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Abstract:

The complex shapes with tight tolerances which are increasingly adopted in
industrial applications make it become a great challenge for geometrical product
specification to control the geometrical variations along the product lifecycle.
Significant efforts are being devoted to develop systems that can support geometrical
product specifications. Among them, GeoSpelling [Ballu 95] [Mathieu 03] is a
classical one, which has already standardized as ISO 17450-2005.

This thesis investigates on the achievement of GeoSpelling system for
geometrical product specification from two aspects: discrete geometry processing
supported for GeoSpelling and skin model simulation.

GeoSpelling is proposed as a coherent and complete model to manage the
geometrical variations along the product lifecycle. GeoSpelling is based on six
geometrical operations to handle both ideal and non-ideal features. The discrete
representations of features are first introduced and a new framework is developed to
implement the operationalization of GeoSpelling based on discrete geometry
processing techniques.

The Skin model, a non ideal feature, is a kernel concept of GeoSpelling. Robust
discrete shape modeling methods for skin model simulation are the main concern of
this work. The proposed simulation of the skin model is composed of nominal model,
random deviations and systematic deviations. Different methods are developed to add
random and systematic deviations to the nominal model.

Random errors are statistic fluctuations in either direction and typically obeyed to
Gaussian distribution. Three methods are developed to simulate the skin model
considering the random deviations: 1-D Gaussian based method, multi-Gaussian
based method and Gibbs based method. The specified associated tolerances are used
as constrains to locate the simulated skin model within the specified tolerance zone.
A comparative analysis of the developed three methods is discussed

Comparing to random errors, systematic errors are reproducible inaccuracies that
are consistently in the same directions. They usually keep similar values or follow
some specific functions which can be calculated or simulated. A group of second
order shapes are used as constraints for systematic deviations’ generation. The
complete skin model can be generated by adding random and systematic deviations. A
method based on statistic shape models is proposed for skin model analysis and trend
prediction.

The above methods have been implemented in a new computerized system. An
application with a detailed case study is discussed. The simulated skin model by the
proposed methods is compared to the measured data and the simulated results by
another FEA-based method. The comparative results testify that our methods can
provide a satisfying performance.
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Introduction

With the economy globalization, complex shapes are increasingly adopted to
improve company’s competition. Product is desired to be machined as accurate as
possible to match its functional requirements. However, the more accurate it is
manufactured, the more cost it will take both time and money. Therefore, geometric
tolerances are designed to make a compromise between the functional requirements
and production cost during the design phase. Geometrical variations are inevitably
generated during the manufacturing stage because of the accuracy of applied
machining methods, machining tools, etc. variations also generate during the
measurement stage considering the measurement uncertainty always exists. How to
design the geometric tolerance to control the geometrical variations is a critical issue
in geometrical product specification (GPS). Some Computer Aided Tolerancing
platforms have already developed to assist geometrical tolerancing process [Salmon
96] [Ballu 03]. However, the techniques for computational-supported geometrical

product specification haven’t solved.

It is necessary to manage geometric variations and to share a coherent and
complete tolerancing process along the product live cycle [Mathieu 05]. According to
Mathieu and Ballu [Mathieu 05], Geometrical tolerancing process can be synthesized
into four main tasks: tolerance specification, tolerance analysis, and tolerance
synthesis and tolerance verification. They proposed a proper solution called
Geospelling to cover these four stages for coherent and complete tolerancing process,
which has already standardized as ISO17450. GeoSpelling is based on geometrical
operations and is able to describe both ideal and non-ideal geometric features
[Mathieu 05]. However, till now, GeoSpelling is only a “paper-based” concept and
realized with computer. There is no GeoSpelling-based CAT (Computer-Aided
Tolerancing) system developed to optimize tolerancing process. It is thus very useful
to research and find proper solutions to develop GeoSpelling-based system with

computer and the advantages of GeoSpelling can then be completely fulfilled.

In this dissertation, we investigate the solutions to develop the GeoSpelling
system for Geometrical Product Specification (GPS). Solutions are proposed based on
discrete shape modeling and statistic analysis for skin model simulation and

applications.

GeoSpelling, as an ISO standardized representation of geometrical tolerances,

proposes a coherent and complete representation scheme to manage the geometrical
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variations in the context of product lifecycle. The critical characteristics of
GeoSpelling are reviewed for comprehensive understanding. Consider shape with
and/or without geometrical variations are the basis of GeoSpelling, the available
shape modeling techniques are analyzed for ideal/non-ideal geometrical shape

construction.

GeoSpelling is proposed to handle both ideal geometries (e.g. CAD model or
geometries without geometrical variations) and non-ideal geometries (e.g. actual parts
or geometries with geometrical variations) based on 6 basis operations: partition,
extraction, filtration, association, collection and construction. The common CAD
software packages are mature to handle ideal geometries, but they are lack to handle
non-ideal geometries. However, the discrete shape modeling techniques which are
based on discrete geometry provides solutions for non-ideal geometry processing. The
mapping relationships between GeoSpelling and discrete geometry are established

and analyzed.

Skin model is a kernel concept in GeoSpelling, which acts as an approximation
of the actual shapes of real products. To simulate and shape the skin models is a
fundamental task for GeoSpelling based tolerancing systems. An appropriate skin
model is also the basis for the implementations of the 6 operations for geometry

processing in GeoSpelling.

Geometrical variations may come from random errors (e.g. random errors in
manufacturing and inspection) and from systematic errors (e.g. the imperfect
performances of the applied instruments for manufacturing). In order to simulate and
represent the actual shapes of real products, both of them should be considered for
skin model simulation and shaping. It is necessary to develop methods to analyze the
skin models, to predict the trend of real shapes, to guide the geometrical production

specification in applications.

Contributions

The objective of the thesis is to enhance the digital processing capability of
GeoSpelling model using discrete geometry technique. The main contributions of the

thesis are:

. A new framework for geometrical operationalization of GeoSpelling based

on association between discrete geometry and GeoSpelling.
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. A comparative analysis of common-used discrete normal estimation

methods.

. Three different methods to simulate the skin model by adding the random

deviations in different ways.
. Set of methods to simulate the skin model considering systematic errors.

. A method to generate statistical shape model for skin model analysis and

trend prediction.

. A developed software framework for discrete geometry processing

especially for the skin model simulation.

Outline

The thesis is organized as follows:

Chapter 1 introduces the tolerance process especially focus on the tolerance

representation techniques, and the shape modeling approaches are also presented.

Chapter 2 presents the association between GeoSpelling and discrete geometry.
Both of the characteristics of GeoSpelling and discrete geometry are introduced. The
method to associate them together is discussed for GeoSpelling operationalization

based on discrete geometry techniques.

Chapter 3 presents the developed three methods of skin model simulation
considering the random errors: 1-D Gaussian-based, multi-Gaussian-based, and
Gibbs-based. The methods to generate the skin models considering specified

tolerances are presented. A comparative analysis of the three methods is discussed.

Chapter 4 presents methods to simulate the skin models with systematic errors. A
group of predefined parametric second order shapes are implemented to constraint the
systematic deviations. A method to compute the statistical shape model of a set of

training skin models is developed for skin model analysis and trend prediction.

Chapter 5 presents a detailed case study of an industrial workpiece which is a
cross-shaped model. The developed software, which serves as the test platform for the
algorithms developed in this thesis. The detailed processing results of the studied
workpiece are presented. The comparative analysis between the simulation models

and the measurement models is discussed.
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In conclusion, we summarize the thesis and propose some promising directions

for the future research.
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Chapter 1: Geometrical Variations within the Whole Product lifecycle

1.1. Introduction

In modern production engineering, complex shapes with tight tolerances are
increasingly adopted to improve the products’ competition. Geometrical variations are
inevitably generated during the manufacturing stage due to the limited accuracy of
applied machining methods, machining tools, etc. Variations also generate during the
measurement stage considering the measurement uncertainty always exists. The
complex shapes with high quality requirements make it as a great challenge for

tolerancing process and geometrical variations’ control.

Within the context of Product Lifecycle Management (PLM), the information
communication and sharing requires to manage the geometrical variations along the
whole product lifecycle. The geometrical variations should be considered at the
beginning of tolerancing process in the design stage. Many Computer Aided
Tolerancing tools [Mathieu 05] can help designer for functional tolerance
specification, but limited to control the geometrical variations for the view of product
lifecycle. Some authors [Ballu 05] [Salomons 96] proposed concepts to build coherent
and complete tolerancing process. As a perfect example of these concepts,
GeoSpelling proposed by Ballu and Mathieu [Ballu 95] has already standardized as
ISO 17450. However, till now there is no reported system yet has capacity to manage

geometrical variations along the product lifecycle.

This chapter surveys the popular techniques for tolerancing process, especially in
tolerance presentation and specification. The GeoSpelling model is introduced to
manage the geometrical variations. The shape modeling techniques supported for

geometrical production specification are reviewed.
This chapter is organized as follows:

Section 1.2 presents the popular techniques for tolerancing process, especially
techniques for tolerance representation. Section 1.3 surveys the common-used shaping
modeling techniques in literature and industrial applications. Section 1.4 is the

conclusion of this chapter.
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1.2. Tolerance modeling

1.2.1 Tolerancing process

In automotive, aerospace and other industrial applications, the management of
geometrical variation has become an important issue in product design, concurrent
engineering and product lifecycle management [Anwer 03]. The computer aided
tolerancing technique can assist the designers in functional tolerance specifications. In
generally, product design, process plan, manufacturing and inspection activities are
concerned in today’s CAx context. In this point of view, some researchers [Salomons
96] [Ballu 05] proposed using a coherent and complete tolerance process to manage

the geometrical variations in mechanical engineering.

Based on [Mathieu 05], the tolerancing process is defined through all the
activities involved by geometric product variations management. In [Salomons 96] the
tolerance process is divided into four classical activities: tolerance representation,
tolerance specification, tolerance analysis, and tolerance synthesis. In [Mathieu 05],
Mathieu and Ballu improve this classification into five activities while adding

tolerance verification.

Tolerance representation links to the mechanisms and algorithms of expressing
geometric variations in computerized systems. It is the basic foundation for a coherent
and complete tolerance process activity. To be coherent and complete, the tolerance
process has to employ a uniform model to express tolerancing for each participators
involved in the process. Section 1.2.1 will focuses more on the tolerance

representation technique.

Tolerance specification focus on determining the tolerance types and values
needed on geometrical features to satisfy the functional requirements. Tolerance
specification is used to convert the functional requirements into geometric
requirements on parts and assemblies. It solves the problems such as: tolerance type,
tolerance value, datum reference framework and tolerance principles, etc. In
traditional tolerance practice, the tolerance specification is designed by designers
according to the tolerancing standards and their experiences. However, the standards
do not give the methods to specify the tolerance specifications. The main contribution

on this topic is the work of A. Clement [Clement 91] [Clement 93], who proposed the
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TTRS (Topologically and Technologically Related Surfaces) model using 13 signed
constraints for the geometrical specification. A constraint is a mathematical
relationship between variable elements. TTRS is at one disposal an integrated model
which allows completion, consistence and explicit definition in the dimensioning,

tolerancing and metrology fields [Clement 97].

Tolerance analysis is used to verify the functional requirements after tolerances
have been specified on an assembly. Traditionally, the tolerance analysis is a manual
work, which relies on dimension chain and tolerance chart. Bjork [Bjorke 89]
proposed the automation of tolerance analysis of assemblies based on the
development of the data structure for their representation in geometric modeling, and
the computerization of procedures. Mort often, tolerance analysis is performed by
verifying two aspects [Salonmons 96]: one is verifying assemblability of the assembly:
the feasibility of assembly (fit); one is verifying if specified clearances between parts
are still met: the quality of assembly (clearance). Many efforts have been attempted
on this topic by the researchers. The analysis approaches can be roughly classified
into worst-case and statistical method. Worst-case analysis determines the extreme
displacement of each ending geometric entity resulting from the limits specified on
the contributors while statistical analysis determines the full frequency distribution

from frequency distributions of the contributors [Giordano 01] [Anselmetti 10].

Tolerance synthesis focuses on tolerance allocation and tolerance optimization
functions in the point of manufacturing and inspection views. Traditional tolerance
synthesis methods are implemented separately in the design and the process planning
stages [Campatelli 11]. In 1970’s, Michael [Michael 82] and Speckhart [Speckhart 72]
proposed tolerance synthesis models allocate the tolerances in the design stage,
avoiding consideration of the manufacturing processes, and these approaches are
focused only on the evaluation of the tolerance chain. In 1990’s, the evolution based
on optimization of a cost function has been developed by many researchers [Nassef 93]
[ElMaraghy 93] [Roy 97]. The design synthesis method is a mapping relationship
from the functional requirements to artifacts, with multi-stage constrained

optimization during stages of deign proposed by [Pramanik 03] [Dantan 05], etc.

Tolerance verification defines inspection planning and metrological procedures
for the functional requirements, functional specifications and manufacturing

specification. It is very important to consider tolerance verification early in the design
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activities to be able to evaluate uncertainties [Mathieu 03]. Tolerance verification
permits to close the process loop, to check the product conformity and to verify

assumptions made by the designer as illustrated in figure 1-1 [Mathieu 05].

Tolerance Analysis / Synthesis

Functional
] Analysis
Tolerance ] Tolerance
Model Specification
Process
Analysis

Tolerance Verification

Figure 1-1: Tolerance process

1.2.2 Tolerance model

The tolerance model scheme in current CAD/CAM systems includes two
research domains: tolerance modeling and tolerance representation. The first one is
used to establish the mathematical expression of tolerance specification, and the latter
one focus on how the express the tolerance specification in computerization context.
This section provides a survey on tolerance model technique based on this

classification.

(1). Tolerance modeling technique

The difficulty in translating the information language (customer level) into a
formal language (industrial level) through a mathematic model of geometric
deviations is well known. When the designer cannot interpret the shape variations
model in mathematic expression, the annotation writing manner is adopted even it is
difficult for the metrologist to measure. Some efforts on this topic are discussed as

follow.

Hillyard and Braid [Hillyard 78] developed the concept of variational geometry
that is a dimension-driven, constraint-based technique. This approach adopts

constraint equation to reflect the tolerance information. In this approach, the solid
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objects are deemed as the physical frames. At the initial state, the physical frame is
linked incompactly by each part. The notes and the connecting bars of the physical
frames are the corresponding points and edges of the solid objects. Accordingly, the
dimension information of the objects is the fixed constraint of the physical frame,
while the tolerance information is the minor changes of constraints. Therefore, the
dimension tolerance can be reflected by the displacement of parameter vectors, which
are derived from the physical frame model. For the orientation and position variation
of the object, each point of the surface should be parameterized thereby infinite
dimension vectors are need to express the variation and this is impossible for
calculation. Thus, his approach can reflect the dimension tolerance well but it can not

deal with the geometric tolerance information.

Another early example of previous work of tolerance modeling technique is the
solids offset approach proposed by Requicha [Requicha 83], and its improvement in
[Requicha 84] [Requicha 86]. In this method, the tolerance zones of the objects are
obtained by “offsetting” the nominal boundaries. Conventional tolerances are
considered as a special case of geometric tolerances, and no attempt is made to
characterize the nominal geometry using dimensions. This approach considers both
ideal and non-ideal features to respect the specification when its boundary is within
tolerance zones. The solids offset method differs from the tolerancing standards, since
the individual pairs of offset surface are combined to obtain a composite tolerance
zone of the entire solid and the individual tolerances cease to be independent

constraints [Salomons 96].

Based on the solids offset approach, Jayaraman [Jayaraman 89] and Srinivasan
[Srinivasan 89] proposed Virtual Boundary Requirements (VBRs) and Conditional
tolerances (CTs) approach. The purpose of their work is that the functional
requirements can be captured in a specific form of tolerances designated as their
models. The VBRs approach is proposed based on the study the problems form the
perspective of two classes of functional requirements, which directly relatable to the
geometry of mechanical parts [Jayaraman 89]. The first involves positioning parts
with respect to one another in an assembly, and the second maintaining material bulk
in critical portions of parts. The CTs approach on a set of features specifies geometric
variations that are dependent on geometric parameters derived from fitting fo the
actual set of features. The Maximum Material Condition (MMC) and Least Material

Condition (LMC) tolerances used in practice are in fact CTs specifications. Typically,
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VBRs when translated into allowable variations in geometric parameters of features
give rise to CTs. There are some reasons for derive alternative specifications (as
nearly equivalent to the VBRs as possible) based on the concept of CTs, such as: part
fabrication process planning problem, part fabrication process planning problem, part
fabrication process control problem, and statistical tolerancing problem, and the

details of these reasons are indicated in [Srinivasan 89].

Considering both the solids offset approach [Requicha 83] and the virtual
boundary requirements [Srinivasan 89] approach provide a strict tolerance constraint.
Based on solids offset approach, Etesmi [Etesmi 93] formalize the solids offset model,
and proposed using Tolerance Specification Language (TSL) to describe tolerance

constraints. At the same time he discussed some practical implementation cases.

Hoffman [Hoffman 82] proposed using point vector to express the tolerance
requirements in three-dimensional Euclidean space. The principle of this approach is
that the geometrical images are deemed as a set of point vectors and thus the tolerance
requirements are converted to the tolerance function, in which the parameters are the
point vectors. The tolerance requirements can be explained by an inequation

L < f(x) <U, where x is the parameter, f is the tolerance function, and L, U is the

limitation of the tolerance zone.

Based on Hoffman approach, Turner [Turner 87] proposed a higher degree
polynomial function to model form tolerance for the nominal planar part feature. In
this approach, the independent geometric variables defined as the basic vectors of the
vector space. This feasibility space approach is not suitable for three-dimension
tolerance representation because of a too high complexity and doubtful used fullness
in three-dimension space. Based on the higher degree polynomial approach, Turner
and Wozny [Turner 87] proposed to model straightness tolerance by breaking up the
boundary line with additional vertices. The number of these interior vertices
determines the form variation frequencies of the boundary line. Later, Gupta and
Turner [Turner 87] proposed to break a planar surface into triangular patches and fit
Bezier triangles to each patch. In this approach, the boundary segment is represented
by a curved surface (in two-dimension), which is more natural than the straight line

(in one-dimension) used in previous approach.

Wirtz [Wirtz 93] proposed another approach based on vectorial theory. In this

approach, the tolerance is represented as a limit constraint on the elements of a vector,
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which has a correspondence between the toleranced feature and the reference feature.
This approach also has the limitations that it is not close to the standards and is
oriented too much towards older dimensioning and tolerancing practices, for example,

it can not deal with the form tolerances specification problems.

Roy [Roy 98a] [Roy 99] presented a mathematical scheme for interpreting
dimensional and geometric tolerances for polyhedral parts in a solid modeler. Using
the interrelated surface-based variational modeling technique, the geometric tolerance
specifications have been interpreted as sets of algebraic constraints that define
tolerance zones for model variables. The main object of this approach is to define the
resultant tolerance zones of a part (from its tolerance specifications) in terms of
appropriate sets of algebraic relations. Each face of the part is described by these
model variables and those variables are ultimately constrained by the algebraic
relations. This approach considers both the issues of initial tolerance zone formation
and final representation of the variant boundary surfaces. Based on this approach,
Tech [Tech 01] studied the modeling method of tolerance zone of planar shapes, and

applied it to the tolerance analysis process.

Wang and Pramanik [Wang 06] proposed a method that can convert tolerance
specifications as per maximum material condition (MMC)/least material condition
(LMC)/regardless of feature size (RFS) material conditions for standard mating
features (such as: planar, cylindrical, spherical) into a set of inequalities in a deviation
space. The constant boundary generated by the collective effects of a size feature’s
specified MMC or LMC material condition and the geometric tolerance for the
material condition. The principle of this approach is that the variations of size or
shape could be thought of as deviations of a set of generalized coordinates defined at
some convenient point on a feature, and any tolerance specification for a feature
imposed kinds of restrictions on its deviation parameters. This approach is also used

for tolerance synthesis and analysis process.

Shah [Shah 98] proposed a dimension and geometric model, which is based on
the relative degrees of freedom of geometric entities: feature axes, edges, faces and
features-of-size. In this approach, the dimension graphs are created based on the
degrees of freedom for each control direction, and the datum reference frames and the
standard tolerance classes are incorporated into the graph. This approach allows

dimension specification, dimension scheme modification, and dimension scheme
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validation. The principle of this approach is that the deviations of the toleranced
features follow the direction of the freedoms of the features, thus the deviations can
reflect the semantics of the tolerance. Later, Davidson, Mujezinovic and Shah
proposed T-MAP [Davidson 02] based on the Shah approach. In T-MAP approach, the
variations of the toleranced features are reflected by the volumes of the point sets.
Combining Minkowski calculation to the T-MAP approach, the accumulative

calculation of the tolerance zones can be obtained.

The concept of the Small Displacement Torsor (SDT) has been developed by
Bourdet and Clement [Bourdet 87] in order to solve the general problem of the fit of a
geometrical surface model to a set of points using rigid body movements [EIMaraghy
05]. The great advantage of the torsors for the displacement modelisation is due to the
fact that the set of torsors is a vectorial space. The composition of small displacements
is obtained by a sum of torsors. This operation is commutative and simple to compute,
while the composition of two displacements in the general case (great displacements)
is a non commutative operation [Bourdet 96]. For their operations of tolerance
transfer, the deviations have to be composed. The sum of torsors allows modelising

these operations [Giordano 07].

For an effective integration of CAD and CAM, the tolerance specifications
should be taken into account in the context of computerization procedure. How to
express the tolerance information in the computer point of view is an important topic.

Some contributions on this topic are discussed below.

(2). Tolerance representation technique

According to the relationship with the solid modeling technique, the tolerance
representation techniques are divided into solid modeling dependent tolerance
representation method and solid modeling independent tolerance representation
method [Xu 08]. The first one is an attribute model, since it provides an
object-oriented programming environment in which specifications of each part, such
as tolerances, functional requirements, cost function, machining process, have been
treated as classes with their attributes [Roy 98b]. The attribute models can be
classified into: CSG based method, the B-Rep based method and the hybrid
CSG/B-Rep method. While the other models can be divided into: TTRS, tolerance
primitive, UML based method and GeoSpelling, etc.
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(a) B-Rep based model.

Johnson [Johnson 85] proposed a tolerance representation approach, which
integrates dimensioning and tolerancing modelers with the geometric modelers. Based
on this proposal, a dimensioning and tolerancing modeler, named Evaluated
Dimensions and Tolerances (EDT) model, is applied in CAM-I system. As the EDT
model uses boundary representation, the B-Rep solid modeling part needed to be
created first, before the tolerancing specification templates applied to the EDT model.
The tolerancing specification templates are used to check the features validity to

establish the DRF and to compute the tolerancing values.

The schema of EDT model consists of four types of node: a D/T (Dimension and
Tolerance) node; an EL (Entity-Linking) node; a DRF (Datum Reference Frame) note;
and an ED (Evaluated Data) note. An example of an EDT model for slot tolerancing is

illustrated in figure 1-2.

D/T [ ED ED
(slot) | (position) (size)

\EL

DRF / EL

\‘“

A 4

Figure 1-2: The structure of EDT

This B-Rep based model is applicable only for location and size tolerances, and
it is limited to geometric entities such as planar faces, cylindrical faces, conical faces

and spherical faces.
(b) CSG based model.

Requicha [Requicha 86] proposed the CSG based tolerancing representation
model, which named PADL-I and PADL-II modeler. Based on the VGraph

(Variational Graph) data structure, the tolerancing information treated as properties or
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attributes of an object’s features. This VGraph data structure is associated with the
PADL modeler by NFace (belonged to nominal geometry), which are associated with
the faces of objects constructed by CGS structure. The logical structure of a VGraph
is illustrated in figure 1-3. The lowest layer of the VGraph is the NFace notes, which
are the nominal geometry of the object. VFace notes linked to the Nface notes and
they point to the face on the object’s boundary, and VEdge notes represent the
intersection of two associated VFaces. SFeature notes and CFeature notes define
groups of VFace and VEdge respectively, to form the attribute lists. The

DatumSystem note is used to establish the datum systems.

DatumSystem -
lal, [a],]a Datums
SFeature CFeature
f | T | P,
/ \:\Mtributeust / \}ﬁ.ﬁributeust
SFeature SFeature -L‘:Feature CFeaturs
L s | |
\ﬁttrlbuteLlst / \\httr buteList
kEng VEdge Features
| P ENEN
/ \\ﬁ.ﬁrihuteList
L VFace YFace YFace
NENENEN L [ | I
\\ AttributeList
Class0Op
Solid
Nominal
Geomerry

Figure 1-3: The structure of VGraph

The system does not use the B-rep for direct access to these NFaces. An indexing
scheme for the faces of each instance of the primitive solids is consistently adopted in

the system for the proper identification of any requirement.

As the handling of dimensions and tolerances in the general case requires the
ability to access the bounded entities of objects, the CSG-based tolerance theory of

Requicha raises some manipulation problems during implementation [Roy 90]. The
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principal disadvantage of CSG based approach is that all non primitive faces derived

from the same primitive face receive the same variations.
(¢) Hybrid CSG/B-Rep model.

The tolerance representation is feature-based, and these geometric features can
be classified lower-level features (such as points, lines, arcs and surfaces) and
higher-level features (such as holes, slots, pockets or other complex features).
Lower-level features are basic topological entities, and the higher-level features are
combinations of the lower-level features. Based on the investigation that the features
information must be extracted from the solid model, Roy and Liu [Roy 88] proposed a

hybrid CSG/B-Rep data structure for the tolerance representation (see figure 1-4).
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Figure 1-4: The structure of hybrid CSG/B-Rep method [Roy 91]

This approach can integrate the advantages both CSG and B-Rep models. Figure
1-4 shows how the specified tolerance information integrated into the hybrid

CSG/B-Rep modeler by the reference face list, which is the ligament between CSG
and B-Rep data structure.

Gossard [Gossard 88] proposed a similar feature-based design system, which
uses B-Rep solid model and combines GSG representational scheme. This approach

can be employed on a polyhedral solid model, but it is limited to the conventional

tolerance representation only.
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(d) TTRS model

TTRS model is proposed by Clement [Clement91] [Clement 93] to discuss the
tolerance representation both in mathematical and theoretical point of view. Clement
proved that seven basic surface types can construct the complex objects. These basic
surface types are: spherical surface, planar surface, cylinder surface, helical surface,
rotational surface, prismatic surface and the any surface. To combine these 7 surface
types, 28 cases of combinations can be obtained, and these combinations are named
TTRS (Technologically and Topologically Related Surfaces). This method employs
the reclassifications of TTRS to denote the different tolerance cases, and the
relationship between MGDE (Minimum Geometric Datum Element) and the basic

surfaces is shown in tablel-1.

