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résumé

De nombreux domaines issus de l’industrie et des sciences appliquées ont été, au
cours des dernières années, les témoins d’une révolution numérique. Cette tendance s’est
accompagnée d’une croissance continue du volume des données—vidéos, musiques et
images, dont le traitement est devenu un véritable défi technique. Par exemple, il est
aujourd’hui fréquent de prendre des centaines de photographies de plusieurs millions de
pixels, la moindre application de méthodes du traitement de l’image devenant alors une
opération difficile. Dans ce contexte, la parcimonie est apparue comme un concept central
en apprentissage statistique et traitement du signal. Il est en effet naturel de représenter,
analyser et exploiter les données disponibles à travers un nombre réduit de paramètres.
Par exemple, on peut imaginer effectuer de la reconnaissance d’objets sur des images
de hautes résolutions en n’utilisant qu’un petit sous-ensemble pertinent de pixels. Alors
que les approches générales favorisant la parcimonie ont déjà été l’objet de nombreux
travaux—débouchant sur d’élégantes fondations théoriques, des outils algorithmiques
efficaces et plusieurs succès pratiques—cette thèse se concentre sur une forme particulière
et plus récente de parcimonie, nommée parcimonie structurée.

Comme son nom l’indique, nous considérerons des situations où nous ne serons pas
simplement intéréssés par la parcimonie, mais où nous aurons également à disposition
des connaissances a priori nous renseignant sur certaines propriétés structurelles. En
continuant d’exploiter l’exemple de la reconnaissance d’objets mentioné ci-dessus, nous
savons que des pixels voisins sur une image ont tendance à partager des propriétés
similaires, telles que la classe de l’objet à laquelle ils appartiennent. Ainsi, une approche
encourageant la parcimonie devrait tirer partie de cette information spatiale.

L’objectif de cette thèse est de comprendre et analyser le concept de parcimonie struc-
turée, en se basant sur des considérations statistiques, algorithmiques et appliquées. Nous
commencerons par introduire une famille de normes structurées parcimonieuses dont les
propriétés sont étudiées en détail. En particulier, nous montrerons à quel type d’informa-
tion structurelle ces normes correspondent, et nous présenterons sous quelles conditions
statistiques elles sont capables de produire une séléction consistente de variables. Nous
étudierons ensuite l’apprentissage de dictionnaires parcimonieux et structurés, où nous
exploiterons les normes introduites précédemment dans un cadre de factorisation de
matrices. L’approche qui en résulte est fléxible et versatile, et nous montrerons que les
éléments de dictionnaire appris exhibent une structure parcimonieuse adaptée à la classe
de signaux considérée. Concernant l’optimisation, nous proposerons différents outils algo-
rithmiques efficaces et capables de passer à l’échelle, tels que des stratégies à ensemble de
variables actives ou encore des méthodes proximales. Grâce à ces outils algorithmiques,
nous illustrerons sur de nombreuses applications issues de domaines variés, quand et
pourquoi la parcimonie structurée peut être bénéfique. Ces illustrations contiennent par
exemple, des tâches de restauration en traitement de l’image, la modélisation de docu-
ments textuels sous la forme d’une hiérarchie de thèmes, la prédiction de la taille d’objets
à partir de signaux d’imagerie par résonance magnétique fonctionnelle, ou encore des
problèmes de segmentation d’images en vision par ordinateur.

iii





introduction et contributions de la thèse

Une grande variété de problèmes en apprentissage statistique peuvent se résumer par
l’apprentissage, à partir de données, d’un jeu de paramètres maximisant un critère pré-
établi, d’une manière soit supervisée ou non supervisée. De tels problèmes apparaissent
par exemple lorsqu’on désire expliquer un ensemble de réponses à partir de certaines
observations, ou lorsqu’on souhaite résumer, organiser, ou compresser un grand volume
de données. Dans tous les cas, et de manière similaire à d’autres domaines des sciences
appliquées, une solution simple, parcimonieuse, est souvent privilégiée face à d’autres
alternatives plus “complexes”. Ce biais en faveur de la parcimonie peut être justifié par
deux arguments : On peut soit croire a priori que le phénomène étudié admet effective-
ment une solution parcimonieuse, ou alternativement, et sans cette connaissance a priori,
on peut chercher une explication simple parce qu’elle se prête bien à l’interprétation, à
la compréhension et conduit à des post-traitements moins coûteux.

En apprentissage statistique, on fait référence aux approches parcimonieuses pour
désigner les maniéres de résoudre un problème en n’utilisant qu’un nombre limité de
paramètres.

Le thème principal de cette thèse est la parcimonie structurée. Comme son nom
l’indique, nous allons nous concentrer sur des configurations où non seulement la parci-
monie est pertinente, mais aussi où des connaissances a priori suggèrent que la solution
attendue exhibe certaines structures intéressantes.

Des connaissances a priori de nature structurelle peuvent se manifester sous dif-
férentes formes, et reflètent par exemple des propriétés ordinales, temporelles, ou encore
spatiales du problème étudié. Cette importante idée est probablement plus simple à
comprendre à travers une série d’exemples concrets.

Dans le contexte de la vision par ordinateur, la ségmentation consiste à partitioner
des images en sous-parties pertientes (e.g., premier plan et arrière plan). Dans ce cas,
il semble naturel de prendre en compte le fait que des pixels voisins dans l’image sont
susceptibles de partager des attributs similaires. Les résultats de ségmentation sont ef-
fectivement améliorés grâce à cette information spatiale (e.g., voir Boykov et al., 2001).
Pour l’étude de séries temporelles non-alignées d’expression de gênes, l’ordonnancement
dans le temps des motifs de régulation (e.g., motifs montants et descendants) jouent
un rôle majeur. Comme précédemment, modéliser cette information ordinale conduit à
de meilleures performances (Tibau Puig et al., 2011). De même, pour le traitement du
langage naturel, les données sont générallement représentées par des motifs qui, par ex-
emple, peuvent désigner des pairs de mots contigus labélisés par leurs classes syntaxiques.
De tels motifs peuvent être combinés ensemble pour alors former de nouveaux motifs
plus complexes. Dans un cadre parcimonieux, il semble naturel de considérer d’abord
les paramètres associés aux motifs élémentaires avant d’analyser des motifs plus sophis-
tiqués. En pratique, cette approche hiérarchique se révèle être performante (Martins
et al., 2011).
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Toutes les illustrations mentionées ci-dessus constituent des exemples où la parci-
monie structurées est bénéfique. Dans cette thèse, nous essayons de comprendre ce con-
cept que nous étudions sous de divers angles, algorithmique, statistique et appliqué.

Résumé des Contributions de la Thèse

Nous listons ci-dessous les contributions qui émergent de la thèse :
• Chapter 2 : Ce chapitre introduit et étudie précisemment le principal objet

de cette thèse, à savoir, les normes encourageant la parcimonie structurée. Ces
dernières sont définies comme combinaisons linéaires de normes élémentaires con-
struites à partir de groupes de variables. Nous considérons l’ensemble de tous les
groupes possibles et charactérisons exactement quel type de connaissances a pri-
ori elles sont capables d’encoder. Avant de décrire comment on peut passer des
groupes à l’ensemble des motifs parcimonieux induits, nous montrons qu’il est
possible de construire automatiquement une unique norme minimale, adaptée à la
famille de motifs parcimonieux désirés, comme par exemple, l’ensemble des rect-
angles sur une grille en deux dimensions. Par ailleurs, nous étudions sous quelles
conditions statistiques, ces normes permettent d’estimer de manière consistente
un motif parcimonieux structuré, aussi bien en faible qu’en haute dimensions. En-
fin, nous introduisons un algorithmique efficace et rapide basé sur la construction
d’un ensemble de variables actives.

• Chapter 3 : Cette seconde partie est dédiée à l’apprentissage de dictionnaires
structurés, exploitant et étendant le schéma de régularisation introduit au Chapitre 2.
Nous montrons comment on peut apprendre des dictionnaires dont les atomes ont
des motifs parcimonieux structurés qui sont adaptés à la classe de signaux consid-
érés. Pour cela, nous présentons une technique d’optimisation simple et efficace
qui reposent sur des méthodes de descente “par bloque” disposant de mises à jour
explicites. On applique finalement notre outil à un problème de reconnaissance
de visages, où nous sommes capables d’apprendre des déscripteurs robustes aux
occlusions.

• Chapter 4 : Ce chapitre s’intéresse à des méthodes algorithmiques efficaces pour
résoudre des problèmes de parcimonie structurée où nous supposons que les vari-
ables possèdent une structure hiérarchique. Plus précisemment, nous considérons
les méthodes proximales pour lesquelles nous montrons que l’opérateur proximal
associé aux normes hiérarchiques peut être calculé exactement via une approche
duale. Notre procédure a une complexité linéaire, ou presque linéaire, par rapport
au nombre d’atomes, ce qui rend l’application des méthodes proximales accélérées
rapides et efficaces. Nous illustrons notre approche par des applications variées,
telles que le débruitage d’images naturelles, ou encore la représentation de docu-
ments textuels sous forme de hiérarchies de thématiques, établissant par la même
occasion des liens avec les modèles probabilistiques utilisés dans ce même cadre.

• Chapter 5 : Ce quatrième chapitre considère deux applications de la parcimonie
structurée à la neuroimagerie.
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D’une part, nous nous intéressons à la prédiction de la taille d’objets à travers
dix sujets, en nous basant sur des signaux d’imagerie par résonance magnétique
fonctionelle (IRMf). Pour cela, nous introduisons une régularisation hiérarchique
structurée construite à partir des données d’entrainement, via une procédure non
supervisée exploitant des contraintes spatiales spécifiques. Cette construction per-
met de prendre en compte la structure spatiale multi-échelle des signaux IRMf,
augmentant ainsi la robustesse aux variabilitées inter-sujets. Nous réalisons une
comparaison expérimentale impliquant plusieurs algorithmes et formulations, et
nous illustrons la capacité de notre approche à localiser des régions du cerveau
dédiées au traitement des stimulis visuels.
D’autre part, nous introduisons un modèle génératif pour étudier des séries tem-
porelles du cerveau au repos. Cette classe de signaux est modélisée grâce à l’ap-
prentissage de dictionnaires structurés où les atomes que nous apprenons présen-
tent des formes compactes et localisées en trois dimensions. De plus, notre ap-
proche se prête naturellement à la séléction de modèles et à une évaluation quanti-
tative ; dans ce cadre, nous obtenons des améliorations par rapport aux techniques
non structurées, mesurées par une vraisemblance sur des données de test.

• Chapter 6 : Le cinquième et dernier chapitre de la thèse se situe légèrement
en marge de la thématique principale de parcimonie structurée. L’objectif de ce
partie est de caractériser les minima locaux du problème (non convexe) de l’ap-
prentissage de dictionnaires parcimonieux, utilisé par exemple dans des extensions
structurées aux Chapitres 3 et 4. En particulier, nous considérons un modèle prob-
abiliste de signaux parcimonieux, et nous montrons qu’avec forte probabilité, le
problème de l’apprentissage de dictionnaires parcimonieux admet un minimum lo-
cal suivant certaines courbes passant par le dictionnaire de référence ayant généré
les signaux. Notre analyse couvre les cas des dictionnaires redondants et des sig-
naux bruités, étendant ainsi les travaux précédants limités à une configuration
sans bruit. L’étude que nous réalisons est non asymptotique et permet de mieux
comprendre comment les grandeurs clé du problème, telles que la cohérence ou le
bruit, peuvent varier avec la dimension des signaux, le nombre d’observations, le
niveau de sparsité et le nombre d’atomes. Ce travail en cours constitue un pre-
mier pas vers la preuve plus complexe de l’existence d’un minimum local dans
l’ensemble de la variété des dictionnaires normalisés.
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abstract

Numerous fields of applied sciences and industries have been witnessing a process of
digitisation over the past few years. This trend has come with a steady increase in the
amount of available digital data whose processing was become a challenging task. For in-
stance, it is nowadays common to take thousands of pictures of several millions of pixels,
which makes any subsequent image-processing/computer-vision task a computationally
demanding exercise.

In this context, parsimony—also known as sparsity—has emerged as a key concept in
machine learning, statistics and signal processing. It is indeed appealing to represent, an-
alyze, and exploit data through a reduced number of parameters, e.g., performing object
recognition over high-resolution images based only on some relevant subsets of pixels.
While general sparsity-inducing approaches have already been well-studied—with ele-
gant theoretical foundations, efficient algorithmic tools and successful applications, this
thesis focuses on a particular and more recent form of sparsity, referred to as structured
sparsity.

As its name indicates, we shall consider situations where we are not only interested
in sparsity, but where some structural prior knowledge is also available. Continuing
the example of object recognition, we know that neighbouring pixels on images tend to
share similar properties—e.g., the label of the object class to which they belong—so that
sparsity-inducing approaches should take advantage of this spatial information.

The goal of this thesis is to understand and analyze the concept of structured spar-
sity, based on statistical, algorithmic and applied considerations. To begin with, we
introduce a family of structured sparsity-inducing norms whose properties are closely
studied. In particular, we show what type of structural prior knowledge they corre-
spond to, and we present the statistical conditions under which these norms are capable
of consistently performing structured variable selection. We then turn to the study of
sparse structured dictionary learning, where we use the aforementioned norms within the
framework of matrix factorization. The resulting approach is flexible and versatile, and
it is shown to learn representations whose structured sparsity patterns are adapted to the
considered class of signals. From an optimization viewpoint, we derive several efficient
and scalable algorithmic tools, such as, working-set strategies and proximal-gradient
techniques. With these methods in place, we illustrate on numerous real-world appli-
cations from various fields, when and why structured sparsity is useful. This includes,
for instance, restoration tasks in image processing, the modelling of text documents as
hierarchy of topics, the inter-subject prediction of sizes of objects from fMRI signals,
and background-subtraction problems in computer vision.
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1

Introduction and Related Work

A large variety of problems in machine learning and computational statistics amount
to learning, from some data, a set of parameters that maximizes a predefined criterion,
in either a supervised or unsupervised fashion. Such problems for instance arise when we
desire to relate some input observations to some output response, or when we simply wish
to summarize, organize or compress large amounts of data. In any case, and similarly to
other fields of applied sciences, a simple, parsimonious solution is often preferred over
more “complex” ones. This bias towards parsimony can be underpined in two ways:
First, we may a priori believe that the studied phenomenon has indeed a parsimonious
solution, or second, and without this prior knowledge, we may seek a simple explanation
because it lends itself well to understanding, interpretability and less processing.

In machine learning and statistics, parsimony is also known as sparsity, and, in a
broad sense, we shall refer to sparsity-inducing approaches as ways of tackling problems
by only resorting to a reduced number of parameters.

The central theme of this thesis is structured sparsity. As its name indicates, we
shall concentrate on settings where not only sparsity is relevant, but also where prior
knowledge suggests that the expected solution exhibits some structure of interest.

Structural prior knowledge can come up under various forms and may for instance
reflect ordering, spatial or temporal properties of the problem at hand. This important
idea is probably easier to understand through concrete examples.

In the context of computer vision, segmentation consists in partitioning images into
meaningful parts (e.g., background versus foreground). In this case, it seems natural
to take into account the fact that neighboring pixels on the image are likely to share
similar attributes. Better segmentation results are indeed obtained thanks to this spatial
prior knowledge (e.g., see Boykov et al., 2001, and references therein). While studying
misaligned time series of gene expressions across different subjects, the temporal order-
ing of the regulation patterns (e.g., up- and down-regulations) plays a prominent part.
Again, modeling this ordinal information leads to improved performance (Tibau Puig
et al., 2011). In natural language processing, the features associated with the data are
usually built from templates which may, for instance, represent pairs of contiguous words
labeled by their part-of-speech tags. Such templates can be combined with each other,
hence forming more complex features. In this context, it seems natural to first consider
parameters relative to elementary templates before looking at more sophisticated ones;
this hierarchical approach turns out to be powerful in practice (Martins et al., 2011).
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1. Introduction and Related Work

All the aforementioned illustrations constitute examples where structured sparsity is
beneficial. In this thesis, we try to understand this concept and we thoroughly study it
from various viewpoints—algorithmic, statistical as well as applied.

The remainder of the introduction is organized as follows: We first summarize the
contributions made by this thesis before introducing more formally the framework of
structured sparsity and the key object in our analysis, namely structured sparsity-
inducing norms. We then present some background material about dictionary learn-
ing and its variants, which are techniques used throughout the manuscript. Finally,
since most chapters make heavy use of concepts from convex optimization and/or from
statistical learning theory, we dedicate two sections of this introduction to present the
necessary material.

1.1 Summary of the Contributions of the Thesis

We list the contributions that emerge from this thesis:
• Chapter 2: This chapter introduces and studies in details the core object of this

thesis, namely, structured sparsity-inducing norms. These are defined as linear
combinations of norms built over groups of variables. We consider all possible sets
of groups and characterize exactly what type of prior knowledge can be encoded
by considering families of overlapping groups of variables. Before describing how
to go from groups to nonzero patterns, we show that it is possible to “reverse-
engineer” a given set of nonzero patterns, i.e., to build the unique minimal set
of groups that will generate these patterns. This allows the automatic design of
sparsity-inducing norms, adapted to target sparsity patterns such as rectangles
on a two-dimensional grid. We moreover study under which conditions we can
obtain a consistent estimation of structured nonzero patterns, both in low- and
high-dimensional settings. Finally, we introduce an efficient and scalable active-set
algorithm.

• Chapter 3: This second part is dedicated to sparse structured dictionary-learning,
leveraging and extending the regularization scheme introduced in Chapter 2. We
show how we can learn dictionaries whose atoms have structured nonzero pat-
terns adapted to the class of signals considered. To this end, we propose an
efficient and simple optimization technique based on nested block-coordinate de-
scents with closed-form updates. We eventually apply our unsupervised method
to face recognition, where we learn localized features robust to occlusions.

• Chapter 4: This chapter focuses on designing efficient algorithmic tools to
solve sparse decomposition problems where we assume some hierarchical struc-
ture among the variables. Specifically, we resort to proximal methods for which
we show that the proximal operator associated with the hierarchical norm is com-
putable exactly via a dual approach. Our procedure has a complexity linear,
or close to linear, in the number of atoms, which makes accelerated proximal-
gradient techniques highly scalable and efficient. We illustrate our method on
various problems, such as the denoising of natural image patches and the repre-
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sentation of text documents over hierarchies of topics, thus establishing interesting
connections with probabilistic topic models.

• Chapter 5: This fourth section concentrates on two applications of structured
sparsity to neuroimaging.
On the one hand, we consider the prediction of sizes of objects across ten subjects
based on data investigating object coding in high-level visual cortex. To this end,
we introduce a sparse hierarchical structured regularization built in a data-driven
fashion, from a spatially-constrained agglomerative clustering. This construction
makes it possible to take into account the multi-scale spatial structure of fMRI
data, thus resulting in more robustness to inter-subject variability. We conduct
an experimental comparison of several algorithms and formulations and illustrate
the ability of the proposed method to localize in space and in scale some brain
regions involved in the processing of visual stimuli.
On the other hand, we introduce a generative model to study brain resting-state
time series. This class of signals is modeled by sparse structured dictionary learn-
ing where we learn atoms that exhibit three-dimensional localized clusters. More-
over, the proposed approach provides a natural framework for model selection
and quantitative evaluation, where we obtain improvements over unstructured
methods, as measured by some likelihood on held-out data.

• Chapter 6: The fifth and last chapter of this thesis is slightly next to the scope
of the main theme developed so far, namely, structured sparsity. In this part,
we aim at characterizing the local minima of sparse coding, also known as sparse
dictionary learning (see Chapters 3 and 4 for some structured extensions) which
relies on a non-convex procedure whose local minima have not been fully analyzed
yet. To this end, we consider a probabilistic model of sparse signals, and show
that, with high probability, sparse coding admits a local minimum along some
curves passing through the reference dictionary generating the signals.
Our study takes into account the case of over-complete dictionaries and noisy
signals, thus extending previous work limited to noiseless settings and/or under-
complete dictionaries. The analysis we conduct is non-asymptotic and makes
it possible to understand how the key quantities of the problem, such as the
coherence or the level of noise, are allowed to scale with respect to the dimension
of the signals, the number of atoms, the sparsity and the number of observations.
This work in progress constitutes a first step towards the more involved proof
of the existence of the local minimum over the entire manifold of normalized
dictionaries.

1.2 Notation

Throughout the manuscript, we shall refer to vectors as bold lower case (possibly
Greek) letters, and matrices by bold upper case ones. For any integer j in the set
J1; pK , {1, . . . , p}, we denote the j-th coefficient of a p-dimensional vector w ∈ Rp by
wj . Similarly, for any matrix W ∈ Rn×p, we refer to the entry at the i-th row and j-th

3
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column as Wij , for any (i, j) ∈ J1;nK× J1; pK. We will also have to describe sub-vectors
of w ∈ Rp, that is, for any J ⊆ J1; pK, we denote by wJ ∈ R|J| the vector formed by
the entries of w indexed by J. Likewise, for any I ⊆ J1;nK, J ⊆ J1; pK, we denote by
WIJ ∈ R|I|×|J| the sub-matrix of W formed by the rows (respectively, the columns)
indexed by I (respectively by J).

We extensively manipulate norms in this thesis. We thus define the ℓq-norm for any
vector w ∈ Rp by

‖w‖q ,
[ p
∑

j=1

|wj |q
]1/q

for q ∈ [1,∞), and ‖w‖∞ , max
j∈J1;pK

|wj |.

For q ∈ (0, 1), we extend the definition above to ℓq quasi-norms. In the same vein, for
any matrix W ∈ Rn×p, we define the Frobenius norm of W by

‖W‖F ,
[ n∑

i=1

p
∑

j=1

W2
ij

]1/2
.

Also, we refer to the set of nonnegative real numbers as R+ , {t ∈ R; t ≥ 0}. If need
be, additional and more specific notation may be introduced at the beginning of some
chapters.

1.3 Variable Selection and Sparsity-Inducing
Regularizations

In a broad sense, a significant fraction of the work presented in this thesis is about
variable selection, also known as feature selection. Throughout this manuscript, we
should understand “variable” and “feature” as being a descriptor used to represent the
data, for instance, the intensity of a pixel taken from an image or the frequency of a
word in a document. Nowadays, data are not only becoming abundant in many scientific
and industrial fields (e.g., the web and finance industries), but they are also being made
available through richer and more complex representations (e.g., the ever increasing
resolution of images).

In this context, variable selection is an essential tool that has primarily three pur-
poses (Guyon and Elisseeff, 2003): (1) “summarizing” the description of the data to
make it more interpretable and understandable, (2) obtaining a more compact and effec-
tive representation—e.g., for compression, (3) and finally, concentrating the predictive
power of the different features when prediction accuracy matters.

In this thesis, we are interested in these three aspects, laying the emphasis on the
first and last points. More concretely, variable selection shall amount to finding a subset
of relevant features among a total of p variables, that is, learning a sparse vector of
parameters w in Rp whose set of nonzero coefficients characterizes the corresponding
set of selected features. Note that the formulations of the underlying learning problems
will be made more formal in the subsequent sections. There exist numerous ways of
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addressing variable selection, such as, for instance, univariate statistical tests and greedy
forward/backward search strategies to name only a few (Guyon and Elisseeff, 2003). In
the remainder of this thesis, we shall focus instead on the concept of regularization, and
more precisely, sparsity-inducing regularization. Let us introduce more formally this
concept.

1.3.1 Sparsity-Inducing Regularization

In machine learning, statistics and signal processing, we usually learn a vector of
parameters w in Rp by minimizing a convex function f : Rp → R+ that measures
how well w fits some data. In most of the cases encountered in this thesis, we shall
assume the function f to be smooth—typically, differentiable with Lipschitz-continuous
gradient. The choice of this function is driven by the application at hand, and f generally
corresponds to either a data-fitting term, or an empirical risk, i.e., the average of a loss
function over a training set of data-points (e.g., see Shawe-Taylor and Cristianini (2004)
for a thorough description of loss functions).

To express our a priori assumption that the learned vector w should be sparse in
order to perform variable selection, we also consider a regularization term Ω : Rp → R+,
so that our formulation becomes

min
w∈W

[f(w) + λΩ(w)]. (1.1)

The scalar λ ≥ 0 is known as the regularization parameter and it controls the effect
of Ω, while W ⊆ Rp is a convex set that can possibly encode further properties of the
problem, such as the non-negativity of the coefficients of w. To promote sparse solutions,
Ω should intuitively penalize vectors w that have many nonzero coefficients. Thus, a
natural candidate to consider is the ℓ0 pseudo-norm, that is,

‖w‖0 , |{j ∈ J1; pK; wj 6= 0}|.
Indeed, by definition, ‖w‖0 records the number of nonzero components of the vector w,
so that when it is used in (1.1), the less sparse a vector, the more heavily penalized.
However, this regularizer does not lend itself well to optimization (w 7→ ‖w‖0 is not
even continuous), and generally leads to combinatorial and intractable problems (e.g.,
see Natarajan (1995) in the context of least-squares regression). This computational
challenge prompts the need for surrogates (or relaxations) of the ℓ0 pseudo-norm that
would not only preserve the desired sparsity-inducing properties, but would also be
amenable to optimization.

1.3.2 Sparsity-Inducing Norms and the Example of the ℓ1-Norm

In this section, we present one way of reformulating ℓ0-based problems via sparsity-
inducing norms 1. In particular, we first focus on the ℓ1-norm which is the most popular

1. A norm ‖.‖ on a real-valued vector space V is a function V → R+ such that (positive homogeneity)
for any (a, v) ∈ R × V, we have ‖av‖ = |a|‖v‖, (triangular inequality) for any u, v ∈ V, it holds
‖u + v‖ ≤ ‖u‖ + ‖v‖, and (separability of points) ‖v‖ = 0 if and only if v = 0 for all v ∈ V.
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example of such reformulations, and which makes it possible to understand the key
properties common to more general sparsity-inducing norms.

Regularizing by the ℓ1-norm has been a topic of intensive research over the last
decade. This line of work has witnessed the development of nice theoretical frame-
works (Tibshirani, 1996; Chen et al., 1998; Mallat, 1999; Tropp, 2004, 2006; Zhao and
Yu, 2006; Zou, 2006; Wainwright, 2009; Bickel et al., 2009; Zhang, 2009) and the emer-
gence of many efficient algorithmic tools (Efron et al., 2004; Nesterov, 2007; Friedman
et al., 2007; Wu and Lange, 2008; Beck and Teboulle, 2009; Wright et al., 2009; Needell
and Tropp, 2009; Yuan et al., 2010). Moreover, various applications were considered, for
instance, in compressed sensing (Candes and Tao, 2005), for the structure estimation
of graphical models (Meinshausen and Bühlmann, 2006) and for several reconstruction
tasks involving natural images (e.g., see Mairal, 2010, for a review).

Within the context of least-squares regression, ℓ1-norm regularization is known as
Lasso (Tibshirani, 1996) in statistics and basis pursuit in signal processing (Chen et al.,
1998). Formulation (1.1) thus reduces to

min
w∈Rp

[1
2
‖y−Xw‖22 + λ‖w‖1

]

(1.2)

in the Lasso case, and becomes

min
α∈Rp

[1
2
‖x−Dα‖22 + λ‖α‖1

]

(1.3)

for basis pursuit. Though similar from an optimization viewpoint, we have explicitly
written down the two formulations (1.2) and (1.3) to point out the conceptual differences
there exist in statistics and signal processing settings. On the one hand, we use X ∈ Rn×p

to denote a set of n observations described by p variables, while y ∈ Rn represents
the corresponding set of n targets that we try to predict. For instance, y may have
discrete entries in the context of classification. On the other hand, and for basis pursuit,
we consider a m-dimensional signal x ∈ Rm that we express as a linear combination
of p dictionary elements composing the dictionary D , [d1, . . . ,dp] ∈ Rm×p. While
the matrix X is assumed fixed and given beforehand, we shall see in Section 1.4 that
the dictionary may correspond to either some pre-defined basis (e.g., see Mallat, 1999,
for wavelet basis) or to some learned representations (Olshausen and Field, 1996). To
avoid confusion, we will try to respect as much as possible this notation throughout the
manuscript.

Since the ℓ1-norm is convex (as any norm), it is possible to design tractable al-
gorithms to solve (1.1) in this case. We shall review some of these methods in Sec-
tion 1.5. Nonetheless, we have not justified yet why the ℓ1-norm is supposed to have
the same sparsity-inducing behavior as the ℓ0 pseudo-norm. While a formal answer will
be provided in Section 1.5 based on adapted optimization tools, we first give “intuitive”
arguments.
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One-Dimensional Solution to Lasso: Soft-Thresholding Operator

In order to understand why the ℓ1-regularization promotes sparse solutions, it is
convenient to consider the Lasso formulation (1.2) when the data matrix X is orthogonal,
in which case the minimization decouples into p independent one-dimensional problems
of the form

min
w∈R

[1
2

(u− w)2 + λ|w|
]

for some real number u ∈ R. (1.4)

Although the function w 7→ φu,λ(w) , 1
2(u − w)2 + λ|w| is convex, its minimization is

not straightforward since it is non-smooth, with the presence of the absolute value. If
the minimum does not happen at zero, we can take the derivative of φu,λ and obtain a
closed-form solution for the minimizer. On the other hand, if the function φu,λ has its
smallest value at zero, its left/right derivative should be positive to guarantee first order
optimality conditions. These facts can be summarized in the following statement, that
is

arg min
w∈R

[1
2

(u− w)2 + λ|w|
]

= sign(u) max{0, |u| − λ}.

As a matter of fact, the minimizer of (1.4) is well-known and corresponds to the soft-
thresholding operator introduced by Donoho and Johnstone (1995). We shall discuss at
greater length in Section 1.5 why this operator is important and how it constitutes a
building block of efficient algorithms. It is interesting to see how the solution ŵ varies
with respect to the regularization parameter. As long as the absolute value |u| is smaller
than λ, the solution ŵ remains equal to zero, and sparsity is indeed promoted. Then,
when |u| goes beyond the threshold λ, the minimizer becomes equal to a “shifted” version
of u.

To understand how the ℓ1-norm mimics the effect of the ℓ0 pseudo-norm, we consider
as well the following problem

min
w∈R

[1
2

(u− w)2 + λ1{w 6=0}
]

, (1.5)

where the indicator function 1{w 6=0} is equal to one if w is nonzero, and zero otherwise.
Again, problem (1.5) can be proved to have a closed-form minimizer whose expression
is given by ŵ = u.1{|u|≥

√
2λ}. We display on Figure 1.1 the profiles of the minimizers for

both (1.4) and (1.5).
In order to gain more insight into the sparsity-inducing behavior of the ℓ1-norm, we

now consider some intuitive geometrical argument.

Geometrical Intuition Through the ℓ1-Norm Ball

Although we consider in (1.1) a regularized formulation, we could equivalently focus
on a constrained problem, that is,

min
w∈Rp

f(w) such that Ω(w) ≤ µ, (1.6)

7
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Figure 1.1: Comparison between soft- and hard-thresholding, respectively on the left
and right figures.

for some µ ∈ R+, and where we have assumed for simplicity that W = Rp. The set
of solutions of (1.6) parametrized by µ is the same as that of (1.1), as described by
some value of λµ depending on µ (e.g., see Section 3.2 in Borwein and Lewis, 2006).
At optimality, the opposite of the gradient of f evaluated at any solution ŵ of (1.6) is
known to belong to the normal cone to B = {w ∈ Rp; Ω(w) ≤ µ} at ŵ (Borwein and
Lewis, 2006). In other words, for sufficiently small values of µ, i.e., so that the constraint
is active, the level set of f for the value f(ŵ) is tangent to B.

As a consequence, the geometry of the ball B is directly related to the properties of
the solutions ŵ. If Ω is taken to be the ℓ2-norm, then the resulting ball B is the standard,
isotropic, “round” ball that does not favor any specific direction of the space. On the
other hand, when Ω is the ℓ1-norm, B corresponds to a diamond-shaped pattern in two
dimensions, and to a pyramid in three dimensions. In particular, B is anisotropic and
exhibits some singular points due to the non-smoothness of Ω. Moreover, these singular
points are located along the axis of Rp, so that if the level set of f happens to be tangent
at one of those points, sparse solutions are obtained. In order to better understand
why such constraints favour solutions located at vertices or some degenerate parts of the
domain boundaries, we refer the interested reader to Barvinok (1995); Pataki (1998) for
related results in the context of cone programming and low-rank matrices. We display
on Figure 1.2 the balls B for both the ℓ1- and ℓ2-norms.

After having introduced the ℓ1-norm, we now turn to more sophisticated sparsity-
inducing norms capable of encoding additional information about the data and the prob-
lem at hand.

1.3.3 Structured Sparsity-Inducing Norms

We have so far focused on the ℓ1-norm as a computationally-tractable surrogate for
the ℓ0-pseudo-norm. The primary goal of these regularizers is to penalize dense vectors
of parameters, that is, those whose number of nonzero coefficients is large. In other
words, these regularization schemes only care about cardinality: they treat each variable
individually and they are blind to potential relationships that may exist between the
features. A simple way of justifying the latter property is to see that for any permutation

8
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(a) ℓ2-norm ball (b) ℓ1-norm ball

Figure 1.2: Comparison between the ℓ2-norm and ℓ1-norm balls in three dimensions,
respectively on the left and right figures. The ℓ1-norm ball presents some singular points
located along the axis of R3.

matrix P ∈ {0, 1}p×p, we have the following invariance

‖Pw‖1 = ‖w‖1 and ‖Pw‖0 = ‖w‖0.

One objective of this thesis is to come up with sparsity-inducing norms capable of
encoding some additional structure about the variables. We shall assume this structural
information available and known a priori. In addition, we will loosely speak about
structure, without providing with a formal definition of what we mean by this term;
instead, our statements will be motivated and illustrated by concrete examples.

Sparsity-Inducing Norms with Non-Overlapping Groups of Variables

Let us introduce a first extension of the ℓ1-norm. Assume that we consider two-
dimensional data-points of the form x = [x1,x2], described by two categorical variables
taking values in the set {c1, c2, c3}. One way of encoding these unordered categories
consists of introducing an augmented space of dummy variables, so that a data-point x
can represented as

xaug = [xc1
1 ,x

c2
1 ,x

c3
1 ,x

c1
2 ,x

c2
2 ,x

c3
2 ] ∈ {0, 1}6, with xcl

k ,

{

1 if xk = cl,

0 otherwise.

Now, further assume that we want to perform variable selection in a problem involving
a set of such data-points. The ℓ1-regularization is not appropriate in this case since
each dummy variable is going to be penalized independently, and as a result, the coding
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scheme as triplets is likely to be lost. It is therefore appealing to keep the triplet-
structure while performing variable selection. This setting is actually an example where
group sparsity can be beneficial. Let us consider the set G = {{1, 2, 3}, {4, 5, 6}} of
subsets of J1; 6K, and introduce the norm

Ω(w) =
∑

g∈G
‖wg‖2 =

√

w2
1 + w2

2 + w2
3 +

√

w2
4 + w2

5 + w2
6.

