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Chapter 1

Introduction

1.1 Classification et visualisation des données modernes

Depuis une dizaine d’années, les évolutions de la technique et des technologies ont participé à

l’augmentation des capacités de mesures et de stockage de l’information. Cette évolution

a touché l’ensemble des domaines applicatifs tels que la biologie, la santé, l’économie ou

l’informatique par exemple. Les données générées s’avèrent être de plus en plus complexes

et elles présentent, en particulier, la spécificité d’être de grande dimension, du fait du nombre

croissant de leurs variables descriptives. Leur traitement nécessite donc l’usage de procédures

automatiques qui permettent de fournir une représentation simple des données par parti-

tionnement ou par visualisation. La grande dimension des données peut apparaître comme

bénéfique dans la tâche de classification puisqu’elle offre un grand panel de variables détail-

lant l’objet à analyser. Cependant, il s’avère que, généralement, seul un sous-ensemble de

ces variables est nécessaire pour différencier des groupes de données; les variables restantes

n’apportant aucune information supplémentaire et pouvant nuire à la classification des données

et à leur visualisation. Il apparaît donc nécessaire de réduire la dimension des observations de

sorte à faciliter et à contribuer à leur classification et à leur visualisation.

Puisque la dimension des observations est plus grande que leur dimension intrinsèque, il est

théoriquement possible de réduire la dimension de l’espace d’origine sans perdre d’information.

Il existe moult méthodes de réduction de dimension qui sont traditionnellement exécutées avant

une étape de classification. De manière extrêmement classique, on peut penser à l’analyse en

composante principale qui reste la méthode la plus utilisée dans le cadre de méthodes linéaires

d’extraction de caractéristiques ou encore à des méthodes non-linéaire dont la plupart a été

résumée et comparée dans van der Maaten et al. [169], mais aussi des méthodes de sélection de

variables dont un aperçu global est disponible dans Guyon et Ellisseeff [77]. Cependant, l’une

des principales limites de ces approches réside dans le fait qu’elles ne considèrent pas la tâche

de partitionnement des données et peuvent donc dégrader les performances du clustering. En

effet, les méthodes de réduction de dimension opérées indépendamment d’une procédure de
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partitionnement peuvent impliquer une perte d’information qui pourrait être discriminante

dans la tache de clustering. Il existe cependant dans la littérature quelques approches qui

combinent réduction de dimension et classification automatique. En particulier, des méthodes

de sélection de variables ont été développées dans le cadre de la classification automatique

par modèle de mélanges tels que, en particulier, les travaux de Law et al. [111], Raftery et

Dean [148], ainsi que plus récemment ceux de Maugis et al. [121]. En outre, il existe d’autres

méthodes basées sur le modèle de mélanges gaussiens, et communément appelées méthodes

de clustering dans des sous-espaces. En particulier, elles modélisent les groupes de données

dans des sous-espaces de petite dimension qui leur est propre. L’ensemble de ces méthodes

présentent de bonnes performances de classification mais ne permettent pas cependant de

visualiser les données.

Le thème de ce manuscript est la classification automatique et la représentation parci-

monieuse de données de grande dimension.

1.2 Contribution

Un premier travail se place dans le contexte de la classification non-supervisée par modèle de

mélanges gaussiens. Il est motivé par le fait que le clustering et la visualisation de données de

grandes dimensions restent deux enjeux récurrents et actuels de statistiques qui sont confrontés

à des problèmes calculatoires ainsi qu’à des difficultés d’interprétation. Il existe différentes

manières de gérer ces problèmes et en particulier des approches, combinant la réduction de

dimension et la classification non supervisée, basées sur la recherche de sous-espaces propres

aux classes, tels que les travaux de Bouveyron et al. [22], McLachlan et al. [128] ou encore

ceux de McNicholas et Murphy [130]. Cependant, malgré les très bonnes performances de

ces nouvelles approches, une interprétation de la partition obtenue ainsi qu’une visualisation

informative des clusters résultants de la classification restent difficiles.

Pour faire face à ces problèmes, nous proposons une méthode probabiliste et un algorithme

de type EM, appelé Fisher-EM, qui permet simultanément de classer et de visualiser des

données dans un contexte de classification non supervisée. Cette approche se base sur une

modélisation des groupes par modèles de mélange dans un sous-espace latent discriminant

de petite dimension lequel est estimé par l’intermédiaire d’un critère basé sur la théorie de

Fisher [54]. A cet effet, nous avons introduit le modèle de mélange latent discriminant, appelé le

modèle DLM, qui modélise les données de manière parcimonieuse afin de générer une partition

et une visualisation discriminantes. Ce modèle se base sur l’idée qu’il existe un sous-espace

latent discriminant qui est commun aux groupes, de dimension intrinsèque plus petite que

la dimension des observations et pour lequel au plus K − 1 dimensions sont théoriquement

suffisantes pour discriminer K groupes. En imposant des contraintes sur les matrices de

variances-covariances des K groupes, nous avons décliné une famille de 12 modèles DLM qui

présente l’avantage d’être de faible complexité par rapport à des méthodes comparables telles
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que les méthodes de clustering dans les sous-espaces [22, 129, 130] ou encore telles que celles

développées dans le cadre des modèles de mélanges factoriels parcimonieux [8, 136, 188, 189].

Nous avons développé un algorithme appelé Fisher-EM qui alterne trois étapes: une étape E

calcule à chaque itération l’espérance de la log vraisemblance complétée conditionnellement

à la valeur courante du paramètre. Puis, une étape F estime la matrice de projection dont

les colonnes engendrent le sous-espace latent discriminant de dimension d bornée à K − 1 et

dans lequel les K groupes sont au mieux séparés. Nous avons pour cela adapté le problème

de maximisation du critère traditionnel de Fisher, classiquement utilisé dans un contexte

supervisé, à un contexte non supervisé sous la contrainte d’orthogonalité. Pour cette étape,

nous avons développé trois manières différentes d’estimation de la matrice de projection: une

première approche utilise une procédure de type Gram-Schmidt qui permet de tenir compte

de l’orthogonalité des colonnes de la matrice de projection. Une deuxième alternative réécrit

le problème d’optimisation de l’étape F comme un problème de régression puis nous l’avons

reformulé de telle manière que la solution puisse être approximée par une décomposition en

valeurs singulières. Enfin, la troisième étape de l’algorithme Fisher-EM, l’étape M, estime les

paramètres du modèle DLM en maximisant l’espérance conditionnelle de la log-vraisemblance

complétée. Bien que la convergence de l’algorithme Fisher-EM n’est a priori pas garantie,

nous montrons que cet algorithme est un algorithme de type EM dans le cas isotropique, lui

assurant ainsi la convergence vers un maximum local de la vraisemblance.

Une des principales hypothèses du modèle DLM est la relation linéaire entre l’espace des

observations et l’espace latent discriminant. Les variables latentes qui définissent cet espace

discriminant de petite dimension, résultent d’une combinaison linéaire des variables d’origine.

Ceci pose deux problèmes différents: le premier est lié à l’interprétation des axes discriminants

par rapport aux variables d’origine; le second, est relatif à la présence de variables initiales

sans intérêts, ou dites de “bruit”, dans les axes, pouvant engendrer une détérioration des ré-

sultats de clustering d’une part et de la visualisation des données d’autre part. Pour pallier

ces problèmes, nous proposons également d’introduire de la parcimonie dans les axes discrim-

inants estimés. La réécriture du problème d’optimisation du critère de Fisher en un problème

de type régression, nous permet de considérer le cas de la régression linéaire pénalisée type

LASSO [163], rendant alors possible l’introduction de parcimonie dans les composantes des

axes estimés. Nous proposons de ce fait trois versions pénalisées de l’algorithme Fisher-EM.

En plus de produire des axes parcimonieux, ce terme de pénalité permet de faire de la sélection

de variables discriminantes.

Dans un second travail, nous nous sommes intéressés à la détermination du nombre de

groupes en utilisant le cadre de la sériation. Un des problèmes récurrents, en analyse de

données dans un cadre non probabiliste, est de déterminer des structures, des relations entre

les observations. La sériation, qui est une technique d’analyse exploratoire très ancienne, offre

cette perspective puisqu’elle se base sur la recherche d’un ordre parmi les observations, de
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telle sorte que les éléments adjacents soient les plus similaires entre eux. Elle permet, de

plus, une visualisation des groupes, puisqu’elle agit directement sur le tableau de valeurs des

observations, par permutations successives des lignes et des colonnes, et permet de révéler une

structure par blocs. De nombreux travaux ont été effectués au cours du XXème siècle, et on

peut citer en particulier les travaux de Marchotorino [118], VanMichelen [131] et Liiv [112],

qui selon leur époque, ont donné un aperçu global des méthodes existantes.

La sériation présente de nombreux avantages de visualisation mais dès lors que les données

sont bruitées ou que les groupes se superposent, la visualisation de toute structure devient

difficile. Pour remédier à ce problème, nous proposons d’intégrer de la parcimonie dans les

données par l’intermédiaire d’une famille de matrices binaires. Ces dernière sont construites

à partir d’une mesure de dissimilarité basée sur le nombre de voisins communs entre paires

d’observations. En particulier, plus le nombre de voisins communs imposé est important, plus

la matrice sera parcimonieuse, i.e. remplie de zéros, ce qui permet, à mesure que le seuil de

parcimonie augmente, de retirer les valeurs extrêmes et les données bruitées. Cette collection

de matrices parcimonieuses est ordonnée selon un algorithme de sériation de type forward

stepwise, nommé PB-Clus, afin d’obtenir des représentations par blocs des matrices sériées.

La sélection du niveau de parcimonie est faite par un critère de compacité calculée à partir de

la famille de matrices ordonnées et favorise une représentation diagonale par blocs i.e. celle

qui révèle la plus distinctement la structure intrinsèque des données.

Enfin, ces deux travaux, bien que très différents, ont été appliqués à des données cy-

tologiques fournies par la société Novacyt. La base de données se compose d’échantillons de

cellules issues du col de l’utérus de 13 femmes différentes, et décrites par une quarantaine

de caractéristiques morphologiques et texturées. L’objectif de l’application est de sélection-

ner un sous-ensemble de variables permettant de discriminer les cellules pathologiques des

autres objets contenus dans les échantillons. En particulier, la technique de sériation a été

mise en oeuvre pour visualiser la structure intrinsèque des données et mettre en exergue une

structure principale à 2 groupes, tandis que l’algorithme Fisher-EM pénalisé a été utilisé pour

sélectionner les variables discriminantes.

1.3 Organisation de la thèse

Cette thèse est divisée en trois parties distinctes: les deux premières pouvant être lues in-

dépendamment l’une de l’autre et la troisième partie est une application des deux méthodes

exposées dans les parties I. et II., au domaine de la cytologie.

Partie I. Subspace clustering in a Gaussian Mixture model

Cette première partie rend compte d’un travail réalisé avec Charles Bouveyron (Université

Paris 1 Panthéon-Sorbonne), sur la thématique des modèles de mélanges dans des sous-espaces.
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Chapitre 2: Ce premier chapitre introduit de manière générale les modèles de mélanges

gaussiens: les approches les plus traditionnelles jusqu’aux plus récentes privilégiant la parci-

monie, seront exposées. L’algorithme EM et ses différentes variantes y seront introduits. Par

ailleurs, comme le modèle que nous proposons dans cette première partie a la particularité

de modéliser les données dans un sous-espace latent discriminant, nous introduirons cette no-

tion dans un contexte supervisé à travers l’analyse discriminante de Fisher. Puisque nombre

d’auteurs ont travaillé sur cette approche, certes très ancienne, afin d’étendre et d’améliorer

les travaux initiaux de Fisher [54], certains d’entre eux seront exposés plus en détail dans

un deuxième paragraphe. Enfin, puisque notre approche s’inscrit dans la famille des méth-

odes de clustering dans des sous-espaces, nous introduirons succinctement les deux travaux

majeurs dans ce domaine, à savoir les familles de modèles à facteurs introduits par Ghahra-

mani [64] et McLachlan [127] puis étendus, en particulier, par les travaux de McNicholas et

Murphy [129, 130], d’une part, et la famille de modèles gaussiens introduits par Bouveyron et

al. [22, 23] d’autre part.

Chapitre 3: Ce deuxième chapitre introduit un modèle de mélanges, appelé modèle de

mélanges latent discriminant (Discriminative Latent Mixture model), le modèle DLM, qui a

comme objectif de modéliser les données de manière parcimonieuse afin d’en générer une par-

tition et une visualisation discriminantes. Plus particulièrement, ce modèle se base sur l’idée

qu’il existe un sous-espace latent de dimension intrinsèque plus petite que la dimension des

observations, pour lequel au plus K − 1 dimensions sont théoriquement suffisantes pour dis-

criminer K groupes. Cette approche nous permet d’introduire une famille de 12 modèles en

imposant des contraintes sur les matrices de variances covariances. Ces modèles ont l’avantage

d’être extrêmement parcimonieux comparativement à la famille de 28 modèles proposée par-

allèlement par Fraley et Raftery [59] et Govaert et Celeux [36], ou à des approches similaires

basées sur des méthodes dans des sous-espaces telles que celles proposées par Bouveyron et

al. [22] ou McNicholas et Murphy [129, 130] par exemple. Dû au fait que le sous-espace latent

discriminant est commun aux classes et de dimension intrinsèque bornée à K − 1, la complex-

ité des modèles DLM reste faible et de même ordre que les récentes approches de modèles de

mélanges factoriels parcimonieux de Yoshida et al. [188, 189], Baek et McLachlan [8] ou encore

de Montanari et Viroli [136].

Chapitre 4: Dans un contexte non supervisé, la maximisation directe de l’espérance de

la log-vraisemblance n’étant pas faisable, nous avons donc utilisé une procédure itérative de

type EM. Cependant, contrairement aux approches classiques de modèles de mélanges dans

des sous-espaces pour lesquelles le sous-espace est estimé par maximum de vraisemblance, nous

cherchons à estimer un espace latent de petite dimension, certes, mais qui est, de plus, dis-

criminant. Afin de tenir compte de cette spécificité, nous avons introduit un algorithme appelé

Fisher-EM qui alterne trois étapes: une étape E qui calcule à chaque itération, l’espérance

de la log vraisemblance complétée conditionnellement à la valeur courante du paramètre; une
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étape F qui détermine la transformation linéaire U ∈ R
p×d (avec d < p) relative à la base du

sous-espace latent de dimension d ≤ K − 1 dans lequel les K groupes sont le mieux séparés.

Pour cela, nous avons adapté le problème de maximisation du traditionnel critère de Fisher,

habituellement utilisé dans un contexte supervisé, à un contexte non supervisé sous la con-

trainte d’orthogonalité et conditionnellement à la partition courante des données. De plus,

nous proposons trois manières différentes d’estimation de la matrice de projection. Enfin une

étape M, traditionnelle à l’algorithme EM, estime les paramètres du modèle DLM en max-

imisant l’espérance conditionnelle de la log-vraisemblance complétée. Cependant, l’ajout de

l’étape F dans l’algorithme EM ne garantit pas a priori la convergence de l’algorithme. A cet

effet, nous montrons que l’algorithme Fisher-EM, dans le cas isotropique, est un algorithme

EM assurant ainsi de bonnes propriétés, notamment de convergence. Enfin, ce chapitre se

termine sur quelques considérations pratiques et numériques de l’algorithme Fisher-EM.

Chapitre 5: Ce chapitre met en exergue l’intérêt de notre approche sur des données

simulées et sur des données réelles.

La majeure partie des éléments de ces trois premiers chapitres ont fait l’objet d’une pub-

lication dans le journal Statistics and Computing, référée comme:

Bouveyron C., Brunet C., Simultaneous model-based clustering and visualization in the Fisher

discriminative subspace, Statistics and Computing, 2011 (in Press).

Une première version de l’algorithme Fisher-EM est disponible sur le site de R CRAN

(paquet FisherEM).

Chapitre 6: Ce dernier chapitre concernant le modèle DLM, aborde la question de

l’interprétation des axes. En effet, une des principales hypothèses de notre modèle est la

relation de linéarité entre l’espace des observations et l’espace latent discriminant. Les vari-

ables latentes, qui définissent cet espace discriminant de petite dimension, résultent d’une

combinaison linéaire des variables d’origine. Ceci pose deux problèmes: le premier est lié à

l’interprétation des axes discriminants par rapport aux variables d’origine puisque l’importance

du coefficient, associé à la variable d’origine, ne suffit pas à déterminer son caractère discrim-

inant; le second est relatif à la présence de variables d’origine sans intérêts ou dites de “bruit”

dans les axes. En effet, pour cette deuxième situation, le fait que les axes soient des com-

binaisons linéaires des variables d’origine implique que les variables non-informatives restent

présentes dans ceux-ci, pouvant engendrer une détérioration des résultats de clustering d’une

part et de la visualisation des données d’autre part. Afin de pallier ce double problème, nous

proposons d’introduire de la parcimonie dans l’estimation des axes au moyen d’une pénal-

ité ℓ1. A partir des trois approches d’estimation de la matrice de projection de l’étape F

dans l’algorithme Fisher-EM, nous avons décliné trois procédures pénalisées qui permettent

d’estimer avec parcimonie les axes. Cette approche a une double fonction: outre qu’elle facilite

l’interprétation et améliore les résultats de clustering pour certaines données, elle joue le rôle
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d’une méthode de sélection de variables discriminantes pour la classification. Des expériences

sur données simulées et réelles viennent illustrer l’intérêt d’une telle approche.

Partie II. Seriation of a collection of parsimonious matrices

Cette partie est le fruit d’un travail effectué avec Vincent Vigneron (Université d’Evry) et

Thomas Villmann (Université de sciences appliquées de Mittweida - Allemagne).

Chapitre 7: Ce chapitre présente, de manière générale, le problème de la sériation.

Il se pose dans la définition et l’évaluation de la meilleure permutation possible entre les

lignes et les colonnes d’une matrice et se traduit comme un problème d’optimisation. En

particulier, l’objectif de la sériation est de trouver la fonction de permutation optimale qui

optimise un certain critère de rangement. Les critères traditionnels développés pour la sériation

sont présentés dans une première partie ainsi que les différentes approches algorithmiques. Ce

critère de rangement pour la sériation repose essentiellement sur la similarité (ou dissimilarité)

des paires d’objets à ordonner, c’est pourquoi un paragraphe sera dédié à différentes mesures

de dissimilarités. Enfin, le chapitre donnera un rapide aperçu des méthodes de clustering par

blocs qui ont été développées dans la littérature et en particulier, celles définies à travers un

modèle probabiliste.

Chapitre 8: Dans ce chapitre, nous introduisons une mesure de dissimilarité basée sur

la notion de voisinage commun entre paires d’observations. A partir de cette matrice de

voisins communs, nous proposons d’y intégrer différents niveaux de parcimonie créant ainsi

une collection de matrices binaires. Dans notre approche, le degré de voisinage est défini

comme une valeur “seuil” du nombre de voisins communs entre paires d’observations en deçà

de laquelle les paires d’observations sont éliminées. Ainsi, plus le nombre de voisins communs

imposé est important et plus la matrice sera parcimonieuse, i.e. remplie de zéros: à mesure que

le seuil de parcimonie augmente, les valeurs extrêmes et les données bruitées sont, de manière

structurelle, retirées de l’échantillon considéré. La collection de matrices parcimonieuses est

ordonnée selon un algorithme de type forward-stepwise nommé PB-Clus et la sélection du

niveau de parcimonie, permettant de révéler la structure intrinsèque des données, est faite

à partir d’un critère de compacité. Ce critère sélectionne la matrice binaire réordonnée qui

permet une visualisation claire, au sens de "diagonale par blocs", de la structure des données.

Enfin, différentes considérations numériques et algorithmiques termineront ce chapitre.

Chapitre 9: Ce dernier chapitre met en oeuvre l’algorithme PB-Clus sur des simulations

et sur données réelles.

Certains éléments des chapitres de cette deuxième partie ont fait l’objet d’une publication

dans la revue française des nouvelles technologies (RNTI), référée comme:
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Brunet C., Villman T.,Vigneron V., Une famille de matrices sparses pour une modélisation

multi-échelle par blocs, Revue des Nouvelles Technologies de l’Information, 2011 (in Press).

Partie III. Application to cervical cancer detection

Cette dernière partie est une application des deux approches introduites précédemment, à

savoir la méthode de classification par modèle de mélanges ainsi que celle par sériation, à des

données cytologiques fournies par l’entreprise Novacyt.

Chapitre 10: Dans ce chapitre, nous disposons de données fournies par l’entreprise

Novacyt qui représentent des échantillons de cellules issues du col de l’utérus provenant de

frottis différents.

Chaque cellule est décrite par 42 caractéristiques morphologiques et texturées. L’ambition

de cette application est de déterminer un ensemble de caractéristiques qui permettent de dis-

criminer la classe des cellules saines de celle des cellules anormales. En effet, de manière

générale, les performances d’un classifieur dépendent de la pertinence des variables sélection-

nées. Il apparait donc important de travailler dans un espace de dimension réduite avec des

variables discriminantes au regard de la partition connue des données. Pour ce faire, nous

avons d’une part utilisé l’algorithme PB-Clus pour visualiser les groupes existants dans les

données, et d’autre part nous avons appliqué l’algorithme Fisher-EM pénalisé pour classer les

données et sélectionner les variables discriminantes des cellules pathologiques.

Enfin, le chapitre 11 est un chapitre de conclusion qui résume les deux travaux développés

dans ce manuscrit ainsi que leurs limites. Par ailleurs, nous exposons brièvement les travaux

en cours et les diverses perspectives de recherche. En particulier, dans le cadre de l’algorithme

Fisher-EM, nous travaillons actuellement sur une version supervisée et semi-supervisée de cette

approche qui permettrait de traiter les problèmes de faux labels et de labels parcimonieux qui

apparaissent fréquemment dans le cadre de données biologiques.
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Chapter 2

State-of-the-art in model-based

clustering

Clustering is a data analysis tool which aims to group together data in homogeneous clusters.

The clustering problem has been widely studied for years and it usually occurs in all applica-

tions for which a partition of data is necessary. In particular, more and more scientific fields

require to cluster data in the aim to understand, interpret or make a decision. The earliest

approaches which were proposed to cluster data, were based on heuristic, geometric and iter-

ative procedures. They relied on dissimilarity measures between pairs of observations. The

most well-known dissimilarity measure is perhaps the distance based on the between groups,

previously introduced by Ward [174] for hierarchical clustering. In the same way, the k-means

algorithm developed by [115] is perhaps the most popular clustering algorithm among the

known iterative procedures. However, even though these methods were extensively studied,

they present some disadvantages. In particular, certain statistical properties of these ap-

proaches are still unknown and questionings still remain in practice such as the determination

of the number of clusters for example.

More recently, clustering was defined in a probabilistic framework allowing thus to for-

malize the notion of cluster through a probability distribution. One of the main asset of this

probabilistic approach remains in the fact that the obtained partition can be statistically inter-

preted. The first works on finite mixture models were introduced in particular by Wolfe [181],

Scott et al. [158] and Duda et al. [48] and since, many authors keeps on studying its properties

and extending clustering in finite mixture model (McLachlan et al. [125, 127], Banfield and

Raftery [11] or Fraley and Raftery [57],[59]).

In this chapter, the probabilistic framework of clustering will be firstly introduced. In

particular, we will focus on the specific but well-known case of the Gaussian mixture models

and its associated estimation procedures. Moreover, partially because of the fact that the data

storage has become easier and cheaper to get, modern data are very often high dimension.

We will see in Section 2.1.2 how the high dimensionality poses problems in the probabilistic
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framework of clustering and the so-called well-known curse of dimensionality [10] will be

introduced. The existing solutions in the Gaussian mixture model will be presented through

regularization methods, parsimonious models or dimension reduction methods. In particular,

Section 2.2 will focus on linear dimension reduction. However, in the unsupervised context,

the dimension reduction methods do not usually consider the classification task and it can

occur, therefore, a loss of information which could have been discriminative for the clustering

step. The combination of dimension reduction with the classification aim occurs frequently in

the supervised context, that is why, we will present in this same section, Fisher discriminant

analysis (FDA), an old-fashioned statistical but powerful tool, for classification and dimension

reduction, in the supervised classification framework. Finally, the last section of this chapter

will detail recent approaches, called the subspace clustering methods, which were proposed

in the past few years to model the data of each group in low-dimensional subspaces while

avoiding dimension reduction.

2.1 Model-based clustering

2.1.1 Mixture model and the EM algorithm

Model-based clustering, widely studied by [59, 127], aims to partition observed data into several

groups which are modeled separately. The overall population is considered as a mixture of

these groups and each component is modeled by a probability distribution. Let us consider a

given dataset of n observations {y1, . . . , yn} ∈ R
p that one wants to divide intoK homogeneous

groups i.e. adjoin to each observation yi a value zik = 1, for k = 1, . . . ,K, if the observation

yi belongs to the kth cluster and zik = 0 otherwise.

Let us also assume that Y ∈ R
p is a random vector linked to the observed independent

realizations {y1, . . . , yn} and that zi = {zi1, . . . , ziK} are independent unobserved realizations

of a random vector Z ∈ {0, 1}K . The pairs {(yi, zi)}ni=1 is usually referred to as the complete

dataset. By defining f the probabilistic density function of Y , the finite mixture model is

written as:

f(y) =
K
∑

k=1

πkfk(y), (2.1.1)

where πk and fk respectively represent the mixture proportion the conditional density function

of the kth cluster. The clusters are often modeled by the same density function in which case

the finite mixture model is:

f(y) =
K
∑

k=1

πkf(y|θk), (2.1.2)

where θk is a parameter vector for the kth cluster.
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2.1.1.1 The Gaussian mixture model

Most commonly, the density function f(y|θk) is assumed to be a multivariate Gaussian density

φ(y|θk) parametrized by its mean µk and its covariance matrix Σk, such that the density

function of Y can be written in this way,

f(y; θ) =
K
∑

k=1

πkφ(y|θk), (2.1.3)

where
∑K

k=1 πk = 1 and:

φ(y|θk) =
1

(2π)p/2 |Σk|1/2
exp

(

−1

2
(y − µk)

t Σ−1
k (y − µk)

)

stands for the multivariate Gaussian density with parameters θk = (µk,Σk). Then, the corre-

sponding log-likelihood is:

logL (θ; y) =

n
∑

i=1

log

(

K
∑

k=1

πkφ (yi; θk)

)

. (2.1.4)

In order to determine the parameter value θ∗, the log-likelihood function needs to be maxi-

mized. However, since the class label zi of each observation yi are unknown, the maximiza-

tion of equation (2.1.4) in a mixture model is untractable. Thus, by considering the pairs

{(y1, z1) , . . . , (yn, zn)} introduced previously, the complete log-likelihood of θ is:

ℓ (θ; y, z) =

K
∑

k=1

n
∑

i=1

zik log (πkφ (yi; θk)) ,

where zik = 1 if yi comes from the kth component and zik = 0 otherwise. Dempster et al.

[45] proposed an iterative algorithm called the Expectation-Maximization (EM) algorithm to

estimate the unknown parameters µk, Σk and πk by the maximum log-likelihood, those was

extended by McLachlan et al. [126] and Celeux et al.[34, 35] in particular.

2.1.1.2 EM algorithm for GMM

Since the maximization of the complete likelihood is untractable, Dempster et al. [45] proposed

an iterative procedure to find the maximum of likelihood functions in incomplete data prob-

lems. The main idea of the EM algorithm remains in the fact that the algorithm is based on

the maximization of the conditional expectation of the log-likelihood given current parameters

θ. This algorithm consists in forming a sequence
(

θ(q)
)

q
which satisfies:

θ(q) = arg max
θ

Q
(

y1, . . . , yn, θ|θ(q−1)
)

, (2.1.5)
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where Q
(

y1, . . . , yn, θ|θ(q−1)
)

= E
[

log f (y, z; θ) |y; θ(q−1)
]

is the conditional expectation of

the complete log-likelihood of the observed data {y1, . . . , yn} and has the following form:

Q (θ) =

n
∑

i=1

K
∑

k=1

tik log (πkφ (yi, θk)) , (2.1.6)

where tik = E (zik|yi,Θ) and zik = 1 if yi comes from the kth component and zik = 0 otherwise.

From an initial solution θ(0), the EM algorithm alternates two steps: first, the expectation

step named E-step which computes the expectation of the complete log-likelihood conditionally

to the current value of the parameter and the maximization step (M-step) which maximizes

the expectation of the complete likelihood subject to the post probabilities.

E-step: this step aims to compute, at iteration (q), the expectation of the complete

log-likelihood conditionally to the current value of the parameter θ(q−1), which, in practice,

reduces to the computation of t
(q)
ik = E[zik|yi, θ

(q−1)] where zik is defined as previously. Let us

also recall that t
(q)
ik is as well the posterior probability that the observation yi belongs to the

kth component of the mixture. According to the mixture model exposed in equation (2.1.3),

the posterior probabilities t
(q)
ik , i = 1, ..., n, k = 1, ...,K, can be expressed through Bayes’

theorem formula as:

t
(q)
ik =

π
(q−1)
k φ(yi, θ

(q−1)
k )

∑K
l=1 π

(q−1)
l φ(yi, θ

(q−1)
l )

, (2.1.7)

where φ(.) is a Gaussian density function, and πk and θk = {µk,Σk} are the parameters of

the kth mixture component estimated in the previous iteration.

M-step: this step estimates the model parameters by maximizing the conditional expec-

tation of the complete log-likelihood. For the traditional GMM, at iteration (q), the maximiza-

tion of Q defined by equation (2.1.6) conduces to an estimation of the mixture proportions πk,

the means µk and the covariance matrices Σk for the K components:

π̂
(q)
k =

n
(q)
k

n
, (2.1.8)

µ̂
(q)
k =

1

n
(q)
k

n
∑

i=1

t
(q)
ik yi, (2.1.9)

Σ
(q)
k =

1

n
(q)
k

n
∑

i=1

t
(q)
ik

(

yi − µ̂(q)
k

)(

yi − µ̂(q)
k

)t
, (2.1.10)

where nk =
∑n

i=1 t
(q)
ik .

These both steps are iteratively computed until the convergence of the log-likelihood.

One of the most outstanding properties of the EM algorithm is that it guarantees an
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improvement of the likelihood function at each iteration: each update to the parameters

resulting from an E step followed by an M step is guaranteed to increase the log-likelihood

function. In particular, Wu [182] proved that the sequence of
(

θ(q)
)

q
increases the log-likelihood

and converges to a local optimum under certain regularity conditions. For any parameter value

θ∗ which satisfies:

Q
(

θ∗|θ(q−1)
)

≥ Q
(

θ(q−1)|θ(q−1)
)

,

the likelihood function increases. However, despite the likelihood-ascent property, additional

conditions are required to verify that the final value is not a local minimizing point. A more

detailed approach of the EM algorithm can be referred to by [126].

Once the EM algorithm converged, the partition {C1, . . . , CK} is designed afterward using

the maximum a posteriori (MAP) rule which implies that the observation yi is assigned to

the group having the highest posterior probability. In order to ease the notation and the

interpretation of the decision rule for the rest of this manuscript, let us introduce a classification

function Γk:

Definition : The classification function Γk is defined conditionally to the class k for k =

1, . . . ,K:

Γk : R
p −→ R

yi 7−→ −2 log(πkφ(yi, θk)).

Then, according to this definition, the MAP rule of an observation yi can be rewritten in

this way:

δ∗(yi) = arg max
k=1...K

Γk(yi).

2.1.1.3 Limitations of the EM algorithm

Although the EM algorithm is widely used, it is also well-known that, as the EM is a deter-

ministic algorithm, its performances are linked to its initial conditions. Indeed, the solution

provided by the EM algorithm is strongly dependent of the starting point which implies that

the attained stationary point can be a local optimum or a saddle-point of the log-likelihood

function. Thus, to deal with this problem, several strategies were proposed in the literature

for initializing the EM algorithm. In an earlier approach, Hathaway et al. [86] investigated

a constrained version of the EM algorithm for the univariate case by adding a constraint on

the parameter space and, simulations of this constrained algorithm suggested that such an

algorithm was more robust than the traditional one. However, such constraints are applicable

in the univariate case only. A detailed overview of these methods can be seen in Chapter 2

of [125]. A more popular and recent practice [15] executes the EM algorithm several times

from a random initialization and keep only the set of parameters associated with the high-
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est likelihood. The use of k-means or of a random partition are also standard approaches

for initializing the algorithm. Some authors as [11, 44, 57] use also model-based hierarchical

clustering for initialize starting values of the EM algorithm for datasets which are not too

large. However, such an approach has a heavy computational cost and therefore the compu-

tational time increases drastically as soon as the datasets become large. Finally, McLachlan

and Peel [127] also proposed an initialization through the parameters by generating the mean

and the covariance matrix of each mixture component from a multivariate normal distribution

parametrized by the empirical mean and empirical covariance matrix of the data. In practice,

the preferred initialization consists to run several mini-EM in first and then to choose the

parameters corresponding to the highest log-likelihood.

2.1.1.4 Extensions of the EM algorithm

The CEM algorithm: the classification EM algorithm proposed by Celeux and Gov-

aert [35] can be seen as a classifying version of the EM algorithm and was designed to optimize

classification maximum likelihood criteria in the mixture context. A third step, named the C

step, is added between the traditional E and M steps using a maximum a posteriori rule. This

means that each observation is assigned to the cluster for which the posterior probability is

the highest. The main advantage of the CEM algorithm is its quickness to converge compared

to the traditional EM algorithm. However, this approach provides biased estimates of the

mixture parameters and it is theoretically preferable to use the EM algorithm in the context

of mixture model. Moreover, in a practical point of view, the provided solution does depend

on the starting value of the parameters which is, according to the authors dramatically true

when the clusters are not well-separated. However, Celeux et Govaert made an interesting

remark on the CEM algorithm since under the assumptions of a Gaussian mixture model with

equal proportions and common covariance matrices of the form σ2Ip, the CEM algorithm is

equivalent to the k-means algorithm. Indeed, under these assumptions on the covariance ma-

trices in the Gaussian mixture model, the maximization of the log-likelihood criterion and of

the k-means criterion are both based on the minimization of the within covariance matrix.

The SEM algorithm: the stochastic EM algorithm was proposed by Celeux and

Diebolt [34, 35] as an alternative to the EM algorithm. Indeed, as it is well-known that the

solution provided by the EM algorithm is strongly dependent of the starting point or/and can

be stucked in a saddle-point of the log-likelihood function, the aim of a stochastic algorithm is

to add random perturbations to avoid such local traps. Celeux and Diebolt proposed to add a

stochastic step between the E and the M steps of the EM algorithm in order to randomly modify

the class label of each observation. At each iteration (q), the S step generates a randomized

complete sample
{(

y1, z
(q)
1

)

, . . . ,
(

yn, z
(q)
n

)}

from posterior distribution
(

t
(q)
i1 , . . . , t

(q)
iK

)

for all

observations i = {1, . . . , n} given the observed data {y1, . . . , yn}. Then, each observation i

is assigned to the cluster Ck with probability tik. The SEM algorithm can be viewed as a
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Figure 2.1: Illustration of the curse of dimensionality (Figure borrowed to Bishop in Chapter
1.4 (p. 35) of [17] ).

stochastic version of both EM and CEM algorithms. However, the SEM algorithm does not

converge point-wise because of the randomized perturbations, but Celeux and Diebolt showed

that it converges in distribution. Thus, in practice, the authors propose a hybrid solution

which consists of running about ten iterations of the SEM algorithm such as a stationary

point is reached in first, and then, running the CEM algorithm from the highest value of the

proposed log-likelihood criterion. Other stochastic versions of the EM exist in the literature

such as the Monte Carlo EM (MCEM) algorithm introduced by Wei and Tanner [177] which

approximates the E-step by using a Monte Carlo average to estimate the expectation of (2.1.7).

The stochastic implementation of the EM algorithm is also used to overcome untractable

computations at the E-step [124] or to speed up the convergence [30]. A comparison of these

different types of stochastic implementation of the EM algorithm is detailed in [96].

2.1.2 The curse of dimensionality

The curse of dimensionality introduced by Bellman [10] refers to the exponential growth of

an hyper volume as a function of dimensionality. The origin of the problem is illustrated

in Figure 2.1 which shows that if we divide a region of a space into regular cells, then the

number of such cells grows exponentially with the considered space. This implies the need of

the knowledge of an exponentially large quantity of training data in order to ensure that the

cells are not empty. In particular, Silverman [160] illustrated this problem from the necessary

number of kernels to approximate a dimension-dependent distribution up to a defined precision.

An other manifestation of the curse of dimensionality is linked to the geometric properties of

high-dimensional spaces which are totally counter intuitive compared to those obtained in low

dimensional spaces. The examples of Figures 2.3 illustrate such geometric properties. Indeed,

one traditional example depicted in Figure 2.3a stands for the evolution of the volume of a unit-

radius sphere with respect to the dimensionality. It can be observed that from the dimension

1 until 5, the volume of the sphere increases and it then decreases until the dimension p = 20.
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Figure 2.2: Unit-radius circle which is tangent to a square with diagonal length equal to 2
√

2.

Beyond the dimension 20, the volume is almost equal to zero. The second example illustrated

by Figure 2.2 (in 2 dimensions), considers the ratio ρ(p) between the volumes of a unit-radius

sphere which is tangent of the cube with diagonal length equal to 2
√

2 with respect to the

dimensionality p of the space. The ratio of these both volumes is:

ρ(p) =
π

p

2

2pΓ
(p

2 + 1
) .

Figure 2.3b stands for the evolution of this ratio ρ(p) with respect to the dimensionality

p. Firstly, it can be noted that, in a space of dimension 2, this ratio is equal to π
4 which

means that more than 75% of the surface of the cube is contained in the sphere. Then, this

ratio decreases quickly towards 0 when the dimension increases and is equal to zero from the

dimension p = 10. This simple example means that, if we consider a density and if the samples

are drawn randomly and uniformly in a cube, then the probability that the points fall near the

corner of the cube is almost equal to 1. Both examples show that the space of dimension p is

almost empty since most of points are located near a space of dimension p−1 and are related to

what it called the empty space phenomenon, introduced by Scott and Thomson in [159]. This

phenomenon has been widely used to efficiently classify high-dimensional data since it means

that high-dimensional data do not fit the whole observation space but live in low-dimensional

subspaces. It is well-known indeed that, in high dimension, model-based clustering methods

unfortunately can show a disappointing behavior since the quality of the clustering mainly

depends of the estimation of the covariance matrices. In particular, the fitted data partition

depends on the quantity:

Γk(y) = −2 log(πkφ(y, θk))

= (y −mk)
tS−1

k (y −mk) + log(|Sk|)− 2 log(πk) + p log(2π),

for k = 1, . . . ,K, which is mainly defined by the inversion of the K covariance matrices.

Consequently, when the number of observations n is of the same order than the number of
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Figure 2.3: Examples explaining the particular geometric properties of the high-dimensional
space.

dimensions p, or when n≪ p which currently occurs in biological data (genetics for example),

the covariance matrices are singular and their inversion become impossible. Moreover, it often

appears in practice that the covariance matrices are ill-conditioned. This implies biases on the

computation of the inverse covariance matrices and, to the end, to the fitted partition. To deal

with these problems, different approaches were proposed in the literature and are detailed in

the following subsections.

2.1.3 Parsimonious models

Traditional parsimonious model: In the case of Gaussian mixture model for cluster-

ing, parsimonious models are introduced to deal with the high-dimensional problem i.e. models

which need a “reasonable” number of parameters to be estimated. Indeed, as the number of

free parameters depends on the number of components of the mixture and on the dimension

of the observation space: higher the dimension is, the more the number of parameters to be

estimated increases. For example, the unconstrained classical model with full covariance ma-

trices is a highly parametrized model and requires the estimation of 20603 parameters when

the number of components is K = 4 and the number of variables is p = 100. Traditional ways

to reduce the number of parameters to estimated is to constraint the covariance matrices to

be the same across all mixture components. In general, the multivariate normal density has

ellipsoidal contours and the covariance matrices can also be constrained to make the contours

spherical or axis-aligned. For the sake of comparison, Table 2.1 presents a comparison between

the well-known parsimonious models which can be obtained from a Gaussian mixture model

with K components in a p-dimensional space. In this table, the Full-GMM model refers to the
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Model Nb. of parameters K = 4 and p = 100

Full-GMM (K − 1) +Kp+Kp(p+ 1)/2 20603

Com-GMM (K − 1) +Kp+ p(p+ 1)/2 5453

Diag-GMM (K − 1) +Kp+Kp 803

Com-Diag-GMM (K − 1) +Kp+ p 503

Sphe-GMM (K − 1) +Kp+K 407

Com-Sphe-GMM (K − 1) +Kp+ 1 404

Table 2.1: Number of free parameters to estimate for parsimonious Gaussian mixture models
with K components and p variables.

classical Gaussian mixture model introduced by [158] with unconstrained covariance. More-

over, when the covariance matrices are assumed to be equal to a common covariance matrix

but not need to be spherical (Σk = Σ, ∀k), such a Gaussian mixture model first introduced

by [60] is referred to the Com-GMM model in the table. The Diag-GMM model refers to the

Gaussian mixture model for which the covariance matrices are supposed to be spherical but

different to each other then Σk = diag(σ2
k1, ..., σ

2
kp) with σ2

k. ∈ R
+. Finally, Sphe-GMM refers

to the Gaussian mixture model for which Σk = σ2
kIp with σ2

k ∈ R. Two other intermediate

models are added in this table. In particular, the Com-Diag-GMM which supposes diagonal

common covariances such as Σk = Σ = diag
(

σ2
1, . . . , σ

2
p

)

or the most constrained model, the

Com-Sphe-GMM model which assumes that the covariance matrices of each class are equal

and spherical such that Σk = Σ = σ2Ip, ∀k with σ2 ∈ R. The number of free parameters

to estimate given in the central column can be decomposed in the number of parameters to

estimate for the proportions (K − 1), for the means (Kp) and for the covariance matrices

(last terms). Whereas the Full-GMM model is a highly parametrized model, the Sphe-GMM

and Com-Sphe-GMM models are conversely very parsimonious models since they respectively

require the estimation of only 407 and 404 parameters when K = 4 and p = 100. Finally, the

Com-GMM model presents an intermediate level of parsimony since the number of parameters

to estimate is 5453.

A family of parsimonious models: In parallel, Banfield and Raftery [9] and Celeux

and Govaert [36] proposed a statistical framework, in the case of multivariate Gaussian mixture

model, for which the different geometries of the clusters are taken into account. For that, they

parametrize the covariance matrices from an eigenvalue decomposition:

Σk = λkDkAkD
t
k,
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where Dk is the matrix of eigenvectors which determines the orientation of the cluster, Ak is

a diagonal matrix proportional to the eigenvalues which explains its shape, and λk is a scalar

determining its volume. They refer to this model by the [λkDkAkD
t
k] model. This enables us to

enumerate 14 different submodels by constraining or not the parameters λk, Dk and Ak. This

family of 14 models are grouped in Table 2.2 in which the first column stands for the model

Model Name Nb. of parameters
K = 4

p = 100

[λkDkAkD
t
k] VVV (K − 1) +Kp+Kp(p+ 1)/2 20603

[λDkAkD
t
k] - (K − 1) +Kp+Kp(p+ 1)/2− (K − 1) 20600

[λkDkAD
t
k] VEV (K − 1) +Kp+Kp(p+ 1)/2− (K − 1)(p− 1) 20306

[λDkAD
t
k] EEV (K − 1) +Kp+Kp(p+ 1)/2− (K − 1)p 20303

[λkDAkD
t] - (K − 1) +Kp+ p(p+ 1)/2 + (K − 1)p 5753

[λDAkD
t] - (K − 1) +Kp+ p(p+ 1)/2 + (K − 1)(p− 1) 5750

[λkDAD
t] - (K − 1) +Kp+ p(p+ 1)/2 + (K − 1) 5456

[λDADt] EEE (K − 1) +Kp+ p(p+ 1)/2 5453

[λkBk] VVI (K − 1) +Kp+Kp 803

[λBk] EVI (K − 1) +Kp+Kp− (K − 1) 800

[λkB] VEI (K − 1) +Kp+ p+ (K − 1) 506

[λB] EEI (K − 1) +Kp+ p 503

[λkIp] VII (K − 1) +Kp+K 407

[λIp] EII (K − 1) +Kp+ 1 404

Table 2.2: Number of free parameters to estimate for parsimonious Gaussian mixture models
with K components and p variables.

names used by Celeux and Govaert and the second one represents the nomenclature used by

Raftery and Fraley. First of all, we can observe that this family of models can be divided in

three levels of parsimony as well as in Table 2.1: 4 models are highly parametrized as the Full-

GMM model, 4 models have an intermediate level of parsimony since the number of parameters

to estimate is around 5500 as well as the Com-GMM model and finally, the last 6 models are

very parsimonious and are in the same order as Diag-GMM or Sphe-GMM. Besides, this

reformulation of the covariance matrices enables to rewrite the previous constrained models.

For example, the Com-GMM model which can be rewritten as [λDADt]. There is also the

works of [138] which uses the equal shape (λk = λ,∀k) and equal volume (Ak = A,∀k)
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such that Σk = λDkAD
t
k. However, the work of Celeux and Govaert widens the family of

parsimonious models since they add unusual models which allow different volumes for the

clusters such as the [λkDAD
t], [λkDAkD

t] and [λkDkAD
t
k] models. Moreover, by assuming

that the covariance matrix Σk are diagonal matrices, Celeux and Govaert authors proposed a

new parametrization of Σk = λkBk where |Bk| = 1. Such a parametrization leads to 4 other

submodels detailed in Table 2.2. Finally, by considering the spherical shape, it leads to 2 other

models, the [λkIp] and [λIp] models which enable to rewrite the Sphe-GMM model for which

the covariance matrix of the cluster k is rewritten as Σk = λkIp,∀k where λk ∈ R
+. In the

case of the Com-Sphe-GMM model, the covariance matrices can be noted as Σk = λIp with

λk ∈ R
+. The reader can refer to [36] for a more detailed approach of these models.

Pseudoinverse or simple regularization To deal with the ill-conditioning or singular-

ity of the K covariance matrices, a very simple approach is to bring a regularized term on the

covariance matrix itself. A common method to handle this problem is to use the pseudoinverse

Σ+
k instead of Σ−1

k . An other way to deal with ill-conditioning covariance matrices, is to add

a positive term σ2 to the diagonal of the empirical covariance matrix Σ̂k such as:

Σ̃k = Σ̂k + σ2Ip.

This type of regularization is comparable to those used in the ridge regression. An other

regularization can also be used:

Σ̃k = Σ̂k + σkΩ,

where Ω is a square matrix of dimension p × p. Such regularized term, introduced by Hastie

in [83], looks like the previous one but the difference between both penalizations remains in

the fact that PDA penalizes also correlations between the predictors. Thus, the matrix Ω

enables to penalize the correlations.

2.2 Dimension reduction

As we have seen previously, several strategies were proposed in the literature for model-based

clustering among which parsimonious models and regularization approaches to deal with the

dimensionality. Moreover, since the dimension of observed data is usually higher than their

intrinsic dimension, it is theoretically possible to reduce the dimension without losing in-

formation. Thus, earliest approaches proposed to overcome the problem of high dimension

in clustering, by first reducing the dimension before using a traditional clustering method.

Among the unsupervised tools of dimension reduction, principal component analysis (PCA)

or factor analysis (FA) [101] are traditional and certainly the most used techniques for di-

mension reduction. They aim to project the data on a lower dimensional subspace in which

axes are build either by maximizing the variance of the projected data or by explaining the

overall covariance structure. PCA and FA are both a linear tool, which means that non-linear
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dependencies are not taken into account. Other non-linear projection tools can be mentioned

such as Kohonen’s maps [109] or the generative topographic map approach [18]. For a review

of these dimension reduction approaches, see [171]. An other way to reduce the dimension in

an unsupervised problem was recently considered in [148] and [120] in which the problem of

feature selection for model-based clustering is recasted as a model selection problem. How-

ever, most of these dimension reduction methods do not consider the clustering task and can

provide a suboptimal representation for the clustering step since discriminative information

can be not taken into account. Only few approaches combine dimension reduction with the

classification aim but unfortunately there are all in the supervised context. In particular,

Fisher discriminant analysis (FDA) is one of them in the supervised classification framework.

This Section details the different linear approaches of dimension reduction in both cases

of unsupervised and supervised contexts.

2.2.1 The unsupervised case

2.2.1.1 Principal component analysis

Principal component analysis (PCA) is certainly the most popular linear method used for

dimension reduction. It was introduced by Pearson [144] in 1901 who defines PCA as a linear

projection that minimizes the average projection cost. Later, Hotelling [88] proposed an other

definition for PCA which the aim is to reduce the dimension of the data by keeping as much as

possible the variation of the dataset. In other words, this method aims to find an orthogonal

projection of the dataset in a low-dimensional linear subspace, such that the variance of the

projected data is maximized. In this section, the maximum variance formulation is considered

but the reader could refer to Chapter 12 of [17] for an explanation of both definitions of PCA.

Formulation in terms of maximization of the variance : Let consider Y a n× p
data matrix of dimension p and Σ = 1

n

∑n
i=1(yi− ȳ)t(yi− ȳ) the total covariance matrix of the

dataset {y1, . . . , yn} where ȳ = 1
n

∑n
i=1 yi is its empirical mean. Firstly, one consider the case

of the projection of the dataset onto a single dimension space. This amounts to determine a

p-dimensional vector u1, such that the variance of projected data ut
1Σu1 is maximized with

respect to u1, under the normalization condition ut
1u1 = 1. The criterion to maximize can be

rewritten using the Lagrange multiplier:

ut
1Σu1 − λ(1− ut

1u1). (2.2.1)

By setting the derivative of equation (2.2.1) to zero, there is a stationary point in:

Σu1 = λu1. (2.2.2)

and the very well-known result is obtained: equation (2.2.1) is maximized when u1 is the

eigenvector of Σ associated with the highest eigenvalue λ and this eigenvector is called the
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first principal factor. Moreover, the first principal component X = Y u1 is defined as the

projected data on this one-dimensional space. By considering the general case for an d-

dimensional subspace which aims is to find an optimal linear projection such as the variance

of the projected data is maximized, the d principal components correspond then to the d

eigenvectors of Σ associated to its d largest eigenvalues. In first, note that the principal

factors obtained are orthogonal to each other and also that each principal component is a

linear combination of the initial variables which limits the relevance of PCA for non-linear

distribution of datapoints. Secondly, one can observe that if the principal components are in

the same dimensionality as the observation space, then there is no information loss since the

data will just have been rotated. Consequently, there is a loss of information in the case of

dimension reduction which implies the question about the choice of the dimensionality of the

projection space which is d.

Choice of the dimensionality : Different methods were proposed in the literature,

but most of them are based on empirical criteria. In practice, since the eigenvalues stand for

the weight of the variance hold by the principal components in the total covariance matrix, the

number d of axis can be selected from a certain a proportion of
∑d

j=1 λj (90% for example).

An other very popular criterion based on a graphical method is to detect an “elbow” in the

plot of the eigenvalues and keep the dimensions which are just before this elbow. These both

methods remain graphical which can pose some problems ,in particular if the slope gradually

becomes less steep, with no clear elbow. Then it is clearly less easy to use such a procedure.