Elementary surface MGDE element MGDE symbol DoF
Sphere Point ° 3T
Plane Plane [/ 1T, 2R

Cylinder Line _— 2T, 2R
Helical Point and line or line and plane D 2T, 2R, 1TR
Rotational Point and line 3T, 2R

Any Point and line and plane 3T, 3R

Prismatic Line and plane /E 2T, 3R

Table 1-1: MGDE and the degrees of freedom

Figure 1-5 [Salomons 96] illustrates the reclassification of TTRS and the types of

tolerance specification can be determined.
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Figure 1-5: Cases of tolerancing between surfaces with MGDEs results

In this approach, tolerances are represented vectorially, in so—called torsors,
allowing for tolerance analysis. This has been addressed in [Roy 90] [Gaunet 94] and
[Riviere 94].

(e) GeoSpelling model.

GeoSpelling is a geometric product specification model proposed by Mathieu
and Bulla used to describe ideal and non-ideal geometry [Mathieu 03] [Ballu 95].
Indeed, it allows express the specification from the function to the verification with a
common language. This model is based on geometrical operations which are applied
not only to ideal features, defined by the geometrical modelers in a CAD system, but
also to the non-ideal features which represent a real part. These operations are
themselves defined by constraints on the form and relative characteristics of the
features. GeoSpelling is proved to be a unique specification model used in the global
product lifecycle in mathematical and theoretical view [Ballu 95]. The details of

Geospelling model is presented in section 2.2.
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1.3. Shape modeling

Shape is any multi-dimensional media that is primarily characterized by form or
spatial extent in a space of two, three or higher dimension [Biasotti 08]. Considering
that shape records all the geometrical information that remains when location, scale
and rotational effects are filtered out from an object [Kendall 84], it is an important
information media and focal resource in many scientific and applied scenarios:
mechanical engineering, computer graphics and vision, biological and medical

applications, etc.

According to Requicha [Requicha 89], a shape model is a computational
structure that captures the spatial aspects of the objects of interest for an application.
Requicha's work which shaped the whole geometric modeling field introduces four
levels of abstraction, called universes. The first level is used to clarify the problem
from the point of view of the universe to be modeled, (the physical universe); the
second level is used to analyze the problem from the mathematical point of view (the
mathematical model); the third allows to understand the various issues of discretizing
the elements from the mathematical universe (the representation or computational
model); and the fourth is used to map the discretized elements from the representation
universe into the structures of a computer language (implementation model)

[Robbiano 10].

In mechanical engineering, shape modeling is a consistent set of principles for
mathematical and computer modeling of three-dimensional geometric shapes and/or
solids. It covers the domains as geometric shape design, shape representation, shape
analysis and etc. The computer representation of shapes which provides the

foundations for other issues are the basis for shape modeling.

In this section, three issues are discussed for shape modeling: shape structural

expression, shape representation scheme and shape description.

1.3.1. Shape structural expression

Shape represents 3D object using a collection of various geometric entities in 3D
space, such as points, triangles, curves, surfaces, etc. According to their appearance,

shape structural expression can be divided into three categories: point-based,
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surface/shell-based and volume-based. Figure 1-6 gives an example of these three

expressions of the same object.

(a) point-based (b) surface-based (3) volume-based

Figure 1-6: Three shape structural expressions
(1). Point-based

A point-based shape, also called point cloud, is a set of vertices in a
three-dimensional coordinate system. These vertices are usually defined by X, Y, and
Z coordinates, and is typically intended to be representative of the external surface of
an object. There are still some kinds of point clouds which are volumetric data, like
the point cloud acquired by Computer Tomography (CT) used in medical and

metrological applications.

Point-based data are usually created by 3D scanners. In metrology/inspection
purpose, the acquired point data can be used directly to compare with the CAD model,
but, more commonly, they themselves are not direct usable in many applications and
therefore are converted to polygon or triangle mesh models, NURBS surface models,

or CAD models through a process commonly referred to as surface reconstruction.

(2). Surface/shell-based

These models represent the surface, e.g. the boundary of the object, not its
volume (like an infinitesimally thin eggshell). Because the appearance of an object
depends largely on the exterior of the object, surface representations are common in
computer graphics. Two dimensional surfaces are a good analogy for the objects used

in graphics, though quite often these objects are non-manifold. For discrete surface, a
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discrete digital approximation is required since surface is not finite. Polygonal meshes

(and to a less extent subdivision surfaces) are by far the most common representation

(3). Volume-based

These models define the volume of the object they represent (like a rock). These
are more realistic, but more difficult to build. The material characters, like mass,
elastic modulus, etc. can be specified for a volume-based shape. Volume-based
models are mostly used for non-visual simulations such as medical and engineering
simulations, for CAD and specialized visual applications. Recently,
Computer-Tomography (CT) technology is increasingly applied in dimensional
metrology, which acquires volumetric point clouds, the volume-based shape modeling

1s becoming more and more popular.

1.3.2. Shape representation

Representations of shape or geometry have a very strong connection to
mathematics. These include Set Theory, Graph Theory, Algebraic Topology, etc., in
addition to the various varieties of shape/geometry: projective, analytic, algebraic,
differential, and combinatorial [Naylor 96]. Based on the mathematical foundations, a
shape representation scheme can be defined as a mapping from a computer structure
to a well-defined mathematical model which defines the notion of the physical object
in terms of computable mathematical properties and is independent of any particular
representation scheme [Shapird 01]. For mechanical engineering applications, we
focus on the different methods or schemes to represent shapes in computer, the details
about the mathematical model can be referred to [Biasotti 08] [Shapird 01].
Considering various kinds and properties of shapes, many representation methods are
developed, and the same shape may also be represented by different schemes. The
modeling space of any representation methods is finite, and any single representation
scheme may not completely suffice to represent all types of solids. Therefore, the

most suitable representation methods should be considered for a specific shape.

In this thesis, the shape representation schemes are classified by their principles
and used data structures but organized according to their suitable applications. Any
single pure representation in its pure form will be limited in the range of operations

for which it is ideally suited [Naylor 96]. It is interesting and useful to identify their
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suitable applications considering the shape properties. The considering shape
properties include shape type (discrete or continuous) and their structural expression
(point-based, surface/shell-based or volume-based). Figurel-7 presents a general

taxonomy of categories of shape representation schemes for this purpose.

For each category, only several representative schemes are presented. Not all
representation schemes used today are presented in this classification. In the following,

some of the widely used schemes are discussed in further details.

Shape type Representation scheme Expression

Point based
Discrete
Surface/shell
Shape based
* Continuous Volume based

Figure 1-7: Taxonomy of categories of shape representations

(1). CSG (Constructive Solid Geometry)

Constructive solid geometry (CSG) is a technique used in solid modeling.
Constructive solid geometry allows a modeler to create a complex surface or object by
using Boolean operators to combine primitive objects. CSG is often used in CAD and
3D computer graphics for procedural modeling. It can also be performed on Polygon

mesh based models.
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In CSG, The simplest solid objects used for the representation are called
primitives. Typically they are the objects of simple shape: cuboids, cylinders, prisms,
pyramids, spheres, cones. It is said that an object is constructed from primitives by
means of allowable operations, which are typically Boolean operations on sets: union,
intersection and difference. The construction for the solids bounded by planar and
second degree surfaces have been solved completely [Shapird 01]. Figure 1-8 gives an

example of CSG representation of a mechanical part.

CSG Representation @
VRN L
VRN ),
7\
"t %
/N .
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N~ |
Intfermediate resutls

Figure 1-8: CSG representation [Shapird 01]

The attractive properties of CSG include conciseness, guaranteed validity (by
definition), computationally convenient Boolean algebraic properties, and natural
control of the solid’s shape in terms of high-level parameters defining the solid
primitives and their positions and orientations. The relatively simple data structures
and the elegant recursive algorithms further contributed to the popularity of CSG in

academia and early commercial systems [Shapird 01].

Beside CSG, there are many other constructive methods, like offsetting
[Rossigna 86], blending, convolutions [Bloomenthal 91], sweeping [Sourin 96], etc.
they have popular applications in production engineering, mechanical analysis, and

computer graphics, etc.

(2). B-rep (Boundary representation)

Boundary representation is a method for representing shapes using the limits. A
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shape/solid is represented as a collection of connected surface elements, the boundary
between solid and non-solid. A B-rep shape model is composed two parts: topology
and geometry. The main topological items include faces, edges, vertices and the
geometrical items are surface, curves and points. A face is a bounded portion of a
surface; the bounding curves of a face are represented as edges. An edge is a bounded
piece of a curve; the portion curve that forms the edge is represented by two vertices.
A vertex lies at a point. A simple example of B-rep shape using 6 faces is given in

figurel-9.

Figure 1-9: An example of B-rep shape model

Comparing to CSG, B-rep is much more flexible and has richer operations.
Therefore, the B-rep shapes are widespread adopted in modern CAD systems, like
Parasolid and ACIS, etc. The worldwide data exchange standard STEP also defines
some data models for boundary representation and figure 1-10 shows the topological
structure defined by STEP 10303-42.

| Closed_Shell |

|
‘ Advanced Face ‘
\

‘ Face Outer Bound ‘ ‘ Surface_Of Linear Extrusion ‘

‘ Oriented Edege ‘ B Spline Curve With Knots
\
‘ Edge Curve

\
" Vertex_Point |
\

} Vector H Direction

‘ Cartesian_Point ‘

Figure 1-10: The topological data structure defined in STEP standard
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(3). Polygon mesh

A polygon mesh is a collection of vertices, edges and faces that defines the shape
of a polyhedral object in 3D computer graphics and solid modeling. The faces usually
consist of triangles (see figure 1-11 (a)), quadrilaterals (see figure 1-11 (b)) or other

simple convex polygons.
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(a) triangle mesh (b) quadrilateral mesh

Figure 1-11: Examples of polygon mesh representation

Polygon mesh is suitable to construct the topological structure of discrete
point-based surfaces. It is extremely used in computer graphics for geometry-based
applications. In engineering, Applications of polygon mesh focus on FEA (Finite
Element Analysis) and manufacturing/metrology purpose. In manufacturing purpose,
the polygon mesh is generated from the continuous surface usually as STL format
[Stla 09] which is more convenient for computing by the manufacturing machines. In
metrology, an object is scanned and the point cloud is acquired by the 3D scanners
firstly, the point cloud is then needed to be modeled as polygon mesh based on which

the neighbor information can be queried for further analysis.

The basic elements for mesh modeling are vertices, edges, facets and polygon.
Different mesh representation structures store and organize these elements in different
way. Typically, the common used data structures for mesh representation include
facet-based and boundary based. Because of the absence of the adjacent relationships,
the face-based representation by which a polygon mesh is represented only as a shared
list of vertices and a list of faces storing the pointers to the vertices demonstrates its
inconvenience for geometry computing. Instead, as mentioned in [Kettner 99], the

boundary representation is given increasing considerations. A boundary representation
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(B-rep) of a polyhedral surface consists of a set of vertices, a set of edges, a set of
facets and incidence relations on them. There are various types of boundary
representations, such as Winged-edge, Quad-edge, Half-edge, etc and a more
sophisticated Half-edge data structure. A good survey of data representations for

polygon mesh can be found in [Kettner 99].

The 3D mesh, also called volumetric mesh, which not only represents the surface,
but also represent the volume information, is also used in some application, but this is

out of this thesis’s content.

(4). Voxel-based representation

A voxel is a volume element, representing a value on a regular grid in
three-dimensional space. This is analogous to a pixel, which represents 2D image data.
As with pixels in a bitmap, voxels themselves do not typically have their position
(their coordinates) explicitly encoded along with their values. Instead, the position of
a voxel is inferred based upon its position relative to other voxels. In contrast to pixels
and voxels, points and polygons are often explicitly represented by the coordinates of

their vertices.

Voxel-based representation is a kind of spatial-partitioning technique. With this
technique, a solid is decomposed into small cubic voxels. An example of voxel-based

representation is given in figure 1-12.

Figure 1-12: An example of B-rep shape model

The accuracy of voxel-based shape depends on the size of the voxel unit. It
usually used to speed up the geometry computations. Typically voxel-representation is
used for volumetric representation, such as the point data acquired by CT scanner
used in medical and metrology applications. But it can be used to represent

polygon/surfaces with lots of empty-filled cells.
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(5). F-rep (Function representation)

F-rep [Pascal 04] was introduced in "Function representation in geometric
modeling: concepts, implementation and applications" as a uniform representation of
multidimensional geometric objects (shapes). F-rep defines a geometric object by a

single real continuous function of point coordinates as formula 1-1

F(X)>0 (1-1)

X =(x,,x,,...,x,) isapointin E”,and F is the defining function defined on

space E". The above inequality defines a closed n-dimensional object in En space

with the following characteristics:

F(X)>0 for points inside the object;
F(X)=0 for points on the object’s boundary;

F(X)<0 for points outside the object.

F-rep combines many different models like algebraic surfaces, skeleton based
implicit surfaces, set-theoretic solids or CSG, sweeps, volumetric objects, parametric

models, procedural models, etc. the main features of F-rep are:
(a) Defining function evaluation procedures traversing the constructive tree structure.

(b) Leaves of the constructive tree are primitives with known types of defining

functions.
(¢) Nodes of the tree contain operations and relations.

(d) Extensibility of primitives, operations, and relation.

(6). Parametric representation

Parametric representation is the most general way to specify a surface. A

parametric surface is defined by a parametric form with two parameters in the

Euclidean space R’ . The two parameters are often labeled as u and v . The

parameterization of a surface can then be formed as a vector valued function as

formula 1-2



Chapter 1: Geometrical Variations within the Whole Product lifecycle

s =r1(u,v) (1-2)

The regular surfaces, such as sphere, cylinder, parabolic, hyperboloid, etc. their
parametric form are quite known. Take the spherical surface for example, which has
the parametric formula 1-3

x =r-sin(u) cos(v)
y=r-sin(u)sin(v) (1-3)

z=r-cos(u)
Where, u€[0,7] andve[0,27].

In general, for 3D freeform surface representation, The Bezier surface, B-Spline
and NURBS (Non-Uniform Rational B-Spline) surfaces are the most commonly
implemented techniques in CAD and computer graphics applications. Take NURBS
surface which is the most popular techniques in CAD for parametric surface modeling

for example, the parametric form can be represented as formula 1-4

S S B @) B, ()P, w,,
S(u,v) = B2 (1-4)
2 2.B.,)B,, ()W,

i=0 j=0

Where, £ is a control point, and w, ; is the weight being associated to it.
B, ,(u) and B, (v) are the basis functions along u,v directions respectively, and

they have similar recursive definitions. The definition of B, (u) is decribed by

formula 1-5
I u, <u<u,,
Bi,O (u)= (m=0)
0 else
B, (u) = (1-5)
u- Ui —U
B, (u) = B (u)+ LBM,H (u) else
itk Y Uij — Uiy

B, (u) and B, (v) can also be expressed through a polynomial for convenient

i,m

derivatives calculation. Figure 1-13 gives an example of a NURBS surface

representation.
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Control Polygon

Figure 1-13: An example of NURBS surface
(7). Implicit representation

Implicit surfaces are widely used in computer graphics. It provides powerful
primitives for geometric modeling. They have applications in ray-tracing and are also
used to determine whether a point is inside or outside of an object. Implicit surface are
the surfaces which are contours (isosurfaces) through some scalar field in 3D. A

typical implicit surface is defined by formula 1-6

s: f(x,v,2)=0 (1-6)

Where 1 :Qc R* - R, for well-behaved functions /', this defined surface is

indeed a manifold surface. A simple example is given as the implicit representation of

a sphere as formula 1-7

f(x,y,z):x2+y2+zz—R2=O (1-7)

One of the most important properties of implicit representation is that
connectivity dose not need to be determined for the discretization. A uniform
Cartesian grid can be used along with straightforward generalizations of the
technology from two spatial dimensions. Possibly the most powerful aspect of
implicit surface is that it is straightforward to go from two spatial dimensions to three

spatial dimensions.

Implicit interface representations include some very powerful geometric tools.

For example, since we have designated the f(p)=0 iso-contour as the interface.

We can determine which side of the interface a point is on simply by looking at the

local sign of f(p). f(p)<O0 indicates the point is inside the interface while
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f(p)>0 indicates outside. The point is on the surface when f(p)=0. Figure 1-14
illustrates these cases in 2D representation.

/(p)=0 f(p)=0
N\

1(p,)>0
.p3

Figure 1-14: Implicit representation in 2D space

1.3.3. Shape description

Even through shape representation methods have been researched extensively,
more recently, research interests are shifting from methods to represent shapes
towards methods to describe shapes. The distinction between representation and
description can be expressed as follows: an object representation contains enough
information to reconstruct (an approximation to) the object, while a description only
contains enough information to identify an object as a member of some class
[Nackman 84]. Shape representation that contains more details and accurate
information of an object is quantitatively similar to the object; description which is
more concise and conveys and elaborate and composite view of the object class is

only qualitatively similar.

Shape descriptors which simplify the shape representations but carry most of the
important information and easier to handle are used to describe shapes. Various
descriptors are designed for shape description, including shape signature, signature
histogram, shape invariants (e.g. curvature), moments, shape context, shape matrix
spectral features, etc. [Zhang 04a]. In this section, the shape descriptors we consider

are of two types: TTRS (see section 1.2) and curvature based shape descriptors.

Moments are used to transform a shape into a set of features or 1D function and
carry invariant properties with respect to some group of spatial transformation. They

are robust in shape identification and shape comparison tasks [Taron 07].

Curvature is a shape invariant parameter and has been classically used as a shape
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descriptor. Curvature is one of the most critical differential characters of a shape (both
continuous and discrete). There are many curvature-based descriptors, such as the
principal curvatures, Gaussian curvature, Mean curvature, shape index, curvedness,
etc. Typically, three or four numbers of curvature are sufficient to characterize the
shape for an infinitesimally small region [Zhang 04a].

Curvatures are defined to measure the local bending of the surface. Take a given
point p for example, for each unit direction # on its tangent plane 7,.(p), the
normal curvature x, () is defined as the curvature of the curve that belongs to both
the surface itself and a perpendicular plane containing both 7(p) and u . Formally,

the normal curvature is defined by formula 1-8 [Oneill 97]:
k,W)=S,(u) u (1-8)

Where, S,(u) denotes the shape operator at point p along the directionu .

The shape operator which is also known as Weingarten endomorphism is defined as
the derivate of 7n(p) with the tangent directionu . Mathematically, it’s defined as

formula 1-9:

S, W) =-V; n(p) (1-9)

Where, V, 7i(p) indicates the gradients of 7(p) along u atpointp .

The shape operator can be shown to be symmetric. The eigenvalues and
eigenvectors of the shape operator are respectively called the principal curvatures and
the principal directions. In other words, both the principal curvatures and the principal
directions can be recovered from the shape operator matrix. The principal curvatures
can also be derived directly from the Gaussian and Mean curvatures which can

computed directly based on the first and second fundamental forms of surface.

For discrete shape, the discrete shape operator can be constructed based on the
neighbor information of a given point and the principal curvatures can then be

approximated (see figure 1-13) [Taubin 95] [Cohen-Steiner 03] [Zhao 10].
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Figure 1-15: Normal and principal curvature directions of a smooth surface at point p

Other curvature indicators can be derived from the principal curvatures. If

and x, represent the maximum and the minimum principal curvatures respectively.

Some important curvatures can be represented as formula 1-10 to formula 1-13:
K=k x, (1-10)
MI%(KI—FK‘z) (1-11)

2 K +K
s = ——arctan(———=2)
Vs K, —K,

2 2
o= /% (1-13)

Where, K indicates Gaussian curvature which is an intrinsic measure of

(K, 2 1,) (1-12)

curvature. The parameter M indicates Mean curvature which is an extrinsic measure
of curvature. The parameter s indicates shape index which is a single value within the
range [-1, 1] to measure the local surface types [Koenderink 92]. The parameter c¢ is
the curvedness which is a positive number to specify the amount of the surface

curvatures [Koenderink 92].

1.4. Conclusion

A coherent and complete tolerancing process is necessary to control the
geometrical variations along the whole product lifecycle. This chapter surveys the

techniques for geometrical variation management within product lifecycle.



Chapter 1: Geometrical Variations within the Whole Product lifecycle

Firstly, the tolerance modeling methods which are common-used in CAT and
Geometrical product specification are reviewed considering the tolerance

specifications and representations.

Secondly, the shape modeling techniques are introduced considering three issues:
shape structural expressions, shape representations and shape descriptions. The
different representation methods are discussed according their principles. The
mapping relationship between shape structural expressions and representations are
constructed. Discrete shape modeling is highlight for the further processing of

geometrical variations.

In the Chapter 2, we will derive the main characteristics of discrete geometry and
Geospelling in order to provide a new framework for the operationalization of
Geospelling. The Skin model or non-ideal geometry will benefit from our studies as

described in Chapter 3 and Chapter 4.
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A Discrete Geometry Framework for

GeoSpelling
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2.1. Introduction

GeoSpelling is proposed as a coherent and complete model to manage the
geometrical variations along product lifecycle. GeoSpelling is defined based on
geometrical operations to handle both ideal (e.g. CAD model) and non-ideal (real part)
features. The methods to handle ideal features are extensively researched and are
mature in the popular CAD software packages. But the methods to handle the
non-ideal features (skin-model which is the kernel concept in GeoSpelling) haven’t

solved yet.

With widely applied 3D scanners (e.g. Laser scanner), 3D point clouds acquired
by 3D scanners is becoming popular in many applications, such as reverse
engineering, quality control, rapid-prototyping, etc. 3D point clouds which are
acquired from the real part can represent the real features. Therefore, the skin model
can be constructed and simulated based on 3D point clouds. The discrete geometry
processing technologies can then be used to handle the discrete skin models and the

related geometrical operations.

This chapter represents the characteristic concepts of Geospelling and discrete
geometry. The corresponding relationships between GeoSpelling and discrete
geometry are constructed and a new framework is defined for the geometrical

operationalization of GeoSpelling from the view of discrete geometry.
This chapter is organized as follow:

Section 2.2 presents the characteristic concepts and geometrical operations of
GeoSpelling. Section 2.3 introduces the basic principles of discrete geometry. Section
2.4 discusses the new framework for operationalization of GeoSpelling using discrete

geometry methods. Section 2.5 is a case study and 2.6 is the conclusion.

2.2. GeoSpelling

GeoSpelling is a geometrical specifications model proposed by Mathieu and
Ballu in 1990s. This model is designed as a mean of communication, in which
designers, manufacturers and metrologists exchange product geometrical information

concerning the function requirements of products unambiguously. GeoSpelling that
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has been adopted by ISO TC 213 experts can describe both ideal and non-ideal
geometrical features, and it allows expressing th94e geometrical specification from
the function to the verification with a common language [Mathieu 07]. While, as the
actual GeoSpelling has not been defined completely, it can not be fully integrated in
CAD/CAM/PLM chain directly. The objective of improving the actual GeoSpelling is
to enhance its computational capability. In this chapter, t discrete geometry concepts
and methods are discussed in the context of GeoSpelling. Discrete geometry mainly
focuses on discrete geometrical objects (such as point and mesh), and it also has a
large overlap with computational geometry and discrete differential geometry. These
characteristics of discrete geometry could provide a consistent and rigorous
framework for enhancing digital processing capability of GeoSpelling. GeoSpelling

model is defined by the following concepts.

2.2.1 Specification

A specification is a condition on a characteristic defined form geometrical
features, and these geometrical features are created from the model of the real surface

of the part (skin model) by different operations (figure 2-1) [Mathieu 05].

a SPECIFICATION

is a
——— Condition

on a
CHARACTERISTIC

defined from GEOMETRIC
FEATURES

b )/' Created from

Figure 2-1: Specification defined in GeoSpelling

2.2.2 Geometrical Features

In GeoSpelling, the features are classified into three categories: ideal features,
non-ideal features and limited features. Today the definitions of these features are

roughly described as follow.

38



Chapter 2: Discrete Geometry Framework for GeoSpelling

Let us consider ideal features such as a plane of the nominal model of the part or
a cylinder fitted to a real feature nominally cylindrical. In the first case, the plane of
the nominal model is a nominal feature; while in the second case, the cylinders fitted
to real surfaces are fitted features. Therefore, the ideal features can be divided into
two classes: nominal features and associated features. The nominal features are those
features that completely independent of the real surface of the part and also can
constitute the nominal model defined by the CAD systems. The associated features
can be obtained by association operation from a skin model. Actually, an ideal feature
can be defined by an equation, and they are characterized by their invariance class

[Clement 94] and their type.

Non ideal features such as a surface portion of the model of the real surface of a
part or a real axis. The non ideal features can not be defined by equations. They

depend completely on the real surface of the part.

2.2.3 Operations

The operations are used to obtain geometrical features. They are classified into

six categories (figure 2-2).

Operations
e
o e FOX. e B,
Partition e W g ormricl
o / \ O Construction
Extraction Collection 1
.‘ L 4 -

Filtration Association = 1
{ -/,’ e

Figure 2-2: Classifications of operations

A partition is an operation used to identify bounded feature(s) from non ideal

feature(s) or from ideal feature(s) (figure 2-3).
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(a) Skin model (b) Partition
Figure 2-3: Partition operation

An extraction is an operation used to identify specific points from a non ideal

feature (figure 2-4).

(a) Skin model (b) Filtration

Figure 2-4: Filtration operation

A filtration is an operation used to create a non ideal feature by reducing the

level of information of a non ideal feature (figure 2-5).

WM I M T T T T WA

Figure 2-5: Extraction operation

A collection is an operation used to consider more than one features together
(figure 2-6).
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Figure 2-6: Collection operation

An association is an operation used to fit ideal feature(s) to non ideal feature(s)

according to a criterion (figure 2-7).
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Figure 2-7: Association operation

A construction is an operation used to build ideal feature(s) from other ideal

features with constraints (figure 2-8).

Figure 2-8: Construction operation
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2.2.4 Characteristics

A characteristic is a parameter of one feature or between two features to express
a length or an angle. The characteristics are used to define specifications, and they

belong to five families.
(a) Intrinsic characteristic. They are the characteristic of an ideal feature.

(b) Situation characteristic between ideal features. The characteristic defines the

relative position between two ideal features.

(¢) Situation characteristic between ideal and limited features. The characteristic

defines the relative position between an ideal feature and a limited feature.

(d) Situation characteristic between ideal and non ideal features. The
characteristic defines the relative position between a non ideal feature and an ideal

feature.

(e) Situation characteristic between non ideal features. The characteristic defines

the relative position between two non ideal features.

2.2.5 Skin model

Based on the GPS standard [ISO 2005], the surface model is a closed surface
which can represent the interface between workpiece and its environment. The
concept of skin model is the basic foundation of GeoSpelling, and all the operations
are performed on the skin model. The skin model is a kind of surface model, and it is

opposite to nominal model.