Intuitively, Ω acts as an ℓ1-norm on the vector {‖wg‖2}g∈G . Regularizing by Ω therefore
causes some ‖wg‖2 (and equivalently wg) to be zeroed out for some g in G. Conversely,
within each groups of variables g in G, the ℓ2-norm does not induce sparsity. As a result,
the norm Ω promotes sparsity at the level of the groups of variables g in G. Back to
our example, this choice of Ω makes it possible to preserve the triplet-structure of the
coding scheme while performing variable selection. We illustrate the properties of such
a norm on Figure 1.3-(a) where we display the unit ball associated with Ω, which is to
be contrasted with the ℓ1-norm ball represented on Figure 1.2.

(a) ℓ1/ℓ2-norm ball without overlaps:
Ω(w) = ‖w{1,2}‖2 + |w3|

(b) ℓ1/ℓ2-norm ball with overlaps:
Ω(w) = ‖w{1,2,3}‖2 + |w1| + |w2|

Figure 1.3: Comparison between two mixed ℓ1/ℓ2-norm balls in three dimensions, with-
out and with overlapping groups of variables, respectively on the left and right figures.
The singular points appearing on these balls describe the sparsity-inducing behavior of
the underlying norms Ω.

We have introduced here a specific instance of structured sparsity—sometimes re-
ferred to as group sparsity—where structure is understood as non-overlapping block of
variables. More generally, if G denotes a partition of J1; pK, we can extend the definition
of Ω as

Ω(w) =
∑

g∈G
‖wg‖q for any q ∈ (1,∞]. (1.7)
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Thus defined, Ω is usually referred to as a mixed ℓ1/ℓq-norm, and in practice, popular
choices for q are {2,∞}. In the context of least-squares regression, this regularization is
known as group Lasso (Turlach et al., 2005; Yuan and Lin, 2006). It has be shown to
improve the prediction performance and/or interpretability of the learned models when
the block structure is relevant (Roth and Fischer, 2008; Stojnic et al., 2009; Lounici
et al., 2009; Huang and Zhang, 2010). Moreover, applications of this regularization
scheme arose in the context of multi-task learning (Obozinski et al., 2009; Quattoni
et al., 2009; Liu et al., 2009) to account for features shared across tasks, and multiple
kernel learning (Bach, 2008b) for the selection of different kernels.

Specifying in advance the exact partition of the set features is in many situations
too strong a requirement. We now consider a more general family of norms that notably
reduces this constraint and makes it possible to encode richer structures.

Sparsity-Inducing Norms with Overlapping Groups of Variables

Sparsity-inducing norms with overlapping groups of variables constitutes an essential
building block of this thesis and one of its contributions. Chapter 2 is dedicated to a
thorough and formal analysis of the properties of these norms; we give in this section a
rather informal overview of these objects and present in which practical circumstances
they might prove to be interesting.

Starting from the definition of Ω in Eq. (1.7), it is natural to study what happens
when the set of groups G is allowed to contain elements that overlap. In fact, and as
shown in Chapter 2, the sparsity-inducing behavior of Ω remains the same. As a result,
when regularizing by Ω, some entire groups of variables g in G are set to zero. We
illustrate the properties of such a norm on Figure 1.3-(b) where we display the unit
ball associated with Ω. While the resulting patterns of nonzero variables—also referred
to as supports, or nonzero patterns—were obvious in the non-overlapping case, it is
interesting to understand here the relationship that ties together the set of groups G and
its associated set of possible nonzero patterns. Let us denote by P the latter set.

Under mild conditions, it can be proved (see Chapter 2) that given any intersection-
closed 2 family of patterns P of variables, such as all the rectangles on a two-dimensional
grid of variables, it is possible to build an ad-hoc set of groups G—and hence, a regu-
larization norm Ω—that enforces the support of the solutions of (1.1) to belong to P.
Moreover, the converse is also true, meaning that given any norm of the form (1.7), we
can characterize the set of possible nonzero patterns that the solutions of (1.1) can have.

These properties have important practical implications and make it possible to design
norms that are adapted to the structure of the problem at hand; we give below interesting
examples:

One-dimensional Sequence. Given p variables organized in a sequence, if we want
to select only contiguous nonzero patterns, we represent on Figure 1.4 the set of groups

2. A finite set A is said to be intersection-closed, if for any two elements a1, a2 ∈ A, we have
a1 ∩ a2 ∈ A. In words, this means that the the set A is stable with respect to the intersection.
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Figure 1.4: (Left) The set of blue groups to penalize in order to select contiguous
patterns in a sequence. (Right) In red, an example of such a nonzero pattern with its
corresponding zero pattern (hatched area).

G to consider. In this case, we have |G| = O(p). Imposing the contiguity of the nonzero
patterns is for instance relevant in the context of time series, or for the diagnosis of
tumors, based on the profiles of arrayCGH (Rapaport et al., 2008). Indeed, because of
the specific spatial organization of bacterial artificial chromosomes along the genome, the
set of discriminative features is expected to have specific contiguous patterns. Note that
the sparsifying effect we obtain here is to be contrasted with that of a penalty based on
total-variation (Rudin et al., 1992) plus the ℓ1-norm, where contiguous patterns would
be encouraged but without the guarantee of selecting a single contiguous sequence.
Moreover, the profiles of the learned coefficients will be piecewise constant in this case,
a property which may not be desirable.

Two-dimensional Grid. In the same way, assume now the p variables are organized
on a two-dimensional grid. If we want the possible nonzero patterns P to be the set
of all rectangles on this grid, the appropriate groups G to consider can be shown (see
Chapter 2) to be those represented on Figure (1.5). In this setting, we have |G| = O(

√
p).

Figure 1.5: Vertical and horizontal groups: (Left) the set of blue and green groups to
penalize in order to select rectangles. (Right) In red, an example of nonzero pattern
recovered in this setting, with its corresponding zero pattern (hatched area).

Sparsity-inducing regularizations built upon such group structures have resulted in
good performances for background subtraction (Cevher et al., 2008; Baraniuk et al., 2010;
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Huang et al., 2009; Mairal et al., 2010b), topographic dictionary learning (Kavukcuoglu
et al., 2009; Mairal et al., 2011), wavelet-based denoising (Rao et al., 2011), and for face
recognition with corruption by occlusions (Jenatton et al., 2010b).

Hierarchical Structure. A third interesting example assumes that the variables have
a hierarchical structure. Specifically, we consider that the p variables correspond to the
nodes of tree T (or a forest of trees). Moreover, we assume that we want to select the
variables according to a certain order: a feature can be selected only if all its ancestors
in T are already selected. This hierarchical rule can be shown to lead to the family of
groups displayed on Figure 1.6.

Figure 1.6: Left: example of a tree-structured set of groups G (dashed contours in red),
corresponding to a tree T with p = 6 nodes represented by black circles. Right: example
of a sparsity pattern induced by the tree-structured norm corresponding to G: the groups
{2, 4}, {4} and {6} are set to zero, so that the corresponding nodes (in gray) that form
subtrees of T are removed. The remaining nonzero variables {1, 3, 5} form a rooted and
connected subtree of T . This sparsity pattern obeys the following equivalent rules: (i) if
a node is selected, the same goes for all its ancestors. (ii) if a node is not selected, then
its descendant are not selected.

Chapter 4 largely discusses the properties of the norm Ω in this case, and presents
efficient ways of optimizing the corresponding problem (1.1). This penalty was first used
in Zhao et al. (2009); since then, this type of groups has led to numerous applications, for
instance, wavelet-based denoising (Zhao et al., 2009; Baraniuk et al., 2010; Huang et al.,
2009; Jenatton et al., 2011c), hierarchical dictionary learning for both topic modeling
and image restoration (Jenatton et al., 2010a, 2011c), log-linear models for the selection
of potential orders (Schmidt and Murphy, 2010), bioinformatics, to exploit the tree
structure of gene networks for multi-task regression (Kim and Xing, 2010), and multi-
scale mining of fMRI data for the prediction of some cognitive task (Jenatton et al.,
2011b).

Extensions. The possible choices for the sets of groups G are not limited to the afore-
mentioned examples. More complicated topologies can be considered, for instance, three-
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1. Introduction and Related Work

dimensional spaces discretized in cubes or spherical volumes discretized in slices. An
application to neuroimaging in Chapter 5 pursues this idea.

Before introducing more material in this introduction, we next review alternative
approaches to structured sparsity that have emerged in the literature.

Related Approaches to Structured Sparsity

We classify these parallel approaches into three categories:

Convex Formulations. As mentioned in the previous section, the family of norms
defined in (1.7) is adapted to intersection-closed sets of nonzero patterns. However,
some applications exhibit structures that can be more naturally modelled by union-
closed families of supports. This idea was developed by Jacob et al. (2009) who, given
a set of groups G, introduced the following norm

Ωunion(w) , min
ξ∈Rp×|G|

∑

g∈G
‖ξg‖2 such that

{ ∑

g∈G ξg = w,

∀g ∈ G, ξ
g
j = 0 if j /∈ g.

(1.8)

As it will be discussed at length below, there also are non-convex formulations adapted
to union-closed families of supports. We now turn to another convex way of inducing
structured sparsity. Unlike the approaches previously presented, the work from Micchelli
et al. (2010) does not rely on a set of groups G. Instead, for a given nonempty convex
cone C ⊆ Rp, the following norm is considered

ΩC(w) = inf
c∈C

1
2

p
∑

j=1

[w2
j

cj
+ cj

]

.

The authors from Micchelli et al. (2010) show that ΩC penalizes less the vectors w
which satisfy {|wj |}j∈J1;pK ∈ C. As a result, and for judicious choices of C, the norm
ΩC promotes some form of structure, as encoded by C. Examples of such structures are
contiguous, or ordered, coefficients on a sequence.

Submodular Formulations. Another approach for structured sparsity draws con-
nections with submodular analysis (Bach, 2010a). Starting from non-decreasing, sub-
modular 3 set-functions F of the supports of the parameter vector w—i.e., w 7→ F ({j ∈
J1; pK; wj 6= 0})—structured sparsity-inducing norms can be built by considering the
convex envelope of F on the unit ℓ∞-norm ball. By selecting the appropriate set-function
F , similar structures to those described above can be obtained. This idea was fur-
ther extended to symmetric, submodular set-functions of the level sets of w, that is,
w 7→ maxν∈R F ({j ∈ J1; pK; wj ≥ ν}), thus leading to different types of structures (Bach,
2010b).

3. Let S be a finite set. A function F : 2S → R is said to be submodular if for any subset A, B ⊆ S,
we have the inequality F (A ∩ B) + F (A ∪ B) ≤ F (A) + F (B); see Bach (2010a) and references therein.
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1.4. Dictionary Learning with Structured Sparsity-Inducing Penalties

Non-convex Formulations. We end this review of structured sparsity approaches
by listing non-convex formulations. In the same flavor as the norm (1.8), Huang et al.
(2009) considered the penalty

ψ(w) , min
H⊆G

∑

g∈H
ωg, such that {j ∈ J1; pK; wj 6= 0} ⊆

⋃

g∈H
g,

where G is a given set of groups, and {ωg}g∈G is a set of positive weights which defines
a coding length. In other words, the penalty ψ measures from an information-theoretic
viewpoint, “how much it costs” to represent w. A related approach was considered
in Haupt and Nowak (2006). Finally, in the context of compressed sensing, the work of
Baraniuk et al. (2010) also focuses on union-closed families of supports. In this case,
however, the formulation does not bring into play a penalty derived from information-
theoretic considerations.

1.4 Dictionary Learning with Structured
Sparsity-Inducing Penalties

So far, we not have not discussed how we should choose the representations of
the available signals and data. For instance, in the basis pursuit formulation (1.3),
we have implicitly assumed that we were given a fixed dictionary D—e.g., a basis of
wavelets (Mallat, 1999)—over which it was sensible to decompose the signal x. This
section is dedicated to the introduction of matrix-factorization and dictionary-learning
techniques which make it possible to learn a representation adapted to the considered
class of signals.

1.4.1 Background Material on Matrix Factorization and Dictionary
Learning

Throughout this introduction to dictionary learning, we take the notation and the
viewpoint from signal processing, following the basis-pursuit formulation (1.3). Let us
consider a set of n signals X = [x1, . . . ,xn] ∈ Rm×n described by m features, typically n
natural image patches composed of m pixels. The goal of the methods we next present
consists of expressing each of these signals as linear combinations of dictionary elements,
also known as atoms, taken from a learned dictionary.

Concretely, let us denote by D = [d1, . . . ,dp] ∈ Rm×p the dictionary and introduce
A = [α1, . . . ,αn] ∈ Rp×n the matrix containing the decompositions, also referred to as
codes, for each of the n signals. With this notation in place, we try to simultaneously
learn (A,D) in order to obtain

X ≈ DA,

as measured by some data-fitting term. Most of the work in this thesis focuses on the
square loss function 4, but some fields of applications benefit from other data-fitting

4. More precisely, since we manipulate matrices, we measure how close DA is from X via the Frobe-
nius norm, that is, 1

2
‖X − DA‖2

F.
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terms, e.g., in audio processing (Févotte et al., 2009; Lefèvre et al., 2011a). Stated in
this way, the problem of finding some interesting pair (A,D) is still very general; it is
therefore appealing to reduce the space of candidate pairs (A,D) by further adding some
constraints on A and/or D. Those constraints should reflect some expected properties
of the problem at hand. We list below some interesting and well-known examples of such
formulations:

Nonnegative Matrix-Factorization

This type of factorization is well-tailored for nonnegative signals. Nonnegative matrix-
factorization (NMF) (Lee and Seung, 1999) has notably become popular thanks to its
application to face images. In this context, it was observed to retrieve sets of variables
that are partly localized on the face and capture some features or parts of the face which
seem intuitively meaningful given our a priori (for a more detailed discussion and com-
parisons to structured approaches, see Chapter 3). More formally, the formulation of
NMF reads

min
A∈Rp×n

+ , D∈Rm×p
+

1
2
‖X−DA‖2F.

Thus, the coefficients of both A and D are forced to be nonnegative. This standard
formulation was extended in many ways, see, e.g., Hoyer (2004); Cai et al. (2010).

K-means Clustering

Another example of matrix-factorization problem is K-means (Lloyd, 1982). The
objective of K-means is to find clusters and cluster centers, also referred to as centroids,
starting from a set of unlabeled data-points. Once the desired number of clusters is
chosen, say p ∈ N, the formulation of K-means is given by

min
A∈{0,1}p×n

D∈Rm×p

1
2
‖X−DA‖2F, such that for any i ∈ J1;nK, ‖αi‖1 = 1.

The additional constraints on the columns of A enforce that one signal belongs to a
single cluster out of the p possibles ones.

The previous list of examples is of course not exhaustive, and could be further com-
pleted, e.g., by principal component analysis (Jolliffe, 1986) which is probably one of
the most popular tools for data analysis and unsupervised dimensionality reduction.
Moreover, and as it shall be discussed at length in Chapter 4, several probabilistic topic
models (Blei et al., 2003) and other stochastic block models (Airoldi et al., 2008) can be
viewed as matrix-factorization problems as well (Buntine, 2002). For further discussions,
we refer the interested readers to some reviews about matrix factorization and dictionary
learning, e.g., Singh and Gordon (2008); Mairal (2010); Tosic and Frossard (2011).

We now turn to the formulation of dictionary learning we adopt throughout this
manuscript.
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1.4.2 Dictionary-Learning with (Structured) Sparsity-Inducing
Norms

Let us introduce two convex sets A ⊆ Rp×n and D ⊆ Rm×p. We shall now focus on
the following formulation

min
A∈A, D∈D

[1
2
‖X−DA‖2F + λΩ(A)

]

, (1.9)

where Ω is a sparsity-inducing regularizer applied to the matrix A, which will usually
decompose into a sum of vector-based regularizers for each of the columns (or rows) of
A. By introducing Ω in the cost function, we create a unbalance that can cause the
coefficients of the matrix A to end up with small magnitudes; we therefore impose the
set D to be bounded to avoid any degenerated solution. As a side comment, we know
from Bach et al. (2008) that problem (1.9) has equivalent formulations, and we can go
from regularized to constrained objective functions, and conversely. However, some of
the resulting formulations are more suitable for optimization than others, and we shall
mostly consider the form of problem (1.9).

Optimization. In terms of optimization, the presence of the product DA in prob-
lem (1.9) implies that there is unfortunately no joint convexity in the pair (A,D).
However, when one of the matrices is kept fixed, the problem is convex with respect to
the other one; this property can be exploited within an alternative optimization scheme
which leads to good results in practice and has become a commonly-used procedure (Ol-
shausen and Field, 1997; Aharon et al., 2006; Lee et al., 2007; Mairal et al., 2009b).
Details about the computations of these two steps—i.e., the optimization over A for D
fixed, and vice-versa—are discussed in Chapter 3 and 4. Furthermore, an efficient online
optimization method was recently designed for dictionary learning (Mairal et al., 2010a),
making it possible to handle extremely large sets of signals.

Sparse Dictionary Learning. A popular instance of (1.9) is sparse coding (Ol-
shausen and Field, 1996, 1997), where we not only want each signal to be well explained,
but we also seek sparse decompositions over the dictionary; this leads to

min
A∈Rp×n, D∈D

1
2
‖X−DA‖2F + λ

n∑

i=1

‖αi‖1, (1.10)

where D is typically taken to be the set of dictionaries whose atoms have their ℓ2-norm
less than, or equal to one. Sparse coding has received a great deal of attention over the
past few years and has led to state-of-the-art performances in computer vision (Boureau
et al., 2010), as well as in various image-processing tasks, e.g., see Peyré (2009); Mairal
(2010) and numerous references therein. It is worth noting that sparse dictionary learn-
ing can alternatively be formulated as convex (Bach et al., 2008; Bradley and Bagnell,
2009b), submodular (Krause and Cevher, 2010), and non-parametric Bayesian (Zhou
et al., 2009) problems.
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Related to sparse coding is the problem of sparse principal component analysis (Jol-
liffe et al., 2003; Zou et al., 2006; Moghaddam et al., 2006; Zass and Shashua, 2007;
d’Aspremont et al., 2008; Mackey, 2009; Witten et al., 2009). In this setting, the de-
compositions of the signals are not encouraged to be sparse anymore, but instead, the
dictionary elements are forced to involve only a few variables (i.e., a small fraction of
the m features). For further details and discussions about the underlying optimization
problems, we refer the interested readers to the review from Zhang et al. (2011).

Sparse Structured Dictionary Learning. The framework of dictionary learning
lends itself well to structured sparsity. Indeed, by having access to the factorization
DA, it possible to encode prior knowledge in various ways: through the features (via
the columns of D), over the latent variables (through the columns of A and the rows of
D), and also across the different signals (this time, thanks to the rows of A).

Moreover, there is an important subtlety which is worth being exposed. In the
traditional basis pursuit setting, as presented Eq. (1.3), the dictionary is assumed fixed,
and we therefore need strong prior information to be able to organize the atoms according
to the considered regularizers. Although such situations do exist, e.g., see Chapter 4 with
some wavelet base that naturally exhibits a hierarchical structure, they remain rather
uncommon. Of course, in some cases, we can still apply an adapted pre-processing step
to make sure the data exactly match the structure encoded by the regularization, e.g.,
see Chapter 5 where a hierarchical clustering of the features is performed beforehand.

On the contrary, in the context of dictionary learning, since the dictionary elements
are learned, we can argue that the atoms will have to match well the prior that is
imposed by the regularization. In other words, combining structured regularization with
dictionary learning has precisely the advantage that the dictionary elements will self-
organize and self-adapt to match the prior.

Sparse structured dictionary learning has been successfully applied to various modal-
ities, such as, for instance, misaligned gene-expression time series (Tibau Puig et al.,
2011), hierarchical topic modeling (Jenatton et al., 2010a, 2011c), the design of topo-
graphic dictionaries (Kavukcuoglu et al., 2009; Mairal et al., 2011) and localized features
for face recognition (Jenatton et al., 2010b), the denoising of natural image patches (Je-
natton et al., 2010a, 2011c), and speaker/instrument identification (Sprechmann et al.,
2010a) as well as source separation (Lefèvre et al., 2011b).

18



1.5. Some Elements of Convex Analysis and Convex Optimization for Sparse Methods

1.5 Some Elements of Convex Analysis and Convex
Optimization for Sparse Methods

Some parts of this section are built upon the material developed in the following
book chapter:

F. Bach, R. Jenatton, J. Mairal and G. Obozinski. Convex Optimization with Sparsity-
Inducing Norms. In S. Sra, S. Nowozin, and S. J. Wright, editors, Optimization for
Machine Learning, 2011.

The goal of this section is twofold. On the one hand, we shall recall results from con-
vex analysis that are important to study the properties of structured sparsity-inducing
norms. Most of these results are well-known in the literature, and we refer the read-
ers interested in a more extensive coverage of this topic to classical books, such as,
e.g., Borwein and Lewis (2006); Boyd and Vandenberghe (2004); Bertsekas (1999). On
the other hand, we will focus on optimization techniques that are well-suited to address
problem (1.1) in the context of structured sparsity-inducing norms.

1.5.1 Background Material of Convex Analysis

We start this section by introducing the concept of subgradient which generalizes
the notion of derivative for non-smooth functions, and which is essential to describe
optimality conditions. As a reminder, a function h : Rp → R is said to be convex if
and only if (1) dom(h) , {w ∈ Rp; h(w) < +∞} is a convex set, and (2) for any
(v,w, t) ∈ dom(h)× dom(h)× [0, 1], we have

h(tv + (1− t)w) ≤ t h(v) + (1− t)h(w).

Moreover, if the domain dom(h) is nonempty, h is said to be proper. In particular, this
definition allows convex functions to take the value +∞, such as the indicator function
of a convex set.

Subgradients and Optimality conditions

Given a convex function h : Rp → R and a vector w in Rp, let us define the set of
subgradients—or simply, the subdifferential—of h at w as

∂h(w) , {z ∈ Rp; h(w) + z⊤(v−w) ≤ h(v) for any vector v ∈ Rp}. (1.11)

The elements of ∂h(w) are called the subgradients of h at w. For convex functions and
for all points that lie in the interior of the domain, the subdifferential at this point is
nonempty. We present interesting examples of subdifferentials that will prove important
in our analysis:
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• For a convex and differentiable function f : In this case, the subdifferential is a
singleton that reduces to the gradient of f , that is, ∂f(w) = {∇f(w)}.

• For a norm Ω: A little calculation shows in this case the following equality

∂Ω(w) =

{

{z ∈ Rp; Ω∗(z) ≤ 1} if w = 0,

{z ∈ Rp; Ω∗(z) ≤ 1 and z⊤w = Ω(w)} otherwise.
(1.12)

The previous equation brings into play an object central to this thesis, namely
the dual norm of Ω, referred to as Ω∗ and which is defined by

Ω∗(z) , max
w∈Rp

z⊤w such that Ω(w) ≤ 1. (1.13)

The dual norm notably arises in the analysis of estimation bounds (Negahban
et al., 2009), in the definition of proper stopping criteria while minimizing convex
functions, and in the design of working-set strategies (Bach et al., 2011), as will
be shown in Section 1.5.2. Moreover, the dual norm of Ω∗ is Ω itself, and as a
consequence, the formula above holds also if the roles of Ω and Ω∗ are exchanged.
It is easy to show that in the case of an ℓq-norm, for q ∈ [1; +∞], the dual norm
is the ℓq′-norm, with q′ in [1; +∞] such that 1

q + 1
q′ = 1. In particular, the ℓ1- and

ℓ∞-norms are dual to each other, and the ℓ2-norm is self-dual (dual to itself).
The previous list is not exhaustive, and other examples of useful subdifferentials include
the indicator function of a convex set C, whose set of subgradients is given by the normal
cone to C. We now turn to the main application of subgradients in this thesis, that is,
the characterization of optimality conditions for non-smooth optimization problems:

Proposition 1 (Subgradients at Optimality)
For any proper convex function h : Rp → R, a point w in Rp is a global minimum of h
if and only if the condition 0 ∈ ∂h(w) holds.

Note that the concept of subdifferential is mainly useful for non-smooth functions.
If h is differentiable at w, the set ∂h(w) is indeed the singleton {∇h(w)}, and the
condition 0 ∈ ∂h(w) reduces to the classical first-order optimality condition ∇h(w) = 0.

With these technical results in place, we can characterize the optimality conditions
of problem (1.1) when the data-fitting term is assumed to be smooth and Ω is taken to
be a norm. Putting together the pieces with Eq. (1.12) and Proposition 1, and applying
standard convex calculus rules (Rockafellar, 1997), we have that w ∈ Rp is optimal if
and only if

− 1
λ
∇f(w) ∈ ∂Ω(w).

As a consequence, the vector 0 is solution if and only if Ω∗(∇f(0)
) ≤ λ. The general

optimality condition above can be specified to the ℓ1-norm. Recalling the definition of
the subdifferential of a norm in Eq. (1.12) along with the fact that the ℓ∞- and ℓ1-norms
are dual to each other, we obtain that

w ∈ arg min
v∈Rp

[

f(v)+λ‖v‖1
]

⇔






∣
∣
[∇f(w)

]

j

∣
∣ ≤ λ, for all j ∈ J1; pK with wj = 0,

[∇f(w)
]

j
= sign(wj)λ, otherwise.

20



1.5. Some Elements of Convex Analysis and Convex Optimization for Sparse Methods

These optimality conditions provide with a formal justification to the sparsity-inducing
property of the ℓ1-norm: depending on the strength of the regularization parameter λ,
the directions along which the variation of the data-fitting term is not large enough are
kept to zero, and sparsity is indeed promoted. In the case of the square loss function, note
that we get back the traditional optimality conditions for Lasso and basis pursuit (Fuchs,
2005; Wainwright, 2009).

We now introduce additional material to derive duality gaps and monitor the progress
of optimization algorithms.

Fenchel Conjugate and Duality Gaps

Let us denote by f∗ the Fenchel conjugate of f (Rockafellar, 1997), defined by

f∗(z) , sup
w∈Rp

[z⊤w− f(w)].

Regardless of the nature of the function f , the conjugate is always convex. Moreover,
under mild conditions (convexity and closedness of the level sets of f), the functions
f and its biconjuguate f∗∗ coincide. For many functions, the conjugate is available in
closed form (Borwein and Lewis, 2006), and for the square loss function, we notably
have that t 7→ 1

2 t
2 is self-conjugate.

In the context of this thesis, it is notably useful to specify the expression of the
conjugate of a norm. Perhaps surprisingly and misleadingly, 5 the conjugate of a norm
is not equal to its dual norm, but corresponds instead to the indicator function of the
unit ball of its dual norm. More formally, we have the result (e.g., see Example 3.26 in
Boyd and Vandenberghe, 2004):

Proposition 2 (Fenchel conjugate of a norm)
Let Ω be a norm on Rp. The following equality holds for any z ∈ Rp

sup
w∈Rp

[z⊤w− Ω(w)] =

{

0 if Ω∗(z) ≤ 1

+∞ otherwise.

Fenchel conjugates are particularly useful to derive duality gaps. As a brief reminder,
the duality gap of a minimization problem is defined as the difference between the
primal and dual objective functions, evaluated for a feasible pair of primal/dual variables
(Boyd and Vandenberghe, 2004, see Section 5.5). This gap serves as a certificate of
(sub)optimality: if it is equal to zero, then the optimum is reached, and provided that
strong duality holds, the converse is true as well (Boyd and Vandenberghe, 2004, see
Section 5.5). Dual problems and feasible dual variables can be obtained through the
following result (Borwein and Lewis, 2006, Theorem 3.3.5):

Proposition 3 (Fenchel duality)
If f∗ and Ω∗ are respectively the Fenchel conjugate of a convex and differentiable function

5. For convenience, we “overload” the notation of the superscript ∗ and refer to the dual norm of Ω
as Ω∗ even though it is not equal to the conjugate of Ω.
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f and the dual norm of Ω, then we have

max
z∈Rp: Ω∗(z)≤λ

−f∗(z) ≤ min
w∈Rp

f(w) + λΩ(w).

Moreover, equality holds as soon as the domain of f has nonempty interior.

Hence, for any feasible w, z in Rp, we can compute the difference between the value
of the primal objective function f(w) + λΩ(w) and the dual objective function −f∗(z),
which results in the duality gap:

f(w) + λΩ(w) + f∗(z).

Proposition 3 shows that it is always positive, and that it vanishes at optimality, where
we then speak about strong duality. Duality gaps are important in convex optimization
because they provide an upper bound on the difference between the current value of an
objective function and the optimal value, which makes it possible to set proper stopping
criteria for iterative optimization algorithms. Given a current iterate w, computing a
duality gap requires choosing a “good" candidate for z (and in particular a feasible one).
Given that at optimality, z⋆ = ∇f(w⋆) is the unique solution to the dual problem, a
natural choice of dual variable is z = min

(
1, λ

Ω∗(∇f(w))

)∇f(w), which reduces to z⋆ at
the optimum and therefore yields a zero duality gap at optimality.

The next section provides with an alternative tool to deal with non-smooth convex
formulations, especially adapted to the structure (1.7) of Ω.

Conic Duality and Sparsity-Inducing Norms

Because of the structure of the regularizers we study in this thesis—namely linear
combinations of (generally non-smooth) norms—conic duality (see Boyd and Vanden-
berghe, 2004, and references therein) appears as a powerful and appealing tool. In fact,
conic duality makes it possible to derive representations of (1.7) 6 that may be more
amenable to optimization (see, e.g., Schmidt and Murphy, 2010; Jenatton et al., 2010a)
and/or better suited for theoretical analysis (see, for instance, Bach, 2008b; Jenatton
et al., 2010a).

We review here simple properties of cones and give an example of reformulation
of (1.7) that is particularly useful when dealing with overlapping groups of variables (Je-
natton et al., 2010a; Mairal et al., 2011).

Let us consider C ⊆ Rp a cone, that is, a set such that if c ∈ C, then tc ∈ C for any
nonnegative scalar t. If the cone C is further assumed to be proper, 7 it induces a partial
ordering 4C on Rp, so that

a 4C b⇔ b− a ∈ C.
6. In fact, using conic duality in place of classical Fenchel duality is more natural in our context. Both

approaches can lead to the same dual formulations, but conic duality is usually more straightforward.
For these reasons, we have made the decision to present both frameworks.

7. A cone is said to be proper if it is convex, closed, has no empty interior and does not contain any
line (Boyd and Vandenberghe, 2004).
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A well-known example of such ordering is the componentwise inequality between p-
dimensional vectors built from the proper cone C = Rp

+.
Based on the cone C, a dual counterpart can be defined in the following way:

C∗ , {a ∈ Rp; a⊤b ≥ 0 for all b ∈ C}.

Moreover, it can be shown that if C is proper, the same goes for the dual cone C∗ (Boyd
and Vandenberghe, 2004), which notably implies that a dual ordering 4C∗ can also be
defined, similarly to 4C . Interesting properties tie these two orderings together, among
which

[a 4C b]⇔ [c⊤a ≤ c⊤b for all c <C∗ 0]. (1.14)

Relationship (1.14) is central to extend Lagrangian duality and Karush-Kuhn-Tucker
optimality conditions to convex programs where inequality constraints are specified via
generalized conic orderings, also known as generalized inequalities.

In the context of this thesis, it is natural to consider the following proper cone

C , {(a, t) ∈ Rp+1; ‖a‖ ≤ t}, (1.15)

where ‖.‖ denotes any norm on Rp. Interestingly, the dual cone of C has a simple
expression that brings into play the dual norm of ‖.‖ (see Boyd and Vandenberghe,
2004, Example 2.25), namely

C∗ , {(α, τ) ∈ Rp+1; ‖α‖∗ ≤ τ}. (1.16)

For instance, when the underlying norm is chosen to be the ℓ2-norm, we speak about
second-order cone, or “ice-cream” cone (Boyd and Vandenberghe, 2004). In addition,
we have by definition of the conic orderings

[‖a‖ ≤ t] if and only if [(a, t) <C 0], and [‖α‖∗ ≤ τ ] if and only if [(α, τ) <C∗ 0].

The two previous relationships are the starting point to reformulate (1.1). If Ω(w) =
∑

g∈G ‖wg‖, a first approach consists of rewriting (1.1) under (convex) conic constraints
to bypass the non-smoothness of Ω, that is,

min
w∈Rp,t∈R|G|

f(w) + λ
∑

g∈G
tg, such that ∀ g ∈ G, (wg, t

g) <C 0. (1.17)

Provided that f is smooth and convex, the overall objective function is also smooth
and convex, so that projected-gradient schemes (Schmidt and Murphy, 2010) can be
applied. For instance, when ‖.‖ is chosen to be the ℓ2-norm, projecting onto a single
conic constraint can be performed efficiently with the following closed-form solution:

ProjC((a, t)) =







(0, 0) if ‖a‖2 ≤ −t,
(a, t) if ‖a‖2 ≤ t,
1+t/‖a‖2

2 (a, t) otherwise.
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When the set of conic constraints is separable, the situation is simple since it is sufficient
to perform the individual projections sequentially. Moreover, when separability does not
hold anymore, i.e., when the groups in G overlap, Dykstra’s cyclic algorithm can be used
instead (Schmidt and Murphy, 2010). Generalized inequalities can be further exploited
to obtain dual formulations of (1.1) (Jenatton et al., 2010a; Mairal et al., 2011). In
particular, we have the following result:

Proposition 4 (Duality through generalized inequalities)
Let f be a proper convex function. Let us consider the maximization problem

max
ξ∈Rp×|G|,ξ̄∈Rp

−f∗(ξ̄) such that







∀ g ∈ G, ξ
g
j = 0 for j /∈ g,

∀ g ∈ G, (ξg, λ) <C∗ 0,

ξ̄j =
∑

g∈G,g∋j ξ
g
j .

(1.18)

Problems (1.1) and (1.18) are dual to each other and strong duality holds.

The previous proposition turns out to be useful to derive efficient algorithms when
groups in G are overlapping (Jenatton et al., 2010a; Mairal et al., 2011) and to make
interesting connections between sparsity-inducing norms and optimization problems en-
countered in operations research (for more details, see Mairal et al., 2011).

We next present algorithms that are well adapted to solve problem (1.1) with struc-
tured sparsity-inducing norms.

1.5.2 Optimization Methods with Structured Sparsity-Inducing
Norms

While the previous section was dedicated to the theoretical study of problem (1.1)
with tools borrowed from convex analysis, we now present practical optimization proce-
dures. In particular, we shall pay attention to the (if known) convergence-rate guarantees
of the presented algorithms and their ability to properly handle sparsity. By the latter
statement, we mean that the procedures should be able to output solutions with an
identifiable set of nonzero entries, without requiring a somewhat arbitrary thresholding
operation. Finally, Chapter 4 contains some speed comparisons involving the different
techniques presented below.