A more automatic approach named the scree-test was developed by Cattel [33]. He suggests

in first to plot the eigenvalues of the covariance matrix and then to find the place where

the graph seems to behave randomly. This method is based on the differences between the

consecutive eigenvalues and on the detection of an “elbow” in the eigenvalues scree. The

number of components corresponds to the number of eigenvalues being above a threshold as in

Figure 2.4 : Figure 2.4a stands for the 20 first largest eigenvalues ordering in a decreasing order

of the correlation matrix of the USPS dataset and the corresponding scree plot is depicted in

Figure 2.4b. In this example, the threshold is fixed to 7% of the largest difference between

the eigenvalues and the scree-test of Cattell identifies an “elbow” in the 5th dimension. This

choice can also be confirmed in Figure 2.4a.

Other approaches to deal with the choice of d were proposed in the literature and are

based on formal tests of hypothesis. In particular, a statistical test known as Bartlett’s test

seeks from which value of d the last eigenvalues are equal to zero. Thus, by assuming that

n observations {y1, . . . , yn} are the realizations of a Gaussian random vector then, the test is

based on the null hypothesis,

H0 : λd+1 = · · · = λp, (2.2.3)
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Figure 2.4: Choice of the number of retained components according to the scree-test: (a) stands
for the 20 first largest eigenvalues ordered in a decreasing order of the covariance matrix on
the USPS dataset and (b) represents the corresponding scree plot of Cattell.

against the general alternative H1 :

H1 : ∃i, j ∈ {d+ 1, . . . , p} such as λi 6= λj .

This test is used sequentially to find d. In first, the hypothesis H0,p−1 :λp−1 = λp is tested

and if H0,p−1 is not rejected, then H0,p−2 is tested. This sequence of tests continues until

the hypothesis H0,j is rejected. Then, the number of retained principal components is d = j.

This criterion is barely used in practice since the distributional assumptions are very often

unrealistic and they tend to overestimate the number of necessary variables to retain. The

reader can refer to Chapter 6 of [101] for example, for a more detailed description of empirical

methods on the choice of the number of retained components. More recently, Tipping and

Bishop [19] and independently Roweis [152], rewrote PCA in a probabilistic framework as

the maximum likelihood solution of a probabilistic latent variable model for which an EM

algorithm can be derived. In particular, it enables a more automatic approach to find the

dimensionality of the subspace from the data. Since PCA is formulated in a probabilistic

approach, the authors proposed a Bayesian approach to model selection and the reader could

refer to Chapter 12.2 of [17] for more details.

Extensions of PCA : PCA has been widely studied since its birth in 1901 and has

been improved as one goes along the different statistical challenges. In particular, in modern

scientific applications such as genomic or mass spectrometry, the problem of high dimensional

low sample size occurs frequently. This n < p problem refers to situations where the num-

ber of features p is larger than the number of available observations n. It appears that the
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traditional PCA can not be performed on a high-dimensional dataset since the computational

cost increases with p3 and this is computationally infeasible. A traditional way to deal with

the n < p problem is to evaluate the cross-product Y Y t instead of computing the covariance

matrix based on Y tY . Indeed, the traditional way to do compute the principal component of

PCA is to make an eigenvalue decomposition of the covariance matrix Σ, where Σ = 1/nY tY

and Y is a n × p centered data matrix. For a corresponding eigenvector uj , the problem is

such as 1/nY tY uj = λjuj . By multiplying both sides of this equation by Y and by posing

vj = Y uj , then the eigenvalue decomposition problem becomes:

1/nY Y tvj = λjvj . (2.2.4)

Note that this equation corresponds to the eigenvalue decomposition of the cross-product

Y Y t ∈ R
n×n instead of those of Y tY ∈ R

p×p and implies a lower computational cost in the

case n < p. Moreover, the n − 1 eigenvalues associated to equation (2.2.4) are in common

with the p− n+ 1 eigenvalues of the original problem. Therefore, the jth eigenvectors which

corresponds to the eigenvalue λj of the covariance matrix Σ are finally obtained by Y tvj .

Consequently, to tackle the problem of high-dimensional low sample size, only the eigenvectors

and eigenvalues of Y Y t are needed to be computed and finally the eigenvectors of the original

space are obtained by computing uj = Y tvj/
√

nλj .

An other extension of PCA is based on the introduction of sparsity in the loadings of the

factor components in the aim of interpreting the projected axis. In particular, Zou et al. [193]

suggested a sparse approach of PCA by proposing a criterion penalized by a ℓ1-penalty. Be-

sides, even though PCA is the most popular technique for processing and visualization, its

effectiveness is limited by its global linearity. Therefore, other alternatives were proposed

and here is a non-exhaustive list of works: Kambhatla and Leen [104], for example, devel-

oped a method which uses PCA but locally, in restricted parts of the space; Scholkopf and

Smola [156] proposed a method called Kernel PCA which transforms the original data in a

higher dimensional space before applying PCA in these transformed data; Hastie et al. [84]

and Girard [65] also proposed non-linear versions of PCA ; from the probabilistic framework

designed for PCA, Tipping and Bishop [165] derived a mixture of probabilistic PCA which can

be considered for dimensionality reduction and data compression in local linear modeling as

well as a way to control the number of parameters for the estimation of covariance structures

in high dimensions.

2.2.1.2 Factor analysis

Factor analysis is an other way to deal with dimension reduction. This approach is as old as

PCA since its origins are relative to Spearman in 1904 [161] and there is an important literature

on this subject (see for example in Chapter 12 [17]). The basic idea of factor analysis is to

both reduce the dimensionality of the space and to keep the observed covariance structure of
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the data. The factor analysis model can be expressed as a latent variable model: let consider

a random vector Y ∈ R
p for which {y1, . . . , yn} are its independent observed realizations. Let

also consider that Y can be expressed by an unobserved random vector X ∈ R
d described in

a lower dimensional space with dimension d (d < p) and that the relationship between these

two spaces is linear such that:

Y = ΛX + µ+ ε, (2.2.5)

where Λ is a p× d matrix, µ ∈ R
p is the mean vector of Y and ε ∈ R

p is a centered Gaussian

noise term with a diagonal covariance matrix Ψ,

ε ∼ N (0,Ψ). (2.2.6)

Moreover, in the latent space, the random vector X ∈ R
d is assumed to be distributed accord-

ing to a Gaussian density function such as:

X ∼ N (0, Id). (2.2.7)

The use of assumptions (2.2.5), (2.2.6) and (2.2.7) implies that the marginal distribution of Y

is also Gaussian and:

Y ∼ N (µ,ΛΛt + Ψ). (2.2.8)

The first remark concerns the columns of Λ, called the factor loadings, which capture the

correlation between variables whereas the diagonal matrix Ψ stands for the independent noise

variance of each variable. Moreover, such a modeling enables to determine the model param-

eters by maximum likelihood and the estimation is executed through an iterative procedure

since there is no closed form maximum likelihood solution for Λ. The key assumption of the

factor analysis model is the constraint on the error covariance Ψ to be a diagonal matrix, then

the observed variables Y are conditionally independent given the values of the latent variables

X. These latent variables are thus intended to explain the correlations between observation

variables while ε represents the variability of each variable. This is where factor analysis

fundamentally differs from standard PCA which treats covariance and variance identically.

Finally, an other difference remains between factor analysis and PCA presented previously,

since factor analysis attempts to achieve a dimension reduction by invoking a model whereas

PCA does not. However, in the case of probabilistic PCA (PPCA) developed by Tipping and

Bishop [19], factor analysis and PPCA have common assumptions. They however mainly differ

from the shape of the covariance matrix of the noise term which is supposed isotropic in the

PPCA case (Ψ = σ2Ip).

Finally, Bishop extended the latent variable framework of FA to a non-linear latent variable

model called the Generative Topographic Mapping (GTM) [18] which mainly aims to visualize

the data. As the factor analysis model, the latent subspace has its dimension d lower than

the dimension of the observation space p but it is generally fixed equal to d = 2. Moreover,
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h(.;W)

Figure 2.5: In the latent space (right), the

in the general context, the distribution of the latent variables x = (x1, . . . , xd) is supposed

to be a sum of delta functions centered on the nodes of a regular grid in the latent space.

Moreover, each node of the regular grid is mapped in the data space and forms the centers

of the corresponding Gaussian density functions. His main idea is then based on the search

for a function h(.;W ) governed by a matrix of parameters W which defines a d-dimensional

manifold S embedded within the data space given the latent variable x. Figure 2.5 illustrates

schematically for the case d = 2 and p = 3. Under these assumptions, GTM can be viewed as

the probabilistic counterpart of the self-organizing map (SOM) [109]. However, by considering

the prior probability of x to be Gaussian, the noise distribution to be Gaussian with a diagonal

covariance matrix, then the standard factor analysis model is re-found.

2.2.2 The supervised case: Fisher discriminant analysis

These previous unsupervised approaches of dimension reduction do not consider the classifi-

cation task which can provide sometimes a sub-optimal data representation for the clustering

step. Indeed, dimension reduction methods imply an information loss which could be dis-

criminative. In particular, Chang [38] demonstrated theoretically and practically that the

principal components with the largest eigenvalues do not necessarily contain the most infor-

mation about the cluster structure. Thus, taking a subset of principal components can lead

to a major loss of information about the groups in the data. Only few approaches combine

dimension reduction with the classification aim but, unfortunately, those approaches are all

supervised methods. Fisher discriminant analysis (FDA) is one of the dimension reduction

approach in the supervised classification framework which combines dimension reduction with

the classification task. It is a powerful tool for finding the subspace which best discriminates
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the classes and reveals the structure of the data.

2.2.2.1 Fisher discriminant analysis

In 1936, in the case of supervised classification, Fisher poses the problem of the discrimination

of three species of iris described by four measurements in these terms : What linear function

of the four measurements will maximize the ratio of the difference between the specific means

to the standard deviation within species? [54]. Such a remark has led to useful approaches in

supervised classification and in dimension reduction.

The main goal of Fisher is to find a linear subspace that separates two class patterns

according to a criterion based on a separability measure between both classes (see [48]). Its

work was extended to the multi-class problem (see chapter 10 in [62]) and in this subsection,

we consider directly the case of multiple classes. From a statistical point of view, let us

consider {y1, . . . , yn} n-realizations of a random vector Y of dimension p and {z1, . . . , zn}
n-independent observed realizations of a random variable Z ∈ {1, . . . ,K} which is equal to

k when the observation belongs to Ck, the class k. We assume also that the dimensionality

p of the original space is greater than the number K of classes. Moreover, let us define the

projection of a p-dimensional input vector in a subspace E ⊂ R
p of dimension d lower that the

dimensionality of the observed space d < p:

x = U ty, (2.2.9)

where U is the projection matrix of dimension p × d and {x1, . . . , xn} are n-realizations of

a d-dimensional random vector X ∈ E. The subspace E is defined to be discriminant which

supposes that the Fisher’s criterion is large when the between scatter matrix in this subspace

sB is large and when the within scatter matrix sW is small.

Let consider an introductory example from the USPS datasets.The data comes from a

sample of the USPS handwritten image data [94] collected by the Center of Excellence in

Document Analysis and Recognition (CEDAR) at SUNY Buffalo. The overall dataset consists

of digital numbers 0, 1, 2, . . . , 9 described in 256 dimensions, but in this example only the

numbers 3, 5 and 8 are considered since they are difficult to discriminate. Figures 2.6a. and

2.6b. illustrate the histogram of the three classes of the USPS358 datasets resulting from

projections on the two Fisher discriminant axes and on the two first components of PCA. It

can be seen that the discriminative axes greatly improve class separation since the first Fisher’s

axis allows to distinct three different classes and the second axis improves the class separability:

the projected mean of each class on the first axis is well-separated and the variance of each

class is smaller in the projected space than in the PCA case where the classes overlap. This

figure illustrates the original idea of Fisher to determine a criterion based on the maximization

of a function giving a large separation between the projected classes while also giving a small

variance within each class. Four different criteria [62] can be found in the literature which
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satisfy such a constraint but one criterion is traditionally used:

J1(U) = tr
(

s−1
W sB

)

(2.2.10)

with sB = 1
n

∑K
k=1 nk(µk − x̄)(µk − x̄)t and sW = 1

n

∑K
k=1

∑

i∈Ck
(xi − µk)(xi − µk)

t where

µk = 1
nk

∑K
i∈Ck

xi and x̄ = 1
n

∑n
i=1 xi are respectively the mean of the observations xi in the

class k and the mean on the whole dataset. This criterion can be rewritten as an explicit

function of the projection matrix U , since sB = U tSBU and sW = U tSWU :

J1(U) = tr
(

(

U tSWU
)−1 (

U tSBU
)

)

(2.2.11)

where

SW =
1

n

K
∑

k=1

nkCk (2.2.12)

is the within-covariance in the input space R
p with Ck = 1

nk

∑

i∈Ck
(yi −mk)(yi −mk)

t and

nk, the number of observations which belongs to the class k;

mk =
1

nk

K
∑

i∈Ck

yi (2.2.13)

is the mean of the observations yi in the class k, and:

SB =
1

n

K
∑

k=1

nk(mk − ȳ)(mk − ȳ)t (2.2.14)

is the between-covariance where ȳ = 1
n

∑K
k=1 nkmk is the mean of the observations. Con-

sequently, Fisher discriminant subspace looks for a projection matrix U which projects the

observations in a discriminant and low-dimensional subspace of dimension d. This subspace

is defined such that the linear transformation U of dimension p× d aims to maximize a cri-

terion which is large when the between-class covariance matrix (SB) is large and when the

within-covariance matrix (SW ) is small. Besides, since the Huygens relation:

S = SW + SB (2.2.15)

between the covariance matrix S = 1
n

∑n
i=1(yi − ȳ)(yi − ȳ)t and the within and between

covariance matrices holds, the Fisher criterion defined in equation (2.2.11) can be rewritten

and optimizes differently from different combinations of S, SW and SB. Typical examples

are the pairs {SB, SW } , {S, SW } and {SB, S}. The equivalence on optimizing the Fisher’s

criterion with these different pairs is exposed in the next section.
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Figure 2.6: Projection of the USPS358 dataset with the corresponding empirical distribution
of each class in the Fisher discriminative subspace (a) and in the 2 first principal components
of PCA (b).

2.2.2.2 Optimization of the projection matrix U

The solution linked to the maximization of the Fisher’s criterion defined in equation (2.2.10)

is the eigenvectors associated to the K − 1 largest eigenvalues of the matrix S−1
W SB when

SW is assumed to be non singular. Indeed, according to results from the symmetric-definite

generalized eigenvalue problem [66], there exists a non singular matrix Z ∈ R
p×p such as both

SW and SB are diagonalized:

ZtSWZ = Ip and ZtSBZ = Λ = diag (λ1, . . . , λp) . (2.2.16)

By stating zj a jth column of Z:

SBzj = λjSW zj , (2.2.17)

which means that zj and λj are respectively the jth eigenvector and eigenvalue of S−1
W SB.

Besides, the between covariance matrix SB is positive semi definite which means that the p

eigenvalues of S−1
W SB are positive or nul. Moreover, since SB is composed of the sum of K

matrices based on the term (mk − ȳ) and by noting that ȳ = 1
n

∑n
i=1 yi = 1

n

∑K
k=1 nkmk with

mk defined by equation (2.2.13), it can be seen that only K − 1 matrices are independent.

Consequently, SB has rank at most equal to K − 1 and then only K − 1 eigenvalues are

non-zeros. Thus, the criterion (2.2.10) is maximized by those eigenvectors of S−1
W SB that

correspond to the K − 1 largest eigenvalues.

Let us consider Z and Λ = diag (λ1, . . . , λp), the eigenvector and eigenvalue matrices of

S−1
W SB and the Huygens relation defined in (2.2.15), then the eigendecomposition problem
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SBZ = SWZΛ can be rewritten as:

SBZ = (S − SB)ZΛ = SZΛ− SBZΛ (2.2.18)

SBZ = SZΛ (Ip + Λ)−1 . (2.2.19)

Then, it can be observed that Z stands for also the eigenvectors of S−1SB associated with

the eigenvalue matrix Λ (Ip + Λ)−1. In the same manner, by considering SB = S − SW , the

eigendecomposition problem becomes SWZ = SZ (Λ + Ip)
−1 and the eigenvectors of S−1SW ,

that correspond to the eigenvalue matrix (Λ + Ip)
−1, are the same as those obtained by the

eigendecomposition of S−1
W SB. Since the eigenvalues of Λ are ordered in decreasing order

λ1 ≥ · · · ≥ λd ≥ · · · ≥ λp ≥ 0, then the eigenvalues associated with (Λ + Ip)
−1 are in

increasing order:

0 ≤ 1

1 + λ1
≤ · · · ≤ 1

1 + λd
≤ · · · ≤ 1

1 + λp
.

and consequently, according to the criterion to optimize, the projection matrix U is formed by

the K − 1 eigenvectors corresponding to the K − 1 largest eigenvalues of S−1
W SB or of S−1SB,

or to the K − 1 smallest eigenvalues of S−1SW . However, the J1 criterion has limitations

since the matrix SW (or S according the pairwise covariance matrices chosen to optimize the

criterion) must be nonsingular.

2.2.2.3 Regularization of Fisher discriminant analysis

The optimization of a generalized Fisher criterion S−1
1 S2 supposes the non-singularity of the

matrix S1 and it appears that this singularity occurs frequently, particularly in the case of very

high-dimensional space or in the case of undersampled problems. In the literature, different

solutions are proposed to deal with such a problem in a supervised classification framework: the

regularized discriminant analysis (RDA) proposed by Friedman [61], the use of the generalized

singular value decomposition (GSVD) developed by Howland [89] and improved by Zhang [192]

or a combination of several solutions as Jin et al. [99] proposed in the case of small observations

but large set of variables.

Standard regularization The eigenvalue problem can be rewritten as S−1
1 S2Z = ZΛ

which supposes that the matrix S1 is non-singular: it fails in practice since S1 is usually ill-

conditioned. As previously in Section 2.1, a common method to handle this problem is to

use the pseudoinverse S+
1 instead of S−1

1 as it is suggested by [62] and solving the following

problem:

S+
1 S2Z = ZΛ. (2.2.20)
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A second variant of regularization adds a positive term σ2 to the diagonal of S1 such as

S̃1 = S1 + σ2Ip. Therefore, the eigendecomposition problem becomes:

(

S1 + σ2Ip

)−1
S2Z = ZΛ. (2.2.21)

This last regularization can be extended by using the penalized discriminant analysis (PDA) [83]

which deals with high correlated variables or undersampled cases. In this case, the scatter

matrix S1 can be regularized by S̃1 = S1 + σ2Ω where the p × p matrix Ω penalizes the cor-

relations between variables. Finally, a third variant can be borrowed to Friedman [61] who

proposed to regularize the covariance matrices Σk of each class in the case of linear discrimi-

nant analysis. He suggested that the K covariance matrices Σk = 1
nk

∑

i∈Ck
(yi−µk)(yi−µk)

t

for k = {1, . . . ,K} depends on two regularized parameters λ and γ such that they can be

approximated by:

Σ̃k = (1− γ) Σ̂k(λ) +
γ

p
trace

(

Σ̂k(λ)
)

Ip

where:

Σ̂k(λ) =
(1− λ) (nk − 1) Σk + λ (n− k)S

(1− λ) (nk − 1) + λ (n− k) ,

Note that the parameter λ controls the contribution between S and Σk whereas the parameter

γ controls the estimation of the eigenvalues of Σk. This regularization can be incorporated

in the Fisher’s criterion from the within covariance matrix SW , by denoting that SW =
1
n

∑K
k=1 nkΣk.

Generalized singular value decomposition Recently, after the reformulation of the

FDA problem in terms of generalized singular value decomposition (GSVD) [66, 141], Howland

and Park [89] extended this approach to the singularity case of the pooled scatter matrix (SW ).

Their approach is developed in different steps. First, they diagonalize simultaneously SW and

SB according to the symmetric-definite generalized eigenvalue problem defined by [66]:

ZtSWZ = Ip and ZtSBZ = Λ,

where Z ∈ R
p×p and Λ is a p × p diagonal matrix which contains the eigenvalues of S−1

W SB.

Once these both matrices diagonalized, Howland and Park showed that the maximum of J1

can be achieved for:

U = Z

(

Id

0

)

, (2.2.22)

whenever U contains the d = rank (SB) eigenvectors of S−1
W SB corresponding to its d largest

eigenvalues. Then, to deal with the singularity case, the authors redefined three matrices
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which recall the partitioning of the whole dataset into K clusters:

HW =
1√
n

[

Y1 −m11
t
n1
, . . . , YK −mK1t

nK

]

∈ R
p×n (2.2.23)

HB =
1√
n

[
√
n1 (m1 − ȳ) , . . . ,

√
nK (mK − ȳ)] ∈ R

p×K (2.2.24)

HM =
1√
n

[y1 − ȳ, . . . , yK − ȳ] =
1√
n

[

Y − ȳ1t
n

]

∈ R
p×n (2.2.25)

where Yk stands for the block data which belongs to the class k, 1n is a n-dimensional column

vector containing ones, mk = 1
nk

∑

i∈Ck
yi and nk are respectively the mean and the number

of patterns in the class k and ȳ = 1
n

∑n
i=1 yi. Thus, the scatter matrices can be re-expressed

as:

SW = HWHt
W , SB = HBH

t
B and S = HMH

t
M . (2.2.26)

By considering the matrices defined by the equations (2.2.23),(2.2.24) and (2.2.25) and ac-

cording to a general theorem developed by Paige and Saunders [141], Howland and Park

reformulated the eigendecomposition problem in (2.2.17) as a problem that can be solved by

a generalized singular value decomposition (GSVD):

β2
jHBH

t
Bzj = α2

jHWHt
W zj , (2.2.27)

where the αi’s and βi’s satisfy several conditions which are detailed in [89]. Howland and Park

concluded that only the d first columns of Z which correspond to the d largest λi =
α2

i

β2
i

are

needed and those form the projection matrix U . Moreover, they proved that the rule which

computes the projection matrix U is the same in the non-singular case as in the singular

case. To that end, they proposed a LDA/GSVD algorithm based on a partial GSVD of

the matrix pair
(

Ht
B, H

t
W

)

which can be applied even though SW is singular. However, one

limitation of this method is the high computational cost of GSVD particularly for large and

high-dimensional data.

Dealing with the n < p: In the same aim to deal with the case of n < p, Zhang

et al. [192] modified and improved Howland and Park’s approach. Indeed, they first add

a regularized term in the covariance matrix S which transforms the Fisher’s criterion in
(

S + σ2Ip

)−1
SBZ = ZΛ. Secondly, by using the Howland’s representations of S and SB,

Zhang et al. express the eigendecomposition problem as:

(

HMH
t
M + σ2Ip

)−1
HBH

t
BZ = ZΛ, (2.2.28)

which enable them to deal with the n ≪ p problem. Indeed, Zhang et al. showed that the

following equality
(

HMH
t
M + σ2Ip

)−1
HM = HM

(

Ht
MHM + σ2In

)−1
holds which is very in-

teresting in terms of computations since the size of the inverse matrix
(

HMH
t
M + σ2Ip

)−1
is

p × p whereas those of
(

Ht
MHM + σ2In

)−1
is n × n. Consequently, when n < p the compu-
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tation cost of their method is reduced compared to Howland’s one. furthermore, Zhang et al.

proposed an efficient algorithm to deal with their approach and have extend it for a kernel

approach of Fisher discriminant analysis.

An other recent approach was suggested by Ye [186] which proposed a new optimization

criterion for discriminant analysis. This new approach extends the traditional FDA to the

undersampled problem by combining tools used by Howland and Park in [89] and the pseu-

doinverse regularization. The proposed criterion J2 is based on a regularization of J1, such

that:

J2 = trace
(

(

U tSU
)+
U tSBU

)

, (2.2.29)

where
(

U tSU
)+

denotes the pseudoinverse of the total class matrix in the lower dimensional

subspace. His main idea is based on the simultaneous diagonalization of the three covariance

matrices S, SW and SB which conduces him to an equivalent solution but more general to

(2.2.22). This generalization leads Ye, to propose two very simple and efficient algorithms: on

the one hand, he declines the uncorrelated LDA (ULDA) algorithm which has the property

that the features in the reduced space are uncorrelated. The proposed algorithm is a natural

extension of the Fisher discriminant analysis by replacing the inverse by the pseudoinverse.

On the other hand, Ye proposes an alternative to Fisher discriminant analysis with orthogonal

discriminant vectors yielding to the orthogonal linear discriminant analysis (OLDA) algorithm.

2.2.2.4 Fisher criterion as a regression-type problem

Qiao et al. [147] recently transformed the eigendecomposition problem defined in equa-

tion (2.2.11), as a ridge regression-type problem. Indeed, by considering the matrices HW

and HB, defined previously in equations (2.2.23) and (2.2.24), and by defining the Cholesky

decomposition of the within covariance matrix SW such as SW = Rt
WRW where RW is an

upper triangular matrix of dimension p× p, Qiao et al. proposes the following theorem which

allows to rewrite the eigendecomposition problem as a regression-type problem:

Theorem 2.2.1. Consider the Cholesky decomposition of the within covariance matrix SW =

Rt
WRW where RW ∈ R

p×p is a upper triangular matrix. Let HB ∈ R
p×K be defined as 2.2.24.

Let U1, . . . , Ud d column vectors of dimension p for which d ≤ min(p,K − 1) denote the

eigenvectors linked to d largest values of the eigendecomposition of S−1
W SB. Let consider the

p× d matrices A = [α1, . . . , αd] and B = [β1, . . . , βd] . For ρ > 0, let Â and B̂ be the solutions

of the following problem:

min
A,V

K
∑

k=1

∥

∥R−t
WHB,k −ABtHB,k

∥

∥

2

F
+ ρ

d
∑

j=1

βt
jSWβj w.r.t. AtA = Id, (2.2.30)

where HB,k =
√

nk/n (mk − ȳ) is the kth column of HB and ‖.‖F stands for the Frobenius

norm. Then, the d column vectors β̂j span the same linear space as those of the projection
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matrix U .

Qiao et al. proved this theorem by computing alternatively the derivatives of expres-

sion (2.2.30) with respect to B given A and conversely, with respect to A given B. By

considering the eigendecomposition of the matrix R−t
W SBR

−1
W = EΛEt with E, the matrix

containing the d associated eigenvectors and Λ the diagonal matrix containing its eigenvalues,

then the optimal loadings matrix Â satisfies:

Â = EP, (2.2.31)

where P is an arbitrary d× d orthogonal matrix. By using such estimation for A, the optimal

loadings matrix B̂ is therefore:

B̂ = R−1
W E(Λ + ρI)−1ΛP,

with ρ > 0. By remarking that the d column vectors of U = R−1
W E is solution of the generalized

eigenvalue problem defined in (2.2.17) with SW = Rt
WRW , it allows the authors to conclude:

the d column vectors of the fitted matrix B̂ span the same linear subspace as the column

vectors of U , solution of the eigendecomposition problem.

Note that the positive constant term ρ in the formula (2.2.30) of the Qiao’s theorem stands

for the ridge penalty term: when n > p, this theorem does not require a positive ρ. However,

if p > n and ρ = 0, ordinary multiple regression has no unique solution. This discrepancy is

then removed by an additional positive ridge penalty term by posing ρ > 0.

2.2.2.5 Extension to unsupervised classification

Since clustering approaches are sensitive to high-dimensional and noisy data, recent works

focused on combining low dimensional discriminative subspace with one of the most used

clustering algorithm: k-means. This method iteratively computes a discriminative subspace

based on Fisher criterion given the previous partition and obtains a new partition by k-means

subject to this subspace. The first basic algorithm was proposed by Xu et al. [40] and then

extended by De la Torre [110] who develops a discriminative cluster analysis (DCA) method

in the case of non invertible scatter matrix. A theoretical framework is suggested by Ding

in [47] when both tasks perform simultaneously since Fisher discriminant analysis and k-means

clustering optimize the same objective function. More recently, Ye et al. [187] reformulate the

iterative problem of clustering in discriminative subspace and show that the iterative subspace

selection and k-means clustering is equivalent to kernel k-means task with a specific kernel

Gram matrix. However, these approaches do not really compute the discriminant subspace

and are not interested in the visualization of the data.
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2.3 The subspace clustering

Finally, an other way which combines dimension reduction and clustering is the use of sub-

space clustering methods, proposed in the past few years. These methods exploit the “empty

space” phenomenon since they consist of modeling the data of each group in specific subspaces

and introduce some restrictions to ease the discrimination of the groups while keeping all

dimensions.

Subspace clustering methods can be split into two categories: heuristic and probabilistic

methods. Heuristic methods use algorithms to search for subspaces of high density within

the original space. On the one hand, bottom-up algorithms use histograms for selecting the

variables which best discriminate the groups. The Clique algorithm [1] was one of the first

bottom-up algorithms and remains a reference in this family of methods. On the other hand,

top-down algorithms use iterative techniques which start with all original variables and remove

at each iteration the dimensions without groups. A review on heuristic methods is available

in [143]. However, in this Section, we are going to focus on the second category of the subspace

clustering methods which are based on a probabilistic framework. These methods assume that

the data of each group live in a low-dimensional latent space and usually model the data with a

generative model. Earlier strategies [153] are based on the factor analysis model which assumes

that the latent space is related with the observation space through a linear relationship. This

model was recently extended in [8, 128] and yields in particular the well known mixture of

probabilistic principal component analyzers [19]. Recent works [22, 129] propose two families of

parsimonious and regularized Gaussian models which partially encompass previous approaches.

All these techniques turn out to be very efficient in practice, to cluster high-dimensional data.

2.3.1 Mixture of factor analyzers (MFA)

Mixture of factor analyzers [64, 127] is one of the subspace clustering method which both

clusters the data and reduces locally the dimensionality of each cluster. Even though many

authors extended the MFA model, the main idea was firstly introduced by Ghahramani and

Hinton [64], and then extended by McLachlan et al. [127]. In this first paragraph, the original

work of Ghahramani and Hinton on MFA is introduced before developing the works of Baek

and McLachlan on this subject and other recent works [8, 136, 188, 189]. To distinct these

both approaches, we recall G-MFA and M-MFA, the MFA approach developed by Guahramani

and Hinton and respectively by McLachlan et al..

The G-MFA model is an extension of the factor analysis (FA) model introduced in Sec-

tion 2.2.1.2 to a mixture of K factor analyzers. Let {y1, . . . , yn} be independent observed

realizations of a random vector Y ∈ R
p. Let us also consider that Y can be expressed by an

unobserved random vector X ∈ R
d named the factor and described in a lower dimensional

space of dimension d < p. Moreover, zi = {zi1, . . . , ziK} are assumed to be independent

unobserved realizations of a random vector Z ∈ {0, 1}K where zik = 1 if the data point is
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Figure 2.7: Graphical summary of factor analysis (FA) model (a) and mixture of factor ana-
lyzers (G-MFA) model of Ghahramani and Hinton (b).

generated by the kth factor analyzer and 0 otherwise. The relationship between these two

spaces is assumed to be linear and, conditionally to the kth factor analyzer Z = k, it follows

that:

Y|Z=k = ΛkX + µk + ε, (2.3.1)

where Λk is a p × d matrix and depicts the kth factor analyzer matrix and µk ∈ R
p is the

mean vector of the kth factor analyzer. Moreover ε ∈ R
p is a centered Gaussian noise term

with a diagonal covariance matrix Ψ which is common to all factor analyzers:

ε ∼ N (0,Ψ). (2.3.2)

Besides, as in standard FA, the factors X ∈ R
d are assumed to be distributed according to a

Gaussian density function such as X ∼ N (0, Id). This implies that the conditional distribution

of Y is also Gaussian:

Y|X,Z=k ∼ N (ΛkX + µk,Ψ), (2.3.3)

The marginal density of Y is a Gaussian mixture model such as f(y) =
∑K

k=1 πkφ(y; θk),

where πk stands for the mixture proportion, φ(.) is a Gaussian density with parameters θk =

{µk,ΛkΛ
t
k + Ψ}. At this point, two main differences can be stated between G-MFA and the

standard factor analysis. On the one hand, the G-MFA model considers a mixture of factor

analyzers: it allows to have different local factor models, in different regions of the input

space, compared to the standard FA which assumes a common factor model. On the other

hand, conversely to the FA model, for which the mean of the data has no interest and the

model is fitted on Y − µ, in the G-MFA model, each factor analyzer has different means

µk which allows each of them to model the data covariance structure in a different part of

the observation space. Figures 2.7.a and 2.7.b summarize respectively the FA and G-MFA

models. The complexity of the G-MFA model can be computed according to the number

of parameters to estimate. Since the G-MFA model is in a Gaussian mixture model of K

components, there are (K−1) parameters for the proportions andKp for the means. Moreover,
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Kd(p− (d−1)/2)+p parameters are required to estimate the component-covariance matrices,

since these covariances matrices are defined in a factor representation such as Sk = ΛkΛ
t
k +Ψ.

The model complexity is then γG−MFA = (K − 1) + Kp + Kd(p − (d − 1)/2) + p and by

considering the following numerical example p = 100, K = 4 and d = 3, then 1691 parameters

have to be estimated for this G-MFA model.

This approach introduced by Ghahramani and Hinton was generalized by McLachlan et

al. [128] by removing the constraint on the variance of the noise. Therefore, the conditional

distribution of the noise term becomes ε|Z=k ∼ N (0,Ψk) where Ψk stands for the diagonal

matrix of the cluster k. The conditional distribution of Y is then: Y|X,Z=k ∼ N (ΛkX+µk,Ψk).

In this case, since there are K covariance matrices of noise to compute in comparison to

the Ghahramani’s MFA, the model complexity increases and takes the following expression:

γM−MFA = (K − 1) +Kp+Kd(p− (d− 1)/2) +Kp.

More recently, McLachlan and Baek [8] provided an alternative approach which aims to

improve the complexity of the model by proposing a more parsimonious model. To that end,

they re-parametrized the mixture model with restrictions on the means, such as µk = Aρk

where A is a p × d orthonormal matrix (AtA = Id) and ρk is a d-dimensional vector, and

on the covariance matrix Sk = AΩkA
t + Ψ, where Ωk is a d × d positive definite symmetric

matrix and Ψ a diagonal p × p matrix. This model is referred to by the mixture of factor

analyzers with common factor loadings (MCFA) by its authors, as the matrix A is common

to the factors. According to the MCFA assumptions, there are only Kd means parameters to

estimate instead of Kp in the MFA model. Moreover, since the matrix A is constrained to have

orthonormal columns and to be common to all classes, then only pd− d(d+ 1)/2 loadings are

required to estimates it. Finally, according to the restriction on the matrices Ωk, the number

of parameters to estimate these K matrices is Kd(d+ 1)/2. Consequently, the complexity of

the MCFA model is: γMCFA = (K − 1) + Kd + p + (pd − d(d + 1)/2)) + Kd(d + 1)/2 and

for the numerical example, this complexity is equal to 433 which is much more parsimonious

than the previous MFA models. Besides, this MCFA approach is a special case of the MFA

model but has the main advantage to allow the data to be displayed in a common low-

dimensional plot. The MCFA approach is also a generalization of the works of Yoshida et

al. [188, 189] since these authors, in their approach, constrained the covariance of the noise

term to be spherical (Ψ = λIp) and the component-covariance matrices of the factors to

be diagonal (Ωk = ∆k = diag(σ2
k1, . . . , σ

2
kd)). This approach, called mixtures of common

uncorrelated factor spherical-error analyzers (MCUFSA), is therefore more parsimonious than

MCFA according to the additional assumptions done on the parameters of the MFA model.

More recently, Montanari and Viroli [136] presented an approach called heteroscedastic mixture

factor model (HMFA) which is very similar to the model described in MCFA. Their model

differs from the MCFA approach only on the definition of the common loadings matrix A

which does not need to have orthonormal columns. However, to obtain a unique solution

for the matrix A, Montanari and Viroli added restrictions on this matrix such as AtΨ−1A is
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K = 4

Model name Cov. structure Nb. of parameters d = 3

p = 100

M-MFA Sk = ΛkΛt
k + Ψk (K − 1) +Kp+Kd[p− (d− 1)/2] +Kp 1991

G-MFA Sk = ΛkΛt
k + Ψ (K − 1) +Kp+Kd[p− (d− 1)/2] + p 1691

MCFA Sk = AΩkA
t + Ψ (K − 1) +Kd+ p+ d[p− (d+ 1)/2] +Kd(d+ 1)/2 433

HFMA Sk = V ΩkV
t + Ψ (K − 1) + (K − 1)d + p + d[p − (d − 1)/2] + (K − 1)d(d + 1)/2 427

MCUFSA Sk = A∆kA
t + λIp (K − 1) +Kd+ 1 + d[p− (d+ 1)/2] +Kd 322

A is defined such as AtA = Id, V such as V Ψ−1V t is diagonal with decreasing order and ∆k is a diagonal matrix.

Table 2.3: Nomenclature of the MFA models developed by Ghahramani and Hinton (G-MFA),
MacLachlan et al. (M-MFA), and MCFA models with their corresponding covariance structure.

diagonal with elements in decreasing order.

The differences between these MFA models are summarized in Table 2.3 which presents

both the covariance structure and the model complexity of each approach.

2.3.2 Parsimonious Gaussian Mixture Model (PGMM)

More recently, a general framework for the MFA model was proposed by McNicholas and

Murphy [129] which, in particular, included the previous works of Ghahramani and Hinton

and of McLachlan et al.[128].

By considering the previous framework defined by the assumptions (2.3.1,2.3.3), McNi-

cholas and Murphy[130] proposed a family of 12 models known as the expanded parsimonious

Gaussian mixture model (EPGMM) family. by constraining the terms of the covariance matrix

to be equal or not, by considering an isotropic variance for the noise term, or by reparametrizing

the factor analysis covariance structure, they decline 12 EPGMM models. The nomenclature

of both PGMM and EPGMM is illustrated in Table 2.4 in which the covariance structure of

each model is detailed. In particular, the terminology of the PGMM family is as following:

the first letter stands for the loading matrix which is constrained to be equal between groups

(C..) or not (U..), and the last terms are linked to the error variance. This variance can be

common between factors (.C.) or not (.U.) corresponding to the second term and the last term

denotes the covariance structure which can be either isotropic (..C) or not (..U). Thus, the

CCC model refers to by a model with common factors (Λk = Λ, ∀k ∈ {1, . . . ,K}) and a com-

mon and isotropic noise variance (Ψk = ψIp). In the terminology of the EPGMM family, the

main difference remains in the 3 last terms which correspond to the noise variance structure

and are a combination of the following constraints: ∆k can be common (.C..) or not (.U..),
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Model name Cov. structure Nb. of parameters
K = 4,d = 3

p = 100

UUUU - UUU Sk = ΛkΛt
k + Ψk (K − 1) +Kp+Kd[p− (d− 1)/2] +Kp 1991

UUCU - Sk = ΛkΛt
k + ωk∆k (K − 1) +Kp+Kd[p− (d− 1)/2] + [1 +K(p− 1)] 1988

UCUU - Sk = ΛkΛt
k + ωk∆ (K − 1) +Kp+Kd[p− (d− 1)/2] + [K + (p− 1)] 1694

UCCU - UCU Sk = ΛkΛt
k + Ψ (K − 1) +Kp+Kd[p− (d− 1)/2] + p 1691

UCUC - UUC Sk = ΛkΛt
k + ψkIp (K − 1) +Kp+Kd[p− (d− 1)/2] +K 1595

UCCC - UCC Sk = ΛkΛt
k + ψIp (K − 1) +Kp+Kd[p− (d− 1)/2] + 1 1592

CUUU - CUU Sk = ΛΛt + Ψk (K − 1) +Kp+ d[p− (d− 1)/2] +Kp 1100

CUCU - Sk = ΛΛt + ω∆k (K − 1) +Kp+ d[p− (d− 1)/2] + [1 +K(p− 1)] 1097

CCUU - Sk = ΛΛt + ωk∆ (K − 1) +Kp+ d[p− (d− 1)/2] + [K + (p− 1)] 803

CCCU - CCU Sk = ΛΛt + Ψ (K − 1) +Kp+ d[p− (d− 1)/2] + p 800

CCUC - CUC Sk = ΛΛt + ψkIp (K − 1) +Kp+ d[p− (d− 1)/2] +K 704

CCCC - CCC Sk = ΛΛt + ψIp (K − 1) +Kp+ d[p− (d− 1)/2] + 1 701

where ωk ∈ R
+and |∆k| = 1.

Table 2.4: Nomenclature of the members of the PGMM and EPGMM families and the corre-
sponding covariance structure.

ωk = ω ∀k ∈ {1, . . . ,K} (..C.) or not (..U.) and finally ∆k = Ip (...C) or not (...U). The table

also gives the maximum number of free parameters to estimate according to K, p and d for

the 12 models. In particular, this number of free parameters to estimate can be decomposed

in the number of parameters to estimate for the proportions (K − 1), for the means (Kp) and

for the covariance matrices (last terms).

According to this family of 12 models, the previous approaches developed by [64, 165, 128,

129, 8] become then submodels of the EPGMM approach. For example, by constraining only

the noise variance to be isotropic on each class (Ψk = σ2
kIp) which corresponds to the CUC

and CCUC models, it produces Mixt-PPCA. In the same way, by considering the covariance

structure of the UCU and UCCU models such that Ψk = Ψ and Λk, then we obtain the

mixture of factor analyzers model developed by Ghahramani and Hinton and the UUUU

model is equivalent to the MFA model proposed by McLachlan et al. in [128]. Finally, by

parametrizing the factor analysis covariance structure by writing Ψk = ωk∆k where ∆k is a

diagonal matrix and |∆k| = 1, McNicholas and Murphy proposed four additional models to

their previous work [129] according to the restrictions on the covariance structure and also to

the following constraint ωk = ω,∀k.
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Figure 2.8: Parametrization of the model [akjbkQkdk] for the HDDC approach.

In the case of EPGMM models, the parameter estimation is done according to alternat-

ing expectation-conditional maximization algorithms (AECM) [133] wherein the M-step is

replaced by few conditional maximization steps since the group membership and the latent

factors are both unknown.

2.3.3 High-dimensional GMM (Hd-GMM)

In a slightly different context, Bouveyron et al. [22, 23] proposed a family of 28 parsimonious

and flexible Gaussian models to deal with high-dimensional data. Conversely to the previous

approaches, this family of GMM was proposed in both supervised and unsupervised classifi-

cation context. However in this subsection, we consider only the unsupervised context and to

ease the designation of this family, we propose to recall these models: the high-dimensional

Gaussian mixture models (Hd-GMM). By considering the model-based clustering framework

presented in Section 2.1.1.1, Bouveyron et al. [22] proposed to rewrite the covariance matrix

Sk of the class k by using an eigendecomposition of Sk as it was firstly proposed by Banfield

and Raftery [9]:

Sk = QkΛkQ
t
k,

where Qk is a p× p orthogonal matrix which contains the eigenvectors of Sk and Λk is a p× p
diagonal matrix containing the eigenvalues of Sk. The key idea of the work of Bouveyron et

al. is to reparametrize the matrix Λk, such as Λk models each group in a subspace of lower

dimension than the dimension of the observed space such that:

Λk = diag (ak1, . . . , akdk
, bk, . . . , bk) ,

where the dk first values ak1, . . . , akdk
parametrize the variance in the group-specific subspace

and the p−dk last terms, the bk’s, model the noise. With this parametrization, these parsimo-
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Model name Nb. of parameters
p = 100

K = 4, d = 3

[akjbkQkdk] (K − 1) +Kp+
PK

k=1 dk[p− (dk + 1)/2] +
PK

k=1 dk + 2K 1599

[akjbQkdk] (K − 1) +Kp+
PK

k=1 dk[p− (dk + 1)/2] +
PK

k=1 dk + 1 +K 1596

[akbkQkdk] (K − 1) +Kp+
PK

k=1 dk[p− (dk + 1)/2] + 3K 1591

[abkQkdk] (K − 1) +Kp+
PK

k=1 dk[p− (dk + 1)/2] + 1 + 2K 1588

[abQkdk] (K − 1) +Kp+
PK

k=1 dk[p− (dk + 1)/2] + 2 +K 1585

[akjbkQkd] (K − 1) +Kp+Kd[p− (d+ 1)/2] +Kd+K + 1 1596

[ajbkQkd] (K − 1) +Kp+Kd[p− (d+ 1)/2] + d+K + 1 1587

[akjbQkd] (K − 1) +Kp+Kd[p− (d+ 1)/2] +Kd+ 2 1593

[ajbQkd] (K − 1) +Kp+Kd[p− (d+ 1)/2] + d+ 2 1584

[akbkQkd] (K − 1) +Kp+Kd[p− (d+ 1)/2] + 2K + 1 1588

[abkQkd] (K − 1) +Kp+Kd[p− (d+ 1)/2] +K + 2 1585

[akbQkd] (K − 1) +Kp+Kd[p− (d+ 1)/2] +K + 2 1585

[abQkd] (K − 1) +Kp+Kd[p− (d+ 1)/2] + 3 1582

[ajbQd] (K − 1) +Kp+ d[p− (d+ 1)/2] + d+ 2 702

[abQd] (K − 1) +Kp+ d[p− (d+ 1)/2] + 3 700

Table 2.5: Nomenclature for the members of the Hd-GMM family and the number of param-
eters to estimate. For the numerical example, the intrinsic dimension of the clusters has been
fixed to dk = d̄ = 3, ∀k = 1, . . . ,K.

nious models assume that conditionally to the groups, the noise variance of each cluster k is

isotropic and is contained in a subspace which is orthogonal to the subspace of the kth group.

The authors proposed a family of parsimonious models from a very general model, referred to

as [akjbkQkdk] to very simple models. Figure 2.8 illustrates the parametrization of the model

[akjbkQkdk] and Table 2.5 stands for the nomenclature of the main Hd-GMM models and their

complexity. In particular, the first quantity (K−1)+Kp stands for the number of parameters

for the means and the mixture proportions of K clusters. Then, there are
∑K

k=1 dk[p(dk +1)/2]

loadings to estimate for the K orientation matrices Qk and finally the last terms represent the

parameters for the covariance matrices in the latent and in the noise subspaces of K clusters

and their intrinsic dimension. Such approach can be viewed in two different ways: on the

one hand, these models enable to regularize the models in high-dimension. In particular, by
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and Schmid

Scott and Symons,

Marriott, etc.
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CCUU [abQkdk]

UCUU [ajbkQkd]

CUCU [akjbQkd]

UUCU [ajbQkd] [λkBk]

CUUU CUU [akbkQkd] [λBk]

CCUC CUC [abkQkd] [λkB]

UUCC UUC [akbQkd] [λB]

CCCC CCC [abQkd] [λDkADt
k] EEV

CCCU CCU M-MFA [ajbQd] [λkDkADt
k] VEV

UUUU UUU G-MFA [abQd] [λkAk] VVI

UUUC UUC Mixt-PPCA [akjbkQkd] [λAk] EVI

[akjbkIp (p− 1)] Diag-GMM [λkA] VEI

[akjbkQk (p− 1)] Full-GMM [λkDkAkD
t
k] VVV

[ajbQ (p− 1)] Com-GMM [λDADt] EEE

Sphe-GMM [λkIp] VII

Com-Sphe-GMM [λIp] EII

Figure 2.9: Links between existing subspace clustering and parsimonious models.

imposing a constraint on dk = p− 1, the proposed approach can be viewed as an extension of

the works of [36, 59]. Indeed, the model [akjbkQk (p − 1)] stand for the Full-GMM model or

the [λkDkAkDk] model of [36]. In the same manner, the model [akjbkQ (p− 1)] is equivalent

to the Diag-GMM or the [ajbQ (p− 1)] is also the Com-Diag-GMM. On the other hand, this

approach can also be viewed as an extension of the mixture of principal component analyzer

(Mixt-PPCA) model [165] since it relaxes the equality assumption on d and the Hd-GMM

model referred to by [akjbkQkd] stands for the Mixt-PPCA model.

2.3.4 Comparison and limitations of the subspace clustering methods

The subspace clustering methods which have been presented until now belong to a huge fam-

ily of Gaussian mixture models and several links exist between these approaches. Indeed, in

the last paragraph, we saw that some constrained Hd-GMM models were equivalent to tra-

ditional parsimonious models such that Com-Diag-GMM or Diag-GMM and consequently to

the models proposed by Raftery and Fraley or by Celeux and Govaert. Besides, it appears
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that the model [akjbkQkd] of the Hd-GMM models stands for the Mixt-PPCA model. In the

same manner, few models which belong to the EPGMM family of [130] are also included in

the HDDC family. In particular, the UCUC model of [130] which corresponds to the model

[akjbkQkd]. Moreover, the EPGMM family proposed by McNicholas and Murphy included in-

dividual works on MFA particularly the works of Guahramani [64], Tipping and Bishop [165],

McLachlan [128], McNicholas and Murphy [130] and Baek et al.[8] which become submodels.

However, it seems difficult to compare these methods since the hypothesis of Hd-GMM models

are stronger than the MFA models. Indeed, the subspace of each class is spanned by orthogo-

nal vectors, whereas it is not a necessary condition in MFA, even if such a situation can occur

sometimes as in the case of the model UCUC (CUC). The different links between the different

families of parsimonious models are presented in Figure 2.9.

However, despite their efficiency to cluster high-dimensional data, these probabilistic meth-

ods based on subspace clustering present several limitations. Indeed, these approaches is based

on the fact that the clustering results do not provide a simple understanding neither a global

visualization of the clusters. Since each cluster lives in a different subspace, then the visualiza-

tion of all the clusters in the same subspace seems difficult or even impossible. Only MCFA,

MCUFSA or HMFA for which the factor loadings are formulated via common matrix for the

component factor loadings can provide low-dimensional plots of the data structure. Finally, in

the case where the subspace of each group is constrained to be common, the models choose the

orientation such as the variance of the projected data is maximum which can be not sufficient

to catch discriminative information. To overcome these limitations, we propose in the next

Section a family of parsimonious models.
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Chapter 3

Model-based clustering in a

discriminative subspace

Among the previous approaches dealing with high-dimensional data, each of them presents

certain limitations. In particular, when the dimension reduction is operated before the cluster-

ing task, the discriminative information can be ousted from the classification task. Chang [38]

showed earlier, that the principal components linked to the largest eigenvalues do not necessary

contain the most relevant information about the group structure of the dataset. Therefore, the

selection of a subset of principal components can lead to a loss of discriminative information

about the groups, in the data. Moreover, the main methods, which reduce the dimensionality

by taking into account information about the group structure, occur often in a supervised clas-

sification context which seems to be useless in our approach. Finally, in the case of subspace

clustering, since these methods model each group in a specific subspace, they are not able to

provide a global visualization of the clustered data, which could be helpful for the practitioner.

Thus, in this section we propose a new statistical framework which aims to simultaneously

cluster and reduce the dimension, such as the new axes well discriminate the groups. The

main purpose is to model and cluster the data into a common latent subspace which both

best discriminates the groups according to the current fuzzy partition of the data and has an

intrinsic dimension which is lower than the dimension of the observation space.

