J. L. Poiseuille, recherches sur les causes du mouvement du sang dans les vaisseaux capillaires, Ann. Sci. Nat., SeriesZool. Biol. Animale), vol.2, issue.5, pp.111-115

R. Fåhraeus and T. Linqvist, The viscosity of the blood in narrow capillary tube, Am. J. Physiol, vol.96, pp.562-568, 1931.

R. Guibert, C. Fonta, and F. Plouraboue, A New Approach to Model Confined Suspensions Flows in Complex Networks: Application to Blood Flow, Transport in Porous Media, vol.27, issue.2, pp.171-194, 2010.
DOI : 10.1007/s11242-009-9492-0

URL : https://hal.archives-ouvertes.fr/hal-00477624

K. Svanes and B. W. Zweifach, Variations in small blood vessel hematocrits produced in hypothermic rats by micro-occlusion, Microvascular Research, vol.1, issue.2, pp.210-220, 1968.
DOI : 10.1016/0026-2862(68)90019-8

T. M. Fischer, M. Stöhr-lissen, and H. Schmid-schönbein, The red cell as a fluid droplet: tank tread-like motion of the human erythrocyte membrane in shear flow, Science, vol.202, issue.4370, pp.894-896, 1978.
DOI : 10.1126/science.715448

A. R. Pries, T. W. Secomb, and P. Gaethgens, Biophysical aspects of blood flow in the microvasculature, Cardiovascular Research, vol.32, issue.4, pp.654-667, 1996.
DOI : 10.1016/S0008-6363(96)00065-X

M. Abkarian, M. Faivre, and H. A. Stone, High-speed microfluidic differential manometer for cellular-scale hydrodynamics, Proceedings of the National Academy of Sciences, vol.103, issue.3, p.538, 2006.
DOI : 10.1073/pnas.0507171102

M. Abkarian, M. Faivre, and A. Viallat, Swinging of Red Blood Cells under Shear Flow, Physical Review Letters, vol.98, issue.18, p.188302, 2007.
DOI : 10.1103/PhysRevLett.98.188302

V. Vitkova, M. Mader, B. Polack, C. Misbah, and T. Podgorski, Micro-Macro Link in Rheology of Erythrocyte and Vesicle Suspensions, Biophysical Journal, vol.95, issue.6, p.33, 2008.
DOI : 10.1529/biophysj.108.138826

URL : https://hal.archives-ouvertes.fr/hal-00381579

B. Kaoui, G. Biros, and C. Misbah, Why Do Red Blood Cells Have Asymmetric Shapes Even in a Symmetric Flow?, Physical Review Letters, vol.103, issue.18, p.188101, 2009.
DOI : 10.1103/PhysRevLett.103.188101

M. Abkarian, M. Faivre, R. Horton, K. Smistrup, C. A. Best-popescu et al., Cellular-scale hydrodynamics, Biomedical Materials, vol.3, issue.3, p.34011, 2008.
DOI : 10.1088/1748-6041/3/3/034011

A. R. Pries, P. Gaehtgens, and C. Alonso, Time-dependent rheological behavior of blood at low shear in narrow vertical tubes, American Journal of Physiology -Heart and Circulatory Physiology, vol.265, issue.2, pp.34-36, 1993.

A. L. Lehninger, Principlesl of Biochemistry: The Molecular Basis of Cell Structure and Function, 1978.

U. Seifert, Configurations of fluid membranes and vesicles Advances in Physics, pp.13-137, 1997.

E. Evans and D. Needham, Physical properties of surfactant bilayer membranes: thermal transitions, elasticity, rigidity, cohesion and colloidal interactions, The Journal of Physical Chemistry, vol.91, issue.16, pp.914219-4228, 1987.
DOI : 10.1021/j100300a003

N. Evans, Structure and mechanical properties of giant lipid (dmpc) vesicle bilayers from 20 " c below to 10 " c above the liquid crystalcrystalline phase transition at 24 c, p.82618269, 1988.

