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1 Abstract

This thesis proposes a general and unified methodological framework suitable for studying

the locomotion of a wide range of robots, especially bio-inspired. The objective of this

thesis is twofold. First, it contributes to the classification of locomotion robots by adopt-

ing the mathematical tools developed by the American school of geometric mechanics.

Secondly, by taking advantage of the recursive nature of the Newton-Euler formulation,

it proposes numerous efficient tools in the form of computational algorithms capable of

solving the external direct dynamics and the internal inverse dynamics of any locomotion

robot considered as a mobile multi-body system. These generic tools can help the engi-

neers or researchers in the design, control and motion planning of manipulators as well

as locomotion robots with a large number of internal degrees of freedom. The efficient

algorithms are proposed for discrete and continuous robots. These methodological tools

are applied to numerous illustrative examples taken from the bio-inspired robotics such

as snake-like robots, caterpillars, and others like snake-board, etc.
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1 General Introduction

1.1 Motivations and Contents . . . . . . . . . . . . . . . . . . . . . 1

1.2 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . 3

1.1 Motivations and Contents

More or less deliberately, from its beginning, robotics took inspiration from nature to

design its robots. Robots resembling to human arm were designed using discrete mech-

anisms devoted to the manipulation tasks of industrial manufacturing processes. These

discrete mechanisms consist of serial chains of rigid bodies connected by lumped degrees

of freedom and are today included into the wider class of systems known as multibody

systems. After manipulators, robots designers started to build mobile robots as wheeled

platforms. When the environments become unstructured, legs are more adapted than

wheels and mobile robotics oriented its investigations towards legged robots inspired from

walking animals so opening consciously the way of bio-inspiration. With the passage of

time, taking inspiration from the wide diversity of the animal kingdom, the researchers in

this field started developing mechanisms with more and more internal degrees of freedom,

hence introducing a new generation of robots called as hyper-redundant systems since

they may be considered as having an infinite degree of redundancy with respect to the six

dimensional task consisting of moving a rigid body in space. Even, nowadays, the robotics

have entered into the era of soft robotics where the robots have no rigid bodies in their

structure. In this case, the source of bio-inspiration is provided by soft animals, named

as hydrostats, such as worms, caterpillars, octopus, etc. From the mechanist’s point of

view these systems can be considered as continuous systems having an infinite number of

degrees of freedom.

These increasing complexities of the design is in particular due to the diversification of lo-

comotion modes involving more and more complex leaning media such as versatile grounds,
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air, water, etc. Today, active researches in bionics allow us to progressively discover the

subtle mechanisms that animals have discovered along evolution of species to improve their

dynamic performances in terms of energetic consumption or manoeuvrability. As such lo-

comotion systems become more and more complex, so do their mathematical models.

Consequently, we need today efficient methodological tools that can help the roboticists

in modeling, design, control, motion planning (gait generation, transit maneuvers), etc.

In this regard, the dynamic models along with their associated algorithms are of great

interest to researchers due to their active role in simulation, design and control. Keeping

in view this growing interest, in this thesis we propose a unified methodological framework

that is capable to address the problem of bio-inspired locomotion to a greater extent. More

precisely, the aim of this thesis is two folds. Firstly, it contributes to the classification of lo-

comotion robots. Secondly, it proposes new efficient tools for their dynamic computation.

As regards the first objective, we will use mathematical tools introduced by the American

school of geometric mechanics after Marsden [60, 49, 59]. Remarkably, these abstract

tools will allow us to exhibit the common geometric structures shared by apparently very

different locomotion ways as for instance snakes creeping and swimming at high Reynolds.

As regards the second objective, starting from manipulators there are two major algorith-

mic approaches to solve the problems of robots dynamics. The first approach is based on

Lagrangian mechanics and leads to explicit formulations parameterized through a mini-

mal set of generalized independent coordinates [92]. The second approach is based on the

application of Newton’s laws and Euler’s theorem to each of the isolated bodies, and is

consequently named Newton-Euler formulation [4]. Whether applied to the inverse dy-

namics through the algorithm of Luh andWalker [115] or to the forward dynamics through

the algorithm of Featherstone [40], Newton-Euler formulation leads to O(n) algorithms

(where n is the number of bodies of the system). On the other hand, Lagrangian formu-

lation leads to O(n) or O(n4) algorithms depending upon whether they are recursive (like

the Newton-Euler based algorithms) [54] or not [114, 58]. The Newton-Euler approach,

once coupled with a symbolic customized code, gives the most optimized algorithms [64].

This advantage is crucial when we investigate some systems with large number of links

and degrees of freedoms such as in case of hyper-redundant manipulators [52, 100, 25, 72].

Moreover, Newton-Euler algorithms are particularly interesting when considering modular

or reconfigurable robots [24] since, in this case, changing the topology of the system only

changes the indexation of the bodies without compromising the structure of the algorithm.

Despite these advantages, a general Newton-Euler based framework exists only for ma-

nipulators, i.e. for multibody systems with a fixed base [40], while the most unified theory

of dynamics of locomotion systems is based on the Lagrangian geometric mechanics on

principal fiber bundles [87, 60, 76, 101]. As an asymptotic case, we will see that hyper-
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redundant robot dynamics can be modeled by a continuous version of the Newton-Euler

formulation with no Lagrangian counterpart in this case [13, 16]. In fact, the existing

approaches used to model hyper-redundant robots can be categorized into two main sets

depending on whether the robot is considered as a discrete multibody system with a large

number of degrees of freedom [63, 78], or directly as a continuous deformable medium.

In the first case, the modeling is facilitated by the fact that mathematical tools from

usual discrete robotics are already available. On the other hand, adopting a continuous

model from the beginning can greatly facilitate the formulation, analysis and resolution of

the robotics problems related to manipulation [26, 83] and locomotion [52, 18, 50]. This

thesis deals with both the modeling approaches and develops a unified classification and

algorithmic framework for discrete multibody systems as well as continuous systems.

1.2 Organization of the Thesis

This thesis is organized as follows.

Chapter 2 provides a brief overview of the bio-inspired locomotion systems and their

modeling approach. First, the animal locomotion and state of the art work in bio-inspired

robots are presented in order to prepare ground for further discussion. The basic dynamic

problem of locomotion that will be addressed all along the thesis, is then stated. Then,

this basic problem is (quickly) addressed in the perspective of Lagrangian dynamics. This

allows one to fix the framework in which all the following chapters will progress, as well

as to point out the directions and contributions of the thesis.

Then the thesis is divided in two parts. Part I is related to the discrete mobile multibody

systems, while part II is devoted to the continuous locomotion systems. The first part

consists of the following two chapters.

In chapter 3 a general computational algorithm for mobile multibody systems is devel-

oped by extending the Luh and Walker computational algorithm, originally developed

for standard manipulators, to a general class of mobile tree-like systems. This includes

the modeling process based upon the Newton-Euler formulation. In parallel to these

investigations, the systems are classified in several classes and subclasses depending on

their geometric structures. The reduced dynamic model is presented as a counterpart for

the reduced Lagrangian dynamics discussed in chapter 2. Then, in chapter 4 the pro-

posed computational algorithm is applied to some existing systems, each one playing an

archetypical role in each of the subclasses defined in chapter 3.

In chapter 5 the above computational algorithm for mobile multibody systems is extended

to the continuous locomotion systems where the system is modeled as a strain-actuated

Cosserat beam, i.e. a continuous version of a rigid mobile multibody system. This algo-

rithm is named as macro-continuous dynamics algorithm since it is adapted to the study

of hyper-redundant and soft robots at a macroscopic scale. In a second step, this general
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continuous algorithm is applied to the case of terrestrial locomotion systems with the help

of kinematic models of ideal contacts between the system and the surrounding. In chapter

6 the proposed algorithm is applied to some elongated body animals such as earthworm,

inchworm and snakes.

A general discussion and conclusion is given in chapter 7, which concludes the whole work

and gives some future perspectives based upon the work in this thesis. Finally, in chapter

8, a detailed summary of the thesis is presented in French language.
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This chapter presents a comprehensive overview of the bio-inspired locomotion in Robotics.

Starting from animals, some archetypical examples in the field of bio-inspired locomotion

robots are presented in order to prepare the ground for further discussion. Then, the

general problem of locomotion that will be addressed in the rest of this thesis will be

stated. In the perspective of solving this problem, we will remind the Lagrangian pic-

ture of locomotion dynamics as it has been produced in the last ten years by geometric

mechanics. In this regard, our choice in this introductive chapter is to privilege intuition

over rigorous formalism. We hope that this choice will allow the reader unfamiliar with

geometric mechanics to gain insight this beautiful theory.

2.1 Animal Locomotion

Animal locomotion is the study of how animals move in the world. Locomotion is the

ability to move from place to place in 3D space. For a system, either natural or artificial,

the locomotion can be defined more precisely as follows:

”The process of producing net (overall) displacement (motion) of a system through inter-

nal shape changes (deformations) and interaction with the external world.”
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System World

Action

Reaction

Inertial, viscous, hard solid,

elastic, electric, etc.

Figure 2.1 – Action-reaction principal of a locomotion system

In nature, the internal shape changes varies from organism to organism, depending upon

their morphology, their structural characteristics and medium of interaction. When these

internal shape changes are found to be cyclic maneuvers, they are known as gaits of loco-

motion. Animals also perform some transient maneuvers such as turning, jumping, etc.

A vast variety of locomotion is observed in animals. For example, flying of a bird, walking

of a cat, running of a horse, creeping of a snake, swimming of a fish, burrowing of a worm,

etc. In all these cases the locomotion is possible due to the contact with the surrounding

medium e.g. air, water, earth, etc. In its essence, locomotion is based on the following

principle. Any animal when moving in space first changes its shape in order to exert some

forces on its surroundings. Then, by virtue of the action-reaction principal, i.e. the New-

ton’s third law of motion, the surroundings exerts some reaction forces onto the animal

body which propel it in space (see Fig. 2.1). The reaction forces exerted by the world onto

the animal body depends upon the size of the animal’s body, and the physical properties

of the surrounding medium on which the animal leans to move. For instance, swimming

and flying at high Reynolds numbers involves inertial (pressure) forces (produced by the

acceleration of the fluid surrounding the animal), while at low Reynolds, small animals

such as flagella or cilia protists use viscous (friction) forces to move. In case of walking,

hard discontinuous contact forces are involved, while snakes control their body surface

in contact with the ground to maximize the propelling reaction forces. Among the most

mysterious modes of locomotion, we find the sandfish Scincus scincus, a lizard of the

Sahara desert, which is capable of swimming in the sand (see Fig. 2.2)(a). This animal

seems to be a natural case of super-lubricity, and current researches on its locomotion,

attempt to show that the secret of its performances is probably hidden in the properties

of its skin at low scale. It is in fact a remarkable thing that animals have developed a wide

diversity of mechanisms allowing them to intensively exploit the physical possibilities of

their leaning medium. Among these mechanisms, let us mention the multi-scale physical

phenomena involved at the contact interfaces where very low scale forces can be collected

by sophisticated organs to produce strong forces at a macroscopic scale. This is for in-
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(a) (b)

Figure 2.2 – (a) Sandfish (Scincus scincus): a lizard that can swim in granular media such as
sand; (b) microscopic view of shark skin

Figure 2.3 – Gecko: a lizard with adhesive setae on its feet

stance the case of the geckoes which can produce adherence forces of high magnitude on

any smooth surface (as glass) by using microscopic van-der-Walls forces. Another example

of such a subtle multi-scale interaction is that of sharks skin whose microscopic structure

allows the fish to control its boundary layer in order to reduce drag forces (see Fig. 2.2)(b).

At a more macroscopic scale, animals move their surrounding medium in order to take

advantage of their surrounding and facilitate their motion. For instance, animals moving

in the sand fluidify the granular medium by agitating it in a suited way [73], while fish

order the fluid around them into big vortical structures to control their net motions. In

fact, most of fish have developed subtle mechanisms of interactions with the surrounding

flow in order to extract kinetic momentum and energy from it. For instance, trouts can

swim in turbulent rivers without efforts [6], while most of fish extract energy from their

wake, which would be definitely lost otherwise. These observations on living animals are

today the topic of intense researches in hydrodynamics and naval engineering related to

the well known problem of drag reduction. In a similar perspective, the study of hovering

flight has lead researchers to restate the basic laws of a new unsteady aerodynamics [36].

In particular, they discovered that when it reverses its stroke, the flapping wing of a hawk

moth captures its own wake to reuse a part of the energy of the flow for lift generation

[98].

From the point of view of the roboticist, animals morphology can be grossly classified
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(a)

(b)

(c) (d)

(a) Lateral undulation: each point of the body passes successively by the head location via lateral bending

of muscles alternate from one side to the other from the head to the tail.
(b) Concertina: one part of the body folds and creates a contact with the substratum while the other part
is pushed or pulled from that contact.
(c) Sidewinding: some parts of the body are in contact while other are lifted producing a periodic static
contact between the snake and the ground.
(d) Rectilinear: waves of contraction pass along the belly from one end to the other.

Figure 2.4 – How snakes move

in three classes depending if they have an endoskeleton, an exoskeleton or no skeleton at

all. In the first case we meet all the vertebrates such as snakes, fishes, mammals, etc.,

while in the second major set (i.e. exoskeleton), we find the branch of arthropods which

contains the class of insects or that of arachnids. Finally, other animals have no skeleton

and recover the rigidity required by the contact efficiency by contracting isovolume tis-

sues. Among these animals, named hydrostats, we find the worms or the octopus which is

probably the most achieved living creature based on this principle. Another major classi-

fication of morphologies relevant to robotics is their body’s topology, each animal’s body

being possibly symbolized by a topological chain as those handled by multibody systems

mechanics. In this case, simple open chain systems like the elongated body animals with

no lateral appendices, are in fact very interesting for the roboticists since for a same sim-

ple morphology, they show a wide set of possibilities ranging from swimming like eels, to

burrowing like worms, creeping like snakes and so on. One of the reasons of the success

of this morphology in the animal kingdom, is probably due to the fact that these animals

have a high number of internal degrees of freedom (some big snakes have more than 500
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vertebrae) which make them what the roboticist names a hyper-redundant system. In

this case, the degree of redundancy is the difference between the number of joint degrees

of freedom of the skeleton with the six dimensions of their net displacements.

Beyond these bio-physics considerations, roboticists also get inspiration from the outstand-

ing capabilities of animal locomotion to adapt to different environments. For example a

same specie of snake has the ability to creep through undulation, sidewinding, rectilin-

ear or concertina motion. In Fig. 2.4, these locomotion modes are shown and defined

briefly[1]. All this is possible with the same morphology while shifting from one set of

internal deformations to another which responds well to the environmental changes. More

generally, the animal’s body is in fact capable of adapting to unstructured environments

and their nervous control system has the ability to switch quickly and smoothly from one

locomotion pattern to another according to the physical changes in the surrounding.

2.2 Bioinspired Locomotion Robots

For all the above mentioned reasons, a great deal of interest has been shown over the last

few decades toward the design of locomotion robots inspired by animals. In the beginning,

locomotion robots were designed on the basis of prior knowledge of the conventional

industrial manipulators, i.e. as discrete multibody systems. Moreover, with the passage

of time and the increase of targeted robots performances and understanding of animal

locomotion, the designing aspects of the artificial locomotion systems were getting more

and more inspiration from the nature. In this regard, the robot designs were shifted from

the conventional discrete mechanisms toward novel hyper-redundant continuous structures

with a dramatic increase in internal degrees of freedom as well as the number of bodies.

Such hyper-redundant systems get inspiration mostly from elongated body animals such as

snakes, eel-fish, etc. Here we present some successful prototypes of such highly articulated

multibody systems. In underwater robotics when targeting manoeuvrability with high

efficiency in open waters, the most achieved animals for bio-inspiration are probably the

tuna fish whose cruising speed can reach 50km/h, while the red tuna can accelerate up to

75km/h and turns on it self in a fraction of second. Thus, seeking new solutions for drag

reduction in naval hydrodynamics, Triantafyllou and co-workers of MIT were among the

pioneers to investigate bio-inspired paradigm in this context. Under the RoboTuna project

that was started at MIT in 1993, the fish-like robot called as ”Charlie-I” (Fig. 2.5(a))

inspired from the locomotion capabilities of the biological fish ”tuna” was designed and

built in 1995. The major structural component of the robot fish is a segmented backbone

made up from eight discrete rigid vertebra connected with ball bearing joints. These eight

vertebra are driven through an elaborate system of pulleys and cable tendons by six servo

motors mounted outside the robot body. These tendon drives are the mechanical analog

of the biological fish’s muscles. As in the biological fish ”tuna”, the principal of propulsion
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(a) (b)

Figure 2.5 – The swimming robots of RoboTuna by MIT: (a) The ”Charlie-I”; (b) The
”RoboTuna-II”

was based upon the change in the internal orientation of the vertebra to each other that

produced oscillation over the rare part of the body of robot. The main objective of this

project being to study efficient systems of propulsion for the autonomous underwater

vehicles with reduced drag and enhanced propulsion, the robot is towed and the resultant

of hydrodynamic forces is measured for given cruising speeds and oscillations. The last

robot of the RoboTuna project is the advanced version of the robotic fish Charlie-I, called

as ”Robotuna-II” with several significant modifications as shown in Fig. 2.5(b). After

RoboTuna, another robotic fish was designed at MIT called as ”RoboPike”. The aim of

this new project is to reproduce the high accelerations of the pike (Esox lucius) which can

reach 15g (g=9,81 ms−2) when catching a prey. Contrary to the RobotTuna, this robot

has its actuation mechanism inside its body. After these works, many swimming robots

were then developed. Inspired from elongated anguilliform fishes such as eel and lamprey,

some of them were using the undulation of the high number of internal degrees of freedom

over the whole body instead of making use of oscillations of the rear part of their body

like RoboTuna to propel in water. Examples of such robots are the eel-like robot of the

French project RAAMO [2] or the amphibious snake-like robots called as Amphibot [35]

and ACM-R5 [119], etc.

2.2.1 Bio-Inspired Snake-like Robots

As an emblematic example of the discrete mobile multibody mechanism, the snake-like

robot ACM-III [52] is a pioneering prototype and a first milestone in bio-inspired ter-

restrial locomotion (Fig. 2.6). In 1972, this first bio-inspired serpentine robot called as

”Active Cord Mechanism” was made by Shigeo Hirose [52]. This robot was a two meter

wheeled multibody system with twenty-one segments serially connected through (twenty)

actuated single degree of freedom revolute joints. The purpose was to design and build

a snake-like robot that is capable of producing an artificial serpentine movement same
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Figure 2.6 – The pioneering snake-like robot ACM-III with passive castor wheels

as that of actual snakes. This was the first successful attempt to mimic the serpentine

movement, i.e. the forward movement produced with the help of internal actuated degrees

of freedom. The passive castor wheels were used to form contact with the flat surfaces.

These passive wheels ensure the frictional anisotropy of the ground friction forces, i.e. that

the friction coefficient characterizing the ground friction forces in the normal (lateral) di-

rection of each segment is larger than the friction coefficient characterizing the ground

friction forces in the tangential (axial) direction of the segment. In natural snakes, the

frictional anisotropy is provided by the ventral scales present on the snake belly [44, 55].

Taking advantage of the fact that, the propulsion mechanism of snakes is almost the same

in both water and on ground, an amphibious version of the ”Active Cord Mechanism”

series, called the ACM-R5 was presented in 2005 [119]. The snake-like robot ACM-R5,

shown in Fig. 2.7(a), has the ability to move on the ground through ”crawling” as well as

in the water through ”anguilliform” swimming. This water proof robot consists of nine

segments serially connected through eight universal joints (i.e. through two degrees of

freedom revolute joints between the consecutive segments). The universal joint allows

the pitch and yaw degrees of freedom between segments as shown on Fig. 2.7(b). This

robot has paddles with passive wheels (Fig. 2.7(c)) that provide the necessary anisotropic

ground friction properties required by lateral undulation i.e. allowing motion in the tan-

gential direction, while preventing it in the normal direction.

Developed by NTNU university of Norway with the research organization SINTEF,

the wheeled robot ”Wheeko” is an experimental platform for studying wheeled snake-like

robot locomotion across flat surfaces. As shown in Fig. 2.8(a) Wheeko consists of ten

identical modules serially connected through universal joints. Each module of Wheeko is

enclosed by a plastic ring mounted with twelve plastic passive wheels. The purpose of

this prototype was to carry out motion control experiments in order to investigate the

straight line path following controller.

In short, the above wheeled designs were successfully tested on flat surfaces. The loco-
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(a) (b) (c)

Figure 2.7 – ACM-R5 snake-like robot with passive wheels

(a) (b)

Figure 2.8 – Snake-like robots designed by NTNU: (a) Wheeko with passive wheels; (b) Kulko
with tactile sensors

motion through undulation was investigated and controlled both on ground and in water.

From these successful developments, the researchers pushed the goal one step further to

design the snake-like robots for performing tasks in highly unstructured environments in

which case the above wheeled robots will definitely face difficulties to perform locomotion

tasks, since they are good on flat surfaces. Thus, the wheel-less snake-like robots were

designed for this purpose.

Kulko is a snake-like robot equipped with tactile sensors (Fig. 2.8(b)). The purpose of

this model is to experimentally investigate the snake robot locomotion and control in

environments with obstacles where this robot makes use of the obstacles as push points,

like real snakes, to propel forward [70]. A set of force sensing resistors (FSRs), used as the

tactile sensors, are placed on the modules to measure the environmental contact forces

due to contact with obstacles.
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Figure 2.9 – Uncle Sam: snake-like robot at CMU

Among the most advanced results on snake-like robots, several modular robots were de-

signed and built by researchers of the Biorobotics Laboratory at Carnegie Mellon Uni-

versity (CMU) under the direction of Howie Choset [118, 50, 109]. One of such robots,

called as ”Uncle Sam” is shown in Fig. 2.9. These wheel-less snake robots go beyond the

capabilities of above mentioned conventional wheeled robots being limited to crawling

and swimming. The modules are inter-connected in series via a single degree of freedom

rotational joint in such a way that each module’s axis of rotation is rotated ninety degrees

(π/2 rad) from the previous module in order to produce motions in all three dimensions

[118]. Thus, capable of bending in the two lateral directions, these highly articulated

snake-like robots can perform more difficult tasks such as stair climbing, gap crossing,

channel climbing and many more. In short, one of the key problems posed by this kind

of systems is to develop novel gaits capable of producing net displacement on difficult

terrain [50].

With the success of snake-like robots in unstructured environments, an interest was

developed in the research that involves interaction of animals with complex world such as

granular media. Inspired from the locomotion of the sandfish in complex granular media,

the sandfish robot (Fig. 2.10(a)) has recently been designed by the Complex Rheology

And Biomechanics (CRAB) Laboratory in the School of Physics at the Georgia Institute

of Technology. The basic mechanical design of this robot get inspiration from the existing

snake-like robots to perform undulatory locomotion in sand. This robot has seven identi-

cal modules serially connected through single degree of freedom joints. The purpose is to

investigate the locomotion on the surface as well as inside a granular media [74]. As re-

gards climbing robots, the Van der Valls adherence forces of high magnitude produced by

the setae present on the toes of gecko lizard was the inspiration for the design of the ver-

tical locomotion robot called as ”Stickybot” as shown in Fig. 2.10(b). This robot has four

sticky legs with a rubber-like material with tiny polymer hairs made from a micro-scale
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(a) (b)

Figure 2.10 – (a) Sandfish robot; (b) Stickybot-III

mold, that allows the robot to climb smooth surfaces such as glass and metal.

Recent advances have shown the power of the bio-inspired approach in the field of control

command. In fact, starting from works in neurobiology [45] on one of the most prim-

itive fish, the anguilliform fish Lampetra fluviatilis, Auke Ijspeert and co-workers have

implemented in [56] a distributed control on a real robotic artifact, mimicking the central

pattern generators of the animal with a string of coupled nonlinear oscillators. Remark-

ably, the approach inherits from the virtues of its natural model. In particular, when

applied to an amphibious robot inspired from the salamander, it allows to shift smoothly

from walking to swimming and vice versa.

Considering robots with more and more internal joints, the elephant trunk-like manip-

ulator developed by Hannan and Walker [47] is an example of highly articulated elon-

gated system (see Fig. 2.11(b)). Another example of a hyper-redundant manipulator is

the highly articulated robotic probe called as ”CardioArm” developed by the Biorobotics

Laboratory at Carnegie Melon University [90]. The first prototype of this robotic probe

has already been developed and tested (see Fig. 2.11(a)). The purpose of this robot is to

perform the minimally invasive cardiac surgery.

In all the above designs, the rigidity required by the propulsion is ensured by the presence

of rigid bodies in their structures. However, inspired from hydrostats capable of continu-

ous deformations along their body, researchers are nowadays designing soft body robots

with no rigid bodies in their structure. They are inspired from tentacles, octopus arm,

elephant trunk, inchworm, earthworm, etc. A soft robotic arm inspired from octopus is

being developed by Cecilia Laschi’s crew under the European project ”OCTOPUS” [3].

This soft arm robot, with no rigid bodies in its structure, is composed of silicone and

is driven by cables and shape memory alloy technologies [31]. As a fundamental unit of

the octopus-like soft robotic arm, an ”artificial muscular-hydrostat” unit, as shown in Fig.
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(a) (b)

Figure 2.11 – Robotic arms: (a) CardioArm; (b) Elephant trunk-like manipulator

Figure 2.12 – Octopus Arm robot bio-inspired from octopus

2.12 has been developed to mimic the natural movements of a living octopus. The basic

application of this waterproof soft robot is to perform underwater tasks such as movement

and manipulation. The arm is used in water and it is able to elongate, shorten, and pull,

as well as to bend in all the directions. As another example, a soft robot inspired from the

caterpillar (a fluid-filled hydrostat) as shown in Fig. 2.13 is currently designed by the Tufts

Neuromechanics and Biomimetic Devices Laboratory. The goal of these researches is to

develop ”Biomimetic Technologies for Soft Bodied Robots”, i.e. to carry out investigations

into innovative biologically-based technologies that use soft materials and to incorporate

them into a new generation of highly flexible robot.

In short, all these researches indicate a high level of interest in the design, modeling,

control, gait generation, etc., of highly articulated robots as well as soft robots that

perform difficult tasks in highly unstructured and complex world.
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Figure 2.13 – Soft robot inspired from caterpillar

2.3 Modeling of Bio-inspired Locomotion Systems:

The Lagrangian Picture

2.3.1 Definition of a Mobile Multibody System

In the following we adopt the model of multibody systems to derive a general unified

framework devoted to the modeling of locomotion - in particular bio-inspired - in robotics.

A multibody system is a set of bodies interconnected through internal joints, and with the

rest of the world through external joints or contacts. In all the thesis, we will consider the

constitutive bodies as well as the joints as being rigid. This assumption is in fact justified

by many of the technological artifacts as those introduced before and can be partially

released as we will see in chapter 6 when we will consider the case of soft robots. Based

on this basic model, we will first consider the case of discrete multibody systems consisted

of a finite set of countable bodies, and in chapter 5 we will see how it is possible to extend

this model to the case of continuous robots. The usual model of rigid multibody systems

is in fact very well developed in the context of manipulation, but much less when dealing

with locomotion. In fact, contrary to classical multibody systems any body included in

a locomotion system generally endure not only relative motion with respect to the other

bodies, but also rigid overall motions due to the net displacements of the structure in the

ambient space. Furthermore, these net motions are in general not imposed through explicit

time laws, as on a manipulator mounted on a wheeled platform (or mobile manipulator

for instance), but are produced at each time by the contact forces applied onto the whole

system, i.e. by what we will name the locomotion dynamics of the system. By extension of

the current terminology, in all the thesis we will name such a system a Mobile Multibody

System or MMS and will distinguish it from classical Multibody System or MS. In spite

of this semantic distinction, a MS is a particular case of MMS with rigid overall motions

fixed through time laws, and in fact the methodological framework that we will develop

about MMS will also be applicable to any MS. Finally referring to the usual designs of

robotics, the ”mobile multibody systems” will include a lot of robotic systems ranging
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from a fully constrained system (such as a wheeled platform) to free floating system

(such as space shuttles, satellites, etc.) via the conventional industrial manipulators, the

under-constrained nonholonomic systems (e.g. the snakeboard, the trikke), etc. Before

introducing our own contributions to the modeling of these systems (purpose of chapters

3, 4, 5 and 6), in the rest of this chapter we focus onto the most general existing theory

today available in this context: the Lagrangian theory.

2.3.2 Configuration Space of a Mobile Multibody System

By ”Lagrangian” we here mean a theory which seeks to entirely derive the dynamics

of a mechanical system from the knowledge of a unique function of its state, named

Lagrangian of the system. Mathematically, such a theory enjoys a nice geometric basis

which takes its roots in the theory of Riemannian geometry on manifolds. In mechanics,

the key definition of this model is the concept of configuration manifold, or more simply

of configuration space. Intuitively, the configuration space is the set of points whose

coordinates are the parameters of the system. Thus, such a space is naturally endowed

with a system of local coordinates or charts which gives the structure of a manifold to it.

To any point of this abstract space, noted C, corresponds one and only one configuration

of the whole system in the physical space R
3. For a usual MS, as a manipulator with

n revolute joints parameterized by the vector of joint angles r = (r1, r2, ...rn)
T , each ri

being related to a circle S1, the configuration space is a hyper torus of dimension n defined

by C = S1 × S1 × ...S1 = (S1)n (see Fig.2.14). Then, to a point of C corresponds one

configuration or ”shape” of the MS in 3D space. In the case of MMS, the parametrization
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Figure 2.15 – Configuration space of a rigid body

of the system requires not only to manage its shapes with the previous space that we

name in this context ”shape space” and denote as S, but also its absolute position and

orientation in the ambient space. Hence, we will say that a MMS has internal degrees of

freedom defining its shape, and external degrees of freedom related to an external frame

fixed to space. In the Lagrangian picture of geometric mechanics, the external degrees of

freedom are parameterized by the transformations g applying a frame fixed to ambient

space on a frame moving with the MMS. This mobile frame is called ”reference frame”

and is generally attached to an arbitrarily distinguished body, named reference body, of

the whole MMS. Of course the choice of this reference frame is not unique. In particular,

among all the possibilities, we can define such a frame as a basis of three independent

vectors attached to one of the body (which is the reference body) but originating in a

non material point as for instance the gravity center of the whole MMS. In this case, the

reference frame floats in space and is called ”floating frame”.

Geometrically, the transformations g, called ”net transformations”, are the elements of

a Lie group G, i.e. a manifold endowed with an internal composition law satisfying the

algebraic structure of a group1. There are several possibilities of such a group according

to the case under consideration. For example, when the reference frame endures one

dimensional translations, G = R. In case of translations in a plane, G = R
2. In case of

motions in plane, G is named the group of Euclidean displacements in R
2 and denoted

G =SE(2). For translations in three dimensional space, G = R
3 and for rotations in three

dimensional space, G is the special orthogonal group G =SO(3). All these, and others,

are included into the most general group G=SE(3) which defines the configuration space

of a 3D rigid body and whose transformation elements g, can be represented by the 4× 4

1For more details on the Lie groups see Appendix B.
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Figure 2.16 – Configuration space as the principal fiber bundle

homogeneous matrices:

g =

(
R p

0 1

)
,

where R and P respectively denote the rotation and the translation parts of the trans-

formation. On its group of configurations, a motion of the rigid body defines a time

parameterized curve and any of its tangent vector ġ is named a velocity of transformation

(see Fig. 2.15). Now the composition of two transformation in R
3 corresponds on the

group to a translation of one by the other. Such a translation defining a map from points

to points on G, we can take its tangent to translate ġ in any point of G. In particular its

translation on the left by g−1 moves the base point of ġ from g to the unit element 1 and

defines the twist of the body in its mobile frame or ”material twist” η, which we detail as:

g−1ġ =

(
Ω V

0 0

)
= η,

where Ω and V respectively denote the angular and the linear velocities of the body in its

mobile frame2. The set of the twists spans the tangent space to G at g = 1 noted T1G.

Once endowed with the commutator such that for any η1, η2 ∈ T1G, [η1, η2] = η1η2− η2η1,

this space also defines the Lie algebra g of the group G, denoted se(3) in the case of

SE(3). In the case of a MMS as shown in Fig. 2.17, to each configuration of the system

corresponds a pair (g, r), i.e. a point of the configuration space (see Fig. 2.16):

C = G× S. (2.1)

2In this chapter, we do not distinguish a skew symmetric angular velocity matrix from its 3×1 vector,
this is the same in the case of SE(3), where the 4× 4 matrix η is not distinguished from its 6× 1 vector.
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Figure 2.17 – Configuration space of a locomotion system: the principal fiber bundle

Such a space is indeed well known from differential geometry under the name of ”principal

fiber bundle”. In differential geometry, a bundle is a manifold defined (at least locally)

as the product of a manifold, named ”base manifold” with another space, named ”fiber”

which is endowed with an algebraic structure. For example, if the fiber is a vector space,

then the fiber bundle is a ”vector bundle” (more generally a ”tensor bundle”). If, as it is

the case here, the fiber is a Lie group, then the fiber bundle is called a ”principal fiber

bundle”. Finally, there exists a very rich corpus of results in geometric physics related to

the structure of fiber bundle where it plays a crucial important role, for instance in gauge

theory or general relativity. Hence, one of the strengths of the Lagrangian approach,

whose we are going to remind a few key results, consists in having exploited this richness

to use it to the benefit of a locomotion theory in robotics. In particular, in all the model

of physics, a geometrical object is intimately associated to the concept of fiber bundle

and even plays a more crucial role for the physicist; this is the concept of a ”connection”.

However, before to introduce this concept and its use in locomotion, we are going to state

the general problem that we will deal in the sequel of this thesis.

2.3.3 General Problem Addressed in this Thesis

The general problem of locomotion can be envisaged in multiple ways. In this thesis, we

will solve the following problem. Knowing the time evolution on the internal joints r, we

seek to compute:

1. The external net motions, which corresponds to solve the forward external dynamics

called ”forward locomotion dynamics” (see Block2, Fig. 2.18).

2. The internal torques which corresponds to solve the inverse internal dynamics or
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Figure 2.18 – Flow chart of the recursive locomotion dynamics algorithm

more simply the ”inverse torque dynamics” (see Block1, Fig. 2.18).

This computation will be achieved by an algorithm whose general structure is illustrated

in Fig. 2.18. Before to pursue our developments, let us do a few remarks.

First remark: The first dynamics are named ”locomotion dynamics” since by relating the

internal to the external degrees of freedom (d.o.f), they involve the model of the contact

forces which is at the base of the locomotion. On the other hand, the second dynamics

are those usually met on standard MS as in the case of manipulators where they find their

instantiation in the well known computed torque algorithms.

Second remark: A natural question arises from this statement: Why we opt for the

choice of internal motions as inputs, why not to take torques as input? There are two

main reasons. Firstly, it is an easy task to specify the motion of a locomotion robot in

terms of its internal motion, while on the other hand it is not easy at all to infer its net

motions from the torques exerted by its actuators on its internal joints. Secondly, and

in relation to the first argument, this problem (and its solution) can be coupled to bio-

logical experiments based upon locomotion films of the animals (see Fig. 2.19). In fact,

once internal motions are extracted from such films, they can be imposed as inputs of the

algorithm which feeds back the corresponding (modeled) external motions. Then, these

external motions can be compared to the real ones extracted from the same films, and

the matching of the measured and computed external motions, is a precious tool for the

study of the model of the contact. In parallel, the inverse torque dynamics allows one

to qualify the feasibility of the imposed internal motions with respect to the resources of

actuators.

Third remark: Another relevant problem related to locomotion is the inverse of the

above locomotion model, i.e. to find the internal shape motions in order to ensure given
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Figure 2.19 – Problem of locomotion

external net motions. This is a control problem (for instance solved by optimal control

theory). This problem will be not dealt in this work. However, let us remark that instead

of inverting the locomotion model, one can seek to minimize the error between actual

and desired values of external motions with respect to the unknown shape motions. This

alternative way to solve the inverse problem (as an optimization problem) indeed uses the

forward locomotion model that we study in this thesis. Finally, the algorithmic solution to

the problem stated above is a useful tool for the design of gaits and transient maneuvers.

On the other hand, solving the forward internal dynamics (i.e. torques as input, internal

and external motions as output) has its own interests when seeking to model passive

internal deformations as those exploited by animals through compliant locomotion organs

allowing them to reduce their energetic consumption.

2.3.4 Forward Locomotion Dynamics: The Kinematic Case

Now based upon these concepts, motions on the manifold S are described by the internal

shape motions while motions along Lie group G are the net motions of the reference body.

Therefore, in order to solve the forward locomotion dynamics (see Fig. 2.19), we need to

develop a relation between these two types of motions on the principal fiber bundle. In

general to develop such relation, a dynamic model is required, i.e. the contact dynamics

between the system and the surrounding medium has to be solved that we will discuss later

in this chapter. However, there is a particular elegant case where locomotion is entirely

defined by kinematics. This is when the model of the contact is encoded into what we

name a connection on the principal fiber bundle of configurations [37]. In locomotion

theory, such a connection exists when:

• there is a linear relation between small displacements on S and small displacements

on G,

• this relation is such that (left) infinitesimal displacements in G are independent of

g (left invariance).

This context is illustrated in Fig. 2.20. Replacing displacements by velocities, note that

such a connection is free from dynamics and hence relates the net motions and the (in-
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Figure 2.21 – Fiber bundle: (a) principal fiber bundle G × S; (b) Tangent bundle TM of a
manifold M

ternal) shape motions through simple kinematics as follows:

η +A(r)ṙ = 0. (2.2)

On the principal fiber bundle this relation operates in any point (g, r) through Adg(η +

A(r)ṙ) = 0 which defines the space of admissible velocities of the system, or in the

language of differential geometry, a particular distribution on C named ”horizontal space”

as illustrated on Fig. 2.20. In the literature on geometric mechanics, A(r) is known as the

local connection 1-form or more simply the local form of the connection. It is a function

of the shape variables r only in virtue of the second condition mentioned above. In a

more general way, a connection associates univocally a fiber element above a point over

the base manifold to an element of the fiber above another infinitesimally close to the

first one. This pairing is illustrated in Fig. 2.21(a) for a principal fiber bundle and for

the tangent bundle of a manifold M in Fig. 2.21(b). In fact, this last context is very

well known from Riemannian geometry where to any metric is naturally associated a

connection named Levi-Civita connection and noted ω consisting in parallel transporting

any tangent vector on the manifold along the geodesics of the metric [21]. In order to

illustrate such a Riemannian connection, let us consider the case of the two dimensional

sphere S2 endowed with the Euclidian metric induced from R
3. Along any piece of great
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Figure 2.22 – (a) Gauss-Bonnet theorem illustrated on S2; (b) A cyclic change of shape produces
a net displacement in G

circle (which are the geodesics of S2), a vector tangent to the sphere can be parallel

transported from one point to another. Finally, by considering any curve on S2 as an

infinite set of infinitesimally short pieces of geodesics, parallel transport can be defined

along any curve on S2. In particular, considering the particular case of closed curves

starting and finishing in a same point of S. When any vector is parallel transport along

such a closed path, the vector after the whole transport appears as shifted of a given angle

θ with respect to its antecedent. Furthermore, in virtue of the well known Gauss-Bonnet

theorem this shift is in fact proportional to the area of the surface enclosed by the path

and the curvature of the sphere (Fig. 2.22(a)). In other terms, this shift is a manifestation

of the curvature of the manifold, and we have more generally:

θ =

∫

Path

ω =

∫

Enclosed area

dω, (2.3)

which is nothing but a particular case of the Stokes theorem where dω is named the

curvature 2-form of the Riemannian manifold. Remarkably, this context can be recovered

in the case of the principal fiber bundle of a MMS when the fiber group is commutative

(Fig. 2.22(b)). In this case, we can associate to (2.2) a curvature 2-form dA relating the

infinitesimally small closed paths of a given gait on the shape space to the corresponding

net displacements it produces in the fiber. As a results, this geometric picture is a precious

tool of gait generation in robotics [8, 51]. Now, we are going to remind the two cases in

robotics where forward locomotion dynamics can be modeled through kinematics using a

connection.
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Figure 2.23 – Mechanical connection: falling cat and satellite with rotors

Case1: Mechanical Connection

Let us take the example of a free-falling cat or a satellite reorientation system3 as shown

in Fig. 2.23. It is well known that a cat, initially maintained in a steady position with its

four legs up and then dropped, reorients its head by twisting its body through a complex

shape motion. Finally at the end of its fall, the cat touch down with the shape it had at

the initial time but with the four legs on the ground. By doing so, the falling cat solves a

problem of locomotion without any contact, since air has no influence at all on its motion.

In fact, as an orbiting satellite equipped with inertia wheels, the cat use transfers of inertia

momentum between its internal and external d.o.f in order to reorient itself. Referring

to our geometric point of view, the configuration space of these systems (the cat and the

satellite) is a principal fiber bundle G × S with S the shape space of the cat skeleton

in one case and the three dimensional torus in the case of the full actuated satellite4,

and G =SO(3) in both cases. More precisely, we take the floating frame as the reference

frame centered onto the gravity center of the system whose orientation with respect to

a frame fixed to space is R ∈ SO(3). Then, according to the law of conservation of

angular momentum, since no external forces are applied onto the system, its total angular

momentum remains null all along the motion, i.e. σ = 0. Therefore, in this case the

3This system is treated in detail as an illustrative example in chapter 4.
4Note that in the case of a failure of inertia wheels, nice problem of control accessibility arise.
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locomotion is ruled by the following relation:

σ = σfloating frame + σshape = 0, (2.4)

where, σfloating frame is the angular momentum due the floating frame motions (i.e. the net

motions of the reference body), while σshape is the angular momentum due to the internal

shape motions. Thus, further analysis gives the angular momentum as follows:

RTσ = Io(r)Ωo + Ir(r)ṙ = 0, (2.5)

where, Io is the angular inertia matrix of the system when it is rigidified in its current

shape r, or locked inertia matrix; and Ir is the inertia coupling matrix between internal and

external accelerations. As the above relation is left invariant (Io and Ir are R-independent)

and linear, it defines the following connection:

A(r) = I−1
o (r)Ir(r) = 0. (2.6)

In literature on geometric mechanics, such a connection is known as the ”mechanical

connection” [84]. It encodes all the information about the kinetic exchanges between the

internal and external degrees of freedom. In spite of appearances, note that referring to

our introductive considerations about animal locomotion, the locomotion mechanism used

by the cat is again a kind of action-reaction principle, but where the inertia (Coriolis and

centrifugal) forces replace the external forces of the general context. Finally, before to

close this example, let us remark that applying the same considerations to the translations

of the floating frame gives in virtue of the mass center theorem:

A(r) = 0. (2.7)

since no external forces is applied to the system. Thus, in this second case, the internal

shape motions cannot act onto the linear motions of the floating frame. In simple words

there is no ”connection” between these motions.

Case2: Kinematic Connection

Now we consider the examples of an undulatory snake and a nonholonomic wheeled (uni-

cycle) platform as shown in Fig. 2.24. The reference frame is attached to the head of the

snake and to the platform. Since both systems evolves in the plane, the principle fiber

bundle of their configurations is SE(2) × S where S stands for the space of the snake

skeleton in one case, and for the two dimensional torus of the unicycle wheels, in the

other. Once again, there exists a connection [60, 99, 89] between internal shape motions

and external net motions of these two systems. This connection is deduced by assuming
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Figure 2.24 – Kinematic connection: snake in lateral undulation and unicycle-platform

that the contacts between the ground and the scales in one case, and the wheels in the

other are modeled by ideal non-sliding (NS) and rolling without slipping (RWS) condi-

tions5. To derive the expression of this connection, it suffices to insert the motion of the

reference frame in the NS and RWS conditions and to gather in both cases a set of 3

(=dim(SE(2))) independent nonholonomic constraints on the principal fiber bundle. In

this way, we obtain the well known kinematic model of wheeled mobile platforms:

η +A(r)ṙ = 0. (2.8)

Where once again the A(r) matrix, being g independent, defines the local form of a

connection known as the principal kinematic connection [8]. Note, that in case of snake-

like robot, this connection is built up from the lateral non-sliding constraints (the wheels

being passive), while the unicycle platform requires to use the rolling without slipping

constraints of the two actuated wheels in addition. These nonholonomic constraints are

discussed in detail in chapter 3 while dealing with wheeled systems.

5In the case of the snake, the strong frictional anisotropy of its skin along axial and lateral directions
justifies such assumptions.
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2.3.5 Forward Locomotion Dynamics: The General Case

As mentioned above, in the general case, dynamics are required to solve the forward loco-

motion model. Due to the structure of principal fiber bundle, the derivation of dynamics

required a special attention. In particular, thanks to the structure of Lie group, the stan-

dard variational calculus applied on the charts of any manifold, can be replaced by an

intrinsic calculus directly achieved on the group. Such a calculus has the advantage of

providing formulation of the dynamics with the minimum of nonlinearities. Indeed, in

such an approach, all the nonlinearities are due to the curvature of the group (which can

be intuitively considered as a geometric manifestation of the non-commutativity on the

algebraic side) and not to any of its parameterizations. This general idea has been in fact

explored before the emergence of Lie groups in history of sciences, by Euler starting from

the case of the rigid top. However, the geometric insight of the ”Eulerian” approach of

dynamics has waited a long time after Euler to find its complete elucidation in the works

of Poincaré [93] followed by Cetajev [22], Rumyantsev [96] and Arnold [5] on the Russian

side and by the American school of geometric mechanics after Marsden [77]. The idea of

Poincaré consists in applying the Hamilton variational principle to the action of a system

directly defined in terms of the transformations and not as a function of its parameters as

in the approach due to Lagrange [17]. In our case, the action of the MMS will be defined

as:

∫ t2

t1

L(g, r, ġ, ṙ) =

∫ t2

t1

(T (g, r, ġ, ṙ)− U(g, r)) dt, (2.9)

where L, T and U respectively denote the Lagrangian, the kinetic energy and the potential

energy of the system on the principal fiber bundle of its configurations. Then, from

Hamilton principle, the trajectory of the system between two fixed times t1 and t2 satisfies

the stationarity condition:

∀δg s.t. δg(t1) = δg(t2) = 0, δ

∫ t2

t1

L(g, r, ġ, ṙ) = −

∫ t2

t1

δWextdt, (2.10)

where δWext = δζTFc stands for the virtual work of the eventual external non-conservative

forces exerted by the contacts. Now replacing the (real and virtual) velocities of transfor-

mation by the material (or body related) twist of virtual displacements δζ = g−1δg and

real velocities η = g−1ġ, and posing L(g, r, gη, ṙ) = l(g, r, η, ṙ) we can restate the above

condition as:

∀δζ s.t. δζ(t1) = δζ(t2) = 0, δ

∫ t2

t1

l(g, r, η, ṙ)dt = −

∫ t2

t1

δWextdt. (2.11)
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where l(g, r, η, ṙ) is named the reduced left Lagrangian of the system, which takes the

general form:

l(g, r, η, ṙ) =
1

2

(
ηT , ṙT

)
(

M M

MT m

)(
η

ṙ

)
− U(g, r). (2.12)

Finally, when the potential energy U is independent of g, the Lagrangian is said to be left

invariant since in this case we have:

L(g, r, ġ, ṙ) = L(hg, r, hġ, ṙ), ∀h ∈ G, (2.13)

with in particular for h = g−1, L(1, r, g−1ġ, ṙ) = l(r, η, ṙ). This properties is in fact a

symmetry property very frequently checked by the external forces exerted onto a MMS.

Now, to achieve the calculation of (2.11), we have to exploit two remarks, both resulting

from the fact that the variation δ is applied while the time is maintained fixed. First r

and ṙ being considered as inputs known by their time evolution, we have δr = δṙ = 0.

Secondly, we necessary have δ(dg/dt) = d(δg)/dt which leads:

δη =
dδζ

dt
+ [η, δζ ]. (2.14)

This relation which rules the commutation between variation and derivation, plays a key

role in variational calculus on Lie groups [93]. Finally, based on these remarks, it is

possible to show that any solution to the previous variational principle is also solution of

the Poincaré equations [93]:

d

dt

(
∂l

∂η

)
− ad∗

η

(
∂l

∂η

)
= Xg(U) + Fc, (2.15)

where, ad∗(.)(.) : se(3)× se(3)∗ → se(3)∗ is the co-adjoint map of SE(3), i.e. the dual map

to the adjoint map of se(3) on se(3) denoted ad(.)(.) and defined by: adη1(η2) = [η1, η2]; Fc

is the resultant of the contact forces and moments, while the Xg(U) are the conservative

external forces and Fext = Fc+Xg(U). Note here that Xg(U) models the symmetry defect

of the Lagrangian system whose expression is detailed in [17] in an intrinsic form. In the

first part of this thesis, we will propose a Newton-Euler recursive algorithm [10] able to

compute the locomotion dynamics that we finally reformulate as:

(
η̇

ġ

)
=

(
M−1F

gη

)
, (2.16)

where, F = Fext + Finertial. This algorithm will be then extended to the case of a class

of continuous locomotion systems [11]. The second line of the above equation forms the

reconstruction equation from η to g. Going Further into the Lagrangian dynamics, the ma-
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Figure 2.25 – Example of fluid contact dynamics

jor difficulty in way of the dynamic locomotion model is the external forces which requires

to solve the dynamics of the physical contact between the system and the surrounding

which can be extremely difficult, as they are normally ruled by those of:

• the ground (non regular dynamics, tribology, etc.),

• a fluid (involving Navier-Stokes equations),

• more exotic surrounding as granular media (rehology).

