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GENERAL INTRODUCTION

MOTIVATIONS

The rise of mathematical imaging over the past few decades is an extraordinary
story of accomplishments [114]. Imaging modalities are revolutionized with
technological advances and the use of computer-based mathematical methods
[7, 59, 115, 116, 149]. Mature techniques are markedly improved and several
new techniques have emerged, empowering practitioners with profound un-
derstanding [7, 8, 9].

The quest for new and improved imaging techniques still continues in or-
der to overcome the intrinsic deficiencies of the existing techniques [36, 66, 71,
113, 126, 139]. The issues envisaged by researchers are mainly related to image
quality, data acquisition time, sensitivity, portability and feature detection abil-
ities of the imaging techniques. Cost and safety are also among major concerns
[8, 9, 93, 114, 120].

An interesting problem in imaging is to model and compensate for the ef-
fects of wave attenuation on image quality. Most imaging techniques either em-
phasize a non-attenuating medium or do not adequately incorporate underly-
ing phenomenon in reconstruction algorithms. As a consequence, one retrieves
erroneous or less accurate wave synthetics which produce serious blurring in
reconstructed images (see, for example, Figures 0.1, 0.2 and 0.3 ) and result in
loss of important information [86, 109, 132, 134].

The envisaged problem is indeed challenging and has received consider-
ably less attention because of its inherent mathematical difficulty. In fact, only
recently, some efforts have been made to establish realistic models for wave
propagation in attenuating media and a handful of imaging algorithms are pro-
posed which compensate for attenuation effects. (See for instance, survey arti-
cles [82, 133]. See also [41, 86, 104, 132, 134] and references therein). This sub-

1



2 GENERAL INTRODUCTION

stantiates a real need to investigate attenuation effect on image quality and to
propose its remedies for image reconstruction.

This thesis is devoted to study attenuation and to develop stable and robust
algorithms for reconstructing acoustic and elastic sources in attenuating media.
The source localization problems have been of significant interest in recent years
and find numerous applications in different fields, particularly in biomedical
imaging [11, 19, 67, 79, 106, 117, 122, 130]. Our main motivation is the recent
advances on hybrid ensemble methods making use of elastic and acoustic prop-
erties of soft tissues [11, 19, 20, 71, 113]. We also address the problem of locating
ambient noise sources in attenuating media [29, 67, 68, 69, 112].
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FIGURE 0.1. Image reconstruction using elastic time reversal algorithm: First row: Pressure
Component; Second Row: Shear Component. Left to right: initial sources, reconstruction in a
loss-less medium, reconstruction in an attenuating medium.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

 

 

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FIGURE 0.2. Image reconstruction using acoustic time reversal algorithm: Left to right: initial
source; reconstruction in a loss-less medium; reconstruction in an attenuating medium.
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FIGURE 0.3. Reconstruction of acoustic sources using Radon transform: Left to right: initial
source; reconstruction in a loss-less medium; reconstruction in an attenuating medium.

MATHEMATICAL CONTEXT AND MAIN CONTRIBUTIONS

In this section, we briefly introduce the set of problems under consideration in
mathematical context and summarize important results of the thesis.

STATEMENT OF THE PROBLEMS STUDIED

Let p be the solution of the wave equation
1

c2

∂2p

∂t 2 (x, t )−∆p(x, t ) = 0, (x, t ) ∈Rd ×R+,

p(x,0) = p0(x) and
∂p

∂t
(x,0) = 0,

(1)

where c is the phase velocity and the support, supp
{

p0(x)
}
, of p0(x) is strictly

contained in a bounded domain Ω⊂Rd with d = 2,3. Then, the problem (P i deal ),
defined as

(P i deal )

∣∣∣∣∣ reconstruct p0(x) given the measurements{
g (y, t ) := p(y, t ), ∀(y, t ) ∈ ∂Ω× (0,T )

}
for T sufficiently large,

is tractable. Indeed, (P i deal ) can be related to the spherical Radon transform

R
[

f
]

(y,r ) =
ˆ

Sd−1
r d−1 f (y + rξ)dσ(ξ) (2)

where dσ is the standard surface measure on the unit sphere Sd−1 in Rd . A
large class of retro-projection inversion formulae exists for R. Several other
techniques such as time reversal, spectral decomposition and optimal control
can also be applied [37, 60, 61, 73, 74, 85, 99].

A major drawback of problem (P i deal ) is that it does not take into account
the inevitable frequency dependent wave attenuation severely affecting high
frequency components in measured data. This proves to be an impediment to
imaging sharp edges and small structures, which correspond to the short wave-
lengths and therefore to the high frequencies, thereby introducing blur in images
and causing loss of information.
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In order to account for wave attenuation, we consider the problem (Pat t )

defined as

(Pat t )

∣∣∣∣∣ reconstruct p0(x) given the measurements{
ga(y, t ) := pa(y, t ), ∀(y, t ) ∈ ∂Ω× (0,T )

}
for T sufficiently large,

where pa is the solution of the attenuated wave equation:

1

c2

∂2pa

∂t 2 (x, t )−∆pa(x, t )−La
[
pa

]
(x, t ) = 0, (x, t ) ∈Rd ×R+ (3)

with loss operator La . In contrast with (P i deal ), the problem (Pat t ) is more in-
volved and intricate. Indeed, it is quite troublesome to adopt ideal reconstruc-
tion algorithms to solve (Pat t ) because attenuation induces instability. On the
other hand, some of the algorithms even fail as their underlying assumptions are
no more valid. For example, the ideal time reversal technique does not work be-
cause attenuation breaks down the time reversibility of waves. A further prob-
lematic situation is when we have to impose boundary condition on pa or have
access to only partial boundary data ga .

The viscoelastic counterpart of (Pat t ), that is,

(Pve )

∣∣∣∣∣ reconstruct u0(x) given the measurements{
ga(y, t ) := ua(y, t ), ∀(y, t ) ∈ ∂Ω× (0,T )

}
for T sufficiently large,

is even more challenging and hard-won where u satisfies viscoelastic wave equa-
tion: (

ρ
∂2

∂t 2 −Lλ,µ−
∂

∂t
Lηλ,ηµ

)
ua(x, t ) = ∂δ0(t )

∂t
u0(x), (x, t ) ∈Rd ×R+, (4)

with Lamé parameters (λ,µ), viscoelastic moduli (ηλ,ηµ) and

La,bv = (a +b)∇(∇·v)−b∆v.

The additional difficulty in (Pve ) stems from the fact that the measured data is a
combination of both shear and pressure waves having different phase velocities
and polarization directions.

In this thesis, we aim to present stable and robust algorithms in order to
solve (Pat t ), (Pve ) and the allied problems. We also address their applications
to biomedical imaging and ambient noise imaging.

SUMMARY OF THE MAIN RESULTS

First of all, we consider Radon transform based algorithms to solve (Pat t ). For
simplicity, we let pa satisfy thermo-viscous wave equation:

1

c2

∂2pa

∂t 2 (x, t )−∆pa(x, t )−a
∂

∂t

(
∆pa

)
(x, t ) = 0, (x, t ) ∈Rd ×R+ (5)
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where a represents attenuation coefficient. When a is constant, we relate non-
attenuated wave p to pa via an attenuation operator L as

pa =L
[
p

]
,

where

L
[
φ

]
(x, t ) = 1p

2π

ˆ
R

ˆ
R+

1p
1+ i aω

φ(x, s)exp

{
iωsp

1+ i aω

}
exp

{
iωt

}
d sdω. (6)

The attenuation correction can be achieved by inverting L . However, L is
ill-conditioned. Therefore, by using stationary phase theorem, we present an
asymptotic development of L with respect to a small attenuation coefficient a

of the form

L
[
φ

]= k∑
j=0

a j Lk
[
φ

]+o(ak ).

This permits us to find an approximate inverse L −1
k of the attenuation operator

and therefore the ideal Radon transform of the initial conditions. Subsequently
we find p0(x) using retro-projection inverse Radon transform formulae [60, 61].
We compare our results with a singular value decomposition approach for ap-
proximating L −1, as taken in [86, 95]. Our results appear to be more stable and
accurate. The partial boundary data problems are treated with TV-Tikhonov reg-
ularization techniques [72]. We study three different iterative algorithms and
present special preconditioning weights in order to increase convergence speed.
Finally, in the case of imposed boundary conditions, we use a duality approach
originally proposed in [11], whereas stationary phase theorem is used to rectify
attenuation artifacts. We also explain the case of power-law attenuation correc-
tion [82, 127].

Motivated by their simplicity and robustness, we then study the time rever-
sal techniques to solve (Pat t ) and (Pve) [46, 62]. As the attenuating waves are
not time invariant, we test the idea of using adjoint attenuated waves for time
reversal, as suggested by [41, 134]. For (Pat t ), we justify mathematically us-
ing attenuation operator L previously defined, that this technique provides an
approximation of p0 correct up to first order of attenuation, but it is not quite sta-
ble. As an alternative we propose a preprocessing technique consisting of two
steps: use asymptotically obtained filter L −1

k to pre-process measured data and
afterward an ideal time reversal algorithm. We establish that the new technique
is more stable and is accurate up to order k.

The elastic time reversal is studied for both elastic and viscoelastic media. In
elastic media, the boundary data{

g(y, t ) := u(y, t ), (y, t ) ∈Rd × (0,T )
}

is a combination of the pressure and the shear waves propagating with different
phase velocities and polarization directions. Consequently, we observe addi-
tional artefacts when we time reverse the displacement field. Therefore, we first
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address these artefacts by proposing an original technique based on a weighted
Helmholtz decomposition. Then, we solve (Pve) using a regularized version
of adjoint viscoelastic wave together with modified time reversal functional. We
prove that our results are of order (ν2

s /c2
s +ν2

p /c2
p ), where (νs ,νp ) are the shear and

bulk viscosities and (cs ,cp ) are the shear and pressure wave speeds respectively.
As an application of the inverse source problems, we aim to locate noise

sources from boundary measurements over an interval of time. More precisely,
we consider the following problem:

(Pnoi se )

∣∣∣∣∣ reconstruct spatial support K (x) of noise source n(x, t ) given{
g (y, t ) := p(y, t ), ∀(y, t ) ∈ ∂Ω× (0,T )

}
for T sufficiently large,

where p is the solution of the wave equation (1) ( respectively (3) for attenuating
media) with source n(x, t ) being a stationary Gaussian process with mean zero
and covariance function

〈n(t ,x)n(s,y)〉 = F (t − s)K (x)δ(x−y).

Here F is the time covariance of the noise signals and 〈·〉 stands for the statistical
average. By using statistical cross correlation of the noise signals, we propose
efficient weighted functionals to solve (Pnoi se ), with and without attenuation.
In attenuating media, we use a regularized version of the back-propagator to
locate sources. We also discuss the impact of spatial correlation between the
noise sources and derive functionals capable of first locating such sources and
then estimating their correlation matrix.

In another study, we adopt the ideal anomaly detection algorithms to the
case of a quasi-incompressible viscoelastic medium. For doing so, we first derive
a closed form expression of the viscoelastic Green function in a homogeneous
isotropic medium. We show that when the compressional modulus λ→∞ the
ideal elastic Green function, Gi deal , can be approximated from the viscoelastic
Green function, Gat t , by solving an ordinary differential equation. This result
is also based on the asymptotic development of an attenuation operator using
stationary phase theorem.

Finally, we provide some anisotropic viscoelastic Green functions with an
aim to enhance our results to the case of anisotropic media. We follow an ap-
proach proposed by Burridge et al. [42]. We write Green function in terms of
three functions, φi , satisfying the scalar wave equation in attenuating media.
The problem of finding the Green function is then related to resolve the wave
equations in order to find φi ’s and three subsequent potential equations of the
form

∆Eψi =φi ,

where ∆E is the Laplacian in ellipsoidal coordinates. The potential equation is
finally solved using an argument of potential theory in ellipsoidal coordinates
[50, 80].
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THESIS OUTLINES

The thesis consists of six chapters, essentially divided into two parts.
PART I deals with imaging techniques in acoustic media and their applica-

tions to biomedical imaging and noise source imaging. It consists of CHAPTERS

1, 2 and 3.
CHAPTER 1 is devoted to the reconstruction algorithms based on Radon

transform and their applications to Photoacoustic imaging in attenuating media.
We detail results related to attenuation correction, imposed boundary conditions
and partial data problems.

CHAPTER 2 presents time reversal methods to find acoustic sources. We re-
call time reversal techniques for ideal acoustic media and analyze the technique
based on an adjoint attenuated wave. Finally, we provide an algorithm based
on pre-processing of the measured data.

CHAPTER 3 deals with the problems of locating ambient noise sources in
acoustic media. We present algorithms to locate point as well as extended sources
in both attenuating and non-attenuating media. The case of spatially correlated
sources is also discussed.

PART II deals with imaging in elastic media and consists of CHAPTERS 4, 5
and 6.

CHAPTER 4 addresses the imaging problems in isotropic viscoelastic media
in a quasi-incompressible regime. We first present an expression for viscoelastic
Green function and then provide a stable technique for attenuation correction.

CHAPTER 5 aims to present and justify the time reversal techniques for vis-
coelastic media. We discuss a modified time reversal functional in a purely elas-
tic regime to tackle imaging artefacts. Then, we extend this technique to vis-
coelastic media.

CHAPTER 6 deals with visco-elastic anisotropy in order to extend results pre-
sented in Chapter 4 and 5.

Finally, we sum up the thesis in CONCLUSION AND PERSPECTIVES, where
we also discuss some open questions related to the subject matter.

All the chapters of the thesis are self-contained and can be read indepen-
dently. Thesis mainly contains the results presented in [14, 15, 16, 17, 39, 40].





Part I

Imaging in Attenuating Acoustic
Media
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1 PHOTO-ACOUSTIC IMAGING IN

ATTENUATING MEDIA

1.1 INTRODUCTION

In photo-acoustic imaging, optical energy absorption causes thermo-elastic ex-
pansion of the tissue, which leads to the propagation of a pressure wave. This
signal is measured by transducers distributed on the boundary of the object,
which in turn is used for imaging optical properties of the object. The major
contribution of photo-acoustic imaging is to provide images of optical contrasts
(based on the optical absorption) with the resolution of ultrasound [145].

If the medium is acoustically homogeneous and has the same acoustic prop-
erties as the free space, then the boundary of the object plays no role and the
optical properties of the medium can be extracted from measurements of the
pressure wave by inverting a spherical Radon transform [73, 74, 84].

If a boundary condition has to be imposed on the pressure field, then an ex-
plicit inversion formula no longer exists. However, using a quite simple duality
approach, one can still reconstruct the optical absorption coefficient. In fact, in
the recent works [11, 12], Ammari et al. investigated quantitative photoacoustic
imaging in the case of a bounded medium with imposed boundary conditions.
In a further study [10], they proposed a geometric-control approach to deal with
the case of limited view measurements. In both cases, they focused on a situa-
tion with small optical absorbers in a non-absorbing background and proposed
adapted algorithms to locate the absorbers and estimate their absorbed energy.

A second challenging problem in photo-acoustic imaging is to take into ac-
count the issue of modeling the acoustic attenuation and its compensation. This
subject is addressed in [41, 81, 83, 86, 92, 104, 124, 132].

In this chapter, we propose a new approach to image extended optical sources
from photo-acoustic data and to correct the effect of acoustic attenuation. By
testing our measurements against an appropriate family of functions, we show
that we can access the Radon transform of the initial condition, and thus recover
quantitatively any initial condition for the photoacoustic problem. We also show

11
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how to compensate the effect of acoustic attenuation on image quality by using
the stationary phase theorem. We use a frequency power-law model for the at-
tenuation losses.

The chapter is organized as follows. In Section 1.2 we consider the photo-
acoustic imaging problem in free space. We first propose three algorithms to re-
cover the absorbing energy density from limited-view and compare their speeds
of convergence. We then present two approaches to correct the effect of acoustic
attenuation. We use a power-law model for the attenuation. We test the singular
value decomposition approach proposed in [86] and provide a new technique
based on the stationary phase theorem. Section 1.3 is devoted to correct the ef-
fect of imposed boundary conditions. By testing our measurements against an
appropriate family of functions, we show how to obtain the Radon transform of
the initial condition in the acoustic wave equation, and thus recover quantita-
tively the absorbing energy density. We also show how to compensate for the
effect of acoustic attenuation on image quality by once again using the station-
ary phase theorem. The chapter ends with a discussion.

1.2 PHOTO-ACOUSTIC IMAGING IN FREE SPACE

In this section, we first formulate the imaging problem in free space and present
a simulation for the reconstruction of the absorbing energy density using the
spherical Radon transform. Then, we provide a total variation regularization
to find a satisfactory solution of the imaging problem with limited-view data.
Finally, we present two deconvolution strategies to compensate for the effect
of acoustic attenuation and compare their performance. The first strategy is
based on a singular value decomposition while the second one uses the station-
ary phase theorem.

1.2.1 MATHEMATICAL FORMULATION

We consider the wave equation in Rd ,

1

c2
0

∂2p

∂t 2 (x, t )−∆p(x, t ) = 0 in Rd × (0,T ),

with
p(x,0) = p0 and

∂p

∂t
(x,0) = 0.

Here c0 is the phase velocity in a non-attenuating medium.
Assume that the support of p0, the absorbing energy density, is contained in

a bounded set Ω of Rd . Our objective in this part is to reconstruct p0 from the
measurements {

g (y, t ) := p(y, t ), ∀(y, t ) ∈ ∂Ω× (0,T )
}

,
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where ∂Ω denotes the boundary of Ω.
The problem of reconstructing p0 is related to the inversion of the spherical

Radon transform given by

RΩ

[
f
]

(y,r ) =
ˆ

S
r f (y + rξ)dσ(ξ), (y,r ) ∈ ∂Ω×R+,

where S denotes the unit sphere. It is known that in dimension 2, Kirchhoff’s
formula implies that [61]

p(y, t ) = 1

2π

∂

∂t

ˆ t

0

RΩ

[
p0

]
(y,c0r )p

t 2 − r 2
dr,

RΩ

[
p0

]
(y,r ) = 4r

ˆ r

0

p(y, t/c0)p
r 2 − t 2

d t .

Let the operator W be defined by

W
[
g
]

(y,r ) = 4r

ˆ r

0

g (y, t/c0)p
r 2 − t 2

d t for all g : ∂Ω×R+ →R. (1.1)

Then, it follows that
RΩ

[
p0

]
(y,r ) =W

[
p

]
(y,r ). (1.2)

In recent works, a large class of inversion retro-projection formulae for the
spherical Radon transform have been obtained in even and odd dimensions
when Ω is a ball; see for instance [60, 61, 85, 99]. In dimension 2, when Ω is
the unit ball, it turns out that

p0(x) = 1

(4π2)

ˆ
∂Ω

ˆ 2

0

[
d 2

dr 2 RΩ

[
p0

]
(y,r )

]
ln

∣∣r 2 − (y −x)2
∣∣ dr dσ(y). (1.3)

This formula can be rewritten as follows:

p0(x) = 1

4π2 R∗
ΩBRΩ

[
p0

]
(x),

where R∗
Ω is the adjoint of RΩ,

R∗
Ω

[
g
]

(x) =
ˆ
∂Ω

g (y, |y −x|)dσ(y),

and B is defined by

B
[
g
]

(x, t ) =
ˆ 2

0

d 2g

dr 2 (y,r ) ln
∣∣r 2 − t 2

∣∣ dr

for g :Ω×R+ →R.
In Figure 1.1, we give a numerical illustration for the reconstruction of p0

using the spherical Radon transform. We adopt the same approach as in [60] for
the discretization of formulae (1.1) and (1.3).
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FIGURE 1.1. Numerical inversion using (1.3) with N = 256, NR = 200 and Nθ = 200. Top left:
p0 ; Top right: p(y, t ) with (y, t ) ∈ ∂Ω× (0,2); Bottom left: RΩ

[
p0

]
(y, t ) with (y, t ) ∈ ∂Ω× (0,2);

Bottom right: 1
4π2 R∗

ΩBRΩ

[
p0

]
.

1.2.2 LIMITED-VIEW DATA

In many situations, we have only at our disposal data on Γ×(0,T ), where Γ⊂ ∂Ω.
As illustrated in Figure 1.2, restricting the integration in formula (1.3) to Γ as
follows:

p0(x) ' 1

(4π2)

ˆ
Γ

ˆ 2

0

[
d 2

dr 2 RΩ

[
p0

]
(y,r )

]
ln

∣∣r 2 − (y −x)2
∣∣ dr dσ(y), (1.4)

is not stable enough to give a correct reconstruction of p0.
The inverse problem becomes severely ill-posed and needs to be regularized;

see for instance [72, 146]. We apply here a Tikhonov regularization with a total
variation term, which is well adapted to the reconstruction of smooth solutions
with front discontinuities. We then introduce the function p0,η as the minimizer
of

J [ f ] =
∥∥∥Q

[
RΩ

[
f
]− g

]∥∥∥
L2(∂Ω×(0,2))

+η∥∥∇ f
∥∥

L1(Ω) ,

where Q is a positive weight operator.
Direct computation of p0,η can be complicated as the TV term is not smooth

(not of class C 1). Here, we obtain an approximation of p0,η via an iterative
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FIGURE 1.2. Numerical inversion with truncated (1.3) formula. N = 128, NR = 128, and
Nθ = 30. Left: p0; Right: 1

4π2 R∗
ΩBRΩ

[
p0

]
.

shrinkage-thresholding algorithm [52, 55]. This algorithm can be seen as a split,
gradient-descent, iterative scheme:

• Data g , initial solution f0 = 0;

• (1) Data link step: fk+1/2 = fk −γR∗
ΩQ∗Q

[
RΩ

[
fk

]− g
]
;

• (2) Regularization step: fk = Tγη
[

fk+1/2
]
,

where γ is a virtual descent time step and the operator Tη is defined by

Tη[y] = ar g min
x

{∥∥y −x
∥∥

L2 +η‖∇x‖L1

}
.

One advantage of the algorithm is to minimize implicitly the TV term using the
duality algorithm of Chambolle [49]. This algorithm converges [52, 55] under
the assumption γ

∥∥R∗
ΩQ∗QRΩ

∥∥ ≤ 1, but its rate of convergence is known to be
slow. Thus, in order to accelerate the convergence rate, we will also consider a
variant algorithm of Beck and Teboulle [34] defined as

• Data g , initial set: f0 = x0 = 0, t1 = 1;

• (1) xk = Tγη
(

fk −γR∗
ΩQ∗Q

[
RΩ

[
fk

]− g
])

;

• (2) fk+1 = xk +
tk −1

tk+1
(xk −xk−1) with tk+1 =

1+
√

1+4t 2
k

2
.

The standard choice of Q is the identity, Id , and then it is easy to see that∥∥RΩR∗
Ω

∥∥' 2π. It will be also interesting to use Q = 1
2πB1/2, which is well defined

since B is symmetric and positive. In this case, R∗
ΩQ∗Q 'R−1

Ω and we can hope
to improve the convergence rate of the regularized algorithm.
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FIGURE 1.3. Iterative shrinkage-thresholding solution after 30 iterations with η= 0.01, N =
128, NR = 128, and Nθ = 30. Top left: simplest algorithm with Q = Id and µ= 1/(2π); Top right:
simplest algorithm with Q = 1

2πB1/2 and µ = 0.5; Bottom left: Beck and Teboulle variant with
Q = 1

2πB1/2 and µ= 0.5; Bottom right: error k →‖ fk −p0‖∞ for each of the previous situations.

We compare three algorithms of this kind in Figure 1.3. The first and the
second one correspond to the simplest algorithm with Q = Id and Q = 1

2πB1/2

respectively. The last method uses the variant of Beck and Teboulle with Q =
1

2πB1/2. The speed of convergence for each one of these algorithms is presented
in Figure 1.3. Clearly, the third method is the best and after 30 iterations, a very
good approximation of p0 is reconstructed.

Two limited-angle experiments are presented in Figure 1.4 using the third
algorithm.

1.2.3 COMPENSATION OF THE EFFECT OF ACOUSTIC ATTENUATION

Our aim in this section is to compensate for the effect of acoustic attenuation.
The pressures p(x, t ) and pa(x, t ) are respectively solutions of the following wave
equations:

1

c2
0

∂2p

∂t 2 (x, t )−∆p(x, t ) = 1

c2
0

∂

∂t
δt=0p0(x),
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FIGURE 1.4. Limited angle case with Beck and Teboulle iterative shrinkage-thresholding after

50 iterations, with parameters: η= 0.01, N = 128, NR = 128, Nθ = 64 and Q = 1
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[
p0

]
; f50. Left: Configuration 1, Right: Configuration 2.
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and
1

c2
0

∂2pa

∂t 2 (x, t )−∆pa(x, t )−L(t )∗pa(x, t ) = 1

c2
0

∂

∂t
δt=0p0(x),

where L is defined by

L(t ) = 1p
2π

ˆ
R

(
κ2(ω)− ω2

c2
0

)
e iωt dω. (1.5)

Many models exist for κ(ω) [82]. Here we use the power-law model. Then κ(ω)

is the complex wave number, defined by

κ(ω) = ω

c(ω)
+ i a|ω|ζ, (1.6)

where ω is the frequency, c(ω) is the frequency dependent phase velocity and
1 ≤ ζ ≤ 2 is the power-law exponent; see [83, 125]. A common model, known
as the thermo-viscous model, is given by κ(ω) = ω

c0
√

1− i aωc0

and corresponds

approximately to ζ= 2 with c(ω) = c0.
Our strategy is now to:

• Estimate p(y, t ) from pa(y, t ) for all (y, t ) ∈ ∂Ω×R+.

• Apply the inverse formula for the spherical Radon transform to recon-
struct p0 from the non-attenuated data.

A natural definition of an attenuated spherical Radon transform RΩ,a is

RΩ,a
[
p0

]=W
[
pa

]
.

1.2.4 RELATIONSHIP BETWEEN p AND pa

Recall that the Fourier transforms of p and pa satisfy(
∆+

(
ω

c0

)2)
p̂(x,ω) = iωp

2πc2
0

p0(x)

and (
∆+κ(ω)2) p̂a(x,ω) = iωp

2πc2
0

p0(x),

which implies that

p̂
(
x,c0κ(ω)

)= c0κ(ω)

ω
p̂a(x,ω).

The issue is to estimate p from pa using the relationship pa =L
[
p

]
, where L is

defined by

L
[
φ

]
(s) = 1

2π

ˆ
R

ω

c0κ(ω)
e−iωs

ˆ ∞

0
φ(t )exp

{
i c0κ(ω)t

}
d t dω.
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FIGURE 1.5. Numerical inversion of attenuated wave equation with κ(ω) = ω

c0
+i a

ω2

2
and a =

0.001. Here N = 256, NR = 200 and Nθ = 200. Top left: p0; Top right: pa(y, t ) with (y, t ) ∈ ∂Ω×
(0,2); Bottom left: W

[
pa

]
(y, t ) with (y, t ) ∈ ∂Ω× (0,2); Bottom right:

1

4π2 R∗
ΩB

(
W

[
pa

]
(y, t )

)
.

The main difficulty is that L is not well conditioned. We will compare two
approaches. The first one uses a regularized inverse of L via a singular value
decomposition (SVD), which has been recently introduced in [86]. The second
one is based on the asymptotic behavior of L as the attenuation coefficient a

tends to zero.

Figure 1.5 gives some numerical illustrations of the inversion of the atten-
uated spherical Radon transform without a correction of the attenuation effect,
where a thermo-viscous attenuation model is used with c0 = 1.

1.2.5 A SINGULAR VALUE DECOMPOSITION APPROACH

La Rivière, Zhang and Anastasio have recently proposed in [86] to use a regu-
larized inverse of the operator L obtained by a standard SVD approach:

L
[
φ

]=∑
l
σl 〈φ,ψ̃l 〉ψl ,
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where (ψ̃l ) and (ψl ) are two orthonormal bases of L2(0,T ) and σl are positives
eigenvalues such that 

L ∗ [
φ

] =∑
l σl 〈φ,ψl 〉ψ̃l ,

L ∗L
[
φ

] =∑
l σ

2
l 〈φ,ψ̃l 〉ψ̃l ,

L L ∗ [
φ

] =∑
l σ

2
l 〈φ,ψl 〉ψl .

An ε-approximation inverse of L is then given by

L −1
1,ε

[
φ

]=∑
l

σl

σ2
l +ε2

〈φ,ψl 〉ψ̃l ,

where ε> 0.
In Figure 1.6 we present some numerical inversions of the thermo-viscous

wave equation with a = 0.0005 and a = 0.0025. We first obtain the ideal mea-
surements from the attenuated ones and then apply the inverse formula for the
spherical Radon transform to reconstruct p0 from the ideal data. We take ε re-
spectively equal to 0.01, 0.001 and 0.0001. As expected, this algorithm corrects a
part of the attenuation effect but is unstable when ε tends to zero.

1.2.6 ASYMPTOTICS OF L

In physical situations, the coefficient of attenuation a is very small. We will take
this phenomenon into account and introduce an approximation of L and L −1

as a goes to zero:

Lk
[
φ

]=L
[
φ

]+o
(
ak+1

)
and L −1

2,k

[
φ

]=L −1 [
φ

]+o
(
ak+1

)
,

where k represents an order of approximation.

1.2.6.1 THERMO-VISCOUS CASE: κ(ω) ' ω

c0
+ i a

ω2

2

Let us consider in this section the attenuation model κ(ω) ' ω

c0
+ i a

ω2

2
at low

frequencies ω¿ 1

a
, such that

1

1+ i ac0ω/2
' 1− i

ac0

2
ω.

The operator L is approximated as follows

L
[
φ

]
(s) ' 1

2π

ˆ ∞

0
φ(t )

ˆ
R

(
1− i

ac0

2
ω

)
exp

{
−1

2
c0aω2t

}
exp

{
iω(t − s)

}
dωd t .
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FIGURE 1.6. Compensation of acoustic attenuation with SVD regularization: N = 256, NR =
200 and Nθ = 200. Left: a = 0.0005; Right: a = 0.0025. Top to bottom: L −1
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Since

1p
2π

ˆ
R

exp

{
−1

2
c0aω2t

}
exp

{
iω(t − s)

}
dω= 1p

c0at
exp

{
−1

2

(s − t )2

c0at

}
,

and

1p
2π

ˆ
R

−i ac0ω

2
exp

{
−1

2
c0aω2t

}
exp

{
iω(t−s)

}
dω= ac0

2

∂

∂s

(
1p

c0at
exp

{
−1

2

(s − t )2

c0at

})
,

it follows that

L
[
φ

]' (
1+ ac0

2

∂

∂s

)(
1p
2π

ˆ +∞

0
φ(t )

1p
c0at

exp

{
−1

2

(s − t )2

c0at

}
d t

)
.

We then investigate the asymptotic behavior of L̃ defined by

L̃
[
φ

]= 1p
2π

ˆ +∞

0
φ(t )

1p
c0at

exp

{
−1

2

(s − t )2

c0at

}
d t . (1.7)

Since the phase in (1.7) is quadratic and a is small, by the stationary phase theo-
rem we can prove that

L̃
[
φ

]
(s) =

k∑
i=0

(c0a)i

2i i !
Di

[
φ

]
(s)+o

(
ak

)
, (1.8)

where the differential operators Di satisfy Di
[
φ

]
(s) = (t iφ(t ))(2i )(s); see Appendix

1.A.2. We can also deduce the following approximation of order k of L̃ −1

L̃ −1
k

[
ψ

]= k∑
j=0

a jψk, j , (1.9)

where ψk, j are defined recursively by

ψk,0 =ψ and ψk, j =−
j∑

i=1

c i
0

2i i !
Di

[
ψk, j−i

]
, for all j ≤ k.

Finally, we define

Lk =
(
1+ ac0

2

∂

∂s

)
L̃k and L −1

2,k = L̃ −1
k

(
1+ ac0

2

∂

∂t

)−1

. (1.10)

We present in Figure 1.7 some numerical reconstructions of p0 using a thermo-
viscous wave equation with a = 0.0005 and a = 0.0025. We take respectively:
k = 0, k = 1 and k = 8. These reconstructions seem to be as good as those ob-
tained by the SVD regularization approach. Moreover, this new algorithm has
better stability properties.
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FIGURE 1.7. Compensation of acoustic attenuation with formula (1.10): N = 256, NR = 200
and Nθ = 200. Left: a = 0.0005; Right: a = 0.0025. Top to Bottom: L̃ −1

k with k = 0; k = 1 and
k = 8.
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1.2.6.2 GENERAL CASE: κ(ω) = ω

c0
+ i a|ω|ζ WITH 1 ≤ ζ< 2

We now consider the attenuation model κ(ω) = ω

c0
+ i a|ω|ζ with 1 ≤ ζ < 2. As

before, this problem can be reduced to the approximation of the operator L̃

defined by

L̃
[
φ

]
(s) =

ˆ ∞

0
φ(t )

ˆ
R

exp
{
iω(t − s)

}
exp

{−|ω|ζc0at
}

dωd t .

It is also interesting to see that its adjoint L̃ ∗ satisfies

L̃ ∗ [
φ

]
(s) =

ˆ ∞

0
φ(t )

ˆ
R

exp
{
iω(s − t )

}
exp

{−|ω|ζc0as
}

dωd t .

Suppose for the moment that ζ = 1, and working with the adjoint operator L ∗,
we see that

L̃ ∗ [
φ

]
(s) = 1

π

ˆ ∞

0

c0as

(c0as)2 + (s − t )2φ(t )d t .

Invoking the dominated convergence theorem, we have

lim
a→0

L̃ ∗ [
φ

]
(s) = lim

a→0

1

π

ˆ ∞

− 1
ac0

1

1+ y2φ(s + c0ay s)d y

= 1

π

ˆ ∞

−∞
1

1+ y2φ(s)d y

= φ(s).

More precisely, introducing the fractional Laplacien ∆1/2 as follows

∆1/2φ(s) = 1

π
p.v.

ˆ +∞

−∞
φ(t )−φ(s)

(t − s)2 d t ,

where p.v. stands for the Cauchy principal value, we get

1

a

(
L̃ ∗ [

φ
]

(s)−φ(s)
) = 1

a

ˆ ∞

−∞
1

πc0as

1

1+
(

s−t
c0as

)2

(
φ(t )−φ(s)

)
d t

=
ˆ ∞

−∞
1

π

c0s

(c0as)2 + (s − t )2

(
φ(t )−φ(s)

)
d t

= lim
ε→0

ˆ
R\[s−ε,s+ε]

1

π

c0s

(c0as)2 + (s − t )2

(
φ(t )−φ(s)

)
d t

→ lim
ε→0

ˆ
R\[s−ε,s+ε]

1

π

c0s

(s − t )2

(
φ(t )−φ(s)

)
d t

= c0s∆1/2φ(s),
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as a tends to zero. We therefore deduce that

L̃ ∗ [
φ

]
(s) =φ(s)+ c0as∆1/2φ(s)+o(a)

and
L̃

[
φ

]
(s) =φ(s)+ c0a∆1/2 (

sφ(s)
)+o(a).

Applying exactly the same argument for 1 < ζ< 2, we obtain that

L̃
[
φ

]
(s) =φ(s)+C c0a∆ζ/2 (

sφ(s)
)+o(a),

where C is a constant, depending only on ζ and ∆ζ/2 is defined by

∆ζ/2φ(s) = 1

π
p.v.

ˆ +∞

−∞
φ(t )−φ(s)

(t − s)1+ζ d t .

1.2.7 AN ITERATIVE SHRINKAGE-THRESHOLDING ALGORITHM WITH

CORRECTION OF ATTENUATION

The previous correction of attenuation is not so efficient for a large attenuation
coefficient a. In this case, to further enhance the resolution of the reconstruc-
tion, we may use again a Tikhonov regularization. Let R−1

Ω,a,k be an approximate
inverse of the attenuated spherical Radon transform RΩ,a :

R−1
Ω,a,k =RΩ−1W L −1

2,kW −1.

Although its convergence is not clear, we will now consider the following itera-
tive shrinkage-thresholding algorithm:

• Data g , initial set: f0 = x0 = 0, t1 = 1;

• (1) x j = Tγη
(

f j −γR−1
Ω,a,k

(
RΩ,a f j − g

))
;

• (2) f j+1 = x j +
t j −1

t j+1

(
x j −x j−1

)
with t j+1 =

1+
√

1+4t 2
j

2
.

Figure 1.8 shows the efficiency of this algorithm.