The nominal surface model is a surface model of perfect shape defined by CAD
software. Normally, the nominal surface model is deemed as an ideal feature. It used
to reflect the design intend and the function requirements. A comparison between the

nominal model and the skin model is illustrated in figure 2-9.

The skin model also called the specification surface model is a surface model of
non-perfect shape imagined by the designers to reflect the specifications and
verification requirements. Considering the form errors of workpieces involved during
the manufacturing and inspection process can be classified into two categories:

random errors and systematic errors [Henke 99] [Desta 03], the skin model need to
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reflect these two kinds of errors. The definition of skin model proposed in our work is
that a surface model combined both random and systematic errors on a nominal model.

The skin model simulation methods will be introduced in chapter 3 and chapter 4.

L/

O
O

(a) Nominal model (b) Skin model

Figure 2-9: Surface model
Discrete geometry

Along with the development of computer science and information technologies,
discrete geometry emerged as a new growing area of research that uses concepts from
classical and non-classical geometry, topology, combinatorics, probability theory,
computer science and engineering in order to design structures and algorithms for the
acquisition, representation, processing and transmission of complex 3D models.
Discrete geometry as a discipline is on the cutting edge of modern applications such
as geographic information systems, computer graphics, solid modeling, and

computational biology.

Discrete geometry deals with the structure and complexity of discrete geometric
objects as well as with the design of efficient computer algorithms for their
manipulation. Discrete refers to the fact that the objects of interest are discrete data
(point sets, triangle meshes, tetrahedron meshes, etc.) and is used to contrast with

“continuous” geometry, for example, smooth surfaces.

Discrete geometry has large overlap with Computational geometry that arose as a
new field within the past thirty years. The term “discrete” fit well with the term
“computational” as the geometry must be discretized in preparation for computations
[Devadoss 11].
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In our work we consider that discrete geometry covers both the old topics of

discrete geometry and the new issues of computational geometry.

Research themes in discrete geometry cover the geometry processing pipeline
that include studying transition mechanisms between physical (real), mathematical

(abstract), and discrete (digital) representations of complex shapes [Botsch 10].

Alliez [Alliez 09] enumerates and structures the related algorithms throughout

the following geometry processing pipeline:

(a) Acquisition. There exists a variety of geometric measurement devices based
on different technologies such as contact probing, photogrammetry, laser scanning,
structured lighting and tomography. The output of such devices is often composed of

2D or 3D point sets with in some cases color attributes and normal estimation.

(b) Registration. The output of shape acquisition devices is a series of point set
corresponding to different acquisition viewpoints. A registration is required to align
the data in a common coordinate frame. Many approaches employ rigid transforms
and variants of Iterative Closest Point (ICP) techniques [Besl 92] [Rusinkiewicz 01]
and new researches deal with non-rigid transforms [Li 08] for compensating

calibration errors, noise, and irregular sampling.

(¢) Reconstruction. The process of shape reconstruction is determining a surface
that approximates an unknown shape from samples. This problem is ill-defined since
many surfaces approximating the samples can be retrieved. Moreover, the point set
can be characterized with variable density as well as noise and outliers due to the
acquisition process. The main challenge here is to guarantee that the topology of the
original surface is preserved, while sharp features and surface boundaries are
reproduced accurately in the reconstructed surface [Chang 07]. The research literature
is very rich and various techniques have been developed [Bolle 91] [Alexa 01] [Tamal
06]. The earliest techniques used NURBS or B-splines to fit and stitch together local
surface patches but showed their limits when dealing with complex physical object,
large data and noise. Voronoi-based methods provide a provable reconstruction
guarantee. Implicit surface fitting techniques produce high-quality surfaces that
accommodate sharp features and boundaries while moving least squares surfaces are

robust to noise.

The terms “surface fitting” is in reference to two distinct classes of problems

[Hoppe 92]: surface reconstruction and function reconstruction. The goal of function
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reconstruction is to determine a function that “best” approximates a known domain
surface. Function reconstruction methods can be used for surface reconstruction in
special cases, where the surface to be reconstructed is known such as quadric surfaces
[Zhang 11].

Fitting surfaces to measured data algorithms estimate surface parameters by
minimizing the shortest distances between the surface and the measurement points.
There has been much recent algorithmic development based on conventional best-fit
technique, mainly Orthogonal Distance Fitting (ODF) [Ahn 04]. Three ODF
techniques are of particular interest for coordinate metrology applications. The
classical ODF L, norm (Euclidean distance), ODF L; norm which is robust regarding
outliers and Liyfinite norm called also the Tchebychev norm or minimum norm which is
related to the minimum-zone problem. In general two approaches are proposed to
solve the problem of surface best-fit [Aranda 10]. The first approach considers the
best-fit as a purely geometric problem and generates a Gaussian distribution of
uncertainty. The second considers the best-fit as a statistical approach similar to
regression analysis and focus on the representation of the real surface and not only the

sampled surface.

(d) Analysis. The efficient analysis of shapes is important for modeling and
processing. Estimation of normal, curvatures and other differential properties, as well
as topology characterization and feature extraction are the main common analyses

reported in the literature [Botsch 10].

(e) Processing. It refers to existing approaches, which modify a shape to best
prepare it for subsequent operations along the pipeline [Alliez 09]. The main common
operations are denoising, smoothing, fairing, reduction, idealization and preparation

of quality meshes for simulation.

Other research themes as reported by Alliez are related to visualization and
rendering [Alexa 03], editing [Botsch 05], transmission and storage [Alliez 05],
protection and watermarking [Cayre 04] and searching and browsing [Funkhouser 05].
For further details on discrete geometry and other emerging topics, refer to [Gross
07].
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2.3. Discrete geometry and GeoSpelling

GeoSpelling proposed by Ballu and Mathieu [Ballu 95] is used to describe both
ideal and non-ideal geometric features. Indeed, it allows the expression of product
specifications from function to verification with a common language. This model is
based on geometrical operations which are applied not only to ideal features defined
by CAD systems, but also to the non-ideal features which can represent a real part.
These operations include partition, extraction, filtration, association, collection and

construction items.

Discrete geometry research focuses on basic discrete geometrical objects, such as
points, segments, triangles and other convex discrete shapes, and it is quite efficient to
implement digital processing techniques. Therefore, discrete geometry theories and
techniques are suitable for enhancing the data processing capabilities of GeoSpelling.
Based on the standard [ISO 2005], a specification is defined as a condition on a
characteristic defined from geometric features which are created from a skin model by

different operations. The related concepts and algorithms are presented as blow.

2.3.1 Geometrical Features

There are two kinds of geometrical features defined in GeoSpelling: ideal
features and non ideal features. These two kinds of features are related to the surface
models (skin model). The features that are obtained from the nominal surface models
defined by the CAD software can be approximately deemed as ideal features, while
the non ideal features are derived form the skin model which integrated the
imaginations of the real workpiece by the designers. In discrete geometry field, ideal
features can be acquired by reconstruction and fitting operations, while ideal features
can be describe by discrete geometrical features such as point, segment, polyline,

mesh etc.

2.3.2 Operations

Operation defined in [ISO 2005] including partition, extraction, filtration,
association, collection and construction. These operations play an important part in

Geospelling [Mathieu 07], so in this section we want to find out the interrelated
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techniques in discrete geometry.

(1). Partition

The operation called partition is used to identify bounded features [ISO 2005]. In
Discrete geometry, there are abundant contributions on this area. The majority of
partition methods can be classified into three categories: edge-detection methods,

region-growing method and hybrid methods [Woo 02].

Edge-detection method can be described that, after identified the boundary points,
connect each point to a continue boundary and consider the area inside the boundary
as the segmentation. Yang and Lee [Yang 99] introduced a partition technique for
extraction edge points by estimating the local surface curvature, and the parametric
quadric surface approximation method was applied. Ke and Fan [Ke 04] extracted the
edge points by divided dimension grids according the density of points. Wu and Wang
[Wu 07] identified edge points based on the differential geometry theory.

The edge-based methods always have two stages; one is edge detection stage,
and the other is linking stage. This method finds boundaries between surfaces in point
data firstly, and an edge-linking process followed, in which disjoint edge points are
connected to form continuous edges. Then infer the surfaces as the areas inside the
boundaries. Usually, detect edge points based on the behavior of some features such
as normal or curvatures e.g. [ Yang 99] [Wu 07]. The main problem to the edge-based
technique is the points near sharp edges are unreliable, result in a relatively high

sensitivity to occasional spurious data points.

The region-growing methods proceed with segmentation by detecting continuous
surfaces that have homogeneity or similar geometrical properties. Ke and Chen [Ke
06] proposed a partition method based on the differential geometry and mathematical
statistic theory. Jagannathan [Jagannathan 07] presented a graph-morphology-based
3D mesh segmentation algorithm to classify vertices into different categories based on
their intensities of curvatures. Liu and Xion [Liu 08b] addressed the approach mainly
based on the Gaussian map, the Clustering, the region Recognition and the region
Rectification. Benko and Varady [Benko 04] studied how to improve the connections

of partition regions more smoothly.

The region-growing methods detect continuous surfaces firstly, and then can get

the homogeneity or similar geometrical segmentation, e.g. [Ke 06] and [Jagannathan
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07]. For this method, it always selects a series of seed points firstly, based on a certain
threshold, the seed points growing to a related range, and then can segment the cloud
points. The advantage to face-based techniques is that it work on a larger number of
points to reduce the risk of sensitivity to occasional spurious data points and can

identified which points belong to which surface.

Hybrid methods have been developed by combining the edge-based and
region-based methods together to yield an approach that can overcome the limitations
involved in the above two kinds of methods. Woo [Woo 02] proposed segmentation
that uses an octree-based 3D-grid splitting process that uses the iterative subdivision
of cells based on the normal values of points, and the region-growing process to

merge the divided cells into several groups.

Based on the hybrid methods, Zhao [Zhao 10] proposed a segmentation method
based on shape index and curvedness. This method is based on two assumptions: the
initial discrete shapes can be broken down into various components, and these
segmented components can be represented by mathematic functions with degree no
higher than 3. Based on the shape index and curvedness information, the local surface
type can be determined, and the edge points are detected with the high curvature
values. After clustering the edge points and merging the local surfaces with the same
type, the segmentation result is obtained. The main contribution of this method is that
it can recognize and extract the regions surrounded by real defined boundaries, which

can be sharp edges, smooth edges, inflexion edges, etc.

To sum up, region-growing methods have less influence by noise than
edge-based methods, but it is quite sensitive to threshold and the selection of seed
point is also a technical problem. The hybrid methods combining the virtue of

edge-based and region-based methods can overcome the two kinds of limitations.

(2). Extraction

The operation called extraction is used to identify a finite number of points from
a feature, with specific rules [ISO 2005]. In discrete geometry terms, the technique of
sampling can deal with this kind of problem. It links two aspects, one is the extraction
location and the other is the extraction size. There is flock of the contributions, for
geometrical specification Zhang et al. [Zhang 07] has proposed a method, and for
CMM detection Kim [Kim 00] et al. introduced the corresponding approach.
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Zhang [Zhang 07] classified the extraction strategy into four kinds: grid
extraction, stratified extraction, special curve and point extraction, and depending on
the relationship between invariant class and extraction strategy to give the
determination. For extraction size, it is based both on the sine wave function and

Nyquist sampling theory and the result of point size for each cut-off wavelength is 7.

In CMM measurement, four kinds of extraction methods were investigated:
Hammersley sequence sampling, Halton-Zaremba sequence, Aligned systematic
sampling, and Systematic random sampling [Kim 00]. British Standard BS7172
recommended that the sample size can vary from 5~15 points for various individual
shapes and features [Zhang 00]. Zhang et al. [Zhang 96] introduced neural network
approach to determine the sample size for inspection of holes using process method,
size of hole and tolerance band as factors. Li [Li 98] adopted rate-distortion theory to

determine the number of measuring.

(3). Filtration

The filtration operation in GPS [ISO 2005] is the operation that used to

distinguish between roughness, waviness, structure and form etc.

While in discrete geometry, filtration mainly concerned about outlier moving
based on sample points. Outlier is the erroneous point that outside the surface and
should be removed. There are some methods can achieve this object, such as plane fit

criterion, mini-ball criterion and nearest-neighbor reciprocity criterion [Gross 07].
(a) Plane fit criterion.

The plane fit criterion considers a plane H that minimizes the squared distances

to a sample point p’s neighbors, it can be described by formula 2-1 (see figure 2-10):

m}}n Z dist(p, H) (2-1)

qeN, (p)
Let d be the distance of p to H, and d the mean distance of points from N, (p) to

H. The plane fit criterion is defined as formula 2-2

x,(p) = ﬁ (2-2)

Normalization by d relates d to possible noise and surface deviations. Figure 2-10
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illustrates that the plane fit criterion compares p’s distance d to a least squares plane H
with the average distance of its neighbors to H, and p’s k-neighbors are denoted in

blue.

P

Figure 2-10: The plane fit criterion

(b) Mini-ball criterion.

A point comparatively distant to the cluster built by its k-nearest neighbors is

likely to be an outlier. This observation leads to this criterion.

For each point p consider the smallest enclosing sphere S around N, (p) (see

figure 2-11). S can be seen as an approximation of the k-nearest neighbor cluster.
Comparing p’s distance d to the center of S with the sphere’s diameter yields a
measure for p’s likelihood to be an outlier. The mini-ball criterion is defined as

formula 2-3

d

=— = 2-3
X, (P) 2k (2-3)

Normalization by\/; compensates for the diameter’s increase with increasing

number of k-nearest neighbors at the object surface. The principle of the Mini-ball
criterion can be described by figure 2-11. The mini-ball S approximates the cluster of
p’s neighbors, and the criterion compares p’s distance to S with the diameter of the

sphere.
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Figure 2-11: The Mini-ball criterion
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(¢) Nearest-neighbor reciprocity criterion.

This criterion is based on the following observation: potential outliers draw their
k-nearest neighbors from a larger vicinity than points in a well-sampled environment.
In particular, a valid point sample q may be in the k-nearest neighbor of an outlier, but

the outlier will most likely not be part of q’s k-nearest neighbors.

This relationship can be expressed by means of a directed graph G of k-nearest
neighbor relationships (see figure 2-12). Outliers are assumed to have a high number
of unidirectional exitant edges (i.e., asymmetric neighbor relationships). Consequently
the criterion considers the ratio between unidirectional and bidirectional exitant edges

in G. The classifier is expressed as formula 2-4

HNk,uni (p)H _ HNk,um' (P)H
HNk,bi (P)H + HNk,uni (P)H k

X, (p) = (2-4)

The final outlier classification is computed using weights wl,...,w3, ziw,. =1,

interactively defined by the user as formula 2-5

x(p) = WX, (p)+w,x,,(p)+w;x,(p) (2-5)

As all outlier criteria are based on the k-nearest neighbor graph,x , x

pl> mb >

and x,, are computed once and cached during the computation of x. The principle of
Nearest-neighbor graph method can be describe by figure 2-12. Depicted are the five

nearest-neighbor relations for p and its five neighbors q,...,qs, since that only q»

shares a reciprocal neighbor relationship with p.

Figure 2-12: The Nearest-neighbor graph criterion

(4). Association
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The methods of association defined in GPS can be classified as Least Squares,
Minimum Zone, One Side Chebyschev, Maximum inscribed and Minimum

Circumscribed, and all of them can be illuminated by a uniform formula 2-6
1
1 n » 7]
L[J—norm = [; (;|}:| )I ]n~>oo (2_6)
Whereiis the index of point on the non-idea feature, pis the index of the

function, n is the number of points of the non-ideal feature,r;is the residuals between

non-ideal feature and ideal feature (see figure 2-13).

In discrete geometry, we evaluate the association operation instead of continuous
features are discrete ones. Therefore, the three of common used methods of
association in discrete geometry will be introduced in this section. There are Least
Squares (LS), Weighted Least Squares (WLS) and Moving Least Squares (MLS)
[Nealen 92]. The Least Squares method has be adopted in GPS, while the other two

are something new.

Ideal feature

Non-ideal feature

Figure 2-13: Lp norm of association
(a) Least Squares method. Given N points located at positions x, in Rd
wherei €[1--- N]. In order to obtain a globally defined function f'(x)that approximates
the given scalar values f; at point x; in the least-squares sense with the error

functional J,; = Zl” f(x)-f, ||2 . Thus the problem can be described as formula 2-7

min 3|1 (o) = £ @-7)

i

Where £ is taken from[]¢ , the space of polynomials of total degree m ind spatial
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dimensions (see figure 2-14).

5
o(x)=a+bx +cx-

Figure 2-14: Least Squares method

(b) Weighted Least Squares method. Use the error
functional J,,,; = > O(|% —x,])||/ (x,)— £;| for a fixed point¥ € R, in the weighted

least squares formulation. Then the problem can be described as formula 2-8
. — 2
min > 6% —x, ||/ (x) = /] (2-8)
Similar to above, only that now the error is weighted by &(d)whered, are the

Euclidian distances between x and the positions of data points x; .

(¢) Moving Least Squares method. The MLS method was proposed by Lancaster
and Salkauskas [Lancaster 81] for smoothing and interpolating data. The idea is to
start with a weighted least squares formulation for an arbitrary fixed point in R, and
then move this point over the entire parameter domain, where a weighted least squares

fit is computed and evaluated for each point individually. It can be shown that the

global function f(x), obtained from a set of local functions is continuously

differentiable if and only if the weighting function is continuously differentiable. We
can see (figure 2-15): in each location x a polynomial is computed using the least
squares method, however, weighting the influence of the data points based on their
distance. The value of this polynomial at x yields the functional approximation (left);
the set of locally approximated function values, together, forms the approximated
curve (right).

g(x) =a+bx +cx’

—_—

Figure 2-15: Moving least squares
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(5). Collection and Construction

Construction and collection operation in GPS can be depicted by Boolean
operation technique used in discrete geometry. Collection should be the union
operation of Boolean operation, while the construction is the intersection operation in
Boolean operation. Boolean operation can be classified into mesh-based and
point-based methods, and the later one can be subdivided into MLS (Moving Least
Squares), RBF (Radial Basis Function) and MPU (Multi-level Partition of Unity

Implicit) categories based on the method to construct a surface.

(a) Mesh-based method. Mesh-based method can deal with the Boolean
operation between mesh and mesh, Bi [Bi 08] proposed a method which based on the
orientability of manifold meshes and the topological relationship of the meshes. The
process can be mainly divided into two steps. First is to estimate the intersections (see

figure 2-16), and second is to divide the polygons into triangles (see figure 2-17).

(a) intersection is a segment (b) intersection is one edge (c) intersection is a point

Figure 2-16: Intersection cases

Figure 2-17: Dividing the polygon into triangles

(b) Point-based method. The common used methods of point-based Boolean
operation can be classified into MLS, RBF and MPU three categories, and this sort is

relay on the approach that reconstruct a implicit surface.

The process of MLS Boolean operation described as follow [Gross 07]. Before
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going into detail, let’s have some definitions. Given two point set £ and P, since

Boolean operations typically produce sharp creases at the intersection of the two

surfaces S,and S,, P, consists of two subsetsQ < PandQ, c P, plus a set of newly

generated sample points that explicitly represent the intersection curves. Thus, in
order to perform a Boolean operation for point-sampled geometry, the following

techniques are required: a classification predicate to determine the two setsQ,andQ,,

an algorithm to find samples on the intersection curve and a rendering method that

allows the user to display crisp features curves using point primitives.
For classification: the goal of the classification stage is to determine which points
of £ are inside or outside the volume enclosed by the surface S, and vice versa. For this

purpose a classification predicate Q2 is defined as formula 2-9

1 xeV
Q,(x)= (2-9)
0 xeV
WhereV is the volume bounded by the MLS surface S defined by the point

cloud P.

Given the classification predicateQ, the subsets O, and Q, can be computed

as shown in table 2-1.

Q Q,
S1US, {p € P1|Qp,(p) = 0} {p € P2|Qp,(p) = 0}
Sins; {p € P1|Qp,(p) = 1} {p € P2|Qp,(p) = 1}
51 -5 {p € P1[Qp,(p) = 0} {p € P2|Qp,(p) = 1}
S, =5 {p € PiIQp,(p) =1} {p € P,|Qp, (p) = 0}

Table 2-1: Boolean operations
For intersection curves: taking the union ofQ andQ,can not produce a point
cloud that accurately describes the surface S,, since the intersection curve of the two
MLS surfaces S, and S, is not represented adequately. Therefore, a set of sample points

that lie on the intersection curve is explicitly computed and added toQ, U Q,, to obtain
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the point cloud 7, .

From all closest pairs (¢, € 0,,q, € 0,) of these points a new sampleq on the

intersection curve is computed using a Newton type iteration. This is done as follows:

Letr be the point on the intersection line of the two tangent planes of ¢, and ¢, that is
closest to both points (i.e., that minimizes the distance”r -q, || + ||r -q, || ). The pointris
the first approximation of g and can now be projected onto S, and S, to obtain two new
starting points ¢, and ¢) for the iteration. This procedure can be repeated iteratively

until the points ¢, and ¢, converge to a point g on the intersection curve (figure 2-18).

|
. . | .

? * '
Q1 ..
Q2 . 94 97 .
I A .
i gt sz ___.//
(a) closest point pairs (b) first estimate (c) re-projection (d) second estimate '

Figure 2-18: Finding the intersection curve of two MLS surfaces

2.3.3 Characteristics

In [ISO 2005] characteristics are defined using some instances: ideal features
also called intrinsic characteristics, or between ideal features and called situation
characteristics, or between ideal and non-ideal features and also called situation

characteristics.

Correspondingly, in discrete geometry characteristics maybe can be defined as:
either on ideal features called intrinsic characteristics, or between ideal features called
situation characteristics, or between ideal and non-ideal features called situation
characteristics, or between non-ideal feature and non-ideal feature and similarly called

situation characteristic.

(1). Intrinsic characteristics of ideal features

The intrinsic characteristics are functions of features, so they are denoted as
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functions of these features [ISO 2005], and it is the same as in discrete geometry.

(2). Situation characteristics between ideal features

The definition of ideal feature in discrete geometry has been discussed in section
2.1, and the type of ideal features in discrete geometry can be divided into point,
straight line and plane as the same in GPS. Therefore, the situation characteristics,
including location and orientation characteristics, both in GPS and discrete geometry
can be described as what has been defined in [ISO 2005] (table 2-2).

Location Orientation
point — point distance straight line — straight line angle
point — straight line distance Straight line — plane angle
point — plane distance plane — plane angle

straight line — straight line distance

plane — plane distance

Table 2-2: Situation characteristics between ideal features

(3). Situation characteristics between non ideal and ideal

features

Both in GPS and discrete geometry, these situation characteristics are only
distances, and used for association operation. The difference is that, in GPS the
non-ideal features is continuous, but in discrete geometry the non-ideal feature
represent in discrete features such as point, segment or triangles. The contrast can be

illustrated in figure 2-19.

(a) non-ideal feature is continuous (b) non-ideal feature is discrete

Figure 2-19: The difference of distance between ideal and non-ideal feature

(4). Situation characteristics between non-ideal and non-ideal

features
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In GPS, there is not exist this kind of situation characteristics, whereas, in
discrete geometry it should be take into account, and these situation characteristics are
also only distance. Corresponding to the location characteristic between ideal feature
(see table 2-2), the location characteristic between non-ideal and non-ideal feature
should be present as table 2-3 and the mathematical notation as table2-4. The most

used non-ideal features in discrete geometry are denoted by two letters, see table 2-5.

Point-point distance Distance (point-point)

Point-segment distance Distance (point-segment)

Point-triangle distance Distance (point-triangle) Type Symbol
Segment-segment distance Distance (segment-segment) Point PT
Segment-triangle distance Distance (segment-triangle) Segment SE
Triangle-triangle distance Distance (triangle-triangle) Triangle TR

Table 2-3: Location characteristic =~ Table 2-4: Mathematical notation Table 2-5: symbols

The calculation of each kind of location characteristics between non-ideal and

non-ideal features in discrete geometry will be discussed as follow [Schneider 03].

(a) Point to point distance. As we all know, the fundamental to any distance

algorithm is the distance between two points, so we will discussed the distance in 3D

case firstly. Let two points are X = (x,,x,,x,)andY = (y,,»,,»,). The sketch map and

formula are provided, see table 2-6.

Sketch map Formula
. 2
.Y =e> V1> ,) D|stance2(X,Y) = "X - Y" =(x, - yo)2 +(x — y1)2 +(x, — y2)2
’ Note: the square root calculation is much more time consuming
[}
X =(xp,%,,%,) than squared one, so all the distance discussed below will be

squared calculation.

Table 2-6: Point to point distance

(b) Point to segment distance. Given a point Y and a line L parameterized

asX(t)=P+ td , the closest point on the line to Y is the projection X (E) of Y onto the

line for some parameter valuet. The distance between a point and a segment is more
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like this case. However, the projection of Y onto the line might not lie on the line
segment S. The projection could lie behind the initial point or ahead of the final point

of the segment. Table 2-7 shows the three possibilities. The direction vector

isd = F, - F,, the difference of end points for the line segment. The parameter interval

is [0, 1]. The value/is just as for the line, but for the segment it is tested against the

parameter interval [0, 1].

Sketch map Formula

v Distance’(Y,S) = "Y - Po"2

Note: Py closest to Y.

Po £, <0 P1
Y . N — 12
¢ Distance” (Y,S) = “Y —(P+ tod)“

.—.—. Note: X (;) closest to Y.

Po 0<ty<l P1
Yoo Distance’(Y,S) =||Y — Pl||2
Note: P closest to Y.

L E——

Po ty =1 P

— —12
Table 2-7: Closest point on a segment to a given point. Wheret, =d - (Y - F))/ “d “

(c) Point to triangle distance. Given a triangle T with vertices {VO0, V1, V2},

described by parametrical expression as formula 2-10

T(s,t) = B+ seo + e (2-10)
For (s,t)e D ={(s,t):5 €[0,1],t €[0,1],s +¢ <1} , B=V, , e = V.-V, , and

e = V, =V, . The distance between a point P and the triangle T can be deemed to the

minimum distance, which is computed by locating the values (E, 2) € D corresponding

to the point P°, the closest point on the triangle to P. The squared distance from any

point on the triangle to P is as formula 2-11
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Distance’ (s,7) = O(s, ) = ||T(s,t) - P (2-11)

For(s,t) € D, this formula also can be denoted as formula 2-12

Distance’(s,t) = O(s,t) = as” + 2bst + ct* + 2ds + 2et + f (2-12)

Where:azéo-éo, b:;0'21, 0221'21, dzg()‘(B—P), 62—21-(3—})),

f=(B-P)(B-P).