3.1 The discriminative latent mixture model

This section introduces a mixture model, called the discriminative latent mixture model, which

tries to find both a parsimonious and discriminative fit for the data, in order to generate a

clustering and a visualization of the data. The proposed modeling is mainly based on two key

ideas: firstly, actual data are assumed to live in a latent subspace with an intrinsic dimension

lower than the dimension of the observed data; secondly, a subspace of K − 1 dimensions is

theoretically sufficient to discriminate K groups.
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3.1.1 The DLM[Σkβk] model

Let {y1, . . . , yn} ∈ R
p denote a dataset of n observations that one wants to cluster into K

homogeneous groups, i.e. adjoin to each observation yi a value zi ∈ {1, . . . ,K} where zi = k

indicates that the observation yi belongs to the kth group. On the one hand, let us assume

that {y1, . . . , yn} are independent observed realizations of a random vector Y ∈ R
p and that

{z1, . . . , zn} are also independent realizations of a random variable Z ∈ {1, . . . ,K}. On the

other hand, let E ⊂ R
p denote a latent space assumed to be the most discriminative subspace

of dimension d ≤ K − 1 such that 0 ∈ E and where d is strictly lower than the dimension p of

the observed space. Moreover, let {x1, . . . , xn} ∈ E denote the actual data, described in the

latent space E of dimension d, which are in addition presumed to be independent unobserved

realizations of a random vector X ∈ E. Finally, for each group, the observed random vector

Y ∈ R
p and the latent random vector X ∈ E are assumed to be linked through a linear

transformation:

Y = UX + ε, (3.1.1)

where d < p, U is the p × d orthogonal matrix common to the K groups, such as U tU = Id,

and ε ∈ R
p, conditionally to Z, is a centered Gaussian noise term with covariance matrix Ψk,

supposed to be different to Ip, for k = 1, ...,K:

ε|Z=k ∼ N (0,Ψk).

Following the classical framework of model-based clustering, each group is in addition assumed

to be distributed according to a Gaussian density function within the latent space E. Hence,

the random vector X ∈ E has the following conditional density function:

X|Z=k ∼ N (µk,Σk),

where µk ∈ R
d and Σk ∈ R

d×d are respectively the mean and the covariance matrix of the kth

group. Conditionally to X and Z, the random vector Y ∈ R
p has the following conditional

distribution:

Y|X,Z=k ∼ N (UX,Ψk),

and its marginal distribution is therefore a mixture of Gaussians:

f(y) =
K
∑

k=1

πkφ(y;mk, Sk),
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Figure 3.1: Graphical summary of the DLM[Σkβk] model

where πk is the mixture proportion of the kth group, φ(.) the Gaussian density function

parametrized by:

mk = Uµk,

Sk = UΣkU
t + Ψk,

which are respectively the mean and the covariance matrix of the kth group in the observation

space. Let us also define W = [U, V ] a p×p matrix which satisfies W tW = WW t = Ip and for

which the p× (p−d) matrix V , is the orthonormal complement of U defined above. We finally

assume that the non discriminative information covariance matrix Ψk satisfies the conditions

V tΨkV = βkId−p and U tΨkU = 0d, such that a p× p matrix ∆k can be defined as:

∆k = W tSkW (3.1.2)

and has the following form:

∆k =































Σk 0

0

βk 0
. . .

. . .

0 βk









































d ≤ K − 1























(p− d)

This last assumption implies that the discriminative latent subspace and the non discriminative

one are othogonal meaning that all the relevant clustering information remains in the latent

subspace.

This model, called the discriminative latent mixture (DLM) model and referred to by
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DLM[Σkβk] in the sequel, is summarized by Figure 3.1. The DLM[Σkβk] model is therefore

parametrized by the parameters πk, µk, U , Σk and βk, for k = 1, ...,K and j = 1, ..., d. On

the one hand, the mixture proportions π1, ..., πK and the means µ1, ..., µK parametrize in a

classical way the prior probability and the average latent position of each group respectively.

On the other hand, U defines the latent subspace E by parametrizing its orientation according

to the basis of the original space. Finally, Σk parametrizes the variance of the kth group within

the latent subspace E whereas βk parametrizes the variance of this group outside E. With these

notations and from a practical point of view, one can say that the variance of the discriminative

information is therefore modeled by Σk and the variance of the non discriminative information

is modeled by βk.

3.1.2 Complete log-likelihood of the DLM[Σkβk] model

The complete log-likelihood of the DLM[Σkβk] model is defined in the following proposition:

Proposition 3.1.1. In the case of the model DLM[Σkβk], the complete log-likelihood

ℓ(y1, . . . , yn, θ) has the following expression:

ℓ(θ) =− 1

2

K
∑

k=1

nk

[

−2 log(πk) + trace(Σ−1
k U tCkU) + log(|Σk|)

+ (p− d) log(βk) +
1

βk
(trace(Ck)−

d
∑

j=1

ut
jCkuj) + γ

]

.

(3.1.3)

where Ck is the empirical covariance matrix of the kth group, uj is the jth column vector of U ,

nk =
∑n

i=1 zik and γ = p log(2π) is a constant term.

Proof. By considering {(y1, z1), . . . , (yn, zn)} the complete dataset, then the complete log-

likelihood ℓ(y1, . . . , yn, θ) is:

ℓ(θ) =
n
∑

i=1

K
∑

k=1

zik log (πkφ(yi, θk)) ,

where zik stands for the class membership and zik = 1{yi∈Ck}. Then, in the case of the

DLM[Σkβk] model, the complete log-likelihood of the observed data can be rewritten in this

way:

ℓ(θ) =
n
∑

i=1

K
∑

k=1

zik log(πkφ(yi, θk))

=

n
∑

i=1

K
∑

k=1

zik

[

−1

2
log(|Sk|)−

1

2
(yi −mk)

tS−1
k (yi −mk) + log(πk)−

p

2
log(2π)

]

,

(3.1.4)
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where zik = 1 if the observation yi belongs to the class k and zik = 0 otherwise. According to

the definitions of the diagonal matrix ∆k = W tSkW and of the orientation matrix W for which

W−1 = W t, the inverse covariance matrix S−1
k of Y can be written as S−1

k = (W∆kW
t)−1 =

W−t∆−1
k W−1 = W∆−1

k W t and the determinant of Sk can be also reformulated in the following

way:

|Sk| = |∆k| = |Σk|βp−d
k . (3.1.5)

Consequently, the complete log-likelihood ℓ(θ) can be rewritten as:

ℓ(θ) =− 1

2

K
∑

k=1

nk

[

−2 log(πk) + log(|Σk|) + (p− d) log(βk)

+
1

nk

n
∑

i=1

zik(yi −mk)
tW∆−1

k W t(yi −mk) + γ
]

.

(3.1.6)

where nk =
∑n

i=1 zik and γ = p log(2π) is a constant term. At this point, two remarks can

be done on the quantity
∑n

i=1 zik(yi − mk)
tW∆−1

k W t(yi − mk). First, as this quantity is

a scalar, it is equal to its trace. Secondly, this quantity can be divided in two parts since

W = [U, V ] and W = W̃ + W̄ , with W̃ = [U,0p−d] and W̄ = [0d, V ]. Then, the relation

W∆−1
k W t = W̃∆−1

k W̃ t + W̄∆−1
k W̄ t is stated and we can write:

(yi −mk)
tW∆−1

k W t(yi −mk) = trace
(

(yi −mk)
tW̃∆−1

k W̃ t(yi −mk)
)

+ trace
(

(yi −mk)
tW̄∆−1

k W̄ t(yi −mk)
)

.

Moreover, pointing out that Ck = 1
nk

∑n
i=1 zik(yi −mk)(yi −mk)

t is the empirical covariance

matrix of the kth group, the previous quantity can be rewritten as:

1

nk

n
∑

i=1

zik(yi −mk)
tW∆−1

k W t(yi −mk) = trace(∆−1
k W̃ tCkW̃ ) + trace(∆−1

k W̄ tCkW̄ )

and finally:

1

nk

n
∑

i=1

zik(yi −mk)
tW∆−1

k W t(yi −mk) = trace(Σ−1
k U tCkU) +

p−d
∑

j=1

vt
jCkvj

βk
,

where vj , is the jth column vector of V . However, since W̄ = W − W̃ and W = [U, V ], it is
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also possible to write:

1

βk

p−d
∑

j=1

vt
jCkvj =

1

βk





p
∑

j=1

wt
jCkwj −

d
∑

j=1

ut
jCkuj





=
1

βk





p
∑

j=1

trace(wjw
t
jCk)−

d
∑

j=1

ut
jCkuj





=
1

βk

[

trace(Ck)−
d
∑

j=1

ut
jCkuj

]

.

Consequently, replacing this quantity in (3.1.6) provides the final expression of ℓ(θ).

3.1.3 Classification function of the DLM[Σkβk] model

As the MAP rule is entirely defined by the classification function Γk = −2 log(πkφ(y, θk))

defined in Chapter 2, then, in this Subsection, the classification function corresponding to the

DLM[Σkβk] is given below.

Proposition 3.1.2. With the assumptions of the model DLM[Σkβk], the classification function

Γk(yi) for i = 1, ..., n and k = 1, ...,K, can be expressed as :

Γk(y) = ||P (y −mk)||2Dk
+

1

βk
|| (y −mk)− P (y −mk) ||2

+ log (|Σk|) + (p− d) log(βk)− 2 log(πk) + γ,

(3.1.7)

where ||.||2Dk
is a norm on the latent space E defined by ||y||2Dk

= ytDky, Dk = W̃∆−1
k W̃ t, W̃

is a p × p matrix containing the d vectors of U completed by zeros such as W̃ = [U, 0p−d], P

is the projection operator on the latent space E, i.e. P (y) = UU ty, and γ = p log(2π) is a

constant term.

Proof. Let consider the expression of the classification function Γk(y) = −2 log(πkφ(y, θk))

which is:

Γk(y) = (y −mk)
tS−1

k (y −mk) + log(|Sk|)− 2 log(πk) + p log(2π),

where |.| represents the determinant. Since the assumption (3.1.2) and according to the defini-

tions of the diagonal matrix ∆k, it implies that the inverse covariance matrix S−1
k of Y can be

written as S−1
k = W∆−1

k W t. Moreover, since the determinant of Sk can also be reformulated

as in equation (3.1.5), then the cost function can be rewritten in this way:

Γk(y) = (y −mk)
tW∆−1

k W t(y −mk) + log(|∆k|)− 2 log(πk) + p log(2π).
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According to the assumptions of the model DLM[Σkβk] and given that W = W̃ + W̄ where

W̃ = [U, 0p−d] and W̄ = [0d, V ] where the relation W∆−1
k W t = W̃∆W̃ t + W̄∆−1

k W̄ t is stated,

then Γk can be reformulated as:

Γk(y) = (y −mk)
tW̃∆−1

k W̃ t(y −mk) + (y −mk)
tW̄∆−1

k W̄ t(y −mk)

+ log(|∆k|)− 2 log(πk) + p log(2π),

Moreover, since the relations W̃ (W̃ tW̃ ) = W̃ and W̄ (W̄ tW̄ ) = W̄ hold due to the construction

of W̃ and W̄ , then:

Γk(y) =
(

W̃W̃ t(y −mk)
)t
W̃∆−1

k W̃ t
(

W̃W̃ t(y −mk)
)

+
1

βk

(

W̄W̄ t(y −mk)
)t (

W̄W̄ t(y −mk)
)

+ log(|∆k|)− 2 log(πk) + p log(2π).

Let us now define Dk = W̃∆−1
k W̃ t and ||.||Dk

, a norm on the latent space spanned by W̃ , such

that ||y||2Dk
= ytDky. With these notations, and according to the definition of ∆k, Γk can be

rewritten as:

Γk(y) = ||W̃W̃ t(y −mk)||2Dk
+

1

βk
||W̄W̄ t(y −mk)||2

+ log(|Σk|) + (p− d) log(βk)− 2 log(πk) + p log(2π).

Let us also define the projection operators P and P⊥ on the subspaces E and E
⊥ respectively:

• P (y) = W̃W̃ ty is the projection of y on the discriminative space E,

• P⊥(y) = W̄W̄ ty is the projection of y on the complementary space E
⊥.

Consequently, the cost function Γk can be finally reformulated as:

Γk(y) = ‖P (y −mk)‖ 2
Dk

+
1

βk

∥

∥

∥
P⊥(y −mk)

∥

∥

∥

2

+ log(|Σk|) + (p− d) log(βk)− 2 log(πk) + p log(2π).

Since P⊥(y) = y − P (y), then the distance associated with the complementary subspace can

be rewritten as ||P⊥(yi −mk)||2 = ||(yi −mk)− P (yi −mk)||2 such as:

Γk(y) = ||P (y −mk)||2Dk
+

1

βk
||(y −mk)− P (y −mk)||2

+ log (|Σk|) + (p− d) log(βk)− 2 log(πk) + γ,

and this allows to conclude.

Firstly, Proposition 3.1.2 provides a comprehensive interpretation of the classification func-
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0
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x

y

E

E
⊥

Figure 3.2: Two groups and their 1-dimensional discriminative subspace E.

tion Γk which mainly governs the MAP rule. Indeed, it appears that Γk mainly depends on

two distances: firstly, the distance ‖P (y −mk)‖2Dk
associated with the matrix Dk = W̃∆−1

k W̃ t

where W̃ = [U,0p−d], and stands for the distance between the projections on the discrimi-

nant subspace E of the observation yi and the mean mk. Secondly, the Euclidean distance
1
βk

∥

∥P⊥(y −mk)
∥

∥

2
corresponds to the distance between the projections on the complementary

subspace E
⊥ of y and mk and is weighted by the variance of non discriminative information

βk. Therefore, the classification function Γk facilitates the affectation of an observation y to

the cluster k if the projection of this observation, in the subspace E, is close to the projected

center of the cluster k, and if its projection in E
⊥ is also close to the center, which seems quite

natural. Obviously, these distances are also balanced by the variances in E and E
⊥ and by the

mixture proportions. For example, if the data are very noisy meaning that βk is large then, the

distance
∥

∥P⊥(yi −mk)
∥

∥ from the point to the subspace E
⊥ weighted by 1/βk becomes smaller

and consequently the MAP rule is mainly defined by what it happens in the discriminative

subspace. Remark that the latter distance
∥

∥P⊥(y −mk)
∥

∥ can be reformulated in order to

avoid the use of the projection on E
⊥. Indeed, as Figure 3.2 illustrates, this distance can be

re-expressed according projections on E. Besides these geometrical aspects, there is as well a

computational interest since the cost function does not require the use of the projection on

the complementary subspace E
⊥. Thus, there is no need to get Γk to compute the p− d last

terms of W i.e. the matrix V . This will provide the stability of the algorithm and will allow

its use when n < p (cf. paragraph 4.3.2).
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3.1.4 Complexity of the DLM[Σkβk] model

For the DLM[Σkβk], it is necessary to estimate only one subspace of dimension d < p since

firstly, the classes are assumed to live in a common subspace and secondly, we have just seen,

in the previous paragraph, that there is no need to estimate the p− d columns of the matrix

W to obtain the cost function Γk. Consequently, the complexity of the model mainly depends

on the dimensionality of the subspace d and smaller is the dimensionality, the more the model

will be parsimonious. The number of parameters to estimate in the DLM[Σkβk] model depends

on the number of classes K since the dimensionality of the subspace d is assumed to be strictly

less than K. Indeed, since the discriminative subspace is spanned by the column vectors of

the matrix U , there are Kd parameters for the means and K−1 proportions to estimate. The

estimation of the K covariance matrices in the latent space requires Kd(d+ 1)/2 parameters

to estimate and only K parameters for the orthogonal subspace. Finally, only d columns

have to be estimated to obtain the projection matrix U and the columns of this matrix are

constrained to be orthogonal. Hence, the matrix U needs the estimation of d[p−(d + 1)/2]

loadings. Therefore, the complexity γ of the DLM[Σkβk] is:

γ = d(
3K − 1

2
+ p) + d2K − 1

2
+ 2K − 1.

Contrary to the traditional Gaussian models in which the complexity increases with p2, the

complexity of the DLM[Σkβk] grows linearly with p. In particular, if we consider the case with

p = 100, K = 4 and d = 3, then the complexity of the DLM[Σkβk] is γ = 337 which is drastically

less than the number of parameters to estimate in the case of the Full-GMM (γ = 20603) and

remains very competitive with the most parsimonious model, Sphe-GMM, which requires the

estimation of 407 parameters in the same case. On top of this parsimony, the DLM model

offers also a flexible modelling structure for high-dimensional data as it explains in the next

section.

3.2 The submodels of the DLM[Σkβk] model

By applying constraints on parameters of the matrix ∆k in the DLM[Σkβk] model, several

submodels can be generated. They can be separated into two categories according to the

shape of ∆k: the models with variable shapes of covariance matrices and those having a

common covariance matrix accross the groups.

3.2.1 Characterization of the submodels

In the first category, the covariance matrices Σ1, . . . ,ΣK in the latent space can be assumed to

be common across groups and this submodel will be referred to by DLM[Σβk]. Similarly, in each

group, Σk can be assumed to be diagonal, i.e. Σk = diag(αk1, . . . , αkd). This submodel will be

referred to by DLM[αkjβk]. In the same manner, the p− d last values of ∆k can be assumed to
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be common for the k classes, i.e. βk = β, ∀k = 1, ...,K, meaning that the variance outside the

discriminant subspace is common to all groups. This assumption can be viewed as modeling

the non discriminative information with a unique parameter which seems natural for data

obtained in a common acquisition process. Following the notation system introduced above,

this submodel will be referred to by DLM[αkjβ]. The variance within the latent subspace E

can also be assumed to be isotropic for each group and the associated submodel is DLM[αkβk].

In this case, the variance of the data is assumed to be isotropic both within E and outside E.

Similarly, it is possible to compel the previous model to have the parameters βk common

between classes and this gives rise to the model DLM[αkβ]. Finally, the variance within the

subspace E can be assumed to be independent from the mixture component which corresponds

to the DLM[αjβk] model and can also be constrained to be spherical suggesting the model

DLM[αβk].

In the second category, there remain 3 models which are the models DLM[Σβ], DLM[αjβ],

and DLM[αβ]. These models all assume that the variance outside the latent space is isotropic

meaning that βk = β, ∀k ∈ {1, . . . ,K}. Moreover, either the covariance matrices Σk in the

latent space are assumed to be common across groups and then we obtain the model DLM[Σβ]

or, they are supposed to be common and diagonal, Σk = diag(α1, . . . , αd) for all k, which

corresponds to the model DLM[αjβ]. Finally, the most parsimonious DLM model assumes

that the covariance matrix is isotropic in both subspaces which suggested in particular that

Σk = αId, ∀k ∈ {1, . . . ,K} in the latent subspace.

We therefore enumerate 12 different DLM models and an overview of them is proposed in

Table 3.1.

3.2.2 Complexity of the submodels

Table 3.1 also gives the maximum number of free parameters to estimate (case of d = K − 1)

according to K and p for the 12 DLM models and for some classical models. We recall that the

Full-GMM model refers to the classical Gaussian mixture model with full covariance matrices,

the Com-GMM model refers to the Gaussian mixture model for which the covariance matrices

are assumed to be equal to a common covariance matrix (Sk = S, ∀k), Diag-GMM refers to

the Gaussian mixture model for which Sk = diag(s2k1, ..., s
2
kp) with s2kj ∈ R and Sphe-GMM

refers to the Gaussian mixture model for which Sk = s2kIp with s2k ∈ R. Finally, Mixt-PPCA

denotes the subspace clustering model proposed by Tipping and Bishop in [165]. In addition,

Table 3.1 gives the number of free parameters to estimate for specific values of K and p in

the right column. The number of free parameters to estimate given in the central column can

be decomposed in the number of parameters to estimate for the proportions (K − 1), for the

means (Kp or Kd) and for the covariance matrices (last terms). Among the classical models,

the Full-GMM model is a highly parametrized model and requires the estimation of 20603

parameters when K = 4 and p = 100. Conversely, the Diag-GMM and Sphe-GMM model

are parsimonious models since they respectively require the estimation of only 803 and 407
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Model Nb. of parameters
K = 4, d = 3

p = 100

DLM[Σkβk] (K − 1) +Kd+ d[p−(d+ 1)/2] +Kd(d+ 1)/2 +K 337

DLM[Σkβ] (K − 1) +Kd+ d[p−(d+ 1)/2] +Kd(d+ 1)/2 + 1 334

DLM[Σβk] (K − 1) +Kd+ d[p−(d+ 1)/2] + d(d+ 1)/2 +K 319

DLM[αkjβk] (K − 1) +Kd+ d[p−(d+ 1)/2] +K(d+ 1) 325

DLM[αkjβ] (K − 1) +Kd+ d[p−(d+ 1)/2] +Kd+ 1 322

DLM[αkβk] (K − 1) +Kd+ d[p−(d+ 1)/2] + 2K 317

DLM[αkβ] (K − 1) +Kd+ d[p−(d+ 1)/2] +K + 1 314

DLM[αjβk] (K − 1) +Kd+ d[p−(d+ 1)/2] + d+K 316

DLM[αβk] (K − 1) +Kd+ d[p−(d+ 1)/2] + 1 +K 314

DLM[Σβ] (K − 1) +Kd+ d[p−(d+ 1)/2] + d(d+ 1)/2 + 1 316

DLM[αjβ] (K − 1) +Kd+ d[p−(d+ 1)/2] + d+ 1 313

DLM[αβ] (K − 1) +Kd+ d[p−(d+ 1)/2] + 2 311

Full-GMM (K − 1) +Kp+Kp(p+ 1)/2 20603

Com-GMM (K − 1) +Kp+ p(p+ 1)/2 5453

Mixt-PPCA (K − 1) +Kp+K(d(p− (d+ 1)/2) + d+ 1) + 1 1198

Diag-GMM (K − 1) +Kp+Kp 803

Sphe-GMM (K − 1) +Kp+K 407

MCUFSA (K − 1) +Kd+ 1 + d[p− (d+ 1)/2] +Kd 322

Table 3.1: Number of free parameters to estimate when d = K − 1 for the DLM models and
some classical models (see text for details). The numerical examples have been done with
parameters p = 100, K = 4 and d = 3 for all models.
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parameters whenK = 4 and p = 100. The Com-GMM and Mixt-PPCA models appear to both

have an intermediate complexity. However, the Mixt-PPCA model is a less constrained model

compared to the Diag-GMM model and should be preferred for clustering high-dimensional

data.

In this table, it appears that the DLM models are very parsimonious models compared

to the classical GMM (Full-GMM, Com-GMM, Diag-GMM, Sphe-GMM) or to some sub-

space clustering methods (Mixt-PPCA). Only the model (MCUFSA) developed by Yoshida et

al. [188, 189] (see Chapter 2) has a number of free parameters which is comparable to those

of the DLM family. However, whereas in that model the authors assume some very strong

conditions on the covariance matrices of the component factors and of the specific factors

which can appear too restrictive in certain situations, the family of DLM models proposes 12

different models more or less constraints while remaining very parsimonious. The DLM models

turn out to have a low complexity whereas their modeling capacity is comparable to the one

of the Mixt-PPCA model. Moreover, according to the fact that the dimension d is linked to

the number of clusters K (this remark is developed in the next Chapter) then the complexity

of each DLM model depends only on K and p contrary to Mixt-PPCA or MCUFSA which

depend also on an hyper-parameter d independent of the number of clusters.

To conclude, the DLM models drastically reduce the complexity of models compared to

the other approaches while allowing to modelize structures of the covariance matrices, more

or less unconstrained, in the latent space.

3.2.3 Complete log-likelihood of the DLM submodels

The complete log-likelihoods of the 11 DLM submodels are defined in the following proposi-

tions:

Proposition 3.2.1. The complete log-likelihood ℓ(y1, . . . , yn, θ) of the model DLM[Σkβ] has the

following expression:

ℓ(θ) =− 1

2

(

K
∑

k=1

nk

[

−2 log(πk) + trace(Σ−1
k U tCkU) + log(|Σk|) + γ

]

+ n(p− d) log(β) +
1

β

[

n trace(C)− n
d
∑

j=1

ut
jCuj

])

.

(3.2.1)

where Ck = 1
nk

∑n
i=1 zik(yi−mk)(yi−mk)

t is the empirical covariance matrix of the kth group,

C = 1
n

∑K
k=1 nkCk is the empirical within covariance matrix, uj is the jth column vector of U ,

nk =
∑n

i=1 zik and γ = p log(2π) is a constant term.

Proof. According to the expression obtained in equation (3.1.6), the complete log-likelihood

of the DLM[Σkβ] for which the non discriminative information term is assumed to be common

to all classes, such that βk = β ∀k, has the following form:
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ℓ(θ) =− 1

2

(

K
∑

k=1

nk

[

−2 log(πk) + trace(Σ−1
k U tCkU) + log(|Σk|)

]

+

K
∑

k=1

nk(p− d) log(β) +

K
∑

k=1

nk

β

[

trace(Ck)−
d
∑

j=1

ut
jCkuj

])

,

then by noting that the terms (p− d) log(β) is independent of the class k:

K
∑

k=1

nk

β
trace(Ck) =

1

β
trace(C),

where C = 1
n

∑K
k=1 nkCk stands for the empirical within covariance matrix of the whole

dataset, and:

K
∑

k=1

nk

β

d
∑

j=1

ut
jCkuj =

1

β

d
∑

j=1

ut
j

(

K
∑

k=1

nkCk

)

uj

=
n

β

d
∑

j=1

ut
jCuj ,

then, the complete log-likelihood can be written as:

ℓ(θ) =− 1

2

(

K
∑

k=1

nk

[

−2 log(πk) + trace(Σ−1
k U tCkU) + log(|Σk|) + γ

]

+ n(p− d) log(β) +
1

β

[

n trace(C)− n
d
∑

j=1

ut
jCuj

])

,

Proposition 3.2.2. The complete log-likelihood ℓ(y1, . . . , yn, θ) of the model DLM[Σβk] has the

following expression:

ℓ(θ) =− 1

2

(

K
∑

k=1

nk

[

−2 log(πk)
]

+ n log(|Σ|) + n trace(Σ−1U tCU)
]

+
K
∑

k=1

nk

[

(p− d) log(βk) +
1

βk
(trace(Ck)−

d
∑

j=1

ut
jCkuj) + γ

])

.

(3.2.2)

where Ck and C have been already defined, nk =
∑n

i=1 zik and γ = p log(2π) is a constant

term.

The proof is obvious, by considering Σk = Σ, ∀k = 1, . . . ,K in the complete log-likelihood
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defined in equation (3.1.6). In the same manner by considering Proposition (3.1.6) and Propo-

sition (3.2.1), the complete log-likelihood of the DLM[Σβ] is obtained.

Proposition 3.2.3. The complete log-likelihood ℓ(y1, . . . , yn, θ) of the model DLM[αkjβk] has

the following expression:

ℓ(θ) = −1

2

K
∑

k=1

nk

[

−2 log(πk) +

d
∑

j=1

(

log(αkj) +
ut

jCkuj

αjk

)

+(p− d) log(βk) +
1

βk
(trace(Ck)−

d
∑

j=1

ut
jCkuj) + γ

]

,

where Ck and C have been already defined, nk =
∑n

i=1 zik and γ = p log(2π) is a constant

term. The complete log-likelihood of model DLM[αkjβ] is derived from this proposition and

Proposition 3.2.1.

Proof. By considering the complete log-likelihood obtained in Proposition 3.2.1 and by con-

sidering that Σk = diag(αk1, . . . , αkd), then the quantity log(|Σk|) can be rewritten in this

way:

log(|Σk|) = log(
d
∏

j=1

αkj)

=
d
∑

j=1

log(αkj).

Moreover, the quantity trace(Σ−1
k U tCkU) becomes:

trace(Σ−1
k U tCkU) = trace(diag(

1

αk1
, . . . ,

1

αkd
)U tCkU)

=
d
∑

j=1

trace(
1

αkj
ut

jCkuj).

Since ut
jCkuj is a scalar, the trace is equal to this scalar and this enables us to conclude.

Besides, by replacing βk with β ∀k ∈ {1 . . . ,K} in the expression obtained in Proposition 3.2.3,

then the complete log-likelihood of the submodel DLM[αkjβ] is obtained.

Proposition 3.2.4. For the DLM[αkβk] model, the complete log-likelihood has the following
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form:

ℓ(θ) =− 1

2

K
∑

k=1

nk

[

−2 log(πk) + d log(αk) +
1

αk

d
∑

j=1

ut
jCkuj

+ (p− d) log(βk) +
1

βk
(trace(Ck)−

d
∑

j=1

ut
jCkuj) + γ

]

.

where Ck and C have been already defined, nk =
∑n

i=1 zik where zik = 1{zik∈Ck}and γ =

p log(2π) is a constant term. The complete log-likelihood of the DLM[αkβ] model derives from

this proposition with βk = β ∀k ∈ {1, . . . ,K}.

Proof. By constraining the covariance matrix of the latent space to be isotropic, meaning that

Σk = αkId, the expression of the log-likelihood obtained in Proposition 3.2.3 becomes:

ℓ(θ) =− 1

2

K
∑

k=1

nk

[

−2 log(πk) +

d
∑

j=1

(

log(αk) +
ut

jCkuj

αk

)

+ (p− d) log(βk) +
1

βk
(trace(Ck)−

d
∑

j=1

ut
jCkuj) + γ

]

,

which directly enables us to conclude.

Proposition 3.2.5. The complete log-likelihood of the DLM[αjβk] model has the following

form:

ℓ(θ) =− 1

2

(

K
∑

k=1

nk

[

−2 log(πk)
]

+ n

d
∑

j=1

log(αj) + n

d
∑

j=1

ut
jCuj

αj

+

K
∑

k=1

nk

[

(p− d) log(βk) +
1

βk
(trace(Ck)−

d
∑

j=1

ut
jCkuj) + γ

])

.

where Ck and C have been already defined, nk =
∑n

i=1 zik where zik = 1{zik∈Ck}and γ =

p log(2π) is a constant term. The complete log-likelihood of the models DLM[αjβ], DLM[αβk]

and DLM[αβ] derive directly from this proposition with βk = β ∀k ∈ {1, . . . ,K} or/and αj = α

∀j ∈ {1, . . . , d}.

Proof. By replacing the terms αkj by αj in Proposition 3.2.3, then the complete log-likelihood

can be reexpressed as:
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ℓ(θ) =− 1

2

K
∑

k=1

nk

(

−2 log(πk) +

d
∑

j=1

(

log(αj) +
ut

jCkuj

αj

)

+ (p− d) log(βk) +
1

βk

p−d
∑

j=1

vt
jCkvj + γ

)

,

=− 1

2

(

K
∑

k=1

nk

[

−2 log(πk)
]

+ n

d
∑

j=1

log(αj) + n

d
∑

j=1

ut
jCuj

αj

+
K
∑

k=1

nk

[

(p− d) log(βk) +
1

βk
(trace(Ck)−

d
∑

j=1

ut
jCkuj) + γ

])

.

By replacing βk with β, ∀k ∈ {1, . . . ,K} in this expression, the complete log-likelihood of the

submodel DLM[αjβ] is obtained. Moreover, by constraining the terms αj to be common on all

dimensions j ∈ {1, . . . , d}, then the log-likelihood becomes:

ℓ(θ) =− 1

2

K
∑

k=1

nk

(

−2 log(πk) + d log(α) +
1

α

d
∑

j=1

ut
jCkuj+

+ (p− d) log(βk) +
1

βk
(trace(Ck)−

d
∑

j=1

ut
jCkuj) + γ

)

,

ℓ(θ) =− 1

2

(

K
∑

k=1

nk[−2 log(πk)] + n d log(α) +
n

α

d
∑

j=1

ut
jCuj

+
K
∑

k=1

nk

[

(p− d) log(βk) +
1

βk
(trace(Ck)−

d
∑

j=1

ut
jCkuj) + γ

])

,

which is the expression of the complete log-likelihood of the DLM[αβk] and of the DLM[αβk]

with βk = β ∀k ∈ {1, . . . ,K}.

3.2.4 Classification functions of the DLM submodels

DLM[Σkβ] model: According to the classification function obtained for the general

model in equation (3.1.2), the classification function Γk of the submodel DLM[Σkβ] is:

Γk(y) = ||P (y −mk)||2Dk
+

1

βk
|| (y −mk)− P (y −mk) ||2

+ log (|Σk|) + (p− d) log(β)− 2 log(πk) + γ, (3.2.3)

where ||.||2Dk
is a norm on the latent space E defined by ||y||2Dk

= ytDky, Dk = W̃∆−1
k W̃ t, W̃

is a p× p matrix containing the d vectors of U completed by zeros such as W̃ = [U, 0p−d], P

is the projection operator on the latent space E, i.e. P (y) = UU ty, and γ = p log(2π) is a
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constant term.

DLM[Σβk] model: The classification function Γk of the submodel DLM[Σβ] is:

Γk(y) = ||P (y −mk)||2Dk
+

1

βk
|| (y −mk)− P (y −mk) ||2

+ log (|Σ|) + (p− d) log(βk)− 2 log(πk) + γ, (3.2.4)

The classification function of the DLM[Σβ] model can be obtained by reparametrizing βk and

Dk in βk = β and also Dk = D such that D = W̃∆−1W̃ t.

DLM[αkjβk] model: Since Σk = diag(αk1, . . . , αkd), then the logarithm of the determi-

nant of Σk becomes:

log (|Σk|) = log

d
∏

j=1

αkj =

d
∑

j=1

log (αkj) . (3.2.5)

Consequently, by considering this formulation with the classification function obtained in equa-

tion (3.1.7) then, the classification function Γk of the submodel DLM[αkjβ] can be reformulated

as:

Γk(y) = ||P (y −mk)||2Dk
+

1

βk
|| (y −mk)− P (y −mk) ||2

+
d
∑

j=1

log(αkj) + (p− d) log(βk)− 2 log(πk) + γ. (3.2.6)

By considering the same remark as previously, the classification function for the DLM[αkjβ]

is directly obtained by reparametrizing the scalar βk in β and the matrix Dk in D such that

D = W̃∆−1W̃ t.

DLM[αkβ] model: According to equation (3.2.5) and by considering that Σk = αkId

then, the classification function of the DLM[αkβ] model is:

Γk(y) =
1

αk
||P (y −mk)||2 +

1

β
|| (y −mk)− P (y −mk) ||2

+d log(αk) + (p− d) log(β)− 2 log(πk) + γ. (3.2.7)

In this model, it can be observed that the distance ||µk − P (y)||2Dk
between the projection

of the observation yi and the mean of the cluster k in the latent space is here a Euclidean

distance weighted by the parameter αk which stands for the variance term of the cluster k in

the latent space E.
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DLM[αβ] model: The classification function of the DLM[αβ] model is:

Γk(y) =
1

α
||P (y −mk)||2 +

1

β
|| (y −mk)− P (y −mk) ||2 − 2 log(πk) + γ1, (3.2.8)

where γ1 = d log(α) + (p − d) log(β) + p log(2π) is a constant term. In the same manner as

previously, the distance ||P (y −mk)||2Dk
= ||P (y −mk)||2 is also a Euclidean distance.

3.3 Comparison with existing methods

At this point, some links can be established with models existing in the clustering literature.

The closest models were proposed in [8], [22] and [129] and are linked to the mixture of factor

analyzer (MFA) model [128, 153]. According to the assumptions of the DLM model, the

comparison has to be done on a subset of these families. Particularly, we have to consider

the models which assume that the subspace of each group is common, the variance of the

non discriminative information is isotropic and also that the dimension of the subspace is

d ≤ K − 1.

Firstly, the DLM and Hd-GMM models are very similar since they share a common assump-

tion on the decomposition of the covariance matrix of the observation space. In particular, the 8

DLM models which suppose a diagonal matrix in the latent subspace (Σk = diag(αk1, . . . , αkd),

Σk = αjId and also Σk = αId, ∀k = 1, . . . ,K) are comparable to those belonging to the family

of [akjbkQd] models. Indeed, for these models, they both assume that the covariance matrice

of each group Sk in the observation space can be decomposed such that ∆k = QSkQ
t, where

∆k is a diagonal matrix and Q is an orthogonal matrix. The Hd-GMM model can be rewritten

through a local latent mixture model which seeks to relate a p-dimensional observation vector

y to a corresponding d-dimensional vector of latent variables X where d < p.

In the same manner, it is also possible to compare the PGMM and the extended PGMM

families with the DLM models, in the structure of their covariance matrix in particular. For

example, in the more general case, the covariance structure in the observation space of the

DLM model is Sk = UΣkU
t + Ψk and those of the PGMM family is Sk = ΛkΛ

t
k + Ψ with Ψ

a diagonal matrix. However, the main difference with the EPGMM approach remains in the

fact that the DLM model defines a common subspace for all clusters which is not the case in

EPGMM. Hence, the approaches like MCFA, MCUFSA and HMFA which defines a common

matrix for the component factor loadings propose closer models of the DLM model than those

obtained by EPGMM. Moreover, the models complexity of these 3 approaches are in a same

order that the ones of the DLM models. In particular, the MCUFSA approach has a number

of free parameters which is equivalent to the DLM[αkjβ]. These both models assume diagonal

covariance matrices in the latent space and an isotropic variance for the non discriminative

information.

However, despite the fact that all these models share some assumptions on the covariance

structure in the observation space or on the latent and the non discriminative subspaces,
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the DLM model remains very different. Indeed, the main difference between those models

remains in both the definition and the estimation of the latent subspace. Indeed, in the case

of Hd-GMM, the projection matrix is estimated by maximum log-likelihood through an EM

procedure and its columns are the eigenvectors corresponding to the largest eigenvalues of

a weighted within covariance matrix. In the same manner, the factor loadings of the MFA

models are obtained by maximum log-likelihood but through an extension of the EM algorithm

named AECM since the maximization step is divided in substeps. In both cases, the loadings

estimated are chosen such as the variance or the covariance structure of the projected data is

maximum. Differently, the DLM models chooses the latent subspace orientation such as it best

discriminates the groups. In particular, our approach aims to estimate a subspace which best

discriminates the clusters meaning that in such a subspace, the centroids of each cluster are

well separated between them but the covariance of each cluster remains compact. This specific

feature of the DLM models should therefore improve in most cases both the clustering and

the visualization of the results. In particular, the DLM models should be able to better model

situations where the axes carrying the greatest variance are not parallel to the discriminative

axes than the other approaches (Figure 10.1 of [62] illustrates such a situation). Consequently,

the next Chapter introduces an algorithm which enables to both cluster the data and estimate

a discriminative latent subspace.
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Chapter 4

Parameter estimation: the Fisher-EM

algorithm

This chapter proposes an estimation procedure for the parameters of the DLM model. Since

this work focuses on clustering of unlabeled data by Gaussian mixture model, the estimation

procedure that we propose is based on an EM-type algorithm for estimating the parameters of

DLM models. Due to the nature and to the goal of the models described above, the algorithm

we propose, alternates three-steps:

• an E-step in which posterior probabilities that observations belong to the K groups are

computed,

• a F-step which estimates the orientation matrix U of the discriminative latent space

conditionally to the posterior probabilities,

• an M-step in which parameters of the mixture model are estimated in the latent subspace

by maximizing the conditional expectation of the complete likelihood.

Due to the additional step introduced in the traditional EM algorithm, the F-step, which is

based on the work of Sir R.A. Fisher, we have named the proposed algorithm, the Fisher-EM

algorithm.

In this Chapter, the three-steps of the Fisher-EM algorithm will be described. In partic-

ular, we detail three different ways to compute the projection matrix U of the discriminative

subspace in the F-step. Moreover, as the projection matrix U is not obtained in maximiz-

ing the conditional expectation of the log-likelihood, the convergence of our algorithm is not

guaranteed. Consequently, we will show that, for the isotropic case of the DLM model, the

convergence of the Fisher-EM algorithm is satisfied. This aspect will be discussed in Sec-

tion 4.2. Some computational aspects of the Fisher-EM algorithm concerning initialization,

stopping criterion and model selection problems will be also discussed. Finally, this chapter

will end with some practical aspects, such as the choice of the dimension of the latent subspace

d or the case of high dimension and low sample size dataset.
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4.1 The Fisher-EM algorithm

Since the DLM model is inscribed in a Gaussian mixture model context, then a very common

way to estimate the parameters of the mixture model is the standard EM algorithm. However,

an additional step named the F-step, is introduced between the E and the M-steps to compute

the projection matrix whose columns span the discriminative latent subspace.

4.1.1 The E-step

This step aims to compute, at iteration q, the expectation of the complete log-likelihood

conditionally to the current value of the parameter θ(q−1), which, in practice, reduces to the

computation of t
(q)
ik = E[zik|yi, θ

(q−1)] where zik = 1 if yi comes from the kth component and

zik = 0 otherwise. Let us also recall that t
(q)
ik is, as well, the posterior probability that the

observation yi belongs to the kth component of the mixture. The Bayes formula enables us to

write the posterior probability t
(q)
ik as:

t
(q)
ik =

πkφ(yi, θk)
∑K

ℓ=1 πℓφ(yi, θℓ)
,

where πk is the mixture proportion of the cluster k. Then, by considering the classifica-

tion function Γk(yi) = −2 log(yi, θk) defined in Chapter 3, then the explicit form of t
(q)
ik , for

i = 1, ..., n, k = 1, ...,K, in the case of the model DLM[Σkβk] is provided by the following

proposition:

Proposition 4.1.1. With the assumptions of the model DLM[Σkβk], the posterior probabili-

ties t
(q)
ik , i = 1, ..., n, k = 1, ...,K, can be expressed as :

t
(q)
ik =

1
∑K

l=1 exp
(

1
2(Γ

(q−1)
k (y)− Γ

(q−1)
l (y))

) ,

with:

Γ
(q−1)
k (yi) = ||P (yi −m(q−1)

k )||2Dk
+

1

β
(q−1)
k

||(yi −m(q−1)
k )− P (yi −m(q−1)

k )||2

+ log
(∣

∣

∣Σ
(q−1)
k

∣

∣

∣

)

+ (p− d) log(β
(q−1)
k )− 2 log(π

(q−1)
k ) + γ,

(4.1.1)

where ||.||2Dk
is a norm on the latent space E defined by ||y||2Dk

= ytDky, Dk = W̃∆−1
k W̃ t,

W̃ is a p × p matrix containing the d vectors of U (q−1) completed by zeros such as W̃ =

[U (q−1), 0p−d], P is the projection operator on the latent space E, i.e. P (y) = U (q−1)U (q−1)ty,

and γ = p log(2π) is a constant term.

The proof is direct by considering the classification function established in Proposi-

tion (3.1.2). It can be noticed that the posterior probability is mainly defined by the classi-
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fication function Γk which implies that the geometric interpretations and the computational

remarks given in the previous chapter remain valid.

4.1.2 The F-step

This step aims to determine, at iteration q, the discriminative latent subspace of dimension

d ≤ K − 1 in which the K groups are best separated. Naturally, the estimation of this

latent subspace has to be done conditionally to the current values of posterior probabilities

t
(q)
ik which indicates the current soft partition of the data. Estimating the discriminative latent

subspace E
(q) reduces to the computation of a projection matrix U (q) ∈ R

p×q consisting of d

discriminative axes.

A subspace is qualified to be discriminative in the sense described by Fisher [54]. In

particular, the projection matrix U (q) is chosen such as it maximizes a criterion which is large

when the between covariance matrix SB is large and when the within covariance matrix SW

is small. Following the original idea of Fisher [54], the d axes which best discriminate the K

groups are those which maximize the criterion J(U) = trace((U tSWU)−1U tSBU). However,

as the traditional criterion J(U) is defined in a supervised classification framework, it assumes

that the data are complete. Unfortunately, the situation of interest here is that of unsupervised

classification and the matrices SB and SW have therefore to be defined conditionally to the

current soft partition. Furthermore, the DLM models assume that the discriminative latent

subspace must have an orthonormal basis and, sadly, the traditional Fisher’s approach provides

non-orthogonal discriminative axes.

Let us introduce the optimization problem by defining, in first, the soft between-covariance

matrix S
(q)
B .

Definition 4.1.1. The soft between-covariance matrix S
(q)
B is defined conditionally to the

posterior probabilities t
(q)
ik , obtained in the E-step, as follows:

S
(q)
B =

1

n

K
∑

k=1

n
(q)
k (m

(q)
k − ȳ)(m

(q)
k − ȳ)t,

where n
(q)
k =

∑n
i=1 t

(q)
ik , m

(q)
k = 1/n

(q)
k

∑n
i=1 t

(q)
ik yi is the soft mean of the kth group at iteration

q and ȳ = 1/n
∑n

i=1 yi is the empirical mean of the whole dataset.

Let us denote S
(q)
W = 1/n

∑K
k=1

∑n
i=1 t

(q)
ik (yi −m(q)

k )(yi −m(q)
k )t the soft within covariance

matrix. Since the relation S = S
(q)
W + S

(q)
B holds in this context as well, it is preferable from

a computational point of view to use the covariance matrix S = 1
n

∑n
i=1(yi − ȳ)(yi − ȳ)t of

the whole dataset in the maximization problem, instead of S
(q)
W , as S remains fixed over the

iterations. Moreover in Chapter 2, we have seen that the equivalence between the criteria

trace
(

(U tSWU)−1U tSBU
)

and trace
(

(U tSU)−1U tSBU
)

holds. Therefore, the F-step of the
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Fisher-EM aims to solve, at iteration q, the following optimization problem:

Û (q) = max
U

trace
(

(U tSU)−1U tS
(q)
B U

)

,

w.r.t. U tU = Id. (4.1.2)

The following paragraphs propose three different procedures which keep the key idea of

Fisher while providing orthonormal discriminative axes conditionally to the current soft par-

tition of the data.

4.1.2.1 Gram-Schmidt orthonormalization

This first procedure follows the concept of the orthonormal discriminant vector (ODV) intro-

duced by [55] in the supervised case and then extended by [75, 80, 114, 186]. The ODV proce-

dure sequentially selects the most discriminative features by maximizing the Fisher criterion

subject to the orthogonality of features. According to the optimization problem characterized

in equation (4.1.2) and following the ODV procedure, the d discriminative axes are iteratively

constructed by, first, computing an orthogonal complementary subspace to the current set of

discriminative axes and, then, maximizing the Fisher criterion in this orthogonal subspace by

solving the associated generalized eigenvalue problem.

To initialize this iterative procedure, the first vector of U is therefore the eigenvector asso-

ciated with the largest eigenvalue of the matrix S−1S
(q)
B . Then, assuming that the r − 1 first

orthonormal discriminative axes {u1, . . . , ur−1}, which span the space Br−1, have been com-

puted, the rth discriminative axis has to lie in the subspace B⊥r−1 orthogonal to the space Br−1.

The Gram-Schmidt orthonormalization procedure allows to find a basis V r = {vr, vr+1, ..., vd}
for the orthogonal subspace B⊥r−1 such that:

vl = αl(Iℓ−1 −
ℓ−1
∑

j=1

vjv
t
j)ψl, ℓ = r, . . . , p

where vj = uj for j = 1, ..., r − 1, αℓ is a normalization constant such that ||uℓ|| = 1 and ψℓ

is a vector linearly independent of uj ∀j ∈ {1, . . . , ℓ− 1}. Then, the rth discriminative axis is

given by:

ur =
Pr−1u

max
r

||umax
r || ,

where Pr−1 is the projector on Br−1, u
max
r is the eigenvector associated with the largest

eigenvalue of the matrix S−1
r S

(q)
Br with:

Sr = V rt
SV r,

S
(q)
Br = V rt

S
(q)
B V r,

i.e. Sr and S
(q)
Br are respectively the covariance and soft between-covariance matrices of the
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data projected into the orthogonal subspace B⊥r−1. This iterative procedure stops when the d

orthonormal discriminative axes uj are computed.

This procedure, based on the ODV procedure, builds a set of column vectors which are

orthogonal but they are not guaranteed to be optimal. Moreover, an other limitation of such

an approach is the well-known numerical instability of the Gram-Schmidt process.

4.1.2.2 Fisher’s criterion as a regression criterion

The second procedure, computing the projection matrix of the F-step, reformulates the eigen-

decomposition problem as a regression-type problem. This approach is based on the work of

Qiao et al. [147] in the supervised context and has been presented in paragraph 2.2.2.4.

However, in the Qiao’s work, the matrices HW and HB are computed according to the class

membership. This is not possible in our case as we deal with an unsupervised context. In

particular, in their approach, the matrix HW which is based on the within covariance matrix

needs to be centered from the class means and this can not be done in our case. Moreover,

an additional problem occurs in our optimization problem since the DLM models assume that

the discriminative latent subspace has an orthonormal basis and this constraint is not taken

into account in the Qiao’s work.

Consequently, we propose, in first, a reformulation of the matrices HW and HB such as

they are computed at each iteration and conditionally to the E-step.

Definition 4.1.2. The soft matrices H
(q)
W ∈ R

p×n and H
(q)
B ∈ R

p×K are defined conditionally

to the posterior probabilities t
(q)
ik computed in the E-step at iteration q:

H
(q)
W =

1√
n

[

Y −
K
∑

k=1

t
(q)
1k m

(q)
k , . . . , Y −

K
∑

k=1

t
(q)
nkm

(q)
k

]

∈ R
p×n (4.1.3)

H
(q)
B =

1√
n

[
√

n
(q)
1 (m

(q)
1 − ȳ), . . . ,

√

n
(q)
K (m

(q)
K − ȳ)

]

∈ R
p×K ,

where t
(q)
ik , for i = 1, . . . , n, stands for the posterior probability computed in the E-step, n

(q)
k =

∑n
i=1 t

(q)
ik and m

(q)
k = 1

n

∑n
i=1 t

(q)
ik yi is the soft mean vector of the cluster k.

According to these definitions, the matrices satisfy:

H
(q)
W H

(q)t
W = S

(q)
W and H

(q)
B H

(q)t
B = S

(q)
B , (4.1.4)

where S
(q)
W and S

(q)
B stand for respectively, the soft within and between covariance matrices

computed at iteration q. Then, the optimization problem presented in paragraph 2.2.2.4 can

be reformulated, at iteration q, in terms of soft within and between covariance matrices defined

conditionally to the E-step. The following optimization problem is solved in the F-step of the
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Fisher-EM, at iteration q:

(Â(q), B̂(q)) = arg min
A,B

K
∑

k=1

∥

∥

∥R
(q)−t
W H

(q)
B,k −ABtH

(q)
B,k

∥

∥

∥

2

F
+ ρ

d
∑

j=1

βt
jS

(q)
W βj

w.r.t. AtA = Id, (4.1.5)

where S
(q)
W = R

(q)t
W R

(q)
W stands for the soft within covariance matrix and R

(q)
W ∈ R

p×p is an

upper triangular matrix. Besides, H
(q)
B,k is the kth column of the matrix H

(q)
B defined from

the soft between covariance matrix S
(q)
B in equation (4.1.4) and ρ is an hyper parameter to

calibrate. Finally, ‖.‖F denotes the Frobenius norm. By letting B̂(q) = [β̂
(q)
1 , . . . , β̂

(q)
d ] and

according to the Qiao’s results, the column vectors of the matrix B̂ ∈ R
p×d span the same

linear space as those of the projection matrix U .

However, the orthogonality constraint on the column vectors of the matrix U spanning the

Fisher space is not guaranteed. To that end, we use a well-known result formulated in [66]

which concerns the best approximation of a matrix by an orthogonal one. In particular, it

is stated that: Obtaining the best approximation of a matrix X ∈ R
d×p by an orthonormal

matrix with the same dimensionality is equivalent to an orthogonal Procrustes problem:

min
{

‖X −Q‖F : QtQ = Ip

}

,

then Q = uvt is the solution of such a problem where u and v are respectively the left and right

singular vectors of the svd of X.

In our case, this result becomes:

Proposition 4.1.2. By considering Â(q) and B̂(q) solutions of the problem (4.1.5), the best

approximation of the projection matrix U (q) by an orthonormal one is solution of the following

problem:

Û (q) = arg min
U

∥

∥

∥
B̂(q) − U

∥

∥

∥

F

w.r.t. U tU = Id,

where ‖.‖F refers to the Frobenius norm. By considering the svd of B̂(q) = u(q)Λ(q)v(q)t, then

Û (q) = u(q)v(q)t.