1.3 PHOTO-ACOUSTIC IMAGING WITH IMPOSED BOUND-
ARY CONDITIONS

In this section, we consider the case where a boundary condition has to be im-
posed on the pressure field. We first formulate the photo-acoustic imaging prob-
lem in a bounded domain before reviewing the reconstruction procedures. We
refer the reader to [140] where the half-space problem has been considered. We
then introduce a new algorithm which reduces the reconstruction problem to the
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FIGURE 1.8. Numerical results for iterative shrinkage-thresholding algorithm with η = 0.001
and a = 0.0025. Left up: f50 with k = 0; Top right: f50 with k = 1; Bottom left: f50 with k = 6;
Bottom right: error j →‖ f j −p0‖ for different values of k.

inversion of a Radon transform. This procedure is particularly well-suited for
extended absorbers. Finally, we discuss the issue of correcting the attenuation
effect and propose an algorithm analogous to the one described in the previous
section.

1.3.1 MATHEMATICAL FORMULATION

Let Ω be a bounded domain. We consider the wave equation in the domain Ω:

1

c2
0

∂2p

∂t 2 (x, t )−∆p(x, t ) = 0 in Ω× (0,T ),

p(x,0) = p0(x) in Ω,

∂p

∂t
(x,0) = 0 in Ω,

(1.11)

with the Dirichlet (resp. the Neumann) imposed boundary conditions:

p(x, t ) = 0

(
resp.

∂p

∂ν
(x, t ) = 0

)
on ∂Ω× (0,T ). (1.12)
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Our objective in the next subsection is to reconstruct p0(x) from the measure-

ments of
∂p

∂ν
(x, t ) (resp. p(x, t )) on the boundary ∂Ω× (0,T ).

1.3.2 INVERSION ALGORITHMS

Consider probe functions satisfying

1

c2
0

∂2v

∂t 2 (x, t )−∆v(x, t ) = 0 in Ω× (0,T ),

v(x,T ) = 0 in Ω,

∂v

∂t
(x,T ) = 0 in Ω.

(1.13)

Multiplying (1.11) by v and integrating by parts yields (in the case of Dirich-
let boundary conditions):

ˆ T

0

ˆ
∂Ω

∂p

∂ν
(x, t )v(x, t )dσ(x)d t =

ˆ
Ω

p0(x)
∂v

∂t
(x,0)d x. (1.14)

Choosing a probe function v with proper initial time derivative allows us to
infer information on p0 (right-hand side in (1.14)) from our boundary measure-
ments (left-hand side in (1.14)).

In [11], considering a full view setting, Ammari et al. used a 2-parameter
travelling plane wave given by

v (1)
τ,θ(x, t ) = δ

(
x ·θ
c0

+ t −τ
)

, (1.15)

and determined the inclusion’s characteristic functions by varying (θ,τ). They
also used in three dimensions the spherical waves given by

wτ,y (x, t ) =
δ

(
t +τ− |x−y |

c0

)
4π|x − y | , (1.16)

for y ∈R3 \Ω, to probe the medium.
In [10], Ammari et al. assumed that the measurements are only made on a

part of the boundary Γ⊂ ∂Ω. Using geometric control, one could choose the form

of
∂v

∂t
(x,0) and design a probe function v satisfying (1.13) together with

v(x, t ) = 0 on ∂Ω\Γ,

so that ˆ T

0

ˆ
Γ

∂p

∂ν
(x, t )v(x, t )dσ(x)d t =

ˆ
Ω

p0(x)
∂v

∂t
(x,0)d x. (1.17)
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FIGURE 1.9. Reconstruction in the case of homogeneous Dirichlet boundary conditions. Left:
initial condition p0; Center: reconstruction using spherical Radon transform; Right: reconstruc-
tion using probe functions algorithm.

Varying the choice of
∂v

∂t
(x,0), one could adapt classical imaging algorithms

(MUSIC, back-propagation, Kirchhoff migration, arrival-time) to the case of lim-
ited view data.

Now simply consider the 2-parameter family of probe functions:

v (2)
τ,θ(x, t ) = 1−H

(
x ·θ
c0

+ t −τ
)

, (1.18)

where H is the Heaviside function. The probe function v (2)
τ,θ(x, t ) is an incoming

plane wavefront. Its equivalent, still denoted by v (2)
τ,θ, in the limited-view setting

satisfies the initial conditions

v (2)
τ,θ(x,0) = 0 and

∂v (2)
τ,θ

∂t
(x,0) = δ

(
x ·θ
c0

−τ
)

, (1.19)

together with the boundary condition v (2)
τ,θ = 0 on ∂Ω \Γ× (0,T ). In both the full-

and the limited-view cases, we get
ˆ T

0

ˆ
∂Ω or Γ

∂p

∂ν
(x, t )v (2)

τ,θ(x, t )dσ(x)d t = R
[
p0

]
(θ,τ), (1.20)

where R
[

f
]

is the (line) Radon transform of f . Applying a classical filtered back-
projection algorithm to the data (1.20), one can reconstruct p0(x).

To illustrate the need of this approach, we present in Figure 1.9 the recon-
structions from data with homogeneous Dirichlet boundary conditions. We
compare the reconstruction using the inverse spherical Radon transform with
the duality approach presented above. It appears that if we do not take bound-
ary conditions into account, it leads to huge errors in the reconstruction.

We then tested this approach on the Shepp-Logan phantom, using the fam-
ily of probe functions v (2)

τ,θ. The reconstructions are given in Figure 1.10. We no-
tice numerical noise due to the use of discontinuous (Heaviside) test functions
against discrete measurements.
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FIGURE 1.10. Numerical inversion in the case of homogeneous Dirichlet boundary conditions.
Here, N = 256, NR = 200 and Nθ = 200. Top left: p0; Top right: p(y, t ) with (y, t ) ∈ ∂Ω× (0,3);
Bottom left: R[p0]; Bottom right: reconstruction using probe functions algorithm.

The numerical tests were conducted using MATLAB. Three different for-
ward solvers have been used for the wave equation:

• a FDTD solver, with Newmark scheme for time differentiation;

• a space-Fourier solver, with Crank-Nicholson finite difference scheme in
time;

• a space-(P1) FEM-time finite difference solver.

Measurements were supposed to be obtained on equi-distributed captors on
a circle or a square. The use of integral transforms (line or spherical Radon trans-
form) avoids inverse crime since such transforms are computed on a different
class of parameters (center and radius for spherical Radon transform, direction
and shift for line Radon transform). Indeed, their numerical inversion (achieved
using formula (1.3) or the iradon function of MATLAB) are not computed on the
same grid as the one for the forward solvers.
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1.3.3 COMPENSATION OF THE EFFECT OF ACOUSTIC ATTENUATION

Our aim in this section is to compensate for the effect of acoustic attenuation.
Let pa(x, t ) be the solution of the wave equation in an attenuating medium:

1

c2
0

∂2pa

∂t 2 (x, t )−∆pa(x, t )−L(t )∗pa(x, t ) = 1

c2
0

∂

∂t
δt=0p0(x) in Ω×R, (1.21)

with the Dirichlet (resp. the Neumann) imposed boundary conditions:

pa(x, t ) = 0

(
resp.

∂pa

∂ν
(x, t ) = 0

)
on ∂Ω×R, (1.22)

where L is defined by (1.5).

We want to recover p0(x) from boundary measurements of
∂pa

∂ν
(x, t ) (resp.

pa(x, t )). Again, we assume that a is small.
Taking the Fourier transform of (1.21), we obtain

(∆+κ2(ω))p̂a(x,ω) = iωp
2πc2

0

p0(x) x ∈Ω,

p̂a(x,ω) = 0

(
resp.

∂p̂a

∂ν
(x,ω) = 0

)
x ∈ ∂Ω,

(1.23)

where p̂a denotes the Fourier transform of pa .

1.3.4 CASE OF A SPHERICAL WAVE AS A PROBE FUNCTION

By multiplying (1.23) by the Fourier transform, ŵ0,y (x,ω), of wτ=0,y given by
(1.16), we arrive at, for any τ,

ip
2π

ˆ
Ω

p0(x)

(ˆ
R

ωe iωτŵ0,y
(
x,κ(ω)

)
dω

)
d x =

ˆ
R

e iωτ
ˆ
∂Ω

∂p̂a

∂ν
(x,ω)ŵ0,y

(
x,κ(ω)

)
dω,

(1.24)
for the Dirichlet problem and

ip
2π

ˆ
Ω

p0(x)

(ˆ
R

ωe iωτŵ0,y
(
x,κ(ω)

)
dω

)
d x =−

ˆ
R

e iωτ
ˆ
∂Ω

p̂a(x,ω)
∂ŵ0,y

∂ν

(
x,κ(ω)

)
dω,

(1.25)
for the Neumann problem.

Next, we compute
´
R
ωe iωτŵ0,y

(
x,κ(ω)

)
dω for the thermo-viscous model. Re-

call that in this case,

κ(ω) ' ω

c0
+ i aω2

2
.

We haveˆ
R

ωe iωτŵ0,y
(
x,κ(ω)

)
dω' 1

4π|x − y |
ˆ
R

ωexp

{
iω

(
τ− |x − y |

c0

)}
exp

{
−aω2 |x − y |

c0

}
dω,

(1.26)
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and again, the stationary phase theorem can be applied to approximate the in-
version procedure for p0(x).

Note that if we use the Fourier transform v̂ of (1.15) or (1.18) as a test function
then we have to truncate the integral in (1.24) since v̂ (x,κ(ω)) is exponentially
growing in some regions of Ω.

1.3.5 CASE OF A PLANE WAVE AS A PROBE FUNCTION

Let us first introduce the function κ̃(ω) defined by κ̃(ω) =
√
κ(ω)2 and consider a

solution of the Helmholtz equation(
∆+ κ̃2(ω)

)
v̂a(x,ω) = 0

of the form
v̂a(x,ω) = exp

{− iω(x ·θ− c0τ)
}

g (ω), (1.27)

where g (ω) decays sufficiently fast.
Multiplying (1.23) by v̂a(x,ω), we obtain

ip
2π

ˆ
Ω

p0(x)

(ˆ
R

ωv̂a(x,ω)dω

)
d x =

ˆ
R

ˆ
∂Ω

∂p̂a

∂ν
(x,ω)v̂a(x,ω)dσ(x)dω. (1.28)

Since κ̃(ω) ' ω

c0
− i aω2

2
, then by taking in formula (1.27)

g (ω) = exp

{
−1

2
ω2ac0T

}
and g (ω) = 1

iω
exp

{
−1

2
ω2ac0T

}
,

we can use the plane waves v̂ (1)
a and v̂ (2)

a given by

v̂ (1)
a (x,ω) = exp

{− iω (x ·θ− c0τ)
}

exp

{
−1

2
ω2ac0

(
T + x ·θ

c0
−τ

)}
,

v̂ (2)
a (x,ω) = 1

iω
exp

{− iω(x ·θ− c0τ)
}

exp

{
−1

2
ω2ac0

(
T + x ·θ

c0
−τ

)}
,

as approximate probe functions.

Take T sufficiently large such that
(
T + x ·θ

c0
−τ

)
stays positive for all x ∈ Ω.

Thus,

v (1)
a (x, t ) ' 1√

ac0

(
T + x·θ

c0
−τ

) exp

− (x ·θ− c0τ+ t )2

2ac0

(
T + x·θ

c0
−τ

)
 ,

and

v (2)
a (x, t ) ' erf

 x ·θ− c0τ+ t√
ac0

(
T + x·θ

c0
−τ

)
 .
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Now using v (2)
a in formula (1.28) leads to the convolution of the Radon trans-

form of p0 with a quasi-Gaussian kernel. Indeed, the left hand-side of (1.28)
satisfies

ip
2π

ˆ
Ω

p0(x)

(ˆ
R

ωv̂ (2)
a (x, w)dω

)
d x

'
ˆ
Ω

p0(x)
1√

ac0

(
T + x·θ

c0
−τ

) exp

− (x ·θ− c0τ)2

2ac0

(
T + x·θ

c0
−τ

)
d x

=
ˆ smax

smi n

R[p0](θ, s)
1√

ac0

(
T + s

c0
−τ

) exp

− (s − c0τ)2

2ac0

(
T + s

c0
−τ

)
d s,

and the right hand-side is explicitly estimated by

ˆ
R

ˆ
∂Ω

∂p̂a

∂ν
(x,ω)v̂ (2)

a (x,ω)dσ(x)dω'
ˆ T

0

ˆ
∂Ω

∂pa

∂ν
(x, t )·erf

 x ·θ− c0τ+ t√
ac0

(
T + x·θ

c0
−τ

)
dσ(x)d t .

As previously, we can compensate the effect of attenuation using the stationary
phase theorem on the operator L̃ ,

L̃
[
φ

]
(τ) =

ˆ smax

smi n

φ(s)
1√

ac0

(
T + s

c0
−τ

) exp

− (s − c0τ)2

2ac0

(
T + s

c0
−τ

)
d s,

which reads

L̃
[
φ

]
(τ) 'φ(c0τ)+ ac0T

2

(
φ′′(c0τ)+ 2φ′(c0τ)

c0T

)
; (1.29)

see appendix 1.A.3. More generally,

L̃
[
φ

]
(τ) =

k∑
i=0

(c0a)i

2i i !
Di

[
φ

]+o
(
ak

)
, (1.30)

where the differential operators Di satisfy

Di
[
φ

]= [((
T + s

c0
−τ

)i [
φ

]
(s)

)(2i )
]

s=c0τ

.

Define L̃ −1
k as in (1.9). Using (1.30), we reconstruct the line Radon transform

of p0 correcting the effect of attenuation. We then apply a standard filtered back-
projection algorithm to inverse the Radon transform. Results are presented in
Figure 1.11.
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FIGURE 1.11. Compensation of acoustic attenuation with formula (1.29) in the case of homoge-
neous Dirichlet boundary conditions. Here, N = 256, NR = 200 and Nθ = 200. Left: a = 0.0005;
Right: a = 0.0025. Top to Bottom: L̃ −1

k with k = 0; k = 1 and k = 8.



34 CHAPTER 1. PHOTO-ACOUSTIC IMAGING IN ATTENUATING MEDIA

1.4 CONCLUSION

In this chapter we have provided new approaches to correct the effect of im-
posed boundary conditions as well as the effect of acoustic attenuation. It is
interesting to analytically investigate their robustness with respect to measure-
ment noise and medium noise. In this connection, we refer to [13] for a coherent
interferometric strategy for photo-acoustic imaging in the presence of micro-
scopic random fluctuations of the speed of sound.

Finally, it is worth emphasizing that it is the absorption coefficient, not the
absorbed energy, that is a fundamental physiological parameter. The absorbed
energy density is in fact the product of the optical absorption coefficient and
the light fluence which depends on the distribution of scattering and absorption
within the domain, as well as the light sources. In [12], methods for reconstruct-
ing the normalized optical absorption coefficient of small absorbers from the
absorbed density are proposed. Multi-wavelength acoustic measurements are
combined with diffusing light measurements to separate the product of absorp-
tion coefficient and optical fluence. In the case of extended absorbers, multi-
wavelength photo-acoustic imaging is also expected to lead to a satisfactory so-
lution [54].

1.A STATIONARY PHASE THEOREM AND PROOFS

1.A.1 STATIONARY PHASE THEOREM

THEOREM 1.A.1. (Stationary Phase [78])
Let K ⊂ [0,∞) be a compact set, X an open neighbourhood of K and k a positive integer.
If ψ ∈C 2k

0 (K ), f ∈C 3k+1(X ) such that

ℑm
{

f
}≥ 0 in X , ℑm

{
f (t0)

}= 0, f ′(t0) = 0, f ′′(t0) 6= 0, f ′ 6= 0 in K \ {t0}

then for ε> 0∣∣∣∣∣
ˆ

K
ψ(t )e i f (t )/εd t −e i f (t0)/ε (ε−1 f ′′(t0)/2πi

)−1/2 ∑
j<k

ε j L j
[
ψ

]∣∣∣∣∣≤Cεk
∑
α≤2k

sup
x

∣∣∣ψ(α)(x)
∣∣∣.

Here C is bounded when f stays in a bounded set in C 3k+1(X ) and
∣∣∣∣ t − t0

f ′(t )

∣∣∣∣ has a uniform

bound. With,

g t0 (t ) = f (t )− f (t0)− 1

2
f ′′(t0)(t − t0)2,

which vanishes up to third order at t0, and

L j
[
ψ

]= ∑
ν−µ= j

∑
2ν≥3µ

i− j 2−ν

ν!µ!
(−1)ν f ′′(t0)−ν

(
gµt0
ψ

)(2ν)
(t0).
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We will use this theorem with k = 2. Note that L1 can be expressed as the
sum

L1
[
ψ

]= L(1)
1

[
ψ

]+L(2)
1

[
ψ

]+L(3)
1

[
ψ

]
,

where L( j )
1 is respectively associated to the couple (ν j ,µ j ) = (1,0), (2,1), (3,2) and

is identified as

L(1)
1

[
ψ

] =− 1
2i f ′′(t0)−1ψ(2)(t0),

L(2)
1

[
ψ

] = 1
222!i f ′′(t0)−2(g t0ψ)(4)(t0)

= 1
8i f ′′(t0)−2

(
g (4)

t0
(t0)ψ(t0)+4g (3)

t0
(t0)ψ′(t0)

)
,

L(3)
1

[
ψ

] = −1
232!3!i f ′′(t0)−3

(
g 2

t0
ψ

)(6)
(t0)

= −1
232!3!i f ′′(t0)−3

(
g 2

t0

)(6)
(t0)ψ(t0).

1.A.2 PROOF OF APPROXIMATION (1.8)

Let us now apply the stationary phase theorem to the operator L̃

L̃
[
φ

]= 1p
2π

ˆ +∞

0
φ(t )

1p
c0at

exp

{
−1

2

(s − t )2

c0at

}
d t .

Note that the integral

J (s) =
ˆ ∞

0
ψ(t )e i f (t )/εd t ,

with

ψ(t ) = φ(t )p
t

, ε= c0a, f (t ) = i
(t − s)2

2t
,

satisfies J (s) =p
2c0aπL̃ [φ]. The phase f vanishes at t = s and satisfies

f ′(t ) = i
1

2

(
1− s2

t 2

)
, f ′′(t ) = i

s2

t 3 , f ′′(s) = i
1

s
.

The function gs(t ) is given by

gs(t ) = i
1

2

(t − s)2

t
− i

1

2

(t − s)2

s
= i

(s − t )3

2t s
.

We can deduce that

(gsψ)(4)(s) =
(
g (4)

x0
(s)ψ(s)+4g (3)

x0
(s)ψ′(s)

)
= i

1

2

(
24

s3 ψ(s)− 24

s2 ψ
′(s)

)
,

(
g 2

s ψ
)(6)

(s) = (
g 2

x0

)(6)
(s)ψ(s)

=−1

4

6!

s4ψ(s),
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and then, with the same notation as in Theorem 1.A.1,

L(1)
1

[
ψ

] =−1

i

(
1

2
( f ′′(s))−1ψ′′(s)

)
= 1

2
s

(
φp

s

)′′
= 1

2

(p
sφ′′(s)− φ′(s)p

s
+ 3

4

φ

s3/2

)
,

L(2)
1

[
ψ

] = 1

8i
f ′′(s)−2 (

g (4)
s (s)ψ(s)+4g (3)

s (s)ψ′(s)
)

= 1

2

(
3

(
φ(s)p

s

)′
−3

φ(s)

s3/2

)
= 1

2

(
3
φ′(s)p

s
− 9

2

φ(s)

s3/2

)
,

L(3)
1

[
ψ

] = −1

232!3!i
f ′′(s)−3 (

g 2
s

)(6)
(s)ψ(s)

= 1

2

(
15

4

φ(s)

s3/2

)
.

The operator L1 is given by

L1
[
ψ

] = L(1)
1

[
ψ

]+L(2)
1

[
ψ

]+L(3)
1

[
ψ

]
= 1

2

(p
sφ′′(s)+ (3−1)

φ′(s)p
s

+
(

3

4
− 9

2
+ 15

4

)
φ(s)

s3/2

)

= 1

2
p

s

(
sφ(s)

)′′ ,

and so, ∣∣∣∣J (s)−
√

2πac0s

(
φ(s)p

s
+a

1

2
p

s

(
sφ(s)

)′′)∣∣∣∣≤C a2
∑
α≤4

sup |φ(α)(x)|.

Finally, we arrive at∣∣∣∣ 1p
2π

ˆ ∞

0
φ(t )

1p
ac0t

exp

{
− (t − s)2

2ac0t

}
d t −

(
φ(s)+ a

2

(
sφ(s)

)′′)∣∣∣∣≤C a3/2
∑
α≤4

sup |φ(α)(t )|.

1.A.3 PROOF OF APPROXIMATION (1.29)

Let us now apply the stationary phase theorem to the operator L defined by

L̃
[
φ

]
(τ) = 1p

2π

ˆ smax

smi n

[
φ(s)

[
a (c0T + s − c0τ)

]− 1
2 exp

{
− (s − c0τ)2

2a (c0T + s − c0τ)

}]
d s

= 1p
2π

ˆ smax−c0τ

smi n−c0τ

[
φ(t + c0τ)

[
a

(
T̃ + t

)]− 1
2 exp

{
− t 2

2a
(
T̃ + t

)}]
d t ,
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where T̃ = c0T . Note that the integral

J (τ) =
ˆ smax−c0τ

smi n−c0τ

ψ(t )e i f (t )/εd t ,

with

ψ(t ) = φ(t + c0τ)√
T̃ + t

ε= a f (t ) = i
t 2

2
(
T̃ + t

) ,

satisfies J (τ) =p
a2πL̃

[
φ

]
.

The phase f vanishes at t = 0 and satisfies

f ′(t ) = i
1

2

t (t +2T̃ )

(t + T̃ )2
, f ′′(t ) = i

T̃ 2

(t + T̃ )3
, f ′′(0) = i

1

T̃
.

The function g0(t ) is identified as

g0(t ) =−i
1

2

t 3

T̃ (T̃ + t )
.

We have 

(
g0ψ

)(4)(0) =
(
g (4)

0 (0)ψ(0)+4g (3)
0 (0)ψ′(0)

)
= i

1

2

(
24

T̃ 3
ψ(0)− 24

T̃ 2
ψ′(0)

)
,

(
g 2

0ψ
)(6)(0) = (

g 2
0

)(6)(0)ψ(0)

=−1

4

6!

T̃ 4
ψ(0),

and

ψ(0) = φ(c0τ)

T̃ 1/2
, ψ′(0) = φ′(c0τ)

T̃ 1/2
− 1

2

φ(c0τ)

T̃ 3/2
, ψ′′(0) = φ′′(c0τ)

T̃ 1/2
− φ′(c0τ)

T̃ 3/2
+ 3

4

φ(c0τ)

T̃ 5/2
.

Therefore, again with the same notation as in Theorem 1.A.1,

L(1)
1

[
ψ

] =−1

i

(
1

2
( f ′′(0))−1ψ′′(0)

)
= 1

2

(√
T̃φ′′(c0τ)− φ′(c0τ)

T̃ 1/2
+ 3

4

φ(c0τ)

T̃ 3/2

)
,

L(2)
1

[
ψ

] = 1

8i
f ′′(0)−2

(
g (4)

0 (0)ψ(0)+4g (3)
0 (0)ψ′(0)

)
= 1

2

(
3ψ′(0)−3

ψ(0)

T̃

)
= 1

2

(
3
φ′(c0τ)

T̃ 1/2
− 9

2

φ(c0τ)

T̃ 3/2

)
,

L(3)
1

[
ψ

] =− 1

232!3!i
f ′′(0)−3 (

g 2
0

)(6)
(0)ψ(0)

= 1

2

(
15

4

φ(c0τ)

T̃ 3/2

)
,
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and L1 is given by

L1
[
ψ

] = L(1)
1

[
ψ

]+L(2)
1

[
ψ

]+L(3)
1

[
ψ

]
= 1

2
√

T̃

(
T̃φ′′ (c0τ)+2φ′ (c0τ)

)

= 1

2
√

T̃

[((
s − c0τ+ T̃

)
φ′(s)

)′]
s=c0τ

,

which yields∣∣∣∣J (τ)−p
2πa

(
φ(c0τ)+a/2

[((
s − c0τ+ c0T

)
φ′(s)

)′]
s=c0τ

)∣∣∣∣≤C a2
∑
α≤4

sup
∣∣∣φ(α)(x)

∣∣∣.
Hence,∣∣∣∣L̃ [

φ
]−[

φ(c0τ)+ ac0T

2

(
φ′′(c0τ)+ 2φ′(c0τ)

c0T

)]∣∣∣∣≤C a3/2
∑
α≤4

sup
∣∣∣φ(α)(t )

∣∣∣.
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2 TIME REVERSAL ALGORITHMS FOR

ATTENUATING ACOUSTIC MEDIA

2.1 INTRODUCTION

Many inverse problems in biomedical imaging are concerned with the determi-
nation of strength and location of sources causing fluctuations in the medium
properties [7, 11, 12, 19, 65]. Given the measurements on a detection surface,
these problems are equivalent to find the initial conditions on the wavefield, pro-
vided that the sources are temporally localized. The goal of finding such initial
conditions, can be achieved by using the so called time reversibility of the wave
equations in non-dissipative media. It is possible to reverse a wave from a fi-
nal state in such a way that it retraces its original path back through the medium
and refocuses on the source location. This provides the basis of the time-reversal
technique. See for instance [7, 30, 31, 38, 56, 62, 63, 65, 129] and references therein
for comprehensive details. See also [20, 25, 147] for applications of time reversal
techniques in biomedical imaging.

In acoustic imaging, a challenging problem is to model the acoustic attenu-
ation and to compensate for its effect in image reconstruction [82, 86, 109, 132,
134]. In this chapter, we consider the problem of reconstructing sources in at-
tenuating acoustic media using a time-reversal technique. It is motivated by the
recent works on hybrid imaging using acoustics such as photoacoustic imaging
[10, 11, 12], magneto-acoustic imaging [19], and radiation force imaging [20].
Classical time-reversal methods, without taking account of the attenuation ef-
fect, produce blurring in reconstructing source terms. Indeed attenuation is a
key issue as it breaks down the time reversibility of the wave equation. Some
recent works propose to modify the time-reversal process by using the adjoint
of the attenuated wave operator instead of the ideal one [41, 134]. In this chap-
ter, we aim to justify this technique as a first order correction of the attenuation
effect. At the same time, we also present a modified approach for higher or-
der corrections. We use a thermo-viscous law model for the attenuation losses.
However, our analysis can be extended to more general power law attenuation

39
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models with fractional exponents.
The rest of this chapter is organized as follows. In Section 2.2, we recall two

classical time reversal methods for the acoustic wave equation in an ideal acous-
tic medium. In Section 2.3, we propose and analyze a time reversal method for
attenuating acoustic media. In Section 2.4, we present an alternative approach
which consists of pre-processing the data before applying the classical time re-
versal algorithm. In Section 2.5, we present the numerical illustrations to com-
pare different variants of the time reversal and to highlight the potential of our
approach. Finally, the chapter ends with a short discussion and a conclusion in
Section 2.6.

2.2 TIME REVERSAL IN HOMOGENEOUS MEDIA WITHOUT

ATTENUATION

LetΩ be a smooth bounded domain in Rd , d = 2 or 3. Consider the acoustic wave
equation 

∂2

∂t 2 p(x, t )−∆p(x, t ) = ∂δ0

∂t
(t ) f (x), (x, t ) ∈Rd × [0,∞[,

p(x, t ) = 0 and
∂p(x, t )

∂t
= 0, t ¿ 0.

(2.1)

where δ0 is the Dirac mass at t = 0 and the source f is smooth and has a smooth
support K ⊂⊂ Ω. We assume that f is a real-valued function. Equation (2.1)
models photoacoustic imaging with f being the absorbed optical energy density
[11].

Let g (y, t ) be defined as g (y, t ) := p(y, t ) for all y ∈ ∂Ω and t ∈ [0,T ], where T

is supposed to be sufficiently large such that p(x, t ) = 0 = ∂p(x, t )

∂t
for t ≥ T and

x ∈Ω. Our aim in this section is to reconstruct an approximation of the source f

from g on ∂Ω× [0,T ].
In the sequel, F denotes the Fourier transform, that is

F [v] (x,ω) = 1p
2π

ˆ
R

v(x, t )e iωt d t .

We also introduce

Γ(x, y,τ, t ) = F−1 [
Γω(x, y)

]
(t −τ)

= 1p
2π

ˆ
R

Γω(x, y)exp
{− iω(t −τ)

}
dω.

where Γω(x, y) is the outgoing fundamental solution to the Helmholtz equation
−(∆+ω2) in Rd i.e.

(∆y +ω2)Γω(x, y) =−δx (y) ∀y ∈Rd ,

subject to the outgoing radiation condition.
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2.2.1 IDEAL TIME REVERSAL IMAGING TECHNIQUE

Introduce the solution v of the following wave problem

∂2v

∂t 2 (x, t )−∆v(x, t ) = 0, (x, t ) ∈Ω× [0,T ],

v(x,0) = 0 = ∂v

∂t
(x,0), x ∈Ω,

v(x, t ) = g (x,T − t ), (x, t ) ∈ ∂Ω× [0,T ].

The time-reversal imaging functional I1(x) reads

I1(x) = v(x,T ), x ∈Ω.

In order to study I1(x), we introduce the Dirichlet Green Function G(x, y,τ, t )

defined as the solution of the following wave equation

∂2G

∂t 2 (x, y,τ, t )−∆yG(x, y,τ, t ) = δxδτ, (y, t ) ∈Ω×R,

G(x, y,τ, t ) = 0,
∂G

∂t
(x, y,τ, t ) = 0, t ¿ τ,

G(x, y,τ, t ) = 0, (y, t ) ∈ ∂Ω×R,

where δx and δτ are the Dirac masses at x and at τ respectively.
Using the reversibility of the wave equation, we arrive at

I1(x) = v(x,T ) =
ˆ T

0

ˆ
∂Ω

∂G

∂νy
(x, y,τ, t )g (y,T − t )dσ(y)d t . (2.2)

where
∂

∂νy
denotes the normal derivative at y ∈ ∂Ω. In identity (2.2), the de-

pendence of the time-reversal functional I1 on the boundary data g is explicitly
shown. Moreover, since

g (y, s) =
ˆ
Ω

∂Γ

∂t
(z, y,0, s) f (z)d z

∣∣∣∣
y∈∂Ω

,

it follows that

I1(x) =
ˆ
Ω

f (z)

ˆ T

0

ˆ
∂Ω

∂G

∂νy
(x, y,T, t )

∂Γ

∂t
(z, y,0,T − t )dσ(y)d td z.

2.2.2 MODIFIED TIME-REVERSAL IMAGING TECHNIQUE

In this section, we present a modified approach to the time-reversal concept
using free boundary conditions. Introduce a function vs as the solution to the wave
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problem

∂2vs

∂t 2 (x, t )−∆vs(x, t ) = ∂δs

∂t
(t )g (x,T − s)δ∂Ω(x), (x, t ) ∈Rd ×R,

vs(x, t ) = 0, x ∈Rd , t ¿ s,

∂vs

∂t
(x, t ) = 0, x ∈Rd , t ¿ s.

Here, δ∂Ω is the surface Dirac mass on ∂Ω and g is the measured data.
We define a modified time-reversal imaging functional by

I2(x) =
ˆ T

0
vs(x,T )d s, x ∈Ω.

Note that
vs(x, t ) =

ˆ
∂Ω

∂Γ

∂t
(x, y, s, t )g (y,T − s)dσ(y).

Consequently, the functional I2 can be expressed in terms of the free-space
Green function Γ as follows

I2(x) =
ˆ T

0

ˆ
∂Ω

∂Γ

∂t
(x, y, s,T )g (y,T − s)dσ(y)d s, x ∈Ω.

Note that I2 is not exactly equivalent to I1 but is an approximation. Indeed,
with

gω(y) =F
[
g
]

(y,ω) =−iω

ˆ
Ω

Γω(z, y) f (z)d z, ∀y ∈ ∂Ω,

Parseval’s relation gives

I2(x) =
ˆ T

0

ˆ
∂Ω

∂Γ

∂t
(x, y, s,T )g (y,T − s)dσ(y)d s

= − 1

2π

ˆ
R

ˆ
∂Ω

iωΓω(x, y)gω(y)dσ(y)dω

= 1

2π

ˆ
Rd

f (z)

ˆ
R

ˆ
∂Ω

ω2Γω(x, y)Γω(z, y)dσ(y)dωd z.

Using the Helmholtz-Kirchhoff identity [7]
ˆ
∂Ω

Γω(x, y)Γω(z, y)dσ(y) ' 1

ω
ℑm

{
Γω(x, z)

}
,

which is valid when Ω is a sphere with a large radius in Rd , we find

I2(x) ' 1

2π

ˆ
Rd

f (z)

ˆ
R

ωℑm
{
Γω(x, z)

}
dωd z.

Using the identity
1

2π

ˆ
R

ωℑm
{
Γω(x, z)

}
dω= δx (z),
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which follows from the fact that
∂Γ

∂t
(x, z,0,0) = δx (z), we finally find that

I2(x) ' f (x).

REMARK 2.2.1. Our interest in this new time reversal imaging functional is due to
its usefulness for viscous media. Moreover, numerical reconstructions of sources using
I1 or I2 are quite similar; see for instance the numerical illustrations in Figure 2.1. In
fact, formally, if we let Gω =F

[
G

]
, then by Parseval’s relation

I1(x) =− i

2π

ˆ
Ω

f (z)

ˆ
R

ω

ˆ
∂Ω

∂Gω

∂νy
(x, y)Γω(z, y)dσ(y)d zdω.

But by integration by parts over Ω and recalling that Gω is real-valued, we have

ℑm

{ˆ
∂Ω

∂Gω

∂νy
(x, y)Γω(z, y)dσ(y)

}
=ℑm

{
Γω(x, z)

}
,

and therefore,
I1(x) = f (x),

which yields
I2(x) 'I1(x).

REMARK 2.2.2. Note also that the operator T : f → g can be expressed in the form

T
[

f
]

(y, t ) = g (y, t ) =−
ˆ
Rd

∂Γ

∂t
(x, y,0, t ) f (x)d x, (y, t ) ∈ ∂Ω× [0,T ].

Then its adjoint T ∗ satisfies

T ∗ [
g
]

(x) =−
ˆ T

0

ˆ
∂Ω

∂Γ

∂t
(x, y, t ,T )g (y,T − t )dσ(y)d t ,

which can clearly be identified as the time reversal functional I2.

2.3 TIME REVERSAL ALGORITHM FOR AN ATTENUATING

ACOUSTIC MEDIUM

In this section, we present and analyze the concept of time reversal in attenuat-
ing acoustic media. We consider the thermo-viscous wave model to incorporate
viscosity effect in wave propagation. Let pa be the solution of the problem

∂2pa

∂t 2 (x, t )−∆pa(x, t )−a
∂

∂t
∆pa(x, t ) = ∂δ0

∂t
f (x), (x, t ) ∈Rd ×R

pa(x, t ) = 0, t ¿ 0,

∂pa

∂t
(x, t ) = 0, t ¿ 0,
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and let
ga(y, t ) := pa(y, t ), ∀(y, t ) ∈ ∂Ω× [ 0,+∞ [ .

Again, the problem is to reconstruct the source f from measured data ga . The
strategy of time-reversal is to consider the functional

I2,a(x) =
ˆ T

0
vs,a(x,T )d s, x ∈Ω,

where vs,a should now be the solution of the time-reverted attenuated wave
equation

∂2vs,a

∂t 2 (x, t )−∆vs,a(x, t )+a
∂

∂t
∆vs,a(x, t ) = ∂δs

∂t

(
ga(y,T − s)δ∂Ω

)
, x ∈Ω,

vs,a(x, t ) = 0, x ∈Rd , t ¿ s,

∂vs,a

∂t
(x, t ) = 0, x ∈Rd , t ¿ s.

Unfortunately, this problem is ill-posed. Indeed, the term +a
∂

∂t
∆vs,a(x, t ) al-

lows frequency component to increase exponentially. Therefore, we need to reg-
ularize the time-reverted attenuated wave equation, for instance, by truncating
the high frequencies in time or in space.