. Méléard, Bending elasticities of model membranes: influences of temperature and sterol content, Biophysical Journal, vol.72, issue.6, pp.2616-2629, 1997.
DOI : 10.1016/S0006-3495(97)78905-7

P. Méléard, C. Gerbeaud, P. Bardusco, N. Jeandaine, M. D. Mitov et al., Mechanical properties of model membranes studied from shape transformations of giant vesicles, Biochimie, vol.80, pp.5-6401, 1998.

E. Evans and W. Rawicz, Entropy-driven tension and bending elasticity in condensed-fluid membranes, Physical Review Letters, vol.64, issue.17, pp.2094-2097, 1990.
DOI : 10.1103/PhysRevLett.64.2094

U. Seifert, K. Berndl, and R. Lipowsky, Shape transformations of vesicles: Phase diagram for spontaneous- curvature and bilayer-coupling models, Physical Review A, vol.44, issue.2, pp.1182-1202, 1991.
DOI : 10.1103/PhysRevA.44.1182

R. Dimova, B. Pouligny, and C. Dietrich, Pretransitional Effects in Dimyristoylphosphatidylcholine Vesicle Membranes: Optical Dynamometry Study, Biophysical Journal, vol.79, issue.1, pp.340-356, 2000.
DOI : 10.1016/S0006-3495(00)76296-5

K. Velikov, C. Dietrich, A. Hadjiisky, K. Danov, and B. Pouligny, Motion of a massive microsphere bound to a spherical vesicle, Europhysics Letters (EPL), vol.40, issue.4, p.405, 1997.
DOI : 10.1209/epl/i1997-00479-1

R. Dimova, C. Dietrich, A. Hadjiisky, K. Danov, and B. Pouligny, Falling ball viscosimetry of giant vesicle membranes: Finite-size effects, The European Physical Journal B, vol.12, issue.4, pp.589-598, 1007.
DOI : 10.1007/s100510051042

K. Olbrich, W. Rawicz, D. Needham, and E. Evans, Water Permeability and Mechanical Strength of Polyunsaturated Lipid Bilayers, Biophysical Journal, vol.79, issue.1, p.321, 2000.
DOI : 10.1016/S0006-3495(00)76294-1

J. F. Nagle, Theory of Passive Permeability through Lipid Bilayers, The Journal of General Physiology, vol.72, issue.1, 2008.
DOI : 10.1021/j150474a012

N. Mohandas, Mechanical Properties of the Red Cell Membrane in Relation to Molecular Structure and Genetic Defects, Annual Review of Biophysics and Biomolecular Structure, vol.23, issue.1, pp.787-818, 1994.
DOI : 10.1146/annurev.bb.23.060194.004035

G. Lenormand, Direct Measurement of the Area Expansion and Shear Moduli of the Human Red Blood Cell Membrane Skeleton, Biophysical Journal, vol.81, issue.1, pp.43-56, 2001.
DOI : 10.1016/S0006-3495(01)75678-0

M. Thomas and . Fischer, Shape memory of human red blood cells, Biophysical Journal, vol.86, issue.5, pp.3304-3313, 2004.

R. M. Hochmuth, Erythrocyte Membrane Elasticity and Viscosity, Annual Review of Physiology, vol.49, issue.1, pp.209-228, 1987.
DOI : 10.1146/annurev.ph.49.030187.001233

J. Sleep, Elasticity of the Red Cell Membrane and Its Relation to Hemolytic Disorders: An Optical Tweezers Study, Biophysical Journal, vol.77, issue.6, pp.3085-3095, 1999.
DOI : 10.1016/S0006-3495(99)77139-0

P. R. Worthy, E. A. Evans, and R. M. Hochmuth, Red cell extensional recovery and the determination of membrane viscosity, Biophys. J, vol.26, pp.101-115, 1979.

T. Terwilliger and A. Solomon, Osmotic water permeability of human red cells, The Journal of General Physiology, vol.77, issue.5, pp.549-570, 1981.
DOI : 10.1085/jgp.77.5.549

W. Victor, A. K. Sidel, and . Solomon, Entrance of water into human red cells under an osmotic pressure gradient, The Journal of General Physiology, vol.41, issue.2, pp.243-257, 1957.

