H. Jasak, Error Analysis and Estimation for the Finite Volume Method with Applications to Fluid Flows, 1996.

. Acrivos, Shear-induced resuspension in a couette device, International Journal of Multiphase Flow, vol.19, issue.5, pp.797-802, 1993.
DOI : 10.1016/0301-9322(93)90043-T

. Acrivos, On the measurement of the relative viscosity of suspensions, Journal of Rheology, vol.38, issue.5, p.12851296, 1994.
DOI : 10.1122/1.550544

. Aalcoutabli, A comparison of three dierent methods for measuring both normal stress dierences of viscoelastic liquids in torsional rheometers, Rheol. Acta, p.48, 2009.

. Altobelli, Velocity and concentration measurements of suspensions by nuclear magnetic resonance imaging, Journal of Rheology, vol.35, issue.5, p.721734, 1991.
DOI : 10.1122/1.550156

. Altobelli, Nuclear magnetic resonance imaging of particle migration in suspensions undergoing extrusion, Journal of Rheology, vol.41, issue.5, p.11051115, 1997.
DOI : 10.1122/1.550865

M. Arp, ]. P. Arp, and S. G. Mason, The kinetics of owing dispersions. IX. Doublets of rigid spheres, J. Colloid Interface Sci, vol.61, issue.16, p.4461, 1977.

M. Auvinen, J. Ala-juusela, N. Pedersen, and T. Siikonen, Time-Accurate Turbomachinery Simulations with Open- Source® CFD: Flow Analysis of a Single-Channel Pump with OpenFOAM®, Fifth European Conference on Computational Fluid Dynamics, J. C. F. Pereira and others, 2010.

]. A. Averbakh, A. Shauly, A. Nir, and R. Semiat, Slow viscous ows of highly concentrated suspensions Part I : Laser-Doppler velocimetry in rectangular ducts, Intl J. Multiphase Flow, vol.23, p.409424, 1997.

]. H. Barakat and J. A. Clark, Analytical and experimental study of transient laminar natural convection ows in partially lled containers, Third Int. Heat Transfer Conf., volume II, 1966.

]. H. Barnes, Shear???Thickening (???Dilatancy???) in Suspensions of Nonaggregating Solid Particles Dispersed in Newtonian Liquids, Journal of Rheology, vol.33, issue.2, pp.329-366, 1989.
DOI : 10.1122/1.550017

]. G. Batchelor, Note on a class of solutions of the navier- Stokes equations representing steady rotationally-symmetric ow, Quart. J. Mech. and Applied Math, vol.1, 1951.

. Batchelor, . K. Green-1972a-]-g, &. J. Batchelor, and . Green, The hydrodynamic interaction of two small freely-moving spheres in a linear flow field, Journal of Fluid Mechanics, vol.41, issue.02, p.375, 1972.
DOI : 10.1007/BF01976444

. Batchelor, . K. Green-1972b-]-g, &. J. Batchelor, and . Green, The determination of the bulk stress in a suspension of spherical particles to order c 2, Journal of Fluid Mechanics, vol.19, issue.03, p.401, 1972.
DOI : 10.1007/BF01976445

]. G. Batchelor, The eect of Brownian motion on the bulk stress in a suspension of spherical particles, J. Fluid Mech, vol.83, issue.97, 1977.

]. E. Bingham, Fluidity and Plasticity, 1922.

]. E. Bingham, The History of the Society of Rheology from 1924-1944, 1944.

. Bird, Dynamics of polymeric liquids, pp.176-179, 1977.

R. B. Bird, R. C. Armstrong, and O. Hassager, Dynamics of polymeric liquids, Fluid Mechanics, 1987.

. Bibliography and . Blanc, Particle Image Velocimetry in concentrated suspensions : Application to local rheometry, Appl. Rheol, vol.21, issue.2, p.23735, 2011.

. Blanc, Experimental Signature of the Pair-Trajectories of Rough Spheres in the Pair Distribution Function of Dilute Sheared Non-Colloidal Suspensions, PRL, Pyhsical Review Letters, 2011.

. Metzger, Clouds of particles in a periodic shear ow, in press, 2011.

. Boyer, Dense suspensions in rotating-rod ows: normal stresses and particle migration, J. Fluid Mech, vol.272, issue.1, 2011.