Let us introduce the free space fundamental solution Γ̃a,ω of the Helmholtz
equation

ω2Γ̃a,ω(x, y)+ (1+ i aω)∆y Γ̃a,ω(x, y) =−δx in Rd . (2.3)

Then, we have

vs,a(x, t ) =− 1

2π

ˆ
R

{ˆ
∂Ω

iωΓ̃a,ω(x, y)ga(y,T − s)dσ(y)

}
exp

{− iω(t − s)
}
dω,

and we can define an approximation vs,a,ρ of the function vs,a as follows

vs,a,ρ(x, t ) =− 1

2π

ˆ
|ω|≤ρ

{ˆ
∂Ω

iωΓ̃a,ω(x, y)ga(y,T − s)dσ(y)

}
exp

{− iω(t − s)
}
dω,

where ρ is a cut off parameter. A regularized time reversal imaging functional is
then defined by

I2,a,ρ(x) =
ˆ T

0
vs,a,ρ(x,T )d s, (2.4)

that can equivalently be given by

I2,a,ρ(x) =
ˆ
∂Ω

ˆ T

0

∂Γ̃a,ρ

∂t
(x, y, s,T )ga(y,T − s)dσ(y)d s,

where
Γ̃a,ρ(x, y, s, t ) = 1

2π

ˆ
|ω|≤ρ

Γ̃a,ω(x, y)exp
{− iω(t − s)

}
dω.

We will precise how to calibrate the cut off parameter ρ in Remark 2.3.6 in order
to get a stable imaging functional.
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REMARK 2.3.1. Let S ′ be the space of tempered distributions, i.e., the dual of the
Schwartz space S of rapidly decreasing functions (see for instance [78]). The function
vs,a,ρ(x, t ) can be identified as the solution of the following wave equation:

∂2vs,a,ρ

∂t 2 (x, t )−∆vs,a,ρ(x, t )+a
∂

∂t
∆vs,a,ρ(x, t ) = Sρ

[
∂δs

∂t

](
ga(y,T − s)δ∂Ω

)
,

where Sρ is the operator defined on the space S ′ by

Sρ[ψ](t ) = 1

2π

ˆ
|ω|≤ρ

e−iωt F [ψ](ω)dω.

2.3.1 ANALYSIS OF REGULARIZED TIME REVERSAL FUNCTIONAL

Recall that pa(x, t ) and p(x, t ) are respectively solutions of the wave equations

∂2pa

∂t 2 (x, t )−∆pa(x, t )−a
∂

∂t
∆pa(x, t ) = ∂δ0

∂t
f (x),

and
∂2p

∂t 2 (x, t )−∆p(x, t ) = ∂δ0

∂t
f (x),

and the functions pa,ω := F
[
pa

]
(x,ω) and pω := F

[
p

]
(x,ω) are solutions of the

Helmholtz equations

(
κ(ω)2 +∆)

pa,ω(x) = i
κ(ω)2

ω
f (x), and

(
ω2 +∆)

pω(x) = iω f (x),

respectively, where κ(ω) = ωp
1− i aω

. It can be seen that

pω,a(x) = κ(ω)

ω
pκ(ω)(x), or pa(x, t ) =La

[
p(x, ·)] (t ),

where

La
[
φ

]
(t ) = 1

2π

ˆ
R

κ(ω)

ω

{ˆ
R

φ(s)exp
{
iκ(ω)s

}
d s

}
exp

{− iωt
}
dω.

The following result holds.

PROPOSITION 2.3.2. Let φ(t ) ∈S
(
[0,∞[

)
(where S is the Schwartz space). Then,

La
[
φ

]
(t ) =φ(t )+ a

2

(
tφ′)′ (t )+o(a).

Proof. Formally, it follows that

La
[
φ

]
(t ) = 1

2π

ˆ
R

[
1+ i

a

2
ω

]{ˆ ∞

0

[
1−ω2 a

2
s
]
φ(s)exp

{
iωs

}
d s

}
exp

{− iωt
}
dω

+o
(
a
)

= φ(t )+ a

2

(−φ′(t )+ (tφ)′′(t )
)+o(a)

= φ(t )+ a

2

(
tφ′)′ (t )+o(a).
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This result can be rigorously justified using the stationary phase theorem (See
Appendix 1.A.2, Chapter 1).

Similarly, introduce the operator L̃a,ρ defined by

L̃a,ρ
[
φ

]
(t ) = 1

2π

ˆ ∞

0
φ(s)

{ˆ
|ω|≤ρ

κ̃(ω)

ω
exp

{
i κ̃(ω)s

}
exp

{− iωt
}
dω

}
d s,

where κ̃(ω) = ωp
1+ i aω

. By definition, we have

∂Γ̃a,ρ

∂t
= L̃a,ρ

[
∂Γ

∂t

]
. (2.5)

Moreover, the adjoint operator of L̃a,ρ reads

L̃ ∗
a,ρ

[
φ

]
(t ) = 1

2π

ˆ
|ω|≤ρ

κ̃(ω)

ω
exp

{
i κ̃(ω)t

}{ˆ ∞

0
φ(s)exp

{− iωs
}
d s

}
dω.

Then we have:

PROPOSITION 2.3.3. Let φ(t ) ∈ D
(
[0,∞[

)
where D

(
[0,∞[

)
is the space of C∞−

functions of compact support in [0,∞[. Then for all ρ > 0,

L̃ ∗
a,ρ

[
φ

]
(t ) = Sρ

[
φ

]
(t )− a

2
Sρ

[
(tφ′)′

]+o(a) as a → 0.

Proof. Note that, as φ(t ) ∈D
(
[0,∞[

)
, the support of φ⊂ [0,Tmax ],

L̃ ∗
a,ρ

[
φ

]
(t ) = 1

2π

ˆ
|ω|≤ρ

κ̃(ω)

ω
exp

{
i κ̃(ω)t

}{ˆ Tmax

0
φ(s)exp

{− iωs
}
d s

}
dω

= 1

2π

ˆ
|ω|≤ρ

ˆ Tmax

0

[
1− i

a

2
ω

][
1+ω2 a

2
t
]
φ(s)exp

{− iω(s − t )
}
d sdω

+o(a)

= Sρ
[
φ(t )

]− a

2
Sρ

[
(tφ′)′

]
(t )+o(a).

As an immediate consequence of Proposition 2.3.2 and 2.3.3, the following
result holds.

PROPOSITION 2.3.4. Let φ(t ) ∈D
(
[0,∞[

)
, then

L̃ ∗
a,ρLa

[
φ

]
(t ) = Sρ

[
φ

]
(t )+o(a) as a → 0.

We also have the following proposition which indicates that the use of the
adjoint attenuated wave operator instead of the ideal one gives a first order cor-
rection to the attenuation effect.
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PROPOSITION 2.3.5. The regularized time-reversal imaging functional defined by
(2.4) satisfies

I2,a,ρ(x) =−
ˆ
∂Ω

ˆ T

0

∂Γ

∂t
(x, y,T − s,T )Sρ

[
g (y, ·)] (s)d sdσ(y)+o(a),

for a small enough.

Proof. By virtue of (2.5), I2,a,ρ can be rewritten in the form

I2,a,ρ(x) =−
ˆ
∂Ω

ˆ T

0

∂Γ

∂t
(x, y,T − s,T )L̃ ∗

a,ρ

[
ga(y, ·)] (s)d sdσ(y).

Recall as well that ga =L
[
g
]
, so that

I2,a,ρ(x) = −
ˆ
∂Ω

ˆ T

0

∂Γ

∂t
(x, y,T − s,T )L̃ ∗

a,ρL
[
g (y, ·)] (s)d sdσ(y)

= −
ˆ
∂Ω

ˆ T

0

∂Γ

∂t
(x, y,T − s,T )Sρ

[
g (y, ·)] (s)d sdσ(y)+o(a),

by using Proposition 2.3.4.

Finally, observe that the function δρ,x (z) defined by

δρ,x (z) =
ˆ
|ω|≤ρ

ωℑm
{
Γω(x, z)

}
dω, (2.6)

is an approximation of the Dirac delta distribution, that is, δρ,x → δx as ρ→+∞.
It implies

−
ˆ
∂Ω

ˆ T

0

∂Γ

∂t
(x, y,T − s,T )Sρ

[
g (y, ·)] (s)dσ(y)d s ' δρ,x ∗ f ,

ρ→∞−−−−−→ f (x)

when x is far away from the boundary ∂Ω.

REMARK 2.3.6. The function δρ,x defined in (2.6) gives a peak at a source point x

with a width of order ρ−1. Therefore, ρ must be taken sufficiently large for a good reso-
lution. On the other hand, I2,a,ρ uses the fundamental solution Γ̃a,ω(x, y) of (2.3) that
grows exponentially as exp

{ℑm
{
κ̃(ω)

}|x − y |}. In order to ensure stability of I2,a,ρ ,
this term must not be greater than one. Since κ̃(ω) grows like aω2/2 for a|ω| < 1,
(and as

p|ω|/(2a) for a|ω| > 1), one should not use frequency components larger than(
a diam(Ω)

)−1/2, that is ρ ' (
a diam(Ω)

)−1/2 is a threshold for stability of the imaging
functional, where diam represents the diameter. It implies that the imaging functional
can be stable at the expense of a loss in resolution. In Figure 2.4, we present some
numerical results where we chose ρ slightly less than the threshold

(
a diam(Ω)

)−1/2.
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2.4 RECONSTRUCTION ALTERNATIVE FOR HIGHER ORDER

ATTENUATION CORRECTION

In the previous section, we have shown that the time reversal method using the
adjoint of attenuated wave operator can be justified as a first order correction
to attenuation effect. The algorithm I2,a,ρ can be seen as a classical time rever-
sal method applied to preprocessed data L̃ ∗

a,ρ

[
ga

]
. Moreover, Proposition 2.3.4

indicates that the operator L̃ ∗
a,ρ is an order one approximation of the inverse of

attenuation operator La . A higher order correction to attenuation effect can be
given using a preprocessed data L −1

a,k

[
ga

]
instead of using time reversal method

with adjoint of attenuated wave operator. Here, the filter L −1
a,k can be defined as

an order k approximation of the inverse of operator La .
As in Chapter 1, the idea is to use an approximation of operator La obtained

by a classical argument of stationary phase theorem. More precisely, in the sim-
plified case where κ(ω) 'ω+ i

a

2
ω2, we have for integer k > 0

La
[
φ

]
(t ) =

k∑
m=0

am

m! 2m

(
t mφ′)(2m−1) (t )+o(ak ).

An approximation of order k of the inverse of operator La can then be given by

L −1
a,k

[
φ

]
(t ) =

k∑
m=0

amφk,m(t ),

where φk,m are recursively defined by
φk,0 =φ

φk,m =−
m∑

l=1
Dl

[
φk,m−l

]
,

with Dm
[
φ

]
(t ) = 1

m! 2m

(
t mφ′)(2m−1) (t ).

Thus, a higher order reconstruction alternative can finally be described as

1. Pre-process the measured data ga using the filter L −1
a,k ,

2. Use classical time-reversal functional I1 or I2 for the reconstruction of the
source f .

2.5 NUMERICAL ILLUSTRATIONS

2.5.1 DESCRIPTION OF THE ALGORITHM

All the wave equations are solved in the box
[−L/2,L/2

]2 with periodic boundary
conditions, where L is supposed to be sufficiently large to prevent any reflection
on the boundary. Numerical integrations of each equation are then performed
exactly in the Fourier space.
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As the solution vs,a,ρ(x, t ) is very difficult to obtain numerically, we regular-
ize the problem by truncating high frequency components in space. This can be
seen as an approximation ṽs,a,ρ of vs,a,ρ , defined as the solution of

∂2ṽs,a,ρ

∂t 2 (x, t )−∆ṽs,a,ρ(x, t )+a
∂

∂t
∆ṽs,a,ρ(x, t ) = ∂δ0

∂t
χρ

[(
ga(y,T − s)δ∂Ω

)]
,

where the operator χρ is given by

χρ
[

f
]

(x) = 1

L2

∑
| j |≤ρ

ˆ
[−L/2,L/2]2

f (z)exp

{
i

2π

L
(z −x) · j

}
d z.

The numerical approximation of pa(x, t ) is obtained by using its spatial Fourier
decomposition. Indeed, recall that pa(x, t ) is the solution of wave equation

∂2pa

∂t 2 (x, t )−∆pa(x, t )−a
∂

∂t
∆pa(x, t ) = ∂δ0

∂t
f (x).

Therefore, when f = ∑
j∈Z2

f j exp

(
−i

2π

L
j .x

)
, the function pa(x, t ) can be expanded

as
pa(x, t ) = ∑

j∈Z2

p j (t )exp

(
−i

2π

L
j .x

)
with

p j (t ) = exp

(
−a

2

(
2π

L

)2

| j |2t

)
cos

t

√(
2π

L

)2

| j |2 − a2

4

(
2π

L

)4

| j |4
 f j .

The function ṽs,a,ρ can similarly be approximated numerically.

2.5.2 EXPERIMENTS

In the sequel, for numerical illustrations, Ω is defined in polar coordinates by

Ω=
{

(r,θ) ∈ [0,∞[×[0,2π[ ; r ≤ 0.95+0.05cos(8θ)
}

,

and its boundary is discretized by 1024 sensors. The solutions p and ṽs,a,ρ are
also calculated over (x, t ) ∈ [−L/2,L/2

]2 × [
0,T

]
with L = 4 and T = 2, and we use

a step of discretization given by d t = T /210 and d x = L/29.
Figure 2.1 presents a comparison between the two time reversal imaging

functionals I1 and I2 for a non attenuating acoustic medium. One can observe
that the two reconstructions are almost identical.

Figure 2.2 shows reconstructions using I2 for an attenuating medium. As
expected, the two images obtained with attenuation coefficient a = 0.0005 and
a = 0.001 appear blurry.

Figure 2.3 presents reconstructions using I2,a,ρ for an attenuating medium.
The images corresponding to I2,a,ρ are computed for three different values of ρ.
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It appears that I2,a,ρ gives a better reconstruction of f than the functional I2,
provided that the regularization parameter ρ is chosen sufficiently large for bet-
ter resolution. However, when ρ is larger than the threshold, I2,a,ρ is unstable.

Figure 2.4, highlights numerical results for an appropriate choice of the cut-
off parameter for different attenuation coefficients. The values of ρ are chosen
slightly less than the threshold

(
adiam(Ω)

)−1/2. We can observe that the image
resolution is improved with a barely minimum instability.

Figure 2.5 gives some reconstructions obtained by preprocessing the data
with the filter L −1

a,k followed by the time-reversal using the imaging functional
I2, in an attenuating medium. This approach is tested by varying the approx-
imation order k. It clearly provides a better reconstruction of f than by using
functional I2. Moreover, this approach has, apparently, no instability issues.
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FIGURE 2.1. Comparison between I1 and I2 without attenuation (i.e. a = 0): Left: source
f (x); middle: reconstruction using I1; Right: reconstruction using I2.
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FIGURE 2.2. Reconstruction using I2 from attenuated data ga : Left ; source f (x); middle:
reconstruction using I2 with a = 0.0005; Right : reconstruction using I2 with a = 0.001

2.6 DISCUSSION AND CONCLUSION

In this work, the attenuation coefficient is assumed to be homogeneous and
known a priori. However, in practical situations, this is not always the case
and an estimation of the attenuation coefficient is sometimes necessary. This can
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FIGURE 2.3. Reconstruction using I2,a,ρ from attenuated data ga . Left: a = 0.0005; Right:
a = 0.001; Top to Bottom: ρ = 15, ρ = 20, ρ = 25.



52 CHAPTER 2. TIME REVERSAL ALGORITHMS FOR ATTENUATING ACOUSTIC MEDIA

 

 

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FIGURE 2.4. Cut-off frequency ρ for different values of a. First row: a = 0.00025, ρ = 25
p

2

(left), a = 0.0005, ρ = 25 (right). Second row: a = 0.001, ρ = 25p
2

(le f t ), a = 0.002, ρ = 25

2
(right).

be done easily if the source f and the data ga are known simultaneously. Indeed,
in this situation, the ideal data g can be recovered from f and a can be estimated
as the minimizer of energy J given by

J (a) =
{ˆ

∂Ω

ˆ T

0

∣∣∣ga(y, t )−La
[
g
]

(y, t )
∣∣∣2

d tdσ(y)

}
.

In fact, numerical tests using Newton algorithm to solve this optimization prob-
lem are quite successful. Figure 2.6 shows reconstructions of different values of
the attenuation coefficient a when the source term f is respectively the Shepp-
Logan phantom, a Gaussian, or a Dirac mass. It turns out that the smaller the
attenuation coefficient, the better is the reconstruction. Moreover, the most reli-
able coefficient reconstruction corresponds to a Dirac mass.

A more involved scenario is when only the data ga is known. We tried to re-
cover the attenuation coefficient a and the source f simultaneously as the mini-
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FIGURE 2.5. Reconstruction by preprocessing data with the filter L −1
a,k followed by the func-

tional I2 from attenuated data ga . Left: a = 0.0005; Right: a = 0.001; Top to Bottom: k = 1,
k = 2, k = 4



54 CHAPTER 2. TIME REVERSAL ALGORITHMS FOR ATTENUATING ACOUSTIC MEDIA

FIGURE 2.6. Reconstructions of the attenuation coefficient a. Left: the source term f is the
Shepp-Logan phantom; Middle: f is a Gaussian; Right: f is a Dirac mass.

mizer (a∗, f ∗) of the discrepancy functional

J (a, f ) =
{ˆ

∂Ω

ˆ T

0

∣∣∣∣ga(y, t )−La
[
T f (y, t )

]∣∣∣∣2

d tdσ(y)

}
,

where T : f → g . However, this optimization problem seems to have an inherent
instability issue.

Another challenging problem is to extract the Green function for an attenu-
ating medium by correlating waves exited by random sources and recorded at
two locations [121]. It is expected that our results in this chapter would lead to
an efficient approach for solving this problem.

To conclude, the time reversal technique using adjoint attenuated wave op-
erator has clearly provided better resolution in image reconstruction than the
classical one without attenuation consideration. We analyzed this approach and
proved that it gives a reconstruction with a first order correction to the attenua-
tion effect. Unfortunately, this technique is ill-posed and even if a regularization
is used, it appears to be unstable and inefficient when the attenuation coeffi-
cient a becomes too large. We, therefore, proposed another approach which
consists to apply a filter to the measured data followed by a classical time rever-
sal method. This method seems to be more stable and accurate as illustrated in
our numerical experiments. However, this approach cannot be adapted when
a depends on spatial variable. In this situation, the attenuated time reversal
technique the best option for attenuation compensation, known to us.
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3 NOISE SOURCE LOCALIZATION IN

ATTENUATING MEDIA

3.1 INTRODUCTION

The main objective of this chapter is to present an original approach for detecting
the spatial support of noise sources in an attenuating electromagnetic or acoustic
medium.

The main application envisaged by our work concerns robotic sound or mi-
crowave noise source localization and tracking; see, for instance, [79, 90, 91,
96, 135]. It is a quite challenging problem to build an autonomous robotic sys-
tem for finding, investigating, and modeling ambient electromagnetic or sound
noise sources in the environment. On the other hand, a robot can be a rather
significant source of electromagnetic and/or acoustic noise. To mask the elec-
tromagnetic or acoustic signature of a robot in order to reduce the risk of being
detected is another challenging problem. As will be seen in this chapter, at least
two robots have to be used in order to locate noise sources by cross correlation.

Passive imaging from noisy signals has been a very active field. It has been
shown that the Green function of the wave equation in inhomogeneous me-
dia can be estimated by cross correlating the signals emitted by ambient noise
sources and recorded by a passive sensor array [51, 117, 122]. The idea has been
used for travel time estimation and background velocity estimation in geophys-
ical contexts, and also for passive sensor imaging of reflectors [67, 68], which
consists of back-propagating or migrating the cross correlation matrix of the
recorded signals. The relation between the cross correlation of ambient noise sig-
nals recorded at two observation points and the Green function between these
two points can be proved using the Helmholtz-Kirchhoff identity when the am-
bient noise sources surround the observation region [32, 121].

In [69] the noise source imaging problem is analyzed in a high-frequency
asymptotic regime and the support of the noise sources is identified with a spe-
cial Radon transform. Here we shall consider a general context in both non-
attenuating and attenuating media. In attenuating media, one can think to first

55
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pre-process the data as originally done in Chapter 2 and then to back-propagate
the cross correlation of the pre-processed data in a non-attenuating medium.
However, this seems impossible because the recorded data are very long and
usually contain a huge amount of additional measurement noise. Instead, we
back-propagate the cross correlation of the recorded data with a regularized ver-
sion of the adjoint operator. Our main tool is a generalization of the Helmholtz-
Kirchhoff identity to attenuating media. Moreover, we address the problem of
localizing spatially correlated noise sources. In particular, we consider two spe-
cific examples: an extended distribution of locally correlated sources and a col-
lection of correlated point sources. We build functionals from the cross correla-
tion that are capable of first locating the noise sources and then estimating the
correlation structure between them.

The chapter is organized as follows. In Section 3.2, we introduce a model
problem and recall the definition of cross correlation. In Section 3.3, we consider
noise source localization in non-attenuating media. We propose and analyze a
weighted imaging functional for locating noise sources which is based on back-
propagating the cross correlation of the data and estimating the power spectral
density of the noise sources. In Section 3.4, we consider the thermo-viscous
wave model to incorporate the attenuation effect in wave propagation. Our
strategy for localizing the noise sources is to back-propagate the cross correlation
with a regularized version of the adjoint wave operator. We contrast this with
the approach consisting of first preprocessing the data before back-propagating
the cross correlation. In Section 3.5, we address the impact of spatial correlation
on noise source localization. Some numerical illustrations to highlight the po-
tential of proposed imaging functionals in the considered contexts are presented.
Finally, the chapter ends with a short discussion and a conclusion.

3.2 MEDIA WITHOUT ATTENUATION

Let us consider the wave equation in a d-dimensional open medium



1

c2(x)

∂2p

∂t 2 (t ,x)−∆p(t ,x) = n(t ,x), (t ,x) ∈R×Rd ,

p(t ,x) = 0, t ¿ 0,

∂p(t ,x)

∂t
= 0, t ¿ 0,

(3.1)

where d = 2 or 3, c(x) is a positive smooth function bounded from below and
above, and the term n(t ,x) models a distribution of noise sources that is com-
pactly supported in a smooth bounded domainΩ. The function c(x) is supposed
to be equal to one outside a large ball. Furthermore, we assume that n(t ,x) is a
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stationary (in time) Gaussian process with mean zero and covariance function

〈n(t ,x)n(s,y)〉 = F (t − s)K (x)δ(x−y), (3.2)

where δ is the Dirac mass at the origin, the brackets stand for the statistical
average, F is the time covariance of the noise signals (its Fourier transform is the
power spectral density) and K characterizes the spatial support of the sources.
The function K is the quantity we want to identify from the data set{

p(t ,x), ∀t ∈ [0,T ],x ∈ ∂Ω
}

recorded at the surface of the domain Ω.
In the sequel, we use v̂(ω) to denote the Fourier transform of a function v(t ),

that is,

v̂(ω) =
ˆ
R

v(t )exp
(
iωt

)
d t .

We also introduce

G(t ,x,y) = 1

2π

ˆ
R

Ĝ(ω,x,y)exp
(− iωt

)
dω,

where Ĝ is the outgoing fundamental solution to the Helmholtz equation −(∆+
ω2/c(x)) in Rd i.e. (

∆x + ω2

c2(x)

)
Ĝ(ω,x,y) =−δ(x−y) in Rd .

The time-dependent Green function is causal in the sense that G(t ,x,y) = 0 for all
t ≤ 0.

We observe the waves at the surface of the domain Ω and we compute the
empirical cross correlation:

CT (τ,x,y) = 1

T

ˆ T

0
p(t ,x)p(t +τ,y)d t , x,y ∈ ∂Ω. (3.3)

If the recording time window is long enough then the empirical cross correlation
is equivalent to the statistical cross correlation [67]

C (τ,x,y) = 〈p(t ,x)p(t +τ,y)〉

= 1

2π

ˆ
R

[ˆ
Ω

Ĝ(ω,x,z)Ĝ(ω,y,z)K (z)dz
]

F̂ (ω)exp
(−iωτ

)
dω. (3.4)

Note that the statistical cross correlation contains all the information about the
data. Indeed the data set {

p(t ,x),∀(t ,x) ∈ [0,T ]×∂Ω
}

has stationary Gaussian distribution with mean zero, so that its statistical distri-
bution is fully characterized by the cross correlation.
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3.3 SOURCE LOCALIZATION

We aim at identifying the source function K . The idea is to back-propagate the
cross correlation of the data, which contains all the accessible information about
the source distribution. The imaging functional for source localization is given
by

I (zS) =
ˆ
R

Ï
∂Ω×∂Ω

Ĝ(ω,x,zS)Ĝ(ω,y,zS)Ĉ (ω,x,y)dσ(x)dσ(y)dω (3.5)

for the search point zS ∈Ω. Here Ĉ is the Fourier transform of C defined by (3.4)
and dσ is the surface element on ∂Ω. Definition (3.5) is equivalent to

I (zS) = 2π
Ï
∂Ω×∂Ω

[ˆ ∞

0

ˆ ∞

0
G(t ,x,zS)G(s,y,zS)C (s− t ,x,y)d td s

]
dσ(x)dσ(y). (3.6)

By Helmholtz-Kirchhoff identity [7]
ˆ
∂Ω

Ĝ(ω,x,y)Ĝ(ω,z,y)dσ(y) ' 1

ω
ℑm

{
Ĝ(ω,x,z)

}
, (3.7)

which holds as |x−y| and |z−y| are large enough compared to the wavelength
2π/ω, we find that

I (zS) '
ˆ
R

ˆ
Ω

F̂ (ω)

ω2 ℑm
{
Ĝ(ω,zS ,z)

}2K (z)dzdω.

This gives the following proposition.

PROPOSITION 3.3.1. The imaging functional (3.5) gives the source function K up
to a smoothing operator, i.e.,

I (zS) '
ˆ
Ω

Q(zS ,z)K (z)dz (3.8)

with the smoothing kernel Q defined by

Q(zS ,z) =
ˆ
R

F̂ (ω)

ω2 ℑm
{
Ĝ(ω,zS ,z)

}2dω. (3.9)

In view of Proposition 3.3.1, the resolution of the imaging functional I is
determined by the kernel Q(zS ,z). High-frequency components are penalized in
this functional because of the factor ω−2 and therefore, the resolution is limited.
In order to achieve a better resolution, we shall modify the imaging functional
to make its smoothing kernel as close as possible to a Dirac distribution δ(zS −
z). We should be aware that enhancing the high-frequency components may
cause instability in the imaging procedure. In the next subsection we introduce a
weighted imaging algorithm where the weight is chosen in terms of estimations
of the power spectral density of the noise sources.
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3.3.1 TWO- AND THREE-DIMENSIONAL HOMOGENEOUS MEDIA

In this subsection, we first show that the smoothing operator is a simple con-
volution operator in the case of a three-dimensional homogeneous background
with c(x) ≡ 1 in R3. Indeed, the Green function is

G(t ,x,y) = 1

4π|x−y|δ
(
t −|x−y|)

and hence the imaging functional takes the simple form

I (zS) = 1

8π

Ï
∂Ω×∂Ω

1

|x−zS | |y−zS |C
(|y−zS |− |x−zS |,x,y

)
dσ(x)dσ(y).

We also have
1

ω
ℑm

{
Ĝ(ω,zS ,z)

}= 1

4π
sinc

(
ω|z−zS |)

and therefore, the smoothing operator is a convolution

I (zS) '
ˆ
Ω

Q(zS −z)K (z)dz

with the convolution kernel

Q(z) = 1

16π2

ˆ
R

F̂ (ω)sinc2(ω|z|)dω.

In a two-dimensional homogeneous medium, the convolution kernel has the
form

Q(z) = 1

16

ˆ
R

F̂ (ω)

ω2 J 2
0

(
ω|z|)dω,

where J0 is the Bessel function of the first kind and of order zero.
The presence of the factor ω−2 indicates that a frequency-dependent weight

should be used (as explained below) in order to avoid this singularity that am-
plifies the low-frequency components, or that the back-propagation should be
carried out with the time-derivative of the Green function, so that the factor ω−2

is cancelled.
The power spectral density of the noise sources plays a smoothing role in

the kernel Q while we would like this kernel to be as close as possible to a Dirac
distribution. The idea for an improved functional is based on the estimation of
the power spectral density of the noise sources. Let us introduce

F (ω) =
ˆ
∂Ω

Ĉ (ω,x,x)dσ(x). (3.10)

The power spectral density F (ω) can be estimated from the data. However, one
must pay attention to the fact that time- harmonic quantities are not statistically
stable. It is a well-known problem that the variance of the periodogram remains



60 CHAPTER 3. NOISE SOURCE LOCALIZATION IN ATTENUATING MEDIA

positive whatever the duration of the recorded signals may be. One must av-
erage the empirical estimations (3.10) over moving frequency windows, large
enough to ensure statistical stability and small enough to capture the variations
of the power spectral density F̂ (ω). This means that the width ∆ω of the moving
frequency window should be larger than 1/T , where T is defined in (3.3), but
smaller than the noise bandwidth:

F̃ (ω) = 1

∆ω

ˆ ω+∆ω/2

ω−∆ω/2

ˆ
∂Ω

Ĉ (ω′,x,x)dσ(x)dω′.

Using once again Helmholtz-Kirchhoff identity, one can see that F̂ (ω) can be
estimated by F̃ (ω):

F̃ (ω) ' F̂ (ω)

ˆ
Ω

ℑm
{
Ĝ(ω,z,z)

}
ω

K (z)dz.

In a three-dimensional homogeneous medium with c(x) ≡ 1, we have

ℑm
{
Ĝ(ω,z,z)

}
ω

= 1

4π

and F̃ (ω) is proportional to the power spectral density of the noise sources:

F̃ (ω) ' K0F̂ (ω), with K0 = 1

4π

ˆ
Ω

K (z)dz.

Let us introduce a weight function W (ω) and the weighted imaging func-
tional IW as

IW (zS) =
ˆ
R

W (ω)

F̃ (ω)

Ï
∂Ω×∂Ω

Ĝ(ω,x,zS)Ĝ(ω,y,zS)Ĉ (ω,x,y)dσ(x)dσ(y)dω. (3.11)

PROPOSITION 3.3.2. In a three-dimensional homogeneous background with c(x) ≡
1, we have

IW (zS) '
ˆ
Ω

QW (zS −z)
K (z)

K0
dz (3.12)

with
QW (z) = 1

16π2

ˆ
R

W (ω)sinc2(ω|z|)dω. (3.13)

In fact, the weight function W (ω) should be supported in the estimated band
width (−ωmax,ωmax) of the recorded noise signals otherwise the ratio W (ω)/F̃ (ω)

in (3.11) makes no sense. The idea is to choose W (ω) so that the convolution
kernel ( also called point spread function) QW is as close as possible to a Dirac
distribution.

In a two-dimensional homogeneous medium, it is easy to check that (3.12)
holds with

K0 = 1

4

ˆ
Ω

K (z)dz,
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and

QW (z) = 1

16

ˆ
R

W (ω)

ω2 J 2
0

(
ω|z|)dω. (3.14)

The Fourier transform of the kernel QW is then

Q̂W (k) = 1

2|k|3
ˆ ∞

1/2

W (|k|u)

u2(4u2 −1)1/2
du. (3.15)

To prove (3.15) we use [1, formula 6.522.11]

ˆ ∞

0
x J 2

0 (ax)J0(bx)d x = 2

πb(4a2 −b2)1/2
10<b<2a ,

where 1 denotes the characteristic function, to get

ˆ
R2

J 2
0 (ω|z|)exp(i z ·k)dz = 4

|k|(4ω2 −|k|2)1/2
1|k|<2|ω|. (3.16)

Substituting (3.16) into

Q̂W (k) = 1

16

ˆ
R

ˆ
R2

W (ω)

ω2 J 2
0 (ω|z|)exp(i z ·k)dzdω, (3.17)

gives the desired formula (3.15).

With formulas (3.13) and (3.14) in hand, recalling the closure relations [100]

ˆ +∞

0
ωJ 2

0 (ω|z|)dω= 1

|z|δ(z), (3.18)

and ˆ +∞

0
ω2sinc2(ω|z|)dω= 1

|z|2δ(z), (3.19)

which hold in the sense of distributions, a potential candidate for the filter W (ω)

should be

W (ω) =
 |ω|31|ω|<ωmax ford = 2,

ω21|ω|<ωmax ford = 3,

where (−ωmax,ωmax) is the estimated support of F̃ (ω). In particular, for d = 2, we
have 

Q̂W (k) = ωmax

4|k|
(
1− |k|2

4ω2
max

)1/2
1|k|≤2ωmax ,

QW (z) = ω2
max

4

[
J 2

0

(
ωmax|z|

)+ J 2
1

(
ωmax|z|

)]
.
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3.3.2 BACK-PROPAGATION IN A TWO-DIMENSIONAL MEDIUM

We show in this subsection how it is possible to implement a parallel version
of the imaging functional. Here we do not assume that c(x) ≡ 1. For the sake
of simplicity, we consider only the two-dimensional case. Similar calculations
can be carried out in three dimensions using spherical harmonics. We set Ω to
be the unit disk centred at zero and denote by C (τ,θ,θ′) the cross correlations
measured between the points eθ and eθ′ , with eθ = (cosθ, sinθ). We can expand
the cross correlation in the basis exp(i nθ):

C (τ,θ,θ′) = ∑
n,m∈Z

cn,m(τ)exp(i nθ+ i mθ′),

where

cn,m(τ) = 1

4π2

ˆ 2π

0

ˆ 2π

0
C (τ,θ,θ′)exp(−i nθ− i mθ′)dθdθ′.

Then the imaging functional takes the form

I (zS) = 2π
∑

n,m∈Z

ˆ ∞

0

ˆ ∞

0
pn(t ,zS)pm(s,zS)cn,m(s − t )d sd t ,

or
I (zS) = ∑

n,m∈Z

ˆ
R

p̂n(ω,zS)p̂m(ω,zS)ĉn,m(ω)dω,

where

pn(t ,z) =
ˆ 2π

0
G(t ,eθ,z)exp(i nθ)dθ

is the solution to the problem

1

c2(x)

∂2pn

∂t 2 (t ,x)−∆pn(t ,x) = fn(x)δ∂Ω(x)δ0(t ), (t ,x) ∈R×R2,

pn(t ,x) = 0, t ¿ 0,

∂pn(t ,x)

∂t
= 0, t ¿ 0.

Here δ∂Ω is the Dirac mass at ∂Ω and fn(x) = (x1 + i x2)n for x = (x1, x2) so that
exp(i nθ) = fn(cosθ, sinθ). Note that f−n = fn so that p−n = pn . In practice the
functional is truncated as follows

IN (zS) = 2π
N∑

n,m=−N

ˆ ∞

0

ˆ ∞

0
pn(t ,zS)pm(s,zS)cn,m(s − t )d sd t .

This version of the imaging functional can be implemented in a parallel way: on
one hand, one needs to compute the functions pn(t ,z) for n = 0, . . . , N , t > 0, z ∈Ω
(we do not need to know the data), which requires to solve N wave equations;
on the other hand one computes the coefficients cn,m(τ), n,m = 0, . . . , N , τ ∈R from
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the data set. However, the memory cost is huge, because one needs to store the
full time-space solutions of the N wave equations (at least the solutions in the
search region).

A numerical alternative consists of using a PDE description of the time re-
versal algorithm [7, 65]. Indeed, note that

I (zS) =
ˆ
R

ˆ
∂Ω

ˆ
∂Ω

Ĝ(ω,x,zS)Ĝ(ω,y,zS)Ĉ (ω,x,y)dσ(x)dσ(y)dω

=
ˆ
R

ˆ
∂Ω

ˆ
∂Ω

Ĝ(ω,x,zS)Ĝ(ω,y,zS)p̂(ω,x)p̂(ω,y)dσ(x)dσ(y)dω

=
ˆ
R

∣∣∣∣ˆ
∂Ω

Ĝ(ω,x,zS)p̂(ω,x)dσ(x)

∣∣∣∣2

dω

= 2π

ˆ T

0
v(t ,zs)2d t ,

where the function v is expressed in the form

v(t ,x) =
ˆ T

0
vs(t ,x)d s,

and vs is the solution of

1

c2(x)

∂2vs(t ,x)

∂t 2 −∆vs(t ,x) = p(T − s,x)δ∂Ω(x)δ(t − s) ∀(t ,x) ∈R×Rd ,

vs(t ,x) = 0, ∀t ¿ s,

∂

∂t
vs(t ,x) = 0, ∀t ¿ s.

More generally, the imaging functional IW (zS) can be obtained by applying
I (zS) on the filtered data p̃(t ,x), obtained as

̂̃p(ω,x) =
√

W (ω)

F̃ (ω)
p̂(ω,x).

In this chapter, we use this method to perform some numerical experiments.

