A. Ali and J. K. Aggarwal, Segmentation and Recognition of Continuous Human Activity " , Detection and Recognition of Events in Video, p.28, 2001.

R. Ali, M. Gooding, T. Szilágyi, B. Vojnovic, M. Christlieb et al., Automatic segmentation of adherent biological cell boundaries and nuclei from brightfield microscopy images, Machine Vision and Applications, pp.1-15, 2011.
DOI : 10.1007/s00138-011-0337-9

K. Althoff, J. Degerman, and T. Gustavsson, Combined Segmentation and Tracking of Neural Stem-Cells, Scandinavian Conference on Image Analysis, pp.282-291, 2005.
DOI : 10.1007/11499145_30

M. Ashdown, K. Oka, and Y. Sato, Combining head tracking and mouse input for a GUI on multiple monitors, CHI '05 extended abstracts on Human factors in computing systems , CHI '05, pp.1188-1191, 2005.
DOI : 10.1145/1056808.1056873

. Avidan and C. Shai, Support Vector Tracking, 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition with, pp.184-191, 2001.

Y. Bar-shalom, On hierarchical tracking for the real world, IEEE Transactions on Aerospace and Electronic Systems, vol.42, issue.3, pp.846-850, 2006.
DOI : 10.1109/TAES.2006.248192

Y. Bar-shalom, T. Fortmann, and M. Scheffe, Sonar tracking of multiple targets using joint probabilistic data association, IEEE Journal of Oceanic Engineering, vol.8, issue.49, pp.173-184, 1983.

Y. Bar-shalom and T. Kirubajan, Probabilistic Data Association Techniques for Target Tracking in Clutter, Proceedings of the IEEE, pp.536-557, 2004.

J. Berclaz, F. Fleuret, and P. Fua, Multiple object tracking using flow linear programming, 2009 Twelfth IEEE International Workshop on Performance Evaluation of Tracking and Surveillance, 2009.
DOI : 10.1109/PETS-WINTER.2009.5399488

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.157.4254

J. Berclaz, E. Turetken, F. Fleuret, and P. Fua, Multiple Object Tracking Using K-Shortest Paths Optimization, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.33, issue.9, pp.1806-1819, 2011.
DOI : 10.1109/TPAMI.2011.21

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.187.1390

M. Bertalmío, G. Sapiro, and G. Randall, Morphing active contours, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.22, issue.7, pp.733-737, 2000.
DOI : 10.1109/34.865191

M. Betke, A. De-hirsh, . Bagchi, . Hristov, T. Makris et al., Tracking Large Variable Numbers of Objects in Clutter, 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp.1-8, 2007.
DOI : 10.1109/CVPR.2007.382994

S. Beucher and F. Meyer, The morphological approach to segmentation: the watershed transformation, 1992.

H. Bhaskar and S. Singh, Live cell imaging: a computational perspective, Journal of Real-Time Image Processing, vol.37, issue.3, pp.195-212, 2007.
DOI : 10.1007/s11554-007-0022-4

M. J. Black and A. D. Jepson, EigenTracking: Robust matching and tracking of articulated objects using a view-based representation, International Journal of Computer Vision, vol.26, issue.1, pp.63-84, 1998.
DOI : 10.1007/BFb0015548

A. Blake and M. Isard, Active Contours: The Application of Techniques from Graphics,Vision,Control Theory and Statistics to Visual Tracking of Shapes in Motion, p.3540762175, 1998.
DOI : 10.1007/978-1-4471-1555-7

J. Boulanger, C. Kervrann, P. Bouthemy, P. Elbau, J. Sibarita et al., Patch-Based Nonlocal Functional for Denoising Fluorescence Microscopy Image Sequences, IEEE Transactions on Medical Imaging, vol.29, issue.2, pp.442-454, 2010.
DOI : 10.1109/TMI.2009.2033991

URL : https://hal.archives-ouvertes.fr/inria-00541082

T. J. Broida and R. Chellappa, Estimation of object motion parameters from noisy images " , Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol.1, pp.90-99, 1986.

