I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, Wireless sensor networks: a survey, Computer Networks, vol.38, issue.4, pp.393-422, 2002.
DOI : 10.1016/S1389-1286(01)00302-4

D. Culler, D. Estrin, and M. Srivastava, Guest Editors' Introduction: Overview of Sensor Networks, Computer, vol.37, issue.8, pp.41-49, 2004.
DOI : 10.1109/MC.2004.93

M. Maroti, G. Simon, A. Ledeczi, and J. Sztipanovits, Shooter localization in urban terrain, Computer, vol.37, issue.8, pp.60-61, 2004.
DOI : 10.1109/MC.2004.104

K. K. Baldus and G. Müsch, Reliable Set-Up of Medical Body-Sensor Networks, 2004.
DOI : 10.1007/978-3-540-24606-0_24

D. Puccinelli and M. Haenggi, Wireless sensor networks: applications and challenges of ubiquitous sensing Circuits and Systems Magazine, pp.19-31, 2005.

K. Romer and F. Mattern, The design space of wireless sensor networks, IEEE Wireless Communications, vol.11, issue.6, pp.54-61, 2004.
DOI : 10.1109/MWC.2004.1368897

P. Wang, Z. Sun, M. C. Vuran, M. A. Al-rodhaan, A. M. Al-dhelaan et al., On network connectivity of wireless sensor networks for sandstorm monitoring, Computer Networks, vol.55, issue.5, pp.1150-1157, 2011.
DOI : 10.1016/j.comnet.2010.11.008

F. Michahelles, P. Matter, A. Schmidt, and B. Schiele, Applying wearable sensors to avalanche rescue, Computers & Graphics, vol.27, issue.6, pp.839-847, 2003.
DOI : 10.1016/j.cag.2003.08.008

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.94.3999

H. Alemdar, C. Ersoy, and R. Kappler, A real-world, simple wireless sensor network for monitoring electrical energy consumption [I-11] Schneider ElectricAvailable: http://www.schneider-electric.com/sites/corporate/fr/presse/dossiers/projet-homes.page [I-12] S. Fuller and L. Millett Computing performance: Game over or next level Batteries and ultracapacitors for electric, hybrid, and fuel cell vehicles Microbattery technology overview and associated multilayer encapsulation process, Wireless sensor networks for healthcare: A survey Proc. EWSN Proceedings of the IEEE, pp.2688-2710, 2004.

T. Starner, M. Last, B. Liebowitz, K. Pister, S. Roundy et al., Pervasive Computing Smart dust: communicating with a cubicmillimeter computer [I-17 A study of low level vibrations as a power source for wireless sensor nodes Energy scavenging for long-term deployable wireless sensor networks Conception de microgénérateurs intégrés pour sytèmes sur puce autonomes Solar photovoltaic electricity: Current status and future prospects, Powerful change part 1: batteries and possible alternatives for the mobile market special Section: Remote Sensing. [I-19] ITRS, Tech. Rep. [Online]. Available: www.itrs.net [I-20] M. Marzencki [I-21] T. Razykov, C. Ferekides, D. Morel, E. Stefanakos, H. Ullal, and H. Upadhyaya, pp.86-88, 2001.

J. Hagerty, F. Helmbrecht, W. Mccalpin, R. Zane, and Z. Popovic, Recycling ambient microwave energy with broad-band rectenna arrays Microwave Theory and Techniques, IEEE Transactions on, vol.52, issue.3, pp.1014-1024, 2004.

M. Mi, L. Mats, C. Capelli, and H. Swift, Powering autonomous cubic-millimeter devices [I-24] D.-T. Lal, Li Pathways to near-perpetual radioactive micro power sources [I-25] L. Carlioz Générateur piézoélectrique à déclenchement thermo-magnétique Energy scavenging with shoe-mounted piezoelectrics On low-frequency electric power generation with pzt ceramics, Proc. PowerMEMS, pp.11-21, 2001.