3.3.3 NUMERICAL SIMULATIONS

In this subsection, we first describe the discretization of the noise sources and
recorded signals that will be used in numerical simulations. We introduce a
regular grid of points (xk )k=1,...,Nx with grid step hx covering the support of K

and a regular grid of positive frequencies (ω j ) j=1,...,Nω
with grid step hω covering

the support of F̂ . The noise source term can be discretized in space as

n(t ,x) = 1

πd/2hd/2
x

Nx∑
k=1

exp

(
−|xk −x|2

h2
x

)
K (xk )1/2nk (t ), (3.20)
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where nk (t ) are independent stationary Gaussian processes with mean zero and
covariance function F (t ). They can be discretized in time/frequency as

nk (t ) = (2hω)1/2

π1/2
ℜe

{
Nω∑
j=1

Z j ,k F̂ (ω j )1/2 exp(−iω j t )

}
,

where Zk, j = Ak, j + i Bk, j with Ak, j and Bk, j being independent Gaussian random
variables with mean zero and variance 1/2 (so that 〈Z 2

k, j 〉 = 0 and 〈|Zk, j |2〉 = 1).
We have indeed (remember that F̂ is even and non-negative real-valued)

〈nk (t )nk (t +τ)〉 = hω
2π

[ Nω∑
j=1

F̂ (ω j )exp
(−iω jτ

)+ Nω∑
j=1

F̂ (−ω j )exp
(
iω jτ

)]

' 1

2π

ˆ
R

F̂ (ω)exp(−iωτ) dω

= F (τ),

provided hω is small enough, and

〈n(t ,x)n(t +τ,y)〉 = 1

πd hd
x

exp

(
−|x−y|2

2h2
x

) Nx∑
k=1

exp

−2

∣∣∣x+y

2
−xk

∣∣∣2

h2
x

 K (xk )F (τ)

' 1

πd h2d
x

exp

(
−|x−y|2

2h2
x

)ˆ
Rd

exp

−2

∣∣∣x+y

2
−z

∣∣∣2

h2
x

K (z)dzF (τ)

= 1

πd h2d
x

exp

(
−|x−y|2

2h2
x

)ˆ
Rd

exp

(
−2

|z|2
h2

x

)
K

(x+y

2
−z

)
dzF (τ)

' 1

(2π)d/2hd
x

exp

(
−|x−y|2

2h2
x

)
K

(x+y

2

)
F (τ)

' δ(x−y)K (x)F (τ),

provided hx is small enough.
It is also possible to take

n(t ,x) = hd/2
x

Nx∑
k=1

δ(xk −x)K (xk )1/2nk (t )

instead of (3.20), which is the simplest model for numerical simulations (a col-
lection of uncorrelated point sources). In these conditions the recorded noise
signal at x is

p(t ,x) = (2hω)1/2hd/2
x

π1/2
ℜe

{ Nω∑
j=1

Nx∑
k=1

Ĝ(ω j ,x,xk )F̂ (ω j )1/2K (xk )1/2Z j ,k exp
(−iω j t

)}
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and the statistical cross correlation is (remember Ĝ(−ω,x,y) = Ĝ(ω,x,y))

C (τ,x,y) = hωhd
x

2π

[ Nω∑
j=1

Nx∑
k=1

Ĝ(ω j ,x,xk )Ĝ(ω j ,y,xk )F̂ (ω j )K (xk )exp
(−iω jτ

)

+
Nω∑
j=1

Nx∑
k=1

Ĝ(−ω j ,x,xk )Ĝ(−ω j ,y,xk )F̂ (−ω j )K (xk )exp
(
iω jτ

)]

' 1

2π

ˆ
R

ˆ
Ω

Ĝ(ω,x,z)Ĝ(ω,y,z)F̂ (ω)K (z)exp(−iωτ) dzdω.

For all numerical experiments presented in this chapter, Ω is assumed to be
a unit disk centered at the origin. The function F is chosen as

F̂ (ω) = exp

(
−π ω2

ω2
max

)
. (3.21)

The solution vs of the equation

1

c2(x)

∂2vs(t ,x)

∂t 2 −∆vs(t ,x) = p(T − s,x)δ∂Ω(x)δ(t − s)

is computed over a larger box Ω ⊂ Q = [−L/2,L/2
]2. We use a Fourier spectral

approach coupled with a Perfectly Matched Layer (PML) technique to simulate
a free outgoing interface on ∂Q. The boundary ∂Ω is discretized using steps of
discretization given by ht = T /Nt and hx = L/Nx .

Figure 3.1 contains the numerical reconstructions of the source location K

using the imaging functionals I and IW for W (ω) = |ω|31|ω|<ωmax . The first line
corresponds to the case of well separated point sources. It turns out that both
imaging functionals give an efficient reconstruction of the source K . The second
line corresponds to the case of extended sources (five localized Gaussians). We
observe in this case that the second imaging functional IW gives a better recon-
struction of K . We expect that this observation is a consequence of the factor ω−2

which appears in the kernel associated to I and penalizes the high-frequency
components of the image.

Figure 3.2 presents estimations of the power spectral density. Averaging
(3.10) over moving frequency windows yields a statistically stable estimation.
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FIGURE 3.1. Non-attenuating medium with T = 8, ωmax = 1000, Nx = 28, and Nt = 211. Top
line: five point sources; bottom line: five extended sources. Left: K (x); middle: reconstruction of
K using I ; right: reconstruction of K using IW with W (ω) = |ω|31|ω|<ωmax .

3.4 LOCALIZATION OF SOURCES IN AN ATTENUATING

MEDIUM

In this section, we consider the thermo-viscous wave model to incorporate the
attenuation effect in wave propagation. Let pa be the solution of the problem

1

c2(x)

∂2pa

∂t 2 (t ,x)−∆pa(t ,x)−a
∂

∂t
∆pa(t ,x) = n(t ,x), (t ,x) ∈R×Rd ,

pa(t ,x) = 0, t ¿ 0,

∂pa

∂t
(t ,x) = 0, t ¿ 0.

Again, the problem is to reconstruct the source function K from the data set{
pa(t ,x), t ∈ [0,T ],x ∈ ∂Ω

}
recorded at the surface of the domain Ω.

We introduce the fundamental solution Ĝa(ω,x,y) of the Helmholtz equation

ω2

c2(x)
Ĝa(ω,x,y)+ (1− i aω)∆xĜa(ω,x,y) =−δ(y−x).

It is given by

Ĝa(ω,x,y) = κa(ω)2

ω2 Ĝ
(
κa(ω),x,y

)
(3.22)
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FIGURE 3.2. Estimations of the power spectral density with and without averaging over a
moving frequency window. Top figure: F̂ (ω) = exp

(
−π ω2

ω2
max

)
(as in (3.21)) with ωmax = 1000.

Bottom figure: F̂ (ω) = 1|ω|≤100 exp
(
−π ω2

ω2
max

)
.
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in terms of the non-attenuating Green function Ĝ(ω,x,y) = Ĝ0(ω,x,y), where

κa(ω) = ωp
1− i aω

.

The statistical cross correlation is

Ca(τ,x,y) = 〈pa(t ,x)pa(t +τ,y)〉

= 1

2π

ˆ
R

[ˆ
Ω

Ĝa(ω,x,z)Ĝa(ω, y,z)K (z)dz
]

F̂ (ω)exp(−iωτ) dω.

Our strategy to localize the sources is to back-propagate the cross correlation
with a regularized version of the adjoint propagator.

3.4.1 HELMHOLTZ-KIRCHHOFF IDENTITY

Our main tool for studying noise source localization in attenuating media is the
following result. It is a generalization to attenuating media of the Helmholtz-
Kirchhoff identity (3.7).

LEMMA 3.4.1. IfΩ is a ball with large radius (compared to the wavelength 2π/ω) and
c(x) is equal to one outside the ball then
ˆ
∂Ω

Ĝ−a(ω,x,zS)Ĝa(ω,x,z)dσ(x) ' 1

2iκa(ω)(1+ i aω)

(
Ĝ−a(ω,z,zS)−Ĝa(ω,z,zS)

)
. (3.23)

We also have

(1+a2ω2)κa,r (ω)

ˆ
∂Ω

Ĝa(ω,x,zS)Ĝa(ω,x,z)dσ(x)

+aω3
ˆ
Ω

c−2(z)Ĝa(ω,x,zS)Ĝa(ω,x,z)dx

'ℑm
{

Ĝa(ω,zS ,z)
}
−aωℜe

{
Ĝa(ω,zS ,z)

}
(3.24)

with

κa,r (ω) =ℜe
{
κa(ω)

}= ωp
2
p

1+a2ω2

√√
1+a2ω2 +1. (3.25)

Proof. It is a consequence of Green’s theorem and the fact that κa(ω) = κ−a(ω).
More precisely, we consider the equations

− ω2

c2(x)
Ĝ−a(ω,x,zS)− (1+ i aω)∆xĜ−a(ω,x,zS) = δ(zS −x) (3.26)

and

− ω2

c2(x)
Ĝa(ω,x,z)− (1+ i aω)∆xĜ−a(ω,x,z) = δ(z−x). (3.27)

We then multiply (3.26) by Ĝa(ω,x,z) and (3.27) by Ĝ−a(ω,x,zS), subtract these
two subsequent equations from each other, integrate over Ω and apply Green’s
divergence theorem.
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Note the presence of the volume integral in (3.24) which shows that the ad-
joint Green function Ĝ−a should be used for back-propagation and not the Green
function Ĝa . The imaging functional for source localization should be

I (zS) =
ˆ
R

Ï
∂Ω×∂Ω

Ĝ−a(ω,x,zS)Ĝ−a(ω,y,zS)Ĉa(ω,x,y)dσ(x)dσ(y)dω (3.28)

for the search point zS ∈ Ω. However, the back-propagation uses the adjoint
operator Ĝ−a(ω,x,zS) that has an exponentially growing part, since it can be seen
from

κa,i (ω) =ℑm
{
κa(ω)

}= |ω|sgn(a)p
2
p

1+a2ω2

√√
1+a2ω2 −1, (3.29)

where sgn denotes the sign function, that κ−a,i (ω) is negative. Thus we should
use a regularized version of the form

Iρ(zS) =
ˆ
|ω|≤ρ

Ï
∂Ω×∂Ω

Ĝ−a(ω,x,zS)Ĝ−a(ω,y,zS)Ĉa(ω,x,y)dσ(x)dσ(y)dω, (3.30)

where ρ is a cut-off frequency. Using Lemma 3.4.1 we obtain the following re-
sult.

PROPOSITION 3.4.2. The regularized imaging functional (3.30) satisfies

Iρ(zS) '
ˆ
Ω

Qρ(zS ,z)K (z)dz (3.31)

with

Qρ(zS ,z) =
ˆ
|ω|≤ρ

F̂ (ω)

4ω2(1+a2ω2)1/2

∣∣∣Ĝ−a(ω,z,zS)−Ĝa(ω,z,zS)
∣∣∣2

dω. (3.32)

The next subsection will show how to calibrate the cut-off parameter ρ in
order to get a stable imaging functional.

3.4.2 THREE-DIMENSIONAL HOMOGENEOUS MEDIUM

Using the explicit expression of the homogeneous Green function we get the
following lemma.

LEMMA 3.4.3. The Green function Ĝ−a(ω,x,y) is given by

Ĝ−a(ω,x,y) = κ−a(ω)2

ω2 Ĝ(κ−a(ω),x,y) with Ĝ(ω,x,y) = exp
(
iω|x−y|)

4π|x−y| .

If Ω is a ball with large radius (compared to the wavelength), then we haveˆ
∂Ω

Ĝ−a(ω,x,zS)Ĝa(ω,x,z)dσ(x)

' κa,r (ω)

4πω(1+ i aω)3/2
sinc

(
κa,r (ω)|zS −z|)cosh

(
κa,i (ω)|zS −z|)

−i
κa,i (ω)

4πω(1+ i aω)3/2
cos

(
κa,r (ω)|zS −z|)sinhc

(
κa,i (ω)|zS −z|), (3.33)
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where sinc(r ) = sin(r )

r
and sinhc(r ) = sinh(r )

r
.

The adjoint operator Ĝ−a(ω,x,zS) grows exponentially as exp
(
κa,i (ω)|zS −x|).

This term should not be much larger than one, otherwise noise terms would
be amplified in the back-propagation. Since κa,i (ω) grows like aω2/2 for a|ω| <
1, (and as (|ω|/(2a))1/2 for a|ω| > 1), one should not back-propagate the high-
frequency components, with frequencies larger than (a diam(Ω))−1/2, where diam

denotes the diameter. This limitation also allows to neglect the exponential term
in the right-hand side of (3.33) and to claim that identity (3.33) gives a localized
kernel that has the form of a sinc with a width of the order of the wavelength.

The imaging functional for source localization is given by (3.30). The cut-off
frequency ρ should be of the order of (a diam(Ω))−1/2. By (3.33) we arrive at the
following proposition.

PROPOSITION 3.4.4. In a three-dimensional homogeneous background with c(x) ≡ 1

and a > 0, the regularized imaging functional (3.30) satisfies

Iρ(zS) '
ˆ
Ω

Qρ(zS −z)K (z)dz (3.34)

with

Qρ(z) = 1

16π2

ˆ
|ω|≤ρ

F̂ (ω)

p
1+a2ω2 +1

2(1+a2ω2)5/2
sinc2(κa,r (ω)|z|)dω

+ 1

16π2

ˆ
|ω|≤ρ

F̂ (ω)

p
1+a2ω2 −1

2(1+a2ω2)5/2
sinhc2(κa,i (ω)|z|)dω. (3.35)

The first term in (3.35) gives the peak centered at zero in the convolution
kernel Qρ , with a width of the order of ρ−1. The second term is responsible for
the instability of the imaging functional (since it is exponentially growing). In
order to make it small compared to the peak, we should cut the high frequencies
and choose ρ smaller than (a diam(Ω))−1/2. This means that, at the expense of a
loss in resolution, the imaging functional can be stable.

3.4.3 BACK-PROPAGATION IN A TWO-DIMENSIONAL MEDIUM

We consider thatΩ is the unit disk centered at the origin. Here we do not assume
that c(x) ≡ 1. We expand the cross correlation as in Subsection 3.3.2:

C (τ,θ,θ′) = ∑
n,m∈Z

cn,m(τ)exp(i nθ+ i mθ′),

where

cn,m(τ) = 1

4π2

ˆ 2π

0

ˆ 2π

0
C (τ,θ,θ′)exp(−i nθ− i mθ′)dθdθ′.
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Then the imaging functional takes the form

I (zS) = 2π
∑

n,m∈Z

ˆ ∞

0

ˆ ∞

0
p−a,n(t ,zS)p−a,m(s,zS)cn,m(s − t )d sd t ,

or

I (zS) = ∑
n,m∈Z

ˆ
R

p̂−a,n(ω,zS)p̂−a,m(ω,zS)ĉn,m(ω)dω,

where

p−a,n(t ,z) =
ˆ 2π

0
G−a(t ,eθ,z)exp(i nθ)dθ

is the solution to the problem
[ 1

c2(x)

∂2

∂t 2 −∆+a
∂

∂t
∆

]
p−a,n(t ,x) = fn(x)δ∂Ω(x)δ(t ), (t ,x) ∈R×R2,

p−a,n(t ,x) = ∂p−a,n(t ,x)

∂t
= 0, t ¿ 0.

As pointed out in Chapter 2, this adjoint problem is ill-posed. We need to reg-
ularize the high frequencies. The regularized imaging functional (3.30) can be
expressed as

Iρ(zS) = 2π
∑

n,m∈Z

ˆ ∞

0

ˆ ∞

0
p−a,n,ρ(t ,zS)p−a,m,ρ(s,zS)cn,m(s − t )d sd t

or

Iρ(zS) = ∑
n,m∈Z

ˆ
R

p̂−a,n,ρ(ω,zS)p̂−a,m,ρ(ω,zS)ĉn,m(ω)dω

= ∑
n,m∈Z

ˆ
|ω|≤ρ

p̂−a,n(ω,zS)p̂−a,m(ω,zS)ĉn,m(ω)dω,

where
p̂−a,n,ρ(ω,z) = p̂−a,n(ω,z)1|ω|≤ρ .

REMARK 3.4.5. The function p−a,n,ρ(t ,z) can be identified as the solution to the prob-
lem

[ 1

c2(x)

∂2

∂t 2 −∆+a
∂

∂t
∆

]
p−a,n,ρ(t ,x) = fn(x)δ∂Ω(x)Sρ

[
δ
]
(t ), (t ,x) ∈R×R2,

p−a,n,ρ(t ,x) = ∂p−a,n,ρ(t ,x)

∂t
= 0, t ¿ 0,

where Sρ is the operator defined by

Sρ
[
φ

]
(t ) = 1

2π

ˆ
|ω|≤ρ

φ̂(ω)exp(−iωt ) dω.
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Note also that the functional Iρ can be expressed in the form

Iρ(z) =
ˆ T

0
v−a,ρ(t ,z)d t ,

where

v−a,ρ(t ,z) =
ˆ T

0
vs,−a,ρ(t ,z)d s,

and vs,−a,ρ being defined as the solution to the equation

[
1

c2(x)

∂2

∂t 2 −∆+a
∂

∂t
∆

]
vs,−a,ρ(t ,x) = p(T − s,x)δ∂Ω(x)Sρ

[
δ
]
(t − s).

3.4.4 REMARK ON THE BACK-PROPAGATION OF PRE-PROCESSED DATA

IN A NON-ATTENUATING MEDIUM

An idea that seems interesting is to try to build a regularized imaging functional
as in the case of a source term that is a Dirac distribution in time. This can
be done by first regularizing the data and then back-propagating it in the non-
attenuating medium, as discussed in Chapter 2.

On the one hand, it is not possible to do this to the data themselves, since
the recorded signals are very long and usually contain a huge amount of ad-
ditional measurement noise (which disappears when one computes the cross
correlation). Indeed, we have

Ĉa(ω,x,y) = F̂ (ω)

ˆ
Ω

Ĝa(ω,x,z)Ĝa(ω,y,z)K (z)dz, (3.36)

and, although (3.22) holds, formula (3.36) is not in the form

Ĉa(ω,x,y) = F̂ (ω)
|κa(ω)|4
ω4

ˆ
Ω

Ĥ
(
κa(ω),x,y,z

)
K (z)dz.

In fact, we have

Ĉa(ω,x,y) = F̂ (ω)
|κa(ω)|4
ω4

ˆ ∞

0

[ˆ ∞

0

ˆ
Ω

K (z)G(s,x,z)G(s + v,y,z)dz

×exp
(−2κa,i (ω)s

)
d s

]
exp

(
iκa(ω)v

)
d v.

The damping exp
(−2κa,i (ω)s

)
is quite problematic. It implies that the compen-

sation of the attenuation can only be carried out -approximately- for a given
target point zS , which means using the adjoint Green function or equivalently,
back-propagating in an amplifying medium.
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3.4.5 NUMERICAL EXPERIMENTS

Figure 3.3 presents some numerical source reconstructions in attenuating media.
Each line respectively corresponds to the attenuation coefficient a = 0.0005, a =
0.001, and a = 0.002. In the first column, the sources are localized by applying the
imaging functional IW . As expected, the attenuation affects the image quality.
In the second and the third columns of Figure 3.3, we use the functional Iρ

with ρ = 7.5 and ρ = 15, respectively. The reconstructions are improved, but as
illustrated in the last figure of the third line, this technique is quite instable for
the case of a large attenuation coefficient a.
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FIGURE 3.3. Five point sources in attenuating medium with T = 8, ωmax = 1000, Nx = 28, and
Nt = 211. From top to bottom: a = 0.0005, a = 0.001, and a = 0.002. From left to right: IW , Iρ

with ρ = 7.5, and Iρ with ρ = 15.
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3.5 LOCALIZATION OF CORRELATED SOURCES

In the previous sections we have considered the case in which the noise sources
are spatially uncorrelated, which translates in the fact that the covariance func-
tion (3.2) is delta-correlated in space. In this section we would like to address
the impact of spatial correlation in the source localization. First we will address
the general problem and then we will consider two specific examples: an ex-
tended distribution of locally correlated sources and a collection of correlated
point sources.

3.5.1 SPATIALLY CORRELATED SOURCES

We assume in this section that the noise source term n(t ,x) is a stationary (in
time) Gaussian process with mean zero and covariance function

〈n(t ,x)n(s,y)〉 = F (t − s)Γ(x,y), (3.37)

where F is the time covariance of the noise signals and Γ characterizes the spatial
support and covariance of the sources. The function Γ is the quantity we want
to identify from the data set{

p(t ,x), ∀t ∈ [0,T ], x ∈ ∂Ω
}

recorded at the surface of the domain Ω. We are primarily interested in identi-
fying the support of Γ, but we would also like to extract information about the
covariance structure of the noise sources.

The empirical cross correlation (3.3) is self-averaging as in the delta-correlated
case and becomes equivalent to the statistical cross correlation C when the record-
ing time T →∞, where

C (τ,x,y) = 1

2π

ˆ
R

[Ï
Ω×Ω

Ĝ(ω,x,z)Ĝ(ω,y,z′)Γ(z,z′)dzdz′
]

F̂ (ω)exp(−iωτ)dω. (3.38)

We can build two functionals from the cross correlation. The first one is I

defined by (3.5) and aims at estimating the support of the noise sources. The
second one aims at estimating the covariance function Γ and is defined by

J (zS ,zS′
) =
ˆ
R

Ï
∂Ω×∂Ω

Ĝ(ω,x,zS)Ĝ(ω,y,zS′
)Ĉ (ω,x,y)dσ(x)dσ(y)dω. (3.39)

Note that we have J (zS ,zS) = I (zS). Using Helmholtz-Kirchhoff formula, we
obtain that

J (zS ,zS′
) '

Ï
Ω×Ω

Ψ(zS ,zS′
,z,z′)Γ(z,z′)dzdz′

with

Ψ(zS ,zS′
,z,z′) =

ˆ
R

F̂ (ω)

ω2 ℑm
{
Ĝ(ω,z,zS)

}ℑm
{
Ĝ(ω,z′,zS′

)
}
dω.
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In particular, in a three-dimensional homogeneous medium we have

Ψ
(
zS ,zS′

,z,z′
)
=ψ

(
zS −z,zS′ −z′

)
, (3.40)

with
ψ

(
z,z′

)= 1

16π2

ˆ
R

F̂ (ω)sinc
(
ω|z|)sinc

(
ω|z′|)dω, (3.41)

which shows that the convolution kernel smooths, in both z and z′, the estima-
tion of Γ by the functional J .

3.5.2 EXTENDED DISTRIBUTIONS OF LOCALLY CORRELATED SOURCES

Let us assume that the covariance of the noise source term is of the form

Γ(z,z′) = K

(
z+z′

2

)
γ(z−z′).

Here, the function K characterizes the spatial support of the noise sources and
γ characterizes the local covariance structure. This models an extended noise
source distribution which has local correlation. Then, we find that

I (zS) '
ˆ
Ω

Φ(z,zS)K (z)dz

with

Φ(z,zS) =
ˆ
R

F̂ (ω)

ω2

ˆ
ℑm

{
Ĝ(ω,z+ζ/2,zS)

}ℑm
{
Ĝ(ω,z−ζ/2, zS)

}
γ(ζ)dζdω.

In particular, in a three-dimensional homogeneous medium we have

Φ(z,zS) =φ(z−zS), (3.42)

with

φ(z) = 1

16π2

ˆ
R

F̂ (ω)

ˆ
sinc

(
ω|z+ζ/2|)sinc

(
ω|z−ζ/2|)γ(ζ)dζdω. (3.43)

This shows that we recover the function K up to a smoothing which is large
when γ is far from a Dirac distribution or a narrow peak. Spatial correlation in
the noise sources blurs the source localization.

If the width of the function γ is smaller than ω−1
max where ωmax is the maximal

frequency of the power spectral density F̂ , then the spatial correlation of the
sources plays no role and we recover the results obtained in the case of delta-
correlated noise sources in which the convolution kernel (3.43) is given by

φ(z) = γ̂(0)

16π2

ˆ
R

F̂ (ω)sinc2(ω|z|)dω. (3.44)
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If the width of the function γ is large and the function γ is isotropic so that
γ̃(k) = γ̃(|k|), then the convolution kernel (3.43) is given by

φ(z) = 2
[ˆ ∞

0
kγ̃(k)dk

]ˆ
R

F̂ (ω)

ω2 sinc2(ω|z|)dω. (3.45)

The kernel is not nonnegative (which means that side lobes are likely to appear).
Moreover, low-frequency components are amplified, so that it is necessary to use
a frequency-dependent weight or to back-propagate with the time-derivative of
the Green function in order to cancel out the factor ω−2 in (3.45). Note that
formula (3.45) follows from the substitution of the representation formula

sinc(ω|z|) = 1

4π

ˆ
∂B(0,1)

exp(iωz ·k) dσ(k)

in (3.43).

3.5.3 A COLLECTION OF CORRELATED POINT SOURCES

Let us assume that the covariance of the noise source term is of the form

Γ(z,z′) =
Ns∑

i , j=1
ρi jδ(z−zi )δ(z′−z j ),

where (ρi j )i , j=1,...,Ns is a symmetric nonnegative matrix. This models a collection
of Ns point sources located at zi , i = 1, . . . , Ns , which have respective power ρi i .

The coefficients
ρi jp
ρi iρ j j

∈ [−1,1] represent the correlation between the sources

at zi and z j . Then we find that

I (zS) '
Ns∑

i , j=1
ρi j

ˆ
R

F̂ (ω)

ω2 ℑm
{
Ĝ(ω,zi ,zS)

}ℑm
{
Ĝ(ω,z j ,zS)

}
dω

'
Ns∑

i=1
ρi i Q(zS ,zi ),

provided the sources are well separated, where Q is defined as in (3.9) i.e.

Q(zS ,z) =
ˆ
R

F̂ (ω)

ω2 ℑm
{
Ĝ(ω,z,zS)

}2dω.

In particular, in a three-dimensional homogeneous medium:

Q(zS ,z) = 1

16π2

ˆ
R

F̂ (ω)sinc2 (
ω|z−zS |)dω.

This shows that the functional Q indeed exhibits peaks at the locations of the
noise sources.
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Once the local maxima ẑi , i = 1, . . . , Ns , have been estimated, it is possible
to estimate the correlation matrix between the noise sources by looking at the
functional J at these points. Indeed, we have

J (zS ,zS′
) '

Ns∑
i , j=1

ρi j

ˆ
R

F̂ (ω)

ω2 ℑm
{
Ĝ(ω,zi ,zS)

}ℑm
{
Ĝ(ω,z j ,zS′

)
}
dω.

Therefore,

J (zi ,z j ) ' ρi j

ˆ
R

F̂ (ω)

ω2 ℑm
{
Ĝ(ω,zi ,zi )

}ℑm
{
Ĝ(ω,z j ,z j )

}
dω.

In particular, in a three-dimensional homogeneous medium, it follows that

J (zi ,z j ) 'J0ρi j , J0 = 1

16π2

ˆ
R

F̂ (ω)dω= 1

8π
F (0).

The estimation of correlation matrix can be important in robot sound or mi-
crowave source surveillance and tracking; see, for instance, [96].

3.5.4 NUMERICAL EXPERIMENTS FOR CORRELATED NOISE SOURCE

LOCALIZATION

A numerical method to compute efficiently J (z,z′) follows from

J (z,z′) =
ˆ
R

Ï
∂Ω

Ĝ(ω,x,z)Ĝ(ω,y,z′)Ĉ (ω,x,y)dσ(x)dσ(y)dω

=
ˆ
R

Ï
∂Ω

Ĝ(ω,x,z)Ĝ(ω,y,z′)p̂(ω,x)p̂(ω,y)dσ(x)dσ(y)dω

=
ˆ
R

(ˆ
∂Ω

Ĝ(ω,x,z)p̂(ω,x)dσ(x)

)(ˆ
∂Ω

Ĝ(ω,y,z′)p̂(ω,y)dσ(y)

)
dω

= 2π

ˆ T

0
v(t ,z)v(t ,z′)d t ,

where the function v can be expressed in the form

v(t ,x) =
ˆ T

0
vs(t ,x)d s,

and the function vs being defined as the solution of

1

c2(x)

∂2vs(t ,x)

∂t 2 −∆vs(t ,x) = p(T − s,x)δ∂Ω(x)δ(t − s) (t , x) ∈R×Ω

vs(t ,x) = 0, t ¿ s,

∂

∂t
vs(t ,x) = 0, t ¿ s.
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More generally, the imaging functional JW (z,z′) can be defined by applying
J (z,z′) on the filtered data p̃(t ,x) given by

̂̃p(ω,x) =
√

W (ω)

F̃ (ω)
p̂(ω,x).

In Figure 3.4, we consider four point noise sources with the power spectral
density (3.21) and with the correlation matrix

ρ =


1

p
2/2

p
2/2 0p

2/2 1 0 0p
2/2 0 1 0

0 0 0 1

 .

The top-left figure presents the true distribution K (x). The top-middle figure
shows the reconstruction of K using the imaging functional IW . In particular, it
appears that the source localization is not as efficient as in the case of uncorre-
lated data, but is sufficient for locating the noise sources. In the last four figures,
we plot the imaging functional z →JW (zi ,z) for each source zi , which allows us
to get the following estimate of the cross correlation matrix:

ρ̂ =


1.000 0.733 0.701 0.061

0.733 1.000 0.049 0.061

0.701 0.049 1.000 0.030

0.061 0.061 0.030 1.000


Note that each correlation is found quite well (

p
2/2 ' 0.707). To conclude, some

numerical results associated with the localization of Gaussian sources are also
shown in Figure 3.5.

3.6 CONCLUSION

In this chapter, efficient weighted imaging algorithms for locating noise sources
by cross correlation techniques have been introduced. We have provided a reg-
ularization approach to correct the effect of attenuation. We have successfully
addressed the impact of spatial correlation in the noise source localization prob-
lem by designing appropriate imaging functionals.
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FIGURE 3.4. Four correlated source points (z j ) j=1,...,4 with T = 8, ωmax = 1000, Nx = 28, and
Nt = 211. Top line: K (z) (left), IW with W (ω) = |ω|31|ω|<ωmax (middle), and z → JW (z1,z)
(right). Bottom line: z →JW (z2,z) (left), z →JW (z3,z) (middle), and z →JW (z4,z) (right).
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FIGURE 3.5. Four correlated extended sources centered at (z j ) j=1,...,4 with T = 8, ωmax = 1000,
Nx = 28, and Nt = 211. Top line: K (z) (left), IW with W (ω) = |ω|31|ω|<ωmax (middle), z →
JW (z1,z) (right). Bottom line: z → JW (z2,z) (left), z → JW (z3,z) (middle), z → JW (z4,z)
(right).
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4 IMAGING IN ISOTROPIC VISCOELASTIC

MEDIA

4.1 INTRODUCTION

The elastic properties of human soft tissues have been exploited extensively in
various imaging modalities in recent past [71, 113]. They vary significantly in
order of magnitude with different tissue types and are closely linked with the
pathology of the tissues and their underlying structure. Consequently, these
properties have inspired many investigations in biomedical imaging, leading to
many interesting problems in mathematics, see for instance, [18, 23, 24, 25, 36]
and references therein.

In elasticity imaging, most of the time underlying medium is considered to
be inviscid (ideal). The fact that a wave loses some of its energy to the medium
and its amplitude decreases with time due to viscosity, dissipation and other
internal relaxation processes, is often neglected [110]. However, if not accounted
for, this negligence can lead to serious blurring in image reconstruction. On the
other hand, an estimation of the viscosity parameters can sometimes be very
useful in the characterization and identification of an anomaly [36].

In order to address the problem of reconstructing small anomalies in vis-
coelastic media from wavefield measurements, it is important to first model the
mechanical response of such media to excitations. The Voigt model is a common
model to describe the viscoelastic properties of tissues. Catheline et al. [47] have
shown that this model is well adapted to describe the viscoelastic response of tis-
sues to low-frequency excitations. However, we choose a more general model
derived by Szabo and Wu in [128] that describes observed power-law behav-
ior of many viscoelastic materials including different soft tissues. This model is
based on a time-domain statement of causality [83, 125] and reduces to the Voigt
model for the specific case of quadratic frequency losses.

By expressing the purely elastic field (without any viscous effect) in terms
of the measured field in a viscous medium, one can generalize the methods
described in [7, 8, 19, 25, 26], namely the time reversal, back-propagation and
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Kirchhoff imaging. Subsequently, one can recover the viscoelastic and geomet-
ric properties of an anomaly from wavefield measurements. In order to achieve
this goal, we focus on the Green function in this chapter. We identify a rela-
tionship between the ideal Green function and the viscoelastic Green function
in the limiting case when the compressional modulus λ→∞. We also provide
an approximation of this relationship using the stationary phase theorem.

The rest of the chapter is organized as follows. In Section 4.2, we introduce
a general viscoelastic wave equation based on the power-law model of Szabo
and Wu. Section 4.3 is devoted to the derivation of the viscoelastic Green func-
tion. In Section 4.4, we approximate the ideal Green function for the media with
quadratic frequency losses and sketch a procedure to use ideal image recon-
struction algorithms for viscoelastic media. We highlight the potential of our
approach with numerical illustrations, that are presented in Section 4.5.

4.2 GENERAL VISCOELASTIC WAVE EQUATION

When a wave travels through a biological medium, its amplitude decreases with
time due to attenuation. The attenuation coefficient for soft tissues may be
approximated by a power-law over a wide range of frequencies. The measured
attenuation coefficients of soft tissues typically have linear or greater than linear
dependence on frequency [58, 125, 128].

Let Ω be an open subset of R3, filled with a homogeneous and isotropic vis-
coelastic material and

u(x, t ) :Ω×R+ →R3

be the displacement field at time t of the material particle at position x ∈Ω and
∇u(x, t ) be its gradient. We define the order two strain tensor by

ε : (x, t ) ∈Ω×R+ 7−→ 1

2

(∇u+∇uT )
(x, t ),

under the assumptions of linearity and small perturbations. Here the super-
script T indicates a transpose operation.

Let C ∈ L 2
s (R3) and V ∈ L 2

s (R3) be the stiffness and viscosity tensors of the
material respectively given by

C = [
Ci j kl

]= [
λδi jδkl +µ

(
δi kδ j l +δi lδ j k

)]
,

V = [
Vi j kl

]= [
ηsδi jδkl +ηp

(
δi kδ j l +δi lδ j k

)]
.

Here δab is the Kronecker delta function, (λ,µ) are the Lamé parameters, (ηs ,ηp)
are the shear and the compressional viscosity moduli respectively, and L 2

s (R3)

is the space of symmetric tensors of order four. These tensors are assumed to be
positive definite, i.e. there exist constants βc ,βv > 0 such that

(C : ξ) : ξ≥βc |ξ|2 and (V : ξ) : ξ≥βv |ξ|2, ∀ξ ∈Ls(R3),
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where Ls(R3) denotes the space of symmetric tensors of order two. Throughout
this chapter, we suppose that

ηp ,ηs ¿ 1. (4.1)

The generalized Hooke’s Law [128] for power law media states that the stress
distribution

σ :Ω×R+ →Ls(R3)

produced by the deformation ε, satisfies:

σ= C : ε+V : A
[
ε
]

(4.2)

where A is a convolution-type loss operator defined as

A
[
ϕ

]=


−(−1)γ/2 ∂
γ−1ϕ

∂tγ−1 , γ is an even integer,

2

π
(γ−1)!(−1)(γ+1)/2

[
H(t )

tγ

]
∗t ϕ, γ is an odd integer,

− 2

π
Γ(γ)sin

(γπ
2

)[
H(t )

|t |γ
]
∗t ϕ, γ is a non integer.

(4.3)

Note that by convention,

A
[
u
]

i =A
[
ui

]
and A

[
ε
]

i j =A
[
εi j

]
1 ≤ i , j ≤ 3.

Here H(t ) is the Heaviside function, Γ is the gamma function and ∗t represents
convolution with respect to variable t . See [4, 44, 82, 127, 128, 131] for compre-
hensive details and discussion on fractional attenuation models, causality and
the loss operator A .

The general viscoelastic wave equation satisfied by the displacement field
u(x, t ) reads now

ρ
∂2u

∂t 2 −F = ∇·σ=∇·
(
C : ε+V : A

[
ε
])

,

or equivalently,

ρ
∂2u

∂t 2 −F =
(
λ+µ

)
∇(∇·u)+µ∆u. (4.4)

where F(x, t ) is the applied force and ρ is the density (supposed to be constant)
of the material and

λ=λ+ηpA
[ · ] and µ=µ+ηsA

[ · ].