Generic Approaches

The first class of methods we consider here is blind to the structure of problem (1.1).
If we assume we can compute the gradient of f , and since we can always obtain a
subgradient for Ω as defined in (1.7), we can then resort to subgradient descent to
solve problem (1.1) (see, e.g., Bertsekas, 1999, and references therein). In this case,
we know from Nesterov (2004) that after k iterations, the cost function f + λΩ will
be ε-close to the optimum, with ε = O(1/

√
k). This guarantee is rather weak, and

we shall see afterwards methods with faster rates. In addition, subgradient descent
cannot typically handle sparsity, except when combined with other strategies, e.g., some
truncation step (Langford et al., 2009).
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Before reviewing other techniques, it is worth mentioning that if f is chosen to be
the square loss, and when Ω is a mixed ℓ1/ℓ2- or ℓ1/ℓ∞-norm, then problem (1.1) can be
cast as a second-order cone program (SOCP) and a quadratic program (QP) respectively,
for which there are generic interior-point solvers that are known to be accurate but not
highly scalable. As a brief reminder, a SOCP is defined as a convex optimization problem
with a linear cost function, under second-order cone constraints (see Section 1.5.1) and
linear equality constraints (Boyd and Vandenberghe, 2004), that is,

min
u∈Rp

u⊤
0 u such that

{

‖Aiu + bi‖2 ≤ c⊤
i u + di, for i ∈ J1;mK,

Eu = f ,

where u0 ∈ Rp,Ai ∈ Rn×p,bi ∈ Rn, ci ∈ Rp, di ∈ R,E ∈ Rq×p and f ∈ Rq are fixed
parameters defining the set of constraints.

Reweighted-ℓ2 Approaches

This second class of methods deals with the non-smoothness of Ω by expressing
the norm as the minimum over a set of smooth functions. At the cost of adding new
variables (to describe the set of smooth functions), the problem becomes more amenable
to optimization. In particular, reweighted-ℓ2 schemes consist of approximating the norm
Ω by successive quadratic upper bounds (Argyriou et al., 2007; Rakotomamonjy et al.,
2008; Jenatton et al., 2010b; Kim and Xing, 2010; Daubechies et al., 2010; Micchelli et al.,
2010). Indeed, based on the inequality of arithmetic and geometric means 2

√
ab ≤ a+ b,

it can be shown that

Ω(w) = min
(ηg)g∈G∈R|G|

+

1

2

{
∑

g∈G

‖wg‖22
ηg

+ ηg

}

= min
η∈R|G|

+

1

2

{ p
∑

j=1

[
∑

g∈G
g∋j

1

ηg

]

w2
j +

∑

g∈G
ηg

}

, (1.19)

where we have assumed that Ω is a mixed ℓ1/ℓ2-norm. Interestingly, equality holds above
if and only if ηg = ‖wg‖2 for all g in G. Plugging the previous relationship into Eq. (1.1),
the optimization can then be performed by alternating between the updates of w and
the additional variables (ηg)g∈G . 8 We shall see in Chapter 3 extensions of (1.19) to the
case of more sophisticated norms. When the norm Ω is defined as a linear combination
of ℓ∞-norms, we are not aware of the existence of such variational formulations.

Unlike subgradient descent or proximal methods (see next section), reweighted-ℓ2
methods do not have simple non-asymptotic guarantees on their convergence rate (e.g.,
in Daubechies et al., 2010, local convergence rates are studied).

8. Note that such a scheme is interesting only if the optimization with respect to w is simple, which
is typically the case with the square loss function (Bach et al., 2011). Moreover, for this alternating
scheme to be provably convergent, the variables (ηg)g∈G have to be bounded away from zero, resulting
in solutions whose entries may have small values, but not “true” zeros.
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Proximal Methods

Proximal methods constitute a class of first-order techniques well-adapted to deal
with problem (1.1) (Nesterov, 2007; Beck and Teboulle, 2009; Combettes and Pesquet,
2010). In fact, and as opposed to the generic approaches presented above, proximal
schemes will specifically take advantage of the structure of (1.1), namely, the sum of
two convex terms where only one of these components is assumed smooth. Thus, we will
typically assume that the data-fitting function f is convex differentiable, with Lipschitz-
continuous gradient. On the other hand, Ω is only asked to be convex, and problem (1.1)
with structured sparsity-inducing norms therefore matches these requirements.

Proximal methods have become increasingly popular over the past few years, in
both the signal processing (e.g., Becker et al., 2009; Wright et al., 2009; Combettes and
Pesquet, 2010, and numerous references therein) and the machine learning communi-
ties (e.g., Bach et al., 2011, and references therein). In a broad sense, these methods
can be seen as a natural extension of gradient-based techniques when the objective func-
tion to minimize has a non-smooth part. Proximal methods are iterative procedures.
The simplest version of this class of methods linearizes at each iteration the function f
around the current estimate ŵ, and this estimate is updated as the (unique by strong
convexity) solution of the proximal problem, defined as follows:

min
w∈Rp

[

f(ŵ) + (w− ŵ)⊤∇f(ŵ) + λΩ(w) +
L

2
‖w− ŵ‖22

]

. (1.20)

A quadratic term is added in order to keep the update in a neighborhood where f is
close to its linear approximation, and L>0 is a parameter which is an upper bound on
the Lipschitz constant of ∇f .

Provided that we can solve efficiently the proximal problem of Eq. (1.20), this first
iterative scheme constitutes a simple way of solving problem (1.1). It appears under
various names in the literature: proximal-gradient techniques (Nesterov, 2007), forward-
backward splitting methods (Combettes and Pesquet, 2010), and iterative shrinkage-
thresholding algorithm (Beck and Teboulle, 2009). Furthermore, convergence rates of
the function value f + λΩ can be proved (Nesterov, 2007; Beck and Teboulle, 2009),
and after k iterations, the precision obtained is in the order of O(1/k), which is to be
contrasted with the subgradient case O(1/

√
k).

Interestingly, this first iterative scheme was extended to “accelerated” versions (Nes-
terov, 2007; Beck and Teboulle, 2009). In these extensions, the update is not taken to
be exactly the result from (1.20); instead, it consists of solving the proximal problem
applied to a well-chosen linear combination of the previous estimates. In this case, the
function value f + λΩ converges to the optimum with a rate of O(1/k2), where k is the
iteration number. From Nesterov (2004), we know that this rate is optimal within the
class of first-order techniques; in other words, accelerated proximal-gradient methods
behave as if there were no non-smooth component to handle.

Various proximal schemes can be found in the literature, depending on the consid-
ered setting (e.g., batch versus stochastic) and/or the assumptions made on the func-
tion f . For online/stochastic frameworks, we refer the interested readers to Duchi and
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Singer (2009); Hu et al. (2009); Xiao (2010). Moreover, if we only assume that f is
convex, without satisfying smoothness properties, Douglas-Rachford splitting algorithm
can be applied (Combettes and Pesquet, 2010). For additional work in this direction,
see also Duchi and Singer (2009); Xiao (2010).

We have so far given an overview of proximal methods, without specifying how
we precisely handle its main building block, namely the computation of the proximal
problem, as defined in (1.20).

Proximal Problem. We start by equivalently rewriting problem (1.20) as

min
w∈Rp

1

2

∥
∥
∥w−

(
ŵ− 1

L
∇f(ŵ)

)
∥
∥
∥

2

2
+
λ

L
Ω(w).

Under this form, we can readily observe that when λ = 0, the solution of the proximal
problem amounts to the standard gradient update rule. The problem above can be more
generally viewed as an instance of the proximal operator (Moreau, 1962) associated with
λΩ:

ProxλΩ : u ∈ Rp 7→ arg min
v∈Rp

1

2
‖u− v‖22 + λΩ(v).

This operator enjoys many attractive properties, e.g., continuity and nonexpansivity (Com-
bettes and Wajs, 2006; Combettes and Pesquet, 2010). In particular, there is a rela-
tion that ties ProxλΩ together with the Euclidean projection Proj{v∈Rp; Ω∗(v)≤λ} which
projects onto the ball {v ∈ Rp; Ω∗(v) ≤ λ}. Specifically, we have for any u ∈ Rp (see
Example 2.17 in Combettes and Wajs, 2006):

ProxλΩ(u) = u− Proj{v∈Rp; Ω∗(v)≤λ}(u). (1.21)

For many choices of regularizers Ω, the proximal operator leads to a closed-form solution,
which makes proximal methods especially efficient. If Ω is chosen to be the ℓ1-norm, we
get back the soft-thresholding operator (1.4) applied elementwise. Similarly, if Ω is a
mixed ℓ1/ℓ2-norm with its underlying set of groups G forming a partition of J1; pK, we
obtain the group soft-thresholding operator (Turlach et al., 2005):

For any u ∈ Rp, for any g ∈ G,
[

ProxλΩ(u)
]

g
=







0 if ‖ug‖2 ≤ λ,
‖ug‖2−λ

‖ug‖2
ug otherwise.

In some cases, the direct computation of ProxλΩ is not easy, while the projection
Proj{v∈Rp; Ω∗(v)≤λ} is; we can then exploit (1.21). This situation arises for instance
with a mixed ℓ1/ℓ∞-norm, where G still defines a partition of J1; pK. We indeed have

For any u ∈ Rp, for any g ∈ G,
[

ProxλΩ(u)
]

g
= ug − Proj{v∈R|g|; ‖v‖1≤λ}(ug),

and the Euclidean projection onto the ℓ1-norm ball can be performed in linear time (Brucker,
1984; Duchi et al., 2008).
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As soon as groups in G overlap, the situation becomes difficult since no closed-
forms are available, even by resorting to (1.21); Chapter 4 focuses on these settings and
provides efficient algorithmic solutions. A related question of interest is whether it is
possible to compute ProxλΩ only approximately, while still enjoying convergence, and
possibly guaranteeing the same rates as in the approximation-free case (Schmidt et al.,
2011b).

Block-Coordinate Methods

The main idea of (block-) coordinate descent techniques is to solve problem (1.1)
by sequentially optimizing with respect to one variable (or block of variables) while
keeping the other ones fixed. This approach is appealing when the subproblem involving
a single variable (or, a single block of variables) can be computed efficiently (either
exactly or approximately). Moreover, since several cycles over the p variables at play
may be necessary, (block-) coordinate descent techniques can be naturally coupled to
working-set strategies (see next section).

Coordinate descent is particularly suited for the Lasso (1.2) and basis pursuit (1.3)
problems (Fu, 1998; Friedman et al., 2007; Wu and Lange, 2008). In this case, it can be
shown that each subproblem amounts to solving a proximal operator associated with the
ℓ1-norm, whose solution is available in closed-form, as defined by the soft-thresholding
operator (1.4). Convergence in this setting is guaranteed by results from Tseng (2001). 9

In this context, the simplicity of application of coordinate descent lies in the fact that
(1) the data-fitting is quadratic, and (2) the ℓ1-norm is separable with respect to the p
variables.

The situation is more complex when considering more general loss functions (for
instance, a logistic loss function) and/or a broader family of regularizers (for example,
separable mixed ℓ1/ℓq-norms with G forming a partition of J1; pK). We briefly mention
the extensions from Tseng and Yun (2009); Wright (2010) whose algorithms consist in
using local quadratic approximations of the data-fitting term. 10 In both papers, convex
block-separable regularizers can be handled by solving a proximal problem within each
block. Such a method was for instance applied in Meier et al. (2008) for logistic regression
with an ℓ1/ℓ2-norm regularization.

For structured sparsity, we are interested in regularizers with overlapping groups of
variables (see Section 1.3.3), in which case we are not aware of efficient block-coordinate
methods. However, and as developed in Chapter 4, some dual representations of Ω can
circumvent the issue of overlapping groups (see, e.g., Proposition 4, page 24).

9. Note that the result from Bertsekas (1999) could also be applied, after reformulating the regular-
ization term in the form of separable convex constraints.

10. The authors from Tseng and Yun (2009) consider more general quadratic approximations (i.e.,
with non-diagonal Hessians) for which an inexact line-search can be conducted.
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Working-set Approaches

Working-set algorithms address optimization problems by solving an increasing se-
quence of small subproblems of (1.1). The working set, that we will denote by J ⊆ J1; pK,
refers to the subset of variables involved in the optimization of these subproblems.

Working-set algorithms proceed as follows: after computing a solution to the problem
restricted to the variables in J, global optimality is checked to determine whether the
algorithm has to continue. If this is the case, new variables enter the working set J
according to a strategy that has to be defined. Note that we only consider forward
algorithms, i.e., where the working set grows monotonically. In other words, there are
no backward steps where variables would be allowed to leave the set J. Provided this
assumption is met, it is easy to see that these procedures stop in a finite number of
iterations.

This class of algorithms takes advantage of sparsity from a computational point of
view (Lee et al., 2007; Szafranski et al., 2007; Bach, 2008a; Roth and Fischer, 2008;
Obozinski et al., 2009; Jenatton et al., 2011a; Schmidt and Murphy, 2010), since the
subproblems that need to be solved are typically much smaller than the original one.

Working-set algorithms require three ingredients:
• Inner-loop solver: At each iteration of the working-set algorithm, problem (1.1)

has to be solved on J, i.e., subject to the additional equality constraint that wj = 0
for all j in Jc:

min
w∈Rp

f(w) + λΩ(w), such that wJc = 0. (1.22)

The computation can be performed by any of the methods presented in this sec-
tion. Working-set algorithms should therefore be viewed as “meta-algorithms”.
Since solutions for successive working sets are typically close to each other (ex-
cept for the newly-active variables), the approach is efficient if the method chosen
can use warm-restarts. Finally, even though problem (1.22) is formally defined
in Rp, in practice, adding the equality constraint on Jc amounts to manipulating
vectors in R|J| (with hopefully |J| ≪ p).

• Computing the optimality conditions: Given a solution ŵ of problem (1.22),
it is then necessary to check whether ŵ is also a solution for the original prob-
lem (1.1), without explicitly forcing the components in Jc to be equal to zero.
This test relies on the duality gaps of problems (1.22) and (1.1). In particular, if
ŵ is a solution of problem (1.22), it follows from Proposition 3 that

f(ŵ) + λΩ(ŵ) + f∗(∇f(ŵ)) = 0.

In fact, the Lagrangian parameter associated with the equality constraint ensures
the feasibility of the dual variable formed from the gradient of f at ŵ. In turn,
this guarantees that the duality gap of problem (1.22) vanishes. The candidate ŵ
is now a solution of the full problem (1.1), i.e., without the equality constraint, if
and only if

Ω∗(∇f(ŵ)) ≤ λ. (1.23)

29



1. Introduction and Related Work

Condition (1.23) points out that the dual norm Ω∗ is a key quantity to monitor
the progress of the working-set algorithm (Jenatton et al., 2011a). In simple
settings, for instance when Ω is the ℓ1-norm, checking condition (1.23) can be
easily computed since Ω∗ is just the ℓ∞-norm. In this case, condition (1.23)
becomes

|[∇f(ŵ)
]

j
| ≤ λ, for all j in {1, . . . , p}.

Note that by using the optimality of problem (1.22), the components of the gra-
dient of f indexed by J are already guaranteed to be no greater than λ.
For more general sparsity-inducing norms with overlapping groups of variables,
the dual norm Ω∗ cannot be computed easily anymore, prompting the need for
approximations and upper-bounds of Ω∗ (Bach, 2008a; Jenatton et al., 2011a;
Schmidt and Murphy, 2010).

• Strategy for the growth of the working set: If condition (1.23) is not satisfied
for the current working set J, some inactive variables in Jc have to become active.
This point raises the questions of how many and how these variables should be
chosen.
First, depending on the structure of Ω, a single or a group of inactive variables
have to be considered to enter the working set. Furthermore, one natural way
to proceed is to look at the variables that violate condition (1.23) most. In the
example of ℓ1-regularized least squares regression with normalized predictors, this
strategy amounts to selecting the inactive variable that has the highest correlation
with the current residual.

The working-set algorithms we have described so far aim at solving problem (1.1)
for a fixed value of the regularization parameter λ. However, for specific types of loss
and regularization functions (e.g., see Rosset and Zhu, 2007), the set of solutions of
problem (1.1) can be obtained efficiently for all possible values of λ, which is exploited
by homotopy algorithms (Osborne et al., 2000b) such as LARS (Efron et al., 2004).

Extensions

Other methods could be considered for solving efficiently problem (1.1) when Ω is
a structured sparsity-inducing norm. For instance, we may design quasi-Newton strate-
gies (Schmidt et al., 2011a), or further develop augmented-Lagrangian techniques (Com-
bettes and Pesquet, 2010; Boyd et al., 2011), as already pioneered by Mairal et al. (2011);
Qin and Goldfarb (2011). In the same vein as augmented-Lagrangian techniques, there
is a last extension which would be interesting to consider in the context of norms with
overlapping groups of variables. Starting from the objective

min
w∈Rp

f(w) + λ
∑

g∈G
‖wg‖,

for any norm ‖.‖, we may introduce duplicate variables for each group g ∈ G with the
constraint of being equal to wg, hence resulting in the new problem:

min
w∈Rp,u∈RsG

f(w) + λ
∑

g∈G
‖ug‖, such that u = Gw,
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where sG ,
∑

g∈G |g| and the matrix G ∈ RsG×p encodes the group structure of G. The
nice feature of the problem above is to replace the norm with overlaps by one penalty
without overlapping groups of variables. This is however achieved at the cost of (1)
dealing with a larger problem (i.e., with p+

∑

g∈G |g| parameters), and (2) being able to
properly handle (e.g., via projections) the new equality constraint. Noticing that G is
full column-rank when G spans the set J1; pK and does not contain two identical groups,
we may go one step further and try to solve the equivalent problem

min
u∈RsG

f((G⊤G)−1G⊤u) + λ
∑

g∈G
‖ug‖, such that u ∈ span(G).

Interesting questions for future work would consist in studying to what extent do we
need to keep the constraint u ∈ span(G) to go back to the domain of w, and when the
inverse of G⊤G can be computed efficiently thanks to the structure of G.

Conclusions

We briefly summarize this review of optimization techniques in the light of the dif-
ficulties related to the use of norms with overlapping groups of variables. The opti-
mization involving Ω built from overlapping groups of variables is deemed challenging
because the computations of its proximal operator and of its dual norm are both non-
trivial sub-problems, with a computational cost typically in the same order as that of
the full initial problem. In particular, we do not have closed-form solutions available
anymore. As a result, the applications of schemes based on proximal operators (or pro-
jections) and/or tests of optimality via the dual norm (e.g., in working-set/homotopy
strategies) become tricky, or at least, not straightforward. Moreover, and as explained
above, block-coordinate descent methods do not apply directly to the case of overlapping
groups of variables. Finally, reweighted-ℓ2 schemes are generally limited by the inversion
of linear systems they have to repeatedly perform.

Our different simulations and experiments have shown that proximal methods ap-
pear so far as the most efficient and versatile approach. Coupling them with working-set
strategies (see Section 2.4 in Chapter 2) is of course possible, but we sometimes ob-
served that the bounds on the optimality conditions on which these strategies rely (see
Propositions 7 and 8 in Chapter 2) might not be as tight as what we would need in
practice.

This section concludes the introduction to the concepts from convex optimization
which we require in the remainder of the thesis. We now review tools and notions to
analyze some statistical properties of the solutions of problem (1.1).

1.6 Some Ingredients to Study Statistical Properties of
Sparse Methods

Chapters 2 and 6 study some statistical properties of sparse structured linear models.
This section aims at providing some background material which should be useful in this
perspective.
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For convenience, we adopt in the subsequent paragraphs the notations from the
statistics/machine-learning setting, similarly to the Lasso problem in Eq. (1.2).

1.6.1 Several Criteria and Measures of Quality

From now on, let us concentrate on linear models. We assume that the output,
or response, y is generated from the linear combination of a p-dimensional observation
x ∈ Rp with a true model w⋆ ∈ Rp. In addition, we shall assume some corruption
from noise, in the form of, typically sub-Gaussian, centered random variable ε. In other
words, we have

y = x⊤w⋆ + ε. (1.24)

Stated in this way, the only source of randomness corresponds to the noise, and we then
speak about fixed-design setting. Random-design analysis (e.g, Wainwright, 2009, in the
case of Lasso) can also be conducted by adding some probabilistic assumptions on the
observations.

We will assume that the true model w⋆ has a sparse, structured nonzero pattern
J⋆ = {j ∈ J1; pK; w⋆

j 6= 0}, with |J⋆| ≪ p. As an estimator for w⋆, it is thus natural
to take any solution of problem (1.1), with Ω being a well-chosen structured sparsity-
inducing norm. Let us denote by ŵ one of these solutions. 11 There are now several
criteria of interest (for more details and formal definitions, see, e.g., Liu, 2010):

• Estimation performance: For this first criterion, we are interested in how far
ŵ is from the true model, that is, how large ‖ŵ−w⋆‖ is for some norm ‖.‖.

• Prediction performance: In this case, we might well be far from the true model
w⋆; instead, we want predictions to be accurate, that is, the quantity ‖X(ŵ−w⋆)‖
to be small for some norm ‖.‖, where X ∈ Rn×p stands for a set of n observations
in Rp stacked row-wise.

• Model-selection consistency: This last criterion, also referred to as support
consistency or sparsistency, focuses on recovering the true sparsity pattern J⋆ of
w⋆. In other words, we want to have

Pr
(

{j ∈ J1; pK; ŵj 6= 0} = J⋆
)

≈ 1.

The probability above has to be understood as being taken with respect to all
sources of randomness in the problem.

In this thesis, we mostly study the third criterion. Furthermore, we ideally wish to
obtain a non-asymptotic characterization of this criterion in order to better understand
the roles and the scaling of (n, p, |J⋆|). Finally, even tough it has not been listed above,
stability (e.g., of the estimated nonzero pattern) is another important measure. It has
lately been the focus of a great deal of research, see, e.g., Bach (2008c); Meinshausen
and Bühlmann (2010); Liu et al. (2010b).

We now describe an important structure of proof which is recurring in the study of
sparse models where estimators result from a convex program.

11. The problem of identifiability (and uniqueness) is further discussed in Chapter 2. Usually, the
assumptions made on the observations lead to a unique estimator ŵ.
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1.6.2 The Primal-Dual “Witness” Proof

In this section, we present a method to characterize model-selection consistency (i.e.,
the third criterion above) when the estimator is derived from a convex program. Our
situation is exactly in this scope, since we consider any solution of problem (1.1) for
some structured sparsity-inducing norm.

This scheme of proof appeared in many places, for instance, to study the structures
of graphical models (Wainwright et al., 2007; Ravikumar et al., 2008; Jalali et al., 2011)
and to prove exact support recovery of Lasso (Wainwright, 2009), group Lasso (Bach,
2008b; Nardi and Rinaldo, 2008) and other sparse estimators (Jenatton et al., 2011a).

We now describe the different steps of the primal-dual “witness” proof:
• Construction of an “oracle” solution: This first step consists of building a

primal candidate starting from the knowledge of J⋆. More precisely, we consider

ŵoracle = arg min
w∈Rp

[

f(w) + λΩ(w)
]

, such that wj = 0 for any j ∈ [J⋆]c, (1.25)

where we have assumed that the solution ŵoracle is unique (typically through
assumptions on the observations and choice of λ). By construction, we know that
ŵoracle has the correct sparsity pattern; we will have to prove that ŵoracle is also
solution to the full problem, without the “oracle” equality constraint. In the Lasso
case, problem (1.25) is equivalent to

min
wJ⋆ ∈R|J⋆|

[1

2
‖y−XJ⋆wJ⋆‖22 + λ‖wJ⋆‖1

]

.

• Defining a candidate for the dual variable: Let us denote by ŵ a solution
of problem (1.25) without the equality constraint. We know from Proposition 1
that we can characterize through a subgradient condition the optimality of ŵ. We
therefore need to construct a subgradient candidate z whose entries in J⋆ are in
agreement with the optimality of ŵoracle.
By separately treating zJ⋆ and z[J⋆]c , we implicitly assume that the regularizer
Ω and its subdifferential can be decomposed in this way; this is indeed the case
for our structured sparsity-inducing norms (see Chapter 2). Generally, we will be
able to express (explicitly or implicitly) z[J⋆]c with respect to zJ⋆ .

• Check the validity of the candidate: The third step of the procedure checks
whether ŵoracle is optimal for the full problem, using the subgradient z previously
defined as a certificate. In particular, we need to guarantee that z ∈ ∂λΩ(ŵoracle).

• Probabilistic control: While the reasoning in the previous steps was deter-
ministic, it remains to define and control the probabilistic events over which the
construction and the condition z ∈ ∂λΩ(ŵoracle) hold with high probability.

This technique of proof has to be related to working-set algorithms (see Section 1.5.2)
in that they share a similar construction and use the same tools from convex analysis.
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1.6.3 Zoology of Conditions Imposed on the Design Matrix

In the statistical analysis of the sparse models we are interested in, 12 theoretical
guarantees—for prediction, estimation or support recovery—require some assumptions
on the correlations of the p variables. Since Chapters 2 and 6 bring into play such
assumptions, it is worth reviewing and presenting these concepts. For simplicity, we
consider the ℓ1-norm setting, but the quantities we describe below can be extended to
structured scenarios (Negahban et al., 2009).

In the case of noiseless linear models, i.e., Eq. (1.24) with ε = 0, it is interesting to
study when the true vector w⋆ is exactly recovered by a procedure based on ℓ1-norm
minimization. For a sparsity level of |J⋆|, a necessary and sufficient condition for exact
recovery is known as the null space property with parameter |J⋆| (Donoho and Huo, 2001;
Feuer and Nemirovski, 2003; Cohen et al., 2009). As soon as the data are corrupted by
some noise, exact recovery becomes impossible and it is then sensible to focus on the
estimation error ‖ŵ − w⋆‖2. We thus analyze under which sufficient condition of the
null space property, this error can be proved to be small.

We review below several sufficient conditions, starting from the most restrictive one
(but also the simplest one). We notably illustrate these conditions by their sampling
complexity in the case of random Gaussian matrices with i.i.d. entries, that is, under
which scaling of (n, p, |J⋆|) the conditions hold with high probability. In the subsequent,
we use the notation a & b if there exists some constant K > 0 such that a ≥ Kb holds. 13

Moreover, we shall assume that the data matrix X ∈ Rn×p composed of n observations
stacked row-wise has its columns normalized with unit ℓ2-norm.

• Elementwise incoherence condition: This first sufficient condition is rather
intuitive, and explicitly asks for a control of the off-diagonal terms of the covari-
ance matrix X⊤X (Donoho and Huo, 2001; Feuer and Nemirovski, 2003; Lounici,
2008), that is,

max
j,k∈J1;pK,j 6=k

∣
∣
∣
1

n
[X⊤X]jk

∣
∣
∣ -

1

|J⋆| .

For random Gaussian matrices, this inequality is known to be satisfied with high
probability for the following scaling n & |J⋆|2 log(p) (e.g., see Candès and Plan,
2009).

• Restricted isometry: The introduction of this second condition is slightly more
involved. For s ∈ N, we introduce the s-restricted isometry constant δs > 0 (Can-
des and Tao, 2005) as the smallest scalar such that

(1− δs)‖a‖22 ≤ ‖Xa‖22 ≤ (1 + δs)‖a‖22,

hold for any vector a ∈ Rp with |{j ∈ J1; pK; aj 6= 0}| ≤ s. In words, the previous
equation says that all sub-matrices involving at most s columns of X behave like

12. We do not discuss the body of work that do not assume any computational limit, for instance,
aggregated estimators (e.g., see Section 3.5 in Audibert, 2010, and references therein). In this case, no
correlation-based assumptions are needed.

13. The usual notation is a = Ω(b), but we keep this symbol to represent the regularization term.
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an isometry. It can be shown (Candes and Tao, 2005; Baraniuk et al., 2008) that
if the following inequality is valid

δs + δ2s + δ3s < 1,

then, the null space property with parameter s is also satisfied. Moreover, for
random Gaussian matrices, we obtain the scaling n & |J⋆| log(p/|J⋆|) (Mendelson
et al., 2008), where we can note the improvement with respect to the incoherence
condition.

• Restricted eigenvalue: The last sufficient condition we mention is less restric-
tive than those presented above. It characterizes a lower bound of the spectrum
of X over a specific subset of vectors. It was introduced in Bickel et al. (2009),
and further studied in Van de Geer and Bühlmann (2009); Raskutti et al. (2010);
Zhou (2009). Formally, there exist (γ, κ) strictly positive scalars such that

1

n
‖Xa‖22 ≥ γ2‖a‖22 for any vector a ∈ Rp with ‖aJ⋆‖1 ≤ κ‖a[J⋆]c‖1.

The scaling for random Gaussian matrices was recently proved by Zhou (2009) 14

and leads to n & |J⋆| log(p/|J⋆|). Again, there is an improvement upon the inco-
herence condition.

Before concluding this section, there is another correlation condition worth being dis-
cussed. The irrepresentability condition (Fuchs, 2005; Zhao and Yu, 2006; Tropp, 2006;
Wainwright, 2009) is central when the criterion of interest is the model-selection consis-
tency, that is, the ability of the estimator to retrieve the nonzero pattern of w⋆. This is
to be contrasted with the previous conditions which are primarily introduced to control
the estimation error. Moreover, the irrepresentability condition is tight since it is proved
to be necessary and sufficient (Zhao and Yu, 2006; Wainwright, 2009). Formally, it can
be stated as follows:

∥
∥
∥[X⊤X][J⋆]cJ⋆

(
[X⊤X]J⋆J⋆

)−1
sign(w⋆)J⋆

∥
∥
∥

∞
< 1.

As opposed to the previously-described criteria that depend only on |J⋆|, the condition
above explicitly brings into play the sign vector sign(w⋆) and the set J⋆. At the cost of
being more restrictive, we can further maximize out over all possible sign vectors and
supports of size |J⋆| (Tropp, 2006); the resulting criterion is shown to be weaker than
the one based on restricted eigenvalue (Van de Geer and Bühlmann, 2009). Eventually,
we discuss in Chapter 2 how the irrepresentability condition is modified to adapt to
structured settings.

Thus far, we have not taken into account any computational aspect. While it is
relevant to look at ensembles of random matrices in the context of compressed sensing,
the situation is different in statistics/machine-learning where the design matrix X is
fixed. It would therefore be interesting to be able to compute some tests of these sufficient

14. Simultaneously, the authors from Raskutti et al. (2010) came up with the weaker scaling that
imposes n & |J⋆| log(p).
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conditions: Some works recently investigated this direction of research, e.g., d’Aspremont
et al. (2008); Juditski and Nemirovski (2010).

We refer the readers to Van de Geer and Bühlmann (2009) for a complete comparison
of various assumptions made in the analysis of the Lasso.
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2

Understanding the Properties of Structured
Sparsity-Inducing Norms

Chapter abstract: We consider the empirical risk minimization problem for linear supervised
learning, with regularization by structured sparsity-inducing norms. These are defined as sums
of Euclidean norms on certain subsets of variables, extending the usual ℓ1-norm and the group ℓ1-
norm by allowing the subsets to overlap. This leads to a specific set of allowed nonzero patterns
for the solutions of such problems. We first explore the relationship between the groups defining
the norm and the resulting nonzero patterns, providing both forward and backward algorithms
to go back and forth from groups to patterns. This allows the design of norms adapted to specific
prior knowledge expressed in terms of nonzero patterns. We also present an efficient active set
algorithm, and analyze the consistency of variable selection for least-squares linear regression in
low and high-dimensional settings.

The material of this chapter is based on the following work:

R. Jenatton, J.-Yves Audibert, F. Bach. Structured Variable Selection with Sparsity-
Inducing Norms. In Journal of Machine Learning Research, 12, 2777-2824. 2011

2.1 Introduction

Sparse linear models have emerged as a powerful framework to deal with various
supervised estimation tasks, in machine learning as well as in statistics and signal pro-
cessing. These models basically seek to predict an output by linearly combining only a
small subset of the features describing the data. To simultaneously address this vari-
able selection and the linear model estimation, ℓ1-norm regularization has become a
popular tool, that benefits both from efficient algorithms (see, e.g., Efron et al., 2004;
Lee et al., 2007; Beck and Teboulle, 2009; Yuan et al., 2010, and multiple references
therein) and well-developed theory for generalization properties and variable selection
consistency (Zhao and Yu, 2006; Wainwright, 2009; Bickel et al., 2009; Zhang, 2009).

When regularizing by the ℓ1-norm, sparsity is yielded by treating each variable indi-
vidually, regardless of its position in the input feature vector, so that existing relation-
ships and structures between the variables (e.g., spatial, hierarchical or related to the
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physics of the problem at hand) are merely disregarded. However, many practical situa-
tions could benefit from this type of prior knowledge, potentially both for interpretability
purposes and for improved predictive performance.

For instance, in neuroimaging, one is interested in localizing areas in functional mag-
netic resonance imaging (fMRI) or magnetoencephalography (MEG) signals that are
discriminative to distinguish between different brain states (Gramfort and Kowalski,
2009; Xiang et al., 2009, and references therein). More precisely, fMRI responses con-
sist in voxels whose three-dimensional spatial arrangement respects the anatomy of the
brain. The discriminative voxels are thus expected to have a specific localized spatial or-
ganization (Xiang et al., 2009), which is important for the subsequent identification task
performed by neuroscientists. In this case, regularizing by a plain ℓ1-norm to deal with
the ill-conditionedness of the problem (typically only a few fMRI responses described by
tens of thousands of voxels) would ignore this spatial configuration, with a potential loss
in interpretability and performance.

Similarly, in face recognition, robustness to occlusions can be increased by consider-
ing as features, sets of pixels that form small convex regions on the face images (Jenatton
et al., 2010b). Again, a plain ℓ1-norm regularization fails to encode this specific spatial
locality constraint (Jenatton et al., 2010b). The same rationale supports the use of struc-
tured sparsity for background subtraction tasks (Cevher et al., 2008; Huang et al., 2009;
Mairal et al., 2010b). Still in computer vision, object and scene recognition generally
seek to extract bounding boxes in either images (Harzallah et al., 2009) or videos (Dalal
et al., 2006). These boxes concentrate the predictive power associated with the con-
sidered object/scene class, and have to be found by respecting the spatial arrangement
of the pixels over the images. In videos, where series of frames are studied over time,
the temporal coherence also has to be taken into account. An unstructured sparsity-
inducing penalty that would disregard this spatial and temporal information is therefore
not adapted to select such boxes.