G. Poulin, Contribution au développement d'un générateur piézoélectrique pour applications nomades [I-29] C. Jean-Mistral Réxupération d'énergie mécanique par polymères électroactifs pour microsystèmes autonomes communicants, 2004.

M. Lossec, B. Multon, and H. B. Ahmed, Micro-kinetic generator: Modeling, energy conversion optimization and design considerations, Melecon 2010, 2010 15th IEEE Mediterranean Electrotechnical Conference, 2010.
DOI : 10.1109/MELCON.2010.5476259

URL : https://hal.archives-ouvertes.fr/hal-00495674

H. Raisigel, O. Cugat, and J. Delamare, Permanent magnet planar micro-generators [I-33] Humdinger wind energy Energy scavenging for wireless sensor nodes with a focus on vibration to electricity conversion, Sensors and Actuators A: Physical, pp.130-131, 2003.

J. O. Mur-miranda, M. , W. , and R. B. Yates, Vibration harvesting in railway tunnels Analysis of a micro-electric generator for microsystems A 1,9ghz rf transmit beacon using environmentally scavenged energy, Proc. of PowerMEMS Proc. of IEEE International Symposium on Low Power Electronic Devices Seoul Korea, pp.8-11, 1996.

. Basset, M. Galayko, . Paracha, . Marty, and B. Dudka, A batch-fabricated and electret-free silicon electrostatic vibration energy harvester, Journal of Micromechanics and Microengineering, vol.19, issue.11, p.115025, 2009.
DOI : 10.1088/0960-1317/19/11/115025

URL : https://hal.archives-ouvertes.fr/hal-00692939

S. Boisseau and D. , Cantilever-based electret energy harvesters, Proc. of PowerMEMS, 2010.
DOI : 10.1088/0964-1726/20/10/105013

URL : https://hal.archives-ouvertes.fr/hal-00992158

C. Saha, T. O. Donnell, N. Wang, P. Mccloskey, S. Moest et al., Electromagnetic generator for harvesting energy from human motion A micro electromagnetic generator for vibration energy harvesting Design, fabrication and test of integrated micro-scale vibration-based electromagnetic generator Electromagnetic energy harvester fabricated with electrodeposition process Nonlinear electric-mechanical behavior of a soft PZT-51 ferroelectric ceramic [II-2] G. Poulin Contribution au développement d'un générateur piézoélectrique pour applications nomades [II-3] Bechmann Elastic and piezoelectric constants of alpha-Quartz [II-4] A. I. Ltd, Tech. Rep Available: http://americanpiezo.com [II-5] Thickness dependence of the properties of highly c-axis textured AlN thin films [II-6] I. Kobiakov Elastic, piezoelectric and dielectric properties of zno and cds single crystals in a wide range of temperatures A pvdf sensor with printed electrodes for normal and shear stress measurements en sole Criterion for material selection in design of bulk piezoelectric energy harvesters Conception de microgénérateurs intégrés pour sytèmes sur puce autonomes Growth and properties of gradient free sol-gel lead zirconate titanate thin films Linear variation of aluminum nitride capacitance versus voltage induced by a piezoelectric-electrostrictive coupling UHF/VHF resonators using lamb waves co-integrated with bulk acoustic wave resonators Design, elaboration and characterization of coupled resonator filters for WCDMA applications Energy harvesting from human and machine motion for wireless electronic devices Analysis of a micro-electric generator for microsystems A batch-fabricated and electretfree silicon electrostatic vibration energy harvester Issues in mathematical modeling of piezoelectric energy harvesters Design considerations for mems-scale piezoelectric mechanical vibration energy harvesters Integrated Ferroelectrics A hybrid energy scavenging topology for humanpowered mobile electronics A novel thick-film piezoelectric microgenerator A piezoelectric vibration based generator for wireless electronics, Sensors and Actuators A: Physical Proc. of PowerMEMS Proc. of PowerMEMS XIX IMEKO World Congress Ultrasonics Symposium, 2005 IEEE Ultrasonics Symposium Proceedings of the IEEE Smart Materials and Structures 34th Annual Conference of IEEE Industrial ElectronicsII-20] N. M. White, P. Glynne-Jones, and Smart Materials and StructuresII-21] Roundy and Wright Smart Materials and Structures, pp.248-253, 1958.