REMARK 4.2.1. For quadratic frequency losses, i.e, when γ = 2, operator A reduces
to a first order time derivative. Therefore, power-law attenuation model (4.2) turns out
to be the Voigt model in this case.
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4.3 GREEN FUNCTION

In this section, we find the Green function for the viscoelastic wave equation
(4.4). We first derive a Helmholtz decomposition result for the displacement
field u(x, t ), which is essential for the subsequent analysis.

LEMMA 4.3.1. Let the displacement field u(x, t ) satisfy (4.4) and the Helmholtz de-

composition of
∂u

∂t
(x,0), u(x,0) and F(x, t ) be given by

∂u

∂t
(x,0) =∇A+∇×B with ∇·B= 0,

u(x,0) =∇C +∇×D with ∇·D= 0,

F(x, t ) =∇ϕ f +∇×ψ f with ∇·ψ f = 0.

Then there exist potentials ϕu and ψu such that

u =∇ϕu +∇×ψu with ∇·ψu = 0.

Moreover, ϕu and ψu satisfy respectively

∂2ϕu

∂t 2 = 1

ρ
ϕ f + c2

p∆ϕu +νpA
[
∆ϕu

]
' 1

ρ
ϕ f −

νp

ρc2
p

A
[
ϕ f

]+ c2
p∆ϕu + νp

c2
p

A

[
∂2ϕu

∂t 2

]

∂2ψu

∂t 2 = 1

ρ
ψ f + c2

s∆ψu +νsA
[
∆ψu

]
' 1

ρ
ψ f −

νs

ρc2
s
A

[
ψ f

]+ c2
s∆ψu + νs

c2
s
A

[
∂2ψu

∂t 2

]
where

c2
p = λ+2µ

ρ
, c2

s =
µ

ρ
, νp = ηp +2ηs

ρ
and νs = ηs

ρ
.

Proof. For ϕu and ψu defined as:

ϕu(x, t ) :=
ˆ t

0

ˆ τ

0

( 1

ρ
ϕ f +

(
c2

p +νpA
)[∇·u

])
(x, s)d sdτ+ t A+C , (4.5)

ψu(x, t ) :=
ˆ t

0

ˆ τ

0

( 1

ρ
ψ f −

(
c2

s +νsA
)[∇×u

])
(x, s)d sdτ+ tB+D, (4.6)

we have the required expression for u. Moreover, it is evident from (4.6) that
∇·ψu = 0

Now, on differentiating ϕu and ψu twice with respect to time variable t , we
get

∂2ϕu

∂t 2 = 1

ρ
ϕ f + c2

p∆ϕu +νpA
[
∆ϕu

]
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∂2ψu

∂t 2 = 1

ρ
ψ f + c2

s∆ψu +νsA
[
∆ψu

]
Finally, we apply A on last two equations, inject back the expression for A

[
∆ϕu

]
and A

[
∆ψu

]
and neglect the higher order terms in νs and νp by invoking (4.1)

to get the required differential equations for ϕu and ψu .

Let

κm(ω) =ω
√(

1− νm

c2
m

Â (ω)

)
, m = s, p, (4.7)

where the multiplication operator Â (ω) is the Fourier transform of the kernel of
the convolution operator A and ω is the frequency.

REMARK 4.3.2. If ϕu and ψu are causal, then it implies the causality of the inverse
Fourier transform of κm(ω), m = s, p. Applying the Kramers-Krönig relations, it fol-
lows that

−ℑm
{
κm(ω)

}=H
[
ℜe

{
κm(ω)

}]
and ℜe

{
κm(ω)

}=H
[
ℑm

{
κm(ω)

}]
, (4.8)

where H is the Hilbert transform, ℑm and ℜe represent the imaginary and the real
parts of a complex number respectively. Recall that H 2 =−I . The convolution operator
A given by (4.3) is based on the constraint that causality imposes on (4.2). Under
the smallness assumption (4.1), the expressions in (4.3) can be found from the Kramers-
Krönig relations (4.8). One drawback of (4.8) is that the attenuation, ℑm

{
κm(ω)

}
, must

be known at all frequencies to determine the dispersion, ℜe
{
κm(ω)

}
. However, bounds

on the dispersion can be obtained from measurements of the attenuation over a finite
frequency range [94].

4.3.1 SOLUTION OF (4.4) WITH A CONCENTRATED FORCE.

Let ui j denote the i -th component of the solution u j of the viscoelastic wave
equation (4.4) associated to a force F concentrated in the x j -direction. Let j = 1

for simplicity without loss of generality and suppose that

F =−T (t )δ(x−ξ)e1 =−T (t )δ(x−ξ)(1,0,0), (4.9)

where ξ is the source point and (e1,e2,e3) is an orthonormal basis of R3.
Let Z be the solution of the Poisson equation

∇2Z= F

Then (see, for instance, [80])

Z(x, t ;ξ) = T (t )

4π

1

r
e1.
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Using the vector identity

∇2Z=∇(∇·Z)−∇× (∇×Z),

the force F can be decomposed as [108]

F =
(
∇ϕ f +∇×ψ f

)
,

ϕ f = ∇·Z= T (t )

4π

∂

∂x1

(
1

r

)
, (4.10)

ψ f = −∇×Z=−T (t )

4π

(
0,

∂

∂x3

(
1

r

)
,− ∂

∂x2

(
1

r

))
,

where r = |x−ξ|.
Consider the Helmholtz decomposition for u1 as

u1 =∇ϕ1 +∇×ψ1. (4.11)

Then, by Lemma 4.3.1, ϕ1 and ψ1 are respectively the solutions to the equations

∆ϕ1 − 1

c2
p

∂2ϕ1

∂t 2 + νp

c4
p

A

[
∂2ϕ1

∂t 2

]
= νp

ρc4
p

A
[
ϕ f

]− 1

c2
pρ

ϕ f , (4.12)

∆ψ1 − 1

c2
s

∂2ψ1

∂t 2 + νs

c4
s
A

[
∂2ψ1

∂t 2

]
= νs

ρc4
s
A

[
ψ f

]− 1

c2
s ρ
ψ f . (4.13)

Equivalently, their Fourier transforms û, ϕ̂ and ψ̂ satisfy:

û1 = ∇ϕ̂1 +∇× ψ̂1, (4.14)

∆ϕ̂1 + 1

c2
p
κ2

p (ω)ϕ̂1 = νp

ρc4
p

Â (ω)ϕ̂ f −
1

ρc2
p
ϕ̂ f , (4.15)

∆ψ̂1 + 1

c2
s
κ2

s (ω)ψ̂1 = νs

ρc4
s
Â (ω)ψ̂ f −

1

ρc2
s
ψ̂ f , (4.16)

where κm(ω) is defined in (4.7) for m = p, s.
We recall that the Green function of the Helmholtz equations (4.15) and (4.16)

can be given by (see, for instance, [98]):

ĝ m(x,ω) =
exp

{p−1
κm(ω)

cm
|x|

}
4π|x| , m = s, p.

We closely follow the arguments in [108], and write ϕ̂1 as

ϕ̂1(x,ω;ξ) = ĝ m(x,ω)∗x

(
νp

ρc4
p

Â (ω)ϕ̂ f −
1

c2
pρ

ϕ̂ f

)

= −
(

1− νp

c2
p

Â (ω)

)
T̂ (ω)

ρ(4πcp )2

ˆ
R3

ĝ p (x−z,ω)
∂

∂z1

1

|z−ξ|d z.
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Remark that z → ĝ p (x−ζ,ω) is constant on each sphere ∂B(x,h), centered at x

with radius h. Therefore, the use of spherical coordinates leads to

ϕ̂1(x,ω;ξ) =−
(

1− νp

c2
p

Â (ω)

)
1

ρ(4πcp )2 T̂ (ω)

ˆ ∞

0
ĝ p (h,ω)

ˆ
∂B(x,h)

∂

∂z1

(
1

|z−ξ|
)

dσ(z)dh

where dσ(z) is the surface element on ∂B(x,h).
From [3, Sec. 4.2], it follows that

ˆ
∂B(x,h)

∂

∂z1

(
1

|z−ξ|
)

dσ(z) =


0 if h > r

4πh2 ∂

∂x1

(
1

r

)
if h < r.

Therefore, we have following expression for ϕ̂1:

ϕ̂1(x,ω;ξ) = −
(

1− νp

c2
p

Â (ω)

)
1

4πρc2
p

T̂ (ω)
∂

∂x1

(
1

r

)ˆ r

0
h exp

[p
−1

κp (ω)

cp
h

]
dh,

= −
(

1− νp

c2
p

Â (ω)

)
1

4πρ
T̂ (ω)

∂

∂x1

(
1

r

)ˆ r /cp

0
ζe

p
−1κp (ω)ζdζ.

Similarly, ψ̂1 is given by

ψ̂1(x,ω;ξ) =
(
1− νs

c2
s
Â (ω)

)
1

4πρ
T̂ (ω)

(
0,

∂

∂x3

(
1

r

)
,− ∂

∂x2

(
1

r

))ˆ r /cs

0
ζe

p−1κs(ω)ζdζ.

In the sequel, we use following notations for brevity:

Im(r,ω) = Am

ˆ r /cm

0
ζe

p−1κm(ω)ζdζ, (4.17)

Em(r,ω) = Am exp

{p
−1κm(ω)

r

cm

}
, (4.18)

Am(ω) =
(
1− νm

c2
m

Â (ω)

)
, m = p, s. (4.19)

We have for all i = 1,2,3:

(∇ϕ̂1
)

i = − ∂

∂xi

[(
1− νp

c2
p

Â (ω)

)
1

4πρ
T̂ (ω)

∂

∂x1

(
1

r

)ˆ r /cp

0
ζe

p
−1κp (ω)ζdζ

]
,

= −
(

1− νp

c2
p

Â (ω)

)
1

4πρ
T̂ (ω)

∂2

∂x1xi

(
1

r

)ˆ r /cp

0
ζe

p−1κp (ω)ζdζ

−
(

1− νp

c2
p

Â (ω)

)
1

4πρ
T̂ (ω)

∂

∂x1

(
1

r

)
∂r

∂xi

(
r

c2
p

exp

{p−1κp (ω)
r

cp

})
,

= − 1

4πρ
T̂ (ω)

∂2

∂xi∂x1

(
1

r

)
Ip (r,ω)+ 1

4πρc2
p r

T̂ (ω)
∂r

∂x1

∂r

∂xi
Ep (r,ω),
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where we have used the identity
∂

∂x1

(
1

r

)
=− 1

r 2

∂r

∂x1
.

Similarly,

(∇× ψ̂1
)

i =
1

4πρ
T̂ (ω)

∂2

∂xi∂x1

(
1

r

)
Is(r,ω)+ 1

4πρc2
s r

T̂ (ω)

(
δi 1 − ∂r

∂xi

∂r

∂x1

)
Es(r,ω).

Therefore

ûi 1 = 1

4πρ
T̂ (ω)

∂2

∂xi x1

(
1

r

)[
Is(r,ω)− Ip (r,ω)

]+ 1

4πρc2
p r

T̂ (ω)
∂r

∂xi

∂r

∂x1
Ep (r,ω)

+ 1

4πρc2
s r

T̂ (ω)

(
δi 1 − ∂r

∂xi

∂r

∂x1

)
Es(r,ω).

In general, ûi j , the i -th component of the solution û j for an arbitrary j , is

ûi j = 1

4πρ
T̂ (ω)

(
3r̂i r̂ j −δi j

) 1

r 3

[
Is(r,ω)− Ip (r,ω)

]+ 1

4πρc2
p

T̂ (ω)̂ri r̂ j
1

r
Ep (r,ω)

+ 1

4πρc2
s

T̂ (ω)
(
δi j − r̂i r̂ j

) 1

r
Es(r,ω),

where r̂i = ∂r

∂xi
= (xi −ξi )

r
. Im and Em are given by equations (4.17) and (4.18).

4.3.2 VISCOELASTIC GREEN FUNCTION

Let T (t ) be a Dirac mass, that is, T (t ) = δ(t ). Let Gi j be the i -th component of the
Green function related to the force concentrated in the x j -direction and Ĝi j be
the Fourier transform of Gi j . Then,

Ĝi j (x,ω;ξ) = 1

4πρ

(
3r̂i r̂ j −δi j

) 1

r 3

[
Is(r,ω)− Ip (r,ω)

]+ 1

4πρc2
p

r̂i r̂ j
1

r
Ep (r,ω)

+ 1

4πρc2
s

(
δi j − r̂i r̂ j

) 1

r
Es(r,ω),

or equivalently,

Ĝi j (x,ω;ξ) = ĝ p
i j (x,ω;ξ)+ ĝ s

i j (x,ω;ξ)+ ĝ ps
i j (x,ω;ξ), (4.20)

where
ĝ ps

i j (x,ω;ξ) = 1

4πρ

(
3r̂i r̂ j −δi j

) 1

r 3

[
Is(r,ω)− Ip (r,ω)

]
, (4.21)

ĝ p
i j (x,ω;ξ) = 1

ρc2
p

Ap (ω)̂ri r̂ j ĝ p (r,ω), (4.22)

and
ĝ s

i j (x,ω;ξ) = 1

ρc2
s

As(ω)
(
δi j − r̂i r̂ j

)
ĝ s(r,ω). (4.23)

Let G(x, t ;ξ) = (
Gi j (x, t ;ξ)

)3
i , j=1 denote the transient Green function of (4.4)

associated with the source point ξ. Let Gm(r, t ) and Wm(x, t ) be the inverse
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Fourier transforms of Am(ω)ĝ m(r,ω) and Im(r,ω), m = p, s, respectively. Then,
from Equations (4.20) to (4.23) yield:

Gi j (x, t ;ξ) = 1

ρc2
p

r̂i r̂ j Gp (r, t )+ 1

ρc2
s

(
δi j − r̂i r̂ j

)
G s(r, t )

+ 1

4πρ

(
3r̂i r̂ j −δi j

) 1

r 3

[
Ws(r, t )−Wp (r, t )

]
,

(4.24)

where by a change of variables,

Wm(r, t ) = 4π

c2
m

ˆ r

0
ζ2Gm(ζ, t ;ξ)dζ.

4.4 IDEAL GREEN FUNCTION RETRIEVAL AND IMAGING

PROCEDURE

Consider the limiting case when the compressional modulus λ→+∞. The Green
function for this quasi-incompressible viscoelastic medium is given by

Gi j (x, t ;ξ) = 1

ρc2
s

(
δi j − r̂i r̂ j

)
G s(r, t )+ 1

ρc2
s

(
3r̂i r̂ j −δi j

) 1

r 3

ˆ r

0
ζ2G s(ζ, t )dζ.

In order to generalize the detection algorithms presented in [7, 8, 19, 25] to this
viscoelastic case we shall express the ideal Green function in terms of the vis-
coelastic Green function.

From
G s(r, t ) = 1p

2π

ˆ
R

exp
{−p−1ωt

}
As(ω)g s(r,ω)dω,

it follows that

G s(r, t ) = 1p
2π

ˆ
R

As(ω)
exp

{p−1

(
−ωt + κs(ω)

cs
r

)}
4πr

dω.

Let us introduce the operator

L
[
φ

]
(t ) = 1

2π

ˆ
R

ˆ +∞

0
As(ω)φ(τ)exp

{p−1κs(ω)τ
}

exp
{−p

−1ωt
}

dτdω,

for a causal function φ. Then we have

G s(r, t ;ξ) =L

[
δ(τ− r /cs)

4πr

]
, (4.25)

and therefore,

L ∗ [
G s] (r, t ) =L ∗L

[
δ(τ− r /cs)

4πr

]
, (4.26)

where L ∗ is the L2(0,+∞)-adjoint of L .



92 CHAPTER 4. IMAGING IN ISOTROPIC VISCOELASTIC MEDIA

4.4.1 ASYMPTOTICS OF ATTENUATION OPERATOR FOR VOIGT MODEL

Consider for simplicity the Voigt model. Then, Â (ω) =−p−1ω and hence,

κs(ω) =ω
√

1+
p−1νs

c2
s

ω'ω+
p−1νs

2c2
s

ω2,

under the smallness condition (4.1). The operator L can then be approximated
by

L̃
[
φ

]
(t ) = 1

2π

ˆ
R

ˆ +∞

0
As(ω)φ(τ)exp

{
− νs

2c2
s
ω2τ

}
exp

{p−1ω(τ− t )
}

dτdω.

Since
ˆ
R

exp

{
− νs

2c2
s
ω2τ

}
exp

{p
−1ω(τ− t )

}
dω=

p
2πcsp
νsτ

exp

{
−c2

s (τ− t )2

2νsτ

}
,

and

p−1

ˆ
R

ωexp

{
− νs

2c2
s
ω2τ

}
exp

{p−1ω(τ− t )
}

dω=−
p

2πcsp
νsτ

∂

∂t

[
exp

{
−c2

s (τ− t )2

2νsτ

}]
,

it follows that

L̃
[
φ

]
(t ) =

ˆ +∞

0

t

τ
φ(τ)

csp
2πνsτ

exp

{
−c2

s (τ− t )2

2νsτ

}
dτ. (4.27)

Analogously,

L̃ ∗ [
φ

]
(t ) =

ˆ +∞

0

τ

t
φ(τ)

csp
2πνs t

exp

{
−c2

s (τ− t )2

2νs t

}
dτ. (4.28)

Since the phase in (4.27) and (4.28) is quadratic and νs is very small then
by consequence of the stationary phase theorem (cf. Appendix 4.A), we have
following main result of this chapter:

THEOREM 4.4.1. Let φ(t ) ∈D
(
[0,∞[

)
, where D

(
[0,∞[

)
is the space of C∞−functions

of compact support in [0,∞[. Then
L̃ ∗[

φ
]
(t ) =φ+ νs

2c2
s

d 2

d t 2

(
tφ

)
+o

(
νs

c2
s

)
,

L̃
[
φ

]
(t ) =φ+ νs

2c2
s

t
d 2

d t 2

(
φ

)
+o

(
νs

c2
s

)
,

(4.29)

and therefore

L̃ ∗L̃
[
φ

]
(t ) =φ+ νs

c2
s

d

d t

(
t

d

d t
φ

)
+o

(
νs

c2
s

)
, (4.30)

and,

(L ∗L̃ )−1[φ]
(t ) =φ− νs

c2
s

d

d t

(
t

d

d t
φ

)
+o

(
νs

c2
s

)
. (4.31)
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Proof. 1. Proof of approximation (4.29):
Let us first consider the case of operator L ∗. We have

L̃ ∗ [
φ

]
(t ) =

ˆ +∞

0

τ

t
φ(τ)

csp
2πνs t

exp

{
−c2

s (τ− t )2

2νs t

}
dτ

= 1

t
p
ε

ˆ +∞

0
ψ(τ)exp

{p−1 f (τ)

ε

}
dτ,

with,

f (τ) =p−1π(τ− t )2, ε=
(

2πνs t

c2
s

)
, and ψ(τ) = τφ(τ).

Remark that the phase f satisfies at τ= t ,

f (t ) = 0, f ′(t ) = 0, f ′′(t ) = 2
p−1π 6= 0.

Moreover, in order to apply stationary phase theorem, we have

exp

{p−1 f (t )

ε

}(
ε−1 f ′′(t )

2
p−1π

)−1/2

=p
ε

g t (τ) = f (τ)− f (t )− 1

2
f ′′(t )(τ− t )2 = 0

L1
[
ψ

]
(t ) = L(1)

1

[
ψ

]
(t ) = −1

2
p−1

f ′′(t )−1ψ
′′
(t ) = 1

4π

(
tφ

)′′
.

Thus, Theorem 4.A.1 implies that∣∣∣∣L̃ ∗ [
φ

]
(t )−

(
φ(t )+ νs

2c2
s

(
tφ

)′′)∣∣∣∣≤ C

t
ε3/2

∑
α≤4

sup
s

∣∣∣(sφ(s)
)(α)

∣∣∣.
The case of the operator L̃ is very similar. Note that

L̃
[
φ

]
(t ) =

ˆ +∞

0

t

τ
φ(τ)

csp
2πνsτ

exp

{
−c2

s (τ− t )2

2νsτ

}
dτ

= tp
ε

ˆ +∞

0
ψ(τ)exp

{p−1 f (t )

ε

}
,

with

f (τ) =p−1π
(τ− t )2

τ
, ε= νs

2πc2
s

and ψ(τ) = φ(τ)

τ
3
2

.

It follows that

f ′(τ) =
p
−1π

(
1− t 2

τ2

)
, f ′′(τ) = 2

p
−1π

t 2

τ3 , f ′′(t ) = 2
p
−1π

1

t
,
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and the function g t (τ) is equal to

g t (τ) = p−1π
(τ− t )2

τ
−p−1π

(τ− t )2

t
=p−1π

(t −τ)3

τt
.

We deduce that 

(
g tψ

)(4) (t ) =
(
g (4)

t (t )ψ(t )+4g (3)
t (t )ψ′(t )

)
=p−1π

(
24

t 3 ψ(t )− 24

t 2 ψ
′(t )

)
(
g 2

t ψ
)(6)

(t ) = (
g 2

t

)(6)
(t )ψ(t )

=−π2 6!

t 4ψ(t ),

and then, 

L(1)
1

[
ψ

]
(t ) = −1p−1

(
1

2

(
f ′′(t )

)−1
ψ′′(t )

)

= 1

4π
t

(
φ̃(t )p

t

)′′
= 1

4π

(p
t φ̃′′(t )− φ̃′(t )p

t
+ 3

4

φ̃(t )

t 3/2

)

L(2)
1

[
ψ

]
(t ) = 1

8
p−1

f ′′(t )−2
(
g (4)

t (s)ψ(s)+4g (3)
t (t )ψ′(t )

)
= 1

4π

(
3

(
φ̃(t )p

t

)′
−3

φ̃(t )

t 3/2

)

= 1

4π

(
3
φ̃′(t )p

t
− 9

2

φ̃(t )

t 3/2

)

L(3)
1

[
ψ

]
(t ) = −1

23 2! 3!
p−1

f ′′(t )−3(g 2
t )(6)(t )ψ(s)

= 1

4π

(
15

4

φ̃(t )

t 3/2

)
,

where φ̃(τ) = φ(τ)

τ
. Therefore, we have

L1
[
ψ

]
(t ) = L(1)

1

[
ψ

]
(t )+L(2)

1

[
ψ

]
(t )+L(3)

1

[
ψ

]
(t )

= 1

4π

(p
t φ̃′′(t )+ (3−1)

φ̃′(t )p
t

+
(

3

4
− 9

2
+ 15

4

)
φ̃(t )

t 3/2

)

= 1

4π
p

t

(
t φ̃(t )

)′′
= 1

4π
p

t
φ′′(t ),
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and again we invoke Theorem 4.A.1 to conclude that∣∣∣∣L̃ [
φ

]
(t )−

(
φ(t )+ νs

2c2
s

tφ′′(t )

)∣∣∣∣≤C tε3/2
∑
α≤4

sup
s

∣∣∣ψ(α)(s)
∣∣∣.

2. Proof of approximation (4.30):
Approximation (4.30) is evident and a direct consequence of (4.29).

3. Proof of approximation (4.31):

Note that ψ=
(
L ∗L̃

)−1 [
φ

]
implies

(
L ∗L̃

)[
ψ

]=φ. As, by assumption 4.1,

we have
νs

c2
s
¿ 1, let us introduce the asymptotic development of ψ as

ψ=
∞∑

i=0

(
νs

c2
s

)i

ψi .

From (4.30), it holds

ψ0 +
(
νs

c2
s

)((
tψ′

0

)′+ψ1

)
+o

(
νs

c2
s

)
=φ,

ψ0 =φ, and ψ1 =−(
t (ψ0)′

)′ =−(
t (φ)′

)′ .

Therefore,

(L ∗L̃ )−1 [
φ

]
(t ) =φ− νs

c2
s

(
tφ′)′+o

(
νs

c2
s

)
.

REMARK 4.4.2. For more general media with a fractional power-law exponent γ, one
can recover the ideal Green function from the viscous one in a very similar fashion by
inverting a fractional differential operator. Such an approximation has been reported in
Chapter 1, Section 1.2.6.2, in the context of Photoacoustic imaging.

4.4.2 IMAGING PROCEDURE

An important consequence of Theorem 4.4.1 is that the ideal Green function,
δ(τ− r /cs)

4πr
, can be approximately reconstructed from the viscous Green function,

G s(r, t ;ξ), by either solving the ordinary differential equation

φ+ νs

c2
s

∂

∂t

(
t
∂

∂t
φ

)
=L ∗ [

G s] (r, t ;ξ),

with φ= 0, t ¿ 0, which results from (4.25) and (4.29) or making the approxima-
tion

1

(4πr )
δ

(
τ− r

cs

)
'L ∗ [

G s] (r, t ;ξ)− νs

c2
s

d

d t

(
t

d

d t

[
L ∗ [

G s] (r, t ;ξ)
])

.
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3x

2x

1xF

r
A

2x

3x

1xF

P r /2

FIGURE 4.1. Left: A =
(

1p
2

r,
1p
2

r,0

)
. Right: Plane P =

{
x ∈R3, x3 = r

2

}

using (4.26) together with (4.31).

Once the ideal Green function
δ(τ− r /cs)

4πr
is reconstructed, one can find its

source ξ using a time-reversal, a Kirchhoff or a back propagation algorithm; see
[7, 8, 19, 25]. One can also find the shear modulus of the anomaly from the ideal
near-field measurements using the asymptotic formalism developed in [25, 27,
28]. These ideal near field measurements can be reconstructed, in turn, from
the near-field measurements in the viscous medium using Theorem 4.4.1. The
asymptotic formalism reduces the anomaly imaging problem to the detection of
the location and the reconstruction of a certain polarization tensor in the far-field
and separates the scales in the near-field.

4.5 NUMERICAL ILLUSTRATIONS

In order to substantiate the potential of our approach, we present some numeri-
cal experiments in this section.

4.5.1 PROFILE OF THE GREEN FUNCTION

In this section, we illustrate the profile of the Green function for different values
of the power law exponent γ, shear viscosity ηs and time parameter t . We opt
for the same parameters of simulation as taken in the work of Bercoff et al. [36],
that is, we take ρ = 1000, cs = 1, cp = 40, ηp = 0.

In Figure 4.2, we plot the first component, G11, of the Green function ob-

served at the point A =
(

1p
2

r,
1p
2

r,0

)
(see image on the left in Figure 4.1) with

r = 0.015 for three different values of γ and two different values of ηs . We can
clearly remark that the attenuation behavior varies significantly for different
choices of power law exponent γ and the viscosity parameter ηs .

In Figure 4.3, we plot G11, evaluated at the plane P =
{

x ∈ R3; x3 = r
2

}
(see

second image in Figure 4.1), at three different times. As expected, we get a
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FIGURE 4.2. Temporal response t →G11(A, t ,0) using a purely elastic Green function (red line)
and a viscous Green function (blue line). First line: γ= 1.75, second line: γ= 2 and third line:
γ= 2.25. Left: ηs = 0.02, right: ηs = 0.2.
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FIGURE 4.3. 2D spatial response x → G11(x, t ,0) at the plane P to a spatiotemporal delta
function with (top to bottom): a purely elastic Green function, a viscous Green function with
(γ= 1.75,ηs = 0.2) and (γ= 2,ηs = 0.2). Left to right: t = 0.0075, t = 0.0112 and t = 0.015

diffusion of the wavefront with the increasing values of the power law exponent
γ and depending on the choice of ηs .

4.5.2 APPROXIMATION OF ATTENUATION OPERATOR L

Consider the limiting case when compressional modulus λ→+∞ with γ= 2. We
take ρ = 1000, cs = 1 and a concentrated force F of the form F =−T (t )δ(x)e1 where
the time profile of the pulse, T (t ), is a Gaussian with central frequency ω0 and
bandwidth ρ. Denote by ui deal (x, t ) the ideal response without attenuation and
by uνs (x, t ) the response associated to the attenuation coefficient νs . Following
Section 4.4, we have

uνs 'L
[
ui deal

]
.

In Figure 4.4, we plot the first components of t → ui deal (A, t ), t → uνs (A, t ) and
t →L [ui deal ](A, t ) for different values of ω0 and ηs = 0.02. As expected, the func-
tion t → uνs (A, t ) and t → L

[
ui deal

]
(A, t ) are very close and almost overlapping.

It substantiates that the attenuation operator, L , effectively describes the viscos-
ity effects and the approximations presented in Section 4.4 are quite adequate.
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Finally, in Figure 4.5, we plot in logarithmic scale the error of approximation

νs

c2
s
→

∥∥∥∥L [φ]−
(
φ+ νs

2c2
s

tφ′′
)∥∥∥∥

∞
,

where φ(t ) is the first component of ui deal (x, t ), computed at the point x = A with
ω0 = ρ. It clearly appears to be an approximation of order greater than one.

4.6 CONCLUSION

In this chapter, we have computed the Green function in a viscoelastic medium
obeying a frequency power-law. For the Voigt model, which corresponds to
quadratic frequency losses, we have used the stationary phase theorem 4.A.1
to reconstruct the ideal Green function from the viscous one by solving an or-
dinary differential equation. Once the ideal Green function is reconstructed,
one can find its source point ξ using the algorithms such as time reversal, back-
propagation, and Kirchhoff imaging [7, 8, 25]. One can also estimate the shear
modulus of the medium using asymptotic formalism and reconstructing a cer-
tain polarization tensor in the far field [23, 26, 27]. For more general power-law
media, one can recover the ideal Green function from the viscous one by invert-
ing a fractional differential operator (cf. Chapter 1, Section 1.2.6.2).

4.A STATIONARY PHASE METHOD

The proof of the following theorem is established in [78, Theorem 7.7.1].

THEOREM 4.A.1. (Stationary phase) Let K ⊂ [0,∞) be a compact set, X an open
neighborhood of K and k a positive integer. If ψ ∈C 2k

0 (K ), f ∈C 3k+1(X ) such that

ℑm
{

f
}≥ 0 in X , ℑm

{
f (t0)

}= 0, f ′(t0) = 0, f ′′(t0) 6= 0, f ′ 6= 0 in K \ {t0}

then for ε> 0∣∣∣∣∣
ˆ

K
ψ(t )ei f (t )/εd t −ei f (t0)/ε

(
λ

f ′′(t0)

2πi

)−1/2 ∑
j<k

ε j L j [ψ]

∣∣∣∣∣≤Cεk
∑
α≤2k

sup
s

∣∣∣ψ(α)(s)
∣∣∣.

Here C is bounded when f stays in a bounded set in C 3k+1(X ) and
|t − t0|
| f ′(t )| has a uniform

bound. With,
g t0 (t ) = f (t )− f (t0)− 1

2
f ′′(t0)(t − t0)2,

which vanishes up to third order at t0, we have

L j
[
ψ

]= ∑
ν−µ= j

∑
2ν≥3µ

i− j 2−ν

ν!µ!
(−1)ν f ′′ (t0)−ν

(
gµt0
ψ

)(2ν)
(t0).

2
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FIGURE 4.4. Comparison between u1,νs (x, t ) and L [u1,i deal ](x, t ) observed at x = A with γ= 2
and ηs = 0.02 ; Top: ω0 = 0 ; Center: ω0 = ρ; Bottom: ω0 = 2ρ.
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rithmic scale in the case when φ(t ) = u1,i deal (A, t ) with ω0 = ρ.

Note that L1 can be expressed as the sum

L1
[
ψ

]= L(1)
1

[
ψ

]+L(2)
1

[
ψ

]+L(3)
1

[
ψ

]
,

where L j
1, for j = 1,2,3 are respectively associate to the pair (ν j ,µ j ) = (1,0), (2,1), (3,2)

and are identified as:

L(1)
1

[
ψ

] = −1

2i
f ′′(t0)−1ψ(2)(t0),

L(2)
1

[
ψ

] = 1

222!i
f ′′(t0)−2 (

g t0 u
)(4) (t0)

= 1

8i
f ′′(t0)−2

(
g (4)

t0
(t0)ψ(t0)+4g (3)

t0
(t0)ψ′(t0)

)
,

L(3)
1

[
ψ

] = −1

232!3!i
f ′′(t0)−3 (

g 2
t0
ψ

)(6)
(t0)

= −1

232!3!i
f ′′(t0)−3 (

g 2
t0

)(6)
(t0)ψ(t0).
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5 TIME REVERSAL ALGORITHMS FOR

VISCOELASTIC MEDIA

5.1 INTRODUCTION

Waves in loss-less media are invariant under time transformation t → −t . This
simple observation has provided very promising techniques in a variety of do-
mains including biomedical imaging [63], seismology [87], material analysis
[107], land-mine detection [101], telecommunication [89] and underwater acous-
tics [62].

The robustness and simplicity of time-reversal techniques make them an
ideal choice to resolve source localization problems. These inverse problems have
been of significant interest in recent years and find numerous applications in
different fields, particularly in biomedical imaging [11, 19, 20, 106, 130]. In
this chapter, we consider the problem of reconstructing sources in a viscoelastic
medium from wavefield measurements using time-reversal methods. Our moti-
vation is the recent advances on hybrid methods in biomedical imaging exploit-
ing elastic properties of the soft tissues [71]. Examples of these hybrid methods
include magnetic resonance elastography [23, 46, 47], transient elasticity imag-
ing [25], shear wave imaging [113] and acoustic radiation force imaging [20, 36].
The envisaged problem is quite challenging, indeed, because the time reversibil-
ity of the wave equations breaks down in lossy media. Further, if not accounted
for, these losses produce serious blurring in source reconstruction using classical
time-reversal methods. In this chapter, we use a thermo-viscous approximation
to frequency power-law model for the attenuation losses. We refer, for instance,
to [82, 83, 128] for detailed discussions on the attenuation models in wave prop-
agation and their causality properties.

The main contributions of this chapter are twofold. We first provide a mod-
ified time-reversal imaging algorithm in inviscid media based on a weighted
Helmholtz decomposition in Section 5.2. We justify both analytically and nu-
merically that it provides a better approximation than by simply time reversing
the displacement field. Then, we give a regularized time-reversal imaging al-
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gorithm for source reconstruction in attenuated media in Section 5.3. We show
that it leads to an approximation of the source term with attenuation correction
of first order in terms of the viscosity parameters. We present a variety of numer-
ical illustrations to compare different time-reversal algorithms and to highlight
the potential of our original approach.

5.2 TIME REVERSAL IN HOMOGENEOUS ELASTIC MEDIA

WITHOUT VISCOSITY

Let us consider the homogeneous isotropic elastic wave equation in an open
d-dimensional medium:

∂2u

∂t 2 (x, t )−Lλ,µu(x, t ) = dδ0(t )

d t
F(x), (x, t ) ∈Rd ×R,

u(x, t ) = ∂u

∂t
(x, t ) = 0, x ∈Rd , t < 0,

(5.1)

where
Lλ,µu =µ∆u+ (λ+µ)∇(∇·u). (5.2)

Here (λ,µ) are the Lamé coefficients of the medium and its density is assumed
to be equal to one. The aim in this section is to design an efficient algorithm
for reconstructing the compactly supported source function F from the recorded
data {

g(y, t ) = u(y, t ), t ∈ [0,T ],y ∈ ∂Ω
}

, (5.3)

where Ω is supposed to strictly contain the support of F. We are interested in the
following time-reversal functional:

I (x) =
ˆ T

0
vs(x,T )d s, x ∈Ω, (5.4)

where the vector field vs is defined as the solution of
∂2vs

∂t 2 (x, t )−Lλ,µvs(x, t ) = dδs(t )

d t
g(x,T − s)δ∂Ω(x), (x, t ) ∈Rd ×R,

vs(x, t ) = ∂vs

∂t
(x, t ) = 0, x ∈Rd , t < s.

(5.5)

Here, δ∂Ω is the surface Dirac mass on ∂Ω and g := u on ∂Ω×R is the measured
displacement field.

The time-reversal imaging functional I is usually implemented to recon-
struct the source distribution in an elastic medium [46, 101, 106]. It is motivated
by the time reversibility property of the elastic waves. In a general setting, how-
ever, it is not sure that it provides a good reconstruction of the source distribu-
tion F. Indeed the problem is that the recorded displacement field at the surface
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of the domain is a mixture of pressure and shear wave components. By time
reversing and back-propagating these signals as in (5.4) a blurred image is ob-
tained due to the fact that the pressure and shear wave speeds are different.

In this work, we first present a modified time-reversal imaging functional Ĩ ,
and justify mathematically that it provides a better approximation than I of the
source F. This new functional Ĩ can be seen as a correction based on a weighted
Helmholtz decomposition to I (which is considered as an initial guess). In fact, we
find the compressional and the shear components of I such that

I =∇×ψI +∇φI . (5.6)

Then we multiply these components with cp =√
λ+2µ and cs =p

µ, the pressure
and the shear wave speeds respectively. Finally, we define Ĩ by

Ĩ = cs∇×ψI + cp∇φI . (5.7)

We rigorously explain why should this new functional be better than the original
one. We substantiate this argument with numerical illustrations.