Another example of the need for higher-order prior knowledge comes from bioin-
formatics. Indeed, for the diagnosis of tumors, the profiles of array-based comparative
genomic hybridization (arrayCGH) can be used as inputs to feed a classifier (Rapaport
et al., 2008). These profiles are characterized by plenty of variables, but only a few sam-
ples of such profiles are available, prompting the need for variable selection. Because of
the specific spatial organization of bacterial artificial chromosomes along the genome, the
set of discriminative features is expected to have specific contiguous patterns. Using this
prior knowledge on top of a standard sparsity-inducing method leads to improvement
in classification accuracy (Rapaport et al., 2008). In the context of multi-task regres-
sion, a genetic problem of interest is to find a mapping between a small subset of single
nucleotide polymorphisms (SNP’s) that have a phenotypic impact on a given family of
genes (Kim and Xing, 2010). This target family of genes has its own structure, where
some genes share common genetic characteristics, so that these genes can be embedded
into a underlying hierarchy (Kim and Xing, 2010). Exploiting directly this hierarchical
information in the regularization term outperforms the unstructured approach with a
standard ℓ1-norm. Such hierarchical structures have been likewise useful in the context
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of wavelet regression (Baraniuk et al., 2010; Zhao et al., 2009; Huang et al., 2009; Jenat-
ton et al., 2011c), kernel-based non linear variable selection (Bach, 2008a) and for topic
modeling (Jenatton et al., 2011c).

These real world examples motivate the need for the design of sparsity-inducing
regularization schemes, capable of encoding more sophisticated prior knowledge about
the expected sparsity patterns.

As mentioned above, the ℓ1-norm focuses only on cardinality and cannot easily specify
side information about the patterns of nonzero coefficients (“nonzero patterns”) induced
in the solution, since they are all theoretically possible. Group ℓ1-norms (Yuan and
Lin, 2006; Roth and Fischer, 2008; Huang and Zhang, 2010) consider a partition of all
variables into a certain number of subsets and penalize the sum of the Euclidean norms
of each one, leading to selection of groups rather than individual variables. Moreover,
recent works have considered overlapping but nested groups in constrained situations
such as trees and directed acyclic graphs (Zhao et al., 2009; Bach, 2008a; Kim and Xing,
2010; Jenatton et al., 2010a, 2011c; Schmidt and Murphy, 2010).

In this chapter, we consider all possible sets of groups and characterize exactly what
type of prior knowledge can be encoded by considering sums of norms of overlapping
groups of variables. Before describing how to go from groups to nonzero patterns (or
equivalently zero patterns), we show that it is possible to “reverse-engineer” a given set
of nonzero patterns, i.e., to build the unique minimal set of groups that will generate
these patterns. This allows the automatic design of sparsity-inducing norms, adapted
to target sparsity patterns. We give in Section 2.3 some interesting examples of such
designs in specific geometric and structured configurations, which covers the type of
prior knowledge available in the real world applications described previously.

As will be shown in Section 2.3, for each set of groups, a notion of hull of a nonzero
pattern may be naturally defined. For example, in the particular case of the two-
dimensional planar grid considered in this chapter, this hull is exactly the axis-aligned
bounding box or the regular convex hull. We show that, in our framework, the al-
lowed nonzero patterns are exactly those equal to their hull, and that the hull of the
relevant variables is consistently estimated under certain conditions, both in low and
high-dimensional settings. Moreover, we present in Section 2.4 an efficient active set
algorithm that scales well to high dimensions. Finally, we illustrate in Section 2.6 the
behavior of our norms with synthetic examples on specific geometric settings, such as
lines and two-dimensional grids.

Notation. For any finite set A with cardinality |A|, we also define the |A|-tuple
(ya)a∈A ∈ Rp×|A| as the collection of p-dimensional vectors ya indexed by the elements of
A. Furthermore, for two vectors x and y in Rp, we denote by x◦y = (x1y1, . . . ,xpyp)⊤ ∈
Rp the elementwise product of x and y.
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2.2 Regularized Risk Minimization

We consider the problem of predicting a random variable Y ∈ Y from a (potentially
non random) vector x ∈ Rp, where Y is the set of responses, typically a subset of R.
We assume that we are given n observations (xi, yi) ∈ Rp × Y, for i ∈ J1;nK. We
define the empirical risk of a loading vector w ∈ Rp as L(w) = 1

n

∑n
i=1 ℓ

(
yi,w

⊤xi
)
,

where ℓ : Y × R 7→ R+ is a loss function. We assume that ℓ is convex and continuously
differentiable with respect to the second parameter. Typical examples of loss functions
are the square loss for least squares regression, i.e., ℓ(y, ŷ) = 1

2(y − ŷ)2 with y ∈ R, and
the logistic loss ℓ(y, ŷ) = log(1 + e−yŷ) for logistic regression, with y ∈ {−1, 1}.

We focus on a general family of sparsity-inducing norms that allow the penalization
of subsets of variables grouped together. Let us denote by G a subset of the power set
of J1; pK such that

⋃

g∈Gg = J1; pK, i.e., a spanning set of subsets of J1; pK. Note that G
does not necessarily define a partition of J1; pK, and therefore, it is possible for elements
of G to overlap. We consider the norm Ω defined by

Ω(w) =
∑

g∈G

(
∑

j∈g

(ωg

j )2|wj |2
) 1

2

=
∑

g∈G
‖ωg ◦ w‖2, (2.1)

where (ωg)g∈G is a |G|-tuple of p-dimensional vectors such that ωg

j > 0 if j ∈ g and
ωg

j = 0 otherwise. A same variable wj belonging to two different groups g1, g2 ∈ G is
allowed to be weighted differently in g1 and g2 (by respectively ω

g1
j and ω

g2
j ). We do

not study the more general setting where each ωg would be a (non-diagonal) positive-
definite matrix, which we defer to future work. Note that a larger family of penalties
with similar properties may be obtained by replacing the ℓ2-norm in Eq. (2.1) by other
ℓq-norm, q > 1 (Zhao et al., 2009). Moreover, non-convex alternatives to Eq. (2.1) with
quasi-norms in place of norms may also be interesting, in order to yield sparsity more
aggressively (see, e.g., Jenatton et al., 2010b).

This general formulation has several important sub-cases that we present below,
the goal of this chapter being to go beyond these, and to consider norms capable to
incorporate richer prior knowledge.

• ℓ2-norm: G is composed of one element, the full set J1; pK.
• ℓ1-norm: G is the set of all singletons, leading to the Lasso (Tibshirani, 1996) for

the square loss.
• ℓ2-norm and ℓ1-norm: G is the set of all singletons and the full set J1; pK, leading

(up to the squaring of the ℓ2-norm) to the Elastic net (Zou and Hastie, 2005) for
the square loss.

• Group ℓ1-norm: G is any partition of J1; pK, leading to the group-Lasso for the
square loss (Yuan and Lin, 2006).

• Hierarchical norms: when the set J1; pK is embedded into a tree (Zhao et al.,
2009) or more generally into a directed acyclic graph (Bach, 2008a), then a set of
p groups, each of them composed of descendants of a given variable, is considered.
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We study the following regularized problem:

min
w∈Rp

1

n

n∑

i=1

ℓ
(
yi,w

⊤xi
)

+ µΩ(w), (2.2)

where µ≥ 0 is a regularization parameter. Note that a non-regularized constant term
could be included in this formulation, but it is left out for simplicity. We denote by ŵ
any solution of Eq. 2.2. Regularizing by linear combinations of (non-squared) ℓ2-norms is
known to induce sparsity in ŵ (Zhao et al., 2009); our grouping leads to specific patterns
that we describe in the next section.

2.3 Groups and Sparsity Patterns

We now study the relationship between the norm Ω defined in 2.1 and the nonzero
patterns the estimated vector ŵ is allowed to have. We first characterize the set of
nonzero patterns, then we provide forward and backward procedures to go back and
forth from groups to patterns.

2.3.1 Stable Patterns Generated by G
The regularization term Ω(w) =

∑

g∈G ‖ωg◦w‖2 is a mixed (ℓ1, ℓ2)-norm (Zhao et al.,
2009). At the group level, it behaves like an ℓ1-norm and therefore, Ω induces group
sparsity. In other words, each ωg ◦w, and equivalently each wg (since the support of ωg

is exactly g), is encouraged to go to zero. On the other hand, within the groups g ∈ G,
the ℓ2-norm does not promote sparsity. Intuitively, for a certain subset of groups G′⊆G,
the vectors wg associated with the groups g∈G′ will be exactly equal to zero, leading to
a set of zeros which is the union of these groups,

⋃

g∈G′ g. Thus, the set of allowed zero
patterns should be the union-closure of G, i.e. (see Figure 2.1 for an example):

Z =

{
⋃

g∈G′

g; G′ ⊆ G
}

. (2.3)

The situation is however slightly more subtle as some zeros can be created by chance
(just as regularizing by the ℓ2-norm may lead, though it is unlikely, to some zeros).
Nevertheless, Theorem 1 shows that, under mild conditions, the previous intuition about
the set of zero patterns is correct. Note that instead of considering the set of zero patterns
Z, it is also convenient to manipulate nonzero patterns, and we define

P =

{
⋂

g∈G′

gc; G′ ⊆ G
}

=
{
zc; z ∈ Z}. (2.4)

We can equivalently use P or Z by taking the complement of each element of these sets.
The following two results characterize the solutions of the problem (2.2). We first

gives sufficient conditions under which this problem has a unique solution. We then
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Figure 2.1: Groups and induced nonzero pattern: three sparsity-inducing groups (middle
and right, denoted by {g1, g2, g3}) with the associated nonzero pattern which is the
complement of the union of groups, i.e., (g1 ∪ g2 ∪ g3)c (left, in black).

formally prove the aforementioned intuition about the zero patterns of the solutions of
(2.2), namely they should belong to Z. In the following two results (see proofs in Ap-
pendix A.1.1 and Appendix A.1.2), we assume that ℓ : (y, y′) 7→ ℓ(y, y′) is nonnegative,
twice continuously differentiable with positive second derivative with respect to the sec-
ond variable and non-vanishing mixed derivative, i.e., for any y, y′ in R, ∂2ℓ

∂y′2 (y, y′) > 0

and ∂2ℓ
∂y∂y′ (y, y′) 6= 0.

Proposition 5 (Uniqueness)
Let Q denote the Gram matrix 1

n

∑n
i=1 xix

⊤
i . We consider the optimization problem in

(2.2) with µ > 0. If Q is invertible or if the group J1; pK belongs to G, then the problem
in (2.2) admits a unique solution.

Note that the invertibility of the matrix Q requires p ≤ n. For high-dimensional
settings, the uniqueness of the solution will hold when {1, . . . , p} belongs to G, or as
further discussed at the end of the proof, as soon as for any j, k ∈ {1, . . . , p}, there exists
a group g ∈ G which contains both j and k. Adding the group {1, . . . , p} to G will in
general not modify P (and Z), but it will cause G to lose its minimality (in a sense
introduced in the next subsection). Furthermore, adding the full group {1, . . . , p} has to
be put in parallel with the equivalent (up to the squaring) ℓ2-norm term in the elastic-net
penalty (Zou and Hastie, 2005), whose effect is to notably ensure strong convexity. For
more sophisticated uniqueness conditions that we have not explored here, we refer the
readers to Osborne et al. (2000a, Theorem 1, 4 and 5), Rosset et al. (2004, Theorem
5) or Dossal (2007, Theorem 3) in the Lasso case, and Roth and Fischer (2008) for the
group Lasso setting. We now turn to the result about the zero patterns of the solution
of the problem in (2.2):

Theorem 1 (Stable patterns)
Assume that Y = (y1, . . . , yn)⊤ is a realization of an absolutely continuous probabil-
ity distribution. Let k be the maximal number such that any k rows of the matrix
(x1, . . . ,xn)∈Rp×n are linearly independent. For µ > 0, any solution of the problem in

(2.2) with at most k−1 nonzero coefficients has a zero pattern in Z =
{
⋃

g∈G′ g; G′ ⊆ G
}
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almost surely.

In other words, when Y = (y1, . . . , yn)⊤ is a realization of an absolutely continuous
probability distribution, the sparse solutions have a zero pattern in Z =

{
⋃

g∈G′ g; G′ ⊆ G
}

almost surely. As a corollary of our two results, if the Gram matrix Q is invertible, the
problem in (2.2) has a unique solution, whose zero pattern belongs to Z almost surely.
Note that with the assumption made on Y , Theorem 1 is not directly applicable to the
classification setting. Based on these previous results, we can look at the following usual
special cases from Section 2.2 (we give more examples in Section 2.3.5):

• ℓ2-norm: the set of allowed nonzero patterns is composed of the empty set and
the full set J1; pK.

• ℓ1-norm: P is the set of all possible subsets.
• ℓ2-norm and ℓ1-norm: P is also the set of all possible subsets.
• Group ℓ1-norm: P = Z is the set of all possible unions of the elements of the

partition defining G.
• Hierarchical norms: the set of patterns P is then all sets J for which all ances-

tors of elements in J are included in J (Bach, 2008a).
Two natural questions now arise: (1) starting from the groups G, is there an efficient
way to generate the set of nonzero patterns P; (2) conversely, and more importantly,
given P, how can the groups G—and hence the norm Ω(w)—be designed?

2.3.2 General Properties of G, Z and P
We now study the different properties of the set of groups G and its corresponding

sets of patterns Z and P.

Closedness. The set of zero patterns Z (respectively, the set of nonzero patterns P) is
closed under union (respectively, intersection), that is, for all K ∈ N and all z1, . . . , zK ∈
Z, ⋃K

k=1 zk ∈ Z (respectively, p1, . . . , pK ∈ P,
⋂K

k=1 pk ∈ P). This implies that when
“reverse-engineering” the set of nonzero patterns, we have to assume it is closed under
intersection. Otherwise, the best we can do is to deal with its intersection-closure. For
instance, if we consider a sequence (see Figure 2.4), we cannot take P to be the set of
contiguous patterns with length two, since the intersection of such two patterns may
result in a singleton (that does not belong to P).

Minimality. If a group in G is the union of other groups, it may be removed from
G without changing the sets Z or P. This is the main argument behind the pruning
backward algorithm in Section 2.3.3. Moreover, this leads to the notion of a minimal
set G of groups, which is such that for all G′ ⊆ Z whose union-closure spans Z, we have
G ⊆ G′. The existence and uniqueness of a minimal set is a consequence of classical
results in set theory (Doignon and Falmagne, 1998). The elements of this minimal set
are usually referred to as the atoms of Z.

Minimal sets of groups are attractive in our setting because they lead to a smaller
number of groups and lower computational complexity—for example, for 2 dimensional-
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Figure 2.2: G-adapted hull: the pattern of variables I (left and middle, in red) and its
hull (left and right, hatched square) that is defined by the complement of the union of
groups that do not intersect I, i.e., (g1 ∪ g2 ∪ g3)c.

grids with rectangular patterns, we have a quadratic possible number of rectangles, i.e.,
|Z| = O(p2), that can be generated by a minimal set G whose size is |G| = O(

√
p).

Hull. Given a set of groups G, we can define for any subset I ⊆ J1; pK the G-adapted
hull, or simply hull, as:

Hull(I) =

{
⋃

g∈G, g∩I=∅

g

}c

,

which is the smallest set in P containing I (see Figure 2.2); we always have I ⊆ Hull(I)
with equality if and only if I ∈ P. The hull has a clear geometrical interpretation for
specific sets G of groups. For instance, if the set G is formed by all vertical and horizontal
half-spaces when the variables are organized in a 2 dimensional-grid (see Figure 2.5), the
hull of a subset I ⊂ {1, . . . , p} is simply the axis-aligned bounding box of I. Similarly,
when G is the set of all half-spaces with all possible orientations (e.g., orientations
±π/4 are shown in Figure 2.6), the hull becomes the regular convex hull 1. Note that
those interpretations of the hull are possible and valid only when we have geometrical
information at hand about the set of variables.

Graphs of patterns. We consider the directed acyclic graph (DAG) stemming from
the Hasse diagram (Cameron, 1994) of the partially ordered set (poset) (G,⊃). By
definition, the nodes of this graph are the elements g of G and there is a directed edge from
g1 to g2 if and only if G1 ⊃ G2 and there exists no g ∈ G such that g1 ⊃ g ⊃ g2 (Cameron,
1994). We can also build the corresponding DAG for the set of zero patterns Z ⊃ G,
which is a super-DAG of the DAG of groups (see Figure 2.3 for examples). Note that
we obtain also the isomorphic DAG for the nonzero patterns P, although it corresponds
to the poset (P,⊂): this DAG will be used in the active set algorithm presented in
Section 2.4.

1. We use the term convex informally here. It can however be made precise with the notion of convex
subgraphs (Chung, 1997).
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Figure 2.3: The DAG for the set Z associated with the 2×2-grid. The members of Z
are the complement of the areas hatched in black. The elements of G (i.e., the atoms of
Z) are highlighted by bold edges.

Prior works with nested groups (Zhao et al., 2009; Bach, 2008a; Kim and Xing,
2010; Jenatton et al., 2010a; Schmidt and Murphy, 2010) have also used a similar DAG
structure, with the slight difference that in these works, the corresponding hierarchy of
variables is built from the prior knowledge about the problem at hand (e.g., the tree
of wavelets in Zhao et al. (2009), the decomposition of kernels in Bach (2008a) or the
hierarchy of genes in Kim and Xing (2010)). The DAG we introduce here on the set of
groups naturally and always comes up, with no assumption on the variables themselves
(for which no DAG is defined in general).

2.3.3 From Patterns to Groups

We now assume that we want to impose a priori knowledge on the sparsity structure
of a solution ŵ of our regularized problem in Eq. 2.2. This information can be exploited
by restricting the patterns allowed by the norm Ω. Namely, from an intersection-closed
set of zero patterns Z, we can build back a minimal set of groups G by iteratively
pruning away in the DAG corresponding to Z, all sets which are unions of their parents.
See Algorithm 1. This algorithm can be found under a different form in Doignon and
Falmagne (1998)—we present it through a pruning algorithm on the DAG, which is
natural in our context (the proof of the minimality of the procedure can be found in
Appendix A.1.3). The complexity of Algorithm 1 is O(p|Z|2). The pruning may reduce
significantly the number of groups necessary to generate the whole set of zero patterns,
sometimes from exponential in p to polynomial in p (e.g., the ℓ1-norm). In Section 2.3.5,
we give other examples of interest where |G| (and |P|) is also polynomial in p.
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Algorithm 1 Backward procedure
Input: Intersection-closed family of nonzero patterns P.
Output: Set of groups G.
Initialization: Compute Z = {P c; P ∈ P} and set G = Z.
Build the Hasse diagram for the poset (Z,⊃).
for t = ming∈Z |g| to maxg∈Z |g| do

for each node g ∈ Z such that |g| = t do

if
(
⋃

C∈Children(g)C = g
)

then

if (Parents(g) 6= ∅) then
Connect children of g to parents of g.

end if
Remove g from G.

end if
end for

end for

Algorithm 2 Forward procedure
Input: Set of groups G = {g1, . . . , gM}.
Output: Collection of zero patterns Z and nonzero patterns P.
Initialization: Z = {∅}.
for m = 1 to M do
C = {∅}
for each Z ∈ Z do

if (gm * Z) and (∀g ∈{g1, . . . , gm−1}, g ⊆ Z ∪ gm ⇒ g ⊆ Z) then
C ← C ∪ {Z ∪ gm} .

end if
end for
Z ← Z ∪ C.

end for
P = {Zc; Z ∈ Z}.

2.3.4 From Groups to Patterns

The forward procedure presented in Algorithm 2, taken from Doignon and Falmagne
(1998), allows the construction of Z from G. It iteratively builds the collection of patterns
by taking unions, and has complexity O(p|Z||G|2). The general scheme is straightfor-
ward. Namely, by considering increasingly larger sub-families of G and the collection
of patterns already obtained, all possible unions are formed. However, some attention
needs to be paid while checking we are not generating a pattern already encountered.
Such a verification is performed by the if condition within the inner loop of the algo-
rithm. Indeed, we do not have to scan the whole collection of patterns already obtained
(whose size can be exponential in |G|), but we rather use the fact that G generates Z.
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Note that in general, it is not possible to upper bound the size of |Z| by a polynomial
term in p, even when G is very small (indeed, |Z| = 2p and |G| = p for the ℓ1-norm).

2.3.5 Examples

We now present several examples of sets of groups G, especially suited to encode
geometric and temporal prior information.

Sequences. Given p variables organized in a sequence, if we want only contiguous
nonzero patterns, the backward algorithm will lead to the set of groups which are in-
tervals [1, k]k∈{1,...,p−1} and [k, p]k∈{2,...,p}, with both |Z| = O(p2) and |G| = O(p) (see
Figure 2.4). Imposing the contiguity of the nonzero patterns is for instance relevant for
the diagnosis of tumors, based on the profiles of arrayCGH (Rapaport et al., 2008).

Figure 2.4: (Left) The set of blue groups to penalize in order to select contiguous
patterns in a sequence. (Right) In red, an example of such a nonzero pattern with its
corresponding zero pattern (hatched area).

Two-dimensional grids. In Section 2.6, we notably consider for P the set of all
rectangles in two dimensions, leading by the previous algorithm to the set of axis-aligned
half-spaces for G (see Figure 2.5), with |Z| = O(p2) and |G| = O(

√
p). This type of

structure is encountered in object or scene recognition, where the selected rectangle
would correspond to a certain box inside an image, that concentrates the predictive
power for a given class of object/scene (Harzallah et al., 2009).

Larger set of convex patterns can be obtained by adding in G half-planes with other
orientations than vertical and horizontal. For instance, if we use planes with angles that
are multiples of π/4, the nonzero patterns of P can have polygonal shapes with up to 8
faces. In this sense, if we keep on adding half-planes with finer orientations, the nonzero
patterns of P can be described by polygonal shapes with an increasingly larger number of
faces. The standard notion of convexity defined in R2 would correspond to the situation
where an infinite number of orientations is considered (Soille, 2003). See Figure 2.6.
The number of groups is linear in

√
p with constant growing linearly with the number

of angles, while |Z| grows more rapidly (typically non-polynomially in the number of
angles). Imposing such convex-like regions turns out to be useful in computer vision. For
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instance, in face recognition, it enables the design of localized features that improve upon
the robustness to occlusions (Jenatton et al., 2010b). In the same vein, regularizations
with similar two-dimensional sets of groups have led to good performances in background
subtraction tasks (Mairal et al., 2010b), where the pixel spatial information is crucial
to avoid scattered results. Another application worth being mentioned is the design of
topographic dictionaries in the context of image processing (Kavukcuoglu et al., 2009;
Mairal et al., 2011). In this case, dictionaries self-organize and adapt to the underlying
geometrical structure encoded by the two-dimensional set of groups.

Figure 2.5: Vertical and horizontal groups: (Left) the set of blue and green groups with
their (not displayed) complements to penalize in order to select rectangles. (Right) In
red, an example of nonzero pattern recovered in this setting, with its corresponding zero
pattern (hatched area).

Figure 2.6: Groups with ±π/4 orientations: (Left) the set of blue and green groups
with their (not displayed) complements to penalize in order to select diamond-shaped
patterns. (Right) In red, an example of nonzero pattern recovered in this setting, with
its corresponding zero pattern (hatched area).

Extensions. The sets of groups presented above can be straightforwardly extended
to more complicated topologies, such as three-dimensional spaces discretized in cubes
or spherical volumes discretized in slices. Similar properties hold for such settings. For
instance, if all the axis-aligned half-spaces are considered for G in a three-dimensional
space, then P is the set of all possible rectangular boxes with |P| = O(p2) and |G| =
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O(p1/3). Such three-dimensional structures are interesting to retrieve discriminative and
local sets of voxels from fMRI/MEEG responses. In particular, they have recently proven
useful for modeling brain resting-state activity (Varoquaux et al., 2010c). Moreover,
while the two-dimensional rectangular patterns described previously are adapted to find
bounding boxes in static images (Harzallah et al., 2009), scene recognition in videos
requires to deal with a third temporal dimension (Dalal et al., 2006). This may be
achieved by designing appropriate sets of groups, embedded in the three-dimensional
space obtained by tracking the frames over time. Finally, in the context of matrix-
based optimization problems, e.g., multi-task learning and dictionary learning, sets of
groups G can also be designed to encode structural constraints the solutions must respect.
This notably encompasses banded structures (Levina et al., 2008) and simultaneous
row/column sparsity for CUR matrix factorization (Mairal et al., 2011).

Representation and computation of G. The sets of groups described so far can
actually be represented in a same form, that lends itself well to the analysis of the next
section. When dealing with a discrete sequence of length l (see Figure 2.4), we have

G = {gk
−; k ∈ {1, . . . , l−1}} ∪ {gk

+; k ∈ {2, . . . , l}},
= Gleft ∪ Gright,

with gk
− = {i; 1 ≤ i ≤ k} and gk

+ = {i; l ≥ i ≥ k}. In other words, the set of groups G
can be rewritten as a partition 2 in two sets of nested groups, Gleft and Gright.

The same goes for a two-dimensional grid, with dimensions h×l (see Figure 2.5 and
Figure 2.6). In this case, the nested groups we consider are defined based on the following
groups of variables

gk,θ = {(i, j) ∈ {1, . . . , l} × {1, . . . , h}; cos(θ)i+ sin(θ)j ≤ k},

where k ∈ Z is taken in an appropriate range. The nested groups we obtain in this way
are therefore parameterized by an angle 3 θ, θ ∈ (−π;π]. We refer to this angle as an
orientation, since it defines the normal vector

(cos(θ)
sin(θ)

)
to the line {(i, j) ∈ R2; cos(θ)i +

sin(θ)j = k}. In the example of the rectangular groups (see Figure 2.5), we have four
orientations, with θ ∈ {0, π/2,−π/2, π}. More generally, if we denote by Θ the set of
the orientations, we have

G =
⋃

θ∈Θ

Gθ,

where θ ∈ Θ indexes the partition of G in sets Gθ of nested groups of variables. Although
we have not detailed the case of R3, we likewise end up with a similar partition of G.

2. Note the subtlety: the sets Gθ are disjoint, that is Gθ ∩ Gθ′ = ∅ for θ 6= θ′, but groups in Gθ and
Gθ′ can overlap.

3. Due to the discrete nature of the underlying geometric structure of G, angles θ that are not multiple
of π/4 (i.e., such that tan(θ) /∈ Z) are dealt with by rounding operations.
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2.4 Optimization and Active Set Algorithm

For moderate values of p, one may obtain a solution for Eq. (2.2) using generic
toolboxes for second-order cone programming (SOCP) whose time complexity is equal
to O(p3.5 + |G|3.5) (Boyd and Vandenberghe, 2004), which is not appropriate when p or
|G| are large. This time complexity corresponds to the computation of Eq. (2.2) for a
single value of the regularization parameter µ.

We present in this section an active set algorithm (Algorithm 3) that finds a solution
for Eq. (2.2) by considering increasingly larger active sets and checking global optimal-
ity at each step. When the rectangular groups are used, the total complexity of this
method is in O(smax{p1.75, s3.5}), where s is the size of the active set at the end of the
optimization. Here, the sparsity prior is exploited for computational advantages. Our
active set algorithm needs an underlying black-box SOCP solver; in this chapter, we
consider both a first order approach (see Appendix A.1.8) and a SOCP method 4 — in
our experiments, we use SDPT3 (Toh et al., 1999; Tütüncü et al., 2003). Our active set
algorithm extends to general overlapping groups the work of Bach (2008a), by further
assuming that it is computationally possible to have a time complexity polynomial in
the number of variables p.

We primarily focus here on finding an efficient active set algorithm; we defer to future
work the design of specific SOCP solvers, e.g., based on proximal techniques (see, e.g.,
Nesterov, 2007; Beck and Teboulle, 2009; Combettes and Pesquet, 2010, and numerous
references therein), adapted to such non-smooth sparsity-inducing penalties.

2.4.1 Optimality Conditions: from Reduced Problems to Full
Problems

It is simpler to derive the algorithm for the following regularized optimization prob-
lem 5 which has the same solution set as the regularized problem of Eq. (2.2) when µ
and λ are allowed to vary (Borwein and Lewis, 2006, see Section 3.2):

min
w∈Rp

1

n

n∑

i=1

ℓ
(
yi,w

⊤xi
)

+
λ

2
[Ω(w)]2 . (2.5)

In active set methods, the set of nonzero variables, denoted by J , is built incre-
mentally, and the problem is solved only for this reduced set of variables, adding the
constraint wJc = 0 to Eq. (2.5). In the subsequent analysis, we will use arguments
based on duality to monitor the optimality of our active set algorithm. We denote
by L(w) = 1

n

∑n
i=1 ℓ

(
yi,w

⊤xi
)

the empirical risk (which is by assumption convex and

4. The C++/Matlab code used in the experiments may be downloaded from the authors website.
5. It is also possible to derive the active set algorithm for the constrained formulation

minw∈Rp
1
n

∑n

i=1
ℓ
(
yi, w

⊤
xi

)
such that Ω(w) ≤ λ. We however observed that the penalized for-

mulation tends to be empirically easier to tune (e.g., via cross-validation), as the performance is usually
quite robust to small changes in µ, while it is not robust to small changes in λ.
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continuously differentiable) and by L∗ its Fenchel-conjugate, defined as (Boyd and Van-
denberghe, 2004; Borwein and Lewis, 2006):

L∗(u) = sup
w∈Rp

{w⊤u− L(w)}.

The restriction of L to R|J | is denoted LJ(wJ) = L(w̃) for w̃J = wJ and w̃Jc = 0,
with Fenchel-conjugate L∗

J . Note that, as opposed to L, we do not have in general
L∗

J(κJ) = L∗(κ̃) for κ̃J = κJ and κ̃Jc = 0.
For a potential active set J ⊂ J1; pK which belongs to the set of allowed nonzero

patterns P, we denote by GJ the set of active groups, i.e., the set of groups G ∈ G such
that G ∩ J 6= ∅. We consider the reduced norm ΩJ defined on R|J | as

ΩJ(wJ) =
∑

g∈G
‖ωg

J ◦wJ‖2 =
∑

g∈GJ

‖ωg

J ◦wJ‖2,

and its dual norm Ω∗
J(κJ) = maxΩJ (wJ )≤1 w⊤

J κJ , also defined on R|J |. The next propo-
sition (see proof in Appendix A.1.4) gives the optimization problem dual to the reduced
problem (Eq. 2.6 below):

Proposition 6 (Dual Problems)
Let J ⊆ J1; pK. The following two problems

min
wJ ∈R|J|

LJ(wJ) +
λ

2
[ΩJ(wJ)]2 , (2.6)

max
κJ ∈R|J|

−L∗
J(−κJ)− 1

2λ
[Ω∗

J(κJ)]2 , (2.7)

are dual to each other and strong duality holds. The pair of primal-dual variables
{wJ ,κJ} is optimal if and only if we have

{

κJ = −∇LJ(wJ),

w⊤
J κJ = 1

λ [Ω∗
J(κJ)]2 = λ [ΩJ(wJ)]2 .

As a brief reminder, the duality gap of a minimization problem is defined as the
difference between the primal and dual objective functions, evaluated for a feasible pair
of primal/dual variables (Boyd and Vandenberghe, 2004, see Section 5.5). This gap
serves as a certificate of (sub)optimality: if it is equal to zero, then the optimum is
reached, and provided that strong duality holds, the converse is true as well (Boyd and
Vandenberghe, 2004, see Section 5.5).

The previous proposition enables us to derive the duality gap for the optimization
problem Eq. 2.6, that is reduced to the active set of variables J . In practice, this duality
gap will always vanish (up to the precision of the underlying SOCP solver), since we
will sequentially solve (2.6) for increasingly larger active sets J . We now study how,
starting from the optimality of the problem in (2.6), we can control the optimality, or
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equivalently the duality gap, for the full problem Eq. (2.5). More precisely, the duality
gap of the optimization problem Eq. 2.6 is

LJ(wJ) + L∗
J(−κJ) +

λ

2
[ΩJ(wJ)]2 +

1

2λ
[Ω∗

J(κJ)]2

=
{

LJ(wJ) + L∗
J(−κJ) + w⊤

J κJ

}

+

{
λ

2
[ΩJ(wJ)]2 +

1

2λ
[Ω∗

J(κJ)]2 −w⊤
J κJ

}

,

which is a sum of two nonnegative terms, the nonnegativity coming from the Fenchel-
Young inequality (Borwein and Lewis, 2006; Boyd and Vandenberghe, 2004, Proposition
3.3.4 and Section 3.3.2 respectively). We can think of this duality gap as the sum of two
duality gaps, respectively relative to LJ and ΩJ . Thus, if we have a primal candidate
wJ and we choose κJ = −∇LJ(wJ), the duality gap relative to LJ vanishes and the
total duality gap then reduces to

λ

2
[ΩJ(wJ)]2 +

1

2λ
[Ω∗

J(κJ)]2 −w⊤
J κJ .

In order to check that the reduced solution wJ is optimal for the full problem in
Eq. (2.5), we pad wJ with zeros on Jc to define w and compute κ = −∇L(w), which
is such that κJ = −∇LJ(wJ). For our given candidate pair of primal/dual variables
{w,κ}, we then get a duality gap for the full problem in Eq. (2.5) equal to

λ

2
[Ω(w)]2 +

1

2λ
[Ω∗(κ)]2 −w⊤κ

=
λ

2
[Ω(w)]2 +

1

2λ
[Ω∗(κ)]2 −w⊤

J κJ

=
λ

2
[Ω(w)]2 +

1

2λ
[Ω∗(κ)]2 − λ

2
[ΩJ(wJ)]2 − 1

2λ
[Ω∗

J(κJ)]2

=
1

2λ

(

[Ω∗(κ)]2 − [Ω∗
J(κJ)]2

)

=
1

2λ

(

[Ω∗(κ)]2 − λw⊤
J κJ

)

.

Computing this gap requires computing the dual norm which itself is as hard as the orig-
inal problem, prompting the need for upper and lower bounds on Ω∗ (see Propositions 7
and 8 for more details).

2.4.2 Active set algorithm

We can interpret the active set algorithm as a walk through the DAG of nonzero
patterns allowed by the norm Ω. The parents ΠP(J) of J in this DAG are exactly the
patterns containing the variables that may enter the active set at the next iteration of
Algorithm 3. The groups that are exactly at the boundaries of the active set (referred
to as the fringe groups) are FJ = {g ∈ (GJ)c ; ∄g′ ∈ (GJ)c, g ⊆ g′}, i.e., the groups that
are not contained by any other inactive groups.
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Figure 2.7: The active set (black) and the candidate patterns of variables, i.e. the vari-
ables in K\J (hatched in black) that can become active. The fringe groups are exactly
the groups that have the hatched areas (i.e., here we have FJ =

⋃

K∈ΠP (J) GK\GJ =
{g1, g2, g3}).

In simple settings, e.g., when G is the set of rectangular groups, the correspondence
between groups and variables is straightforward since we have FJ =

⋃

K∈ΠP (J) GK\GJ

(see Figure 2.7). However, in general, we just have the inclusion (
⋃

K∈ΠP (J) GK\GJ) ⊆ FJ

and some elements of FJ might not correspond to any patterns of variables in ΠP(J)
(see Figure 2.8).