I. Sodano, M. Jeong, J. Kim, H. Song, R. Kyung-lee et al., Two-layered piezoelectric bender device for micro-power generator Sensors and Actuators A: Physical Piezoelectric single crystal power generator for low frequency vibrating machines and structures Modeling, fabrication and performance measurements of a piezoelectric energy converter for power harvesting in autonomous microsystems Fabrication and performance of mems-based piezoelectric power generator for vibration energy harvesting A comparison between several vibration-powered piezoelectric generators for standalone systems Integrated power harvesting system including a mems generator and a power management circuit Fabrication, modelling and characterization of mems piezoelectric vibration harvesters Laser-machined piezoelectric cantilevers for mechanical energy harvesting, 18th IEEE International Symposium on the Applications of Ferroelectrics Proceedings of the IEEE Instrumentation and Measurement Technology Conference, IMTC 2005. Sensors and Actuators A: PhysicalII-28] M. Marzencki, Y. Ammar, and Micromachined pzt cantilever based on soi structure for low frequency vibration energy harvesting Sensors and Actuators A: PhysicalII-32] M. Zhu and E. Worthington, " Design and testing of piezoelectric energy harvesting devices for generation of higher electric power for wireless sensor networks IEEE Sensors, pp.49-58, 2004.

D. Koyama, K. Nakamura, B. Ren, S. W. Or, Y. Zhang et al., Applied Acoustics Piezoelectric energy harvesting using shear mode 0 Vibration energy harvesting using highly (001)-oriented Pb(Zr,Ti)O 3 thin film, [II-36 High efficiency energy harvester of transferred epitaxial PZT films on stainless steel sheets IEEE 23rd International Conference on Micro Electro Mechanical Systems (MEMS), pp.439-445, 2010.

S. Korla, R. Leon, I. Tansel, A. Yenilmez, A. Yapici et al., Design and testing of an efficient and compact piezoelectric energy harvester, Microelectronics Journal, vol.42, issue.2, pp.265-270, 2011.
DOI : 10.1016/j.mejo.2010.10.018

C. H. Reiner, N. F. Ahn, X. De-rooij, J. Shen, and . Quan-li, The realization and performance of vibration energy harvesting mems devices based on an epitaxial piezoelectric thin film Experimental investigation of energy harvesting from triple-layer piezoelectric bender, 18th IEEE International Symposium on the Applications of Ferroelectrics, pp.25015-25016, 2009.

. L. Ii-40-]-s, N. M. Kok, N. R. White, and . Harris, Free-standing thick-film piezoelectric multimorph cantilevers for energy harvesting, IEEE International Ultrasonics Symposium (IUS)., sept, pp.1977-1980, 2009.

Y. Jeon, R. Sood, J. H. Jeong, S. Kim, M. Marzencki et al., Vibration energy harvesting with PZT micro device Procedia Chemistry Modeling, characterization and fabrication of vibration energy harvester using Terfenol-d/PZT/Terfenol-d composite transducer Sensors and Actuators A: Physical [II-44] Mide Peh20w datasheet Available: http://www.mide.com/products/volture/peh20w A credit card sized self-powered smart sensor node A cmos-compatible piezoelectric vibration energy scavenger based on the integration of bulk PZT films on silicon Vacuum-packaged piezoelectric vibration energy harvesters: damping contributions and autonomy for a wireless sensor system, Sensors and Actuators A: Physical Proceedings of the Eurosensors XXIII conference Selected Papers from the 5th Asia-Pacific Conference on Transducers and Micro-Nano Technology. [II-46] E. Aktakka IEEE International Electron Devices Meeting (IEDM) L. Larcher, and A. Passaseo, " Freestanding piezoelectric rings for high efficiency energy harvesting at low frequency, pp.16-22, 2005.