. Boyer, Unifying suspension and granular rheology, PRL, preprint, pp.1-7, 2011.
DOI : 10.1103/physrevlett.107.188301

]. R. Boyle, New experiments physico-mechanicall, touching the spring of air and its eects, 1660.

. Brady, ]. J. Bossis, G. Brady, and . Bossis, Stokesian Dynamics, Annual Review of Fluid Mechanics, vol.20, issue.1, p.111157, 1988.
DOI : 10.1146/annurev.fl.20.010188.000551

M. Brady, ]. J. Brady, and J. F. Morris, Microstructure of strongly sheared suspensions and its impact on rheology and diusion, J. Fluid Mech, vol.348, issue.139, 1997.

. Brady, ]. J. Vivic-1995, M. A. Brady, and . Vicic, Normal stresses in colloidal dispersions, Journal of Rheology, vol.39, issue.3, p.545, 1995.
DOI : 10.1122/1.550712

. Breedveld, The measurement of the shear-induced particle and uid tracer diusivities in concentrated suspensions by a novel method, J. Fluid Mech, vol.375, 1998.

J. M. Bricker and J. E. Butler, Oscillatory shear of suspensions of noncolloidal particles, Journal of Rheology, vol.50, issue.5, 2006.
DOI : 10.1122/1.2234366

]. C. Fletcher, Computational Techniques for Fluid Dynamics , Springer Series in Computational Physics Vols. I and II, 1991.

. Caretto, Two numerical methods for three-dimensional boundary layers, Computer Methods in Applied Mechanics and Engineering, vol.1, issue.1, 1972.
DOI : 10.1016/0045-7825(72)90020-5

D. Chan and R. L. Powell, Rheology of suspensions of spherical particles in a Newtonian and a non-Newtonian uid, J. Non-Newtonian Fluid Mech, vol.15, p.165179, 1984.

. Chow, Shear-induced migration in Couette and parallelplate viscometers: NMR imaging and stress measurements, Phys. Fluids, vol.6, p.25612576, 1994.

. Leighton, Particle migration of non-Brownian, concentrated suspensions in a truncated cone-and-plate, Society of Rheology Meeting, 1995.

]. Chung, Experimental investigations of the transport properties of ow suspensions, California Institute of Technology, 1980.

]. A. Corbett and R. J. Phillips, Magnetic resonance imaging of concentration and velocity proles of pure uids and solid suspensions in rotating geometries, J. Rheol, vol.39, p.907924, 1995.

. Courant, On the solution of nonlinear hyperbolic differential equations by finite differences, Communications on Pure and Applied Mathematics, vol.29, issue.3, p.243, 1952.
DOI : 10.1002/cpa.3160050303

]. R. Davis and A. Acrivos, Sedimentation of Noncolloidal Particles at Low Reynolds Numbers, Annual Review of Fluid Mechanics, vol.17, issue.1, pp.91-118, 1985.
DOI : 10.1146/annurev.fl.17.010185.000515

. Dbouk, Normal Stress Differences In Concentrated non-Brownian Suspensions, J. Fluid Mechanics, issue.2, 2011.

A. Deboeuf, G. Gauthier, J. Martin, Y. Yurkovetsky, and J. Morris, Particle Pressure in a Sheared Suspension: A Bridge from Osmosis to Granular Dilatancy, Physical Review Letters, vol.102, issue.10, 2009.
DOI : 10.1103/PhysRevLett.102.108301

]. K. Deshpande and N. C. Shapley, Particle migration in oscillatory torsional flows of concentrated suspensions, Journal of Rheology, vol.54, issue.3, pp.663-686, 2010.
DOI : 10.1122/1.3361668

. Drew, ]. D. Lahey, R. T. Drew, and . Lahey, Analytical modeling of multiphase ow, in Particulate Two-Phase Flows, 1993.

. Eckstein, Self-diffusion of particles in shear flow of a suspension, Journal of Fluid Mechanics, vol.44, issue.01, pp.191-208, 1977.
DOI : 10.1016/0021-9797(66)90048-8

. Bibliography and . Fang, Flow-aligned tensor models for suspension ows, Int. J. Multiphase ow, vol.28, issue.1, p.137166, 2002.