We now present the optimality conditions (see proofs in Appendix A.1.5) that mon-
itor the progress of Algorithm 3:

Proposition 7 (Necessary condition)
If w is optimal for the full problem in Eq. (2.5), then

max
K∈ΠP (J)

‖∇L(w)K\J‖2
∑

h∈GK\GJ
‖ωh

K\J‖∞
≤ {− λw⊤∇L(w)

} 1
2 . (N)

Proposition 8 (Sufficient condition)
If

max
g∈FJ







∑

k∈g

{ ∇L(w)k
∑

h∋k, h∈(GJ )c ωh
k

}2






1
2

≤ {λ(2ε− w⊤∇L(w))
} 1

2 , (Sε)

then w is an approximate solution for Eq. (2.5) whose duality gap is less than ε ≥ 0.

Note that for the Lasso, the conditions (N) and (S0) (i.e., the sufficient condition
taken with ε = 0) are both equivalent (up to the squaring of Ω) to the condition
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Figure 2.8: The active set (black) and the candidate patterns of variables, i.e. the
variables in K\J (hatched in black) that can become active. The groups in red are
those in

⋃

K∈ΠP (J) GK\GJ , while the blue group is in FJ\(
⋃

K∈ΠP (J) GK\GJ). The blue
group does not intersect with any patterns in ΠP(J).

‖∇L(w)Jc‖∞ ≤ −w⊤∇L(w), which is the usual optimality condition (Fuchs, 2005;
Tibshirani, 1996; Wainwright, 2009). Moreover, when they are not satisfied, our two
conditions provide good heuristics for choosing which K ∈ ΠP(J) should enter the ac-
tive set.

More precisely, since the necessary condition (N) directly deals with the variables
(as opposed to groups) that can become active at the next step of Algorithm 3, it suffices
to choose the pattern K ∈ ΠP(J) that violates most the condition.

The heuristics for the sufficient condition (Sε) implies that, to go from groups to
variables, we simply consider the group g ∈ FJ violating the sufficient condition the
most and then take all the patterns of variables K ∈ ΠP(J) such that K ∩ g 6= ∅ to
enter the active set. If g ∩ (

⋃

K∈ΠP (J)K) = ∅, we look at all the groups h ∈ FJ such
that h ∩ g 6= ∅ and apply the scheme described before (see Algorithm 4).

A direct consequence of this heuristics is that it is possible for the algorithm to jump
over the right active set and to consider instead a (slightly) larger active set as optimal.
However if the active set is larger than the optimal set, then (it can be proved that) the
sufficient condition (S0) is satisfied, and the reduced problem, which we solve exactly,
will still output the correct nonzero pattern.

Moreover, it is worthwhile to notice that in Algorithm 3, the active set may sometimes
be increased only to make sure that the current solution is optimal (we only check a
sufficient condition of optimality).
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Algorithm 3 Active set algorithm
Input: Data {(xi, yi), i = 1, . . . , n}, regularization parameter λ,

Duality gap precision ε, maximum number of variables s.
Output: Active set J , loading vector ŵ.
Initialization: J = {∅}, ŵ = 0.
while

(
(N) is not satisfied

)
and

( |J | ≤ s ) do
Replace J by violating K ∈ ΠP(J) in (N).
Solve the reduced problem minwJ ∈R|J| LJ(wJ) + λ

2 [ΩJ(wJ)]2 to get ŵ.
end while
while

(
(Sε) is not satisfied

)
and

( |J | ≤ s ) do
Update J according to Algorithm 4.
Solve the reduced problem minwJ ∈R|J| LJ(wJ) + λ

2 [ΩJ(wJ)]2 to get ŵ.
end while

Convergence of the active set algorithm. The procedure described in Algorithm 3
can terminate in two different states. If the procedure stops because of the limit on the
number of active variables s, the solution might be suboptimal. Note that, in any case,
we have at our disposal a upperbound on the duality gap.

Otherwise, the procedure always converges to an optimal solution, either (1) by
validating both the necessary and sufficient conditions (see Propositions 7 and 8), ending
up with fewer than p active variables and a precision of (at least) ε, or (2) by running
until the p variables become active, the precision of the solution being given by the
underlying solver.

Algorithm 4 Heuristics for the sufficient condition (Sε)
Let g ∈ FJ be the group that violates (Sε) most.
if (g ∩ (

⋃

K∈ΠP (J)K) 6= ∅) then
for K ∈ ΠP(J) such that K ∩ g 6= ∅ do
J ← J ∪K.

end for
else

for H ∈ FJ such that H ∩ g 6= ∅ do
for K ∈ ΠP(J) such that K ∩H 6= ∅ do
J ← J ∪K.

end for
end for

end if

Algorithmic complexity. We analyze in detail the time complexity of the active set
algorithm when we consider sets of groups G such as those presented in the examples
of Section 2.3.5. We recall that we denote by Θ the set of orientations in G (for more
details, see Section 2.3.5). For such choices of G, the fringe groups FJ reduces to the
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largest groups of each orientation and therefore |FJ | ≤ |Θ|. We further assume that the
groups in Gθ are sorted by cardinality, so that computing FJ costs O(|Θ|).

Given an active set J , both the necessary and sufficient conditions require to have
access to the direct parents ΠP(J) of J in the DAG of nonzero patterns. In simple
settings, e.g., when G is the set of rectangular groups, this operation can be performed
in O(1) (it just corresponds to scan the (up to) four patterns at the edges of the current
rectangular hull).

However, for more general orientations, computing ΠP(J) requires to find the small-
est nonzero patterns that we can generate from the groups in FJ , reduced to the
stripe of variables around the current hull. This stripe of variables can be computed
as
[⋃

g∈(GJ )c\FJ
g
]c\J , so that getting ΠP(J) costs O(s2|Θ| + p|G|) in total.

Thus, if the number of active variables is upper bounded by s≪ p (which is true if
our target is actually sparse), the time complexity of Algorithm 3 is the sum of:

• the computation of the gradient, O(snp) for the square loss.
• if the underlying solver called upon by the active set algorithm is a standard SOCP

solver, O(smaxJ∈P,|J |≤s |GJ |3.5 + s4.5) (note that the term s4.5 could be improved
upon by using warm-restart strategies for the sequence of reduced problems).

• t1 times the computation of (N), that isO(t1(s2|Θ|+p|G|+sn2
θ)+p|G|) = O(t1p|G|).

During the initialization (i.e., J = ∅), we have |ΠP(∅)| = O(p) (since we can
start with any singletons), and |GK\GJ | = |GK | = |G|, which leads to a complexity
of O(p|G|) for the sum

∑

G∈GK\GJ
=
∑

G∈GK
. Note however that this sum does

not depend on J and can therefore be cached if we need to make several runs with
the same set of groups G.

• t2 times the computation of (Sε), that is O(t2(s2|Θ| +p|G|+ |Θ|2 + |Θ|p+p|G|)) =
O(t2p|G|), with t1 + t2 ≤ s.

We finally get complexity with a leading term in O(sp|G| + smaxJ∈P,|J |≤s |GJ |3.5 +
s4.5), which is much better than O(p3.5 + |G|3.5), without an active set method. In
the example of the two-dimensional grid (see Section 2.3.5), we have |G| = O(

√
p) and

O(smax{p1.75, s3.5}) as total complexity. The simulations of Section 2.6 confirm that
the active set strategy is indeed useful when s is much smaller than p. Moreover, the
two extreme cases where s ≈ p or p ≪ 1 are also shown not to be advantageous for
the active set strategy, since either it is cheaper to use the SOCP solver directly on
the p variables, or we uselessly pay the additional fixed-cost of the active set machinery
(such as computing the optimality conditions). Note that we have derived here the
theoretical complexity of the active set algorithm when we use an interior point method
as underlying solver. With the first order method presented in Appendix A.1.8, we
would instead get a total complexity in O(sp1.5).

2.4.3 Intersecting Nonzero Patterns

We have seen so far how overlapping groups can encore prior information about a
desired set of (non)zero patterns. In practice, controlling these overlaps may be delicate
and hinges on the choice of the weights (ωg)G∈G (see the experiments in Section 2.6).

56



2.5. Pattern Consistency

In particular, the weights have to take into account that some variables belonging to
several overlapping groups are penalized multiple times.

However, it is possible to keep the benefit of overlapping groups whilst limiting their
side effects, by taking up the idea of support intersection (Bach, 2008c; Meinshausen
and Bühlmann, 2010). First introduced to stabilize the set of variables recovered by the
Lasso, we reuse this technique in a different context, based on the fact that Z is closed
under union.

If we deal with the same sets of groups as those considered in Section 2.3.5, it is
natural to rewrite G as

⋃

θ∈ΘGθ, where Θ is the set of the orientations of the groups
in G (for more details, see Section 2.3.5). Let us denote by ŵ and ŵθ the solutions of
Eq. (2.5), where the regularization term Ω is respectively defined by the groups in G and
by the groups 6 in Gθ.

The main point is that, since P is closed under intersection, the two procedures
described below actually lead to the same set of allowed nonzero patterns:

a) Simply considering the nonzero pattern of ŵ.
b) Taking the intersection of the nonzero patterns obtained for each ŵθ, θ in Θ.

With the latter procedure, although the learning of several models ŵθ is required (a
number of times equals to the number of orientations considered, e.g., 2 for the sequence,
4 for the rectangular groups and more generally |Θ| times), each of those learning tasks
involves a smaller number of groups (that is, just the ones belonging to Gθ). In addition,
this procedure is a variable selection technique that therefore needs a second step for
estimating the loadings (restricted to the selected nonzero pattern). In the experiments,
we follow Bach (2008c) and we use an ordinary least squares (OLS). The simulations of
Section 2.6 will show the benefits of this variable selection approach.

2.5 Pattern Consistency

In this section, we analyze the model consistency of the solution of Eq. (2.2) for
the square loss. Considering the set of nonzero patterns P derived in Section 2.3, we
can only hope to estimate the correct hull of the generating sparsity pattern, since
Theorem 1 states that other patterns occur with zero probability. We derive necessary
and sufficient conditions for model consistency in a low-dimensional setting, and then
consider a high-dimensional result.

We consider the square loss and a fixed-design analysis (i.e., x1, . . . ,xn are fixed).
The extension of the following consistency results to other loss functions is beyond the
scope of the chapter (see for instance Bach, 2009). We assume that for all i ∈ J1;nK,
yi = x⊤

i w⋆ + εi where the vector ε is an i.i.d. vector with Gaussian distributions with
mean zero and variance σ2 > 0, and w⋆ ∈ Rp is the population sparse vector; we denote
by J⋆ the G-adapted hull of its nonzero pattern. Note that estimating the G-adapted hull
of w⋆ is equivalent to estimating the nonzero pattern of w⋆ if and only if this nonzero
pattern belongs to P. This happens when our prior information has led us to consider

6. To be more precise, in order to regularize every variable, we add the full group J1; pK to Gθ, which
does not modify P.
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an appropriate set of groups G. Conversely, if G is misspecified, recovering the hull of the
nonzero pattern of w may be irrelevant, which is for instance the case if w⋆ =

(w⋆
1

0

) ∈ R2

and G = {{1}, {1, 2}}. Finding the appropriate structure of G directly from the data
would therefore be interesting future work.

2.5.1 Consistency Condition

We begin with the low-dimensional setting where n is tending to infinity with p
fixed. In addition, we also assume that the design is fixed and that the Gram matrix
Q = 1

n

∑n
i=1 xix

⊤
i is invertible with positive-definite (i.e., invertible) limit: limn→∞ Q =

Q⋆ ≻ 0. In this setting, the noise is the only source of randomness. We denote by r⋆
J⋆

the vector defined as

∀j ∈ J⋆, r⋆
j = w⋆

j

(
∑

g∈GJ⋆ ,g∋j

(ωg

j )2‖ωg ◦w⋆‖−1
2

)

.

In the Lasso and group Lasso setting, the vector r⋆
J⋆ is respectively the sign vector

sign(w⋆
J) and the vector defined by the blocks (

wg

‖wg‖2
)g∈G⋆

J
.

We define Ωc
J⋆(w[J⋆]c) =

∑

g∈(G⋆
J )c ‖ωg

[J⋆]c ◦ w[J⋆]c‖2 (which is the norm composed of
inactive groups) with its dual norm (Ωc

J⋆)∗; note the difference with the norm reduced
to [J⋆]c, defined as Ω[J⋆]c(w[J⋆]c) =

∑

g∈G ‖ωg

[J⋆]c ◦w[J⋆]c‖2.
The following Theorem gives the sufficient and necessary conditions under which

the hull of the generating pattern is consistently estimated. Those conditions naturally
extend the results of Zhao and Yu (2006) and Bach (2008b) for the Lasso and the group
Lasso respectively (see proof in Appendix A.1.6).

Theorem 2 (Consistency condition)
Assume µ → 0, µ

√
n → ∞ in Eq. (2.2). If the hull is consistently estimated, then

(Ωc
J⋆)∗

[

Q⋆
[J⋆]cJ⋆ [Q⋆

J⋆J⋆ ]−1r⋆
J⋆

]

≤ 1. Conversely, if (Ωc
J⋆)∗

[

Q⋆
[J⋆]cJ⋆ [Q⋆

J⋆J⋆ ]−1r⋆
J⋆

]

< 1, then

the hull is consistently estimated, i.e.,

Pr
(

{j ∈ J1; pK, ŵj 6= 0} = J⋆
)

−→
n→+∞

1.

The two previous propositions bring into play the dual norm (Ωc
J⋆)∗ that we cannot

compute in closed form, but requires to solve an optimization problem as complex as the
initial problem in Eq. (2.5). However, we can prove bounds similar to those obtained in
Propositions 7 and 8 for the necessary and sufficient conditions.

Comparison with the Lasso and group Lasso. For the ℓ1-norm, our two bounds
lead to the usual consistency conditions for the Lasso, i.e., the quantity

‖Q⋆
[J⋆]cJ⋆ [Q⋆

J⋆J⋆ ]−1sign(w⋆
J)‖∞

must be less or strictly less than one. Similarly, when G defines a partition of J1; pK and
if all the weights equal one, our two bounds lead in turn to the consistency conditions
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for the group Lasso, i.e., the quantity

max
g∈(G⋆

J )c

∥
∥
∥Q⋆

g Hull(J⋆)[Q
⋆
Hull(J⋆)Hull(J⋆)]

−1
[ w⋆

g

‖w⋆
g‖2

]

g∈G⋆
J

∥
∥
∥

2

must be less or strictly less than one.

2.5.2 High-Dimensional Analysis

We prove a high-dimensional variable consistency result (see proof in Appendix A.1.7)
that extends the corresponding result for the Lasso (Zhao and Yu, 2006; Wainwright,
2009), by assuming that the consistency condition in Theorem 2 is satisfied.

Theorem 3
Assume that Q has unit diagonal, κ = λmin(QJ⋆J⋆) > 0 and (Ωc

J⋆)∗[Q[J⋆]cJ⋆Q−1
J⋆J⋆r⋆

J⋆ ] <

1 − τ , for some τ > 0. If τµ
√
n ≥ σC3(G, J⋆), and µ|J⋆|1/2 ≤ C4(G, J⋆), then the

probability of incorrect hull selection is upper bounded by:

exp

(

−nµ
2τ2C1(G, J⋆)

2σ2

)

+ 2|J| exp

(

−nC2(G, J⋆)

2|J⋆|σ2

)

,

where C1(G, J⋆), C2(G, J⋆), C3(G, J⋆) and C4(G, J⋆) are constants defined in Appendix A.1.7,
which essentially depend on the groups, the smallest nonzero coefficient of w⋆ and how
close the support {j ∈ J⋆ : w⋆

j 6= 0} of w⋆ is to its hull J⋆, that is the relevance of the
prior information encoded by G.

In the Lasso case, we have C1(G, J⋆) = O(1), C2(G, J⋆) = O(|J⋆|−2), C3(G, J⋆) =
O((log p)1/2) and C4(G, J⋆) = O(|J⋆|−1), leading to the usual scaling n ≈ log p and
µ ≈ σ(log p/n)1/2.

We can also give the scaling of these constants in simple settings where groups
overlap. For instance, let us consider that the variables are organized in a sequence (see
Figure 2.4). Let us further assume that the weights (ωg)g∈G satisfy the following two
properties:

a) The weights take into account the overlaps, that is,

ωg

j = β(|{h ∈ G ; h ∋ j, h ⊂ g and h 6= g}|),

with t 7→ β(t) ∈ (0, 1] a non-increasing function such that β(0) = 1,
b) The term

max
j∈J1;pK

∑

g∋j,g∈G
ωg

j

is upper bounded by a constant K independent of p.
Note that we consider such weights in the experiments (see Section 2.6). Based on these
assumptions, some algebra directly leads to

‖u‖1 ≤ Ω(u) ≤ 2K‖u‖1, for all u ∈ Rp.
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We thus obtain a scaling similar to the Lasso (with, in addition, a control of the allowed
nonzero patterns). With stronger assumptions on the possible positions of J⋆, we may
have better scalings, but these are problem-dependent (a careful analysis of the group-
dependent constants would still be needed in all cases).

2.6 Experiments

In this section, we carry out several experiments to illustrate the behavior of the
sparsity-inducing norm Ω. We denote by Structured-lasso, or simply Slasso, the models
regularized by the norm Ω. In addition, the procedure (introduced in Section 2.4.3) that
consists in intersecting the nonzero patterns obtained for different models of Slasso will
be referred to as Intersected Structured-lasso, or simply ISlasso.

Throughout the experiments, we consider noisy linear models y = Xw⋆ + ε, where
w ∈ Rp is the generating loading vector and ε is a standard Gaussian noise vector with
its variance set to satisfy ‖Xw‖2 = 3‖ε‖2. This consequently leads to a fixed signal-
to-noise ratio. We assume that the vector w is sparse, i.e., it has only a few nonzero
components, that is, |J⋆| ≪ p. We further assume that these nonzero components are
either organized on a sequence or on a two-dimensional grid (see Figure 2.9). Moreover,
we consider sets of groups G such as those presented in Section 2.3.5. We also consider
different choices for the weights (ωg)g∈G that we denote by (W1), (W2) and (W3) (we
will keep this notation throughout the following experiments):

(W1): Uniform weights, ωg

j = 1,

(W2): Weights depending on the size of the groups, ωg

j = |g|−2,

(W3): Weights for overlapping groups, ωg

j = ρ |{h∈G ; h∋j, h⊂g and h 6=g}|, for some ρ ∈ (0, 1).

For each orientation in G, the third type of weights (W3) aims at reducing the
unbalance caused by the overlapping groups. Specifically, given a group g ∈ G and a
variable j ∈ g, the corresponding weight ωg

j is all the more small as the variable j already
belongs to other groups with the same orientation. Unless otherwise specified, we use
the third type of weights (W3) with ρ = 0.5. In the following experiments, the loadings
w⋆

J, as well as the design matrices, are generated from a standard Gaussian distribution
with identity covariance matrix. The positions of J⋆ are also random and are uniformly
drawn.

2.6.1 Consistent hull estimation

We first illustrate Theorem 2 that establishes necessary and sufficient conditions
for consistent hull estimation. To this end, we compute the probability of correct hull
estimation when we consider diamond-shaped generating patterns of |J⋆| = 24 variables
on a 20×20-dimensional grid (see Figure 2.9h). Specifically, we generate 500 covariance
matrices Q⋆ distributed according to a Wishart distribution with δ degrees of freedom,
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Hull with 25% of nonzero variables

(a)

Hull with 33% of nonzero variables

(b)

Hull with 50% of nonzero variables

(c)

Hull with 50% of nonzero variables

(d)

Hull with 75% of nonzero variables

(e)

Hull with 83% of nonzero variables

(f)

Hull with 100% of nonzero variables

(g)

Hull with 100% of nonzero variables

(h)

Figure 2.9: Examples of generating patterns (the zero variables are represented in black,
while the nonzero ones are in white): (Left column, in white) generating patterns that
are used for the experiments on 400-dimensional sequences; those patterns all form the
same hull of 24 variables, i.e., the contiguous sequence in (g). (Right column, in white)
generating patterns that we use for the 20×20-dimensional grid experiments; again, those
patterns all form the same hull of 24 variables, i.e., the diamond-shaped convex in (h).
The positions of these generating patterns are randomly selected during the experiments.
For the grid setting, the hull is defined based on the set of groups that are half-planes,
with orientations that are multiple of π/4 (see Section 2.3.5).

61



2. Understanding the Properties of Structured Sparsity-Inducing

Norms

−0.5 0 0.5
0

0.2

0.4

0.6

0.8

1

log
10

(Consistency condition)

P
a
tt
e
rn

 r
e
c
o
v
e
ry

 p
ro

b
a
b
ili

ty

Figure 2.10: Consitent hull estimation: probability of correct hull estimation versus the
consistency condition (Ωc

J⋆)∗[Q⋆
[J⋆]cJ⋆ [Q⋆

J⋆J⋆ ]−1r⋆
J⋆ ]. The transition appears at zero, in

good agreement with Theorem 2.

where δ is uniformly drawn in {1, 2, . . . , 10p}. 7 The diagonal terms of Q are then
re-normalized to one. For each of these covariance matrices, we compute an entire
regularization path based on one realization of {J⋆,w⋆,X, ε}, with n = 3000 samples.
The quantities {J⋆,w, ε} are generated as described previously, while the n rows of X
are gaussian with covariance Q⋆. After repeating 20 times this computation for each Q⋆,
we eventually report in Figure 2.10 the probabilites of correct hull estimation versus the
consistency condition (Ωc

J⋆)∗[Q⋆
[J⋆]cJ⋆ [Q⋆

J⋆J⋆ ]−1r⋆
J⋆ ]. In good agreement with Theorem 2,

comparing (Ωc
J⋆)∗[Q⋆

[J⋆]cJ⋆ [Q⋆
J⋆J⋆ ]−1r⋆

J⋆ ] to 1 determines whether the hull is consistently
estimated.

2.6.2 Structured variable selection

We show in this experiment that the prior information we put through the norm Ω
improves upon the ability of the model to recover spatially structured nonzero patterns.
We are looking at two situations where we can express such a prior through Ω, namely
(1) the selection of a contiguous pattern on a sequence (see Figure 2.9g) and (2) the
selection of a convex pattern on a grid (see Figure 2.9h).

In what follows, we consider p = 400 variables with generating patterns w⋆ whose
hulls are composed of |J⋆| = 24 variables. For different sample sizes n ranges in the set
{100, 200, 300, 400, 500, 700, 1000}, we consider the probabilites of correct recovery and

7. We have empirically observed that this choice of degrees of freedom enables to cover well the
consistency transition regime around zero in Figure 2.10.
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(a) Probability of recovery for the sequence
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(b) Probability of recovery for the grid
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(c) Distance to the true pattern for the sequence
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(d) Distance to the true pattern for the grid

Figure 2.11: For different sample sizes, the probabilites of correct recovery and the
(normalized) Hamming distance to the true nonzero patterns are displayed. In the grid
case, two sets of groups G are considered, the rectangular groups with or without the
±π/4-groups (denoted by (π/4) in the legend). The points and the error bars on the
curves respectively represent the mean and the standard deviation, based on 50 random
settings {J⋆,w⋆,X, ε}.

the (normalized) Hamming distance to the true nonzero patterns. For the realization of
a random setting {J⋆,w⋆,X, ε}, we compute an entire regularization path over which
we collect the closest Hamming distance to the true nonzero pattern and whether it has
been exactly recovered for some µ. After repeating 50 times this computation for each
sample size n, we report the results in Figure 2.11.

First and foremost, the simulations highlight how important the weights (ωg)g∈G are.
In particular, the uniform (W1) and size-dependent weights (W2) perform poorly since
they do not take into account the overlapping groups. The models learned with such
weights do not manage to recover the correct nonzero patterns (in that case, the best
model found on the path corresponds to the empty solution, with a normalized Hamming
distance of |J⋆|/p = 0.06—see Figure 2.11c).

Although groups that moderately overlap do help (e.g., see Slasso with the weights
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(W3) on Figure 2.11c), it remains delicate to handle groups with many overlaps, even
with an appropriate choice of (ωg)g∈G (e.g., see Slasso on Figure 2.11d). The ISlasso
procedure does not suffer from this issue since it reduces the number of overlaps whilst
keeping the desirable effects of overlapping groups. Another way to yield a better level
of sparsity, even with many overlaps, would be to consider non-convex alternatives to
Ω (see, e.g., Jenatton et al., 2010b). Moreover, adding the ±π/4-groups to the rectan-
gular groups enables to recover a nonzero pattern closer to the generating pattern. This
is illustrated on Figure 2.11d where the error of ISlasso with only rectangular groups (in
black) corresponds to the selection of the smallest rectangular box around the generating
pattern.

2.6.3 Prediction error and relevance of the structured prior

In the next simulation, we start from the same setting as Section 2.6.2 where we
additionally evaluate the relevance of the contiguous (or convex) prior by varying the
number of zero variables that are contained in the hull (see Figure 2.9). We then compute
the prediction error for different sample sizes n ∈ {250, 500, 1000}. The prediction error
is understood here as ‖Xtest(w⋆−ŵ)‖22/‖Xtestw⋆‖22, where ŵ denotes the OLS estimate,
performed on the nonzero pattern found by the model considered (i.e., either Lasso,
Slasso or ISlasso). The regularization parameter is chosen by 5-fold cross-validation and
the test set consists of 500 samples. For each value of n, we display on Figure 2.12
the median errors over 50 random settings {J⋆,w⋆,X, ε}, for respectively the sequence
and the grid. Note that we have dropped for clarity the models that performed already
poorly in Section 2.6.2.

The experiments show that if the prior about the generating pattern is relevant, then
our structured approach performs better that the standard Lasso. Indeed, as soon as the
hull of the generating pattern does not contain too many zero variables, Slasso/ISlasso
outperform Lasso. In fact, the sample complexity of the Lasso depends on the number
of nonzero variables in w⋆ (Wainwright, 2009) as opposed to the size of the hull for
Slasso/ISlasso. This also explains why the error for Slasso/ISlasso is almost constant
with respect to the number of nonzero variables (since the hull has a constant size).

2.6.4 Active set algorithm

We finally focus on the active set algorithm (see Section 2.4) and compare its time
complexity to the SOCP solver when we are looking for a sparse structured target.
More precisely, for a fixed level of sparsity |J⋆| = 24 and a fixed number of observations
n = 3500, we analyze the complexity with respect to the number of variables p that
varies in {100, 225, 400, 900, 1600, 2500}. We consider the same experimental protocol as
above except that we display the median CPU time based only 8 on 5 random settings
{J⋆,w, X, ε}. We assume that we have a rough idea of the level of sparsity of the

8. Note that it already corresponds to several hundreds of runs for both the SOCP and the ac-
tive set algorithms since we compute a 5-fold cross-validation for each regularization parameter of the
(approximate) regularization path.
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(b) Grid setting
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Figure 2.12: For the sample size n ∈ {250, 500, 1000}, we plot the prediction error versus
the proportion of nonzero variables in the hull of the generating pattern. In the grid
case, two sets of groups G are considered, the rectangular groups with or without the
±π/4-groups (denoted by (π/4) in the legend). The points, the lower and upper error
bars on the curves respectively represent the median, the first and third quartile, based
on 50 random settings {J⋆,w⋆,X, ε}.

true vector and we set the stopping criterion s = 4|J⋆| (see Algorithm 3), which is a
rather conservative choice. We show on Figure 2.13 that we considerably lower the
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Figure 2.13: Computational benefit of the active set algorithm: CPU time (in seconds)
versus the number of variables p, displayed in log-log scale. The points, the lower and
upper error bars on the curves respectively represent the median, the first and third
quartile. Two sets of groups G are considered, the rectangular groups with or without
the ±π/4-groups (denoted by (π/4) in the legend). Due to the computational burden,
we could not obtain the SOCP’s results for p = 2500.

computational cost for the same level of performance 9. As predicted by the complexity
analysis of the active set algorithm (see the end of Section 2.4), considering the set of
rectangular groups with or without the ±π/4-groups results in the same complexity (up
to constant terms). We empirically obtain an average complexity of ≈ O(p2.13) for the
SOCP solver and of ≈ O(p0.45) for the active set algorithm.

Not surprisingly, for small values of p, the SOCP solver is faster than the active
set algorithm, since the latter has to check its optimality by computing necessary and
sufficient conditions (see Algorithm 3 and the discussion in the algorithmic complexity
paragraph of Section 2.4).

2.7 Conclusion

We have shown how to incorporate prior knowledge on the form of nonzero patterns
for linear supervised learning. Our solution relies on a regularizing term which linearly
combines ℓ2-norms of possibly overlapping groups of variables. Our framework brings
into play intersection-closed families of nonzero patterns, such as all rectangles on a two-

9. We have not displayed this second figure that is just the superposition of the error curves for the
SOCP and the active set algorithms.
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dimensional grid. We have studied the design of these groups, efficient algorithms and
theoretical guarantees of the structured sparsity-inducing method. Our experiments
have shown to which extent our model leads to better prediction, depending on the
relevance of the prior information.

A natural extension to this work is to consider bootstrapping since this may improve
theoretical guarantees and result in better variable selection (Bach, 2008c; Meinshausen
and Bühlmann, 2010). In order to deal with broader families of (non)zero patterns, it
would be interesting to combine our approach with recent work on structured sparsity:
for instance, Baraniuk et al. (2010); Jacob et al. (2009) consider union-closed collections
of nonzero patterns, He and Carin (2009) exploit structure through a Bayesian prior
while Huang et al. (2009) handle non-convex penalties based on information-theoretic
criteria.

More generally, our regularization scheme could also be used for various learning
tasks, as soon as prior knowledge on the structure of the sparse representation is avail-
able, e.g., for multiple kernel learning (Micchelli and Pontil, 2006), multi-task learn-
ing (Argyriou et al., 2008; Obozinski et al., 2009; Kim and Xing, 2010) and sparse
matrix factorization problems (Mairal et al., 2010a; Jenatton et al., 2010b, 2011c).

Finally, although we have mostly explored in this chapter the algorithmic and theo-
retical issues related to these norms, this type of prior knowledge is of clear interest for
the spatially and temporally structured data typical in bioinformatics (Kim and Xing,
2010), computer vision (Jenatton et al., 2010b; Mairal et al., 2010b) and neuroscience
applications (see, e.g., Varoquaux et al., 2010c).
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3

Structured Sparse Principal Component Analysis

Chapter abstract: We present an extension of sparse principal component analysis (PCA), or
sparse dictionary learning, where the sparsity patterns of all dictionary elements are structured
and constrained to belong to a prespecified set of shapes. This structured sparse PCA is based
on a structured regularization recently introduced by Jenatton et al. (2011a). While classical
sparse priors only deal with cardinality, the regularization we use encodes higher-order informa-
tion about the data. We propose an efficient and simple optimization procedure to solve this
problem. Experiments with two practical tasks, the denoising of sparse structured signals and
face recognition, demonstrate the benefits of the proposed structured approach over unstructured
approaches.

The material of this chapter is based on the following publication:

R. Jenatton, G. Obozinski, F. Bach. Structured sparse principal component analysis.
In International Conference on Artificial Intelligence and Statistics (AISTATS). 2010

3.1 Introduction

Principal component analysis (PCA) is an essential tool for data analysis and unsu-
pervised dimensionality reduction. Its goal is to find, among linear combinations of the
data variables, a sequence of orthogonal factors that most efficiently explain the variance
of the observations.

One of PCA’s main shortcomings is that, even if it finds a small number of important
factors, the factor themselves typically involve all original variables. In the last decade,
several alternatives to PCA which find sparse and potentially interpretable factors have
been proposed, notably non-negative matrix factorization (NMF) (Lee and Seung, 1999)
and sparse PCA (SPCA) (Jolliffe et al., 2003; Zou et al., 2006; Zass and Shashua, 2007;
Witten et al., 2009).

However, in many applications, only constraining the size of the factors does not
seem appropriate because the considered factors are not only expected to be sparse but
also to have a certain structure. In fact, the popularity of NMF for face image analysis
owes essentially to the fact that the method happens to retrieve sets of variables that
are partly localized on the face and capture some features or parts of the face which
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3. Structured Sparse Principal Component Analysis

seem intuitively meaningful given our a priori. We might therefore gain in the quality
of the factors induced by enforcing directly this a priori in the matrix factorization
constraints. More generally, it would be desirable to encode higher-order information
about the supports that reflects the structure of the data. For example, in computer
vision, features associated to the pixels of an image are naturally organized on a grid
and the supports of factors explaining the variability of images could be expected to be
localized, connected or have some other regularity with respect to that grid. Similarly,
in genomics, factors explaining the gene expression patterns observed on a microarray
could be expected to involve groups of genes corresponding to biological pathways or set
of genes that are neighbors in a protein-protein interaction network.

Recent research on structured sparsity has highlighted the benefit of exploiting such
structure in the context of regression and classification (Jenatton et al., 2011a; Jacob
et al., 2009; Huang et al., 2009), compressed sensing (Baraniuk et al., 2010), as well as
within Bayesian frameworks (He and Carin, 2009). In particular, Jenatton et al. (2011a)
show that, given any intersection-closed family of patterns P of variables, such as all
the rectangles on a 2-dimensional grid of variables, it is possible to build an ad hoc
regularization norm Ω that enforces that the support of the solution of a least-squares
regression regularized by Ω belongs to the family P.

Capitalizing on these results, we aim in this chapter to go beyond sparse PCA and
propose structured sparse PCA (SSPCA), which explains the variance of the data by
factors that are not only sparse but also respect some a priori structural constraints
deemed relevant to model the data at hand. We show how slight variants of the regular-
ization term from Jenatton et al. (2011a) can be used successfully to yield a structured
and sparse formulation of principal component analysis for which we propose a simple
and efficient optimization scheme.

The rest of the chapter is organized as follows: Section 3.2 casts the SSPCA prob-
lem in the dictionary learning framework, summarizes the regularization considered by
Jenatton et al. (2011a) and its essential properties, and presents some simple variants
which are more effective in the context of PCA. Section 3.3 is dedicated to our optimiza-
tion scheme for solving SSPCA. Our experiments in Section 3.4 illustrate the benefits
of our approach through the denoising of sparse structured synthetic signals and an
application to face recognition.