For instance in case of swimming, the computation of Fext requires to solve the fluid

dynamics through the sequence of causes and effects shown in Fig. 2.25. Obviously,

such computations are incompatible with the real time constraint imposed by robotics

applications. Fortunately, in such a dynamic case, there exists subcases which require

no physics but only geometry to solve the locomotion model. This geometric case occurs

when Fext is left invariant and Lagrangian [7]. That means that there exists a Lagrangian

function lext(r, η, ṙ) such that:

Fext = −
d

dt

(
∂lext
∂η

)
+ ad∗

η

(
∂lext
∂η

)
, (2.17)

then the dynamic locomotion model can be rewritten as follows:

d

dt

(
∂(l + lext)

∂η

)
− ad∗η

(
∂(l + lext)

∂η

)
= 0.

Furthermore, if the system starts at rest, i.e. if we have the following situation at t = 0:

∂(l + lext)

∂η
= 0,

Then:

∂(l + lext)

∂η
= 0, ∀t. (2.18)
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For example, in case of swimming at high Reynolds number, if a MMS is immersed in an

ideal fluid initially at rest, the hydrodynamic forces exerted onto the system derive from

a Lagrangian function which is equal to the added kinetic energy6 of the corresponding

potential flow [67]:

lext(g, r, η, ṙ) =
1

2

(
ηT , ṙT

)
(

Madd Madd

MT
add madd

)(
η

ṙ

)
,

which implies, from (2.18) with l having the form of (2.12) with U = 0, the conservation

law of kinetic wrench:

M̃η + M̃ ṙ = 0,

where M̃ = M+Madd, M̃ =M +Madd. But then, with A = M̃−1M̃ :

η +Aṙ = 0. (2.19)

In this case we recover the same structure as that of the falling cat with A sometimes

named ”hydrodynamic connection”, this connection encoding the kinetic momentum ex-

changes between the body and the surrounding fluid [75, 59, 61, 81].

Remarks:

• Remark 1: Since in (2.19) η ∈ se(3), the hydrodynamic connection, in contrast to

the mechanical connection of the free-falling cat or the orbiting satellite, can change

the position along with the orientation of the system. As a result, this simple model

can explain how at high Reynolds, a MMS can swim in a quiescent fluid in all

directions of translation and rotation.

• Remark 2: It is stated by the well known ”scallop theorem” that any animal with

one internal degree of freedom cannot move in a quiescent ideal fluid [94]. In fact, by

opening its shell, such a ”mathematical scallop” would loose the net displacement it

would gain by closing it, so producing a zero net motion after one cycle. Modeling

this locomotion mode by the ”hydrodynamic connection” gives a straightforward

geometric interpretation to this result. In fact from the context of 2.3.4, a closed

one d.o.f path on S encloses a surface of null area so forcing a zero net displacement

after one cycle.

• Remark 2: Remarkably, swimming at low Reynolds can also be modeled through a

connection named ”Stokes’ connection” [49]. In fact, this context has been the first

6The term ”added”means here that this kinetic energy corresponds to the fluid mass accelerated with
the body, in such a manner that it can be simply added to the body mass.
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application of gauge theory on principal bundle to a case of animal locomotion by

Shaper et Wilczek [102, 103]. Intuitively, in this case the inertial forces exerted onto

the body by the fluid are negligible compared to the viscous ones. Thus the resultant

of viscous forces which are essentially proportional to the body velocity field is zero.

Once expressed on the principle bundle of configurations, these velocities are linear

with respect to ṙ and η so leading to the Stokes connection.

In the above discussion, we discovered that behind an apparent wide diversity of loco-

motion modes, is hidden common geometric structures which draw a general subjacent

picture. In order to complete this picture, we introduce in the next section a subclass of

systems situated between the falling cat and the undulating snakes.

2.3.6 Forward Locomotion Dynamics: The Mixed Case

Let us now reconsider the case of constrained MMS where some of their constitutive bodies

are wheeled. This subclass of MMS plays an important role in locomotion robotics. From

this view point, the kinematic case of section 2.3.4 and the dynamic case of section 2.3.5

are two extreme cases where the number of constraints induced by the wheels on the

fiber bundle is respectively maximum and minimum. Indeed, in the first case the number

of independent constraints is equal to the dimension of the fiber while in the second, it

is zero, since the contacts introduce no constraint7. Now, it is easy to imagine MMS

which belong to the intermediate case where, the system is constrained but with a set

of constraints whose number does not exceed the dimension of the fiber. As a particular

case of such MMS, relevant with robotics but also with sport mechanics, we consider

in the following of this section those submitted to no other contact forces, except those

transmitted by the constraints. Indeed, in this case the MMS locomotion dynamics obeys

partly to kinetic exchanges between internal and external d.o.f and partly to kinematic

contacts. Slightly anticipating the results of the next chapter, let us remark that in such

a case, the reference twist of net motions takes the general form:

η = H(r)ηr + J(r)ṙ (2.20)

where J and H are two matrices, the columns of H spanning in each r, the kernel of the

constraints. As a consequence ηr defines the (admissible) reduced twist. Before pursuing,

let us remark here that when J = 0 and H = 1, we recover the unconstrained case of

section 2.3.5, while when H = 0, the general kinematic model (2.20) degenerates into the

kinematic case of section 2.3.4 with the kinematic connection J = A. Now, since r is

7This does not mean that the MMS does not contain any wheels. In fact, if there are some, they are
modeled by forces themselves ruled by a physical contact law, e.g. of Coulomb.
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(a) (b)

Figure 2.26 – Under-constrained systems (a) Snakeboard (b) Trikke

known in (2.20), the forward locomotion dynamics (2.16) reduces to:

(
η̇r

ġ

)
=

(
M−1

r Fr

g(Hηr + Jṙ)

)
, (2.21)

which rules the time evolution of ηr, and is named reduced dynamics. Such a reduced

dynamics will be found by projecting the unconstrained dynamics onto the kernel of

constraints, what will give the expressions of the reduced inertia operators and forces Mr

and Fr. As examples of MMS ruled by such equations, we find all the systems whose

locomotion principle consists in transferring kinetic momentum from internal degrees of

freedom to external ones via non-holonomic constraints as the snakeboard, the trikke (see

Fig. 2.26) but also a skier sliding down a steep slope, or an ice-skater performing a given

choreography. In this last case the ice-skater will use the mechanical connection when

jumping over the ice and a constrained version of it when touching it. Finally, these last

examples explain why in the original theory of Lagrangian locomotion due to Marsden

and co-workers the above reduced twist ηr is replaced by a reduced momentum p = ∂l
∂ηr

,

with l as the reduced Lagrangian (2.12) and the reconstruction equation by a connection

equation [87].

2.3.7 Inverse Torque Dynamics

Now, we discuss the second model, i.e. torque dynamics (see Block1, Fig. 2.18), which

computes the internal torques of the locomotion system. Reconsidering the Lagrangian

(2.12), and forcing the kinematic model (2.20) in it, the reduced Lagrangian on the ad-



34 Chapter 2. Bio-inspired Locomotion Modeling: An Overview

missible subspace of the principal fiber bundle can be written as:

l̃(ηr, r, ṙ) =
1

2
ηTr Mrηr + ηTr (H

TM)ṙ +
1

2
ṙT
(
m+ JTMJ + JTM +MTJ

)
ṙ, (2.22)

which from Lagrange equations give the torque dynamics as follows:

τ =
d

dt

(
∂l̃

∂ṙ

)
−

(
∂l̃

∂r

)
. (2.23)

In the resulting equations, the reduced net accelerations and velocities η̇r and ηr are

assumed to be known from the forward locomotion dynamics (2.21), and (2.23) finally

gives the torques that actuators have to provide in order to ensure the desired internal

and computed external motions. As a particular case, in the fully constrained case where

(2.20) changes into the connection equation (2.8), the two first terms of (2.22) can be

removed. Moreover, when the number of actuators increases, the torques generally depend

upon the choice of A which is not unique as in the case of systems with redundant actuated

wheels.

2.4 Conclusions

In this chapter, we have done a brief overview of several aspects related to locomotion

in robotics. Starting from animals and pursuing with real robots, we have showed that

there is a need of developing methodological tools for designing, modeling, control, motion

planning and others, of a new generation of robots with a lot of degrees of freedom. As

regards, the modeling aspects, this chapter presented the basic Lagrangian picture using

reduced velocities instead of momentum. A particular attention has been paid to the

problem of the classification of systems. We have discovered that behind an apparent

diversity, many locomotion modes share common geometric structures. In spite of its

purely qualitative value, this knowledge is useful for solving locomotion problem since

it allows one to produce general solutions and is in itself a precious tool for guiding

intuition. This classification effort has been achieved in the perspective of solving a

general basic problem that will be investigated further in the sequel of this thesis. This

problem consists in computing the net motions (solution of the forward external dynamics)

of a MMS as well as the internal torques (solution of the inverse internal dynamics)

from the knowledge of the internal joints evolution. Although the Lagrangian approach

offers a general synthetic point of view of a wide class of multibody systems, it suffers

from lack of something. In particular, when the number of internal degrees of freedom

increases, Lagrangian models and their associated algorithms are more and more heavy to

handle even numerically. Furthermore, in the asymptotic case of continuous robots, the

Lagrangian models of the external and internal dynamics are even impossible to reach.
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For all these reasons, and also to complete the knowledge on robotics locomotion, we

will work in the rest of this thesis on the production of an alternative solution to the

Lagrangian formulation well known under the name of Newton-Euler formulation. This

formulation will lead to easily programmable and fast algorithms, capable of solving both

forward external and inverse internal dynamics. In spite of these pragmatic goals, we

will pursue our effort of classification, by tuning the Newton-Euler formulation to the

geometric mechanics point of view. Finally, we can now state more precisely the major

contributions of the thesis. They are twofold.

1. Firstly, a general algorithm is proposed to solve the forward external and inverse

internal dynamics of discrete mobile multibody systems.

2. Secondly, this algorithm is extended to the novel bio-inspired continuous systems

such as hyper-redundant systems and soft body robots.

With these tools one can study the problems posed by locomotion of a wide range of

systems as it is illustrated in this thesis by applying them to certain systems ranging from

the discrete MMS to a class of continuous systems bio-inspired from terrestrial elongated

body animals.
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In this chapter the Newton-Euler based locomotion dynamics are presented for discrete

mobile multibody systems with tree-like topology. Before entering into the details of these

developments, let us first remind its principle in the simple case of a usual manipulator.

In this case, the general problem of section 2.3.3 reduces to the inverse torque dynamics,

which is trivially solved by removing the fiber kinematic variables in (2.22, 2.23):

τ = m(r)r̈ +Qin(r, ṙ) +Q(r) (3.1)

where C and Q represent the generalized forces due to centrifugal and Coriolis accelera-
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tions, and those due to gravity, respectively.

Now, it is well known that to compute the torques (3.1), the most efficient approaches

exploit the chained topology of the system to replace the heavy Lagrangian-based O(n4)

computations of (3.1), by O(n) recursive computations. Among the recursive solutions,

Newton-Euler based algorithms are undoubtedly the most efficient. They are based on the

dynamic balance of bodies (using Newton’s laws and Euler’s kinematic momentum theo-

rem) isolated one after the other, that are reconnected through the kinematic constraints

imposed by the joints. Then, due to the chained topology, these two sets of equations

define recursions on the body kinematics as well as on the interbody forces. Exploiting

this implicit formulation, Featherstone [40] and Luh and Walker [115] have respectively

proposed fast computational algorithms to solve the forward and inverse torque dynamics

of a manipulator, respectively. In its principle, the Luh and Walker algorithm is based

on two recursions on the body indices, both included into a global time loop. Based on

the joints motion (inputs), the first recursion computes the body kinematics (position,

velocities and accelerations). Then, the second (backward) recursion uses these body

kinematics to compute the interbody torques (outputs). Beyond these computational

complexity aspects, Newton-Euler models lead to a set of few very compact formulations

(can be expressed even manually) independent of the number of joints.

In spite of these advantages, till to date the Newton-Euler formulation has been only

applied to a very few particular cases of bio-inspired locomotion systems. In [72], the

Newton-Euler formulation has been used with a friction contact model of ground forces

in order to address the inverse dynamics problem of a creeping snake. In [110], the

Newton-Euler formulation has been used to solve the forward dynamics of a planar snake

submitted to non-smooth contact forces. Nevertheless, although these works extend the

Newton-Euler formulation to multibody system dynamics, the resulting algorithms do not

exploit the recursive formulation and they do not generalize (to the locomotion) either

the inverse Luh and Walker algorithm or the Featherstone forward algorithm. Looking

further for such generalized algorithms, in [62] the Luh and Walker inverse algorithm and

the Featherstone forward Newton-Euler based dynamic algorithm have been proposed for

studying the locomotion of an eel-like robot, while in [82] a Luh and Walker computed

torque algorithm has been proposed to solve the inverse dynamics of a mobile manipula-

tor. In spite of these recent works, to our knowledge no general Newton-Euler framework

for the inverse recursive dynamics of multibody systems with joints and wheels has been

proposed till today.

Although the Newton-Euler formulation has been discussed by various authors, the unified

computation for the Newton-Euler based locomotion dynamics in the context of geometric
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mechanics is new to our knowledge. This chapter presents such a unified computational

method based on the Newton-Euler formulation for the discrete mobile multibody sys-

tems with tree-like topology [10]. For this purpose, the existing computational torque

algorithm of Luh and Walker [115], which is limited to manipulators, is extended to a

wide range of mobile multibody systems. Furthermore, using some of the concepts of

geometric mechanics, the approach also proposes a general classification of a wide range

of systems going from fully-constrained systems (e.g. snake-like robots) to free-floating

systems (e.g. shuttle arms, satellites, etc.) via the standard or mobile manipulators and

including any of the under-actuated nonholonomic systems such as the snakeboard, the

trikke, etc.

In the sequel of this chapter, first of all a general description of the mobile multibody

system is given followed by a set of basic assumptions to fix the idea. Then, in section

3.2, the Luh and Walker computational torque algorithm is presented for a manipulator to

explain the fundamental recursions based upon the Newton-Euler formulation. In section

3.3, the extension of the Luh and Walker algorithm to a wide class of mobile multibody

systems is briefly discussed in order to streamline the basic modeling approach. Then, in a

first step, in section 3.4 the extension process is applied on a subclass of mobile multibody

systems called as ”unconstrained systems”. In a second step, in section 3.5 the algorithm is

extended to another subclass of mobile multibody systems called as ”constrained systems”

through a projection process based upon the nonholonomic kinematic constraints of the

wheels. At the end, these extensions allow us to propose a general unified algorithmic

framework to solve the problem of locomotion of a vast variety of the mobile multibody

sytems.

3.1 Description of a Mobile Multibody System

A mobile multibody system considered here is an open chain1 tree-like structure of rigid

bodies interconnected through joints as shown in Fig. 3.1. The structure is composed

of p + 1 rigid bodies, denoted as So, S1, S2, . . . , Sp, as shown in Fig. 3.1. These tree-like

structures are labeled by following the usual Newton-Euler conventions [64]. The indices

of bodies increase from the reference body So toward the terminal bodies2 as illustrated

in Fig. 3.1. In all subsequent computations the index i is strictly reserved to denote the

antecedent of the current index j. Moreover, the bodies numbering fulfills the following

convention: i < j. With this numbering convention, let us note that in the case of simple

chain systems i = j−1 whereas for a tree-like structures i is not necessarily equal to j−1,

1Closed kinematic chains can be modeled as open chains with certain preliminary steps [63]. A brief
description is available in Appendix A.1.

2A tree-like mobile multibody system may have more than one terminal body.
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Figure 3.1 – Tree-like structure of a mobile multibody system: (a) Manipulator; (b) Wheeled
system
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Figure 3.2 – Concept of isolated and composite body

e.g. in Fig. 3.1(a) for body S8 we have S2 as its antecedent body then j = 8 and i = 2.

In the following, we also need the concept of composite body [117]. Any composite body

S+
j is a rigid body that consists of body Sj and all its successors up to the terminal bodies

frozen in the current shape and animated by the motion of body Sj. While Sj alone is

considered as an isolated body Sj as explained in Fig. 3.2 (for a body S3 of the manipulator

in Fig. 3.1(a)). In particular, for any mobile multibody system, the composite reference

body S+
o consists of the whole structure enduring an overall rigid motion as that of So.

Finally, in the following, S+
o means the reference body So rigidly connected to the rest of

the structure, while So alone means the reference body So considered as a single isolated

body.
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Joints: Types and Parametrization

For the sake of simplicity the bodies are supposed to be interconnected through single

degree of freedom revolute joints only. Such restriction on types of joint is not basic since

what follows can be easily extended to a mobile multibody system with any type of joint.

The joints are assumed to be ideal, i.e. no backlash and no friction. Each interbody joint

is parameterized by a joint angle rj and is actuated by a motor producing the torque τj

around the joint unit axis aj with j ∈ {1, 2, . . . , p}, where:

r =
(
r1 r2 · · · rp

)T
, τ =

(
τ1 τ2 · · · τp

)T
.

Wheels: Types and Parametrization

Any body may be connected to the ground through wheels (see Fig. 3.1(b)). The bodies

are classified into ”wheeled bodies” (whose set of indices is noted as Nw) and ”unwheeled

bodies” (with indices in Nuw). Wheels are mainly classified into omnidirectional and uni-

directional wheels. The unidirectional wheels are further classified as ”steering”, ”castor”

or ”fixed wheels” depending upon whether their steering axes (axes normal to the ground

as shown in Fig. 3.3) are actuated, free or clamped in the bodies as shown in Fig. 3.4.

The modeling requires two sets of kinematic parameters for the wheels. Since we do

not take wheels’ inertia into account, thus these parameters are not considered as actual

configuration parameters. For any body Sj , the first set is that of steering wheel angles

gathered in the vector βj, while the second set is that of the rolling angles gathered in the

vector θj as follows:

θj =
(
θj,1 θj,2 · · · θj,Nj

)T
,
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Figure 3.4 – Types of unidirectional wheel

where Nj is the total number of wheels (excluding castor wheels) of any body Sj , j ∈ Nw.

It is assumed that the actuated wheels (if any) are contained only by the reference body

So. Thus, if Na wheels are actuated around their rolling axes (cf. Fig. 3.3), then θo can

be block-partitioned into vectors of actuated and free (passive) wheels as follows:

θo =

(
θoa

θof

)
, (3.2)

with dim(θoa) = Na. Finally, for all the actuated wheels, the (Na × 1) vector of their

motor torques is denoted as Γ.

3.1.1 Basic Assumptions

As the assumptions made during the above discussion will be referred during the course

of this work. Therefore, we sum up the basic assumptions of the proposed algorithm as

follows.

1. The ground is considered as a horizontal planar surface. This imposes three planar

ground holonomic constraints on the general 3D motion of the wheeled bodies. One

constraint prevents the body from vertical translation whereas the other two prevent

it from rolling and pitching rotations.

2. If the system has actuated wheels, then the only body equipped with actuated

wheels will be the reference body So.

3. The inertia of the wheels are negligible compared to those of the bodies. Conse-

quently, they will only intervene in the modeling through their kinematics.

4. Castor wheels (if any) just maintain the horizontal static balance with respect to

the ground. Consequently, they will be removed from the modeling process.

5. All the bodies of the system are connected with each other through (holonomic)

joints that are assumed to be ideal (no friction or backlash) and actuated.
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6. In case of ideal3 wheels, the wheels are modeled through nonholonomic constraints

which verify the non-sliding and rolling without slipping conditions.

7. As this article deals only with the dynamics, we assume that the compatibility

conditions required to ensure the mobility of the mechanism under the constraints

induced by the ideal wheels are verified through design and motion planning.

Note that the last two assumptions are only valid in case of ideal wheels.

3.1.2 Configuration Spaces of a Mobile Multibody System

Let us first remind that the expected solution (in the form of algorithm) to the general

problem stated in section 2.3.3 is structured into two blocks according to the flow chart of

Fig. 2.18. When dealing with the inverse torque dynamics (Block1 of Fig. 2.18), the con-

figuration space of the mobile multibody system will be defined as the following Cartesian

power of Lie group:

C1 = G×G× · · ·G︸ ︷︷ ︸ = Gp+1,

p+ 1 copies
(3.3)

where each copy of G stands for the configuration Lie group of each of the p + 1 bodies

considered as isolated from one another. Also, in this first definition So is not distinguished

from the other bodies. On the other hand, when dealing with the locomotion model

(Block2 of Fig. 2.18), So becomes the reference body, i.e. a body whose motions fix the

overall rigid motions of the whole structure with respect to which the shape variations are

measured. As such, the motion of So may be imposed through arbitrary known time-laws

(as in the particular case of a manipulator where So is the base), or more generally it

is computed through the time-integration of the locomotion model whose configuration

space is defined as the principal fiber bundle:

C2 = G× (S1)p. (3.4)

In this second definition of the mobile multibody system configuration space, (S1)p stands

for the configuration shape-space S of the p revolute joints parameterized by the vector r

of joint angles, while G is the configuration Lie group of the composite reference body S+
o

(i.e. of So connected to the whole mobile multibody system structure locked in its current

shape). Finally, since in any case G ⊆ SE(3), we will generally consider that G = SE(3)

and will remove this assumption in next chapter while dealing with illustrative examples.
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Figure 3.5 – Newton-Euler parametrization of a mobile multibody system

3.1.3 Basic Mathematical Expressions

Before starting the mathematical modeling of mobile multibody systems, let us first

present some basic mathematical terms and expressions that will be helpful for better

understanding of the subsequent equations. For any vector V ∈ R
3, V ∧ (or V̂ ) denotes

the cross-product matrix of V while if V = (vT , ωT )T ∈ R
6, then V ∧ =

(
ω̂ v

0 0

)
, where

ω ∈ R
3 and (V̂ )∨ = V . Each body Sj is given a body frame Fj = (Oj, sj, nj , aj) at

the joint center Oj as shown in Fig. 3.5, where aj is the axis of rotation of the single

degree of freedom revolute joint. Like all the other frames used in the following, Fj is

orthonormal. The ambient geometric space is provided with a fixed spatial frame denoted

as Fe = (Oe, se, ne, ae). The rigid body transformation (elements of SE(3)), which maps

any frame Fl onto any other frame Fk is represented by a 4 × 4 homogeneous matrix

denoted by lgk ∈ SE(3), e.g. the transformation matrix igj which maps the frame Fi of

body Si onto the frame Fj of body Sj , is given as follows:

igj =

(
iRj

iPj

0 1

)
,

where, iPj = i(OiOj) and iRj is a (3 × 3) orientation matrix of Fj with respect to Fi.

Moreover, Mj denotes the (6 × 6) inertia matrix, containing the inertia components of

3When the contact between the wheel and the ground is perfect.
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body Sj on se(3)∗ ⊗ se(3), expressed in Fj. Where:

Mj =

(
mj13 −mj ŝj

mj ŝj Ij

)
, (3.5)

where, mj is the mass of body Sj, whereas mjsj and Ij are the vector of first inertia

moments and the matrix of second inertia moments, respectively, both expressed in Fj.

Note that if a parameter is expressed in a frame other than its own body frame, then a

superscript is used before a vector or matrix to denote the frame e.g. oMj denotes the

inertia matrix of body Sj expressed in Fo, while Mj denotes the inertia matrix of body

Sj expressed in Fj. Furthermore, adopting the R
6 space of twists as definition of se(3),

the twist of Sj is defined by a (6× 1) vector of body velocity components expressed in Fj

denoted by ηj, while its time derivative η̇j denotes the (6×1) vector of body accelerations,

where:

ηj =

(
Vj

Ωj

)
, η̇j =

(
V̇j

Ω̇j

)
.

Passing to the dual, Fj denotes the (6× 1) wrench of the forces applied onto body Sj by

its antecedent body Si, expressed in its own body frame Fj. Where:

Fj =

(
Nj

Cj

)
.

Moreover, any twist can be pushed forward from Fi onto Fj through the relation: jηi =

Adjgiηi, where Adjgi is known as the (6× 6) adjoint map operator and is given by:

Adjgi =

(
jRi

jRi
iP̂ T
j

0 jRi

)
. (3.6)

On the dual side, any wrench can be pulled back from Fj to Fi through:
iFj = AdTjgiFj ,

while Fgyr,j and Fext,j denote the wrenches of gyroscopic and external forces applied onto

Sj, respectively.

3.2 Luh and Walker Manipulator Dynamics

Since the proposed algorithm is an extended version of the Newton-Euler based Luh and

Walker computational torque algorithm [115] for industrial manipulators. Thus we recall

it in detail here for a tree-like manipulator with single degree of freedom revolute joints

where the net motions of the base So are predefined as shown in Fig. 3.1(a). As explained

in Fig. 3.6, the purpose of the algorithm is to compute at each current time t of a global
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egj , ηj , η̇j

Output: τ(t)

Inputs: (r, ṙ, r̈,e go, ηo, η̇o)(t)

Block1

Figure 3.6 – Luh and Walker computational torque algorithm

time loop, the vector of joint torques τ(t) as output, from the knowledge of the current

values of inputs: (ego, ηo, η̇o, r, ṙ, r̈)(t). Consequently, it is the inverse dynamics, called as

internal torque dynamics in this work, whose computations are done with the following

two sets of recursive equations.

Forward recursion: this first set solves the following recursive direct kinematic model

to compute each body kinematics:

for j = 1, 2, . . . , p, and with boundary conditions: (ego, ηo, η̇o) = (ego, ηo, η̇o)(t):

Computation of the body transformations:

egj =
egi

igj(rj). (3.7)

Computation of the body velocities:

ηj = Adjgiηi + ṙjAj . (3.8)

Computation of the body accelerations:

η̇j = Adjgi η̇i + ζj(ṙj, r̈j). (3.9)

Where, Aj is a (6× 1) vector given by:

Aj =

(
0

aj

)
, with aj =




0

0

1


 .

We also denote by ζj(ṙj , r̈j), a (6× 1) vector as follows:

ζj =

(
jRi(Ωi × (Ωi ×

iPj))
jΩi × ṙjaj

)
+ r̈jAj . (3.10)
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So

(a)

So

(b)

Figure 3.7 – Wheeled mobile multibody system with passive wheels: (a) Two-axles mobile multi-
body system; (b) Three-axles mobile multibody system

Backward recursion: this second set solves the following recursive dynamic model to

compute the interbody wrenches:

for j = p+1, p, . . . , 1, and with the boundary conditions: Fj = 0, if Si is a terminal body

free of any contact forces:

{
if i = j − 1 : Fi = Miη̇i − Fext,i − Fgyr,i +AdTjgiFj;

else: Fgyr,i = Fgyr,i − AdTjgiFj .
(3.11)

Finally, the applied wrenches are projected onto the joint axes to obtain the joint torques

as follows:

for j = 1, 2, . . . , p : τj = ATj Fj. (3.12)

Where, Fgyr,i is a (6× 1) vector of gyroscopic wrenches given by the following relation:

Fgyr,i = −

(
Ωi × (Ωi ×misi) + Ωi ×miVi

Ωi × (IiΩi) +misi × (Ωi × Vi)

)
. (3.13)

Finally, let us note that the recursive Newton-Euler based model (3.7-3.11) gives the

dynamics of the system in its configuration space defined by (3.3)4, while on the other hand

the Lagrangian model (3.1) of the same robot expresses its dynamics in the configuration

space defined as the manifold of its joint coordinates S = (S1)
p
.

3.3 Overview of the Proposed Algorithm

The Luh andWalker algorithm is limited to the case where the net motions of the reference

body So are imposed à priori as depicted in Fig. 3.1(a). Now to discuss the generalization of

the Luh and Walker algorithm let us consider a planar wheeled mobile multibody system

as shown in Fig. 3.7 where the wheeled bodies are connected through actuated single

degree of freedom revolute joints. By imposing motions on the actuated joints, the bodies

of this system are subjected not only to internal ”shape motions”, like those found in a

4With one copy of G removed since the motion of the base is now imposed.
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manipulator, but also to net rigid motions defined as those of an arbitrary reference body

So. Consequently, the desired generalization of the Luh and Walker algorithm requires a

knowledge of the net motions of So which are generally no longer imposed but must be

computed from a new model, here called as locomotion model. This model is a direct (or

forward) model since it relates the motions of joints to those of the reference body So.

This relation can be modeled either through a simple kinematic model (i.e. not involving

forces) or through a dynamic model. Therefore, we can quickly conclude that there exists

two types of locomotion models.

Dynamic locomotion model: where the net motions of the mobile multibody system

are related to the joint motions via a dynamic model.

Kinematic locomotion model: where the net motions of the mobile multibody system

are related to the joint motions via a kinematic model.

Before going into detailed discussion of such locomotion models, let us remind that exter-

nal forces of any nature of contact other than that of ideal wheels, such as those of fluid

contact or ground contact via non-ideal wheels, are supposed to be known through state

dependant physical laws. While in case of ideal wheels, the contact is modeled through

nonholonomic constraints (see assumption 6 in section 3.1.1). With this consideration

that is based upon the modeling approach of external contacts, the mobile multibody

systems can be classified into the following two main categories (see also Fig. 3.8).

Unconstrained mobile multibody system: any mobile multibody system (wheeled

or unwheeled) whose external contacts are modeled through external forces model

by applying some physical laws, e.g. the use of a friction model for a ground contact

via non-ideal wheels.

Constrained mobile multibody system: any wheeled mobile multibody system con-

nected to the ground through wheels where the wheeled contact is modeled as the

nonholonomic (non-sliding and/or rolling without slipping) constraints.

3.3.1 Scope of the Algorithm

The aim of this section is to illustrate the scope and principle of the proposed algorithm

based upon the locomotion model. Because this new locomotion model plays a key role

in the general algorithm, we will now consider it case by case starting with the wheeled

mobile multibody systems.
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Figure 3.8 – Scope of locomotion dynamics algorithm

3.3.1.1 Wheeled Mobile Multibody Systems

Example 1: Two-Axles Mobile Multibody System

First, let us consider the wheeled system given in Fig. 3.7(a). In this case the wheels,

being passive, introduce only two independent kinematic (nonholonomic) non-sliding con-

straints. These two constraints are insufficient, compared to the 3 degrees of freedom of So

in the planar ground, to calculate its net motions through pure kinematics, i.e. through a

kinematic locomotion model. Consequently, in this case the locomotion model is achieved

by the dynamic balance of So controlled by the joint motions, i.e. through a dynamic

locomotion model. As such, this balance includes a model of the contact forces which can

be defined in the following two ways:

1. As external frictional forces, in case of unconstrained mobile multibody systems.

2. By the Lagrange multipliers which force the non-sliding constraints, in case of con-

strained mobile multibody systems.
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In the first unconstrained case, the dynamic locomotion model takes the following form:

M+
o η̇o = F+

in,o + F+
ext,o, (3.14)

where M+
o , F

+
in,o and F

+
ext,o are, respectively, the composite inertia matrix, inertia wrench

and external wrench of the whole structure, expressed in reference frame Fo. The η̇o is

the acceleration of the composite reference body S+
o . In the second constrained case,

the contact forces can be eliminated by projecting the above dynamic locomotion model

(3.14) into the kernel of the wheels constraints. The locomotion model then takes the

following alternative ”reduced” form:

M+
rf η̇rf = F+

in,rf , (3.15)

where, we find the same quantities as in (3.14) but projected into the kinematically

admissible space of S+
o restricted by the two non-sliding constraints. Consequently, in

the sequel of this work, such locomotion model will be called as the reduced dynamic

locomotion model. Let us note that in this case the system will be called as under-

constrained mobile multibody system as shown in Fig. 3.8.

Moreover, when developing such locomotion models, we will see that the computation of

all the matrices appearing in (3.14,3.15) can be carried out recursively by exploiting the

Newton-Euler formulation.

Example 2: Three-Axles Mobile Multibody System

Continuing the generalization, if we now add another wheeled body identical to the first

two (see Fig. 3.7(b)), the number of non-sliding kinematic constraints becomes three which

is sufficient to entirely specify the net motions of S+
o through pure kinematics i.e. with a

kinematic locomotion model. Consequently, the locomotion model turns into a kinematic

locomotion model of the following general form:

ηo = −A(r)ṙ(t), (3.16)

where A is a matrix that depends upon the vector of the joint variables r. Let us note

that the reference acceleration is no longer deduced from the dynamic locomotion model

(3.14 or 3.15) but from the time-differentiation of the kinematic locomotion model (3.16).

Therefore, in this case the system will be called as fully-constrained mobile multibody

system as mentioned in Fig. 3.8, since the net motions of the composite reference body S+
o

are fully defined by the kinematic constraints (here the three non-sliding constraints). As

another example, the under-constrained mobile multibody system in Fig. 3.7(a) becomes

a fully-constrained mobile multibody system if one of its wheels is actuated since in this

case the rolling without slipping constraint imposed by the actuated wheel acts as the
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Figure 3.9 – Flow chart of the recursive locomotion dynamics algorithm

third kinematic constraint along with the two non-sliding constraints. Furthermore, in

this case since η̇o is known from kinematic locomotion model, the dynamics (3.14) can be

exploited for the computation of external contact forces and in particular to compute the

torque applied onto the actuated wheels.

Finally, if the number of actuated wheels or axles increases, the kinematics become over-

constrained and the constraints must be compatible for mobility to be possible. In the

following, this compatibility is presumed to be verified as it depends on the design and/or

the gait generation [101], two problems not dealt with in this research work.

3.3.1.2 Unwheeled Mobile Multibody Systems

The Luh and walker algorithm can also be extended to a locomotion system without

wheels. To do this, the same algorithm structure is considered but the external contact

forces of the wheels in dynamic locomotion model (3.14) are replaced by those induced

by the environment (e.g. a fluid) on which the robot pushes to propel its reference body.

Finally, the extreme case in this context is an articulated system without any external

contact such as the arm of a space shuttle or a satellite. Here, the external forces in

the dynamic locomotion model (3.14) disappear and the dynamic locomotion model turns

again into a kinematic locomotion model of the form (3.16) but this time it is no longer

the kinematic constraints that are encoded in A, but the laws of conservation of initially

null kinetic momentums.

The Fig. 3.9 represents the flow chart of the general algorithm applicable to any of the

aforementioned mobile multibody systems. Where, Block1 contains an extension of the

two recursions of the standard Luh algorithm to the case of wheeled systems, while Block2

contains a recursive computation of the (constrained or unconstrained) locomotion model.



54 Chapter 3. Locomotion Dynamics Algorithm of Mobile Multibody Systems

3.4 The Unconstrained Mobile Multibody System

In this section, we extend the standard Luh algorithm of section 3.2 to the case of an

unconstrained mobile multibody system. In this case, the tree-like structure is either

completely disconnected from the earth (i.e. Nw = ∅) or connected with it through non-

ideal wheels. Examples of completely disconnected mobile multibody systems contain the

aerial, aquatic and spatial systems. For example a satellite whose attitude is controlled

with kinematic momentum exchange devices such as simple inertia wheels or more so-

phisticated systems such as control momentum gyroscopes, a swimming eel-like robot or

a walking robot in its flying phase, etc. In short, it includes any mobile multibody system

for which the interaction with the rest of the world can be modeled through external

contact forces explicitly computable (e.g. with simple laws of the body motions) or nu-

merically by a solver (e.g. of Fig. 2.25). To fix the ideas, in the following, the external

contact forces applied on any body Sj will be modeled by state-dependent physical laws

of the following form:

Fext,j = Fext,j(t, r(t), ṙ(t),
ego, ηo). (3.17)

In this scenario, the Luh and Walker recursive algorithm of section 3.2 can be easily

extended to the case of an unconstrained mobile multibody system by computing the

accelerations η̇o of the reference body S+
o . Therefore, first we develop the dynamic lo-

comotion model (Block2 of Fig. 3.9) in order to compute the current accelerations η̇o

of S+
o from the current inputs ((r, ṙ, r̈)(t)) and the current reference state ((ego, ηo)(t)).

Then this reference acceleration is used as boundary conditions for the Luh and Walker

recursive torque dynamics (Block1 of Fig. 3.9) in order to compute motor torques τ(t).

3.4.1 Dynamic Locomotion Model

This model is based on the reference body dynamics controlled by the imposed joint

motions based upon Newton-Euler formulation, such a dynamic balance applied onto S+
o

is stated in the following form:

M+
o (r(t))η̇o = F+

o (r(t), ṙ(t), r̈(t),
ego, ηo). (3.18)

These dynamics can be derived either from a Lagrangian approach through variational

calculus on a principal fiber bundle or more simply by applying the principle of virtual

work as follows. For the sake of simplicity, a simple chain mobile multibody system is

considered, for which the virtual work balance applied to the entire system can be stated
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as follows: for ∀j = 0, 1, . . . , p and ∀δηj ∈ R
6:

δWacc − δWext − δWint =
j=p∑

j=0

δηTj (Mj η̇j − Fgyr,j − Fext,j +AdT(j+1gj)
Fj+1 − Fj) = 0. (3.19)

Where the first two terms of the summation symbol stand for the virtual work produced

by the acceleration amounts of the bodies, denoted δWacc, the next term stands for the

virtual work of external forces δWext, while the last two terms is the total virtual work

produced by the interbody forces (here modeled by inter-bodies wrenches): δWint. Now

two more operations have to be done in order to derive (3.18). Firstly, the virtual twists

are taken compatible with internal joint kinematics, i.e. they verify (3.8) with δ replacing

the time differentiation. Secondly, because we are looking for the reference body dynamics

controlled by the internal motions ruled by explicit time laws, the frozen time condition

imposes to have δr(t) = 0 and finally we just have to force the virtual twists δηj in (3.19)

to verify for any δηo ∈ R
6:

j = 0, 1, . . . , p− 1 : δηj = Adjgj−1
δηj−1, (3.20)

and with simple transformations, we have for:

j = 0, 1, . . . , p : δηj = Adjgoδηo, (3.21)

while with the same transformations, the equation (3.9) allows one to state:

η̇j = Adjgo η̇o +

l=j∑

l=1

Adjglζl. (3.22)

Now taking into account (3.21) and (3.22) in the virtual work (3.19), we get the dynamic

balance (3.18) for a simple chain mobile multibody system submitted to external forces

(3.17). Where, M+
o (r(t)) is the composite inertia matrix of the composite reference body

S+
o and is given by:

M+
o (r(t)) =

j=p∑

j=0

AdTjgoMjAdjgo, (3.23)

and F+
o (r(t), ṙ(t), r̈(t),

ego, ηo) is the resultant wrench of all inertial and external forces

exerted onto S+
o and is given by:

F+
o = Fgyr,o + Fext,o +

j=p∑

j=1

AdTjgo

(
Fgyr,j + Fext,j −Mj

(
l=j∑

l=1

Adjglζl

))
. (3.24)
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Here let us remark that the joints being ideal, we simply have δWint = 0, since the internal

reaction forces do not work in any virtual field compatible with the joint kinematics.

Furthermore, with reference to (3.14):

F+
o = F+

in,o + F+
ext,o, (3.25)

with:

{
F+
in,o = Fgyr,o +

∑j=p
j=1Ad

T
jgo

(
Fgyr,j −Mj

(∑l=j
l=1Adjglζl

))
,

F+
ext,o = Fext,o +

∑j=p
j=1Ad

T
jgo

(Fext,j) .
(3.26)

Now keeping in view the tree like topology, the matrices M+
o and F+

o of equations (3.23,

3.24) can be numerically computed through the following backward recursive computa-

tions initialized by the boundary conditions: M+
j = 0, F+

j = 0 if Si is a terminal body:

for j = p+ 1, p, ...1:

Compute M+
o through:

{
if i = j − 1 : M+

i = Mi +AdTjgiM
+
j Adjgi;

else: Mi = Mi +AdTjgiM
+
j Adjgi.

(3.27)

Compute F+
o through:

{
if i = j − 1 : F+

i = Fgyr,i + Fext,i − AdTjgiM
+
j ζj − AdTjgiF

+
j ;

else: Fgyr,i = Fgyr,i − AdTjgiF
+
j − AdTjgiM

+
j ζj .

(3.28)

Finally, the dynamic locomotion model can be written in state-space form on SE(3)×se(3)

as:
(

η̇o
eġo

)
=

(
(M+

o )
−1F+

o

egoη̂o

)
, (3.29)

where the second row is the reconstruction kinematic equation from ηo to ego. In order

to update the reference state for the next step of the time loop, (3.29) is numerically

integrated, for instance, with a geometric time integrator on Lie groups [91] or more

simply with a quaternion-based integrator. These two integrators exploit the advantages

of the intrinsic modeling approach here pursued. In particular, they are free of singularities

and artificial nonlinearities like those introduced by any three-angle parametrization of

orientations of So.

3.4.2 Torque Dynamics

Once the reference acceleration η̇o of the reference body S
+
o is known at the current time,

the acceleration η̇j and interbody wrenches Fj are computed through forward recursive
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Figure 3.10 – Execution of proposed algorithm in case of an unconstrained mobile multibody sys-
tem

equation (3.9) and backward recursive equation (3.11) of the standard Luh and Walker

algorithm (Fig. 3.6), respectively. Then, these interbody wrenches are projected onto the

joint axes in order to compute the joint torques τ(t) by using equation (3.12).

In short, the extension of standard Luh and Walker algorithm to the case of an uncon-

strained mobile multibody system only requires the dynamic locomotion model (3.29)

along with the recursions (3.27, 3.28) in addition to the torque dynamics (3.7-3.12).

Finally, the execution of the proposed algorithm for an unconstrained mobile multibody

system is stated in Fig. 3.10.
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3.4.3 Unconstrained Cases with Symmetries

In certain conditions related to the external forces (3.17), the previous general context

can be simplified. In particular, this occurs when:

1. A robot is floating in space, e.g. a shuttle arm or any satellite equipped with a

reorientation system based on inertial exchange devices.

2. A robot is immersed in an ideal fluid initially at rest.

In the context of section 2.3.5, for both of the above cases the external forces Fext are
ego−independent and Lagrangian [7]. Mathematically, it means that there exists a La-

grangian function lext = lext(r, ṙ, ηo) such that equation (2.17) is satisfied. We now recall

it with the new notations (Fext = F+
ext,o and η = ηo):

F+
ext,o =

d

dt

(
∂lext
∂ηo

)
− ad∗ηo

(
∂lext
∂ηo

)
, (3.30)

where, ad∗
(.)(.) : g × g∗ → g∗ is the co-adjoint map of G. Let us remind that in the first

case mentioned above G = SO(3) and lext = 0, while in the second case lext is equal to

the added kinetic energy of the fluid [67]. Further analysis of such cases shows that, with

lext+ l =
1
2
ηTo (M̃

+
o ηo+

oM̃rṙ), l being the Lagrangian of the system free of external forces,

the acceleration part of (3.29) can be explicitly time-integrated to state the following set

of nonholonomic constraints:

M̃+
o ηo +

oM̃rṙ = 0, (3.31)

where, M̃+
o = I+o and oM̃r =

oIr in the first case, while M̃+
o = M+

o +M+
add,o and

oM̃r =
oMr +

oMadd,r in the second case5. Finally, equation (3.31) stands for the conservation

of the kinetic momentum of a system initially at rest. Furthermore, in (3.31), oM̃r is a

(6×p) matrix which can be computed column by column from a tilde version of (3.28) by

imposing successively r̈ = (−1, 0, 0, . . . , 0), r̈ = (0,−1, 0, . . . , 0), . . . , r̈ = (0, 0, 0, . . . ,−1)

while ṙ(t) = 0, ηo = 0 and r is ”frozen” in its current value r(t). Finally, (3.31) allows the

dynamic locomotion model (3.29) to be replaced by the following kinematic locomotion

model:

η̂o =
eg−1
o

eġo = (−Aṙ)∧ , η̇o = −Ar̈ − Ȧṙ, (3.32)

where A = (M̃+
o )

−1 oM̃r is the local form of a connection on the principal fiber bundle

C2 known as a ”mechanical connection” [76, 89, 59]. In this case, the dynamic locomotion

model reduces into kinematic locomotion model due to the symmetry properties of the

system dynamics [76].

5The subscript ”add” refers to the added mass of the fluid accelerated by the body
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3.5 The Constrained Mobile Multibody System

Now we extend the algorithm of the unconstrained mobile multibody system further to the

case of a constrained mobile multibody system. As mentioned earlier that a constrained

mobile multibody system is a structure always in contact with the ground through ideal

wheels. Thus, this extension is basically a reduction process based upon the nonholonomic

constraints of the wheels. Before carrying out this reduction process, we first recall the

nonholonomic kinematics of a constrained mobile multibody system. Note that, in case

of constrained mobile multibody system, any wheeled body is alternatively called as a

nonholonomic body since it is always constrained through nonholonomic kinematic con-

straints. Consequently, any unwheeled body of a constrained mobile multibody system is

called as a holonomic body.

3.6 Kinematics of a Constrained Mobile Multibody

System

3.6.1 Kinematics of an Isolated Nonholonomic Body

We here investigate the kinematic model of a nonholonomic body Sj , j ∈ Nw endowed

with Nj wheels. The body is considered isolated from the rest of the structure. Math-

ematically, this is equivalent to consider the nonholonomic constraints on the definition

(3.3) of the configuration space, i.e. on each copy of SE(3). Being ideal, each unidirec-

tional wheel experiences two constraints, one due to the axial rolling without slipping

condition and the other due to the lateral non-sliding condition. On the other hand, each

omnidirectional wheel experiences only one rolling without slipping constraint. Note that

only the non-sliding constraints of all the Nj wheels are involved in the reduction process.

3.6.1.1 Non-sliding Constraints of an Isolated Nonholonomic Body

In this section, we consider the tree-like system of the general type shown in Fig. 3.1(b)

for which Nw 6= ∅. Then, we isolate each nonholonomic body Sj, j ∈ Nw endowed with

Nj wheels. Consequently, this is equivalent to consider the non-sliding constraints on the

definition (3.3) of the configuration space, i.e. on each copy of SE(3). Moreover, since the

non-sliding constraints prevent the wheels from sliding along the directions perpendicular

to their planes hence they are modeled by left-invariant 1-forms on the configuration group

SE(3) of their body. In fact, once written in the dual of the Lie algebra of the material

infinitesimal transformations of SE(3) (i.e. the space of the twist of Sj expressed in Fj),

they do not depend any more on the platform configuration of SE(3). Thus, they can be

written as:
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for k = 1, 2, ...mj, ∀t ∈ R
+, ∀j ∈ Nw : ωj,k(βj(t), .) = 0, with:

ωj,k : (t, ηj) ∈ R
+ × se(3) 7→ ωj,k(βj(t), ηj) ∈ R, (3.33)

where for each Sj , the ωj,k’s are mj(6 Nj) independent co-vectors of se(3)
∗ which can be

time-dependent through the vertical steering angles βj,k=1,...,Nsj
of Sj . Now, let us define

Vj the subspace of se(3), said ”admissible” since it contains any twist of Sj compatible

with the constraints (3.33). Once the three holonomic constraints imposed by the contact

with the horizontal planar ground added to (3.33), the Vj space is spanned by any set

of 6−mj − 3 , nj time-varying independent vectors of se(3): (hj,l(βj(.)), l = 1, 2, ..., nj)

which verifies at any time the planar ground constraints and the non sliding ones (3.33),

i.e.:

for k = 1, 2, ...mj + 3, l = 1, 2...nj , ∀t ∈ R
+:

ωj,k(βj(t), hj,l(βj(t))) = 0. (3.34)

In the following, we will identify se(3)∗ to se(3) thanks to the natural isomorphism be-

tween the row and the column vectors of R6. This allows one to rewrite the non-sliding

constraints (3.33) along with the three planar ground holonomic constraints imposed by

the ground as:

for k = 1, 2, ..., mj + 3, ∀t ∈ R
+:

ωj,k(βj(t), ηj) = (h⊥j,k)
T (βj(t))ηj = 0, ∀ηj ∈ se(3),

where, the space span(h⊥j,k(βj(t)))k=1,2,...,mj+3 is the orthogonal complement of the admis-

sible space Vj = span(hj,l(βj(t))l=1,2,...,nj
in se(3) and will be denoted by V⊥

j . Finally, in

order to identify the admissible space Vj along with its dual V∗
j (a condition required for

the dynamic reduction process of the isolated non-holonomic bodies of section 3.7) we

shall impose to the base (hj,l)l=1,...nj
of Vj to be orthonormal for the Euclidean metric of

R
6, i.e. to verify: hTj,lhj,q = δlq, ∀l, q = 1, 2, ..., nj, or more concisely, in matrix form:

∀j ∈ Nw : HT
j Hj = 1nj

, (3.35)

where:

Hj(t) = (hj,1(βj(t)), hj,2(βj(t)), ..., hj,nj
(βj(t))). (3.36)

For instance, this can be achieved thanks to the Gram-Schmidt ortho-normalization algo-

rithm. Moreover, as assumed earlier that the motion of any mobile platform Sj is confined

to the planar ground SE(2), then the dimensions of Vj (i.e. nj) do not exceed 3, and this

algorithm can be applied symbolically. Further, we assume that such an orthonormal base

(hj,l)l=1,2,...,nj
of Vj is known. With these definitions and notations, any admissible twist
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of the platform can be expressed as:

∀j ∈ Nw : ηj = Hj(t)ηrj . (3.37)

This relation defines the reduced kinematics of an isolated non-holonomic body Sj , where

ηrj defines the (nj × 1) vector of the components of ηj in the base of Vj . This vector will

be named ”reduced twist” of Sj and Hj will be named the (6× nj) ”reduction matrix” of

the jth isolated body.