D. Li and D. Erickson, Integrated microfluidic devices Microfluidics and Lab -On -a -Chip, pp.11-26, 2003.

J. Hong, Micro-and nanofluidic systems for high-throughput biological screening. Drug Discover y Today, pp.134-146, 2009.

J. K. Chang, Fabrication of the PDMS microchip for serially diluting sample with buffer, Microsystem Technologies, vol.9, issue.8, pp.555-558, 2003.
DOI : 10.1007/s00542-003-0304-0

F. Szoka and D. Papahadjopoulos, Procedure for preparation of liposomes with large internal aqueous space and high capture by reversephase evaporation, Proceedings of the National Academy of Sciences, pp.4194-4198, 1978.

L. D. Mayer, M. J. Hope, and P. R. Cullis, Vesicles of variable sizes produced by a rapid extrusion procedure, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.858, issue.1, pp.161-168, 1986.
DOI : 10.1016/0005-2736(86)90302-0

P. John, R. M. Reeves, and . Dowben, Formation and properties of thin-walled phospholipid vesicles, Journal of Cellular Physiology, vol.73, issue.1, pp.49-60, 1969.

D. Angelova, M. Dimiter, and S. , Liposome electroformation, Faraday Discussions of the Chemical Society, vol.81, pp.303-311, 1986.
DOI : 10.1039/dc9868100303

D. S. Dimitrov and M. I. Angelova, Lipid swelling and liposome formation mediated by electric fields, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol.253, issue.2, pp.323-336, 1988.
DOI : 10.1016/0022-0728(88)87069-4

A. Srivastav, T. Podgorski, and G. Coupier, Efficiency of size-dependent particle separation by pinched flow fractionation, Microfluidics and Nanofluidics, vol.6, issue.5, 2012.
DOI : 10.1007/s10404-012-0985-8

URL : https://hal.archives-ouvertes.fr/hal-00807688

N. Pamme, Continuous flow separations in microfluidic devices, Lab on a Chip, vol.6, issue.12, pp.1644-1659, 2007.
DOI : 10.1039/b712784g

M. Yamada, M. Nakashima, and M. Seki, Pinched Flow Fractionation:?? Continuous Size Separation of Particles Utilizing a Laminar Flow Profile in a Pinched Microchannel, Analytical Chemistry, vol.76, issue.18, p.5465, 2004.
DOI : 10.1021/ac049863r

A. L. Vig and A. Kristensen, Separation enhancement in pinched flow fractionation, Applied Physics Letters, vol.93, issue.20, p.203507, 2008.
DOI : 10.1063/1.3028652

H. Maenaka, M. Yamada, M. Yasuda, and M. Seki, Continuous and Size-Dependent Sorting of Emulsion Droplets Using Hydrodynamics in Pinched Microchannels, Langmuir, vol.24, issue.8, pp.4405-4410, 2008.
DOI : 10.1021/la703581j

J. Takagi, M. Yamada, M. Yasuda, and M. Seki, Continuous particle separation in a microchannel having asymmetrically arranged multiple branches, Lab on a Chip, vol.21, issue.7, pp.778-784, 2005.
DOI : 10.1039/b501885d

Y. Sai, M. Yamada, M. Yasuda, and M. Seki, Continuous separation of particles using a microfluidic device equipped with flow rate control valves, Journal of Chromatography A, vol.1127, issue.1-2, p.214, 2006.
DOI : 10.1016/j.chroma.2006.05.020

X. Zhang, J. M. Cooper, P. B. Monaghan, and S. J. Haswell, Continuous flow separation of particles within an asymmetric microfluidic device, Lab on a Chip, vol.1, issue.68, pp.561-566, 2006.
DOI : 10.1039/b515272k

A. Jain and J. D. Posner, Particle Dispersion and Separation Resolution of Pinched Flow Fractionation, Analytical Chemistry, vol.80, issue.5, pp.1641-1648, 2008.
DOI : 10.1021/ac0713813