In calculus terms, the goal is to minimize Q(s,?) over the domain D.
Since O(s,1)1s a continuously differentiable function, the minimum occurs either at an
interior point of D where the gradient VQ =2(as + bt + d,bs + ct + e) =(0,0) (that is,

inside the triangle) or at a point on the boundary of D.

The gradient of Qis zero only whens = be—c c‘j and 7 = bd — Zf .

If(s,t) e D,
ac—b ac—

then the minimum of Qs obtained. Otherwise, the minimum value must occur on the

boundary of the triangle. To find the correct boundary, consider figure 2-20.
The center triangle labeled 0 is the domain ofQ, that is(s,t) e D . If (E,z:) is in

region 0, the P°, the point on the triangle closest to P, is on the interior of the triangle.

The three dimensional illustration is be provided in figure 2-21. The Q with quadratic

function represents as paraboloid, and VQ(E, 2) = (0,0) occurs at s,fin region 0 case.

Figure 2-20: triangle domain D . - - — )
Figure 2-21: when VQ(s,t) = (0,0) , s, in region 0
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If (E, ;) ¢ D, that means the minimum occurs on the boundary of the triangle,

take (E, E) is in region 1 for example. The level curves of Q are those in the st-plane for

which Q is a constant. Since the graph of Q is a paraboloid, the level curves are

ellipses (see figure 2-22). At the point at where VQ =(0,0), the level curve

degenerates to a single point (E, Z) . The globe minimum of Q occurs there, call it Vmin.

As the level values V increase from Vmin, the corresponding ellipses are increasingly

further away from (E, ;) . There is a smallest level value VO for which the
corresponding ellipse (implicitly defined by O =¥, just touches the triangle domain
edge s+¢=1at a value s=s,€[0,1],¢ =1-5,. For level values V <V, the
corresponding ellipses do not intersect D. For level V' >V, portions of D lie inside the

corresponding ellipses. In particularly, any points of intersection of such an ellipse

with the edge must have a level wvalue V>V, . Therefore,
0(s,1-5)> 0(s,,t,) fors €[0,1]and s # 5,. The point(s,,?,) provides the minimum
squared distance between P and the triangle. When found the value of(s,,?,), then

can obtain the Q. The triangle point is an edge point. Figure 2-23 illustrates the idea

by showing various level curves.

QII

Figure 2-22: Various of level curves Figure 2-23: When VQ(;, ;) =(0,0) ,E,Z in region 0

(d) Segment to segment distance. To find the distance between two segments,

first we find it between two lines. It equivalent to computing s and t such that the

length of vectory = O, — O, 1s a minimum, and can be rewrite as formula 2-13
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H;Hz =v-v=((P,—P)+sdo—td) (B, - P)+sdo —td))) 2-13)

This is a quadratic function in s and t, that is, it is a function f'(s,#) whose shape

is a paraboloid. For the case of lines, the domain of s and t is unrestricted, and the
solution corresponds to the point where f is minimized (that is, the bottom of the

paraboloid).

However, if the linear components are both segment, then the domain of s and t

is restricted, which can be expressed by0 < s <land0 <t <1 (see figure 2-24).

In general, the global minimum of the quadratic function may not be within the
restricted domain. In such case, the minimum will be at some point along one of the

boundary edges of the domain. The method to solve this problem is more like the

algorithm that classifies the location of (s,,#,), and then we can determine the closest

points and their distance.

Analogous to the approach of categorizing the region in which(s_,z,)lies, this
approach considers which edges of the bounded domain are visible to(s,,z, ).For

example, in the case of segment and segment distance, the domain is restricted

to[0,1]x[0,1]. Figure 2-25 shows two of the possible visibility conditions for a

solution: on the left, only the boundary 7=1 is visible, and on the right,

both# =1ands = 1are visible.

t ; ﬁ’t‘) t (s.1,)
] 1
] N T

| 5 1 s

(a) t=1visible (b) t=1ands =1visible

Figure 2-24: Domain for segment Figure 2-25: Definition of visibility of domain boundary

By simply comparing the values ofs and? , it can be easily determine which

domain boundary edges are visible. For each visible boundary edge, compute the

point on it closest to(s,,?,). If only one boundary edge is visible, then that closest
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solution point will be in the range [0, 1], otherwise, the closest solution point will be
outside that range, and thus need to check the other visible edge. The basic idea is to
first compute the closest points of the infinite lines on which the segments lie, that

iss, andz, . To compute the distance between segments, then the domains of s and t are

restricted. So we need to find the points that minimize the squared distance function
over the restricted domain, and these points will have parameter values that

correspond to points on the boundary.

It can easily compute the closest points on the boundary edges by employing a

—112 — — — —
little calculus. For the case of the edges=0, it has HVH =(u—-td) (u—td),
whereu = P, — P.. The derivative of this with respect to t gives as formula 2-14

2

=2d, - (u—tdy) (2-14)

0= iHG
dt

Then the minimum can be calculated as formula 2-15

1

<)

(2-15)

|

d, -d,

If0 <¢'<1, then this is the actual solution, otherwise, the actual solution is 1
ift' >1lort' <0.

In the case of the edge =0 is exactly analogous. In this case, it
is H\7H2 = (—& —Sgo)'(—; —Sgo). The derivative of this with respect to s as formula

2-16

2

0= diHS = -2d, - (~ii — sd, ) (2-16)
S

Then the minimum can be calculated as formula 2-17

§' =0 (2-17)

If0 < s’ <1, then this is the actual solution, and otherwise, the actual solution is 1

ifs">1or0ifs' <0.
—112 — — — — — —
In the case of edges =1, it hasHvH =w+do—td)) - (u+do—td)). Taking the

derivative with respect to t, then the deviation can be calculated as formula 2-18
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 2di(u+do—td)) (2-18)

0= 1”6
dr

Then the minimum can be calculated as formula 2-19
. 31 . Z; + 6_1;0 . 81
dy - d

!

(2-19)

If0 <t'<1, then this is the actual solution, otherwise, the actual solution is 1
ift">1or0ift' <O0.

In the case of edger=1, it has “3“2 =(-u+d\ —sdo)-(—u+di —sdo). Taking the
derivative with respect to s, then the deviation can be calculated as formula 2-20

—12 — — — —
0= diuv = 2do(~ti —sdo +dy) (2-20)
S

Then the minimum can be calculated as formula 2-21
dou+dn-d,
do-do

!

S

(2-21)

If0 < s' <1, then this is the actual solution, and otherwise, the actual solution is 1

ifs">lor0ifs' <0.

Figure 2-26 made the above concept more clearly, and the figures are schematic,

that means the two linear components are not necessary be perpendicular.

T 7o I P
td) - sdy -
1 A b A
Py Py
s=10 =0
: |
A - - - I
V=u—td) +dy ! V=—u—sdy+d, !
ﬁ?o \ T d, I .
- L — > —
Py = Py f
0 HH““HR fl]? 1 E"‘“‘m P
{;‘ q"'“"‘--\..,_h_ !] 1 e _"‘“'“-__H_H_H § 1 0
Py Py

Figure 2-26: Cases for the four edges of the domain

Figure 2-27 shows two segments, which we want to find the distance between,

and the restricted domain for the solution. In this case, the domain of the solution is
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restricted to[0,1]x[0,1], the domain is bounded on all four sides: s=0, s=1,
t=0andz =1. If eithers_ orz lies outside this region, then have to find the point on

the boundary edge of the domain that is closest to the solution point(s,,?,). The

domain is bounded on all four sides, but as discussed above, it only to find the

boundary point on at most two of the edges.

Figure 2-27: Distance between two segments

(e) Segment to triangle distance. To compute the distance between a segment and
a triangle, as show in figure 2-28, the segment defined by a point and a direction

vector, and can be expressed as formula 2-22

L(t)=P+1td (2-22)
Where 0<¢#<1, the point P, and F, are the end points of the segment,

thend = F, - F,. Triangles are represented as three verticesV,,V, andV,. For deal with

this problem, use the parametric representation as formula 2-23

T(u,v)=V +ue, +ve, (2-23)

Where V is a vertex of the triangle, ande, =V, —V,ande, =V, —V,. Any point in

the triangle can then be described in terms of the two parameters u and v,
withu <0,v<landu +v <I(see figure 2-29). Computing the distance between the
segment and the triangle means that find the values of t, u, and v that minimize the

squared distance can be calculated as formula 2-24
Distance? (u,v,7) = Q(u, v, 1) = || T (u,v) - L(t) (2-24)

Expanding terms and multiplying, can get formula 2-25

65



Chapter 2: Discrete Geometry Framework for GeoSpelling

O(u,v,t) = ||, v) — Lt)|
= (&, -&)u* + (&, -é )V +(d-d)*
+2(2, - & )uv+2(=8, - d)ut +2(~é, - d)vt (2-25)
+2(&,-(V = P)u+2@, -(V = P))v+(~d -(V - P))t

+(V-P)-(V-P)

—

Where, a, =8,-8, , a,=8&-& , ap=d-d , a,=2¢ ¢ , ay=-&-d ,
alzz_él'g > by =¢,-(V-P) b=e-V-pP) bzz_‘?'(V_P) 5

c=W-P)-(V-P).

As the solution to this consists of three values(u,,v,,¢,) , then the solution space

can be deemed as a three spatial dimensions, which is the domain of a finite triangular

prism (figure 2-30).

Figure 2-28: Distance between a segment and a triangle

Figure 2-29: Description of a point in the triangle
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r A
|
|
a1/ 3
,,,,,,, R I
/_0 8
s |/

Figure 2-30: Domain of a triangular prism

If the configuration of the triangle and linear component are such that the point
on the plane containing the triangle that is nearest to the linear component actually
lies within the triangle, and the point on the linear segment nearest the triangle is

within the bounds of the linear segment, then the solution (i, v, )will lie within

region 0 of the solution domain’s triangular prism, and the distance between the linear

segment and the triangle will be ||T (LT,V,I_)—L(I)”. Otherwise, the minimum

of VQ = (u,v, ¢ ) will be on a face separating the regions.

(f) Triangle to triangle distance. The calculation between two triangles must be
very complicated, because there are so many possible conditions. In order to obtain
the result we can turn this problem into calculate the distance between point and
triangle. That means the minimum distance among each point of one triangle to the

other triangle is the actual distance between two triangles.

To sum up, the main contribution of this chapter is that we established a mapping
relationship between the algorithms existed in discrete geometry domain and the
concepts defined in GeoSpelling model. The corresponding relationship is

summarized in table2-8.
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GeoSpelling Discrete geometry
Features Non-ideal feature point, segment, triangle, point set, polyline,
mesh
Ideal feature geometric shapes:

plane, cylinder, sphere, ...

point to segment, point to triangle, segment

Characteristics Distance .
to segment, segment to triangle
Angle segment to segment, segment to plane,
plane to plane
Operations Partition segmentation
Extraction sampling
o outlier removal, filtering
Filtration
Association approximation, interpolation
Collection Boolean operation (Union)
Construction Boolean operation (Intersection)

Table 2-8: Concepts mapping between GeoSpelling and discrete geometry

Since the fundament of applying discrete geometry theory to GeoSpelling is
established, the next part of our work focuses on implement these algorithms to
GeoSpelling model. Considering skin model is the basis concept defined in
GeoSpelling and each operation needs to rely on it to carry out, the next chapter will

discuss how to simulate the skin models.

2.4. Conclusion

GeoSpelling provides a coherent and complete model for ideal and non-ideal
features’ representation and operation. The real features are usually acquired by
measuring instruments and represented as discrete point data. In this chapter, a new
framework based on discrete geometry is developed for tolerance representation and

operationalization of GeoSpelling.

GeoSpelling defines ideal and non-ideal features to represent the shapes with and

without geometrical variations. And it also defines six operations to process these
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features: partition, extraction, filtration, association, collection and construction. The
corresponding shape representation and processing techniques in discrete geometry
are investigated to handle the geometrical features and operation defined in

GeoSpelling.

The developed framework provides new convenient and executable solutions for
feature representations and operations in GeoSpelling. As a representation of real
features which include both random and systematic errors, Skin model is the kernel
concept of GeoSpelling. The simulation of skin model based on discrete geometry and

statistic analysis is thus investigated in the next two chapters.
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3.1. Introduction

As discussed in previous chapter, Skin model in GeoSpelling represents the
non-ideal features associated with geometrical variations. Since the skin models are
the geometrical objects the defined operations (partition, extraction, filtration,
association, collection and construction) to process, skin model construction is one of

the critical issues for operationalization of GeoSpelling.

Skin model is a simulation of real shapes. The characteristics of real shapes
should be considered for skin model shaping. Typically, the geometrical variations of
the real surface to the nominal one are caused by two kinds of errors: random error
and systematic error. Both of the two kinds of errors should be simulated in order to
construct the complete skin model. A designed shape is always specified with
geometrical tolerances. The simulated skin models should be located within the

specified tolerance zones which can be constraints for skin model generation methods.

This chapter presents the developed methods to simulate the skin model with
random errors. The methods for skin model shaping with systematic errors will be

discussed in the next chapter.

In our research, we follow this hypothesis: the deviations caused by random
errors follows Gaussian (normal) distribution, which is proven reasonable for
mechanical applications [Bhu 85]. The Based on discrete representations of skin
models and their discrete geometrical characteristics, three different methods are
developed to shape the skin models with random errors: 1-D Gaussian-based,
multi-Gaussian-based, and Gibbs-based. A comparative analysis of the three methods

1s discussed.
This chapter is organized as follows:

Section 3.2 discusses the discretization of continuous nominal shapes and the
discrete characteristics of discrete shapes. Section 3.3 presents the developed methods
for shaping skin models with random errors. Section 3.4 proposed the simulating
methods of the skin model when considering the tolerance constraints. Section 3.5
gives the comparative analysis of the proposed methods, and section 3.6 is the

conclusion.
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3.2. Basic foundations

The skin model simulation procedure proposed in our work follows the
geometrical product design context. The skin model created using our method inherits
the nominal model generated by CAD software. The procedure of creating skin model
is that after tessellating the CAD model a discrete geometry product nominal model is
obtained, which construct by mesh structure. We import this tessellate nominal model
to our own system to generate the skin model. In order to satisfy product life cycle
sequence and fulfill the technological and manufacturing demands, there are some
requirements are considered in our system. Firstly, it can import tessellate model
created by CAD software. Secondly, it can generate skin model, and thirdly, it can
export the skin model. At last, it can support other operations defined in GeoSpelling.

The basic concepts and foundations concerned will be introduced in this chapter.

3.2.1 Discrete representations of the surface model

As discussed above, the skin models are created from nominal CAD models.
This means that our proposed approach considers the CAD model as the reference
model (or master model) in the CAD environment. CAD models are typically
generated to create a product shape satisfying functional requirements without prior
knowledge of their effects on all downstream applications. A CAD system database
contains details of the geometry of all features in the model as initially created. In
some systems, if a subsequent modification changes the topology of an existing

feature, the geometry of the modified feature is also recorded [Kim 07].

In order to obtain the discrete surface model, a tessellation process to convert
CAD models into polyhedral ones is considered here. Normally there are two main
categories of this processing integrating the tessellation process into CAD modelers
and conversion using tessellation criteria [Ruppert 95]. When the initial CAD model
is topologically consistent [Hamri 10], i.e. when the CAD model is created in the
same software as the polyhedral model and the shape of this model matches the
tessellation requirements, it is easy to set up a tessellation process from the user point
of view [Hamri 10]. Such cases only occur for simple shapes handled in a so-called
integrated environment. However it is no longer efficient when the CAD model has an

inconsistent topology due to data exchange between different softwares or to the
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differences of shape requirements between tessellated mesh and CAD models, in such

case the tessellation criteria should be taken into account.

In the perspective of a full CAD and downstream applications at the level of
integration and interoperability, the polyhedral model tessellated from CAD model

directly is adopted in our work.

3.2.2 Tessellation techniques

Tessellation techniques are often used to manage datasets of polygons and divide
them into suitable structures for rendering and numerical analysis. A tessellation of
the object that contains not only the coordinates and supporting triangle indices but
other data such as the surface parameters (for the points) as well as the connectivity of
the triangles assists the investigator in traversing through and dissecting the CAD

representation of a part [Haimes 98].

The use of tessellation techniques for solid models has been studied from
different kinds of point of view. The hardware support for adaptive tessellation of
Bezier surfaces is proposed by [Espino 07], and the high quality triangulations from
CAD models are discussed in [Haimes 98]. In most cases, the solid model is
tessellated for satisfying the rendering capabilities 98in the software application
environment. In our work, we adopt tessellation technique to obtain the discrete

structure of the solid CAD model.

Based on the shape of primitives distributed on a tessellation mesh, the tessellation
can be roughly classified into two categories: regular and irregular one. A regular
tessellation is a highly symmetric tessellation made up of regular polygons, which are
triangles, squares or hexagons. The most common irregular tessellation is composed
by Delaunay triangular mesh, in which the size of triangles is different from each

other. In our work, we consider both regular and irregular tessellations.

3.2.3 Polyhedral surface approximation

The built-in tessellation algorithm creates a boundary representation that covers
the surface of the solid model with triangles, and this mesh data structure is a common
way of describing the geometry and the topology of objects in computer graphics.

Generally the mesh data structure is the polygon mesh. A polygon mesh consists of
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vertices connected to form the faces that in turn form an object. It’s known that a
proper data structure of polyhedral model is quite important for geometry processing

and the data structure of mesh has been studied for a while.

(1). Mesh data structure

As discussed in [Zhao 10], a boundary representation (B-Rep) of mesh considers
more adjacent relationships among the neighborhood than face-based representation
by which a polygon mesh is represented only as a shared list of vertices and a list of
faces. Many boundary representation research efforts have been reported, such as
Winged-edge [Baumgart 75], Quad-edge [Leonidas 85], Half-edge [Eastman 82], etc.
A synthetic survey of data representation of meshes can be found in [Kettnert 99]. In

our method, the Half-edge method is adopted.

As its name implies, the Half-edge Data Structure (HDS) splits each edge into
two oriented half-edges having two opposite directions. The mutual relation between
the two half-edges is added for convenient query. A half-edge is thus considered
belonging to exactly one triangle. The half-edges of one triangle can be oriented as

clockwise or counter-clockwise around the facet.

The half-edge data structure is an extension of the simple polygon mesh. Not only
does it contain information of vertices and faces, it also stores information about
edges in the mesh, which simplifies analysis of the mesh. An edge is defined as a
vertex, a face and three connected edges known as next, prev and pair, see figure 3-1.

Using these connections it is possible to access any other edge on the mesh.

opposite half-edge
half-edge

Incident

Incident
vertex

Figure 3-1: Half-edge data structure

Half-edge data structures have a high degree of variability. They may allow
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several representations, as well as holes in facets, infinite edge, boundary edges, etc.
The representation itself may allow various accesses to the data structure, such as
clockwise or counter clockwise traversal of a facet boundary [Bronnimann 01]. Many
publicly available implementations of Half-edge data structures are now very popular
such as CGAL [CGAL], OpenMesh [OpenMesh], and MeshLab [MeshLab]. In our

work, the clockwise data structure is built using the CGAL geometric library.
(2). Mesh file formats

The exchange of polyhedral mesh model between different CAD systems and to
downstream applications is an important practical requirement for interoperability and
integration. Until recently [Zhao 10] there are many file formats used to store and

exchange the mesh data in computer graphics and engineering applications

From the very basic ones, such as Stanford Triangle Format (.ply) which
represent just an indexed face set or Stereo-lithography or Stand Triangulation
Language (.stl) an Object File Format (.off) which represent just a triangle soup, to
such advanced ones, such as Virtual Reality Modeling Language or VRML (.wrl)
which enable to represent single object as well as a complete scene with complete

interaction.

However our applications work only with set of points and meshes, and therefore,
we are only interested in the formats to read and to store the mesh information. Two

file formats are considered in our work.
(a) STL file format (.stl)

An STL file is a triangular representation of a 3D surface geometry. The surface is
tessellated logically into a set of oriented triangles (facets). Each facet is described by
the unit outward normal and three points listed in counterclockwise order representing

the vertices of the triangle.

STL is a file format native to many CAD softwares such as CATIA V5. It is
widely used for rapid prototyping and computer-aided manufacturing. STL files
describe only the surface geometry of a three dimensional object without any
representation of color, texture or other common CAD model attributes. The STL

format specifies both ASCII and binary representations.
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The first line in the ASCII format is a description line that starts with the word
“solid” in lower case, followed eventually by additional information as the file name,
author, date etc. The last line should be the keyword “endsolid”. The file continues

with any number of triangles, and each one represented as follows figure 3-2):

facet normal 0.000000e+000 -9.957342e-001 9. 226814e-002
outer loop
vertex 4.500000e+00]1 -2.250000e+001 2. 755364e-015
vertex 6.000000e+001 -2.250000e+001 2. 755364e-015
vertex 4.500000e+001 -2.211690e+001 4. 134364e+000

% -
endloo [\ A
end?acetp LYY ﬂ#‘%‘ﬂﬂﬁ ‘Jln-;_"

Figure 3-2: STL file format and the STL model

The STL format is easy to generate. However, there are many drawbacks of the
STL files among them the “bucket of facets™ or the lack of topology and ill-formatted
values and errors. Therefore, when a STL file is encountered, model healing and

topology construction should be performed.
(b) OFF file format (.off)

OFF files are used to represent the geometry of a model by specifying the
polygons of the model's surface. The polygons can have any number of vertices. OFF
files are all ASCII files beginning with the keyword OFF. The next line states the
number of vertices, the number of faces, and the number of edges. The number of

edges can be safely ignored.

The vertices are listed with x, y, z coordinates, written one per line. After the list
of vertices, the faces are listed, with one face per line. For each face, the number of
vertices is specified, followed by indices into the list of vertices. See the examples

below, figure 3-3.
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OFF

1176 2356 0

-5.3171  -7.39159 7809116
-8.10315 -13.0152 75.0302
-10.4236 -16.5081 76.055
-13.2511 -17.533  72.5621
3 236 0 244

3.0 218 244

3 244 218 1

3 218 221 1

Figure 3-3: OFF file format and the OFF model

Comparing to STL files, OFF files have more compact structure. Considering the
representations of a shape model both in STL file and OFF file, the OFF file always
has less file size than the STL file. However, the OFF file can describe composite
attributes of a shape model, such as vertex, facet, color, and texture etc., but it ignores

any vertex normal estimation attribution.

Thanks to their popularity and their availability on CAD systems and public
software, STL and OFF file formats are both used in this work.

3.2.4 Normal vector estimation

The derivation of discrete analogs to differential properties of smooth surfaces
has been an active area of research for many years [Petitjean 02] [Hildebrandt 06]
[Botsch 10]. Two main groups of methods have been developed: fitting and discrete
methods. Fitting is a very common approach to estimating local surface properties
using a local reconstruction of the surface followed by analytic evaluation on the
reconstructed smooth surface patch [Botsch 10]. Differential geometry is used then
and employs methods of differential calculus to describe local properties of smooth

curves and surfaces [Carmo 76].

Since triangular meshes are piecewise linear surfaces, the classical concepts of
differential geometry cannot be applied directly. The challenge is then to compute
approximations of the differential properties of this underlying surface directly from

the mesh data. Different approaches have been proposed in recent years [Zhao 10].

(1). Neighbor region

77



Chapter 3: Skin Model Simulation and Visualization

Many operations in geometry processing and computer graphics require normal
vectors estimation and discrete curvatures computation. A normal vector is a local
geometric property of a 3D surface, which is specific to a given point or a planar facet.
Many attempts have already been made for a reliable estimation of normal vectors

from point sets.

To calculate the normal vector form a point set, the most common way is to
construct a local neighborhood through meshes to obtain the local relationship among
each point. In this work, the local averaging region is a one-ring neighborhood as
discussed in [Zhao 10].

Mathematically, a mesh can be described by the couple M = {V', F'} , where the
vertex list is noted as ¥V ={v,:1<i<n,} , and the facet list is noted

F={f,:1<j<n.}. In figure 3-4, the set of neighbor points to p; is noted P'. If

p, € P', p,is the neighbor of p,. e

JoJ+l

is the edge between facets f, and f ;.

Figure 3-4: The neighborhood structure of point

Reliable estimation of the normal vector at a point is much dependent on the
identification of its valid neighbor points. Many researchers have used a fixed number
of Euclidean nearest neighbor points to estimate the normal vector at the given point
[Zhao 10]. Too many neighbor points may degrade the local characteristics of the
normal vector. And too few neighbor points may be not sufficient to evaluate the real
local geometry. Moreover, possibly, the number of neighbor should be different for
different points in implementation. Here we focus on the approach of vertex

estimation instead of the mesh structure.
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(2). Vertex normal estimation methods

Given a polyhedral mesh structure (see figure 3-5 (a)), to calculate the point P
vertex normal, generally, the neighborhood of point P should be found out (see
figure 3-5 (b)). The vertex normal of point P is a weighted average value of the
normal of triangles, which compose the neighborhood of point P. In figure 3-5 (b),

for the ith triangle, the normal 7, can be estimated by its edges, see formula 3-1.

. g Xe, te,Xe;te,xe,

i

(3-1)

”en Xe, te,XxXe; te,;Xxe, ”

Where, n, (i=1,...N ) indicate the unit normal vector of the i-th triangle facet
respectively. ¢; (j =1,2,3) are the three unit edge vectors of the i-th triangle facet

in counter-clockwise.

(a) Mesh structure (b) Vertex normal

Figure 3-5 Vertex normal estimation basics

Since the vertex normal is a weighted average value of its neighborhood, a
number of researches of evaluating the weight coefficient have been proposed. We
present here a survey and comparison of these algorithms in order to find out the most
suitable methods for our work.

(a) Gouraud’s method [Gouraud 71].

In this method, the vertex normal n(p) is deemed as the average vertex normal

of all the triangles, which compose point p ’s neighborhood. Mathematically, it can be

described by formula 3-2
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n(p) = 2 (3-2)

=7
(b) Thumer’s method [Thumer 98].

Based on the Gouraud’s method, Thumer and Wuthrich proposed a new method
which takes into account the influence of the area of triangles. In Thumer’s method,
the area of triangle is bigger the influence to the vertex normal is greater. The weight

coefficient can be calculated by formula3-3.

A,
w, =— (3-3)

i N
24

i=l1

o, (i=1,...N) are the weight coefficients corresponding to the normal vectors

1

of facets f;. 4. (i=1,...N ) represent the area of the i-th triangle facet.

(c) Shen’s method [Shen 05].

Shen improved Thumer’s method by introducing centroid distance into his
method. Instead of estimating the influence of triangle’s area, the centroid distance is

invested. The weight coefficient can be calculated by formula3-4

d.
w =— (3-4)

i N
2.4
i=1

(d) Zhao’s method [Zhao 10].