Notations. For any matrix Y ∈ Rn×p, we write yj ∈ Rn for the j-th column of Y,
while we write Yi ∈ Rp for its i-th row. We refer to the set {j ∈ J1; pK ; wj 6= 0} as the
support, or nonzero pattern of the vector w ∈ Rp. For any finite set A with cardinality
|A|, we also define the |A|-tuple (ya)a∈A ∈ Rp×|A| as the collection of p-dimensional
vectors ya indexed by the elements of A. Furthermore, for two vectors x and y in Rp,
we denote by x ◦ y = (x1y1, . . . ,xpyp)⊤ ∈ Rp the elementwise product of x and y.
Finally, we extend b 7→ a

b by continuity in zero with a
0 =∞ if a 6= 0 and 0 otherwise.
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3.2. Problem Statement

3.2 Problem Statement

It is useful to distinguish two conceptually different interpretations of PCA. In terms
of analysis, PCA sequentially projects the data on subspaces that explain the largest frac-
tion of the variance of the data. In terms of synthesis, PCA finds a basis, or orthogonal
dictionary, such that all signals observed admit decompositions with low reconstruction
error. These two interpretations recover the same basis of principal components for PCA
but lead to different formulations for sparse PCA. The analysis interpretation leads to
sequential formulations (d’Aspremont et al., 2008; Moghaddam et al., 2006; Jolliffe et al.,
2003) that consider components one at a time and perform a deflation of the covariance
matrix at each step (see Mackey, 2009). The synthesis interpretation leads to non-convex
global formulations (Zou et al., 2006; Mairal et al., 2010a; Moghaddam et al., 2006; Lee
et al., 2007) which estimate simultaneously all principal components, often drop the or-
thogonality constraints, and are referred to as matrix factorization problems (Singh and
Gordon, 2008) in machine learning, and dictionary learning in signal processing.

The approach we propose fits more naturally in the framework of dictionnary learn-
ing, whose terminology we now introduce.

3.2.1 Matrix Factorization and Dictionary Learning

Given a matrix X ∈ Rm×n of n columns corresponding to n observations in Rm, the
dictionary learning problem is to find a matrix D ∈ Rm×p, called the dictionary, such
that each observation can be well approximated by a linear combination of the p columns
(dk)k∈J1;pK of D called the dictionary elements. If A ∈ Rp×n is the matrix of the linear
combination coefficients or decomposition coefficients, the matrix product DA is called
a decomposition of X.

Learning simultaneously the dictionary D and the decomposition A corresponds to
a matrix factorization problem (see Witten et al., 2009, and reference therein). As
formulated by Bach et al. (2008) or Witten et al. (2009), it is natural, when learning
a decomposition, to penalize or constrain some norms or quasi-norms of A and D, say
ΩA and ΩD respectively, to encode prior information — typically sparsity — about the
decomposition of X. This can be written generally as

min
A∈Rp×n,
D∈Rm×p

1

2nm

∥
∥
∥X−DA

∥
∥
∥

2

F

+ λ
p
∑

k=1

ΩD(dk), such that ΩA(Ak) ≤ 1, ∀ k ∈ J1; pK, (3.1)

where the regularization parameter λ ≥ 0 controls to which extent the dictionary is
regularized 1. If we assume that both regularizations ΩA and ΩD are convex, problem
(3.1) is convex with respect to A for fixed D and vice versa. It is however not jointly
convex in the pair (A,D).

The formulation of sparse PCA considered by Lee et al. (2007) corresponds to a par-
ticular instance of this problem, where the dictionary elements are required to be sparse

1. From Bach et al. (2008), we know that our formulation is also equivalent to two other ones,
penalized respectively by λ

2

∑p

k=1
[ΩD(dk)]2+[ΩA(Ak)]2 and λ

∑p

k=1
ΩD(dk)ΩA(Ak).
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3. Structured Sparse Principal Component Analysis

(without the orthogonality constraint D⊤D = I). This can be achieved by penalizing
the columns of D by a sparsity-inducing norm, such as the ℓ1-norm: ΩD(dk) = ‖dk‖1.
In the next section we consider a regularization ΩD which controls not only the sparsity
but also the structure of the supports of dictionary elements.

3.2.2 Structured Sparsity-Inducing Norms

The work of Jenatton et al. (2011a) considered a norm which induces structured
sparsity in the following sense: the solutions to a learning problem regularized by this
norm have a sparse support which moreover belongs to a certain set of groups of variables.
Interesting sets of possible supports include sets of variables forming rectangles when
arranged on a grid and more generally convex subsets 2.

The framework of Jenatton et al. (2011a) can be summarized as follows: if we denote
by G a subset of the power set of J1; pK, such that

⋃

g∈G g = J1; pK, we define the mixed
ℓ1/ℓ2 norm Ω on a vector y ∈ Rp as

Ω(y) =
∑

g∈G

{
∑

j∈g

(ωg

j )2|yj |2
} 1

2

=
∑

g∈G
‖ωg ◦ y‖2,

where (ωg)g∈G ∈ Rp× |G| is a |G|-tuple of p-dimensional vectors such that ωg

j > 0 if
j ∈ g and ωg

j = 0 otherwise. This norm Ω linearly combines the ℓ2 norms of possibly
overlapping groups of variables, with variables in each group being weighted by (ωg)g∈G .
Note that a same variable yj belonging to two different groups g1, g2 ∈ G is allowed to
be weighted differently in g1 and g2 (by respectively ωg1

j and ω
g2
j ).

For specific choices of G, Ω leads to standard sparsity-inducing norms. For example,
when G is the set of all singletons, Ω is the usual ℓ1 norm (assuming that all the weights
are equal to one).

We focus on the case of a 2-dimensional grid where the set of groups G is the set of
all horizontal and vertical half-spaces (see Figure 3.1 taken from Jenatton et al., 2011a).
As proved by Jenatton et al. (2011a, Theorem 3.1), the ℓ1/ℓ2 norm Ω sets to zero some
groups of variables ‖ωg ◦ y‖2, i.e., some entire horizontal and vertical half-spaces of the
grid, and therefore induces rectangular nonzero patterns. Note that a larger set of convex
patterns can be obtained by adding in G half-planes with other orientations. In practice,
we use planes with angles that are multiples of π

4 , which enables the nonzero patterns
to have polygonal shapes with up to 8 faces.

Among sparsity inducing regularizations, the ℓ1 norm is often privileged since it is
convex. However, so-called concave penalizations, such as penalization by an ℓα quasi-
norm, which are closer to the ℓ0 quasi-norm and penalize more aggressively small coef-
ficients can be preferred, especially in a context where the unregularized problem, here
dictionary learning is itself non convex. In light of recent work showing the advantages
of addressing sparse problems through concave penalization (e.g., see Zou and Li, 2008),

2. Although we use the term convex informally here, it can however be made precise with the notion
of convex subgraphs (Chung, 1997).
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3.3. Optimization

Figure 3.1: (Left) The set of blue and green groups with their (not displayed) comple-
ments to penalize to select rectangles. (Right) In red, an example of recovered pattern
in this setting.

we therefore generalize Ω to a family of non-convex regularizers as follows: for α∈(0, 1),
we define the quasi-norm Ωα for all vectors y∈Rp as

Ωα(y) =

{
∑

g∈G
‖ωg ◦ y‖α2

} 1
α

= ‖ (‖ωg ◦ y‖2)g∈G ‖α,

where we denote by (‖ωg ◦ y‖2)g∈G ∈ R1×|G| the |G|-tuple composed of the different
blocks ‖ωg ◦ y‖2. We thus replace the (convex) ℓ1/ℓ2 norm Ω by the (neither convex,
nor concave) ℓα/ℓ2 quasi-norm Ωα. While leading to the same set of (non)zero patterns,
the ℓα quasi-norm yields sparsity at the group level more aggressively.

3.3 Optimization

We consider the optimization of Eq. (3.1) where we use ΩD = Ωα to regularize
the dictionary D. We discuss in Section 3.3.3 which norms ΩA we can handle in this
optimization framework.

3.3.1 Formulation as a Sequence of Convex Problems

We now consider Eq. (3.1) where we take ΩD to be Ωα, α ∈ (0, 1), that is,

min
A∈Rp×n,
D∈Rm×p

1

2nm

∥
∥
∥X−DA

∥
∥
∥

2

F

+ λ
p
∑

k=1

Ωα(dk), such that ΩA(Ak) ≤ 1, ∀ k ∈ J1; pK, (3.2)

Although the minimization problem in Eq. (3.2) is still convex in A for D fixed, the
converse is not true anymore because of Ωα. Indeed, the formulation in D is non-
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3. Structured Sparse Principal Component Analysis

differentiable and non-convex. To address this problem, we use the variational equality
based on the following lemma that is related 3 to ideas from Micchelli and Pontil (2006):

Lemma 1 (Variational formulation)
Let α ∈ (0, 2) and β = α

2−α . For any vector y ∈ Rp, we have the following equality

‖y‖α = min
z∈Rp

+

[1

2

p
∑

j=1

y2
j

zj
+

1

2
‖z‖β

]

,

and the minimum is uniquely attained for zj = |yj |2−α‖y‖α−1
α , ∀j ∈ J1; pK.

Proof. Let ψ :z 7→∑p
j=1 y2

jz−1
j +‖z‖β be the continuously differentiable function defined

on Rp
+. We have lim‖z‖β→∞ ψ(z)=+∞ and limzj→0 ψ(z)=+∞ if yj 6=0 (for yj =0, note

that minz∈Rp
+
ψ(z) = minz∈Rp

+,zj=0 ψ(z)). Thus, the infimum exists and it is attained.
Taking the derivative with respect to zj (for zj > 0) leads to the expression of the unique
minimum, expression that is still correct for zj = 0.

To reformulate problem (3.2), let us consider the |G|-tuple (ηg)g∈G ∈ Rp×|G| of r-
dimensional vectors ηg that satisfy for all k ∈ J1; pK and g ∈ G, ηg

k ≥ 0. It follows from
Lemma 1 that 2

∑p
k=1 Ωα(dk) is equal to

min
(ηg)G∈G∈Rp×|G|

+

p
∑

k=1

[

‖(ηg

k)g∈G‖β +
∑

g∈G
‖dk◦ ωg‖22(ηg

k)−1
]

,

that can be rewritten in turn as

min
(ηg)g∈G∈Rp×|G|

+

p
∑

k=1

(dk)⊤Diag
(
ζk)−1

dk + ‖(ηg

k)g∈G‖β ,

where we have introduced the matrix ζ ∈ Rm×p defined by 4 ζjk ,
{
∑

g∈G,
g∋j

(ωg

j )2(ηg

k)−1
}−1

.

This leads to the following formulation

min
A, D, ΩA(Ak)≤1
(ηg)g∈G∈Rp×|G|+

1

2nm
‖X−DA‖2F +

λ

2

p
∑

k=1

[

(dk)⊤Diag
(

ζk
)−1

dk + ‖(ηg

k)g∈G‖β
]

, (3.3)

which is equivalent to Eq. (3.2) and which is now quadratic with respect to D.

3. Note that we depart from Micchelli and Pontil (2006) who consider a quadratic upperbound on the
squared norm. We prefer to remain in the standard dictionary learning framework where the penalization
is not squared.

4. For the sake of clarity, we do not specify the dependence of ζ on (ηg)g∈G .
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3.3.2 Sharing Structure among Dictionary Elements

So far, the regularization quasi-norm Ωα has been used to induce a structure inside
each dictionary element taken separately. Nonetheless, some applications may also ben-
efit from a control of the structure across dictionary elements. For instance it can be
desirable to impose the constraint that several dictionary elements share the exact same
nonzero patterns. In the context of face recognition, this could be relevant to model
the variability of faces as the combined variability of several parts, with each part hav-
ing a small support (such as eyes), and having its variance itself explained by several
dictionary elements (corresponding for example to the color and the shape of the eyes).

To this end, we consider M, a partition of J1; pK. Imposing that two dictionary
elements dk and dk′

share the same sparsity pattern is equivalent to imposing that
dk

i and dk′

i are simultaneously zero or non-zero. Following the approach used for joint
feature selection (Obozinski et al., 2009) where the ℓ1 norm is composed with an ℓ2
norm, we compose the norm Ωα with the ℓ2 norm dM

i = ‖(dk
i )k∈M‖2, of all ith entries of

each dictionary element of a class M of the partition M, leading to the regularization:

∑

M∈M
Ωα(dM

i ) =
∑

M∈M

[∑

g∈G
‖(ωg

i dk
i )i∈g, k∈M‖α2

] 1
α
. (3.4)

In fact, not surprisingly given that similar results hold for the group Lasso (Bach, 2008b),
it can be shown that the above extension is equivalent to the variational formulation

min
A, D, ΩA(Ak)≤1

(ηg)g∈G∈R|M|×|G|
+

1

2nm
‖X−DA‖2F +

λ

2

∑

M∈M

[
∑

k∈M

(dk)⊤Diag
(

ζM
)−1

dk + ‖(ηg

M )g∈G‖β
]

,

with class specific variables {ηM}M∈M, {ζM}M∈M defined in a similar way to {ηk}k∈J1;pK

and {ζk}k∈J1;pK.

3.3.3 Algorithm

The main optimization procedure described in Algorithm 5 is based on a cyclic
optimization over the three variables involved, namely (ηg)g∈G , A and D. We use
Lemma 1 to solve (3.2) through a sequence of problems that are convex in A for fixed D
(and conversely, convex in D for fixed A). For this sequence of problems, we then present
efficient optimization procedures based on block coordinate descent (BCD) (Bertsekas,
1999, Section 2.7). We describe these in detail in Algorithm 5. Note that we depart from
the approach of Jenatton et al. (2011a) who use an active set algorithm. Their approach
does not indeed allow warm restarts, which is crucial in our alternating optimization
scheme.

Update of (ηg)g∈G. The update of (ηg)g∈G is straightforward (even if the underlying
minimization problem is non-convex), since the minimizer (ηg)∗ in Lemma 1 is given
in closed-form. In practice, following Micchelli and Pontil (2006), we avoid numerical
instability near zero with the smoothed update ηg

k ← max{(ηg

k)∗, ε}, with ε≪ 1.
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3. Structured Sparse Principal Component Analysis

Update of A. The update of A follows the technique suggested by Mairal et al.
(2010a). Each row Ak of A is constrained separately through ΩA(Ak). Furthermore, if
we assume that D and {Aj}j 6=k are fixed, some basic algebra leads to

arg minΩA(Ak)≤1

1

2nm
‖X−DA‖2F

= arg minΩA(Ak)≤1

∥
∥Ak− ‖dk‖−2

2 [dk]⊤
(
X−

∑

j 6=k

djAj
)∥
∥

2

2

= arg minΩA(Ak)≤1 ‖Ak −w‖22, (3.5)

which is simply the Euclidean projection ΠΩA
(w) of the row vector w onto the unit ball

of ΩA. Consequently, the cost of the BCD update of A depends on how fast we can
perform this projection; the ℓ1 and ℓ2 norms are typical cases where the projection can
be computed efficiently (Brucker, 1984; Duchi et al., 2008). In the experiments, we take
ΩA to be the ℓ2 norm.

In addition, since the function Ak 7→ 1
2nm‖X−DA‖2F is continuously differentiable on

the (closed convex) unit ball of ΩA, the convergence of the BCD procedure is guaranteed
since the minimum in Eq. (3.5) is unique (Bertsekas, 1999, Proposition 2.7.1). The
complete update of A is given in Algorithm 5.

Update of D. A fairly natural way to update D would be to compute the closed
form solutions available for each row of D. Indeed, both the loss 1

2nm‖X−DA‖2F and
the penalization on D are separable in the rows of D, leading to m independent ridge-
regression problems, implying in turn m matrix inversions.

However, in light of the update of A, we consider again a BCD scheme on the columns
of D that turns out to be much more efficient, without requiring any non-diagonal matrix
inversion. The detailed procedure is given in Algorithm 5. The convergence follows along
the same arguments as those used for A.

Algorithm 5 Main procedure for solving Eq. (3.3).
Input: Dictionary size p, data matrix X.
Initialization: Initialization of A,D (possibly random).
while ( stopping criterion not reached )

Update (ηg)G∈G : closed-form solution.
Update A by BCD:
for t = 1 to Tu, for k = 1 to p:
Ak ← ΠΩA

(
Ak+‖dk‖−2

2 [dk]⊤(X−DA)
)
.

Update D by BCD:
for t = 1 to Tv, for k = 1 to p:

dk←Diag
(

ζk
)

Diag
(

‖Ak‖22ζk+nmλ1
)−1

(X⊤A⊤
k −DAA⊤

k + ‖Ak‖22dk).

Output: Decomposition A,D.

Our problem is not jointly convex in (ηg)g∈G , A and D, which raises the question of
the sensitivity of the optimization to its initialization. This point will be discussed in
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Section 3.4. In practice, the stopping criterion relies on the relative decrease (typically
10−3) in the cost function in Eq. (3.2).

Algorithmic complexity. The complexity of Algorithm 5 can be decomposed into
three terms, corresponding to the update procedures of (ηg)g∈G , A and D. We denote
by Tu (respectively Tv) the number of updates of A (respectively D) in Algorithm 5.
First, computing (ηg)g∈G and ζ costs O(p|G|+(|G| + p)

∑

g∈G |g|) = O(mp|G| + m|G|2).
The update of U requires O((m+ Tun)p2 + (nm+CΠTu)p) operations, where CΠ is the
cost of projecting onto the unit ball of ΩA. Similarly, we get for the update of D a
complexity of O((n+ Tvm)p2 + nmp). In practice, we notice that the BCD updates for
both A and D require only few steps, so that we choose Tu =Tv =5. In our experiments,
the algorithmic complexity simplifies to O(m2 +p2 max{n,m}+pmmax{m1/2, n}) times
the number of iterations in Algorithm 5. Note that the complexity is linear in n and is
quadratic in p, which is empirically the computational bottleneck.

Extension to NMF. Our formalism does not cover the positivity constraints of non-
negative matrix factorization, but it is straightforward to extend it at the cost of an
additional cheap threshold operation (to project onto the positive orthant) in the BCD
updates of A and D.

3.4 Experiments

We first consider the denoising of synthetic signals to illustrate the effect of our
regularization. We then focus on the application of SSPCA to a face recognition problem
and we show that, by adding a sparse structured prior instead of a simple sparse prior,
we gain in robustness to occlusions. In preliminary experiments, we considered the exact
regularization from Jenatton et al. (2011a), i.e., with α = 1, but found that the obtained
patterns were not sufficiently sparse and salient. We therefore turned to the setting
where the parameter α is in (0, 1). We chose α = 0.5, since much smaller or larger
values yield either not sparse enough solutions or numerical instability.

By definition, dictionary learning belongs to unsupervised learning; in that sense,
our method may appear first as a tool for exploratory data analysis, which leads us
naturally to qualitatively analyze the results of our decompositions (e.g., by visualizing
the learned dictionaries). This is obviously a difficult and subjective exercise, beyond
the assessment of the consistency of the method in artificial examples where the “true”
dictionnary is known. For that reason, we endeavor in the experiments to compare our
method objectively and quantitatively with other techniques. Specifically, we apply our
method within either a denoising or a classification setting, and assess its performance
respectively by the obtained increase in explained variance or classification accuracy.

A Matlab toolbox implementing our method can be downloaded from
http://www.di.ens.fr/~jenatton/.
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Figure 3.2: Top row: dictionary D = [d1,d2,d3]∈R400×3 used to generate the signals
Eq. (3.6). From the second to the bottom row: dictionary elements recovered from 250
signals by PCA, SPCA and SSPCA (best seen in color).

3.4.1 Denoising of Synthetic Signals

In this first experiment, we consider signals generated by the following noisy linear
model

α1d1 + α2d2 + α3d3 + ε ∈ R400, (3.6)

where D=[d1,d2,d3]∈R400×3 are sparse and structured dictionary elements organized
on a 20×20-dimensional grid (D is represented on the top row of Figure 3.2). The
components of the noise vector ε are independent and identically distributed according
to a centered Gaussian distribution with its variance set to obtain a signal-to-noise ratio
(SNR) of 0.5. The coefficients [α1,α2,α3] that linearly combine the dictionary elements
of D are generated according to a centered Gaussian distribution, with the following
covariance matrix 




1 0 0.5
0 1 0.5

0.5 0.5 1




.
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From 250 of such signals, we learn a decomposition D̂Â with p = 3 dictionary elements,
which seems a reasonable choice of p in an attempt to recover the underlying (in this
case, known) structure of D. For SPCA and SSPCA, the regularization parameter λ
is selected by 5-fold cross-validation on the reconstruction error. Based on the learned
dictionary D̂, we denoise 1000 new signals generated in the same way. We report in
Table 3.1 the results of the denoising, for PCA, SPCA and SSPCA.

The difficulty of this task is essentially twofold and lies in (1) the high level of noise
and in (2) the small number of signals (i.e., 250 signals against 400 variables) available
to learn the decomposition.

As displayed on Figure 3.2, PCA and SPCA learn very scattered and uninterpretable
dictionary elements. On the other hand, the sparse structured prior we put through Ωα

helps to recover the initial structure of D, which, in turn, improves upon the denoising
performance of SSPCA (see Table 3.1). Note that in order to assess the statistical
significance of the differences between the average denoising performances of Table 3.1,
one has to consider the sample standard deviation divided by

√
1000 (Lehmann and

Romano, 2005), i.e., roughly ≈ 0.007.
The setting we consider here raises the interesting question of model identifiability,

i.e., whether we can recover the true dictionary elements that generated the signals,
which we defer to future work.

PCA SPCA SSPCA
Estimation error: 0.41± 0.22 0.40± 0.22 0.34± 0.21

Table 3.1: Average and standard deviation of the normalized estimation error, computed
over 1000 signals for PCA, SPCA and SSPCA.

3.4.2 Face Recognition

We apply SSPCA on the cropped AR Face Database (Martinez and Kak, 2001) that
consists of 2600 face images, corresponding to 100 individuals (50 women and 50 men).
For each subject, there are 14 non-occluded poses and 12 occluded ones (the occlusions
are due to sunglasses and scarfs). We reduce the resolution of the images from 165×120
pixels to 38×27 pixels for computational reasons.

Figure 3.3 shows examples of learned dictionaries (for p = 36 elements), for NMF,
SSPCA and SSPCA with shared structure (see Section 3.3.2). While NMF finds sparse
but spatially unconstrained patterns, SSPCA select sparse convex areas that correspond
to a more natural segment of faces. For instance, meaningful parts such as the mouth
and the eyes are recovered by the dictionary.

We now quantitatively compare SSPCA, SPCA, PCA and NMF on a face recognition
problem. We first split the data into 2 parts, the occluded faces and non-occluded ones.
For different sizes of the dictionary, we apply each of the aforementioned dimensionality
reduction techniques to the non-occluded faces. Keeping the learned dictionary D, we
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3. Structured Sparse Principal Component Analysis

decompose both non-occluded and occluded faces on D. We then classify the occluded
faces with a k-nearest-neighbors classifier (k-NN), based on the obtained low-dimensional
representations A. Given the size of the dictionary, we choose the number of neighbor(s)
and the amount of regularization λ by cross-validation 5 on the non-occluded faces.

The formulations of NMF, SPCA and SSPCA are non-convex and as a consequence,
the local minima reached by those methods might a priori be sensitive to the initial-
ization. To evaluate this sensitivity, we repeat the protocol described above 10 times
and display in Figure 3.4 the median, first and third quartile of the classification scores
obtained in this way. In practice we found the performance on the test set to be pretty
stable as a function of the initialization. We denote by shared-SSPCA (resp. shared-
SPCA) the models where we impose, on top of the structure of Ωα, to have only 10
different nonzero patterns among the learned dictionaries (see Section 3.3.2). We per-
formed a Wilcoxon signed-rank test (Lehmann and Romano, 2005) between the classi-
fication scores of NMF and SSPCA, and for dictionary sizes greater than 100 (up to
150), our approach performs better than NMF at the 5% significance level. For smaller
dictionaries, NMF and SSPCA perform similarly. The other methods, including PCA
and SPCA, obtained overall lower scores than NMF and can also be shown to perform
significantly worse than SSPCA.

As a baseline, we also plot the classification score that we obtain when we directly
apply k-NN on the raw data, without preprocessing. Because of its local dictionary,
SSPCA proves to be more robust to occlusions and therefore outperforms the other
methods on this classification task. On the other hand, SPCA, that yields sparsity
without a structured prior, performs poorly. Sharing structure across the dictionary
elements (see Section 3.3.2) seems to help SPCA for which no structure information
is otherwise available. The goal of our chapter is not to compete with state-of-the-art
techniques of face recognition, but to demonstrate the improvement obtained between
the ℓ1 norm and more structured norms. We could still improve upon our results using
non-linear classification (e.g., with a SVM) or by refining our features (e.g., with a
Laplacian filter).

5. We perform 5-fold cross-validation and the number of nearest neighbor(s) is searched in {1, 3, 5}
while log10(λ) is in {−11, −10.5, . . . , −7}. For the dictionary, we consider the sizes p ∈ {10, 20, . . . , 150}.
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3.4. Experiments

Figure 3.3: Top left, examples of faces in the datasets. The three remaining images
represent learned dictionaries of faces with p=36: NMF (top right), SSPCA (bottom left)
and shared-SSPCA (bottom roght) (i.e., SSPCA with |M|=12 different patterns of size
3). The dictionary elements are sorted in decreasing order of explained variance. While
NMF gives sparse spatially unconstrained patterns, SSPCA finds convex areas that
correspond to more natural face segments. SSPCA captures the left/right illuminations
and retrieves pairs of symmetric patterns. Some displayed patterns do not seem to be
convex, e.g., nonzero patterns located at two opposite corners of the grid. However, a
closer look at these dictionary elements shows that convex shapes are indeed selected,
and that small numerical values (just as regularizing by ℓ2 norm may lead to) give the
visual impression of having zeroes in convex nonzero patterns. This also shows that if a
nonconvex pattern has to be selected, it will be, by considering its convex hull.
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Figure 3.4: Classification accuracy versus dictionary size: each dimensionality reduction
technique is used with k-NN to classify occluded faces. SSPCA shows better robustness
to occlusions. The points, lower and upper error bars on the curves respectively represent
the median, first and third quartile, based on 10 runs.

3.5 Conclusions

We proposed to apply a non-convex variant of the regularization introduced by Je-
natton et al. (2011a) to the problem of structured sparse dictionary learning. We present
an efficient block-coordinate descent algorithm with closed-form updates. In a denoising
task of sparse structured signals, our approach led to better performance and to a more
interpretable decomposition of the data. For face recognition, the dictionaries learned
have increased robustness to occlusions compared to NMF.

In future work, we would like to investigate Bayesian frameworks that would define
similar structured priors and allow the principled choice of the regularization parameter
and the number of dictionary elements (Zhou et al., 2009). Moreover, although we
focus in this work on controlling the structure of the dictionary D, we could instead
impose structure on the decompostion coefficients A and study the induced effect on
the dictionary D (Kavukcuoglu et al., 2009). This could be straightforward to do with
the same formulation, by transposing the data matrix X. Finally, we intend to apply
this structured sparsity-inducing regularization for multi-task learning, in order to take
advantage of the structure between tasks.
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4

Proximal Methods for Structured Sparsity-Inducing
Norms

Abstract of the chapter: Sparse coding consists of representing signals as sparse linear com-
binations of atoms selected from a dictionary. We consider an extension of this framework where
the atoms are further assumed to be embedded in a tree. This is achieved using a recently intro-
duced tree-structured sparse regularization norm, which has proven useful in several applications.
This norm leads to regularized problems that are difficult to optimize, and in this chapter, we
propose efficient algorithms for solving them. More precisely, we show that the proximal oper-
ator associated with this norm is computable exactly via a dual approach that can be viewed
as the composition of elementary proximal operators. Our procedure has a complexity linear,
or close to linear, in the number of atoms, and allows the use of accelerated gradient techniques
to solve the tree-structured sparse approximation problem at the same computational cost as
traditional ones using the ℓ1-norm. Our method is efficient and scales gracefully to millions of
variables, which we illustrate in two types of applications: first, we consider fixed hierarchical
dictionaries of wavelets to denoise natural images. Then, we apply our optimization tools in
the context of dictionary learning, where learned dictionary elements naturally organize in a
prespecified arborescent structure, leading to better performance in reconstruction of natural
image patches. When applied to text documents, our method learns hierarchies of topics, thus
providing a competitive alternative to probabilistic topic models.

The work presented in this chapter was achieved with the collaboration of Julien Mairal,
Guillaume Obozinski and Francis Bach, with equal contribution between Julien Mairal
and myself. The material of this chapter is based on the following work:

R. Jenatton∗, J. Mairal∗, G. Obozinski, F. Bach. Proximal Methods for Sparse
Hierarchical Dictionary Learning. In Proceedings of the International Conference on
Machine Learning (ICML). 2010

R. Jenatton∗, J. Mairal∗, G. Obozinski, F. Bach. Proximal Methods for Hierarchical
Sparse Coding. In Journal of Machine Learning Research, 12, 2297-2334. 2011 (long
version of the previous article)

(∗equal contributions)
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4. Proximal Methods for Structured Sparsity-Inducing Norms

4.1 Introduction

Modeling signals as sparse linear combinations of atoms selected from a dictionary
has become a popular paradigm in many fields, including signal processing, statistics,
and machine learning. This line of research, also known as sparse coding, has witnessed
the development of several well-founded theoretical frameworks (Tibshirani, 1996; Chen
et al., 1998; Mallat, 1999; Tropp, 2004, 2006; Wainwright, 2009; Bickel et al., 2009) and
the emergence of many efficient algorithmic tools (Efron et al., 2004; Nesterov, 2007;
Beck and Teboulle, 2009; Wright et al., 2009; Needell and Tropp, 2009; Yuan et al.,
2010).

In many applied settings, the structure of the problem at hand, such as, e.g., the
spatial arrangement of the pixels in an image, or the presence of variables corresponding
to several levels of a given factor, induces relationships between dictionary elements. It
is appealing to use this a priori knowledge about the problem directly to constrain the
possible sparsity patterns. For instance, when the dictionary elements are partitioned
into predefined groups corresponding to different types of features, one can enforce a
similar block structure in the sparsity pattern—that is, allow only that either all elements
of a group are part of the signal decomposition or that all are dismissed simultaneously
(see Yuan and Lin, 2006; Stojnic et al., 2009).

This example can be viewed as a particular instance of structured sparsity, which has
been lately the focus of a large amount of research (Baraniuk et al., 2010; Zhao et al.,
2009; Huang et al., 2009; Jacob et al., 2009; Jenatton et al., 2011a; Micchelli et al.,
2010). In this chapter, we concentrate on a specific form of structured sparsity, which
we call hierarchical sparse coding: the dictionary elements are assumed to be embedded
in a directed tree T , and the sparsity patterns are constrained to form a connected and
rooted subtree of T (Donoho, 1997; Baraniuk, 1999; Baraniuk et al., 2002, 2010; Zhao
et al., 2009; Huang et al., 2009). This setting extends more generally to a forest of
directed trees. 1

In fact, such a hierarchical structure arises in many applications. Wavelet decomposi-
tions lend themselves well to this tree organization because of their multiscale structure,
and benefit from it for image compression and denoising (Shapiro, 1993; Crouse et al.,
1998; Baraniuk, 1999; Baraniuk et al., 2002, 2010; He and Carin, 2009; Zhao et al., 2009;
Huang et al., 2009). In the same vein, edge filters of natural image patches can be
represented in an arborescent fashion (Zoran and Weiss, 2009). Imposing these sparsity
patterns has further proven useful in the context of hierarchical variable selection, e.g.,
when applied to kernel methods (Bach, 2008a), to log-linear models for the selection of
potential orders (Schmidt and Murphy, 2010), and to bioinformatics, to exploit the tree
structure of gene networks for multi-task regression (Kim and Xing, 2010). Hierarchies
of latent variables, typically used in neural networks and deep learning architectures (see
Bengio, 2009, and references therein) have also emerged as a natural structure in several
applications, notably to model text documents. In particular, in the context of topic
models (Blei et al., 2003), a hierarchical model of latent variables based on Bayesian

1. A tree is defined as a connected graph that contains no cycle (see Ahuja et al., 1993).
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non-parametric methods has been proposed by Blei et al. (2010) to model hierarchies of
topics.

To perform hierarchical sparse coding, our work builds upon the approach of Zhao
et al. (2009) who first introduced a sparsity-inducing norm Ω leading to this type of
tree-structured sparsity pattern. We tackle the resulting nonsmooth convex optimization
problem with proximal methods (e.g., Nesterov, 2007; Beck and Teboulle, 2009; Wright
et al., 2009; Combettes and Pesquet, 2010) and we show in this chapter that its key
step, the computation of the proximal operator, can be solved exactly with a complexity
linear, or close to linear, in the number of dictionary elements—that is, with the same
complexity as for classical ℓ1-sparse decomposition problems (Tibshirani, 1996; Chen
et al., 1998). Concretely, given an m-dimensional signal x along with a dictionary
D = [d1, . . . ,dp] ∈ Rm×p composed of p atoms, the optimization problem at the core of
our chapter can be written as

min
α∈Rp

1

2
‖x−Dα‖22 + λΩ(α), with λ ≥ 0.

In this formulation, the sparsity-inducing norm Ω encodes a hierarchical structure among
the atoms of D, where this structure is assumed to be known beforehand. The precise
meaning of hierarchical structure and the definition of Ω will be made more formal in the
next sections. A particular instance of this problem—known as the proximal problem—is
central to our analysis and concentrates on the case where the dictionary D is orthogonal.

In addition to a speed benchmark that evaluates the performance of our proposed
approach compared to other convex optimization techniques, two types of applications
and experiments are carried out. First, we consider settings where the dictionary is fixed
and given a priori, corresponding for instance to a basis of wavelets for the denoising of
natural images. Second, we show how one can take advantage of this hierarchical sparse
coding in the context of dictionary learning (Olshausen and Field, 1997; Aharon et al.,
2006; Mairal et al., 2010a), where the dictionary is learned to adapt to the predefined tree
structure. This extension of dictionary learning is notably shown to share interesting
connections with hierarchical probabilistic topic models.

To summarize, the contributions of this chapter are threefold:
• We show that the proximal operator for a tree-structured sparse regularization

can be computed exactly in a finite number of operations using a dual approach.
Our approach is equivalent to computing a particular sequence of elementary
proximal operators, and has a complexity linear, or close to linear, in the num-
ber of variables. Accelerated gradient methods (e.g., Nesterov, 2007; Beck and
Teboulle, 2009; Combettes and Pesquet, 2010) can then be applied to solve large-
scale tree-structured sparse decomposition problems at the same computational
cost as traditional ones using the ℓ1-norm.

• We propose to use this regularization scheme to learn dictionaries embedded in a
tree, which, to the best of our knowledge, has not been done before in the context
of structured sparsity.

• Our method establishes a bridge between hierarchical dictionary learning and hi-
erarchical topic models (Blei et al., 2010), which builds upon the interpretation
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4. Proximal Methods for Structured Sparsity-Inducing Norms

of topic models as multinomial PCA (Buntine, 2002), and can learn similar hier-
archies of topics. This point is discussed in Sections 4.5.5 and 4.6.