Moreover, the orthogonal complement of Hj is defined by:

H⊥
j (t) = (h⊥j,1(βj(t)), h

⊥
j,2(βj(t)), ..., h

⊥
j,mj+3(βj(t))), (3.38)

such that HT
j H

⊥
j = 0nj×(mj+3). Finally, in virtual terms, equation (3.37) defines the

virtual twist of body Sj compatible with its non-sliding and planar ground constraints as

follows:

δηj = Hj(t)δηrj, (3.39)

where δηrj is the reduced virtual twist of the isolated body Sj.

3.6.1.2 Rolling Without Slipping Constraints of an Isolated Nonholonomic

Body

The rolling kinematics of the wheels of any body Sj , j ∈ Nw are considered as a recon-

struction problem from the time (integrated) evolution of its reduced twist ηrj. Let us

note that ηrj will be deduced later from our final recursive algorithm. This reconstruction

recovers the evolution of each of the wheels of any wheeled Sj by carrying the twist (3.37)

from the body frame Fj to the center of each of the wheel. Then, by invoking the rolling

without slipping constraints for any wheeled body Sj, we obtain a relation of the following

form:

θ̇j = Bj(t)ηrj , (3.40)

with Bj as a (Nj×nj) matrix depending upon the geometry of the body Sj and its wheels,

as well as the current time via the steering angles βj(t).

3.6.2 Kinematics of the Composite Body S+
o

3.6.2.1 Non-sliding Constraints of the Reference Composite Body S+
o

We now examine the consequences of the non-sliding constraints of the whole system

upon the motions of S+
o . This is equivalent to consider the non-sliding constraints of

the whole system on the principal fiber bundle of its configuration space C2 defined by
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equation (3.4). Note that, due to the possible existence of other nonholonomic bodies in

the structure, the admissible space V of composite body S+
o is generally more constrained

than that of isolated body So (i.e. V ⊆ Vo = span(Ho)). Consequently, for the m inde-

pendent non-sliding constraints of S+
o we have m > mo. Going further, we can always

exhibit a maximal set of m independent constraint 1-forms on T (SE(3) × S) which are

time-dependent because of steering wheel angles β(t) and revolute joint angles r(t). Fur-

thermore, due to the non-sliding conditions, these constraints are G-invariant with respect

to the left action of SE(3) on the principal fiber bundle of configurations. Consequently,

they will take the following general form:

ωk(β(t), r(t), ṙ(t), ηo) = 0. (3.41)

Once these constraints are gathered together with the three planar-ground constraints

imposed by the planar ground, then reapplying the same procedure as in the previous

section 3.6.1.1, the resulting m+3 constraints can be written in a matrix form as follows:

A(β(t), r(t))ηo +B(β(t), r(t))ṙ(t) = 0, (3.42)

where A is a ((m+ 3)× 6) matrix and B is a ((m+ 3)× p) matrix. The rank of matrix

A plays a key role in the mobility analysis of such nonholonomic systems. In fact, from

expression (3.42), we identify the following two cases depending upon the relative values

of dim(SE(3))=6 and rank(A):

{
Case(a), fully-constrained: rank(A) = 6 i.e. m+ 3 > 6;

Case(b), under-constrained: rank(A) < 6 i.e. m+ 3 < 6.

Case(a): Fully-Constrained Mobile Multibody System

In this case, (3.42) can be block-partitioned as:

(
A

Ã

)
ηo +

(
B

B̃

)
ṙ =

(
0

0

)
, (3.43)

with A as a (6× 6) square invertible matrix. In this case, the matrix A being invertible,

ηo is completely defined by the time evolution of r(t) and β(t). Thus, the net motions of

the mechanism are completely computable through kinematics. Geometrically, including

β(t) into the vector of shape coordinates r(t), allows one to define Ak , A
−1
B as the local

form of a connection on the principal fiber bundle of configurations [66]. Furthermore, if

m+3 = 6, then the mobile multibody system can move in any case whereas if m+3 > 6,

then the residual (m + 3) − 6 = m − 3 equations of (3.43) can be used to find the

joint velocities ṙ preserving the mobility of the whole system, i.e. verifying the following
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compatibility condition:

(B̃ − ÃAk)(r)ṙ = 0, (3.44)

which admits nontrivial solution ((ṙ 6= 0)) in virtue of assumption 7 of section 3.1.1. Fi-

nally, in case (a), there are enough independent non-sliding constraints to replace entirely

the dynamic locomotion model (3.29) of section 3.4 by the following kinematic locomotion

model:

ηo = −Ak(r)ṙ(t), (3.45)

along with its differential and integral consequences given as follows:

{
η̇o = −Ak(r)r̈(t)− Ȧk(r)ṙ(t),
eġo =

ego(−Akṙ)
∧.

(3.46)

The equation (3.45) along with (3.46) gives the net motions of the reference body S+
o

through pure kinematics i.e. without involving dynamics. Thus in a fully-constrained case

the net motions are completely solved through the locomotion kinematic model (3.45). In

the literature on Lagrangian dynamics (see chapter 2), Ak is often mentioned as the local

form of the principal kinematic connection [87, 60].

Case(b): Under-Constrained Mobile Multibody System

In this case, the under-constrained mechanism (rank(A) < 6) has not enough non-sliding

constraints to define the net motions uniquely through kinematics and thus, further anal-

ysis is required. In this regard, applying generalized inversion to (3.42) allows one to state

that any twist of S+
o should verify:

ηo = H(t)ηr + J(t)ṙ(t), (3.47)

where, if A† denotes the pseudo-inverse of matrix A, J = −A†B, and denoting n ,

(6− rank(A)), H is a (6× n) matrix whose columns span the kernel of A. Furthermore,

the V space is spanned by the n column vectors of H i.e. V = span(H). Thus, ηr stands

for an undetermined (n× 1) vector named as ”reduced twist”. Geometrically, this vector

naturally takes the sense of the reduced twist of S+
o . Thus, in under-constrained case

the reference twist ηo cannot be determined uniquely from non-sliding constraints, but

requires rolling without slipping constraints and/or dynamics to be invoked. Furthermore,

So may be equipped with actuated as well as free (around their rolling axis) wheels. To

distinguish them, we introduce an ”actuated-free” block partition of ηo and rewrite (3.47)
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in more detailed form as follows:

ηo =
(
Ha(t) Hf(t)

)( ηra(t)

ηrf

)
+ J(t)ṙ(t), (3.48)

where, with n = na + nf , t ∈ R
+ 7→ ηra(t) is an na × 1 vector of imposed (actuated)

velocities (known through motion planning and control laws), while ηrf is a (nf×1) vector

of unknown (free) velocities that our recursive algorithm will have to compute. Finally,

(3.48) defines the most general form of the reduced kinematics of S+
o under our basic

assumptions (section 3.1.1). In literature on geometric mechanics, this under-constrained

case is referred to as a mixed kinematic and dynamic case [87] (see section 2.3.6 of chapter

2).

Before closing this section, let us consider the case where the velocities of the equation

(3.48) are replaced by virtual displacements. In this case, the internal shape motions,

being defined by some known time laws, induce no variation and we have:

δηo = H(t)δηr.

In the language of the principal fiber bundle, such a virtual displacement is defined in

the vertical space of SE(3) × S. Going further, the actuated component ηra induced by

actuated wheels being explicitly time-dependent too, we finally have the following virtual

displacement compatible with all the non-sliding, rolling without slipping and planar-

ground constraints of the composite body S+
o :

δηo = Hf(t)δηrf , (3.49)

which is the virtual form of (3.48).

3.6.2.2 Rolling Without Slipping Constraints of the Reference Composite

Body S+
o

A relation similar to (3.40) can be derived but this time for the reference composite body

S+
o rather than the isolated body So. With equation (3.2) and based upon the rolling

without slipping condition, we can write the following general expression for S+
o supposed

to be equipped with both actuated and free wheels:

(
θ̇oa(t)

θ̇of

)
=

(
Baa 0

Bfa Bff

)(
ηra

ηrf

)
. (3.50)

Which encodes the fact that θ̇of may depend upon ηra (as in the case when the free wheels

follow the leading actuated ones), while θ̇oa obviously never depends upon ηrf . The first
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row of (3.50) gives the following kinematic model:

θ̇oa(t) = Baaηra, (3.51)

where, Baa is a (Na × na) matrix (na is the number of actuated admissible degrees of

freedom of S+
o while Na is its number of actuated wheels). Furthermore, we have na 6 Na.

Consequently, it is always possible to split the above equation in the following form:

(
θ̇oa(t)
˙̃
θoa(t)

)
=

(
Baa

B̃aa

)
ηra, (3.52)

where Baa is a (na×na) full rank invertible square matrix. Thus the first row of the above

equation states the following kinematic model used by the algorithm in order to compute

ηra from θ̇oa:

ηra = B
−1

aa θ̇oa(t). (3.53)

Note that the second row of (3.52) exists only if na < Na and implies the following

subsidiary relation:

˙̃
θoa = B̃aaB

−1

aa θ̇oa, (3.54)

which can be interpreted as a set of compatibility relations for the rolling without slipping

constraints of actuated wheels, i.e. if (3.54) is violated then some of the actuated wheels

slip on the ground.

Finally, the second row of (3.50) is used to deduce θ̇of as output from ηrf , where ηrf

is itself computed by the algorithm through the integration of a locomotion model as

detailed later.

Remarks

It is worth noting that when n = na, i.e. H = Ha, (3.48) can be then rewritten simply as:

ηo = Ha(t)ηra(t) + J(t)ṙ(t).

Now taking into account (3.53), the above equation can be rewritten in the following form:

ηo = −Ak(r)ṙ, (3.55)

with:

Ak = −
(
J Ha(Baa)

−1
)
, ṙ =

(
ṙ

θ̇oa

)
. (3.56)
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Thus in this scenario, the system becomes fully-constrained as well as fully-actuated, and

needs only the kinematic locomotion model (3.55) in order to get the net motions. Note

that in case of a fully actuated single wheeled body (e.g. car-like platform, unicycle, etc.)

we have the following simplified form of the kinematic locomotion model:

ηo = Ha(t)B
−1

aa θ̇oa. (3.57)

Where we recognize the general form of the kinematic model of a nonholonomic mobile

platform.

3.6.3 Admissible Spaces of the Reference Body

Here we sum up the different spaces related to So and S
+
o .

1. Vo = span(Ho) : the space of admissible twists of the isolated reference body So com-

patible with the non-sliding and planar-ground constraints, with ηro as the vector

of the corresponding reduced twist components.

2. V = span(H) : the space of the admissible twists of S+
o compatible with the joints

and, the non-sliding and planar-ground constraints, with ηr as the vector of the

corresponding reduced twist components.

3. Vf = span(Hf) : the space of the free admissible twists of S+
o compatible with the

joints and, non-sliding and planar-ground constraints, with ηrf as the vector of the

corresponding reduced (free) twist components.

4. Va = span(Ha) : the space of actuated admissible twists of S+
o compatible with the

joints and, non-sliding, rolling without slipping and planar-ground constraints, with

ηra as the vector of the corresponding reduced (actuated) twist components.

Moreover, these spaces verify: Vf ⊕ Va = V ⊂ Vo. Finally, note that V can be derived in

a constructive manner through the alternative definitions:

V =
⋂

j∈Nw

span
(
AdogjHj

)
=

(
⋃

j∈Nw

span
(
AdTjgoH

⊥
j

)
)⊥

. (3.58)

In other terms V is the kernel of all the non-sliding constraints carried from the axles to the

reference frame in the current locked configuration. Alternatively, this is the intersection

of all the admissible spaces of the isolated bodies, once carried from their own frame to

the reference one.



3.7 Dynamics of the Constrained Mobile Multibody System 67

3.7 Dynamics of the Constrained Mobile Multibody

System

In this section, we reconsider the dynamic locomotion model (3.29) and the recursive

torque dynamics (which is simply the standard Luh and Walker computational torque

dynamics) of an unconstrained mobile multibody system where, in case of wheeled mobile

multibody systems, the non-ideal wheels were modeled by ground reaction forces (section

3.4). Then, since the wheels are ideal in case of constrained mobile multibody system,

we apply the following two step reduction process on the locomotion dynamics algorithm

of the unconstrained mobile multibody system in order to obtain the reduced locomotion

dynamics algorithm for a constrained mobile multibody system.

1. To project the dynamic locomotion model (3.29) onto the admissible space V of the

composite reference body S+
o . This will give a reduced dynamic locomotion model.

2. To project the torque dynamics onto the admissible spaces Vj’s of the individual

(isolated) bodies Sj ’s. This will give the reduced torque dynamics.

Let us note that, the purpose of these projections onto the admissible spaces is to simply

eliminate all the lateral (external) contact forces that are always perpendicular to the

admissible space and are imposed by the ground due to the non-sliding constraints. On

the other hand, there is another type of external contact forces, denoted as Fext,ra that are

acting in the admissible space V and are imposed by the ground due to the rolling without

slipping constraints of actuated wheels. As such, the algorithm should compute these

forces Fext,ra to solve the dynamics. At the end, the resulting model gives a generalized

form of that of section 3.4 which can be applied to any type of system of Fig. 3.1(b).

3.7.1 Reduced Dynamic Locomotion Model

This first step of the reduction process concerns the projection of the dynamic locomotion

model (3.29) of S+
o onto its admissible space V. Also, since V = Va ⊕ Vf . Therefore, the

algorithm has to compute the following two unknowns at each step of time.

1. The reduced acceleration η̇rf of the composite reference body S+
o in its free admis-

sible subspace Vf .

2. The reduced external wrench F+
ext,ra of the composite reference body S+

o imposed by

the ground due to rolling without slipping constraints of actuated wheels.

These computations are done in the following sections.
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3.7.1.1 Computation of η̇rf(t)

Let us first reconsider the balance of virtual work (3.19) applied to the whole mobile

multibody system with variations still verifying (3.21):

δWacc − δWext = δηTo

(
j=p∑

j=0

AdTjgo (Mj η̇j − Fgyr,j − Fext,j)

)
= 0. (3.59)

Then, the η̇j verifying the recursive kinematics (3.9), (3.59) can be rewritten as follows:

δηTo

(
M+

o η̇o − F+
in,o −

j=p∑

j=0

AdTjgoFext,j

)
= 0. (3.60)

Now let us reduce these dynamics by imposing the condition that the general virtual twist

of S+
o must be compatible with (3.48), i.e. to verify (3.49) for any δηrf ∈ R

nf . At this

level, let us temporarily assume that the external forces are due to the ideal contact of

wheels with the ground only. Hence, the external wrenches of lateral contact forces takes

the following form:

Fext,j = H⊥
j (t)λj , (3.61)

where λj is a (mj+3)×1 vector of Lagrange multipliers which here stand for the reaction

forces forcing the non-sliding and planar-ground constraints induced by the Nj wheels

contained by body Sj. Then taking into account (3.49) and (3.61), we can rewrite the

balance of virtual work (3.60) as follows:

δηTrfH
T
f

(
M+

o η̇o − F+
in,o −

j=p∑

j=0

AdTjgoH
⊥
j λj

)
= 0, (3.62)

then, let us remark that for any j ∈ Nw, we have:

(AdogjHj)
T (AdTjgoH

⊥
j ) = HT

j Ad
T
ogj

AdTjgoH
⊥
j = HT

j Ad
−T
jgo

AdTjgoH
⊥
j = HT

j H
⊥
j = 0.

Hence, from (3.58) and since span(Hf) ⊂ span(H), we necessarily have: HT
f Ad

T
jgo
H⊥
j = 0,

for any j = 0, 1, . . . , p. Therefore, the virtual work due to the external contact forces

becomes zero i.e.:

δWext = δηTrfH
T
f

(
j=p∑

j=0

AdTjgoH
⊥
j λj

)
= 0, (3.63)

and the virtual work balance (3.62) reduces to the following form:

δηTrfH
T
f

(
M+

o η̇o − F+
in,o

)
= 0. (3.64)
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At last, taking into account the reduced velocities (3.48) and accelerations (time-derivative

of (3.48)) of the composite reference body S+
o given as follows:

{
ηo = Hfηrf +Haηra(t) + Jṙ,

η̇o = Hf η̇rf +Haη̇ra(t) + Ḣηr + J̇ ṙ + Jr̈,
(3.65)

into the virtual work balance (3.62), we get the following reduced dynamics of the com-

posite reference body S+
o :

M+
rf η̇rf = F+

rf , (3.66)

where we introduced the following reduced matrices:

{
M+

rf = HT
f M

+
o Hf ,

F+
rf = HT

f (F
+
in,o −M+

o (Haη̇ra + Ḣ ηr + J̇ ṙ + Jr̈)),
(3.67)

with M+
o still given by (3.23) and recursively computed through (3.27) whereas F+

in,o

is given by (3.26) and recursively computed through the following backward recursive

computation initialized by the boundary condition F+
in,j = 0 if Si is the terminal body:

for j = p+ 1, p, . . . , 1:

{
if i = j − 1 : F+

in,i = Fgyr,i −AdTjgiM
+
j ζj − AdTjgiF

+
in,j;

else: Fgyr,i = Fgyr,i − AdTjgiM
+
j ζj − AdTjgiF

+
in,j.

(3.68)

Finally, the following set of equations gives the reduced dynamic locomotion model for a

constrained mobile multibody system on the reduced state-space SE(3)× V:

(
η̇rf
eġo

)
=

(
(M+

rf)
−1(F+

rf )
ego(Hfηrf + (Haηra + Jṙ)(t))∧

)
, (3.69)

where the first row corresponds to the velocity dynamics whereas the second row is de-

duced from (3.48) and stands for the kinematic reconstruction equation from the time-

evolution of ηrf to the motion of ego. Finally, at each step of the global time loop, the

computation of (3.69) gives the current η̇rf(t), while as like in the unconstrained case, the

time-integration of the second row of (3.69) allows updating of the reference state. As

a last note, any external forces other than wheels contact forces can be included in the

model through (3.68) by replacing the Fgyr,i by Fgyr,i+Fext,i with Fext,i given by equation

(3.17).
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3.7.1.2 Computation of F+
ext,ra(t)

Now if we project (3.29) onto V = Va ⊕ Vf (instead of Vf as in previous section), we

obtain the dynamic locomotion model in the actuated-free block partition as follows:

(
M+

ra
raM+

rf

rfM+
ra M+

rf

)(
η̇ra(t)

η̇rf

)
=

(
F+
in,ra + F+

ext,ra

rfF+
f

)
. (3.70)

From the first row we can write the reduced external wrench Fext,ra of S+
o as follows:

F+
ext,ra =

raM+
rf η̇rf +M+

raη̇ra(t)− F+
in,ra, (3.71)

where the terms on the right side of the expression are given by:





raM+
rf = HT

a M
+
o Hf ,

M+
ra = HT

a M
+
o Ha,

F+
in,ra = HT

a F
+
in,o,

(3.72)

and the accelerations η̇rf and η̇ra(t) are given by (3.69) and the time-derivative of (3.53),

respectively.

3.7.2 Reduced Torque Dynamics

This is the second step of reduction process. It consists in projecting each of the recursion

of the Luh and Walker algorithm onto the isolated bodies admissible spaces Vj . This

process allows one to remove all the unknown reaction forces exerted by the ground

through the wheels. As a result, we obtain a reduced version of the Luh and Walker

recursions that we simply name ”reduced recursions”.

3.7.2.1 Reduced Recursive Kinematics

As this is a body by body projection, then let us first insert (3.37) and its time-derivative

into (3.8) and (3.9), then we left-apply the projection operator HT
j (onto Vj), and finally

we invoke the orthonormality property (3.35), which results in the following reduced

recursive kinematics: for j = 1, 2, . . . , p:

Compute the reduced velocities:

ηrj = Adrjgriηri + ṙjArj. (3.73)

Compute the reduced accelerations:

η̇rj = Adrjgri η̇ri + ζrj(ṙj , r̈j), (3.74)
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where, we introduced the notations:





Adrjgri = HT
j AdjgiHi,

Arj = HT
j Aj ,

ζrj = HT
j (AdjgiḢiηri − Ḣjηrj + ζj).

(3.75)

In the above, Adrjgri is the transformation which allows a reduced twist to be carried from

Vi to Vj, with Hi = 16 (respect. Hj = 16) if Si (respect. Sj) is a holonomic body. Note

that the reduced recursive kinematic equations (3.73,3.74) are initialized by the following

boundary conditions:

{
ηro = HT

o ηo

η̇ro = HT
o η̇o + ḢT

o ηo,
(3.76)

with ηo and η̇o given by (3.65) which further requires, at the current time of the global

time loop, the knowledge of η̇rf(t) deduced from the reduced locomotion model (3.69).

3.7.2.2 Reduced Recursion on InterBody Wrenches

Let us first consider the dynamics of any of the isolated wheeled body Sj, j ∈ Nw − {0}.

In order to remove the external reaction wrenches which force the non-sliding and planar-

ground constraints imposed by the wheels, the dynamics of Sj have to be projected onto

the admissible space Vj. This is practically achieved by reapplying the virtual work

principle, but a set of independent virtual twists of the form (3.39). As a result we

can state the balance of virtual work for a simple chain system as follows: for j =

1, 2, ..., p, and ∀δηrj ∈ R
nj :

δηTrjH
T
j (Mj η̇j − Fgyr,j − Fext,j +AdTj+1gj

Fj+1 − Fj) = 0. (3.77)

Then, taking into account the external wrench relation (3.61) along with the defini-

tion of the orthogonal complement matrices (3.38) in the virtual work (3.77), we can

eliminate the virtual work done by the external wrenches and get more simply for j =

1, 2, ..., p, and ∀δηrj ∈ R
nj :

δηTrjH
T
j (Mj η̇j − Fgyr,j +AdTj+1gj

Fj+1 − Fj) = 0. (3.78)

Furthermore, as far as the velocities and accelerations are concerned, they must be com-

patible with the non-sliding and planar-ground constraints too, i.e. they should verify the

following relations:

{
ηj = Hj(t)ηrj ,

η̇j = Hj(t)η̇rj + Ḣj(t)ηrj .
(3.79)
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Moreover, the dual counterpart of (3.37) relates the total and reduced interbody wrenches

as follows:

Frj = HT
j (t)Fj, (3.80)

and since the reduced base of Vj is orthonormed for the Euclidean metric of R
6, the

covariant reduced components of Fj given by (3.80) and their associative contravariant

reduced components of ηj transform identically (see appendix A.2 for proof), i.e. we also

have:

Fj = Hj(t)Frj, (3.81)

which is the same relation as that of (contravariant) velocity vectors of (3.79). Finally,

inserting (3.79) and (3.81) into the virtual work balance (3.78), gives the following reduced

dynamic balance of any wheeled body Sj, j ∈ N−{0} ruling their velocities in Vj ∈ se(3):

Mrj η̇rj − Fgyr,rj +AdTr(j+1)grj
Fr(j+1) − Frj = 0. (3.82)

Consequently, for a tree-like structure, the backward recursions on interbody wrenches

initialized by Frj = 0 if Si is a terminal body with free ends, are given below: for any

j = p+ 1, p, . . . , 1:

{
if i = j − 1 : Fri = Mriη̇ri − Fgyr,ri +AdTrjgriFrj ;

else: Fgyr,ri = Fgyr,ri −AdTrjgriFrj ,
(3.83)

along with the following notations:

{
Mri = HT

i MiHi,

Fgyr,ri = −HT
i (MiḢiηri − Fgyr,i).

(3.84)

Note that any external forces other than the wheels contact forces can be included into the

model through the gyroscopic wrench in equation (3.84). The model also works for any

holonomic body Sk, k ∈ {i, j}, but with Hk = 16. In short, to extend the torque dynam-

ics from an unconstrained mobile multibody system to a constrained mobile multibody

system, we just have to replace the recursive kinematics (3.8, 3.9) by reduced recursive

kinematics (3.73, 3.74) and the recursion on wrenches (3.11) by (3.83), while (3.7) works

in any case.

3.7.2.3 Torque Computation

The joint torques are deduced from the following reduced projection:

j = 1, 2, . . . , p : τj = ATrjFrj. (3.85)
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As for the actuated wheel torques Γ, we can define the block partition Γ = (Γ
T
, Γ̃T )T

which is the dual of (3.52). Then, let us remind that the reduced wrench F+
ext,ra in (3.71)

actually belongs to the dual space of the ηra and models the forces exerted by the ground

onto S+
o through the actuated wheels. Then, the wheels being ideal, we have by virtue of

the action-reaction principle:

B
T

aaΓ + B̃T
aaΓ̃ = −F+

ext,ra, (3.86)

where, due to the possible over-actuated character of the actuated admissible space (i.e.

Na > na), in the general case an infinity of wheel torque vectors Γ are capable of supplying

the desired F+
ext,ra. Moreover, the distribution of the total torque over several actuated

wheels in case of Na > na is useful to control traction e.g. in vehicles. Finally, in a

particular case of Na = na, the solution is unique:

Γ = −B
−T

aa F
+
ext,ra. (3.87)

3.8 Computational Algorithm

3.8.1 Summary of Discussion

Table 3.1 displays an overall view of all the cases treated by the proposed modeling

approach. It is worth noting that in all cases the torque computation is always performed

with (3.73-3.74), (3.83,3.85) and (3.71,3.86) whereas the locomotion model for a particular

case can always be deduced from the general locomotion model (3.69) as follows:

Unconstrained Case: In this case, we have H = 16, J = 0. This simplifies the general

locomotion model (3.69) to the dynamic locomotion model given by (3.29). Further-

more, in the absence of external forces, if the system starts at rest, then we have

H = 0, J = −A(r) and as a result (3.29) further reduces to the pure locomotion

kinematic model (3.32).

Constrained case: There are the two following cases based upon (3.69):

Fully-Constrained Case: In this case, when the system is completely constrained

only by the non-sliding constraints (i.e. dim(SE(3))=rank(A)), then we have

H = 0, J = −Ak(r) = −A−1B and as a result (3.69) reduces to the pure loco-

motion kinematic model given by (3.46). Whereas, if the system is completely

constrained by both the non-sliding and rolling without slipping constraints

(i.e. dim(SE(3))>rank(A) but V = Va), then the system is said to be fully

actuated and we have H = Ha. Consequently, (3.69) reduces to the pure

locomotion kinematic model given by (3.55).
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Under-Constrained case: In this case the system may be either 1) partially ac-

tuated
(
i.e. V = Va ⊕ Vf with H =

(
Ha Hf

))
or 2) completely free (i.e.

V = Vf with H = Hf). These two cases are considered as mixed kinematics

and dynamics, and hence require (3.69) to be entirely solved.
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Unconstrained case Constrained case
Free of external
forces

External forces Fully-constrained case Under-constrained case

Admissible
space of S+

o

V = g (Lie alge-
bra of G in (3.4))

V = g V = Vf V = Va V = Va ⊕ Vf V = Vf

Locomotion
model (Block2
of Fig. 3.9)

Pure kinematics
(Mechanical
connection)
(3.32)

Dynamics (3.29) Pure kinematics
(Kinematic con-
nection) (3.46)

Pure kinematics
(Kinematic con-
nection) (3.55)

Reduced dynam-
ics (3.69)

Reduced dynam-
ics (3.69)

Torque dynam-
ics (Block1 of
Fig. 3.9)

Joints (3.73-
3.74) + (3.83-
3.85)

Joints (3.73-
3.74) +
(3.83,3.85)

Joints (3.73-
3.74) +
(3.83,3.85)

Joints (3.73-
3.74) +
(3.83,3.85)
+ Wheels
(3.71,3.86)

Joints (3.73-
3.74) +
(3.83,3.85)
+ Wheels
(3.71,3.86)

Joints (3.73-
3.74) +
(3.83,3.85)

Illustrative
examples

Satellite with ro-
tors

Fish-like robot Snake-like robot
(ACM)

Car, Mobile ma-
nipulator

Uni-cycle mobile
robot*

Snakeboard

(*with one actuated and one passive wheel on the same axle)

Table 3.1 – Classification of mobile multibody system dynamics
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3.8.2 Generalized Algorithm Execution

For the sake of generality, we consider the mixed kinematics and dynamics case. Assume

that at the current time t of a global time loop the inputs and the reference state (ego, ηo)(t)

are known. The inputs of the algorithm are the following time evolutions:

Inputs: t 7→ (β, θoa, θ̇oa, θ̈oa, r, ṙ, r̈)(t).

We are going to show how the algorithm computes all the following outputs at time t as

well as updates the current reference state at (t +∆t) before resuming (s = 0, 1, 2 is the

order of time differentiation: forj ∈ Nw − {0}):

Outputs: t 7→ (θ
(s)
j , θ

(s)
of , g

(s)
eo , τ,Γ)(t)

The execution of the algorithm, shown in Fig. 3.11, is explained as follows:

Preliminaries: First of all, the algorithm performs the preliminary computations of all

the Mj’s, as well as all the matrices dependent on the steering wheel angles: Hj

(j = 1, 2, . . . , p), Hf , Ha, Bj (j ∈ Nw), Bff , Baa, Bfa, J and their time derivatives

if necessary. Then (ηra, η̇ra)(t) are computed from (3.53) and its time derivative.

Locomotion Model: Then the algorithm computes the egj(t)’s and the ηj(t)’s from

the forward recurrences (3.7) and (3.8) initialized by (ego, ηo)(t). Then it com-

putes Fgyr,j(t)’s and ζj(t)’s from (3.13) and (3.10), respectively. Then M+
o (t) and

F+
o (t) are computed by using the backward recursions (3.27) and (3.28), respec-

tively. After that, the algorithm computes η̇rf(t) from (3.69) and from (3.65), we

get (ego, ηo, η̇o)(t).

Torque Dynamics: Then the algorithm computes the forward reduced kinematics (3.73,

3.74) initialized by (3.76). Then, injecting the results of this computation into the

reduced backward recurrences on the reduced wrenches (3.83) allows Frj(t)’s to be

computed.

Outputs: Then, using (3.85), the joint torques τ(t) are calculated as the desired output

of the algorithm. As for wheel torques Γ(t), the algorithm computes Fext,ra(t) from

(3.71), and then Γ(t) from (3.86). Finally, θj(t)’s and θof (t) are deduced from (3.40)

and (3.50), respectively.

Update: Finally, the algorithm time integrates (3.69), so updating the reference state

through (3.48) for the next time step.
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Inputs: (r, ṙ, r̈, β, θoa,
e go, ηrf )(t)

τ(t), Γ(t)

Kinematics: egj(t), ηj(t) from equations

Compute: (ζj , Fgyr,j)(t) from equations

Compute M+
o , F

+
in,o through backward

recursions

Equation(
η̇rf
eġo

)
=

(
(M+

rf )
−1(F+

rf )
egoη̂o

)

Computation of η̇o from
η̇o = Hf η̇rf +Haη̇ra +Hηr + Jr̈ + J̇ ṙ

Reduced Kinematics:

Reduced iner-body wrenches:

∫

Preliminary computations:
Mj(r), Adg(r), J(r), H,B

Computation of ηra, η̇ra from equation
and its time-derivative

Computation of ηo from
ηo = Hfηrf +Haηra + Jṙ

B
lo
ck
2

B
lo
ck
1

eġo, η̇rf

ego, ηrfOutputs:

(3.53)

(3.7, 3.8)

(3.10, 3.13)

(3.27, 3.68)

(3.69)

(3.73, 3.74)

(3.83)

Figure 3.11 – Execution of the general algorithm in mixed kinematic and dynamic case

3.9 Conclusions

The purpose of this chapter was to generalize the computed torque algorithm of Luh and

Walker to a wider class of systems contrary to the conventional manipulators with the

base either fixed or submitted to known motions. In fact, the systems considered here
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were composed of a ”tree-like connection” of any conventional bodies which may or may

no be wheeled. A general unified algorithm was proposed that solved the following two

problems of locomotion.

1. It enables the net motions of a reference body to be computed from the known data

of internal motions applied to the joints and/or actuated wheels.

2. It gives the joint and/or actuated wheel torques required to impose these motions.

Moreover, this algorithm fulfils the second stage of the control problem since the de-

sired internal motions are given by the first stage through motion planning. The given

framework provides the Newton-Euler-based efficient dynamic modeling counterpart of

the Lagrangian dynamic model proposed by geometric mechanics in [87, 60, 76]. From an

algorithmic point of view, it is noteworthy that, despite its application to a wide range of

systems, the proposed algorithm conserves its basic structure. We will see this in the next

chapter where the proposed algorithm is applied to different mobile multibody systems in

order to solve the problem of locomotion.
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After developing the dynamics and associate algorithms of mobile multibody systems in

a generalized way, in this chapter we now work out a few examples to further explain

the practical applications of the proposed algorithm. The first two examples studied here

are simple enough to be treated by hand while the last two are solved through computer

programming using Matlab. In the following examples, the sine and cosine functions are

abbreviated by s and c respectively.

4.1 Satellite with Rotors: Unconstrained Case

The first example is the well known case of a spinning satellite equipped with inertia

wheels called rotors which are used to control the orientation of the satellite. The outline

sketch of such a setup is shown in Fig. 4.1(a). In our terminology, this is a tree-like

structure consists of four bodies, where the satellite is connected to the three inertia

rotors through single degree of freedom revolute joints. The Fig. 4.2 shows a set of three

inertia rotors. The system is not in contact with the ground and hence will be treated as

an unconstrained mobile multibody system.



80 Chapter 4. Illustrative Examples of Mobile Multibody Systems

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a)

SoS1 S2

S3

(b)

Figure 4.1 – Satellite with rotors: (a) Outline sketch; (b) Tree-like structure

Assumptions and Considerations

The system consists of a main body So (satellite) to which three rotors S1, S2, S3 are

connected through revolute joints. We consider that the joints are at the mass center of

each rotor, hence the frames Fj = (Oj, sj, nj, aj), j = 1, 2, 3 attached to the rotors are at

the mass center. The mass center of each rotor intersects one of the principle inertia axis

of the frame Fo attached to the mass center of the satellite.

Modeling Approach

As said earlier, the satellite is an unconstrained system with no ground contact. Further-

more, there are no external contact forces applied on it. Therefore, the working principle

of the attitude control is based upon the law of conservation of the kinetic momentum

which appears as a set of non-integrable constraints discussed as a particular reduced case

of an unconstrained mobile multibody system (see section 3.4.3). Due to the conservation

of the kinetic resultant, the mass center of the satellite does not observe translational

motions due to the internal motions imposed by the revolute joints. Hence, the principle

fiber bundle reduces to C2 = SO(3) × (S1)
3
. Where SO(3) describes the configuration

of the satellite S+
o , denoted as eRo ∈ G, with respect to the inertial frame Fe whereas

(S1)
3
denotes the configuration shape-space of the three revolute joints parameterized by

the vector r =
(
r1 r2 r3

)T
∈ S. Such a reduced1 setup corresponds to applying the

general algorithm with Hf = Hj =
(

03×3 13

)T
, j = 0, 1, 2, 3. Moreover, as the net

motions of the composite body S+
o are also reduced to rotations only, we take ηrf = Ωo.

1This is due to the reduced configuration group, i.e. G=SO(3)
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Figure 4.2 – Inertia rotors for re-orientation of satellite in space

Preliminaries

To start computation, we enter the geometric and inertial data of the system in order to

calculate the following matrices for j = 1, 2, 3:

Adjgo =

(
jRo

jRo
oP̂ T

j

0 jRo

)
, Mj =

(
mj13 0

0 Ij

)
, (4.1)

where Ij = diag(Ijx, Ijy, Ijz) with Ijz = Iw, whereas the reference body inertia matrix is

given by Io = diag(Iox, Ioy, Ioz).

4.1.1 Reduced Dynamic Locomotion Model of S+
o

The reduced composite inertia matrix is computed through the relation (3.67) along with

the composite inertia relation (3.27) as follows:

M+
rf = Io +

3∑

j=1

(oIj +mj
oP̂ T

j
oP̂j) , I+o .

This reduced composite inertia matrix is known as the locked inertia matrix in [87]. The

reduced composite wrench is given by (3.67) and (3.24) as:

F+
rf = HT

f (Fgyr,o +

3∑

j=1

AdTjgo(Fgyr,j −Mjζj)), (4.2)
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where the gyro wrenches generally given by equation (3.13) are simplified here to the

following form due to the fact that all the frames are at the mass centers:

Fgyr,k = −

(
03×1

Ωk × (IkΩk)

)
, k = 0, 1, 2, 3;

while the term ζj is given by (3.10) with i = 0 and j = 1, 2, 3, whereas the angular

velocities are given by the recursive equation (3.73) initialized by Ωo. After simplifying

(4.2), we get the reduced wrench of the refernce body as follows:

F+
rf = − Irr̈ − Ωo × (I+o Ωo + Irṙ), (4.3)

where Ir = Iw13. Hence, the dynamics of the reference body (satellite) reduce to:

I+o Ω̇o = − Irr̈ − Ωo × (I+o Ωo + Irṙ) (4.4)

Finally, (4.4) has to be completed with the reconstruction equation (3.29) which here

reduces to eṘo = eRoΩ̂o initialized by eRo(t = 0) = eRoo. Thus in case of the satellite,

equation (3.29) becomes:

(
Ω̇o
eṘo

)
=

(
−(I+o )

−1(Irr̈ + Ωo × (I+o Ωo + Irṙ))
eRoΩ̂o

)
. (4.5)

4.1.2 Torque Dynamics

Now, let us compute the joint torques from the backward reduced recursion (3.83), which

gives after their projection:

τj = ATrj(Mrj η̇rj − Fgyr,rj) = aTj (IjΩ̇j + Ωj × (IjΩj)),

where the angular accelerations are given by the recursive equation (3.74) initialized with

Ω̇o. After computations, we thus find:

τ = Ir(Ω̇o + r̈). (4.6)

Finally, equations (4.5) and (4.6) give the closed form of the satellite dynamics as given by

the Lagrangian framework, using Poincaré equations applied to the following Lagrangian:

l(r, ṙ,Ωo) =
1

2

(
ΩTo I

+
o Ωo + ṙT Irṙ + 2ΩTo Irṙ

)
.
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Figure 4.3 – (a) Commercial snakeboard; (b) Robotic prototype of the commercial snakeboard
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Figure 4.4 – Snakeboard: (a) Outline sketch; (b) Tree-like structure

4.2 The Snakeboard: Under-Constrained Case

In this section, we take the example of the snakeboard. To manually apply the proposed lo-

comotion dynamics algorithm, we consider the existing robotic prototype (see Fig. 4.3(b))

of a commercial snakeboard (Fig. 4.3(a)). An outline model of the snakeboard mechanism

is shown in Fig. 4.4(a). The snakeboard has a tree-like topology consists of four bodies

interconnected through single degree of freedom revolute joints (see Fig. 4.4(b)).

Assumptions and Considerations

Since this robot has no actuated wheels, when numbering the system the choice of the

reference body is free. Therefore, the board is taken as the reference body So, the me-

chanical rotor representing the human torso is denoted as body S1 and the two identical

wheeled bodies are called as S2 and S3. Due to geometrical symmetry, the mass centers

of So, S2 and S3 are aligned along the platform axis. A frame Fj is assigned to body Sj

at the mass center. Following the description and notations given in [87], here we make

two assumptions. First we assume that the wheeled bodies are rotating out of phase to

each other. Hence we adopt the following notations:

r1 = ψ: the joint angle of S1 with respect to So,
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r2 = −φ: the joint angle of S2 with respect to So,

r3 = φ: the joint angle of S3 with respect to So.

Secondly, in order to simplify the manual computation of the algorithm, we make the

following assumption related to mass and inertia of the snakeboard:

m = mo +mr + 2mw, I = Io + Ir + 2Iw = ml2,

where l is the length between the center of mass and the wheel base (see Fig. 4.4(a)),

while the subscripts r and w stand for rotor and wheeled body, respectively.

In this planar case, the configuration space of the snakeboard is defined as C2 = SE(2)×

(S1)
3
. Where SE(2) describes the planar configuration of the board S+

o , denoted as

(ego)
∨ =

(
xo yo θo

)T
∈ G, with respect to the inertial frame Fe whereas (S

1)
3
denotes

the configuration shape-space of the three revolute joints parameterized by the vector

r =
(
r1 r2 r3

)T
∈ S.

Modeling Approach

Being free (passive), the ideal wheels impose only the non-sliding constraints. As the two

wheeled bodies apply only two independent constraints which are one less than the dimen-

sions (dim(SE(2))=3) on the principal fiber bundle. Thus, it is not possible to determine

the net motions of the reference body S+
o through pure kinematics. Consequently, the

system falls into the category of under-constrained mobile multibody systems for which

the reference body motions are solved through a mixed kinematic and dynamic model.

This is done with the help of reduced dynamics given in (3.69) along with the generalized

kinematics (3.48). In this case, the two independent non-sliding constraints reduces the

net motions of the reference body S+
o to a 1D free admissible subspace Vf . Therefore,

from the generalized kinematics (3.48), the board velocity is given by:

ηo = Hfξ + Jṙ, (4.7)

where ξ is the reduced velocity of the board in the free admissible subspace.

Construction of Hf

In the present case, the non-sliding condition determines two independent constraints that

can be expressed in the reference body frame Fo as linear functions of the velocities:

−s(−φ)Vx,o + c(−φ)Vy,o + lc(−φ)Ωz,o − 0φ̇ = 0,

−sφVx,o + cφVy,o − lcφΩz,o + 0φ̇ = 0,
(4.8)
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now writing in matrix form we have:

(
sφ cφ lcφ

−sφ cφ −lcφ

)
η0 + 0φ̇ = 0. (4.9)

Comparing with equation (3.42), we have:

A =

(
sφ cφ lcφ

−sφ cφ −lcφ

)
, B = 0. (4.10)

As dim(SE(2))=3 and rank(A) = 2, then ker(A) = 1 and hence a Hf whose columns span

the kernel of the matrix A is given along with its time derivative as follows:

Hf =




−2lc2φ

0

s2φ


 , Ḣf =




2ls2φφ̇

0

2c2φφ̇


 . (4.11)

Furthermore, as B = 0, then J = A−1B = 0, and finally from equation (4.7) we get the

board velocity as follows:

ηo =




−2lc2φ

0

s2φ


 ξ. (4.12)

Here it is noteworthy that B = 0 physically means that the internal motions of the

wheeled bodies alone (i.e. if ψ̇ = 0) do not produce net motions of the board, imposed by

the design.

Preliminaries

We start our computation by defining the reduction matrices as follows:

Ho = H1 = 13, H2 = H3 =




1 0

0 0

0 1


 ,

while the transformation matrices are given as follows:

Ad1go =




cψ sψ 0

−sψ cψ 0

0 0 1


 , Ad2go =




cφ −sφ −lsφ

sφ cφ lcφ

0 0 1


 ,

Ad3go =




cφ sφ −lsφ

−sφ cφ −lcφ

0 0 1


 .
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The inertia matrices are given as follows:

Mo = diag(mo, mo, Io), M1 = diag(mr, mr, Ir),

M2 = M3 = diag(mw, mw, Iw).

Furthermore, as the body is in planar motion and the joints are at the mass center (i.e.

msj = 0), thus equation (3.13) gives for j = 0, 1, 2, 3:

Fgyr,j = 0, (4.13)

while using equation (3.10), ζj, j = 1, 2, 3 is given as:

ζ1 =




0

0

ψ̈


 , ζ2 =




−lcφs22φξ2

−lsφs22φξ2

−φ̈


 , ζ3 =




lcφs22φξ2

−lsφs22φξ2

φ̈


 .

4.2.1 Reduced Dynamic Locomotion Model of S+
o

As snakeboard requires the reduced dynamic equation (3.67) to be solved along with the

kinematic equation (4.12). Therefore, we first solve its dynamics as follows. We start by

computing the composite inertia of the snakeboard through (3.27) as follows:

M+
o =

3∑

j=0

AdTjgoMjAdjgo =




m 0 0

0 m 0

0 0 ml2


 . (4.14)

and projecting this composite inertia onto the 1D free admissible subspace Vf through

the relation (3.67) gives the reduced composite inertia as follows:

M+
rf = HT

f MoHf = 4ml2c2φ. (4.15)

This reduced composite inertia matrix is called as the locked inertia matrix in [87]. Then

we compute the composite inertial wrench by using equation (3.26) along with zero gyro-

scopic wrench from (4.13):

F+
in,o = −

3∑

j=1

AdTjgoMjζj =




0

0

Irψ̈


 .

As J = 0 and Ha = 0, then the reduced composite wrench in the free admissible subspace

is given by the relation (3.67) as follows:

F+
rf = HT

f F
+
in,o −HT

f (M
+
o Ḣfξ) = −Irs2φψ̈ + 2ml2s2φφ̇ξ. (4.16)
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Now by injecting equations (4.15) and (4.16) in the reduced locomotion dynamic model

(3.69), we compute the reduced acceleration ξ̇ of the board as follows:

ξ̇ = tgφ(−
Ir

2ml2
ψ̈ + φ̇ξ), (4.17)

which has to be completed with the kinematic model (4.12). Finally, the simplified form

of the reduced dynamic model (3.69) for the snakeboard is given as follows:

(
ξ̇
eġo

)
=




tgφ
(
− Ir

2ml2
ψ̈ + φ̇ξ

)

ego

((
−2lc2φ 0 s2φ

)T
ξ

)∨


 . (4.18)

4.2.2 Torque Dynamics

Now we solve the reduced torque dynamic model in order to get the joint torques. For

this, we first calculate the reduced acceleration η̇rj of each body Sj through recursive

equation (3.74) initialized by η̇o which is deduced from the time derivative of (4.18):

η̇o = Hf ξ̇ + Ḣfξ =
Ir

2ml2




ls2φ

0

−2s2φ


 ψ̈ +




ls2φ

0

2c2φ


 φ̇ξ (4.19)

Then, the inter-body wrenches are calculated with the help of equation (3.83). Finally,

the algorithm uses the torque relationship (3.85) to project the applied wrenches upon

the joint axes as follows2:

τ1 = AT1 (M1η̇1),

τj = ATrj(Mrj η̇rj), j = 2, 3;

where for the snakeboard AT1 = (0, 0, 1) and ATrj = (0, 1). The snakeboard planar motion

and also the wrench projection over the rotation axis verify the involvement of only the

third component of equation (4.19) in the torque computation. That is:

τ1 =
(
Ir −

(
I2r
ml2

)
s2φ
)
ψ̈ + 2c2φIrφ̇ξ,

τ2 = −
(
IwIr
ml2

)
s2φψ̈ + 2c2φIwφ̇ξ − Iwφ̈,

τ3 = −
(
IwIr
ml2

)
s2φψ̈ + 2c2φIwφ̇ξ + Iwφ̈

2Note that, from (3.84), Fgyr,rj is also zero because of (4.13) and Ḣj = 0 for all bodies.
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Figure 4.5 – Tree-like structure of snake-like robot

Alternatively, in terms of generalized forces applied to the two independent internal co-

ordinates, we get:

τψ = Ir

((
1−

(
Ir
ml2

)
s2φ

)
ψ̈ + 2c2φφ̇ξ

)
,

τφ = τ3 − τ2 = 2Iwφ̈ (4.20)

The above torques are the desired output of the algorithm. Consequently, equations

(4.17) and (4.20) agree with the momentum and reduced dynamics of [87] deduced from

the geometric Lagrangian framework of the principal fiber bundle.

4.3 Snake-like Robot: Fully-Constrained Case

The snake-like robot system presented here is based on a planar robot of Hirose [53]. The

configuration space is defined as C2 = SE(2) × (S1)
p
. The snake-like robot represents a

modular tree-like mobile multibody system with wheeled bodies (see Fig. 4.5). It consists

of p + 1 rigid bodies interconnected through single degree of freedom revolute joints.