Given a polyhedral mesh surface, the normal vector at a vertex can be estimated

as the weighted average of the normal vectors of the adjacent triangle facets around it.

Considering an arbitrary vertex p in a discrete mesh surface X, assuming its
neighbor contains N triangles, then the normal vector at p could be estimated

using formula 3-5.

> ]
[=27] -

n(p) =
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Where, n, (i =1,...N) indicate the unit normal vector of theith triangle facet.
o (i=1..N) are the weight coefficients corresponding to the normal vectors of

facets f,.

The method used here for the weight coefficients computation considers the

influence of the area of each adjacent triangle facet and the distance between the

given vertex and the barycenter of each adjacent facet. Parameter w, can be calculated

by formula 3-6.
Ai /di2

2 R A
Zi:lAi/di

(3-6)

Where, 4 (i=1,..N ) represents the area of the i th triangle facet.

d.(i=1,...N ) are the distances between the vertex p and the barycenter of the ith

triangle facet. Parameter NV is the number of all the triangle facets adjacent to the

given vertex.

(3). Comparison techniques

In order to test the above methods, three kinds of mesh structure of the unit
sphere are discussed, as showed in figure 3-6. The first two spheres (figure 3-6(a)(b))
are constructed by regular triangle mesh, and the third one (figure 3-6(c)) is
constructed by irregular triangle mesh. The comparison among different vertex
normal estimation methods is to evaluate the error deviation between the theoretical

and the computed value of vertex normal. Theoretically, given a random

vertex v, (x,, y,,z,)of a sphere, and then its vertex normal N,can be calculated using

formula 3-7

N, =xi+yj+zk (”NIH =1) (3-7)

In our testing, given the algorithmic and theoretical normals, we estimate the

angular cosine discrepancy as formula 3-8

d =1-N

alg orithmic * Ntheoretical

(3-8)

discrepancy
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The value of the discrepancy at which the fraction is 0, it means that algorithmic

and theoretical normals are in the same direction. The value of the discrepancy is big

then the difference between the two vertex normals is distinct.

To evaluate the accuracy of each vertex normal algorithm, we performed two

different ways to compare these methods based on formula 3-8: one is comparing the

vertex normal of marked points called landmark and the other one is comparing the

average vertex normal and its standard deviations.

(a) Regular mesh

(b) Uniform triangle mesh

Figure 3-6: Mesh structure

(¢) Non-regular mesh

The marked point testing method marks several points on different target models

to compare the vertex normal, and it is based on the sampling strategy. This kind of

testing method is propitious to the experiments in which the model is composed by

numerous points. In our method, we adopt three landmarks to test and the result is

illustrated in table 3-1.

Landmark Case Gouraud Thumer Shen Zhao
Landmark 1 Case (a) 1.3%x107 3.09%10™ 1.0X10° 1.19%x10™
Case (b) 6.4X107 8.0X107 3.0X107 5.5X107
Case (c) 6.5X107 7.1X107 3.5%X107 3.7%X107
Landmark 2 Case (a) 15810 6.32X107 6.69x 107 3.45X 107
Case (b) 2.3X107 55%10° 5.65X107 1.17X 107
Case (c) 7.39%X107 3.51%X107 2.19%X102 1.82X102
Landmark 3 Case (a) 9.0%x10° 1.4x10* 2.0X10° 45%10°
Case (b) 9.2Xx107 1.07x10* 5.4x107° 8.3x107
Case (c) 5.1x107° 5.6X107° 47X107 5.6x107

Table 3-1: Vertex normal of one marked point

For the result we can see that Shen’s method provide the closest vertex normal
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value in different sphere models and Zhao’s method has a good behavior in irregular
mesh model, while Gouraud’s and Thumer’s methods can offer the closet value in
regular mesh case. From this testing we can roughly infer that Shen’s method offers

the smallest error in most cases.

The average vertex normal testing method takes into account the mean vertex
normal value of all the points. It reflects the global deviation between theoretical and
computed vertex normal value. In this testing, we evaluate both mean value and
standard deviation, and the first item reflects the average deviation while the second
item reflects the distribution of this deviation. The testing result is illustrated in table
3-2. From table 3-2 we can see, in case (a) and case (b), Shen method has the closest
vertex normal value comparing to the other three methods, and this reflect that Shen’s
method is more suitable to the regular mesh structure case. In table 3-2 we can see, in
case (¢) Zhao’s method provides the closest mean value, and this illustrates that

Zhao’s method has a good performance on the irregular mesh structure case.

Case Item Gouraud Thumer Shen Zhao
Case (a) Mean 7.7X107 2.85%10™ 2.2X107 1.72x10™*
StDev 1.5x10™* 3.76x10™ 43%10° 2.81x10*
Case (b) Mean 3.6X107° 3.8%107° 1.4X107 3.7x107
StDev 43%10° 5.0%107 1.8%10° 45%10°
Case (c) Mean 5.93x10™ 7.91x10™ 6.19x 10 2.62x10*
Stdev 5.99X 107 1.04X107 1.04%x 107 3.92%x10™

Table 3-2: Average vertex normal of point set

Combining the two evaluation methods of vertex normal estimation discussed
above, we infer that Shen’s method is good at regular mesh structure case while Zhao
method is suitable to the irregular mesh structure case. Although Shen’s method has
the closet value in regular testing experiment, the difference comparing to Zhao
method is small. In irregular experiment, the difference between these two methods is
also small. In order to use a unique vertex normal estimation method, we adopt Zhao’s

method in our work.

83



Chapter 3: Skin Model Simulation and Visualization

3.2.5 Discrete curvatures

Considerable research activities in discrete differential geometry have been
ensued in recent years and many techniques have been developed [Taubin 95] [Meyer
02] [Steiner 03]. Based on the investigation of [Meek 00], these techniques can be
classified into three main categories: local surface approximation based methods,
discretization of continuous differential operators and formulas and tensor based

methods.

The first method approximates a given mesh by a local quadric surface, and then
it applies the first and second derivatives to obtain the curvatures [Meyer 02]. This
method is based on surface parameterization and calculates mean curvature and

Gaussian curvature using formula 3-9

r(u,v)=(x(u,v), y(u,v), z(u,v)) (3-9)

Where 7(u,v) correspond to semi-geodesic coordinates [Mokhtarian 01],

Gaussian curvature and mean curvature could be derived from formula (3-9) using

formula 3-10 and formula 3-11

b,b, —b’

K: uu -~ vy uy 3_10
Ciyiiz 10
b +(x>+y +z)b

H — vV (xV yV ZV ) uu (3_11)

20x; +y; +2))

Where, K and H represent the Gaussian curvature and mean curvature

respectively.

Principal curvatures are then derived as follows (formula 3-12).

>~

H+VH? -
(3-12)
H_

H* -

™~

Kl
K, =
Where, k, and «, are the maximal and the minimal principal curvatures

respectively.
The second techniques discretize the mathematical formulas that compute the

84



Chapter 3: Skin Model Simulation and Visualization

curvatures of continuous surface and then extend the underlying notions to discrete
domains [Srinark 08]. This method begins with the calculations of mean curvature
and Gaussian curvature based on the discrete version of the Laplace-Beltrami

operator.

Similar to the various discrete versions of the Laplace-Beltrami operator, many
methods have been proposed for directly estimating the curvature tensor on polygonal
surfaces. The method introduced by Cohen-Steiner and Morvan [Cohen-Morvan 03]
has been successfully applied for discrete shape processing. In differential geometry,
the shape operator or Weingarten endomorphism [Oneill 97] determines the principal
curvatures and the principal directions of a surface. In the case of discrete shapes, the
discrete shape operator matrix is estimated at each vertex and then the principal

curvatures are derived.

The method proposed by Zhao [Zhao 10] is based on the work reported in
[Cohen-Morvan]| which has been improved by adding weights to the discrete shape

operator matrix and modifying neighbour region.

Considering an arbitrary vertex p on a polyhedral mesh surface X, the discrete

shape operator matrix at p can be estimated as formula 3-13

W(B)= lz/le - f(e)-length(e B)-(éxé")
Az (3-13)

Where, B is the local region around the vertex and 4 is its area. In our case,

B is defined based on the Voronoi cell, (figure 3-7 (a)).

A, is the coefficient associated with the edge e and is defined as formula 3-14

PR (07
“ >4 2 =arccos qn(p)-n(ﬁe)
P 7(p) |- 7ie) || (3-14)

Wheren(p) is the unit normal vector of vertex p. 7(e) is the edge normal of

the edge e, which is equal to the average normal vectors of the two triangles incident

to the edge. E isthe set of all the mesh edges in B .length(e()B) is the length of

the edge e inB. P(e) is the dihedral angle between the two normal vectors of the
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triangles incident withe. In figure 3-7 (b), these two normal vectors are denoted as

n, and n,. € is the unit vector along the edge e.

(a) Voronoi cell (b) Normal vectors

Figure 3-7: Discrete curvature estimation parameters

The two principal curvatures can be estimated as the first two eigenvalues of the

matrix W(B) . The two principal directions can be also estimated by their

corresponding eigenvectors.

3.3. Skin model simulation

The 3D topography of the surface of a manufactured part looks similar to a
geographical terrain [Stout 10]. Prediction and modeling of surfaces which emulate
complex geographical and geological shapes have been widely developed in
geostatistics and spatial statistics applications [Cressie 93].The topic of rough surface
simulation is also fundamental in modeling and empirical practices of the wear and
friction literature. Two categories of techniques have been investigated by the wear
and friction research community. The first entails the use of statistical, stochastic, or
Monte Carlo methods to distribute characteristic values over a surface (point height,
curvatures, etc.) [Patir 78]. 3D surface topography modeling mainly concentrates on
random surfaces of Gaussian ordinate distribution [Reizer 11] or Gaussian Processes
[Xia 08].

The second category employs fractal models [Blackmore 97]. There are also
hybrid approaches that mix both statistical and fractal algorithms [Zou 07]. However,
Surfaces simulated by fractals are different from their physical counterpart due to

their homogeneous quality [Bakolas 03].

Statistical approaches are physically intuitive and represent surfaces in a manner
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consistent with observation and measurement as well and physical based modeling

[Peridier 11]. However, they fail to consider the multi-scale nature of rough surfaces

Due to the discrete nature of shapes we are considering here and the discrete
differential geometry characteristics of points such as normal and curvatures,
statistical approaches are well adapted to model the skin model and the non-ideal

features thanks to the rich analytical and sampling techniques of random variables.

3.3.1 Random simulation techniques

Random variables’ simulation is based on the random number generation
techniques, which is used to design and generate a sequence of numbers without any
patterns. Based on the application field, the random simulation techniques can be
classified into physical and computational methods. A physical random number
generator is based on a random atomic physical phenomenon whose unpredictability
can be traced to the laws of quantum mechanics [Tsoi 07]. The computational
random simulation numbers are obtained by computational algorithms, which produce
long sequences of apparently random results. Actually, the computational random
numbers are pseudorandom, and they are determined by the initial value of the
algorithm [Fog 01]. Although pseudorandom number is not a true random number, the
result sequences are quite closer to truly random ones by using hardware random
number generators. The careful mathematical analysis in [Peterson 98] proved that a

pseudorandom generation numbers are sufficiently random to suit the intended use.

Since the pseudorandom sequence is dependent on the initial value of the
algorithm, these values have a periodicity. There are some investigations on the
periodicity of the pseudorandom simulation. According to [Luby 96] if the internal
state of a pseudorandom number generator is n bits, its period is no longer
than 2" results. However, in practice the output sequence is shorter than expected
periods for some initial values, and this is an open problem for today’s pseudorandom

number generator.

The result of the pseudorandom number generator can follow a certain
distribution types of random wvariables, such as Gaussian distribution, uniform

distribution, Perlin distribution [Wijgerse 07], Poisson distribution [Ronald 88], etc.

In our work, we focus mainly on Gaussian distribution. There are three different
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methods to obtain the Gaussian random distribution numbers [Rubinstein, 81]

[Taygeta 95] and these methods can be used also in the case of other distributions.

The first method is the inversion method. The basic idea is based on inverse
function of the cumulated density function (figure 3-8). The variable X = F"' (U) has
the cumulated density function F and U is a uniform random variable in the interval
[0,1]. For the standard normal distribution, the inverse cumulated distribution function
uses the error function erf(x) (see formula 3-15). The inverse of the error function can

only be approximated.

- i
Ao, 1)y

|||| 1 1 "- L
=20 =10 0.0 1.0 20 30 4.0

X

Figure 3-8: Density function

2

F(x)= ei%du :%[lJrerf(

LJ’X 2
Vg V2 (3-15)

erf(x)= % Lio e du

The second method uses the fundamental transformation law of probabilities.
The idea is that the transformation takes random variable from one distribution as
inputs and the outputs are in a new distribution function. Box-Muller transformation
[Box 58] allows us to transform uniformly distributed random variables to a new set

of random variables with a Gaussian distribution.
The basic foundation of the transformation is as follows (formula 3-16)

¥, = sqrt(=21n(x,)) Cf)S(27Z’ “X,) (3-16)
v, =sqrt(-21n(x,))sin(27 - x,)

This algorithms start with two independent random numbers x, and x, , which are

uniformly distributed in the interval [0,1]. The transformation formula (formula 3-16)

creates two new independent random numbers which have a Gaussian distribution
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with zero mean and a standard deviation of one.

The third method is rejection sampling. This method belongs to the general field
of Monte Carlo techniques, including Markov chain Monte Carlo algorithms that use

acceptance/rejection to achieve simulation from the target distribution [Kalos 09].

3.3.2 1D-Gaussian method

In probability theory, the Gaussian distribution is a continuous probability
distribution that is often used as a first approximation to describe real-valued random
variables that tend to cluster around a single mean value. The graph of the associated

probability density function is “Bell”-shaped.

The principle of the 1D-Gaussian method can be described in figure 3-9. The
“bell” shape reflects the scope of the 1D-Gaussian distribution acting on one point in

the direction of the vertex normal.

Normal direction of one point

Gauss distribution

Figure 3-9: Principle of 1D-Gaussian method

The random distribution value can be calculated by the probability density

function of the 1D-Gaussian (formula 3-17) method.

1 )’

o277

X =N(u,0%): f(x)= (3-17)

x —
u=2"H_ N(0,1)
o
Where u is the mean value, o is the variance, x is the Gaussian variable.
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In our case, in formula 3-17, the mean value is the input points’ coordinates, and
the variance determines the width of the Gaussian distribution. This method uses the
Gaussian variable as the deviation value in the direction of the vertex normal (see

section 3.2.1) of CAD model, and then applies this calculation to each point.

The simulation result in figure 3-10 shows the 1D-Gaussian method in the case

of a skin model of a plane sampled with 273 points.

(c) skin model view-2 (d) skin model view-3

Figure 3-10: Skin model generated by 1D-Gaussian method

3.3.3 Multi-Gaussian method

The multivariate Gaussian random function model is commonly used in physical
modeling and geostatistics to model spatial variability. Its distribution is a
generalization of the one-dimensional normal distribution to higher dimensions. A
random vector is said to be multivariate normally distributed if every linear
combination of its components has a univariate normal distribution. The multivariate
normal distribution is often used to describe random variables which cluster around a
mean value. Suppose that 1D-Gaussian is a verso method, and then the
multi-Gaussian would be a recto method. While 1D-Gaussian method is based on the
assumption that the corresponding points of the real workpieces could be found out
from the CAD model in the vertex normal directionmulti-Gaussian method enables to
simulate how the points of a CAD model would distribute after a manufacturing
process. The variables generated in a multivariate Gaussian method are constrained by

a covariance matrix.
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Since multi-Gaussian method generates the random variables directly from the
CAD model, independent from the vertex normal estimation, it would be a more

reliable and more general method.
In our case, a spatial random vector is defined as X = (X,,X,,X;)". The

probability density function of multivariate Gaussian distribution can be expressed as

in formula 3-18.

1 1 _
f(xX)=—F—rexp(-— (- T (x— ) (3-18)
eo s 2

Where Y, is the covariance matrix,

Z| is the determinant value, and u is the

mean vector.

The principle of this method is described in figure 3-11. The ellipsoid reflects the
scope of trivariate-Gaussian distribution acting on one point. It is a random vector and
can be calculated by the probability density function of the 3D-Gaussian (formula
3-18).

31D Gauss distribution

Figure 3-11: Principle of 3D-Gaussian method

In our case (formula3-18), the mean value is the point’s coordinates, and the
relationships among each axis are constrained by the covariance matrix. To generate
a multivariate normal random vector X~N(u, X), we use the following algorithm
[Kroese 11].

(a) Derive the Cholesky decomposition of ¥ = AAT where A is the n X n lower

triangular matrix of the Cholesky factor of the matrix X.
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(b) Generate Z1,...,7Zn~N(0, 1) and let Z=(Z1, ..., Zn)
(c) Output X =p + AZ.

Here is an experiment of this method, when considering a CAD plane composed
of 273 points. The simulation result with different views is illustrated in figure 3-12.
Compared to the simulation result of 1D-Gaussian, the random distribution of

multi-Gaussian is in three dimensions.

(a) Nominal model (b) Skin model view-1

(c) Skin model view-1 (d) Skin model view-1

Figure 3-12: Skin model generated by 3D-Gaussian method

3.3.4 Gibbs method

Gibbs method defined here is used to simulate the multi-Gaussian distribution of
random numbers using Markov Chain Monte Carlo (MCMC) methods. MCMC
method is an example of Monte Carlo methods, which relies on repeated random
sampling to compute their results. Since Monte Carlo simulation methods do not
always require truly random numbers, the pseudorandom sequences are enough in
most cases [Davenport 92]. Considering that MCMC methods are based on
constructing a Markov chain that has the desired distribution and only depends on
current state instead of the entire past data, the Gibbs method provides a reliable

Gaussian distribution result.
The Gibbs sampling algorithm is used to generate a sequence of samples from
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the joint probability distribution of two or more random variables. The algorithm is in
reference to an analogy between the sampling algorithm and statistical physics. Gibbs
method requires an initial value of the parameters. At each iteration each parameter of
interest is sampled a given value from the other parameters and data. Once all the
parameters of interest are sampled, the nuisance parameters are sampled given the
parameters of interest and the observed data. This characteristic of the Gibbs method
can make the random distribution of point set of skin models approximates a Gaussian

distribution.

When constructing a Markov chain for Gibbs method to obtain a target
distribution, the determination of how many steps are needed to converge to the
stationary distribution within an acceptable error is an important problem. Since the
convergence performance is determined by the iterative times, the probability
distribution of the normality assumptions of Gibbs should be considered. The
experiment of normal distributions is simulated by Minitab® software for different
iterative runs. In our experiment, we test the interactive time N equal to 100, 1000 and
10000 respectively. The convergent normality distributions are illustrated in figure
3-13, and we can see that the convergent probability of the first two conditions is

around 99% and in the third condition can be achieved at 99.9%.
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(a) N =100 (b) N =1000 (¢) N =10000

Figure 3-13: Convergence test of Gibbs method

After determining the interactive time of Gibbs method, we focus on how to
construct a Markov chain, which has the Gaussian distribution random samples.
Based on [Rouchka 97] Gibbs sampling requires an initial starting value for the

parameters.

In Gibbs sampling, a vector of parameters of interest Y is required, and also a

nuisance parameter A with observed dataB, from which a converging distribution

can be obtained. Suppose (¥, (0),¥, (0),...,'¥,(0)) is an initial starting random value
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inR’. Note that the conditional density function of W |¥_, is f(¥ |[¥_)), from

which the Gibbs sampler selects candidate points.

The initialization of the process is at # =0 and the initial vector value is

then W(0) . When ¢ is increasing (¢=12,...,7 ), then Y(¢) follows the density
function f (‘P_i“l’ﬁ.) to generate new point to replace the old one and iterative

calculation is performed until it converges to the target value. The corresponding

pseudo-code is described as follow.

For t=1,2,....,T

(a) Let w, =Y, (¢-1).
(b) Letj a variable between [1,d ]. Forj=1,2,...,d, using f(‘P].‘t//fj)to get

candidate point\¥"; (¢) , and then updatey, = ¥’ (¢) . During the sampling process

the variations of each vector are as follow:

«  Sample y,(¢) from £, |y, (t ~ Dseeestr, (¢ = DA ~1),B);

Sample 7, (1) from (1, [y, (1), (¢ = Ds.ecaty (¢ =1, AG = 1),B) ;

Sample v/, (¢) from / (w, |y, (1),...y, (1), A(t =1),B);

Sample A(?) from £ (A, (1)o7, (1), B) ;
() Let ¥ (1)— = (¥, (9),..., ¥, (1)) , and then increase?.

The vectors w(0),w(l),...,iy(¢) represent the realization of a Markov chain,

where the transition probability fromy/(:) toy is defined by formula 3-19
FwO) =W 1,0ty O, ACLB) - L, 17,5075 () s, (0, AC), B)....-

fw, v, oW AC),B) (3-19)
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The joint distribution of (y,(i),....y, (i), A(7)) converges geometrically

tof(l//,,...,x//d,A|B)wheni —> 0,

In our case, the stationary objective function follows a Gaussian distribution.
Based on Gibbs interactive method, sampling random variables from Gaussian

random numbers enables to simulate the skin model as in figure 3-14.

(a) Nominal model (b) Skin model view-1

(c) Skin model view 2 (d) Skin model view 3

Figure 3-14: Skin model generated by Gibbs method

3.3.5 Time performance

To compare the time performance of skin model simulation methods including
1D-Gaussian method, 3D-Gaussian method and Gibbs method, we experiment five
different CAD models with different vertex numbers for testing. For each test model,
we generate the corresponding skin models using the three different skin model

generation methods described above, and the results are illustrated in table 3-3.

Time performance is obtained based on the following configuration platform:

MS Visual C++ 2005 on Windows operation system; 2.10GHz Core II with 1.00GB
RAM.
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Index Number of Time (s) Time (s) Time (s)

vertices 1D-Gaussian 3D-Gaussian Gibbs
(D 769 <0.001 <0.001 0.672
2 1752 <0.001 0.016 1.532
(3) 2686 <0.001 0.019 2.343
) 4209 <0.001 0.031 3.672
(5 7041 <0.001 0.037 6.156
(6) 8104 <0.001 0.047 7.031

(1) 2) ) “) () (6)

Table 3-3: Time performance

From table 3-3 we can deduce that the 1D Gaussian method has better
performances, followed by the 3D-Gaussian than the Gibbs method. The variation
trends of the Gibbs method and the 3D-Gaussian method are illustrated in figure
3-15(a) and figure 3-15(b) which is the magnified trend of the 3D-Gaussian method.

Time Series Plot of Gibbs, 3D-Gauss methods Time Series Plot of 3D-Gauss method

Time performance (s)
w n o
Time performance (g)

3 4 5 6 1 2 3 4
Sizes of point scts Sizes of point sets

(a) Time performance of the Gibbs method and (b) Time performance of the of 3D-Gaussian

the 3D-Gaussian method. method.

Figure 3-15: Time performance
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3.4. Adding constraints on skin model

According to the GPS paradigms, the tolerance specifications encode the
allowable variation in product geometry, and it should be reflected by the skin model.
The probabilistic interpretation of the clouds of points introduced in section
3.2doesn’t take into considerations functional requirements or manufacturing
considerations. Figure 3-16 highlights the tolerance types considered in our work,
respectively, form specification, orientation specification and position specification.

They are denominated here as constraints.

VAR
H A
{I} 13 A

;
Figure 3-16: Constraints considered for skin model simulation

3.4.1 Principle component analysis

Principal Component Analysis (PCA) also known as Karhunen-Loeve transform
was invented in 1901 by Karl Pearson [Pearson 01]. It is a mathematical method used
to convert a set of correlated variables into a set of values of uncorrelated variables
called principal components. It is usually used to evaluate the main element or
structure of a set of data. Based on the covariance matrix, the PCA method proceeds
in such a way that the first principal components has the highest variance (that is,
accounts for all the variability in a data set), and each succeeding component in turn

has the highest possible variance within the constraint.

Most of the applications of PCA are statistical in their nature. There are also

some geometric applications. For a given point cloud a point p on the surface, we can
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estimate the undirected normal to the surface at p as follows: find all the points in a
certain neighborhood of p and compute the principal components of those points. The
first principal component is an estimate of the undirected normal at p [Dimitrov 08]. A
frequently used heuristic for computing a bounding box of a set of points is also based
on PCA. The principal components of the point set define the axes of the bounding
box. Once the directions of the axes are given, the dimension of the bounding box is
easily found by the extreme values of the projection of the points on the

corresponding axis [Lahanas 00] [Dimitrov 09].

Consider a discrete shape P, represented by an arbitrary set of points

P =[x,,y.,z,]". The PCA method computes the principal axes of the discrete shape

using the following three steps.

(a) The origin of the principal coordinates system is determined as the centroid

of P, which is calculated by formula 3-20

1 N
Opca :_sz (pz ePN) (3_20)
N =
(b) The covariance matrix is defined by formula 3-21
= T
Mcov ZZ(pi_Opca)(pi_opca) (piEPN) (3-21)
i=1

(¢) Eigenvalues and eigenvectors are estimated. The first principal axis is the
eigenvector corresponding to the largest eigenvalue. The two other principal axes are

obtained from the remaining eigenvectors.

After creating the random point set to simulate the skin model, we also intent to

add constraints on it to satisfy the specification requirements.

3.4.2 Form specification

Based on ISO [ISO 2005] standard, the flatness is the condition of a surface
having all elements in one plane A flatness tolerance specifies a tolerance zone
defined by two parallel planes within which the surface must lie. In discrete geometry

view, the flatness tolerance zone limits the points set of the surface within a given
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bound (see figure3-17).

=i

O
O

Figure 3-17: Flatness tolerance zone

To estimate the form specification of a skin model, the first step is to determine
the tolerance zone direction. Many studies have been done to calculate the tolerance
zone direction, and here we adopt the PCA method (see section 3.3.1) to calculate it

directly. The second step of estimating the form specification is adding constrained

conditions on the point set. The principle of this approach is described by figure 3-18.

n

First principal axis

Second principal axis

Third principal axis
Figure 3-18: Flatness constraint

In figure 3-18, the point set is a skin model of a plane which follows the
Gaussian distribution. Using PCA method the principal axis in three dimension space

is evaluated. Since the workpiece size is much bigger than the deviation of the point

set, the direction of the third principal axis n is deemed as the tolerance zone
direction. The processing flow is illustrated in figure 3-19.
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Where M,, M, are the upper and the lower bound points of the skin model,

and d 1is the enclosing box dimension that approximates the minimum zone
dimension in the direction of the flatness tolerance direction.

tolerance value ¢
& tessellate model

}

Random point set M, <t

!