. Iii-1-]-s and S. Gao, Induced voltage of piezoelectric unimorph cantilevers of different nonpiezoelectric/piezoelectric length ratios, Smart Materials and Structures, vol.18, issue.122, 2009.

T. Ando, K. Sato, M. Shikida, T. Yoshioka, Y. Yoshikawa et al., Orientationdependent fracture strain in single-crystal silicon beams under uniaxial tensile conditions, Proceedings of the 1997 International Symposium on Micromechatronics and Human Science, pp.55-60, 1997.

W. Chen, G. Ravichandran, S. Roundy, P. K. Wright, J. Rabaey et al., A study of low level vibrations as a power source for wireless sensor nodes Design considerations for MEMS-scale piezoelectric mechanical vibration energy harvesters Integrated Ferroelectrics A comparison between several vibration-powered piezoelectric generators for standalone systems, International Journal of Fracture Computer Communications An International Journal Sensors and Actuators A: Physical ASME J. Vib. Acoust, vol.101, issue.130, pp.141-159, 2000.

P. Sodano, I. A. Erturk, J. Hoffmann, D. J. Inman, M. Allain et al., A piezomagnetoelastic structure for broadband vibration energy harvesting [III-10] M. Marzencki Conception de microgénérateurs intégrés pour sytèmes sur puce autonomes Comparison of different beam shapes for piezoelectric vibration energy harvesting Characterization of different beam shapes for piezoelectric energy harvesting Shape improvement for piezoelectric energy harvesting applications, Proc. of PowerMEMS 2010 The 10th International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications. [III-12] F. Goldschmidtboeing and P. WoiasIII-13] S. Ben Ayed, F. Najar, and A. Abdelkefi 3rd International Conference on Signals, Circuits and Systems (SCS), nov, pp.49-58, 2004.

M. Marzencki, B. Charlot, S. B. Shu, and I. C. Lien, Design, modelling and optimisation of integrated piezoelectric micro power generators Analysis of power output for piezoelectric energy harvesting systems, Technical Proceedings of the 2005 NSTI Nanotechnology Conference and Trade Show Smart Materials and Structures, pp.545-548, 2005.

M. Defosseux, M. Allain, P. Ivaldi, E. Defay, S. Basrour et al., Highly efficient piezoelectric micro harvester for low level of acceleration fabricated with a cmos compatible process Vacuum-packaged piezoelectric vibration energy harvesters: damping contributions and autonomy for a wireless sensor system Nonlinear electric-mechanical behavior of a soft PZT-51 ferroelectric ceramic, Proc. of Transducers 2011 the 16th International Conference on Solid-State Sensors, Actuators and Microsystems. [III-17]III-19] G. Sebald, L. Lebrun, and D. Guyomar Modeling of elastic nonlinearities in ferroelectric materials including nonlinear losses: application to nonlinear resonance mode of relaxors single, p.4001, 1999.

I. Chapitre, Adaptation du générateur à la source de vibrations

I. Chapitre, Adaptation du générateur à la source de vibrations, p.139

.. Etat-de-l-'art, -140 - IV.2.1 Méthodes actives, p.156

.. Méthode-non-linéaire-de-raidissement-de-la-structure, -157 - IV.3.1 Modélisation d'un système mécanique non linéaire. -157 - IV.3.2 Approximation analytique par méthode par perturbations. -160 - IV.3.3 Résultats de simulations. -164 - IV.3.4 Modélisation et approximation analytique par méthode par perturbations en considérant l'effet piézoélectrique, Preuve expérimentale, p.174

D. Zhu, M. J. Tudor, and S. P. Beeby, Strategies for increasing the operating frequency range of vibration energy harvesters: a review, Measurement Science and Technology, vol.21, issue.2, p.22001, 2010.
DOI : 10.1088/0957-0233/21/2/022001

H. Gieras and S. Oh, Electromechanical energy harvesting system, 2007.

M. Denhollander, F. Myersere, R. L. Wu, L. D. Scheibner, J. Mehner et al., A frequency adjustable vibration energy harvester Available: perpetuum.co.uk [IV-6] A spectral vibration detection system based on tunable micromechanical resonators Capacitance based tunable resonators A closed-form approach for frequency tunable comb resonators with curved finger contour, Proposal: Passive tuning of piezoelectric energy scavengers using dynamic chemical absorption Proc. of PowerMEMS Sensors and Actuators A: Physical, pp.123-124, 1998.