Proof. At iteration q, in the F-step and conditionally to the E-step, the following optimization

problem is considered:

(

Â(q), B̂(q)
)

= arg min
A,B

K
∑

k=1

∥

∥

∥

∥

(

R
(q)t
W

)−1
H

(q)t
B,k −ABtH

(q)t
B,k

∥

∥

∥

∥

+ ρ
d
∑

j=1

βt
jS

(q)
W βj

w.r.t. AtA = Id
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and is solved from the Qiao’s theorem developed in paragraph 2.2.2.4 of Chapter 2. Therefore,

the column vectors of B̂(q) span the same space as the solution of the eigendecomposition of

S
(q)−1
W S

(q)
B and the estimation of Â(q) is obtained by equation (2.2.31). Moreover, as we search

the best approximation of the matrix B̂(q) to an orthogonal matrix, then the optimization

problem is equivalent to the following one:

Û (q) = arg min
U

∥

∥

∥
B̂(q) − U

∥

∥

∥

F

w.r.t. U tU = Id,

where ‖.‖F refers to the Frobenius norm. This problem is a nearest orthogonal Procrustes

problem which can be solved by a singular value decomposition [66, 87]. The singular value

decomposition of B̂(q) = u(q)Λ(q)v(q)t allows to write Û (q) = u(q)v(q)t. According to Qiao’s

theorem, since B̂(q) spans the same subspace as those obtained by the standard Fisher’s

criterion and according to the nearest Procrustes problem, Û (q) is an orthogonal matrix which

best approximates the projection matrix U whose column vectors span the discriminative

latent subspace.

4.1.2.3 A modified Fisher criterion

The main purpose of this last approach is to ease the computation of the orthogonal projec-

tion matrix U , in the F-step. In particular, we propose a modified Fisher’s criterion which

aims to efficiently approximate the discriminative latent subspace. Instead of considering the

optimization problem defined in (4.1.2), we look here for a p × d projection matrix U with

orthogonal columns such as the associated latent subspace has a discrimination power as close

as possible than the one of the whole observation space, i.e. such that the matrix UU tS−1S
(q)
B

best approximates the matrix S−1S
(q)
B . Therefore, we can formulate this aim through the

following minimization problem:

Û (q) = arg min
U

∥

∥

∥S−1S
(q)
B − UU tS−1S

(q)
B

∥

∥

∥

2

F

w.r.t U tU = Id, (4.1.6)

where ‖.‖F denotes the Frobenius norm. The solution of this new optimization problem is

given by the following proposition:

Proposition 4.1.3. At iteration q, the best approximation of the matrix S−1S
(q)
B onto an

orthogonal subspace through a p × d projection matrix (d < K − 1) is the solution of the

following optimization problem:

Û (q) = arg max
U

trace
(

U t(S−1S
(q)
B )(S−1S

(q)
B )tU

)

,

w.r.t. U tU = Id. (4.1.7)
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and the columns of Û (q) are the d first left eigenvectors of the singular value decomposition of

S−1S
(q)
B .

Proof. This proposition results directly from a Frobenius norm property which is demonstrated

in details in the mathematical background material developed by Ripley in [149]1.

Firstly, we can notice that:

∥

∥

∥
S−1S

(q)
B − UU tS−1S

(q)
B

∥

∥

∥

2

F
= trace((S−1S

(q)
B − UU tS−1S

(q)
B )t(S−1S

(q)
B − UU tS−1S

(q)
B )),

= −2trace((S−1S
(q)
B UU tS−1S

(q)
B ) + trace((S−1S

(q)
B )tS−1S

(q)
B )

+trace((S−1S
(q)
B )tUU tUU tS−1S

(q)
B ),

=
∥

∥

∥
S−1S

(q)
B

∥

∥

∥

2

F
− trace((S−1S

(q)
B UU tUU tS−1S

(q)
B ),

=
∥

∥

∥
S−1S

(q)
B

∥

∥

∥

2

F
−
∥

∥

∥
UU tS−1S

(q)
B

∥

∥

∥

2

F
.

It implies that minimizing the quantity
∥

∥

∥S−1S
(q)
B − UU tS−1S

(q)
B

∥

∥

∥

2

F
is equivalent to maximize

∥

∥

∥
UU tS−1S

(q)
B

∥

∥

∥

2

F
. Furthermore, since U tU = Id, the following equalities hold:

∥

∥UU tS−1SB

∥

∥

2

F
= trace

(

(UU tS−1SB)(UU tS−1SB)t
)

= trace
(

U t(S−1SB)(S−1SB)tU(U tU)
)

= trace
(

U t(S−1SB)(S−1SB)tU
)

.

where ‖.‖F denotes the Frobenius norm.

Let us also consider the svd of the n× p matrix S−1S
(q)
B = uΛvt where u and v stands for

respectively the left and right singular vectors of S−1S
(q)
B and Λ is a diagonal matrix containing

its associated singular values. As the matrix S
(q)
B has a rank d at most equal to K − 1 < p,

with K the number of clusters, then the matrix S−1S
(q)
B is also of rank d = rank(S−1S

(q)
B ) at

most equal to K − 1 < p. Consequently, only the d singular values of the matrix S−1S
(q)
B are

non zeros, which enables us to write S−1S
(q)
B = uΛdv

t, where Λd = diag(λ1, . . . , λd, 0, . . . , 0).

Moreover, by letting U (q) = u
(q)
d the d first left eigenvectors of S−1S

(q)
B , then:

trace
(

U (q)t(S−1S
(q)
B )(S−1S

(q)
B )tU (q)

)

= trace
(

U (q)t(uΛdv
t)(uΛdv

t)tU (q)
)

,

= trace
(

U (q)tuΛdΛ
t
du

tU (q)
)

,

=

d
∑

j=1

(

λ
(q)
j

)2
.

Consequently, the p × d orthogonal matrix U (q) such that
∥

∥

∥
S−1S

(q)
B − U (q)U (q)tS−1S

(q)
B

∥

∥

∥

2

F
is

minimal is the matrix made of the d first left eigenvectors of S−1S
(q)
B .

1http://www.stats.ox.ac.uk/~ripley/MultAnal_HT2007
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This approach allows to obtain a discriminative subspace such as the projected matrix

U (q)tS−1SB in terms of Frobenius norms is maximized. Moreover, in a computational point

of view, the estimation of the projection matrix U (q) is much easier than those obtained by

the Gram-Schmidt or the regression procedures. Indeed, we only need to decompose by a

singular value decomposition the matrix S−1S
(q)
B at iteration q. The projection matrix whose

its columns span the discriminative latent subspace is fitted by the d first left singular vectors

of S−1S
(q)
B .

4.1.3 The M-step

This third step estimates the model parameters by maximizing the conditional expectation of

the complete likelihood, conditionally to the projection matrix U (q) estimated in the previous

step and noted Û (q). The following proposition provides the expression of the conditional

expectation of the complete log-likelihood in the case of the DLM[Σkβk] model. According to

Proposition 3.1.6 proved in the previous chapter, the conditional expectation of the complete

log-likelihood noted Q(y1, . . . , yn, θ), in the case of the model DLM[Σkβk] has the following

expression:

Q(y1, . . . , yn, θ) =− 1

2

K
∑

k=1

nk

[

−2 log(πk) + trace(Σ−1
k U tCkU) + log(|Σk|)

+ (p− d) log(βk) +
1

βk



trace(Ck)−
d
∑

j=1

ut
jCkuj



+ γ
]

.

(4.1.8)

where Ck is the empirical covariance matrix of the kth group, uj is the jth column vector

of U , nk =
∑n

i=1 tik and γ = p log(2π) is a constant term. At iteration q, the maximization

of Q conduces to an estimation of the mixture proportions πk and the means µk for the K

components by their empirical counterparts:

π̂
(q)
k =

nk

n
,

µ̂
(q)
k =

1

nk

n
∑

i=1

t
(q)
ik Û

(q)tyi,

where nk =
∑n

i=1 t
(q)
ik and Û (q) contains the d discriminative axes û

(q)
j , j = 1, ..., d, in column

vectors, fitted in the F-step, at iteration q. The following proposition provides estimates for

the remaining parameters for the 12 DLM models which have to be updated at each iteration

of the FEM procedure.

Proposition 4.1.4. At iteration q, the estimates for variance parameters of the 12 DLM

models are:
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• Model DLM[Σkβk]:

Σ̂
(q)
k = Û (q)tC

(q)
k Û (q), β̂

(q)
k =

trace(C
(q)
k )−∑d

j=1 û
(q)t
j C

(q)
k û

(q)
j

p− d , (4.1.9)

• Model DLM[Σkβ]:

Σ̂
(q)
k = Û (q)tC

(q)
k Û (q), β̂(q) =

trace(C(q))−∑d
j=1 û

(q)t
j C(q)û

(q)
j

p− d , (4.1.10)

• Model DLM[Σβk]:

Σ̂(q) = Û (q)tC(q)Û (q), β̂
(q)
k =

trace(C
(q)
k )−∑d

j=1 û
(q)t
j C

(q)
k û

(q)
j

p− d , (4.1.11)

• Model DLM[Σβ]:

Σ̂(q) = Û (q)tC(q)Û (q), β̂(q) =
trace(C(q))−∑d

j=1 û
(q)t
j C(q)û

(q)
j

p− d , (4.1.12)

• Model DLM[αkjβk]:

α̂
(q)
kj = û

(q)t
j C

(q)
k û

(q)
j , β̂

(q)
k =

trace(C
(q)
k )−∑d

j=1 û
(q)t
j C

(q)
k û

(q)
j

p− d , (4.1.13)

• Model DLM[αkjβ]:

α̂
(q)
kj = û

(q)t
j C

(q)
k û

(q)
j , β̂(q) =

trace(C(q))−∑d
j=1 û

(q)t
j C(q)û

(q)
j

p− d , (4.1.14)

• Model DLM[αkβk]:

α̂
(q)
k =

1

d

d
∑

j=1

û
(q)t
j C

(q)
k û

(q)
j , β̂

(q)
k =

trace(C
(q)
k )−∑d

j=1 û
(q)t
j C

(q)
k û

(q)
j

p− d , (4.1.15)

• Model DLM[αkβ]:

α̂
(q)
k =

1

d

d
∑

j=1

û
(q)t
j C

(q)
k û

(q)
j , β̂(q) =

trace(C(q))−∑d
j=1 û

(q)t
j C(q)û

(q)
j

p− d , (4.1.16)
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• Model DLM[αjβk]:

α̂
(q)
j = û

(q)t
j C(q)û

(q)
j , β̂

(q)
k =

trace(C
(q)
k )−∑d

j=1 û
(q)t
j C

(q)
k û

(q)
j

p− d , (4.1.17)

• Model DLM[αjβ]:

α̂
(q)
j = û

(q)t
j C(q)û

(q)
j , β̂(q) =

trace(C(q))−∑d
j=1 û

(q)t
j C(q)û

(q)
j

p− d , (4.1.18)

• Model DLM[αβk]:

α̂(q) =
1

d

d
∑

j=1

û
(q)t
j C(q)û

(q)
j , β̂

(q)
k =

trace(C
(q)
k )−∑d

j=1 û
(q)t
j C

(q)
k û

(q)
j

p− d , (4.1.19)

• Model DLM[αβ]:

α̂(q) =
1

d

d
∑

j=1

û
(q)t
j C(q)û

(q)
j , β̂(q) =

trace(C(q))−∑d
j=1 û

(q)t
j C(q)û

(q)
j

p− d , (4.1.20)

where the vectors û
(q)
j are the discriminative axes fitted by the F-step at iteration q, C

(q)
k =

1

n
(q)
k

∑n
i=1 t

(q)
ik (yi − m̂

(q)
k )(yi − m̂

(q)
k )t is the soft covariance matrix of the kth group, m̂

(q)
k =

1
n

∑n
i=1 t

(q)
ik yi and finally C = 1

n

∑K
k=1 nkCk is the soft within-covariance matrix of the K

groups.

In order not to surcharge the notations, the index q of the current iteration of the Fisher-

EM algorithm is not indicated in the following proofs. We also define the matrices W̃ and

W̄ such that W = W̃ + W̄ . The matrix W̃ is defined as a p × p matrix containing the d

first vectors of W completed by zeros such as W̃ = [U, 0p−d] and W̄ = W − W̃ is defined by

W̄ = [0d, V ].

Proof. In the case of the model DLM[Σkβk], at iteration q, the conditional expectation of

the complete log-likelihood Q(y1, . . . , yn, θ|θ(q−1)) of the observed data {y1, . . . , yn} has the

following form:

Q(θ) =
n
∑

i=1

K
∑

k=1

tik log(πkφ(yi, θk))

=
n
∑

i=1

K
∑

k=1

tik

[

−1

2
log(|Sk|)−

1

2
(yi −mk)

tS−1
k (yi −mk) + log(πk)−

p

2
log(2π)

]

,

(4.1.21)
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The maximization of Q(θ) conduces for the DLM models to the following estimates.

Estimation of πk The prior probability πk of the group k can be estimated by maxi-

mizing Q(θ) with respect to the constraint
∑K

k=1 πk = 1 which is equivalent to maximize the

Lagrange function:

L = Q(θ) + λ

(

K
∑

k=1

πk − 1

)

,

where λ is the Lagrange multiplier. Then, the partial derivative of L with respect to πk is

∂L/∂πk = nk/πk + λ. Consequently:

∀k = 1, . . . ,K,
∂L

∂πk
= 0⇐⇒ nk

πk
+ λ = 0⇐⇒ nk + λπk = 0,

and:
K
∑

k=1

(nk + λπk) = n+ λ = 0 =⇒ λ = −n.

Replacing λ by its value in the partial derivative conduces to an estimation of πk by:

π̂k =
nk

n
.

Estimation of µk The mean µk of the kth group in the latent space can be also estimated

by maximizing the expectation of the complete log-likelihood (equation 4.1.21), which can be

written in the following way:

Q(θ) =

n
∑

i=1

K
∑

k=1

tik

[

−1

2
log(|Sk|)−

1

2
(yi− Ûµk)

tS−1
k (yi− Ûµk)+log(πk)−

p

2
log(2π)

]

. (4.1.22)

Consequently, the partial derivative ofQ with respect to µk is ∂Q(θ)/∂µk = −1
2

∑n
i=1 tikÛ

t(yi−
Ûµk). Setting this quantity to 0 gives:

∂Q(θ)

∂µk
= 0⇐⇒

n
∑

i=1

tikÛ
tyi =

n
∑

i=1

tikµk.

and conduces to:

µ̂k =
1

nk

n
∑

i=1

tikÛ
tyi.

Model DLM[Σkβk] From Equation (4.1.8), the partial derivative of Q(θ) with respect to

Σk has the following form:

∂Q(θ)

∂Σk
= −nk

2

∂

∂Σk

[

log(|Σk|) + trace
(

Σ−1
k Û tCkÛ

)]

.



4.1. THE FISHER-EM ALGORITHM 87

Using the matrix derivative formula of the logarithm of a determinant, ∂ log(|A|)/∂A =
(

A−1
)t

, and of the trace of a product, ∂trace(A−1B)/∂A = −
(

A−1BA−1
)t

, the equality

of ∂Q(θ)/∂Σk to the d× d zero matrix yields to the relation:

Σ−1
k = Σ−1

k Û tCkÛΣ−1
k ,

and, by multiplying on the left and on the right by Σk, we find out the estimate of Σk:

Σ̂k = Û tCkÛ . (4.1.23)

The estimation of βk is also obtained by maximizing Q subject to βk:

∂Q(θ)

βk
= 0⇐⇒ p− d

βk
− trace(Ck)

β2
k

+
1

β2
k

d
∑

j=1

ût
jCkûj = 0,

and it is possible to conclude:

β̂k =
trace(Ck)−

∑d
j=1 û

t
jCkûj

p− d . (4.1.24)

Model DLM[Σkβ] In this case, Q has the following form:

Q(θ) =− 1

2

(

K
∑

k=1

nk

[

−2 log(πk) + trace(Σ−1
k Û tCkÛ) + log(|Σk|)

]

+
K
∑

k=1

nk(p− d) log(β) +
K
∑

k=1

nk

β

[

trace(Ck)−
d
∑

j=1

ût
jCkûj

])

,

=− 1

2

(

K
∑

k=1

nk

[

−2 log(πk) + trace(Σ−1
k Û tCkÛ) + log(|Σk|) + γ

]

+ n(p− d) log(β) +
1

β

[

n trace(C)− n
d
∑

j=1

ût
jCûj

])

,

where C is the empirical within covariance matrix of the whole dataset. Setting to 0 the partial

derivative of Q(θ) conditionally to β implies (p−d)/β−1/β2trace(C)+1/β2
∑d

j=1 û
t
jCûj = 0

and this conduces to:

β̂ =
1

p− d



trace(C)−
d
∑

j=1

ût
jCûj



 , (4.1.25)

and the estimation of Σk is given by Equation (4.1.23).

Model DLM[Σβk] The quantity Q can be rewritten in this manner:
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Q(θ) =− 1

2

(

K
∑

k=1

nk

[

−2 log(πk)
]

+ n log(|Σ|) + n trace(Σ−1Û tCÛ)
]

+
K
∑

k=1

nk

[

(p− d) log(βk) +
1

βk



trace(Ck)−
d
∑

j=1

ût
jCkûj



+ γ
])

,

then, the partial derivative of Q(θ) with respect to Σ is:

∂Q(θ)

∂Σ
= −n

2

∂

∂Σ

[

log(|Σ|) + trace
(

Σ−1Û tCÛ
)]

and setting to 0 provides the estimation of Σ:

Σ̂ = Û tCÛ. (4.1.26)

Finally, the estimation of βk is provided by Equation (4.1.24).

Model DLM[Σβ] The estimations of Σ and β have been already considered above and

are given by Equations (4.1.26 and 4.1.25).

Model DLM[αkjβk] In this case, Q has the following form:

Q(θ) = −1

2

K
∑

k=1

nk

[

−2 log(πk)+

d
∑

j=1

(

log(αkj) +
ût

jCkûj

αjk

)

+(p−d) log(βk)+
1

βk

p
∑

j=d+1

v̂t
jCkv̂j+γ

]

.

The partial derivative ofQ with respect to αkj is ∂Q(θ)/∂αkj = −1/(2nk)
(

1/αkj − ût
jCkûj/α

2
kj

)

and setting to 0 provides the estimate of αkj :

α̂kj = ût
jCkûj . (4.1.27)

The estimation of βk is provided by Equation (4.1.24).

Model DLM[αkjβ] The estimations of αkj and β have been already considered above and

are given by Equations (4.1.27 and 4.1.25).
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Model DLM[αkβk] For this model, the expectation of the complete log-likelihood Q(θ)

has the following form:

Q(θ) =− 1

2

K
∑

k=1

nk

[

−2 log(πk) +

d
∑

j=1

(

log(αk) +
ût

jCkûj

αk

)

+ (p− d) log(βk) +
1

βk

p−d
∑

j=1

v̂t
jCkv̂j + γ

]

,

Q(θ) =− 1

2

K
∑

k=1

nk

[

−2 log(πk) + d log(αk) +
1

αk

d
∑

j=1

ût
jCkûj

+ (p− d) log(βk) +
1

βk

p−d
∑

j=1

v̂t
jCkv̂j + γ

]

.

The partial derivative of Q(θ) with respect to αk is ∂Q(θ)/∂αk =

−1/(2nk)
(

d/αk − 1/α2
k

∑d
j=1 û

t
jCkûj

)

, and setting this quantity to 0, provides:

α̂k =
1

d

d
∑

j=1

ût
jCkûj . (4.1.28)

On the other hand, the estimation of βk is the same as in Equation (4.1.24).

Model DLM[αkβ] The estimations of αk and β are respectively provided by Equa-

tions (4.1.28) and (4.1.25).

Model DLM[αjβk] In this case, Q(θ) has the following form:

Q(θ) =− 1

2

K
∑

k=1

nk

(

−2 log(πk) +

d
∑

j=1

(

log(αj) +
ût

jCkûj

αj

)

+ (p− d) log(βk) +
1

βk

p−d
∑

j=1

v̂t
jCkv̂j + γ

)

,

Q(θ) =− 1

2

(

K
∑

k=1

nk

[

−2 log(πk)
]

+ n

d
∑

j=1

log(αj) + n

d
∑

j=1

ût
jCûj

αj

+

K
∑

k=1

nk

[

(p− d) log(βk) +
1

βk

p−d
∑

j=1

v̂t
jCkv̂j + γ

])

.

The partial derivative of Q(θ) with respect to αj is ∂Q(θ)/∂αj = −n/2
(

1/αj − 1/α2
j û

t
jCûj

)

and setting to 0 implies:

α̂j = ût
jCûj , (4.1.29)
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and the estimation of βk is the same as in Equation (4.1.24).

Model DLM[αjβ] The estimations of αj and β are respectively provided by Equa-

tions (4.1.29) and (4.1.25).

Model DLM[αβk] In this case, Q(θ) has the following form:

Q(θ) =− 1

2

K
∑

k=1

nk

(

−2 log(πk) + d log(α) +
1

α

d
∑

j=1

ût
jCkûj+

+ (p− d) log(βk) +
1

βk

p−d
∑

j=1

v̂t
jCkv̂j + γ

)

,

Q(θ) =− 1

2

(

K
∑

k=1

nk[−2 log(πk)] + n d log(α) +
n

α

d
∑

j=1

ût
jCûj

+

K
∑

k=1

nk

[

(p− d) log(βk) +
1

βk

p−d
∑

j=1

v̂t
jCkv̂j + γ

])

,

The partial derivative of Q(θ) with respect to α is ∂Q(θ)/∂α =

−n/2
(

d/α− 1/α2
∑d

j=1 û
t
jCûj

)

and setting this quantity to 0, we end up with:

α̂ =
1

d

d
∑

j=1

ût
jCûj . (4.1.30)

The estimation of βk is the same as in Equation (4.1.24).

Model DLM[αβ] The estimations of α and β have been already computed and are pro-

vided by Equations (4.1.30) and (4.1.25).

4.2 Convergence of the Fisher-EM algorithm

The Fisher-EM algorithm previously introduced is based on the EM algorithm. However, a F-

step is added between the traditional E-step and M-step. In particular, the projection matrix

U , which is updated in the F-step, is not obtained by maximization of the conditional expec-

tation of the log-likelihood which implies that the convergence of the Fisher-EM algorithm is

not directly guaranteed. Therefore, in this section we present a result on the convergence of

the Fisher-EM algorithm, in the isotropic case.

We consider the DLM[αβ] model which supposes a common and spherical covariance matrix

for each class in the latent subspace (∀k ∈ {1, . . . ,K}, Σk = αId) and in the orthogonal

complement of the latent subspace as well (∀k ∈ {1, . . . ,K}, βk = β). Then, in this case, the

following proposition holds:



4.2. CONVERGENCE OF THE FISHER-EM ALGORITHM 91

Proposition 4.2.1. In the case of the DLM[αβ] model, optimizing the Fisher’s criterion with

respect to U is equivalent to maximizing the conditional expectation of the log-likelihood function

with respect to U .

Proof. On the one hand, without loss of generality, by assuming that the covariance matrix of

the data is the identity matrix, the Fisher’s criterion can be rewritten as:

J (U) = trace((U tU)−1(U tSWU)) = trace(U tSWU),

where SW stands for the within covariance matrix.

On the other hand, in the M-step of the Fisher-EM algorithm, let us consider the quantity

−2Q(θ) where Q(θ) stands for the conditional expectation of the complete log-likelihood:

−2Q(θ) = −2
K
∑

k=1

n
∑

i=1

tik log (πkφ (yi; θk))

=
K
∑

k=1

[

n
∑

i=1

tik[−2 log(πk) + p log (2π) + log |Sk|+ (yi −mk)
tS−1

k (yi −mk)]

]

=
K
∑

k=1

[

n
∑

i=1

tik[log |Sk|+ (yi −mk)
tS−1

k (yi −mk)]

]

+ γ1,

where γ1 =
∑K

k=1

∑n
i=1 tik[−2 log(πk) + p log (2π)] is a constant term with respect to U .

Let us consider the homoscedastic case which implies that Sk = S = W∆W t, ∀k ∈
{1, . . . ,K} and in addition, let us consider the DLM[αβ] model meaning that the matrix ∆

has the following form:

∆ =

[

αId 0p−d

0d βIp−d

]

. (4.2.1)

Consequently, given these assumptions, the quantity
∑K

k=1

∑n
i=1 tik log |Sk| =

∑K
k=1 nk log |S| =

γ2, with nk =
∑n

i=1 tik, is independent of U and then becomes a constant with respect to U .

Moreover, by denoting A the quantity
∑K

k=1

∑n
i=1 tik(yi−mk)

tS−1(yi−mk), we can state

that:

A =
K
∑

k=1

n
∑

i=1

tik(yi −mk)
tS−1(yi −mk)

= trace

(

S−1
K
∑

k=1

n
∑

i=1

tik(yi −mk)(yi −mk)
t

)

= ntrace
(

S−1SW

)

where SW = 1
n

∑K
k=1 nkCk stands for the soft within covariance matrix and Ck = 1

nk

∑n
i=1 tik(yi−

mk)(yi −mk)
t the empirical covariance of the cluster k, with nk =

∑n
i=1 tik. Besides, since
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S−1 = W∆−1W t where W satisfying WW t = W tW = Ip, the quantity A can be rewritten

as:

A = ntrace
(

(

W t∆W
)−1

SW

)

= ntrace
(

∆−1W tSWW
)

.

Let us introduce the matrices W̃ = [U, 0p−d] and W̄ = [0d, V ] such as W = W̃ + W̄ , where U

is a p× d matrix with d < p and stands for the projection matrix of the latent space and V ,

its orthogonal complement. In this case, the relation W tSWW = W̃ tSW W̃ t + W̄ tSW W̄ can

be easily stated since W̃ tSW W̄ and W̄ tSW W̃ are null matrices. Therefore, according to the

diagonal form of the matrix ∆ (see equation (4.2.1)) then the quantity A becomes:

A = ntrace
(

∆−1
(

W̃ tSW W̃ t + W̄ tSW W̄
))

= n

(

trace

(

1

α
U tSWU

)

+ trace

(

1

β
V tSWV

))

=
n

α
trace

(

U tSWU
)

+ γ3,

where γ3 = ntrace
(

1
βV

tSWV
)

is independent of U . Consequently, the conditional expectation

of the complete log-likelihood Q(θ) can be rewritten as:

−2Q(θ) =
n

α
trace

(

U tSWU
)

+ γ,

where γ = γ1 + γ2 + γ3 is a term independent of U .

Consequently, maximizing Q(θ) with respect to U is equivalent to minimizing the quantity

trace(U tSWU) which is, up to a constant, the Fisher’s criterion. This allows us to conclude.

Therefore, the Fisher-EM algorithm, in the case of the DLM[αβ] model, is a traditional EM

algorithm and its convergence is then guaranteed.

4.3 Computational and practical aspects

4.3.1 Computational aspects

4.3.1.1 Initialization

Although the EM algorithm is widely used, it is also well-known that the performance of the

algorithm is linked to its initial conditions. Several strategies were proposed in the literature

for initializing the EM algorithm. A popular practice [15] executes the EM algorithm several

times, from a random initialization, and keeps only the set of parameters associated with the

highest likelihood. The use of k-means or a random partition are also standard approaches for

initializing the algorithm. McLachlan and Peel [127] also proposed an initialization through
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the parameters by generating the mean and the covariance matrix of each mixture component

from a multivariate normal distribution parametrized by the empirical mean and empirical

covariance matrix of the data. In practice, this latter initialization procedure works well but,

unfortunately, it cannot be applied directly to the Fisher-EM algorithm since model parameters

live in a space different from the observation space. A simple way to adapt this strategy could

be to first determine a latent space using PCA and then simulate mixture parameters in this

initialization latent space.

4.3.1.2 Model selection

In model-based clustering, it is frequent to consider several models in order to find the most

appropriate model for the considered data. Since a model is defined by its number of com-

ponents K and its parametrization, model selection allows to both select a parametrization

and a number of components. Several criteria for model selection were proposed in the litera-

ture and the famous ones are penalized likelihood criteria. Classical tools for model selection

include the AIC [2], BIC [157] and ICL [14] criteria. The Bayesian Information Criterion

(BIC) is certainly the most popular and consists in selecting the model which penalizes the

likelihood by γ(M)/2 log(n) where γ(M) is the number of parameters in model M and n is

the number of observations. On the other hand, the AIC criterion penalizes the log-likelihood

by γ(M) whereas the ICL criterion adds the penalty
∑n

i=1

∑K
k=1 zik log(tik) to the one of the

BIC criterion in order to favor well separated models. The value of γ(M) is of course specific

to the model selected by the practitioner (cf. Table 3.1). In the experiments of the following

sections, the BIC criterion is used because of its popularity but the ICL criterion should also

be well adapted in our context.

4.3.1.3 Stopping criterion and convergence monitoring

To decide whether the algorithm has converged or not, we propose to use the Aitken’s cri-

terion [126]. This criterion estimates the asymptotic maximum of the log-likelihood in order

to detect in advance the algorithm convergence. Since the convergence of the EM algorithm

could be slow in practice due to its linear convergence rate, it is often not necessary to wait for

the actual convergence for obtaining a good parameter estimate under standard conditions.

At iteration q, the Aitken’s criterion is defined by A(q) =
(

ℓ(q+1) − ℓ(q)
)

/
(

ℓ(q) − ℓ(q−1)
)

where

ℓ(q) is the log-likelihood value at iteration q. Then, asymptotic estimate of the log-likelihood

maximum is given by:

ℓ(q+1)
∞ = ℓ(q) +

1

1−A(q)

(

ℓ(q+1) − ℓ(q)
)

,

and the algorithm can be considered to have converged if
∣

∣

∣ℓ
(q+1)
∞ − ℓ(q)∞

∣

∣

∣ is smaller than a small

positive number (provided by the user). In practice, if the criterion is not satisfied after a

maximum number of iterations (provided by the user as well), the algorithm stops. Afterward,

it is possible to check whether the provided estimate is a local maximum by computing the
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Hessian matrix (using finite differentiation) which should be positive semi definite. In the

experiments presented in the following section, the convergence of the Fisher-EM algorithm

has been checked using such an approach.

4.3.1.4 Computational cost

Obviously, since the additional F-step is iterative, the computational complexity of the Fisher-

EM procedure is somewhat bigger than the one of the ordinary EM algorithm. The F-step

requires d(d− 2)/2 iterations due to the Gram-Schmidt procedure used for the orthogonaliza-

tion of U . However, since d is at most equal to K − 1 and is supposed to be small compared

to p, the complexity of the F-step is not a quadratic function of the data dimension which

could be large. Furthermore, it is important to notice that the complexity of this step does

not depend on the number of observations n. Although the proposed algorithm is more time

consuming than the usual EM algorithm, it is altogether actually usable on recent PCs even

for large scale problems. Indeed, we have observed on simulations that Fisher-EM appears

to be 1.5 times slower on average than EM (with a diagonal model). As an example, 24 sec-

onds are on average necessary for Fisher-EM to cluster a dataset of 1 000 observations in a

100-dimensional space whereas EM requires 16 seconds.

4.3.2 Practical aspects

The DLM models, for which we propose the Fisher-EM algorithm as an estimation procedure,

presents several practical and numerical interests among which the ability to visualize the

clustered data, to interpret the discriminative axes and to deal with the so-called n < p

problem.

4.3.2.1 Choice of d and visualization in the discriminative subspace

The proposed DLM models are parametrized by the intrinsic dimension d of the discriminative

latent subspace. The choice of d is already fixed such as d ≤ K− 1. This result is provided by

Fisher’s theory. Indeed, the projection matrix U which spans the discriminative latent space

is obtained through a criterion based on the quantity S−1S
(q)
B . Then the intrinsic dimension

of the discriminative latent space depends on the rank of S−1S
(q)
B which is governed by the

rank of S
(q)
B . As the soft between covariance matrix S

(q)
B is composed of the sum of K matrices

based on the term (m
(q)
k − ȳ) and by noting that ȳ = 1

n

∑n
i=1 yi = 1

n

∑K
k=1 nkm

(q)
k with

m
(q)
k = 1

nk

∑n
i=1 t

(q)
ik yi , then only K − 1 matrices are linearly independent. Consequently, S

(q)
B

has rank at most equal to K − 1 and the dimension of the latent subspace is d ≤ K − 1. This

remark is very interesting since in practice, it enables to propose very parsimonious models

(see Table 3.1 in Chapter 3 which depicts the number of free parameters to estimate when

d = K − 1 for the DLM models compared to some classical models.) Even though the actual

value of d is strictly smaller than K − 1 for the dataset at hand, we recommend in practice to
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set d = K − 1 when numerically possible in order to avoid stability problems with the Fisher-

EM algorithm. Furthermore, it is always better to extract more discriminative axes than to

miss relevant dimensions and K − 1 is often in practice a small value compared to p. Besides,

once the Fisher-EM algorithm has converged, then the “real” intrinsic dimension of the latent

space can be computed. Indeed, the rank of the projected matrix (Û tSÛ)−1Û tŜBÛ where Û

stands for the fitted projection matrix and ŜB the between covariance matrix subject to the

partition obtained after convergence of the algorithm can be computed. Besides, a natural use

of the discriminative axes may certainly be the visualization of the clustered data. Indeed,

it is nowadays clear that the visualization help human operators to understand the results

of an analysis. With the Fisher-EM algorithm, it is easy to project and visualize the cluster

data into the estimated discriminative latent subspace if K ≤ 4. On the one hand, if the

estimated value of d is at most equal to 3, the practitioner can therefore visualize his data by

projecting them on the d first discriminative axes and no discriminative information loss is to

be deplored in this case. On the other hand, if the estimated value of d is strictly larger than

3, the visualization becomes obviously more difficult but the practitioner may simply use the

3 first discriminative axes which are the most discriminative ones among the K − 1 provided

axes. Let us finally notice that the visualization quality is of course related to the clustering

quality. Indeed, the visualization provided by the Fisher-EM algorithm may be disappointing

if the clustering results are poor, due to a bad initialization for instance. A good solution

to avoid such a situation may be to initialize the Fisher-EM algorithm with the “mini-EM”

strategy or with the results of a classical EM algorithm.

4.3.2.2 Dealing with the n < p problem

Another important and frequent problem when clustering high-dimensional data is known as

high dimension and low sample size (HDSS) problem or the n < p problem (we refer to [85,

Chap. 18] for an overview). The n < p problem refers to situations where the number of fea-

tures p is larger than the number of available observations n. This problem occurs frequently

in modern scientific applications such as genomic or mass spectrometry. In such cases, the esti-

mation of model parameters for generative clustering methods is either difficult or impossible.

This task is indeed very difficult when n < p since generative methods require, in particular, to

invert covariance matrices which are ill-conditioned in the best case or singular in the worst one.

In contrast with other generative methods, the Fisher-EM procedure can overcome the n < p

problem. Indeed, the E and M steps of Fisher-EM do not require the determination of the last

p−d columns ofW (see equations (4.1.1) and (4.1.19)–(4.1.20)) and, consequently, it is possible

to modify the F-step to deal with situations where n < p. To do so, let Ȳ ∈ R
p×n denote the

centered data matrix and T (q) ∈ R
n×K denotes the soft partition matrix obtained at iteration

q. We define in addition the weighted soft partition matrix T̃ (q) where the kth column T̃
(q)
k

of T̃ (q) is the kth column T
(q)
k of T (q) divided by

√

n
(q)
k =

√

∑n
i=1 t

(q)
ik . With these notations,

the between covariance matrix S
(q)
B can be written in its matrix form S

(q)
B = 1/n Ȳ T̃ (q)T̃ (q)tȲ t
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and the F-step aims to maximize, at iteration q, under orthogonality constraints, the function

f(U (q)) = trace
(

(U (q)tȲ Ȳ tU (q))−1U (q)tȲ T̃ (q)T̃ (q)tȲ tU (q)
)

. It follows from the classical result

of kernel theory, the Representer theorem [107], that this maximization can be done in a dif-

ferent space and that U can be expressed as U = Ȳ H where H ∈ R
n×p. Therefore, the F-step

reduces to maximize, under orthogonality constraints, the following function:

f(H(q)) = trace
(

(H(q)tGGH(q))−1H(q)tGT̃ (q)tT̃ (q)GH(q)
)

, (4.3.1)

where G = Ȳ Ȳ t is the n× n Gram matrix. The solution Û (q) of the original problem can be

obtained afterward from the solution Ĥ(q) of (4.3.1) by multiplying it by Ȳ . Thus, the F-step

reduces to the eigendecomposition under orthogonality constraints of a n×n matrix instead of

a p×p matrix. This procedure is useful for the Fisher-EM procedure only because it allows to

determine d ≤ n axes which are enough for Fisher-EM but not for other generative methods

which require the computation of the p axes.



Chapter 5

Experimental results

This section presents experiments on simulated and real datasets, in order to highlight the main

features of the clustering method introduced in the previous sections. In the first paragraph,

the Fisher-EM algorithm is applied on the Fisher’s irises as a glance to the Sir R. A. Fisher’s

work. The second paragraph aims to illustrate the convergence property of the Fisher-EM

algorithm developed in Chapter 4, according to the evolution of Fisher’s criterion. Moreover,

this paragraph will compare the behaviors of the log-likelihood function, clustering accuracies

and fitted error of the Fisher-EM with traditional algorithms (CEM and EM). The third

paragraph aims to compare on simulations the differences between the three types of the F-step

presented in Chapter 4. Then, a comparative study between subspace clustering approaches

and the Fisher-EM algorithm will be presented on the well-known Italian Wines dataset. The

robustness of our algorithm with high-dimensional data will be evaluated on simulations and

the results will be compared to those obtained by traditional methods. The last experiment

on simulations is developed in the 5th paragraph and aims to study the performance of BIC

as a criterion for selecting both the DLM model and the number of components. Finally, the

last paragraph will focus on comparing on benchmark datasets the efficiency of Fisher-EM

with several linear and nonlinear existing methods, including the most recent ones.

5.1 An introductory example: the Fisher irises

As we chose to name the clustering algorithm proposed in this work after Sir R. A. Fisher,

the least we can do is to first apply the Fisher-EM algorithm to the iris dataset that Fisher

used in [54] as an illustration for his discriminant analysis. This dataset, in fact collected

by E. Anderson [3] in the Gaspé peninsula (Canada), is made of 3 groups corresponding to

different species of iris (setosa, versicolor and virginica) among which the groups versicolor and

virginica are difficult to discriminate: they are at least not linearly separable. The dataset

consists of 50 samples from each of 3 species and four features were measured from each

sample. The four measurements are the length and the width of the sepal and the petal. This

dataset is used here as an introductory example because of the link with Fisher’s work but
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(d) Fisher-EM (unsupervised context).

Figure 5.1: Projection of the irises on the traditional Fisher axes in a supervised case (a), on the

orthogonal Fisher axes in a supervised case (b), on the 2 first principal components of PCA (c) and

into the latent discriminative subspace estimated by Fisher-EM (d).

also of its popularity in the clustering community. Before applying the Fisher-EM algorithm,

the data have been projected in the traditional Fisher subspace and in the orthogonal Fisher

subspace in the supervised context as it is illustrated by Figure 5.1a and Figure 5.1b. This last

representation has been obtained through an orthogonal linear discriminant analysis (OLDA)

method developed by Ye et al. [186]. Moreover, Figure 5.1c stands for the projected data on

the 2 first principal components of PCA. In this first experiment, Fisher-EM has been applied

to the iris data and logically, the labels have been used only for performance evaluation and

not for building discriminative axes. The Fisher-EM results have been compared to the ones

obtained in the supervised case with the OLDA method [186]. The results have been obtained

with a random initialization on the DLM[αkβ] model where the number of classes has been fixed

to 3. Figure 5.1d stands for the projection of the irises in the estimated discriminative space

with Fisher-EM and Figures 5.3a and 5.3b show respectively the evolution of the log-likelihood

and of the Fisher criterion on 25 iterations until convergence.

First of all, it can be observed in Figure 5.1d, that the estimated latent space discriminates
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Figure 5.2: Steps of the Fisher-EM algorithm in the iris datasets.
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almost perfectly the 3 different groups, compared to the representation of the data in the

principal components of PCA in Figure 5.1c. Moreover, this discriminative latent space, built

without knowing the class membership, is as informative in terms of structure as the one

obtained in a supervised orthogonal context (see Figure 5.1b). Fisher-EM appears to be a

powerful algorithm to find the intrinsic structure of the data in an unsupervised context,

whatever the initialization is.

Figures 5.2a-i. illustrate at each iteration the data projected in the fitted latent discrim-

inative subspace and on each axis, the empirical density of fitted clusters has been drawn.

It can be observed in Figure 5.2a that the data are clustered randomly in the discriminative

subspace, as the initialization is random. From the second iteration until the third one, the

discrimination between 2 groups begins. From the third iteration (see Figure 5.2d), a structure

of 3 different classes appears and we can see that the histograms, obtained on the axis plot,

separate distinctly the densities. In particular, the second Fisher’s axis well-discriminates the

3 clusters. Finally, the last iterations enable to refine the estimations of the means and the

covariance matrices of 3 clusters until convergence.

The improvement of the partition in the latent space can also be evaluated by the evolution

of the discriminative criterion based on the trace of S−1S
(q)
B where S and S

(q)
B stands for

respectively the total and the soft between covariance matrices computed at iteration (q). In

fact, in Figure 5.3b, it can be observed that the Fisher’s criterion is very small at the beginning,

as the initialization of the partition is random. Then, this criterion increases drastically until

the 5th iteration. After the 5th iteration, the criterion increases but very slowly until the

maximum of the trace is reached. The final partition illustrated in Figure 5.2i. presents

clusters which are well-separated and compact. Moreover, by considering the histograms of

the data on the top and on the right of the plot, it can also be observed that the first axis

estimated by Fisher-EM is very discriminative for the 3 classes.

For this experiment, the clustering accuracy has reached 98% with the DLM[αkβ] model of

Fisher-EM. Secondly, Figure 5.3a shows the monotonicity of the evolution of the log-likelihood

and the convergence of the algorithm to a stationary state and Figure 5.3b shows the increase

in the criterion which reaches a maximum. It can be observed that the log-likelihood and

the Fisher’s criterion have the same behavior: they both go up sharply until the 5th iteration

and then the raising becomes very slow until a maximum state is reached. Table 5.1 presents

the confusion matrices for the partitions obtained with supervised (OLDA) and unsupervised

(Fisher-EM) methods from the MAP classification rule. OLDA has been used for the super-

vised case (reclassification of the learning data) whereas Fisher-EM has provided the clustering

results. One can observe that the obtained partitions induced by both methods is almost the

same. This confirms that Fisher-EM has correctly modeled both the discriminative subspace

and the groups within the subspace. It is also interesting to look at the loadings provided by

both methods. Table 5.2 stands for the linear coefficients of the discriminative axes estimated,

on the one hand, in the supervised case (OLDA) and, on the other hand, in the unsupervised
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Figure 5.3: Evolution of the associated log-likelihood (a) and of the Fisher criterion (b) in function

of the iterations of Fisher-EM algorithm.

OLDA Fisher-EM

cluster cluster

class 1 2 3 class 1 2 3

Setosa 50 0 0 Setosa 50 0 0

Versicolor 0 48 2 Versicolor 0 47 3

Virginica 0 1 49 Virginica 0 0 50

Misclassification rate = 0.02 Misclassification rate = 0.02

Table 5.1: Confusion tables for the iris data with OLDA method (supervised) and Fisher-EM
(unsupervised).

OLDA Fisher-EM

axis axis
variable 1 2 1 2

sepal length 0.209 0.044 -0.203 -0.108
sepal width 0.386 0.665 -0.422 0.088
petal length -0.554 -0.356 0.602 0.736
petal width -0.707 0.655 0.646 -0.662

Table 5.2: Fisher axes estimated by OLDA (supervised method) and by Fisher-EM (unsuper-
vised method).
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case (Fisher-EM). The first axes of each approach appear to be very similar and the scalar

product of these axes is −0.996. This highlights the performance of the Fisher-EM algorithm

in estimating the discriminative subspace of the data without knowing the class membership.

Furthermore, according to these results, the 3 groups of irises can be mainly discriminated by

the petal size, meaning that only one axis would be sufficient to discriminate the 3 iris species.

Besides, this interpretation turns out to be in accordance with the recent work of Trendafilov

and Joliffe [166] on variable selection in discriminant analysis via the LASSO.

5.2 Convergence properties of the Fisher-EM algorithm

This paragraph presents two experiments: the first experiment aims to implement the conver-

gence property of the Fisher-EM algorithm defined in Chapter 4 based on the increase of the

Fisher’s criterion and the second one aims to compare the Fisher-EM algorithm in terms of

log-likelihood values, clustering accuracies and estimation errors with the traditional EM and

CEM algorithms.

5.2.1 Fisher-EM loglikelihood versus Fisher’s criterion

This first experiment aims to validate the convergence property of the Fisher-EM algorithm

developed in Chapter 4. A dataset consisting of 300 observations has been simulated according

to the DLM[Σkβ] model. We have simulated in the latent space of dimension 2 a Gaussian

mixture model of 3 components with vector means:

µ1 = (10, 0), µ2 = (−10, 0) and µ3 = (0, 10)

respectively for the cluster 1,2 and 3, and their respective covariance matrices:

Σ1 =

[

1 0.1

0.1 2

]

, Σ2 =

[

1 0

0 2

]

and Σ3 =

[

2 0.5

0.5 1

]

.

Moreover, 8 orthogonal dimensions of Gaussian noise with variance β = 10 have been added.

The transformation matrix W has been randomly simulated such that W tW = WW t = Ip

and, for this experiment, the dimension of the observed space is fixed to 10.

Figure 5.4a. stands for the evolution of the log-likelihood according to the iterations of

Fisher-EM algorithm. Figure 5.4b. presents the evolution of the quantity trace(s−1s
(q)
B ) where

s and s
(q)
B are respectively the total and the soft between covariance matrices computed in the

latent space at the iteration (q). First of all, it can be observed that the Fisher-EM algo-

rithm has converged as the 11th iteration i.e. when the quantity
∣

∣

∣ℓ
(q+1)
∞ − ℓ(q)∞

∣

∣

∣ based on the

asymptotic estimation of the log-likelihood defined in Section 4.3.1.3 is become inferior to

10−6. We can also see that both the log-likelihood and the trace criterion increase. At each

iteration, the quantity trace(s−1s
(q)
B ) is maximized, which implies that the trace of s−1s

(q)
W ,
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Figure 5.4: Evolution of the loglikelihood function (a) versus Fisher’s criterion (trace(s−1sB))
evaluated in the latent space (b) according to the iterations of the Fisher-EM algorithm.
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Figure 5.5: Evolution of the estimation errors evaluated in the latent space (a) and the clus-
tering accuracy (b) according to the iterations of the Fisher-EM algorithm.

cluster 1 cluster 2 cluster 3

True parameters µ1 = ( 10 , 0 ) µ2 = (−10 , 0 ) µ3 = ( 0 , 10 )
Fitted parameters µ̂1 = (9.93,−0.28) µ̂2 = (−9.99, 0.29) µ̂3 = (−0.26, 9.97)

Table 5.3: Fitted parameters of the means vectors of 3 components in the latent space obtained
by Fisher-EM at convergence.
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where s
(q)
W stands for the soft within covariance matrix computed in the latent space, is mini-

mized. This diminution has a positive effect in the log-likelihood function which consequently

raises. Moreover, we can observe that the curves of Fisher’s criterion and of the log-likelihood

function have closed shapes and the maximum value of Fisher’s criterion is reached as the

9th iteration and remains stable until convergence. In a certain way, this criterion can be

viewed as an indicator of the convergence of the Fisher-EM algorithm. Finally, the evolution

of the estimation error and the clustering accuracy are illustrated respectively in Figures 5.5a.

and 5.5b. Indeed, since the true parameters of the mixture model are known, it is possible

to evaluate the estimation error which has been computed by a Euclidean distance between

means parameters fitted in the latent space and the true parameters. We can observe that

the fitted error globally decreases according to the iterations of the Fisher-EM algorithm: the

fitted error tends to zero when the algorithm has converged which suggests that the fitted

parameters are closed to the true parameters of the mixture model. This result is detailed in

Table 5.3 which stands for the fitted parameters obtained when the Fisher-EM algorithm has

converged.

Finally the clustering efficiency evaluated with the true labels is illustrated in Figure 5.5b.

and we can observe that it keeps on growing throughout the iterations of the Fisher-EM

algorithm and tends to 1 at convergence.

5.2.2 Fisher-EM algorithm versus EM and CEM algorithms

This second experiment aims to compare the behavior of the Fisher-EM algorithm with the

standard CEM and EM algorithms in terms of evolution of log-likelihood function, fitted

errors and clustering accuracies. To that end, we have considered the same simulation of the

mixture model in the latent space as the previous experiment: we have generated 300 random

vectors from each of K = 3 different two-dimensional multivariate normal distributions. The

means parameters µ1, µ2, µ3 and the covariance parameters Σ1,Σ2,Σ3 of the 3 components

in the latent space are the same as those defined previously. The only differences remain in

the variance noise term which has been voluntary decreased (β = 0.1) and only 2 orthogonal

dimensions of Gaussian noise have been added, in order to ease the clustering task and to

obtain comparable clustering results between the Fisher-EM, EM and CEM algorithms.

For this experiment, the dimension of the observed space is fixed to 5 and the Fisher-EM,

CEM and EM algorithms have been trained from a same random initialization. Figures 5.6

stand for the evolution of the log-likelihood according to the iterations of the 3 algorithms

until convergence, Figures 5.7, the clustering accuracies and Figures 5.8, the fitted errors.

First of all, it can be observed that Fisher-EM converges quicker than the CEM and EM

algorithms. Indeed, as the 7th iteration Fisher-EM has converged conversely to the CEM and

EM algorithms which converge respectively at the end of 16 and 56 iterations respectively.

Besides, in this experiment, one re-find the advantage developed in Chapter 2 of the CEM

algorithm based on its quickness to converge compared to the traditional EM algorithm. In
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(a) Fisher-EM.
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(b) CEM.
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(c) EM.

Figure 5.6: Evolution of the log-likelihood according to the number of iterations for the Fisher-
EM (a), CEM (b) and EM (c) algorithms.

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

iterations

cl
us

te
rin

g 
ac

cu
ra

cy

(a) Fisher-EM.
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(b) CEM.
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(c) EM.

Figure 5.7: Evolution of the clustering accuracy (CA) according to the number of iterations
for the Fisher-EM (a), CEM (b) and EM (c) algorithms.
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Figure 5.8: Evolution of the estimation error on the means according to the number of itera-
tions for the Fisher-EM (a), CEM (b) and EM (c) algorithms.
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Figures 5.7, we can observe that the quality of the 3 obtained partitions are very similar.

Indeed, at convergence, the 3 algorithms reach almost 100% of clustering accuracy. This

observation is confirmed by the evolution of the fitted error with the true parameters. As

it can be observed in Figure 5.8a., the estimation error tends to zero for the 3 algorithms.

However, in the Fisher-EM algorithm, we can observe that the error is a little bit higher

than those obtained by CEM and EM. It can be explain by the easy clustering case of this

experiment and the speed of the convergence of the Fisher-EM algorithm to a stable and very

discriminative state.

5.3 Comparison of the 3 different optimizations for the F-step

We have introduced in Section 4.1.2 3 different ways to estimate the discriminative latent

space in the F-step. This experiment aims to compare the 3 different approaches based either

on the Gram-Schmidt (GS) orthogonalization procedure, on a singular value decomposition

(SVD) or through a regression procedure (REG). For this simulation, 750 observations have

been simulated following the DLM[Σβ] model with the parameters Σ = 2Id, d = 8 and β = 15.