Each wheeled body is an assembly of free (i.e. passive) wheels (see Fig. 4.6). A frame

Fj = (Oj, sj, nj, aj) is attached at the joint center of each body Sj. Here we consider

that each unwheeled body and its corresponding wheeled body (collectively called here

as a module) are connected to each other at their mass centers. The modules are then

connected serially to form the snake-like robot. After numbering the bodies, we have

Nuw = {0, 2, 4, . . . , p − 1} and Nw = {1, 3, 5, . . . , p}, as the sets of indices of unwheeled

and wheeled bodies respectively. Being free, the ideal wheels of the snake-like robot only

impose the non-sliding constraints. In this planar case with dim(SE(2)) = 3, if at least

3 independent non-sliding constraints are available, then the snake-like robot becomes a

fully-constrained system. As a result, it can be modeled through pure kinematics by using

the kinematic locomotion model given in (3.45). If the number of independent non-sliding

constraints is more than 3, then the system must verify the compatibility condition given

by (3.44) in order to preserve mobility of the whole system.
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Figure 4.6 – Outline sketch of snake-like robot

Preliminaries

First we define the reduction matrices as follows:

Hj = 13 for j ∈ Nuw, and Hj =




1 0

0 0

0 1


 for j ∈ Nw,

and the transformation matrices in SE(2) are given by:

Adjgi =




crj srj lsrj

−srj crj lcrj

0 0 1


 for j ∈ Nw,

Adjgi =




crj srj 2lsrj

−srj crj 2lcrj

0 0 1


 for j ∈ Nuw,

where l is half the length of any unwheeled body. According to equation (3.84), the

reduced inertia matrices are given by:

Mrj = diag{mw, Iw} for j ∈ Nw,

Mrj =




m 0 0

0 m ml

0 ml I


 for j ∈ Nuw,

where the subscript w stands for wheeled bodies.

4.3.1 Kinematic Locomotion Model of S+
o

This robot has enough nonholonomic (non-sliding) constraints to model the kinematics

of the reference body S+
o without entering into dynamics [88]. In fact, once gathered the

non-sliding conditions imposed by the first three modules (see Fig. 4.6) take the form of
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the first line of the (3.43) where A is a (3×3) invertible full rank matrix and B is a (3×2)

matrix given as:

A =




−sr1 cr1 0

−sr3 cr3 a23

−sr5 cr5 a33


 , B =




0 0

lcr3 0

b31 lcr5


 ,

with:





r3 = r2 + r3,

r5 = r2 + r4 + r5,

a23 = l(cr3 + cr3),

b31 = l(cr5 + 2c(r4 + r5)),

a33 = b31 + lcr5.

Thus, matrix A being invertible, we can compute the head velocity ηo in the form of (3.45)

where Ak(r) = A
−1
B stands for the local form of the principal kinematic connection of

the snake-like robot.

Finally, in this degenerate case, (3.46) will be used to find the head acceleration η̇o and

the updated configuration for the next time step through integration of eġo.

4.3.2 Torque Dynamics

To calculate the joint torque applied onto each body, we first calculate the reduced veloc-

ities and accelerations (ηrj, η̇rj) of each body through forward recursive equations (3.73)

and (3.74) initialized by (3.45) and (3.46), respectively. Then, we calculate the reduced

wrenches Frj for j = p, . . . , 1 through the backward recursive equation (3.83). Finally,

the joint torques τj are given by (3.85).

4.3.3 Numerical Results

For the numerical results, let us suppose a snake-like robot shown in Fig. 4.5 with 10

identical modules. Thus the robot has total of twenty bodies (i.e. p = 19) of which 10 are

wheeled while 10 are unwheeled. The simulation parameters are given as follows:

Length of each module: l = 0.1m.

Mass of each module: m = 0.3kg.

A serpentine gait is imposed with the joint motions given by:

rj = aj sin(wjt + φj),

where aj , wj and φj are the amplitudes, frequencies and phases of the joints j = 1, 2, ..., 5 of

the first three leading modules, respectively. We take, aj = (0.2, 0.6,−0.2, 0.6, 0.2), wj =
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Figure 4.7 – Motion of the head body So in the xy plane

1, and φj = ( π
16
, 9π
16
, 0, 7π

16
,− π

16
) for the first three leading modules. In order to maintain

mobility, the additional modules must obey the compatibility condition (3.44) imposed

by the non-sliding constraints of the wheels. By controlling the degree of freedom of

the wheeled body through known time laws, the algorithm integrates at each time step

the following recursive governing equation in order to compute the desired joint angle

rj, j = 6, 8, ..., p− 1 between two consecutive modules rj and rj−2:

ṙj = −
1

l cos(rj+1)
(Akηo +Bkṙ) ,

where the subscript k(= j

2
+ 1) labels the kth row of the system of constraint equations

(3.43) with Ak and Bk being the kth row of the matrices A and B, respectively. Due to

the open chain topology of the system, the matrix B is a lower triangular matrix and the

above relation is explicitly solvable with respect to ṙj. Now simulating for 20s, we get the

net motions of the reference body S+
o in the xy plane as shown in Fig. 4.7. The Fig. 4.8

shows the time evolution of the joint torque applied between S8 and S10 while in Fig. 4.9

the torques of all the joints (j = 1, . . . , 19) are plotted at t = 10s.

4.4 Mobile Manipulator: Fully-Actuated Case

The mobile manipulator considered in this section is of a Staubli manipulator mounted

on (coupled with) a car-like platform as shown in Fig. 4.10(a). The configuration space is

defined as C2 = SE(3)× (S1)
p
. The system consists of seven rigid bodies So, S1, . . . , S6 (as

shown in Fig. 4.10) interconnected through six single degree of freedom revolute joints (i.e.

p = 6). According to the Denavit-Hartenberg convention, a frame Fj = (Oj, sj, nj, aj) is

attached to the joint center of each body Sj , j = 1, 2, . . . , 6. The car-like platform carries
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out only planar motion and is taken as the reference body So to which the frame Fo is

attached. The remaining six bodies (S1, S2, . . . , S6) form the Staubli arm.

Modeling Approach

In this case, a wheeled platform is coupled with a manipulator arm. Our purpose is

to study the dynamic coupling effects of the platform on the arm and vice-versa. We

want the platform to move on a desired trajectory, and at the same time the arm should

manipulate. Thus the platform should compensate the dynamic effects of the arm and

vice-versa in terms of the internal control torques as well as the actuated wheel torques.

These torques will be computed through the proposed algorithm.

The platform is fully actuated through the rolling without slipping and non-sliding con-
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Figure 4.10 – (a) Staubli manipulator mounted on a car like platform; (b) Top view of the plat-
form, R2 = 0.42,D3 = R4 = 0.45

straints imposed by the wheels of the platform. Therefore, the net motions of the platform

are computed through pure kinematic locomotion model (3.57) whereas the manipulator

arm takes these motions to solve its dynamics (i.e. computes the desired internal control

torques τj) through simple Luh and Walker algorithm. On the other hand, the reduced

dynamic locomotion model is utilized to compute the desired wheel torques Γ which com-

pensates the dynamic coupling effects.

Preliminaries

As the platform is fully actuated then we have V = Va, H = Ha. The preliminary

kinematics required by the algorithm are:

Ha =




1

b

a


 , with: b = 2−1tgβ and a = l−1tgβ. (4.21)

Since the car-like platform is a wheeled body, (3.50) gives θ̇oa = Baaηra with:

Baa =

(
B̄aa

B̃aa

)
=

1

R

(
(1 + (L/l)b)cβ1 + sβ1tgβ

(1− (L/l)b)cβ2 + sβ2tgβ

)
. (4.22)

In the above relation, β ∈]−π/2, π/2[ is the time-varying steering angle of a virtual wheel

placed at the center of the steering wheel axle (see Fig. 4.11), and is compatible with the

two real actuated front wheels (i.e. verifying: tgβ = (1 + L/2l)tgβ1 = (1 − L/2l)tgβ2).

In the following, we use the new notation: ξ = ηra, which is, for instance, imposed

through: ξ(t) = B̄−1
aa (t)

˙̄θoa(t) and allows the platform posture to be computed thanks to
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Figure 4.11 – Top view of the car-like platform, l = 1.0, L = 0.5

the reconstruction equation (3.69), with J = 0, Hf = 0.

4.4.1 Reduced Dynamic Locomotion Model

The reduced dynamics are computed step by step by starting with the computation of the

composite inertia matrix M+
o from (3.27) which is then projected onto the fully actuated

admissible space Va, so giving M+
ra from (3.72). Next, the algorithm computes F+

in,o from

(3.68), which is reduced to F+
in,ra thanks to the projection (3.72).

4.4.2 Torque Dynamics

To compute the joint torque, the algorithm computes the reduced forward kinematics

(3.73) and (3.74) with ηo = Haξ and η̇o = Haξ̇ + Ḣaξ as initial conditions. Then the

backward recursion (3.83) is computed and the reduced wrenches are projected according

to (3.85), so giving the joint torques as outputs. Regarding the wheel torques, since the

admissible space is fully actuated (i.e. V = Va), we first calculate the external wrench

F+
ext,ra from (3.71) with η̇rf = 0 and η̇ra = ξ̇. Then, from relations (3.86) along with

(4.22), and by supposing that both actuated wheels produce the same torque, one finds

Γ̃ = Γ̄ = Γ = −(B̄T
aa + B̃T

aa)
−1F+

ext,ra.
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4.4.3 Numerical Results
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Figure 4.12 – (a) Torque τ1 for two different values of ξ; (b) Wheel torque for ξ = 1

The numerical results are obtained through the algorithm for the above mentioned mobile

manipulator. The dynamic effects of the first three bodies of the manipulator are taken

into account by actuating the first three joints while the rest of joints are stationary. Each

body of the manipulator is assumed to be cylindrical. The inertia of the platform is 10

times that of the maximum inertia of the system about the z-axis.

In simulation, the wheel and joint torques are computed for: rj(t) = sin(wjt), and β(t) =

sin(wbt). Then, with the same joint motions, the torques are computed for ξ = 1 and

ξ = 0. The plot in Fig. 4.12(a) shows the effect of the reference body (platform) dynamics

on the manipulator joint torques due to the dynamic coupling between the arm and the

platform. On the other hand, Fig. 4.12(b) shows the required wheel torques (Γ̃ = Γ̄ = Γ)

for ξ = 1.

4.5 Conclusions

In this chapter, the general algorithm proposed in chapter 3 was applied to a wide range

of multibody systems including unconstrained and constrained systems. The constrained

systems further included the under-constrained (snakeboard) and fully constrained (snake-

like robot) systems as well as the case of a manipulator with a mobile base subject

to some imposed motions. All these inclusions lead to the fact that the more general

algorithm works for all these cases like some particular ones. Moreover, the final algorithm

is very easy to implement and the complexity of the initial mechanism has no effect on

its implementation since, thanks to its recursive character, the addition of more and more

bodies just increases the final indices of the recurrences. As a final note, the proposed

Newton-Euler based dynamic model is homologous to the Lagrangian-based dynamics as
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it is shown in the case of snakeboard and satellite. In the next chapter, we are going to

extend the algorithm proposed in this first part of the thesis to the case of continuous

systems. We will see that such an extension actually results in an algorithm which is a

continuous version of the Newton-Euler based algorithm of discrete systems.
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This chapter develops an algorithmic tool to solve the problem of locomotion of the new

generation of robots called as hyper-redundant robots. In case of bio-inspired locomotion

these hyper-redundant robots are usually inspired from vertebrate elongated body ani-

mals with large number of internal degrees of freedom such as snakes [52] and anguilliform

fish [13], where the vertebrae correspond to the rigid bodies of the associated multibody

system. From this point of view, these animals can be effectively considered as continu-

ous deformable medium such as the European eel having more than 130 vertebrae, while

some species of big snakes have more than 500. Nowadays, thanks to the research on bio-

mimetic robots, the concepts of soft body robots are extending robotics even further. In

fact, unlike traditional robots, these robots, inspired by the invertebrate organisms known

as hydrostats, do not contain any rigid organs. Also, their shape changes are continuous

along their body length similar to that of an elephant trunk [48], the mammalian tongue

[107], caterpillars [9], earthworms [65], octopus arms [68] etc. Finally, all these systems

today form the general class of continuous-like systems.

Regarding their potential impact, let us first note that using the same single chain mor-
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phology, elongated continuous robots may offer a wide spectrum of applications ranging

from manipulation to locomotion on earth as well as in water. Moreover, once connected

to a discrete mechanism, they could be used as versatile manipulators as well as grippers

[79]. Finally, due to their slender morphology, they could play a crucial role to achieve res-

cue missions in unstructured, highly cluttered and confined environments, e.g. collapsed

buildings, narrow spaces etc.

Several researchers have done extensive work related to hyper-redundant as well as soft

robots in order to investigate the usual problems of robotics such as motion planning,

gait generation, kinematic and dynamic modeling, design and control, etc. We refer the

reader to [113] which surveys the state of the art on soft robotics. Historically, the initia-

tive was undoubtedly taken by Hirose through his pioneering work related to the design

and control of snake-like devices [52]. Based on these seminal works, many contributions

to kinematic modeling have been proposed [28, 18, 85, 57, 48]. Concerning dynamics of

continuous robots, a few works on this topic have been proposed [26, 41, 83, 108]. Ap-

plying the continuous modeling approach necessitates to give a material reality to the

continuous kinematics. For instance, the backbone curves of references [28, 18] have to be

completed with a material lateral extension enabling the inertia of the robot to be defined

as achieved in [26, 83] for planar robots. Alternatively, the geometrically exact beam

theory of J.C. Simo [105, 104] has been used for the modeling of passive steerable needles

in the context of medical robotics [116],[95], while in [113] and [112], it has been applied

to the real soft robot OctArm [46]. With the progress of these researches, the extension

of the classical robot models (i.e. geometric, kinematic and dynamic models) to these new

systems became a crucial step towards their future success. Thus, the second major goal

of this thesis is to propose a modeling and simulation tool in a unified framework suited to

the study of locomotion of such continuum systems [11]. Furthermore, this tool is applied

to the terrestrial locomotion systems as a first illustration.

In the sequel of this chapter, first of all an overview of the proposed modeling approach is

given to point out the basic assumptions and considerations of the modeling process. In a

first step, proceeding with the mathematical modeling, the kinematic and dynamic mod-

els are developed in section 5.3. These models are then used to form a general algorithm

applicable to hyper redundant systems. In a second step, this algorithm is modified for

the terrestrial locomotion systems inspired from elongated body animals.

5.1 Modeling Approach of Hyper-Redundant Robots

In the geometrically exact beam theory, a beam is modeled as a one dimensional Cosserat

medium [33], i.e. a multibody system made of an infinite number of rigid bodies, or cross

sections, of infinitesimal length assembled along the line of their centroids, where each

cross section is able to move with respect to the other due to some controlled strain time-
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variations. Starting from this point of view, in [13] a continuous eel-like robot is modeled

as a strain (curvature) - actuated geometrically exact beam. Pursuing a macroscopic

modeling approach, each Cosserat cross section of the actuated beam mimics a vertebra

of the animal (here the eel), while the imposed strain law models the actuated infinitesimal

joints of the corresponding continuous rigid robot. Once related to the general theory of

locomotion on principal fiber bundles [76], such a model can be used to solve the general

problem stated in section 2.3.3 that we now recall by using the curvature time law as

control input.

1. Computes the net motions of a reference cross section (for instance attached to the

head) propelled by the external forces exerted by the surroundings (i.e., solves the

forward locomotion dynamics).

2. Computes the internal control torques (and/or forces), i.e. solves the inverse torque

dynamics.

This modeling approach was termed macro-continuous in [13] since, like the Variable

Geometry Truss evoked in [26], it is suitable for modeling hyper-redundant robots at a

macroscopic scale where they can be approximated as a beam. It is naturally adapted

to the highest levels of the mechanical design as well as the generation of complex gaits

involving a lot of degrees of freedom as this is usually the case of hyper-redundant robots

[50].

In this chapter, we reconsider this macro-continuous approach for locomotion and extend

it to the following cases.

1. The configuration space of the cross sections is an arbitrary Lie group.

2. The control strain law is arbitrary (curvature, twist, stretching, etc.).

3. The external forces responsible for the propulsion are not necessarily to be those

produced by a fluid but can be imposed by the contact with the ground and modeled

through kinematic constraints.

In this case, similar to discrete multibody systems discussed in the first part of this thesis

[10], when the number of independent constraints is larger than the number of net mo-

tions degrees of freedom, the locomotion dynamics can be replaced by a kinematic model

entirely governed by the constraints. Geometrically, these forward locomotion kinematics

are nothing but a continuous version of the finite-dimensional kinematic connections of

nonholonomic mechanics [76, 8]. As a consequence and contrary to the case of eel swim-

ming, the locomotion dynamics are not required to deduce the net motions but are used

in their inverse form to compute the resultant and moment of external forces produced

by the external contacts. Once these elements are computed, they are distributed on the
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Figure 5.1 – Frames and parametrization of a hyper-redundant robot

contacts in order to fix a possible set of external reaction forces and couples which are

used in a second step by the algorithm to compute the desired internal actuation torques

and/or forces to impose the desired strain law. Finally, the kinematic constraints are

deduced from the model of a few types of contacts. This will allow us, in the next chap-

ter, to apply the macro-continuous approach to terrestrial locomotion of several elongated

body animals as earthworms, inchworms, snakes in planar and three-dimensional lateral

undulations, etc.

5.1.1 Assumptions and Considerations

The hyper-redundant robot is considered as a 1D Cosserat beam along with the geomet-

rically exact beam theory developed by J. C. Simo [106] in 1980’s. The basic idea of

Cosserat theory [33] is to consider the beam as a serial assembly of rigid cross sections as-

sembled along a centroidal line passing through the geometric center of each cross section.

With such considerations, a hyper-redundant robot may be modeled as a Cosserat beam

in finite 3D transformations and small strains with the backbone curve of the robot assim-

ilated to the beam centroidal line. In this approach, each rigid cross section of the beam

(of length l) is labeled by its abscissa X in the initial straight configuration in which the
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beam is aligned along the axis (O, ex) of the fixed orthonormal frame Fs = (O, ex, ey, ez)

as shown in Fig. 5.1. A mobile orthonormal frame t 7→ Fm(X, t) = (P, tX , tY , tZ)(X, t)

is attached to any rigid cross section X . The origin P (X) and the first vector tX(X)

coincide with the mass center of the cross section and its unit normal vector, respectively.

Configuration Spaces of a Hyper-Redundant Robot

For any function f(X, t), the partial derivative operators ∂
∂X
f(X, t) and ∂

∂t
f(X, t) will be

simply indicated as f ′(X, t) and ḟ(X, t), respectively. With the above considerations, the

configuration of any mobile frame Fm(X, t) attached to a cross section X is defined by

the action of an element of g ∈ SE(3) applied to the fixed frame Fs. It thus becomes

possible to introduce the first definition of the robot configuration space as a functional

space of curves in SE(3), parameterized by the material abscissa, i.e.:

C1 = {g : ∀X ∈ [0, l] 7→ g(X) ∈ SE(3)}, (5.1)

with:

g(X) =

(
R(X) p(X)

0 1

)
.

On the robot, two vector fields are defined in se(3). The first is the time-twist field defined

as follows:

η̂ : X ∈ [0, l] 7→ η̂(X, t) = g−1ġ ∈ se(3), (5.2)

where η(X, t) defines the infinitesimal transformation undergone by the cross section X

between two infinitely close instants t and t + dt as depicted in Fig. 5.2. The second is

the space-twist field such that:

ξ̂ : X ∈ [0, l] 7→ ξ̂(X, t) = g−1g′ ∈ se(3), (5.3)

where ξ(X, t) defines the infinitesimal transformation undergone by the cross section X at

fixed time t when the material axis slides from X to X + dX as depicted in Fig. 5.2. Now

depending on the considered robot, certain degrees of freedom between any two contiguous

cross sections are actuated while others are constrained to constant values through the

design of internal joints (that are assumed ideal). Mathematically, this corresponds to

identify ξ̂(X, t) to a desired control field explicitly dependent on the time and noted ξ̂d(t),

i.e.:

ξ(X) = ξd(X, t), ∀(X, t) ∈ [0, l]× R
+. (5.4)
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Figure 5.2 – Representation of vector fields η(X) and ξ(X)

It is also possible to reconstruct the configuration of the beam from the knowledge of the

reference configuration go and that of the strain field ξd(t). Thus, a second definition of

the configuration space of a robot can be given as the principal fiber bundle:

C2 = G× S, (5.5)

where G stands for the configuration of the head frame Fm(0, t), while S is the shape

space here defined as the following functional space of curves in the Lie algebra of the

configuration group SE(3):

S = {ξ : ∀X ∈ [0, l] 7→ ξ(X) ∈ se(3)}. (5.6)

In this second definition of the robot configuration space, the cross section X = 0 plays

the role of reference body, i.e. a body whose motion defines the reference of net motions

with respect to which the shape deformations are measured. In bio-mimetics, the head of

the bio-inspired robot is usually considered as the reference body.

Finally, ξd(X, t) parameterizes the internal kinematics of the robot, i.e. the continuous

infinitesimal homologous of the usual internal joints rj(t) of discrete multibody systems,

with X playing the role of the continuous body index. Note that in the theory of contin-

uum mechanics, X is a Lagrangian (material) label.
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5.2 Beam Kinematics and Hyper-Redundant Robots

We now list the different possible actuations of the strain field ξd(t) and comment their

relations to continuum robotics and beam theory. For this, we start from definition (5.4)

which we detail as follows:

g−1g′ =

(
RTR′ RTp′

0 0

)
=

(
K̂d(X, t) Γd(X, t)

0 0

)
= ξ̂d(X, t), (5.7)

where:

Kd(X, t) =




KdX

KdY

KdZ


 (X, t), Γd(X, t) =




ΓdX

ΓdY

ΓdZ


 (X, t). (5.8)

The components of these two vectors represent the following strain fields of a beam:

Torsion: KdX(X, t) is the rate of torsion per unit of material beam length.

Curvature: KdY (X, t) and KdZ(X, t) represent the curvatures of the beam centroidal

line in the planes (P, tX , tZ) and (P, tX , tY ), respectively.

Stretch: (ΓdX − 1) is the rate of stretching of the centroidal line.

Shear: ΓdY (X, t) and ΓdZ(X, t) are the local transverse shearing rotations around the

axes (P, tZ) and (P, tY ), respectively.

Since in robotics, such strain fields represent the inter-bodies joint kinematics which are

either actuated, passive1 or constrained through design. Therefore, different cases relevant

to bio-inspired robotics are possible ranging from the most actuated to the least actuated

internal kinematics. Such cases are summarized in table 5.1 along with their corresponding

beam theory. In nature, each of these internal degrees of freedom finds an application in

case of elongated body animals’ locomotion. In fact, one of the two curvatures KdY (X, t)

and KdZ(X, t) actuates the yaw in the plane of propulsion, while the other actuates the

pitch for complex 3D maneuvers involving the body. The torsion KdX(X, t) has a direct

action on the roll whose control is crucial to stabilize the orientation of the head of a bio-

inspired robot e.g. eel-fish, snake, etc. As for linear degrees of freedom, ΓdX(X, t) actuates

the traction-compression as used by large snakes while ΓdY (X, t) and ΓdZ(X, t) can be

actuated through the movements of the skin and scales with respect to the backbone.

Different scenarios found in nature are interpreted in table 5.2. Furthermore, the time-

1 We do not consider passive joints in this work.
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Table 5.1 – Actuated degrees of freedom vs Beam theory

Case Constraints
degrees of
freedom

Beam Theory Remarks

1
No con-
straints

06
Timoshenko-
Reissner

Fully actuated
beam

2
ΓdY = ΓdZ =
0

04
Extensible
Kirchoff

Cross sections
stay perpendicu-
lar to vertebral
axis

3
Case 2 with
ΓdX = 1

03
Inextensible
Kirchoff

infinitesimal ver-
sion of a spheri-
cal joint

4
Case 3 with
KdX = 0

02
No corre-
sponding
beam

In passive
beams, 3D
bending always
produce torsion

5
Case 4 with
KdY = 0

01
Inextensible
planar Kir-
choff

Planar case
with Yaw de-
gree of freedom
actuation

Table 5.2 – Internal degrees of freedom vs natural applications

Case Controlled de-
grees of freedom

Nature Example

1 01 Stretching Earthworm

2 01 Bending (pitch) Inchworm

3 01 Bending (yaw) 2D snakes

4 02 Bending
(pich+yaw)

3D snakes

5 05 Bending
(pich+yaw) +
2 transverse shear-
ing

3D snakes
+ model of
scales

twist field η̂(X, t), given in (5.2) can be detailed as follows:

g−1ġ =

(
RT Ṙ RT ṗ

0 0

)
=

(
Ω̂(X, t) V (X, t)

0 0

)
= η̂(X, t), (5.9)
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with:

V (X, t) =




VX

VY

VZ


 (X, t), Ω(X, t) =




ΩX

ΩY

ΩZ


 (X, t), (5.10)

where, V (X, t) and Ω(X, t) are, respectively, the vectors of linear and angular velocities

of the cross section X in the cross sectional (material) frame Fm(X, t).

Remark

A similar relation to the vector fields (5.7) and (5.9) exist in the case of any subgroup of

SE(3). Also, in the following, we will consider g belonging to one of these subgroups G of

Lie algebra g.

5.3 Continuous Models of Hyper-Redundant Robots

From now on, go, ġo and g̈o denote the position, velocity and acceleration of the cross

section X = 0 on G, respectively. The continuous dynamic model of a hyper-redundant

robot splits into 5 sub-models detailed in the following subsections.

5.3.1 Continuous Model of Transformations

This is immediately deduced from the definition (5.7) of internal degrees of freedom (i.e.

strain field ξd(t)):

g′ = gξ̂d(t), (5.11)

with boundary conditions: g(X = 0) = go.

5.3.2 Continuous Model of Velocities

By taking partial derivative of the model of transformations (5.11) with respect to time

we get:

∂

∂t
g′ =

∂

∂t

(
gξ̂d

)
,

this implies that:

ġ′ = ġξ̂d + ĝ̇ξd.
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With ġ = gη̂ we get:

(gη̂)′ = gη̂ξ̂d + ĝ̇ξd,

then multiplying both sides by g−1 and rearranging we get:

η̂′ = −(ξ̂dη̂ − η̂ξ̂d) +
̂̇ξd,

where we recognize, in the parenthesis, the Lie bracket of ξd and η, and we have in terms

of twist in R
6.

η′ = −adξd(t)(η) + ξ̇d(t), (5.12)

with boundary conditions: η(X = 0) = ηo = (g−1
o ġo)

∨.

5.3.3 Continuous Model of Accelerations

This is inferred by taking derivative of the previous model (5.12) with respect to time:

η̇′ = −adξd(t)(η̇)− adξ̇d(t)(η) + ξ̈d(t), (5.13)

whose solutions are fixed by the boundary conditions: η̇(X = 0) = η̇o = (g−1
o g̈o −

g−1
o ġog

−1
o ġo)

∨.

5.3.4 Dynamics on C1: Continuous Model of Internal Wrenches

Following [15], we can extend the Poincaré approach (2.15) presented in chapter 2 to the

case of a Cosserat beam. This consists in deriving the dynamics of the beam from a

Lagrangian approach directly on the intrinsic definition (5.1) of the beam configuration

space. Technically, this is achieved by applying the extended Hamilton principle [80]:

δ

∫ tb

ta

Ldt = δ

∫ tb

ta

∫ l

0

LdXdt =

∫ tb

ta

−δWextdt, (5.14)

where δ denotes any variation applied along the trajectory of the system while the configu-

ration at the two ends of [ta, tb] is maintained fixed, and δWext is the virtual work produced

by the nonconservative external forces. Furthermore, L and L respectively denote the La-

grangian and the Lagrangian density of the beam free of external load. According to the

intrinsic setting of the Poincaré-Cosserat approach, L is directly defined as a function

of the cross-section transformations and their space and time derivatives L(g, g′, ġ); and

not, like in the case due to Lagrange, as a function of any parameterization of the g’s

in R
6. Then, let us recall that the variation is applied onto any motion in C1 while the
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space and time variables are maintained fixed. In fact, δt = 0 in accordance with the

D’Alembert principle of virtual work, while δX = 0 since the variable X is a material

(configuration-independent) label (note here that this imposes δ to follow the cross section

X along any virtual displacement). Then, introducing the definitions (5.2,5.3) into the

Lagrangian density of the beam allows one to rewrite the Lagrangian L of the (5.14) as

follows:

L =

∫ l

0

L(g, g′, ġ)dX =

∫ l

0

L(g, ξ, η)dX, (5.15)

where L is a new function named the reduced Lagrangian density (in the Lie algebra of

SE(3)) when it does not depend explicitly on the transformation g. In fact, this property is

named left-invariance and traduces the symmetry of the dynamics as seen by an observer

attached to the beam material. In the rest of this section, we shall assume that the

Lagrangian of the beam free of external load is left-invariant. Now, let us derive the beam

dynamics by applying the variational principle (5.14) with L defined by (5.15). For this,

we have to invoke the constraints of variation at a fixed time and material label:

δ
∂g

∂t
=
∂δg

∂t
, δ

∂g

∂X
=
∂δg

∂X
, (5.16)

where δς = g−1δg ∈ se(3) is a field of material variation of g, with δς(ta) = δς(tb) = 0.

Then inserting ”δg = gδς” into (5.16) gives the following relations, that play a key role in

the variational calculus on Lie groups:

δη =
∂δς

∂t
+ adη(δς), δξ =

∂δς

∂X
+ adξ(δς). (5.17)

Finally, applying the standard uses of the variational calculus to (5.14), with (5.17) applied

before the usual integration by parts (here in time and space), gives the Poincaré equations

of a Cosserat beam in the material setting as follows:

∂

∂t

(
∂L

∂η

)
− ad∗

η

(
∂L

∂η

)
+

∂

∂X

(
∂L

∂ξ

)
− ad∗

ξ

(
∂L

∂ξ

)
= F , (5.18)

whose solutions are fixed at each instant by the following boundary conditions:

∂L

∂ξ
(0) = −F− , and:

∂L

∂ξ
(l) = F+, (5.19)

where we assume that the external load is defined by the density field of wrench X ∈]0, l[7→

F ∈ se(3)∗, and the two boundary wrenches F− ∈ se(3)∗ and F+ ∈ se(3)∗ applied onto

the first and last cross-sections of the beam, respectively, i.e., we assume that δWext =∫ l
0
FδςdX+F−δς(0)+F+δς(l) in (5.14). Finally, these external wrenches generally depend

on the beam configuration. Nevertheless, when this is not the case, the external load is
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said to be left-invariant. This is particularly true for most of the contact forces involved

in animal locomotion. In our case, we fix the reduced Lagrangian density of (5.15) as

follows:

L(η, ξ, t) = T(η)− U(ξ, t),

where, the left-invariant density of the kinetic energy T of the beam is defined by:

T(η) =
1

2
ηT (Mη),

with M(X) ∈ g∗⊗g as a (6×6) matrix of inertia tensor density in the case of G = SE(3):

M =

(
m 0

0 I

)
.

Moreover, the left-invariant density of the internal energy U, imposed by the constraints

(5.4), is defined as:

U(ξ, t) = ΛT (ξ − ξd(t)),

with ∂U/∂ξ = Λ(X, t) ∈ g∗ as a (6× 1) vector (in case of SE(3)) of the density of internal

wrenches whose components are given as:

Λ(X, t) =

(
N

C

)
(X, t), withN(X, t) =




NX

NY

NZ


 (X, t), and C(X, t) =




CX

CY

CZ


 (X, t),

where Λ(X, t) ensures the forcing of the Lagrangian internal kinematic constraints: ξ =

ξd(t). Let us note here that Λ(X, t) is a field of Lagrange multipliers such that for the

actuated internal degrees of freedom, the associated multipliers are the forces or/and the

torques exerted by the actuators, while for the non-actuated internal degrees of freedom,

the multipliers are the internal reaction torques or forces. Note also that with such a

choice, the internal kinematics are assumed to be inelastic and the robot turns out to be

a continuous rigid robot2. Furthermore, we note ∂T/∂η = Mη as the density of kinetic

wrenches along the robot. Finally, with above notations, the Poincaré equations (5.18) of

a Cosserat beam can be rewritten as follows:

Mη̇ − ad∗η (Mη)− Λ′ + ad∗
ξd(t)

(Λ) = F , (5.20)

2Alternatively, the model of internal dynamics can be enriched by adding elastic and viscous terms in
U.
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with the following boundary conditions:

at X = 0: Λ(0) = −F− and at X = l: Λ(l) = F+. (5.21)

The partial differential equation (5.20) along with (5.21) are considered in the following

as the dynamics of the internal wrenches or more simply as the ”internal dynamics”.

Obviously, this is the continuous counterpart of the internal torque dynamics (3.11) in

the discrete case.

5.3.5 Dynamics on C2: Dynamics of the Reference Body

The dynamics on C2 are derived from those on C1 by forcing the virtual and real velocity

fields in the Hamilton principle to verify the following constraint:

η = Adk(ηo), (5.22)

where, k = g−1go. Note that, the defined field (5.22) is simply the time-twist field on the

beam induced by the movement of the head alone, while the body is frozen in its current

shape. In these conditions, the internal wrenches do not work in such a field and the

balance of virtual work reduces to:

∫ l

0

Ad∗
k(Mη̇ − ad∗

η(Mη)− F )dX = Ad∗
k+
F+ − F−, (5.23)

where η̇ is replaced by the acceleration field compatible with (5.22), i.e.:

η̇ = Adk(η̇o) + adη(Adk(ηo)) + Adk(η
2
o)− (Adk(ηo))

2

= Adk(η̇o) + ζ, (5.24)

which defines ζ(X) as the material (or body) acceleration of cross section X induced by

the body shape motion and the movement of the head except for its pure acceleration

(i.e. η̇o).

Finally, when the calculations are done and the kinematic reconstruction equation ġo =

goη̂o is taken into account, the dynamic equations on C2 can be written as:

(
η̇o

ġo

)
=

(
M−1

o (ξd)Fo(ξd, ξ̇d, ξ̈d, go, ηo)

goη̂o

)
, (5.25)

with: Fo = Fin + Fext, and where we introduced the inertia tensor of the whole robot

reduced to the reference cross section i.e. in X = 0:

Mo =

∫ l

0

Ad∗
kMAdkdX, (5.26)
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∫ ∫

Outputs:
internal forces Λ(t)

Acc. Velocities Config.

Outputs:
net motions: (go, ηo, η̇o)(t)
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Figure 5.3 – General algorithm of hyper-redundant robots

as well as the external wrenches, reduced to the reference cross section:

Fext = −F− +Ad∗
k+
F+ +

∫ l

0

Ad∗
k(F )dX, (5.27)

and the inertial wrenches reduced to the reference cross section:

Fin = −

∫ l

0

Ad∗
k(Mζ − ad∗

η(Mη))dX. (5.28)

In the following, (5.25) will be considered as the dynamics of the reference body net

motions controlled by the shape time variations, i.e. the ”locomotion dynamics”. Note

that, this is obviously the continuous counterpart of the locomotion dynamics (3.29) in

the discrete case.

5.4 Dynamic Algorithm of Hyper-Redundant Robots

Now, with the above mentioned continuous kinematic and dynamic models, a macro-

continuous dynamic algorithm is proposed to solve the general problem of section 2.3.3

of chapter 2. First, by defining the kinematic state vector X1 = (g, η, η̇), the kinematic

models (5.11,5.12,5.13) can be easily grouped together into a set of first order spatial

ordinary differential equations as follows:

X ′
1 = f1(X1, ξd(t), ξ̇d(t), ξ̈d(t)), (5.29)
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with:

f1 =




gξ̂d(t)

−adξd(t)(η) + ξ̇d(t)

−adξd(t)(η̇)− adξ̇d(t)(η) + ξ̈d(t)


 . (5.30)

Similarly, the terms appearing in the locomotion dynamics (5.25) can be computed by

spatial integration of a set of ordinary differential equations of the state vector X2 =

(X1,Mo, Fo):

X ′
2 = f2(X2, ξd(t), ξ̇d(t), ξ̈d(t)), (5.31)

with:

f2 =




f1

Ad∗
kMAdk

Ad∗
k(ad

∗
η(Mη) + F −Mη̇)


 , (5.32)

where the ζ of (5.28) can be replaced by η̇ in (5.32) if the initial spatial conditions of

(5.31) verify η̇(X = 0) = η̇o = 0. In fact, in this case (5.24) shows that ζ = η̇ all along the

beam. Finally, as we will now see, in every case the algorithm integrates (5.31) in these

conditions, so that (5.32) makes sense.

Finally, the internal dynamics (5.20) can be stated in the form of the following set of

spatial ordinary differential equations, of the state vector X3 = (X1,Λ):

X ′
3 = f3(X3, ξd(t), ξ̇d(t), ξ̈d(t)), (5.33)

with:

f3 =

(
f1

ad∗ξd(t) (Λ) +Mη̇ − ad∗η (Mη)− F

)
. (5.34)

All the above ordinary differential equations form a general algorithm as shown in Fig.

5.3 to solve the dynamics of a hyper-redundant robot. The execution of the algorithm is

summarized in Fig. 5.4.

Remarks

1. Let us remark that the above algorithm is nothing else but a continuous version

of the Newton-Euler discrete algorithm of mobile multibody systems presented in

chapter 3, where (5.29) stands for the forward recursive kinematics, (5.31) stands

for the recursive computation of the dynamic locomotion model, and (5.33) for the

backward recursive computation of inter-body wrenches.
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Inputs: (ξd, ξ̇d, ξ̈d, ξ
′

d, ξ
′′

d )(t)

Λ(t)

Integration of spatial ordinary differential equation ( )
from X = 0 to X = l initialized by X2(0) = (go, ηo, 0, 0, F−

)

Integration of spatial ordinary differential equation ( )
from X = 0 to X = l initialized by X3(0) = (go, ηo, η̇o, F−

)

Mo, Fo

Equation ( )(
η̇o
ġo

)
=

(
M−1

o Fo

goη̂o

)

ġo, η̇o

Block1

Block2

(go, ηo)(t+∆t)

∫

Outputs:

5.31

5.25

5.33

Figure 5.4 – Execution of the general algorithm of a hyper-redundant robot

2. The algorithm computes the net (reference) acceleration by solving the direct loco-

motion dynamics (Block1 of Fig. 5.3) which contains a model of the external forces.

In general, such a model of external forces may be very complex e.g. in the case

of swimming in which, at least, it requires to integrate the Navier-Stokes equations

of the surrounding flow [16]. As another example of the terrestrial locomotion, the

above algorithm can be used with external forces modeled as physical laws, e.g.

friction laws. However, for the sake of simplicity of analysis, it can be useful to

consider the contacts as ideal. In this particular case, the external contacts can be

modeled as kinematic constraints instead of external forces. In the next section, we

shall see that when the number of constraints is sufficient, locomotion dynamics can

be replaced by kinematics and the locomotion is named as ”kinematic locomotion”.

5.5 Terrestrial Locomotion Model

In nature, there exists a vast variety of terrestrial locomotion modes that depends upon

the body structure of the organism and the surrounding substrate (see section 2.1 of
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Table 5.3 – Contacts in terrestrial locomotion

Type Constraint Locomotion Examples

Locked an-
chorage

Clamped to earth Step by step locomotion Inchworm

Sweeping
anchorage

”Rolling without slipping” type Axial propulsion Earthworm,
big snakes

Annular
contact

Non-sliding Lateral undulation Snakes

chapter 2). Here, we consider the limbless locomotion of elongated body animals such

as snakes, earthworms, inchworms, etc. As the terrestrial locomotion is analyzed in the

scenario of ideal contacts and the resulting kinematic constraints, thus the above proposed

algorithm requires to be modified via the modeling of these ideal contacts which is done

in the following sections.

5.5.1 Kinematic Modeling of Contacts

As pointed out in chapter 2, the nature of contact plays an important role in defining the

mode of locomotion. Based upon the observations of terrestrial elongated body animals,

here we will deal with two types of contacts (assumed ideal): ”anchorages” and ”annular

contacts”. Anchorages are modeled as bilateral holonomic constraints while annular con-

tacts are modeled as bilateral nonholonomic constraints. In both cases the contacts are

distributed along the body axis. In case of anchorages, two types are envisaged:

Locked anchorage: this type of anchorage is fixed on the material axis of the robot on

an abscissa, noted C, constant in relation to time (see Fig. 5.5(a)).

Sweeping anchorage: in this type of anchorage, the abscissa C is either explicitly de-

pendent on time noted as C(t) or implicitly dependent on time via the system

dynamics (see Fig. 5.5(b)).

On the other hand, the annular contact is always sweeping, as the robot can slide freely

in the annulus formed by the annular contact.

The contacts are assumed to be attached to rigid external bodies (named obstacles) sub-

mitted to imposed relative motions in the fixed earth frame. Finally, as we will see when

considering examples, these models are of great practical interest for modeling numerous

locomotion modes as illustrated in table 5.3.
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VcX(t)

X = C(t)
X = C

(a) (b)

Figure 5.5 – (a) Locked anchorage; (b) sweeping anchorage

5.5.1.1 Anchorages

For a locked anchorage as shown in Fig. 5.5(a), where the robot is anchored at a fixed

material point C ∈ [0, l], the geometric model is written as follows:

g(C) = gc(t), (5.35)

where t 7→ gc(t) denotes a function of time in G which represents the imposed motion

of the anchored rigid obstacle. In particular, if gc is independent of time, then this

body is fixed, as in the case of a manipulator robot anchored in the ground or more

simply a cantilevered beam (see Fig. 5.5(a)). For a sweeping anchorage as shown in Fig.

5.5(b)), the geometric model of contact cannot distinguish it from a locked anchorage,

both considered at the same instant t. In fact, in the case of sweeping anchorage, we still

have:

g(C(t)) = gc(t), (5.36)

which coincides with (5.35) when C = C(t). In contrast, the kinematic model can make

the distinction since, for the sweeping anchorage, by taking total derivative with respect

to time (denoted as d
dt
(.)) of (5.36):

d

dt
g(C(t)) = ġ(C(t)) + g′(C(t))Ċ(t) = ġc(t), (5.37)

which is multiplied by g−1(C(t)) to obtain, invoking (5.36) again, the sweeping anchorage

constraints in g:

η(C(t)) + ξd(C(t), t)Ċ(t) = ηc(t), (5.38)
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Figure 5.6 – Cross sectional follower Annular contact

where, when G = SE(3):

ηc(t) = (g−1
c ġc)

∨(t) =




VcX

VcY

VcZ

ΩcX

ΩcY

ΩcZ




,

is the time-twist imposed on the rigid body supporting the anchorage. Furthermore, (5.38)

allows one to recover the kinematic form of a locked anchorage: η(C) = ηc(t) when C is

time-independent. Finally, let us note that in the general case (5.38) produces a set of

dim(g) independent scalar constraints.

5.5.1.2 Annular Contact

Before describing the details of their modeling, let us recall that annular contacts are

sweeping by nature so they can only be accounted for by kinematic constraints. Here,

we consider the cross sectional follower annular contact as shown in Fig. 5.6. The cross

sectional follower annular contact follows the cross section in their lateral motions while

axially sweeping over it (see Fig. 5.6). It is an annular contact that prevents all relative

translational velocities (of the beam with respect to the obstacle) in the plane of a given

cross section of abscissa X = C. Thus, for a movement in the space R
3 (i.e. G = SE(3)),

such a contact exerted in any C ∈ [0, l] is modeled by the following relations:

{
(v(C(t))− vc(t))× tX(C(t)) = 0,

(ω(C(t))− ωc(t))
T tX(C(t)) = 0,

(5.39)
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where (vT , ωT )T (X) = (ġg−1)∨ denotes the spatial twist of the X-cross-section while

(vTc , ω
T
c )

T (t) is the spatial twist imposed on the rigid annular contact by the moving

obstacle. After computation, (5.39) leads to the following three bilateral nonholonomic

constraints:





VY (C) = VcY (t),

VZ(C) = VcZ(t),

ΩX(C) = ΩcX(t),

(5.40)

where VcY (t), VcZ(t) are the lateral velocities expressed in the cross section frame while

ΩcX(t) is the axial component of the angular velocities. All of them being imposed on the

C-cross-section by the movement of the obstacle, these velocities are null if the annular

contact in question is fixed in the ambient space. Furthermore, in planar motion (i.e.

G=SE(2)), such a contact only prevents the lateral motion of the cross section in contact.

Thus, the bi-lateral nonholonomic constraint is given simply as follows:

VY (C) = VcY (t).

Finally, C can itself move along the material robot axis following a time law of the general

form:

Ċ = VcX(t)− VX(C),

where VcX is imposed by the axial motion of the support while VX(C) is, in general, ruled

by the locomotion. Lastly, let us note that when the given support follows the cross

section not only laterally but also axially, then Ċ = VcX(t)− VX(C) = 0.

5.5.2 Model of Contact Forces

As the contacts are ideal, the reaction (contact) forces are identified as Lagrange multi-

pliers associated to the scalar constraints taken from (5.38) and (5.40). When G = SE(3),

an anchorage introduces six multipliers (i.e. the six components of a complete reaction

wrench) while an annular contact transmits two lateral forces and one axial torque for a

3D movement and only one lateral force for a planar motion as shown in Fig. 5.7. When

the anchorages and/or the annular contacts are imposed at the ends, the reaction forces

associated with them enter into the calculation of the dynamics via a contact component

of the apical external wrenches F± that we note Fc,± (where ”c”means ”contact”). As long

as the contacts are defined inside the domain of the beam, i.e. if C ∈]0, l[, then each of

them adds a set of kinematic constraints in g and an associated reaction wrench (defined
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NcX
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NcZ

CcX
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CcZ

(a)

NcY

NcZ

CcX

(b)

Figure 5.7 – (a) Reaction wrench on an anchored cross section; (b) Reaction wrench on a cross
section in annular contact

in g∗), that enters into the model via F which then contains a contact term of the form3:

F c(C)δ(X − C). Finally, according to (5.27), any distribution of contacts produces a

contribution to Fext which is noted Fc and called the resultant of the reaction (contact)

wrenches. Consequently, the external wrenches can be written as follows:

Fext = Fc + Fother,

where Fother, denotes the contribution to Fext brought by the distribution of external

forces of other origin than contact. Such a distribution (or loading) will be denoted by

(Fother,±, F other) and models external loads as gravity, pressure and viscous forces etc.

5.5.3 Algorithm in Kinematic Case

When the number of constraints (imposed by the contacts) is equal or higher than the

dimension of the fiber of C2, the system is said fully or over constrained and the net motions

are entirely ruled by the kinematic model of the contacts which takes the following most

general explicit form:

ġo = goη̂o = gof̂(go, ξd(t), ξ
′
d(t), ξ

′′
d(t), ..., ξ̇d(t)), (5.41)

where f is the model of kinematic constraints and hence the model of reference acceler-

ations can be obtained by simple time differentiation of f . In this case, the locomotion

is called ”kinematic locomotion” (to distinguish it from the previous dynamic locomotion

case) and the locomotion dynamics (5.25) are used in their inverse form to calculate the

3Where δ is the Dirac distribution such that
∫ l

o
f(X)δ(X − C)dX = f(C) for any enough smooth

function f .
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Block1:

Inverse
Locomotion
Dynamics

Block0:

Direct
Contact

Kinematics

Inputs: (ξd, ξ̇d, ξ̈d)(t)

∫ ∫

Outputs:
internal forces Λ(t)

Acc. Velocities Config.

Outputs:
net motions: (go, ηo, η̇o)(t)

η̇o ηo go

Block2:

Inverse
Internal
Dynamics

Fc,±

F c

Figure 5.8 – Algorithm of a hyper-redundant robot with kinematic constraint model

contact wrench induced by the external constraints, i.e.:

Fc = Moη̇o − Fin − Fother. (5.42)

Going further, when the number of constraints is strictly higher than the dimension of

the fiber of C2, the overall motions of the robot are over-constrained which means that:

1) the internal movements must be compatible4, 2) the reaction unknowns Fc,± and F c

are under-determined as they are only required to verify the locomotion dynamics (5.42).

Finally, taking these considerations into account, the new constrained algorithm is shown

in Fig. 5.8 and its execution is summarized in Fig. 5.9.

Remarks

1. In the rest of the thesis we do not specify the form of the locomotion kinematics

beyond its expression (5.41), preferring to investigate it, case by case, for the par-

ticular examples of next chapter. Let us just say here that the function f in (5.41)

must be calculated from f1 of (5.29) and from considerations related to the way

of locomotion studied (particularly based on biological observation) as well as the

contact models as introduced in section 5.5.1.

2. Hyper-redundant manipulators can be considered as a subclass of fully constrained

case. In fact here, the reference cross section X = 0 is clamped in a rigid basis

enduring an imposed motion (in particular, null) defined by X1(0) = (go, ηo, η̇o)(t).

In this case, computation of Block0 and Block1 of the algorithm can be avoided.

4with the risk, if this is not the case of preventing mobility and, due to the hyper-statism, of producing
internal stress resolved by replacing the constraints induced by the internal joints, assumed ideal, by
rheological passive laws.
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Figure 5.9 – Execution of kinematic algorithm of a hyper-redundant robot

Indeed, the reference motions require no calculations as they are known by their

time laws.

3. Note that if f is linear in ξ̇d(t) and independent of go, the kinematic model under

the constraints of contacts defines a principal kinematic connection on the principal

fiber bundle C2, i.e. a continuous version of the discrete connections studied in the

mechanics of nonholonomic systems [8].
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4. The distribution of the resultant contact wrench Fc over the p contact points is

univocal if the number of constraints is equal to the dimensions of the fiber, and is

multivocal if it is higher. This last case requires further assumption on the distri-

bution of the contact forces.