S. Butail and D. A. Paley, Three-dimensional reconstruction of the fast-start swimming kinematics of densely schooling fish, Journal of The Royal Society Interface, vol.61, issue.9, 2011.
DOI : 10.1242/jeb.025379

J. Canny, A computational approach to edge detection " , Readings in computer vision: issues, problems, principles, and paradigms, pp.87-116, 1987.

A. Carpenter, T. Jones, M. Lamprecht, C. Clarke, I. Kang et al., CellProfiler: image analysis software for identifying and quantifying cell phenotypes, Genome Biology, vol.7, pp.1465-6906, 1186.

. Caselles, R. Vicent, G. Kimmel, and . Sapiro, Geodesic active contours, Proceedings of IEEE International Conference on Computer Vision, pp.694-699, 1995.
DOI : 10.1109/ICCV.1995.466871

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.21.2196

D. Comaniciu, V. Ramesh, and P. Meer, Kernel-based object tracking, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.25, issue.5, pp.564-575, 2003.
DOI : 10.1109/TPAMI.2003.1195991

T. Cornelissen, . Elsing, . Gavrilenko, . Liebig, A. Moyse et al., The new ATLAS track reconstruction (NEWT), Journal of Physics: Conference Series, vol.119, issue.3, p.3, 2008.
DOI : 10.1088/1742-6596/119/3/032014

C. Cortes and V. Vapnik, Support-vector networks, Machine Learning, pp.273-297, 1995.
DOI : 10.1007/BF00994018

I. J. Cox, A review of statistical data association techniques for motion correspondence, International Journal of Computer Vision, vol.7, issue.3, pp.53-66, 1993.
DOI : 10.1007/BF01440847

J. Dean and S. Ghemawat, MapReduce, Communications of the ACM, vol.51, issue.1, pp.51-107, 2008.
DOI : 10.1145/1327452.1327492

O. Debeir, P. Van-ham, R. Kiss, and C. Decaestecker, Tracking of migrating cells under phase-contrast video microscopy with combined mean-shift processes, IEEE Transactions on Medical Imaging, vol.24, issue.6, pp.697-711, 2005.
DOI : 10.1109/TMI.2005.846851

R. Delgado-gonzalo, N. Dénervaud, S. Maerkl, and M. Unser, Multi-target tracking of packed yeast cells, 2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp.544-547, 2010.
DOI : 10.1109/ISBI.2010.5490288

F. Dellaert, S. M. Seitz, C. E. Thorpe, and S. Thrun, EM, MCMC, and Chain Flipping for Structure from Motion with Unknown Correspondence, Machine Learning, pp.1-2, 2003.

A. Desolneux, L. Moisan, and J. Morel, Meaningful Alignments, International Journal of Computer Vision, vol.40, issue.1, pp.7-23, 2000.
DOI : 10.1023/A:1026593302236

E. W. Dijkstra, A note on two problems in connexion with graphs, Numerische Mathematik, vol.4, issue.1, pp.269-271, 1959.
DOI : 10.1007/BF01386390

G. J. Edwards, J. Christopher, T. F. Taylor, and . Cootes, Interpreting face images using active appearance models, Proceedings Third IEEE International Conference on Automatic Face and Gesture Recognition, pp.300-305, 1998.
DOI : 10.1109/AFGR.1998.670965

A. M. Elgammal, D. Harwood, and L. S. Davis, Non-parametric Model for Background Subtraction, Computer Vision -ECCV 2000 6th European Conference on Computer Vision Proceedings , Part II, pp.751-767, 2000.
DOI : 10.1007/3-540-45053-X_48

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.592.3233

G. Fernàndez, M. Kunt, and J. P. Zrÿd, A new plant cell image segmentation algorithm, Proc. of the 8th Int. Conference on Image Analysis and Processing, pp.229-234, 1995.
DOI : 10.1007/3-540-60298-4_263

P. W. Fieguth and D. Terzopoulos, Color-based tracking of heads and other mobile objects at video frame rates, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp.21-27, 1997.
DOI : 10.1109/CVPR.1997.609292