In the sequel, we define respectively the Helmholtz decomposition operators
H p and H s by

H p [I ] :=∇φI and H s [I ] :=∇×ψI . (5.8)

5.2.1 TIME-REVERSAL IMAGING ANALYSIS

In order to establish some results about time reversal using I and Ĩ , we use the
following integral formulation based on the elastic Green tensor.

5.2.1.1 INTEGRAL FORMULATION

Let us introduce the outgoing Green tensor Gω,0 associated to the elastic wave
equation (

Lλ,µ+ω2)Gω,0(x) =−δ0I, x ∈Rd . (5.9)

It can be expressed in the form [3, 27]

Gω,0(x) = 1

µκ2
s

(
κ2

s G s
ω,0(x)I+D

(
G s
ω,0 −Gp

ω,0

)
(x)

)
, x ∈Rd , (5.10)

where I = (
δi j

)d
i , j=1, D =

(
∂2

∂xi∂x j

)d

i , j=1

and κ2
s =

ω2

µ
and κ2

p = ω2

λ+2µ
are the shear

and the pressure wavenumbers respectively. Here, Gα
ω,0(x) is the fundamental

solution of the Helmholtz operator ∆+κ2
α in Rd subject to outgoing radiation

conditions, with α= p, s. For example, when d = 3, we have

Gα
ω,0(x) = exp

{
iκα|x|

}
4π|x| , α= p, s. (5.11)
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The functional I (x) defined by (5.4) can be expressed in the form (see, for
instance, Chapter 2)

I (x) =ℜe

[
1

2π

ˆ
Rd

ˆ
R

ω2
[ˆ

∂Ω

Gω(x,y)Gω(y,z)dσ(y)

]
dωF(z)dz

]

= 1

4π

ˆ
Rd

ˆ
R

ω2
[ˆ

∂Ω

[
Gω(x,y)Gω(y,z)+Gω(x,y)Gω(y,z)

]
dσ(y)

]
dωF(z)dz, (5.12)

where dσ is the surface element and we have introduced the outgoing Green
tensor for a point source at y:

Gω(x,y) =Gω,0(x−y). (5.13)

We also introduce the decomposition of Gω,0 into shear and compressional
components as

Gω,0(x) =Gp
ω,0(x)+Gs

ω,0(x), (5.14)

with
G

p
ω,0 =− 1

ω2DGp
ω,0 and Gs

ω,0 =
1

ω2

(
κ2

s I+D
)

G s
ω,0. (5.15)

We can extend Helmholtz operator H p and H s to tensors G as follows:

H p[
G

]
p =H p [

Gp
]

and H s[G]
p =H s [

Gp
]

for all vectors p.

Note that Gp
ω,0 and Gs

ω,0 satisfy, respectively

(Lλ,µ+ω2)Gp
ω,0 =H p [−δ0I] and (Lλ,µ+ω2)Gs

ω,0 =H s [−δ0I] . (5.16)

Consequently, the Helmholtz decomposition of I can be derived explicitly

I (x) =H p [I ](x)+H s[I ](x), (5.17)

with

H p[
I

]
(x) = 1

4π

ˆ
Rd

ˆ
R

ω2
[ˆ

∂Ω

[
G

p
ω(x,y)Gω(y,z)+Gp

ω(x,y)Gω(y,z)
]

dσ(y)

]
dωF(z)dz,

and

H s[I ]
(x) = 1

4π

ˆ
Rd

ˆ
R

ω2
[ˆ

∂Ω

[
Gs
ω(x,y)Gω(y,z)+Gs

ω(x,y)Gω(y,z)
]

dσ(y)

]
dωF(z)dz.

Finally, the integral formulation of the modified imaging functional Ĩ defined
by (5.7) reads

Ĩ (x) =ℜe

[
1

2π

ˆ
Rd

ˆ
R

ω2
[ˆ

∂Ω

[
csG

s
ω(x,y)+cpG

p
ω(x,y)

]
Gω(y,z)dσ(y)

]
dωF(z)dz

]
. (5.18)
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5.2.1.2 HELMHOLTZ-KIRCHHOFF IDENTITY

In order to approximate the integral formulation (5.18) we use a Helmholtz-
Kirchhoff identity for elastic media. Some of the results presented in this subsec-
tion can be found in [141, 142] in the context of elastodynamic seismic interfer-
ometry. Indeed, the elastodynamic reciprocity theorems (Propositions 5.2.1 and
5.2.5) are the key ingredient to understand the relation between the cross corre-
lations of signals emitted by uncorrelated noise sources and the Green function
between the observation points.

Let us introduce the conormal derivative
∂u

∂ν
(y) for y ∈ ∂Ω, of the displace-

ment field u at the surface ∂Ω in the outward unit normal direction n by

∂u

∂ν
:=λ(∇·u)n+µ(∇uT + (∇uT )T )

n, (5.19)

where T denotes the transpose.

Note also that the conormal derivative tensor
∂G

∂ν
means that for all constant

vectors p, [
∂Gω

∂ν

]
p := ∂

[
Gωp

]
∂ν

.

The following proposition is equivalent to [142, Eq. (73)]. Since our formula-
tion is slightly different and this is the first building block of our theory, we give
its proof for consistency. Moreover, elements of the proof are used in Proposi-
tion 5.2.2.

PROPOSITION 5.2.1. For all x,z ∈Ω, we have

ˆ
∂Ω

[
∂Gω(x,y)

∂ν
Gω(y,z)−Gω(x,y)

∂Gω(y,z)

∂ν

]
dσ(y) = 2iℑm

{
Gω(x,z)

}
. (5.20)

Proof. By reciprocity we have

Gω(y,x) = [
Gω(x,y)

]T . (5.21)

Additionally, in the homogeneous case we have Gω(y,x) = Gω(x,y), but we will
not use this property here. Our goal is to show that for all constant vectors p

and q, we have

ˆ
∂Ω

[
q · ∂Gω(x,y)

∂ν
Gω(y,z)p−q ·Gω(x,y)

∂Gω(y,z)

∂ν
p

]
dσ(y) = 2i q ·ℑm

{
Gω(x,z)

}
p.

Taking scalar product of equations

(
Lλ,µ+ω2)Gω(y,x)q =−δxq and

(
Lλ,µ+ω2)Gω(y,z)p =−δzp



108 CHAPTER 5. TIME REVERSAL ALGORITHMS FOR VISCOELASTIC MEDIA

with Gω(y,z)p and Gω(y,x)q respectively, subtracting the second result from the
first, and integrating in y over Ω, we obtainˆ

Ω

[(
Gω(y,z)p

) ·Lλ,µ
(
Gω(y,x)q

)−Lλ,µ
(
Gω(y,z)p

) · (Gω(y,x)q
)]

dy

= p · (Gω(z,x)q
)−q · (Gω(x,z)p

)= 2i q ·ℑm
{
Gω(x,z)

}
p.

Using the form of the operator Lλ,µ, this gives

2i q ·ℑm
{
Gω(x,z)

}
p

=λ
ˆ
Ω

[(
Gω(y,z)p

) ·{∇∇· (Gω(y,x)q
)}− (

Gω(y,x)q
) ·{∇∇· (Gω(y,z)p

)}]
dy

+µ
ˆ
Ω

[(
Gω(y,z)p

) ·{(
∆+∇∇· )(Gω(y,x)q

)}− (
Gω(y,x)q

) ·{(
∆+∇∇· )(Gω(y,z)p

)}]
dy.

We recall that, for two functions u,v :Rd →Rd , we have(
∆u+∇(∇·u)

) ·v = ∇· [(∇uT + (∇uT )T )
v
]− 1

2

(∇uT + (∇uT )T ) · (∇vT + (∇vT )T )
,

∇(∇·u) ·v = ∇· [(∇·u)v
]− (∇·u)(∇·v).

Therefore, we find

2i q ·ℑm
{
Gω(x,z)

}
p

=λ
ˆ
Ω

[
∇·

{[∇· (Gω(y,x)q
)](
Gω(y,z)p

)}−∇·
{[∇· (Gω(y,z)p

)](
Gω(y,x)q

)}]
dy

+µ
ˆ
Ω

[
∇·

{(
∇(
Gω(y,x)q

)T + [∇(
Gω(y,x)q

)T ]T
)
Gω(y,z)p

}
−∇·

{(
∇(
Gω(y,z)p

)T + [∇(
Gω(y,z)p

)T ]T
)
Gω(y,x)q

}]
dy

=λ
ˆ
∂Ω

[
n ·

{[∇· (Gω(y,x)q
)](
Gω(y,z)p

)}−n ·
{[∇· (Gω(y,z)p

)](
Gω(y,x)q

)}]
dσ(y)

+
ˆ
Ω

[
n ·

{[
∇(
Gω(y,x)q

)T + [∇(
Gω(y,x)q

)T ]T
]
Gω(y,z)p

}
−n ·

{(
∇(
Gω(y,z)p

)T + [∇(
Gω(y,z)p

)T ]T
)
Gω(y,x)q

}]
dσ(y)

=λ
ˆ
∂Ω

[(
Gω(y,z)p

) ·{∇· (Gω(y,x)q
)
n
}
− (
Gω(y,x)q

) ·{∇· (Gω(y,z)p
)
n
}]

dσ(y)

+µ
ˆ
∂Ω

[(
Gω(y,z)p

) ·{(
∇(
Gω(y,x)q

)T + [∇(
Gω(y,x)q

)T ]T
)
n
}

−(
Gω(y,x)q

) ·{(
∇(
Gω(y,z)p

)T + [∇(
Gω(y,z)p

)T ]T
)
n
}]

dσ(y)

=λ
ˆ
∂Ω

[(
Gω(y,z)p

) ·{∇· (Gω(y,x)q
)
n
}
− (
Gω(y,x)q

) ·{∇· (Gω(y,z)p
)
n
}]

dσ(y)

+µ
ˆ
∂Ω

[(
Gω(y,z)p

) ·{(
∇(
Gω(y,x)q

)T + [∇(
Gω(y,x)q

)T ]T
)
n
}

−(
Gω(y,x)q

) ·{(
∇(
Gω(y,z)p

)T + [∇(
Gω(y,z)p

)T ]T
)
n
}]

dσ(y),
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where we have made use of the divergence theorem. Finally, we use the defini-
tion of the co-normal derivative to get

2i q ·ℑm
{
Gω(x,z)

}
p =

ˆ
∂Ω

[(
Gω(y,z)p

) · ∂Gω(y,x)q

∂ν
− (
Gω(y,x)q

) · ∂Gω(y,z)p

∂ν

]
dσ(y)

=
ˆ
∂Ω

[
q · ∂Gω(x,y)

∂ν
Gω(y,z)p−q ·Gω(x,y)

∂Gω(y,z)

∂ν
p
]

dσ(y),

which is the desired result. Note that for establishing the last equality we have
used the reciprocity relation (5.21).

The proof of Proposition 5.2.1 uses only the reciprocity relation and the di-
vergence theorem. Consequently, Proposition 5.2.1 also holds in a heteroge-
neous medium, as shown in [142]. The following proposition cannot be found
in the literature, probably because its application in the context of seismic inter-
ferometry has not been identified. It is an important ingredient in the analysis
of our improved imaging functional. Note that the proofs of Propositions 5.2.2
and 5.2.3 require the medium to be homogeneous (so that H s and H p commute
with Lλ,µ), and we cannot expect them to be true in a heterogeneous medium
because of mode conversion between pressure and shear waves.

PROPOSITION 5.2.2. For all x,z ∈Ω, we have
ˆ
∂Ω

[
∂Gs

ω(x,y)

∂ν
G

p
ω(y,z)−Gs

ω(x,y)
∂G

p
ω(y,z)

∂ν

]
dσ(y) = 0. (5.22)

Proof. First, we recall that Gp
ω(y,x) and Gs

ω(y,x) are solutions of (5.16). We proceed
as in the proof of the previous proposition to find:

ˆ
∂Ω

[
∂Gs

ω(x,y)

∂ν
G

p
ω(y,z)−Gs

ω(x,y)
∂G

p
ω(y,z)

∂ν

]
dσ(y)

=
ˆ
Ω

[
H s[−δxI

]
(y)Gp

ω(y,z)−Gs
ω(x,y)H p[−δzI

]
(y)

]
dy

=
[
H s[−δ0I

]∗Gp
ω(·,z)

]
(x)−

[
Gs
ω(x, ·)∗H p[−δ0I

]]
(z).

Using the fact that Gp
ω =H p

[
Gω

]
and H sH p =H pH s = 0 we get

H s
[
H s[−δ0I

]∗Gp
ω(·,z)

]
= 0 and H p

[
H s[−δ0I

]∗Gp
ω(·,z)

]
= 0.

Therefore, we conclude [
H s[−δ0I

]∗Gp
ω(·,z)

]
(x) = 0.

Similarly, we have [
Gs
ω(x, ·)∗H p[−δ0I

]]
(z) = 0,

which gives the desired result.
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Finally the following proposition shows that the elastodynamic reciprocity
theorem (Proposition 5.2.1) holds for each wave component in a homogeneous
medium.

PROPOSITION 5.2.3. For all x,z ∈Rd and α= p, s,
ˆ
∂Ω

[
∂Gαω(x,y)

∂ν
Gαω(y,z)−Gαω(x,y)

∂Gαω(y,z)

∂ν

]
dσ(y) = 2iℑm

{
Gαω(x,z)

}
. (5.23)

Proof. As both choices of α are similar, we only provide a proof for α = p. For
α= p, indeed, we have

ˆ
∂Ω

[
∂G

p
ω(x,y)

∂ν
G

p
ω(y,z)−Gp

ω(x,y)
∂G

p
ω(y,z)

∂ν

]
dσ(y)

=
[
H p[−δ0I

]∗Gp
ω(·,z)

]
(x)−

[
G

p
ω(x, ·)∗H p[−δ0I

]]
(z).

Using the fact that Gp
ω(y,z) =Gp

ω,0(y−z) =Gp
ω,0(z−y), we can write[

H p[−δ0I
]∗Gp

ω(·,z)
]

(x) =
[
H p[−δ0I

]∗Gp
ω,0(·)

]
(x−z)

and[
G

p
ω(x, ·)∗H p[−δ0I

]]
(z) =

[
G

p
ω,0(·)∗H p[−δ0I

]]
(z−x) =

[
H p[−δ0I

]∗Gp
ω,0(·)

]
(x−z).

Therefore,

ˆ
∂Ω

[
∂G

p
ω(x,y)

∂ν
G

p
ω(y,z)−Gp

ω(x,y)
∂G

p
ω(y,z)

∂ν

]
dσ(y) = H p

[
2iℑm

{
G

p
ω(x,z)

}]
= 2iℑm

{
G

p
ω(x,z)

}
,

where the last equality results from the fact that H sH p = 0.

5.2.1.3 APPROXIMATION OF THE CO-NORMAL DERIVATIVE

In this subsection, we derive an approximation of the conormal derivative ∂Gω(x,y)
∂ν ,

y ∈ ∂Ω, x ∈ Ω. In general, this approximation involves the angles between the
pressure and shear rays and the normal on ∂Ω. The approximation becomes
simple when Ω is a ball with very large radius, since in this case all rays are
normal to ∂Ω (Proposition 5.2.4). It allows us to use a simplified version of
the Helmholtz-Kirchhoff identity in order to analyze the imaging functional Ĩ

when Ω is a ball with a large radius (Proposition 5.2.5).

PROPOSITION 5.2.4. If n = �y−x and |x−y|À 1, then, for α= p, s,

∂Gαω(x,y)

∂ν
= iωcαG

α
ω(x,y)+o

(
1

|x−y|d−1/2

)
. (5.24)
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Proof. For simplicity, let us take d = 3. We emphasize that similar arguments
hold for d = 2. It is enough to show that for all constant vectors q,

∂G
p
ω(x,y)q

∂ν
= iωcpG

p
ω(x,y)q+o

(
1

|x−y|
)

and
∂Gs

ω(x,y)q

∂ν
= iωcsG

s
ω(x,y)q+o

(
1

|x−y|
)

.

Pressure component: Recall that

G
p
ω(x,y) =− 1

ω2DGp
ω(x,y) = 1

c2
p

Gp
ω(x,y)�y−x� �y−x+o

(
1

|x−y|
)

,

so that we have

G
p
ω(x,y)q = 1

c2
p

Gp
ω(x,y)

(�y−x ·q
) �y−x+o

(
1

|x−y|
)

.

Therefore,

∂G
p
ω(x,y)q

∂ν
= λ∇y ·

(
G

p
ω(x,y)q

)
n(y)+µ

{
∇y

(
G

p
ω(x,y)q

)T + [∇y
(
G

p
ω(x,y)q

)T ]T
}

n(y)

= �y−x ·q

c3
p

iωGp
ω(x,y)

[
λ �y−x ·�y−xn+2µ

(�y−x� �y−x
)
n
]
+o

(
1

|y−x|
)

= �y−x ·q

c3
p

iωGp
ω(x,y)

[
λn+2µ

(�y−x ·n
)�y−x

]
+o

(
1

|y−x|
)

= �y−x ·q

c3
p

iωGp
ω(x,y)

[
λ
(
n−�y−x

)+2µ
(�y−x ·n−1

)�y−x
]

+iωcpG
p
ω(x,y)q+o

(
1

|y−x|
)

.

In particular, when n = �y−x, we have

∂G
p
ω(x,y)q

∂ν
= iωcpG

p
ω(x,y)q+o

(
1

|y−x|
)

.

Shear components: As

Gs
ω(x,y) = 1

ω2

(
κ2

s I+D
)

G s
ω(x,y) = 1

c2
s

G s
ω(x,y)

(
I−�y−x� �y−x

)+o

(
1

|x−y|
)

,

we have
Gs
ω(x,y)q = 1

c2
s

G s
ω(x,y)

(
q− (�y−x ·q

)�y−x
)
+o

(
1

|x−y|
)

.

Therefore,

∂Gs
ω(x,y)q

∂ν
=λ∇y ·

(
Gs
ω(x,y)q

)
n(y)+µ

{
∇y

(
Gs
ω(x,y)q

)T + [∇y
(
Gs
ω(x,y)q

)T ]T
}

n(y).
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Now, remark that

λ∇.
(
Gs
ω(x,y)q

)
n = λ

iω

c3
s

G s
ω(x,y)

{[
q− (�y−x ·q

)�y−x
]
·�y−x

}
n+o

(
1

|x−y|
)

= o

(
1

|x−y|
)

,

and

µ
[
∇Gs

ω(x,y)q+∇Gs
ω(x,y)qT

]
n

=µ iω

c3
s

G s
ω(x,y)

[
q� �y−x+�y−x�q−2

(�y−x ·q
)�y−x� �y−x

]
n+o

(
1

|x−y|
)

=µ iω

c3
s

G s
ω(x,y)

[(�y−x ·n
)
q+ (

q ·n
)�y−x−2

(�y−x ·q
)(�y−x ·n

)�y−x
]
+o

(
1

|x−y|
)

=µ iω

c3
s

G s
ω(x,y)

[(�y−x ·n
)−1

][
q− (�y−x ·q

)�y−x
]

+µ iω

c3
s

G s
ω(x,y)

[{
q ·n− (�y−x ·q

)(�y−x ·n
)} �y−x

]
iωcsG

s
ω(x,y)+o

(
1

|x−y|
)

.

In particular, when n = �y−x, we have

∂Gs
ω(x,y)q

∂ν
= iωcsG

s
ω(x,y)q+o

(
1

|y−x|
)

.

The following is a direct consequence of Propositions 5.2.2, 5.2.3, and 5.2.4.

PROPOSITION 5.2.5. Let Ω ⊂ Rd be a ball with radius R. Then, for all x,z ∈ Ω
sufficiently far from the boundary ∂Ω, we have

ℜe

{ˆ
∂Ω

Gαω(x,y)Gαω(y,z)dσ(y)

}
' 1

ωcα
ℑm

{
Gαω(x,z)

}
, α= p, s, (5.25)

ℜe

{ˆ
∂Ω

Gs
ω(x,y)Gp

ω(y,z)dσ(y)

}
' 0. (5.26)

5.2.1.4 ANALYSIS OF THE IMAGING FUNCTIONAL Ĩ

In this subsection, we assume that Ω is a ball of radius R in Rd and that the
support, supp

{
F
}
, of F is sufficiently localized at the center of Ω so that for all

x ∈ supp
{

F
}

and for all y ∈ ∂Ω

�y−x = n(y)+o

(
1

|y−x|
)

.

Then, we have the following theorem.
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THEOREM 5.2.6. Let x ∈Ω be sufficiently far from the boundary ∂Ω and Ĩ be defined
by (5.7). Then,

Ĩ (x) ' F(x). (5.27)

Proof. From (5.18) we have

Ĩ (x) = 1

4π

ˆ
Rd

ˆ
R

ω2
[ˆ

∂Ω

G̃ω(x,y)Gω(y,z)+ G̃ω(x,y)Gω(y,z)dσ(y)

]
dωF(z)dz,

where
G̃ω(x,y) = csG

s
ω(x,y)+ cpG

p
ω(x,y).

Proposition 5.2.5 allows us to write

Ĩ (x) ' 1

4π

ˆ
Rd

ˆ
R

ω2
[ˆ

∂Ω

G̃ω(x,y)Gω(y,z)+Gω(x,y)G̃ω(y,z)dσ(y)

]
dωF(z)dz

' 1

4π

ˆ
Rd

ˆ
R

ω2
[ˆ

∂Ω

G̃ω(x,y)Gω(y,z)+Gω(x,y)G̃ω(y,z)dσ(y)

]
dωF(z)dz.

Proposition 5.2.4 then gives

Ĩ (x) ' 1

4π

ˆ
Rd

ˆ
R

−iω

[
∂Gω(x,y)

∂ν
Gω(y,z)−Gω(x,y)

∂Gω(y,z)

∂ν

]
dωF(z)dz

' 1

2π

ˆ
Rd

ˆ
R

ωℑm
{
Gω(x,z)

}
dωF(z)dz

' F(x).

The last approximation results from the identity

1

2π

ˆ
R

−iωGω(x,z)dω= δx(z)I,

which comes from the integration of the time-dependent version of (5.9) be-
tween t = 0− and t = 0+.

If the unweighted time-reversal imaging function I is used instead of Ĩ ,
then crossed terms remain. Indeed, by using the same arguments as above, we
find

I (x) ' cs + cp

cscp

1

4π

ˆ
Rd

ˆ
R

ωℑm
{(
G

p
ω+Gs

ω

)
(x,z)

}
dωF(z)dz

+cs − cp

cscp

1

4π

ˆ
Rd

ˆ
R

ωℑm
{(
G

p
ω−Gs

ω

)
(x,z)

}
dωF(z)dz

' cs + cp

2cscp
F(x)+ cs − cp

2cscp

ˆ
Rd
B(x,z)F(z)dz. (5.28)
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Here

B(x,z) = 1

2π

ˆ
R

ωℑm
{(
G

p
ω−Gs

ω

)
(x,z)

}
dω (5.29)

is the operator that describes the error in the reconstruction of the source F ob-
tained with I when cs 6= cp . In particular the operator B is not diagonal, which
means that the reconstruction mixes the components of F.

5.2.2 NUMERICAL SIMULATIONS

In this subsection, we present numerical illustrations and describe our algo-
rithms for numerical resolution of the source problem to show that Ĩ provides
a better reconstruction than I .

5.2.2.1 DESCRIPTION OF THE ALGORITHM

This subsection is devoted to the algorithm we used for the numerical resolution
of the elastic wave equation in 2D:


∂2u

∂t 2 (x, t ) = [
µ∆u+ (λ+µ)∇(∇·u)

]
(x, t ), (x, t ) ∈R2 ×R,

u(x,0) = F(x) and
∂u

∂t
(x,0) = 0.

(5.30)

This equation is computed on the box Q = [− L/2,L/2
]2 such that Ω ⊂ Q with

periodic boundary conditions. We use a splitting spectral Fourier approach [43]
coupled with a perfectly matched layer (PML) technique [75] to simulate a free
outgoing interface on ∂Q.

With the notation u = (u1,u2) and x = (x1, x2), the elastic wave equation can
be rewritten as a first order partial differential equation:

∂t P = AP +BP,

where

P =


u1

∂t u1

u2

∂t u2

 , A =


0 1 0 0

(λ+2µ)∂2
x1
+µ∂2

x2
0 0 0

0 0 0 1

0 0 (λ+2µ)∂2
x2
+µ∂2

x1
0

 ,

and

B =


0 0 0 0

0 0 (λ+µ)∂x1∂x2 0

0 0 0 0

(λ+µ)∂x1∂x2 0 0 0

 .
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This equation is integrated via Strang’s splitting method [123]. This splitting ap-
proach is known to be of order 2 and reads

exp
{
−t (A+B)

}
= exp

{
− t

2
B

}
exp

{
−t A

}
exp

{
− t

2
B

}
+o

(
t 2).

The first operator A is then computed exactly in the spatial Fourier space. In-
deed, the Fourier transform of P A(x, t ) = exp

{− At
}
P (x) satisfies

ûA,1(ξ, t ) = cos
(√

ξ2
λ,µ,1t

)
û1(ξ)+ t sinc

(√
ξ2
λ,µ,1t

) �∂t u1(ξ),

à∂t uA,1(ξ, t ) = cos
(√

ξ2
λ,µ,1t

) �∂t u1(ξ)−
√
ξ2
λ,µ,1 sin

(√
ξ2
λ,µ,1t

)
û1(ξ),

ûA,2(ξ, t ) = cos
(√

ξ2
λ,µ,2t

)
û2(ξ)+ t sinc

(√
ξ2
λ,µ,2t

) �∂t u2(ξ),

à∂t uA,2(ξ, t ) = cos
(√

ξ2
λ,µ,2t

) �∂t u2(ξ)−
√
ξ2
λ,µ,2 sin

(√
ξ2
λ,µ,2t

)
û2(ξ),

with

ξ2
λ,µ,1 = 4π2(λ+2µ)ξ2

1 +µξ2
2, ξ2

λ,µ,2 = 4π2(λ+2µ)ξ2
2 +µξ2

1, and sinc(t ) = sin(t )

t
.

The second operator B is also integrated exactly. We have

PB (x, t ) = exp(−B t )P (x) =


u1(x)

∂t u1(x)− t
(
λ+µ)

∂x1∂x2 u2(x)

u2(x)

∂t u2(x)− t
(
λ+µ)

∂x1∂x2 u1(x)

 .

This global algorithm appears to be stable under a classical condition of the form

δt ≤ c(λ,µ)δ2
x ,

where δt and δx denote respectively the time and the spatial step of discretiza-
tion. Here c(λ,µ) is a constant which depends only on Lamé coefficients λ and
µ.

The functional Ĩ (x) requires also a Helmholtz decomposition algorithm. As
the support of the function Ĩ (x) is included in Ω ⊂ Q, we apply a Dirichlet
boundary condition on ∂Q. This decomposition is numerically obtained with a
fast algorithm (see [144]) based on a symmetry principle and a Fourier Helmholtz
decomposition algorithm.

5.2.2.2 EXPERIMENTS

In the sequel, for numerical illustrations, Ω is taken as a unit disk centred at
origin. Its boundary is discretized by 1024 sensors. Each solution of elastic wave
equation is computed over (x, t ) ∈ [−L/2,L/2

]2 × [
0,T

]
with L = 4 and T = 2. We

use a step of discretization given by d t = T /213 and d x = L/29.
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Figure 5.1 presents an experiment with Lamé parameters (λ,µ) = (1,1). The
first line corresponds to the 2 components of initial source F. The second line cor-
responds to the data g(y, t ) = u(y, t ) recorded over (y, t ) ∈ ∂Ω× [0,T ]. Note that the
shear and pressure waves are coupled in the recorded signal and it seems diffi-
cult to separate them. The third line corresponds to the imaging functional I (x).
This example clearly shows that the reconstruction of the source F is not so ac-
curate with classical time-reversal imaging. However, illustrations presented in
the last row, which correspond to the modified imaging functional Ĩ (x), present
a much better (nearly optimal) reconstruction.

Figure 5.2 shows another example with different Lamé parameters (λ,µ) =
(10,1). The same conclusion holds.

In Figure 5.3, we use a less localized (large) source distribution. We observe
some artefacts in the reconstruction of the imaging functional Ĩ . We can also
observe, from the recorded data, that the pressure and shear waves are very
much mixed with each other. We expect that the artefacts in the reconstruction
are the consequence of such coupling. In this situation, we do not have a real
orthogonality between the two waves on ∂Ω !

To conclude, Ĩ provides a better reconstruction of the sources than I . How-
ever, in certain cases, the reconstructions by Ĩ are not optimal and need further
improvements.

5.3 TIME-REVERSAL ALGORITHM FOR A VISCOELASTIC

MEDIUM

In this section, we investigate the inverse source problem in viscoelastic media.
We provide an efficient regularized time-reversal imaging algorithm which cor-
rects the attenuation effect.

Consider the viscoelastic wave equation in an open medium Ω ∈ Rd with
d = 2,3, that is,

(
∂2

∂t 2 −Lλ,µ−
∂

∂t
Lηλ,ηµ

)
ua(x, t ) = dδ0(t )

d t
F(x), x ∈Rd , t ∈R,

ua(x, t ) = ∂ua

∂t
(x, t ) = 0, x ∈Rd , t < 0,

(5.31)

where the viscosity parameters ηµ and ηλ are positive constants and account for
losses in the medium.

Analogous to the acoustic case studied in Chapter 2, the strategy of time
reversal is to consider the functional

Ia(x) =
ˆ T

0
vs,a(x,T )d s, (5.32)
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FIGURE 5.1. Source reconstruction; Comparison between the imaging functionals I and Ĩ

with Lamé coefficients (λ,µ) = (1,1). First line: the source F; Second line: recorded data g(y, t );
Third line: imaging functional I ; Last line: imaging functional Ĩ .
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FIGURE 5.2. Source reconstruction; Comparison between the imaging functionals I and Ĩ

with Lamé constants (λ,µ) = (10,1); First line: the source F; Second line: recorded data g(y, t );
Third line: imaging functional I ; Last line: imaging functional Ĩ .
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FIGURE 5.3. Source reconstruction; Comparison between the imaging functionals I and Ĩ

with Lamé coefficients (λ,µ) = (1,1) and a less localized source than that in Figure 5.1; First line:
the source F; Second line: imaging functional I ; Last line: imaging functional Ĩ .
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where vs,a should be the solution of the adjoint (time-reverted) viscoelastic wave
equation, that is,

(
∂2

∂t 2 −Lλ,µ+
∂

∂t
Lηλ,ηµ

)
vs,a(x, t ) = dδs(t )

d t
ga(x,T − s)δ∂Ω(x), x ∈Rd , t ∈R,

vs(x, t ) = ∂vs

∂t
(x, t ) = 0, x ∈Rd , t < s.

(5.33)

Further, the idea is to enhance image resolution using Ĩa , as in purely elastic
media, where

Ĩa = csH
s[Ia

]+ cpH p[
Ia

]
.

Unfortunately, the adjoint viscoelastic problem (5.33) is severely ill-posed. In-
deed, the frequency component is exponentially increasing due to the presence
of the anti-damping term

(+∂t Lηλ,ηµvs,a
)
, which induces instability. Therefore, we

need to regularize the adjoint problem by suppressing high-frequency compo-
nents either in time or in space.

Let us introduce the outgoing Green tensor Ga,ω associated to the viscoelastic
wave equation(

Lλ,µ− iωLηλ,ηµ +ω2)Ga,ω(x,y) =−δy(x)I, x,y ∈Rd , (5.34)

and let G−a,ω be the adjoint viscoelastic Green tensor, that is, the solution to(
Lλ,µ+ iωLηλ,ηµ +ω2)G−a,ω(x,y) =−δy(x)I, x,y ∈Rd . (5.35)

We introduce an approximation vs,a,ρ of the adjoint wave vs,a by

vs,a,ρ(x, t ) =− 1

2π

ˆ
|ω|≤ρ

{ˆ
∂Ω

iωG−a,ω(x,y)ga(y,T − s)dσ(y)

}
exp

{− iω(t − s)
}
dω,

(5.36)
where ρ ∈ R+ is the cut-off parameter. The regularized time-reversal imaging
functional defined by

Ia,ρ(x) =
ˆ T

0
vs,a,ρ(x,T )d s, (5.37)

can be written as

Ia,ρ(x) =
ˆ
∂Ω

ˆ T

0

∂

∂t
G−a,ρ(x,y,T − s)ga(y,T − s)d s dσ(y), (5.38)

where
G−a,ρ(x,y, t ) = 1

2π

ˆ
|ω|≤ρ

G−a,ω(x,y)exp
{− iωt

}
dω. (5.39)

REMARK 5.3.1. Let S ′ be the space of tempered distributions, i.e., the dual of the
Schwartz space S of rapidly decreasing functions [78]. The function vs,a,ρ(x, t ) can be
identified as the solution of the following wave equation:(

∂2

∂t 2 −Lλ,µ+
∂

∂t
Lηλ,ηµ

)
vs,a,ρ(x, t ) = Sρ

[
dδs(t )

d t

]
ga(x,T − s)δ∂Ω(x), (5.40)
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where the operator Sρ is defined on the space S ′ by

Sρ
[
ψ

]
(t ) = 1

2π

ˆ
|ω|≤ρ

exp
{− iωt

}
ψ̂(ω)dω, (5.41)

with
ψ̂(ω) =

ˆ
R

ψ(t )exp
{
iωt

}
d t . (5.42)

5.3.1 GREEN TENSOR IN VISCOELASTIC MEDIA

As in Section 5.2, we decompose G±a,ω in the form

G±a,ω =Gs
±a,ω+Gp

±a,ω, (5.43)

where Gs
±a,ω and Gp

±a,ω are respectively the fundamental solutions of(
Lλ,µ∓ iωLηλ,ηµ +ω2)Gα±a,ω(x,y) =H α

[−δyI
]

, α= p, s. (5.44)

Let us also introduce the decomposition of the operator Lλ,µ into shear and
pressure components as

Lλ,µ =L s
λ,µ+L

p
λ,µ, and Lηλ,ηµ =L s

ηλ,ηµ +L
p
ηλ,ηµ , (5.45)

where
L s
λ,µu = c2

s

[
∆u−∇(∇·u)

]
and L

p
λ,µu = c2

p∇(∇·u), (5.46)

and
L s
ηλ,ηµu = ν2

s

[
∆u−∇(∇·u)

]
and L

p
ηλ,ηµu = ν2

p∇(∇·u). (5.47)

Here, ν2
s = ηµ and ν2

p = ηλ+2ηµ. Therefore, the tensors Gs
±a,ω and G

p
±a,ω can also

be seen as the solutions of(
L α
λ,µ∓ iωL α

ηλ,ηµ +ω2
)
Gα±a,ω(x,y) =H α

[−δyI
]
(x), α= p, s. (5.48)

The corrected regularized time-reversal imaging functional defined by

Ĩa,ρ = csH
s [

Ia,ρ
]+ cpH p [

Ia,ρ
]

, (5.49)

is then given by

Ĩa,ρ(x) =
ˆ
∂Ω

ˆ T

0

∂

∂t

[
cpG

p
−a,ρ(x,y,T−s)+csG

s
−a,ρ(x,y,T−s)

]
ga(y,T−s)d s dσ(y), (5.50)

where
Gα−a,ρ(x,y, t ) = 1

2π

ˆ
|ω|≤ρ

Gα−a,ω(x,y)exp
{− iωt

}
dω, α= p, s. (5.51)

In the next subsection we express the relationship between the data ga and
the ideal measurements g obtained in the non-attenuated case. By doing so, we
prove with the help of a new Helmholtz-Kirchhoff identity that a regularized
image of the source F can be obtained.
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5.3.2 ATTENUATION OPERATOR AND ITS ASYMPTOTICS

Recall that u and ua are respectively the solutions of the wave equations

∂2u

∂t 2 (x, t )−Lλ,µu(x, t ) = dδ0(t )

d t
F(x), (5.52)

and
∂2ua

∂t 2 (x, t )−Lλ,µua(x, t )− ∂

∂t
Lηλ,ηµua(x, t ) = dδ0(t )

d t
F(x), (5.53)

with the initial conditions

u(x, t ) = ua(x, t ) = 0,
∂u

∂t
(x, t ) = ∂ua

∂t
(x, t ) = 0, t ¿ 0. (5.54)

We decompose u and ua as u = us +up =H s
[
u
]+H p

[
u
]

ua = us
a +up

a =H s
[
ua

]+H p
[
ua

]
.