The rest of this chapter is organized as follows: Section 4.2 presents related work
and the problem we consider. Section 4.3 is devoted to the algorithm we propose, and
Section 4.4 introduces the dictionary learning framework and shows how it can be used
with tree-structured norms. Section 4.5 presents several experiments demonstrating the
effectiveness of our approach and Section 4.6 concludes the chapter.

4.2 Problem Statement and Related Work

Let us consider an input signal of dimension m, typically an image described by its
m pixels, which we represent by a vector x in Rm. In traditional sparse coding, we
seek to approximate this signal by a sparse linear combination of atoms, or dictionary
elements, represented here by the columns of a matrix D , [d1, . . . ,dp] in Rm×p. This
can equivalently be expressed as x ≈ Dα for some sparse vector α in Rp, i.e, such that
the number of nonzero coefficients ‖α‖0 is small compared to p. The vector α is referred
to as the code, or decomposition, of the signal x.

Figure 4.1: Example of a tree T when p = 6. With the rule we consider for the nonzero
patterns, if we have α5 6= 0, we must also have αk 6= 0 for k in ancestors(5) = {1, 3, 5}.

In the rest of the chapter, we focus on specific sets of nonzero coefficients—or sim-
ply, nonzero patterns—for the decomposition vector α. In particular, we assume that
we are given a tree 2 T whose p nodes are indexed by j in {1, . . . , p}. We want the
nonzero patterns of α to form a connected and rooted subtree of T ; in other words, if
ancestors(j) ⊆ {1, . . . , p} denotes the set of indices corresponding to the ancestors 3 of
the node j in T (see Figure 4.1), the vector α obeys the following rule

αj 6= 0⇒ [ αk 6= 0 for all k in ancestors(j) ]. (4.1)

Informally, we want to exploit the structure of T in the following sense: the decompo-
sition of any signal x can involve a dictionary element dj only if the ancestors of dj in
the tree T are themselves part of the decomposition.

2. Our analysis straightforwardly extends to the case of a forest of trees; for simplicity, we consider
a single tree T .

3. We consider that the set of ancestors of a node also contains the node itself.
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We now review previous work that has considered the sparse approximation problem
with tree-structured constraints (4.1). Similarly to traditional sparse coding, there are
basically two lines of research, that either (A) deal with nonconvex and combinatorial
formulations that are in general computationally intractable and addressed with greedy
algorithms, or (B) concentrate on convex relaxations solved with convex programming
methods.

4.2.1 Nonconvex Approaches

For a given sparsity level s ≥ 0 (number of nonzero coefficients), the following non-
convex problem

min
α∈Rp

‖α‖0≤s

1

2
‖x−Dα‖22 such that condition (4.1) is respected, (4.2)

has been addressed by Baraniuk (1999); Baraniuk et al. (2002) in the context of wavelet
approximations with a greedy procedure. A penalized version of problem (4.2) (that adds
λ‖α‖0 to the objective function in place of the constraint ‖α‖0 ≤ s) has been considered
by Donoho (1997), while studying the more general problem of best approximation
from dyadic partitions (see Section 6 in Donoho, 1997). Interestingly, the algorithm we
introduce in Section 4.3 shares conceptual links with the dynamic-programming approach
of Donoho (1997), which was also used by Baraniuk et al. (2010), in the sense that the
same order of traversal of the tree is used in both procedures. We investigate more
thoroughly the relations between our algorithm and this approach in Appendix A.2.1.

Problem (4.2) has been further studied for structured compressive sensing (Baraniuk
et al., 2010), with a greedy algorithm that builds upon Needell and Tropp (2009). Finally,
Huang et al. (2009) have proposed a formulation related to (4.2), with a nonconvex
penalty based on an information-theoretic criterion.

4.2.2 Convex Approach

We now turn to a convex reformulation of the constraint (4.1), which is the starting
point for the convex optimization tools we develop in Section 4.3.

Hierarchical Sparsity-Inducing Norms

Condition (4.1) can be equivalently expressed by taking its contrapositive, thus lead-
ing to an intuitive way of penalizing the vector α to obtain tree-structured nonzero pat-
terns. More precisely, defining descendants(j) ⊆ {1, . . . , p} analogously to ancestors(j)
for j in {1, . . . , p}, condition (4.1) amounts to saying that if a dictionary element is not
used in the decomposition, its descendants in the tree should not be used either. Formally,
this writes down

αj = 0⇒ [ αk = 0 for all k in descendants(j) ]. (4.3)
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From now on, we denote by G the set defined by G , {descendants(j); j ∈ {1, . . . , p}},
and refer to each member g of G as a group (Figure 4.2). To obtain a decomposition
with the desired property (4.3), one can naturally penalize the number of groups g in
G that are “involved” in the decomposition of x, i.e., that record at least one nonzero
coefficient of α:

∑

g∈G
δg, with δg ,

{

1 if there exists j ∈ g such that αj 6= 0,

0 otherwise.
(4.4)

While this intuitive penalization is nonconvex (and not even continuous), a convex proxy
has been introduced by Zhao et al. (2009). It was further considered by Bach (2008a);
Kim and Xing (2010); Schmidt and Murphy (2010) in several different contexts. For any
vector α ∈ Rp, let us define

Ω(α) ,
∑

g∈G
ωg‖α|g‖,

where α|g is the vector of size p whose coordinates are equal to those of α for indices in
the set g, and 0 otherwise 4. The notation ‖.‖ stands in practice either for the ℓ2- or ℓ∞-
norm, and (ωg)g∈G denotes some positive weights 5. As analyzed by Zhao et al. (2009)
and Jenatton et al. (2011a), when penalizing by Ω, some of the vectors α|g are set to
zero for some g ∈ G. 6 Therefore, the components of α corresponding to some complete
subtrees of T are set to zero, which exactly matches condition (4.3), as illustrated in
Figure 4.2.

Note that although we have presented for simplicity this hierarchical norm in the
context of a single tree with a single element at each node, it can easily be extended
to the case of forests of trees, and/or trees containing arbitrary numbers of dictionary
elements at each node (with nodes possibly containing no dictionary element). More
broadly, this formulation can be extended with the notion of tree-structured groups,
which we now present:

Definition 1 (Tree-structured set of groups.)
A set of groups G , {g}g∈G is said to be tree-structured in {1, . . . , p}, if

⋃

g∈Gg =
{1, . . . , p} and if for all g, h ∈ G, (g ∩ h 6= ∅) ⇒ (g ⊆ h or h ⊆ g). For such a set
of groups, there exists a (non-unique) total order relation � such that:

g � h ⇒ {
g ⊆ h or g ∩ h = ∅}.

Given such a tree-structured set of groups G and its associated norm Ω, we are
interested throughout the chapter in the following hierarchical sparse coding problem,

min
α∈Rp

f(α) + λΩ(α), (4.5)

4. Note the difference with the notation αg, which is often used in the literature on structured
sparsity, where αg is a vector of size |g|.

5. For a complete definition of Ω for any ℓq-norm, a discussion of the choice of q, and a strategy for
choosing the weights ωg (see Zhao et al., 2009; Kim and Xing, 2010).

6. It has been further shown by Bach (2010a) that the convex envelope of the nonconvex function of
Eq. (4.4) is in fact Ω with ‖.‖ being the ℓ∞-norm.
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Figure 4.2: Left: example of a tree-structured set of groups G (dashed contours in red),
corresponding to a tree T with p = 6 nodes represented by black circles. Right: example
of a sparsity pattern induced by the tree-structured norm corresponding to G: the groups
{2, 4}, {4} and {6} are set to zero, so that the corresponding nodes (in gray) that form
subtrees of T are removed. The remaining nonzero variables {1, 3, 5} form a rooted and
connected subtree of T . This sparsity pattern obeys the following equivalent rules: (i) if
a node is selected, the same goes for all its ancestors. (ii) if a node is not selected, then
its descendant are not selected.

where Ω is the tree-structured norm we have previously introduced, the non-negative
scalar λ is a regularization parameter controlling the sparsity of the solutions of (4.5), and
f a smooth convex loss function (see Section 4.3 for more details about the smoothness
assumptions on f). In the rest of the chapter, we will mostly use the square loss f(α) =
1
2‖x − Dα‖22, with a dictionary D in Rm×p, but the formulation of Eq. (4.5) extends
beyond this context. In particular one can choose f to be the logistic loss, which is
commonly used for classification problems (e.g., see Hastie et al., 2009).

Before turning to optimization methods for the hierarchical sparse coding problem,
we consider a particular instance. The sparse group Lasso was recently considered by
Sprechmann et al. (2010b) and Friedman et al. (2010) as an extension of the group
Lasso of Yuan and Lin (2006). To induce sparsity both groupwise and within groups,
Sprechmann et al. (2010b) and Friedman et al. (2010) add an ℓ1 term to the regularization
of the group Lasso, which given a partition P of {1, . . . , p} in disjoint groups yields a
regularized problem of the form

min
α∈Rp

1

2
‖x−Dα‖22 + λ

∑

g∈P
‖α|g‖2 + λ′‖α‖1.

Since P is a partition, the set of groups in P and the singletons form together a tree-
structured set of groups according to definition 1 and the algorithm we will develop will
therefore be applicable to this problem.

Optimization for Hierarchical Sparsity-Inducing Norms

While generic approaches like interior-point methods (Boyd and Vandenberghe, 2004)
and subgradient descent schemes (Bertsekas, 1999) might be used to deal with the non-
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smooth norm Ω, several dedicated procedures have been proposed.
In Zhao et al. (2009), a boosting-like technique is used, with a path-following strategy

in the specific case where ‖.‖ is the ℓ∞-norm. Based on the variational equality

‖u‖1 = min
z∈Rp

+

1

2

[
p
∑

j=1

u2
j

zj
+ zj

]
, (4.6)

Kim and Xing (2010) follow a reweighted least-square scheme that is well adapted to the
square loss function. To the best of our knowledge, a formulation of this type is however
not available when ‖.‖ is the ℓ∞-norm. In addition it requires an appropriate smoothing
to become provably convergent. The same approach is considered by Bach (2008a), but
built upon an active-set strategy. Other proposed methods consist of a projected gra-
dient descent with approximate projections onto the ball {u ∈ Rp; Ω(u) ≤ λ} (Schmidt
and Murphy, 2010), and an augmented-Lagrangian based technique (Sprechmann et al.,
2010b) for solving a particular case with two-level hierarchies.

While the previously listed first-order approaches are (1) loss-function dependent,
and/or (2) not guaranteed to achieve optimal convergence rates, and/or (3) not able to
yield sparse solutions without a somewhat arbitrary post-processing step, we propose to
resort to proximal methods 7 that do not suffer from any of these drawbacks.

4.3 Optimization

We begin with a brief introduction to proximal methods, necessary to present our
contributions. From now on, we assume that f is convex and continuously differentiable
with Lipschitz-continuous gradient. It is worth mentioning that there exist various prox-
imal schemes in the literature that differ in their settings (e.g., batch versus stochastic)
and/or the assumptions made on f . For instance, the material we develop in this chap-
ter could also be applied to online/stochastic frameworks (Duchi and Singer, 2009; Hu
et al., 2009; Xiao, 2010) and to possibly nonsmooth functions f (e.g., Duchi and Singer,
2009; Xiao, 2010; Combettes and Pesquet, 2010, and references therein). Finally, most
of the technical proofs of this section are presented in Appendix A.2.2 for readability.

4.3.1 Proximal Operator for the Norm Ω

Proximal methods have drawn increasing attention in the signal processing (e.g.,
Becker et al., 2009; Wright et al., 2009; Combettes and Pesquet, 2010, and numerous
references therein) and the machine learning communities (e.g., Bach et al., 2011, and
references therein), especially because of their convergence rates (optimal for the class
of first-order techniques) and their ability to deal with large nonsmooth convex prob-
lems (e.g., Nesterov, 2007; Beck and Teboulle, 2009). In a nutshell, these methods can be

7. Note that the authors of Chen et al. (2010) have considered proximal methods for general group
structure G when ‖.‖ is the ℓ2-norm; due to a smoothing of the regularization term, the convergence rate
they obtained is suboptimal.
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seen as a natural extension of gradient-based techniques when the objective function to
minimize has a nonsmooth part. Proximal methods are iterative procedures. The sim-
plest version of this class of methods linearizes at each iteration the function f around
the current estimate α̂, and this estimate is updated as the (unique by strong convexity)
solution of the proximal problem, defined as follows:

min
α∈Rp

f(α̂) + (α− α̂)⊤∇f(α̂) + λΩ(α) +
L

2
‖α− α̂‖22.

The quadratic term keeps the update in a neighborhood where f is close to its linear
approximation, and L > 0 is a parameter which is an upper bound on the Lipschitz
constant of ∇f . This problem can be equivalently rewritten as:

min
α∈Rp

1

2

∥
∥
∥α−

(
α̂− 1

L
∇f(α̂)

)
∥
∥
∥

2

2
+
λ

L
Ω(α).

Solving efficiently and exactly this problem is crucial to enjoy the fast convergence rates
of proximal methods. In addition, when the nonsmooth term Ω is not present, the
previous proximal problem exactly leads to the standard gradient update rule. More
generally, we define the proximal operator :

Definition 2 (Proximal Operator)
The proximal operator associated with our regularization term λΩ, which we denote by
ProxλΩ, is the function that maps a vector u ∈ Rp to the unique solution of

min
v∈Rp

1

2
‖u− v‖22 + λΩ(v). (4.7)

This operator was initially introduced by Moreau (1962) to generalize the projection
operator onto a convex set. What makes proximal methods appealing for solving sparse
decomposition problems is that this operator can be often computed in closed-form. For
instance,

• When Ω is the ℓ1-norm—that is, Ω(u) = ‖u‖1, the proximal operator is the
well-known elementwise soft-thresholding operator,

∀j ∈ J1; pK, uj 7→ sign(uj)(|uj | − λ)+ =

{

0 if |uj | ≤ λ
sign(uj)(|uj | − λ) otherwise.

• When Ω is a group-Lasso penalty with ℓ2-norms—that is, Ω(u) =
∑

g∈G ‖u|g‖2,
with G being a partition of J1; pK, the proximal problem is separable in every group,
and the solution is a generalization of the soft-thresholding operator to groups of
variables:

∀g ∈ G ,u|g 7→ u|g −Π‖.‖2≤λ[u|g] =







0 if ‖u|g‖2 ≤ λ
‖u|g‖2−λ

‖u|g‖2
u|g otherwise,

where Π‖.‖2≤λ denotes the orthogonal projection onto the ball of the ℓ2-norm of
radius λ.
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• When Ω is a group-Lasso penalty with ℓ∞-norms—that is, Ω(u) =
∑

g∈G ‖u|g‖∞,
the solution is also a group-thresholding operator:

∀g ∈ G, u|g 7→ u|g −Π‖.‖1≤λ[u|g],

where Π‖.‖1≤λ denotes the orthogonal projection onto the ℓ1-ball of radius λ, which
can be solved in O(p) operations (Brucker, 1984; Maculan and Galdino de Paula,
1989). Note that when ‖u|g‖1 ≤ λ, we have a group-thresholding effect, with
u|g −Π‖.‖1≤λ[u|g] = 0.

More generally, a classical result (see, e.g., Combettes and Pesquet, 2010; Wright et al.,
2009) says that the proximal operator for a norm ‖.‖ can be computed as the residual
of the projection of a vector onto a ball of the dual-norm denoted by ‖.‖∗, and defined
for any vector κ in Rp by ‖κ‖∗ , max‖z‖≤1 z⊤κ. 8 This is a classical duality result for
proximal operators leading to the different closed forms we have just presented. We have
indeed that Proxλ‖.‖2

= Id−Π‖.‖2≤λ and Proxλ‖.‖∞
= Id−Π‖.‖1≤λ, where Id stands for

the identity operator. Obtaining such closed forms is, however, not possible anymore as
soon as some groups in G overlap, which is always the case in our hierarchical setting
with tree-structured groups.

4.3.2 A Dual Formulation of the Proximal Problem

We now show that Eq. (4.7) can be solved using a dual approach, as described in
the following lemma. The result relies on conic duality (Boyd and Vandenberghe, 2004),
and does not make any assumption on the choice of the norm ‖.‖:
Lemma 2 (Dual of the proximal problem)
Let u ∈ Rp and let us consider the problem

max
ξ∈Rp×|G|

−1

2

[∥
∥
∥u−

∑

g∈G
ξg
∥
∥
∥

2

2
− ‖u‖22

]

s.t. ∀g ∈ G, ‖ξg‖∗ ≤ λωg and ξ
g
j = 0 if j /∈ g,

(4.8)

where ξ = (ξg)g∈G and ξ
g
j denotes the j-th coordinate of the vector ξg in Rp. Then,

problems (4.7) and (4.8) are dual to each other and strong duality holds. In addition,
the pair of primal-dual variables {v, ξ} is optimal if and only if ξ is a feasible point of
the optimization problem (4.8), and

v = u−∑g∈G ξg and ∀g ∈ G, ξg = Π‖.‖∗≤λωg
(v|g + ξg), (4.9)

where we denote by Π‖.‖∗≤λωg
the Euclidean projection onto the ball {κ ∈ Rp; ‖κ‖∗ ≤

λωg}.

8. It is easy to show that the dual norm of the ℓ2-norm is the ℓ2-norm itself. The dual norm of the
ℓ∞ is the ℓ1-norm.
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Note that we focus here on specific tree-structured groups, but the previous lemma is
valid regardless of the nature of G. The rationale of introducing such a dual formulation
is to consider an equivalent problem to (4.7) that removes the issue of overlapping groups
at the cost of a larger number of variables. In Eq. (4.7), one is indeed looking for a vector
v of size p, whereas one is considering a matrix ξ in Rp×|G| in Eq. (4.8) with

∑

g∈G |g|
nonzero entries, but with separable (convex) constraints for each of its columns.

This specific structure makes it possible to use block coordinate ascent (Bertsekas,
1999). Such a procedure is presented in Algorithm 6. It optimizes sequentially Eq. (4.8)
with respect to the variable ξg, while keeping fixed the other variables ξh, for h 6= g. It
is easy to see from Eq. (4.8) that such an update of a column ξg, for a group g in G,
amounts to computing the orthogonal projection of the vector u|g −

∑

h 6=g ξh
|g onto the

ball of radius λωg of the dual norm ‖.‖∗.

Algorithm 6 Block coordinate ascent in the dual
Inputs: u ∈ Rp and set of groups G.
Outputs: (v, ξ) (primal-dual solutions).
Initialization: ξ = 0.
while ( maximum number of iterations not reached ) do

for g ∈ G do
ξg ← Π‖.‖∗≤λωg

(
[
u−∑h 6=g ξh]

|g
).

end for
end while
v← u−∑g∈G ξg.

4.3.3 Convergence in One Pass

In general, Algorithm 6 is not guaranteed to solve exactly Eq. (4.7) in a finite number
of iterations. However, when ‖.‖ is the ℓ2- or ℓ∞-norm, and provided that the groups
in G are appropriately ordered, we now prove that only one pass of Algorithm 6, i.e.,
only one iteration over all groups, is sufficient to obtain the exact solution of Eq. (4.7).
This result constitutes the main technical contribution of the chapter and is the key for
the efficiency of our procedure.

Before stating this result, we need to introduce a lemma showing that, given two
nested groups g, h such that g ⊆ h ⊆ {1, . . . , p}, if ξg is updated before ξh in Algorithm 6,
then the optimality condition for ξg is not perturbed by the update of ξh.

Lemma 3 (Projections with nested groups)
Let ‖.‖ denote either the ℓ2- or ℓ∞-norm, and g and h be two nested groups—that is,
g ⊆ h ⊆ {1, . . . , p}. Let u be a vector in Rp, and let us consider the successive projections

ξg , Π‖.‖∗≤tg
(u|g) and ξh , Π‖.‖∗≤th

(u|h − ξg),

with tg, th > 0. Let us introduce v = u− ξg − ξh. The following relationships hold

ξg = Π‖.‖∗≤tg
(v|g + ξg) and ξh = Π‖.‖∗≤th

(v|h + ξh).
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The previous lemma establishes the convergence in one pass of Algorithm 6 in the
case where G only contains two nested groups g ⊆ h, provided that ξg is computed
before ξh. Let us illustrate this fact more concretely. After initializing ξg and ξh to
zero, Algorithm 6 first updates ξg with the formula ξg ← Π‖.‖∗≤λωg

(u|g), and then
performs the following update: ξh ← Π‖.‖∗≤λωh

(u|h − ξg) (where we have used that
ξg = ξ

g
|h since g ⊆ h). We are now in position to apply Lemma 3 which states that the

primal/dual variables {v, ξg, ξh} satisfy the optimality conditions (4.9), as described in
Lemma 2. In only one pass over the groups {g, h}, we have in fact reached a solution
of the dual formulation presented in Eq. (4.8), and in particular, the solution of the
proximal problem (4.7).

In the following proposition, this lemma is extended to general tree-structured sets
of groups G:

Proposition 9 (Convergence in one pass)
Suppose that the groups in G are ordered according to the total order relation � of
Definition 1 and that the norm ‖.‖ is either the ℓ2- or ℓ∞-norm. Then, after initializing
ξ to 0, a single pass of Algorithm 6 over G with the order � yields the solution of the
proximal problem (4.7).

Proof. The proof largely relies on Lemma 3 and proceeds by induction. By definition
of Algorithm 6, the feasibility of ξ is always guaranteed. We consider the following
induction hypothesis

H(h) ,
{∀g � h, it holds that ξg = Π‖.‖∗≤λωg

([u−∑g′�hξg′
]|g + ξg)

}
.

Since the dual variables ξ are initially equal to zero, the summation over g′ � h, g′ 6= g
is equivalent to a summation over g′ 6= g. We initialize the induction with the first
group in G, that, by definition of �, does not contain any other group. The first step of
Algorithm 6 easily shows that the induction hypothesis H is satisfied for this first group.

We now assume that H(h) is true and consider the next group h′, h � h′, in order
to prove that H(h′) is also satisfied. We have for each group g ⊆ h,

ξg = Π‖.‖∗≤λωg
([u−∑g′�hξg′

]|g + ξg) = Π‖.‖∗≤λωg
([u−∑g′�hξg′

+ ξg]|g).

Since ξ
g
|h′ = ξg for g ⊆ h′, we have

[u−∑g′�hξg′
]|h′ = [u−∑g′�hξg′

]|h′ + ξg − ξg = [u−∑g′�hξg′
+ ξg]|h′ − ξg,

and following the update rule for the group h′,

ξh′
= Π‖.‖∗≤λωh′ ([u−

∑

g′�hξg′
]|h′) = Π‖.‖∗≤λωh′ ([u−

∑

g′�hξg′
+ ξg]|h′ − ξg).

At this point, we can apply Lemma 3 for each group g ⊆ h, which proves that the
induction hypothesis H(h′) is true. Let us introduce v , u−∑g∈G ξg. We have shown
that for all g in G, ξg = Π‖.‖∗≤λωg

(v|g + ξg). As a result, the pair {v, ξ} satisfies the
optimality conditions (4.9) of problem (4.8). Therefore, after one complete pass over
g ∈ G, the primal/dual pair {v, ξ} is optimal, and in particular, v is the solution of
problem (4.7).
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4.3. Optimization

We recall that the total order relation � introduced in Definition 1 is defined so
that when a group h is included in a group g, then h should be processed before g. We
illustrate in Figure 4.3 the practical implications of Proposition 9. More precisely, we
consider Algorithm 6 with both the “right” order for G (as advocated by Proposition 9),
and random orders. We then monitor the cost function of the primal proximal problem
and its dual counterpart, respectively given in (4.7) and (4.8). Using conic duality, we
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Figure 4.3: One pass convergence: the cost function of the primal proximal problem
and its dual counterpart are monitored with respect to the number of group updates in
Algorithm 6. In this setting, G corresponds to a complete binary tree of depth 4, with
a total of p = |G| = 31 nodes. With the correct order, one pass is sufficient to reach the
exact solution (note that log10(31) ≈ 1.49). For the random orders of G, we display the
average of the cost functions based on 20 different orders.

have derived a dual formulation of the proximal operator, leading to Algorithm 6 which
is generic and works for any norm ‖.‖, as long as one is able to perform projections
onto balls of the dual norm ‖.‖∗. We have further shown that when ‖.‖ is the ℓ2- or
the ℓ∞-norm, a single pass provides the exact solution when the groups G are correctly
ordered. We show however in Appendix A.2.3, that, perhaps surprisingly, the conclusions
of Proposition 9 do not hold for general ℓq-norms, if q /∈ {1, 2,∞}. Next, we give another
interpretation of this result.

4.3.4 Interpretation in Terms of Composition of Proximal Operators

In Algorithm 6, since all the vectors ξg are initialized to 0, when the group g is
considered, we have by induction u −∑h 6=g ξh = u −∑h�g ξh. Thus, to maintain at
each iteration of the inner loop v = u−∑h 6=g ξh one can instead update v after updating
ξg according to v ← v − ξg. Moreover, since ξg is no longer needed in the algorithm,
and since only the entries of v indexed by g are updated, we can combine the two
updates into v|g ← v|g − Π‖.‖∗≤λωg

(v|g), leading to a simplified Algorithm 7 equivalent
to Algorithm 6.
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Algorithm 7 Practical Computation of the Proximal Operator for ℓ2- or ℓ∞-norms.
Inputs: u ∈ Rp and an ordered tree-structured set of groups G.
Outputs: v (primal solution).
Initialization: v = u.
for g ∈ G, following the order �, do

v|g ← v|g −Π‖.‖∗≤λωg
(v|g).

end for

Actually, in light of the classical relationship between proximal operator and pro-
jection (as discussed in Section 4.3.1), it is easy to show that each update v|g ←
v|g − Π‖.‖∗≤λωg

(v|g) is equivalent to v|g ← Proxλωg‖.‖[v|g]. To simplify the notations,
we define the proximal operator for a group g in G as Proxg(u) , Proxλωg‖.‖(u|g) for
every vector u in Rp.

Thus, Algorithm 7 in fact performs a sequence of |G| proximal operators, and we
have shown the following corollary of Proposition 9:

Corollary 4 (Composition of Proximal Operators)
Let g1 4 . . . 4 gm such that G = {g1, . . . , gm}. The proximal operator ProxλΩ associated
with the norm Ω can be written as the composition of elementary operators:

ProxλΩ = Proxgm ◦ . . . ◦ Proxg1 .

4.3.5 Efficient Implementation and Complexity

Since Algorithm 7 involves |G| projections on the dual balls (respectively the ℓ2-
and the ℓ1-balls for the ℓ2- and ℓ∞-norms) of vectors in Rp, in a first approximation,
its complexity is at most O(p2), because each of these projections can be computed in
O(p) operations (Brucker, 1984; Maculan and Galdino de Paula, 1989). But in fact, the
algorithm performs one projection for each group g involving |g| variables, and the total

complexity is therefore O
(
∑

g∈G |g|
)

. By noticing that if g and h are two groups with

the same depth in the tree, then g∩h = ∅, it is easy to show that the number of variables
involved in all the projections is less than or equal to dp, where d is the depth of the
tree:

Lemma 4 (Complexity of Algorithm 7)
Algorithm 7 gives the solution of the primal problem Eq. (4.7) in O(pd) operations, where
d is the depth of the tree.

Lemma 4 should not suggest that the complexity is linear in p, since d could depend
of p as well, and in the worst case the hierarchy is a chain, yielding d = p − 1. How-
ever, in a balanced tree, d = O(log(p)). In practice, the structures we have considered
experimentally are relatively flat, with a depth not exceeding d = 5, and the complexity
is therefore almost linear.

Moreover, in the case of the ℓ2-norm, it is actually possible to propose an algorithm
with complexity O(p). Indeed, in that case each of the proximal operators Proxg is a
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Algorithm 8 Fast computation of the Proximal operator for ℓ2-norm case.
Require: u ∈ Rp (input vector), set of groups G, (ωg)g∈G (positive weights), and g0

(root of the tree).
1: Variables: ρ = (ρg)g∈G in R|G| (scaling factors); v in Rp (output, primal variable).
2: computeSqNorm(g0).
3: recursiveScaling(g0,1).
4: return v (primal solution).

Procedure computeSqNorm(g)
1: Compute the squared norm of the group: ηg ← ‖uroot(g)‖22 +
∑

h∈children(g) computeSqNorm(h).
2: Compute the scaling factor of the group: ρg ←

(
1− λωg/

√
ηg
)

+
.

3: return ηgρ
2
g.

Procedure recursiveScaling(g,t)
1: ρg ← tρg.
2: vroot(g) ← ρguroot(g).
3: for h ∈ children(g) do
4: recursiveScaling(h,ρg).
5: end for

scaling operation: v|g ←
(
1 − λωg/‖v|g‖2

)

+
v|g. The composition of these operators in

Algorithm 6 thus corresponds to performing sequences of scaling operations. The idea
behind Algorithm 8 is that the corresponding scaling factors depend only on the norms
of the successive residuals of the projections and that these norms can be computed
recursively in one pass through all nodes in O(p) operations; finally, computing and
applying all scalings to each entry takes then again O(p) operations.

To formulate the algorithm, two new notations are used: for a group g in G, we denote
by root(g) the indices of the variables that are at the root of the subtree corresponding
to g, 9 and by children(g) the set of groups that are the children of root(g) in the tree. For
example, in the tree presented in Figure 4.2, root({3, 5, 6})={3}, root({1, 2, 3, 4, 5, 6})=
{1}, children({3, 5, 6}) = {{5}, {6}}, and children({1, 2, 3, 4, 5, 6}) = {{2, 4}, {3, 5, 6}}.
Note that all the groups of children(g) are necessarily included in g. The next lemma is
proved in Appendix A.2.2.

Lemma 5 (Correctness and complexity of Algorithm 8)
When ‖.‖ is chosen to be the ℓ2-norm, Algorithm 8 gives the solution of the primal
problem Eq. (4.7) in O(p) operations.

So far the dictionary D was fixed to be for example a wavelet basis. In the next
section, we apply the tools we developed for solving efficiently problem (4.5) to learn a
dictionary D adapted to our hierarchical sparse coding formulation.

9. As a reminder, root(g) is not a singleton when several dictionary elements are considered per node.
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4.4 Application to Dictionary Learning

We start by briefly describing dictionary learning.

4.4.1 The Dictionary Learning Framework

Let us consider a set X = [x1, . . . ,xn] in Rm×n of n signals of dimension m. Dictio-
nary learning is a matrix factorization problem which aims at representing these signals
as linear combinations of the dictionary elements, that are the columns of a matrix
D = [d1, . . . ,dp] in Rm×p. More precisely, the dictionary D is learned along with a
matrix of decomposition coefficients A = [α1, . . . ,αn] in Rp×n, so that xi ≈ Dαi for
every signal xi.

While learning simultaneously D and A, one may want to encode specific prior
knowledge about the problem at hand, such as, for example, the positivity of the de-
composition (Lee and Seung, 1999), or the sparsity of A (Olshausen and Field, 1997;
Aharon et al., 2006; Lee et al., 2007; Mairal et al., 2010a). This leads to penalizing or
constraining (D,A) and results in the following formulation:

min
D∈D,A∈A

1

n

n∑

i=1

[1

2
‖xi −Dαi‖22 + λΨ(αi)

]

, (4.10)

where A and D denote two convex sets and Ψ is a regularization term, usually a norm or
a squared norm, whose effect is controlled by the regularization parameter λ > 0. Note
that D is assumed to be bounded to avoid any degenerate solutions of Problem (4.10).
For instance, the standard sparse coding formulation takes Ψ to be the ℓ1-norm, D to be
the set of matrices in Rm×p whose columns have unit ℓ2-norm, withA = Rp×n (Olshausen
and Field, 1997; Lee et al., 2007; Mairal et al., 2010a).

However, this classical setting treats each dictionary element independently from
the others, and does not exploit possible relationships between them. To embed the
dictionary in a tree structure, we therefore replace the ℓ1-norm by our hierarchical norm
and set Ψ = Ω in Eq. (4.10).

A question of interest is whether hierarchical priors are more appropriate in super-
vised settings or in the matrix-factorization context in which we use it. It is not so
common in the supervised setting to have strong prior information that allows us to
organize the features in a hierarchy. On the contrary, in the case of dictionary learning,
since the atoms are learned, one can argue that the dictionary elements learned will
have to match well the hierarchical prior that is imposed by the regularization. In other
words, combining structured regularization with dictionary learning has precisely the
advantage that the dictionary elements will self-organize to match the prior.

4.4.2 Learning the Dictionary

Optimization for dictionary learning has already been intensively studied. We choose
in this chapter a typical alternating scheme, which optimizes in turn D and A =
[α1, . . . ,αn] while keeping the other variable fixed (Aharon et al., 2006; Lee et al.,
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2007; Mairal et al., 2010a). 10 Of course, the convex optimization tools we develop in
this chapter do not change the intrinsic non-convex nature of the dictionary learning
problem. However, they solve the underlying convex subproblems efficiently, which is
crucial to yield good results in practice. In the next section, we report good performance
on some applied problems, and we show empirically that our algorithm is stable and does
not seem to get trapped in bad local minima. The main difficulty of our problem lies
in the optimization of the vectors αi, i in {1, . . . , n}, for the dictionary D kept fixed.
Because of Ω, the corresponding convex subproblem is nonsmooth and has to be solved
for each of the n signals considered. The optimization of the dictionary D (for A fixed),
which we discuss first, is in general easier.

Updating the dictionary D. We follow the matrix-inversion free procedure of Mairal
et al. (2010a) to update the dictionary. This method consists in iterating block-coordinate
descent over the columns of D. Specifically, we assume that the domain set D has the
form

Dµ , {D ∈ Rm×p, µ‖dj‖1 + (1− µ)‖dj‖22 ≤ 1, for all j ∈ {1, . . . , p}}, (4.11)

or D+
µ , Dµ ∩ Rm×p

+ , with µ ∈ [0, 1]. The choice for these particular domain sets is
motivated by the experiments of Section 4.5. For natural image patches, the dictionary
elements are usually constrained to be in the unit ℓ2-norm ball (i.e., D = D0), while for
topic modeling, the dictionary elements are distributions of words and therefore belong
to the simplex (i.e., D = D+

1 ). The update of each dictionary element amounts to
performing a Euclidean projection, which can be computed efficiently (Mairal et al.,
2010a). Concerning the stopping criterion, we follow the strategy from the same authors
and go over the columns of D only a few times, typically 5 times in our experiments.
Although we have not explored locality constraints on the dictionary elements, these
have been shown to be particularly relevant to some applications such as patch-based
image classification (Yu et al., 2009). Combining tree structure and locality constraints
is an interesting future research.