J. R. Keller and R. Skalak, Motion of a tank-treading ellipsoidal particle in a shear flow, Journal of Fluid Mechanics, vol.33, issue.-1, p.27, 1982.
DOI : 10.1016/0005-2736(79)90215-3

G. Jeffery, The Motion of Ellipsoidal Particles Immersed in a Viscous Fluid, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.102, issue.715, pp.161-179, 1922.
DOI : 10.1098/rspa.1922.0078

T. Biben, C. Misbah, A. Leyrat, and C. Verdier, An advected-field approach to the dynamics of fluid interfaces, Europhysics Letters (EPL), vol.63, issue.4, pp.623-629, 2003.
DOI : 10.1209/epl/i2003-00564-y

URL : https://hal.archives-ouvertes.fr/hal-00197585

J. Beaucourt, F. Rioual, T. Séon, T. Biben, and C. Misbah, Steady to unsteady dynamics of a vesicle in a flow, Physical Review E, vol.69, issue.1, p.11906, 2004.
DOI : 10.1103/PhysRevE.69.011906

V. Kantsler and V. Steinberg, Orientation and Dynamics of a Vesicle in Tank-Treading Motion in Shear Flow, Physical Review Letters, vol.95, issue.25, p.258101, 2005.
DOI : 10.1103/PhysRevLett.95.258101

M. Mader, V. Vitkova, M. Abkarian, A. Viallat, and T. Podgorski, Dynamics of viscous vesicles in shear flow, The European Physical Journal E, vol.19, issue.4, pp.389-397, 2006.
DOI : 10.1140/epje/i2005-10058-x

URL : https://hal.archives-ouvertes.fr/hal-01261886

A. Thierry-biben, C. Farutin, and . Misbah, Three-dimensional vesicles under shear flow: Numerical study of dynamics and phase diagram, Physical Review E, vol.83, issue.3, p.31921, 2011.
DOI : 10.1103/PhysRevE.83.031921

C. Misbah, Vacillating Breathing and Tumbling of Vesicles under Shear Flow, Physical Review Letters, vol.96, issue.2, p.28104, 2006.
DOI : 10.1103/PhysRevLett.96.028104

V. Kantsler and V. Steinberg, Transition to Tumbling and Two Regimes of Tumbling Motion of a Vesicle in Shear Flow, Physical Review Letters, vol.96, issue.3, p.36001, 2006.
DOI : 10.1103/PhysRevLett.96.036001

P. M. Vlahovska and R. Gracia, Dynamics of a viscous vesicle in linear flows, Physical Review E, vol.75, issue.1, p.16313, 2007.
DOI : 10.1103/PhysRevE.75.016313

V. V. Lebedev, K. S. Turitsyn, and S. S. Vergeles, Dynamics of Nearly Spherical Vesicles in an External Flow, Physical Review Letters, vol.99, issue.21, p.218101, 2007.
DOI : 10.1103/PhysRevLett.99.218101

H. Noguchi and G. Gompper, Swinging and Tumbling of Fluid Vesicles in Shear Flow, Physical Review Letters, vol.98, issue.12, p.128103, 2007.
DOI : 10.1103/PhysRevLett.98.128103

G. Danker, T. Biben, T. Podgorski, C. Verdier, and C. Misbah, Dynamics and rheology of a dilute suspension of vesicles: Higher-order theory, Physical Review E, vol.76, issue.4, p.41905, 2007.
DOI : 10.1103/PhysRevE.76.041905

URL : https://hal.archives-ouvertes.fr/hal-00197591

A. Farutin, T. Biben, and C. Misbah, Analytical progress in the theory of vesicles under linear flow, Physical Review E, vol.81, issue.6, p.61904, 2010.
DOI : 10.1103/PhysRevE.81.061904

G. Ghigliotti, . Selmi, . Hassib, . Kaoui, . Badr et al., Dynamics and Rheology of highly deflated vesicles, ESAIM: Proceedings, vol.28, pp.211-226, 2009.
DOI : 10.1051/proc/2009048

J. Kas and E. Sackmann, Shape transitions and shape stability of giant phospholipid vesicles in pure water induced by area-to-volume changes, Biophysical Journal, vol.60, issue.4, pp.825-844, 1991.
DOI : 10.1016/S0006-3495(91)82117-8

E. Sackmann, Membrane bending energy concept of vesicle-and cellshapes and shape-transitions, pp.3-16, 1994.

K. De, J. , and P. Ott, Membrane phospholipid asymmetry in dmpc-induced human red cell vesicles, FEBS Letters, vol.334, issue.2, pp.183-188, 1993.