Flatness tolerance direction

v NO

d= \Max(ﬁ, ) —Min(M.ﬁ)\

S

YES
Skin model

Figure 3-19: Process flow of flatness specification

3.4.3 Orientation specification

Besides form specification, the orientation specification is also taken into
account in our work, and here we consider parallelism tolerance. Based on the ISO
standard [ISO 2005], the parallelism is the condition of a surface or center plane,
equidistant at all points from a datum plane: or an axis, equidistant along its length

from one or more datum planes or a datum axis (see figure 3-20).

VANSD

O
O

Figure 3-20: Parallelism tolerance zone

For parallelism specification, the tolerance direction is the consistent as the
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normal direction of the datum plane and all the points should be within the tolerance

zone. Figure 3-21 illustrates the principle of this method.

Figure 3-21: Parallelism constraint

The parallelism specification satisfies the constraints in formula 3-22.

Max(MjJt) —Mm(ﬁ,;a) <t

parallelism

(3-22)

Where n is the normal direction of the datum plane, and M, is an arbitrary

point.

The process flow of parallelism tolerance is illustrated in figure 3-22.

tolerance value ¢
& tessellate model

I

v

Datum plane normal ﬁ

4

Initial random point set M, <

‘Max(ﬁ[ -n)—Min(M, - ﬁ)‘

S

YES

Skin model

Figure 3-22: process flow of parallelism specification
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3.4.4 Position specification

Based on the ISO standard [ISO 2005], the position tolerancing is used for
locating features. It defines a zone within which the feature is permitted to vary from
a true (theoretical exact) position. Basic dimensions establish the true position from
the specified datum features as well as the relationships between the features (see

figure 3-23). The principle of this method is described in figure3-24.
| 6 |A

Figure 3-24: Position constraint

For position specification case, the tolerance direction follows the normal

direction of the datum plane. The related constraint is described by formula 3-23.

d [ tpositi()n tposition ] (3 23)
ela— ,a+ )
2 2
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Wheren is the normal direction of the datum plane, M, is an arbitrary point, and

d 1is the distance between the point s, to datum plane P, in the direction of vector

n, and a is the nominal distance value of position tolerance (true position). The

process flow is then illustrated in figure 3-25.

tolerance value #
& tessellate model

I

Datum plane normal n

A

A

Initial random point set M,

\
1o t
Dist(M,P,) e[d - poszmon Jd+ poszn‘mn] o

S

YES
h 4

< Skin model >

Figure 3-25: Process flow of position specification

3.4.5 Other constraints

(1). Combining constraints

The constraints on the skin model discussed above are based on the simulation of
pure random errors. In general, the realistic part not only contains the random
geometrical errors (uncorrelated errors) but also the systematic geometrical errors
(correlated errors). In order to ensure that the skin model satisfies both correlated and
uncorrelated errors, we propose to improve the constraints discussed before when

combined.

Considering that the form specification is independent on any other conditions, it
can be constrained first when there are also other tolerance specifications. Since the

PCA method can identify the principle axis, the bounding box of the point set is then
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determined, and the principal directions uncorrelate the data. Systematic geometrical
errors thereby can be well described by this bounding box thanks to the position of the

centroid and the principal directions orientations through a rigid transformation.

The constraints added on the point set which combine the systematic geometrical
errors are the orientation and the position specification requirements. To sum up, the
constraints with systematic deviation method can evaluate the constraints combined

by form, orientation and position specifications.

The input of this method is a tessellated model obtained from CAD software, and
based on the tolerance specification requirement the user input the constraint values,
such as form specification, orientation specification, position specification, datum
plane, even any combination of these specifications, and also a rotation value that the
maximum value can be easily derived from the dimensions and the tolerance zone of
the toleranced surface. The rotation value is used to rotate the bounding box of the

point set to consider some systematic errors. Based on the input information, the

initial random point set M, can be generated by the skin model simulation method,

which was introduced in section 3.3. Considering the form specification is
independent on datum plane and has always a smaller constraint value than
orientation and position specification, we test if the point set is within the form
tolerance zone first. If the point set does not satisfy the limit value, we iterate the skin

model simulation procedure until it’s satisfied, else we continue the PCA evaluation

step. We apply then PCA method to the point set M, to evaluate the principal axis,

which indicates the main variation direction of the surface variation. Then we rotate

the point setM, with the input angle valuea, and then we evaluate if the point
set M, satisfy other constraints such as orientation and position specification
requirements, which depend on the input information. If the point set M, can satisfy

the orientation and position constrains, then we can get the final skin model,
otherwise we go back to the step of initial random point set generation and follow the

procedures until all the conditions are satisfied.

To rotate the point setM,in a certain angle following a principal axis, we adopt

here rigid transformation calculation of coordinate systems. Assuming that
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C(o,,%,,,,z,)and C,(0,,X,, ¥,,Z,) denote the global coordinate system and the local
coordinate system of the point setM,. Where, o are the centroids of the global
coordinate system (i=1) and local coordinate system (i =2) respectively, and Z
are the three normalized principal axes of coordinate systems. Let p represents an
arbitrary point in point set M,, and ol_p; represents the coordinates of point p in

local systemC,. All the notations are described in figure 3-26. According to the

relationship is shown in figure 3-26, the transformation of points from the global

coordinate system to local system can be represented as formula 3-24

— —— e

0,p, =0,0, +R,®0p, (3-24)

Where, ?oj (7,7 = 0,1) denotes the translation vectors from the origino,to
origino;. R, (i,j=0,1) denotes the rotation matrix from the coordinate system C, to
the coordinate systemC; . In our method, the rotation matrix R, is the direction cosine
matrix, which is specified as formula 3-25

cos(X;,X;) cos(X,,y;) cos(X,z,)
R, =| cos(3,,%) cos(¥,,7,) cos(¥,.,) (3-25)
cos(z,,X;) cos(z;,y,) cos(Z;,z;)

p

Figure 3-26: Translation between two coordinate systems
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When the point set M, is rotated with a certain angle, we need to translate its local

coordinates to global coordinates back. The solution is adopting the inverse matrix,

and the process can be explained by formula 3-26

0,p =00, +R, " e0,p, (3-26)
Where, R,"(-1)is the inverse matrix of R, .

The flow chat of this method is illustrated by figure 3-27.

Tessellated model

v

4 PCA of point set M,
Tolerance, Target Rotation and
Target Position value

v
Position point set
Rotate point set ~’

Datum plane normal

YES
4 Orientation / Position
> Initial random point set M «—-N specification satisfied?
o N o r D 1
YES
v

< Skin model >

Figure 3-27: Process flow for combining constraints
(2). Cylindricity

Based on the ISO standard [ISO 2005], the cylindricity is the condition of a
surface of revolution in which all points of the surface are equidistant from a common

axis. The tolerance zone is two concentric cylinders within which the surface must lie

(see figure 3-28).
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O

Figure 3-28: Cylindricity tolerance zone

The constraint of cylidricity of skin model is illustrated in figure 3-29. Figure
3-29 reflects the cylidricity constraint in a given 2D view. In figure 3-29, the black dot
line is the nominal point set, and the red dot line illustrates the skin model of the
cylinder. Considering the cylindricity specification, the skin model point set is

restricted in the tolerance zone, which is illustrated by a zone of two coaxial cylinders .

The distance d between the axis of the cylinder and the random point M, is

constrained by formula 3-27.

del[~t/2,+/2] (3-27)

Figure 3-29: Cylindricity tolerance zone

3.5. Comparison and statistical analysis of simulation

methods

3.5.1 Vertex normal direction deviation test

To compare skin model simulation methods described above, we create several
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sets of skin model of the tolerance plane described in section 3.3. The characteristic
we evaluate here is the deviation between random (simulated) and nominal
(Tessellated CAD) points. This test is a very common technique used by inspection
software to compare a set of measurement data to a reference CAD model or to some

specific target points described by their coordinates on a given reference frame.

In figure 3-30, the blue points are the nominal points, and the black points are the
random points that compose the skin model. The vertex normal of nominal point is ni.
The deviation evaluated in our method is the signed distanced,, which is obtained

through the projection of the vector linking the nominal point M, to the random
point R, .

The test is based on sets of skin models using three different skin model
generation methods.
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Figure 3-30: Principle of vertex normal direction deviation test

In this testing, the skin model is composed of 273 points. The flatness tolerance
considered here is equal to 0.02mm, the parallelism tolerance is equal to 0.1mm, and

the position tolerance is equal to 0.3mm. The number of skin model generated varies
from 100 to 1000.

Simulation results are illustrated in figure 3-31, the horizontal ordinate is the
number of skin models and the vertical ordinate reflects the average mean value of
vertices normal direction of skin models. The Gibbs method as reported in the

literature shows a slow convergence capability with the increase of the samples or the

number of skin models.
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Figure 3-31: Mean value of vertex normal direction deviation

The average standard deviation between random and nominal points is also
considered in our tests. It is also based on different number of skin models using the
three different skin model creation methods. From figure 3-32 we can see that all of
the three methods have a steady average standard deviation value, and Gibbs method

has a smaller one in comparison to the other two methods.
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Figure 3-32: Mean standard deviation value of vertex normal direction deviation

More detailed analysis of standard deviation comparison is illustrated in figure
3-33 and figure 3-34. In figure 3-33, Cl, C2 and C3 respectively represent
1D-Gaussian, 3D-Gaussian and Gibbs method. The spread of the samples of Gibbs
method is smaller than the other methods, and some outliers of skin model generated
by Gibbs method are even fewer. From figure 3-33 we can see that there are

differences among the standard deviation at the 0.05 level of significance using
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Minitab® statistical testing on standard deviations. Minitab® uses here the usual

F-test [Brandt 83].

Standard Deviations Test for Cl, C2, C3
Diagnostic Report

Distribution of Data Data in Worksheet Order
Compare the spread of the samples. Inwvestigate outliers (marked in red).
Cl 3]

0.024

O OSN 1%
9§ 0. 021
PO O O O O DY

Figure 3-33: Distribution of the data of vertex normal direction deviation

Standard Deviations Test for Cl1, C2, C3
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Do the standard deviations differ? Yhich standard deviations differ?
0 0.05 0.1 5 0.5 Sample Differs from
Yes No C3 Cl Cc2
1 C3
P = 0.000 @ s

Differences among the standard deviations are
significant (p < 0.05).

Standard Deviations Comparison Chart
Fed intervals that do not owverlap differ.

34 -

Comment s

You can conclude that there are differences among the
standard deviations at the 0.05 lewel of
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do not overlap indicate standard deviations that
differ from each other. Consider the zize of the
differencez to determine if they have practical
implications.

0.0020 0.0024 0. 0028 0. 0032 0.0036

Figure 3-34: Standard deviations of vertex normal direction deviation
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The statistical hypothesis test on the difference of standard deviations is a robust
method of making decisions using our simulation data. The Gibbs method even if it is
limited as depicted in previous sections for slow absolute time processing and weak
convergence has a lower spread of data around the mean. Standard deviation is the
main statistical parameter to describe the uncertainty and the variability of simulated

or measured data.

Monte Carlo Markov Chain methods through the Gibbs sampler used in our
work show an interesting result on standard deviations related to our simulations.
However, the statistical analysis performed here in the case of vertex normal deviation

is still limited in consideration of the possible local “morphing” of the shape.

Deviation analysis here considers only the position of the simulated random
point without taking into consideration the local effect of the shape in its
neighborhood which can be considered through the normal computation. The
following section introduces a new characteristic called volume deviation that
considers the small unsigned volume around the nominal point and the simulated

point.

3.5.2 Volume deviation test

The principle of this test is to evaluate the deviation of the small positive volume,

which is composed by the vertex normal of random and nominal points. In figure 3-35,
the point M, is the nominal point which vertex normal isn—M_ , and R;is the random
point generated form M, and its normal is n—R . The vector MR, is obtained from the

points M, and R, . Based on the scalar triple product which can be defined also as the as

the determinant of the 3 x 3 matrix having the three vectors as its rows, the obtained
scalar form is also the geometric interpretation of the (signed) volume of the

parallelepiped defined by the given vectors as formula 3-28

Vol, = (MR ANy )-(Ny, AN (3-28)

The test performed here evaluates the differences among the volume of the
parallelepiped on sets of skin models using the three different skin model generation

methods described in previous sections.
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Figure 3-35: Principle of volume deviation test

In this testing, the skin model is composed by of 273 points. The flatness
tolerance considered here is equal to 0.02mm, the parallelism tolerance is equal to
0.1mm, and the position tolerance is equal to 0.3mm. The number of skin model

generated varies from 100 to 1000.

Simulation results are illustrated in figure 3-36, the horizontal ordinate is the
number of skin model and the vertical ordinate reflect the average mean value of the
volume deviation of skin models. The average volume deviation is quite steady
among each skin model creation method, and the Gibbs method offers a smaller

average value in comparison to the two other methods.
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Figure 3-36: Mean value of volume deviation

The average volume standard deviation is also considered in this test .The results
are illustrated in figure 3-37. We can see that all of these three methods have a steady

standard deviation value, and the Gibbs method provides again the smallest value.
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Figure 3-37: Mean standard deviation value of volume deviation

More detailed analysis of standard deviation comparison is illustrated in figure
3-38 and figure 3-39. In figure 3-38, CI, C2 and C3 respectively represent
1D-Gaussian, 3D-Gaussian and Gibbs method. . The spread of the samples of Gibbs
method is smaller than the other methods, and the outliers of skin model generated by

Gibbs method are fewer.
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Figure 3-38: Distribution of the data of volume deviation
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From figure 3-39 we can see that there are differences among the standard
deviation at the 0.05 level of significance using Minitab® statistical testing on
standard deviations. Minitab® uses an alternative to the wusual F-test, the
Levene/Brown-Forsythe test that does not require that the data are normally
distributed [Lim 96]. This test performs well for both normal data and non-normal

data, even when the sample sizes are small.
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Figure 3-39: Standard deviations of volume deviation

. From the statistical analysis perspective, the Gibbs method scores well as
mentioned in the previous section. It’s also important to notice that this method

provides lower standard deviations in the case of non-normal distributions.

The unsigned volume deviation distribution shows some similarities to the
Rayleigh distribution or the one-sided distribution for form deviations [Sombstay 58].
MCMC methods are well known for their robustness even for non-normal and

unknown probability density functions.

The volume deviation test considered here takes into consideration both initial
CAD/nominal point and the random generated point as well as normal vectors. This

new characteristic highlights also the “quality” of normal estimation for simulation.

114



Chapter 3: Skin Model Simulation and Visualization

3.5.4 Improving the visualization of the skin model

Many techniques have been proposed to show non-ideal geometry effects and
uncertainties in data visualizations [Forslund 09] [Sanyal 09]. However, their
effectiveness in conveying meaningful information is not well investigated. A large
variety of techniques are currently used in visualization applications, selecting the
most appropriate visualization technique for a given data set is a non-trivial task.
Different approaches have been designed for different types of data such as vector

fields and particle systems [McLouglin 10].

The deviations to a CAD or nominal model can be visualized on a skin model.
Those deviations are much smaller than feature size and it remains difficult to
visualize them within a multi-scale geometry by human eyes directly. Therefore,
helping the user observes and analyzes the differences between the nominal model
and the simulated skin model is an important task. The mesh or facet representation is
well used for scientific visualization but cannot solve this problem directly. We
propose here to improve the mesh visualization by adding a color scale technique to

reflect the computed deviations.

Considering the two previous deviation tests, we adopt here two visualization
possibilities: visualization based on vertex normal direction and visualization based

on volumes.

(1). Visualization based on vertex normal

This section proposes to use RGB color scale mapping technique to visualize the
geometrical deviations on the vertex normal direction. The basic idea of this method
is that the extreme of deviations of the skin model are parallelized to a continuous

color strip, which varies from the red color red to the blue.

The geometrical deviations between the simulated skin model and the initial
point set are computed by the deviation in the direction of the vertices normal. The
vertex normal estimation method was introduced in section 3.2.4. A continuous RGB
color scale is then used to reflect the deviations on a skin model. Figure 3-40
illustrates two examples. The first one is a gear model and the second one is a,
comparing the skin model represented by point set and color scale, we can see that the

later is more convenient for user to identify the deviations.
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| Max=0.01
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(a) Gear skin model (b) Pedestal skin model

I Max= 0.02

Figure 3-40: RGB visualization based on vertex normal

(2). Visualization based on volume

The deviation in the direction of the vertex normal of a skin model can be
reflected by a continuous color strip; moreover, we propose here to use the volume
deviations as defined in section 3.5.2 that can also be reflected by continuous color
strip. The basic idea is that since we have the knowledge of the volume deviation on
each vertex of a skin model, the different colors can correspond to different volume

values. In our method, the blue color reflects the smallest volume value while the red

color reflects the biggest value, and from blue to red there is a continuous color scale

(figure 3-41).

| Max= 0.01

I Min=0 I Min=0

(a) Gear skin model (b) Pedestal skin model

| Max= 0.02

Figure 3-41: RGB visualization based on volume

3.6. Conclusion

Skin model construction is one of the critical issues in GeoSpelling. This chapter
proposed the developed methods to shape the skin models with random deviations.
Based on the hypothesis that the random deviations follow the normal distribution,
three different methods are developed to generate the skin models with discrete
representations: 1-D Gaussian-based method, multi-Gaussian-based method and
Gibbs-based method.
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At the beginning, the nominal shape is tessellated as discrete representations
(point-based and/or mesh-based). All the developed methods use this discrete nominal
shape as reference but adding random deviations by different ways. For each given
reference point, 1-D Gaussian method adds the random deviation along its normal
direction based on 1 dimensional Gaussian possibility distribution; Multi-Gaussian
method considers the random deviations in three dimensional space; Gibbs method
calculates the new position of the given point by Markov Chain Monte Carlo

simulation.

The nominal shapes are usually specified with geometrical tolerances to indicate
the acceptable geometrical variations from the nominal shapes. The specified
tolerances can acts as the constraints to fix the generated skin model within the
tolerance zones. The mentioned three methods (1-D Gaussian based method,
Multi-Gaussian based method and Gibbs based methods) are modified to generate

appropriated skin models with the specified tolerance constraints.

Finally, a comparative analysis of these methods is discussed. The random error
is considered in this chapter and the systematic error-based skin model simulation will

be discussed in the next chapter
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Statistical Shape Analysis for Skin Model
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4.1. Introduction

Because of the limited accuracy of applied manufacturing machines and tools,
the skills of operators, the environments, etc., No product can be manufactured ideally
without any errors. The error, indicated the variance of a real measured from its
theoretical value, typically composes of random error and systematic error. The
previous chapter, several methods are developed to simulate the skin model by adding
random error to the nominal shape. As mentioned above, the skin model only
considered random error is incomplete. The systematic error should also be simulated

during the skin model shaping process.

Different from random errors which are statistical fluctuations (in either
direction), systematic errors are reproducible inaccuracies that are consistently in the
same directions. They usually keep the same value or follow the recognizable laws
which can be calculated or simulated. In skin model shaping, it is thus reasonable to
adding errors followed by some known basic shape models (e.g. second order shapes)
to simulate the systematic errors. In this chapter, a set of methods are developed to
simulate the systematic errors based on a group of second order shapes. In practice,
the systematic errors can be simulated by adding deviations followed by a unique

shape or by a combination of several shapes within the basic shapes’ group.

With consideration of random and systematic errors, the shaped skin models are
complete to represent the real geometrical variations. Given a nominal shape
associated with specific geometrical tolerances, various skin models which satisfy the
tolerance requirements can be generated to simulate the actual shape. A method based
on SSM (Statistical Shape Model) is developed for skin model analysis. This is useful
to evaluate the skin models and predict the trend of new skin models (actual shapes’

trend prediction).
The chapter is organized as follows:

Section 4.2 reviews the literature related to variation based shape modeling
methods. Section 4.3 presents the developed skin model shaping methods to simulate
the systematic error. Section 4.4 gives the developed method based on SSM for skin

model analysis and evaluation. Section 4.5 is the conclusion.
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4.2. Shape deviations

It’s well understood that shape deviations are the fundamentals of geometric
product specification and verification. The two main axioms described in previous
chapters highlight the combined effects of manufacturing variability and measurement
uncertainty when considering a global view and consistent modeling of the skin

model.

In order to enrich the skin model when considering the deviations from the
nominal or CAD model, we need to assess the geometrical deviations at many

different scales and from the manufacturing and the measurement perspectives.

In an early work, Dowling et al. [Dowling 97] pointed-out the lack of systematic
manufacturing error considerations when assessing form deviations. Caskey et al.
[Caskey 90] discussed the need for a catalog of typically occurring form errors for

basic features produced by various manufacturing processes.

Manufacturing and measurement geometric deviations or errors can be classified
into two main categories, which are systematic and random [Henke 99] [Desta 03].
The systematic components called also bias are deterministic, predictable and
reproducible. They are caused by imperfect manufacturing devices or measurement
procedures and by the ambiguity on the use of actual rules and standards. The
random components are caused by non-constant sources of error either in time or in

space. Random errors are expressed by statistical methods.

Research and industry reported a number of sources of manufacturing error and
deviation such as locating error, clamping error, datum feature (surface) error,
workpiece elastic deformations, tool wear, vibration, misalignment and machine
guidance errors as well as thermal disturbances and so on. The systematic errors are

generally easier to identify, isolate and correct than random errors.

Manufacturing processes leave very specific patterns or signatures on the part. In
some cases, it is possible to quantify the manufacturing errors through mathematical
models. In general cases, the manufacturing errors can be captured using experimental
analysis. Colosimo et al. [Colosimo 07] define the manufacturing signature as the
systematic pattern which characterizes the features realized by a given process in
given conditions. This systematic pattern is “masked” by additional random noise

caused by the natural variability of the process. A statistical analysis is then required
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to obtain the manufacturing signature estimate.

Many efforts have been made to simulate the systematic deviations of shapes. All
of these works can be roughly classified into three categories: analytical approaches,

statistical analysis and other methods.

Henke et al. [Henke 99] introduced two models to describe form errors. One is
an analytical model based on Chebyshev polynomials to model the axial errors and
the other is Fourier series to model angular dependencies. Based on the Fourier series,
Cho and To [Cho 01] proposed a harmonic roundness model to represent form
deviations using Fourier series expansion. Mesay et al. [Mesay 03] represented
systematic form error using a combination of Fourier components, and proved that

this method can characterize a wide variety of the deviations.

Huang and Ceglarek [Huang 02] proposed a discrete-cosine-transformation
(DCT) method which is based on decomposing the error field into a series of
independent error modes. Fourier series is the first used decomposition method used

to define periods on circular [Cho 02].

Samper [Samper 07] proposed a new way to define for error parameters based on
the eigen-shapes of natural vibrations of surfaces. The originality of this method is
that the set of form parameters can be computed for any kind of shape. The principle
of this method is that the geometry variation is defined by using a geometrical basis
built on the model shape, which have vectorial space properties and are defined by
using a discretization of the ideal surface. Based on the value of the associated natural
frequency, the model shapes are sorted with the different complexity orders, and this
can help to analyze the form, undulation and roughness of a surface by the level of
period of a flexure behavior. Based on this idea, Samper et al. [Samper 10] developed

software based on (Finite Element Analysis) FEA to determine the model shapes.

Kurfess and Bands [Kurfess 95] modeled the manufacturing error using a
sequence of models based on statistical hypothesis testing of the fitted residuals. Yang
and Jackman [Yang 00] evaluated form error using statistical method without

independently analyzing the statistical properties of the associated residuals.

Yang and Menq [ Yang 95] reviewed form error as a deterministic component and
random component. The random error was assumed to be spatially independent with a
normal distribution for uncertainty parameters representing coordinate transformation

elements. The deterministic component was supposed as the orthogonal deviation
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between nominal surface and the artificial surface, which obtained by the measuring

machine.

4.3. Systematic Deviations simulation method

As discussed before, the systematic deviations are caused by many sources such
as the inherent properties of manufacturing and inspection machine, the environment
condition and even the operators. Thereby the possibilities of the systematic form
errors are various. Dowling [Dowling 97] argued that incorporating the systematic

manufacturing errors into a modeling and assessment procedure is an important issue.

There have been already some efforts attempted on expression of form
deviations based on shapes decomposition concept, and these work can classified into
two categories [Samper 07]: explicit and implicit parameterizations. The explicit
description of geometries is based on CAD modeling [Cubeles-Valade 98], which can
be modified by limited parameters. The implicit geometries are defined by a
parametric model, which can be discretized with elementary geometries [Gouskov 98].
Both these two kinds of methods are using the modification of parameters to obtain

the form deviations.

In our method, we proposed using second order form deviations to simulate the
systematic errors, since the second order form deviations can reflect the principle
curvature and the anisotropy of complex shapes better than the first order and higher
order deviations [Kurokawa 05]. Kurokawa [Kurokawa 05] proved mathematically
that an arbitrary second order surface can be transformed into a fundamental form of
the second order by the combination rotation, translation and scaling transformation.
Based on this argument, we proposed the systematic errors defined in our method are
one or a combination of some basic second order surfaces, and the details are

explained below.

4.3.1 Plane deviation simulation

The systematic distortions of planar parts are based on the following hypothesis.

(a) The systematic error of a planar part can be described by one or more basic

geometric shapes.
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(b) These basic geometric shapes belong to quadric surfaces and are classified
into four families: paraboloid, cone, sphere, cylinder and ellipsoid (see figure 4-1),
and the morphing operation is a combination of translation and rotation of the basic

shapes.

(¢) And each simple basic shape is a result of the deviations on the vertex normal

direction of a discrete plane.

(a) Paraboloid (b) Cone (c) Sphere (d) Cylinder (e) Ellipsoid

Figure 4-1: Types of systematic error of planar shapes

The principle of morphing to the basic geometric shape is that, the deviation can
be assumed following the vertex normal direction. For each case, the morphing details

are explained as follow.

(1). Paraboloid

In mathematics, a paraboloid is a quadric surface and there are two kinds of
paraboloid: elliptic and hyperbolic. In our work we focus on the elliptic paraboloid,

which can be represented using formula 4-1

2= 42 (4-1)

Where a and b are constants that dictate the level of curvature in the x-z and y-z

planes respectively.

In our method, the paraboloid surface is simulated from the discrete model of a
plane. The principle of our method can be explained by figure 4-2, in

which § denotes the paraboloid point set and 7, denotes the initial planar point set.