B. Morgan, R. Ghodssi, G. Piazza, R. Abdolvand, G. K. Ho et al., Vertically-shaped tunable mems resonators Voltage-tunable piezoelectricallytransduced single-crystal silicon micromechanical resonators Sensors and Actuators A: Physical A vibration energy harvesting device with bidirectional resonance frequency tunability Novel electrically tunable mechanical resonator for energy harvesting A compact piezoelectric energy harvester with a large resonance frequency tuning range Proceedings of PowerMEMS Frequency tuning concepts for piezoelectric cantilever beams and plates for energy harvesting Master's thesis Tunable resonant frequency power harvesting devices Fine frequency tuning in resonant sensors Resonance tuning of piezoelectric vibration energy scavenging generators using compressive axial preload A piezoelectric power harvester with adjustable frequency through axial preloads Closed loop frequency tuning of a vibration-based micro-generator Toward self-tuning adaptive vibration-based microgenerators, IV-12] S. M. Peters, Maurath Proc. of PowerMEMS Proceedings of SPIE, the International Society for Optical Engineering Proc. of MEMS '94IV-19] W. Eichhorn, Goldschmidtboeing Proc. of PowerMEMS Proc. of PowerMEMSIV-21] S. Roundy and Y. Zhang, pp.85-92, 1961.

S. S. Liu, H. Fang, Z. Xu, X. Mao, X. Shen et al., An electromagnetic micro power generator for wideband environmental vibrations Sensors and Actuators A: Physical High damping electrostatic system for vibration energy scavenging A wideband vibration-based energy harvester Mems coupled resonators for power generation and sensing Micromechanics Europe Improving power output for vibration-based energy scavengers [IV-29] B. Mann and N. Sims Energy harvesting from the nonlinear oscillations of magnetic levitation A resonant generator with non-linear compliance for energy harvesting in high vibrational environments Potential benefits of a non-linear stiffness in an energy harvesting device Investigations of a nonlinear energy harvester with a bistable potential well Nonlinear dynamics for broadband energy harvesting: Investigation of a bistable piezoelectric inertial generator A piezoelectric bistable plate for nonlinear broadband energy harvesting A piezomagnetoelastic structure for broadband vibration energy harvesting Improved energy harvesting from wideband vibrations by nonlinear piezoelectric converters Mems vibration energy harvesting devices with passive resonance frequency adaptation capability Modeling of elastic nonlinearities in ferroelectric materials including nonlinear losses: application to nonlinear resonance mode of relaxors single crystals Piezoelectric vibration harvesting device with resonance frequency automatic tracking capability Analysis of a micro-electric generator for microsystems Nonlinear resonance behaviour of tuning fork gyroscopes Nonlinear oscillators for vibration energy harvesting Response of uni-modal duffing-type harvesters to random forced excitations Design and fabrication of a nonlinear resonator for ultra wide-bandwidth energy harvesting applications, Proc. of sOc-EUSAI '05, the 2005 joint conference on Smart objects and ambient intelligence IEEE International Electric Machines Drives Conference Proc. of MRS Fall Meeting Proc. of Eurosensors XIVIV-42] Nayfeh, Introduction to Perturbation techniquesIV-46] L. Gammaitoni, I. Neri, and H. VoccaIV-47] M. F. Daqaq IEEE 24th International Conference on Micro Electro Mechanical Systems (MEMS), pp.987-998, 1993.