F. Fleuret, J. Berclaz, R. Lengagne, and P. Fua, Multicamera People Tracking with a Probabilistic Occupancy Map, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.30, issue.2, pp.267-282, 2008.
DOI : 10.1109/TPAMI.2007.1174

R. S. Garfinkel, Technical Note???An Improved Algorithm for the Bottleneck Assignment Problem, Operations Research, vol.19, issue.7, pp.1747-1751, 1971.
DOI : 10.1287/opre.19.7.1747

W. Godinez, M. Lampe, R. Eils, B. Muller, and K. Rohr, Tracking multiple particles in fluorescence microscopy images via probabilistic data association, 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp.1925-1928, 2011.
DOI : 10.1109/ISBI.2011.5872786

V. Gor, M. Elowitz, T. Bacarian, and E. Mjolsness, Tracking Cell Signals in Fluorescent Images, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), Workshops, p.142, 2005.
DOI : 10.1109/CVPR.2005.544

N. J. Gordon, D. J. Salmond, and A. F. Smith, Novel approach to nonlinear/non-Gaussian Bayesian state estimation, Radar and Signal Processing, pp.107-113, 1993.
DOI : 10.1049/ip-f-2.1993.0015

N. R. Gough and M. B. Yaffe, Focus Issue: Conquering the Data Mountain, Science Signaling, vol.4, issue.160, 2011.
DOI : 10.1126/scisignal.2001871

B. Grosjean and L. Moisan, A-contrario Detectability of Spots in??Textured Backgrounds, Journal of Mathematical Imaging and Vision, vol.68, issue.2, pp.313-337, 2009.
DOI : 10.1007/s10851-008-0111-4

URL : https://hal.archives-ouvertes.fr/hal-00534713

O. Gross, The Bottleneck Assignment Problem, The Rand Corporation, 1959.

L. C. Gui and W. Merzkirch, A method of tracking ensembles of particle images, Experiments in Fluids, vol.21, issue.6, pp.465-468, 1996.
DOI : 10.1007/BF00189049

J. Han, T. Breckon, D. Randell, and G. Landini, The application of support vector machine classification to detect cell nuclei for automated microscopy, Machine Vision and Applications, pp.1-10, 2010.
DOI : 10.1007/s00138-010-0275-y

A. J. Hand, T. Sun, D. C. Barber, D. R. Hose, and S. Macneil, Automated tracking of migrating cells in phase-contrast video microscopy sequences using image registration, Journal of Microscopy, vol.21, issue.1, pp.62-79, 2009.
DOI : 10.1111/j.1365-2818.2009.03144.x

R. M. Haralick, Digital Step Edges from Zero Crossing of Second Directional Derivatives, IEEE Transactions on Pattern Analysis and Machine Intelligence, issue.6, pp.58-68, 1984.

C. Harris and M. Stephens, A Combined Corner and Edge Detector, Procedings of the Alvey Vision Conference 1988, p.50, 1988.
DOI : 10.5244/C.2.23

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.231.1604

W. K. Hastings, Monte Carlo sampling methods using Markov chains and their applications, Biometrika, vol.57, issue.1, pp.97-109, 1970.
DOI : 10.1093/biomet/57.1.97

T. Hey, S. Tansley, and K. Tolle, The Fourth Paradigm ??? Data-Intensive Scientific Discovery, p.9780982544204, 2009.
DOI : 10.1007/978-3-642-33299-9_1

M. Hilbert and P. López, The World's Technological Capacity to Store, Communicate, and Compute Information, Science, vol.332, issue.6025, pp.6025-60, 2011.
DOI : 10.1126/science.1200970

B. K. Horn and B. G. Schunck, ???Determining optical flow???: a retrospective, Artificial Intelligence, vol.59, issue.1-2, pp.1-2, 1993.
DOI : 10.1016/0004-3702(93)90173-9

T. Huang and S. Russell, Object identification: a Bayesian analysis with application to traffic surveillance, Artificial Intelligence 40 years later, pp.1-2, 1998.
DOI : 10.1016/S0004-3702(98)00067-8

D. Huttenlocher, J. Noh, and W. J. Rucklidge, Tracking Nonrigid Objects in Complex Scenes, Proceedings of ICCV, pp.93-101, 1993.