5. The internal wrenches are achieved by piecewise integration of the internal dynamics

on [0, C1]∪[C1, C2]∪. . . [Cp, l], using the jump conditions: Λ(Ci−) = −F (Ci)+Λ(Ci+)

where Λ(Ci−) and Λ(Ci+) denote the material internal wrench Λ evaluated on the

left and the right sides of the cross section Ci, respectively.

5.6 Conclusions

In this chapter a continuous version of the Newton-Euler dynamics was presented. In fact,

the bio-inspired systems considered here were treated as continuous 1D Cosserat beam.

Once embedded in the framework of locomotion theory on the principal fiber bundle, a

general unified algorithm was proposed that solves the following two problems involved

in any locomotion task.

1. It enables the net motion of a reference body to be computed from the known data

of internal motions (strain fields),

2. It gives the internal torques required to impose these internal (strain field) motions.

Moreover, the general macro-continuous algorithm is further modified to solve the problem

of terrestrial locomotion bio-inspired from elongated body animals. This modification was

done with the help of ideal contacts between the system and the substrate. In this regard,

the given framework provides a continuous version of the kinematic connections proposed

by geometric mechanics in [87, 60, 76]. In the next chapter, this algorithm is applied to

different elongated body animals in order to solve the problem of locomotion.
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In this chapter, the macro-continuous algorithm developed in the previous chapter is

applied to several terrestrial elongated body animals. In each case, the contact between

the animal and the ground is modeled through the kinematics constraints presented in

section 5.5.1. Since, the terrestrial elongated body animals have normally a large (or

at least equal) number of contacts than the dimensions of the fiber, thus the kinematic

constraint model allows us to use the kinematic locomotion model (5.41) in order to

compute the net forward motions of the animal. The internal torques and/or forces

computation is done with some hypothesis over the distribution of the resultant contact

forces Fc in the case of redundant contact points. Finally, the framework shows the



124 Chapter 6. Illustrative Examples of Hyper-Redundant Robots

Figure 6.1 – A natural earthworm

generality of the algorithm toward various systems of locomotion.

6.1 Earthworm in 1D

The natural earthworm, as shown in Fig. 6.1, is a slender body invertebrate since this

organism contains no backbone in its structure [97]. This soft-bodied creature has a

hydrostatic skeleton1 composed of a series of fluid-filled segments connected end to end.

Each segment has a set of antagonistic muscles, i.e. the outer longitudinal and the inner

circular muscles. Small and stiff hair-like bristles called setae are present on the outer

body to help anchor into the soil. For detailed description of earthworms’s anatomy, the

reader is referred to [42, 39, 43, 86].

Principal of Locomotion

The earthworm moves by means of peristalsis [43, 38]. The net forward locomotion is

produced by the propagation of a peristaltic wave in the anteroposterior direction2. This

wave is the result of the alternating contractions of the circular and longitudinal muscles

from the anterior to the posterior end of the earthworm. When the circular muscle con-

tracts, the longitudinal muscle relaxes and vice versa. When a segment is at maximum

longitudinal contraction, its setae extend and anchor into the soil to prevent backward

slipping and hence help the worm to protrude forward. Moreover, each segment is assumed

to deform with constant volume constraint [23, 86].

1There are also muscular hydrostats like tongues, trunks, tentacles etc these consist solely of muscle
fibers with no fluid-filled cavity

2From the anterior to the posterior end, also called retrograde since the wave travels in opposite
direction to the animal
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b

(a)

Sweeping anchorage

(b)

Figure 6.2 – (a) Initial reference configuration; (b) Deformed configuration with sweeping an-
chorage point C(t)

Earthworm-like Robot Mechanism

In robotics, the motivation toward modeling and analysis of earthworm’s locomotion

comes from its rectilinear locomotion mode which is particularly effective in constrained

spaces where burrowing is required. The purpose of this section is to model the locomo-

tion of an earthworm-like mechanism by applying a peristaltic gait as internal strain field.

6.1.1 Assumptions and Considerations

The hyper-redundant robot considered here is a burrowing robot inspired by earthworms

that produces a 1D rectilinear motion. The system is modeled as a 1D extensible Kirch-

hoff beam axially actuated in traction-compression with its cross sections representing the

segments of an earthworm. Consequently, only the axial translational degree of freedom

(i.e. ΓdX) is implemented as actuated strain field between any two contagious cross sec-

tions. The remaining five degrees of freedom are constrained through design.

Consider an elongated earthworm-like system of length l initially in a relaxed configura-

tion as shown in Fig. 6.2(a). To produce the peristalsis along the earthworm’s body, a

sinusoidal wave is propagated from anterior to posterior end. Such a wave generates a

single degree of freedom axial traction-compression strain field of the following form:

ΓdX (X, t) = 1 + ǫ sin

(
2π

λ
(ct−X)

)
(6.1)

where ǫ, λ and c are the amplitude, the wave length and the speed of propagation of the

wave, respectively. From the above strain field, it can be easily concluded that:





ΓdX(X, t) = 1, Relaxed cross section,

ΓdX(X, t) = 1 + ǫ, Maximum elongation,

ΓdX(Ci(t), t) = 1− ǫ, for Ci(t) ∈]0, l[, Maximum contraction,

(6.2)

The above three states of a cross section X are interpreted in Fig. 6.3. Ci(t) denotes

the material abscissae of the p sweeping anchorage points at which the associated cross

sections are at maximal axial contraction.
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Maximum contraction Relaxed cross section Maximum elongation
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Figure 6.3 – A cylindrical cross section in three different forms. Ao is the area of relaxed cross
section

The radial traction-compression of the cross sections is antagonistically controlled by

relaxing the rigid cross section assumption and adding the volume preservation constraint

to the Cosserat theory. The volume preservation constraint states that the volume of any

cross section X at initial (i.e. at t = 0s) relaxed configuration remains unchanged during

the course of its deformation, i.e.:

Volume(X, t) = Volume(X, 0),

A(X, t)dS = A(X, 0)dX,

where A(X, 0) = Ao is the cross sectional area of initially relaxed earthworm3 and A(X, t)

is the area of the cross section X at an instant t, while dS = ΓdXdX is the length at

current t of the part of the earthworm of initial length dX initially located at X . Then:

A(X, t) =
Ao

ΓdX(X, t)
. (6.3)

Moreover, the earthworm is assumed to have a homogenous volumetric mass ρ given by:

ρ =
mo

Aol
,

where mo is the total constant mass of the earthworm.

As for as the contact with soil is concerned, it is made only by the extended segments at

maximal contraction (see Fig. 6.2). These contact points change its location during the

course of locomotion due to the axial traction-compression strain field. Therefore, these

contacts can be modeled as a sweeping anchorage detailed in section 5.5.1.1. Mathemat-

ically, the velocity of the cross sections in instant contact with the ground is zero and

hence prevent the anchored cross sections from backward axial slipping. Practically, such

type of contact may be achieved through bristles, spikes, passive wheels with ratchet etc.

Since it is more practical to keep the same number of contact points over time thus we

take the wave length λ = l
k
as constant over time where one should take the whole num-

ber of waves k in order to maintain the same number of contact points over the length

l of the earthworm at any instant t. Furthermore, in case if the speed of propagation

3The small variations due to the curved shape at both ends are negligible
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Table 6.1 – Reduction of 3D parameters to 1D

3D construction G, g η, η̇ ξd(t) F (Ci) Λ M

1D construction R, x ẋ, ẍ ΓdX(t) Nci N m

c(t) is varying over time, one can still keep the same number of contacts over time by

constraining the angular frequency ω(t) as follows:

ω(t) =
2π

λ
c(t).

Another advantage in this case is that the head velocity is independent of the number of

contact points detailed later on.

For the sake of simplicity and analytical analysis, the previous general 3D dynamic model

given in section 5.4 as a set of spatial ordinary differential equations can be expressed

as a simple 1D continuous model. Thus, the Lie group G (as well as the lie algebra g

and its dual g∗) is represented by R identified with the commutative subgroup of transla-

tions along the x-axis (which also coincides with its Lie algebra and its dual). It follows

that the adjoint maps disappear from the expressions and we can propose a more simple

description4 of the system as given in table 6.1.

6.1.2 Continuous Kinematic Model

With the above assumptions and considerations, the earthworm’s 3D continuous kine-

matic model (5.29) takes the following simple 1D form:

X ′
1 =




x′

ẋ′

ẍ′


 =




ΓdX(t)

Γ̇dX(t)

Γ̈dX(t)


 , (6.4)

whose solutions are fixed by the sweeping anchorage points Ci ∈]0, l[.

6.1.3 Contact Kinematic Model

Any cross section anchored to the ground imposes a constraint on the movement in the

fiber. It follows that the net motion of the earthworm can be derived from a contact

kinematic model. Such a model can be simply obtained by imposing that the velocity of

slipping is null at any sweeping anchorage point Ci(t). Therefore, by invoking the contact

kinematics (5.38) with C(t) = Ci(t), η(C(t)) = ẋ(Ci(t)), ξd(t) = ΓdX(t), and ηc(t) = 0

(as the contact is with the fixed ground), then the 3D holonomic geometric constraint

4All the terms are scalar and represent only the axial component
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equation (5.38) can be simply rewritten in a 1D form for an earthworm as follows:

ẋ(Ci(t)) + ΓdX(Ci(t))Ċi(t) = 0, (6.5)

where, due to the non-slipping condition, the anchorage is sweeping at the speed of prop-

agation, i.e. Ċi(t) = c(t). Also, we have ΓdX(Ci(t)) = 1 − ǫ thus the above equation can

be rewritten as follows:

ẋ(Ci(t)) + (1− ǫ)c(t) = 0. (6.6)

Moreover, by taking the velocity of the cross section of the abscissa Ci(t) from the second

line of (6.4), one obtains:

ẋ(Ci(t)) = ẋo +

∫ Ci(t)

0

Γ̇dXdX, (6.7)

which can be entered into (6.6) to give the head velocity of the earthworm as follows:

ẋo(t) = −

∫ Ci(t)

0

Γ̇dXdX − (1− ǫ)c(t). (6.8)

Furthermore, the constrained angular frequency of the strain field ΓdX shows that:

∫ Ci+1(t)

Ci

Γ̇dXdX = 0, (6.9)

therefore, the head velocity ẋo is independent of the choice of the anchorage point Ci.

Consequently, taking the first anchorage point (i.e. i = 1), the head velocity can be

simply given as follows:

ẋo(t) = −

∫ C1(t)

0

Γ̇dXdX − (1− ǫ)c(t). (6.10)

This is the analytical form of an earthworm’s locomotion kinematic model whose general

construction is given by (5.41). Equation (6.10) shows that the head velocity is a function

of the amplitude ǫ and the speed c(t) of the traction-compression wave. The head accel-

eration ẍo(t) is given by the time derivative of the above locomotion kinematic model:

ẍo(t) = −Γ̇dX(C1(t))c(t)− ΓdX(C1(t))ċ(t)−

∫ C1(t)

0

Γ̈dXdX. (6.11)
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As ΓdX(C1(t)) = 1− ǫ, which implies that Γ̇dX(C1(t)) = 0, thus the head acceleration can

be more simply written as:

ẍo(t) = −(1 − ǫ)ċ(t)−

∫ C1(t)

0

Γ̈dXdX. (6.12)

This head acceleration will serve us later as boundary condition to solve the dynamics.

Case of Constant Speed of Propagation (c)

Before solving the dynamics of earthworm, we do an analytical analysis of the earthworm’s

locomotion by taking the speed of propagation c as constant over time. In this particular

case the space-integration of Γ̇dX between [0, C1(t)] gives:

∫ C1(t)

o

Γ̇dXdX = cǫ sin(ωt)− cǫ sin

(
ω

(
t−

C1(t)

c

))
. (6.13)

Now putting the above equation in the locomotion kinematic model (6.10) and after

simplification, the following head velocity is obtained:

ẋo(t) = −c(1 + ǫ sin(ωt)). (6.14)

To get the head configuration (i.e. xo) at an instant t, we integrate the above equation as

follows:

xo(t)− xo(t = 0) =

∫ t

o

−c(1 + ǫ sin(ωτ))dτ. (6.15)

Taking ẋo(t = 0) = 0, we get:

xo(t) = −
c

ω
(ωt+ ǫ(1 − cos(wt)) . (6.16)

Finally the head acceleration is obtained by taking time derivative of (6.14) as follows:

ẍo(t) = −cǫω cos(wt). (6.17)

6.1.4 Continuous Locomotion Dynamic Model

After solving the problem of net motions of an earthworm through the locomotion kine-

matic model, now it is possible to use the locomotion dynamics (Block1 Fig. 5.9) for the

calculation of the external axial forces applied by the environment on the earthworm via

the anchorage points. This is done with the help of the locomotion dynamic model given
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in equation (5.42). The simple 1D form of this model is given as follows:

Nc =

i=p∑

i=1

Nci =

∫ l

0

m(X, t) dXẍo −Nin, (6.18)

where
∫ l
o
m(X, t) = mo is the total constant mass of the earthworm. The head acceleration

ẍo is given by equation 6.12 and Nin is the axial inertial force (deduced from the 3D general

formula (5.28)) given by5:

Nin = −

∫ l

0

m(X, t)

(∫ X

0

Γ̈dXdχ

)
dX. (6.19)

Thus equation (6.20) becomes:

Nc =

i=p∑

i=1

Nci =

∫ l

0

m(X, t) dXẍo +

∫ l

0

m(X, t)

(∫ X

0

Γ̈dXdχ

)
dX (6.20)

which gives the total axial contact forces in the head frame. In case of constant speed of

propagation c, we can get the Nc analytically as follows:

Nc = ρAoc
2 log

(
Γ(l, t)

Γ(0, t)

)
, (6.21)

where, Ao = A(X, 0) is the area of the relaxed cross section of initially relaxed earthworm

at t = 0s with uniform area over the length. Here it is noteworthy that due to the

propagation of a whole number of waves over the length we have:

Γ(l, t) = Γ(0, t),

this implies that:

Nc = ρAoc
2 log (1) = 0, (6.22)

which shows that the external axial contact forces become zero in case of whole number of

waves propagating with constant speed c. Therefore, in this case the axial friction force is

of less importance. This scenario can be compared with that of a rolling without slipping

wheel on a straight line where the wheel moving forward with constant velocity examines

no external axial forces hence undergoing a pure inertial motion. It may be concluded

that such locomotion mode is more efficient on low friction surfaces as it does not need

high surface friction.

5Only contact forces are considered i.e. Fother = 0
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Figure 6.4 – Earthworm locomotion along x-axis

6.1.5 Continuous Internal Dynamic Model

The internal dynamics are solved to get the internal actuation forces required to impose

the desired internal strain field deformations. When the number of contacts is more than

one (i.e. p > 1), then under-determination of the reaction forces prevents the integration

of the internal dynamics. However, if an arbitrary distribution of these forces is assumed

such that their resultant verifies (6.20), for example adopting an equal distribution, i.e.

Nci =
Nc

p
, then it becomes possible to integrate (5.20) which is written here:

N ′ = m(X, t)ẍ −

i=p∑

i=1

Nciδ(X − Ci(t)), (6.23)

with boundary conditions N(0) = N(l) = 0 if one assumes that the medium presents no

force to the front and back of the worm6, and where ẍ is deduced by space-integration of

the continuous kinematic model (6.4) initialized by (xo, ẋo, ẍo). Furthermore, by taking

Nc = 0 in case of constant c, the internal control forces are simply given by the space

integration of the following equation:

N ′ = m(X, t)ẍ. (6.24)

6.1.6 Numerical Results

Some of the numerical results of the simulation of the earthworm algorithm are shown

here for graphical representation. First we take the constant speed of propagation c and

input the strain field (6.1) with the following values:

ǫ = 0.5, λ = 1m, c = 0.05ms−1.

This will produce one contact point at a time over the whole length of the earthworm.

Simulating the algorithm for 100s with the help of Matlab, we get the 1D rectilinear

locomotion of the earthworm along the x-axis. The snapshots of such locomotion are

depicted in Fig. 6.4. Furthermore, by using equations (6.16) and (6.14), the Fig. 6.5(a-b)

shows the axial position xo(t) and the axial speed ẋo(t) of the earthworm’s head with

6Ingestion and excretion moving the earth matter from in front to behind
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Figure 6.5 – (a) Time vs head position; (b) Time vs head velocity

respect to time, respectively. Fig. 6.5(b) shows that the average speed of the earthworm’s

head is equal to the speed of propagation c of the wave. Proceeding further with constant

c, the inverse locomotion dynamic model is already solved analytically as given by equation

(6.22). Where a whole number of waves results in no axial contact forces.

The inverse internal dynamic model (6.24) is numerically integrated to get the internal

control forces N(X, t). The Fig. 6.6 plots the N(X) at t = 0.5s where it is noteworthy

that at the anchorage point C = 0.275 no force jump renders the internal force profile

discontinuous. This is due to the fact that the the external contact force Nc is zero in this

particular case of constant c and constant λ.

Now let us consider the case of variable speed of propagation c(t) defined as follows:

c(t) = at+ b,
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Figure 6.6 – Internal control forces N(X) over the length with constant c

with a 6= 0. Note that in this case there is still one anchorage point at a time over the

length because λ is still constant. After simulation with the above variable speed, it is

noted that, due to the worm accelerations, the axial contact force (Nc) at X = C is no

more zero as shown in Fig. 6.7(a). Consequently, this nonzero Nc introduces a jump on

the continuous profile of the internal control forces N(X) at X = C. This discontinuity

is depicted in Fig. 6.7(b) which gives the desired internal control force profile applied

between cross sections over the whole length for three different instants of time.

6.2 Climbing Inchworm in 2D

An inchworm (Ascotis Selenaria) as shown in Fig. 6.8 is a slender body invertebrate

with a hydrostatic skeleton. It has a fluid-filled segmented body. It has small legs called

prolegs at both ends of its body. The prolegs help the inchworm to maintain grip with

environment during motion.

Principal of Locomotion

An inchworm is a caterpillar that can crawl and climb with a simple mode of locomotion

known as Ω-shaped bending locomotion. The net forward motion is produced by alternate

bending and relaxation of the body in a periodic step manner. The motion of an inchworm

during a single step consists of a bending phase and relaxation phase described as follows:

Bending phase: initially the inchworm is in relaxed configuration with its anterior pro-

legs clamped to the surface. It starts bending the remaining parts of its body in

Ω-shaped form.
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Figure 6.7 – With variable c(t): (a) Axial contact force Nc at X = C; (b) Internal control forces
N(X) over the length of earthworm

Relaxation phase: once reached to its maximum Ω-shaped bending, the inchworm de-

taches its anterior prolegs and attaches its rare prolegs to the surface and starts

relaxing its body during the remaining half step.

Unlike earthworms, the inchworms do not need a sweeping anchorage. The anchorage is

locked as it is not sweeping over the body but rather it is switching its location discretely

from the front to the rare end. In this way, the inchworm always has at least one end of

its body firmly attached to the environment during locomotion.
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(a) (b)

Figure 6.8 – (a) Ω-shaped bending configuration of an inchworm; (b) Inchworm in unstructured
environment

Inchworm-like Robot Mechanism

The inchworm locomotion mode is simple, stable and powerful. The inchworm-like robots

are mostly inspired by such locomotion mode of natural inchworms which is particularly

effective as well as efficient where climbing is required. Our purpose is to model a con-

tinuous style inchworm-like robot that produce climbing locomotion through Ω-shaped

bending.

6.2.1 Assumptions and Considerations

The hyper-redundant robot considered here is a climbing inchworm robot inspired by

inchworms that produce a net forward rectilinear motion by manipulating its body in a

plane. The system is modeled as a Kirchhoff planar beam actuated in single bending.

Consequently, only one bending degree of freedom (here KdZ(X, t)) is implemented as

strain field between any two contagious rigid cross sections. The remaining five degrees

of freedom are constrained through design. The bending curvature KdZ(X, t) deforms the

body in xy plane.

Consider a slender inchworm-like mechanism of length l initially in a relaxed configuration.

To produce the alternate bending and relaxation of the body over time, a curvature

(bending) law KdZ(X, t) is introduced which keeps the system in planar configuration and

results in rectilinear movement of the head segment. Therefore, the curvature law is an

integrable variable given as:

KdZ(X, t) = θ′(X, t),
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Figure 6.9 – Ω-shaped bending configuration of an inchworm

where θ(X, t) is the absolute angle of orientation of cross sections. Finally, the bending-

relaxation gait is produced by introducing the angle θ as a function of time t and space

X given as follows:

θ(X, t) = α sin2(ωt) sin

(
2π

l
(X − l)

)
, (6.25)

from which the curvature law is derived as:

KdZ(X, t) = α sin2(ωt)

(
2π

l

)
cos

(
2π

l
(X − l)

)
, (6.26)

where α and ω are the amplitude and frequency of the bending-relaxation gait. The space

(i.e. X) dependence of the gait ensures that at any instant of time t:

θ(t, X = 0) = θ

(
t, X =

l

2

)
= θ(t, X = l) = 0,

whereas the curvature is minimal at both ends and maximal at X = l
2
. Furthermore, the

time dependence of the curvature law ensures the periodic bending and relaxation of the

robot. Its time period T is given by:

T =
π

ω
,

and assures the amplification of the bending over the first half-period and its attenuation

(down to 0) in the following half-period. Let us assume that the inchworm starts at

t = 0 from a relaxed configuration, then there is anchorage at X = 0 at all the intervals

[kT, kT + T
2
] and anchorage at X = l at the intervals [kT + T

2
, (k + 1)T ] as shown in Fig.

6.9. In one complete step (i.e. gait), the inchworm generates a net motion equal to one

stride length ls given as follows:

ls = l − lmin,

where lmin is the longitudinal span of the inchworm at maximum bending (i.e. at 0.5T ).

As for as the contact is concerned, it is considered as a locked anchorage (as detailed
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Figure 6.10 – Bilateral reaction forces at the anchorage point

in section 5.5.1.1) where the motions of the anchored cross section are imposed by the

contact as follows:





g(C) = gc(t),

η(C) = ηc(t),

η̇(C) = η̇c(t)

Usually the anchorage is fixed in the ambient space. Thus, the anchorage point provides

the following geometric constraints:





g(C) = 1,

η(C) = 0,

η̇(C) = 0.

(6.27)

Furthermore, in this planar case, the anchorage point imposes only the planar reaction

forces (ncX , ncY ) and the reaction torque ccZ as shown in Fig. 6.10.

Now as the contact is considered as a locked anchorage, then the inchworm can be

modeled as a continuous manipulator whose ”base”and ”terminal” interchange their places

at each half period of its step7. Where, the base represents the cross section fixed to the

surface while the free end is the terminal. At the first half period the cross section X = 0

is the base and X = l is the terminal while in the following half period, due to the

interchange, the cross section X = 0 becomes the terminal and X = l becomes the base.

7The base and terminal are the conventional terms used in literature for manipulators.
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6.2.2 Algorithm Execution

With these considerations and the imposed strain field ξd(X, t) =
(

ΓdX ΓdY KdZ

)T
∈

se(2) given as:

ξd(X, t) =




1

0

KdZ


 ,

the general algorithm can be executed in case of inchworm as follows:

• In the first half period, the algorithm is executed with X ∈ [0, l] and the anchorage

point clamped at X = 0, i.e. C = 0.

• In the second half period, the same algorithm is executed by changing X into l−X

such that C = l

The net motions of the base are known (i.e. null here) as they are fixed by the anchorage

conditions (6.27). Thus:

X1(C) =




1

0

0


 .

The locomotion dynamics (5.31) compute the reaction wrench Fc at the anchorage point.

Finally, the internal control torques are calculated through the internal dynamics (5.33)

initialized by X3 = (1, 0, 0, 0, Fc).

6.2.3 Numerical Results

Some numerical results are obtained for inchworm climbing under gravity by applying the

curvature law (6.26) as input to the algorithm with:

α = 2.0, ω =
π

2
rad/s, T = 2s.

Simulating the algorithm for 15s, we get the climbing motion of the inchworm in the xy

plane. The snapshots of such locomotion at different instants of time are depicted in Fig.

6.11. The Fig. 6.12(a-b) plots the absolute vertical position yo and the absolute vertical

speed ẏo of the inchworms’s head with respect to time, respectively. The stride length ls

depends upon the value of the α. Here, the stride length is ls = 0.766m for α = 2.0 as

pointed out in Fig. 6.12(a).

The inverse locomotion dynamics and the inverse internal dynamics of the system are

solved to get the reaction wrenches at the anchorage point and the internal control torques
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Figure 6.11 – Climbing inchworm locomotion along vertical y-axis
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Figure 6.12 – (a) Time vs head position; (b) Time vs head velocity

CZ(X), respectively. The Fig. 6.13(a-b) shows the vertical reaction force NcY (X = 0) and

the reaction torque CcZ(X = 0) at head with respect to time, respectively. The internal

control torque CZ(X) along the length is presented in Fig. 6.14 at t = 0.5s and t = 1.5s.
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Figure 6.13 – (a) Vertical reaction force NcY at head; (b) Reaction torque CcZ at head
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6.3 2D Snake in Lateral Undulation

Snake is a slender body vertebrate since this organism contains vertebrae in its structure.

It has a large number of vertebrae ranging from some 100 vertebrae to more than 300

vertebrae. This hard-bodied creature has an endoskeleton8 composed of a serial connection

of vertebrae forming the backbone of the snake. Each vertebra has a pair of ribs on each

lateral side.

Principal of Undulatory Locomotion

Undulatory locomotion is the common and efficient locomotion mode in snakes. In lateral

undulation, an S-shaped wave travels along the body from head to tail. In this mode of

locomotion, the snake supports itself laterally in its environment to self propel in an axial

direction, i.e. by moving along the length of its backbone. As the snake progresses, each

8There are also exoskeleton organisms like illus, sphinx, grasshoppers etc
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Figure 6.15 – (a) Discrete Kirchhoff-snake; (b) Discrete Reissner-snake

point along its body follows along the path established by the head.

The snake’s skin has the characteristics of anisotropic sliding friction, a critical component

of lateral undulation. Due to the anisotropic friction, snake generates high lateral and

low axial sliding friction which can be compared to that of a wheel. During undulation,

snake exhibits lateral forces by pushing onto fixed points (points d’appuis) on substrate.

Lateral components cancel each other out, and the overall resultant force moves the snake

in a forward direction.

6.3.1 Assumptions and Considerations

The hyper-redundant robot considered here is an undulatory snake-like robot inspired by

snakes that produces a 2D undulatory motion. The system may be modeled either as a

Kirchhoff beam or as a Reissner beam with its cross sections representing the vertebrae of

a snake. The discrete counterparts of both systems are drawn in Fig. 6.15(a-b). Where,

each mechanism is a serial combination of articulated wheeled bodies. In Fig. 6.15(a), the

wheeled axles are always perpendicular to its body, i.e. there is no transverse shear in this

case and hence can be interpreted as a Kirchhoff beam. While in Fig. 6.15(b), the steering

of the wheeled axles can be interpreted as a beam with one lateral transverse shear, i.e. as

a Reissner beam. The beam cross sections are the continuous infinitesimal counterparts of

the wheeled axles of the discrete mechanisms. First we model the simple Kirchhoff-snake

which corresponds to the AmphiBot [34]. In this case, only the yaw degree of freedom

(here KdZ) is implemented as a strain field to produce an S-shaped wave along the length

of the snake.

6.3.2 Contact Kinematic Model

The undulatory locomotion is achieved by constraining the lateral sliding of the cross

sections of the beam while allowing them to move in the axial direction. Practically,

in case of a discrete planar mechanism such type of non sliding motion constraints are

well imposed by a rolling wheel. Here, in our continuous setup we consider that such

motion constraints are imposed by a cross sectional follower annular contact which pre-
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VX(X) = Vo

VY (X) = 0

Figure 6.16 – Bilateral nonholonomic constraint imposed on cross section X by cross sectional
follower annular contact

vents the cross sections from lateral sliding in case of a planar motion as shown in Fig.

6.16. Mathematically, such contacts are modeled as a nonholonomic constraint and can

be simply written as:

VY (X) = VcY (t), ∀X ∈ [0, l],

where, by considering that the substrate is fixed in the ambient space, i.e. VcY (t) = 0, we

have:

VY (X) = 0, ∀X ∈ [0, l]. (6.28)

6.3.3 Continuous Kinematic Model

As mentioned above that a Kirchhoff-snake illustrated here is an undulatory planar robot.

Therefore, it can be modeled as a beam with G = SE(2). In this case, the desired strain

field ξd(X, t) =
(

ΓdX ΓdY KdZ

)T
∈ se(2) is given as:

ξd(X, t) =




1

0

KdZ


 .

With this strain field, the 3D continuous kinematic model of velocities given in equation

(5.12) can be simplified for a planar case with η = (g−1ġ)
∨
=
(
VX VY ΩZ

)T
∈ se(2),

as given below:

η′ =




V ′
X

V ′
Y

Ω′
Z


 =




VYKdZ

ΩZ − VXKdZ

K̇dZ


 . (6.29)



6.3 2D Snake in Lateral Undulation 143

6.3.4 Kinematic Locomotion Model

In the case where the contact with the ground is continuously distributed along the body

length, then there are obviously enough of these bilateral nonholonomic constraints to

completely define the net motions of the snake only as a function of internal strain field

KdZ(X, t). In this regard, forcing the nonholonomic constraints model (6.28) into the

continuous kinematic model (6.29) gives the following relations that must verify every

motion compatible with the cross sectional follower annular contact:




V ′
X

ΩZ

Ω′
Z


 =




0

VXKdZ

K̇dZ


 . (6.30)

The first line shows that the axial speed VX(X, t) of the snake is constant with respect

to X and hence is equal to that of its head, simply denoted as Vo(t). From the second

line, we see that ΩZ = VoKdZ , i.e. the angular velocity along the snake’s backbone is only

governed by the forward speed Vo(t) and the body curvature KdZ(X, t). Thus, the above

relations can be further simplified as follows:




VX

ΩZ

Ω′
Z


 =




Vo

VoKdZ

K̇dZ


 . (6.31)

Next, taking account of the second lines of above equation into its third line, we obtain

the fundamental compatibility relation:

K̇dZ = VoK
′
dZ , (6.32)

which must be verified all along the snake so that its mobility (axial propulsion) is assured.

Thus, for all X ∈ [0, l], we can write:

η(X, t) =




Vo

0

ΩZ(X)


 =




1
K ′

dZ
(X)

0
KdZ(X)
K ′

dZ
(X)


 K̇dZ(X, t), (6.33)

and, particularly, for X = 0:

ηo(t) =




Vo

0

Ωo


 =




1
K ′

o

0
Ko

K ′

o


 K̇o. (6.34)
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This is the general continuous form of the principal kinematic connection of the discrete

case given by equation (3.45) which encodes the follower-leader kinematics of snakes in

lateral undulation [30]. Therefore, the above kinematic connection can be rewritten as:

ηo(t) = −AK̇o. (6.35)

It is worth noting that, just as in the discrete case where A includes the first three axles

(starting from the head) to fix completely the motion of the head and that of the following

links; in the continuous case, the kinematic connection (6.34) involves at most the third

derivative of the position field (i.e. K ′
dZ(0) = p′′′(0)). In the continuous setup, the princi-

ple of the follower-leader kinematics can be stated as follows: once the curvature and its

derivative in ∀X are specified, the speed of curvature must adapt in each X so that the

cross section X − dX follows the cross section X at the speed Vo(t). Thus, every cross

section X reoccupies at t∗ such that
∫ t∗
t
Vodτ = X , the same configuration as that occu-

pied by the head at t. This explains the impression of lateral stasis and axial movement

observed in snakes, which makes their motion resemble a fluid line of a steady flow. In

addition, (6.34) shows that if the axial propulsion is assured by K̇o/K
′
o it is Ko that steers

the snake in the plane. Thus, we can approach the 2D snake by analogy with another

nonholonomic system, more familiar to the robotics engineer: the car-like platform. In

this case, the angular steering of the virtual front wheel is ensured by Ko while the thrust

produced by the engine is assured by the relation K̇o/K
′
o.

Finally, taking account of (6.34), the locomotion kinematic model (5.41) for a 2D undu-

latory snake in SE(2) can be written as:

ġo = goη̂o = go




1
K ′

o

0
Ko

K ′

o




∧

K̇o, (6.36)

and with (ġo)
∨ =

(
ẋo ẏo θ̇o

)T
, the simplified model of absolute head velocities are

given as:




ẋo

ẏo

θ̇o


 = Vo




cos θo

sin θo

Ko


 . (6.37)

6.3.5 Continuous Dynamic Models

After solving the problem of net motions of a 2D undulatory Kirchhoff-snake through the

locomotion kinematic model, now it is possible to use the locomotion dynamics (Block1

of Fig. 5.9) for the calculation of the contact wrenches applied by the environment on the

snake via the cross sectional follower type annular contact. This is done by integrating



6.3 2D Snake in Lateral Undulation 145

C1

C2

C3
Ci

Cp

λi

λ1

λ2

λ3

λp

Figure 6.17 – 2D snake with cross sectional follower type annular contacts which imposes the
lateral contact forces

the spatial ordinary differential equations given by (5.31). Then, knowing η̇o(t) from the

time derivative of (6.34), the algorithm computes the resultant of the contact wrenches

reduced to the head, i.e. Fc via the locomotion dynamic model given in equation (5.42).

In the general case where the number of constraints induced by the contacts is greater than

the dimensions of the fiber (i.e. p > 3), the loading is hyper-static. Thus, the resolution of

the internal dynamics (i.e. to compute the field of the internal forces and torques along the

body length), requires to formulate an additional hypothesis related to the distribution

of the resultant contact wrench Fc over the contact points. For example, assuming that

the snake is permanently in contact with the ground via p cross sectional follower annular

contacts whose positions are fixed in space. Thus, this distribution assumption on the

distribution of the lateral contact forces λi=1,2,...,p, requires the pseudo-inversion of the

following under-determined system:

Fc =

i=p∑

i=1

Ad∗
k(Ci)




0

λi

0


 , (6.38)

where k(Ci) = g−1(Ci)go(t), and we consider the motion while the p points of contact

C1,2,...,p are contained in ]0, l[ (see Fig. 6.17). Once these p lateral contact forces are

determined, then the algorithm integrates, in piece-wise manner (Block2 Fig. 5.9), the

internal dynamics (5.33) initialized by: (go(t), ηo(t), η̇o(t), 0) and with a distribution of

the following external forces9:

F =

i=p∑

i=1




0

λi

0


 δ(X − Ci).

9We only consider the contact wrenches, i.e. F other = 0
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Curvature Law

In the case of discrete mobile multibody systems, the compatibility condition given by

relation (3.44) allowed the computation of the internal shape changes of the snake-like

robot in order to assure the mobility of the system. Similarly, in this continuous case the

solution of the fundamental compatibility relation K̇dZ = VoK
′
dZ given in (6.32) fix the

curvature law for a snake given as follows:

KdZ(X, t) = f

(
X +

∫ t

0

Vo(τ)dτ

)
, (6.39)

which corresponds to the propagation of a wave-like curvature profile along the backbone

at a generally time-variable speed of propagation Vo(t). It follows that such a choice of

the curvature law ensures a thrust in the direction of −tX(0) at the space-constant speed

Vo(t). Finally, for the purpose of illustration, let us consider the case where V̇o = 0, then

(6.32) turns to be the one-dimensional propagation equation whose general solutions are

KdZ(X, t) = f(X + Vot), with Vo as the constant speed of the curvature waves. Then,

for environments without obstacles but where the ground plane has good properties to

prevent lateral sliding, the law of curvature is a simple wave propagation from head toward

tail of the snake as follows:

KdZ(X, t) = A cos

(
2π

λ
(X + Vot)

)
, (6.40)

where A is the amplitude of the propagation wave. In nature, the curvature along the

body of a snake changes according to the choices made by its head, choices that depend

on the obstacles that the snake avoid and on which it laterally pushes to propel itself

forwards. Consequently, in Fig. 6.18, such a situation is depicted by a steady profile of

curvature KdZ moving at a speed Vo(t) along the body, represented here by the material

segment X ∈ [0, l]. In this case an additional control parameter in an exponential form is

added to the above simple desired curvature law as follows:

KdZ(X, t) = A cos

(
2π

λ
(X + Vot)

)
(6.41)

+ b exp

(
−

(t− (to + To/2) + (X/Vo))
2

(t− (to + To/2) + (X/Vo))2 − (To/2)2

)
,

this ensures, up to t = to, an axial speed −VotX(0) of average constant direction, and

from t = to generates a turning maneuver of duration To.

6.3.6 Reissner-Snake

Note that the kinematics of the above mentioned Kirchhoff-snake are singular if the cur-

vature is constant over the length, i.e. K ′
dZ = 0. In this case, the conditions of mobility
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Figure 6.18 – Curvature profile along the snake’s backbone

(6.32) are not verified except in the irrelevant case where the snake has a null motion.

To overcome this situation, one can consider the continuous homologue of the discrete

kinematics of the Fig. 6.15(b), i.e. by adding a transverse shearing (ΓdY ) to the present

context. In this case, the kinematics become those of an actuated Reissner planar beam

with the desired strain field ξd(X, t) =
(

ΓdX ΓdY KdZ

)T
∈ se(2) as follows:

ξd(X, t) =




1

ΓdY

KdZ


 .

Now, taking into account this strain field and the nonholonomic planar constraints (6.28),

the continuous kinematic model of velocities (6.29) can be rewritten as:

η′ =




V ′
X

V ′
Y

Ω′
Z


 =




−VXKdZΓdY

0

K̇dZ


 . (6.42)

In this case, we now have VX(X) = Vo e
(−

∫X

0 KdZΓdY dX) and the mobility condition (6.32)

becomes the following:

K̇dZ = (K ′
dZ −K2

dZΓdY )VX , (6.43)

where the presence of the control parameter ΓdY as a factor of KdZ ensures the mobility of

the snake in all cases where KdZ(.) 6= 0. Thus, we recover that the continuous homologue

of the discrete kinematics of the Fig. 6.15(b) is only singular for the straight configurations

as it is only in this case that the internal movements of the odd and even joints cannot
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Figure 6.19 – 2D snake straight line locomotion in xy plane

produce external movement.

Finally, in case of natural snakes, the transverse shearing ΓdY models the movements of

the skin and the scales relative to the skeleton whose own movements are modeled by

the curvature field KdZ . Also, if a snake finds itself in a perfectly straight configuration,

it can remove itself from this singularity by: 1) sliding laterally, 2) leaving the ground.

However, if these two possibilities are forbidden (for example, if the snake is made to pass

through a straight narrow tube), then only a mode of locomotion like that studied for the

earthworm in traction-compression becomes possible.

6.3.7 Numerical Results

In this section we solve the kinematics and dynamics of a 2D Kirchhoff-snake by using the

proposed algorithm. In case of constant speed Vo = −0.5ms−1, we input the undulatory

curvature law (6.40) with the following values:

a = 10, λ = 1m.

Simulating the algorithm for 10s with the help of Matlab, we get the straight line loco-

motion of the snake in xy plane. The snapshots of such locomotion are depicted in Fig.

6.19. Where the blue line plots the snake’s head position in xy plane, while the snapshots

of snake’s body shows that the body follows the path traced by the head. Furthermore,

to examine the turning locomotion of the snake, the following additional parameters are

provided to the curvature law (6.41):

to = 3.0s, To = 4.0s, b = 2.0

where b quantifies the amplitude of a turning maneuver in SE(2). Again simulating for

10s, the 2D turning locomotion of the snake in the xy plane is shown in Fig. 6.20.

The locomotion dynamics and internal dynamics of the system are solved for five contact

points (i.e. p = 5) to obtain the cross sectional reaction wrenches applied at the contact

points C1, C2, ...C5 (see Fig 6.17) and the internal control torques, respectively. For t =

2.0s, the Fig. 6.21(a) plots the reaction force (NcY ) over the length, while the Fig. 6.21(b)

shows the internal control torque CZ over the length of snake.
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Figure 6.20 – 2D snake turning locomotion in xy plane
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Figure 6.21 – At t = 2.0s (a) Contact force (NcY ) over the length; (b) Internal torque (CZ) over
the length

6.4 3D Snake in Lateral Undulation

Here we consider only the kinematic aspects of 3D crawling. The 3D snake is a priori

modeled by Kirchhoff kinematics with torsion. In this case, we have G = SE(3) and the

strain field is given as:

ξd(X, t) =




1

0

0

KdX

KdY

KdZ




,
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so that the kinematic model (5.12) is now written as follows:




V ′
X

V ′
Y

V ′
Z

Ω′
X

Ω′
Y

Ω′
Z




=




VYKdZ −KdY VZ

ΩZ +KdXVZ − VXKdZ

−ΩY +KdY VX −KdXVY

K̇dX + ΩYKdZ − ΩZKdY

K̇dY + ΩZKdX − ΩXKdZ

K̇dZ + ΩXKdY − ΩYKdX




. (6.44)

On the basis of this model, we shall first search the 3D homologue of the gaits previously

exhibited in 2D. This requires establishing the non-sliding constraints in 3D, which is

simply achieved by proposing that, for every material abscissa X , the contact is mod-

eled by a cross sectional follower annular contact (see section 5.5.1.2) so that using the

nonholonomic model (5.40) with ΩcX = VcY = VcZ = 0, one has ∀X ∈ [0, l]:





VY (X) = 0,

VZ(X) = 0,

ΩX(X) = 0,

(6.45)

which are the three nonholonomic constraints of a 3D annular contact imposed upon each

of the cross sections in movement. Next, we introduce these relations into the general

kinematic model (6.44). As a straightforward consequence, the first three equations of

(6.44) allows one to write:





VX = Vo,

ΩY = VoKdY ,

ΩZ = VoKdZ ,

(6.46)

where Vo is again the axial uniform speed along the backbone while the two last of these

relations translate the fact that the internal angular velocity of the cross sections is entirely

due to the axial movement along a given profile of fixed curvature. Now taking into account

the above relations in the fourth equation of (6.44) in which ΩX = 0 is forced, we simply

find:

K̇dX = Ω′
X + ΩZKdY − ΩYKdZ

= 0 + Vo(KdYKdZ −KdZKdY ) = 0. (6.47)

Thus, if we assume that the robot starts (at t = 0) from a straight untwisted configuration,

one have KdX = 0 all along its length and at any instant of the motion. Introducing this

last constraint as well as all the others into the two last relations of (6.44) allows one to
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write with (6.47), the three independent relations on the strain laws:




K̇dX

K̇dY

K̇dZ


 =




0

VoK
′
dY

VoK
′
dZ


 , (6.48)

where the first of these relations can be ensured by the design (un-twistable kinematics)

while the two others are imposed by the curvature control laws. Finally (6.48) defines

the 3D counterpart of the planar compatibility condition (6.32), and must be verified all

along the snake so that its mobility is assured. Thus, ∀X ∈ [0, l], we can write:

η(X, t) =




Vo

03×1

ΩY (X)

ΩZ(X)




=




1/K ′
dY

03×1

KdY /K
′
dY

KdZ/K
′
dY




(X, t)K̇dY (X, t), (6.49)

and, in particular, for X = 0, we have:

ηo(t) =




Vo

03×1

ΩoY

ΩoZ




=




1/K ′
o

03×1

KoY /K
′
o

KoZ/K
′
o



K̇o, (6.50)

with K̇o =
∂
∂t
‖Kd‖(0) and K

′
o =

∂
∂X

‖Kd‖(0) (see section A.3 of appendix A for illustra-

tion). Finally, the locomotion kinematic model (5.41) for a 3D undulatory snake, in the

form of the follower-leader connection, can be written as:

ġo = go




Vo

03×1

ΩoY

ΩoZ




∧

= go




1/K ′
o

03×1

KoY /K
′
o

KoZ/K
′
o




∧

K̇o. (6.51)

6.4.1 Continuous Dynamic Models

After solving the problem of net motions of a 3D undulatory Kirchhoff-snake through the

locomotion kinematic model, now it is possible to use the locomotion dynamics (Block1

of Fig. 5.9) for the calculation of the contact wrenches applied by the environment on the

snake via the cross sectional follower type annular contact. This is done by integrating

the spatial ordinary differential equations given by (5.31). Then, knowing η̇o(t) from the

time derivative of (6.51), the algorithm computes the resultant of the contact wrenches

reduced to the head, i.e. Fc via the locomotion dynamic model given in equation (5.42).

In the general case where the number of constraints induced by the contacts is greater
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than the dimensions of the fiber (i.e. 3p > 6), the loading is hyper-static. Thus, the

resolution of the internal dynamics (i.e. to compute the field of the internal forces and

torques along the body length), requires to formulate an additional hypothesis related to

the distribution of the resultant contact wrench Fc over the contact points. For example,

assuming that the snake is permanently in contact with the surroundings via p cross

sectional follower annular contacts fixed in space and located at each time at the body

abscissa C1, C2, . . . , Cp, we can assume that the snake minimizes the Euclidean norm of the

(3p× 1) vector of reaction forces. Thus, this distribution assumption on the distribution

of the contact wrenches require the pseudo-inversion of the following under-determined

system:

Fc =

i=p∑

i=1

Ad∗
k(Ci)




0

NcY,i

NcZ,i

CcX,i

02×1



, (6.52)

where k(Ci) = g−1(Ci)go(t), and we consider the motion while the p points of con-

tact C1,2,...,p are contained in ]0, l[. Once these contact wrenches are determined, then

the algorithm integrates, in piece-wise manner (Block2 Fig. 5.9), the internal dynamics

(5.33) initialized by: (go(t), ηo(t), η̇o(t), 0) and with a distribution of the following external

forces10:

F =

i=p∑

i=1




0

NcY,i

NcZ,i

CcX,i

02×1



δ(X − Ci).

6.4.2 Numerical Results

First, let us take the case of a 3D turning snake. The undulatory curvature KdZ(X, t)

given by (6.41) along with:

KdX(X, t) = 0,

KdY (X, t) = by exp

(
−

(t− (to + To/2) + (X/Vo))
2

(t− (to + To/2) + (X/Vo))2 − (To/2)2

)
,

10We only consider the contact wrenches, i.e. F other = 0
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Figure 6.22 – (a) Head turning locomotion; (b) Snapshots of snake 3D turning locomotion

are the inputs to the algorithm of Fig. 5.9, with the following parameters:

A = 10, ω =
2πVo
λ

rad/s, by = 0.5, V o = −0.5ms−1.

Simulating the algorithm for 10s, the 3D turning motion of the snake in the xyz space is

obtained as shown in Fig. 6.22.

In order to illustrate the dynamics of a 3D snake, let us take the case of a snake in spiral

motion around a cylindrical surface. For such motions the pitch and yaw (i.e. KdY and

KdZ) degrees of freedom are controlled through the following laws of strains field with

constant roll degree of freedom:

KdX(X, t) = 0,

KdY (X, t) = −A sin

(
2π

λ
(X + Vot)

)
,

KdZ(X, t) = A cos

(
2π

λ
(X + Vot)

)
.

Then the locomotion dynamics and internal dynamics of the system are solved with five

contact points (i.e. p = 5) fixed in space, to obtain the cross sectional reaction wrenches

applied at the contact points C1, C2, ...C5 and the internal control torques, respectively.

For t = 2.0s, the Fig. 6.23(a) plots the reaction forces (NcY , NcZ) over the length, while

the Fig. 6.23(b) shows the internal control torques (CY , CZ) over the length of snake.

6.5 Further Discussion: Application to Real Designs

In the light of the above examples, the question of how applying these results to real

designs naturally arises. About this point, the proposed approach being general, the cost
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Figure 6.23 – At t = 2.0s (a) Contact forces (NcY , NcZ) over the length; (b) Internal torques
(CY , CZ) over the length

to pay for this generality is a certain idealization of the model. This idealization essentially

concerns two points: 1) the model of the body as an internally actuated Cosserat beam,

2) the model of the contacts between the body and its surroundings. Starting with the

first point regarding Cosserat beam, we suggest to proceed case by case. For instance, for

a specific technology among the numerous designs of snake-like robots today developed

[69, 111, 71], one could first ask the starting questions: does the basic Cosserat beam

assumption of rigid cross sections have a physical reality? And also, how this assumption

can be adapted to a particular technological principle? As a first answer, let us remark

that in the case of designs inspired from vertebrate animals where one can identify lateral

rigid elements attached to a body line axially articulated and mimicking the backbone,

the Cosserat beam model is more and more well adapted as the number of vertebrae

increases (big snakes like pythons can have more than several hundred). In a design more

inspired from hyper-redundant arthropods, the rigid segments can also be considered as

being the cross sections of their macro-continuous model. Finally, for robots inspired from

hydrostats, although the application of the approach seems less natural since these animals

do not contain any rigid element in their principle, we have seen in this thesis that how we

could release the Cosserat basic assumption of rigid cross sections in order to adapt the

model to a simplified version of one dimensional hydrostats. Furthermore, some groups

are nowadays exploring new designs in soft robotics and have chosen to mimic hydrostats

as a set of rigid cross-sections interconnected through actuated cables and refer explicitly

to the Cosserat model as a source of inspiration for their design [68]. Finally, as elasticity

plays an important role in continuous robots, the model proposed in this thesis could be

improved in this sense. About the second point regarding the model of the contacts, let

us remind that in the case of snake-like robots, we have modeled the contacts through

bilateral annular joints introducing a null axial friction (along the vertebral axis) as well
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Figure 6.24 – Proposed design of a 3D snake: (left) cross-sectional view, (right) longitudinal
view

as an infinite lateral friction force (perpendicular to the vertebral axis). In spite of its

ideal character, such a model is not so far from what one can observe on real snakes.