The difference between clusters happens to be entirely on the means vectors. The simulated

dataset is made of 15 groups of 50 observations and each group is modeled by a Gaussian

density in a 8-dimensional space completed by 7 orthogonal dimensions of Gaussian noise.

The transformation matrix W has been randomly simulated such as W tW = WW t = Ip

and, for this experience, the dimension of the observed space is fixed to 30. In the aim to

compare the efficiency to estimate the 3 different procedures of the F-step, we consider in

this experiment the supervised context. Consequently, the true labels are used to initialize

the Fisher-EM algorithm which is iterated once meaning that only one F-step and M-step are

considered before re-classifying the data with an E-step.

Figure 5.9a stands for cosine value between the 14 axes estimated by the 3 procedures:

the blue line is the cosine between the axes estimated by SVD and Gram-Schmidt procedures,

the red line stands for the cosine computed between axes estimated by regression and Gram-

Schmidt procedures and the green line stands for those obtained between the procedures SVD

and regression. Since the intrinsic dimension of the latent subspace is theoretically at most

equal to d = K − 1, then the cosines of 14 potential discriminative axes have been computed.

Firstly, it can be observed in Figure 5.9a that the first estimated axes are exactly the same,

whatever the procedure is. Moreover, the differences between the cosines are not significantly

far from the first axis until the 8th axis. A little difference appears from the estimation of the

second axis between the regression procedure and the 2 others but the cosines remain very

close to 1 in general. From the 8th axis, we can observe a gap between the axes estimated by

the Gram-Schmidt procedure and those estimated by SVD or by a linear regression. Therefore,

an increasing gap in terms of classification accuracy is expected between these 3 procedures.

However, such a difference does not exist as we can observe in Figure 5.10 which stands for
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Figure 5.9: Evolution of the cosine between estimated axes according to the methodology
used in the F-step : SVD, Gram-Schmidt or regression procedures (a) and scree plot of the
eigenvalues of the matrix s−1sB in the latent space (b).
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Figure 5.10: Boxplots of correct classification rates obtained on 25 replications for the 3
different procedures for the F-step (SVD, Gram-Schmidt and Regression).

Approach:
Elapsed real time CPU time

SVD 4.2702± 0.0561 0.1164± 0.0460
G-S 4.4318± 0.0639 0.1556± 0.0654
REG 4.3884± 0.0683 0.1319± 0.0599

Table 5.4: Elapsed real time and CPU time computed for the 3 procedures of the F-step in
the Fisher-EM algorithm.
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the boxplots of correct classification rate obtained on 25 trials for each method. This can be

explained by the fact that the last axes have a weak discriminative power. Besides, Figure 5.9b

illustrates the scree plot of the eigenvalues associated to the eigen decomposition of the matrix

s−1sB, where s and sB stands for respectively the empirical covariance and the between

covariance matrices in the fitted latent subspace. As we can observe, the discriminative power

of axes decreases very quickly towards 0 from the 1st to the 8th axis and from the dimension

9, the eigenvalues are almost equal to 0. This is explained as that the most discriminative

information is concentrated in the first axes which span the discriminative latent space. The

main difference between the 3 procedures remains in the axes which have no discriminative

power. Indeed, after convergence of the Fisher-EM algorithm, these last axes are removed

since the intrinsic dimension is d = rank(sB) = 8. Consequently, the 3 procedures used in the

F-step are equivalent to estimate the latent subspace. However, in order to choose a method

between the 3 approaches, the elapsed real time and the central processing unit (CPU) have

been computed for each F-step procedure. The elapsed real time is the time taken from the

start of the function until the end as measured by an ordinary clock and the CPU time is the

amount of time charged for execution by the system on behalf of the calling process. Table 5.4

stands for these computation times according to the 3 procedures (SVD, G-S, REG). We

can observe that the F-step computed by singular value decomposition is smaller than those

obtained by the two other procedures. The performances between these 3 procedures are

comparable in terms of clustering accuracy but the SVD procedure remains the quickest one.

The SVD procedure has been preferred for the experiments on real datasets of high dimension.

5.4 Comparison with subspace clustering methods

This experiment aims to compare subspace clustering approaches with the family of DLM

models on the Italian wines dataset. Originally, the Wines dataset has been introduced by

Forina et al. [56] in 1986 and consisted in 28 chemical and physical properties on 3 different

types of Italian wines. However, in this experiment, we consider a subset of this dataset

traditionally used in clustering and available in the UCI Machine Learning data repository,

which consists of 13 variables of the original dataset. The Italian wines dataset consists of 178

observations divided in 3 types: the Barolo (59), the Grignolino (71) and the Barbera (48).

For this experiment, the dataset has been scaled and 3 different subspace clustering ap-

proaches are compared: we have considered the family of 12 DLM models introduced in

Chapter 3, the Hd-GMM family developed by Bouveyron et al. [22] and the mixture of com-

mon factor analyzer (MCFA) introduced by Baek et al. [8]. To that end, the HDclassif and

mcfa softwares of R (R development Core Team 2004) have been used to fit respectively both

Hd-GMM and MCFA models. For each approach, the algorithms have been executed on

scaled data with the same random initializations and this experiment has been repeated 25

times. Nevertheless, the number of components has been fixed to 3, after checking that most
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Figure 5.11: BIC values computed for the 12 DLM models and fitted for 2 until 8 components
in the wines dataset.
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Figure 5.12: Projection of the wines dataset fitted with the DLM[αkjβk] model in the estimated
latent discriminative subspace (a) and in the subspace estimated by the MCFA approach (b).
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of the time, the BIC criterion selected a model with 3 components for each approach. Besides,

Figure 5.11 stands for the BIC values computed amongst the 12 DLM models which have

been fitted for a number of components varying from 2 to 8. It can be observed that the

highest BIC is obtained for the DLM[αkjβk] model with 3 components and this model will be

used for the rest of the experiment. In the same manner, for the HDDC approach, the model

selected by BIC is the model [akbkQkd] with intrinsic dimensions dk = 12 for the 3 compo-

nents. For MCFA, the model with a number of factor loadings q = 3 has been selected also

by the BIC criterion. By considering these models, Table 5.5 stands for the average and the

standard deviation of clustering accuracies and the maximum adjusted rand index obtained

by the 3 approaches on the 25 iterations. It can be observed that the Fisher-EM algorithm

executed with the DLM[αkjβk] model is very stable and efficient on this dataset, compared to

both HDDC and MCFA approaches. Its performances are equivalent in terms of clustering

accuracy with the Hd-GMM model. However the DLM model provides more parsimonious

and interpretable results since the intrinsic dimension of clusters are common and equal to 2

whereas in the Hd-GMM model, the subspaces are different for each cluster and their intrinsic

dimension is equal to 12.

Moreover, cross tabulations obtained from the MAP rule are presented in Table 5.6 ac-

cording to the 3 proposed approaches: these tables correspond to the best clustering accuracy

reached for each approach amongst the 25 repetitions. Finally, contrary to HDDC, Fisher-EM

and MCFA provide a visualization of the projected data in the fitted latent subspace since

the subspace is common for the 3 groups. Besides, Figures 5.12a and 5.12b illustrate respec-

tively the projection of the clustered data in the latent discriminative subspace fitted by the

DLM[αkjβk] and according to the MCFA approach. The histograms of the 3 clusters are also

drawn on each estimated axis. These figures are linked to the best clustering accuracy reached

respectively by the DLM[αkjβk] (97.2%) and the MCFA model (96.6%) amongst the 25 repeti-

tions. It can be observed that the representation of the clustered data in the subspace fitted

by Fisher-EM is much more discriminative than the one obtained in the subspace estimated

by the MCFA approach. Indeed, the clusters are compacter in the discriminative subspace

fitted by the Fisher-EM algorithm whereas they overlap in the subspace fitted by the MCFA

procedure.

Therefore, in this experiment, Fisher-EM which aims to estimate a discriminative subspace

to cluster the data outperforms in average the traditional subspace clustering approaches

(HDDC, MCFA) based on the maximization of the covariance of each cluster and provide a

visualization which stresses the intrinsic structure of the dataset.

5.5 Simulation study: influence of the dimension

This fifth experiment aims to compare with traditional methods the stability and the efficiency

of the Fisher-EM algorithm in partitioning high-dimensional data. Fisher-EM is compared here
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approach:
model: Clustering accuracy

Averaging Adjusted
Rand Index

Fisher-EM DLM[αkjβk] 97.19± 0.00 0.9129± 0.00

HDDC Hd-GMM[akjbkQkd] 96.90± 1.24 0.9062± 0.04
MCFA - 91.62± 8.12 0.7075± 0.02

Table 5.5: Clustering accuracies and its corresponding standard deviation obtained from the
MAP rule and averaged on 25 trials and the maximum adjusted rand index.

Fisher-EM

according to DLM[αkjβ]

HDDC

according to [akbkQkd]

MCFA

according to q = 2

cluster cluster cluster

class 1 2 3 class 1 2 3 class 1 2 3

Barbera 47 1 0 Barbera 47 1 0 Barbera 48 0 0

Grignolino 1 70 0 Grignolino 0 71 0 Grignolino 4 67 0

Barolo 0 3 56 Barolo 0 2 57 Barolo 0 2 57

Misclassification rate = 2.81% Misclassification rate = 1.68% Misclassification rate = 3.37%

Table 5.6: Cross tabulations of the MAP classifications obtained from the DLM[αkjβ], Hd-
GMM[akbkQkdk] and MCFA (q = 2) models with K = 3 in the case of their maximum clustering
accuracy reached amongst the 25 repetitions.
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Figure 5.13: Visualization of the simulated data: data in their latent space (left) and data
projected on the 2 first principal components (right).
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Figure 5.14: Influence of the dimension of the observed space on the correct classification
rate for Full-GMM, PCA-EM, Com-GMM, Mixt-PPCA, k-means, Diag-GMM, Sphe-GMM
and Fisher-EM algorithms.

with the standard EM algorithm (Full-GMM) and its parsimonious models (Diag-GMM, Sphe-

GMM and Com-GMM), the EM algorithm applied in the first components of PCA explaining

90% of the total variance (PCA-EM), the k-means algorithm and the mixture of probabilistic

principal component analyzers (Mixt-PPCA).

For this simulation, 600 observations have been simulated following the DLM[αkjβk] model

proposed in Chapter 3. The simulated dataset is made of 3 unbalanced groups and each

group is modeled by a Gaussian density in a 2-dimensional space completed by orthogonal

dimensions of Gaussian noise. The transformation matrix W has been randomly simulated

such as W tW = WW t = Ip and, for this experience, the dimension of the observed space varies

from 5 to 100. The left panel of Figure 5.13 shows the simulated data in their 2-dimensional

latent space whereas the right panel presents the projection of 50-dimensional observed data

on the two first axes of PCA in the observed space. As one can observe, the representation of

the data on the two first principal components is actually not well suited for clustering these

data while it exists a representation which discriminates perfectly the 3 groups. Moreover, to

make the results of each method comparable, the same randomized initialization has been used

for the 8 algorithms. The experimental process has been repeated 20 times for each dimension

of the observed space in order to see both the average performances and their variances.
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Figure 5.15: Boxplots of 9 clustering methods: standard deviation of the clustering accuracy
in function of the evolution of the dimension of the observed space.
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Figure 5.16: BIC values subject to the number of components varying from 2 until 6 and to
different approaches: (a) the family of 12 DLM models, (b) Traditional GMM models and (c)
Mclust and MCFA.

Figure 5.14 presents the evolution of the clustering accuracy of each method (EM, PCA-EM,

k-means, Mixt-PPCA, Fisher-EM, Diag-GMM, Sphe-GMM and Com-GMM) according to the

data dimensionality and Figure 5.15 presents their respective boxplots.

First of all, it can be observed that the Full-GMM, PCA-EM and Com-GMM have decreas-

ing performances when the dimension increases. In fact, the Full-GMM model does not work

upon the 15th dimension and still remains unstable in a low dimensional space as well as the

Com-GMM model. Similarly, the performances of PCA-EM fall down as the 10th dimension.

This can be explained as the latent subspace provided by PCA does not allow to well discrim-

inate the groups, as already suggested by Figure 5.13. However, the PCA-EM approach can

be used whatever the dimension is whereas Full-GMM cannot be used as the 20th dimension

because of numerical problems linked to singularity of the covariance matrices. Moreover, their

boxplots show a large variation on the clustering accuracy. Secondly, Sphe-GMM, Diag-GMM

and k-means present the same trend with high performances in low-dimensional spaces which

decrease until they reach a clustering accuracy of 0.75. However, Diag-GMM seems to resist a

little bit more than k-means to the dimension increasing. Mixt-PPCA and Mclust both follow

the same tendency as the previous methods but from the 30th dimension their performances

fall down until the clustering accuracy reaches 0.5. The poor performances of Mixt-PPCA can

be explained as Mixt-PPCA models each group in a different subspace whereas the model used

for simulating the observations assumes a common discriminative subspace. Finally, Fisher-

EM appears to be more effective than the other methods and, more importantly, it remains

very stable while the data dimensionality increases. Furthermore, the boxplot associated with

the Fisher-EM results suggests that it is a steady algorithm which succeeds in finding out the

discriminative latent subspace of the data even with random initializations.
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Figure 5.17: Projection of the data in the 2 first principal components of PCA (a) and in the
discriminative latent subspace estimated by the Fisher-EM algorithm (b).

5.6 Simulation study: model selection

This last experiment on simulations aims to study the performance of BIC for both model and

component number selection. For this experiment, 4 Gaussian components, of 75 observations

each, have been simulated according to the DLM[αkβ] model in a 3-dimensional space completed

by 47 orthogonal dimensions of Gaussian noise (the dimension of the observation space is

therefore p = 50). The transformation matrix W has been again randomly simulated such as

W tW = WW t = Ip. Table 5.7 presents the BIC values and the adjusted rand index for the

family of DLM models and, in a comparative purpose, the BIC values for 7 other methods

already used in the last experiments: EM with the Full-GMM, Diag-GMM, Sphe-GMM and

Com-GMM models, Mixt-PPCA, Mclust [58] (with model [EEE] which is the most appropriate

model for these data), PCA-EM and MCFA. Moreover, BIC is computed for different partition

numbers varying between 2 and 6 clusters.

First of all, one can observe that the BIC values, linked to the models which are different

from the DLM model, are very low compared to the DLM models. This suggests that the

models which best fit the data are the DLM models. Secondly, 10 of the 12 DLM models

select the right number of components (K = 4). Moreover, Figure 5.16a stands for the BIC

values obtained for the 12 DLM models with respect to the number of components. It can

be observed 2 groups between the DLM models: in the first hand, the models which supposes

variable covariance matrices in the latent space (DLM[Σkβk], DLM[Σβk], DLM[Σkβ],DLM[αkjβk],

DLM[αkjβ], DLM[αkβk] and DLM[αkβ]) and in the second hand, the models assuming common

covariance matrices for each group (DLM[Σβ], DLM[αjβk], DLM[αjβ], DLM[αβk] and DLM[αβ]).

It appears that the models with variable covariance matrices represent the best models in
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number of components

models 2 3 4 5 6

DLM[Σkβk] -27408 -27114 -26850 -27066 -27279

(0.498) (0.707) (0.993) (0.965) (0.863)

DLM[Σkβ] -27709 -27252 -26855 -27034 -27285

(0.498) (0.707) (0.993) (0.960) (0.866)

DLM[Σβk] -27824 -27746 -27695 -27828 -27993

(0.498) (0.672) (0.891) (0.841) (0.818)

DLM[Σβ] -28124 -27867 -27802 -27873 -28037

(0.498) (0.669) (0.909) (0.802) (0.808)

DLM[αkjβk] -27408 -27111 -26825 -26986 -27125

(0.498) (0.707) (0.987) (0.977) (0.873)

DLM[αkjβ] -27709 -27249 -26825 -26975 -27114

(0.498) (0.707) (0.993) (0.941) (0.863)

DLM[αkβk] -27408 -27105 -26804 -26991 -27142

(0.498) (0.707) (0.993) (0.971) (0.874)

DLM[αkβ] -27709 -27243 -26801 -26984 -27102

(0.498) (0.707) (0.993) (0.936) (0.886)

DLM[αjβk] -27824 -27771 -27647 -27840 -27944

(0.498) (0.665) (0.861) (0.849) (0.832)

DLM[αjβ] -28124 -27932 -27836 -27914 -28139

(0.498) (0.672) (0.890) (0.802) (0.806)

DLM[αβk] -27824 -27931 -28057 -28147 -28324

(0.498) (0.655) (0.498) (0.803) (0.791)

DLM[αβ] -28124 -28119 -28120 -28127 -28254

(0.498) (0.669) (0.498) (0.791) (0.784)

Full-GMM -67268 -91956 -127490 -187520 -354461

(0.001) (0.002) (0.004) (0.004) (0.007)

Com-GMM -59343 -75680 -89253 -104157 -119745

(0.498) (0.497) (0.498) (0.498) (0.498)

Mixt-PPCA -45706 -51178 -56000 -57091 -60051

(0.498) (0.713) (0.890) (0.905) (0.919)

Diag-GMM -75530 -102638 -131043 -156537 -183476

(0.498) (0.713) (0.785) (0.611) (0.832)

Sphe-GMM -76064 -101992 -128091 -149127 -174868

(0.498) (0.707) (0.886) (0.624) (0.876)

PCA-EM -50017 -67729 -89604 -117674 -150783

(0.498) (0.701) (0.707) (0.494) (0.492)

Mclust[EII] -91920 -92160 -92405 -92650 -92887

(0.498) (0.497) (0.496) (0.494) (0.492)

MCFA -91895 -91457 -91399 -91370 -91515

(0.332) (0.701) (0.707) (0.986) (0.712)

Table 5.7: BIC values for model selection and adjusted rand index in brackets.
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terms of BIC values and they correspond also to the best rand adjusted indexes (given in

brackets in Table 5.7) compared to the other group. Concerning the GMM models constrained

or not (Full-GMM, Com-GMM, Diag-GMM, Sphe-GMM, Mclust) and Mixt-PPCA, they all

under-estimate the number of clusters and select only 2 components whereas MCFA tends to

over-estimate it as it can be observed in Figures 5.16b and 5.16c. BIC has the highest value

for the DLM[αkβ] model with 4 components which is actually the model used for simulating

the data. Finally, the right-hand side of Figure 5.17 presents the projection of the data

on the discriminative subspace of 3 dimensions estimated by Fisher-EM with the DLM[αkβ]

model whereas the left-hand side figure represents the projection of the data on the 3 first

principal components of PCA. As one can observe, in the PCA case, the axes separate only 2

groups, which is in accordance with the model selection pointed out by BIC for this method.

Conversely, in the Fisher-EM case, the 3 discriminative axes separate well the 4 groups and

such a representation could clearly help the practitioner in understanding the clustering results.

5.7 Real data set benchmark

This last experimental paragraph will focus on comparing, on real-world datasets, the efficiency

of Fisher-EM with several linear and nonlinear existing methods, including the most recent

ones. In one hand, Fisher-EM will be compared to the 9 already used clustering methods: EM

with the Full-GMM, Diag-GMM, Sphe-GMM and Com-GMM models, Mixt-PPCA, Mclust

(with its most adapted model for these data), PCA-EM, k-means and MCFA with a number

of unobserved factors fixed to 3. On the other hand, the new Fisher-EM challengers will be

k-means computed on the two first components of PCA (PCA–k-means), an heteroscedastic

factor mixture analyzer (HMFA) method [136] and 3 discriminative versions of k-means: LDA–

k-means [47], Dis–k-means and DisCluster (see [187] for more details). The comparison has

been made on 7 different benchmark datasets coming mostly from the UCI machine learning

repository:

• The iris dataset which is made of 3 different groups and described by 4 variables. This

dataset has been described in detail in Section 5.1.

• The wine dataset is composed by 178 observations which are split up into 3 classes and

characterized by 13 variables. This dataset has also been detailed in Section 5.4.

• The chironomus data contain 148 larvae which are split up into 3 species and described

by 17 morphometric attributes. This dataset is described in detailed in [136].

• The zoo dataset includes 7 families of 101 animals characterized by 16 Boolean-valued

attributes which stands for the color, if the animal is a predator or not, if it has a

backbone, etc.

• The glass data are composed by 214 observations belonging to 6 different groups and

described by 7 variables based on chemical properties. This dataset has been created to
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Method iris wine chiro zoo glass satimage usps358

DLM[Σkβk] 86.8±7.3† 97.8±0.0* 91.2±6.1 80.1±5.7 48.5±2.6 69.6±0.0* 81.1±5.4*†
DLM[Σkβ] 92.6±11 89.3±0.0 98.2±3.4 - 47.9±2.7 64.5±0.0 77.4±9.1

DLM[Σβk] 80.5±3.4 93.8±1.1 94.7±4.2 72.6±5.3 49.4±2.9 65.7±1.3 73.7±7.4

DLM[Σβ] 79.1±2.9 89.8±0.8 85.2±3.2 79.6±5.6 48.6±3.6 65.5±1.6 76.4±9.9

DLM[αkjβk] 87.8±0.5* 97.2±0.0† 85.0±1.4 71.8±6.6† 49.6±2.6† 70.1±0.0 82.3±4.7

DLM[αkjβ] 97.8±0.1 95.2±1.6 98.1±5.2 71.4±8.0 51.1±2.1* 61.7±0.2 73.2±9.5

DLM[αkβk] 92.8±2.1 98.9±0.0 85.5±14*† 71.8±6.9* 48.5±2.2 68.8±0.0 70.9±13.6

DLM[αkβ] 95.8±7.3 97.1±0.9 97.8±5.0 71.0±6.4 49.5±2.4 68.8±0.0 68.3±11.2

DLM[αjβk] 81.6±4.5 91.6±0.5 93.8±4.1 68.5±6.7 49.3±1.8 62.9±0.0† 76.1±11.0

DLM[αjβ] 73.6±6.7 89.8±0.9 89.7±4.1 79.1±4.9 47.4±1.2 67.6±2.8 77.4±10.7

DLM[αβk] 80.1±6.9 91.4±3.2 89.3±1.9 70.1±6.5 48.9±1.3 68.7±1.9 80.5±6.0

DLM[αβ] 66.8±0.0 89.5±1.0 89.2±5.7 80.2±5.3 47.0±1.7 62.1±0.0 69.9±14.2

Full-GMM 79.0±5.7 60.9±7.7 44.8±4.1 - 38.3±2.1 35.9±3.1 -

Com-GMM 57.6±18.3 61.0±14.9 51.9±10.9 59.9±10.3 38.3±3.1 26.1±1.5 38.2±1.1

Mixt-PPCA 89.1±4.2 63.1±7.9 56.3±4.5 50.9±6.5 37.0±2.3 40.6±4.7 53.1±9.6

Diag-GMM 93.5±1.3 94.6±2.8 92.1±4.2 70.9±12.3 39.1±2.4 60.8±5.2 45.9±9.1

Sphe-GMM 89.4±0.4 96.6±0.0 85.9±9.9 69.4±5.4 37.0±2.1 60.2±7.5 78.7±11.2

PCA-EM 66.9±9.9 64.4±5.7 66.1±4.0 61.9±6.2 39.0±1.7 56.2±4.2 67.6±11.2

k-means 88.7±4.0 95.9±4.0 92.9±6.0 68.0±7.4 41.3±2.8 66.6±4.1 74.9±13.9

MCFA 80.6±12.6 92.9±8.2 75.4±7.8 - 47.7±6.9 67.9±8.8 54.2±8.7

Mclust 96.7 97.1 97.9 65.3 41.6 58.7 55.5

Model name (VEV) (VVI) (EEE) (EII) (VEV) (VVV) (EEE)

Table 5.8: Clustering accuracies and their standard deviations (in percentage) on 3 UCI
datasets (iris, wine and chironomus) averaged on 25 trials. No standard deviation is re-
ported for Mclust since its initialization procedure is deterministic and always provides the
same initial partition. The signs † and ∗ indicates the model selection obtained by BIC and
ICL respectively amongst the 12 DLM models.

Method iris wine chironomus zoo glass satimage usps358

PCA–k-means [47] 88.7 70.2 - 79.2 47.2 - -

LDA–k-means [47] 98.0 82.6 - 84.2 51.0 - -

Dis–k-means [187] - - - - - 65.1 -

DisCluster [187] - - - - - 64.2 -

HMFA [136] - - 98.7 - - - -

Table 5.9: Clustering accuracies (in percentage) on UCI datasets found in the literature (these
results have been obtained with slightly different experimental setups).
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criminological investigations since at the scene of the crime, the glass left can be used

as evidence...

• The 4435 satellite images are split up into 6 classes and are described by 36 variables.

The database consists of the multi-spectral values of pixels in 3× 3 neighborhoods in a

satellite image generating by NASA and proposed by the Australian Center for Remote

Sensing.

• Finally, the last dataset is the USPS data which stands for 7291 handwritten digits

from 0 to 9 scanned and stretched in a rectangular box 16 × 16 in a gray scale of 256

values from around 80 persons. Each pixel of each image was scaled into a Boolean (1/0)

value using a fixed threshold. In this experiment, only the classes which are difficult to

discriminate are considered. Consequently, this dataset consists of 1756 records (rows)

and 256 attributes divided in 3 classes (numbers 3, 5 and 8).

Table 5.8 presents the average clustering accuracies and the associated standard deviations

obtained for the 12 DLM models and for the methods already used in the previous experiments.

The results for the 19 first methods of the table have been obtained by averaging 20 trials with

random initializations except for Mclust which has its own deterministic initialization and this

explains the lack of standard deviation for Mclust. Moreover, for each dataset, the DLM model

corresponding to the BIC average has been marked by the sign † and by ∗ for the maximum

ICL criterion. Besides, Table 5.9 provides the clustering accuracies found in the literature for

the recent methods on the same datasets. It is important to notice that the results of Table 5.9

have been obtained in slightly different benchmarking situations. Moreover, missing values in

Table 5.9 are due to non-convergence of the algorithms whereas missing values in Table 5.9

are due to the unavailability of the information for the concerned method. First of all, one

can remark that Fisher-EM outperforms the other methods for most of the UCI datasets such

as wine, iris, zoo, glass, satimage and usps358 datasets. However, the selection of the model

type by BIC or ICL do not match all the time with the model having the best clustering

accuracies. In particular, for the wine dataset, BIC and ICL select the DLM[Σkβk] having a

clustering accuracy reaching 97.8% whereas the best model in terms of clustering accuracy

reaches 98.9% and is the DLM[αkβk] model. Such a remark has been already observed by

Fraley and Raftery in [59] and the model with the highest BIC do not guarantee to have the

best clustering performance. Finally, it is interesting from a practical point of view to notice

that some DLM models work well in most situations. In particular, the DLM[.β] models, in

which the variance outside the discriminant subspace is common to all groups, provide very

satisfying results for all the datasets considered here.
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Chapter 6

Sparsity and discriminative variable

selection

To deal with high-dimensional data, we proposed, in the previous chapters, a discriminative

subspace clustering approach which both clusters and finds a low-dimensional discriminative

subspace chosen such as it best discriminates the groups. This strategy is based on two key-

assumptions: firstly, the latent space is linked to the observation space by a linear relationship,

and secondly, the subspace orientation mainly defined by the between covariance matrix of the

projected data is maximum. Moreover, conversely to most of subspace clustering approaches

not assuming a common-subspace for the clusters, the visualization of the clustered data, in

the case of Fisher-EM algorithm, is eased as it is always possible to project the data in the

latent space. However, even though Fisher-EM presents good performances to discriminate

and model clusters in high-dimensional spaces, a limitation still remains. Indeed, the latent

space is defined by “latent variables” which are a linear combination of original variables.

The first consequence of this situation is the difficult interpretation of resulting clusters

according to original variables. An intuitive way to avoid such a limitation is to keep only large

loadings variables by thresholding loading absolute values beyond which they are constrained

to be equal to 0. Even though this approach is very common, it has been particularly criticized

by Cadima [29] since it induces some misleading information: a basic threshold can identify

variables which are not the real important ones. This problem occurs in linear dimension

reduction and particularly in the PCA context since principal components are also a linear

combination of original variables. To that end, different approaches were proposed. In par-

ticular, some authors suggested to introduce sparsity in the loadings of principal components

to ease the interpretation. Vines [172] for example, proposed an algorithm to produce simple

approximate principal components directly from a variance–covariance matrix and loadings of

original variables are restricted to values −1, 1 or 0. Other authors used the fact that PCA

can be explained as a regression-type optimization problem. Indeed, the context of multiple

regression allows to have accurate and sparse models by using an ℓ1 penalty on standard least
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square regression as proposed by Tibshirani [163] or on ridge regression as proposed by Zou

and Hastie [194]. In particular, Zou et al. [193] have extended this approach by considering

the PCA problem as a ridge regression and proposed a two-step algorithm to deal with such

a task. More recently, Jenatton et al. [98] proposed a structured sparse approach for PCA.

In the literature, similar approaches treat about sparsity in the supervised context. For

example, Trendafilov and Jolliffe [166], Clemmensen et al. [41], Qiao et al. [147] proposed

various sparse approaches of FDA. More recently, Murphy et al. [137] on one side, and Maugis

et al. [119], on the other side, developed a general framework for variable selection in model-

based discriminant analysis and Witten and Tibshirani [179] proposed a penalized version of

Fisher’s linear discriminant analysis.

In addition to this interpretation problem, there still remains a limitation due to noise or

non-informative variables. Of course, in the clustering context, it happens frequently that a

large number of noise variables are in the set of original variables. However, since the latent

variables are defined by a linear combination of the originals’ ones, it implies that the noisy

variables remain in the loadings of the projection matrix. Because of these noisy variables,

the underlying structure of clusters can be masked and this may produce a deterioration of

clustering results. To do so and since the 2000’s, many authors were interested in introducing

sparsity in the clustering task. In the literature, there are two main approaches which both

select discriminative variables and cluster observations. In particular, there are researches of

Law et al. [111], Raftery and Dean [148] and also an extended research by Maugis et al. [121]

which recast the variables selection problem as a model selection one in an unsupervised

context. A second approach consists in introducing directly sparsity in a penalized clustering

criterion as did Pan and Shen [142], Wang and Zhou [173] for example, in the finite mixture

model context, and also Witten and Tibshirani [178].

In first section of Chapter 6, we will treat the existing approaches dealing simultaneously

with sparsity and clustering. Then, a second section will focus on the introduction of sparsity

into the loadings of the projection matrix fitted in the Fisher-EM algorithm. To that end, 3

different approaches, based on ℓ1 penalty terms, will be presented: the first one is based on a

two-step approach, the second, on a regression criterion and finally, the third one uses a penal-

ized svd criterion. Finally, the last section will focus on numerical experiments on simulated

and real datasets which will provide interesting results in both regarding the simplicity of axis

interpretation and the clustering accuracy.

6.1 State-of-the-art in variable selection for clustering

Since the clustering can provide a poor partition when original variables are noisy or irrelevant

in regard to the clustering task, different approaches were proposed in the literature to deal

with such a problem. All these approaches are based on the same assumption which supposes

that the true underlying clusters differ only with respect to some of the original features.
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Therefore, the goal of sparse clustering is to group the data on a subset of features. The

main advantages of such a procedure remain in improving clustering results by removing noisy

features, in facilitating both the identification of the clusters and their interpretation.

In the literature, this task which both selects variables and clusters the data, is apprehended

differently according to the authors and can be divided into two different approaches: on the

one hand, some authors tackle the problem of variable selection for model-based clustering

within a Bayesian framework. We can cite in particular, the works of Liu et al. [113], Law et

al. [111], Raftery and Dean [148] or Maugis et al. [120]. On the other hand, some authors favor

an approach through a penalized clustering criterion. In this case, they introduce a penalty

term in a clustering criterion either in the log-likelihood function as Galimberti et al. [63]

or Xie and Pan [142] for example, or in a penalized criterion in a more general clustering

framework, as Witten and Tibshirani [178].

This section details both approaches, particularly through the works of Raftery and

Dean [148] or Maugis et al. [120] in which they recast the variable selection as a model selection

problem for the model-based clustering context and those of Witten and Tibshirani [178] for

the penalized clustering criterion.

6.1.1 Variable selection recasted as a model selection problem

The underlying idea of the works of Law et al. [111], Raftery and Dean [148] and Maugis et

al. [120], is to find the variables which are relevant for the clustering task. The determination

of the role of each variable is apprehended by the authors ([148, 120]) as a model selection

problem. Their approach is developed in the GMM context. In particular, Raftery and Dean

and Maugis et al. consider a collection of parsimonious and interpretable models, developed

by Banfield and Raftery [9] and Celeux and Govaert [36], based on a specific decomposition

of the mixture component variance matrix (see Section 2.1.3 for more details).

In the Raftery and Dean’s approach, the authors define two different sets of variables: S
which denotes the set of relevant variables and Sc which is the set containing the irrelevant

variables. An interesting aspect of their approach is that they do not assume that the irrel-

evant variables are independent of the clustering variables conversely to Law et al. [111]. In

particular, they define the irrelevant variables as those which are independent of the clustering

but which remain all dependent of the set of relevant variables according to a linear relation-

ship. The models in competition are compared with the integrated log-likelihood via a BIC

approximation. Thus, the selected model maximizes the following quantity:

(

K̂, m̂, Ŝ
)

= arg max
(K,m,r,ℓ,V )

{

BICclust(y
S |K,m) + BICreg(y

Sc |yS)
}

, (6.1.1)

where K is the number of clusters and m ∈ M is a model which belongs to the family

of parsimonious models available in the Mclust [58] software. Note that the quantity to be

maximized, in expression (6.1.2), can be decomposed into two different parts: the first term
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corresponds to the Gaussian mixture model ofK components on the subset of relevant variables

S, whereas the second one is relative to the regression of irrelevant variables Sc on the set of all

clustering variables S. However, the dependence assumption which defines the irrelevant set

of variables according to all the relevant ones remains debatable. Indeed, on the one hand, by

considering only the case where the irrelevant variables are independent on both the clustering

and the relevant partition as it was considered in the works of Law et al. [111] seems to be

unrealistic. On the other hand, considering that all the irrelevant variables depends on the

relevant variables by a linear equation, seems to be also a very strong hypothesis which is not

valid in certain practical cases. An other limitation of the Raftery and Dean’s procedure is

linked to their variable selection algorithm. Indeed, they propose a forward stepwise algorithm

which considers only few variables at the beginning and it prevents from taking into account

the block interactions between variables.

To overcome these limitations, Maugis et al. [120, 121] relaxe such restrictions and propose

a more general variable role modeling. Indeed, in their approach, they define two subsets of

variables: on the one hand, the relevant ones, which are grouped in S and on the other hand,

its complementary Sc, which is formed by the irrelevant variables. Maugis et al. consider,

then, two types of behaviors among these irrelevant variables: these which can be explained

by a linear regression from a subset R of the clustering variables and grouped in U and

the ones which are totally independent of all the relevant variables (W). Such a variable

partition allows them to both consider the context developed by Law et al. [111] and also

those defined by Raftery and Dean [148] and is referred to by the model collection SRUW.

From this characterization, the authors also recast the variable selection problem into a model

selection problem through an approximation of the integrated log-likelihood functions. Then

the selected model satisfies:

(

K̂, m̂, r̂, ℓ̂, V
)

= arg max
(K,m,r,ℓ,V )

{

BICclust(y
S |K,m) + BICreg(y

U |r,yR) + BICind(y
W |ℓ)

}

,

(6.1.2)

where V = (S,R,U ,W) stands for the variable partition. The first term of this expression,

called BICclust, corresponds to the BIC criterion for a Gaussian mixture of K components on

the relevant subset of variables S. The model m belongs here to a collection of 28 parsimonious

models which are available in the mixmod software [16] and include the GMM family introduced

by Banfield and Raftery [9] and Celeux and Govaert [36]. The second term denoted by BICreg,

is linked to the BIC criterion for a linear regression of the irrelevant variables U on a subset

of clustering variables R. Note that the index r stand for the structure of the covariance

matrix which can be assumed to be spherical, diagonal or non-constraint. Finally, the last

term depicts the BIC criterion for a Gaussian density on the variable subset W independent

of the clustering variables. This Gaussian marginal distribution is characterized by a variance

matrix σ which is constrained to be either diagonal or spherical and is specified by the index
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ℓ in the expression (6.1.2).

The identifiability of the SRUW model is proved and also the consistency of their variable

selection problem. Finally, they propose an algorithm based on a backward stepwise selection:

it implies that all the variables are considered at the beginning of the procedure and only a

block of variables is either included or excluded of the clustering relevant set of features. Such

approach enables them to take into account variable block interactions if they exist. Then a

second algorithm is executed to select both the model and the number of components of the

mixture model.

6.1.2 Penalized log-likelihood

An other way which combines variable selection and clustering is the introduction of penalties

in clustering criteria in order to yield sparsity in the features. This technique is used, in

particular, in the GMM context. The main idea is to penalize the log-likelihood by introducing

a penalty term in the finite mixture model. By assuming standardized n observations with

mean 0 and variance 1 which are n realizations of a random vector Y ∈ R
p and by assuming

a mixture of Gaussians, the penalized log-likelihood function is:

Lp(θ) = ℓ(θ)− pλ(θ) (6.1.3)

where ℓ(θ) =
∑n

i=1 log
∑K

k=1 πkφ(yi; θk) stands for the log-likelihood function, φ(.) is a Gaus-

sian density function with parameters θk = {mk, Sk} and {π1, . . . , πK} are the mixture pro-

portions. The last term pλ(θ) is the penalty function.

In this context, Pan and Shen [142] propose a penalized log-likelihood criterion by assuming

a Gaussian mixture model with common diagonal covariance matrices meaning that ∀k ∈
{1, . . . ,K}, Sk = S = diag(σ2

1, . . . , σ
2
j , . . . , σ

2
p) where σ2

j ∈ R. The penalty function is focused

on the means of K clusters (m1k, . . . ,mpk, ∀k ∈ {1, . . . ,K}) and has the following form:

pλ(θ) = λ1

K
∑

k=1

p
∑

j=1

|mkj | , (6.1.4)

where mkj denotes the mean of the jth variable in the component k and λ1 an hyperparameter

which stands for the desired level of sparsity. Thus, since the observations are standardized,

if the means of a variable j on each component are equal i.e. m1j = · · · = mKj = 0, then this

variable is irrelevant and can be removed from the clustering variables. Therefore, a variable

selection is realized when some mkj ’s can be shrunken toward 0. This situation occurs for an

ℓ1 penalty term large enough. In the same spirit, Wang and Zhou [173] propose two other

penalty terms. The first one is based on ℓ∞-norm:

pλ(θ) = λ∞

p
∑

j=1

max
k∈{1,...,K}

(|mkj |) , (6.1.5)
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which has the advantage to incorporate group information. Thus, this penalty tends to shrink

all the mkj ’s toward 0 as soon as the jth variable is non informative. However, such a

penalty tends to shrink the mkj ’s in the same magnitude and thus does no take into account

the situation where a variable is different from 0 on only one component. To that end,

Wang and Zhou propose a second penalty function based on hierarchical penalties. These

three penalized log-likelihood functions are developed with the restriction of the diagonal

common covariance matrix of each cluster in the mixture model. Xie et al. [184] extend the

model of Pan and Shen [142] by releaving the constraint on equal variance. Indeed, they

propose an approach dealing with the case of cluster specific diagonal covariance matrices

(∀k ∈ {1, . . . ,K}, Sk = diag(σ2
k1, . . . , σ

2
kp)) which implies an additional term in the penalty

function compared to equation 6.1.4:

pλ(θ) = λ1

K
∑

k=1

p
∑

j=1

|mkj |+ λ2

K
∑

k=1

p
∑

j=1

∣

∣σ2
kj − 1

∣

∣ . (6.1.6)

In this case, a second regularized term is added and holds on the variance of the variable j of

the kth component σ2
kj which can be shrunk towards 0. As previously, the hyperparameters

λ1 and λ2 are selected through a modified BIC criterion, which takes into account the level

of sparsity in the model complexity term in the BIC formula. Finally, Zhan et al. [192], more

recently, propose a penalization in the case of Com-GMM model (Sk = S, ∀k ∈ {1, . . .K})
in which they add the constraint λ2

∑p
ℓ=1

∑p
j=1 |Cjℓ| in the penalty function, defined by Pan

and Shen, in equation (6.1.4). The elements {Cjℓ}pj,ℓ=1 belongs to the matrix C = S−1 which

defines the inverse covariance matrix. In the same work, Zhan et al. also propose an estimation

procedure to deal with the n < p case.

The introduction of a penalty term in the log-likelihood function is also used in the subspace

clustering approaches. In particular, in the case of MFA models, Galimberti et al. [63] introduce

an ℓ1-penalty on the factor loadings in the log-likelihood function such as:

pλ(θ) = λ2

d
∑

ℓ=1

p
∑

j=1

|bℓj | (6.1.7)

where bℓj stands for the factor loadings. In a very recent work, Xie et al. [185] propose a

penalized MFA approach from the model introduced by Gharamani and Hinton (see Chapter 2)

where the covariance matrix of the noise term is diagonal and common to all factors. The

penalty function has the following form:

pλ(θ) = λ1

K
∑

k=1

p
∑

j=1

|mkj |+ λ2

K
∑

k=1

p
∑

j=1

‖bkj‖2 , (6.1.8)

where bkj stands for the factor loading of the kth factor. As in the previous approaches, the
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first term based on the ℓ1-norm is used to shrink the means mkj to be exactly equal to 0 while

the second term serves as a grouped variable penalty. Indeed, this last penalty aims to shrink

the estimates of factor loadings bkj which are close to 0 to be exactly equal to 0. Consequently,

if a variable has a common mean equal to 0 and a common variance on each factor across the

clusters and is independent with all other cluster such as bkj = 0 ∀k, then this variable is

irrelevant and do not contribute in the clustering task.

6.1.3 Penalized clustering criterion

A general non-probabilistic framework for variable selection problem is recently proposed by

Witten and Tibshirani [178]. They develop a framework for sparse clustering based on a

general penalized criterion, which governs both variable selection and clustering.

In particular, they first propose a general clustering criterion based on a function f which

has to be maximized:

max
Θ

p
∑

j=1

fj(Yj ,Θ) (6.1.9)

where Yj ∈ R
n stands for the jth feature of the data amongst p variables and Θ a set of

parameters. Many clustering methods can be reformulated from such a criterion. In particular,

by considering fj as the between cluster sum of squares for feature j, the well-known k-means

method is obtained. The sparsity in the clustering task is introduced in the optimization

problem defined in equation (6.1.9) as follows:

max
w,Θ

p
∑

j=1

wjfj(xj ,Θ) s.t. ‖w‖2 ≤ 1, ‖w‖1 ≤ λ andwj ≥ 0, ∀j, (6.1.10)

where the threshold λ stands for the desired level of sparsity: a small value of this tuning

parameter implies a high level of sparsity. Compared to the previous optimization criterion,

Witten and Tibshirani consider functions fj weighted by wj on which ℓ1 and ℓ2 penalties are

added. To optimize (6.1.10), the authors propose an iterative algorithm which first optimizes w

holding Θ fixed and then, optimizes Θ given w. Even though this algorithm is not guaranteed

to reach a global optimum, it is however guaranteed to increase the objective function at each

iteration. Besides, as we can observe, the level of sparsity depends on the tuning parameter λ.

To that end, Witten and Tibshirani propose a procedure based on the “gap statistic”, proposed

earlier by Tibshirani et al. [164], for estimating the number of clusters in a set of data. The

technique uses the output of any clustering algorithm comparing the change in within-cluster

dispersion with the one expected under an appropriate reference null distribution. Witten

and Tibshirani apply their general criterion on two specific algorithms: the sparse k-means

clustering and the sparse hierarchical clustering method.
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6.2 Sparsity in the Fisher-EM algorithm

Since the DLM model is defined in a Gaussian mixture model context, it would be a natural

way to introduce penalized terms in the log-likelihood function. For example, a penalized term

based on the loadings of the projection matrix can be added in the log-likelihood function in

order to introduce sparseness, as it has been already proposed by [63, 185] for the mixture

of factor analyzers context. However, in the Fisher-EM algorithm, the projection matrix is

not obtained by maximization of the log-likelihood function but by maximizing the Fisher’s

criterion in order to estimate a discriminative latent subspace. In the same way, the variable

selection recasted as a model selection problem in regards to the works of [111, 148, 120, 121]

has many advantages but do not seem appropriate to deal with our model. In particular, one

of the advantage of the DLM model is to fit a discriminative latent subspace which could be

very useful to extract the discriminative variables. However, by using the Bayesian framework,

such information would be useless.

In this paragraph, we propose different approaches to introduce sparsity in the loadings.

These three approaches are not based on the penalization of the log-likelihood function, but

rather on a ℓ1 penalty term added to the discriminative criterion. Consequently, we are going

to focus on penalized Fisher’s criteria whose the estimated procedures operate in the F-step

of the Fisher-EM algorithm. To do that, we propose three different procedures. The first

one presents a two-step approach by introducing sparsity once the projection matrix be fitted.

The second procedure that we suggest, recasts the optimization problem of Fisher’s criterion

as a lasso regression-type problem in an unsupervised context. This method is based on the

works of Qiao [147] who proposes sparse regularized FDA method for constructing sparse

discrimination vectors in the supervised context. Finally, the last approach that we propose

in this paragraph is based on the work of Witten and Tibshirani [180] on penalized matrix

decomposition. After, a brief summary of their approach, we will expose how to use such a

penalization in the modified Fisher’s criterion developed in Chapter 4. This paragraph will

end with a discussion about the choice of the tuning parameter for the sparse Fisher-EM and

also about the different manners to implement the sparsity in the proposed algorithm.

6.2.1 Three sparse procedures

6.2.1.1 A two-step approach

This first approach divides the estimation of a sparse discriminative subspace into two steps:

firstly, at iteration q, the traditional F-step of the Fisher-EM algorithm estimates the orienta-

tion matrix U (q) of the discriminative latent space conditionally to the posterior probabilities.

Secondly, given this matrix Û (q), we look for introducing sparsity in its loadings according to

an ℓ1-penalty term.

Let us assume that the projection Û (q) has been estimated at iteration q, according to the

traditional F-step. Then the following relation linking the latent and the observation spaces
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is stated:

X(q) = Û (q)tY.

This can also be reformulated from the row-coordinates of the matrix X(q) =









x
(q)
1
...

x
(q)
d









∈ R
d×n,

denoted by x
(q)
j ∈ R

1×n with j ∈ {1, . . . , d}, such that:

x
(q)t
j = Y tû

(q)
j ,

where û
(q)
j stands for the jth column vector of the projection matrix Û (q), estimated at iteration

q, and Y ∈ R
p×n denotes the original data matrix. As Û (q) is given, it is then possible to

generate x
(q)
j and to consider a regression of the row vectors x

(q)
j on Y . In this case, û

(q)
j is

solution of the following regression problem:

û
(q)
j = arg min

βj

∥

∥

∥
x

(q)t
j − Y tβj

∥

∥

∥

2
. (6.2.1)

As Û (q) is solution of the least square regression of X(q) on Y , now, the main idea is to find

a sparse solution through a least square regression. A common way, is to consider a penal-

ized regression problem by introducing an ℓ1-penalty term in the regression problem (6.2.1).

Naturally, we look for:

β̂
(q)
j = arg min

βj

∥

∥

∥
x

(q)t
j − Y tβj

∥

∥

∥

2
+ λj |βj |1 (6.2.2)

where β̂
(q)
j is a sparse approximation of the jth discriminative axis of the projection matrix

U (q) and λj a constant term which denotes the level of sparseness. More generally, this problem

can be reformulated as a multivariate penalized regression problem:

β̂(q) = arg min
β

∥

∥

∥
X(q)t − Y tβ

∥

∥

∥

2
+

d
∑

j=1

λj |βj |1 , (6.2.3)

where β̂(q) = [β̂
(q)
1 , . . . , β̂

(q)
d ] denotes the sparse approximation of the projection matrix Û (q)

estimated at iteration q. Note that different values of λj can be applied to penalize the loadings

of different discriminative axes of U . However, in practice, we are going to consider a same

level of sparseness (∀j ∈ {1, . . . , d}, λj = λ) for all discriminative axes.

There remains however an issue as the DLM model assumes that the projection matrix is

constrained to be orthonormal i.e. U tU = Id. This constraint is not taken into account in the

penalized regression problem (6.2.3). We therefore propose to approximate the sparse matrix

by considering a nearest orthogonal Procrustes problem [87], which can be formulated in our

context, in the following manner:
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Proposition 6.2.1. Let β̂(q) denotes the sparse approximation of the projection matrix Û (q),

at iteration q, solution of the penalized least square regression defined in (6.2.3). Then, the

orthogonal and sparse matrix Ũ (q) which best-approximates Û (q) in terms of Frobenius norm

and conditionally to the E-step, is solution of:

Ũ (q) = arg min
U

∥

∥

∥β̂(q) − U
∥

∥

∥

F

w.r.t. U tU = Id.

In this case, by considering the singular value decomposition of β̂(q) = u(q)Λ(q)v(q)t, then

Ũ (q) = u(q)v(q)t is sparse and orthonormal, and stands for the best approximation of β̂(q).

Proof. At iteration q, in the F-step and conditionally to the E-step, the projection matrix Û (q)

is estimated according to the maximization of the Fisher’s criterion (see Chapter 4) which leads

to project the observations in the discriminative latent space spanned by the column vectors

of Û (q). We can therefore consider a penalized multivariate regression as in equation (6.2.3).

The column vectors of β̂(q) produce sparse discriminant vectors and approximate those of the

projection matrix Û (q). However, we search the best approximation of the matrix β̂(q) to an

orthogonal matrix. Then, we consider the following problem:

Ũ (q) = arg min
U

∥

∥

∥B̂(q) − U
∥

∥

∥

F

w.r.t. U tU = Id,

where ‖.‖F refers to the Frobenius norm. This problem is a nearest orthogonal Procrustes

problem which can be solved by a singular value decomposition [66, 87]. The singular value

decomposition of β̂(q) = u(q)Λ(q)v(q)t allows to write Ũ (q) = u(q)v(q)t, which allows us to

conclude.

The d first sparse and orthogonal discriminative axes can be obtained within the Fisher-

EM algorithm through the following modified F-step: firstly, the projection matrix Û (q) is

estimated according to the original procedure used in the F-step at iteration q. Then, the

data are projected in this fitted latent subspace such as X(q) = Y Û (q)t. In order to obtain d

sparse factors of Û (q), the adaptative lasso problem described below is solved iteratively, for

j ∈ {1, . . . , d}:
β̂

(q)
j = arg min

βj

∥

∥

∥
x

(q)t
j − Y tβj

∥

∥

∥

2
+ λ |βj |1 .

By denoting β̂(q) = [β̂
(q)
1 , . . . , β̂

(q)
d ], this matrix is decomposed through a singular value decom-

position such as β̂(q) = u(q)Λ(q)v(q)t and finally the sparse and orthogonal projection matrix

Ũ (q) = u(q)v(q)t is obtained. This problem can be extended to a more general penalized re-

gression by adding a ridge penalty term in order to handle the n < p case and to provide a

unique solution.
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A limitation of such a procedure may be the deconnection between the estimation of the

discriminative subspace and the introduction of the sparseness in the loadings of the projection

matrix. To that end, two following approaches aim to propose penalized Fisher’s criteria which

fit directly sparse and discriminative latent subspaces.

6.2.1.2 Sparse Fisher criterion as a penalized regression-type problem

In the supervised context, Qiao et al. [147] propose a regularized linear discriminant analysis

method in order to build sparse discriminant vectors. In particular, they firstly recast the

optimization problem of Fisher’s criterion as a regression-type problem (see Chapter 2 for more

details) before adding a ℓ1-penalty term to the objective function defined in equation (4.1.5).