M. Isard and A. Blake, CONDENSATION -Conditional Density Propagation for Visual Tracking, International Journal of Computer Vision, vol.29, issue.1, pp.5-28, 1998.
DOI : 10.1023/A:1008078328650

M. Jerrum, A. Sinclair, and E. Vigoda, A polynomial-time approximation algorithm for the permanent of a matrix with nonnegative entries, Journal of the ACM, vol.51, issue.4, pp.51-671, 2004.
DOI : 10.1145/1008731.1008738

H. Jiang, S. Fels, and J. J. Little, A Linear Programming Approach for Multiple Object Tracking, 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp.1-8, 2007.
DOI : 10.1109/CVPR.2007.383180

R. Jonker and A. Volgenant, A shortest augmenting path algorithm for dense and sparse linear assignment problems, Computing, vol.issn, issue.4, pp.38-325, 1987.

J. Kang, I. Cohen, and G. G. Medioni, Object Reacquisition Using Invariant Appearance Model, International Conference on Pattern Recognition, pp.759-762, 2004.

R. M. Karp, Reducibility among Combinatorial Problems, Complexity of Computer Computations, pp.85-103, 1972.
DOI : 10.1007/978-3-540-68279-0_8

M. Kass, A. Witkin, and D. Terzopoulos, Snakes: Active contour models, International Journal of Computer Vision, vol.5, issue.6035, pp.321-331, 1988.
DOI : 10.1007/BF00133570

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.124.5318

Z. Khan, T. Balch, and F. Dellaert, MCMC-based particle filtering for tracking a variable number of interacting targets, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.27, issue.11, pp.1805-1918, 2005.
DOI : 10.1109/TPAMI.2005.223

D. Koller, J. Weber, and J. Malik, Robust multiple car tracking with occlusion reasoning, Computer Vision - ECCV'94, Third European Conference on Computer Vision Proceedings, Volume I, pp.189-196, 1994.
DOI : 10.1007/3-540-57956-7_22

H. W. Kuhn, The Hungarian method for the assignment problem, Naval Research Logistics Quarterly, vol.3, issue.1-2, pp.83-97, 1955.
DOI : 10.1002/nav.3800020109

C. Lee and A. Elgammal, Style adaptive contour tracking of human gait using explicit manifold models, Machine Vision and Applications, pp.1-18, 2010.
DOI : 10.1007/s00138-010-0303-y

K. Li and T. Kanade, Nonnegative Mixed-Norm Preconditioning for Microscopy Image Segmentation, Information Processing in Medical Imaging, 21st International Conference, IPMI 2009, 2009.
DOI : 10.1002/jemt.20294

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.187.9586

K. Li, E. Miller, L. Weiss, P. Campbell, and T. Kanade, Online Tracking of Migrating and Proliferating Cells Imaged with Phase-Contrast Microscopy, Proc. of CVPRW'06, p.65, 2006.

K. Li, E. D. Miller, M. Chen, T. Kanade, L. E. Weiss et al., Cell population tracking and lineage construction with spatiotemporal context, Medical Image Analysis, vol.12, issue.5, pp.546-566, 2007.
DOI : 10.1016/j.media.2008.06.001

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2670445

Y. T. Liu, K. Paul, and . Warme, Computerized evaluation of sperm cell motility, Computers and Biomedical Research, vol.10, issue.2, pp.127-138, 1977.
DOI : 10.1016/0010-4809(77)90030-1

D. G. Lowe, Distinctive Image Features from Scale-Invariant Keypoints, International Journal of Computer Vision, vol.60, issue.2, pp.60-91, 2004.
DOI : 10.1023/B:VISI.0000029664.99615.94