Indeed, the scales of the snakes give to their skin a strong frictional anisotropy, the axial

friction being far lower than its lateral counterpart. In our case, we pushed this tendency

to its ideal asymptotic limit, and also replaced the usual unilateral contacts by bilateral

constraints. This second simplification, which can be released in future, requires a further

discussion on the feasibility of a motion. Indeed, once the net motions are known by

solving the external kinematics, one has to check whether the real contacts can generate

the desired external wrench? Technically, the answer to this question depends on the

solutions of a linear system of the form (6.52). In particular, if the joints are in reality

unilateral contacts, as this is the case of obstacle-aided locomotion [69], the reaction forces

solutions of (6.52) should have to keep a given sign all along the motion. At last, once such

a loading has been found, so validating the model of contacts, one has to check whether

the actuators can supply the desired motions under such a loading. To address this last

problem, one can use the inverse dynamics of control torques as proposed in this thesis.

Finally, if we seek a design of snake-like robot ideally adapted to our model of robot and

contacts, starting from [119], this would be a multi-body system with a very high number

of very small length links connected through universal joints. Each of these links would

be equipped with many wheels aligned along its greater length and placed radially on the

links, so bio-mimicking the scales of a 3D snake (see Fig. 6.24).

6.6 Conclusions

In this chapter, the terrestrial locomotion modeling approach presented in the previous

chapter was applied to several examples inspired by natures. Through these examples,

it was shown that this approach can be a useful tool for investigation when it is applied
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to the analysis of mobility or gait generation of snakes. In the case of earthworm, the

Cosserat assumption of beam cross sections rigidity was partially removed and replaced

by the axial volume preservation constraint. This allows with small efforts to extend the

approach and the algorithm to one dimensional hydrostats. Moreover, the problem of

manipulation was illustrated indirectly through the example of the climbing inchworm

where at each step of the ”walking” the robot is a manipulator clamped into the ground.

From an algorithmic point of view, as the number of the links increases, it becomes

more and more relevant to approximate the robot behavior with infinite dimensional

continuous models [27, 29]. In this case, the Newton-Euler formulation allows solving the

dynamics without re-parameterizing the model through a set of generalized coordinates

(finite elements or assumed modes), as it is required by the Lagrangian approach of the

same problem. From a pure computational aspect, when the number of degrees of freedom

dramatically increases, the recursive formulations of chained systems dynamics, as that of

Newton-Euler, become more and more efficient since they lead to O(n) algorithms with

n the number of links. Furthermore, due to their implicit character, the Newton-Euler

algorithms are simple to program on a computer. In the continuous case here presented,

these recursive computations are replaced by ordinary differential equations which are

solved through standard adaptive step numerical integrators allowing to increase further

the computational efficiency. Finally, these virtues have been exploited in this thesis to

implement simulators which are faster than real time for all the reported examples.
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7.1 Summary of the Thesis

The motivation of this thesis was to provide to the roboticist a general methodological

framework suited to the study of the locomotion of a new generation of robots bio-inspired

from animals. In this context, the high complexity of the contact models as well as

the increasing complexity of design require dynamicists to produce new tools able to

handle a high number of internal degrees of freedom. In order to reach these constrained

objectives, we have chosen to combine the abstract framework of geometric mechanics

with the Newton-Euler algorithmic approach. In this perspective, the well known Luh

and Walker algorithm of usual manipulators has been extended to the case of a new class

of systems named ”mobile multibody systems” (i.e. MMS), since contrary to the standard

”multibody systems” (i.e. MS), the motion of their basis is not known but has to be

computed at each step of the time integration loop through a locomotion model. More

precisely, the algorithm was capable of solving the problem of locomotion by computing

the following unknowns through known data of internal imposed motions:

1. The net motions of the reference body of the system.

2. The internal torques/forces of the system.

Starting with discrete systems, where the constitutive bodies are countable and in fi-

nite number, we have step by step addressed the cases of the unconstrained MMS where

the eventual contacts were modeled through physical laws relating forces to motions.
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Then, we have considered the specific case where the contacts are ensured through ideal

wheels. In this case, the corresponding algorithm has been derived by a projection of

the unconstrained algorithm onto the admissible spaces compatible with the constraints.

Remarkably, all the cases and subcases that we met were conditioned by some properties

such as the symmetry properties of the external forces, or the rank of a unique matrix in

the kinematic model of a wheeled system.

Beyond these considerations of classification, the presented results are innovative in the

sense that they propose an alternative to the Lagrangian framework much more developed

till today. Moreover, when the number of degrees of freedom dramatically increases,

we proposed to adopt directly a continuous approach. This approach is named macro-

continuous since it is relevant at a macroscopic scale at which the robot can be considered

as an internally actuated Cosserat beam. It allows to extend further the Newton-Euler

algorithms to the case of a class of continuous systems composed of an infinite set of

infinitesimally short links modeled by the rigid cross sections of the beam. This approach,

which has been previously proposed to study the swimming of elongated body fish has been

extended here to the case of terrestrial locomotion. In this context, the choice has been

done to model the hard contacts with the obstacles as a set of kinematic constraints whose

combined use allowed us to model several types of locomotion practiced by elongated body

animals. Moreover, in this context, the macro-continuous model has shown its efficiency

for the analysis of the mobility, or the gait generation, which are both difficult problems

when dealing with a high number (here infinite) of internal degrees of freedom. Beyond

the kinematic aspects, the macro-continuous approach also gave access to the model of the

internal (control) and external (contact) forces, which is a very precious information for

hyper-redundant locomotion. Finally, the macro-continuous algorithm inherits a similar

structure as that of discrete case, since the partial differential equations of a Cosserat beam

are merely a continuous version of the Newton-Euler model of a discrete MMS studied in

chapters 3 and 4. Due to this similarity, the continuous algorithm is again recursive, the

recursion on the discrete indices being replaced by spatial ordinary differential equations

on the cross sections (material) label. Exploiting this recursive character allowed us to

obtain efficient algorithms easy to programm.

7.2 First Conclusive Discussion: Projective vs Dis-

tributive Approach

Although the discrete and continuous approaches of chapter 3 and 4 share some common

points, beyond their intrinsic discrete vs continuous character, they also present deeper

differences that require a further discussion. To understand these differences, let us re-
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consider the principle of each of the two algorithms when they are both applied to a

common system as for instance a hyper-redundant snake like robot in lateral undulation

on a planar uniform ground.

In this case of snake locomotion, let us remind that the discrete algorithm computes in

a first step the reference acceleration using the discrete kinematic connection. In a sec-

ond step, this reference acceleration is used to initialize the recursive kinematic model

which allows to compute the position-velocity-acceleration of each of the bodies of the

chain. This data is then used in a third step by a reduced recursion on the interbody

forces. These reduced recursions are deduced from the unconstrained case by projecting

the Newton-Euler equations onto the kernel of each wheeled body. Finally, this projection

cancels the reaction forces which at the end do not appear anymore in the whole algorithm.

Now let us consider the continuous case of snake locomotion. In this case, whether the

first step of the algorithm is similar to the discrete case where a continuous version of the

connection replaces the usual kinematic connection, the second step of computation is in

fact drastically different. Indeed, the continuous algorithm does not use any projection

to cancel the reaction forces. Instead of that, it first computes the resultant of external

contact forces required by the external motions and then distributes this resultant onto

the contacts. For a snake, the reaction forces transmitted by the contacts are in general

not unique depending on the number of independent constraints forced by the contact.

Obviously, in the case of a uniform contact on the ground the number of solutions is a

priori infinite and it is required to do supplementary assumptions on the distribution of

contacts to solve the ambiguity.

Comparing these two algorithms (discrete and continuous), it becomes obvious that their

principle is radically different in the second step of computation. As a consequence, while

the net motions are in both cases identical (the contrary would in fact reveal a contradic-

tion), the computed torques are generally different. In particular, in the discrete case the

joint torques are unique and requires no distribution assumption, while there are an infi-

nite number of solutions in the continuous case. From these basic remarks, new remarks

and questions arise.

First, due to the redundance of contacts, the number of sets of reaction forces ensuring the

observed motion (in the following, we name such a set as loading) is in fact (in general)

infinite. Thus, it is surprising that the projective approach did not require any distribu-

tion hypothesis to pursue. As a consequence of this remark, since the projective approach

computes a unique vector of joint torques, what is the meaning of this particular solution?
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In order to answer this question, let us go back to the Lagrangian setting which has the

advantage to be more easily handled at a high level of view. Since, we discuss about

the effect of reaction forces, we now state the Lagrange equations of the snake in the

whole fiber bundle, i.e. before any projection. In this case, the dynamics can be written

(for instance, from the principle of virtual work) in the form of the following algebraic-

differential system:

Dynamic equations:

(
M M

MT m

)(
η̇

r̈

)
+

(
Fin

Qin

)
=

(
0

τ

)
+

(
AT

BT

)
λ. (7.1)

Kinematic constraints:

A(r)η +B(r)ṙ = 0. (7.2)

Where λ represents a vector of Lagrange multipliers generalized reaction forces (ATλ,BTλ)T

exerted perpendicularly to the constrained admissible subspace of G× S at each time of

the motion. In the physical space, λ is nothing but the vector of the reaction forces and

torques transmitted by the constraints of the contacts. In particular, the first row of (7.1)

can be rewritten as Fc = ATλ, where Fc has been defined in 5 as the resultant (related

to the reference frame) of the reaction contact forces. In the same manner, we will note

τc = BTλ the torques exerted by the contact force onto the actuated joint axes. Thus,

using this notation, the second row of Lagrangian dynamic equation (7.1) can be rewritten

as:

τ kin = τ + τc,

where τ kin is an internal control torque given only by the information from kinematics

i.e. motions. This is actually the torque of an equivalent manipulator having the same

motions as that of the considered MMS, i.e.:

τ kin = (mr̈ +MT η̇ +Qin)(r, ṙ, r̈),

where the external net motions have been deduced from the internal shape evolution via

the first step of the algorithm. For this particular kinematic solution of the internal inverse

problem, the inertial forces due to the motions of this virtual manipulator are integrally

transmitted to the joints. This is why we denote this purely kinematic torque τ kin with

an overscore to indicate that this is the maximum value of such a kinematic component.

In short, in this case the number of activated contacts of (7.2) is minimum and the joints

take in charge all the constraints alone so increasing their magnitude up to their maximum
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values.

At the opposite, the minimum kinematic torque is also accessible. Indeed, pursuing the

same ideas such a particular solution that we will note τ kin, is obtained when all the

contacts are activated. Hence, this torque is nothing but that particular one which is

computed by the projective algorithm, where the lateral inertia forces exerted on each of

the bodies by the motion, are compensated, body after body, by the reactions of the pair

of wheels fixed to them.

Finally, between these two extremal cases, we find all the others corresponding to an

intermediate activation of the contacts. To each of these cases, there is one corresponding

kinematic torque (only explainable by the motions) defined by τkin = BTλkin, where λkin

is a loading univocally deducible from the motion and defined by the generalized inversion

of the second row of (7.1):

λ = λkin + λstat = (AT )†Fc(r, ṙ, r̈) + λstat (7.3)

with Fc(r, ṙ, r̈) = (Mη̇ +Mr̈ + Fin), whereas λstat ∈ ker(AT ) corresponds to the static

loadings which do not produce any observable motion. In fact, they generate the inter-

nal stresses felt by the robot (or the snake) due to the hyper-statism of the contacts.

As a corollary remark, when we increase the number of contacts, the internal torque

(τkin) should tend toward the minimum torque (τkin) computed by the projective algo-

rithm, while when the number of contact decreases, τkin tends toward τkin given by the

distributive algorithm without contact (i.e. by the usual Luh and Walker algorithm of

manipulators).

Now, coming back to nature, for a snake moving in a tree for instance, the animal perma-

nently exploits the redundancy of the first row of (7.1) (or equivalently that of equation

(6.52) in the continuous case) in order to satisfy supplementary more sophisticated con-

ditions as maximizing the adherence while minimizing the consumed energy. Among the

degrees of freedom of these solutions that the snakes exploit, they can change the con-

figuration of the activated contacts with time and, according to (7.3), can play with the

internal control forces which do not produce any net motions.

At last, returning to the comparison between both algorithms (projective and distribu-

tive), each of them has its own way of modeling these intermediate possibilities. In the

case of the projective algorithm, this is done by defining the bodies supporting the acti-

vated contacts as non-holonomic bodies while the other are declared as holonomic. On the

other hand, in the distributive case, we just have to distribute the resultant of external
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forces onto the activated contacts. However, note that whether the distributive algorithm

can take into account both the changes of activated contacts and those of static loadings,

the projective one seems only capable of dealing with the first source of redundancy. In

this regard the distributive algorithm is more general than the projective algorithm.

7.3 Second Conclusive Discussion: Lagrangian vs Newton-

Euler Modeling Approach

Beyond the differences between the algorithms they produce, the Lagrangian and Newton-

Euler approaches are in fact different for other deeper reasons that we are now going to

address. In order to structure our discussion, we first present, in table 7.1, the overview

of the approaches discussed in this thesis. From this, new questions arise. Why we have

Discrete systems Continuous systems
Lagrangian approach Chapter 2 equations

(2.15, 2.23)
?

Newton-Euler ap-
proach

Chapter 3 equations
(3.7-3.9, 3.11, 3.29)

Chapter 5 equations
(5.29, 5.31, 5.33)

Table 7.1 – Overview of the modeling approaches discussed in the thesis

not derived a continuous model in the Lagrangian setting? And what could be such a

model?

Going further, let us consider the discrete MMS for which both formulations are at our

disposal. In order to compare these two formulations, we consider separately the forward

external dynamics and the inverse internal dynamics.

1. Forward external dynamics: In this case, let us first remak that in both approaches

(Newton-Euler and Lagrangian) the external dynamics were derived on the same

definition of the configuration space, i.e. the fiber bundle G×S (see equation (2.15)

in chapter 2 and equation (3.29) in chapter 3). Naturally, the resulting models are

the same, since in Newtonian mechanics as a whole, a dynamic model of a system is

entirely determined by the definition of its configuration space. In fact, in the case

of external dynamics, the two approaches differ essentially by the algorithmic way

they use to derive these equations (by introducing a Lagrangian in the Poincaré

equations in the case of Lagrangian approach, while using the recursions on the

composite bodies in the case of Newton-Euler approach).

2. Inverse internal dynamics: in this sub-model, the definition of the configuration

space differs for the two approaches. In fact, in the Lagrangian approach we used

the shape space S of the fiber bundle, while in the Newton-Euler approach we



7.3 Second Conclusive Discussion: Lagrangian vs Newton-Euler Modeling Approach 163

stated the internal dynamics on (G)p+1. Consequently, even if they have the same

inputs and outputs, the two models are this time radically as much different as the

Lagrange and Newton-Euler models of a usual manipulator are.

Finally, focusing our interest on the internal dynamics, we can say that in the Lagrangian

case the shape motions are isolated from the net motions of the fiber through the natural

splitting of G × S. On the other hand, in the Newton-Euler approach the internal dy-

namics formulation does not require this separation of motions, the kinematic unknown

of the model being the Galilean twists of the bodies. This context can be directly related

to that found in flexible multibody dynamics where it is known after J.C. Simo that their

exists two approaches to measure the shape changes of a flexible link moving in a MS.

In the first one, the shape is defined a priori as a field of deformations measured with

respect to a moving floating frame [19]. In our case, this corresponds to the Lagrangian

approach on principal fiber bundles. In the second approach, the shape is defined a poste-

riori by applying a nonlinear strain field to the Galilean motions of the link. In our case,

this second approach which corresponds to the Newton-Euler approach has been named

”Geometrically Exact” by the author. This formulation is known to be very more simple

than that based on the floating frame [104, 105]. This advantage is exploited through

numerical finite element methods able to solve flexible multibody dynamics without any

approximation of the finite transformations [12, 106, 20].

Returning to our case of study, we recover the same arguments in favor of the Newton-

Euler approach. Practically, the complexity of the internal dynamics in the form of

the Newton-Euler recursion on the interbody wrenches is independent of the number of

internal degrees of freedom. While on the other hand, adding more and more degrees of

freedom considerably increases the complexity of the matrices of the Lagrangian model.

At last, in the extreme case where this number tends toward infinity, the Lagrangian

model cannot even be written (in terms of the continuous homologous of joints angles,

i.e. strains) while the Newton-Euler formulation still works. This remark answers the

first question previously posed. As regards the second one: what would be a Lagrangian

model of a continuous MMS? Although the Lagrangian model is impossible with shape

parameterized by continuous strains, the Lagrangian parametrization through a set of

generalized coordinates can be achieved after the continuous formulation through standard

discretization techniques such as finite elements method or assumed modes approach. For

instance, in the second case, the modal coordinates become the shape variables r of the

Lagrangian model.
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7.4 Perspectives

The prospects of this work are numerous and we will now list down a few and comment

them. First of all, as a continuation of the first of the two previous discussions, it is

natural to complete the overall landscape of this work by applying the projective ap-

proach to the continuous case, and the distributive approach to the discrete case. As a

result, adaptations would be required. For example, in the macro-continuous model, the

matrices of the admissible space of the isolated bodies would be replaced by a function

of the material abscissa H(X) with X a moving point (C(t)) in the case of a sweeping

contact. On the other hand, in case of the discrete algorithm, it would be natural to relax

the assumptions of section 3.1.1 in chapter 3, and extend the algorithm to a much more

wide class of multibody systems. Another extension of the results for discrete systems

is to develop a single algorithm which is capable of taking into account the kinematic

singularities (related to the rank of the matrix A in chapter 3) of the MMS, and hence

capable of switching smoothly from a kinematic model to a dynamic model and vice versa.

More fundamentally, the direct algorithm (i.e. where torques are inputs, while internal

and external motions are output) evoked in section 2.3.3 in chapter 2 is a short-term ob-

jective. Although it is not very suitable for the synthesis of gaits (to which our proposed

algorithm is well suited), it is the necessary step toward the modeling of compliance or

other passive deformations, inherently present in all designs of robots and basic principles

of locomotion used by many animals. On this point, the passive deformations allow the

animals to optimize their performance in terms of energy consumption while limiting their

neuro-biological complexity. In particular, the solutions ”found by the animals” to solve

difficult control problems are often designed to circumvent these problems by changing

(through the evolution of species) the morphology of their bodies. The subjects of appli-

cations, such as studying the ”flapping tail” of a robot fish or ”flapping wing” of a robot

inspired by the flying insect, are in the target of these extensions. Still in the perspective

of extending this work to the case of direct dynamics, although in this case a solution in

the discrete unconstrained context is presented in [63], the extension to the constrained

case as well as the macro-continuous are still to be addressed. All these perspectives

concern the extension of the methodological framework developed here in this thesis.

Beyond these extensions of the general framework, we also plan to apply these tools

to particular problems such as hyper redundant manipulation or snake-like robots. In

the first case, the parallel robots with cables are nowadays a growing field in which the

methodological framework presented in this thesis could naturally be applied. In this

perspective, and more generally, for any design of hyper-redundant robot, the question

of the model of internal forces and more particularly of their actuation is a key issue
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that one must address. An idea here would be to project the macro-continuous model of

the Newton-Euler/Cosserat type on a model that can take into account the technological

details of the internal design of these robots. These new developments could then be

sought in a general framework to adapt the macro-continuous model to a maximum of

designs. Among the utilities of these generic tools, this time in the case of snake robots,

the results presented above allowed us to state nice problems of optimization which would

be interesting to explore in the future works. For this, the use of static terms exhibited

in section 7.2, in order to optimize certain criteria related to energy or static stability,

are issues that would be interesting to address. In the same field, the combination of

unsteady contacts in chapter 5 and the observations of natural snakes would permit to

investigate the modes of locomotion much more complex than ”simple lateral undulation”

such as the ”concertina” or ”sidewinding” discussed in Chapter 2.
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8.1 Introduction Générale

Plus ou moins délibérément, depuis son commencement, la robotique s’inspire de la nature

pour concevoir ses robots. Ainsi, aux origines, des robots ressemblant à des bras humains

ont été conçus en utilisant des mécanismes discrets dévolus aux tâches de manipulation

des châınes d’assemblage industrielles. Ces mécanismes discrets consistent en des châınes

sériels de corps rigides connectés par des articulations et sont aujourd’hui inclus dans

la classe plus vaste des systèmes multicorps. Après les manipulateurs, les roboticiens

commencèrent à construire des robots mobiles concus comme des plateformes à roues.

Si ces systèmes ont donné des résultats dans des environnements structurés, lorsque les

environnements deviennent moins structurés, les pattes sont plus adaptées que les roues

et la robotique mobile orienta ses études sur les robots à pattes inspirés des animaux

marcheurs, ouvrant consciemment la voie de la bio-inspiration. Avec le temps, en puisant

leur inspiration dans la grande diversité du règne animal, les chercheurs ont dans ce

domaine commencé à développer des mécanismes comprenant de plus en plus de degrés

de liberté internes, introduisant ainsi une nouvelle génération de robots appelés ”hyper-

redondants”, puisqu’ils peuvent être considérés comme ayant un degré de redondance infini

relativement aux 6 ddls de la tâche consistant à mouvoir un corps rigide dans l’espace.

Poussant plus loin cette tendance, de nos jours, la robotique est entrée dans l’ère de la

robotique ”soft” où les robots n’ont plus de corps rigides dans leur structure. Dans ce

cas, la source de bio-inspiration est fournie par les animaux mous appelés hydrostats, tels

les vers de terre, les chenilles et autres pieuvres. Du point de vue du mécanicien, ces

systèmes peuvent être considérés comme des systèmes continus ayant un nombre infini de

degrés de liberté. Cette complexité croissante de la morphologie est en particulier due à la

diversification des modes de locomotion impliquant des milieux d’appuis de plus en plus

variés tels les sols non-uniformes, l’air, l’eau, etc. Aujourd’hui, des recherches en bionique

nous permettent de découvrir progressivment les mécanismes subtils que les animaux ont

découvert au fil de l’évolution des espèces pour améliorer leur performances dynamiques

en terme de consommation énergétique ou de manoeuvrabilité. Aussi les systèmes de

locomotion deviennent de plus en plus complexes, comme leur modèles mathématiques.

En conséquence, nous avons besoin aujourd’hui d’outils efficaces qui peuvent aider les

roboticiens à modéliser, concevoir, commander une nouvelle génération de robots.

A cet effet les modèles dynamiques et leurs algorithmes associés sont d’un grand intérêt
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pour les chercheurs du fait de leur rôle effectif dans la simulation, la conception et le

contrôle. Gardant en tête cet intérêt grandissant, nous proposons dans cette thèse un cadre

méthodologique unifié capable de trâıter la locomotion bio-inspirée en toute généralité.

Plus précisément, dans cette thèse nous poursuivons deux objectifs. D’abord contribuer à

la classification des robots locomoteurs. Puis proposer de nouveaux outils efficaces pour

la modélisation et la simulation rapide de ces robots locomoteurs. Concernant le premier

objectif, nous utiliserons des outils mathématiques introduits par l’école américaine de

géométrie mécanique après Marsden. Concrétement, ces outils nous permettront d’exhiber

la structure géométrique commune à la différents modes de locomotion en apparence

différents comme les serpents rampants ou la nage à haut Reynolds. Concernant le second

objectif, partant des manipulateurs, rappelons qu’il existe deux approches algorithmiques

majeures pour résoudre les problèmes de dynamique des robots. La première est fondée

sur la mécanique Lagrangienne et mène à des formulations explicites paramétrées par

un jeu minimal de coordonées généralisées indépendantes [92]. La seconde approche est

fondée sur la formulation de Newton-Euler appliquée à chacun des corps [4]. Qu’elle soit

appliquée à la dynamique inverse à travers l’algorithme de Luh et Walker [115] ou à la

dynamique directe à travers l’algorithme de Featherstone [40], la formulation de Newton

Euler mène à des algorithmes d’une complexité en O(n) (où n est le nombre de corps).

Inversement, la formulation Lagrangienne mène à des algorithmes en O(n) ou O(n4) selon

qu’ils soient récursifs (comme les algorithmes fondés sur la méthode de Newton-Euler) [54]

ou non [114, 58]. Quoiqu’il en soit l’approche de Newton Euler, une fois associée à un

code symbolique adapté, conduit aux algorithmes les plus efficaces [64]. Cet avantage est

crucial lorsque l’on étudie des systèmes présentant un grand nombre de liaisons et degrés

de liberté comme les manipulateurs hyper-redondants [52, 100, 25, 72]. Qui plus est,

les algorithmes de Newton Euler sont particulièrement intéressants lorsque l’on considère

des robots modulaires ou reconfigurables [24], puisque dans ce cas, changer la topologie

du système revient à changer l’indexation des corps sans compromettre la structure des

algorithmes.

Malgré ces avantages, jusqu’à aujourd’hui un corpus général fondé sur l’approche de New-

ton Euler n’existe que pour les manipulateurs, c’est à dire pour des sysèmes multi-corps

ayant une base fixe [40], alors que la théorie la plus unifiée de la dynamique des systèmes lo-

comoteurs est fondée sur l’approche Lagrangienne sur les fibrés principaux [87, 60, 76, 101].

Finalement, comme cas limite, nous verrons que la dynamique des robots hyper redon-

dants peut être modélisée par une version continue de la formulation de Newton-Euler,

et que dans ce cas cette formulation n’a aucune contrepartie Lagrangienne [14, 16]. Con-

cernant ces systèmes, les approches existantes utilisées pour modéliser les robots hyper

redondants peuvent être classées en deux principaux groupes selon que le robot est con-

sidéré comme un système multi-corps discret avec un grand nombre de degrés de liberté

[63, 78] ou directement comme un milieu continu déformable. Dans le premier cas, la
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modélisation est facilitée par le fait que les outils mathématiques issus de la robotique

classique discrète sont déjà disponibles. Néanmoins, adopter un modèle continu des le

départ peut grandement faciliter la formulation, l’analyse et la résolution des problèmes

de robotique liés à la manipulation [26, 83] et à la locomotion [52, 18, 50]. Cette thèse

trâıte à la fois de la modélisation et du développement d’une classification unifiée et de

méthodes algorithmiques pour des systèmes multicorps discrets ainsi que des systèmes

continus.

8.2 La locomotion bio-inspirée

La locomotion animale est l’étude de la façon dont les animaux se déplacent dans le

monde. La locomotion est la capacité de passer de place en place. Pour un système, que

ce soit naturel ou artificielle, la locomotion peut être définie plus précisément comme suit.

”Le processus de production de déplacement (mouvement) globale d’un système à travers

les changements de forme interne (déformations) et l’interaction avec le monde extérieur.”

Dans la nature, les changements de forme interne varie d’un organisme à organisme, selon

leurs caractéristiques structurelles et un moyen d’interaction. Lorsque ces changements

de forme internes se trouvent être manoeuvres cyclique, ils sont connus comme des allures

”gait”de locomotion. Les animaux aussi effectuent certaines manoeuvres transitoires telles

que le virage, sauter, etc. Une vaste variété de locomotion est observée chez les animaux.

Par exemple, un vol d’un oiseau, marche d’un chat, la course d’un cheval, undulation d’un

serpent, nage d’un poisson, l’enfouissement d’un ver, etc. Dans tous ces cas, la locomotion

est possible grâce au contact avec l’entourant moyennes, par exemple l’air, l’eau, la terre,

etc. Dans son essence, la locomotion est basé sur le principe suivant. Tout animal lors de

déplacements dans l’espace change tout d’abord sa forme en vue d’exercer certaines forces

sur son environnement. Puis, en vertu du principal de action-réaction, l’environnement

exerce une certaine force de réaction sur le corps de l’animal dont la résultante le propulse

dans l’espace. Les forces de réaction exercée par le monde sur le corps de l’animal dépend

de la taille du corps de l’animal, et les propriétés physiques du milieu d’appuis sur lequel

l’animal se penche pour se déplacer. Par exemple, la natation et le vol à nombres élevés

de Reynolds implique des forces inertielle (pression) (produit par l’accélération du fluide

environnant l’animal), à nombres bas de Reynolds, de petits animaux tels que les protistes

flagelles, cilliae utilisent des forces visqueux (frottement) pour se déplacer. En cas de

marche, les forces de contact durs discontinus sont impliqués, tandis que les serpents

adaptent leur surface corporelle en contact avec le sol afin de maximiser les forces de

réaction propulsive. Parmi les modes de locomotion le plus mystérieux, nous trouvons les

lézard de sable qui est capable de nager dans le sable.

Du point de vue des roboticien, la morphologie des animaux peuvent être grossièrement

classés en trois catégories selon qu’ils ont un endosquelette, un exosquelette ou pas de
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squelette à tous. Une autre grande catégorie d’morphologies pertinentes à la robotique

sera topologie du corps, le corps de chaque animal étant éventuellement symbolisée par

une châıne topologique ceux que traités par la mécanique des systèmes multicorps. Dans

ce cas, des systèmes simples à châıne ouverte comme les animaux allongé, sont en fait

très intéressant pour les roboticiens, depuis une même morphologie simple, ils montrent

un large éventail de possibilités allant de la natation, comme les anguilles, aux fouisseurs

comme les vers, rampant comme des serpents et ainsi de suite. Une des raisons du succès

de cette morphologie dans le règne animal, est probablement dû au fait que ces animaux

ont un nombre élevé de degrés de liberté internes (certains gros serpents ont plus de 500

vertèbres) et les roboticien les appellent ”les systèmes hyper-redondants”.

Au-delà de ces considérations bio-physique, les roboticiens également s’inspirer de l’étendue

des capacités de locomotion animale pour s’adapter à différents environnements. Par ex-

emple, une même espèce de serpent a la capacité de se glisser à travers l’ondulation,

side-winding, mouvement rectiligne ou en accordéon. Tout cela est possible avec la même

morphologie tout en décalant d’un ensemble de déformations internes à un autre qui

répond bien aux changements environnementaux.

Pour toutes les raisons mentionnées ci-dessus, un très grand intérêt a été montré au cours

des dernières années vers la conception des robots inspirés par la locomotion des animaux.

Au début, les robots de locomotion ont été conçus sur la base d’une connaissance préalable

des manipulateurs industriels conventionnels, i.e. systèmes multicorps discrets. En outre,

avec le passage du temps, les aspects conception des systèmes de locomotion artificielle

devenaient de plus en plus l’inspiration de la nature. À cet égard, les conceptions de

robot ont été déplacé de la mécanismes conventionnels discrète envers les structures hyper-

redondants continues avec une augmentation spectaculaire de degrés de liberté internes

ainsi que le nombre de corps. Ces systèmes hyper-redondants trouvent l’inspiration à

partir d’animaux allongé tels que des serpents, des anguilles, etc.

8.3 Problème général abordé dans cette thèse

Le problème général de la locomotion peut être envisagé de plusieurs manières. Dans cette

thèse, nous allons résoudre le problème suivant. Connâıtre les évolution dans le temps sur

les articulations internes, nous cherchons à calculer:

1. Les mouvements externes, ce qui correspond à résoudre la dynamique directe externe

appelé ”dynamique directe de la locomotion”.

2. Les couples internes, ce qui correspond à résoudre la dynamique inverse interne ou

plus simplement la «dynamique inverse des couples”.

Ce calcul sera effectué par un algorithme détaillé dans les chapitres suivants. La première

dynamique est nommés ”dynamique de la locomotion” puisque mettant en relation les
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degrés de liberté internes avec les degrés de liberté externes, ils implique un modèle de

la résultante des forces de contact à l’origine de la locomotion. D’autre part, la secondes

dynamique est celle habituellement rencontrés sur le système multicorps conventionnel

comme dans le cas des manipulateurs où il trouve ses applications dans les algorithmes de

calcul des couple. Une question se pose naturelle de cette déclaration: Pourquoi avons-

nous opter pour le choix des mouvements internes comme entrées, pourquoi ne pas prendre

les couples comme entrée? Il y a deux raisons principales. Premièrement, il est facile de

préciser les mouvements externes d’un robot locomoteur en fonction de ses mouvements

internes, tandis que d’autre part, il n’est pas facile du tout de deviner les mouvements d’un

robot mobile à partir des couples exercée par ses actionneurs sur ses articulations internes.

Deuxièmement, en relation avec le premier argument, ce problème (et sa solution) peut

être couplée à des expériences biologiques basés sur des films de locomotion des animaux.

En fait, une fois les mouvements internes sont extraites du film, ils peuvent être imposées

comme des entrées de l’algorithme qui renvoie les mouvements externes. Ensuite, ces

mouvements externes peuvent être comparés à ceux extraits de films, et l’appariement

des mouvements externe mesurés et calculés est un outil précieux pour l’étude du modèle

du contact. En parallèle, la dynamique de couple inverse permet de qualifier la faisabilité

des mouvements internes imposées à l’égard des ressources d’actionneurs.

Afin de résoudre la dynamique directe de la locomotion, nous avons besoin de dévelop-

per une relation entre ces deux types de mouvements (i.e. externes et internes) sur le

fibré principal. En général pour développer une telle relation, un modèle dynamique est

nécessaire, i.e. la dynamique entre le système et le milieu environnant est d’être résolu.

Cependant, il y a certains cas particuliers élégants où la locomotion est entièrement défini

par la cinématique. C’est quand le modèle du contact est codée dans ce que nous nommons

une ”connexion” sur le fibré principal de configurations. Par conséquent, nous pouvons

rapidement conclure qu’il existe deux types de modèles de la locomotion.

Modèle dynamique de la locomotion: où les mouvements externes du système mul-

ticorps mobile sont liés à des mouvements internes via un modèle dynamique.

Modèle cinématique de la locomotion: où les mouvements externes du système mul-

ticorps mobile sont liés à des mouvements internes via un modèle cinématique.

Maintenant, nous allons développer ces modèles et leurs algorithmes associés afin de ré-

soudre le problème de la locomotion. Pour atteindre cet objectif, le reste du chapitre est

divisé en deux parties. La première partie traite des systèmes multicorps discrèts tandis

que la seconde partie est consacrée aux systèmes continus.
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Partie-I: Les Systèmes Discrets

8.4 Introduction aux Systèmes Multicorps Discrets

Partant du modèle des systèmes multicorps rigiges, certains travaux de recherche récents

ont initié l’application de la formulation de Newton-Euler à certains systèmes de locomo-

tion bio-inspirés. Dans [72], la formulation de Newton-Euler a été utilisée avec un modèle

de contact de type frottement de Coulomb afin d’aborder le problème inverse de la dy-

namique d’un serpent rampant. Dans [110], la formulation de Newton-Euler a été utilisée

pour résoudre la dynamique directe d’un serpent plan soumis à des forces de contact non

régulières. Néanmoins, bien que ces travaux utilisent la formulation de Newton-Euler

pour modéliser la dynamique des systèmes multicorps, les algorithmes qui en découlent

n’exploitent pas les vertue de la récursivité de cette formulation. Aussi, aucun de ces

travaux sur les robots serpent n’a à notre connaissance généralisé (à la locomotion), soit

l’algorithme inverse de Luh et Walker soit l’algorithme direct du à Featherstone. Au plus

proche de nos objectifs, dans [62] l’algorithme inverse de Luh et Walker et l’algorithm

direct de Featherstone ont été proposés pour étudier la locomotion d’un robot anguille,

tandis que dans [82] un algorithme de Luh et Walker pour le calcul des couples a été

proposé pour résoudre la dynamique inverse d’un manipulateur mobile. En dépit de ces

récents travaux, à notre connaissance, aucun cadre général de la formulation de Newton-

Euler pour la dynamique inverse récursive des systèmes multicorps avec des liaisons pivots

et des roues n’a été proposé à ce jour. Bien que la formulation de Newton-Euler ait été

discutée par différents auteurs, sa mise en oeuvre dans un cadre unifié pour la dynamique

de la locomotion dans le contexte de la mécanique géométrique reste à faire. Pour pal-

lier ce manque, ce travail de recherche présente une méthode de calcul de la dynamique

inverse basée sur la formulation de Newton-Euler pour les systèmes multicorps mobile

de type arborescentes [10]. De plus, en utilisant certains des concepts géométriques de

la mécanique, l’approche propose aussi un classement général d’une large gamme de sys-

tèmes, allant des systèmes complètements constraines (par exemple un robot serpent),

aux systèmes flottants (bras de navettes, les satellites, etc.), en passant par les manipu-

lateurs à base fixe ou mobile, ainsi que les systèmes sous-actionnés non-holonomes tels le

snakeboard, le Trikke, etc.

8.4.1 Les hypothèses de Base

En fait, les seules limitations de l’algorithme proposé sont fixées par les hypothèses de

base suivantes.

1. Le sol est considéré comme une surface horizontale plane. Cette hypotèse impose

trois contraintes de planéité holonomes sur les mouvements généraux 3D des corps à
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roues. L’une de ces contraintes va empêcher le corps de se translater verticalement,

les deux autres vont l’empêcher de faire des mouvements de roulis et de tangage.

2. Toutes les roues actionnées quand il y en a, sont disposées sur un corps unique.

3. Les inerties des roues sont négligeables comparés à celles des corps. Par conséquent,

les roues n’interviennent dans la modélisation que via la cinématique.

4. Les éventuelles roues folles ont pour unique role de maintenir l’équilibre statique

horizontal par rapport au sol. Par conséquent, elles n’aparaissent pas dans la mod-

élisation.

5. Tous les corps du système sont connectés les uns aux autres par des laisons (holonomes),

supposées idéales (pas de frotement) et actionnées.

6. Toutes les roues sont supposées être idéales. Ainsi, elles peuvent être modélisées

par les contraintes non-holonomes qui vérifient les conditions de non-dérapage et de

roulement sans glissement.

7. Nous supposons que les conditions de compatibilité nécessaires pour assurer la mo-

bilité du mécanisme sous les contraintes induites par les roues vérifiées grâce à la

conception et la planification du mouvement.

Notons que les deux dernières hypothèses ne concernent que le cas des roues idéales.

8.4.2 Description des systèmes multicorps mobiles

Dans la suite, nous considérons un système multicorps mobile avec une topologie arbores-

cente composée de p+1 corps rigides, notés So, S1, S2, ...Sp. Chaque pair de corps successifs

est connectée par une seule articulation rotöıde1. En outre, tous les corps peuvent être

en contact avec le sol par des roues (voir Fig. 8.1(b)) qui sont principalement classées en

deux types: omni et uni-directionnel. Les roues uni-directionnelles sont subdivisées elles

mêmes en roues «orientables», «castor» ou «fixes» selon que leurs axes normaux au sol

sont actionnés, libres ou ancré au corps. Les corps sont classés en ”corps à roues” (dont

l’ensemble des indices est noté Nw) et ”corps sans roues” (avec des indices dans Nuw).

Lorsque le système possède des roues actionnées, le seul corps muni de roues actionné

sera étiqueté comme So (voir hypothèse n◦2 de la section 8.4.1). Dans les autres cas, le

choix de So est libre. Nous suivons les conventions de Newton-Euler pour les structures

arborescentes presentées dans [64]. Les indices des corps augmentent de So vers les corps

terminaux comme illustré dans la Fig. 8.1. Dans tous les calculs détaillés ci-après, l’indice

1Ces restrictions ne sont pas comptées comme des hypothèses de base puisque tous ce qui suit peut
être facilement étendu à des système multicorps mobiles comprenant d’autres types d’articulations et aux
structures avec des châınes fermées.
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Figure 8.1 – Structures arborescentes d’un système multicorps mobile: (a) un manipulateur; (b)
un système à roues

i est réservé pour désigner l’antécédent de l’indice courant j. Enfin, dans la suite, nous

aurons aussi besoin d’utiliser le concept de ”corps composite” [117]. Un corps composite

S+
j est un corps rigide composé de Sj et de tous les successeurs figés dans la forme courante

et animés par le mouvement de Sj . En particulier, le corps composite S+
o (Fig. 8.1) est

composé de toute la structure figée dans la forme courante et animés par le mouvement

de So. Enfin, dans la suite, S+
o signifie que So est connecté au reste de la structure, tandis

que So signifie que le corps So est un simple corps isolé.

Lorsque nous traiterons de la dynamique récursive des couples, l’espace de configuration

du système multicorps mobile sera défini comme suit:

C1 = G×G× ...G︸ ︷︷ ︸ = Gp+1,

p + 1 copies
(8.1)

où chaque copie de G représente le groupe de Lie des configurations de chacun des p + 1

corps considérés comme isolés des autres. Aussi, dans cette première définition So ne se

distingue pas des autres corps. D’autre part, lorsqu’il s’agit du modèle de locomotion,

So devient le corps de référence, c’est à dire un corps dont les mouvements fixent les

mouvements rigides de l’ensemble de la structure par rapport auxquels les variations de

la forme interne sont mesurées. En tant que tel, le mouvement de So peut être imposé par

les lois horaires connues (comme dans le cas particulier d’un manipulateur où So est la

base) ou, plus généralement, il sera calculé par l’intégration (par rapport au temps) d’un

modèle dynamique de la locomotion dont l’espace de configuration est définie comme le

fibré principal:

C2 = G× (S1)p. (8.2)
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Dans cette seconde définition de l’espace de configuration d’un système multicorps mobile,

(S1)p correspond à la configuration de forme interne S des p articulations paramétrées par

le vecteur r = (r1, r2, ...rp)
T , tandis que G est le groupe de Lie des configurations de So,

à présent considéré comme connecté à l’ensemble de la structure, i.e. celui de S+
o . Enfin,

puisque de toute façon G ⊆ SE(3), nous considérons généralement que G = SE(3) et

relacherons cette hypothèse en abordant les exemples illustratifs.

Enfin, la modélisation requiert également deux autres ensembles de paramètres cinéma-

tiques qui, en raison de la negligence des inerties des roues, ne sont pas considérés comme

des paramètres de configuration. La première série est celle des angles des roues orienta-

bles, rassemblés dans le vecteur β. La deuxième série est celle des angles de roulement:

{θj = (θj,1, θj,2, ...θj,Nj
)T , avec Nj le nombre total de roues (roues castor exclus) de chaque

corps Sj , j ∈ Nw}. Dans le cas de So et Na de ses roues étant actionnées autour de

leurs axes de roulement (parallèles au sol), θo sera divisé en blocs des vecteurs des roues

actionnées et libres (passive) comme suit: θo = (θToa, θ
T
of)

T , avec dim(θo) = Na.

8.4.3 Notations

Avant de commencer la modélisation mathématique des systèmes multicorps mobiles,

nous présentons d’abord quelques termes et expressions mathématiques de base. Chaque

corps Sj est muni d’un repère orthonormée Fj = (Oj, sj, nj, aj) de centre Oj, où aj est

l’axe de rotation du seul degré de liberté. L’espace ambiant est muni d’un repère spatial

fixe noté Fe = (Oe, se, ne, ae). La transformation du corps rigide (élément de SE (3)),

qui tranforme un repère othonormé Fl en n’importe quel autre repère orthonormé Fk

est représentée par une matrice homogène de dimension (4 × 4) notée lgk ∈ SE(3), par

exemple, la transformation de matrice igj qui applique le repère Fi du corps Si sur le

repère Fj du corps Sj , est donnée comme suit:

igj =

(
iRj

iPj

0 1

)
,

où, iPj = i(OiOj) et iRj est une matice (3 × 3) qui d’écrit l’orientation de repère Fj

par rapport à Fi. Par ailleurs, Mj désigne la matrice (6 × 6) d’inertie, contenant les

composantes d’inertie du corps Sj sur SE(3), exprimé dans Fj, avec:

Mj =

(
mj13 −mj ŝj

mj ŝj Ij

)
, (8.3)

où, mj est la masse du corps Sj , alors que mjsj et Ij sont le vecteur des premiers moments

d’inertie et la matrice des seconds moments, respectivement, tous exprimés dans Fj.

Notons que si un tenseur est exprimé dans un repère autre que celui du corps auquel il est
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relatif, alors un exposant en position avant haute précise l’indice du repère en question,

e.g. oMj désigne le tenseur d’inertie du corps Sj exprimée dans Fo, alors que Mj désigne

le tenseur d’inertie du corps de Sj exprimée dans Fj . Par ailleurs, en adoptant l’espace

des twists R6 comme définition de so(3), le ”twist” de Sj est défini par un vecteur (6× 1)

notée ηj qui contient les composantes de la vitesse du corps Sj exprimée dans Fj, tandis

que sa dérivée par rapport au temps η̇j désigne le vecteur (6 × 1) des accélérations du

corps Sj , où:

ηj =

(
Vj

Ωj

)
, η̇j =

(
V̇j

Ω̇j

)
.

Passant à l’espace ”dual”Fj désigne la résultante des forces (6×1) appliquées sur le corps

Sj par le corps antécédent Si, exprimées dans son propre repère Fj, où:

Fj =

(
Nj

Cj

)
.

En outre, un twist peut être poussé vers l’avant de Fi à Fj par la relation: jηi = Adjgiηi,

où Adjgi est appelé ”operateur adjoint” et se détaille comme suit:

Adjgi =

(
jRi

jRi
iP̂ T
j

0 jRi

)
. (8.4)

Du côté ”dual”, une force peut être tirée vers l’arrière de Fj à Fi par:
iFj = AdTjgiFj .

Enfin, Fgyr,j et Fext,j dénotent les forces gyroscopiques et externes appliquées sur Sj,

respectivement.

8.5 Dynamique inverse récursive des manipulateurs

Nous rappelons ici l’algorithme de calcul des couples de Luh et Walker [115] pour un

manipulateur de type arborescent avec des liaisons rotöıdes où le mouvement de So est

prédéfini comme indiqué dans la Fig. 8.1(a). Le but de l’algorithme consiste à calculer,

à chaque pas t d’une boucle de temps globale, le vecteur des couples articulaires (sorties)

τ(t), en connaissant les valeurs actuelles des entrées: (ego, ηo, η̇o, r, ṙ, r̈)(t). Ce calcul est

réalisé en exécutant d’abord les récurrences cinématiques avant: pour j = 1, 2, ...p et avec

conditions aux bords: (ego, ηo, η̇o) = (ego, ηo, η̇o)(t):

Calcul des transformations du corps:

egj =
egi

igj(rj). (8.5)
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Calcul de la vitesse du corps:

ηj = Adjgiηi + ṙjAj . (8.6)

Calcul des accélérations du corps:

η̇j = Adjgi η̇i + ζj(ṙj, r̈j). (8.7)

Où, Aj est un vecteur (6× 1):

Aj =

(
0

aj

)
, avec aj =




0

0

1


 .

Nous noterons aussi par ζj(ṙj, r̈j), un vecteur (6× 1) défini comme suit:

ζj =

(
jRi(Ωi × (Ωi ×

iPj))
jΩi × ṙjaj

)
+ r̈jAj . (8.8)

Une fois la cinématique résolue, l’algorithme connaissant les états actuels de tous les corps

individuels, il peut exécuter la récurrence arrière sur les torseurs de contact interne: pour

j = p+ 1, p, ..., 1, avec Fj = 0 si Si est un corps terminal:

{
if i = j − 1 : Fi = Miη̇i − Fext,i − Fgyr,i +AdTjgiFj;

else: Fgyr,i = Fgyr,i − AdTjgiFj .
(8.9)

Où, Fgyr,i est le vecteur (6× 1) des efforts gyroscopiques:

Fgyr,i = −

(
Ωi × (Ωi ×misi) + Ωi ×miVi

Ωi × (IiΩi) +misi × (Ωi × Vi)

)
. (8.10)

Enfin, les forces internes sont projetées sur les axes des articulations pour obtenir les

couples comme suit:

for j = 1, 2, . . . , p : τj = ATj Fj. (8.11)

8.6 Aperçu de l’algorithme

L’algorithme de Luh et Walker est limité aux cas où les mouvements du corps de référence

So sont imposés à priori. Maintenant, pour discuter de la généralisation de cet algorithme

au cas des systèmes multicorps mobiles nous considérons un système mobile plan avec

des roues, comme indiqué dans la Fig. 8.2, où les corps à roues sont connectés par des

liaisons rotöıdes simples et actionnées. En imposant des mouvements sur les articulations



8.7 Les systèmes multicorps mobiles non-contraints 179

So

(a)

So

(b)

Figure 8.2 – Systèmes multicorps à roues: (a) Système multicorps avec deux essieux; (b) Système
multicorps avec three essieux

actionnées, les corps de ce système sont soumis non seulement à des mouvements internes,

comme ceux rencontrés sur un manipulateur, mais aussi à des mouvements rigides externes

de l’ensemble de la structure définis comme étant ceux d’un corps de référence arbitraire

So par rapport à un repère fixé à l’espace. En conséquence, la généralisation attendue de

l’algorithme de Luh et Walker nécessite une connaissance des mouvements externes de So

qui ne sont généralement plus imposés mais doivent être calculés à partir d’un nouveau

modèle, appelé ici ”modèle de la locomotion”. Ce modèle est un modèle direct, car il

relie les mouvements des articulations à ceux du corps de référence So. Comme évoqué

précédement, cette relation peut être modélisée soit par un modèle cinématique simple

(i.e. n’impliquant pas les forces), soit par un modèle dynamique.