We use PCA algorithm (see section 3.4.1) to evaluate the principal axis to obtain the

local coordinate system ofc. Suppose p, is a random point of /,, and g, is its
corresponding point of § . The distance between these two points in p,’s vertex

normal direction is reflected using /,, which fulfils the formula 4-1.
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Figure 4-2: Paraboloid simulation method

During this process, we employ the third principal axis (the z axis in figure 4-2)
as the z value to calculate the deviation. According to the PCA algorithm (introduced
in section 3.4.1), the third principal axis represents the smallest variety of the planar
shape, which can be calculated by the discrete curvature method introduced in section

3.2.5. The simulation result is illustrated in figure 4-3.

Figure 4-3: Paraboloid simulation result

(2). Cone

A cone is a quadratic surface. In figure 4-4 the height/ and the base radius »

oriented along the z -axis and with the base located atz = 0 (denoted as z, ), the cone

shape can be described by formula 4-3

2 2
X +y )
—02 =(z—-2z,)

(4-3)
Where, (x,y,z)is the Cartesian coordinate value, andcis the ratio of radius to
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height at some distance from the peakc = %

In our method, we simulate the cone shape form a discrete plane, which is
tessellated from a CAD model of plane surface. The principle of the method can be

explained by figure 4-4.

Tessellated
plan model

Figure 4-4: Cone simulation method

Let/,denotes the initial planar point set and S, denote the cone point set. The
cone simulation method is based on the hypothesis that the shape can be reflected by
the deviation of point set in the direction of each vertex normal. Considering the cone
shape displayed in figure 4-4, the peak of the cone is located in the center of /, with
the height/ and radiusr. The deviation/ of a random point p,in its vertex normal

direction nj can be estimated by formula 4-4

h=h-(=2 (4-4)
r

Where 7; denotes the distance between the center of /, and the point p, .

During this process, the deviation of each point p,is calculated based on the
height 4, which is in the normal directionn . To simulate the cone shape (see figure
4-4) we construct the triangle by the peak of cone, the radius of/,, and the center
of /. The value/;is obtained from the proportional calculation of this triangle. This
estimation is based on the assumption that/, andni follow the same direction in the
space. Considering/,is a normal tessellated plan model, the normalﬁandﬁ? has a

small difference error £ , which coming from the tessellated techniques. We compared
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these two normal values, and the value ¢ is approximately equal to 10°. The

simulation result is illustrated in figure 4-5.

Figure 4-5: Cone simulation result
(3). Sphere

In mathematics, a sphere with center(x,,,,z,)and radiusris the locus of all

point (x, y, z) satistfying the formula 4-5
(x_xo)z"'(y_yo)z"'(z_zo)z:’”2 (4-5)

In our method, we simulate the sphere point set from the tessellated plan model.
The principle of this method is explained by figure 4-6. As discussed above,
I, denotes the initial planar point set and S, denotes the sphere point set. The sphere
simulation method is based on the hypothesis that the shape can be reflected by the
deviation of point set in the direction of each vertex normal. In figure 4-6, the
deviation /2, of a random point p,of /, is determined by curvature radius and the

distance from the centero of / ,as formula 4-6

by =(R* —d}) (4-6)

Where, Ris the curvature radius and d,is the distance between the random

point p;and the center of/, denoted aso. Let (x,y,,z)and(x,,y,,z,) denote the

coordinates of p, ando, and thend, = \/(xi -x,) '+, -y, +(z,-z,) .
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Figure 4-6: Sphere simulation method

Based on the input information including: tessellated plan, type of systematic
error (sphere) and the curvature radius R, the offset of the center of sphere/, and then

the sphere point set can be obtained. The simulation result is illustrated in figure 4-7.

Figure 4-7: Sphere simulation result
(4). Cylinder

In mathematics, a cylinder is a quadric surface, which is formed by the points at
a fixed distance called radius from a given line segment, the axis of the cylinder. With

the radius 7, a cylinder can be illustrated as in formula 4-7
X

)+ =1 C)
r r

In our method, we simulate the cylinder point set from a planar tessellated model,

and the principal of this method can be explained by figure 4-8.
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Cylinder

Tessellated 4

plan model .

Figure 4-8: Cylinder simulation method

As defined before, 7, denotes the tessellated plane model and S denotes the
cylinder point set. The PCA method is employed to obtain the center of tessellated
plane denoted aso and the first principle axisx . Suppose p,is a random point
of/ andd,is the distance between p,ando, based on the curvature radiusr and the
projection of d.in the direction ofx, the deviation of point p,in its vertex normal
direction/; can be calculated. For each point in/,, we calculate the corresponding
deviation in its vertex normal direction, and then the S , can be obtained. The

simulation result is illustrated in figure 4-9.

Smmg l.l...: s ‘-“-'-l H L]

™

.

Figure 4-9: Cylinder simulation result
(5).  Ellipsoid

In mathematics, an ellipsoid is a type of quadric surface, and the equation of a

standard axis-aligned ellipsoid boy is illustrated as formula 4-8
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2 2

2
z

:}N|><
(@)

Where a and b are the equatorial radii (along x and y axes) and c is the polar radius
(along the z -axis).

In our method, we simulate the ellipsoid point set from a planar tessellated model,
and the principal of this method can be explained by figure 4-10. As defined before,
I, denotes the tessellated plane model and S, denotes the cylinder point set. We use
PCA algorithm (see section 3.4.1) to evaluate the principal axis to obtain the local
coordinate system of/,. Suppose p;is a random point of/,, dx,6 anddy, are the
distance along the x -axis and y -axis. Based on the equatorial radiia,b,c, the
deviation of point p,in its vertex normal direction/, can be calculated. For each point
in/,, we calculate the corresponding deviation in its vertex normal direction, and then

the S, can be obtained. The simulation result is illustrated in figure 4-11.

Tessellated/ . dx!’; b f ’

plan model

Figure 4-10: Ellipsoid simulation method

L
-
L}
n

Figure 4-11: Ellipsoid simulation result
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(6). Rotation

Rotation defined in our method is a rigid body movement of the point set
following an axis. In our method, firstly we define a rotation axis, and then adopt a
rotation matrix to obtain the rotation point set. In three-dimension space, a rotation
matrix has a unit real eigenvalue, and based on the Euler’s rotation theorem the
rotation matrix can specify the rotation of the corresponding eigenvector. Suppose the
rotation follows x axis, y axis, and z axis respectively in Cartesian coordinate system,
and each of rotation is named as roll, pitch and yaw, and then the rotation matrices as

formula 9 to formula 11:

1 0 0
R (6)={0 cosf —sin6, (4-9)

0 sin@  cosd,

cosf, 0 sinf,
R (0,)= 0 1 0 (4-10)
—sin Gy 0 cos Gy

cosd, -sinf, 0
R (6.)=|sin@. cosd. O (4-11)
0 0 1

Where, 0, is the angle of roll, 6, is the angle of pitch, 6, is the angle of yaw.

The principle of our method can be explained by figure 4-12. 7, denotes the
tessellated plan point set, and S, denotes the rotation point set. Firstly using PCA
method to estimate the center and the three principal axis of /,, and then establish the
local coordinate system as illustrated in figure 4-12. Suppose the rotation angle
of yaxis is6, , and a random point p,of 7, has the distanced,; from the center of/ ,
which is denotedo . ¢, denotes the point of S, , which is in the direction of vertex
normal of p,. Based on the right triangle relation amongo, p,and g, , the deviation of
each point of 7, can be calculated, and the point setS, is obtained. The simulation

result is illustrated in figure 4-13.
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Figure 4-12: Rotation simulation method
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Figure 4-13: Rotation simulation result
4.3.2 Cylinder deviation simulation

Based on [Zhang 05], in manufacturing the geometric deviation of a cylindrical
part can be described by three independent terms: cross-section form error, axial form
error and cross-section size error. The cross-section form errors are defined as the
error of out of roundness of the part, and they are usually caused by spindle defects
and fixturing distortion. The axial errors occur in a section plane that passes through
the axis of the manufactured part. The sources of the axial errors include machine
tools (e.g. spindle misalignment), workpieces (e.g. workpiece deflection and heat

expansion), and machine fixtures (e.g. work centre misalignment), etc. The
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cross-section size errors are equal to the difference between the actual and the
predicted size (diameter or radius) of the manufactured part, and the most common
raisons are set-up error and the tool wear. According to the classification of the
geometric deviation of a cylindrical part, there are four typical manufactured errors:

taper, concave, convex, and banana (see table 4-1).

Taper Concave Convex Banana

% .ﬂ'ﬁ“’m
a g i,
. - :
N

]

i

Table 4-1: Types of systematic error of cylinders
(1). Taper

In geometry, a taper is an object with a gradual thinning or narrowing towards
one end. In our method, the taper is simulated form a tessellated cylinder model. The
principle of this method is based on the hypothesis that the taper can be obtained by
offsetting each point of tessellated cylinder model in the direction of its vertex normal,
see figure 4-14. Let /_denotes the initial tessellated plan and S, denotes the taper point
set. The point p,is a random point of/ , andg,is its corresponding point of S, with
distance d, in the direction of vertex normal of p,. Considering the curvature of a taper
is a linear variable, the deviation of point p,can be calculated by the proportional

relationship as in formula 4-12
h,
d, :(R—r)-T’ (4-12)
Whered, is the deviation of p, in the direction of its vertex normal, R andr are
the limited curvature radiuses of the taper, /is the height of cylinder and /4 is the

vertical distance between point p, and one end of the cylinder. The simulation result is

illustrated in figure 4-15.
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Figure 4-14: Taper simulation method

Figure 4-15: Taper simulation result

(2). Convex

In Euclidean space, an object is convex if for every pair of points within the
object, every point on the straight line segment that joins them is also within the
object. According to this definition, there are various types of convex models, such as

solid cubes. While in our method, we simulate the convex shape following the

ellipsoid model.

An ellipsoid is a closed type of quadric surface, the standard axis-aligned

ellipsoid in a Cartesian coordinate system is interpreted by formula 4-13:
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2 2

L2 (4-13)

2
+b2 2

:}N|><
(@

Wherea andb are the equatorial radii along the x axes and y axes andcis the

polar radius along z axis.

In our method, we simulate the ellipsoid from a tessellated cylinder model.

Let/_denotes the initial tessellated cylinder point set and.S, denotes the convex point

set, and the principal of our method can be explained by figure 4-16.

Principal axis

Ellipsoid

e
e \ Tessellated

cylinder model

Figure 4-16: Ellipsoid simulation method
The PCA method is used to evaluate the three principal axes of/, , which

construct the local coordinate system of /.. The local coordinate system is located as

illustrated in figure 4-16. Since our method is based on the hypothesis that the

ellipsoid can be obtained by offsetting the points of/ in the direction of its vertex
normal, we assign the deviation values for each point of /_ using the formula 4-13. The

simulation result is illustrated in figure 4-17.
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Figure 4-17: Ellipsoid simulation result

(3). Concave

The concept concave means curving in or hollowed inward, as opposed to convex.
There are many kinds of concave shapes, while in our method we simulate the

hyperboloid surface as the concave systematic error.

In mathematics, a hyperboloid is a quadric surface in three dimensions space, and

can be described by formula 4-14:

2 y2 Z2
t T2
C

=1 (4-14)

:}N|><
>

Where a and b are the equatorial radii along the x axes and y axes andcis the

polar radius along z axis.

In our method, we simulate the hyperboloid from a tessellated cylinder model.

Let/_denotes the initial tessellated cylinder point set and S, denotes the convex point

set, and the principal of our method can be explained by figure 4-18. The PCA

method is used to evaluate the three principal axes of/,, which construct the local

coordinate system of /.. The local coordinate system is located as illustrated in figure

4-18. Since our method is based on the hypothesis that the hyperboloid can be

obtained by offsetting the points of /_in the direction of its vertex normal, we assign
the deviation values for each point of /, using the formula 4-14. The simulation result

is illustrated in figure 4-19.
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Figure 4-18: Hyperboloid simulation method

Figure 4-19: Hyperboloid simulation result

(4). Banana

The banana systematic error is named by the appearance of the form error of a
cylinder. There is no simple analytical definition of a banana shape, while we propose
using quadric surface to simulate it, such as, ellipsoid and hyperboloid etc. The
banana simulation approach we implemented here is based on the hyperboloid surface,
which can be described by formula 4-15:

2

y_ z

2 2
e +5 =1 (4-15)

QN|><
(@

Where p is the distance from the focus and the directrix of the hyperboloid
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surface.

We simulate the banana form error from a cylinder point set, and the principle can
be explained by figure 4-20. For convenience, let/, denotes the initial cylinder point
set and S, denotes the banana point set. Since the simulation should be independent on
the spatial position of the cylinder, the local coordinate system of/, should be
considered. The PCA method is employed to estimate the three principle axes, which
are deemed as the local coordinate axes. In figure 4-20, the S, can be obtained by
displacing the points of/,in y axis direction following formula 4-15. The simulation

result is illustrated in figure 4-21.
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Figure 4-20: Banana-shape simulation method
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Figure 4-21: Banana-shape simulation result
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4.3.3 Skin Model Simulation considering both systematic

and random deviations

An actual geometric feature can be decomposed into three portions, which
follows the shape of the feature as defined by its designed form; a spatially correlated
portion (when the systematic error exists, the measurements in close proximity on a
surface show strong correlation); and a spatially uncorrelated portion, i.e., the random
error portion [Xia 08]. As such, we model the form error as arising from systematic
errors and random errors added to an ideal geometric form, and there are two

examples illustrated in table 4-2.

Nominal model Systematic deviation Random deviation Skin model
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Table 4-2: Skin model with form errors

4.4. Statistical shape modeling

Statistical analysis of shape variation or Statistical shape modeling (SSM) is
commonly used for variability considerations in computer graphics, image processing
and bioinformatics domains [Cootes 01]. The basic idea of this method is to establish,
form a training set, the pattern of “legal” variation in the shapes and spatial
relationships of structures in a given class of shapes. Statistical analysis is used to
give an efficient parameterization of this variability, providing a compact
representation of shapes [Rhodri 08]. The key ideas underlying statistical shape
analysis were developed by Kendall [Kendall 77] Bookstein [Bookstein 78] and
Cootes [Cootes 01].
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4.4.1 Mean vector and covariance matrix

The computation of the mean vector and the covariance matrix is the common
solution to analyze the multivariate data. The mean vector is often referred to as the
centroid and the covariance matrix as the dispersion or matrix. The definition of mean

vector and the covariance matrix can be explained by the following formula 4-16

X=|: (4-16)
X

n

Where X is used to refer to random vectors, and X, i =(1,2,...N)is used refer

to random scalars. In formula 4-16, if the items in the column vector are random

variables, then the covariance D, ;18 the difference whose (i, j) item is the covariance as

formula 4-17

>, =cov(X,, X,)=E[(X, - X:)(X, - X )] (4-17)

Where X is the mean vector and X = Z X,/N . By definition, the covariance is
i=1

symmetric with2, ; =2>.,.. The covariance of any component X, with itself is that

component’s variance as formula 4-18

Y. =cov(X,,X,)=E[(X, - X)] (4-18)

To summarize all the covariance of the vector X, the covariance matrix can be

obtained as formula 4-19

Zl,l zl,z Zl,n
Y= Zf’l 212 o (4-19)
2 D Y

If Zi’j > (), it means that the two variables vary together in the same direction

relative to their expected values, and otherwise X, ; > 0it means these two variables
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are have the different tends to the expected value. When ., . =0, it means that there

is no linear dependency between these two variables.

4.4.2 Principle of Statistical shape model method

To establish a statistical shape model, four steps are needed [Stegmann 02] [Liu
08a] [Durrleman 09]:

(a) Acquiring a training set of observation shapes;

(b) Determining the correspondence among the observation shapes, in order to

establish the relationship of the training set;

(¢) Aligning the training set through registration operations;

(d) Analyzing the principal components and establishing the statistical shape
model.

(1). Acquiring a training set

Statistical shape modeling is well developed in image processing and anatomical
analysis [Fleute 99]. In our case, a training set of 3D statistical shape model is built
from the point set of geometric shape model, which aligned to the Cartesian
coordinate system. A mathematical representation of an n-point shape model in a

spatial space is described as formula 4-20

X =X, X, 500X, s Vys VoreoVy s Zys ZgrenZy | (4-20)

Where, X is the n-point shape model referred also as Point Distribution Model

or PDM [Cootes 92] and(x;,y,,z,)" is the coordinates of the shape model in spatial

space. In practice the number n of points is fixed to a value which permits sufficient

details of the shape.
The requirements for the training set for our skin models are as follow.

(a) The samples show strong similarities and encapsulate enough variability

informations;

(b) The size of the sample should be choosen to avoid large data for time

processing and small data for the reliability of the results;

140



Chapter 4: Statistical Shape Analysis for Skin Model

(c) The observed shape models can be provided from the different activities and
phases of the product life cycle, such as engineering simulation, manufacturing and

inspection, etc.

(2). Determining the correspondence

Since a training set contains a number of samples, establishing the relationship
among them is a critical problem. There are many efforts that have been done to solve
this problem. According to the study of Niu [Niu 07], these solutions are roughly
separated into two categories, landmark-based method and landmark-free method. A
landmark as defined in [Stegmann 02] is a point of correspondence on each object that
matches between and within populations. Dryden and Mardia [Dryden 98]

discriminates landmarks in to three subgroups:

(a) Anatomical landmarks: points assigned by an expert that corresponds

between organisms in some biologically meaningful way.

(b) Mathematical landmarks: points located on an object according to some

mathematical or geometrical property, i.e. high curvature or an extremum point.

(¢) Pseudo-landmarks: constructed points on an object either on the outline or

between landmarks.

In general, there are some principles that should be followed to determine the
landmarks. Firstly, the points that contain the important geometrical or mechanical
information should be demarked. Secondly, the number of landmarks should be
proper. If the density of landmarks is too small the model can not reflect enough
geometrical information, and in contrary, the calculation process will be time
consuming. At last, the landmarks in a training set should have the corresponding
relationship, which means that the related landmarks can present the same geometrical

character of a shape.

(3). Alignment

Considering that the models in the training set are different from each other by
scale, position and rotational effects, an alignment operation is necessary to make the
shape prior independent of translation, rotation and. In our case, we suppose that the
scale effects are non-significant and we will focus mainly on rotation and translation

effects.
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Since the shape model is represented by point set, registration techniques as
described in chapter 2 can be employed here. First, using PCA method we estimate
the principal components and the centroid position of the point set, the local

coordinate system of each sample can be determined (Figure 4-22).

Figure 4-22: Principal axis estimation by PCA method

Secondly, we use coordinates transformation techniques to align the point sets.
Figure 4-23 illustrates the principle of coordinate system transformation calculation.
C,(0,,%,,,,2,) denotes the global coordinate system; and C (o,,%,,¥,,Z,) »
C(o,,%,,¥,,2,)and C (o,,X,,¥,,z, ) represent the local coordinate systems that
locate the training samples. The transformation translates all the local coordinate
systems to the global coordinate system to obtain the consistent reference systems.

The details of the transformation technique are explained in section 3.4.5.

= ® Dy

Ny

S

Figure 4-23: Coordinate system transformation

An example of transformation technique explained above is illustrated in figure
4-24. In figure 4-24(a) and (b) are two models located in their local coordinate

systems, and figure 4-24(c) is the transformation result in global coordinate system.
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(a) (b) (c)
Figure 4-24: Alignment based on principal poses [Zhao 10]

Since the samples are in the same reference system, the common alignment
solution is to find out the nearest point pairs between two point sets. In image
processing domain, the Procrustes Analysis method [Gerber 09] is used. The
procrustes distance is a least squares type shape metric that require two aligned shapes
with one-to-one point correspondence [Gerber 09] [Stegmann 02]. In discrete
geometry domain, the ICP (Iterative Closest Point) algorithm is popular [Zhao 10].
ICP is an algorithm for searching the corresponding point pairs between two discrete
shapes. Many efforts have been attempted to improve the ICP method, and we adopt
here CFR (Curvature based Fine Registration) [Zhao 10] method, which combines the

Euclidean distance and the principal curvature ratio distance.

Let p,and g, are two arbitrary points in different samples of a training set, and let
d, denotes the geometric distance between points p,and g, . The geometric distance is

defined as formula 4-21
d,(p.q)=A-d,+(1-2)-k-d, (4-21)
Where, d, is the Euclidean distance, d_ is the curvature ratio distance,

A €[0,1]1s a user predefined coefficient to balance the contributions ofd, andd, .

Given a point p, its corresponding point pairg, in then point sampleSis the
point that has the closest geometric distance to p , and it can be calculated as formula
4-22

d.(p,S)=d,(p.q,) = min d (p.q;) (4-22)

ie{l,2..,n

We construct the corresponding point pairs for all the samples, and then we can

calculate the mean model for the training set and establish its statistical model.
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(4).  Statistical shape model

The principle of statistical shape model method is that based on statistical
analysis, we extract the common characteristics of a training set, which is composed
by different geometrical shape models, and establish the statistical model for the

samples.

The mean model concept is proposed in the statistical shape model domain.
Suppose we have a collection of n discrete shapes (skin model): X, X,,..., X, and for
each skin model the X, is a d dimension vector, whered is equal to the number of
points composed a skin model. Since the skin model is calculated in the vector space,
one may compute directly the empirical mean model using the method presented in

[Durrleman 09], as in formula 4-23

X = lZX,. (4-23)

The covariance of this collection of skin models can be calculated through
formula 4-24

1L - =7
X =—2 (X, - X)X, - X) (4-24)
1z
The covariance matrix >, is a dxd dimension vector, and then the
eigenvalue (4,,4,,...,4, ,) and eigenvector (@,,®,,...,®, ;) of covariance matrix
2., can be calculated. The principle components can be reflected by the eigenvector
of covariance matrix2., . LetlW =[a,,®,,...,®, ], then we can get>. , W = WA , and

A, s the diagonal matrix which can be described as formula 4-25

Av=| (4-25)

The eigenvalues reflect the variance of the principal components. When the
principal component has the bigger eigenvalue, it means that this principal component
reserve much more information of the initial sample. In our method, we select the
principal components having bigger eigenvalues to simulate the initial sample vector

using the first ¢ (¢ < d) maximal eigenvalues that fulfill the formula 4-26
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2

d-1
%/2%35
k=0 k=0

(4-26)
LetW, =|w,,®,,...,o,,], and each vector of the sample data can be described by

the formula 4-27

X~X+Wbh (4-27)

Where X is the mean; the ¢ dimension vector b, is the shape coefficient that

controls the models of variation.

The main function of statistical shape model is to determine the mean model

among numerous sampling shape models and to predict new shape model belonging

to the same shape family. Since X and W _are invariants in a training set, the various
shape models are obtained and determined by b . Under Gaussian distribution

assumptions as in [Hufnagel 09] [Ma 10], the variation range of each component of

b, =432 (i=0,1,...,t-1).

4.4.3 Application

The skin model as a specification surface model can be imagined by different
designers using different approaches. Considering a specific specification requirement,
different skin models can be obtained determining a common representative class of
skin models and generating new models which has the same characteristics as initial

samples is a critical problem toward a representative “mean” skin model.

We propose here to use technique statistical shape analysis and modeling for skin
model representation. Here we consider a discrete plane tessellated from a CAD
model for test. The tessellated plane is composed of 80 points, and we use this point
set to generate the training set. The training set is made of nine samples, which is
generated by the three skin model simulation methods introduced in chapter3. Each

sample of the skin model is illustrated in table 4-3.
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- 'H')_jG?u;SS; - Multi-Gauss J—
o - o
(g (h) 0

Table 4-3: Training set

In table 4-3, each sample is composed of 80 points, which are deemed as the
landmarks in our method. The distribution of landmarks is described as follows:

(a) 32 type pseudo-landmarks: 1, 2,..., 32.
(b) 48 type mathematical landmarks: 33, 34,...,80.

The 32 pseudo-landmarks are placed at the boundary of the plane. The 48
mathematical landmarks are placed inside the plane (figure 4-25).

1 2 3 4 5 6 Z L 9 10
r - ] S S I E— ‘
33 34 35 36 37 38 39 40 . 11
32 m [ - = == — = — =
48 47 46 45 44 43 42 41
31 L] LB - - " = L] — = L] 12
0. 0 s @2 B 5 36 s
2 - 64 63 62 61 60 59 38 7 a7

5 66 67 68 69 70 71 72

&0 79 78 7176 T5 T4 T3

- & = e e s 417

26 25 24 23 22 21 20 19 18
Figure 4-25: Landmarks description
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To find out the mean shape, we create the point distribution model of each shape
using the coordinates of the landmarks. Then we align the nine samples based on the
eighty landmarks. The samples are imported in our software platform, and then the

PCA method is employed to calculate the local coordinate system for each sample.

We transform all the samples represented in their local system to the global
coordinate system, and then an initial registration of the samples is obtained. The CFP
registration algorithm [Zhang 04b] is used to refine the initial registration result, and
the correspondence of each point of a sample is determined. The scatter of the training
set in the global coordinate system is illustrated in figure 4-26.

I | ] ] ] ] u L
. " = - i " _' l. = gm A .lll " o
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Figure 4-26: Scatter of the nine samples

Based on the aligned samples, the formula 4-23 is used to calculate the mean
model of the training set. This result reflects the average distribution of the models
(see figure 4-27).

Figure 4-27: Mean model
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The deviation between the mean model and the samples can be calculated by the
covariance (see formula 4-24), which reflect the influence of each element. Based on
formula 4-25, the statistical shape models are then characterized. The models

displayed in figure 4-28 are obtained for different values of b_.

@b, =334 (b)b, =0 ©)b, =+3J4
Figure 4-28: Predicting models

4.5 Conclusion

This chapter presents the skin model simulation methods considering the

systematic errors and the skin model analysis method based on statistic shape models.

The first part of this chapter discussed the developed methods for skin model
simulation considering the systematic errors. A group of second order shape models
are implemented as the constraints of adding systematic errors on skin models. Six
basic shapes in this group are generalized to simulate the shapes with systematic
errors: Taper, spherical, cylindrical, hyperboloid, ellipsoid, banana-based shape. These
six shape types cover the general shapes induced by systematic errors. The proposed

methods provide the reasonable simulation results.

The complete skin models including both random errors and systematic errors
can be simulated based on the developed methods in this chapter and the previous one.
A new method based on Statistic Shape Models is then developed for skin model
analysis. With a set of training skin models acquired from different sources, the
method first aligns them together first. The statistic shape model including mean
model and covariance are computed. The statistic shape model predicts the trend of

the skin models, which can be used to evaluate the real shapes.
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5.1. Introduction

The aim of this chapter is to further illustrate the methods described in previous

chapters by presenting a detailed case study of a cross-shaped workpiece.

A software framework has been developed as the testing platform for the
developed methods of discrete geometry processing (normal estimation, random and
systematic errors simulation, mean model evaluation and statistical shape model

prediction) described above.

Based on the CAD model and the measurement data, the form errors of the
workpiece are simulated by our software framework. Since our software framework is
an open system, the mean model and statistical models are also evaluated based on the

training set of shape models simulated by other simulation methods.
This chapter is organized as follow:

In section 5.2, we describe the platform and the development tools of our
software. Section 5.3 presents a case study including skin model simulation and

statistical shape modeling. Section 5.4 is the conclusion of this chapter.