. Gadala-maria, Gadala-Maria, The rheology of concentrated suspension, 1979.

A. Gadala-maria, A. Acrivos, and A. , Shear???Induced Structure in a Concentrated Suspension of Solid Spheres, Journal of Rheology, vol.24, issue.6, 1980.
DOI : 10.1122/1.549584

. Gentry, An Eulerian dierencing method for unsteady compressible ow problems, J. Comp. Phys, vol.5, issue.1, p.243, 1952.

. Goldsmith, THE MICRORHEOLOGY OF DISPERSIONS, Rheology Theory and Applications, 1967.
DOI : 10.1016/B978-1-4832-2941-6.50008-8

]. H. Goto and H. Kuno, Flow of Suspensions Containing Particles of Two Dierent Sizes through a Capillary Tube, J, 1982.

. Graham, NMR imaging of shear-induced diusion and structure in concentrated suspensions, J. Rheol, vol.35, issue.16, 1991.

. Graham, Eects of demixing on suspension rheometry, Rheol. Acta, vol.37, p.139150, 1998.

]. H. Versteeg and W. Malalasekera, An Introduction to Computational Fluid Dynamics: The Finite Volume Method, Longman Scientic and Technical, 1995.

. Hampton, Migration of particles undergoing pressure driven ow in a circular conduit, J. Rheol, vol.41, p.621640, 1997.

. Han, Particle migration in tube ow of suspensions, J. Rheol, vol.43, p.11571174, 1999.

E. L. Hestens and . Steifel, Method of conjugate gradients for solving linear systems, Journal of Research, vol.29, p.409436, 1952.

]. C. Hirsch, Numerical computation of internal and external ows, 1991.

]. Rl and . Homan, Discontinuous and dilatant viscosity behavior in concentrated suspensions. I. Observation of ow instability, Trans. Soc. Rheol, vol.16, issue.14, pp.155-173, 1972.

. Kaye, Determination of normal stress dierences in steady shear ow. II. Flow birefringence , viscosity, and normal stress data for a polyisobutene liquid, Rheol. Acta, vol.7, issue.4 2, 1968.

. Kim, Numerical simulations of particle migration in suspension ows: Frame-invariant formulation of curvature-induced migration, J. Non-Newtonian Fluid Mech, vol.150, p.162176, 2008.

. Koh, An experimental investigation of concentrated suspension ows in a rectangular channel, J. Fluid Mech, vol.266, p.132, 1994.

]. C. Koh, Experimental and theoretical studies on two-phase ows, California Institute of Technology, 1991.

. Bibliography and . Kolli, Transient Normal Force Response in a Concentrated Suspension of Spherical Particles, Journal of Rheology, vol.46, pp.321-334, 2002.

]. T. Kotaka, M. Kurata, and M. Tamura, Normal Stress Effect in Polymer Solutions, Journal of Applied Physics, vol.30, issue.11, p.1705, 1959.
DOI : 10.1063/1.1735041

]. I. Krieger, Rheology of monodisperse latices, Advances in Colloid and Interface Science, vol.3, issue.2, p.111136, 1972.
DOI : 10.1016/0001-8686(72)80001-0

. Krieger, . M. Dougherty-1959-]-i, T. Krieger, and . Dougherty, A mechanism for non-Newtonian ow in suspensions of rigid spheres, Trans Soc Rheol, vol.3, issue.137, 1959.

. Krishnan, Shearinduced radial segregation in bidisperse suspensions, J. Fluid Mech, vol.321, p.371393, 1996.

A. Leighton, A. Leighton, V. Acrivos, and . Resuspension, Viscous resuspension, Chemical Engineering Science, vol.41, issue.6, pp.1377-1384, 1986.
DOI : 10.1016/0009-2509(86)85225-3

A. Leighton, ]. D. Leighton, and A. Acrivos, Measurement of selfdiusion in concentrated suspensions of spheres, J. Fluid Mech, vol.177, p.109131, 1987.

]. D. Leighton and A. Acrivos, The shear-induced migration of particles in concentrated suspensions, Journal of Fluid Mechanics, vol.177, issue.-1, p.415439, 1987.
DOI : 10.1016/0021-9797(77)90414-3

]. B. Leonard, The ULTIMATE conservative dierence scheme applied to unsteady one-dimensional advection, 1991.