Avant d’entrer dans la discussion détaillée de tels modèles de la locomotion, notons qu’à

l’exception de celles transmises pas les roues, les forces externes de toute nature telles

celles imprimées par le contact avec un fluide, sont suposées connues comme des fonc-

tions de l’etat via des lois physiques (de comportement). Au contraire, dans le cas des

roues, suposées idéales, le contact est modélisé par des contraintes non-holonomes (voir

hypothèse n◦6 de la section 8.4.1). Dans ces conditions, les systèmes multicorps mobiles

peuvent être classés en deux grandes catégories:

Systèmes multicorps mobiles non-contraints: les systèmes multicorps mobiles (à roues

ou sans roues) dont les contacts externes sont modélisés par le modèle des forces

extérieures en appliquant certaines lois physiques, par exemple, l’utilisation d’un

modèle de frottement pour un contact avec le sol via des roues non-idéales.

Systèmes multicorps mobiles contraints: les systèmes multicorps mobiles en contact

avec le sol via les roues où le contact est modélisé via les contraintes non-holonômes

(de non-dérapage et/ou de roulement sans glissement).

8.7 Les systèmes multicorps mobiles non-contraints

Dans cette section, nous étendons l’algorithme standard de Luh et Walker de la section

8.5 au cas d’un système multicorps mobile non-contraint. L’objet de la section 8.7.1 est de

calculer l’accélération actuelle η̇o de S
+
o à partir des entrées actuelles et l’état de référence
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actuel. Ensuite, cette accélération de référence est utilisée comme condition aux bord

pour les calculs récursifs des couples internes et l’intégration par rapport au temps, dans

la section 8.7.2. Enfin, dans la section 8.7.3 nous introduirons un cas où la dynamique de

la locomotion dégénére en cinématique.

8.7.1 Dynamique de la locomotion: le calcul de η̇o

Ce calcul est basé sur la dynamique du corps de référence contrôlé par les mouvements

internes imposés du reste de la structure. Cette dynamique nommée «dynamique de la

locomotion» est simplement celle de S+
o et peut être définie comme suit:

(
η̇o
eġo

)
=

(
(M+

o )
−1F+

o

egoη̂o

)
, (8.12)

où la deuxième ligne est l’équation de reconstruction cinématique de ηo à
ego, tandis que

dans la première ligne M+
o (r(t)) =

∑l=p
l=0Ad

T
lgo
MlAdlgo dénote la matrice d’inertie du

corps composite S+
o , et F

+
o (r(t), ṙ(t), r̈(t),

ego, ηo) est le torseur des forces (d’inertie et

externes) exercées sur S+
o :

F+
o = Fgyr,o + Fext,o +

j=p∑

j=1

AdTjgo

(
Fgyr,j + Fext,j −Mj

(
l=j∑

l=1

Adjglζl

))
. (8.13)

Notons que M+
o et F+

o peuvent être calculés numériquement par les calculs suivants avec

les récurrences arrières initialisées par les conditions aux bords: M+
j = 0, F+

j = 0 si Si

est un corps terminal: pour j = p+ 1, p, ...1:

• Calcul de M+
o :

{
si i = j − 1 : M+

i = Mi +AdTjgiM
+
j Adjgi;

sinon: Mi = Mi +AdTjgiM
+
j Adjgi.

(8.14)

• Calcul de F+
o :

{
si i = j − 1 : F+

i = Fgyr,i + Fext,i − AdTjgiM
+
j ζj −AdTjgiF

+
j ;

sinon: Fgyr,i = Fgyr,i −AdTjgiF
+
j −AdTjgiM

+
j ζj.

(8.15)

Techniquement, (8.12) peut être déduite du principe des travaux virtuels appliqué à

l’ensemble de tous les corps soumis à tout champ virtuel compatible avec la rigidité du

corps et la cinématique articulaire.
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8.7.2 Dynamique des couples: le calcul des couples internes

Une fois que (η̇o, ηo) et
ego sont connus, ils initialisent les deux récurrences de l’algorithme

standard de Luh et Walker (voir la section 8.5) qui donne finalement le vecteur des couples

moteurs τ .

En bref, l’extension de l’algorithme de Luh et Walker au cas d’un système multicorps

mobile non-contraint ne nécessite que la dynamique de locomotion (3.29) et (3.27,3.28) en

plus de la dynamique des couples (3.7-3.12). Enfin, afin de mettre à jour l’état de référence

pour la prochaine étape de la boucle du temps, (3.29) est numériquement intégrée, par

exemple, avec un intégrateur géométriques sur les groupes de Lie [91] ou plus simplement

avec un intégrateur basé sur les quaternions. Ces deux intégrateurs ont l’avantage d’être

libre de singularités et de non-linéarités artificielles comme celles introduites par toute

paramétrisation impliquant trois angles d’orientations de So.

8.7.3 Le cas non-contraint avec symétries

Lorsqu’un robot est soit: 1) immergé dans un fluide idéal initialement au repos ou 2) flot-

tant dans l’espace, tel que par exemple, un bras de navette spatiale ou un satellite équipé

d’un système de réorientation, alors les forces externes Fext,i sont
ego− indépendantes et

lagrangienne [7]. Mathématiquement, cela signifie qu’il existe une fonction de Lagrange

lext = lext(ηo, r, ṙ) (égale à l’énergie cinétique ajoutée par le fluide dans le premier cas [67],

et tout simplement égale à zéro dans le second), tels que:

F+
ext,o =

d

dt

(
∂lext
∂(ηo)

)
− ad∗(ηo)

(
∂lext
∂(ηo)

)
, (8.16)

où ad∗(.)(.) : se(3) × se(3)∗ → se(3)∗ est l’operateur co-adjoint de SE(3). Une analyse

plus approfondie de ces cas montre que, avec lext + l = 1
2
ηTo (M̃

+
o ηo +

oM̃rṙ), l étant

le lagrangien du système libre de forces externes, la partie accélération de (8.12) peut

être explicitement intégrée par rapport au temps pour se ramener au jeu de contraintes

non-holonômes suivant:

M̃+
o ηo +

oM̃rṙ = 0, (8.17)

qui assurent la conservation de la quantité de mouvement cinétique pour un système

initialement au repos. Par ailleurs, dans (8.17), oM̃r est une matrice 6 × p couplant

les accélérations externes aux internes. Enfin, la relation (8.17) permet de remplacer le

modèle dynamique de la locomotion (8.12) par le modèle cinématique de la locomotion

comme suit:

η̂o =
eg−1
o

eġo = (−Amṙ)
∧ , η̇o = −Amr̈ − Ȧmṙ, (8.18)
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où Am = (M̃+
o )

−1oM̃r est la forme locale de la connexion sur le fibré principal C2 appelé

”connexion mécanique” [76, 89, 59]. Dans ce cas, la dynamique de la locomotion dégénère

en un modèle cinématique en raison des propriétés de symétrie de la dynamique du système

[76].

8.8 Les systèmes multicorps mobiles contraints

A présent, nous allons étendre l’algorithme des systèmes multicorps mobiles non-contraints

au cas des systèmes multicorps mobiles contraints. Comme mentionné plus tôt, par sys-

tème contraint on entend une structure multicorps en contact permanent avec le sol via

des roues idéales. Ainsi, cette extension est essentiellement un processus de réduction

basée sur les contraintes non-holonômes des roues. Avant d’effectuer ce processus de ré-

duction, nous rappelons d’abord la cinématique non-holonome d’un système multicorps

mobile contraint. Notons que, dans ce cas, chaque corps à roues est également désigné

comme un corps non-holonome puisque limité par des contraintes cinématiques de même

nature. En conséquence, chaque corps sans roues est appelé corps holonome.

8.8.1 Cinématique d’un corps non-holonome isolé

Ici nous allons trâıter le modèle cinématique de chaque corps non-holonômes Sj, j ∈ Nw

considéré comme isolé du reste de la structure. Mathématiquement, c’est équivalent à

considérer les contraintes non-holonomes sur la définition (8.1) de l’espace de configu-

ration, c’est à dire sur chaque copie de SE(3). Dans le cas des roues idéales, chaque

roue uni-directionnelle impose deux contraintes, l’une due à la condition de roulement

sans glissement, l’autre à la condition de non-dérapage latéral. Alors que chaque roue

omnidirectionnelle n’impose qu’une seule contrainte de roulement sans glissement.

Chaque ”twist” de Sj compatible avec les mj contraintes indépendantes de non-dérapage

imposées par ses roues peut être exprimé comme suit:

∀j ∈ Nw : ηj = Hj(t)ηrj , (8.19)

où l’espace engendré par les colonnes de Hj (notée Vj = span(Hj) dans la suite) est

nommé «l’espace admissible” forcé par les mj contraintes de non-dérapage du corps Sj,

plus les 3 contraintes de sol plan. La relation (8.19) définit la cinématique réduite de Sj

seul, où ηrj définit le vecteur (nj × 1) des composantes de ηj dans la base de Vj, avec

nj = 6− (mj + 3). Ce vecteur est nommé le ”twist réduit” de Sj. Hj est nommé (6× nj)

”matrice de réduction” du corps Sj isolé. En outre, tout complément orthogonal à Hj,

notée H⊥
j est défini par:

HT
j H

⊥
j = 0nj×(mj+3). (8.20)
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Enfin, afin d’identifier l’espace admissible Vj à son espace dual V∗
j nous imposons que les

colonnes de Hj sont orthonormées pour la métrique euclidienne de R
6, i.e.:

∀j ∈ Nnh : H
T
j Hj = 1nj

, (8.21)

où 1nj
est une matrice identité (nj × nj).

En ce qui concerne les contraintes de roulement sans glissement, nous pouvons récupérer

l’évolution de chacune des roues de Sj en transportant le twist (8.19) de la plate-forme au

centre de chacune des roues. A partir de cela, nous obtenons pour chaque corps Sj, une

relation de la forme suivante:

θ̇j = Bj(t)ηrj , (8.22)

où Bj est une matrice (Nj×nj) dependant de la géométrie fixe de plateforme et des roues,

ainsi que du temps courant via β.

8.8.2 Cinématique du corps composite S+
o

Nous allons maintenant examiner les conséquences des contraintes de non-dérapage sur

tout le système, i.e. sur les mouvements de S+
o , c’est à dire sur l’espace de configuration

C2. Notons qu’en raison de l’existence éventuelle d’autres corps non-holonomes dans la

structure, l’espace admissible V de S+
o est généralement plus contraint que celui de So isolé.

Allant plus loin, nous pouvons toujours présenter un ensemble maximal des m(> mo) ”1-

forms” de contrainte indépendantes sur T (SE(3) × S) qui sont dépendantes du temps,

à cause des roues orientables et des articulations holonômes. Par ailleurs, en raison des

conditions de non-dérapage, ces contraintes sont G-invariantes par rapport à l’action à

gauche de SE(3) sur le fibré principal des configurations. Par conséquent, une fois réunies

avec les trois contraintes imposées par le sol plan, lesm+3 contraintes peuvent être écrites

sous la forme matricielle suivante:

A(t, r(t))ηo +B(t, r(t))ṙ(t) = 0, (8.23)

où A est une matrice (m+3)×6 et B est une matrice de (m+3)×p. Le rang de la matrice

A joue un rôle important dans l’analyse de la mobilité de ces systèmes non-holonômes. En

fait, dans l’expression (8.23), nous identifions deux cas en fonction de la valeur relative de

dim(SE(3))=6 et rang(A),: (a) rank(A) = 6 et (b) rang(A) < 6. Dans le cas (a), (8.23)

peut être divisé en deux blocs:

(
A

Ã

)
ηo +

(
B

B̃

)
ṙ =

(
0

0

)
, (8.24)
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avec A une matrice inversible et carrée de 6×6 . Dans ce cas, la matrice A étant inversible,

ηo est complètement défini par l’évolution temporelle de r et β, et le mouvement du

mécanisme est complètement calculable à partir de la cinématique. Géométriquement, si

l’on concatène le vecteur β avec le vecteur r, cela permet de définir Ak , A
−1
B comme

la forme locale d’une connexion sur le fibré principal des configurations [66]. Par ailleurs,

si m + 3 = 6, alors le système multicorps mobile peut se déplacer dans tous les cas sous

l’hypothèse n◦7 de la section 8.4.1, tandis que si m + 3 > 6, alors les m + 3 − 6 =

m− 3 équations résiduelles de (8.24) peuvent être utilisés pour trouver les vitesses ṙ qui

préservent la mobilité de l’ensemble du système (c’est à dire vérifiant: ṙ 6= 0 et telles que:

(B̃−ÃAk)(r)ṙ = 0). Enfin, dans le cas (a), il y a suffisament de contraintes indépendantes

de non-dérapage pour remplacer entièrement la dynamique de la locomotion (8.12) de la

section 8.7 par le modèle cinématique suivant:

ηo = −Ak(r)ṙ(t), (8.25)

auquel s’ajoutent ses conséquences différentielles et intégrales:

η̇o = −Ak(r)r̈(t)− Ȧk(r)ṙ(t),
eġo =

ego(−Akṙ)
∧. (8.26)

En ce qui concerne le cas (b), il n’y a pas assez de contraintes de non-dérapage pour définir

le mouvement du mécanisme uniquement par la cinématique et donc, une analyse addi-

tionnelle est nécessaire. L’application de l’inversion généralisée à (8.23) permet d’affirmer

que tout twist de S+
o doit vérifier:

ηo = H(t)ηr + J(t)ṙ(t), (8.27)

où, si A† désigne la pseudo-inverse de la matrice A, alors J = −A†B et H est une matrice

de (6 × (6 − rang)) dont les colonnes engendrent le noyau de A. Ainsi, ηr représente un

vecteur indéterminé de (6 − rang(A)) × 1 au niveau cinématique. Géométriquement, ce

vecteur prend naturellement le sens du twist réduit de So inséré dans la structure entière,

c’est à dire de S+
o . Ainsi, dans le cas (b) le ”twist réduit» ηr ne peut pas être déterminé

uniquement à partir des contraintes de non-dérapage, mais nécessite des contraintes de

roulement sans glissement ou/et de la dynamique. Par ailleurs, So peut être équipé de

roues actionnées ainsi que de roues non-actionnées (autour de leur axe de rotation). Pour

les distinguer, nous introduisons une partition de ηr et réécrivons (8.27) sous une forme

plus détaillée:

ηo = (Ha(t), Hf(t))

(
ηra(t)

ηrf

)
+ J(t)ṙ(t), (8.28)
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où, avec n , 6 − rang(A) = na + nf , t ∈ R
+ 7→ ηra(t) est un vecteur (na × 1) de twist

(actionné) imposé (connu par la planification de mouvement et les lois de commande),

tandis que ηrf est la composante non-actionnée de dimension (nf × 1). Cette composante

est inconnue et sera calculée par l’algorithme dynamique dans la suite. Il est à noter que,

si n = na, (8.28) se réécrit comme suit:

ηo = −Ak(r)ṙ, (8.29)

ici avec Ak = −(J,Ha(Baa)
−1); r = (r, θoa), tandis que θoa et Baa sont respectivement le

vecteur des roues indépendantes actionnées de So et une matrice carrée définie par les con-

traintes de roulement sans glissement. Dans la littérature sur la dynamique lagrangienne,

Ak est souvent mentionné comme la forme locale de la connexion cinématique principale

[87, 60]. Finalement, (8.28) définit la forme la plus générale de la cinématique réduite de

S+
o .

En ce qui concerne les contraintes de roulement sans glissement, une relation similaire à

(8.22) peut être dérivée, mais cette fois pour S+
o . En outre, So peut être équipé de roues

actionnées et libres, et il est alors utile de diviser ses angles roulants en angles libres et

actionnés, et d’écrire dans le cas général:

(
θ̇oa(t)

θ̇of

)
=

(
Baa 0

Bfa Bff

)(
ηra(t)

ηrf

)
. (8.30)

Par ailleurs, nous avons na 6 Na (Na est le nombre de degrés de liberté actionnés de

S+
o tandis que Na est son nombre de roues actionnées). Par conséquent, il est toujours

possible d’extraire de Baa une matrice carrée na × na de rang na noté Baa et de déclarer

un système linéaire inversible:

θ̇oa = Baa
raηra, (8.31)

avec Baa = (B
T

aa, B̃
T
aa)

T et θoa = (θ
T

oa, θ̃
T
oa)

T . Notons que (8.31) implique la relation

subsidiaire:

˙̃
θoa = B̃oaa(Boaa)

−1θ̇oa, (8.32)

qui peut être interprétée comme un ensemble de relations de compatibilité pour les con-

traintes de roulement sans glissement des roues actionnées (i.e. si (8.32) est violée alors

certaines des roues actionnées glissent sur le sol).

8.8.3 Dynamique du système multicorps mobile contraint

Dans cette section, nous reconsidérons le modèle dynamique de la locomotion (8.12) aisni

que la dynamique récursive des couples internes (qui est simplement la dynamique stan-
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dard de Luh et Walker) d’un système multicorps mobile contraint où, dans le cas d’un

système à roues, les roues ont été modélisées par des forces de réaction du sol (section 8.7).

Ensuite, puisque les roues sont idéales dans le cas d’un système multicorps mobile con-

traint, nous appliquerons successivement deux processus de réduction sur la locomotion

dynamique de l’algorithme du système multicorps mobiles non-contraint afin d’obtenir la

dynamique réduite de locomotion pour un système multicorps mobiles contraint.

1. Projeter le modèle dynamique de la locomotion (8.12) sur l’espace admissible V du

corps de référence composite S+
o . Cela nous donnera un modèle dynamique réduit

de la locomotion.

2. Projeter la dynamique des couples sur l’espace amissible Vj de chacun des corps

(isolés) Sj’s. Cela donnera la dynamique réduite des couples.

Notons que le but de ces projections sur les espaces admissibles est simplement d’éliminer

toutes les forces latérales de contact (externe) qui sont toujours perpendiculaires à l’espace

admissible et sont imposées par le sol en raison des contraintes de non-dérapage. D’autre

part, il y a un autre type de forces de contact externe, notée Fext,ra qui agissent dans

l’espace admissible V et sont imposées par le sol en raison des contraintes de roulement

sans glissement des roues actionnées. L’algorithme doit calculer ces forces Fext,ra pour

résoudre la dynamique. A la fin, le modèle résultant donne une forme généralisée de celle

de la section 8.7 qui peut être appliquée à tout type de système de la Fig. 8.1(b).

8.8.3.1 Modèle dynamique réduit de la locomotion

Cette première étape du processus de réduction concerne la projection du modèle dy-

namique de la locomotion (8.12) de S+
o sur son espace admissible V. En outre, puisque

V = Va ⊕ Vf , l’algorithme doit calculer les deux inconnues suivantes à chaque pas de

temps.

1. L’accélération réduite η̇rf du corps de référence composite S+
o dans son sous-espace

admissible libre (non-actionné) Vf .

2. Les efforts externes réduits F+
ext,ra du corps de référence composite S+

o transmis par

le sol via les contraintes de roulement sans glissement des roues actionnées.

Ces calculs sont détaillés dans les sections suivantes.

Calcul de η̇rf(t)

Comme les forces de réaction latérales induites par le sol sont orthogonales à Vf , on trouve

après la projection de (8.12) sur Vf :

(
η̇rf
eġo

)
=

(
(M+

rf)
−1(F+

rf )
ego(Hfηrf + (Haηra + Jṙ)(t))∧

)
, (8.33)
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où l’on introduit les matrices réduites:
{

M+
rf = HT

f M
+
o Hf ,

F+
rf = HT

f (F
+
in,o −M+

o (Haη̇ra + Ḣ ηr + J̇ ṙ + Jr̈)).
(8.34)

Enfin, à chaque étape de la boucle du temps globale, le calcul de (8.33) donne le η̇rf(t)

actuel, alors que l’intégration par rapport au temps de la deuxième ligne de (8.33) permet

de mettre à jour l’état de référence.

Calcul de F+
ext,ra(t)

Maintenant, si nous projetons (8.12) sur V = Va⊕Vf (au lieu de Vf comme dans la section

précédente), nous obtennons le modèle dynamique de la locomotion comme suit:

(
M+

ra
raM+

rf

rfM+
ra M+

rf

)(
η̇ra(t)

η̇rf

)
=

(
F+
in,ra + F+

ext,ra

rfF+
f

)
. (8.35)

De la première ligne, nous pouvons déduire les efforts externes reduits Fext,ra de S
+
o comme

suit:

F+
ext,ra =

raM+
rf η̇rf +M+

raη̇ra(t)− F+
in,ra, (8.36)

où les termes sur le côté droit de l’expression sont donnés par:





raM+
rf = HT

a M
+
o Hf ,

M+
ra = HT

a M
+
o Ha,

F+
in,ra = HT

a F
+
in,o.

(8.37)

Les accélérations η̇rf et η̇ra(t) sont données par (8.33) et la dérivée temporelle de (8.31),

respectivement.

8.8.3.2 Dynamique réduite des couples

Il s’agit de la deuxième étape du processus de réduction, consistant à réduire la dynamique

de Luh et Walker par projection de ses deux modèles récursifs sur les espaces admissibles

pour calculer les couples internes.

Cinématique recursive réduite

Comme il s’agit d’une projection corps par corps, nous allons insérer en premier lieu

(8.19) et sa dérivée par rapport au temps dans (8.6) et (8.7), puis nous appliquons

à gauche l’opérateur de projection HT
j (sur Vj), et enfin, nous invoquons la propriété

d’orthonormalité (8.21), ce qui donne une cinématique réduite récursive: for j = 1, 2, . . . , p:
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Calcul des vitesses réduites:

ηrj = Adrjgriηri + ṙjArj. (8.38)

Calcul des accélérations réduites:

η̇rj = Adrjgri η̇ri + ζrj(ṙj , r̈j), (8.39)

où, les notations suivantes sont introduites:





Adrjgri = HT
j AdjgiHi,

Arj = HT
j Aj ,

ζrj = HT
j (AdjgiḢiηri − Ḣjηrj + ζj).

(8.40)

Récurence réduite sur les forces internes

En projetant la dynamique de Newton-Euler (8.9) de chaque corps Sj sur son espace

admissible Vj , nous trouvons la récurrence sur les forces internes réduites rjFrj = HT
j
jFj :

pour j = p+ 1, ...1:

{
if i = j − 1 : Fri = Mriη̇ri − Fgyr,ri +AdTrjgriFrj ;

else: Fgyr,ri = Fgyr,ri −AdTrjgriFrj ,
(8.41)

avec les notations suivantes:
{

Mri = HT
i MiHi,

Fgyr,ri = −HT
i (MiḢiηri − Fgyr,i).

(8.42)

Ensuite, les couples sont déduits de la projection réduite suivante:

j = 1, 2...p : τj = F T
rjArj. (8.43)

Quant aux couples des roues actionnées Γ, nous pouvons définir la partition bloc de

Γ = (Γ
T
, Γ̃T )T , duale de θ̇oa = (θ̇

T

oa,
˙̃
θ
T

oa)
T . F+

ext,ra appartient à l’espace dual de ηra’s et

modèlise les forces exercées par le sol sur S+
o à travers les roues actionnés. Ensuite, puisque

les roues sont idéales, nous avons en vertu du principe d’action-réaction:

B
T

aaΓ + B̃T
aaΓ̃ = −F+

ext,ra, (8.44)

où, en raison de l’éventuel caractère sur-actionné de l’espace admissible actionné (Na >

na), dans le cas général une infinité de couples aux roues Γ sont capables de fournir le

F+
ext,ra désiré.
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Figure 8.3 – Le Snakeboard

8.9 Examples illustratifs

8.9.1 Le snakeboard

Dans cette section, nous prenons l’exemple du ”snakeboard” (voir Fig. 8.3) qui est un

système plan avec la topologie arborescente. Comme ce robot n’a que des roues non-

actionnées, le choix du corps de référence So est libre. Suivant la description et les nota-

tions de [87], −φ, φ et ψ sont les angles des articulations de S2 par rapport à So, S3 par

rapport au So et S1 par rapport à So, respectivement. En raison des symétries du design,

les centres de masse des So, S2 et S3 sont alignés le long du grand axe de la plateforme.

En faisant une hypothèse supplémentaire basée sur [87], nous écrivons: m = mo+mr+2mw

et I = Io + Ir + 2Iw = ml2, où les indices r et w présentent le rotor et le corps à roues,

respectivement, alors que l est la longueur entre le centre de masse et la base des roues

(voir Fig. 8.3(a)). Comme le mouvement du corps de référence So est contraint à l’espace

admissible uni-dimensionel, nous noterons ηrf = ξ. Nous commençons notre calcul en

définissant les matrices réduites:

Hf = (−2lc2φ, 0, s2φ)T , H2 = H3 =

(
1 0 0

0 0 1

)T

et Ho = H1 = 13.

Afin de calculer la dynamique réduite de la locomotion, nous calculons d’abord l’inertie

réduite composite du snakeboard par (8.34) avec (8.14) comme suit:

M+
rf = HT

f

(
3∑

j=0

AdTjgoMjAdjgo

)
Hf = 4ml2c2φ. (8.45)

Ensuite, nous calculons les forces composites en utilisant l’équation (8.34):

F+
rf = HT

f F
+
o −HT

f (M
+
o Ḣfξ) = −Irs2φψ̈ + 2ml2s2φφ̇ξ. (8.46)
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Enfin, ceci nous permet de calculer l’accélération réduite du snakeboard en utilisant la

relation (8.33):

ξ̇ = tgφ(−
Ir

2ml2
ψ̈ + φ̇ξ). (8.47)

qui doit être complétée par:

ηo = Hfξ = (−2lc2φ, 0, s2φ)Tξ. (8.48)

L’ensemble des équations (8.47-8.48) réalise la forme simplifiée de (8.33) pour le snake-

board.

Le calcul des couples se fait en calculant d’abord l’accélération η̇rj de chaque corps Sj par

l’équation récursive (8.39) initialisée par:

η̇o = Hf ξ̇ + Ḣfξ

=
Ir

2ml2




ls2φ

0

−2s2φ


 ψ̈ +




ls2φ

0

2c2φ


 φ̇ξ. (8.49)

Ensuite, l’algorithme utilise la relation sur les couples (8.43) pour projeter in fine les forces

sur les axes articulaires:

τ1 = AT1 (M1η̇1 − Fgyr,1),

τj = ATrj(Mrjη̇rj − Fgyr,rj), j = 2, 3,

où pour le snakeboard AT1 = (0, 0, 1) et ATrj = (0, 1). Le mouvement plan du snakeboard

et aussi la projection des forces sur l’axe de rotation vérifient l’implication seulement de

la troisième composante de l’équation (8.49) dans le calcul des couples, i.e.:

τ1 = (Ir − (Ir2/ml2)s2φ)ψ̈ + 2c2φIrφ̇ξ,

τ2 = −(IwIr/ml2)s2φψ̈ + 2c2φIwφ̇ξ − Iwφ̈,

τ3 = −(IwIr/ml2)s2φψ̈ + 2c2φIwφ̇ξ + Iwφ̈

Alternativement, en terme de forces généralisées appliquées aux deux coordonnées internes

indépendants, nous obtenons:

τψ = Ir((1− (Ir/ml2)s2φ)ψ̈ + 2c2φφ̇ξ),

τφ = τ3 − τ2 = 2Iwφ̈. (8.50)

Les couples ci-dessus sont le résultat souhaité de l’algorithme. En particulier, les équations

(8.47) et (8.50) sont en accord avec la dynamique telle que calculée par [87] dans le cadre
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Figure 8.4 – Les trois premiers modules du robot serpent

Lagrangien.

8.9.2 Un robot serpent

Le robot serpent présenté ici est l’Active Cord Mecanism plan de Hirose [53]. C’est un

système multicorps arborescent avec des roues non-actionnées. Il se compose de p+1 corps

rigides connectés par des articulations rotöıdes simples. Un repère Fj = (Oj, sj, nj , aj)

est attachée au centre d’articulation de chaque corps Sj. Ici, nous considérons que chaque

corps sans roues est connectée au corps voisin qui en possède (appelé collectivement un

”module”) via leurs centres de masse. La numérotation des corps est la suivante: Nuw =

{0, 2, 4...p − 1} et Nw = {1, 3, 5, ...p} définissent les ensembles d’indices des corps sans

roues et des corps à roues, respectivement.

Ce robot possède suffisamment de contraintes non-holonomes pour que les mouvements

externes puiisent être modélisés par la cinématique réduite du corps de référence sans que

la dynamique ne soit requise [88]. En fait, une fois réunies, les conditions de non-dérapage

imposées par les trois premiers modules prennent la forme de (8.24) où A est une matrice

(3× 3) inversible de rang plein B est une matrice (3× 2) définies par:

A =




−sr1 cr1 0

−sr3 cr3 a23

−sr5 cr5 a33


 , B =




0 0

lcr3 0

b31 lcr5


 ,

avec r3 = r2 + r3, r5 = r2 + r4 + r5, a23 = l(cr3 + cr3), b31 = l(cr5 + 2c(r4 + r5) et

a33 = b31 + lcr5. Ainsi, la matrice A étant inversible, on peut calculer la vitesse de la

tête sous la forme (8.25), où Ak(r) = A
−1
B correspond à la forme locale de la connexion

cinématique principale du robot serpent. Enfin, dans ce cas dégénéré, les équations (8.25)

et (8.26) seront utilisées pour initialiser la cinématique directe récursive, tandis que le

reste du problème est résolu numériquement.

Pour les résultats numériques de l’algorithme, l’allure serpentine est imposée à un robot

serpent de 20 corps (i.e. p = 19) avec les mouvements sinusöıdaux des articulations don-
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nées par:

rj = ajsin(wjt + φj),

où aj , wj et φj sont l’amplitude, la fréquence et la phase de l’articulation j respec-

tivement. En plus, pour j = 1, ...5 : aj = (0.2, 0.6,−0.2, 0.6, 0.2), wj = 1, and φj =

( π
16
, 9π
16
, 0, 7π

16
,− π

16
). Après simulation pendant 20sec, nous obtenons le mouvement externe

du corps de référence So dans le plan xy comme indiqué dans la Fig. 8.5(a). La Fig. 8.5(b)

montre l’évolution temporelle du couple appliqué entre les corps S8 et S10 au cours des

20sec de la simulation.
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Figure 8.5 – (a) le mouvement de So dans le plan xy; (b) couple articulaire τ10
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Partie-II: Les Systèmes Continues

8.10 Introduction aux Robots Hyper-Redondants

Dans le contexte de la locomotion, les systèmes hyper-redondants sont généralement in-

spirés des animaux allongés vertébrés comme les serpents [52] et les poissons anguilliforme

[13], où les vertèbres correspondent aux corps rigides du système multicorps associé. Ces

animaux possédant un nombre élevé de vertèbres, et leur corps étant recouvert d’une

enveloppe de tissus déformables, il est légitime de les considérer comme véritablement

continus. Aujourd’hui, grâce aux recherches en bio-robotique, de nouveaux concepts de

robots continus, aux corps mous, étendent ces idées encore plus loin. En effet, contraire-

ment aux robots traditionnels, ces robots inspirés par les organismes invertébrés, connu

sous le nom d’hydrostats, ne contiennent pas d’organes rigides. En outre, leurs change-

ments de forme sont continus sur toute la longueur de leur corps, semblable à ceux d’une

trompe d’éléphant [48], des chenilles [9], des lombrics [65], des bras d’une pieuvre [68], etc.

Finalement, tous ces systèmes forment aujourd’hui la classe générale des robots continus.

L’extension des modèles basiques des robots (modèles géométriques, cinématiques et dy-

namiques) à ces nouveaux systèmes est une étape cruciale vers leur succès futur. Sur ce

point, plusieurs chercheurs ont accompli un travail considérable sur le sujet des robots

continus afin d’investiguer les problèmes habituels de la robotique tels que la planification

de mouvement, la génération des allures, la modélisation cinématique et dynamique, la

conception et la commande, etc. Nous renvoyons le lecteur à [113] pour un état de l’art

sur la robotique continue. De nombreuses contributions à la modélisation cinématique ont

été proposés [28, 18, 85, 57, 48]. Concernant la dynamique des robots continus, quelques

travaux sur ce thème ont été proposées [29, 41, 83, 108].

En fait, adopter un modèle continu des le début de la modélisation peut grandement

faciliter la formulation, l’analyse et la résolution des problèmes robotique liés à la ma-

nipulation [26, 83], et à la locomotion [52, 18, 50]. Toutefois, l’application de ce type

d’approche nécessite de donner une réalité matérielle à la cinématique continue. Par ex-

emple, dans l’approche par ”backbone-curves” telle que dévelopée dans [28, 18], la ”courbe

vertébrale” se doit d’être enrichie d’une extension matérielle latérale permettant de mod-

éliser l’inertie du robot. Cette tentative a été faite dans [26, 83] pour les robots plans.

Alternativement, la théorie des poutres géométriquement exactes de J. C. Simo [105, 104]

a été utilisé pour la modélisation des aiguilles passives orientables dans le contexte de

la robotique médicale [116, 95], tandis que dans [113] et [112], elle a été appliquée à un

robot mou nommé OctArm [46]. Dans [13, 16, 15], cette approche a été appliquée à la

locomotion des poissons anguilliformes et à leur artéfacts robotiques.
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8.11 Notations et définitions

Dans la suite, l’espace est muni d’un repère orthnormé Fs = (O, ex, ey, ez). En accord avec

[13], un robot hyper-redondant peut être modélisé par une poutre Cosserat en grandes

transformations, petite contraintes si l’on assimile la ligne vertébrale du robot avec la ligne

des centroids de la poutre. Dans cette approche, chaque section de la poutre, supposée

rigide, est labéllée par la position qu’occupe son centroid dans la configuration initiale

de la poutre que l’on suppose droite et telle que sa ligne centroidale soit alignée sur

(O, ex). A chaque section rigide, est attaché un repère orthonormé mobile Fm(X, t) =

(P, tX, tY , tZ)(X, t) dont l’origine P et le premier vecteur tX coincident respectivement

avec le centre de la section et sa normale unitaire. Avec ce choix la configuration de

chaque repère mobile est définie par l’action d’un élément de g ∈SE(3) appliquée au

repère fixe. Aussi devient-il possible d’introduire une première définition de son espace

des configurations comme un espace fonctionel de courbes paramétrées dans un groupe

de Lie G:

C1 = {g : ∀X ∈ [0, l] 7→ g(X) ∈ G} (8.51)

Ulterieurement, nous introduirons une seconde définition de l’espace des configurations

comme une fibré principal dont l’espace des formes est défini par un espace fonctionnel de

courbes dans l’algèbre de Lie g du groupe. Dans la suite, on pointe (respect. prime) une

dérivée par rapport au temps (respect. par rapport à l’espace). Sur la poutre, on définit

deux champs de vecteur dans g, le premier est le champ de time-twist:

η̂ : X ∈ [0, l] 7→ η̂(X, t) = g−1ġ ∈ g, (8.52)

où η(X, t) définit la transformation infinitésimale subit par la sectionX entre deux instants

infiniments proches t et t + dt. Le second champ est celui des space-twist tel que:

ξ̂ : X ∈ [0, l] 7→ ξ̂(X, t) = g−1g′ ∈ g, (8.53)

où ξ(X, t) définit la transformation infinitésimale subit par la section X à t fixé lorsque

l’on glisse le long de l’axe matériel de X en X + dX . Dans la suite, comme certains des

degrés de libertés de la poutre sont commandés tandis que d’autres son forcés à des valeurs

constantes par la conception des liaisons internes que l’on suppose parfaites et infiniment

rigides, on identifiera le champ ξ̂ à un champ désiré (commandé) explicitement dépendant

du temps noté ξ̂d(t).
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8.12 Cinématique de la poutre et des robots hyper-

redondants

Rappelons que jusqu’à nouvel ordre on identifie G à SE(3). On va recenser les differentes

cinématiques de poutres et les robots associés. A chaque cinématique infinitésimale, on

associe une liaison mécanique finie et lorsque possible, une stucture passive déformable.

Pour celà, partons de la définition (8.53) que l’on détaille selon:

g−1g′ =

(
RTR′ RTp′

0 0

)
=

(
K̂d(t) Γd(t)

0 0

)
= ξ̂d(t) (8.54)

Où Kd = (KdX , KdY , KdZ) et Γd = (ΓdX ,ΓdY ,ΓdZ). Dont les composantes prennent le

sens suivant. KdX est le taux de torsion de la poutre, tandis que KdY et KdZ représente

respectivement les courbures de sa ligne centroidale dans les plans (P, tX , tZ) et (P, tX, tY ).

De même, ΓdX −1 est le taux d’extension de la ligne des centroides tandis que ΓdY et ΓdZ

sont respectivement les rotations locales de cisaillement transverse autour des axes (P, tZ)

et (P, tY ). A présent, selon que ces champs scalaires soient actionnés ou non, on a les

differents cas possibles en partant du cas où la cinématique interne est la plus actionnée

au cas où elle l’est le moins (pour les 5 premiers cas, chacun est inclus dans le suivant),

et en ne considérant que les cas les plus pertinents pour le roboticien:

1. Si tous les degrés de libertés internes sont actionnés, alors on a six degrés de liberté

entre chaque section. La cinématique de poutre est celle de Reissner-Timoshenko.

2. Si l’on force ΓdY = ΓdZ = 0, alors on force les sections à rester perpendiculaires à

l’axe vertébrale tandis que la traction compression est autorisée. La cinématique de

poutre est celle des poutres de Kirchhoff extensibles.

3. Si en plus on impose ΓdX = 1 alors la poutre devient inextensible et la cinéma-

tique interne est celle des poutres inextensibles de Kirchhoff. Elle réalise la version

infinitésimale d’une liaison rotule.

4. La cinématique suivante est particulièrement pertinente pour le roboticien puisqu’elle

permet de réaliser un robot se déplaçant en 3D avec le minimum de degres de lib-

erté interne. Elle se déduit de la précédente en imposant la contrainte suplémentaire

KdX = 0, i.e. en forçant la torsion à zéro. Aucune structure passive ne lui correspond

puisque on ne peut générer de la flexion 3D sans produire de la torsion.

5. Si ensuite, on supprime l’une des deux flexions en forçant par exemple KdY = 0, on

obtient la cinématique minimale permettant de manipuler un objet dans les trois

dimensions du plan (i.e. dans SE(2)). La théorie de poutres qui lui correspond est

celle des poutres de Kirchhoff planes inextensibles.
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6. Le cas suivant est utile pour l’ondulation latérale des serpents, il se déduit du cas

générale en posant KdX = KdY = 0, ainsi que ΓdX = 1,ΓdZ = 0. La théorie de

poutre correspondante est celle des poutres de Timoshenko-Reissner planes.

7. Enfin le dernier cas, représente le plus dégénéré puisque tous les degrés de liberté y

sont forcés à zéro excepté ΓX qui est contrôlé. La poutre est une simple barre en

traction compression.

Finalement, chacune de ces cinématiques trouve dans la nature ses applications à des

animaux allongés et à leur modes de locomotion associés. En particulier, si l’on considère

le cas de la locomotion serpentiforme, sur les deux courbures KY et KZ l’une figure le lacet

dans le plan de la propulsion, tandis que l’autre actionne le tangage pour des manoeuvres

3D complexes impliquant le corps tandis que la torsion KX permet d’agir directement

sur le roulis dont le controle est crucial pour stabiliser l’orientation de la tête des robots

bioinspirés des serpents, anguille. Pour ce qui est des degrés de liberté linéaires, ΓX

actionne la traction-compression telle qu’utilisée par les gros serpents, tandis que ΓY et

ΓZ peuvent être utilisés par le mécanicien pour modéliser des mouvements relatifs de la

peau et des écailles.

8.13 Modèle continu des robots hyper-redondants

8.13.1 Modèle continu géométrique

Il se déduit imédiatement de la définition (8.54) des degrés de liberté internes:

g′ = g.ξ̂d(t), (8.55)

avec comme conditions aux bords (boundary conditions]: g(X = 0) = go.

8.13.2 Modèle continu des vitesses

En dérivant (8.52) par rapport à X , et en invoquant (8.54), il vient:

η′ = −adξd(t)(η) + ξ̇d(t), (8.56)

avec comme conditions aux bords: η(X = 0) = ηo = (g−1
o .ġo)

∨.

8.13.3 Modèle des accélérations

Il se déduit de la dérivation par rapport au temps du modèle précédent:

η̇′ = −adξd(t)(η̇)− adξ̇d(t)(η) + ξ̈d(t), (8.57)
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avec comme conditions aux bords: η̇(X = 0) = η̇o = (g−1
o g̈o − g−1

o ġog
−1
o ġo)

∨.

En reconsidérant le modèle cinématique continu (8.55), il devient évident qu’il est toujours

possible de reconstruire la configuration de la poutre à partir de la connaissance de go et

du champ de déformation ξd. Aussi, peut on donner une seconde définition de l’espace

des configuration du robot comme le fibré principal:

C2 = G× S, (8.58)

où G représente la configuration du repère attaché à la tête, tandis que S est l’espace de

la forme interne ici défini comme l’espace fonctionnel des courbes dans l’algèbre de Lie:

S = {ξ : ∀X ∈ [0, l] 7→ ξ(X) ∈ g}. (8.59)

8.13.4 Dynamique sur C1: modèle de Newton-Euler continu

En appliquant sur C1 le principe d’Hamilton au robot continu soumis à une densité de

torseur imposé F sur ]0, l[ et deux torseurs ponctuels F+ et F− respectivement imposés

en X = 0 et X = l, on trouve ses equations aux dérivées partielles:

∂

∂t

(
∂L

∂η

)
− ad∗η

(
∂L

∂η

)
+

∂

∂X

(
∂L

∂ξ

)
− ad∗ξ

(
∂L

∂ξ

)
= F , (8.60)

dont les solutions à chaque instant sont fixées par les conditions aux limites:

∂L

∂ξ
(0) = −F− , and:

∂L

∂ξ
(l) = F+, (8.61)

Où l’on a introduit la densité de Lagrangien du robot continu L = T−U = (1/2)(ηT (Mη)−

ΛT (ξ − ξd(t)), avec: M ∈ g∗ ⊗ g, la densité de tenseur d’inertie , et Λ ∈ g∗, la densité

de torseur des efforts internes assurant le forcage des contraintes internes: ξ = ξd(t).

Remarquons à ce sujet, que Λ prend le sens d’un champ de multiplicateurs de Lagrange,

et que pour les degrés de liberté internes actionnés, les multiplicateurs associés sont des

commandes (en effort ou en couple) tandis que pour les degrés de liberté non-actionnés,

les multiplicateurs sont des forces ou couple de réaction internes. De plus, si l’on convient

de noter Mη = ∂T/∂η la densité de torseur cinétique le long du robot, on trouve:

Mη̇ − ad∗η (Mη)− Λ′ + ad∗ξd(t) (Λ) = F , (8.62)

avec les conditions aux limites:

en X = 0: Λ(0) = −F− , en X = l: Λ(l) = F+. (8.63)
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Enfin, (8.62) et (8.63) sont considérés dans la suite comme la dynamique des efforts interne

ou plus simplement comme la «dynamique interne».

8.13.5 Dynamique sur C2: dynamique du corps de référence

La dynamique sur C2 se déduit de celle sur C1 en repartant du principe d’Hamilton

(qui nous a conduit précédemment à (8.62)-(8.63)) et en y forçant les champs de vitesse

(virtuels et réels) à vérifier la contrainte:

η = Adk(ηo), (8.64)

où comme k = g−1go, le champ (8.64) n’est autre que le champ de time-twist sur la poutre

induit par le mouvement de la tête seul, alors que le corps est figé dans sa configuration

courante. Il vient dans ces conditions, les efforts internes ne travaillant pas dans un tel

champs:

∫ l

0

Ad∗k(Mη̇ − ad∗η(Mη)− F )dX = Ad∗k+F+ − F−, (8.65)

où l’on remplace η̇ par le champ d’accélération compatible avec (8.64):

η̇ = Adk(η̇o) + adη(Adk(ηo)) + Adk(η
2
o)− (Adk(ηo))

2 = Adk(η̇o) + ζ, (8.66)

où ζ(X) représente l’accélération matérielle de la section X induite par la déformation du

corps et le mouvement de la tête exceptée son acceleration pure (i.e. due à η̇o). Finalement,

tout calcul fait et en tenant compte de l’équation de reconstruction cinématique de la

section X = 0, les équations de la dynamique du robot sur C2 s’écrivent:

(
η̇o

ġo

)
=

(
Mo(ξd)

−1Fo(ξd, ξ̇d, ξ̈d, go, ηo)

goη̂o

)
(8.67)

avec: Fo = Fin + Fext, et où l’on a introduit le tenseur d’inertie de l’ensemble du robot

ramené à la section de référence i.e. en X = 0:

Mo =

∫ l

0

Ad∗kMAdkdX, (8.68)

le torseur des efforts exterieurs, ramenés à la section de référence:

Fext = −F− + Ad∗k+F+ +

∫ l

0

Ad∗k(F )dX, (8.69)

le torseur des efforts d’inertie ramenés à la section de référence:

Fin = −

∫ l

0

Ad∗k(Mζ − ad∗η(Mη))dX. (8.70)
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Dans la suite, (8.67) sera considérée comme la dynamique des mouvements du corps de

référence contrôlées par les variations des mouvement interne, appelé la «dynamique de

la locomotion».

8.14 Algorithme dynamique des robots continus

Finalement, en posant le vecteur d’état cinématique X1 = (g, η, η̇), les modèles cinéma-

tiques (8.55,8.56,8.57) peuvent être regroupés dans l’unique équation aux dérivées ordi-

naires en espace:

X ′
1 = f1(X1, ξd(t), ξ̇d(t), ξ̈d(t)). (8.71)

De même, la dynamique interne (8.62) peut se remettre sous la forme de l’équation aux

dérivées ordinaires suivante en espace, de vecteur d’état X2 = (X1,Λ):

X ′
2 = f2(X2, ξd(t), ξ̇d(t), ξ̈d(t)), (8.72)

avec:

f2 =

(
f1

ad∗ξd(t) (Λ) +Mη̇ − ad∗η (Mη)− F

)
. (8.73)

Finalement, les termes apparaissant dans la dynamique externe (8.67) peuvent être égale-

ment calculés par intégration spatiale d’une unique ODE de vecteur d’état X3 = (X1,Mo, Fo):

X ′
3 = f3(X3, ξd(t), ξ̇d(t), ξ̈d(t)), (8.74)

avec:

f3 =




f1

Ad∗kMAdk

Ad∗k(−Mη̇ + ad∗η(Mη) + F )


 .

Où le ζ de (8.68) peut être remplacé par η̇ dans (8.75) si les conditions initiales en espace

de (8.74) vérifient η̇(X = 0) = η̇o = 0. En effet dans ce cas ζ = η̇ tout le long de la poutre.

Finalement, comme nous allons le voir à présent, dans tous les cas l’algorithme intègre

(8.74) dans ces conditions, de sorte que (8.75) fait sense. Toutes les equations aux dérivées

ordinaires ci-dessus construisent un algorithme generale pour résoudre la dynamique d’un

robot hyper-redundant. L’execution de cet algorithme est expliqué comme suit:

1. Intégrer l’équation (8.74) de X = 0 à X = l initialisée par X3(0) = (go, ηo, 0, 0, F−)

donne Mo et Fo.

2. Intégrer (8.67) entre t et t +∆t afin d’en déduire le nouvel état de référence (pour
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le pas de temps suivant): (go, ηo)(t+∆t).

3. Intégrer l’équation (8.72) de X = 0 à X = l initialisée par X2(0) = (go, ηo, η̇o, F−)

donne Λ.

L’algorithme résout la dynamique directe en calculant l’accélération d’un modèle des

efforts extérieures. En général, un tel modèle peut être très complexe comme dans le

cas de la nage dans lequel, à la rigueur, elle nécessite d’intégrer les équations de Navier-

Stokes [16]. Dans le cas de la locomotion terrestre, l’algorithme ci-dessus peut être utilisé

avec des efforts extérieures modélisés comme des lois physiques, par exemple, la loi du

frottement. Cependant, pour des raisons de simplicité de l’analyse, il peut être utile

d’examiner les contacts comme idéal. Dans ce cas, ils peuvent être modélisés comme des

contraintes au lieu d’efforts tel que discuté dans la section suivante. Dans la prochaine

étape, nous allons voir que lorsque le nombre de contraintes est suffisante, la dynamique

de la locomotion peut être remplacée par une cinématique et dans ce cas la locomotion

est nommé comme «la locomotion cinématique”.

8.15 Modélisation cinématique des contacts

La nature du contact joue un role important dans la définition du mode de locomotion.

Basé sur le contact terrestre des animaux allongée, ici nous traitons avec deux types

de contacts (supposé comme idéal): ancrages et des contacts annulaires. Ancrages sont

modélisés comme des contraintes bilatérales holonomes tandis que les contacts annulaires

sont modélisés comme des contraintes bilatérales non-holonômes. Dans les deux cas, les

contacts sont répartis le long de l’axe du corps. En cas d’ancrages, deux types sont

envisagées:

Ancrage verrouillé: ce type d’ancrage est fixé sur l’axe matériel du robot sur une ab-

scisse, noté C, constante par rapport au temps (voir Fig. 8.6(a)).