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.14.4931

J. Markoff, Google Cars Drive Themselves, in Traffic, 2010.

E. Meijering, O. Dzyubachyk, I. Smal, and W. A. Van-cappellen, Tracking in cell and developmental biology, Seminars in Cell & Developmental Biology, vol.20, issue.8, pp.894-902, 2009.
DOI : 10.1016/j.semcdb.2009.07.004

N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, Equation of State Calculations by Fast Computing Machines, The Journal of Chemical Physics, vol.21, issue.6, pp.1087-1092, 1953.
DOI : 10.1063/1.1699114

T. B. Moeslund and E. Granum, A Survey of Computer Vision-Based Human Motion Capture, Computer Vision and Image Understanding, vol.81, issue.3, pp.231-268, 2001.
DOI : 10.1006/cviu.2000.0897

T. B. Moeslund, M. Störring, and E. Granum, A Natural Interface to a Virtual Environment through Computer Vision-Estimated Pointing Gestures, Lecture Notes in Computer Science, vol.2298, pp.59-63, 2001.
DOI : 10.1007/3-540-47873-6_6

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.1.5923

L. Moisan and B. Stival, A Probabilistic Criterion to Detect Rigid Point Matches Between Two Images and Estimate the Fundamental Matrix, International Journal of Computer Vision, vol.57, issue.3, pp.201-218, 2004.
DOI : 10.1023/B:VISI.0000013094.38752.54

URL : https://hal.archives-ouvertes.fr/hal-00171323

P. Monasse and F. Guichard, Fast computation of a constrast-invariant image representation, IEEE Trans. on Image Processing, pp.860-872, 2000.

J. Munkres, Algorithms for the Assignment and Transportation Problems, Journal of the Society for Industrial and Applied Mathematics, vol.5, issue.1, pp.32-38, 1957.
DOI : 10.1137/0105003

K. G. Murty, Letter to the Editor???An Algorithm for Ranking all the Assignments in Order of Increasing Cost, Operations Research, vol.16, issue.3, pp.682-687, 1968.
DOI : 10.1287/opre.16.3.682

P. Musé and F. Sur, Frédéric Cao, Yann Gousseau, and Jean-Michel Morel 2004 Accurate estimates of false alarm number in shape recognition

N. Otsu, A Threshold Selection Method from Gray-Level Histograms, IEEE Transactions on Systems, Man, and Cybernetics, vol.9, issue.1, pp.62-66, 1979.
DOI : 10.1109/TSMC.1979.4310076

D. R. Padfield, J. Rittscher, and B. Roysam, Spatio-temporal cell segmentation and tracking for automated screening, 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp.376-379, 2008.
DOI : 10.1109/ISBI.2008.4541011

C. P. Papageorgiou, M. Oren, and T. Poggio, A general framework for object detection, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271), p.555, 1998.
DOI : 10.1109/ICCV.1998.710772

N. Paragios and R. Deriche, Geodesic active contours and level sets for the detection and tracking of moving objects, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.22, issue.3, pp.266-280, 2000.
DOI : 10.1109/34.841758

F. H. Pighin, R. Szeliski, and D. Salesin, Resynthesizing facial animation through 3D model-based tracking, Proceedings of the Seventh IEEE International Conference on Computer Vision, pp.143-150, 1999.
DOI : 10.1109/ICCV.1999.791210

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.31.3794

K. Rangarajan and M. Shah, Establishing motion correspondence Computer Vision and Pattern Recognition, Proceedings CVPR '91., IEEE Computer Society Conference on, pp.103-108, 1991.

C. Rasmussen and G. D. Hager, Probabilistic data association methods for tracking complex visual objects " , Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol.23, issue.6, pp.560-576, 2001.