B. Lilek and P. , Lilek and M. Peri¢, A fourth-order Finite Volume method with colocated variable arrangement , Computers and Fluids, p.239252, 1995.

]. A. Lodge and T. H. Hou, On the measurement of normal stress dierences in steady shear ow, IV. A new truncatedcone and plate, Rheol. Acta, vol.20, issue.3 2, 1980.

. Lyon, I. Leal, ]. M. Lyon, and L. G. Leal, An experimental study of the motion of concentrated suspensions in two-dimensional channel ow, Part 1. Monodisperse systems, J. Fluid Mech, vol.363, p.2556, 1998.

]. M. Lyon, Experimental studies of noncolloidal suspensions undergoing two-dimensional ow, 1997.

. Lyon, I. Leal, L. G. Lyon, and . Leal, An experimental study of the motion of concentrated suspensions in two-dimensional channel ow, J. Fluid Mech, vol.363, p.5777, 1998.

]. B. Marsh and J. R. Pearson, The Measurement of Normal-Stress Dierences Using A Cone-and-Plate Total Thrust Apparatus, Rheol. Acta, vol.7, issue.4 2, 1968.

]. D. Mccoy and M. M. Denn, Secondary ow in a parallel plate rheometer, Rheol. Acta, vol.10, issue.48, p.408411, 1971.

. Merhi, Particle migration in a concentrated suspension owing between rotating parallel plates: Investigation of diusion ux coecient, J. Rheol, vol.49, p.14291448, 2005.

]. R. Miller and J. F. Morris, Normal stress-driven migration and axial development in pressure-driven ow of concentrated suspensions, J. Non-Newtonian Fluid Mech, vol.135, p.149165, 2006.

]. R. Miller, J. P. Singh, and J. F. Morris, Suspension flow modeling for general geometries, Chemical Engineering Science, vol.64, issue.22, pp.4597-4610, 2009.
DOI : 10.1016/j.ces.2009.04.033

]. R. Miller, Continuum Modeling of Liquid-Solid Suspensions for Nonviscometric Flows, School of Chemical & Biomolecular Engineering Georgia Institute of Technology, issue.2, 2004.

P. Snabre, Apparent viscosity and particle pressure of a concentrated suspension of non-Brownian hard BIBLIOGRAPHY spheres near the jamming transition, Eur. Phys. J. E30, vol.3, issue.71, pp.309-316, 2009.

. Moraczewski, . Shapley-2006-]-t, N. C. Moraczewski, and . Shapley, The eect of inlet conditions on concentrated suspension ows in abrupt expansions, Phys. Fluids, vol.18, pp.123-303, 2006.

. Moraczewski, . Shapley-2007-]-t, N. C. Moraczewski, and . Shapley, Pressure drop enhancement in a concentrated suspension owing through an abrupt axisymmetric contraction-expansion, Phys. Fluids, vol.19, pp.103-304, 2007.

. Moraczewski, Flow of a concentrated suspension through an abrupt axisymmetric expansion measured by nuclear magnetic resonance imaging, Journal of Rheology, vol.49, issue.6, 2005.
DOI : 10.1122/1.2079227

B. Morris, ]. J. Morris, and J. F. Brady, Self-diffusion in sheared suspensions, Journal of Fluid Mechanics, vol.1, issue.-1, p.223, 1996.
DOI : 10.1016/0378-4371(79)90143-2

B. Morris, ]. J. Morris, and J. F. Brady, Pressure-driven ow of a suspension: Buoyancy eects, International Journal of Multiphase Flow, vol.243, issue.1 41, pp.105-130, 1998.

B. Morris and . Katyal, Microstructure from simulated Brownian suspension ows at large shear rate, Phys. Fluids, vol.14, 1920.
DOI : 10.1063/1.1476745

B. Morris, ]. J. Morris, and F. Boulay, Curvilinear flows of noncolloidal suspensions: The role of normal stresses, Journal of Rheology, vol.43, issue.5, pp.1213-1237, 1999.
DOI : 10.1122/1.551021

]. S. Muzaferija, Adaptive Finite Volume method for ow prediction using un-structured meshes and multigrid approach, 1994.