(5.55)

The Fourier transforms uαω and uαa,ω of the vector functions uα and uαa are respec-
tively solutions of(

ω2 +L α
λ,µ

)
uαω = iωH α

[
F
]

and
(
κα(ω)2 +L α

λ,µ

)
uαa,ω = i

κα(ω)2

ω
H α

[
F
]
, (5.56)

where
κα(ω) = ω√

1− iων2
α/c2

α

, α= p, s. (5.57)

In particular, it implies that

us
a =Aν2

s /c2
s

[
us] and up

a =Aν2
p /c2

p

[
up]

, (5.58)

where Aa , for a > 0, is the attenuation operator

Aa
[
φ

]
(t ) = 1

2π

ˆ
R

κa(ω)

ω

{ˆ
R

φ(s)exp
{
iκa(ω)s

}
d s

}
exp

{− iωt
}
dω, (5.59)

with κa(ω) = ωp
1− iωa

.

We also define the operator A−a,ρ by

A−a,ρ
[
φ

]
(t ) = 1

2π

ˆ
R+
φ(s)

{ˆ
|ω|≤ρ

κ−a(ω)

ω
exp

{
iκ−a(ω)s

}
exp

{− iωt
}
dω

}
d s, (5.60)

which is associated with κ−a(ω) = ωp
1+ iωa

. Moreover, its adjoint operator A ∗−a,ρ

reads

A ∗
−a,ρ

[
φ

]
(t ) = 1

2π

ˆ
|ω|≤ρ

κ−a(ω)

ω
exp

{
iκ−a(ω)t

}{ˆ
R+
φ(s)exp

{− iωs
}
d s

}
dω. (5.61)

Then, we have following results from Chapters 1 and 2.
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PROPOSITION 5.3.2.

• Let φ(t ) ∈S
(
[0,∞)

)
, S being the Schwartz space. Then

Aa
[
φ

]
(t ) =φ(t )+ a

2

(
tφ′)′ (t )+o(a) as a → 0. (5.62)

• Let φ(t ) ∈ D
(
[0,∞)

)
, where D

(
[0,∞)

)
is the space of C ∞-functions of compact

support on [0,∞). Then, for all ρ,

A ∗
−a,ρ

[
φ

]
(t ) = Sρ

[
φ

]
(t )− a

2
Sρ

[(
tφ′)′] (t )+o(a) as a → 0. (5.63)

• Let φ(t ) ∈D
(
[0,∞)

)
. Then, for all ρ,

A ∗
−a,ρAa

[
φ

]
(t ) = Sρ

[
φ

]
(t )+o(a) as a → 0. (5.64)

We extend the operators Aa , A−a,ρ and A ∗−a,ρ to tensors G, that is, for all
vectors p ∈Rd ,

Aa
[
Gp

]=Aa
[
G

]
p, A−a,ρ

[
Gp

]=A−a,ρ
[
G

]
p, and A ∗

−a,ρ

[
Gp

]=A ∗
−a,ρ [G]p.

By the definition of the operators Aa and A−a,ρ , we have for α= p, s:

∂Gαa
∂t

(x,y, t ) = Aν2
α/c2

α

[
∂Gα

∂t
(x,y, ·)

]
(t ), (5.65)

∂Gα−a,ρ

∂t
(x,y, t ) = A−ν2

α/c2
α,ρ

[
∂Gα

∂t
(x,y, ·)

]
(t ). (5.66)

Recall that g = u and ga = ua on ∂Ω×R. It then follows from (5.58) for α= p, s,

that:

A ∗
−ν2

α/c2
α,ρ

Aν2
α/c2

α

[
gαa

]= Sρ
[
gα

]+o

(
ν2
α

c2
α

)
, (5.67)

where
gαa =H α

[
ga

]
, gα =H α

[
g
]

. (5.68)

Identity (5.67) proves that A ∗
−ν2

α/c2
α,ρ

is an approximate inverse of Aν2
α/c2

α
. More-

over, it plays a key role in showing that the regularized time reversal algorithm
provides a first order correction to the attenuation effect.

5.3.3 HELMHOLTZ-KIRCHHOFF IDENTITY IN VISCOELASTIC MEDIA

In this subsection, we derive a new Helmholtz-Kirchhoff identity in elastic at-

tenuating media. For doing so, let us introduce the conormal derivatives
∂u

∂νa

and
∂u

∂ν−a
as follows:

∂u

∂ν±a
:=

(
λ(∇·u)n+µ(∇uT +(∇uT )T )

n
)
∓iω

[
ηλ(∇·u)n+ηµ

(∇uT +(∇uT )T )
n
]

. (5.69)
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Note also that for a tensor G the conormal derivative
∂G

∂ν±a
means that for all

constant vectors p, [
∂G

∂ν±a

]
p := ∂

[
Gp

]
∂ν±a

. (5.70)

The following properties hold.

PROPOSITION 5.3.3. For all x,z ∈Ω, we have

ˆ
∂Ω

∂Gs−a,ω(x,y)

∂ν−a
G

p
a,ω(y,z)−Gs

−a,ω(x,y)
∂G

p
a,ω(y,z)

∂νa

 dσ(y) = 0. (5.71)

Proof. Note that

J :=
ˆ
∂Ω

∂Gs−a,ω(x,y)

∂ν−a
G

p
a,ω(y,z)−Gs

−a,ω(x,y)
∂G

p
a,ω(y,z)

∂νa

dσ(y)

=
ˆ
∂Ω

∂Gs−a,ω(x,y)

∂ν−a
G

p
a,ω(y,z)−Gs

−a,ω(x,y)
∂G

p
a,ω(y,z)

∂ν−a

dσ(y)

=
ˆ
Ω

[
Lλ,µG

s
−a,ω(x,y)+ iωLηλ,ηµG

s
−a,ω(x,y)

]
G

p
a,ω(y,z)dy

−
ˆ
Ω

Gs
−a,ω(x,y)

[
Lλ,µG

p
a,ω(y,z)+ iωLηλ,ηµG

p
a,ω(y,z)

]
dy,

=
ˆ
Ω

[
Lλ,µG

s
−a,ω(x,y)+ iωLηλ,ηµG

s
−a,ω(x,y)

]
G

p
a,ω(y,z)dy

−
ˆ
Ω

Gs
−a,ω(x,y)

[
Lλ,µG

p
a,ω(y,z)− iωLηλ,ηµG

p
a,ω(y,z)

]
dy.

Since Gp
a,ω(x,y) and Gs−a,ω(x,y) are solutions of equations (5.44) with α = p, s,

respectively, it follows that

J =
[
H s [−δ0I]∗Gp

a,ω(·,z)
]

(x)−
[
Gs
−a,ω(x, ·)∗H p [−δ0I]

]
(z).

As in the proof of Proposition 5.2.2 one can show that

[
H s [−δ0I]∗Gp

a,ω(·,z)
]

(x) = 0 and
[
Gs
−a,ω(x, ·)∗H p [−δ0I]

]
(z) = 0,

which completes the proof of the proposition.

We now give an approximation of the attenuating co-normal derivative.
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PROPOSITION 5.3.4. If n = �y−x, then for α= p, s, we have

∂Gα±a,ω(x,y)

∂ν±a
' i cαω2

κα∓(ω)
Gα±a,ω(x,y), (5.72)

where
κα∓(ω) = ω√

1∓ iων2
α/c2

α

. (5.73)

Proof. Indeed, notice that

Gα±a,ω(x,y) =
[
κα∓(ω)

ω

]2

Gακα∓(ω)(x,y), α= p, s, (5.74)

where Gαω are the ideal Green functions. Then, from Proposition 5.2.4, we obtain

∂Gα±a,ω(x,y)

∂ν±a
'

[
κα∓(ω)

ω

]2 ((
i c2
α

κα∓(ω)

cα
Gακα∓(ω)(x,y)

)
∓ iω

(
iν2

α

κα∓(ω)

cα
Gακα∓(ω)(x,y)

))

'
[

i cακ
α
∓(ω)

(
1∓ iω

ν2
α

c2
α

)]
Gα±a,ω(x,y)

' i cαω2

κα∓(ω)
Gα±a,ω(x,y).

In particular, the following estimate holds as a direct consequence of Propo-
sitions 5.3.3 and 5.3.4.

PROPOSITION 5.3.5. Let Ω ⊂ Rd be a ball with large (with respect to wavelength)
radius. Then for all x,z ∈Ω sufficiently far from boundary ∂Ω, we have

ℜe

{ˆ
∂Ω

Gs
−a,ω(x,y)Gp

a,ω(y,z)dσ(y)

}
' 0,

ℜe

{ˆ
∂Ω

G
p
−a,ω(x,y)Gs

a,ω(y,z)dσ(y)

}
' 0.

(5.75)

5.3.4 ANALYSIS OF THE REGULARIZED TIME REVERSAL IMAGING

ALGORITHM

The aim of this subsection is to justify that the regularized time-reversal imaging
functional Ĩa,ρ provides a correction of the attenuation effect.

THEOREM 5.3.6. The regularized time-reversal imaging functional Ĩa,ρ satisfies

Ĩa,ρ(x) = Ĩρ(x)+o
(
ν2

s /c2
s +ν2

p /c2
p

)
, (5.76)

Ĩρ(x) :=
ˆ
∂Ω

ˆ T

0

[
cs
∂

∂t
Gs(x,y, s)+ cp

∂

∂t
Gp (x,y, s)

]
Sρ

[
g(y, ·)] (s)d s dσ(y), (5.77)

where Sρ is defined by (5.41).
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Proof. We can decompose the functional Ĩa,ρ as follows:

Ĩa,ρ(x) =
ˆ
∂Ω

ˆ T

0

∂

∂t

[
cpG

p
−a,ρ(x,y,T − s)+ csG

s
−a,ρ(x,y,T − s)

]
ga(y,T − s)d s dσ(y)

=
ˆ
∂Ω

ˆ T

0

∂

∂t

[
cpG

p
−a,ρ(x,y, s)+ csG

s
−a,ρ(x,y, s)

](
gs

a(y, s)+gp
a (y, s)

)
d s dσ(y)

= I ss
a,ρ(x)+I

sp
a,ρ(x)+I

ps
a,ρ(x)+I

pp
a,ρ (x),

where

I
αβ
a,ρ (x) =

ˆ
∂Ω

ˆ T

0

∂

∂t

[
cαG

α
−a,ρ(x,y, s)

]
gβa (y, s)d s dσ(y), α,β ∈ {

p, s
}
.

Similarly we can decompose the functional Ĩρ as

Ĩρ(x) =I ss
ρ (x)+I

sp
ρ (x)+I

ps
ρ (x)+I

pp
ρ (x),

with

I
αβ
ρ (x) =

ˆ
∂Ω

ˆ T

0

∂

∂t

[
cαG

α(x,y, s)
]

Sρ
[

gβ(y, ·)
]

(s)d s dσ(y), α,β ∈ {p, s}.

The first term I ss
a,ρ(x) satisfies

I ss
a,ρ(x) =

ˆ
∂Ω

ˆ T

0
A−ν2

s /c2
s ,ρ

[
∂

∂t

(
csG

s(x,y, s)
)]

Aν2
s /c2

s

[
gs(y, ·)

]
(s)d s dσ(y)

=
ˆ
∂Ω

ˆ T

0

∂

∂t

(
csG

s(x,y, s)
)
A ∗

−ν2
s /c2

s ,ρ

[
Aν2

s /c2
s

[
gs(y, ·)

]]
(s)d s dσ(y)

=
ˆ
∂Ω

ˆ T

0

∂

∂t

[
csG

s(x,y, s)
]

Sρ
[

gs(y, ·)
]

(s)d s dσ(y)+o
(
ν2

s /c2
s

)
= I ss

ρ (x)+o
(
ν2

s /c2
s

)
,

by using Proposition 5.3.2. Similarly, we get

I
pp

a,ρ (x) =I
pp
ρ (x)+o

(
ν2

p /c2
p

)
.

Moreover, the coupling terms I
sp

a,ρ and I
ps

a,ρ vanish. Indeed, due to Proposition
5.3.5, we have

I
sp

a,ρ(x) = 1

2π

ˆ
Rd

ˆ
|ω|<ρ

ω2
[ˆ

∂Ω

[
csG

s
−a,ω(x,y)

]
G

p
a,ω(y,z)dσ(y)

]
dωF(z)dz ' 0,

I
ps

a,ρ(x) = 1

2π

ˆ
Rd

ˆ
|ω|<ρ

ω2
[ˆ

∂Ω

[
cpG

p
−a,ω(x,y)

]
Gs

a,ω(y,z)dσ(y)

]
dωF(z)dz ' 0.
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Proposition 5.2.5 shows that we also have

I
sp
ρ (x) = 1

2π

ˆ
Rd

ˆ
|ω|<ρ

ω2
[ˆ

∂Ω

[
csG

s
ω(x,y)

]
G

p
ω(y,z)dσ(y)

]
dωF(z)dz ' 0,

I
ps
ρ (x) = 1

2π

ˆ
Rd

ˆ
|ω|<ρ

ω2
[ˆ

∂Ω

[
cpG

p
ω(x,y)

]
Gs
ω(y,z)dσ(y)

]
dωF(z)dz ' 0,

which concludes the proof.

It is straightforward to check that

Ĩρ(x)
ρ→∞−→ Ĩ (x) ' F(x), (5.78)

by Theorem 5.2.6. Therefore, Ĩa,ρ provides a first-order correction in terms
of ν2

s /c2
s + ν2

p /c2
p of the attenuation effect. Moreover, the imaging functional

Ĩa,ρ can be seen as the time-reversal functional Ĩ defined by (5.7) applied to
A ∗

−ν2
α/c2

α,ρ

[
gαa

]
, α= p, s. As shown in (5.64), the regularized operators A ∗−a,ρ give

a first-order approximation of the inverse of Aa for a = ν2
α/c2

α. It would be very
interesting to construct higher-order reconstructions in terms of the attenuation
effect using higher-order approximations of the inverse of the operator Aa . The
problem is more challenging than the one discussed in Chapter 2 for the scalar
case because of the coupling between the shear and pressure components. Note
finally that, if one applies the time-reversal functional Ĩ to the data ga directly,
then one finds

Ĩ (x) =
ˆ
∂Ω

ˆ T

0

∂

∂t

[
cpG

p (x,y, s)+ csG
s(x,y, s)

]
ga(y, s)d s dσ(y)

= 1

2π

ˆ
Rd

ˆ
R

ω2
[ˆ

∂Ω

[
cpG

p
ω(x,y)+ csG

s
ω(x,y)

]
Ga,ω(y,z)dσ(y)

]
dωF(z)dz, (5.79)

which gives an error of the order of ν2
s /c2

s +ν2
p /c2

p as can be seen from the expan-
sion (5.62).

As discussed in Chapter 2, the choice of the cut-off parameter ρ is based
on the trade off between image resolution and stability. On one hand, ρ must
be selected large enough for good resolution. On the other hand, for the sta-
bility of the reconstruction, it is required not to be too large. In acoustic case(
a diam(Ω)

)−1/2 serves as a threshold for ρ in order to ensure stability, where diam

is the diameter (cf. Remark 2.3.6). A reasonable threshold cut-off frequency ρ in
elastic case can accordingly be

(
max

(
v2

s /c2
s , v2

p /c2
p

)
diam(Ω)

)−1/2.

5.3.5 NUMERICAL SIMULATIONS

In this section we present numerical illustrations and describe our algorithms for
numerical resolution of the source problem to show that Ĩa,ρ provides a better
reconstruction than Ĩ , where the attenuation effect is not taken into account.
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5.3.5.1 DESCRIPTION OF THE ALGORITHM

In the expression of Ĩa,ρ , the solution vs,a,ρ(x, t ) is very difficult to obtain nu-
merically. Therefore, we prefer to regularize the problem by truncating high-
frequency components in space instead of time, in contrast with our theoretical
analysis. This can be seen as an approximation ṽs,a,ρ(x, t ) of vs,a,ρ(x, t ) defined as
the solution of

∂2ṽs,a,ρ

∂t 2 (x, t )−Lλ,µṽs,a,ρ(x, t )+ ∂

∂t
Lηλ,ηµ ṽs,a,ρ(x, t ) = ∂δs(t )

∂t
Xρ

[
ga(·,T − s)δ∂Ω

]
(x),

where the operator Xρ is defined by

Xρ

[
ga(·,T − s)δ∂Ω

]
(x) =

ˆ
|k|≤ρ

[ˆ
∂Ω

ga(y,T − s)e−2iπk·y dσ(y)

]
e2iπk·xdk.

The operator Xρ , as the operator Sρ , truncates high frequencies but in the space
variable.

To compute the solution of the viscoelastic wave equation in two dimensions

∂2ua

∂t 2 (x, t )−Lλ,µua(x, t )±Lηλ,ηµua(x, t ) = 0,

we use the same algorithm as for the non-attenuated case, that is, we use a large
box Ω⊂Q = [−L/2,L/2

]2 with periodic boundary condition and again a splitting
spectral Fourier approach coupled with a PML technique to simulate a free out-
going interface on ∂Q.

5.3.5.2 EXPERIMENTS

In the sequel, for numerical illustrations, Ω is taken to be a unit disk centered at
origin. Its boundary is discretized by 211 sensors. Each solution of elastic wave
equation is computed over (x, t ) ∈ [−L/2,L/2]2 × [0,T ] with L = 4 and T = 2. We
use a step of discretization given by d t = T /213 and d x = L/29.

Figure 5.4 presents a first experiment with Lamé parameters (λ,µ) = (1,1)

and attenuation coefficients (ηλ,ηµ) = (0.0002,0.0002). The first line corresponds
to the two components of the initial source F. The second line corresponds to
the reconstruction of F without taking into account the attenuation effect. The
imaging functional Ĩ (x) appears to be blurred due to the coupling effects. The
last three lines correspond to reconstructions of F using the imaging functional
Ĩa,ρ with different values of ρ. We clearly observe a better reconstruction of
the source F than by using the functional Ĩ provided that the regularization
parameter ρ is chosen appropriately large in order to ensure the good resolution
of the reconstruction.

Figures 5.5 and 5.6 present two other examples of reconstruction using Ĩa,ρ .
The same observation holds.
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FIGURE 5.4. Comparison between Ĩ and Ĩa,ρ in a viscoelastic medium; The parameters are
(λ,µ) = (1,1) and (ν2

s /c2
s ,ν2

p /c2
p ) = (0.0002,0.0002); First line: initial condition; Second line:

without correction of attenuation; Last lines: using Ĩa,ρ with respectively: ρ = 15,20,25.
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FIGURE 5.5. Comparison between Ĩ and Ĩa,ρ in a viscoelastic medium; The parameters are
(λ,µ) = (1,1) and (ν2

s /c2
s ,ν2

p /c2
p ) = (0.00005,0.00005); First line: initial condition; Second line:

without correction of attenuation; Last lines: using Ĩa,ρ with respectively: ρ = 15,20,25.
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FIGURE 5.6. Comparison between Ĩ and Ĩa,ρ in a viscoelastic medium; The parameters are
(λ,µ) = (1,1) and

(
ηλ,ηµ

) = (
0.00005,0.00005

)
; First line: initial source F; Second line: re-

construction of F using Ĩ ; Three last lines: reconstruction of source F by using Ĩa,ρ with
respectively: ρ = 25,30,35.
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6 SOME ANISOTROPIC VISCOELASTIC

GREEN FUNCTIONS

6.1 INTRODUCTION

Numerous applications in biomedical imaging [7, 28], seismology [3, 45], ex-
ploration geophysics [76, 77], material sciences [5, 27] and engineering sciences
[2, 35, 88] have fueled research and development in theory of elasticity. Elastic
properties and attributes have gained interest in the recent decades as a diag-
nostic tool for non-invasive imaging [71, 113]. Their high correlation with the
pathology and the underlying structure of soft tissues has inspired many in-
vestigations in biomedical imaging and led to many interesting mathematical
problems [18, 21, 22, 23, 24, 36, 118, 119].

Biological materials are often assumed to be isotropic and inviscid with re-
spect to elastic deformation. However, several recent studies indicate that many
soft tissues exhibit anisotropic and viscoelastic behavior [70, 97, 102, 118, 119,
148]. Sinkus et al. have inferred in [118] that breast tumor tends to be anisotropic,
while Weaver et al. [143] have provided an evidence that even non cancerous
breast tissue is anisotropic. White matter in brain [97] and cortical bones [148]
also exhibit similar behavior. Moreover, it has been observed that the shear ve-
locities parallel and orthogonal to the fiber direction in forearm [102] and biceps
[70] are different. This indicates that the skeletal muscles with directional struc-
ture are actually anisotropic. Thus, an assumption of isotropy can lead to erro-
neous forward-modeled wave synthetics, while an estimation of viscosity can
be very useful in characterization and identification of anomaly [36].

A possible approach to handle viscosity effects on image reconstruction has
been proposed in Chapter 4, using stationary phase theorem. It is shown that
the ideal Green function (in an inviscid regime) can be approximated from the
viscous one by solving an ordinary differential equation. Once the ideal Green
function is known one can identify a possible anomaly using imaging algo-
rithms such as time reversal, back-propagation, Kirchhoff migration or MUSIC
[7, 18, 25, 28]. One can also find the elastic moduli of the anomaly using the

133
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asymptotic formalism and reconstructing a certain polarization tensor in the far
field [23, 25, 26, 27].

The importance of Green function stems from its role as a tool for the numer-
ical and asymptotic techniques in biomedical imaging. Many inverse problems
involving the estimation and acquisition of elastic parameters become tractable
once the associated Green function is computed [6, 18, 25]. Several attempts
have been made to compute Green functions in purely elastic and/or isotropic
regime. (See, for instance, [36, 42, 45, 105, 136, 137, 138] and references therein).
However, it is not possible to give a closed form expression of the elastic Green
function for general anisotropic media without imposing certain restrictions. In
this chapter, we provide anisotropic viscoelastic Green function in closed form
for three particular anisotropic media.

The elastodynamic Green function in isotropic media is calculated by sepa-
rating wave modes using Helmholtz decomposition of the elastic wavefield [3,
36, 39]. Unfortunately, this simple approach does not work in anisotropic media,
where three different waves propagate with different phase velocities and po-
larization directions [35, 45, 48]. A polarization direction of quasi-longitudinal
wave that differs from that of wave vector, impedes Helmholtz decomposition
to completely separate wave modes [57].

The phase velocities and polarization vectors are the eigenvalues and eigen-
vectors of the Christoffel tensor Γ associated with the medium. So, the wave-
field can always be decomposed using the spectral basis of Γ. Based on this
observation, Burridge et al. [42] proposed a new approach to calculate elastody-
namic Green functions. Their approach consists of finding the eigenvalues and
eigenvectors of the Christoffel tensor Γ(∇x ) using the duality between algebraic
and differential objects. Then, it is possible to express the Green function G in
terms of three scalar functions φi satisfying partial differential equations with
constant coefficients. Consequently, the problem of computing G reduces to the
resolution of three differential equations for φi and of three subsequent equa-
tions (which may or may not be differential equations) with φi as source terms.
(cf. Section 6.2.3)

Finding the closed form expressions of the eigenvalues of the Christoffel ten-
sor Γ is usually not so trivial because its characteristic equation is a polyno-
mial of degree six in the components of its argument vector. However, with
some restrictions on the material, roots of the characteristic equation can be
given [105]. In this chapter, we consider three different media for which not
only the explicit expressions of the eigenvalues of Γ are known [42, 138], but
they are also quadratic homogeneous forms, in the components of the argument
vector. As a consequence, equations satisfied by φi become scalar wave equa-
tions. Following Burridge et al. [42], we find the viscoelastic Green functions
for each medium. It is important to note that the elastodynamic Green function
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in a purely elastic regime, for the media under consideration, are well known
[42, 138]. Also, the expression of the Green function for viscoelastic isotropic
medium, which is computed as a special case, matches the one provided in
Chapter 4.

In this work, we consider the general model proposed by Szabo and Wu in
[128], to describe the viscosity response of soft tissues to low frequency exci-
tations. We present some mathematical notions, theme and the outlines of the
chapter in the next section.

6.2 MATHEMATICAL CONTEXT AND CHAPTER OUTLINES

6.2.1 VISCOELASTIC WAVE EQUATION

Consider an open subset Ω of R3, filled with a homogeneous anisotropic vis-
coelastic material. Let

u(x, t ) :Ω×R+ →R3

be the displacement field at time t of the material particle at position x ∈Ω and
∇x u(x, t ) be its gradient.

Under the assumptions of linearity and small perturbations, we define the
order two strain tensor by

ε : (x, t ) ∈Ω×R+ 7−→ 1

2

(∇x u+∇x uT )
(x, t ), (6.1)

where the superscript T indicates a transpose operation.
Let C ∈ L 2

s (R3) and V ∈ L 2
s (R3) be the stiffness and viscosity tensors of the

material respectively. Here L 2
s (R3) is the space of symmetric tensors of order

four. These tensors are assumed to be positive definite, i.e. there exist constants
βc ,βv > 0 such that

(C : ξ) : ξ≥βc |ξ|2 and (V : ξ) : ξ≥βv |ξ|2, ∀ξ ∈Ls(R3),

where Ls(R3) denotes the space of symmetric tensors of order two.
The generalized Hooke’s Law [128] for the power law media states that the

stress distribution

σ :Ω×R+ →Ls(R3)

produced by deformation ε, satisfies:

σ= C : ε+V : A
[
ε
]

(6.2)
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where A is an attenuation operator defined as

A [ϕ] =



−(−1)γ/2 ∂
γ−1ϕ

∂tγ−1 γ is an even integer,

2

π
(γ−1)!(−1)(γ+1)/2

[
H(t )

tγ

]
∗t ϕ γ is an odd integer,

− 2

π
Γ(γ)sin

(γπ
2

)[
H(t )

|t |γ
]
∗t ϕ γ is a non integer.

(6.3)

Note that by convention,

A
[
u
]

i =A
[
ui

]
and A

[
ε
]

i j =A
[
εi j

]
1 ≤ i , j ≤ 3.

Here H(t ) is the Heaviside function, Γ is the gamma function and ∗t represents
convolution with respect to variable t . See [4, 44, 82, 127, 128, 131] for compre-
hensive details and discussion on fractional attenuation models, causality and
the loss operator A .

The viscoelastic wave equation satisfied by the displacement field u(x, t ) reads
now

ρ
∂2u

∂t 2 −F = ∇x ·σ=∇x ·
(
C : ε+V : A

[
ε
])

,

where F(x, t ) is the applied force and ρ is the density (supposed to be constant)
of the material.

REMARK 6.2.1. For quadratic frequency losses, i.e, when γ = 2, operator A reduces
to a first order time derivative. Therefore, power-law attenuation model (6.2) turns out
to be the Voigt model in this case.

6.2.2 SPECTRAL DECOMPOSITION USING CHRISTOFFEL TENSORS

We introduce now the Christoffel tensors Γc ,Γv : R3 → Ls(R3) associated respec-
tively with C and V defined by:

Γc
i j (n) =

3∑
k,l=1

Cki l j nk n j , Γv
i j (n) =

3∑
k,l=1

Vki l j nk n j , ∀n ∈R3, 1 ≤ i , j ≤ 3.

Remark that the viscoelastic wave equation can be rewritten in terms of the
Christoffel tensors as :

ρ
∂2u

∂t 2 −F = Γc[∇x
]
u+Γv[∇x

]
A

[
u
]
. (6.4)

Note also that Γc and Γv are symmetric and positive definite, indeed, as C and V

are already symmetric positive definite.
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Let Lc
i be the eigenvalues and Dc

i be the associated eigenvectors of Γc for
i = 1,2,3. We define the quantities M c

i and Ec
i by

M c
i = Dc

i ·Dc
i , and Ec

i = (M c
i )−1Dc

i �Dc
i . (6.5)

As Γc is symmetric, the eigenvectors Dc
i are orthogonal and the spectral de-

composition of the Christoffel tensor Γc can be given as:

Γc =
3∑

i=1
Lc

i Ec
i with I =

3∑
i=1

Ec
i (6.6)

where I ∈Ls(R3) is the identity tensor.
Similarly, consider Γv the Christoffel tensor associated with V and define the

quantities Lv
i , Dv

i , M v
i and Ev

i analogously such that

Γv =
3∑

i=1
Lv

i Ev
i with I =

3∑
i=1

Ev
i . (6.7)

We assume that the tensors Γc and Γv have the same structure in the sense
that the eigenvectors Dc

i and Dv
i are equal ( see Remark 6.3.3). In the sequel, we

use D instead of Dc or Dv and similar for E and M , by abuse of notation.

6.2.3 CHAPTER OUTLINE

The aim of this work is to compute the elastodynamic Green function G associ-
ated to viscoelastic wave equation (6.4). More precisely, G is the solution of the
equation (

Γc[∇x
]
G(x, t )+Γv[∇x

]
A

[
G

]
(x, t )

)
−ρ∂

2G(x, t )

∂t 2 = δ(t )δ(x)I, (6.8)

The idea is to use the spectral decomposition of G of the form

G =
3∑

i=1
Ei (∇x )φi =

3∑
i=1

(
Di �Di

)
M−1

i φi , (6.9)

where φi are three scalar functions satisfying(
Lc

i (∇x )φi +Lv
i (∇x )A

[
φi

])
−ρ∂

2φi

∂t 2 = δ(t )δ(x). (6.10)

We refer to Appendix 6.A for a brief description of this decomposition and [42]
for a complete analysis.

Therefore, to obtain an expression of G, we need to

1- solve three partial differential equations (6.10) in φi

2- solve subsequent equations

ψi = M−1
i φi (6.11)
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3- calculate second order derivatives of ψi in order to compute

(Di �Di )ψi

In the following section, we give simple examples of anisotropic media which
satisfy some restrictive properties (including Dc = Dv ) and assumptions (see
Subsection 6.3.4.2) defining the limits of our approach. In Section 6.4, we derive
the solutions φi of equations (6.10). In Section 6.5, we give an explicit resolution
of ψi = M−1

i φi and (Di ⊗Di )ψi . Finally, in the last section, we compute the Green
functions for three simple anisotropic media.

6.3 SOME SIMPLE ANISOTROPIC VISCOELASTIC MEDIA

In this section, we present three viscoelastic media with simple type of anisotropy.
We also describe some important properties of the media and our basic assump-
tions in this chapter.

DEFINITION 6.3.1. We will call a tensor c = (cmn) ∈Ls(R6) the Voigt representation
of an order four tensor C ∈L 2

s (R3) if

cmn = cp(i , j )p(k,l ) =Ci j kl 1 ≤ i , j ,k, l ≤ 3

where

p(i , i ) = i , p(i , j ) = p( j , i ), p(2,3) = 4, p(1,3) = 5, p(1,2) = 6.

We will use c and v for the Voigt representations of stiffness tensor C and
viscosity tensor V respectively and let c and v to have a same structure. For
each media, the expressions for Γc , Lc

i (∇x ), Dc
i (∇x ) and M c

i (∇x ) are provided [42,
138]. Throughout this section, µpq will assume the value cpq for c and vpq for
v where the subscripts p, q ∈ {1,2, · · · ,6}. Moreover, we assume that the axes of
the material are identical with the Cartesian coordinate axes e1,e2 and e3 and

∂i = ∂

∂xi
.

6.3.1 MEDIUM I

First medium for which we present a closed form elastodynamic Green function
is an orthorhombic medium with the tensors c and v of the form:

µ11 −µ66 −µ55 0 0 0

−µ66 µ22 −µ44 0 0 0

−µ55 −µ44 µ33 0 0 0

0 0 0 µ44 0 0

0 0 0 0 µ55 0

0 0 0 0 0 µ66


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The Christoffel tensor is given by

Γc =

c11∂
2
1 + c66∂

2
2 + c55∂

2
3 0 0

0 c66∂
2
1 + c22∂

2
2 + c44∂

2
3 0

0 0 c55∂
2
1 + c44∂

2
2 + c33∂

2
3


Its eigenvalues Lc

i (∇x ) and the associated eigenvectors Dc
i (∇x ) are:

Lc
1(∇x ) = c11∂

2
1 + c66∂

2
2 + c55∂

2
3

Lc
2(∇x ) = c66∂

2
1 + c22∂

2
2 + c44∂

2
3

Lc
3(∇x ) = c55∂

2
1 + c44∂

2
2 + c33∂

2
3

Dc
i = ei with M c

i = 1 ∀i = 1,2,3

6.3.2 MEDIUM II

Second medium which we consider is a transversely isotropic medium having
symmetry axis along e3 and defined by the stiffness and the viscosity tensors c

and v of the form: 

µ11 µ12 −µ44 0 0 0

µ12 µ11 −µ44 0 0 0

−µ44 −µ44 µ33 0 0 0

0 0 0 µ44 0 0

0 0 0 0 µ44 0

0 0 0 0 0 µ66


with µ66 = (µ11 −µ12)/2. Here

Γc =

c11∂
2
1 + c66∂

2
2 + c44∂

2
3 (c11 − c66)∂1∂2 0

(c11 − c66)∂1∂2 c66∂
2
1 + c11∂

2
2 + c44∂

2
3 0

0 0 c44∂
2
1 + c44∂

2
2 + c33∂

2
3


The eigenvalues Lc

i (∇x ) of Γc (∇x ) in this case are

Lc
1(∇x ) = c44∂

2
1 + c44∂

2
2 + c33∂

2
3

Lc
2(∇x ) = c11∂

2
1 + c11∂

2
2 + c44∂

2
3

Lc
3(∇x ) = c66∂

2
1 + c66∂

2
2 + c44∂

2
3

and the associated eigenvectors Dc
i (∇x ) are:

Dc
1 =

0

0

1

 , Dc
2 =

∂1

∂2

0

 , Dc
3 =

 ∂2

−∂1

0

 .

Thus M c
1 = 1, and M c

2 = M c
3 = ∂2

1 +∂2
2
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6.3.3 MEDIUM III

Finally, we will present the elastodynamic Green function for another trans-
versely isotropic media with the axis of symmetry along e3 and having c and
v of the form: 

µ11 µ11 −2µ66 µ11 −2µ44 0 0 0

µ11 −2µ66 µ11 µ11 −2µ44 0 0 0

µ11 −2µ44 µ11 −2µ44 µ11 0 0 0

0 0 0 µ44 0 0

0 0 0 0 µ44 0

0 0 0 0 0 µ66


The Christoffel tensor in this case is

Γc =

c11∂
2
1 + c66∂

2
2 + c44∂

2
3 (c11 − c66)∂1∂2 (c11 − c44)∂1∂3

(c11 − c66)∂1∂2 c66∂
2
1 + c11∂

2
2 + c44∂

2
3 (c11 − c44)∂2∂3

(c11 − c44)∂1∂3 (c11 − c44)∂2∂3 c44∂
2
1 + c44∂

2
2 + c11∂

2
3


Its eigenvalues Lc

i (∇x ) are:

Lc
1(∇x ) = c11∂

2
1 + c11∂

2
2 + c11∂

2
3 = c11∆x

Lc
2(∇x ) = c66∂

2
1 + c66∂

2
2 + c44∂

2
3

Lc
3(∇x ) = c44∂

2
1 + c44∂

2
2 + c44∂

2
3 = c44∆x

and the eigenvectors Dc
i (∇x ) are:

Dc
1 =

∂1

∂2

∂3

 , Dc
2 =

 ∂2

−∂1

0

 , Dc
3 =

−∂1∂3

−∂2∂3

∂2
1 +∂2

2

 (6.12)

In this case, M c
1 =∆x M c

2 = ∂2
1 +∂2

2 and M c
3 = (∂2

1 +∂2
2)∆x

6.3.4 PROPERTIES OF THE MEDIA AND MAIN ASSUMPTIONS

6.3.4.1 PROPERTIES

In all anisotropic media discussed above, it holds that

• The Christoffel tensors Γc and Γv have the same structure in the sense that

Dc
i = Dv

i , ∀i = 1,2,3.

• The eigenvalues Lc
i (∇x ) are homogeneous quadratic forms in the compo-

nents of the argument vector ∇x i.e.

Lc
i [∇x ] =

3∑
j

a2
i j
∂2

∂x2
j

,

and therefore equations (6.10) are actually scalar wave equations.
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• In all the concerning cases (see Remark 6.3.2), the operator M c
i (∇x ) is either

constant or has a homogeneous quadratic form

M c
i =

3∑
j

m2
i j
∂2

∂x2
j

.

6.3.4.2 ASSUMPTIONS

In addition, we assume that

• the eigenvalues of Γc and Γv satisfy

Lv
i (∇x ) =βi Lc

i (∇x ). (6.13)

• and the loss per wavelength is small, i.e.