In this case, the penalized regression problem becomes then:

(Â, B̂) = arg min
A,B

K
∑

k=1

∥

∥

∥

(

Rt
W

)−1
HB,k −ABtHB,k

∥

∥

∥

2

F
+ ρ

d
∑

j=1

βt
jSWβj +

d
∑

j=1

λ1,j ‖βj‖1 (6.2.4)

w.r.t. AtA = Id, arg min
A,B

K
∑

k=1

∥

∥

∥

(

Rt
W

)−1
HB,k −ABtHB,k

∥

∥

∥

2

F
+

d
∑

j=1

λ1,j ‖βj‖

where B = [β1, . . . , βd], B̂ ∈ R
p×d is a sparse matrix which spans a linear subspace approxi-

mating the discriminant subspace such as:

∀j ∈ {1, . . . , d}, β̂j = arg min
βj

(

∥

∥Ht
BSWαj −Ht

Bβj

∥

∥

2

F
+ ρβt

jSWβj + λ1 ‖βj‖1
)

, (6.2.5)

with a fixed A = [α1, . . . , αd] and:

Â = EP, (6.2.6)

with E the d first eigenvectors of R−t
W SBR

−1
W and P , an arbitrary d × d orthogonal matrix.

Besides, we recall that ‖.‖2F stands for the square Frobenius norm, RW ∈ R
p×p is an upper

triangular matrix provided by the Cholesky decomposition of HWHt
W = Rt

WRW and the

matrices HB and HW are defined as in equations (2.2.23) and (2.2.24).

However, two limits occur in the Qiao’s work to be able to use such an approach in our

context: on the one hand, the regression problem is mainly defined from the matrices HW

and HB which are computed according to the class membership. Thus, their method can not

be directly applied in our case, as the labels are unknown. In particular, in their approach,

the matrix HW needs to be centered from the class means and this can not be done in our

unsupervised context. On the other hand, an additional problem occurs, as the DLM models

assume that the column vectors of the projection matrix spanning the discriminative latent

space are orthogonal. This constraint is not taken into account in the Qiao’s work since the

provided discriminative axes are sparse but non-orthogonal.

Consequently, to deal with the first problem, we propose to define the soft matrices H
(q)
W

and H
(q)
B which are computed at each iteration and conditionally to the E-step, as following:
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Definition 6.2.1. The soft matrices H
(q)
W and H

(q)
B associated to the soft partition computed

at iteration q in the E-step are:

H
(q)
W =

1√
n

[

Y −
K
∑

k=1

t
(q)
1k m

(q)
k , . . . , Y −

K
∑

k=1

t
(q)
nkm

(q)
k

]

∈ R
p×n (6.2.7)

H
(q)
B =

1√
n

[
√

n
(q)
1 (m

(q)
1 − ȳ), . . . ,

√

n
(q)
K (m

(q)
K − ȳ)

]

∈ R
p×K , (6.2.8)

where t
(q)
ik , for i = 1, . . . , n stand for the posterior probabilities computed in the E-step, n

(q)
k =

∑n
i=1 t

(q)
ik and m

(q)
k = 1

n

∑n
i=1 t

(q)
ik yi is the soft mean vector of the cluster k.

According to these definitions, both conditions H
(q)
W H

t(q)
W = S

(q)
W and H

(q)
B H

t(q)
B = S

(q)
B are

still satisfied. In this case, the optimization problem defined conditionally to the E-step, at

iteration q, becomes:

(Â(q), B̂(q)) = arg min
A,B

K
∑

k=1

∥

∥

∥

∥

(

R
(q)t
W

)−1
H

(q)
B,k −ABtH

(q)
B,k

∥

∥

∥

∥

2

F

+ ρ
d
∑

j=1

βt
jS

(q)
W βj +

d
∑

j=1

λ1,j ‖βj‖1

w.r.t. AtA = Id, (6.2.9)

and B̂(q) = [β̂
(q)
1 , . . . , β̂

(q)
d ] stands for the sparse projection matrix. However, such a problem

does not take into account the orthogonality constraint of the projection matrix defined in

the DLM model. This issue is tackled by approximating the sparse matrix B̂(q) fitted by

the optimization problem (6.2.9) with an orthogonal one according to a nearest Procrustes

problem [66, 87]. In this case, the nearest Procrustes problem can be formulated as:

Proposition 6.2.2. By considering Â(q) and B̂(q) the solutions of the optimization prob-

lem (6.2.9), an orthogonal and sparse matrix Û (q) which best-approximates U (q) in terms of

Frobenius norm, is solution of:

Û (q) = arg min
U

∥

∥

∥B̂(q) − U
∥

∥

∥

F

w.r.t. U tU = Id,

where ‖.‖F refers to the Frobenius norm. By considering the svd of B̂(q) = u(q)Λ(q)v(q)t,

Û (q) = u(q)v(q)t is a sparse and orthonormal matrix and stands for the best approximation of

β̂(q).

Proof. At iteration q, in the F-step and conditionally to the E-step, the following optimization

problem is considered:
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(Â(q), B̂(q)) = arg min
A,B

K
∑

k=1

∥

∥

∥

∥

(

R
(q)t
W

)−1
H

(q)
B,k −ABtH

(q)
B,k

∥

∥

∥

∥

2

F

+ ρ

d
∑

j=1

βt
jS

(q)
W βj +

d
∑

j=1

λ1 ‖βj‖1

w.r.t. AtA = Id,

where Â(q) and B̂(q) are defined in equations (6.2.6) and (6.2.5) respectively, and the column

vectors of B̂(q) produce sparse discriminant vectors as showed in Qiao et al. [147]. Moreover,

as we search the best approximation of the matrix B̂(q) to an orthogonal matrix, then, we

reformulate the optimization problem as:

Û (q) = arg min
U

∥

∥

∥
B̂(q) − U

∥

∥

∥

F

w.r.t. U tU = Id,

where ‖.‖F refers to the Frobenius norm. This problem is a nearest orthogonal Procrustes

problem which can be solved by a singular value decomposition [66, 87]. The singular value

decomposition of B̂(q) = u(q)Λ(q)v(q)t allows to write Û (q) = u(q)v(q)t, which allows us to

conclude.

With an algorithmic point of view, the optimization problem can be solved by alternatively

optimizing over A(q) and then over B(q) as in the work of Qiao et al. [147]. Then, with fixed

A(q) = [α
(q)
1 , . . . , α

(q)
d ], the independent lasso problem is solved iteratively for j ∈ {1, . . . , d}:

β̂
(q)
j = arg min

βj

(

βt
jW

(q)tW (q)βt
j − 2Y

(q)
j W (q)βj + λ1 ‖βj‖1

)

,

where W (q)tW (q) = S
(q)
B + ρS

(q)
W and Y

(q)
j W (q) = α

(q)t
j

(

R
(q)
W

)−1
S

(q)t
B .

For a fixed B(q) i.e. B̂(q) = (β̂1, . . . , β̂d), we only need to compute the singular value

decomposition of the quantity R
(q)−1
W (H

(q)
B H

(q)t
B )B̂(q) = u(q)Λ(q)v(q)t and the update of Â(q) =

u(q)v(q)t follows. Both steps need to be computed several times until convergence.

Finally, in order to guarantee orthogonal column vectors of the fitted sparse discriminative

matrix B̂(q), we consider the svd of the matrix B̂(q) = u′(q)Λ′(q)v′(q)t and, to conclude, the best

approximation of B̂(q) is Û (q) = u′(q)v′(q)t.

6.2.1.3 Sparse Fisher criterion with a PMD criterion

In Chapter 4, we proposed a modified Fisher’s criterion based on the quantity J(U) =

trace
(

U t(S−1S
(q)
B )(S−1S

(q)
B )tU

)

. As a result, we showed that the projection matrix U which

maximizes such a quantity, with respect to the orthogonality of its column vectors, consists

of the right singular vectors of the svd of S−1S
(q)
B . We would like then, to introduce sparsity

in the loadings of the column vectors of U . Since we need to decompose by svd the matrix
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S−1S
(q)
B , then, we can use a result obtained by Witten and Tibshirani [180] who propose a

penalized singular value decomposition, in order to provide interpretable factors.

From their work, we can formulate our goal in terms of penalized optimization problem. In

the case of a rank 1 approximation of the matrix S−1S
(q)
B i.e. d = 1, the optimization problem

to consider is:

û
(q)
1 = arg max

u1

ut
1

(

S−1SB

)

v1 s.t. ‖u1‖22 ≤ 1, ‖v1‖22 ≤ 1,

p
∑

j=1

|u1j | ≤ γ1. (6.2.10)

where û
(q)
1 is the sparse approximation of the first column vector of the right singular vector

u(q) of S−1S
(q)
B and γ1 > 0 denotes the level of sparsity. Note that, in our case and conversely

to Witten and Tibshirani proposing a more general case, no penalty term is associated to v1

since we only need to introduce sparsity into the loadings of U . In order to obtain a sparse

approximation of the p× d matrix U containing the right singular vectors (d ≥ 1) of S−1S
(q)
B ,

the optimization problem (6.2.10) is executed repeatedly. As d > 1, instead of using the

S−1S
(q)
B matrix, we use the residuals obtained by subtracting from the S−1S

(q)
B the previous

factors found. This leads to the following algorithm:

1. Let M1 = S−1S
(q)
B and d = rank

(

S−1SB

)

.

2. For j ∈ {1, . . . , d}:

(a) Resolve û
(q)
j = arg maxuj

ut
jMjvj w.r.t. ‖uj‖22 ≤ 1, ‖vj‖22 ≤ 1,

∑p
ℓ=1

∣

∣

∣u
(q)
jℓ

∣

∣

∣
≤ γ1.

(b) Update M j+1 = M j − λju
(q)
j vt

j .

3. Û (q) = [û
(q)
1 , . . . , û

(q)
d ].

Certainly, the sparsity is taken into account in the loadings of the resulted matrix Û (q), never-

theless, the orthogonality constraint on its column vectors is not considered. Once again, this

issue is tackled by approximating the sparse matrix Û (q) fitted by, repeatedly, the optimization

problem (6.2.10) with an orthogonal one according to a nearest Procrustes problem [66, 87].

This can be formulated as:

Proposition 6.2.3. By considering Û (q) = [û
(q)
1 , . . . , û

(q)
d ] where û

(q)
j for j ∈ {1, . . . , d},

d = rank(S−1S
(q)
B ), is solution of the optimization problem (6.2.10) repeated d times, then

an orthogonal and sparse matrix Ũ (q) which best approximates the projection matrix Û (q) in

terms of Frobenius norm, is solution of:

Ũ (q) = arg min
U

∥

∥

∥
Û (q) − U

∥

∥

∥

F

w.r.t. U tU = Id,
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where ‖.‖F refers to the Frobenius norm. By considering the svd of Û (q) = ũ(q)Λ̃(q)ṽ(q)t,

Ũ (q) = ũ(q)ṽ(q)t is a sparse and orthonormal matrix and stands for the best approximation of

Û (q).

Proof. The proof is obvious by considering the definition of the nearest Procrustes problem.

6.2.2 Practical aspects

We propose to introduce sparseness in the Fisher-EM algorithm because this presents several

practical aspects among which the ability to interpret the discriminative axes. However,

two different questions occur: the first one is linked to the choice of the hyperparameter

which determines the level of sparsity and the second one corresponds to the implementation

strategy of the sparsity in the Fisher-EM algorithm. Both aspects are discussed in the following

paragraphs.

6.2.2.1 Choice of the tuning parameter

The choice of the threshold λ is an important problem since the number of zeros on the d

discriminative axes depends on the degree of sparsity. Admittedly the sparsity on the axes

improves the interpretation of the clustered data, but regarding the discriminative power of

the axes, it has to remain a reasonable value.

In the work of Zou et al. [193] based on sparse principal component analysis, the choice of

the hyperparameter depends on the explanation of the variance approximated by the sparse

principal components which has to be equivalent as the traditional case. In the sparse k-means

method, developed by Witten and Tibshirani [178], the choice of the tuning parameter is based

on a permutation method closely related to the gap statistic previously proposed by Tibshirani

et al. [164] for estimating the number of components in standard k-means. In particular, the

algorithm which selects the tuning parameter is based on independent permutations of the

dataset within each feature. The main idea is to compute the difference between an objective

function performed by sparse k-means on the standard datasets with a fixed parameter and the

same objective function computed on the permuted datasets. Note that the objective function

is defined as the difference between the dissimilarities between each pair of observations and

the average dissimilarities within clusters. The value of the hyperparameter corresponding to

the largest gap is selected.

In the GMM context, the BIC criterion is often used to choose the number of components

of the mixture or the appropriate model. It seems then possible to use such a criterion to also

determine an appropriate value for λ. However, it is not an easy task since the effect of the

parameter λ is not clearly defined in the model complexity, until the first conjectures of Efron

et al. [50] in the Lasso regression. In this particular case, the first results, obtained by Zou et

al. [195], show that the number of non-zero coefficients is an unbiased estimate for the degrees

of freedom and is asymptotically consistent. More recently, this result is extended to the n < p
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case by Kachour et al. [102]. According to the result obtained by Zou et al., several authors

working on ℓ1-penalized log-likelihood function in the GMM context ([142, 184, 63, 185]) adapt

this result, to compute a modified BIC criterion. In particular, Pan and Shen [142] propose

to compute the model complexity of the BIC in regards to the non-zero values. In their case,

the BIC criterion takes the following form:

PenBIC = −2 log
(

f
(

y|m,K, θ̂
))

+ γe log(n) (6.2.11)

where f stands for the observed likelihood of the data y given the model m and γe = (K −
1) + p + (Kp − de) denotes the effective number of parameters to estimate in the considered

model. The quantity (K − 1) stands for the number of mixing proportions to estimate and p

denotes the number of diagonal terms in the covariance matrix since they assume a diagonal

and common covariance matrix between the K clusters. Finally, the last terms (Kp − de)

stand for the number of non-zero means in the model with de the number of mean components

equal to 0.

In our model, the sparse constraint is applied on the loadings of the projection matrix

which implies that the effective number of parameters to estimate in the DLM[Σkβk] model is:

γe = (K − 1) +Kd+ (d[p−(d+ 1)/2]− de) +Kd(d+ 1)/2 +K

where the quantity d[p−(d + 1)/2] − de stands for the number of non-zero loadings in the

projection matrix. In the same manner, this effective number of parameters to estimate can

be declined for the 11 other submodels of the DLM family.

6.2.2.2 Implementation of the sparsity in the Fisher-EM algorithm

The proposed algorithmic strategy for introducing sparsity into the F-step can be incorporated

in the Fisher-EM algorithm through two different ways.

Sparse Fisher-EM the usual F-step of the Fisher-EM algorithm can be replaced by the

different sparse F-steps developed previously. The resulting algorithm, called hereafter sparse

Fisher-EM, sparsifies at each iteration the projection matrix U before estimating the model

parameters. As the first iteration, the projection matrix is sparse. This can lead to some

drawbacks since an early introduction in the Fisher-EM algorithm of the ℓ1 penalty could too

much penalize the loadings of the projection matrix. In particular, the Fisher-EM algorithm

is based on the EM one meaning that the final solution remains dependent of the starting

point. Moreover, the introduction of sparsness adds constraints on the estimation of the latent

subspace and this increases the dependency of the Fisher-EM solution to the initial conditions.

However, it occurs, in practice that the solutions provided by the sparse Fisher-EM algorithms

remain stable.

Regarding the computational complexity of the proposed algorithm, the sparse Fisher-
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EM algorithm is quite efficient as its computational complexity does not depend on n. The

estimation procedure of sparse loadings is iterative and the projection matrix is a p×d matrix

which implies that the higher is the dimension of the observation space, the higher is the

number of parameters to estimate. However, its computational complexity remains much

smaller comparing to the approaches proposed by Raftery and Dean [148] or Maugis et al. [121].

Traditional Fisher-EM with a sparse-step It is also possible to first run the traditional

Fisher-EM algorithm and once it has converged, to sparsify the estimated loadings using the

modified F-step. The main asset of the first approach is to keep the clustering performance of

the Fisher-EM algorithm but to introduce sparsity into the loadings of the fitted projection

matrix at the end. However, this approach presents some limitations when a considered dataset

is described by many noisy variables. Indeed, since the latent variables fitted by the Fisher-

EM algorithm are defined by a linear combination of the original variables, this implies that

these noisy variables remain present in the loadings of the projection matrix. Therefore, the

underlying structure of clusters can be partially masked because of this noise and it can imply

a deterioration of clustering results. Thus, it is possible that running only one step of sparsity

is not enough to remove all the noise variables in the loadings of the projection matrix. In

practice, we suggest therefore to run the traditional Fisher-EM algorithm until convergence

and then to iterate a dozen of iterations of the sparse Fisher-EM algorithm. This guarantees

the efficiency of the standard Fisher-EM algorithm but also provides a set of discriminative

variables.

6.3 Experiments and results

This paragraph presents experiments on simulated and real datasets in order to highlight the

main features of the sparse procedures in the Fisher-EM algorithm. The first experiment

aims to evaluate on the USPS datasets the differences which occur between the Fisher-EM

algorithm and a sparse Fisher-EM algorithm. As we have introduced three procedures to

deal with the sparsity in Section 6.2.1, the second experiment aims to compare them on the

benchmark dataset already used in the previous chapter. The 3th experiment, on simulations,

will focus to compare the performance of the sparse Fisher-EM algorithms and several existing

approaches based on a Bayesian framework or on penalized clustering criteria. Finally, the

last paragraph will focus on comparing, on real-world datasets, the efficiency of the sparse

Fisher-EM algorithms with existing variable selection procedures.

6.3.1 Influence of the lasso penalty in the Fisher-EM algorithm

This first experiment focuses on both the visualization and interpretation sides of high-

dimensional data analysis. In particular, it aims to illustrate the impact of sparsity in the

discriminative variable selection and on the clustering accuracy. The sparse version of the
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(c) Sparse Fisher-EM

Figure 6.1: Visualization of the USPS358 dataset with PCA (a), Fisher-EM (b) and sparse
Fisher-EM (c). The class labels are only used for visualization purpose and have not been
used by the studied algorithms when building the data projection.

algorithm enables in fact to select among the original variables the most discriminative ones

and therefore considerably eases the interpretation of the data.

To illustrate these specific features, the Fisher-EM algorithm has been first applied and

compared to PCA on the well-known USPS dataset. The dataset1 is made of 7, 291 images

divided in 10 classes corresponding to the digits from 0 to 9. Each digit is a 16 × 16 gray

level image represented as a 256-dimensional vector. We first extracted a subset of the data

(n = 1, 756) corresponding to the digits 3, 5 and 8 which are usually difficult to discriminate.

This smaller dataset is hereafter called USPS358. We applied the Fisher-EM algorithm on

the USPS358 dataset, two different implementation of the intuitive approach (Fisher-EM + 1

sparsity step and sparse Fisher-EM) and PCA as a reference method.

Figure 6.1 first presents the obtained visualizations of the USPS358 data respectively with

PCA and Fisher-EM. We recall that all the studied methods do not used the class labels when

building the data projection and the true labels are used only for visualization purpose. It

first appears that the projection provided by Fisher-EM is more informative than the one of

PCA since the three digit groups are clearly separated. The introduction of sparsity in the

loadings of Fisher-EM tends to push the groups in the corners of the window due to the use of

the ℓ1 penalty. Moreover, for this experiment, the level of sparsity has been fixed to 0.1 which

implies that the loadings of the projection matrix have been constrained to be very sparse.

The most useful effect of the ℓ1 penalty is the selection of the discriminative original variables.

Figure 6.2 shows both the estimated means of the groups and the loadings obtained with

Fisher-EM whereas Figures 6.3 and 6.4 stand for the loadings obtained by its sparse versions.

Each estimated axis has been rebuilt as a 16 × 16 gray level image in order to visualize the

discriminative pixels. In particular, a black pixel means that the absolute value of a loading

1This dataset can be found on the site of the university of Aachen: http://www-i6.informatik.rwth-
aachen.de/ keysers/usps.html.
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is maximum and equal to 1. Conversely, a white pixel represents a loading equals to 0. As

we can see, the sparse versions of Fisher-EM succeed in selecting only a few original variables

as discriminative. In particular, if one observes the loadings of the two sparse versions of

Fisher-EM, it is possible to see that the darker pixels allow to discriminate the three digit

groups. For instance, the darker pixels of the first loading allow to discriminate the digits 8

from the digits 3 and 5. Similarly, the dark pixel of the second loading clearly discriminate

the digit 5 from the digits 3 and 8.

Finally, note that sparse Fisher-EM remains very efficient compared to the standard Fisher-

EM or to the Fisher-EM algorithm + 1 sparsity step. In particular, in this experiment the

sparse Fisher-EM algorithm has provided a clustering accuracy of 84.5% whereas the standard

Fisher-EM algorithm and the Fisher-EM algorithm + 1 sparsity step have respectively reached

84.9% and 84.6% of correct classification rate. Consequently, despite the high level of sparsity,

sparse Fisher-EM remains very competitive in terms of clustering accuracy compared to the

standard Fisher-EM while facilitating the interpretation of the discriminative axes and provides

in addition a selection of discriminative variables among the original variables.

6.3.2 Comparison between the 3 penalized procedures in the Fisher-EM

algorithm

This experiment aims to compare the 3 sparse procedures in the F-step of the Fisher-EM

algorithm developed in the last paragraph on the USPS358. From 25 random initializations,

the 3 algorithms based on a two-step approach (sparseFEM-int), on a lasso regression approach

(sparseFEM-reg) and on a penalized Fisher’s criterion (sparseFEM-pen) have been run. For

this experiment, the level of sparsity has been fixed to λ = 0.1. The mean of clustering

accuracy computed from the true labels and on 25 replications are reported in Table 6.1 for the

sparseFEM-int, sparseFEM-reg and sparseFEM-pen procedures. In addition, we can find in

the same table the number (in average) of discriminative variables retained by each algorithm

which corresponds to the number of non-zero variables. Moreover, the elapsed real time

and the central processing unit (CPU) have been computed for each sparse F-step procedure

(sparseFEM-int, sparseFEM-reg, sparseFEM-pen) and are also reported in Table 6.1.

First of all, we observe that, surprisingly, the two-step approach of sparse-FEM presents

the best performances in terms of both clustering accuracy and level sparsity. Indeed, in

average the sparseFEM-int procedure reaches a correct clustering rate of 82.69% whereas

the sparseFEM-reg and sparseFEM-pen procedures reach respectively 81.42% and 80.62%.

In addition, with a fixed sparse parameter fixed to λ = 0.1, only 6 variables are sufficient

to discriminate the numbers 3, 5 and 8 in the case of the sparseFEM-int algorithm whereas

this number is much more important for sparseFEM-reg and sparseFEM-pen which need

respectively 10 or 16 variables in average. The performances of these algorithms are really

linked to the discriminative variable selection process. Indeed, let us consider Figures 6.5

and 6.6 which stand for respectively the loadings of the first and respectively the second
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(a) (b) (c)

(d) Fisher-EM (axis 1). (e) Fisher-EM (axis 2).

Figure 6.2: Group means (top) and heat map of loadings (bottom) obtained with the Fisher-
EM algorithm (84.9% of clustering accuracy): a black pixel means an absolute value of loading
equal to 1 and a white pixel supposes an absolute value equal to 0.

(a) SparseFEM+1 spar-
sity step (axis 1)

(b) sparseFEM+1 spar-
sity step (axis 2)

Figure 6.3: Loadings of the projection matrix obtained with the Fisher-EM algorithm + 1
sparsity step (83.3% of clustering accuracy)

(a) SparseFEM-int (axis
1)

(b) SparseFEM-int (axis
2)

Figure 6.4: Loadings of the projection matrix obtained with the Sparse Fisher-EM algorithm
(83.1% of clustering accuracy)
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Approaches:
Clustering
accuracy

Non-zero
variables

Elapsed
real time

CPU time

Fisher-EM 82.3± 4.7 256 158.7± 3.4 1.83± 0.35

sparseFEM-int 82.7± 6.8 5.6± 1.0 967.8± 1.1 3.15± 0.03
sparseFEM-reg 81.4± 6.8 16.0± 0.0 325.3± 1.1 2.36± 0.03
sparseFEM-pen 80.6± 8.1 10.1± 4.6 58.3± 2.6 1.52± 0.05

Table 6.1: Means of Clustering accuracies (in percentage) and their corresponding stan-
dard deviations computed for the 3 sparse procedures (intuitive (sparseFEM-int), regression
(sparseFEM-reg) and penalized criterion (sparseFEM-pen)) on 25 replications. The elapsed
real time and CPU time and their standard deviations have been also reported.

discriminative axis estimated by the traditional Fisher-EM (i.e. with no sparsity) and its sparse

versions. These images correspond to a same random initialization for which the maximum

clustering accuracy has been reached among the 25 random trials. In particular, the standard

Fisher-EM algorithm has reached 84.9% of correct classification rates, the sparseFEM-int

approach (84.5%), the sparseFEM-reg (84.4%) and the sparseFEM-pen (83.7%).

First of all, we can notice that Figures 6.5b, 6.5c and Figures 6.6b, 6.6c have in common

subsets of discriminative loadings. Indeed, in the first axis (in Figures 6.5b and 6.5c) the

three darker pixels which stand for the non-zero loadings estimated by sparseFEM-int are

found also in the first axis estimated by sparseFEM-reg. Similarly, on the second axis, the

two darker pixels in Figure 6.6b are also the discriminative ones in the case of sparseFEM-reg

procedure in Figure 6.5c. The main difference between these both approaches is based on

the number of discriminative loadings in each axis. Indeed, the intuitive approach turns out

to be much sparser than the penalized regression approach and this can explain in a certain

way the best performances in regard to the clustering efficiency of the intuitive procedure.

Concerning the procedure based on the penalized Fisher’s criterion (Figures 6.5d and 6.6d), its

behavior is really different from the intuitive and the penalized regression procedures. Indeed,

the darker pixels in both axes are the darker pixels obtained from the standard Fisher-EM

algorithm in Figures 6.5a and 6.6a. In particular, the penalization introduced directly in the

svd decomposition of the Fisher’s criterion behaves as a thresholding on the loadings of the

projection matrix. Such a behavior can present some drawbacks as it has been criticized in

particular by Cadima [29]: a simple threshold can mis-identify the real important variables.

This remark can thus explain the relative poor performances of the sparseFEM-pen procedure

compared to sparseFEM-int and sparseFEM-reg and represents maybe the main disadvantage

of this method.

However, even though the sparseFEM-pen procedure seems to be the least relevant in

terms of interpretation, its clustering performances remain good. Moreover, this procedure

appears to be much faster than the 2 others as it is illustrated in Table 6.1. Indeed, in

the case of high-dimensional data (n = 1, 756 and p = 256), sparseFEM-pen presents a low

computational times conversely to the sparseFEM-int approach which needs twice more times
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(a) Fisher-EM. (b) SparseFEM-int. (c) sparseFEM-reg. (d) SparseFEM-pen.

Figure 6.5: Loadings of the first discriminate axis obtained with (a) the Fisher-EM algorithm,
(b) the sparse Fisher-EM algorithm according to the intuitive approach, (c) to the penalized
regression approach, (d) to the penalized Fisher’s criterion.

(a) Fisher-EM. (b) SparseFEM-int. (c) SparseFEM-reg. (d) SparseFEM-pen.

Figure 6.6: Loadings of the second discriminative axis obtained with (a) the Fisher-EM al-
gorithm, (b) the sparse Fisher-EM algorithm according to the intuitive approach, (c) to the
regression approach, (d) to penalized Fisher’s criterion.

to be executed than sparseFEM-pen and 2/3 more times than sparseFEM-reg. This can be a

limitation for the intuitive sparse procedure if we deal with very large datasets. However, such

a behavior is common amongst the selection variable algorithms. Indeed, as comparison, we

have computed the elapsed real time and the CPU time of the variable selection algorithms

proposed by Witten and Tibshirani [178] on the one hand, and Raftery and Dean [148] on the

other hand. It appears that in average, these both algorithms present a high computational

cost since the elapsed real time reaches 927.1, respectively 7599.4, and the CPU time 5.81,

respectively 14.99. This is explained by the fact that as the number of observations and the

dimension of the space increase, the computational time of algorithms increases drastically

too.

6.3.3 Comparison with existing approaches on simulated data

In this experiment, we aim to compare the performances of sparse Fisher-EM to several com-

petitors already introduced. In particular, the 3 procedures of sparse Fisher-EM will be com-

pared on simulations with the sparse k-means of Witten and Tibshirani [178], the Bayesian

frameworks developed by Raftery and Dean (SU) on the one hand and Maugis et al. [121]

(SRUW) on the other hand. For each method, we have used the implementation provided by

the authors. More precisely, we have used the R package sparcl for the sparse k-means algo-
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rithm, the clustvarsel package for the method of Raftery and Dean. For the SRUW algorithm,

we have reported the clustering accuracies found in the literature [37].

This experiment aims to consider the same set-up as those proposed by Witten and Tib-

shirani in [178] and by Celeux et al. in [37]. Therefore, for this simulation, 3 Gaussian

components of n observations each, which differ only on q = 5 features, have been simulated

in a p = 25-dimensional observation space. In particular, each random vector Yj condi-

tionally to the class membership follows an univariate Gaussian density function with mean

µkj = µ× (1k=1,j≤q,−1k=2,j≤q) and a unit variance σkj = 1. Four different simulations have

been run from the following situations: q = 5 and p = 25 and consist on varying the number

of observations (n = 30 or n = 300) and the parameter µ which is equal to 0.6 or 1.7. Each

simulation has been repeated 25 times.

The results are presented in Table 6.2 and stand for the average and the standard devi-

ation of the clustering accuracy of the number of non-zero coefficients obtained from the 7

approaches. Note that the results about the SRUW algorithm corresponds to clustering errors

and non-zero variable rates found in the literature [37]. We have added the results of the

3 procedures of sparse Fisher-EM (sparseFEM-int, sparseFEM-reg, sparseFEM-pen) already

introduced in the last paragraphs which have been obtained in the same experimental con-

ditions. Moreover, the reported results concerning the 3 sparse Fisher-EM algorithms stand

for the DLM[Σkβk] model with a sparsity level which corresponds to the highest BIC value

obtained at each trial.

Concerning the first scenario which consists on n = 10 observations for each class and

µ = 0.6, the error rate of sparseFEM-int, sparseFEM-reg and sparseFEM-pen are comparable.

Indeed, they reach 47% of error rate in average which is slightly larger than those obtained by

the sparse k-means (40%) and SRUW (40%) algorithms but remain smaller that SU (62%).

However, in the same manner than SRUW, the sparse Fisher-EM algorithms remain very

sparse since they select a small number of discriminative variables (between 4 and 7 variables in

average), in particular the penalized Fisher’s criterion (sparseFEM-pen) procedure compared

to sparse k-means or SU.

In the second scenario, we can observe that all the methods improve their clustering error

rates which can be mostly explained by the fact that the centers of simulated cluster are

farther as previously (µ = 1.7). In particular the sparse k-means and SRUW algorithms have

comparable performances in both clustering accuracies (8% of error rate) and sparsity: indeed,

the number of non-zero variables has drastically decreased in the case of sparse k-means since

it selects in average 8 non-zeros variables and this number decreases to 6.8 in the case of

SRUW.

The two last scenarios deal with a larger number of observations fixed to n = 300. In the

case of µ = 0.6, we find the same behavior as in the n = 30, µ = 0.6 case for the 7 algorithms:

indeed, the clustering error rates remain high in average (0.4) and few sparseness is introduced

except for the SRUW approach. However, we can note that the sparse Fisher-EM algorithms
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Simulation Method Clustering error non-zero variables

n = 30 µ = 0.6 Kmeans 0.48± 0.05 25.0± 0.0
SparseKmeans 0.47± 0.07 19.0± 6.6
SU 0.62± 0.06 22.2± 1.2
SRUW 0.40± 0.03∗ 8.1± 1.9∗

sparseFEM-int 0.47± 0.06 5.1± 7.1
sparseFEM-reg 0.49± 0.07 11.1± 11.0
sparseFEM-pen 0.47± 0.03 3.9± 2.5

n = 30 µ = 1.7 Kmeans 0.14± 10.2 25.0± 0.0
SparseKmeans 0.08± 0.06 23.6± 0.8
SU 0.41± 0.10 16.6± 10.4
SRUW 0.08± 0.08∗ 6.8± 1.4∗

sparseFEM-int 0.13± 0.11 2.5± 0.7
sparseFEM-reg 0.14± 0.10 5.1± 1.4
sparseFEM-pen 0.17± 0.11 2.0± 0.0

n = 300 µ = 0.6 Kmeans 0.43± 0.03 25.0± 0.0
SparseKmeans 0.46± 0.03 24.0± 0.5
SU 0.42± 0.03 25.0± 0.0

SRUW 0.34± 0.02∗ 7.0± 1.7*

sparseFEM-int 0.41± 0.04 3.0± 1.6
sparseFEM-reg 0.42± 0.03 4.0± 1.6
sparseFEM-pen 0.42± 0.03 2.0± 0.0

n = 300 µ = 1.7 Kmeans 0.05± 0.06 25.0± 0.0
SparseKmeans 0.05± 0.01 15.0± 0.0
SU 0.05± 0.01 25.0± 2.0
SRUW 0.05± 0.01∗ 5.6± 0.9∗

sparseFEM-int 0.04± 0.01 3.0± 0.2
sparseFEM-reg 0.05± 0.01 7.0± 1.7
sparseFEM-pen 0.04± 0.01 2.0± 0.0

* results which have been reported from [37].

Table 6.2: Results obtained from 20 simulations with p = 25 and q = 5
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improve their clustering accuracy compared to the similar case with n = 30 whereas the 3

other procedures do not. Moreover, in the case of µ = 1.7, it appears that the 3 sparse

Fisher-EM algorithms present very good performances. In particular, the sparseFEM-int and

sparseFEM-pen procedures have the best clustering accuracies amongst the 7 approaches and

in the same times they select 3 discriminative variables amongst the 25.

To conclude, the 3 procedures of sparse Fisher-EM algorithm present comparable clustering

accuracies than the existing approaches and they tend to be sparser than the sparse k-means

or SU algorithms procedures according to the use of the penalized BIC criterion for model

selection.

6.3.4 Comparison with real data set benchmark

This last experimental paragraph will focus on comparing on real-world datasets the efficiency

of sparse Fisher-EM algorithms in terms of both clustering accuracies and discriminative vari-

able selection with several existing methods, including the most recent ones. On the one hand,

the 3 sparse procedures of Fisher-EM will be compared between them. On the other hand, they

will be compared to the sparse k-means introduced by Witten and Tibshirani [178] and also

the Bayesian approaches proposed by Raftery and Dean [148] (SU) and extended by Maugis

et al. [121] (SRUW). The comparison has been made on the 7 different benchmark datasets

already presented in Chapter 5 and coming mostly from the UCI machine learning repository.

Moreover, for each method, the number of components has been fixed to the true one and the

other parameters such as the selection of covariance structures of the level of sparsity have

been chosen through the corresponding methods of model selection. In particular, the penal-

ized BIC criterion has been used for the 3 sparse Fisher-EM algorithms to select the model

and the level of sparsity. For the three other approaches, we have used their own procedures

of model and hyper-parameter selection.

Table 6.3 presents the average clustering accuracies and the associated standard deviations

obtained for the 3 sparse procedures of the Fisher-EM algorithm (sparseFEM-int, sparseFEM-

reg, sparseFEM-pen) and for the 3 methods already defined: sparse k-means, SU and SRUW.

The level of sparsity obtained for each method has been reported through the average number

of non-zero variables (in brackets in the table). The results associated to the sparse Fisher-EM

algorithms have been obtained by averaging 20 trials with random initializations. SU, SRUW

and sparse k-means methods have their own deterministic initialization and this explains the

lack of standard deviation for both methods.

First of all, we can observe that the sparse Fisher-EM algorithms are competitive to exist-

ing methods in terms of good clustering performances and discriminative variables selection.

More precisely, for a comparable level of sparsity, the 3 sparse Fisher-EM algorithms always

outperform the SU algorithm on these datasets except for the zoo data. Moreover, the sparse

Fisher-EM algorithms deal with both tasks of sparsity and clustering compared to the sparse

k-means algorithm which does not really select variables. In particular, for the iris, wine
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iris wine chiro zoo glass satimage usps358

Approaches (p=4) (p=13) (p=17) (p=16) (p=9) (p=36) (p=256)

sparseFEM 96.0±0.0 97.8±0.2 78.2±11 63.0±9.7 51.4±1.3 69.6±0.6 79.3±5.4

-int (2.0±0.0) (3.2±2.1) (2.0±0.0) (11±0.6) (6.1±0.6) (30.1±0.6) (47±4.1)

sparseFEM 88.9±1.4 98.3±0.0 84.1±10 75.4±1.9 51.6±0.9 60.6±3.0 78.8±9.1

-reg (4.0±0.0) (3.0±0.0) (2.8±0.79) (13±4.5) (6.0±1.6) (31±1.2) (82±16)

sparseFEM 97.3±0.0 97.7±0.0 81.2±11 72.7±8.1 53.3±0.7 71.7±2.3 73.1±7.4

-pen (3.4±0.9) (2.0±0.0) (4.9±2.7) (14.2±2.5) (7.0±0.0) (29±2.6) (5.0±1.3)

sparse 90.7 94.9 95.3 79.2 52.3 71.4 74.7

k-means (4.0) (13.0) (17.0) (16.0) (6.0) (36.0) (213)

SU 96.0 92.7 71.1 75.2 48.6 58.7 48.3

(3.0) (5.0) (6.0) (3.0) (3.0) (19.0) (6.0)

SRUW 96.0 94.4 92.6 92.1 43.0 56.4 36.7

(3.0) (5.0) (8.0) (5.0) (6.0) (22.0) (5.0)

Table 6.3: Clustering accuracies and their standard deviations (in percentage) on 7 UCI
datasets (iris, wine, chironomus, zoo, glass, satimage, usps358) averaged on 20 trials. The
average number of nonzero variables is reported in brackets. No standard deviation is re-
ported for SU/SRUW and sparse k-means since their initialization procedure is deterministic
and always provides the same initial partition.

and chironomus datasets, the sparse Fisher-EM algorithms select in average between 2 and

4 variables on respectively 4, 13 and 17 original variables whereas they are all kept in the

sparse k-means procedure. Even though the data are high-dimensional as in USPS358 data,

the intrinsic procedure for sparse k-means which selects the level of sparsity does not provide a

sufficient level of sparsity to make variable selection. In the SU situation, this method performs

quite well for low-dimensional data but we find the limitations already observed by several

authors such as [37, 120, 121, 178] in the case of high-dimensional data and particularly the

high computational costs. This limitation also exists for the SRUW approach.

In terms of axes interpretation, let consider the sparse axes obtained by the 5 algorithms. In

particular, Figures 6.8 and 6.9 stand for respectively the selected variables and the loadings of

axes obtained by the Fisher-EM algorithm and its sparse versions, the sparse k-means and SU

procedures, on the USPS358 dataset. These representations stand for a favorable case in terms

of clustering accuracy which has been obtained among the 25 repetitions of this experiment: for

the sparse k-means, the variable selection obtained in Figure 6.8a, stands for a situation with

an error rate equal to 74.7%, Figures 6.8b and c represent respectively the relevant variables

obtained by SU with 48.3% of error rates and SRUW (36.7%). For the 3 sparse Fisher-EM

algorithms, we have superimposed in a same figure the loadings of the 2 discriminative axes

fitted by sparseFEM-int, sparseFEM-reg and sparseFEM-pen procedures relative to (84.5%),

(77.5%) and respectively (81.7%) of clustering error rate. First of all, we can observe that,

even though the SU and SRUW procedures are sparser than the sparse k-means or the sparse

Fisher-EM procedures, they correspond to a partition which is poor performing. This can

be mainly explained by the fact that most of selected variables are irrelevant to discriminate
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(a) (b) (c)

Figure 6.7: Group means obtained from the true labels in the USP358 datasets.

(a) Sparse k-means. (b) SU. (c) SRUW.

Figure 6.8: Clustering variable selection obtained from (a) the sparse k-means algorithm of
Witten and Tibshirani, (b) the SU approach proposed by Raftery and Dean and (c) the SRUW
approach from Maugis et al..

(a) SparseFEM-int. (b) SparseFEM-reg. (c) SparseFEM-pen.

Figure 6.9: Clustering variable selection obtained from (a) the sparseFEM-int (λ = 0.3), (b)
the sparseFEM-reg (λ = 0.2) and (c) the sparseFEM-pen procedures (λ = 0.2) of the sparse
Fisher-EM algorithm with a level of sparsity selected by the penalized BIC.
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Approaches: CPU time Approaches: CPU time

sparseFEM-int 3.15± 0.03 sparse k-means 5.81
sparseFEM-reg 2.36± 0.03 SU 14.99
sparseFEM-pen 1.52± 0.05 SRUW ∞

Table 6.4: Computational times computed for the 3 versions of the sparse Fisher-EM, sparse k-
means, SU and SRUW on the USPS358 data. No standard deviation is reported for SU/SRUW
and sparse k-means as their initialization procedure is deterministic and always provides the
same initial partition.

number 3 to numbers 5 and 8. We can observe, for example, in Figure 6.8b, that the black

squares located in right bottom corner and selected as discriminant for the clustering task by

the SU procedure, do not correspond to any discriminative pixel. Moreover, in Figures 6.8a

and 6.8b, we can see that the sparse versions of Fisher-EM select only a few original variables

as discriminative ones and correspond to a subset of those selected by the sparse k-means

procedure. Besides, we can observe Figures 6.8c the same limitation of the sparse FEM-pen

procedure as previously. Indeed, compared to sparse-FEM-int and sparse-FEM-reg, this last

procedure only thresholds the loadings of the projection matrix of the Fisher-EM algorithm

and do not consider, a priori, the task of discriminative variable selection.

Finally, both sparse-FEM-int and sparse-FEM-reg algorithms seem to answer quite well to

the tasks of clustering and feature selection. Moreover, in regard to the existing approaches,

such a procedure provides generally a sparser representation of the data in a reasonable time

computing. Table 6.4 stands for an overview of CPU time averaged on 20 repetitions, on the

USPS358 dataset. As we can remark, our procedures are much faster than SU and sparse

k-means algorithms. Furthermore, as the SRUW procedure has not finished to run in a

convenient time, no information about the computational time is reported. Consequently, the

sparse Fisher-EM algorithms appear to be a good compromise, in practice, to cluster the data

and select a set of discriminative variables in a reasonable time.
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Seriation
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Chapter 7

State-of-the-art in seriation

An important issue in datamining is determining and visualizing relational structures between

observations. Seriation or sequencing is an old-fashioned tool for ordering elements and visu-

alizing them. Its origins date back to the end of the 19th century where practical problems

occurred in archeology and anthropology: in order to understand and reconstruct the past,

found objects, potteries etc, are ordered and classified from few criteria such as the material,

the symbols or their geographical location for example. Many empirical works used such an

intuitive technique, but Sir W. M. Flinders Petrie [145], an Egyptologist proposed, the first,

a systematic method of chronological sequencing for excavations of graves in the Nile area.

More precisely, he crossed, in a table, the data linked to the geographical location of graves

and those associated to the found objects. Then, he rearranged the table, by permuting its

rows and its columns, such as the large values were close to the diagonal. It appeared that the

similar graves were close to each other, in the rearranged table, and corresponded to a chrono-

logical order. This sequence dating influenced lots of archaeologists and anthropologists who

improved and extended his methodology. However, Petrie did not comprehend the seriation

problem through a mathematical background, and in the archeology context, it was necessary

to wait 1951, so that Robinson [150] and Brainerd [24], in particular, define a rearranged table

through mathematical properties. Many authors, such as [93, 39, 100, 31, 28] were interested

to the particular geometry of the reordered matrix. Parallely, the seriation was defined, by

some authors, ([122, 123, 140]) as an optimization-type problem based on an ordering criterion.

Besides, since the main aim of seriation remains in the definition and the evaluation of the

best permutation of a row, or a column, seriation was also comprehended as an algorithmic

problem. This point of view was developed, in the literature, by many authors, such as in

particular [42, 49, 151, 123, 6, 39, 27]. Even though this reordering method was widely ap-

plied and extended in archeology, as in the work of Ihm [95], many seriation approaches were

developed, in parallel, in various fields, such as ecology, marketing or sociology for example.

An historical overview of reordering methods was recently proposed by Liiv in [112].

In this Chapter, we first introduce the general framework of the seriation problem, before

exposing the similarity criteria traditionally used in seriation and also the most well-known
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(b) Reordered dissimilarity matrix. (c) Image of reordered matrix.

Figure 7.1

algorithms. However, the traditional reordering technics present some limits as soon as the

number of observations increases. We will expose therefore the alternative measures proposed

in the literature which deal with this problem. Finally, we will end up this chapter by the most

recent approaches used directly from the data matrix and named block-clustering approaches.

7.1 Seriation

7.1.1 A definition

Seriation is a data analysis tool whose aim is to work directly on data matrices. These matrices

can be symmetric and in this case, the rows and columns refer to the same elements; more

generally, they can be rectangular and then, the row elements are different from those in

columns. Depending on the matrix considered, a specific taxonomy was proposed by Carroll

and Arabie in [32]. In particular, the one-way two mode clustering refers to the seriation

applied on a symmetric matrix (i.e. a matrix whose the elements stand for the similarity

between pairs of observations) whereas on a rectangular matrix, it is called two-way two mode

clustering. Many authors worked on this subject, and the reader can refer to [118, 131, 112]

for a structured overview of these methods.

The principle of seriation is based on reordering rows and columns of a data matrix by

successive permutations, such as the adjacent rows, respectively the adjacent columns, are the

most similar. We can borrow the definition of seriation proposed by Liiv [112] which defines

it as “[...] an exploratory data analysis technique which reorders objects into a sequence along

a one-dimensional continuum so that it best reveals regularity and patterning among the whole

series”. This situation is illustrated in Figures 7.1: let us consider a dissimilarity matrix,

depicted in Figure 7.1a, which defines the similarity between pairs of observations, when its

elements are equal to 1, and, at the opposite, their dissimilarity, when its elements are equal to

0. From this binary matrix, its rows, and symmetrically its columns, are permuted, such that



7.1. SERIATION 153

similar elements become pairwise adjacent, as it is illustrated in Figure 7.1b. We can therefore

observe, in the same figure, that the reordered matrix forms groups in blocks. In order to

highlight this block structure, the rearranged matrix can be considered as an image, as it is

depicted in Figure 7.1c: the 1s are colored by black squares whereas the 0s are associated to

white pixels. From this observation, we can feel that the seriation can be characterized as a

local ordered clustering method. Indeed, conversely to traditional clustering approaches which

cluster an observation with respect to its distance with the group means, seriation gives a local

information, about similarities between adjacent pairs. Moreover, owing to the representation

into blocks, as it is illustrated in Figure 7.1c, such an approach enables also to highlight a

global structure of the data. Both remarks correspond to the main stakes of seriation: firstly,

this method aims at rearranging rows and columns of a data matrix, in order to highlight a

global structure in the data. Secondly, this method looks for identifying clusters amongst the

rearranged elements of the matrix. An essential aspect in this method, is the definition of a

dissimilarity criterion (or a similarity criterion) which measures the distance, or the closeness,

between each pairs of individuals.

Let us consider (x1, . . . , xn) a dataset of n observations described by p variables. Let us

also define its n×n corresponding dissimilarity matrix D = (dij)i,j∈(1,...,n) where each element

dij stands for the dissimilarity between the observations i and j. Let us consider a permutation

function Ψ which orders the elements of the matrix D according to an arrangement criterion

C. The goal of seriation is, then, to find the permutation function Ψ∗ which optimizes C, such

as:

Ψ∗ = arg max
Ψ
C (Ψ (D)) . (7.1.1)

Note that the dissimilarity measure can be either observed directly from the data, if we dispose

of relational datasets for example, or it can be computed from a data matrix. A plethora of

dissimilarity measures (versus similarity) was developed in the literature for the seriation

problem and the next paragraph is going to expose some of them.

7.1.2 Similarity measures for seriation

In the literature, different kinds of measures were developed for the seriation procedure. More

precisely, some authors focused on the geometrical properties of the rearranged matrix as

Robinson [150], Brainerd [24] or more recently, Hubert et al. [93] and Chen [39] for example,

whereas others developed similarity measures with regard to pairwises observations. Most of

these works were resumed in [79].

7.1.2.1 Measures based on geometrical properties of the rearranged matrix

The interest on the form of the rearranged matrix was inspired by the work of Petrie [145],

an Egyptologist, whose the aim was to order potteries according to the geographical context.
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Design Context

style 3 6 7 5 1 2 4

beaker × ×
blackrim × × ×
bottle × ×
flatpot × ×
handle × × ×
pointed × × ×
spirals × ×

(a) Non-ordered table

Design Context

style 1 2 3 4 5 6 7

beaker × ×
blackrim × × ×
bottle × ×
handle × × ×
spirals × ×
flatpot × ×
pointed × × ×

(b) Ordered table after permutations.

Table 7.1: Small example of a table containing design styles observed according to the geo-
graphical context and inspired by Petrie’s serial ordering of Egyptian potteries.

Table 7.1 stand for a part of the well-known example introduced by Petrie and stand for

different design styles found on potteries and their associated context numbered for 1 to 7. In

the initial data matrix depicted in Table 7.1a, we can observe for example, that the context

number 3 contains three different design styles: blackrim, bottle and handle, and the design

style spirals are found in the contexts 4 and 5. By sorting simultaneously the rows and the

columns of this table, such as the crosses are found as closed as possible to the diagonal, we

obtain a reordered matrix as in Table 7.1a. If the cross symbols are replaced by 1s and the

empty case by 0s, then the resulting matrix is called a Robinsonian matrix.

Such structure of the rearranged matrix was introduced, in parallel, by Robinson [150] and

Brainerd [24]. In particular, they defined a Robinson matrix, from a similarity matrix, whose

the highest entries within each row and column are on the diagonal of the matrix and the

entries never increase when moving away from the diagonal. A similar definition was done for

dissimilarity matrices which were referred to by anti-Robinson matrices, by Hubert et al. [92].

An anti-Robinson matrix is matrix which has the smallest entries within each row and column

on the diagonal of the matrix and the entries never increase when moving away from the

diagonal. Therefore, by considering the dissimilarity matrix D = (dij)i,j∈(1,...,n), the elements

dij of an anti-Robinson matrix has the following properties:







for 1 ≤ i < j ≤ n, di,j ≥ di+1,j

for 1 ≤ j < i < n, di,j ≤ di+1,j .

These constraints on the elements of the matrix D point out an ordering amongst the ob-

jects. This definition was widely exploited by Diday [46], who highlighted the importance of

the Robinson, or anti-Robinson form, for representing a proximity matrix and its associated

graphical display. Many applications exploited Robinsonian dissimilarities, in particular in

archeology [150, 106], in psychology [91, 92], in the biological area through the analysis of

DNA sequences [135] or in overlapping clustering [53, 46, 134].

From these properties, Caraux et al. [31] declined two different seriation criteria, based on
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the dissimilarity matrix D:

C1 (D) =
n
∑

i=1

n
∑

j=1

dij |i− j|2 (7.1.2)

C2 (D) =
n
∑

i=1

n
∑

j=1

(dij − α|i− j|2), (7.1.3)

where dij denotes the dissimilarity between observations i and j. In the criterion C1, the

distance |i− j|2 reflects the distance to the main diagonal of D and the term dij is used as a

weight with regard to this distance. This criterion increases when the highest dissimilarities

are far away from the diagonal, leading to maximization. Conversely, C2 has to be minimized.