W. Helfrich and H. J. Deuling, The curvature elasticity of fluid membranes : A catalogue of vesicle shapes, Le Journal de Physique, vol.37, pp.1335-1345, 1976.
URL : https://hal.archives-ouvertes.fr/jpa-00208531

P. Michael, S. J. Sheetz, and . Singer, Biological membranes as bilayer couples. a molecular mechanism of drug-erythrocyte interactions, Proceedings of the National Academy of Sciences, pp.714457-4461, 1974.

S. Svetina, A. Ottova-leitmannov, and R. Glaser, Membrane bending energy in relation to bilayer couples concept of red blood cell shape transformations, Journal of Theoretical Biology, vol.94, issue.1, pp.13-23, 1982.
DOI : 10.1016/0022-5193(82)90327-7

S. Svetina and B. Zek, Membrane bending energy and shape determination of phospholipid vesicles and red blood cells, European Biophysics Journal, vol.10, issue.2, 1989.
DOI : 10.1007/BF00257107

K. Berndl, J. Ks, R. Lipowsky, E. Sackmann, and U. Seifert, Shape Transformations of Giant Vesicles: Extreme Sensitivity to Bilayer Asymmetry, Europhysics Letters (EPL), vol.13, issue.7, p.659, 1990.
DOI : 10.1209/0295-5075/13/7/015

G. K. Batchelor, The stress generated in a non-dilute suspension of elongated particles by pure straining motion, Journal of Fluid Mechanics, vol.102, issue.04, pp.813-829, 1971.
DOI : 10.1007/BF01973476

G. K. Batchelor and J. T. Green, The hydrodynamic interaction of two small freely-moving spheres in a linear flow field, Journal of Fluid Mechanics, vol.41, issue.02, pp.56375-400, 1972.
DOI : 10.1007/BF01976444

L. Van-wijngaarden and D. J. Jeffrey, Hydrodynamic interaction between gas bubbles in liquid, Journal of Fluid Mechanics, vol.52, issue.01, pp.27-44, 1976.
DOI : 10.1146/annurev.fl.06.010174.001303

A. Biesheuvel and L. Wijngaarden, The motion of pairs of gas bubbles in a perfect liquid, Journal of Engineering Mathematics, vol.56, issue.4, pp.349-365, 1982.
DOI : 10.1007/BF00037735

E. J. Hinch, An averaged-equation approach to particle interactions in a fluid suspension, Journal of Fluid Mechanics, vol.37, issue.04, pp.695-720, 1977.
DOI : 10.1007/BF02120313

A. Z. Zinchenko, Effect of hydrodynamic interactions between the particles on the rheological properties of dilute emulsions, Journal of Applied Mathematics and Mechanics, vol.48, issue.2, pp.198-206, 1984.
DOI : 10.1016/0021-8928(84)90089-3

F. R. Da-cunha and E. J. Hinch, Shear-induced dispersion in a dilute suspension of rough spheres, Journal of Fluid Mechanics, vol.31, issue.-1, pp.211-223, 1996.
DOI : 10.1063/1.453708

M. Loewenberg and E. J. Hinch, Collision of two deformable drops in shear flow Hydrodynamic interaction between two identical capsules in simple shear flow, Lac, A. Morel, and D. Barthès-Biesel, p.299149, 1997.