. Narumi, Transient response of concentrated suspensions after shear reversal, Journal of Rheology, vol.46, issue.1, p.295305, 2002.
DOI : 10.1122/1.1428321

]. I. Newton, Philosophiae Naturalis Principia Mathematics, Sect. IX, issue.2, 1687.
DOI : 10.5479/sil.52126.39088015628399

URL : http://www.e-rara.ch/download/pdf/4150990?name=%255BTomus%2520primus%2520et%2520secundus.%255D

G. Nott, P. P. Nott, E. Guazzelli, and O. Pouliquen, The suspension balance model revisited, Physics of Fluids, vol.23, issue.4, p.43304, 2011.
DOI : 10.1063/1.3570921

URL : https://hal.archives-ouvertes.fr/hal-01432494

P. R. Nott and J. F. Brady, Pressure-driven flow of suspensions: simulation and theory, Journal of Fluid Mechanics, vol.266, issue.-1, pp.157-199, 1994.
DOI : 10.1063/1.866914

. Ovarlez, Local determination of the constitutive law of a dense suspension of noncolloidal particles through magnetic resonance imaging, Journal of Rheology, vol.50, issue.3, pp.259-292, 2006.
DOI : 10.1122/1.2188528

URL : https://hal.archives-ouvertes.fr/hal-00776443

]. B. Pascal, Traites de l'equilibre des liqueres et de la pesanteur de la masse de l'air, 1663.

]. S. Patankar and B. R. Baliga, A new Finite-Dierence scheme for parabolic dierential equations, Numerical Heat Transfer, vol.1, issue.2, p.27, 1978.

]. S. Patankar, Numerical Heat Transfer and Fluid Flow, 1981.

. Phillips, A constitutive equation for concentrated suspensions that accounts for shear???induced particle migration, Physics of Fluids A: Fluid Dynamics, vol.4, issue.1, pp.30-40, 1992.
DOI : 10.1063/1.858498

. Phung, Stokesian Dynamics simulation of Brownian suspensions, Journal of Fluid Mechanics, vol.272, issue.-1, p.181207, 1996.
DOI : 10.1063/1.463224

. Rao, NMR measurements and simulations of particle migration in non-Newtonian uids, Chem. Eng. Commun, vol.189, p.122, 2002.

. Rao, A numerical and experimental study of batch sedimentation and viscous resuspension, International Journal for Numerical Methods in Fluids, vol.154, issue.6, pp.465-483, 2002.
DOI : 10.1002/fld.246

. Rao, Instabilities during batch sedimentation in geometries containing obstacles: A numerical and experimental study, International Journal for Numerical Methods in Fluids, vol.20, issue.8, p.723735, 2007.
DOI : 10.1002/fld.1483

]. C. Rhie and W. L. , Chow: A numerical study of the turbulent ow past an isolated airfoil with trailing edge separation : AIAA-82-0998, AIAA/ASME 3rd Joint Thermophysics, Fluids, Plasma and Heat Transfer Conference, 1982.

]. C. Rhie and W. L. Chow, A numerical study of the turbulent ow past and airfoil with trailing edge separation, 1983.

Z. Richardson, ]. J. Richardson, and W. N. Zaki, Sedimentation and uidization: Part I, Trans. Inst. Chem. Eng, vol.32, pp.35-47, 1954.
DOI : 10.1016/s0263-8762(97)80006-8

]. E. Ryssel and P. O. Brunn, Comparison of a quasi-Newtonian fluid with a viscoelastic fluid in planar contraction flow, Journal of Non-Newtonian Fluid Mechanics, vol.86, issue.3, pp.309-335, 1999.
DOI : 10.1016/S0377-0257(99)00003-8

. Schainger, Viscous resuspension of a sediment within a laminar and stratified flow, International Journal of Multiphase Flow, vol.16, issue.4, pp.567-578, 1990.
DOI : 10.1016/0301-9322(90)90017-D

. Shapley, Laser Doppler velocimetry measurements of particle velocity uctuations in a concentrated suspension, J. Rheol, vol.46, p.241272, 2002.