This last criterion evaluates, indeed, the difference between pairs of dissimilarities and their

rank difference (|i− j|2) weighted by a parameter α. Consequently, the closer the observations

i and j are, the smaller the dissimilarity dij and also the difference (dij − α|i− j|2) are.

More recently, several authors, such as Hubert et al. [93], Chen [39] or also Brusco et

al. [28] proposed different optimization criteria, which can be formulated through a general

formulation:

C3 (D) =
∑

16i<j<k6n

f(dik, dij) +
∑

16i<j<k6n

f(dkj , dij),

where f is a function which takes different forms according to the authors. For example, if

f(.) stands for the sign(.) function defined such as:

f(x, y) = sign(y − x) =



















−0 ifx = y

−1 ifx < y

−1 ifx > y

,

then the criterion, proposed by Hubert et al. [93], is re-found:

C3.1 (D) =
∑

16i<j<k6n

sign (dij − dik) +
∑

16i<j<k6n

sign (dij − dkj) . (7.1.4)

This measure, taken back by Brusco et al. [28] more recently, quantifies the divergence of

a rearranged matrix from a Robinsonian structure. It is based on a gradient index which

evaluates the difference between the number of correct correspondences and differences with a

Robinson structure. Moreover, by replacing f(x, y) by |x−y| sign(x−y), we refind the second

function proposed by Hubert et al. [93] which has the following form:

C3.2 (D) =
∑

16i<j<k6n

|dij − dik| sign (dij − dik)+
∑

16i<j<k6n

|dij − dkj | sign (dij − dkj) . (7.1.5)
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This is a weighted version of the criterion defined in expression (7.1.4). Finally, by letting

f(x, y) = 1{x−y} or f(x, y) = |x − y|1{x−y}, both formulations of Chen [39], named the

violations anti-Robinson events, are refound.

Many improvements were made on the characterization of a Robinson matrix and we can

cite, in particular, the work of Warrens and Heiser [176] who extended the 2-dimensional

Robinson matrix to a Robinson cube.

7.1.2.2 Criteria based on a local neighborhood

McCormick et al. [122, 123] were the first authors who both formalized the seriation problem

as an optimization problem and proposed, to that end, an iterative algorithm. Their main

goal was to order and organize the data such as they can visualize, directly in a 2-dimensional

table, the data structure. They proposed a similarity measure, well-known under the name

“measure of effectiveness” (ME), based on the scalar product between rows and columns.

Let us consider the n × n dissimilarity matrix D = (dij)i,j∈{1,...,n} . The measure of

effectiveness is then defined as:

C4(D) =
1

2

n
∑

i,j=1

dij(di,j−1 + di,j+1 + di−1,j + di+1,j), (7.1.6)

with d0,j = dn+1,j = di,0 = di,n+1 = 0. This criterion has to be maximized and when it reaches

a maximum, the structure designed is compact in the sense that the rearranged matrix forms

blocks. Please, note that, in the original work of McCormick et al. [122, 123], such a criterion

was proposed in the general case of a n × m rectangular matrix which allowed to divide

the optimization problem in two sub-problems: the first one, by maximizing the measure on

the rows in order to find permutations on the columns of the matrix and the second one by

considering the opposite situation i.e. the row permutations maximizing the measure on the

columns. However, for sake of clarity and homogeneity, we rewrote here the criterion from the

dissimilarity matrix D.

By remarking that the rearranged matrix had a block-diagonal form, some authors defined

such a structure from the neighborhood. In particular, Niermann [140] proposed two criteria

to minimize. The first one has the following form:

C5(D) =

n−1
∑

i,j=2





i+1
∑

k=i−1

j+1
∑

ℓ=max(i,j−1)

(dij − dkℓ)
2



 , (7.1.7)

where the term in square brackets stands for a neighborhood comprising at most 8 adjacent

entries and named the Moore neighborhood. The second criterion proposed, is such that:

C6(D) =

n−1
∑

i,j=2





i+1
∑

k=i−1

(dij − dkj)
2 +

j+1
∑

ℓ=max(i,j−1)

(dij − diℓ)
2



 . (7.1.8)
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







1 1 1 1 0
0 1 1 0 1
1 0 1 1 0
0 0 0 1 0









(a) Binary matrix with C1P.

=⇒









0 1 1 0 1
1 1 1 1 0
1 0 1 1 0
0 0 0 1 0









(b) All columns are C1P.









0 0 1 0
0 1 0 1
1 1 0 0
1 0 0 1









(c) Binary matrix without C1P.

Table 7.2: (a) Binary matrix which has the consecutive ones property (C1P) since the per-
mutation of one of its row enables to obtain a matrix (b) whose all columns have consecutive
ones. The matrix (c) has not the C1P in columns since no permutation enables to obtain a
matrix with consecutive ones in all columns.

It is based on the Neuman neighborhood (term in square brackets) which comprises, at most,

4 adjacent entries. The main difference between both criteria remains in the contributions

of rows and columns in the neighborhood. In particular, in the Neuman neighborhood case,

these contributions are independent from each others, contrary to the Moore neighborhood.

Finally, the last remark is based on the fact that, a dissimilarity matrix D = (dij)i,j∈{1,...,n}

can be viewed as a finite weighted graph, in which each observation would correspond to a

vertex and each element dij would be relative to a weighted edge. Seriation can, therefore,

be viewed as a path in the graph, where each vertex is visited once. This path is named

in the literature a Hamiltonian path. In this case, the criterion to optimize is based on the

minimization of the consecutive dissimilarities and takes the following form:

C7(D) =

n−1
∑

i=1

di,i+1.

This notion can also be linked to the so-called Traveling Salesman Problem (TSP) whose a

comprehensive overview can be found in [76, 5].

7.1.2.3 Seriation as consecutive ones property

The seriation problem can also be viewed as the construction of a matrix having the consecutive

ones property (C1P). Indeed, by considering a binary matrix i.e. a (0, 1)-table whose entries

are only 1 or 0, the consecutive ones property for columns (respectively for rows) is stated when

there exist row permutations (respectively column permutations) such as the 1s are ordered in

consecutive positions in all columns (or rows). This property is illustrated in Table 7.2 with

the matrix (a) which has the consecutive ones property, as the permutation of its two first

rows enables to obtain a matrix (b) whose all its columns have consecutive ones. In the same

table, we have also illustrated the opposite case: the matrix (c) haven’t got the consecutive

ones property as no permutation of its rows allows to obtain consecutive ones in all columns.

Many authors have worked on the characterization of the consecutive ones property such

as Kendall [105], Hubert [91], Meidanis et al. [132] or more recently Narayanaswamy and

Subashini [139], and others, such as Booth and Lueker [20] or Hsu [90], worked on algorithms to
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identify it. These two last works focused on the algorithmic of the consecutive ones properties

and they will be detailed in the next section.

More recently, in the context of data compression, Johnson et al. [100] proposed to minimize

a criterion based on a “run” which stands for the number of sequences containing consecutive

ones on each row. Therefore, they aimed at minimizing the sum of runs on every rows of the

matrix, leading to the following criterion:

C8(D) =

n
∑

i=1

n−1
∑

j 6=i,j=1

|di,j − di,j+1|,

where the dijs are either equal to 1 or 0.

All the presented criteria aims to find a structure in the data matrix such as the similar

elements are grouped together. In particular, in the case of symmetric (0, 1)-tables, this

implies that the similar elements are adjacent leading to a sequence of consecutive 1s, and are

close to the diagonal. It seems to exist then a certain equivalence between the Robinsonian

or the consecutive ones properties. However, such equivalence is not obvious as Warrens [175]

showed it, in a very recent work. Indeed, he proved that firstly, such an implication depended

on the dissimilarity measures and secondly, amongst them, only a few were concerned and

required very strong conditions.

7.1.3 Reordering algorithms for seriation

Seriation is certainly linked to the similarity measures between rows and columns, but it

also depends on algorithmic as the optimized permutation needs to be found. This is a np-

hard problem which supposes the computation of all combinations between row and column

permutations. Such a situation can be considered when the dataset is relatively small, but

this task becomes difficult and cost computing as soon as the size of the dataset increases.

Different kinds of algorithms were proposed in the literature, aiming at both the efficiency

and the speed of its execution. One of the most well-known algorithm and named branch and

bound, suggests to make an exhaustive research on subsets of data, instead of on the entire

dataset. Such methods were introduced in the 50’s, by Croes et al. [42], Eastman et al.[49]

and also Rossman et al.[151] and were improved more recently by Chen et al.[39] or Brusco et

al.[27]. Other algorithms are based on heuristic research. In particular, the work of McCormick

et al. [123] improved by Arabie and Hubert [6], used the neighborhood of each observation,

in order to define a list of potential candidates which can be considered at each iteration.

More precisely, the column (or row) selected at each iteration, is the one which allows the

largest increase of their similarity measure (measure of efficiency). In the same perspective,

Kirckpatrick et al. [108] introduced the concept of simulated annealing paradigm in the seriation

problem. Such a procedure enables to accept a candidate with a certain probability which can

be worse, than the current solution. Then, at the beginning, the probability to accept a

candidate is high, but it decreases gradually with the execution of the algorithm. Most of
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these methods took their origins in works on the Traveling salesman problem, and most of

algorithms dealing with mixed-integer programming, branch-and-bound method, local-search

algorithms, genetic algorithms and more, are resumed in [5], in [76] or in [79].

In the case of consecutive ones property, Booth and Lueker [20] introduced a data struc-

ture, called PQ-trees, that is able to compactly represent all valid permutations of the rows of

a (0, 1)-table providing the C1P. To build such a structure, they proposed a linear algorithm

with respect to the number of rows, of columns and also to the total number of ones in the

table, which tests the consecutive ones property in matrices. Such an approach was improved

by the works of Hsu [90], who proposed a novel algorithm.

Seriation is an interesting datamining tool since it enables to both determine and visualize

relational structures between observations. However, it presents some limitations as the tra-

ditional approaches are mainly based on permutations between rows and columns. When the

number of observations increases, these combinatorial algorithms become cost-consuming and

the associated solution can be therefore untractable.

7.2 Distances, neighbors and density-based connectivity

The notion of similarity between pairs of observations is not only associated to the seriation

problem. More generally, this notion is very used in the nonparametric clustering task. In par-

ticular, some authors proposed new similarity measures, in order to deal with high-dimensional

data. Before exposing these measures, we are going to briefly recall the traditional similarity

measures.

7.2.1 Traditional similarity measures

As soon as clustering is defined as a data analysis tool aiming at grouping together data in

homogeneous clusters, the least we can do, is to define the notion of homogeneous clusters. In

the notion of homogeneous cluster or natural cluster, we consider the observations which are

similar between them. The most intuitive and well-known measure of similarity is based on

the distance. In particular, we can define the distance d between a pairwise of observations

(xi, xi′) in a p-dimensional space, such as:

d (xi, xi′) =





p
∑

j=1

(

xij − xi′j

)q





1/q

, (7.2.1)

where q ≥ 1. In particular, if q = 2, it gives the traditional Euclidean metric.

An other well-known similarity function ables to compare two vectors xi and xi′ is based
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on the normalized inner product:

s (xi, xi′) =
xt

ixi′

‖xi‖ ‖xi′‖
(7.2.2)

and represents the cosine of the angle formed by the vectors xi and xi′ . Note that in the case of

binary vectors, such a function measures the features which are shared by both observations.

Moreover, in the particular case of (0, 1)-vectors, several authors proposed similarity measures

based on the inner product xt
ixi′ , such as the well-known Jaccard and Needham’s measure:

s (xi, xi′) =
xt

ixi′

xt
ixi + xt

i′xi′ − xt
ixi′

,

the Russel and Rao [155] measure:

s (xi, xi′) =
xt

ixi′

n− xt
ixi′

,

or also, the Dice measure:

s (xi, xi′) =
xt

ixi′

xt
ixi − xt

i′xi′
.

There exist other measures based on the inner-product in the literature and certain can be

found in [48].

However, most of them become meaningless as soon as the dimension increases (see Chap-

ter 1 for the curse of dimensionality). Several authors proposed indirect measures of neigh-

borhood. They have the particularity to both introduce parsimony in the datasets in order to

deal with high-dimensional data, and keep an information on the proximity between pairs of

observations.

7.2.2 Similarity measures for high-dimensional data

In this paragraph, we are going to focus, in first, on the share near neighbors measure developed

by Jarvis and Patrick [97], improved and extended by Guha et al. [74], Ertöz et al. [51] and

Vathy-Fogarassy et al. [170]. The works of Gowda and Khrisna [71, 72] based on the mutual

nearest neighborhood measure will be also explained in this section. Finally, certain authors

defined and worked on the density based notion of clusters in order to develop simple and

efficient practical algorithms, instead of working on the notion of similarity between pairwises

of observations. We are going to briefly present the work of Ester et al. [52] in which the

concept of density-connectivity was used, and its extensions [103].

7.2.2.1 The shared nearest neighbors

Jarvis and Patrick [97] introduced a similarity measure based on the g-nearest neighbors (g-

nn) and named shared near neighbors. This similarity was stated on two key-ideas: firstly, the



7.2. DISTANCES, NEIGHBORS AND DENSITY-BASED CONNECTIVITY161

1
2

3 4

5
6

7
8

9

(a) Representation of datapoints.
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(b) Measure of shared neighbors be-
tween pairwise of observations.

Figure 7.2: Datapoints in their 2-dimensional space with their 3-nearest neighbors (a) and the
associated shared neighbors measure (b).

authors assumed that a pairwise of data points could be considered as similar if they shared

a same neighborhood among their g-nearest neighbors. This supposes therefore that their

respective list of g-nearest neighbors has to match. Secondly, these data points themselves

have to belong to the list of the g-nearest neighbors of the other point. This condition aims

at avoiding the association of isolated data points to a group. Indeed, since the similarity

measure is based on the g-nearest neighbors, the volume of the sphere containing the g-nn

changes according to the compactness of the data points. In particular, an isolated point can,

in fact, share the same neighborhood as grouped points, as it is illustrated in Figure 7.2.

Let us rewriting these conditions in a formalism. Let us consider a dataset {x1, . . . , xn}
of n observations described in a p-dimensional space having a metric. According this certain

metric, let Si denotes the subset of g-nearest neighbors of an observation i, for i ∈ {1, . . . , n}.
Then, the pairwises (xi, xj) with i 6= j and i, j ∈ {1, . . . , n} are shared nearest neighbors if

both conditions are satisfied:






Si ∩ Sj 6= φ

xi ∈ Sj and xj ∈ Si

.

In this case, the pairwise (xi, xj) is assumed to be shared near neighbors. Consequently, the

associated shared near neighbor value is:

mij = |Si ∩ Sj | , (7.2.3)

where |A| stands for the cardinality of the set A. This measure is computed from the situation

depicted in Figure 7.2a, for some pairs of observations and is illustrated in Figure 7.2b. As

we can observe, the shared neighbor value introduces sparsity in the dissimilarity matrix and

the noisy datapoint (observation 9) is removed. In terms of nearest neighbor graph, edges can

be designed between pairs of shared nearest neighbors and, in the same way, a sparse graph is

then provided. Jarvis and Patrick also proposed a weighted version of their similarity measure,
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by taking into account the position of each observation in the neighborhood of its associated

pairwise. In this case, the weight associated to the edge is:

ωij = (g + 1− ℓ) (g + 1−m) (7.2.4)

where ℓ ∈ {1, . . . , k} stands for the position of xi in the g-nearest neighborhood of xj , and

similarly, m is the rank of xj , in the g-nearest neighborhood of xj . From the connected graph,

the edges which are below on a certain threshold are removed and the remaining connected

ones form clusters. The measure of shared near neighbors is then characterized of sparse.

Indeed, in a first hand, it allows to remove outliers and noisy points because of the absence

shared neighbors; in a second hand, such a measure enables to keep links in uniform regions,

forming thus, the final clusters by removing the ones in the transition region. However, the

main drawback of Jarvis and Patrick’s method remains in the thresholding of the number of

shared neighbors. Indeed, on the one hand, this threshold has to be high enough in order to

prevent the merge of two distinct clusters. On the other hand, if it is too high, then, some

little clusters can be removed from the clustering or one cluster could be divided in several

sub-clusters. The last remark stands for the main drawback of this measure as it was already

remarking by [51, 73].

This measure of similarity, denoted by mij in equation (7.2.3), was reintroduced later in

the works of Guha et al. [74] through the following clustering function:

C7 =
K
∑

k=1

nk

∑

i,j∈Ck

mij

n
1+2f(θ)
k

,

where nk is the number of observations in the cluster k and f(θ) is a function defined such as

n
f(θ)
k stands for approximately the number of neighbors in the cluster k. The problem of such

an approach is the existence of two parameters θ and f(.) to calibrate and no information

about it was done by the authors.

We can also cite the works of Ertöz et al. [51] who improved Jarvis and Patrick’s approach

and extended their notion of shared nearest neighbors measure. They introduced indeed the

concept of “core” or “representation points” to the observations having the most of shared

nearest neighbors. They considered, thus, the sum of links (mij) for each observation xi:

Mi =

g
∑

j=1

mij ,

and the points having a high Mi become candidate to be representative points, the ones having

a low Mi according to a certain thresholds, are considered as noisy points. Consequently, their

clustering algorithm introduced sparsity by eliminating noisy points and then, associated data

points to representative points. Moreover, the authors showed that such a similarity measure

remains efficient in the case of high-dimensional data. However, the calibration of the threshold
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was not treated any more in their case, and this remains a major problem in practice.

Finally, Vathy-Fogarassy et al. [170] proposed more recently, a standardized version of the

Jarvis and Patrick’s measure and called it “fuzzy similarity measure” :

sij =
|Si ∩ Sj |
|Si ∪ Sj |

, (7.2.5)

where sij stands for the standardized similarity measure between a pair of observations (xi, xj)

and Si stands for the subsets of nearest neighbors of an observation i. Besides, as each subset

S consists of g-nearest neighbors and, according to equation (7.2.3), this similarity sij can be

rewritten as:

sij =
mij

2g −mij
.

This standardized measure has the particularity to be comprised in the [0, 1] interval and

the more sij is close to 1, stronger is the similarity between observations i and j. At the

opposite, sij = 0 means that the observations i and j are different from each other. From this

standardization, the authors introduced the notion of “transitive fuzzy similarity measure” in

order to evaluate the degree of spreading of nearest neighbors given an observation i. Moreover,

they also introduced a parameter t, which determines the degree of the spreading. In this case,

this transitive measure becomes:

s
(t)
ij =

∣

∣

∣S(t)
i ∩ S

(t)
j

∣

∣

∣

∣

∣

∣S(t)
i ∪ S

(t)
j

∣

∣

∣

.

If t = 1, then the standardized shared nearest neighbor measure, defined in equation (7.2.5),

is re-found. In the case of t = 2, the second degree of nearest neighbors is taken into account

i.e. the nearest neighbors of the nearest neighbors of the observation i, and so one. These

different effects are weighted and summed up, in order to have a global measure of similarity.

However, as the previous approaches, the proposed algorithm needs to calibrate several hyper-

parameters, such as the maximum degree of spreading, or the determination of the vector of

weights, and Vathy-Fogarassy et al. did not propose any method to fix them.

The major limitation of all these approaches is the existence of hyper-parameters to cali-

brate. This remains a problem in practice, as the authors do not really discuss about it and

do not propose convenient solutions.

7.2.2.2 The nearest neighbors

Gowda and Krishna [71, 72] proposed a measure of similarity between pairs of observations

and based on the neighborhood. This measure, called mutual neighborhood, is defined as

the sum of the mutual neighbor ranks between two observations. In other words, let us

consider {x1, . . . , xn}, n observations in a p-dimensional space endowed with a metric. If an
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(c) Mutual neighbor value for each pair-
wise of datapoints.

Figure 7.3: (a) Representation of datapoints in their 2-dimensional space and (b) their asso-
ciated mutual neighbor values by considering 3-nearest neighbors.

observation i is the ℓth nearest neighbor of observation j and j is the mth nearest neighbor

of i, then the mutual neighbor value is MNV (xi, xj) = m + ℓ. Consequently, smaller is the

mutual neighbor value, the more the observations will be similar. In particular, if m = 1

and ℓ = 1, MNV (xi, xj) = 2 and the observations xi and xj are the nearest neighbors.

However, the computation of such a measure needs to order n − 1 observations given the

studied one which becomes cost computing as soon as the dataset becomes large. To that end,

Gowda and Krishna restricted the computation of such a measure to the g-nearest neighbors

of each observation. In particular, let us consider Si, respectively Sj , the subset of g-nearest

neighbors of the observation i, respectively j, and let ℓ (respectively m) denotes the position

of observation i (respectively j) amongst the g-nearest neighbor of j (respectively i), it leads

then to the following conditions:







xi ∈ Sj and rank (xi) = ℓ

xj ∈ Si and rank (xj) = m
,

and the mutual neighbor value is MNV (xi, xj) = m + ℓ. If the observation i is not in the

neighborhood of j, then, the pairwise (xi, xj) has no mutual neighbor and MNV (xi, xj) = 0.

This last condition prevents the grouping of isolated datapoints, as in the Jarvis and Patrick’s

case (see Figure 7.3a). The computation of such a measure is depicted in Figures 7.3: Fig-

ure 7.3a stands for the representation of datapoints in their 2 dimensional-space, Figure 7.3b

is an ordered list of 3-nn of each data point and Figure 7.3c stands for the associated mu-

tual neighbor value of each pairwise of observations. In this particular example, the mutual

neighbor value between observation 1 and 2 is equal to 2 + 1 = 3, since the observation 2 is

the first nearest neighbor of observation 1 and observation 1 is the 2nd nearest neighbor of

observation 2 as we can observe in Figure 7.3b. Conversely, since the data point 8 does not

share any neighborhood of other observations, its mutual neighbor values are 0 (see line 8 in
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Figure 7.3c). This measure is very sparse and seems to introduce much more zeros than the

one of Jarvis and Patrick.

Finally, the notion introduced by Gowda and Khrishna was recently extended by Zhang

et al. [190] who proposed the estimation of a normalized density derivative from this mutual

neighbor value.

7.2.3 Density based-clustering

This notion of similarity between pairwises of observations was exploited, in the identification

of clusters, through the construction of neighborhood graphs and the development of simple

and efficient clustering algorithms. There exist different kinds of families of neighborhood

graphs, according to the similarity measure used. The most well-known families of graphs are,

perhaps, the ε-neighborhood graphs and k-nearest neighbor graphs. In the first case, a pair of

observations will be connected if their distance is smaller than ε whereas in the second case,

an observation will be connected to its k-nearest neighbors.

The authors, who worked in such an approach, were focused on defining geometrical prop-

erties of a cluster. Whereas the works of Ester et al. [52], Ankerst et al. [4] or Kailing et

al. [103] defined a density connectivity concept, in order to propose efficient clustering al-

gorithms, other authors were focused on a more formal definition of clusters, as connected

components of the t-level set of the underlying probability distribution.

7.2.3.1 Algorithmic approaches for identifying clusters

Instead of focusing on the similarity measures between pairwise of observations, some authors

tried to define a cluster through geometrical properties. To that end, the density-based notion

of clusters was introduced, in order to develop simple and efficient algorithms of clustering.

In particular, Ester et al. [52] based their clustering algorithm on the notion of density-

connectivity which provides a relational structure between observations. This notion is ex-

plained through two key-definitions. Firstly, by denoting Si the ε-neighborhood of an obser-

vation i, a point j is defined as directly-density reachable from i if these two conditions are

satisfied:






‖xj − xi‖ ≤ ε
|Si| ≥ ξ.

where ‖.‖ stands for any norm, |Si| is the cardinal of the subset Si and ξ denotes a mini-

mum number of elements, in the ε-neighborhood of the observation i. Please, note that the

directly-density reachable notion can be viewed as a restricted ε-neighborhood as, in addition

to consider the elements included in the ball centered in xi with radius ε, this ball has to

reach a minimum size. Secondly, an observation j is density-connected to a point i, if there

is an intermediate point which is both density-reachable by j and i. Consequently, a cluster

is defined as a set of points density-reachable and the number of clusters corresponds to the
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Figure 7.4: Two clusters are defined as connected components of the t-level set of a density f .

number of connected components. From these both notions, Ester et al. proposed an algo-

rithm, called DBSCAN, which was the basis of works such as, those of Kailing et al. [103] or

Ankerst et al. [4].

We can remark that all these methods are intrinsically linked to connectivity graphs ap-

proaches. However, their main drawbacks are, perhaps, the lack of statistical justifications

and also the absence of methodology for practical issues. Indeed, the definition of a density-

connectivity supposes the use of a similarity measure which needs the calibration of at least

one parameter. Moreover, it is a well-known fact, that the calibration of such a parameter is

totally dependent of the determination of the true number of clusters. These previous works,

however, mainly based on algorithmic, do not really provide a solution for the choice of these

parameters in practice, nor theoretical justifications.

From a formal definition of a cluster by Hartigan [82], Bito et al. [25] , Biau et al. [13]

and also Maier et al. [116] particularly, were focused in deriving theoretical justifications, in

order to identify the number of clusters or to choose the kind of neighborhood for building an

appropriate graph.

7.2.3.2 Theoretical works on the identification of a cluster

Hartigan [82] has introduced in 1975 a formal definition of a cluster.

Definition 7.2.1. Given a random variable X ∈ R
p with probability density function f , let

t > 0 denotes a fixed and positive level set, then the t-level set of the density f is defined as:

L (t) = {x ∈ R
p|f (x) ≥ t} ,

and we denote k(t) the number of connected components associated to L (t).

Clusters are then defined as connected components of the t-level set of an underlying

probability distribution. This has the main advantage to be easy to interpret geometrically.
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Moreover, it enables also to identify the number of connected components, or clusters. This

situation is illustrated in Figure 7.4, which stands for the distribution of a mixture of 2

Gaussian densities and different level in a 1-dimensional space and different level sets t. As we

can observe, the main problem of such a definition remains in the determination of the level t.

Indeed, as we can observe in Figure 7.4, t needs to be sufficiently large to find 2 components

but not too large in order to avoid its under-estimation.

Many works were done in this problematic. We can cite, in particular, the first works of

Polonik [146] for example, on this question, who proposed to evaluate the number of connected

components after having estimated the level sets of the density f . However, performing clus-

tering by first estimating density becomes a difficult task in practice, as soon as the data are

high-dimensional or/and are in small sample size. In a practical point of view, several authors

tried to avoid such an estimation step and some of them were interested in working on the

connectivity graphs. We can cite, in particular, the analysis of Brito et al. [25] who studied the

connectivity of random mutual g-nn graphs. They were particularly interested in asymptotic

results in the case of non-noisy data and proved that for a certain order, the choice of g ensures

that connected components of the mutual g-nearest neighbor graph correspond to the true un-

derlying structure. In the same spirit, Biau et al. [13] proposed a simple algorithm based on the

idea to form a rough skeleton of a certain level set L (t) and to count the number of connected

components of the resulting graph. They provided asymptotic results for the estimation of

the connected components of the level set L (t) in the case of an ε-neighborhood graph. More

recently, Maier et al. [117] also defined the clusters as connected components of the t-level set

of a density, in order to remove noise points from the sample. However, conversely to Biau

et al., they worked on the g-nearest neighborhood graphs for which they derived theoretical

results to determine for which value of g the probability of cluster identification is maximized.

7.3 Block-clustering in a probabilistic framework

An other kind of approaches, presenting the same goals as seriation, was developed in the

literature, and both deals with high dimension and visualization. These methods are named

differently in the literature and the most well-known names are block-clustering, bi-clustering,

co-clustering or two-mode clustering methods.

Conversely to the seriation, block-clustering aims to cluster, rather than to permute, rows

and columns of a matrix but it enables also to interpret directly on the data matrix the

results of the clustering. Block clustering was introduced by Hartigan [81] who proposed to

simultaneously cluster both the observations and the variables. The first works of Hartigan

on this question were based on a measure evaluating the deviation between the rearranged

matrix and an “ideal” data matrix. Since then, many authors worked on this question and an

overview of the different methods of block-clustering is detailed in [118, 131].

Among all the block clustering methods, this paragraph will focus on approaches developed
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for binary data, in a probabilistic framework. In particular, we are going to briefly resume the

latent models introduced, in particular by Govaert and Nadif [69, 70] and extended by Wyse

and Friel [183].

The underlying idea of the latent block model for binary tables was to extend the finite

mixture model, initially used in model-based clustering [59], to partition the rows (observa-

tions) and the columns (features) of a matrix. Govaert and Nadif [67, 68, 70], the firsts,

proposed a latent block model which aims to find both a partition among the observations

into K clusters, and a partition into G clusters among the p variables. They proposed to

recast the block clustering issue in terms of mixture model approach.

Let us consider the probabilistic framework of finite mixture model in which the overall

population is considered as a mixture of these groups and each component is modeled by a

probability distribution. Let us consider a given n × p binary matrix Y , defined by Y =

{(yij) | i ∈ I, j ∈ J} where I = {1, . . . , n} stands for the indexes of n observations and J ∈
{1, . . . , p}, the set of p variables. The aim of their approach, is to divide both the observations

into K homogeneous groups i.e. adjoin to each observation yi a value zik = 1, for k = 1, . . . ,K,

if the observation yi belongs to the kth cluster and zik = 0 otherwise, and to divide the set

of p variables into G blocks. In the same manner, for each variable, a value ωjg = 1 for

g = 1, . . . , G is adjoined to the jth variable, if it belongs to the block variable g.

Govaert and Nadif assume that the rows and columns of the dataset considered may be

reordered, so that the matrix can be represented as a K ×G blocks. The data, in blocks, are

modelled by the same density. By assuming moreover, that the rows clustering is indepen-

dant of the columns one, and by assuming a local independance of the random variable Yij

conditionally to z and ω, then the conditional density function is:

f (y | z, ω; θ) =
∏

i,j,k,g

ψ (yij ;αkg)
zikωjg ,

where ψ ( . ;αkg) stands for a probability density function of parameter αkg and θ the

parameter of the mixture model. Besides, since the data are binary, ψ ( . ;αkg) is as-

sumed to be a Bernoulli density function with parameter αkg ∈ [0, 1] and by denoting

θ = (π1, . . . , πK , τ1, . . . , τG, α11, . . . , αKG) where πk and τg stand for the mixing proportions

of K clusters of observations and of G blocks of p variables, the Bernoulli latent block model

(BLM) is defined according to the following density function:

f(y, θ) =
∑

z,ω

∏

i,k

πk

∏

j,g

τg
∏

i,j,k,g

ψ (yij ;αkg)
zikωjg ,

where ψ (y;αkg) = (αkg)
y (1− αkg)

1−y. The procedure, used for estimating the parameters of

the BLM model, is based on an EM algorithm. However, because of the dependence structure

among the rows and columns of the data matrix, the computation of the expectation of log-
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likelihood is not directly tractable in the E-step. This leads Govaert and Nadif, to propose

an approximation to the joint distribution. The main asset of this approach is that it is more

parsimonious than the application of two Bernoulli mixture models, independently, on the

sets I and J . Moreover, such a model allows probabilistic justifications and allows explicit

modelling of noise in the data. However, a main limitation remains in the BLM model of

Govaert and Nadif. Indeed, they assume that the numbers of clusters K and of blocks G are

known. It appears that such an hypothesis is very strong, as the determination of these two

parameters has a considerable influence on the results of clustering algorithm. Several authors

worked on the determination of these both parameters in latent block model approaches, such

as the very recent work of Wyse and Friel [183].
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Chapter 8

The PB-Clust algorithm

The determination of the number of clusters, in a dataset, remains a challenging question

in a non-parametric clustering task. Many authors proposed, either theoretical, or empirical

results, to deal with this issue. We propose, in this manuscript, a visualization method based

on the seriation approach.

The key-idea of our approach is to visualize the intrinsic structure of the data by intro-

ducing sparsity, i.e. zeros, in the dissimilarity matrix. To do that, we introduce the notion

of common neighbors in order to build a dissimilarity matrix, and from which a family of

(0, 1)-tables is declined. This collection, consisting of binary matrices with different degrees

of sparsity, are then ordered such as the adjacent rows and symmetrically, adjacent columns,

are the most similar. Moreover, we propose a parsimonious block clustering algorithm (PB-

Clus) which rearranges rows and columns, according to the similarity measure based on the

inner-product. It produces a family of reordered matrices, with different degrees of sparsity.

Amongst this collection of rearranged matrices, only one is chosen according to a compactness

criterion, such as it best reveals the intrinsic structure of the data.

In this Chapter, the notion of shared neighbors based on an ε-neighborhood will be in-

troduced and described. In particular, geometrical aspects of this common neighborhood will

be discussed before comparing it with the existing measures in the literature. Moreover, we

construct a collection of binary matrices from the common neighborhood. As we want to

visualize the intrinsic structure of the data, we propose a simple seriation algorithm based on

a forward stepwise approach, in order to rearrange the collection of binary matrices. As we

obtain a collection of reordered matrices, one need a criterion in order to select the best visu-

alization among them. This criterion, based on the cluster compactness, will be introduced,

in the same paragraph. Finally, some computational aspects of the PB-Clus algorithm will be

discussed, such as the initialization strategy, the computational cost of this algorithm and also

the calibration of the ε-neighborhood parameter, before ending this section with some links

between our approach and the level set issue.
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(a) Distance matrix.
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(b) ε-neighborhood matrix.
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(c) Matrix of common neighbors.

Figure 8.1: Dissimilarity matrix of data based on Euclidean distance (a), its associates ε-
neighborhood matrix with ε = 0.145 (b) and its common neighbors matrix (c).

8.1 A family of common neighborhood matrices

We introduce in this paragraph the notion of the common neighborhood which enables us to

build a family of sparse matrices.

8.1.1 Common neighborhood

8.1.1.1 Definition of the common neighborhood

In this section, we define the notion of shared neighbors, which consists of a similarity measure

between pairs of observations. The intuition behind this measure is that, by considering an

ε-neighborhood centered on each dataset, the more the number of common neighbors between

two observations is high, the more these ones are similar.

Let us then introduce the following definition:

Definition 8.1.1. Let {x1, . . . , xn} denote a dataset of n observations which is described in

a p-dimensional space having a metric. Let D = (dij)i,j∈{1,...,n} be its corresponding n × n
dissimilarity matrix. Moreover, let us define D̄ a binary ε-neighborhood matrix from D whose

elements satisfies d̄ij = 1{dij≤ε}. Then, the matrix of common neighbors is defined such as:

B = D̄
t
D̄ = D̄D̄

t.

Then, each element bij of the matrix B stands for the number of neighbors shared by the

ε-neighborhood of observations i and j. In particular, the elements bii stands for the number

of neighbors contained in the ε-neighborhood of the observation i.

Different remarks can be done from Definition 8.1.1. Firstly, we can note that the dissimi-

larity matrix can be based on different similarity metrics. The most common one is of course

the Euclidean distance but other distances, or measures, can be used depending on the data
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considered. In particular, for DNA sequences, a well-known similarity measure is the Pearson

coefficient. The second remark concerns the choice of the smoothing parameter ε which plays

a major role in the definition of the neighborhood. Indeed, this parameter has to be small

enough to separate the clusters, but sufficiently large to group points belonging to the same

cluster and to avoid the over-estimation of the number of clusters. The choice of ε will depend

on the dataset studied and we will discuss about its calibration in Section 8.2.2.3. Finally, we

can note that the common neighborhood matrix B is symmetric (bij = bji, ∀i, j ∈ {1, . . . , n})
and its elements are such that bij ∈ N. They stand for the number of common elements in the

ε-neighborhoods of observations xi and xj . An example is given in Figure 8.1a where from a

dissimilarity matrix based on the Euclidean distance, a binary ε-matrix is built with ε = 0.145

(Figure 8.1b), and its associated common neighborhood matrix is computed and illustrated in

Figure 8.1c.

When the ε-neighborhood is built from a distance, we can interprate geometrically the

common neighbors. Indeed, They stand for the cardinality of the intersection of two balls,

centered respectively in xi and xj with radius ε. In this case, an other definition for the

common neighborhood which is equivalent to the previous one, can then be stated:

Definition 8.1.2. Let {x1, . . . , xn} be a dataset of n observations described in a p-dimensional

space having a metric. For ε > 0, the common neighborhood between a pairwise of observations

(xi, xj) is defined as:

bij = card (B (xi, ε) ∩ B (xj , ε)) ,

where B (x, ε) denotes the ball centered in x with radius fixed to ε and card (A) the cardinality

of A.

This definition is illustrated in Figure 8.2a; data points are plotted in their 2-dimensional

space, with their respective ε-neighborhood determined by balls centered on each data point,

with radius ε = 0.145. The resulting common neighborhood matrix is depicted in Figure 8.2b.

8.1.1.2 A family of binary matrices

The common neighbors matrix gives the number of neighbors shared in the ε-neighborhood

of a pair of observations. Consequently, this supposes that higher this number is, the more

the observations are similar. From this, the level of common neighbors can be viewed as a

level of sparsity inside the data. Indeed, by thresholding the common neighborhood matrix

for a certain level of common neighbors, the resulting matrix tends to keep the data points

which are, in terms of graph theory, well-connected with the rest of the data and to stress the

intrinsic structure of the data.

From this idea, we are going to introduce the collection of binary neighborhood matrices

according to this definition:

Definition 8.1.3. Let B = (bij)i,j∈{1,...,n} denotes a common neighborhood matrix built from
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(b) Matrix of common neighbors.

Figure 8.2: Plot of data points in a 2-dimensional space (a) and the associated common
neighbors matrix (b) for a fixed value of ε (ε = 0.145).

X ∈ R
n×p. Then, Bλ defines a binary matrix with level of sparsity λ ∈ {1, . . . , λm} and

λm = maxi,j (bij), noted as λ-matrix, if its elements bλij satisfy the following conditions:

bλij =







1 if bij ≥ λ
0 otherwise

. (8.1.1)

In this case, (B1, . . . , Bλm
) stands for a collection of binary neighborhood matrices whose the

level of sparsity depends on the number of common neighbors.

This definition enables to introduce sparsity among the data. Indeed, according to the

threshold λ, we can note that the number of pairs of observations satisfying the condition, in

Definition 8.1.1, decreases with the increase of the threshold λ. Consequently, the λ-matrix is

filled up with zeros, with respect to the λ-level and becomes then sparsier.

Proposition 8.1.1. Let consider (B1, . . . , Bλm
) a family of λ-matrices. There exists inclusion

relations ⊆ between the collection of λ-matrices:

Bλm
⊆ Bλm−1 ⊆ · · · ⊆ Bλ ⊆ · · · ⊆ B1, (8.1.2)

where λ ∈ {1, . . . , λm} stands for the level of common neighbors and λm = maxi,j (bij) denotes

the maximum number of shared neighbors.

Proof. Let us consider B = (bij)i,j∈{1,...,n} the common neighborhood matrix and its cor-

responding family of λ-matrices. In the case λ = 1, the 1-matrix B1 is equivalent to the

ε-neighborhood graph. Indeed, by using the definition of the common neighborhood graph,

its elements bij are defined such as bij = card (B (xi, ε) ∩ B (xj , ε)) which can be rewritten as

bij = card (‖xi − xj‖ ≤ ε). Consequently, according to Definition 8.1.1, the elements of the

1-matrix associated to B satisfy b1ij = 1 {bij ≥ 1} i.e. b1ij = 1 {‖xi − xj‖ ≤ ε} which corre-

sponds to the definition an ε-neighborhood. This B1 matrix is the most complex form of
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3 0 0 0 3 0 0 0 3
0 3 0 0 0 3 0 3 0
0 0 2 0 0 0 2 0 0
0 0 0 1 0 0 0 0 0
3 0 0 0 3 0 0 0 3
0 3 0 0 0 3 0 3 0
0 0 2 0 0 0 2 0 0
0 3 0 0 0 3 0 3 0
3 0 0 0 3 0 0 0 3

(a) Common neighborhood matrix.

1 0 0 0 1 0 0 0 1
0 1 0 0 0 1 0 1 0
0 0 1 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0
1 0 0 0 1 0 0 0 1
0 1 0 0 0 1 0 1 0
0 0 1 0 0 0 1 0 0
0 1 0 0 0 1 0 1 0
1 0 0 0 1 0 0 0 1

(b) λ-matrix with λ = 1.

1 0 0 0 1 0 0 0 1
0 1 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0 1
0 1 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 0

0 1 0 0 0 1 0 1 0
1 0 0 0 1 0 0 0 1

(c) λ-matrix with λ = 3.

Table 8.1: Example of a family of λ-matrix for λ = 1 and λ = 3 from a common neighborhood
matrix.

λ-matrices since all the possible connections between pairwises of observations are marked in

a fixed ε-neighborhood.

By considering the B2 matrix i.e. the λ-matrix with λ = 2, only the elements bij superior

to 2 are kept:

1. case bij = 0, then b1ij = b2ij = 0.

2. case bij = 1, then b1ij = 1 and b2ij = 0.

3. case bij > 1, then b1ij = b2ij = 1.

Hence, since case 1. and case 3. are similar between the λ-matrices B1 and B2, and according

to case 2., the elements of the matrix B2 form subsets of the matrix B1 and we can note

that B2 ⊆ B1. This argument can be generalized for λ > 2 and it follows that the remaining

pairwises of observations are subsets of the 1-matrix. Consequently, there exists inclusion

relations between the collection of λ-matrices and this enables us to conclude.

The interest of this property is that outliers and noisy data disappear with the increase

of the λ-level, as the connections between pairwises become sparsier, with the increase of the

threshold λ.

Before making some links with existing approaches, we illustrate the family of λ-matrices

with the example depicted in Table 8.1. From a common neighborhood matrix in Table 8.1a.,

a 1-matrix is built by thresholding the matrix 8.1a. with a level λ = 1. All the connection

points linked to the common neighbors matrix are kept conversely to the case with level λ = 3

where 3 observations were removed. The 3-matrix is thus much sparsier.

8.1.2 Link with existing neighborhood

At this point, some links can be done with the different kinds of neighborhoods existing in the

literature. In particular, the notion of common neighbors introduced, is close to the shared

nearest neighbors of Jarvis and Patrick [97]. In particular, conversely to our approach, in
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which an ε-radius is fixed to determine a neighborhood, Jarvis and Patrick considered the k-

nearest list of neighbors of each data. The number of shared neighbors is then defined in a pair

of observations, as the number of correspondences between both lists of k-nearest neighbors.

The main advantage of using the k-nn instead of an ε-distance, is perhaps the adaptation of

the maximum distance between the observation i and its kth nearest neighbor. It enables

in particular to deal with cases where the distances intra-clusters are different. However, in

some situations, since the volume of the sphere containing the k-nn changes according to

the compactness of the data points, an isolated point can share the same neighborhood as

grouped points. To avoid this situation, Jarvis and Patrick added a condition on the pairwises

of data points such as the shared neighborhood is computed only if both observations belong

to the list of k-nearest neighbors of each of them. However, it appears that such cautions, in

certain cases, are non-efficient. In particular, in the case of Gaussian samples with different

covariance matrices, Ertörz et al. [51] showed that the shared nearest neighbors measure

tended to overestimated the number of clusters.

The common neighborhood matrix can also be compared to the transitive fuzzy similarity

measure proposed by Vathy-Fogarassy et al. [170]. Their measure is a normalized version of

the shared neighborhood which, in addition, takes into account the “spreadness” of the nearest

neighbors (the nearest neighbors of the nearest neighbors, ... , of the nearest neighbors of the

pairs of observations). However, an issue remains in their approach since no method is proposed

to calibrate the degree of spreadness. In our approach, such a spreadness is already included

in the common neighbor measure according to the ε-neighborhood. Indeed, when the ε-

neighborhood is defined according to a distance, our measure stands for the number of elements

contained in the intersect of balls with radius ε. Thus, in the same manner as the shared

neighbors, we dispose of information about the close neighbors of observations xi on the one

hand, i.e. those which belong to the intersection of their balls as it is illustrated in Figure 8.3a.

On the other hand, the measure provides also information about the farest neighborhood of xi

as it is depicted in 8.3b. We can remark that, according to the ε-neighborhood, there is no need

to have the same restriction on the neighborhood as the shared common neighbors defined

by Jarvis and Patrick. Consequently, the common neighbors measure provides an idea of the

spreadness of these neighbors. It presents also the advantage that no additional parameter

needs to be calibrate contrary to the approach of Vathy-Fogarassy having to calibrate both k

and the degree of spreadness.

Therefore, in our approach, the common neighbors matrix is defined through an ε-

neighborhood. This enables to both consider the closest points, as they correspond to high

level of the common neighbors, but also the farest ones inside the ε-neighborhood, which are

associated to a low level of common neighbors. This gives a certain idea of the spreadness of

the neighborhood. Moreover, conversely to the existing approaches, our idea is to introduce

sparsity inside the dataset in order to visualize the intrinsic structure of the data determining

thus, the number of clusters. We have introduced a collection of λ-matrices and differently to
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(a) x1 ∈ B (x2, ε) and x2 ∈ B (x1, ε).
The common neighborhood measure
is 7.
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(b) x1 /∈ B (x2, ε) andx2 /∈ B (x1, ε) .
The common neighborhood measure
is 2.

Figure 8.3: Two situations of the ε-neighborhood which illustrates the notion of spreadness.

the existing approaches, our work proposes to use these structures and their different degrees

of sparsity in order to stress and visualize the structure of the data. This is done according to

a seriation approach.

8.2 The PB-Clus algorithm

Since we dispose of a collection of binary symmetric matrices with different degree of sparsity,

we are going to use a seriation approach to reorder the rows and the columns of each matrix

in order to produce a block-representation. A collection of reordered matrices is then created.

Besides, the level of sparsity λ is chosen from the quality of the block-visualization according

to a compactness criterion and allows to assess the number of clusters in the data.

8.2.1 Seriation on the collection of λ-matrices

8.2.1.1 Reordering criterion

As the common neighborhood and its associated family of λ-matrices reveal both a local

structure, between pairs of observations, and a global structure (group clusters), we are going

to use such an information according to a seriation approach, in order to obtain a block

representation of the λ-matrices. As we saw in Chapter 7, there exist several criteria in

the literature to realize the reordering of a matrix. All the measures of similarity introduced

previously can be applied, but the reordering criterion, that we chose here, is the well-known

inner-product already used in the seriation problem by [6] and [123] in particular.

Let us consider the common neighborhood matrix B = (bij)i,j∈{1,...,n} and its family of the

λ-binary matrices (B1, . . . , Bλm
) with λm = maxi,j (bij). Then, the permutation function Ψ

which aims to optimize the sum of consecutive scalar is as follows:
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∀λ ∈ {1, . . . , λm} : Ψ∗ = arg max
Ψ

n−1
∑

i=1

(bλΨ(i))
tbλΨ(i+1)

||bλΨ(i)||.||bλΨ(i+1)||
.

The use of the inner-product from the λ-matrices enables to group the observations whose

share a same neighborhood. Indeed, the λ-matrices are made of (0, 1) n-dimensional row

vectors and each of them indicates if two observations have in common some neighborhood

for a certain level λ. The difference in terms of number of common neighbors is then erased

and it remains only a binary information about the neighborhood. Hence, given a λ level,

two observations are similar if they share the same neighborhood, implying that, the inner

product will be equal or almost equal to 1. At the opposite, if 2 observations have no common

neighbor, then the inner product will tend to 0. Consequently, the criterion based on the sum

of the consecutive inner products is maximum when the adjacent rows and columns share the

same neighborhood.

Besides, according to the links established between the common neighborhood and the

clusters, the inner-product have interesting geometrical properties to define a cluster.

Definition 8.2.1. A cluster G is a subset of points whose their vector of common neighbors

are correlated between them.

Consequently, in the easiest case, clusters can be simply defined as connected components

which leads to the following fact: the vectors of a same cluster will be correlated between them

and conversely, the vectors associated to different clusters will be pairwise orthogonal. If the

groups are not well-separated, no orthogonal components will be detected and groups structure

will not appear clearly. We can then foresee the interest of the collection of λ-matrices which

enables to introduce sparsity in the data, in order to reveal subsamples forming well-separated

groups.

8.2.1.2 The algorithm

The parsimonious block clustering algorithm that we propose and named PB-Clus, is based

on the previous definition. PB-Clus is a forward stepwise algorithm which aims to rearrange

the rows and columns of the collection of λ-matrices such as the adjacent rows/columns are

the most similar.

Initially, we dispose of a family of λ-matrices, built from a common neighborhood matrix.

Let us consider a certain λ-level and its associated λ-matrix. Initially, an observation i is

chosen amongst the n observations and we denote by bλi the boolean vector associated to the

ith column of the λ-matrix. From this vector bλi , the algorithm will create three different

subsets: a first subset noted Sℓ which lists the elements whose the associated binary vectors

are colinear to bλi , the correlated ones are grouped in the subset Sc and the last subset So

consists of the elements whose the associated binary vectors are orthogonal to the vector bλi .

The subset Sℓ has the priority and its elements are placed next to the observation i, then the
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algorithm considers the element in Sc whose the linked binary vector of common neighbors is

the more correlated with bλi . If the subsets Sℓ and Sc are empty for a current bλi , then a vector

in So is randomly selected to be placed next to i. Then, new subsets Sℓ,Sc,So are formed

from the last observation ordered and this scheme is iterated until all the observations are

rearranged. We can detail the algorithm in this manner for the case of a λ-matrix:

1. Let Lo the set which will contain the list of reordered observations and Li the list of all

observations. Initially, Lo = ∅ and Li = {1, . . . , n}.

2. Let i the current observation and Li stands for the list of remaining non-ordered obser-

vations.

3. Create the sets Si
ℓ,Si

c,Si
o from Li.

4. a. If Sc 6= ∅, then select the observation j whose the binary λ-vector is the most

correlated to i.

b. If Sc = ∅ and Sℓ = ∅, then select randomly an observation j in So.

5. Complete Lo ← i,Sℓ.

6. Replace Li ← Li r {i,Sℓ, j} and i← j.

This procedure is iterated until all the elements in the list Li are arranged. The final

ordering list Lo is then applied on the λ-matrix, and this enables us to visualize it. It is also

possible to visualize the matrix from the rearranged matrix containing the inner-product of

pairs of binary vectors which makes the visualization softer. Besides, we can remark that this

algorithm is a forward stepwise algorithm as it considers locally the rearrangement of the obser-

vations from different subsets. This implies that the position of observations, already ordered,

remains unchanged for a current permutation. Consequently, the present algorithm proposes

an approximative solution for the reordering of a matrix and is not optimal in comparing to

some existing approaches in the literature.

The PB-Clus algorithm is applied for several values of λ. This creates a collection of

reordered λ-matrices. Therefore the level of sparsity λ needs to be selected, in order to propose

a visualization, such as the intrinsic structure of the data appears clearly. This criterion is

detailed in the following paragraph.

8.2.1.3 A compactness criterion

For a fixed ε-neighborhood, the main issue of this collection of λ-matrices remains in the

determination of the level λ. The seriation criterion can not be used in our context to select

the λ-level since it would favour small values of λ i.e. little sparsness. Indeed, a high λ-level

would imply very sparse matrices with lots of zero columns. Their inner products would be

equal to zero, which would lead to decrease the seriation criterion.
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(a) Selected λ-rearranged matrix
with λ = 14 and C = 12.5.

(b) Random λ-matrix with λ = 14
and C = 111.2.

(c) Selected λ-rearranged matrix
with the non-standardized criterion
(λ = 22).

Figure 8.4: Influence of the structure selected by the compactness criterion.