Y. Wang, R. Mauri, and A. Acrivos, The transverse shear-induced liquid and particle tracer diffusivities of a dilute suspension of spheres undergoing a simple shear flow, Journal of Fluid Mechanics, vol.115, pp.255-272, 1996.
DOI : 10.1063/1.453708

Y. Wang, R. Mauri, and A. A. , Transverse shear-induced gradient diffusion in a dilute suspension of spheres, Journal of Fluid Mechanics, vol.357, pp.279-287, 1998.
DOI : 10.1017/S0022112097008148

A. Acrivos, G. K. Batchelor, E. J. Hinch, D. L. Koch, and R. Mauri, Longitudinal shear-induced diffusion of spheres in a dilute suspension, Journal of Fluid Mechanics, vol.240, issue.-1, pp.651-657, 1992.
DOI : 10.1017/S0022112072002927

V. Kantsler, E. Segre, and V. Steinberg, Dynamics of interacting vesicles and rheology of vesicle suspension in shear flow, EPL (Europhysics Letters), vol.82, issue.5, p.58005, 2008.
DOI : 10.1209/0295-5075/82/58005

T. Podgorski, N. Callens, C. Minetti, G. Coupier, F. Dubois et al., Dynamics of Vesicle Suspensions in Shear Flow Between Walls, FEB 2011. Biennial Symposium of the European-Low-Gravity-Research-Association (ELGRA), pp.263-270, 2009.
DOI : 10.1007/s12217-010-9212-y

URL : https://hal.archives-ouvertes.fr/hal-00634494

N. Callens, C. Minetti, G. Coupier, M. Mader, F. Dubois et al., Hydrodynamic lift of vesicles under shear flow in microgravity, EPL (Europhysics Letters), vol.83, issue.2, p.24002, 2008.
DOI : 10.1209/0295-5075/83/24002

URL : https://hal.archives-ouvertes.fr/hal-01261878

G. Coupier, B. Kaoui, T. Podgorski, and C. Misbah, Noninertial lateral migration of vesicles in bounded Poiseuille flow, Physics of Fluids, vol.20, issue.11, p.111702, 2008.
DOI : 10.1063/1.3023159

URL : https://hal.archives-ouvertes.fr/hal-01086715

P. Olla, The Lift on a Tank-Treading Ellipsoidal Cell in a Shear Flow, Journal de Physique II, vol.7, issue.10, pp.1533-1540, 1997.
DOI : 10.1051/jp2:1997201

URL : https://hal.archives-ouvertes.fr/jpa-00248531

N. Callens, C. Minetti, G. Coupier, M. Mader, F. Dubois et al., Hydrodynamic lift of vesicles under shear flow in microgravity, EPL (Europhysics Letters), vol.83, issue.2, p.24002, 2008.
DOI : 10.1209/0295-5075/83/24002

URL : https://hal.archives-ouvertes.fr/hal-01261878

G. Taylor, Dispersion of Soluble Matter in Solvent Flowing Slowly through a Tube, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.219, issue.1137, pp.186-203, 1137.
DOI : 10.1098/rspa.1953.0139

E. C. Eckstein, D. G. Bailey, and A. H. Shapiro, Self-diffusion of particles in shear flow of a suspension, Journal of Fluid Mechanics, vol.44, issue.01, pp.191-208, 1977.
DOI : 10.1016/0021-9797(66)90048-8

R. Rusconi and H. A. Stone, Shear-Induced Diffusion of Platelike Particles in Microchannels, Physical Review Letters, vol.101, issue.25, p.254502, 2008.
DOI : 10.1103/PhysRevLett.101.254502

J. M. Higgins, D. T. Eddington, S. N. Bhatia, L. Mahadevan, and ]. , Statistical dynamics of flowing red blood cells by morphological image processing List of Figures 1.1 Change in apparent viscosity of blood with the change in capillary diameter, PLoS Comput Biol, vol.5, issue.22, p.14, 2009.

]. Globules-rouges-dans-un-réseau-capillaire-microfluidique-modèle, Grande concentration de globules (b) concentration plus faible de globules rouges (c) Ecoulement sanguin dans un réseau capillaire (structure mesurée par tomographie) calculé par un modèle simplifié. Les couleurs montrent la concentration locale des globules rouges : les couleurs foncées correspondentàcorrespondentà une concentration plusélevéeplusélevée des globules rouges alors que les couleurs plus claires montrent les concentrations plus faibles que la moyenne, p.23