Ancrage glissant: dans ce type d’ancrage, l’abscisse C est soit explicitement dépendant

du temps noté C(t) ou implicitement dépendant du temps via la dynamique du

système (voir Fig. 8.6(b)).

D’autre part, le contact annulaire est toujours glissant, puisque le robot peut coulisser

librement dans l’anneau formé par le contact annulaire.

Finalement, toutes ces contacts sont supposées attachées à des obstacles (ou supports) en

mouvement relatifs imposés par rapport au référentiel terrestre. Enfin, comme nous le ver-

rons lors des exemples, ces modèles sont d’un grand intérêt pratique pour la modélisation

des nombreux modes de locomotion.



8.15 Modélisation cinématique des contacts 201

VcX(t)

X = C(t)
X = C

(a) (b)

Figure 8.6 – (a) Ancrage verrouillé; (b) Ancrage glissant

8.15.1 Cas des ancrages

Dans le cas d’un ancrage vérouillé, on écrira, si le robot est ancré en un point matériel,

noté C (cf. Fig. 8.6(a)):

g(C) = gc(t), (8.75)

où la fonction gc(t) dénote une fonction du temps imposée dans G. En particulier, si

gc est indépendante du temps, alors il s’agit d’un ancrage fixe, tels ceux requis par les

robots manipulateurs ancrés dans le sol. Dans le cas des ancrages glissants, le modèle

géométrique du contact ne peut faire la différence d’avec un ancrage vérouillé tout deux

considérés au même instant t. En effet dans le second cas, on a encore:

g(C(t)) = gc(t). (8.76)

En revanche, le modèle cinématique de la liaison fait la différence puisqu’alors, on a dans

le cas glissant en dérivant (8.76), et d(.)/dt dénotant la dérivée totale par rapport au

temps:

dg(C(t))

dt
= ġ(C(t)) + g′(C(t))Ċ(t) = ġc(t), (8.77)

que l’on multiplie par g−1(C(t)) pour obtenir, en invoquant de nouveau (8.76), les con-

traintes d’ancrage glissant dans g:

η(C(t)) + ξd(C(t))Ċ(t) = ηc(t), (8.78)

où η̂c(t) = (g−1
c ġc)(t) est le time-twist imposé à l’ancrage et où (8.78) donne la forme ciné-

matique d’un ancrage fixe: η(C) = ηc(t) lorsque C est indépendant du temps. Finalement,

notons que (8.78) réalise un jeu de dim(g) contraintes scalaires indépendentes.
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X = C(t)

tX(C(t))

p′(C(t))

Figure 8.7 – Contact annulaire

8.15.2 Cas des contacts annulaires

Avant de décrire les détails de leur modélisation, rappelons-nous que les contacts annu-

laires sont, par nature, glissant ainsi ils ne peuvent être mises en contraintes cinématiques.

Ici, nous considérons le contact annulaire qui suit les sections dans leurs mouvements

latéraux, comme indiqué dans la Fig. 8.7. Il s’agit d’un contact annulaire qui empêche

toutes les vitesses relatives translationnelle (de la section en contact par rapport au con-

tact annulaire) dans le plan d’une section d’abscisse X = C. Ainsi, pour un mouvement

dans l’espace R
3 (G = SE(3)), un tel contact exercée dans tous les C ∈ [0, l] est modélisé

par la relation suivante:

{
(v(C(t))− vc(t))× tX(C(t)) = 0,

(ω(C(t))− ωc(t))
T tX(C(t)) = 0,

(8.79)

ici ω(X) = (ṘRT )∨(X) désigne la vitesse angulaire spaciale de la section X , alors que

(vTc , ω
T
c )

T (t) est la torsion spatiale imposée sur le contact annulaire rigide. Après calcul,

(8.79) conduit à la suite de trois contraintes bilatérales non-holonômes:





VY (C) = VcY (t),

VZ(C) = VcZ(t),

ΩX(C) = ΩcX(t),

(8.80)

où VcY (t),VcZ(t) sont les vitesses latéraux exprimé dans le repère de la section, alors

que ΩcX(t) est la composante axial de la vitesse angulaire, toutes les composantes étant

imposées à la section C par le mouvement de l’obstacle. Ces vitesses sont nulles si le

contact annulaire en question est fixe dans l’espace ambiant. En outre, dans le mouvement

planaire (G=SE(2)), un tel contact empêche le mouvement latéral de la section en contact.
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Ainsi, la contrainte bi-latérale non-holonôme est donnée simplement comme suit:

VY (C) = VcY (t).

8.15.3 Modèles des efforts de contact

Les contacts définis étant parfaits, les efforts de contact s’identifient aux multiplicateurs de

Lagrange associées aux contraintes scalaires tirées de (8.78), (8.80). En cas de G=SE(3),

un ancrage en introduit six (i.e. les six composantes d’un torseur de réaction complet).

Quant au contact annulaire, il transmet deux forces latérales et un couple axial pour un

mouvement tridimensionnel tandis que une seule force latérale dans le cas d’un mouvement

plan. Lorsque les ancrages et/ou contacts annulaires sont imposés aux extrémités, les

efforts de réaction qui leur sont associés entrent dans la formulation de la dynamique

via les torseurs externes apicaux F±. Tandis que si les contacts sont définis à l’interieur

du domaine de la poutre, i.e. si C ∈]0, l[, alors chacun d’entre eux ajoute un jeu de

contraintes cinématiques dans g et un torseur de réaction associé (défini dans g∗), entrant

dans le modèle des efforts distribués F via une distribution de Dirac: F c(C)δ(X − C).

Finalement, notons que dans Fext on trouve une contribution Fc appelée résultante des

torseurs de réaction produits par les liaisons et ramenés à la section de référence.

8.16 Algorithme dans le cas cinématique

Lorsque le nombre de contraintes (imposées par les contacts) est égal ou supérieur à la

dimension de la fibre de C2, le système est dit complètement ou sur contraints et les

mouvements externe sont entièrement régi par le modèle cinématique des contacts de la

forme explicite la plus générale:

ġo = goη̂o = gof̂(go, ξd(t), ξ
′
d(t), ξd(t)

′′, ..., ξ̇d(t)), (8.81)

dont on déduit par simple dérivation de f , la première ligne le modèle des accélérations.

Dans ce cas, la locomotion est dite ”locomotion cinématique” et la dynamique externe

(8.67) sert à calculer le torseur de réaction induit par les contraintes externes, i.e.:

Fc = Moη̇o − Fin − Fautre, (8.82)

où Fautre = Fext − Fc, dénote la contribution induite par les autres origines de forces

exterieures: gravité, effort de pression et de viscosité.

De plus, lorsque le nombre de contraintes est strictement supérieur à la dimension de

la fibre de C2, les mouvements externe du robot est sur-contraint qui signifie que: 1)
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les mouvements internes doivent être compatibles2, 2) les inconnues de réaction sont

sous-déterminées puisqu’elles ne sont assujeties qu’à vérifier la dynamique externe qui

s’écrit encore sous la forme (8.82). Finalement, ces considérations permettent d’élaborer

l’algorithme résolvant le problème de la locomotion cinématique.

1. Intégrer l’équation (8.74) de X = 0 à X = l initialisée par X3(0) = (go, ηo, 0, 0, 0) et

avec F = 0, donne Mo et Fin.

2. Calculer (ηo, η̇o) à partir de (8.81) et intégrer ηo entre t et t +∆t afin d’en déduire

la nouvelle configuration de la section de référence (pour le pas de temps suivant):

go(t +∆t).

3. Calculer grâce à (8.82), la résultante des torseurs de réaction induits par les contacts.

4. Après répartition arbitraire de la résultante des forces de réaction aux points d’ancrage

Fc, intégrer l’équation (8.72) de X = 0 à X = l soumises aux torseurs de réaction

Fci appliqués aux points de contact, et initialisée par X2(0) = (go, ηo, η̇o, F−).

Remarque1: dans le cas contraint, nous ne préciserons pas la forme de la cinématique

externe audelà de son expression (8.81) et préférerons la mettre à jour au cas par cas

sur des exemples particuliers. Disons simplement ici, que la fonction f dans (8.81) doit

être calculé à partir de f1 de (8.71) et de considérations relatives au mode de locomotion

étudié (en particulier issues de l’observation biologique) ainsi que du modèle des contacts.

Remarque2: comme sous-cas particulier des systèmes complètement contraint, on trouve

les manipulateurs hyper-redondants. En effet dans ce cas, la section de référence est

encastrée sur un support de mouvement imposé (en particulier nul) défini par X1(0) =

(go, ηo, η̇o)(t). Dans ce cas, les étapes 1, 2 et 3 de l’algorithme peuvent être évitées. En

effet, les mouvements externes ne recquierent aucun calcul puisqu’il sont connus par leur

lois horaires, tandis que le torseur de réaction au niveau de l’ancrage en X = 0 se déduit

par simple intégration de la dynamique interne (8.72) de X = l à X = 0.

Remarque3: notons que si f dans (8.81) est linéaire en ξ̇d et indépendant de go, le

modèle cinématique sous les contraintes des contacts réalise une connexion cinématique

principale sur le fibré principal C2, i.e. une version continue des connexions discretes

étudiées en mécanique des systèmes non-holonomes [8].

2sous peine d’interdire la mobilité et par hyperstatisme de produire des tensions internes résolues en
remplaçant les contraintes induites par les liaisons internes supposées parfaites, par des lois de comporte-
ment passives.
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8.17 Exemples illustratifs

8.17.1 Ver fouisseur en 1D

C’est un robot fouisseur inspiré des lombrics. Le lombric est supposé de massee volumique

homogène ρ. Partant des connaisances biologiques, c’est la dilatation radiale des sections

provoquée par la compression axiale qui assure l’ancrage sur le milieu: un tunel creusé

par digestion préalable de la terre en amont de la tête. Localement, l’ancrage radiale est

réalisé par des soies rigides qui s’encastrent radialement dans la terre lorsque la dilatation

de la section est maximale (cf. figure). Le modèle de poutre est celui d’une barre en

traction-compression. L’allure d’avance est réalisée par une onde rétrograde de traction-

compression de la forme:

ΓdX(X, t) = 1 + ǫ sin

(
2π

λ
(ct−X)

)
, (8.83)

la dilatation (striction) des sections est contrôlée par la traction en ajoutant à la théorie

Cosserat précédement exposée la contrainte de préservation du volume qui s’écrit:

A(X, t) = A(X, 0)/ΓdX(X, t), (8.84)

que l’on déduit simplement de: A(X, t)dS = A(X, 0)dX où A(X, t) est l’aire de la section

X à l’instant t, tandis que dS = ΓdXdX est la longueur à t courant du tronçon de ver de

longueur initiale dX situé en X .

Dans ce cas de figure, la construction générale s’applique en remplaçant G (ainsi que g

et g∗) par R identifié au sous groupe des translations le long de l’axe des x (ainsi que

its Lie algebra and its dual). Il s’en suit que les applications adjointes disparaissent

des expressions tandis que l’on pose plus simplement g = x, go = xo, η = ẋ, ξd = ΓdX ,

F =
∑i=p

i=1Nci δ(X−Ci(t)), Λ = N où les Ci dénotent les abscisses matérielles des p points

d’ancrage définies à chaque instant par la condition de contraction locale maximale:

Ci(t) ∈ [0, l], tel que: ΓdX(Ci(t), t) = 1− ǫ. (8.85)

Avec ces considérations, le modèle cinématique continu prends la forme (8.71) avec:

X ′
1 = (x′, ẋ′, ẍ′)T = (ΓdX(t), Γ̇dX(t), Γ̈dX(t))

T , (8.86)

dont les intégrale en espace vont être fixées (cf. à suivre) par les points d’ancrage. En

particulier, remarquons que chaque section ancrée (anchored section] au sol par ses soies,

impose une contrainte au mouvement dans la fibre ici identifiée à R. Il s’en suit que les

mouvements externes se déduisent d’un modèle cinématique. Un tel modèle se déduit

simplement en imposant qu’en n’importe quel point d’ancrage Ci(t), la vitesse de glisse-
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ment est nulle, i.e. Ci(t) réalise un point d’ancrage glissant. Aussi, en invoquant (8.78)

avec C(t) = Ci(t), η(C(t)) = ẋ(Ci(t)), ξd(t) = ΓdX(t) et ηc(t) = 0, les obstacles étant

fixes, il vient:

ẋ(Ci(t)) + (1− ǫ)c(t) = 0. (8.87)

De sorte qu’en tirant de la seconde des lignes de (8.86) la vitesse de la section d’abscisse

Ci(t), on trouve:

ẋ(Ci(t)) = ẋo +

∫ Ci(t)

0

Γ̇dXdX, (8.88)

que l’on injecte dans (8.87) pour trouver le modèle cinématique du ver:

ẋo(t) = −

∫ C1(t)

0

Γ̇dXdX − (1− ǫ)c(t). (8.89)

Qui plus est, on montre aisément que pour la loi de propagation (8.83), (8.89) est in-

dépendante du point d’ancrage considéré. En particulier, Ċi n’est autre que la célérité c

de l’onde de contraction de sorte que la cinématique externe se réécrit plus simplement

après dérivation par rapport au temps:

ẍo = −ΓdX(C1(t))ċ− Γ̇dX(C1(t))c−

∫ C1(t)

0

Γ̈dXdX, (8.90)

équation qui permet de calculer ẍo. Ceci fait, il devient possible grâce à la dynamique ex-

terne (8.82) de calculer la résultante des forces de réaction transmises par l’environnement

au ver via les points d’ancrage:

Nc =

i=p∑

i=1

Nci =

∫ l

0

m(X, t)dXẍo −

∫ l

0

m(X, t)

∫ X

0

Γ̈dXdχ dX (8.91)

où le ζ de la construction générale a été calculé par intégration du modèle continu des

accélérations initialisé en espace par ẍ = 0. Finalement, la sous-détermination des efforts

de réaction ne permet pas d’intégrer la dynamique interne. En revanche si l’on se fixe une

répartition arbitraire de ces efforts de sorte que leur résultante vérifie (8.91), par exemple

une équi-répartition, i.e. Nci = Nc/p, alors il devient possible d’intégrer (8.62) qui s’écrit

ici, en remplaçant M(X) par m(X, t), masse linéique de la poutre-ver:

N ′ = m(X, t)ẍ −

i=p∑

i=1

Nciδ(X − Ci(t)) (8.92)

avec les conditions aux limites: N(0) = N(l) = 0 si l’on suppose que le milieu n’oppose

aucune force au front du ver (l’ingestion et l’excretion déplaçant la matière du sol d’avant
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Figure 8.8 – La locomotion du ver dans le plan xy
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Figure 8.9 – Avec c variable: (a) les forces externes de reaction Nc; (b) les forces internes N

en arriere), et où ẍ est déduit par intégration du modèle cinématique (8.86) initialisé en

espace par: (xo, ẋo, ẍo).

Application numérique: pour l’illustration numérique de la locomotion dynamique du

ver, une allure du type (8.83) avec ǫ = 0, 004 et λ = 1, est introduit dans l’algorithme

général appliqué au ver. Simuler pour 10s, on obtient le mouvement 1D du ver dans

le plan xy comme indiqué dans la Fig. 8.8. Par ailleurs, en introduisant la vitesse de

propagation c(t) = at + b (avec a 6= 0), il est noté que, en raison de l’accélération du

ver, les efforts de réaction axiale (Nc) à X = C ne sont pas nul, comme indiqué dans la

Fig. 8.9(a), et donc introduit un saut sur les efforts interne de commande à X = C. Ceci

apparâıt sur la Fig. 8.9(b) qui donne le profil des efforts interne de commande appliquées

entre des sections sur toute la longueur.

8.17.2 Chenille arpenteuse en 2D

Une poutre actionnée en flexion avec un encastrement ponctuel alternant d’une extrémité

à l’autre à ”chaque pas”. C’est un robot grimpeur. Un tel robot continu peut être modélisé

par une poutre plane de Kirchhoff actionnée en coubure, i.e. en invoquant la construction

générale précédente avec SE(2) à la place de G et ξd remplacé par (1, 0, KdZ) qui dans ce

cas est une variable intégrable puisqueKdZ = θ′ où θ est l’angle qui paramètre l’orientation
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x

y −→g

Figure 8.10 – La locomotion de la chenille dans le plan xy plane

des sections dans le plan. Ceci dit, la locomotion de la chenille peut être modélisée en la

considérant comme un manipulateur dont la base et l’extrémité s’échangent à chaque demi

période de l’allure. Dans ces conditions, l’algorithme précédent (avec point d’ancrage fixe

en X = 0) peut être reconduit en changeant X en l −X dans les o.d.e. en espace, et ce

à chaque demi-periode telle que C = l. L’allure peut être simplement définie par l’angle

θ comme:

θ(X, t) = α sin2(ωt)sin

(
2π

l
(X − l)

)
, (8.93)

dont on déduit, la loi de courbure:

KdZ(X, t) = α sin2(ωt)

(
2π

l

)
cos

(
2π

l
(X − l)

)
. (8.94)

Cette loi assure qu’à tout instant, on a: θ(t, X = 0) = θ(t, X = l) = θ(t, X = l/2) = 0

alors que la courbure est minimale en les deux extrémités et maximale en X = l/2.

Finalement, la fonction du temps en facteur de cette fonction de forme assure la détente

et la flexion periodique du robot. Sa periode est π/ω et elle garantie l’amplification de la

déflexion sur une demi-periode et son atténuation (jusqu’à 0), la demi periode suivante.

Ainsi, en supposant que la chenille part à t = 0 en position étendue, on aura ancrage

en X = 0 sur tous les intervals [kT, kT + T/2] et ancrage en X = l sur les intervals

[kT + T/2, (k+ 1)T ]. Dans les deux cas, les mouvements externes sont nuls puisque fixés

par les conditions d’ancrage: X1(C) = (1, 0, 0), tandis que la dynamique externe permet

de calculer le torseur de réaction au point d’ancrage et que la dynamique interne s’intègre

sans difficulté (on a ζ = η̇ dans ce cas) pour donner les torseurs internes.

Application numérique: Quelques résultats numériques sont obtenus pour la chenille
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Figure 8.11 – (a) Couple de reaction externe à la tête; (b) les couples internes
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Figure 8.12 – (a) Serpent-Kirchhoff discret; (b) Serpent-Reissner discret

d’escalade dans la gravité en appliquant la courbure (8.94) comme entrée, avec α = 1.8 et

ω = 2π0.25. Simuler pour 14sec, on obtient le mouvement de la chenille dans le plan xy,

comme indiqué dans la Fig. 8.10. La dynamique inverse de la locomotion et la dynamique

inverse internes du système sont résolus pour obtenir les efforts de réaction au niveau

des points d’ancrage et les couples de contrôle interne, respectivement. La Fig. 8.11(a)

montre la réaction du couple CZ(X = 0), tandis que la répartition du couple sur toute la

longueur est présenté dans la Fig. 8.11(b) à t = 4.5s.

8.17.3 Serpent 2D en ondulation latérale

On considère un serpent en ondulation latérale. Le serpent est modélisé par une cinéma-

tique de poutre de type Kirchhoff ou alternativement Reissner en 2D dont les pendants

discrets sont déssinées dans la Fig. 8.12. Ici, nous opterons pour le premier choix puisque

c’est le plus simple et qu’il correspond aux robots de S. Hirose tandis que le second, tels que

proposé par J. Ostrowsky, bien que plus complexe, a des avantages que nous évoquerons

unterieurement. Dans le cas de l’ondulation latérale, le serpent s’appuie latéralement sur

son environement pour se propulser dans le sens axial, i.e. en se déplaçant le long de
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son axe vertébrale. Mathématiquement, ces appuis sont modélisés par des contraintes

non-holonomes interdisant aux sections du serpent de déraper latéralement. Ces con-

traintes sont en nombre suffisant pour que les déplacements externes soient entièrement

fixés par la cinématique interne du serpent. Afin d’établir ce modèle cinématique, com-

mençons par écrire le modèle cinématique des vitesses (8.56) dans le cas de G = SE(2)

et ξd(t) = (1, 0, KdZ). Il vient avec η = (g−1ġ)∨ = (VX , VY ,ΩZ)
T :




V ′
X

V ′
Y

Ω′
Z


 =




VYKdZ

ΩZ − VXKdZ

K̇dZ


 . (8.95)

En modélisant le contact en chaque point X par un contact annulaire planaire, les con-

traintes s’écrivent simplement VY (X) = 0, pour ∀X ∈ [0, l] (les obstacles étant fixes). A

présent, en forçant ces contraintes (de non dérapage) dans (8.95), on trouve les relations

que doit vérifier n’importe quelle allure compatible avec les contacts:




V ′
X

ΩZ

Ω′
Z


 =




0

VXKdZ

K̇dZ


 . (8.96)

De la première ligne de (8.96), on tire que la vitesse axiale du serpent est constante par

rapport à X et égale donc à celle de sa tête que l’on notera plus simplement Vo. De

la seconde, on tire que ΩZ = VoKdZ , i.e. que la vitesse angulaire le long de la colonne

vertebrale du serpent est réglée par la vitesse d’avance et la courbure du corps. Enfin,

tenant compte des lignes 1 et 2 dans la troisième, on obtient la relation fondamentale:

K̇dZ = VoK
′
dZ , (8.97)

qui doit être vérifiée le long de tout le serpent pour que sa mobilité (propulsion axiale) soit

garantie. Finalement, la solution de l’equation (8.97) prend une forme générale suivante:

KdZ(X, t) = f(X +

∫ t

0

Vo(τ)dτ), (8.98)

ce qui correspond à la propagation d’un profil de courbure donnée le long du colonne

vertébrale généralement à vitesse variable par rapport aux temps Vo(t). Il s’en suit qu’un

tel choix de la loi de courbure garantie l’avance du serpent dans le sens de −tX(0) à

la vitesse constante Vo. Qui plus est, on a dans ces conditions d’allures, et pour tout
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X ∈ [0, l]:

η(X, t) =




Vo

0

ΩZ(X)


 =




1/K ′
dZ

0

KdZ/K
′
dZ


 (X)K̇dZ(X, t), (8.99)

et, en particulier, pour X = 0 (et en indicant d’un zéro toute fonction évaluée en X = 0):

ηo(t) =




Vo

0

Ωo


 =




1/K ′
o

0

Ko/K
′
o


 K̇o. (8.100)

Où l’on retrouve la connexion du cas discret qui encode l’allure follower-leader des serpents

en ondulation latérale. En particulier, notons que de même que dans le cas discret les trois

premiers essieux (partant de la tête) fixent complètement les mouvements de la tête et

ceux des segments qui les suivent, dans le cas continu, la connexion (8.100) fait intervenir

au maximum la dérivée troisième du champ de position (i.e. KdZ(0)
′ = p′′′(0)). Qui plus

est, une fois spécifiée la courbure et sa dérivée en ∀X , la vitesse de courbure doit s’adapter

en chaque X pour que la section X − dX suive la section X à la vitesse Vo. Ainsi, toute

section X réoccupera à t∗ tel que
∫ t∗
t
Vodτ = X , la même configuration que celle occupée

par la tête à t. Ceci explique cette impression de statisme latérale et de mouvement

axial observé chez les serpents qui apparente leur mouvement à celui d’une ligne fluide

en écoulement stationaire. Qui plus est, (8.100) montre que si la propulsion axiale est

assurée par K̇o/K
′
o, c’est Ko qui guide le serpent en virage. Ainsi, si l’on rapproche par

analogie le serpent 2D avec un autre système non-holonome, plus familier du roboticien:

la voiture. Dans ce cas, le guidage angulaire des roues avants est assuré par Ko tandis que

la propulsion produite par leur motorisation est assurée par le rapport K̇o/K
′
o. Revenant

à la biologie, dans la nature la courbure le long du corps d’un serpent évolue au grès des

choix réalisés par sa tête, choix qui dépendent des obstacles que le serpent contourne et

sur lesquels il s’appuie pour se propulser en avant. Comme montré dans la Fig. 8.13,

ce contexte peut être figuré par la donnée d’un profil de courbure stationaire défilant

à la vitesse Vo(t) devant le corps du serpent ici représenté par le segment materiel [0, l].

Finalement, pour les environements sans obstacles mais où le sol plan présente des bonnes

propriétés pour interdire le dérapage latéral, la loi de courbure:

KdZ(X, t) = A cos

(
2π

λ
(X + Vot)

)
(8.101)

+ b exp

(
−

(t− (to + To/2) + (X/Vo))
2

(t− (to + To/2) + (X/Vo))2 − (To/2)2

)
,

garantie jusqu’à t = to une propulsion axiale de vitesse Vo de direction moyenne constante,

puis génère un virage à partir de t = to d’une durée To. Enfin, notons que cette cinématique
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0
−2

−1

0

1

2

3

4

 

 

X

K
d
z

Vo

Vo VoVo

l

Futur
Present
Passé

Figure 8.13 – Profile de courbure du serpent

est singulière lorsque K ′
dZ = 0 puisque dans ce cas, la conditions de mobilité (8.97) n’est

pas vérifiée. Pour dépasser cette situation, on peut considérer l’homologue continu de la

cinématique discrete de la Fig. 8.12(b), i.e. ajouter un cisaillement transverse au contexte

présent. Dans ce cas, la cinématique est celle d’une poutre de Reissner plane et le modèle

continu des vitesses se réécrit comme (8.95) en y remplaçant la première ligne par la

suivante:

V ′
X = −KdZVXΓdY , (8.102)

de sorte que l’on a à présent VX(X) = Vo e
(−

∫ X

0
KdZΓdY dX) et que la condition de mobilité

(8.97) se change en la suivante:

K̇dZ = (K ′
dZ −K2

dZΓdY )VX , (8.103)

où la présence de la commande ΓdY en facteur de KdZ garantie la mobilité du serpent

dans tous les cas où KdZ(.) 6= 0. Ainsi, on retrouve que la cinématique discrète de la Fig.

8.12(b) n’est singulière que pour les configurations droites puisque ce n’est que dans ce

cas que les mouvements internes des articulations pairs et impaires ne peuvent produire

de mouvement externe. Finalement, dans le cas des serpents, le cisaillement transverse

modélise les mouvements relatifs de la peau et des écailles par rapport au squelette dont

le mouvement propre est modélisé par le champ de courbure. Et si d’aventure, un ser-

pent se retrouvait en configuration parfaitement droite alors le serpent peut, pour sortir

de cette singularité: 1) glisser latéralement, 2) décoller du sol, tandis que, si ces deux

possibilités sont proscrites (le serpent est par exemple contraint de passer dans un tuyau

droit), alors seul un mode de locomotion du type de celui étudié pour le ver en traction-

compression devient possible. Finalement, du côté des mouvements l’algorithme se réduit
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Figure 8.14 – Serpent 2D avec p contacts annulaires

à l’intégration de (8.81) qui s’écrit ici, tenant compte de (8.100), comme le système dans

SE(2):

ġo = goη̂o = go.




1/K ′
o

0

Ko/K
′
o




∧

K̇o. (8.104)

Du côté des efforts, l’algorithme intègre à chaque pas de temps t, le système (8.74) de

X = 0 à X = l initialisé en espace par (go(t), ηo(t), 0, 0, 0). Puis, connaissant η̇o(t) par

l’expression de la dérivée temporelle de (8.100) calculée en t, l’algorithme calcule via (8.82)

la résultante des torseurs de contact ramenés à la tête: Fc. Connaissant cette résultante, il

nous faut faire alors une hypothèse sur la répartition des efforts de contact pour connâıtre

la distribution des forces internes. Par exemple, si l’on suppose que le serpent est en

permanence en contact avec le sol au travers de p contacts annulaires dont la position est

fixé dans l’espace ambiant (Fig. 8.14), le chargement est généralement hyper-statique (si

p > 3) et la distribution des efforts de réaction λi=1,2,...p est donnée par inversion généralizé

d’un système suivant:

Fc =

i=p∑

i=1

Ad∗k(Ci)




0

λi

0


 (8.105)

où rappelons le k(Ci) = g−1(Ci).go(t), et où l’on a supposé que les trois points de contacts

C1,2,3 sont contenus dans ]0, l[ (Fig. 8.14). Une fois ces trois efforts connus, l’algorithme

peut intégrer la dynamique interne (8.72) avec comme conditions initiales en espace

(go(t), ηo(t), η̇o(t), 0) et comme distribution d’efforts externes: F =
∑p

i=1(0, λi, 0)
T δ(X −

Ci).

Application numérique: dans le cas du serpent 2D, une courbure ondulatoire de la

forme (8.101) est imposée en entrée de l’algorithme. L’ondulation est fourni avec b 6= 0

pour certaine période de temps To qui quantifie l’amplitude d’une manoeuvre de virage
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Figure 8.15 – Le mouvement du serpent 2D avec le virage dans un plan xy
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Figure 8.16 – (a) Forces de contact (Ny); (b) les couples internes

en SE(2), où A = 10, λ = 1.5 et Vo = −0.5m/s. Simuler pour 10s, le mouvement 2D du

serpent dans le plan xy est indiqué dans la Fig. 8.15.

Par ailleurs, la dynamique interne et de la locomotion du système sont résolues pour

p = 5 pour obtenir les efforts de réaction appliqués au points de contact C1, C2, ..., C5 et

les couples de contrôle interne, respectivement. La Fig. 8.16(a) trace les efforts de réaction

(Ny), tandis que la Fig. 8.16(b) montre la répartition du couple sur toute la longueur du

serpent à t = 2.0s.

8.18 Conclusions

Cette thèse contribue au domaine en plein expansion des robots locomoteurs. Dans cette

thèse, en utilisant des techniques de la mécanique géométrique appliquée à la locomotion,

nous avons développé un cadre unifié adapté aux problèmes posés par la locomotion. Les
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algorithmes ont été développés à la fois pour les systèmes multicorps discrets et continus.

Dans les deux cas, nous avons proposé un algorithme capable de calculer les inconnues

suivantes grâce à des données connues des mouvements internes imposées:

1. les mouvements externes du corps de référence du système,

2. les couples/forces internes du système.

Par ailleurs, l’approche de modélisation utilise la formulation de Newton-Euler. La nature

récursive de la formulation de Newton-Euler nous a permis d’étendre nos investigations

aux systèmes continus.

Dans la première partie de cette thèse, l’algorithme de Luh et Walker pour les manipu-

lateurs a été étendu à une plus large classe de systèmes de la locomotion où le problème

supplémentaire de calcul des mouvements externes du système est résolu. Ce nouveau

cadre unifié a ensuite été utilisé pour une analyse approfondie de certains systèmes ex-

istants constitués de corps munis de roues, tels que le snakeboard, les robots serpents à

roues passives, etc, où l’algorithme a montré sa généralité pour résoudre un large éventail

de systèmes multicorps. En fait, ce cadre basé sur la formulation de Newton-Euler cou-

vre un large éventail de problèmes de modélisation de la locomotion jusqu’alors résolus

par l’approche lagrangienne. À cet égard, nous dirions que le cadre proposé a fourni un

homologue du modèle dynamique lagrangien proposée par les mécaniciens géométriques

[87, 60, 76]. Par ailleurs, une analyse en profondeur des modèles mathématiques nous a

permis de répertorier les modèles de locomotion en apparance différents dans des même

classes. Ces aspects sont utiles à une meilleure compréhension et analyse des cas partic-

uliers de la locomotion. D’un point de vue algorithmique, il est remarquable que, malgré

son application à une large gamme de systèmes, l’algorithme proposé conserve la même

structure. Par ailleurs, l’algorithme final est très facile à mettre en oeuvre et la complexité

du mécanisme initial n’a aucun effet sur sa mise en oeuvre puisque, grâce à son caractère

récursif, l’ajout de plus en plus de corps augmente simplement les indices des récurrences

sans changer la structure des programmes.

Dans la seconde partie de cette thèse, nous avons proposé un cadre général pour la mod-

élisation d’une classe de robots continus à l’échelle macroscopique. La solution se révèle

être une contrepartie continu de la dynamique de Newton-Euler des systèmes multicorps

discrets tel que proposée dans la première partie de cette thèse. Dans cette approche de

la modélisation continue, le robot a été considéré comme une poutre Cosserat actionné

via des mouvements internes imposés. Une fois intégrés dans le cadre de la théorie de la

locomotion sur les fibrés principaux, l’approche est exploitée pour dériver un algorithme

capable de calculer les couples ainsi que les mouvements externes impliqués dans les tâches

de locomotion. L’approche dans son ensemble a ensuite été appliquée au cas de la locomo-

tion au sol où le modèle des forces externes est remplacé par les contraintes cinématique
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holonome et/ou non-holonomes d’un ensemble de modèles de contact jouant un role pra-

tique dans la locomotion terrestre. Enfin, pour montrer son application, l’algorithme a

été ensuite appliqué à plusieurs exemples inspirés par la nature. A travers ces exemples,

l’algorithme montre qu’il peut être un outil utile d’investigation quand il est appliqué à

des problèmes tels que l’analyse de la mobilité ou la générations d’allure. Dans le cas du

ver de terre, l’hypothèse Cosserat des sections rigides a été supprimée au proffit d’une

contrainte de conservation du volume axiale. Ceci permet à moindre frais pour le mod-

élisateur d’étendre l’approche et l’algorithme au hydrostats uni-dimensionels. Le problème

de la manipulation est illustré indirectement par l’exemple de la chenille arpenteuse où à

chaque étape de la ”marche”, le robot est un manipulateur continue ancré dans le sol.
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A.1 Extension of the Luh and Walker Algorithm to

Closed Loop Kinematics

The goal of this section is to briefly recall how it is possible to extend the proposed

algorithm to the case of a mobile multibody system with closed loop kinematics. For this

purpose, we first have to (virtually) cut all the eventual loops at the level of a passive joint

in order to obtain a tree-like structure of the type studied till now. Then, the vector of the

joint angles, denoted as r, of this tree-like structure is block-partitioned into active and

passive joints as r =
(
rTa rTp

)T
(where a stands for ”active” and p stands for ”passive”).

On the dual side, τ =
(
τTa τTp

)T
corresponds to the block-partition of the joint torques

vector of the tree-like structure. With these conventions, the constraints forced by the

connection at the cut levels can be easily put in the following form:

(
Wa Wp

)( ṙa

ṙp

)
= 0 (A.1)

where
(
Wa Wp

)
is the Jacobian matrix of the geometric constraints imposed by the

loop closures at the cut levels. Now, invoking temporarily the Lagrange equations of the

structure, we have:

(
τa

τp

)
=

d

dt

(
∂L

∂ṙ

)
−
∂L

∂r
+

(
W T
a

W T
p

)
λ, (A.2)
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where from left to right, we find the torque vector of the closed loop structure, the torque

vector (given by the Lagrange operator term) of the tree-like structure moving with the

same motion, and finally the constraint joint torque vector forced by the closure con-

straints of the loops. Now, let us remark that since τp = 0, the vector of Lagrange

multipliers λ can be detailed as:

λ = −W−T
p τp,tree (A.3)

where we decide to denote d
dt

(
∂L
∂ṙ

)
− ∂L

∂r
= (τTa,tree, τ

T
p,tree)

T the torque vector of the tree-like

structure animated by the same motions as the closed one. Then, inserting (A.3) into

(A.2) gives the torque vector of a structure with closed loops:

τa = τa,tree −
(
W T
a W

−T
p

)
τp,tree (A.4)

where W T
p is necessarily an invertible square matrix in order to preserve the mobility of

the loops kinematics. Finally, we now have at our disposal all the material required by the

extension of the Luh algorithm from tree-like to closed kinematics. In fact, from (A.1) one

can compute the time evolution of the passive joints from that of the active ones which is

specified as an input of the algorithm and thus obtain the complete time evolution of r,ṙ

and r̈. These motions are used as inputs of the standard algorithm of tree-like structures

in order to compute (τTa,tree, τ
T
p,tree)

T . Finally, invoking (A.4) allows the motor torques of

any structures containing kinematic loops to be calculated.

A.2 Covariants

If the reduced base of Vj is orthonormed for the Euclidean metric of R6, then the covariant

reduced components of Fj and their associative contravariant reduced components of ηj

transform identically. To prove this, let us consider a vector ~u in a two dimensional oblique

rectilinear coordinate system. Using Einstein notation, the contravariant and covariant

components of the vector ~u are given as follows:

~u = u1~g1 + u2~g2,

u1 = ~u.~g1, u2 = ~u.~g2.
(A.5)

Where the u1 and u2 are called contravariant components while u1 and u2 are called

covariant components. Furthermore, vectors are called contravariant vectors because both

transforms in the same way with the changes in basis, and covectors are called covariant

vectors for the same reason. It is worth noting that both contravariant vectors and

covariant vectors transform differently with the changes in basis (from (~g1, ~g2) to (~g′1, ~g
′
2))
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as expressed below:

(
u1

u2

)
= (H)

(
u′1

u′2

)
,

(
u1

u2

)
= (H−1)T

(
u′1

u′2

)
.

(A.6)

Thus we conclude that covariant and contravariant vectors transform identically if and

only if the basis are orthonormal. Consequently, we say that H = (H−1)T , or in other

words we say that H is an orthogonal matrix i.e. HHT = 1. Since, in this article,

the reduced base of Vj is orthonomal, thus if the velocity vector (contravariant vector)

transforms in the following way:

ηj = Hjηrj, (A.7)

then the force vector (covariant vector) transforms identically as follows:

Fj = HjFrj, (A.8)

hence proved.

A.3 3D Snake: Compatibility Condition

As from equation (6.48), for X = 0 we have:

Vo =
K̇oY

K ′
oY

=
K̇oZ

K ′
oZ

. (A.9)

The modulus of the strain field is given by:

‖ Ko ‖=
√

(KoY )2 + (KoZ)2.

First, taking the derivative of above relation with respect to X and t, respectively, gives

the following two relations:

∂

∂X
‖ Ko ‖=

K ′
oYKoY +K ′

oZKoZ

‖ Ko ‖
,

∂

∂t
‖ Ko ‖=

K̇oYKoY + K̇oZKoZ

‖ Ko ‖
.

Finally, their ratio is given by:

∂
∂t

‖ Ko ‖
∂
∂X

‖ Ko ‖
=
K̇oYKoY + K̇oZKoZ

K ′
oYKoY +K ′

oZKoZ

.
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Now taking into account equation (A.9), we have:

∂
∂t

‖ Ko ‖
∂
∂X

‖ Ko ‖
=
VoK

′
oYKoY + VoK

′
oZKoZ

K ′
oYKoY +K ′

oZKoZ

,

which implies that:

∂
∂t

‖ Ko ‖
∂
∂X

‖ Ko ‖
= Vo

(
K ′
oYKoY +K ′

oZKoZ

K ′
oYKoY +K ′

oZKoZ

)
.

Finally, we have:

∂
∂t

‖ Ko ‖
∂
∂X

‖ Ko ‖
= Vo,

which verifies the compatibility condition for 3D snake.
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B.1 Lie Group

The Lie group G is a set of elements or objects, called transformations denoted by g, which

satisfies the properties of both a group and a smooth manifold. Due to the geometric

structure of manifold, any g can be localized in a set of smooth charts (atlas) on G. The

Lie group G is called a group because it satisfies the following algebraic properties:

1. Closure/composition property: if g1 , g2 ∈ G, then g1g2 ∈ G

2. Identity: there exists an identity element, e, such that ge = eg = g for every g ∈ G

3. Inverse: for any element g ∈ G, there exists an inverse, g−1 ∈ G, such that gg−1 =

g−1g = e

4. Associativity: if g1, g2, g3 ∈ G, then (g1g2)g3 = g1(g2g3)

In mechanics, and more generally in physics, Lie groups are group of continuous trans-

formations. In this case, they can be represented by matrices (as in the case of rotation

matrices) and the group internal composition law as the matrix product. Then the com-

mutator of two such matrices is defined by [g1, g2] = g1g2 − g2g1. When the commutator

of any two matrices is zero, the group is said ”commutative” or ”Abelian”. Vector spaces

are examples of Abelian group for vector addition.
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B.1.1 Lie Algebra

A key concept related to each Lie group is the Lie algebra. Intuitively, whether G is the set

of finite transformations, its Lie algebra corresponds to the associated set of infinitesimal

transformations. Since G is a manifold, any parameterized curve t ∈ [t1, t2] 7→ g(t) ∈ G

admits a velocity in g(0) with 0 ∈ [t1, t2] defined by ġ(0). This velocity belongs to the

tangent linear space to G in g(0) noted Tg(0)G. We said that it’s a tangent vector to the

group in g(0). Conversely, Tg(0)G is defined by the set of all the tangent vectors to G

in g(0). Now considering the tangent space taken at the identity element of G. When

g(0) = 1, each element of this space is a linear perturbation of the identity transformation,

and as such, does define an infinitesimal transformation. Then the commutator of two

infinitesimal transformations defining a third infinitesimal transformation, it is natural

to endow T1G with the commutator of matrices. As such, T1G is called the Lie algebra,

denoted as g, of the Lie group and the commutator of its elements is then the Lie bracket.

The Lie algebra associated with the Lie group SO(3), denoted by so(3), is determined by

evaluating the tangent vector to a smooth curve R(t) on SO(3) where R(0) = 1, which is

given by the skew symmetric matrix:

Ω̂ =




0 −Ωz Ωy

Ωz 0 −Ωx

−Ωy Ωx 0


 ∈ so(3). (B.1)

In mechanics, R generally defines the configuration of a rigid body with a fixed point (the

rigid top) and Ω represents a possible angular velocity of such a system. In the same

manner, the Lie algebra of SE(3) denoted by se(3) is the set of vectors given by:

η̂ =

(
Ω̂ V

0 0

)
. (B.2)

We can translate any velocity on a group ġ1, on its left or on its right by any transformation

g2 of the group. In matrix notation, this will be simply denoted as g2ġ1 and ġ1g2. As a

particular case, left translation by g−1 of any tangent vector ġ ∈ TgG, with G =SE(3)

defines a twist:

(
RT Ṙ RT ṗ

0 0

)
=

(
Ω̂ V

0 0

)
= η̂. (B.3)

From the point of view of rigid body mechanics, this twist is named body (or material)

twist since we recognize in (Ω ∈ R
3) and (V ∈ R

3) the angular and linear velocity of

a body frame with position of its origin p, once they are expressed in the mobile basis.

Twists are usually defined as vector η = (V,Ω) of R6 endowed with the induced Lie bracket
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on this space defined by:

[η1, η2] = (η̂1η̂2 − η̂2η̂1)
∨ , (B.4)

for any two η1, η2 ∈ se(3), where ∧ and ∨ define the morphism associating a twist defined

as a 4× 4 matrix to its definition as a 6× 1 vector, while ∨ does the reverse.

While discussing further, there comes the forces, denoted F = (N,C) ∈ R
6. These forces,

acting on a rigid body, can be described by the elements of the dual space to g ∈ se(3),

denoted as g∗ ∈ se(3)∗. This distinction is due to the fact that the forces (which behaves

as co-vectors) transform in a reciprocal (transposal) manner under a change of coordinates

than twists (which behave as tangent vectors). This force represented in screw form is

often called a wrench.

B.2 Adjoint Operators

B.2.1 Action Mapping of a Lie Group

Given an element h of a Lie group G, one defines the action map1 Adg of G on g by

differentiating the group automorphism ghg−1 with respect to h at the identity (i.e. h = 1).

Thus, in other words, the adjoint operation (or action mapping) is the transformation on

se(3) which change vectors (i.e. twists) from one reference frame to another by the use

of Lie group elements. For example, if η̂ ∈se(3) is a twist with η ∈ R
6, then for any Lie

group element g, gη̂g−1 is a twist Adg(η) : se(3) 7→ se(3), where:

Adg =

(
R −R p̂

0 R

)
. (B.5)

Thus, Adg is a (6× 6) matrix that once applied to a vector (or twist) changes it from one

frame to another frame separated by Lie group (finite) transformation element g.

Furthermore, the co-action map (or co-adjoint operator) Ad∗
g of a Lie group G is the

dual of the action map. Thus, Ad∗g is the action of Lie group G on g∗, the dual space

to g. More geometrically, G acts by conjugation on its cotangent space at the identity

(g = 1), and this linear representation is Ad∗
g. Thus the dual adjoint operation is the

coordinate transformation on se(3)∗ which transforms forces from one reference frame to

another by the use of Lie group elements. For example, if F ∈ se(3)∗ is a force with

force coordinates F ∈ R
6, then for any Lie group element g, g−1F̂ g is a force with force

1In literature, it is also named as adjoint action or adjoint operator
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coordinates Ad∗
g(F ) : se(3)

∗ 7→ se(3)∗ is given by:

Ad∗
g =

(
RT 0

RT p̂T RT

)
. (B.6)

Here we can observe that the matrix used for dual operator Ad∗
g is actually the transpose

of the one used for the operator Adg i.e. Ad
∗
g = AdTg .

B.2.2 Action Mapping of a Lie Algebra

Now, differentiating the Adg with respect to g at g = 1 defines the adjoint map of g on

g. Given an element η1 of a Lie algebra g, one defines the adjoint action of η1 on g as the

endomorphism adη1 : g → g with:

adη1(η2) = [η1, η2], (B.7)

for all η2 in g. adη1 is an action that is linear.

For a given η = (V,Ω) ∈ R
6, adη is a (6×6) matrix that once applied to a vector (or twist),

changes it from one frame to another frame separated by the infinitesimal transformation

(1 + η̂):

adη =

(
Ω̂ V̂

0 Ω̂

)
. (B.8)

Passing to dual, ad∗
η is the co-adjoint operator of Lie group G, and defines the (6 × 6)

matrix that change any dual vector (or forces) from one frame to another frame separated

by (1 + η̂)T , respectively. Where, ad∗
η = adTη .

B.3 Lie Group in 2D Space (G=SE(2))

Consider motion of a rigid body in xy plane. In this case the Lie groupG = SE(2) becomes

a subgroup of G = SE(3), which is actually a Lie group of rotations and translations in

the xy plane. Here a brief description of this subgroup is given while keeping the same

notations as that of G = SE(3). Thus, an element g = (x, y, θ) ∈SE(2) can be given by

the following homogenous coordinates:

g =

(
R p

0 1

)
(B.9)

but this time with R ∈SO(2) and p ∈ R. Where, R is a (2 × 2) rotation matrix that

represents a counter-clockwise rotation about the axis vertical to the xy plane and is
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given as follows:

R =

(
cos θ − sin θ

sin θ cos θ

)
, (B.10)

while p = (x, y)T ∈ R is a (2× 1) vector of position. Finally, the element g is given by:

g =




cos θ − sin θ x

sin θ cos θ y

0 0 1


 , (B.11)
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Résumé 
 
Cette thèse propose un cadre méthodologique général 
et unifié adapté à l’étude de la locomotion d'une large 
gamme de robots, en particulier bio-inspirés. L'objectif 
de cette thèse est double. Tout d'abord, elle contribue à 
la classification des robots locomoteurs en adoptant les 
outils mathématiques mis en place par l'école 
américaine de mécanique géométrique. Deuxièmement, 
en profitant de la nature récursive de la formulation de 
Newton-Euler, elle propose de nouveaux outils efficaces 
sous la forme d'algorithmes aptes à résoudre les 
dynamiques externe directe et interne inverse de tout 
robot locomoteur approximable par un système multi-
corps mobile. Ces outils génériques peuvent aider 
l’ingénieur ou le chercheur dans la conception, la 
commande, la planification de mouvement des robots 
locomoteurs ou manipulateurs comprenant un grand 
nombre de degrés de liberté internes. Des algorithmes 
effectifs sont proposés pour les robots discrets ainsi que 
continus. Ces outils méthodologiques sont appliqués à 
de nombreux exemples illustratifs empruntés à la 
robotique bio-inspirée tels les robots serpents, chenilles 
et autres snake-board… 
 
Mots-clés: locomotion bio-inspirée, dynamique des 
robots, formulation de Newton-Euler, mécanique 
géométrique, robots serpents, robots continus 

Abstract 
 
This thesis proposes a general and unified 
methodological framework suitable for studying the 
locomotion of a wide range of robots, especially bio-
inspired. The objective of this thesis is twofold. First, it 
contributes to the classification of locomotion robots by 
adopting the mathematical tools developed by the 
American school of geometric mechanics. Secondly, by 
taking advantage of the recursive nature of the Newton-
Euler formulation, it proposes numerous efficient tools in 
the form of computational algorithms capable of solving 
the external direct dynamics and the internal inverse 
dynamics of any locomotion robot considered as a 
mobile multi-body system. These generic tools can help 
the engineers or researchers in the design, control and 
motion planning of manipulators as well as locomotion 
robots with a large number of internal degrees of 
freedom. The efficient algorithms are proposed for 
discrete and continuous robots. These methodological 
tools are applied to numerous illustrative examples 
taken from the bio-inspired robotics such as snake-like 
robots, caterpillars, and others like snake-board, etc.  
 
 
Keywords: bio-inspired locomotion, robot dynamics, 
Newton-Euler formulation, geometric mechanics, snake-
like robots, continuum robots 
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