. Shapley, Evaluation of particle migration models based on laser Doppler velocimetry measurements in concentrated suspensions, Journal of Rheology, vol.48, issue.2, p.255279, 2004.
DOI : 10.1122/1.1647560

P. R. Schunk and L. E. Scriven, Constitutive equation for modeling mixed extension and shear in polymer solution processing, Journal of Rheology, vol.34, issue.7, 1990.
DOI : 10.1122/1.550075

]. A. Sierou and J. F. Brady, Rheology and microstructure in concentrated noncolloidal suspensions, Journal of Rheology, vol.46, issue.5, 1031.
DOI : 10.1122/1.1501925

]. R. Simha, A Treatment of the Viscosity of Concentrated Suspensions, Journal of Applied Physics, vol.23, issue.9, p.1020, 1952.
DOI : 10.1063/1.1702338

A. Singh and P. R. Nott, Experimental measurements of the normal stresses in sheared Stokesian suspensions, Journal of Fluid Mechanics, vol.490, p.293320, 2003.
DOI : 10.1017/S0022112003005366

. Sinton, NMR ow imaging of uids and solid suspensions in Poiseuille ow, J. Rheol, vol.35, p.735772, 1991.

]. J. Stickel and R. L. Powell, FLUID MECHANICS AND RHEOLOGY OF DENSE SUSPENSIONS, Annual Review of Fluid Mechanics, vol.37, issue.1, p.129149, 2005.
DOI : 10.1146/annurev.fluid.36.050802.122132

. Stickel, Application of a constitutive model for particulate suspensions: Timedependent viscometric ows, J. Rheol, vol.51, p.12711302, 2007.

]. T. Tadros, Viscoelastic Properties of Concentrated Suspensions, Materials Science Forum, vol.25, issue.26, pp.25-26, 1988.
DOI : 10.4028/www.scientific.net/MSF.25-26.87

]. R. Tanner, Some Methods for Estimating the Normal Stress Functions in Viscometric Flows, Transactions of the Society of Rheology, vol.14, issue.4, p.403507, 1970.
DOI : 10.1122/1.549175

]. R. Tanner, The changing face of rheology, Journal of Non-Newtonian Fluid Mechanics, vol.157, issue.3, pp.141-144, 2009.
DOI : 10.1016/j.jnnfm.2008.11.007

. Tetlow, Particle migration in a Couette BIBLIOGRAPHY apparatus: experiment and modeling, J. Rheol, vol.42, p.307327, 1998.

T. Turunen, Tuomas Turunen, PISO vs. transient SIMPLE: A Comparison of Two Dierent Transient Solution Algorithms in Incompressible CFD with OpenFOAM® and Python®, p.18, 2011.

. Van-doormal, Enhancements of the SIMPLE method for predicting incompressible uid ows, Numer. Heat Transfer, vol.7, pp.147-163, 1984.

]. S. Vanka, Block-implicit multigrid solution of Navier-Stokes equations in primitive variables, Journal of Computational Physics, vol.65, issue.1, p.138158, 1986.
DOI : 10.1016/0021-9991(86)90008-2

W. Versteeg and . Malalasekera, An Introduction to Computational Fluid Dynamics: The Finite Volume Method, 1995.

. Weller, A Tensorial Approach to CFD using Object Orientated Techniques, Computers in Physics, v 12 n 6, pp.620-631, 1998.

B. Xi, ]. C. Shapley, N. C. Xi, and . Shapley, Flows of concentrated suspensions through an asymmetric bifurcation, Journal of Rheology, vol.52, issue.2, p.625647, 2008.
DOI : 10.1122/1.2833469

. Yapici, Particle migration and suspension structure in steady and oscillatory plane poiseuille ow, Physics of uids 21, p.53302, 2009.

]. K. Maxey-2010a, M. R. Yeo, and . Maxey, Simulation of concentrated suspensions using the force-coupling method, J. Comput. Phys, vol.229, issue.71, 2010.

M. Yeo, ]. K. Yeo, and M. R. Maxey, Dynamics of concentrated suspensions of non-colloidal particles in Couette ow, J. Fluid Mech, vol.649, issue.3, p.205231, 2010.

. Zarraga, The characterization of the total stress of concentrated suspensions of noncolloidal spheres in Newtonian fluids, Journal of Rheology, vol.44, issue.2, pp.185-220, 2000.
DOI : 10.1122/1.551083

. Zienkiewicz, The Finite Element method Basic formulation and linear problems, 1989.