstructure and oxidation of Co-MgAl2O4 and Ni-MgAl2O4 nanocomposite powders, Nanostructured Materials, vol.7, issue.5, pp.497-507, 1996.
DOI : 10.1016/0965-9773(96)00026-8

S. Iijima, P. M. Ajayan, and T. Ichihashi, Growth model for carbon nanotubes, Physical Review Letters, vol.69, issue.21, pp.3100-3103, 1992.
DOI : 10.1103/PhysRevLett.69.3100

A. Govindaraj, E. Flahaut, . Ch, A. Laurent, A. Peigney et al., An investigation of carbon nanotubes obtained from the decomposition of methane over reduced Mg1??? xM xAl2O4 spinel catalysts, Journal of Materials Research, vol.349, issue.06, pp.2567-2576, 1999.
DOI : 10.1103/PhysRevLett.68.631

URL : https://hal.archives-ouvertes.fr/hal-01102341

E. Flahaut, A. Govindaraj, A. Peigney, . Ch, C. N. Laurent et al., Synthesis of single-walled carbon nanotubes using binary (Fe, Co, Ni) alloy nanoparticles prepared in situ by the reduction of oxide solid solutions, Chemical Physics Letters, vol.300, issue.1-2, pp.236-242, 1999.
DOI : 10.1016/S0009-2614(98)01304-9

URL : https://hal.archives-ouvertes.fr/hal-00948432

R. Kannan, A. S. Pavlovic, and M. S. Seehra, O, Journal of Physics C: Solid State Physics, vol.19, issue.31, pp.747-751, 1986.
DOI : 10.1088/0022-3719/19/31/005

C. Baudin, R. Martinez, and P. Pena, High-Temperature Mechanical Behavior of Stoichiometric Magnesium Spinel, Journal of the American Ceramic Society, vol.68, issue.10, pp.1857-1862, 1995.
DOI : 10.1111/j.1151-2916.1995.tb08900.x

L. Stewart and R. C. Bradt, Fracture of Polycrystalline MgAl2O4, Journal of the American Ceramic Society, vol.7, issue.3, pp.619-623, 1980.
DOI : 10.1016/0001-6160(76)90097-3

K. H. White and G. P. Kelkar, Evaluation of the Crack Face Bridging Mechanism in a MgAl2O4 Spinel, Journal of the American Ceramic Society, vol.15, issue.11, pp.1732-1734, 1991.
DOI : 10.1007/BF00552428