D. Reid, An algorithm for tracking multiple targets, IEEE Transactions on Automatic Control, vol.24, issue.6, pp.843-854, 1979.
DOI : 10.1109/TAC.1979.1102177

A. Robin, L. Moisan, and S. L. Hégarat-mascle, An A-Contrario Approach for Subpixel Change Detection in Satellite Imagery, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.32, issue.11, pp.1977-1993, 2010.
DOI : 10.1109/TPAMI.2010.37

URL : https://hal.archives-ouvertes.fr/hal-00399698

J. Roerdink and A. Meijster, The watershed transform : definitions, algorithms and parallelization strategies, Fundamenta Informatica, vol.41, pp.1-2, 2000.

R. Ronfard, Region-based strategies for active contour models, International Journal of Computer Vision, vol.23, issue.3, pp.229-251, 1994.
DOI : 10.1007/BF01427153

URL : https://hal.archives-ouvertes.fr/inria-00544609

L. Rudin and S. Osher, Total variation based image restoration with free local constraints, Proceedings of 1st International Conference on Image Processing, 1994.
DOI : 10.1109/ICIP.1994.413269

L. Rudin, S. Osher, and E. Fatemi, Nonlinear total variation based noise removal algorithms, Physica D: Nonlinear Phenomena, vol.60, issue.1-4, 1992.
DOI : 10.1016/0167-2789(92)90242-F

V. Salari and I. K. Sethi, Feature point correspondence in the presence of occlusion, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.12, issue.1, pp.87-91, 1990.
DOI : 10.1109/34.41387

K. Sato and J. K. Aggarwal, Temporal spatio-velocity transform and its application to tracking and interaction, Computer Vision and Image Understanding, vol.96, issue.2, pp.100-128, 2004.
DOI : 10.1016/j.cviu.2004.02.003

I. F. Sbalzarini and P. Koumoutsakos, Feature point tracking and trajectory analysis for video imaging in cell biology, Journal of Structural Biology, vol.151, issue.2, pp.182-95, 2005.
DOI : 10.1016/j.jsb.2005.06.002

D. Serby, E. Koller-meier, and L. J. Van-gool, Probabilistic object tracking using multiple features, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004., pp.184-187, 2004.
DOI : 10.1109/ICPR.2004.1334091

I. K. Sethi and R. Jain, Finding Trajectories of Feature Points in a Monocular Image Sequence, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.9, issue.1, pp.56-73, 1987.
DOI : 10.1109/TPAMI.1987.4767872

J. A. Sethian, A fast marching level set method for monotonically advancing fronts., Proceedings of the National Academy of Sciences, pp.1591-1595, 1996.
DOI : 10.1073/pnas.93.4.1591

K. Shafique and M. Shah, A non-iterative greedy algorithm for multi-frame point correspondence, Proceedings Ninth IEEE International Conference on Computer Vision, pp.14-17, 2003.
DOI : 10.1109/ICCV.2003.1238321

H. Shen, G. Nelson, S. Kennedy, D. Nelson, J. Johnson et al., Automatic tracking of biological cells and compartments using particle filters and active contours, Selected Papers from the International Conference on Chemometrics and Bioinformatics in Asia - CCBA 2004, pp.1-2, 2006.
DOI : 10.1016/j.chemolab.2005.07.007

J. Shi and C. Tomasi, Good features to track, Computer Vision and Pattern Recognition Proceedings CVPR '94, pp.593-600, 1994.

I. Smal, W. J. Niessen, and E. H. Meijering, A new detection scheme for multiple object tracking in fluorescence microscopy by joint probabilistic data association filtering, 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp.264-267, 2008.
DOI : 10.1109/ISBI.2008.4540983

K. Smith, A. C. , and V. Lepetit, General constraints for batch multiple-target tracking applied to largescale videomicroscopy, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.1-8, 2008.
DOI : 10.1109/cvpr.2008.4587506

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.167.2467

D. J. Stephens and V. J. Allan, Light Microscopy Techniques for Live Cell Imaging, Science, vol.300, issue.5616, pp.5616-82, 2003.
DOI : 10.1126/science.1082160

E. J. Stewart, R. Madden, G. Paul, and F. Taddei, Aging and Death in an Organism That Reproduces by Morphologically Symmetric Division, PLoS Biology, vol.297, issue.2, 2005.
DOI : 10.1371/journal.pbio.0030045.sv001

URL : https://hal.archives-ouvertes.fr/inserm-00080154

R. L. Streit, E. Tod, and . Luginbuhl, Maximum likelihood method for probabilistic multihypothesis tracking " , in Signal and Data Processing of Small Targets, pp.394-405, 1994.