βi ¿ 1, ∀i = 1,2,3. (6.14)

REMARK 6.3.2. The expression M c
3 = (∂2

1 +∂2
2)∆x will be avoided in the construction

of the Green function by using the expression

G =φ3I+E1(∇x )(φ1 −φ3)+E2(∇x )(φ2 −φ3).

REMARK 6.3.3. In general, Dc
i and Dv

i are dependent on the parameters cpq and vpq .
Consequently, Γc and Γv cannot be diagonalized simultaneously. However, in certain
restrictive cases where the polarization directions of different wave modes (i.e. quasi
longitudinal (qP) and quasi shear waves (qSH and qSV)) are independent of the stiffness
or viscosity parameters, it is possible to diagonalize both Γc and Γv simultaneously. In
fact, it is the case for each one of the media presented above.

The assumption on the eigenvalues Lv
i and Lc

i , implies that for a given wave mode,
its velocity decays uniformly in all direction (i.e. velocity dissipation is isotropic), but
for different wave modes (qP, qSH and qSV) the decay rates are different.

6.4 RESOLUTION OF THE MODEL WAVE PROBLEM

Let us now study the scalar wave problems (6.10). We consider a model problem
and drop the subscript for brevity in this section as well as in the next section.
Consider (

Lc[∇x
]
φ+Lv[∇x

]
A

[
φ

])−ρ∂2φ

∂t 2 = δ(t )δ(x). (6.15)

Our assumptions on the media imply that Lc and Lv have the following form;

Lc[∇x
]= 3∑

j=1
a2

j
∂2

∂x2
j

and Lv[∇x
]=βLc[∇x

]= 3∑
j=1

βa2
j
∂2

∂x2
j



142 CHAPTER 6. SOME ANISOTROPIC VISCOELASTIC GREEN FUNCTIONS

Therefore, the model equation (6.15) can be rewritten as:

3∑
j=1

(
a2

j
∂2φ

∂x2
j

+βa2
j A

[
∂2φ

∂x2
j

])
−ρ∂

2φ

∂t 2 = δ(t )δ(x),

By a change of variables x j = a jp
ρ
ξ j , we obtain in function φ̃(ξ) = φ(x) the

following transformed equation :

∆ξφ̃+βA
[
∆ξφ̃

]− ∂2φ̃

∂t 2 =
p
ρ

a
δ(t )δ(ξ). (6.16)

where the constant a = |a1a2a3|.
Now, we apply A on both sides of the equation (6.16), and replace the result-

ing expression for A
[
∆ξφ̃

]
back into the equation (6.16). This yields:

∆ξφ̃+βA

[
∂2φ̃

∂t 2

]
−β2A 2 [

∆ξφ̃
]− ∂2φ̃

∂t 2 =
p
ρ

a
δ(ξ)

{
δ(t )−βA

[
δ(t )

]}
.

Recall that β¿ 1 and the term in β2 is negligible; see Subsection 6.3.4.2. There-
fore, it holds

∆ξφ̃+βA

[
∂2φ̃

∂t 2

]
− ∂2φ̃

∂t 2 '
p
ρ

a
δ(ξ)

{
δ(t )−βA

[
δ(t )

]}
. (6.17)

Finally, taking temporal Fourier transform on both sides of (6.17), we obtain the
corresponding Helmholtz equation:

∆ξΦ̃+ω2
(
1−βÂ (ω)

)
Φ̃=

(
1−βÂ (ω)

) pρ
a
δ(ξ) (6.18)

where Φ̃(ξ,ω) and Â (ω) are the Fourier transforms of φ̃(ξ, t ) and the kernel of the
convolution operator A respectively. Let

κ(ω) =
√
ω2

(
1−βÂ (ω)

)
.

Then the solution of the Helmholtz equation (6.18) (see for instance [53, 98]) is
expressed as

Φ(x,ω) =p
ρ

(
1−βÂ (ω)

) exp
{p−1κ(ω)τ(x)

}
4aπτ(x)

.

where

τ(x) =p
ρ

√√√√ x2
1

a2
1

+ x2
2

a2
2

+ x2
3

a2
3

Using density normalized constants b j =
a jp
ρ

, we have

Φ(x,ω) =
(
1−βÂ (ω)

) exp
{p−1κ(ω)τ(x)

}
4bρπτ(x)

. (6.19)
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where constant b = |b1b2b3| and

τ(x) =
√√√√ x2

1

b2
1

+ x2
2

b2
2

+ x2
3

b2
3

6.5 RESOLUTION OF THE MODEL POTENTIAL PROBLEM

In this section, we find the solution of equation (6.11). We once again proceed
with a model problem. Once the solution is obtained, we will aim to calculate
its second order derivatives in order to evaluate D�Dψ.

6.5.1 THE POTENTIAL PROBLEM

Let ψ(x, t ), be the solution of equation (6.11) andΨ(x,ω) be its Fourier transform.
Then Ψ(x,ω) satisfies,

MΨ(x,ω) =Φ(x,ω) =
(
1−βÂ (ω)

) exp
{p−1κ(ω)τ(x)

}
4bρπτ(x)

. (6.20)

When M is constant, the solution of this equation is directly calculated. As
M = (∂2

1+∂2
2)∆x will not be used in the construction of Green function (see Remark

6.3.4.2), we are only interested in the case where M is a homogeneous quadratic
form in the component of ∇x , that is

M =
3∑

j=1
m2

j
∂2

∂x2
j

.

So, the model equation (6.20) can be rewritten as:

3∑
j=1

m2
j
∂2Ψ

∂x2
j

=
(
1−βÂ (ω)

) exp
{p−1κ(ω)τ(x)

}
4bρπτ(x)

m j 6= 0, ∀ j (6.21)

By a change of variables x j = m jη j , equation (6.21) becomes Poisson equation
in Ψ(η,ω) =Ψ(x,ω) i.e.

∆ηΨ=
(
1−βÂ (ω)

) exp
{p−1κ(ω)τ(η)

}
4bρπτ(η)

=Φ(η,ω) (6.22)

where,

τ(η) =
√√√√m2

1η
2
1

b2
1

+ m2
2η

2
2

b2
2

+ m2
3η

2
3

b2
3

= τ(x) and Φ(η,ω) =Φ(x,ω)

Notice that the source Φ(η,ω) is symmetric with respect to ellipsoid τ, i.e.

Φ(η,ω) =Φ(τ,ω).
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Therefore, the solution Ψ of the Poisson equation (6.22) is the potential field of a
uniformly charged ellipsoid due to a charge densityΦ(τ,ω). The potential fieldΨ
can be calculated with a classical approach using ellipsoidal coordinates. See, for
instance, [50, 80] for the theory of potential problems in ellipsoidal coordinates.

For the solution of the Poisson equation (6.22) we recall following result from
[80, Ch. 7, Sec.6].

PROPOSITION 6.5.1. Let

f (z) =
3∑

j=1

ζ2
j(

α j h
)2 + z

−1 and g (z) =
3∏

j=1

[(
α j h

)2 + z
]

and let Z (h,ζ) be the largest algebraic root of f (z)g (z) = 0. Then the solution of the
Poisson equation

∆2Y (ζ) = 4πχ

(
ζ2

1

α2
1

+ ζ2
2

α2
2

+ ζ2
2

α2
1

)
ζ ∈R3, α1,α2,α3 > 0,

is given by

Y (ζ) = 2πα1α2α3

ˆ ∞

0
χ(h)I (h,ζ)dh.

with kernel I (h,ζ) given by

I (h,ζ) =


h2
ˆ ∞

Z (h,ζ)

1√
g (z)

d z, Z > 0

h2
ˆ ∞

0

1√
g (z)

d z, Z < 0

Hence, the solution of equation (6.22) can be given as

Ψ(η,ω) = 2πb

m

(
1−βÂ (ω)

) 1

4π

ˆ ∞

0

exp
{p−1κ(ω)h

}
4bρπh

I (h,η)dh

or equivalently,

Ψ(x,ω) = 1

8ρπm

(
1−βÂ (ω)

)ˆ ∞

0

exp
{p−1κ(ω)h

}
h

I (h,x)dh, m = m1m2m3. (6.23)

By the change of variable s = h−2z, we can write I (h,x) as:

I (h,x) =


mh

ˆ ∞

S(h,x)

1p
G(s)

d s, h < τ

mh

ˆ ∞

0

1p
G(s)

d s, h > τ
(6.24)

with S(h,x) = h−2Z (h,x) being the largest algebraic root of the equation

F (s)G(s) = 0
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where 

F (s) = h2 f
(
h2s

)= 3∑
j=1

{
V j (s)

}−1 x2
j −h2

G(s) = m2

h6 g
(
h2s

)= 3∏
j=1

{
V j (s)

}
with V j (s) = b2

j +m2
j s

(6.25)

REMARK 6.5.2. Note that, F (s) ≡ 0 corresponds to a set of confocal ellipsoids

s 7−→ h2(s) =
3∑

j=1

{
V j (s)

}−1 x2
j (6.26)

such that τ(x) = h(0) i.e. S(τ) = 0. Moreover, S > 0 if the ellipsoid h lies inside τ and
S < 0 if the ellipsoid h lies outside τ.

6.5.2 DERIVATIVES OF THE POTENTIAL FIELD

In this subsection, we compute the derivatives of the potential Ψ. We note that
I (h,x) is constant with respect to x when h > τ. So,

∂I (h,x)

∂xk
=

 −mh
∂S(h,x)

∂xk

1√
G(S(h,x))

, h < τ
0, h > τ

for k = 1,2,3 and by consequence,

∂Ψ

∂xk
=− 1

8ρπm

(
1−βÂ (ω)

)ˆ ∞

0

exp
{p−1κ(ω)h

}
h

∂I (h,x)

∂xk
dh

or

∂Ψ

∂xk
=− 1

8ρπ

(
1−βÂ (ω)

)ˆ τ

0

[
exp

{p−1κ(ω)h
}] ∂S(h,x)

∂xk

1√
G(S(h,x))

dh. (6.27)

Now, we apply
∂

∂xl
for l = 1,2,3 on (6.27) to obtain the second order deriva-

tives of Ψ:

−8ρπ
∂2Ψ

∂xk xl
=

(
1−βÂ (ω)

) ∂

∂xl

[ˆ τ

0

[
exp

{p−1κ(ω)h
}] ∂S

∂xk

1p
G(S)

dh

]

=
(
1−βÂ (ω)

) ∂τ
∂xl

{[
exp

{p−1κ(ω)τ
}] ∂S(τ)

∂xk

1p
G(S(τ))

}

+
(
1−βÂ (ω)

)ˆ τ

0

[
exp

{p−1κ(ω)h
}]

× 1p
G(S)

{
∂2S

∂xk∂xl
− 1

2

∂S

∂xk

∂S

∂xl

G ′(S)

G(S)

}
dh
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As F (S)G(S) = 0 and G(s) is normally non-zero on S, by differentiating F (S) =
0, we obtain [42, Eq.s (5.21)-(5.23)]

∂S

∂xk
=− 2xk

Vk (S)F ′(S)
(6.28)

∂2S

∂xk xl
=− 4xk xl

Vk (S)Vl (S) [F ′(S)]2

{
F ′′(S)

F ′(S)
+ m2

k

Vk (S)
+ m2

l

Vl (S)

}
− 2δkl

Vk (S)F ′(S)
(6.29)

where,

F ′(s) =−
3∑

j=1

m2
j x2

j

V 2
j (s)

, F ′′(s) =
3∑

j=1

2m4
j x2

j

V 3
j (s)

, G ′(s) =G(s)
3∑

j=1

m2
j

V j (s)
(6.30)

and prime represents a derivative with respect to variable s.
Substituting the values from (6.28) and (6.29), the second order derivative of

Ψ becomes:

4ρπ
∂2Ψ

∂xk xl
=

(
1−βÂ (ω)

)ˆ τ

0

[
exp

{p−1κ(ω)h
}] 1

F ′(S)
p

G(S)

×
[

2xk xl

Vk (S)Vl (S)F ′(S)

{
F ′′(S)

F ′(S)
+ m2

k

Vk (S)
+ m2

l

Vl (S)
+ 1

2

G ′(S)

G(S)

}
+ δkl

Vk (S)

]
dh

−
xk xl

(
1−βÂ (ω)

)
aa2

k a2
l F ′(0)

{
exp

{p−1κ(ω)τ
}

τ

}
. (6.31)

REMARK 6.5.3. If for some i ∈ {1,2,3}, mi → 0 one semi axis of the ellipsoid τ tends
to infinity but no singularity occurs and the results of this section stay valid in that case
[42].

6.6 ELASTODYNAMIC GREEN FUNCTION

In this section we present the expressions for the elastodynamic Green functions

for the media presented in Section 6.3. Throughout this section cp =
√

cpp

ρ
with

p ∈ {1,2, · · · ,6}. We recall that κi (ω) =
√
ω2

(
1−βi Â (ω)

)
.

6.6.1 MEDIUM I

All the eigenvectors of Γ are constants in this case i.e. Di = ei , therefore Mi = 1

and Ei = ei �ei . If Ĝ is the Fourier transform of the viscoelastic Green function G
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with respect to variable t , then:

Ĝ(x,ω) =
3∑

i=1
Φi (x,ω)ei �ei

= 1

4πρ

3∑
i=1

ci+3

(
1−βi Â (ω)

)
ci c4c5c6τi

exp
(p−1κi (ω)τi

)ei �ei (6.32)

where

τ1 =
√√√√ x2

1

c2
1

+ x2
2

c2
6

+ x2
3

c2
5

, τ2 =
√√√√ x2

1

c2
6

+ x2
2

c2
2

+ x2
3

c2
4

, τ3 =
√√√√ x2

1

c2
5

+ x2
2

c2
4

+ x2
3

c2
3

.

6.6.2 MEDIUM II

According to Section 6.4, the functions Φi , i = 1,2,3 have following expressions:

Φ1(x,ω) =
(
1−β1Â (ω)

) exp
{p−1κ1(ω)τ1(x)

}
4c2

4c3ρπτ1(x)

Φ2(x,ω) =
(
1−β2Â (ω)

) exp
{p−1κ2(ω)τ2(x)

}
4c2

1c4ρπτ2(x)

Φ3(x,ω) =
(
1−β3Â (ω)

) exp
{p−1κ3(ω)τ3(x)

}
4c2

6c4ρπτ3(x)

where

τ1(x) =
√√√√ x2

1

c2
4

+ x2
2

c2
4

+ x2
3

c2
3

, τ2(x) =
√√√√ x2

1

c2
1

+ x2
2

c2
1

+ x2
3

c2
4

, τ3(x) =
√√√√ x2

1

c2
6

+ x2
2

c2
6

+ x2
3

c2
4

.

Medium b1 b2 b3 m1 m2 m3 Mi

I
c1 c6 c5 1 0 0 M1

c6 c2 c4 0 1 0 M2

c5 c4 c3 0 0 1 M3

II
c4 c4 c3 0 0 1 M1

c1 c1 c4 1 1 0 M2

c6 c6 c4 * * * M3

III
c1 c1 c1 1 1 1 M1

c6 c6 c4 1 1 0 M2

c4 c4 c4 * * * M3

TABLE 6.1: Values of bi and mi for different media. Here ∗ represents a value which is not
used for reconstructing Green function.
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In order to calculate Green function, we use the expression

Ĝ(x,ω) =Φ3I+D1 �D1M−1
1 (Φ1 −Φ3)+D2 �D2M−1

2 (Φ2 −Φ3) .

D1 = e3 and M1 = 1, yield

D1 �D1M−1
1 (Φ1 −Φ3) = (Φ1 −Φ3)e3 �e3.

In order to compute D2 �D2M−1
2 (Φ2 −Φ3), suppose

Ψ2 = M−1
2 Φ2 and Ψ3 = M−1

2 Φ3,

and notice that m1 = m2 = 1 and m3 = 0. Moreover for Φ2 and Φ3, b1 = b2; see
Table 6.1. Thus, we have

4ρπ(
1−β2Â (ω)

) ∂2Ψ2

∂xk xl
= R̂k R̂l

{
exp

{p−1κ2(ω)τ2
}

c2
1c4τ2

}

− 1

c4R2

(
δkl −2R̂k R̂l

)ˆ τ2

0

[
exp

{p−1κ2(ω)h
}]

dh

4ρπ(
1−β3Â (ω)

) ∂2Ψ3

∂xk xl
= R̂k R̂l

{
exp

{p−1κ3(ω)τ3
}

c2
6c4τ3

}

− 1

c4R2

(
δkl −2R̂k R̂l

)ˆ τ3

0

[
exp

{p−1κ3(ω)h
}]

dh

where R̂k = xk

R
for k = 1,2. We refer to Appendix 6.C for the derivation of this

result.
By using the second derivatives of Ψ2 and Ψ3 and the expression

D2 �D2M−1
2 (Φ2 −Φ3) =

2∑
k,l=1

∂k∂l (Ψ2 −Ψ3)ek �el ,

we finally arrive at

Ĝ(x,ω) =
(
1−β3Â (ω)

) exp
{p−1κ3(ω)τ3(x)

}
4c2

6c4ρπτ3(x)
J

+
(
1−β1Â (ω)

) exp
{p−1κ1(ω)τ1(x)

}
4c2

4c3ρπτ1(x)
e3 �e3

+
[(

1−β2Â (ω)
) exp

{p−1κ2(ω)τ2(x)
}

4c2
1c4ρπτ2(x)

−
(
1−β3Â (ω)

) exp
{p−1κ3(ω)τ3(x)

}
4c2

6c4ρπτ3(x)

]
R̂� R̂

− 1

4ρπc4R2

[(
1−β2Â (ω)

)ˆ τ2

0

[
exp

{p−1κ2(ω)h
}]

dh

−
(
1−β3Â (ω)

)ˆ τ3

0

[
exp

{p−1κ3(ω)h
}]

dh

](
J−2R̂� R̂

)
.
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Or equivalently,

Ĝ(x,ω) = Φ1e3 �e3 +Φ2R̂� R̂+Φ3
(
J− R̂� R̂

)
− 1

R2

[
c2

1

ˆ τ2

0
hΦ2(h,ω)dh − c2

6

ˆ τ3

0
hΦ3(h,ω)dh

](
J−2R̂� R̂

)
.

Here J = I−e3 �e3 and R̂ = R̂1e1 + R̂2e2.

6.6.3 MEDIUM III

The solutions of the wave equation Φi , i = 1,2,3 for Medium III are

Φ1(x,ω) =
(
1−β1Â (ω)

) exp
{p−1κ1(ω)τ1(x)

}
4c3

1ρπτ1(x)

Φ2(x,ω) =
(
1−β2Â (ω)

) exp
{p−1κ2(ω)τ2(x)

}
4c2

6c4ρπτ2(x)

Φ3(x,ω) =
(
1−β3Â (ω)

) exp
{p−1κ3(ω)τ3(x)

}
4c3

4ρπτ3(x)
.

where

τ1(x) = 1

c1

√
x2

1 +x2
2 +x2

3 = r

c1
, τ2(x) =

√√√√ x2
1

c2
6

+ x2
2

c2
6

+ x2
3

c2
4

, τ3(x) = r

c4

Once again, we use the expression

Ĝ(x, t ) =Φ3I+D1 �D1M−1
1 (Φ1 −Φ3)+D2 �D2M−1

2 (Φ2 −Φ3) .

Suppose
Ψ1 = M−1

1 Φ1 and Ψ3 = M−1
1 Φ3.

Notice that m1 = m2 = m3 = 1 for M1 and b1 = b2 = b3 for Φ1 as well as Φ3 (see
Table 6.1). Thus,

4ρπ(
1−β1Â (ω)

) ∂2Ψ1

∂xk xl
= r̂k r̂l

{
exp

{p−1κ1(ω)τ1
}

c3
1τ1

}

− 1

r 3

(
δkl −3r̂i r̂ j

)ˆ τ1

0

[
h exp

{p−1κ1(ω)h
}]

dh

4ρπ(
1−β3Â (ω)

) ∂2Ψ3

∂xk xl
= r̂k r̂l

{
exp

{p−1κ3(ω)τ1
}

c3
1τ3

}

− 1

r 3

(
δkl −3r̂i r̂ j

)ˆ τ3

0

[
h exp

{p−1κ3(ω)h
}]

dh.
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We refer to Appendix 6.B for the derivation of this result. It yields

D1 �D1M−1
1 (Φ1 −Φ3) = r̂� r̂

4ρπ

[(
1−β1Â (ω)

) exp
{p−1κ1(ω)τ1(x)

}
c3

1τ1(x)

+
(
1−β3Â (ω)

) exp
{p−1κ3(ω)τ3(x)

}
c3

4τ3(x)

]

−
(
I−3r̂� r̂

)
4ρπr 3

[(
1−β1Â (ω)

)ˆ τ1

0

[
h exp

{p−1κ1(ω)h
}]

dh

−
(
1−β3Â (ω)

)ˆ τ3

0

[
h exp

{p−1κ3(ω)h
}]

dh

]

= r̂� r̂
[
Φ1(x,ω)−Φ3(x,ω)

]
− 1

r 3

[ˆ τ1

0
h2Φ1(h,ω)dh −

ˆ τ3

0
h2Φ3(h,ω)dh

](
I−3r̂� r̂

)
,

where r̂ = r̂1e1 + r̂2e2 + r̂3e3 with r̂i = xi

r
for all i = 1,2,3.

In order to compute, D2 �D2M−1
2 (Φ2 −Φ3), suppose

Ψ2 = M−1
2 Φ2 and Ψ4 = M−1

2 Φ3.

By using formula (6.40) with m1 = m2 = 1 and m3 = 0, we obtain:

4ρπ(
1−β2Â (ω)

) ∂2Ψ2

∂xk xl
= R̂k R̂l

{
exp

{p−1κ2(ω)τ2
}

c2
6c4τ2

}

− 1

c4R2

(
δkl −2R̂k R̂l

)ˆ τ2

0

[
exp

{p−1κ2(ω)h
}]

dh

4ρπ(
1−β3Â (ω)

) ∂2Ψ4

∂xk xl
= R̂k R̂l

{
exp

{p−1κ3(ω)τ3
}

c3
4τ3

}

− 1

c4R2

(
δkl −2R̂k R̂l

)ˆ τ3

0

[
exp

{p−1κ3(ω)h
}]

dh
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with R̂k = xk

R
and k, l ∈ {

1,2
}
. This allows us to write

D2 �D2M−1
2 (Φ2 −Φ3) = 1

4ρπ

(
R̂2

2e1 �e1 − R̂1R̂2

[
e1 �e2 +e2 �e1

]
+ R̂2

1e2 �e2

)
×

[(
1−β2Â (ω)

) exp
{p−1κ2(ω)τ2(x)

}
c3

1τ2(x)

+
(
1−β3Â (ω)

) exp
{p−1κ3(ω)τ3(x)

}
c3

4τ3(x)

]

− 1

4c4ρπR2

((
1−2R̂2

2

)
e1 �e1

−2R̂1R̂2
[
e1 �e2 +e2 �e1

]+ (
1−2R̂2

1

)
e2 �e2

)
×

[(
1−β2Â (ω)

)ˆ τ2

0

[
exp

{p−1κ2(ω)h
}]

dh

−
(
1−β3Â (ω)

)ˆ τ3

0

[
exp

{p−1κ3(ω)h
}]

dh

]

= − 1

R2

[
c2

6

ˆ τ2

0
hΦ2(h,ω)dh

−c2
4

ˆ τ3

0
hΦ3(h,ω)dh

](
J−2R̂⊥� R̂⊥)

+
[
Φ2(x,ω)−Φ3(x,ω)

]
R̂⊥� R̂⊥,

where R̂⊥ = R̂2e1 − R̂1e2 and J = I−e3 ⊗e3.
Finally, we arrive at

Ĝ(x,ω) = Φ3I+D1 �D1M−1
1

(
Φ1 −Φ3

)+D2 �D2M−1
2

(
Φ2 −Φ3

)
,

= Φ1r̂� r̂+Φ2R̂⊥� R̂⊥+Φ3

(
I− r̂� r̂− R̂⊥� R̂⊥

)

− 1

r 3

[ˆ τ1

0
h2Φ1(h,ω)dh −

ˆ τ3

0
h2Φ3(h,ω)dh

](
I−3r̂� r̂

)
− 1

R2

[
c2

1

ˆ τ2

0
hΦ2(h,ω)dh − c2

6

ˆ τ3

0
hΦ3(h,ω)dh

](
J−2R̂⊥� R̂⊥)

.

6.6.4 ISOTROPIC MEDIUM

When c66 = c44, medium III becomes isotropic. In this case

Φ2(x,ω) =Φ3(x,ω), β2 =β3, τ1(x) = r

c1
, and τ2(x) = r

c4
= τ3(x)
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Thus, the Green function in an isotropic medium with independent elastic pa-
rameters c11 and c44 can be given in frequency domain as:

Ĝ(x,ω) = Φ2I+D1 �D1M−1
1 (Φ1 −Φ2)

= − 1

r 3

[ˆ r
c1

0
h2Φ1(h,ω)dh −

ˆ r
c4

0
h2Φ2(h,ω)dh

](
I−3r̂⊗ r̂

)
+Φ1r̂� r̂+Φ2

(
I− r̂� r̂

)
,

where Φ1 and Φ2 are the same as in Subsection 6.6.3. This expression of the
Green function has already been reported in Chapter 4.

6.A DECOMPOSITION OF THE GREEN FUNCTION

Consider the elastodynamics equation satisfied by G:(
Γc (∇x )G(x, t )+Γv (∇x )A

[
G

]
(x, t )

)
−ρ∂

2G(x, t )

∂t 2 = δ(t )δ(x)I. (6.33)

If G(x, t ) is given in the form

G(x, t ) =
3∑

i=1
Ei (∇x )φi , (6.34)

then substituting (6.34) in (6.33) yields:

δ(t )δ(x)I =
(
Γc (∇x )G(x, t )+Γv (∇x )A

[
G

]
(x, t )

)
−ρ∂

2G(x, t )

∂t 2

=
3∑

i , j=1

(
Lc

j (∇x )φi +Lv
j (∇x )A

[
φi

])
E j (∇x )Ei (∇x )−ρ

3∑
i=1

Ei (∇x )
∂2φi (x, t )

∂t 2

By definition Ei (∇x ) is a projection operator which satisfies

Ei (∇x )E j (∇x ) = δi j E j (∇x )

Consequently, we can have

δ(t )δ(x)I =
3∑

i , j=1
E j (∇x )δi jρ

−1
(
Lc

j (∇x )φi +Lv
j (∇x )A

[
φi

])−ρ 3∑
i=1

Ei (∇x )
∂2φi (x, t )

∂t 2

=
3∑

i=1
Ei (∇x )

((
Lc

i (∇x )φi +Lv
i (∇x )A

[
φi

])−ρ∂2φi (x, t )

∂t 2

)
.

Moreover, I =
3∑

i=1
Ei (∇x ), therefore

3∑
i=1

Ei (∇x )

((
Lc

i (∇x )φi +Lv
i (∇x )A

[
φi

])−ρ∂2φi (x, t )

∂t 2 −δ(t )δ(x)

)
= 0

Hence, (6.10) is the sufficient conditions for the functions φi in order to express
G in the form (6.8).
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6.B DERIVATIVE OF POTENTIAL: CASE I

If b1 = b2 = b3 and m1 = m2 = m3, we have

V1(s) =V2(s) =V3(s) = b2
1 +m2

1s

F (s) =
3∑

j=1

[
x2

j

V1(s)
−h2

]
=

[
r 2

V1(s)
−h2

]

F ′(s) =
3∑

j=1

{
−

m2
1x2

j

V 2
1 (s)

}
=

{
−m2

1r 2

V 2
1 (s)

}
and

F ′(0) =
{
−m2

1r 2

b4
1

}

F ′′(s) =
3∑

j=1

[
2m4

1x2
j

V 3
1 (s)

]
=

[
2m4

1r 2

V 3
1 (s)

]

G(s) =
{

V1(s)
}3

G ′(s) =G(s)

[
3m2

1

V1(s)

]

(6.35)

with r =
√

x2
1 +x2

2 +x2
3 . When F (S) = 0, we have



V1(S) =
[

r 2

h2

]
,[

1

Vk (S)Vl (S)F ′(S)

]
=

[
− 1

m2
1r 2

]
,

{
1

F ′(S)
p

G(S)

}
=

{
− 1

m2
1r h

}
,

[
F ′′(S)

F ′(S)
+ m2

k

Vk (S)
+ m2

l

Vl (S)
+ 1

2

G ′(S)

G(S)

]
=

[
3

2

m2
1

V1(S)

]
=

[
3

2

m2
1h2

r 2

]
.

(6.36)

Substituting (6.35) and (6.36) in (6.31) we finally arrive at:

4ρm2
1π(

1−βÂ (ω)
) ∂2Ψ

∂xk xl
= r̂k r̂l

{
exp

{p−1κ(ω)τ
}

bτ

}

− 1

r 3 (δkl −3r̂i r̂ j )

ˆ τ

0

[
h exp

{p−1κ(ω)h
}]

dh ,(6.37)

where r̂ j =
x j

r
for all j = 1,2,3.



154 CHAPTER 6. SOME ANISOTROPIC VISCOELASTIC GREEN FUNCTIONS

6.C DERIVATIVE OF POTENTIAL: CASE II

If b1 = b2, m1 = m2 and m3 = 0, we have

V1(s) =V2(s) = b2
1 +m2

1s and V3(s) = b2
3

F ′(s) =
[
−

2∑
j=1

m2
1x2

j

V 2
1 (s)

]
=

[
−m2

1R2

V 2
1 (s)

]
and

F ′(0) =
[
−m2

1R2

b4
1

]

F ′′(s) =
{

2∑
j=1

2m4
1x2

j

V 3
1 (s)

}
=

{
2m4

1R2

V 3
1 (s)

}

G(s) = b2
3

[
V1(s)

]2
and

G ′(s) =G(s)

[
2m2

1

V1(s)

]

(6.38)

with R =
√

x2
1 +x2

2 . For all l ,k ∈ {
1,2

}
, we have

[
1

Vk (S)Vl (S)F ′(S)

]
=

[
− 1

m2
1R2

]
,

{
1

F ′(S)
p

G(S)

}
=

[
− V (S)

m2
1b3R2

]
,

[
F ′′(S)

F ′(S)
+ m2

k

Vk (S)
+ m2

l

Vl (S)
+ 1

2

G ′(S)

G(S)

]
=

[
m2

1

V1(S)

]
.

(6.39)

Substituting (6.38) and (6.39) in (6.31) and after simple calculations, we finally
arrive at:

4ρm2
1π(

1−βÂ (ω)
) ∂2Ψ

∂xk xl
= R̂k R̂l

{
exp

{p−1κ(ω)τ
}

bτ

}

− 1

b3R2 (δkl −2R̂k R̂l )

ˆ τ

0

[
exp

{p−1κ(ω)h
}]

dh (6.40)

where R̂k = xk

R
for k = 1,2.



CONCLUSION AND PERSPECTIVES

Source localization problems have been of significant interest in recent years
due to a variety of associated applications in diverse domains. If the sources
are temporally localized, these problems are equivalent to find initial state of a
system governed by differential equations from the observations over a finite
interval of time. In this work, we concentrate on the inverse problems related
to acoustic and elastic source localization in attenuating media from wavefield
measurements. We successfully handle attenuation effect in both acoustic and
elastic media and present efficient and stable algorithms to compensate for these
effects on image resolution.

In a first attempt, we recover initial pressure distribution in an attenuating
medium with and without imposed boundary conditions. We retrieve the non-
attenuated boundary data from measured data by using the asymptotically ob-
tained iterative pseudo-inverse of an ill-conditioned attenuation operator. Sub-
sequently, we use the retro-projected inverse Radon transform formulae to re-
construct initial condition on the pressure distribution. We compare this ap-
proach with a singular value decomposition (SVD) approach, our results are
clearly more stable and accurate than the SVD approach. In order to address in-
complete data problems, we use TV-Tikhonov regularization methods, wherein
we present special preconditioning weights, which significantly improve conver-
gence speed of the iterative algorithm. For a medium with imposed boundary
conditions, we use a duality approach followed by the pseudo-inverse attenua-
tion correction technique, to recover ideal Radon transform of the initial condi-
tions.

For more efficient and robust reconstructions of temporally localized acous-
tic sources, we study time reversal methods for both non-attenuating and at-
tenuating media. As the attenuated waves are not time reversible, we use the
strategy of back-propagating adjoint attenuated waves and aim to reconstruct
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sources stably. To do so, we truncate the high frequency components; thereby
controlling the anti-damping term inducing instability. By using the asymptotic
development of the attenuation operator with respect to a small attenuation co-
efficient, we prove that this technique compensates for attenuation effects up
to first order. We then present an original strategy to compensate for attenua-
tion effects up to higher orders by pre-processing measured data using pseudo-
inverse of the attenuation operator and subsequently using ideal time-reversal
techniques. Numerical results indicate the stability of the pre-processing ap-
proach.

Further, we introduce efficient weighted imaging algorithms for locating
noise sources by cross correlation techniques, wherein we use the regularized
back-propagator to correct the effects of acoustic attenuation. We successfully
address the impact of spatial correlation in the noise source localization prob-
lem by designing appropriate imaging functionals. Our functionals are capable
of first locating the noise sources and then estimating the correlation structure
between them. Numerical results show the viability of the proposed imaging
techniques.

In order to extend elastic anomaly detection algorithms to viscoelastic me-
dia, we first derive a closed form expression for an isotropic viscoelastic Green
function. Then, we propose an attenuation correction technique for a quasi-
incompressible medium based on stationary phase analysis of the attenuation
operator. We prove that one can access, approximately, the ideal (inviscid) Green
function from the viscoelastic one by inverting an ordinary differential operator.
This consequently allows one to use ideal anomaly detection algorithms for vis-
coelastic media.

In a general elastic setting, we revisit elastic time reversal techniques and
propose a modified imaging functional based on the weighted Helmholtz de-
composition. We justify mathematically that it provides a better approximation
of the sources than by simply back-propagating the time reverted displacement
field. Then we consider the problem of reconstructing sources in a homoge-
neous viscoelastic medium from wavefield measurements. We provide a regu-
larized time reversal imaging functional based on the adjoint attenuated wave.
We prove that it corrects attenuation effect on image resolution up to first order
in terms of viscosity parameters.

Finally, we provide some anisotropic viscoelastic Green functions, with an
aim to extend our results to anisotropic media. We use spectral decomposition
of the Christoffel tensor associated with the medium to write Green function
in terms of the derivatives of three scalar functions following wave equations.
Then, the Green function is obtained by solving the wave equations and the
subsequent potential equations. The potential equations are resolved using an
argument of potential theory in ellipsoidal coordinates.
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FUTURE DIRECTIONS AND OPEN QUESTIONS

The algorithms proposed in this thesis for imaging and to compensate for wave
signal attenuation require further attention to be adopted for more realistic prop-
agation models, for example, by taking into account non-linearity, anisotropy
and heterogeneity. Moreover, in view of their applications for non-destructive
testing, underwater acoustics and data communication, the low frequency elec-
tromagnetic waves in dissipative regime need due attention.

The question of a spatially variable attenuation correction is still open. The
adjoint wave time reversal algorithms presented for attenuating media seem
to be the only available option at present. However, inhomogeneity in elastic
media can create some troubles due to mode conversion between waves [111].

Recovery of the attenuation map a(x) can provide additional information to
practitioners [36]. An interesting problem is to retrieve this attenuation map
from far field measurements of the pressure wave generated by an unknown
extended source distribution.

In the time reversal techniques, most often, full boundary measurements are
considered or a very dense array of transducers completely surrounding the ob-
ject of interest is used in order to obtain a stable reconstruction. However, when
we have partial measurements or only a few transducers in place on the bound-
ary, which is usually the case in practical situations, the time reversal techniques
do not provide ideal results [33, 37]. Using a geometric control technique, Bar-
dos et al.[33] have actually addressed the limited-view problem. For the case of
few transducers on the boundary, it would be very challenging to find the lower
bounds on the number of transducers in order to get a stable reconstruction. The
compressive sensing techniques would be quite useful in this analysis. In this
regard we refer to [64, 103].

The problem of ambient noise source localization in elastic media, finds ap-
plications in biomedical imaging. The passive in vivo elastography experiments
have already been successfully conducted, in which skeletal muscle noise has been
used for imaging [29, 112]. The noise source localization algorithms for general
isotropic elastic and viscoelastic media will be the subject of further investiga-
tions. We expect that an additional difficulty in elastic media would be involved
due to the conversion between different wave modes ( that is, pressure and shear
waves) [111]. A transversally isotropic medium would be a realistic choice for
passive elastography.
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