Skip to Main content Skip to Navigation
Theses

Forte et fausse libertés asymptotiques de grandes matrices aléatoires

Abstract : The thesis fits into the random matrix theory, in intersection with free probability and operator algebra. It is part of a general approach which is common since the last decades: using tools and concepts of non commutative probability in order to get general results about the spectrum of large random matrices. Where are interested here in generalization of Voiculescu's asymptotic freeness theorem. In Chapter 1 and 2, we show some results of strong asymptotic freeness for gaussian, random unitary and deterministic matrices. In Chapter 3 and 4, we introduce the notion of asymptotic false freeness for deterministic matrices and certain random matrices, Hermitian with independent sub-diagonal entries, interpolating Wigner and Lévy models.
Document type :
Theses
Complete list of metadata

Cited literature [58 references]  Display  Hide  Download

https://tel.archives-ouvertes.fr/tel-00673551
Contributor : ABES STAR :  Contact
Submitted on : Thursday, February 23, 2012 - 5:32:22 PM
Last modification on : Tuesday, November 19, 2019 - 12:58:22 PM
Long-term archiving on: : Thursday, May 24, 2012 - 3:05:09 AM

File

MALE_Camille_2011_These.pdf
Version validated by the jury (STAR)

Identifiers

  • HAL Id : tel-00673551, version 1

Collections

Citation

Camille Male. Forte et fausse libertés asymptotiques de grandes matrices aléatoires. Mathématiques générales [math.GM]. Ecole normale supérieure de lyon - ENS LYON, 2011. Français. ⟨NNT : 2011ENSL0696⟩. ⟨tel-00673551⟩

Share

Metrics

Record views

283

Files downloads

217