In order to tackle this issue, we propose a criterion based on the quality of the visualization

of the structure of the data since we want to determine the number of clusters in the dataset.

Let us introduce the following compactness criterion:

Definition 8.2.2. Let us consider the family of rearranged λ-matrices noted as (Bλ)λ∈{1,...,λm}.

Then, the λ-level which corresponds to the best visualization of the intrinsic structure of the

data is:

λ∗ = arg min
λ

∑n
i=1

∑n−1
j=1

∣

∣

∣
bλi,j − bλi,j+1

∣

∣

∣

min
(

∑n
i,j=1 b

λ
ij ,
∑n

i,j=1

(

1− bλij
)) ,

where
(

bλij

)

i,j∈{1,...,n}
denotes the elements of the λ-rearranged matrix Bλ.

We can remark that this criterion is linked, in a certain way, to the consecutive ones

property. Indeed, this criterion is minimized when the number of switches between the 0s and

1s on the rows of the matrix is weak. This implies that the rearranged matrix will have a

compacter representation. Indeed, the compactness criterion is mainly defined by the quantity
∑n−1

j=1

∣

∣

∣
bλi,j − bλi,j+1

∣

∣

∣
which corresponds to the number of changes between zeros and ones on

ith row. Moreover, this quantity is minimum when the 1s are ordered in consecutive positions

in the row i and is maximum in the case of a randomized binary matrix. Such a situation is

illustrated in Figure 8.4a which stands for the λ-rearranged matrix selected by the minimum

of the compactness criterion and Figure 8.4b which corresponds to the same λ-matrix but in a

randomized order. We can observe that, for a same λ-level (λ = 14), the compactness criterion

is minimum for the block representation in Figure 8.4a for a value of C = 12.1 whereas it is

ten times larger in the randomized case since C = 111.2.

However, the criterion is standardized by the minimum between the total number of zeros

(
∑n

i,j=1

(

1− bλij
)

) and of ones (
∑n

i,j=1 b
λ
ij) in the rearrange matrix considered. This additional

term aims to prevent the case of an infinite sparsity. Indeed, from the same situation in
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Figure 8.4a, the non-normalized criterion selects a sparser λ-matrix (λ = 22) which is however

useless to determine the number of clusters (see Figure 8.4c).

8.2.2 Computational considerations

8.2.2.1 Initialization

The PB-Clus algorithm is a finite and non-iterative algorithm meaning that there is no con-

vergence problem which occurs. The solution obtained by the algorithm depends only on the

initial row chosen to start the sequential selection process. Even though the algorithm is not

sensitive to the starting point since the local neighborhood is preserved, the visualization of

the reordered matrix can however suffer from a bad initialization. Indeed, since the proposed

algorithm reorders objects into a sequence along a one-dimensional continuum, a “bad” ini-

tialization can lead to separate a same cluster in two parts because of the one-dimensional

ordering. This situation is reinforced by the fact that PB-Clus is a forward algorithm which

considers only the best similarity between to the current observation i and its following one

i + 1 and does not take into account the order of the i first observations. Consequently, in

order to tackle this issue, we propose a deterministic strategy for initializing the algorithm. It

is based on the notion of “core” point or “representation” point introduced by Ertöz et al. [51]

or the notion of “high connectivity” in graphs theory. The underlying idea is to select an

observation whose the probability to belong to a cluster is very high. In particular, this situa-

tion occurs when the element share lots of neighbors with other observations. Thus, the more

the number of common neighbors is high for an observation, the more the probability of this

observation to belong to a cluster is high. Consequently, we propose to initialize the PB-Clus

algorithm by selecting for the first row of the rearrange matrix, the observation which has the

highest number of common neighbors. This guarantees that this observation remains in a high

density area.

8.2.2.2 Computational cost of the PB-Clus algorithm

The computation cost of the PB-Clus algorithm depends on several parameters: the size of

the common neighborhood matrix, the collection of λ-matrices and those of each of λ-matrix.

In particular, the construction of the common neighborhood matrix is obtained according to

the ε-neighborhood. Indeed, the computation of the common neighbors can be comprehended

through the computation of an adjacency matrix noted D̄ whose its entries are either 0 or 1

depending if an observation i belongs to the ε-neighborhood of an observation j (cf. Def-

inition 8.1.1). The computation of the common neighborhood matrix is then obtained by

multiplying the adjacency matrix with itself. The time complexity of a naive approach com-

puting this adjacency matrix is at worst o
(

n3
)

. However, we can expect that the number of

common neighbors for each point will be small compared to n, leading to a sparsier common

neighborhood matrix.
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Moreover, the PB-Clus algorithm is admittedly more time consuming than the traditional

seriation algorithm since it is executed not only on one matrix but on a collection of binary

matrices. However, on the one hand, since PB-Clus is a forward algorithm, it is linear, and on

the other hand, the thresholding of the common neighbors matrix by the λ-values, introduces

lots of sparsity. The collection of binary matrices which refers to different degrees of sparsity

becomes very sparse as the λ-value increases: the more the λ-level is high, the more the λ-

matrix is filled up with zeros removing thus column and row vectors of the study. Therefore, the

number of ordering elements decreases drastically which consequently drops the computational

time.

8.2.2.3 Choice of the ε-neighborhood

The PB-Clus algorithm is based on two parameters which are the λ-level and the ε-neighborhood.

The first parameter aims to introduce a level of sparsity in the binary dissimilarity in order

to highlight a subset of elements which characterize the intrinsic structure of the data. This

λ-value allows to ease the visualization of the data structure and is determined according to

the compactness criterion introduced in paragraph 8.2.1.3. The second parameter charaterizes

the ε-neighborhood considered among the data. This parameter is important in the algorithm

since it determines the neighborhood of each observation. In particular, this parameter needs

to be small enough to separate the clusters but sufficiently large to group points belonging

to the same cluster by avoiding the building of subclusters. The ε parameter is consequently

indirectly linked to the quality of the visualization of a rearranged matrix. Consequently, in

the same manner as the λ-level, the selection of the value of ε could be done according to the

compactness criterion.

However, we propose, in practice, to use the distribution of distances of pairs of observations

since the ε-distance is linked to the studied dataset. A list of different values of ε is created

from quantiles varying between 0.1 and 0.5. We can expect that an interesting neighborhood

remains below 50% of the distance between pairwises of observations. Besides, we noticed

empirically that an ε-value fixed to the value associated approximatively with the first quartile

of the distribution of pairwise distances, gave good results for the construction of the common

neighbors matrix.

8.3 Links with level sets

The family of λ-matrices, presented in this chapter, aims to find the intrinsic structure of the

data i.e. estimating the number of clusters in a dataset. From very recent readings, this family

of λ-matrices could be viewed as several subsets of observations which could be related to the

modes of an underlying density in the feature space. The aim of this paragraph is to suggest

some links which could be done with the definition of level sets.

In particular, let us introduce the formal definition of cluster proposed by Hartigan [82]:
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Given a random variable X ∈ R
p with probability f , let t > 0 denotes a fixed and positive level

set, then the t-level set of the density f is defined as:

L (t) = {x ∈ R
p|f (x) > t} ,

and k(t) denotes the number of connected components associated to L (t).

In addition to this definition, Hartigan showed that this collection of k(t) clusters has a

hierarchical structure. In particular, he pointed out that for any two clusters G1 and G2 with

different levels or not, then G1 ⊂ G2 or G2 ⊂ G1 or G1 ∩G2 = ∅.
From this definition, many authors used this notion to tackle statistical issues such as

density estimation, multi-modality tests or density contour clusters estimation and particularly

through the notion of excess mass approach (see [146] for more details). In particular, most of

the works consist principally of estimating the density contour clusters i.e. the level set L (t),

before determining the number of connected components of the resulting set estimate.

More recently, some authors used this approach to cluster tree estimation as in the works of

Struezle and Nugent [162] whereas others ([25, 43, 13, 116], etc) re-considered it, in the context

of graphs theory, in order to tackle the issue of determining the number of components or of

choosing a neighborhood graph.

The main work, which is of our interest, is the one of Biau et al. [13] which pro-

posed an asymptotic graph-based estimator of the number of clusters by bypassing the es-

timation of the level set. In particular, they proposed to first construct a set J(t) =

{i ∈ {1, . . . , n} : fn (Xi) ≥ t} where fn stands for any estimation of the probability density

f , before considering a sequence of real and positive numbers ε ≥ 0 from which they define an

ε-neighborhood matrix with binary entries. Then, from the set J(t), a graph G(t) is produced,

in which two elements xi and xj are assumed to belong to the same cluster, if there exists a

chain of intermediate elements which are connected between them. Biau et al. showed that

the true number of clusters k(t) can be estimated by the number of connected components in

the graph G(t). They pointed out that this estimator was consistent.

From this, we are tempted to draw a parallel between the graph G(t) and the collection of λ-

matrices that we proposed in this section. Indeed, the λ-matrix stands for a connection graph

which stresses pairs of observations sharing a same neighborhood with a level λ of sparsity. In

the same manner as Biau et al., who look for a chain of elements connected between them to

form a cluster, the PB-Clus algorithm reorders objects into a sequence along a one-dimensional

continuum. In our case, a cluster is formed when vectors of common neighbors are correlated

between them and the number of clusters is estimated by the number of connected components

i.e. the number of blocks obtained according to the visualization of the reordered matrix. For

a further work, it would be interesting to show that our approach enables to compute an

estimator of the number of clusters and to prove its possible consistency.



8.3. LINKS WITH LEVEL SETS 184



Chapter 9

Experiments

This section presents experiments, on simulated and real datasets, in order to highlight the

main features of the PB-Clus algorithm from different situations. The aim of the first para-

graph is to assess, on simulations, the behavior of the compactness criterion, with respect to

the ε-neighborhood and the λ-level of common neighbors. On the second experiment, the

PB-Clus algorithm is applied on simulated dataset where the problem of unbalanced groups

occurs while in the second section, the case of overlapping groups will be considered. The third

section will deal with noisy datasets. In particular, the behavior of the PB-Clus algorithm

will be tested on noisy data and will be then compared with three other methods of seriation.

Finally, the two last sections will focus on comparing on real datasets the efficiency of the

PB-Clus algorithm on seriation benchmark datasets on the one hand and on clustering ones,

on the other hand.

Note that, for all these experiment, the shared neighbors has been computed from a dis-

similarity matrix which has been built using the Euclidean distance. However, the use of the

Euclidean distance is not necessary, the practitioner can use the metric which seems to be the

most appropriate for the considered datasets.

9.1 Choice of the ε-neighborhood

As the PB-Clus algorithm is entirely defined by the ε-neighborhood and the λ-level, the least we

can do, is to assess the compactness criterion to select a visualization which clearly represents

the intrinsic structure of the data. For this simulation, 300 observations are simulated: they

consist of 3 balanced groups and each group is modeled by a Gaussian density in 2 dimensions

for which the means vector of each cluster is as follows:

m1 = (−0.4,−0.3), m2 = (0.4,−0.3), m3 = (0, 0.3).

Their covariance matrix is isotropic, common to the three clusters and fixed to S = σ2I2 with

σ2 = 0.04.
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The projection of the data in their 2-dimensional space is illustrated in Figure 9.1a. We

can notice that the three clusters overlap. Besides, the PB-Clus algorithm is executed from

this simulation for different values of the ε-neighborhood and of common neighbors which

varying with respect to ε. More precisely, we consider the distribution of pairwise Euclidean

distances from which the values of ε is obtained for the quantiles 0.05, 0.10, 0.15, etc, until 0.40.

Furthermore, the set of λ-values depends on the ε-neighborhood and the PB-Clus algorithm

is executed on all its values. Finally, this simulation is repeated 20 times and the reported

results is averaged on these repetitions.

Figure 9.1b stands for the evolution of the compactness criterion, averaging on the 20 trials,

with respect to the ε-neighborhood and the λ-level of common neighbors. Please, note again

that the values, given for ε, stand for the quantiles of the pairwise distances distribution of

data. First of all, we can notice in Figure 9.1b the size of each ε-curves are different and as the

ε-value increases, the minimum of the compactness criterion is reached for a larger number

of common neighbors. This phenomenon is explained as, when ε increases, the volume of

each ball, centered in a data point to build the near neighborhood, increases. This leads

automatically to a rise of different levels of sparsity (λ-values) to consider. The effects of

different sizes of the family of λ-matrices, can be viewed both in Figure 9.1b in a first hand

and in Figures 9.2 in a second hand. Let us consider the case ε = 0.05 which corresponds to

a very small ε-neighborhood. As we can observe in Figure 9.2a, the set of common neighbors

is not large enough to provide a good visualization. In the opposite case, if we consider a too

large ε-neighborhood, the collection of λ-matrices is larger and it appears that the PB-Clus is

time-consuming. In average, the minimum of the compactness criterion is reached by the 6th

curve, as it is depicted in Figure 9.1b. It corresponds to an ε-neighborhood which is associated

to the quantile 0.30. Furthermore, we can note that the associated visualization depicted in

Figure 9.2e. is very clear and stresses an intrinsic structure of the data of 3 groups comparing

to Figures 9.2a, 9.2b, 9.2f. In addition, we can note that in average, for ε ∈ [0.2; 0.3], the

visual quality of the selected reordered matrices are similar (see Figures 9.2c, 9.2d and 9.2e)

and this is also verified by the associated minimum value of compactness criterion which

remain very close to each other (Cλ = 19.3, Cλ = 18.9 and Cλ = 17.7 for ε ∈ {0.20, 0.25, 0.30}).
Consequently, for the following experiments, we are going to fix the ε-value to 0.25.

9.2 Seriation on unbalanced datasets

The goal of this second experiment is to evaluate the efficiency of the PB-Clus algorithm, in

the case of unbalanced data. In this paragraph, the data are simulated from a mixture of three

Gaussians, in a 2-dimensional space, with different size and compactness. In particular, we

consider the case where two clusters overlap. These clusters consist in, respectively, n1 = 100,

n2 = 200 and n3 = 15 observations each. Their means clusters are:

m1 = (−12,−9) , m2 = (0, 3) , m3 = (5, 9) .
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(b) Evolution of compactness criterion.

Figure 9.1: (a) Plot of simulated data in their 2-dimensional space and (b) evolution of the
behavior of the compactness criterion with respect to the ε-neighborhood and the λ-level of
common neighbors.

(a) Rearranged λ-matrix with ε =
0.05 selected by the compactness
criterion (λ = 2).

(b) Rearranged λ-matrix with ε =
0.10 selected by the compactness
criterion (λ = 1).

(c) Rearranged λ-matrix with ε =
0.20 selected by the compactness
criterion (λ = 10).

(d) Rearranged λ-matrix selected
with an ε-neighborhood fixed ε =
0.25 (λ = 25).

(e) Selected rearranged λ-matrix
by the compactness criterion
(ε = 0.3, λ = 38).

(f) Rearranged λ-matrix with ε =
0.40 selected by the compactness
criterion (λ = 57).

Figure 9.2: Rearranged matrices selected by the compactness criterion for each ε-
neighborhood.
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Figure 9.3: Unbalanced data: Projection of the simulated data in their 2-dimensional datasets
(a), evolution of the selection criterion with respect to the nomber of common neighborhood
(b) and the associated reordored matrix obtained from the minimum criterion (c).

Their covariance matrix have an isotropic shape, such as Σi = σiI2 for i ∈ {1, 2, 3} with

parameters σ1 = 1.5, σ2 = 10 and σ3 = 0.5. Such a situation is illustrated in Figure 9.3a

where the data are projected in their 2-dimensional space. The PB-Clus algorithm is applied

on this simulated dataset for a neighborhood range varying between 1 (no sparsity) to 39

common neighbors. The maximum threshold of common neighbors is fixed from the empirical

distribution of common neighbors shared between each pairwise of observations and stand for

75% of the population. We can see in Figure 9.3b, that the criterion of visualization is minimum

for a shared neighborhood of 9 neighbors. Finally, Figure 9.3c illustrates the rearranged matrix

for a level of shared neighbors of 9. As we can observe, the intrinsic structure is well-defined

in this matrix since the 3 clusters can be visualized. In addition, this visualization gives

information about the proximity of the two first clusters as we can see there exist connections

between them which explain the overlapping clusters.

9.3 Influence of overlapping groups in visualization

In this second experiment, we would like to assess the influence of overlapping clusters, on the

vizualisation of the number of clusters, in the PB-Clus algorithm. In order to measure it, we

simulate 3 Gaussians in a 2-dimensional space such as their respective means satisfy:

m1 = (
δ

2
, 0), m2 = (δ,−δ), m3 = (0,−δ),

where the parameter δ varies between 0 and 3. For each simulation, the position of clusters

means fluctuates. This reflects the degree of overlapping clusters. Figures 9.4 stand for six

different studied situations where the overlapping parameter δ = {0, 1, 1.5, 2, 3}. Consequently,

when the case δ = 0 occurs, all the means are equal to 0 (m1 = m2 = m3 = 0) and the 3
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Simulation

x y
nb. of shared neighbors per. of excluded data criterion value

0 0 28.3±16.8 0.22±0.12 40.4±8.1

1 1 23.7±6.9 0.12±0.04 37.1±2.1

1.5 1.5 22.3±15.6 0.07±0.06 34.4±7.0

2 2 26.6±5.9 0.06±0.02 19.8±2.6

3 3 14.3±9.6 0.03±0.03 9.8±1.4

4 4 6.4±6.4 0.01±0.02 7.2±0.4

Table 9.1: Results obtained from 10 simulations.

groups are totally merged. In the opposite case, i.e. δ = 3, the groups are well-separated and

it corresponds to the situation where m1 = (1.5, 0), m2 = (3,−3) and m3 = (0,−3). The

PB-Clus algorithm is executed on these different situations and each simulation is repeated

20 times.

The main results are reported in Table 9.1: the averages of the evolution of the number

of shared neighbors, the percentage of excluded data and also, the compactness criterion with

their standard deviations, according to the values of the overlapping parameter δ. As expected,

we can observe that, according to the degree of overlapping of clusters, the compactness

criterion chooses a sparser representation. In particular, smaller δ is, the more the percentage

of excluded data increases. Indeed, if δ is small which depicts a situation where clusters are

overlapping, then the intrinsic structure of the data becomes fuzzy which leads to exclude

more and more data. The extreme cases is when the situations δ = 0 or δ = 1 occur. There

is then no more structure in the data. Indeed, in these both cases, even though the algorithm

removes many data since it represents 12% to 22% of observations, the structure of 3 clusters

is not visible anymore. Such a situation is illustrated in Figures 9.5a and 9.5b, which depict

the rearranged matrices obtained for δ = 0 and δ = 1 from one simulation. As we can observe

in Figure 9.4b, the clusters are so much superimposed that they form a unique cluster. The

PB-Clus algorithm does not detect any structure at all, as Figure 9.5b illustrates it. However,

as a structure appears in the datasets (δ ≥ 1.5), then the PB-Clus algorithm enables to stress

it, as in Figures 9.5c–f.

9.4 Noisy data

This section presents three experiments on noisy data: in the first experiment, the behav-

ior of the PB-Clus algorithm according to noisy data is assessed. The aim of the second

paragraph is to compare the results obtained by our algorithm with several existing seriation
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Figure 9.4: Plots of the simulated datasets according to different situations of simulations.

(a) δ = 0 (b) δ = 1 (c) δ = 1.5

(d) δ = 2 (e) δ = 3 (f) δ = 4

Figure 9.5: Rearranged matrix according to the different situations of simulations.
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methods. Finally, the last experiment deals with the efficiency of the PB-Clus agorithm when

the dimension of the data increases.

9.4.1 Behavior of PB-Clus according to noisy data

In this first experiment, we assess the behavior of the PB-Clus algorithm in the case of noisy

data. Three Gaussians are simulated in a 2-dimensional space and consist of 100 observations

each. The cluster means are well-separated and the variance of clusters is supposed to be

isotropic. The parameters used for the simulations were the following:

m1 = (1.5, 0), m2 = (3,−3), m3 = (0,−3),

for the mean vectors of the three clusters and their covariance matrix has been fixed to Σ = σI2

with σ = 0.5. These groups are voluntary well-separated, in order to test the efficiency of our

proposed method to noisy data. Therefore, we generate noisy data according to a uniform

density on an hypercube of dimension 2. In order to assess the sensitivity of the visualization

to noise, the percentage of noisy data, in the simulated sample and noted δ, varies between

10% to 100% of the observed data. For each level of noise δ, we repeat the simulation twenty

times. Table 9.2 stands for, respectively, the averages of the number of shared neighbors,

the percentage of excluded data i.e. the level of sparsity, and also the minimum value of the

criterion and their standard deviation.

First of all, we can observe that the more the percentage of noisy data increases, the more

the sparsity level increases. Indeed, both the percentage of excluded data and the number

of shared neighbors tend globally to raise with δ. The introduction of such a sparsity, in the

dataset, allows to preserve a relative good visualization of the intrinsic structure. However,

the quality of the visualization of the rearranged matrix decreases and this is explained by the

increase of the compactness criterion.

Furthermore, we represent in Figures 9.6 and 9.7 the simulated data and their associated

rearranged matrix for 3 different levels of noise (δ = {0.4, 0.8, 1}). We can observe that,

admittedly the visualization deteriorates just a little, the visualization of the number of clusters

remains clear. The quality of these visualizations is explained as the sparsity level increases,

the number of excluded data increases. Consequently, only the strong-connected data are kept

which enables to stress the intrinsic structure of the studied data.

9.4.2 A comparative study between seriation methods

The main goal of this experiment is to compare the visualization provided by the PB-Clus

algorithm with those obtained by three other seriation methods. We consider a hierachical

clustering algorithm (HC), an algorithm developed by Chen [39] and based on the Robinsonian

property (Chen) and also an algorithm based on the anti-Robinsonian property and proposed

by Brusco et al. [26]). These methods were already cited in Chapter 7 and are also detailed
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Parameter nb. of shared neighbors per. of excluded data criterion value

δ = 0.10 23.4±6.3 0.05±0.01 12.35±1.21

δ = 0.20 27.2±8.4 0.06±0.02 14.63±2.11

δ = 0.40 44.8±9.5 0.09±0.02 20.78±3.34

δ = 0.80 46.4±17.3 0.13±0.04 38.02±3.48

δ = 1.00 65.1±23.3 0.10±0.05 44.87±1.81

Table 9.2: Results obtained from 20 simulations.
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Figure 9.6: Plots of the simulated dataset in the cases of 40%, 80% and 100% of additional
noisy data.

(a) 40% of noisy data. (b) 80% of noisy data. (c) 100% of noisy data.

Figure 9.7: Rearranged matrices in the cases of 40%, 80% and 100% of additional noisy data.
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Figure 9.8: Visualization of the simulated data on their 2-dimensional space (a), of the criterion
of the PB-Clus algorithm selecting a level of common neighbors equal to 69 (b) and the
associated rearranged matrix (c).

(a) Rearranged matrix by HC. (b) Rearranged matrix by Chen. (c) Rearranged matrix by MDS.

Figure 9.9: Rearranged matrices obtained by hierarchical clustering (HC) (a), Chen method
(b) and a method based on anti-Robinsonian matrix (c) on the noisy dataset.

in [79]. The implementation of these 3 methods are available in the package ’seriation’ of R (R

development Core Team 2004) which is used to obtain these results.

For this experiment, we use the same simulation as previously. In particular, we consider

the mixture of 3 balanced Gaussians whose parameters have been defined in the previous para-

graph. Moreover, half of the dataset are noisy data. This situation is illustrated in Figure 9.8a.

The evolution of the compactness criterion, according to the different level of sparsity i.e. the

number of common neighbors, is depicted in Figure 9.8b. The best visualization, selected by

the criterion, is in its minimum. This corresponds to a number of shared neighbors equal to

69. This sparsity implies that 13% of the data have been excluded and enables, in the same

time, to obtain a clear representation of the structure. The visualization, associated to this

best criterion, is illustrated in Figure 9.8c. From the ε-neighborhood graph, we execute three

methods of seriation which are provided by the library seriation of the software R. Figure 9.9a

stands for the visualization of the rearranged matrix obtained according to the HC method

and Figures 9.9b and 9.9c illustrate respectively the rearranged matrix obtained by Chen’s
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Parameters: nb. of shared neighbors per. of excluded data criterion value

µ = 1.6 p = 5 2.7±1.3 0.009±0.02 6.61±0.72
p = 10 2.6±1.1 0.011±0.02 8.69±1.32
p = 20 3.1±1.1 0.025±0.04 11.05±1.57
p = 40 3.4±1.6 0.042±0.06 15.62±2.06
p = 100 4.4±1.7 0.086±0.08 20.04±2.71
p = 200 4.6±1.4 0.109±0.06 21.39±2.85
p = 500 5.5±1.0 0.145±0.05 22.84±2.61

µ = 2.6 p = 5 2.2±0.6 0.005±0.01 4.8±0.63
p = 10 2.2±0.6 0.006±0.01 4.5±0.51
p = 20 2.6±1.0 0.009±0.02 5.0±0.67
p = 40 2.9±1.4 0.01±0.02 5.4±0.72
p = 100 2.8±1.2 0.01±0.02 8.2±1.31
p = 200 3.5±1.4 0.01±0.04 12.9±1.93
p = 500 4.5±1.5 0.03±0.07 18.5±3.32

Table 9.3: Means and standard deviation of the number of shared neighbors, the percentage
of excluded variables and the compactness criterion obtained on 20 simulations.

method and by Brusco’s one. As we can observe, the block diagonal form, in these 3 rearranged

matrices, exists particularly in the 2 first figures. However, such a structure does not appear

clearly comparing to the visualization obtained by the PB-Clus algorithm in Figure 9.8c. Such

a visualization is possible according to the family of sparse binary matrices. It allows, indeed,

to remove most of noisy data.

9.4.3 Impact of noisy variables

In this last paragraph, we want to evaluate the behavior of the PB-Clus algorithm, in the

case of high-dimensional data. Therefore, for this simulation, 3 Gaussian components of n

observations each, which differ only on q = 5 features, are simulated in a p-dimensional

observation space. In particular, each random vector Yj conditionally to the class membership

follows an univariate Gaussian density function with mean µkj = µ × (1k=1,j≤q,−1k=2,j≤q)

and a variance σkj = 0.5. For this experiment, the dimension p of observations varied between

p = q = 5 to p = 100 and the number of obervations has been fixed to n = 18. Moreover, we

consider two different cases: µ = 1.6 and µ = 2.6. Each simulation is run 20 times and the

results, averaged, are presented in Table 9.3.

Concerning the first scenario (µ = 1.6), we can observe that the compactness criterion

increases very quickly with the dimension compared to the second scenario (µ = 2.6). This is

explained as the clusters are not well-separated, in the first simulation. Consequently, when

the dimension of the observation space increases, the data structure is not strong enough to

remain dominant in the dissimilarity matrix. As the dimension p becomes then higher than

10, the structure is lost whatever is the sparsity introduced in the data.

On the contrary, in the case of µ = 2.6, we can observe that the increase of the compactness
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(a) p = 10, µ = 1.6 (b) p = 40, µ = 1.6 (c) p = 100, µ = 1.6

Figure 9.10: Rearranged matrices obtained amongst 20 simulations and for different values of
p in the case of µ = 0.6.

(a) p = 10, µ = 2.6 (b) p = 40, µ = 2.6 (c) p = 100, µ = 2.6

Figure 9.11: Rearranged matrices obtained amongst 20 simulations and for different values of
p in the case of µ = 0.6.

criterion is much slower than previously which supposes that the information relative to the

intrinsic structure remains strong in the dissimilarity measure. In the evolution of the criterion,

a gap appears from p = 100 meaning that the visualization is going to deteriorate. Hence,

even though n < p, the PB-Clus algorithm remains efficient to detect a structure as soon as

the clusters are relatively well-separated.

Besides, we can visualize the effect of the dimension on the rearranged matrices. Indeed,

Figures 9.10 and 9.11 present some reordered matrices obtained amongst the 20 simulations

and for different values of p and µ. In particular, we can visualize the different remarks

previously done: in the case µ = 1.6, as the observation dimension exceeds p = 10, the

block clusters representation become fuzzy, and the intrinsic struture does not appear clearly

anymore whereas in the case µ = 2.6, the intrinsic structure remains well-defined, even when

p = 100.
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dataset: shared neighbors compactness criterion clustering accuracy

Lsun 35 17.47 0.93

TwoDiamonds 9 10.43 0.99

Target 6 23.11 0.98

Table 9.4: Means and standard deviation of the number of shared neighbors, the percentage
of excluded variables and the compactness criterion obtained on 20 simulations.

9.5 Non Gaussian clusters

In this fourth experiment, we consider 3 different benchmark datasets coming from the FCPS

repository1 [167]:

• The Lsun dataset is made of 3 different groups, consisting of 400 observations and

described by 2 variables. This dataset is characterized by the fact that each cluster has

a different within covariance matrix. Figure 9.12a stands for the plot of this dataset.

• The TwoDiamonds dataset contains 800 observations which are split up into 2 different

clusters and described by 2 attributes. As Figure 9.12b illustrates it, the density of each

cluster is non-Gaussian.

• Finally, the last dataset is the Target data which stands for 770 observations divided on

6 groups. The main difficulty of this dataset is that it depicts a situation of unbalanced

clusters (see Figure 9.12c).

Admittedly, all these datasets are low-dimensional, but they present particularities which make

the clustering task difficult. For example, in certain cases, groups of a same mixture do not

follow the same distribution; others have a distance which varies within each cluster, and there

are also data whose the clusters are not linearly separable.

In this experiment, the efficiency of the PB-Clus algorithm, in finding both the intrinsic

structure and the partition of the data, is assessed. Table 9.4 stands for the number of shared

neighbors selected by the compactness criterion, the percentage of excluded variables, the value

of the compactness criterion and also a clustering accuracy computed from the true labels.

Figures 9.13 stand for the rearranged matrices selected by the compactness criterion for the

3 benchmark datasets. We can observe that, for all these data, the visualization of the intrinsic

structure remains clear whatever is the studied dataset. This quality is mainly explained as the

data are low-dimensional and the clusters are relatively well-separated. We can observe that

the visualization of clusters, in these reordered matrices, changes a little with respect to the

form of the clusters. In particular, in the case of the Target dataset, the ring in Figure 9.12c

1These datasets are available in the following website: http://www.informatik.uni-
marburg.de/fb12/databionics.
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(a) Two diamands dataset.
0 1 2 3 4

(b) Lsun dataset.
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(c) Target dataset.

Figure 9.12: Plots of 3 FCPS datasets.

(a) Two diamands dataset. (b) Lsun dataset. (c) Target dataset.

Figure 9.13: Rearranged matrices obtained by the PB-Clus algorithm and associated to 3
FCPS datasets.

is represented by an oblong form in Figure 9.13. However, in this same figure, we can note

a limitation of the PB-Clus algorithm on unbalanced data. In particular, the 4 little clusters

are not taken into account in the visualization since the selected number of share neighbors is

higher than the number of observations in each cluster (n = 3).

9.6 Comparison with seriation algorithms

The aim of this last experiment is to compare the efficiency of the PB-Clus algorithm in terms

of visualization and classification, with 2 other methods already introduced previously: the

hierarchical clustering in a first hand, and the Chen’s method based on an anti-Robinsonian

property [39] in a second hand. This comparison is made on 4 traditional datasets which are

available in the R software. The 4 datasets considered in this experiment are:

• The iris dataset which is made of 3 different groups of irises (setosa, virginica and

versicolor) and described by 4 variables. This dataset is described in detail in Section 5.1.

Besides, these data are very interesting as most of clustering algorithms do not usually
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PB-Clus HC AR

data nb. compactness Moore Neumann Moore Neumann Moore Neumann

Iris 2 8.67 1371.2 471.1 31728.8 10893.1 19357.8 7304.0

Ruspini 3 5.92 1290.1 442.2 8724.9 3036.4 6503.7 2277.1

Geyser 9 9.50 2514.9 850.4 68205.3 2302.1 12866.8 4501.4

Faithful 2 12.9 2634.1 889.4 34045.5 11503.5 23390.0 9894.2

Township 1 5.14 244.5 91.8 1109.9 441.5 849.0 342.0

Table 9.5: Seriation criteria (Moore, Neumann) computed for the PB-Clus, Hierarchical Clus-
tering (HC) algorithms and a seriation method based on an anti-Robinsonian (AR) property
on 5 benchmark datasets. The value of compactness criterion and its associated number of
shared neighbors (nb.) obtained by PB-Clus are also reported.

select an intrinsic structure to 3 clusters, but only to 2 clusters. This is due to the

difficulty to distinguish the virginica and versicolor irises.

• The ruspini dataset comes from the works of Ruspini [154] on clustering: it consists

of 75 datapoints described on 2 dimensions. It is made of 4 groups which are easy to

cluster.

• The faithful data come from the works of [78] and represent the times and the duration

between 2 geyser eruptions, of the national parc of Yellowstone (Wyoming - USA). This

dataset consists of 272 observations and 2 classes.

• The Geysers datasets stand for a complete version of the previous data collected by [7].

In this dataset, 299 eruptions are studied between the 1st and the 15th August 1985.

They are described by the same features as previously.

• The township dataset stands for a boolean matrix in which 16 cities are described from

the presence or absence of 9 characteristics such as universities, police station, railway

station, etc.

For the 4 first datasets, we compute the dissimilarity matrices by using the Euclidean distance.

Besides, as the Township dataset is already in a (0, 1)-table, we directly create the shared

neighbors matrix by considering the matrix TT t where T ∈ R
16×9 stands for the township

dataset.

In order to evaluate the quality of the visualization obtained by the PB-Clus algorithm,

we use two other criteria defined by Neumann and Moore, in addition to the compactness

criterion. Both criteria, already introduced in Chapter 7, are based on the close neighborhood

and have to be minimized. Moreover, the Moore and Neumann criteria are computed for two

other methods of seriation available in the package seriation of R software: the hierarchical

clustering (HC) approach and a method based on the anti-Robinsonian property of a matrix

(AR). These results are reported in Table 9.5 for each criterion computed on each dataset.

The number of shared neighbors and the compactness criterion provided by the PB-Clus
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(a) Fisher’s irises. (b) Ruspini. (c) Geyser.

(d) Faithful. (e) Townships.

Figure 9.14: Rearranged matrices obtained with the PB-Clus algorithm.

0 50 100 150

0.
0

0.
4

0.
8

Index

co
ns

ec
ut

iv
e 

sc
al

ar
s

(a) Fisher’s irises.

0 20 40 60

0.
0

0.
4

0.
8

Index

co
ns

ec
ut

iv
e 

sc
al

ar
s

(b) Ruspini.

0 50 100 150 200 250 300

0.
0

0.
4

0.
8

Index

co
ns

ec
ut

iv
e 

sc
al

ar
s

(c) Geyser.

0 50 100 150 200 250

0.
4

0.
6

0.
8

1.
0

Index

co
ns

ec
ut

iv
e 

sc
al

ar
s

(d) Faithful.

2 4 6 8 10 12 14

0.
0

0.
4

0.
8

Index

co
ns

ec
ut

iv
e 

sc
al

ar
s

(e) Faithful.

Figure 9.15: Consecutive scalars resulting from the rearranged matrices.
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algorithm are also reported in this table. However, the percentage of excluded observations

is not reported in the table, as none observation has been removed. Besides, we can observe

that the Moore and Neumann criteria are both minimum with the PB-Clus algorithm, for

the 5 datasets. This suggests a certain quality of the visualizations obtained by the PB-Clus

algorithm compared to the two other methods. The improvement of the Moore and Neumann

criteria, in the case of PB-Clus algorithm, is mainly explained by the use of sparse dissimilarity

matrices, contrary to the HC and AR methods. Indeed, the measure based on the common

neighbors introduces many zeros, in the studied dissimilarity matrix, which makes clearer its

visualization.

Furthermore, Figures 9.14 stand for the rearranged matrices obtained by the PB-Clus

algorithm. As we can observe, the structure of each dataset appears clearly. In particular, it

is interesting to notice that, in the case of the irises data, a 3-group structure appears clearly

whereas on this particular dataset, most of existing clustering algorithms select a number of

groups equal to 2. It is particularly true for the models based on Gaussian mixtures, as it

is developed in [148] for example. For the 4 other datasets, the block-representation of each

reordered matrix is very stressed. This suggests that the clusters are relatively compact and

well-separated in the considered datasets. This is highlighted by the fact that the number of

shared neighbors, selected by the PB-Clus algorithm, is very low, as it has been already noted

in Table 9.5.

Finally, we also report, in this table, the clustering accuracies of the partition obtained

by the PB-Clus algorithm. In particular, this rate is computed using the true labels when

they are known and in the opposite case, with the labels estimated by the k-means algorithm.

Since, this last method supposes the knowledge of the number of groups, we choose to use

the number of clusters detected by the PB-Clus algorithm, in order to obtain comparable

partitions. The partition of the PB-Clus algorithm is obtained according to the consecutive

scalar between adjacent pairwises of observations. The consecutives scalars can represent the

similarity between adjacent pairwises of observations and they can also indicate when two

adjacent observations do not belong to the same cluster. To that end, the consecutive scalars

of rearranged matrix in Figures 9.14 are presented in Figures 9.15. As we can observe, the

breakings between two clusters are really well emphasized which has ease the building of

partitions.

Finally, Table 9.5 stands for the clustering accuracies: they are computed according to

the true label in the case of the Fisher’s irises and according to the partition obtained by

the k-means algorithm for the other datasets. As we can observe, on the Fisher’s irises, the

PB-Clus algorithm mis-classifies 12% of the data. This high error rate is mainly explained by

the non-separability between the versicolor and virginica species. Indeed, as we can observe

in Table 9.5a, several virginica are classified in the versicolor class and this corresponds to the

2 overlapped block-clusters illustrated in Figure 9.14a. Concerning the 4 other datasets, we

can note that the partitions obtained by the PB-Clus and the k-means algorithms perfectly
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1 2 3

Versicolor 50 17 0
Virginica 0 33 0
Setosa 0 0 50

Error rate: 0.12

(a) Partition estimated by the PB-Clus algorithm on the Fisher’s Irises.

1 2 3 4

k-means 1 13 0 0 0
k-means 2 0 35 0 0
k-means 3 0 0 15 0
k-means 4 0 0 0 20

Error rate: 0.00

(b) Partition estimated by the PB-Clus algorithm on the Ruspini’s data.

1 2 3

k-means 1 88 2 7
k-means 2 0 105 0
k-means 3 0 0 97

Error rate: 0.03

(c) Partition estimated by the PB-Clus algorithm on Geyser data.

1 2

k-means 1 168 4
k-means 2 0 100

Error rate: 0.02

(d) Partition estimated by the PB-Clus algorithm on Faithful dataset.

1 2 3 4

k-means 1 8 0 0 0
k-means 2 0 4 0 0
k-means 3 0 0 2 0
k-means 4 0 1 0 1

Error rate: 0.06

(e) Partition estiamted by the PB-Clus algorithm on the Townships data.

Table 9.6: Partitions estimated by the PB-Clus algorithms for the 5 datasets and cross-
validated with either the true labels (irises) or a k-means’ partition.
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match as the difference rates are less than 3%.
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Chapter 10

Application to cervical cancer

detection

This part is not included in the public version because of confidential results.
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Chapter 11

Conclusion

11.1 Overview of the contributions

In a first part, we have introduced a new family of probabilistic models which both clusters the

data and finds a discriminative subspace chosen such as it best discriminates the groups. This

method, named the discriminative latent mixture (DLM) model, aims to find a parsimonious

and discriminative fit for the data in order to ease the clustering and the visualization of the

clustered data in a mixture model context. This family of models is based on two key-ideas

which assume that firstly, actual data live in a latent subspace with an intrinsic dimension

lower than the dimension of the observed space and, secondly, a subspace of K−1 dimensions

is theoretically sufficient to discriminate K groups. We also proposed an estimation procedure

named Fisher-EM which improves, most of the time, clustering performance owing to the use

of a discriminative subspace. We showed that the Fisher-EM algorithm is an EM like algorithm

in the case of the DLM[αβ] model. Besides, it appears nevertheless that the interpretation of

the estimate discriminative axes is a priori quite difficult since each axis of the discriminative

subspace is a linear combination of all original variables. The understanding of axes could be

facilitated if only some loadings in each discriminant axis were selected. We therefore pro-

posed 3 different methods based on a penalized criterion which enables to introduce sparsity

directly in the loadings of the projection matrix. It implies that, in addition to produce sparse

loadings, the penalty terms enables to make variable selection.

In a second part, we proposed in the seriation context, a dissimilarity measure based on

a common neighborhood which enables to introduce different degrees of sparsity in a dissim-

ilarity matrix. This dissimlarity measure is based on the fact that, the more the number of

common neighbors between two pairs of data is high, the more these observations are similar.

From the common neighborhood matrix, a collection of binary matrices is constructed and

each of them corresponds to different degrees of sparsity. The main interest of this approach

is that the collection of binary matrices which refers to different degrees of sparsity λ becomes

very sparse as the λ-value increases. In particular, the more the λ-level is high, the more the
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associated matrix (λ-matrix) is filled up with zeros, removing thus column and row vectors of

the study. Consequently, the introduction of such a family enables to tackle the problem of

highly noisy data and overlapping, in the seriation case. Moreover, we proposed a forward-

stepwise seriation algorithm, called the PB-Clus algorithm, which rearranges the matrices

such as the adjacent rows, and symetrically columns, of the family of λ-matrices are the most

similar. A family of sparse rearranged matrices is created and the one which presents the best

block diagonal form is selected, according to a compressing criterion. This tool enables to

both identify clusters even in the case of noisy data, outliers, overlapping and non-Gaussian

groups, and reveals the intrinsic structure of data.

Finally, the last part presented an application on a biological dataset in which both ap-

proaches have been applied. The dataset, provided by the Novacyt company, consisted of

cervical cells coming from different smears, and was described by 42 morphological and pho-

tometrical variables. The main aim of this application was to both cluster the cells in 2

different classes (normal and atypical cells) and find a subset of variables which describe and

best-discriminate the atypical cells. The sparse Fisher-EM procedure was used, in one hand,

to cluster and select discriminative variables; in an other hand, the PB-Clus algorithm was

implemented to check the relevance of the obtained partition. As a result, the discrimination

of atypical nuclei was mainly operated by 4 morphological variables and 3 photometrical ones.

In addition, this subset of variables allowed to improve the detection of pathological cells.

11.2 Works in progress

11.2.1 Supervised and semi-supervised versions of the Fisher-EM algo-

rithm

In the supervised classification framework, learning a classifier requires the knowledge of labels

in the dataset and this supposes that the labels of the learning set are true. However, it appears

that in many applications, the labeling task is made by humans and their expertise can be

difficult, expensive or sometimes imprecise, leading to mistakes in the labels. Consequently,

when some labels are wrong, since most of existing methods give a full confidence to the labels

of the learning dataset, the classification prediction gives poor results. For example, in the

case of the traditional FDA, recurring problems occur such as its sensitivity to label noise or

to sparse labels.

We then propose to rewrite the DLM, that we have defined in an unsupervised context, in

a supervised and a semi-supervised contexts in order to both deal with label noise data and/or

sparse labels. On preliminary simulations, it appears that a supervised version of the DLM

model presents very promising results regarding the robustness to label noise. In particular,

let us consider the following introductory example on Irises dataset: let τ the percentage of

false labels in the learning set which varies between 0 and 0.9. At each trial, the Irises dataset
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Figure 11.1: Effect of label noise in the learning dataset on the prediction effectiveness: correct
classification rate according to the percentage of noisy labels.

is randomly divided into 2 balanced samples: a learning set in which a percentage τ of the

data is mislabeled and a test set on which the prediction performances are evaluated. This

process has been repeated 50 times for each value of τ in order to monitor both the average

performances and their variances. The predictive performances have been assessed on each

test set and then averaged. Besides, we have compared 2 DLM models of the supervised

approach with the traditional ones such as FDA and its orthonomalized version (OFDA) [80].

Figure 11.1 presents the evolution of correct classification rate computed on the test set

for the 4 methods according to τ . As we can observe, our approach appears more robust to

label noise than FDA and OFDA. Indeed, the correct classification rates of the DLM models

remain larger than 0.8 for a label noise up to τ = 0.6. Conversely, the FDA and OFDA

methods have their classification rates which lower drastically and linearly as τ = 0.15 and

from τ = 0.7, their prediction performances are comparable to those of a random classifier.

These improvements can be explained by the probabilistic framework of the DLM models

which takes into account an error term and this avoids to overfit the embedding space on the

labeled data and remains generally enough to be robust on label noise contrary to FDA and

OFDA.

11.2.2 Convergence in the heteroscedastic case

In this manuscript, the convergence of the Fisher-EM algorithm was proved only for the

isotropic case of the DLM[αβ] model. In order to prove that the Fisher-EM algorithm is a GEM

algorithm for the eleven DLM models, we need to show that the quantity ∆(U (q+1), θ(q+1) |
U (q), θ(q)) = Q(U (q+1), θ(q+1))−Q(U (q), θ(q)) is positive, with θ(q) the set of parameters of the

DLM models estimated at iteration q, U (q) the projection matrix of the latent subspace and

Q(θ) the expectation of the complete log-likelihood.
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The main step to obtain such a result, is to prove that in the F-step, the inequality

Q
(

U (q+1), θ(q)
)

≥ Q
(

U (q), θ(q)
)

holds. By considering, in first, that in the current iteration

q, we dispose of the estimates Û (q), θ̂(q) =
{

µ̂(q), Σ̂(q), β̂(q), π̂(q)
}

of all the parameters of the

DLM model and we suppose that we dispose of the posterior probabilities t
(q+1)
ik computed in

the E step at the following iteration q + 1. Let us then introduce the quantity:

∆1 = ∆
(

Û (q+1), θ̂(q) | Û (q), θ̂(q)
)

= Q(Û (q+1), θ̂(q))−Q(Û (q), θ̂(q)).

where the Q
(

Û (q), θ̂(q)
)

computed at the current iteration q and conditionally to the q + 1th

E-step is:

Q(Û (q), θ̂(q)) =− 1

2

K
∑

k=1

n
∑

i=1

t
(q+1)
ik

[

−2 log(π̂
(q)
k ) + trace

(

(

Σ̂
(q)
k

)−1

Û (q)tC
(q+1)
k Û (q)

)

+ log
∣

∣

∣Σ̂
(q)
k

∣

∣

∣

+ (p− d) log(β̂
(q)
k ) +

1

β̂
(q)
k

trace(C
(q+1)
k − Û (q)tC

(q+1)
k Û (q)) + γ

]

,

and:

Q(Û (q+1), θ̂(q)) =− 1

2

K
∑
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n
∑

i=1

t
(q+1)
ik

[

−2 log(π̂
(q)
k ) + trace

(

(
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(q)
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)−1
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+ log
∣

∣

∣
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∣

∣
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trace(C
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]

,

where γ = p log(2π) is a constant term. We recall that C
(q+1)
k stands for the empirical

covariance matrix of the kth group computed at iteration q + 1 and Σ̂
(q)
k , respectively β̂

(q)
k ,

stands for the estimation of the maximum likelihood of the covariance matrix of the kth group

in the latent subspace, respectively in its orthogonal complement at iteration q:

∆1 =
1

2

[

K
∑

k=1

trace
(

B
(q)
k

(

A
(q)
k −A

(q+1)
k

))

]

,

where:

A
(q)
k = Û (q)tn

(q+1)
k C

(q+1)
k Û (q)

A
(q+1)
k = Û (q+1)tn

(q+1)
k C

(q+1)
k Û (q+1)

B(q) = Σ̂k
(q)−1

− 1

β̂
(q)
k

Id.

A first issue remains in the fact that the quantity B
(q)
k = Σ̂

(q)−1

k − 1/β̂
(q)
k Id is dependent of k.

The second issue is that the Fisher’s criterion is an average criterion. This implies that, a priori,

we dispose of no guarantee that ∀k ∈ {1, . . . ,K} the condition trace(A
(q+1)
k ) ≤ trace(A

(q)
k )
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holds. Consequently the sign of this quantity:

K
∑

k=1

trace
(

B
(q)
k

(

A
(q+1)
k −A(q)

k

))

, (11.2.1)

remains unknown. One possible way, to consider the Fisher-EM algorithm as a GEM algorithm

for the family of the 12 DLM models, is to modify the Fisher’s criterion. In particular, instead

of considering an average criterion, as the traditional Fisher’s one, we could switch the within

covariance matrix by the maximum of the within-class pairwise distances over all classes, as

Zhang and Yeung [191] proposed it, very recently, in the supervised case. In this case, the

associated Fisher’s criterion is not anymore a weighted sum of K covariance matrices as it

is based on one distance only. The matrix A
(q+1)
k − A(q)

k becomes therefore independent of

k leading to consider the following quantity trace
(

(

A(q+1) −A(q)
)
∑K

k=1B
(q)
k

)

. Under some

conditions on
∑K

k=1B
(q)
k , the convergence for all the family of DLM models could be perhaps

stated.

11.3 Prospects

11.3.1. Model selection criteria for sparse clustering

In the GMM context, different works combining variable selection and clustering have been

based on the introduction of penalties in the log-likelihood function. These penalties depend

on an hyper parameter which stands for the level of sparsity. Several authors, who worked

on ℓ1-penalized log-likelihood function in the GMM context ([142, 184, 63, 185]), used the

penalized BIC to select the hyperparameter, by evaluating the model complexity in regard to

the non-zero values. Although Zou et al. [195] showed that the number of non-zero coefficients

is an unbiased estimate of the degrees of freedom and is asymptotically consistent in the case

of penalized regression problem. Nevertheless, this result is not a priori true in a penalized

GMM context and no theoritical justification was made by its users ([63, 142, 184, 185]) in

the penalized GMM context. It would be interesting to obtain theoritical guarantees of such

a result in the penalized GMM context. In the same way, since ICL is also used to select

the number of components, it would be a natural extension to consider a penalized ICL in

regard to the penalized BIC. Moreover, since the main difference between BIC and ICL criteria

remains in the presence of an additional entropy term which favors well-separated clusters in

the ICL criterion, the ICL criterion would seem to be more adapted than BIC to select the

sparsity level.

11.3.2. Visualization in a 2-dimensional space

The Fisher-EM algorithm enables to find a discriminative and a common low-dimensional

subspace for all groups of the mixture. It is easy to project and visualize the clustered data
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into the estimated discriminative latent subspace if K < 4. In a first hand, if the estimated

value of d is at most equal to 3, the data can be visualized by projecting them onto the

d first discriminative axes and no discriminative information loss is to be deplored in this

case. In a second hand, if the estimated value of d is strictly larger than 3, the visualization

becomes much more difficult even though it is still possible to project the data in the 3 first

discriminative axes. However, even though these 3 first axes are the most discriminative ones

among the provided axes, an information loss can occur. To that end, it would be interesting

to work on this visualization problems. In particular, conversely to the existing methods such

as VAT [12], MDS [21] or t-sne [168] which provides a visualization of data according to a

pairwise similarity measure, we would be interested to work on a 2-dimensional visualization

of the data by using the characteristics given by our framework (proportions, means and

covariance matrices of clusters), or more generally from the GMM context.

11.3.3. Non-linear extension of the Fisher-EM algorithm

We proposed, in this manuscript, the Fisher-EM algorithm which simulatenously reduces the

dimension of continuous data and clusters them. A linear projection matrix is estimated such

as its column vectors span the discriminative latent subspace. We envisage to reformulate the

linear problem of the Fisher’s criterion with a kernel one. One of the main asset of such an

extension would be to allow the clustering of categorical data, which occurs very often in the

biological field or for text classification. In particular with the use of a string kernel, it would

allow us to handle sequencial data.
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