5.2. Platform overview

5.2.1 Development tools

Our software system is developed using C++ language based on Microsoft Visual
Studio C++ 2005 platform. The Computational Geometry Algorithms Library (CGAL)
is employed to construct the polyhydric data structure of the discrete point data. For
the visualization of the shape model, Advanced Graphics Programming Techniques
Using OpenGL is adopted here. The details of the development tools are briefly

discussed below.

(1). Microsoft Visual Studio

Microsoft Visual Studios [Visual 11] an integrated development environment
mainly used to develop console and graphical user interface applications. Visual
Studio supports different programming languages, such as Visual C++, Visual

Basic.NET, and Visual C#, etc., by language services that allow the code editor and
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debugger in the same platform.

Microsoft Visual C++ is a compiler for integration with the Visual Studio IDE,
and it supports the C++/CLI specification to write managed code and mixed mode
code. It also supports COM (Component Object Model) and MFC (Microsoft

Foundation Class) libraries to design Graphical User Interfaces.

Microsoft Visual C++ is adopted in our work to design the user interface based

on MFC frameworks and to integrate our developed algorithms.

(2). Computational Geometry Algorithms Library

Computational Geometry Algorithms Library (CGAL) [Cgal 11] is an open
source project used to provide efficient and reliable geometric algorithms for
computer graphics, computer aided design and modeling, mesh generation, numerical

methods, etc.

The CGAL also provides the data structures and algorithms on discrete
geometric objects like points and meshes. These data structures include Voronoi

diagrams, polygons, polyhedra, mesh generation, geometry processing, etc.

The functions of CGAL employed in our work mainly focus on the geometric
algorithms and the polyhedra data structure. The 3D polyhedral surfaces are
composed of vertices, edges, facets and incidence relationships on them. The
representation of polyhedra surface is a halfedge data structure, which restricts the
class of representable surfaces to orientable 2-manifolds with boundaries. The details

of the halfedge data structure are introduced in section 3.2.3.
(3). Open Graphics Library

The Open Graphics Library called also OpenGL [OpenGL 11] developed by
Silicon Graphics Inc., is a developing environment, which provides thousands of
interfaces for 2D and 3D computer graphics applications, and it is widely used in

CAD, virtual reality, scientific visualization, etc.

The well-specified OpenGL standard has language bindings for C, C++, Java, etc.
Considering the high visual quality and performance of OpenGL to support CAD

visual display, OpenGL is adopted in our work for the graphics processing.
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5.2.2 Main interface

Figure 5-1 shows a screen shot of the main user interface, and the most important

interaction tools are annotated:
Point tool allows the user to show/hide the vertices of the discrete model.
Mesh tool allows the user to show/hide the polygon mesh of the discrete model.
Facet tool allows to user to show/hide the facet rendering of the discrete model.

1D-Gaussian tool is used to generate skin models with the random deviations of

1D-Gaussian distribution.

3D-Gaussian tool is used to generate skin models with the random deviations of

multi-Gaussian distribution.

Gibbs tool is used to generate skin models with the random deviations of

MCMC Gibbs sampling.
Form tool is used to simulate the form specification of a planar model.

Orientation tool is used to simulate the orientation specification of a planar

model.
Position tool is used to simulate the position specification of a planar model.

Systematic error-plane tool is used to simulate the systematic deviations of a
planar model and the basic systematic shapes including: parabola, cone, sphere,

cylinder and transformation.

Systematic error-cylinder tool is used to simulate the systematic deviations of a
cylindrical model and the basic systematic shapes including: taper, convex, concave

and banana.

Form error tool is used to simulate the form error of discrete models, which

integrate both random deviations and systematic deviations.

Mean model tool is used to calculate the mean model form a training set, which

composed by numerous skin models.

Statistical model tool is use to predict new models from a training set, and the

new models inherit the primary properties of the training set.
Status bar at the bottom of the screen is used to show the time consuming of a
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specific process and the information of input discrete model, such the number of

vertices, the number of edges and the number of facets.
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Figure 5-1: The main interface of the software
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5.2.3 Menu specification

The menu specifications displayed in figure 5-2 describe detailed functions of

our developed system.

(a) Model. The “Model” menu is used to reflect the basic two kinds of
information of the input tessellated shapes. One is the mode of display such as point
mode, mesh mode and facet mode, and the other one is the normal information, which
includes different vertex normal estimation methods and facet normal estimation

method.

(b) Random. The “Random” menu is used to simulate the skin models with
random errors especially Gaussian distribution deviations. In this menu there are three

options: 1D-Gaussian method, Multi-Gaussian method and Gibbs method.

(¢) Systematic. The “Systematic” menu is used to simulate the skin model with

the systematic deviations.

153



Chapter 5: A Case Study

The “Curvature” option is used to estimate the surface curvature including

Gaussian curvature and mean curvature.

The “Systematic Plan” option is used to simulate the systematic deviations of

planar shapes, and the basic shapes that can be simulated.

The “Systematic Cylinder” option is used to simulate the systematic errors of

cylindrical shapes, and the basic shapes that can be simulated.

The “Form error” option is used to simulate the skin models with both random

deviations and systematic deviations.

(d) SSA. The “SSA” command is used to evaluate the information of statistical

shape models, which are skin models in our case.

The “Mean model” option is used to estimate the mean model of a training set of

skin models.

The “SSM” is the abbreviation of the statistical shape model, and this option is

used to predict new models of the training set of skin models.
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Figure 5-2: Menu specifications of the software

154



Chapter 5: A Case Study

5.3. Application

5.3.1 Skin model simulation

The case study is based on a sheet metal part manufactured in a one-stage sheet
metal forming process [Stockinger 10a]. The process of sheet metal forming is
selected here because of the existing simulation tools dealing with accurate material
models and taking multistage process steps into account (gravity, stamping,

springback, etc.) [Stockinger 09].

The manufacturing process is simulated using stochastic FE techniques. For the
discretisation of the blank, shell elements are used. The tooling is modeled as rigid
parts and a process macro is used to define the process including stamping velocity,
blank holder force and friction. An initial model of the stamping process serves as a
basis for the variation of process parameters. The selected variables (described in
figure 5.3) are computed using Latin Hypercube Sampling under the assumption of
the independence of the variables and normal distributions [Stockinger 10b]. Ten

samples are considered in this work.

Measured data are also available. For the purpose of this case study, 29
manufactured cross-shaped parts where measured using ATOS I fringe projection

system.

Figure 5-3 is the CAD model of the cross-shaped part, and its geometric
specification is described in Appendix 1. In our work, we only focus on the skin

model simulation of the bottom plane with the flatness specification constraint.

-
-

Material DX56

Blank thickness $9=0,70 mm

Drawing depth Zg = 53 mm

Punch radius rgt=5mm
Die Radius v =5mm
Flange width br =22 mm

.

PKC M1
PKC M2 53,7+0,4
53,0+0,4

Figure 5- 3: The cross-shaped part [Stockinger 10a]
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Based on the CAD model (see figure 5-4), the bottom plane can be extracted

bottom plane, the tessellation operation is implemented using CATIA V5 software.
Figure 5-6 illustrates the tessellation result composed of 2392 points and 4550 facets.

using CATIA V5 GSD utilities as illustrated in figure 5-5. In order to discretize the

Figure 5-5: Bottom plane extraction

Figure 5-4: Segmentation of CAD model

6: Tessellation of the bottom plane

Figure 5

Based on the tessellated CAD model and the geometrical specification of flatness,

we can generate different skin models using the methods discussed in section 3.3.
Figure 5-7 illustrates three skin models of the bottom plane with a tolerance of

flatness equals to 0.3mm.
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Figure 5-7: Skin models of bottom plane with flatness constraint

On the other hand based on the information from measurement data, we can
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improve the skin model considering both systematic and random errors. Figure 5-8
shows the measured point set of the bottom plane of the cross-shaped part .The

analysis of this point set is illustrated in figure 5-9 and Appendix 2.
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Figure 5-8: Measured point set of cross shaped part

After filtration operation, the measured point number is equal to7845, and the
point set is associated to different shapes respectively, as a least-square plane, a
least-square ellipsoid, a least-square cone, a least-square cylinder and a least-square
sphere. The detail performances of each association result are illustrated in table 5-1.
In table 5-?, the standard deviation of the point set to the associated ellipsoid and the
associated cylinder has the smallest value that equal to 0.072 mm. Considering the
limited deviation from point set to the associated plane is smaller than the cylinder

shape, so we simulate the systematic errors using ellipsoid shape here.

Items Standard Maximum Minimum Mean
deviation deviation deviation deviation

Shapes

Plane 0.081 0.271 -0.195 0
Ellipsoid 0.072 0.243 -0.162 0
Cone 0.138 0.531 -0.193 0
Cylinder 0.072 0.254 -0.175 0
Sphere 0.120 0.507 -0.135 0

Table 5-1: Performances of each systematic error simulation
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Deviation Analysis. 1

7845 Pointsz (100, 00%)
Poz Max Dew = 0. 271mm
Nez Nax Dew = —0.195mm
Mean Dew = 1. 21e—008mm
Std Dew = 0, 080Tmm
Foz Mean Dew = Q.073mm

Neg Mean Dew = -0, 0846mm
L)
0, 271mm
I 15. 65%
0, OE5mm
0, D4EEmm
15, 55%
100, Q0% Omm
17. 68%
-0, 04Tmm
-0, 036
I 17.687%
=0, 195mm

Figure 5-9: Analysis of measured point data of cross shaped part

Based on the nominal discrete bottom plane model (as figure 5-6), the skin
model with ellipsoid systematic deviations are simulated as in figure 5-10. To
visualize the deviations clearly, the skin model with color scale representation is
illustrated in figure 5-11, and the limited deviations are reflected by red and blue

color.

Max=0.15

Min=-0.15

Figure 5-10: Skin model with systematic Figure 5-11: visualization of systematic
deviations deviations

To verify that the skin model obtained from the simulation of ellipsoid

systematic errors, the deviation analysis is adopted (see figure 5-12). We associate the
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point set as a planar shape, and the analysis result is as follow. The point number is
equal to 2392, and the limit values of the deviation are equal to 0.258 and -0.119 as
respectively. The mean deviation is equal to -9.6e-005mm, and the standard deviation
is equal to 0.0904mm. Comparing the deviation between the skin model and the

measured point set (see figure 5-9), the random errors are absent.

Deviation Analvsi=z. 1

2392 Pointsz (100, 00%)
Poz Max Dew = 0. 25Emm
Meg Max Dewv = -0, 119mm
Mean Dev = —9, Ge—005mm
Std Dew = 0. 0904mm
Poz Mean Dev = O.0900mm
HNeg Mean Dev = —0.0515mm

L)
0. 258mn
I 13. 46%
0. 117mm

. 04 5mm
I 13. 46%
100, 00% Omm

~0. 0425mn
0. 0822nm
I 19. 82%
0. 119mn
Lo

Figure 5-12: Analysis of skin model with systematic errors

The random errors are added to the skin model with ellipsoid systematic errors.
The Gibbs method is adopted to simulate the random errors following the Gaussian
distribution. The skin model with both systematic errors (ellipsoid) and random errors
(Gaussian distribution) is illustrated as figure 5-13. Figure 5-14 is the color scale
representation of the skin model, and the color changed is continuous from red to blue
but with some noise. This illuminate that the deviations follow the ellipsoid shape

variety, but it also with random noises.
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Max=0.15

Min=-0.15

Figure 5-13: Skin model with both Figure 5-14: Color scale of skin model with both
systematic and random errors systematic and random errors

To compare the simulated model and the measured point set, the analysis of the
skin model is illustrated in figure 5-15. As the process of measured point set, we
associate the skin model as a planar shape, and take the deviations into account. The
point number is equal to 2392, and the limit values of the deviations are equal to
0.282mm and -0.153mm. The mean deviation is equal to -0.001mm and the standard

deviation is equal to 0.092mm.

Dewviation Analy=i=.l

2392 Points (100, 00%)
Poz Max Dew = 0. 25Zmm
WNeg Max Dew = —0.155mm
Mean Dev = -0, 001mm
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Figure 5-15: Analysis of skin model with both systematic and random errors

Based on the compare between the simulated skin model and the measured
model, the limited deviation values are both within the geometric specification value,

which is the flatness constraints value equal to 0.3mm. The difference of standard
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deviations is equal to 0.0016, and this reflects these two models have quite similar

distributions. The simulation methods of our method are satisfied in this study case.

5.3.2 Statistical shape modeling

(1) Mean model

The training set considered here is composed of ten cross-shaped models
obtained using stochastic FEA thanks to Lehrstuhl fiir Konstruktionstechnik -
Friedrich-Alexander Universitdt Erlangen-Niirnberg [Stockinger 11] (Figure 5-16 and
Appendix 3).

Figure 5-16: Training Set

To establish the relationship among ten simulated models of the training set, we
adopt landmark technique to obtain the correspondences. Considering the models are
planar shapes without high curvature variation, the mathematical landmark technique

is not suitable here. The pseudo-landmark technique is then adopted in our method.

For convenience, we use a matrix arrangement technique instead of integers to

tag the landmarks as illustrated in figure 5-17. Each landmark corresponds to a unit

grid, marked here as (7, j) which represents also a kind of pixel coordinates. Instead of using

all the points, the landmark (i, j) refers to the mean point p of all the points inside

the corresponding grid.

161



@)

16 17 18 19 20

10 11 12 13 14 15

Chapter 5: A Case Study
9

8

7

= VD T o
£ E g 8 8
en < = =
S @ 8 =
A S 2 v <
X o - qb 7]
S 4 o O 9
N 5 > = g
_ s © 8 o & .
= = G M
! _ -~ 2 - = °
ol o € £ o g = -
WP 5 25 » .
n o g mg .f m m b 7] m 4 .
““1.—._‘ m hw < = o _.w ._.__._......_ﬂ... e
B RS S 2 23 2 i .ﬁun;i 4
7 - S EE & o oot 14
! D_ BRAge " . ] < o — = .J-.!J. J__._......ﬁ.
+ 271 § § =€ % < N R K R
, F e e e Tt m m m m ) w ‘—. ..%._. LR O -
SRR BL AL > 23 25 8 4 T n s
R R R LR =} ) < ] : =
v A T R [ O e [ e m i M [w] A b7 e .4.1“..... .._h..‘L
"~ L R e T g L] =) - o = © 3 i I i o W
‘."ﬁ..‘.l-,ar..lli._\-h-l-lnilﬁ-"'- 2] < % m 1% — L ., o _.hck.a t..-ﬁt&_\ﬂ- L
A i dads § W A N Ey E W Ee Ay -H- ﬁ ) 20 < m O.Mu. - — ._‘-.4‘. .h._lf 1.. ™
v v L oS . 5 = -
YhlPileldy ....._-_I.__&.._._.._-_._....._._._.ﬂ.._.u ..m s g JIS.V = 7 _.__.uln...._tn -Fkrhﬂ
e T T L - = < < g8 - 8 v -t -.-L.I...L Y ._-..._r.L_. .ﬂ l.lq...ﬁun._..
| bl aem . . < O 5 O 8 O © sl
“1 WV o8 Bl -._r L Mub 5 & = ”%o 5 uﬂ.uh... - Lhiﬂhdﬁuﬁhhﬂh&’dhht
A iy T . = g 2 = g B 3 . ..4..9... -k ._-.\.\ﬂ L
b Ty fetafat. L2 EE g @& 9o k.h..b-nl.k....k.i\a.c—\n
- - f._.-_ | o .m n.m S = 4 = .-I.
oy = = = S 5]
[ "L L =] - 7] = + ﬂ —
e 2o 3 8 g 2 &
w ol - = AW w5 @ n...m
. -
i 5 ES 235 o
17}
l._h.-_ L b m P 1) m .m
v [ = Q o =
s S 90 € g 9
o b c = o O £ 9
£ E =3 5 E 8
i . Q
e el = 2% 2 g
F N TN OS a2 EXaa D L — mo ﬂ o o
1 .=
o v 5 3 § £
< (D] - [e) = ©
H 2 = 35 = <
=] wn ..m — 5}
o < o o .=
=z 8 & 2 £
= 0 o o] W

Figure 5-18: Alignment of the training set
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After aligning the ten simulation models, the mean model is then computed. The
points of the mean model are the centroids of its neighborhood points. In figure 5-19,
the training set is reflected by black points and the mean model is displayed by red

points (figure 5-19).
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Figure 5-19: The mean model of the training set

To analyze the deviations of the mean model, we associate the point set to a
least-square plane. The mean model is composed of 273 points, the maximum
deviation to the least-square plane is equal to 0.191mm and the minimum deviation is
equal to -0.186mm. The standard deviation of the mean model is 0.103mm. The

details of the deviation analysis are illustrated in figure 5-20.

...... Deviation Analysi=.l
242 Points (100, 00%)
Foz Max Dev = 0.193mm
00 o000 H0 0 Neg Max Dev = —0. 17Tmm
" Mean Dew = —0,00073dmm
5td Dew = 0. 103mm
Foz Mean Dev = O.0915mm

. Heg Mean Dev = -0.0801nm
- s+ = om ®" o= omomomm S
e eee e . 0, 195mm
e i e e aams .- .- I 16. 53%
. : 0. 108mm
0. 0795mm
) I 16. 12%
oo 80 oE 0o 100, (0% Cimm
- -0. 0618
. . -0. 128mm
. : I 16, 53%
-0, 177mm

Figure 5-20: Analysis of the mean model
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The training set considered here is anther ten cross-shaped skin models, which
are obtained using the method introduced in section 5.3.1. The ten samples are

illustrated in figure 5-21 and Appendix 4.

® (2 (h) (1) 0
Figure 5-21: Training Set of skin models

Following the same processing procedure of mean model simulation approach,
the mean model can obtained. To analyze the deviations of the mean model, we
associate the point set to a least-square plane. The mean model is composed of 242
points, the maximum deviation to the least-square plane is equal to 0.239 mm and the
minimum deviation is equal to -0.133mm. The standard deviation of the mean model

is 0.0917 mm. The details of the deviation analysis are illustrated in figure 5-22.

Deviation Analwvsisz. 1l

242 Points (100. 00%)
Posz Max Dev = 0. 25359mm
Neg Max Dev = -0, 133mm
Mean Dev = —1.4e-005mm

Std Dev = 0, 091Tmm
Poz Mean Dev = 0.095Tmm
Heg Mean Dev = —0.0808mm

yun)
0. 239mm
I 12.81%
0. 108nm
0. 0442nm
100. 00% Omm
0. 0437
—-0.0795
I 19. 83%
0. 133mm

Figure 5-22: Analysis of the mean model
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Based on the analysis results of two mean models that simulated by our method
(introduced in section 5.3.1) and FEA method, the deviations compared to the

measurement data are compared as table 5-2.

Items Standard Maximum Minimum Mean
deviation deviation deviation deviation
Data
Measured data 0.0807 0.271 -0.195 1.21e-006
Our method 0.0917 0.239 -0.133 1.4e-005
FEA method 0.103 0.193 -0.177 -0.000794

Table 5-2: Comparison of two kinds of mean models

According to table 5-2, our method provides a smaller standard deviation and
mean deviation mean model than the one simulated by FEA method. It can be

deduced that our method fit the form errors better than the FEA method in this case.

(2). Statistical shape model

Based on the PCA technique, the deviation between the mean model and each
model of the training set can be calculated by the covariance matrix and then the
influence of each component can be detected. According to the two mean models
simulated above and the statistical shape analysis method introduced in the previous

chapter, new models can be predicted (see figure 5-23).

Figure 5-23: The predicted models

Figure 5-23 shows the first three modes of the principal component analysis. The
modes of the model are sorted in decreasing magnitude of their corresponding
eigenvalues. In the first line, the mode corresponding to the largest eigenvalue 4, is
varied between —2@ and+2\/z , in the second column the same is done for the

second model and so on. The result show the large variability included in the
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cross-shaped model. The full details of the predicted models are shown in figure 5-24.
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Figure 5-24: Analysis of the predicted models

The statistical shape models predicted above are based on the training set of
samples simulated by our method (introduced in section 5.3.1) and FEA method.

Hence they have a combined distribution performance of these two kinds of samples.

166



Chapter 5: A Case Study

5.4. Conclusion

This chapter presents a detailed case study of a cross-shaped sheet metal
workpiece. An open modular framework software has been developed to test and

support the methods and algorithms developed in this thesis.

The detailed processing results of the studied case are presented here. The main
results concern the simulation of skin model that includes both systematic and random
deviations. A new systematic errors simulation method based on shape decomposition

technique is presented.

Based on the measurement data, a comparison between the two kinds of
simulated skin models (by our method and FEA method) is presented, and our method

is proved has a better approximative simulation result experimentally.

Based on the training set of simulated models using stochastic FEA, we create a
mean model and derive the main characteristics of the training set. We have described
a method for building 3D statistical shape models for mechanical models considering
the training set composed by the samples simulated using different method. Based on
the principle components analysis of the predicted models, the large variability

included in the tested models is discussed.
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A coherent and complete tolerancing process is necessary in mechanical
applications to manage geometrical variations along the product lifecycle.
GeoSpelling is proven to be an appropriated model for this purpose, which is
standardized as ISO 17450. This thesis presents several significant contributions to
achieve GeoSpelling for geometrical product specification from two aspects: discrete
geometry based framework for geometrical operations in GeoSpelling and skin model

simulation.

A set of methods based on discrete geometry processing techniques are
associated to provide solutions for the six geometrical operations defined in
GeoSpelling: partition, extraction, filtration, association, collection and construction.
This discrete or computational geometry based methods solve the operationalization

of GeoSpelling in a convenient and executable way.

Skin model is one of the foundation and kernel concepts of GeoSpelling. The
simulation of the skin model is based on the nominal model of the shape, on random
deviations and systematic deviations. Considering the point-based data are widely
used in applications, the discrete skin model representations are applied in our

research. Different discrete shape modeling methods are developed for skin model.

Three different methods are developed to generate the skin models by adding
random deviations to the discrete nominal model: 1-D Gaussian-based method,
multi-Gaussian-based method and Gibbs based method. Firstly, the nominal shape is
tessellated as discrete representations (point-based and/or mesh-based) from CAD
model. The normal direction at each point on nominal shape is then estimated. Finally,
1-D Gaussian method adds the random deviation along a given point’s normal
direction based on 1 dimensional Gaussian possibility distribution; Multi-Gaussian
method considers the random deviations in three dimensional space; while Gibbs
method calculates the new position of the given point by Markov Chain Monte Carlo
simulation. During the skin model simulation, the specified tolerances are used as

constrains to locate the simulated skin models within the specified tolerance zone.

Systematic errors are reproducible inaccuracies that are consistently in the same
directions. Considering systematic errors usually follow some specified functions
which can be traced and simulated, a group of predefined second order shapes are
implemented as the constraints to simulate the systematic deviations. The shape group

contains six basic shapes which are proven as the most likely shape the systematic
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error can follow. A set of methods are developed to adding systematic deviations

based on the predefined shape group and the testing shows the reasonable results.

Based on the complete skin model which includes random deviations and
systematic deviations, a new method based on Statistic Shape Models is developed for
skin model analysis and trend prediction. Firstly, a set of training skin models
acquired from different sources. The corresponding landmarks are then searched and
all the skin models are aligned together. The statistic shape model of the set of
training skin models including mean model and covariance are computed. The
statistic shape model provides a prediction to the trend of the skin models, which can

be used to evaluate the real shapes.

A modular software framework is developed to test and support the methods and
algorithms developed in this thesis. The software framework is developed based on MS
VC 8.0 platform, and it is also supported by OpenGL and GCAL libraries [CGAL].

A detailed case study of a cross shaped workpiece was presented. The skin
models of the studied workpiece are simulated and generated by the developed
software framework. The results are compared to real measured data and the
simulated results of another FEA-based method. The comparative results provide that

the proposed methods can provide satisfying performance.
Contributions:

The main contributions of the dissertation to GeoSpelling for geometrical

product specification are listed as follows:

. A new framework for geometrical operationalization of GeoSpelling is
defined based on discrete geometry processing techniques. The corresponding
methods used in discrete geometry for geometry representation and processing
are associated to the feature (including ideal and non-ideal) representation and
geometrical operations in GeoSpelling. The developed framework provides new
convenient and executable solutions for feature representations and operations

in GeoSpelling.

. A survey of the common used methods for discrete normal estimation is
researched. In order to generate reliable estimation results, a comparative result

is analyzed to specify the suitable applications of each method.

. Three different methods (1-D Gaussian method, Multi Gaussian method
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and Gibbs method) are developed to simulate the skin models by adding the
random deviations. The three methods provide three different ways to add
random deviations. All the three methods use the specified tolerances as
constraints to determine the location and shape of the simulated skin model. The
developed methods provide new ways and solutions for skin model simulation

based on the discrete shape model techniques.

. New methods are developed to simulate the skin model considering
systematic errors. A group of parametric second order shapes are implemented
to simulate the shapes of systematic deviations. The shape elements in the group
can be added and/or deleted according to different applications. The developed
methods are convenient to implement and the testing results are proven

satisfying.

. Based on complete skin model that includes both random and systematic
errors, a new method based on statistic shape model is developed for skin model
analysis and prediction. The developed method requires a set of training skin
models from different sources as input. It can compute the statistic shape model
considering the mean model and covariance, which provides a trend prediction

of the new skin models.

. A software framework is developed to support the skin model simulation
methods presented in this thesis. The framework is modular and user-friendly. It

is easy to integrate new functions related with discrete geometry processing.
Future works:

The discrete geometry processing for improve GeoSpelling contains many other
topics, which have not been addressed in this thesis. Some promising works for the

future are presented as follow.
. Random errors simulation.

The random errors of skin models are simulated by Gaussian distribution, and
only three kinds of methods are considered in our work. It should be employing
other noise simulation methods to simulate the random errors, such as Perlin

noise, Poission noise, etc.

. Tolerance specification.
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The tolerance specifications only consider the flatness, parallelism and position

constraints, and it should be take into account other possible specifications.

The tolerance specifications only satisfy the planar and cylindrical shapes, and it

should be extant to other shape models.
d Systematic errors simulation.

The systematic errors simulation methods only adapt the planar and cylindrical
shape models, and it should be satisfy other kind of shape models. The
regulation of basic shapes combination to simulate complex systematic errors

should be considered.
. Edges connection of skin models.

The skin model simulation methods are based on the local surface of a
geometrical model. It should be considered how to connect each pieces of skin
model to an entire skin model, since there are distortions on the connected

edges.
J Statistical model.

To predict reliable shape models that can reflect the principal characteristics of a

training set, it should be investigate an efficient scope of the model coefticients.
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