C. Tang and E. Bengtsson, Segmentation and Tracking of Neural Stem Cell, International Conference on Intelligent Computing, pp.851-859, 2005.
DOI : 10.1007/11538356_88

H. Tao, H. S. Sawhney, and R. Kumar, Object tracking with Bayesian estimation of dynamic layer representations, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.24, issue.1, pp.75-89, 2002.
DOI : 10.1109/34.982885

D. Toma?evi?, B. Likar, and F. Pernu?, Comparative evaluation of retrospective shading correction methods, Journal of Microscopy, vol.208, issue.3, pp.212-223, 2002.
DOI : 10.1046/j.1365-2818.2002.01079.x

C. Vachier and F. Meyer, The Viscous Watershed Transform, Journal of Mathematical Imaging and Vision, vol.7, issue.3, pp.2-3, 2005.
DOI : 10.1007/s10851-005-4893-3

C. J. Veenman, E. A. Hendriks, and M. J. Reinders, A fast and robust point tracking algorithm, Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269), pp.653-657, 1998.
DOI : 10.1109/ICIP.1998.999051

C. J. Veenman, J. T. Marcel, E. Reinders, and . Backer, Resolving motion correspondence for densely moving points, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.23, issue.1, pp.54-72, 2001.
DOI : 10.1109/34.899946

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.105.3671

T. Veit, F. Cao, and P. Bouthemy, Space-time A Contrario Clustering for Detecting Coherent Motions, Proceedings 2007 IEEE International Conference on Robotics and Automation, pp.33-39, 2007.
DOI : 10.1109/ROBOT.2007.363761

URL : https://hal.archives-ouvertes.fr/hal-00379413

L. Vincent and P. Soille, Watersheds in digital spaces: an efficient algorithm based on immersion simulations, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.13, issue.6, pp.583-598, 1991.
DOI : 10.1109/34.87344

M. Wertheimer, Untersuchungen zur Lehre von der Gestalt, Psychologische Forschung, vol.1, issue.1, pp.47-58, 1922.
DOI : 10.1007/BF00410385

J. Xie, S. Khan, and M. Shah, Automatic Tracking of Escherichia Coli Bacteria, Medical Image Computing and Computer-Assisted Intervention -MICCAI 2008, 11th International Conference Proceedings, Part I, pp.824-832, 2008.
DOI : 10.1007/978-3-540-85988-8_98

A. Yilmaz, O. Javed, and M. Shah, Object tracking, ACM Computing Surveys, vol.38, issue.4, 2006.
DOI : 10.1145/1177352.1177355

A. Yilmaz, X. Li, and M. Shah, Contour-based object tracking with occlusion handling in video acquired using mobile cameras, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.26, issue.11, pp.1531-1536, 2004.
DOI : 10.1109/TPAMI.2004.96

B. Zhang, J. Enninga, J. Olivo-marin, and C. Zimmer, Automated Super-Resolution Detection of Fluorescent Rods in 2D, 3rd IEEE International Symposium on Biomedical Imaging: Macro to Nano, 2006., pp.6-9, 2006.
DOI : 10.1109/ISBI.2006.1625163

S. Zhu, A. L. Chun, and . Yuille, Region competition: unifying snakes, region growing, energy/Bayes/MDL for multi-band image segmentation, Proceedings of IEEE International Conference on Computer Vision, pp.884-900, 1996.
DOI : 10.1109/ICCV.1995.466909

C. Zimmer, B. Zhang, A. Dufour, A. Thebaud, S. Berlemont et al., On the digital trail of mobile cells, IEEE Signal Processing Magazine, vol.23, issue.3, pp.54-62, 2006.
DOI : 10.1109/MSP.2006.1628878