Updating the vectors αi. The procedure for updating the columns of A is based
on the results derived in Section 4.3.3. Furthermore, positivity constraints can be
added on the domain of A, by noticing that for our norm Ω and any vector u in Rp,
adding these constraints when computing the proximal operator is equivalent to solving
minv∈Rp

1
2‖[u]+− v‖22 + λΩ(v). This equivalence is proved in Appendix A.2.2. We will

indeed use positive decompositions to model text corpora in Section 4.5. Note that by
constraining the decompositions αi to be nonnegative, some entries αi

j may be set to
zero in addition to those already zeroed out by the norm Ω. As a result, the spar-
sity patterns obtained in this way might not satisfy the tree-structured condition (4.1)
anymore.

10. Note that although we use this classical scheme for simplicity, it would also be possible to use the
stochastic approach proposed by Mairal et al. (2010a).
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4.5 Experiments

We next turn to the experimental validation of our hierarchical sparse coding.

4.5.1 Implementation Details

In Section 4.3.3, we have shown that the proximal operator associated to Ω can be
computed exactly and efficiently. The problem is therefore amenable to fast proximal
algorithms that are well suited to nonsmooth convex optimization. Specifically, we tried
the accelerated scheme from both Nesterov (2007) and Beck and Teboulle (2009), and
finally opted for the latter since, for a comparable level of precision, fewer calls of the
proximal operator are required. The basic proximal scheme presented in Section 4.3.1 is
formalized by Beck and Teboulle (2009) as an algorithm called ISTA; the same authors
propose moreover an accelerated variant, FISTA, which is a similar procedure, except
that the operator is not directly applied on the current estimate, but on an auxiliary
sequence of points that are linear combinations of past estimates. This latter algorithm
has an optimal convergence rate in the class of first-order techniques, and also allows for
warm restarts, which is crucial in the alternating scheme of dictionary learning. 11

Finally, we monitor the convergence of the algorithm by checking the relative decrease
in the cost function. 12 Unless otherwise specified, all the algorithms used in the following
experiments are implemented in C/C++, with a Matlab interface. Our implementation is
freely available at http://www.di.ens.fr/willow/SPAMS/.

4.5.2 Speed Benchmark

To begin with, we conduct speed comparisons between our approach and other con-
vex programming methods, in the setting where Ω is chosen to be a linear combination
of ℓ2-norms. The algorithms that take part in the following benchmark are:
• Proximal methods, with ISTA and the accelerated FISTA methods (Beck and Teboulle,

2009).
• A reweighted-least-square scheme (Re-ℓ2), as described by Jenatton et al. (2011a);

Kim and Xing (2010). This approach is adapted to the square loss, since closed-form
updates can be used. 13

• Subgradient descent, whose step size is taken to be equal either to a/(k + b) or
a/(
√
k + b) (respectively referred to as SG and SGsqrt), where k is the iteration num-

ber, and (a, b) are the best 14 parameters selected on the logarithmic grid (a, b) ∈
{10−4, . . . , 103} × {10−2, . . . , 105}.

11. Unless otherwise specified, the initial stepsize in ISTA/FISTA is chosen as the maximum eigenvalue
of the sampling covariance matrix divided by 100, while the growth factor in the line search is set to 1.5.

12. We are currently investigating algorithms for computing duality gaps based on network flow opti-
mization tools (Mairal et al., 2010b).

13. The computation of the updates related to the variational formulation (4.6) also benefits from the
hierarchical structure of G, and can be performed in O(p) operations.

14. “The best step size” is understood as being the step size leading to the smallest cost function after
500 iterations.
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• A commercial software (Mosek, available at http://www.mosek.com/) for second-
order cone programming (SOCP).
Moreover, the experiments we carry out cover various settings, with notably differ-
ent sparsity regimes, i.e., low, medium and high, respectively corresponding to about
50%, 10% and 1% of the total number of dictionary elements. Eventually, all reported
results are obtained on a single core of a 3.07Ghz CPU with 8GB of memory.
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Figure 4.4: Benchmark for solving a least-squares regression problem regularized by the
hierarchical norm Ω. The experiment is small scale, m = 256, p = 151, and shows the
performances of six optimization methods (see main text for details) for three levels of
regularization. The curves represent the relative value of the objective to the optimal
value as a function of the computational time in second on a log10 / log10 scale. All
reported results are obtained by averaging 5 runs.

Hierarchical dictionary of natural image patches

In this first benchmark, we consider a least-squares regression problem regularized
by Ω that arises in the context of denoising of natural image patches, as further exposed
in Section 4.5.4. In particular, based on a hierarchical dictionary, we seek to reconstruct
noisy 16×16-patches. The dictionary we use is represented on Figure 4.9. Although the
problem involves a small number of variables, i.e., p = 151 dictionary elements, it has
to be solved repeatedly for tens of thousands of patches, at moderate precision. It is
therefore crucial to be able to solve this problem quickly and efficiently.

We can draw several conclusions from the results of the simulations reported in Fig-
ure 4.4. First, we observe that in most cases, the accelerated proximal scheme performs
better than the other approaches. In addition, unlike FISTA, ISTA seems to suffer in
non-sparse scenarios. In the least sparse setting, the reweighted-ℓ2 scheme is the only
method that competes with FISTA. It is however not able to yield truly sparse solutions,
and would therefore need a subsequent (somewhat arbitrary) thresholding operation. As
expected, the generic techniques such as SG and SOCP do not compete with dedicated
algorithms.
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Figure 4.5: Benchmark for solving a large-scale multi-class classification problem for
four optimization methods (see details about the datasets and the methods in the main
text). Three levels of regularization are considered. The curves represent the relative
value of the objective to the optimal value as a function of the computational time in
second on a log10 / log10 scale. In the highly regularized setting, tuning the step-size for
the subgradient turned out to be difficult, which explains the behavior of SG in the first
iterations.

Multi-class classification of cancer diagnosis

The second benchmark explores a different supervised learning setting, where f is
no longer the square loss function. The goal is to demonstrate that our optimization
tools apply in various scenarios, beyond traditional sparse approximation problems. To
this end, we consider a gene expression dataset 15 in the context of cancer diagnosis.
More precisely, we focus on a multi-class classification problem where the number m
of samples to be classified is small compared to the number p of gene expressions that
characterize these samples. Each atom thus corresponds to a gene expression across the
m samples, whose class labels are recorded in the vector x in Rm.

The dataset contains m = 308 samples, p = 30 017 variables and 26 classes. In
addition, the data exhibit highly-correlated dictionary elements. Inspired by Kim and
Xing (2010), we build the tree-structured set of groups G using Ward’s hierarchical
clustering (Johnson, 1967) on the gene expressions. The norm Ω built in this way aims
at capturing the hierarchical structure of gene expression networks (Kim and Xing, 2010).

Instead of the square loss function, we consider the multinomial logistic loss function
that is better suited to deal with multi-class classification problems (see, e.g., Hastie
et al., 2009). As a direct consequence, algorithms whose applicability crucially depends
on the choice of the loss function f are removed from the benchmark. This is the case
with reweighted-ℓ2 schemes that do not have closed-form updates anymore. Importantly,
the choice of the multinomial logistic loss function leads to an optimization problem over
a matrix with dimensions p times the number of classes (i.e., a total of 30 017 × 26 ≈

15. The dataset we use is 14_Tumors, which is freely available at http://www.gems-system.org/.
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780 000 variables). Also, due to scalability issues, generic interior point solvers could not
be considered here.

The results in Figure 4.5 highlight that the accelerated proximal scheme performs
overall better that the two other methods. Again, it is important to note that both
proximal algorithms yield sparse solutions, which is not the case for SG.

4.5.3 Denoising with Tree-Structured Wavelets

We demonstrate in this section how a tree-structured sparse regularization can im-
prove classical wavelet representation, and how our method can be used to efficiently
solve the corresponding large-scale optimization problems. We consider two wavelet
orthonormal bases, Haar and Daubechies3 (see Mallat, 1999), and choose a classical
quad-tree structure on the coefficients, which has notably proven to be useful for image
compression problems (Baraniuk, 1999). This experiment follows the approach of Zhao
et al. (2009) who used the same tree-structured regularization in the case of small one-
dimensional signals, and the approach of Baraniuk et al. (2010) and Huang et al. (2009)
images where images were reconstructed from compressed sensing measurements with a
hierarchical nonconvex penalty.

We compare the performance for image denoising of both nonconvex and convex
approaches. Specifically, we consider the following formulation

min
α∈Rm

1

2
‖x−Dα‖22 + λψ(α) = min

α∈Rm

1

2
‖D⊤x−α‖22 + λψ(α),

where D is one of the orthonormal wavelet basis mentioned above, x is the input noisy
image, Dα is the estimate of the denoised image, and ψ is a sparsity-inducing regu-
larization. Note that in this case, m = p. We first consider classical settings where
ψ is either the ℓ1-norm— this leads to the wavelet soft-thresholding method of Donoho
and Johnstone (1995)— or the ℓ0-pseudo-norm, whose solution can be obtained by hard-
thresholding (see Mallat, 1999). Then, we consider the convex tree-structured regulariza-
tion Ω defined as a sum of ℓ2-norms (ℓ∞-norms), which we denote by Ωℓ2 (respectively
Ωℓ∞). Since the basis is here orthonormal, solving the corresponding decomposition
problems amounts to computing a single instance of the proximal operator. As a result,
when ψ is Ωℓ2 , we use Algorithm 8 and for Ωℓ∞ , Algorithm 7 is applied. Finally, we
consider the nonconvex tree-structured regularization used by Baraniuk et al. (2010)
denoted here by ℓtree

0 , which we have presented in Eq. (4.4); the implementation details
for ℓtree

0 can be found in Appendix A.2.1. Compared to Zhao et al. (2009), the novelty
of our approach is essentially to be able to solve efficiently and exactly large-scale in-
stances of this problem. We use 12 classical standard test images, 16 and generate noisy
versions of them corrupted by a white Gaussian noise of variance σ. For each image, we
test several values of λ = 2

i
4σ
√

logm, with i taken in a specific range. 17 We then keep

16. These images are used in classical image denoising benchmarks. See Mairal et al. (2009b).
17. For the convex formulations, i ranges in {−15, −14, . . . , 15}, while in the nonconvex case i ranges

in {−24, . . . , 48}.
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Haar
σ ℓ0 [0.0012] ℓtree

0 [0.0098] ℓ1 [0.0016] Ωℓ2 [0.0125] Ωℓ∞ [0.0221]

PSNR

5 34.48 34.78 35.52 35.89 35.79
10 29.63 30.24 30.74 31.40 31.23
25 24.44 25.27 25.30 26.41 26.14
50 21.53 22.37 20.42 23.41 23.05
100 19.27 20.09 19.43 20.97 20.58

IPSNR

5 - .30± .23 1.04± .31 1.41± .45 1.31± .41
10 - .60± .24 1.10± .22 1.76± .26 1.59± .22
25 - .83± .13 .86± .35 1.96± .22 1.69± .21
50 - .84± .18 .46± .28 1.87± .20 1.51± .20
100 - .82± .14 .15± .23 1.69± .19 1.30± .19

Daub3
σ ℓ0 [0.0013] ℓtree

0 [0.0099] ℓ1 [0.0017] Ωℓ2 [0.0129] Ωℓ∞ [0.0204]

PSNR

5 34.64 34.95 35.74 36.14 36.00
10 30.03 30.63 31.10 31.79 31.56
25 25.04 25.84 25.76 26.90 26.54
50 22.09 22.90 22.42 23.90 23.41
100 19.56 20.45 19.67 21.40 20.87

IPSNR

5 - .31± .21 1.10± .23 1.49± .34 1.36± .31
10 - .60± .16 1.06± .25 1.76± .19 1.53± .17
25 - .80± .10 .71± .28 1.85± .17 1.50± .18
50 - .81± .15 .33± .24 1.80± .11 1.33± .12
100 - .89± .13 0.11± .24 1.82± .24 1.30± .17

Table 4.1: Top part of the tables: Average PSNR measured for the denoising of 12
standard images, when the wavelets are Haar or Daubechies3 wavelets (see Mallat, 1999),
for two nonconvex approaches (ℓ0 and ℓtree

0 ) and three different convex regularizations—
that is, the ℓ1-norm, the tree-structured sum of ℓ2-norms (Ωℓ2), and the tree-structured
sum of ℓ∞-norms (Ωℓ∞). Best results for each level of noise and each wavelet type are
in bold. Bottom part of the tables: Average improvement in PSNR with respect to the
ℓ0 nonconvex method (the standard deviations are computed over the 12 images). CPU
times (in second) averaged over all images and noise realizations are reported in brackets
next to the names of the methods they correspond to.

the parameter λ giving the best reconstruction error. The factor σ
√

logm is a classi-
cal heuristic for choosing a reasonable regularization parameter (see Mallat, 1999). We
provide reconstruction results in terms of PSNR in Table 4.1. 18 We report in this table

18. Denoting by MSE the mean-squared-error for images whose intensities are between 0 and 255, the
PSNR is defined as PSNR = 10 log10(2552/MSE) and is measured in dB. A gain of 1dB reduces the
MSE by approximately 20%.
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the results when Ω is chosen to be a sum of ℓ2-norms or ℓ∞-norms with weights ωg all
equal to one. Each experiment was run 5 times with different noise realizations. In every
setting, we observe that the tree-structured norm significantly outperforms the ℓ1-norm
and the nonconvex approaches. We also present a visual comparison on two images on
Figure 4.6, showing that the tree-structured norm reduces visual artefacts (these arte-
facts are better seen by zooming on a computer screen). The wavelet transforms in our
experiments are computed with the matlabPyrTools software. 19

(a) Lena, σ = 25, ℓ1 (b) Lena, σ = 25, Ωℓ2
(c) Barb., σ = 50, ℓ1 (d) Barb., σ = 50, Ωℓ2

Figure 4.6: Visual comparison between the wavelet shrinkage model with the ℓ1-norm
and the tree-structured model, on cropped versions of the images Lena and Barb.. Haar
wavelets are used.

This experiment does of course not provide state-of-the-art results for image denois-
ing (see Mairal et al., 2009b, and references therein), but shows that the tree-structured
regularization significantly improves the reconstruction quality for wavelets. In this ex-
periment the convex setting Ωℓ2 and Ωℓ∞ also outperforms the nonconvex one ℓtree

0 . 20

We also note that the speed of our approach makes it scalable to real-time applications.
Solving the proximal problem for an image with m = 512 × 512 = 262 144 pixels takes
approximately 0.013 seconds on a single core of a 3.07GHz CPU if Ω is a sum of ℓ2-norms,
and 0.02 seconds when it is a sum of ℓ∞-norms. By contrast, unstructured approaches
have a speed-up factor of about 7-8 with respect to the tree-structured methods.

4.5.4 Dictionaries of Natural Image Patches

This experiment studies whether a hierarchical structure can help dictionaries for
denoising natural image patches, and in which noise regime the potential gain is signifi-
cant. We aim at reconstructing corrupted patches from a test set, after having learned
dictionaries on a training set of non-corrupted patches. Though not typical in machine

19. http://www.cns.nyu.edu/~eero/steerpyr/.
20. It is worth mentioning that comparing convex and nonconvex approaches for sparse regularization

is a bit difficult. This conclusion holds for the classical formulation we have used, but might not hold in
other settings such as Coifman and Donoho (1995).
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learning, this setting is reasonable in the context of images, where lots of non-corrupted
patches are easily available. 21

noise 50 % 60 % 70 % 80 % 90 %
flat 19.3± 0.1 26.8± 0.1 36.7± 0.1 50.6± 0.0 72.1± 0.0

tree 18.6± 0.1 25.7± 0.1 35.0± 0.1 48.0± 0.0 65.9± 0.3

Table 4.2: Quantitative results of the reconstruction task on natural image patches. First
row: percentage of missing pixels. Second and third rows: mean square error multiplied
by 100, respectively for classical sparse coding, and tree-structured sparse coding.

16 21 31 41 61 81 121 161 181 241 301 321 401
50

60

70

80

Figure 4.7: Mean square error multiplied by 100 obtained with 13 structures with error
bars, sorted by number of dictionary elements from 16 to 401. Red plain bars represents
the tree-structured dictionaries. White bars correspond to the flat dictionary model
containing the same number of dictionary as the tree-structured one. For readability
purpose, the y-axis of the graph starts at 50.

We extracted 100 000 patches of size m = 8×8 pixels from the Berkeley segmentation
database of natural images (Martin et al., 2001), which contains a high variability of
scenes. We then split this dataset into a training set Xtr, a validation set Xval, and a
test set Xte, respectively of size 50 000, 25 000, and 25 000 patches. All the patches are
centered and normalized to have unit ℓ2-norm.

For the first experiment, the dictionary D is learned on Xtr using the formulation
of Eq. (4.10), with µ = 0 for Dµ as defined in Eq. (4.11). The validation and test sets
are corrupted by removing a certain percentage of pixels, the task being to reconstruct
the missing pixels from the known pixels. We thus introduce for each element x of the
validation/test set, a vector x̃, equal to x for the known pixel values and 0 otherwise.
Similarly, we define D̃ as the matrix equal to D, except for the rows corresponding to
missing pixel values, which are set to 0. By decomposing x̃ on D̃, we obtain a sparse
code α, and the estimate of the reconstructed patch is defined as Dα. Note that this
procedure assumes that we know which pixel is missing and which is not for every element
x.

21. Note that we study the ability of the model to reconstruct independent patches, and additional
work is required to apply our framework to a full image processing task, where patches usually over-
lap (Elad and Aharon, 2006; Mairal et al., 2009b).
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The parameters of the experiment are the regularization parameter λtr used during
the training step, the regularization parameter λte used during the validation/test step,
and the structure of the tree. For every reported result, these parameters were selected
by taking the ones offering the best performance on the validation set, before report-
ing any result from the test set. The values for the regularization parameters λtr, λte

were selected on a logarithmic scale {2−10, 2−9, . . . , 22}, and then further refined on a
finer logarithmic scale with multiplicative increments of 2−1/4. For simplicity, we chose
arbitrarily to use the ℓ∞-norm in the structured norm Ω, with all the weights equal to
one. We tested 21 balanced tree structures of depth 3 and 4, with different branching
factors p1, p2, . . . , pd−1, where d is the depth of the tree and pk, k ∈ {1, . . . , d − 1} is
the number of children for the nodes at depth k. The branching factors tested for the
trees of depth 3 where p1 ∈ {5, 10, 20, 40, 60, 80, 100}, p2 ∈ {2, 3}, and for trees of depth
4, p1 ∈ {5, 10, 20, 40}, p2 ∈ {2, 3} and p3 = 2, giving 21 possible structures associated
with dictionaries with at most 401 elements. For each tree structure, we evaluated the
performance obtained with the tree-structured dictionary along with a non-structured
dictionary containing the same number of elements. These experiments were carried out
four times, each time with a different initialization, and with a different noise realization.

Quantitative results are reported in Table 4.2. For all fractions of missing pixels
considered, the tree-structured dictionary outperforms the “unstructured one”, and the
most significant improvement is obtained in the noisiest setting. Note that having more
dictionary elements is worthwhile when using the tree structure. To study the influ-
ence of the chosen structure, we report in Figure 4.7 the results obtained with the 13
tested structures of depth 3, along with those obtained with unstructured dictionaries
containing the same number of elements, when 90% of the pixels are missing. For each
dictionary size, the tree-structured dictionary significantly outperforms the unstructured
one. An example of a learned tree-structured dictionary is presented on Figure 4.9. Dic-
tionary elements naturally organize in groups of patches, often with low frequencies near
the root of the tree, and high frequencies near the leaves.

4.5.5 Text Documents

This last experimental section shows that our approach can also be applied to model
text corpora. The goal of probabilistic topic models is to find a low-dimensional represen-
tation of a collection of documents, where the representation should provide a semantic
description of the collection. Approaching the problem in a parametric Bayesian frame-
work, latent Dirichlet allocation (LDA) Blei et al. (2003) model documents, represented
as vectors of word counts, as a mixture of a predefined number of latent topics that
are distributions over a fixed vocabulary. LDA is fundamentally a matrix factorization
problem: Buntine (2002) shows that LDA can be interpreted as a Dirichlet-multinomial
counterpart of factor analysis. The number of topics is usually small compared to the
size of the vocabulary (e.g., 100 against 10 000), so that the topic proportions of each
document provide a compact representation of the corpus. For instance, these new fea-
tures can be used to feed a classifier in a subsequent classification task. We similarly use
our dictionary learning approach to find low-dimensional representations of text corpora.
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Figure 4.8: Learned dictionary with tree structure of depth 4. The root of the tree is
in the middle of the figure. The branching factors are p1 = 10, p2 = 2, p3 = 2. The
dictionary is learned on 50, 000 patches of size 16× 16 pixels.

Figure 4.9: Learned dictionary with a tree structure of depth 5. The root of the tree is
in the middle of the figure. The branching factors are p1 = 10, p2 = 2, p3 = 2, p4 = 2.
The dictionary is learned on 50, 000 patches of size 16× 16 pixels.
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Suppose that the signals X = [x1, . . . ,xn] in Rm×n are each the bag-of-word repre-
sentation of each of n documents over a vocabulary of m words, the k-th component
of xi standing for the frequency of the k-th word in the document i. If we further as-
sume that the entries of D and A are nonnegative, and that the dictionary elements dj

have unit ℓ1-norm, the decomposition (D,A) can be interpreted as the parameters of a
topic-mixture model. The regularization Ω induces the organization of these topics on a
tree, so that, if a document involves a certain topic, then all ancestral topics in the tree
are also present in the topic decomposition. Since the hierarchy is shared by all docu-
ments, the topics at the top of the tree participate in every decomposition, and should
therefore gather the lexicon which is common to all documents. Conversely, the deeper
the topics in the tree, the more specific they should be. An extension of LDA to model
topic hierarchies was proposed by Blei et al. (2010), who introduced a non-parametric
Bayesian prior over trees of topics and modelled documents as convex combinations of
topics selected along a path in the hierarchy. We plan to compare our approach with
this model in future work.

Figure 4.10: Example of a topic hierarchy estimated from 1714 NIPS proceedings papers
(from 1988 through 1999). Each node corresponds to a topic whose 5 most important
words are displayed. Single characters such as n, t, r are part of the vocabulary and
often appear in NIPS papers, and their place in the hierarchy is semantically relevant
to children topics.
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PCA + SVM

NMF + SVM

LDA + SVM

SpDL + SVM

SpHDL + SVM

Figure 4.11: Binary classification of two newsgroups: classification accuracy for different
dimensionality reduction techniques coupled with a linear SVM classifier. The bars and
the errors are respectively the mean and the standard deviation, based on 10 random
splits of the dataset. Best seen in color.

Visualization of NIPS proceedings We qualitatively illustrate our approach on the
NIPS proceedings from 1988 through 1999 (Griffiths and Steyvers, 2004). After removing
words appearing fewer than 10 times, the dataset is composed of 1714 articles, with a
vocabulary of 8274 words. As explained above, we consider D+

1 and take A to be Rp×n
+ .

Figure 4.10 displays an example of a learned dictionary with 13 topics, obtained by using
the ℓ∞-norm in Ω and selecting manually λ= 2−15. As expected and similarly to Blei
et al. (2010), we capture the stopwords at the root of the tree, and topics reflecting the
different subdomains of the conference such as neurosciences, optimization or learning
theory.

Posting classification We now consider a binary classification task of n postings
from the 20 Newsgroups data set. 22 We learn to discriminate between the postings from
the two newsgroups alt.atheism and talk.religion.misc, following the setting of Lacoste-
Julien et al. (2008) and Zhu et al. (2009). After removing words appearing fewer than
10 times and standard stopwords, these postings form a data set of 1425 documents over
a vocabulary of 13312 words. We compare different dimensionality reduction techniques
that we use to feed a linear SVM classifier, i.e., we consider (i) LDA, with the code from
Blei et al. (2003), (ii) principal component analysis (PCA), (iii) nonnegative matrix
factorization (NMF), (iv) standard sparse dictionary learning (denoted by SpDL) and
(v) our sparse hierarchical approach (denoted by SpHDL). Both SpDL and SpHDL
are optimized over D+

1 and A = Rp×n
+ , with the weights ωg equal to 1. We proceed

as follows: given a random split into a training/test set of 1 000/425 postings, and
given a number of topics p (also the number of components for PCA, NMF, SpDL and

22. Available at http://people.csail.mit.edu/jrennie/20Newsgroups/.
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SpHDL), we train an SVM classifier based on the low-dimensional representation of the
postings. This is performed on a training set of 1 000 postings, where the parameters,
λ∈ {2−26, . . . , 2−5} and/or Csvm ∈ {4−3, . . . , 41} are selected by 5-fold cross-validation.
We report in Figure 4.11 the average classification scores on the test set of 425 postings,
based on 10 random splits, for different number of topics. Unlike the experiment on
image patches, we consider only complete binary trees with depths in {1, . . . , 5}. The
results from Figure 4.11 show that SpDL and SpHDL perform better than the other
dimensionality reduction techniques on this task. As a baseline, the SVM classifier
applied directly to the raw data (the 13312 words) obtains a score of 90.9±1.1, which
is better than all the tested methods, but without dimensionality reduction (as already
reported by Blei et al., 2003). Moreover, the error bars indicate that, though nonconvex,
SpDL and SpHDL do not seem to suffer much from instability issues. Even if SpDL and
SpHDL perform similarly, SpHDL has the advantage to provide a more interpretable
topic mixture in terms of hierarchy, which standard unstructured sparse coding does
not.

4.6 Discussion

We have applied this approach in various settings, with fixed/learned dictionaries,
and based on different types of data, namely, natural images and text documents. A
line of research to pursue is to develop other optimization tools for structured norms
with general overlapping groups. For instance, Mairal et al. (2010b) have used network
flow optimization techniques for that purpose, and Bach (2010a) submodular function
optimization. This framework can also be used in the context of hierarchical kernel
learning (Bach, 2008a), where we believe that our method can be more efficient than
existing ones.

This work establishes a connection between dictionary learning and probabilistic
topic models, which should prove fruitful as the two lines of work have focused on
different aspects of the same unsupervised learning problem: Our approach is based on
convex optimization tools, and provides experimentally more stable data representations.
Moreover, it can be easily extended with the same tools to other types of structures
corresponding to other norms (Jenatton et al., 2011a; Jacob et al., 2009). It should
be noted, however, that, unlike some Bayesian methods, dictionary learning by itself
does not provide mechanisms for the automatic selection of model hyper-parameters
(such as the dictionary size or the topology of the tree). An interesting common line of
research to pursue could be the supervised design of dictionaries, which has been proved
useful in the two frameworks (Mairal et al., 2009a; Bradley and Bagnell, 2009a; Blei and
McAuliffe, 2008).
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4.7 Extension: General Overlapping Groups and
ℓ1/ℓ∞-norms

The work presented in this extension section was achieved with the collaboration of
Julien Mairal, Guillaume Obozinski and Francis Bach, with equal contribution between
Julien Mairal and myself. The material we present below is based on the following
work:

J. Mairal∗, R. Jenatton∗, G. Obozinski, F. Bach. Network Flow Algorithms for
Structured Sparsity. Advances in Neural Information Processing Systems. 2010

J. Mairal∗, R. Jenatton∗, G. Obozinski, F. Bach. Convex and Network Flow Optimiza-
tion for Structured Sparsity. In Journal of Machine Learning Research, 12, 2681-2720.
2011 (long version of the previous article)

(∗equal contributions)

In this section, we consider an extension of the setting studied so far in the chapter.
In particular, we now take Ω to be a linear combination of ℓ∞-norms, while we do not
assume anymore that G is tree-structured; G thus corresponds to a general set of over-
lapping groups. As it will be discussed at length later, the ℓ∞-norm is piecewise linear,
a property we will fully take advantage of. From now on, we focus on the computation
of the following proximal operator:

min
w∈Rp

[1

2
‖u−w‖22 + λΩ(w) =

1

2
‖u−w‖22 + λ

∑

g∈G
ηg‖wg‖∞

]

. (4.12)

For all the detailed proofs of the results presented subsequently, we refer the interested
readers to the long version Mairal et al. (2011).

We start by specifying the dual formulation from Lemma 2 to the setting of Eq. (4.12);
we shall see that this dual problem can be reformulated as a quadratic min-cost flow
problem for which we present an efficient algorithm.

Lemma 6 (Dual of the proximal problem (4.12))
Given u in Rp, consider the problem

min
ξ∈Rp×|G|

1

2
‖u−

∑

g∈G
ξg‖22 s.t. ∀g ∈ G, ‖ξg‖1 ≤ ληg and ξ

g
j = 0 if j /∈ g, (4.13)

where ξ =(ξg)g∈G is in Rp×|G|, and ξ
g
j denotes the j-th coordinate of the vector ξg. Then,

every solution ξ⋆ = (ξ⋆g)g∈G of Eq. (4.13) satisfies w⋆ = u−∑g∈G ξ⋆g, where w⋆ is the
solution of Eq. (4.12).
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Without loss of generality, 23 we assume from now on that the scalars uj are all
non-negative, and we constrain the entries of ξ to be non-negative. Such a formulation
introduces p|G| dual variables which can be much greater than p, the number of primal
variables, but it removes the issue of overlapping regularization. We now associate a
graph with problem (4.13), on which the variables ξ

g
j , for g in G and j in g, can be

interpreted as measuring the components of a flow.

4.7.1 Graph Model

Let G be a directed graph G = (V,E, s, t), where V is a set of vertices, E ⊆ V × V
a set of arcs, s a source, and t a sink. Let c : E → R+ and c′ : E → R+ ∪ {+∞} be two
functions on the arcs, where c is a cost function and c′ is a non-negative capacity function.
As done classically in the network flow literature (Ahuja et al., 1993; Bertsekas, 1991),
we define a flow as a non-negative function on arcs that satisfies capacity constraints on
all arcs (the value of the flow on an arc is less than or equal to the arc capacity) and
conservation constraints on all vertices (the sum of incoming flows at a vertex is equal
to the sum of outgoing flows) except for the source and the sink. We now introduce the
canonical graph G associated with our optimization problem:

Definition 3 (Canonical Graph)

Let G ⊆ 2J1;pK be a set of groups, and (ηg)g∈G be positive weights. The canonical graph
G = (V,E, s, t) is the unique graph defined as follows:

1. V = Vu ∪ Vgr, where Vu is a vertex set of size p, one vertex being associated to
each index j in J1; pK, and Vgr is a vertex set of size |G|, one vertex per group g
in G. We thus have |V | = |G| + p. For simplicity, we identify groups g in G and
indices j in J1; pK with vertices of the graph, such that one can from now on refer
to “vertex j” or “vertex g”.

2. For every group g in G, E contains an arc (s, g). These arcs have capacity ληg

and zero cost.

3. For every group g in G, and every index j in g, E contains an arc (g, j) with zero
cost and infinite capacity. We denote by ξ

g
j the flow on this arc.

4. For every index j in J1; pK, E contains an arc (j, t) with infinite capacity and a
cost 1

2(uj − ξj)2, where ξj is the flow on (j, t).

Examples of canonical graphs are given in Figures 4.12a-(c) for three simple group
structures. The flows ξ

g
j associated with G can now be identified with the variables of

problem (4.13). Since we have assumed the entries of u to be non-negative, we can now

23. Let ξ⋆ denote a solution of Eq. (4.13). Optimality conditions of Eq. (4.13) derived in Jenatton
et al. (2010a, 2011c) show that for all j in J1; pK, the signs of the non-zero coefficients ξ

⋆g
j for g in G

are the same as the signs of the entries uj . To solve Eq. (4.13), one can therefore flip the signs of the
negative variables uj , then solve the modified dual formulation (with non-negative variables), which
gives the magnitude of the entries ξ

⋆g
j (the signs of these being known).
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reformulate Eq. (4.13) as

min
ξ∈Rp×|G|

+ ,ξ∈Rp

p
∑

j=1

1

2
(uj − ξj)2 s.t. ξ =

∑

g∈G
ξg and ∀g ∈ G,

{∑

j∈g ξ
g
j ≤ ληg,

ξ
g
j = 0 for j /∈ g.

(4.14)

Indeed,
• the only arcs with a cost are those leading to the sink, which have the form

(j, t), where j is the index of a variable in J1; pK. The sum of these costs is
∑p

j=1
1
2(uj − ξj)2, which is the objective function minimized in Eq. (4.14);

• by flow conservation, we necessarily have ξj =
∑

g∈G ξ
g
j in the canonical graph;

• the only arcs with a capacity constraints are those coming out of the source, which
have the form (s, g), where g is a group in G. By flow conservation, the flow on
an arc (s, g) is

∑

j∈g ξ
g
j which should be less than ληg by capacity constraints;

• all other arcs have the form (g, j), where g is in G and j is in g. Thus, ξ
g
j =

0 for j /∈ g.
Therefore we have shown that finding a flow minimizing the sum of the costs on such a
graph is equivalent to solving problem (4.13). When some groups are included in others,
the canonical graph can be simplified to yield a graph with a smaller number of edges.
Specifically, if h and g are groups with h ⊂ g, the edges (g, j) for j ∈ h carrying a
flow ξ

g
j can be removed and replaced by a single edge (g, h) of infinite capacity and zero

cost, carrying the flow
∑

j∈h ξ
g
j . This simplification is illustrated in Figure 4.12d, with

a graph equivalent to the one of Figure 4.12c. This does not change the optimal value
of ξ

⋆
, which is the quantity of interest for computing the optimal primal variable w⋆.

These simplifications are useful in practice, since they reduce the number of edges in the
graph and improve the speed of our algorithms.

4.7.2 Computation of the Proximal Operator

Quadratic min-cost flow problems have been well studied in the operations research
literature (Hochbaum and Hong, 1995). One of the simplest cases, where G contains a
single group as in Figure 4.12a, is solved by an orthogonal projection on the ℓ1-ball of
radius ληg. It has been shown, both in machine learning (Duchi et al., 2008) and oper-
ations research (Hochbaum and Hong, 1995; Brucker, 1984), that such a projection can
be computed in O(p) operations. When the group structure is a tree as in Figure 4.12d,
strategies developed in the two communities are also similar (Jenatton et al., 2010a;
Hochbaum and Hong, 1995), 24 and solve the problem in O(pd) operations, where d is
the depth of the tree.

The general case of overlapping groups is more difficult. Hochbaum and Hong (1995)
have shown that quadratic min-cost flow problems can be reduced to a specific parametric
max-flow problem, for which an efficient algorithm exists (Gallo et al., 1989). 25 While

24. Note however that, while Hochbaum and Hong (1995) only consider a tree-structured sum of
ℓ∞-norms, the results from Jenatton et al. (2010a) also apply for a sum of ℓ2-norms.

25. By definition, a parametric max-flow problem consists in solving, for every value of a parameter,
a max-flow problem on a graph whose arc capacities depend on this parameter.
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(d) G ={g ={1} ∪ h, h={2, 3}}.

Figure 4.12: Graph representation of simple proximal problems with different group
structures G. The three indices 1, 2, 3 are represented as grey squares, and the groups
g, h in G as red discs. The source is linked to every group g, h with respective maximum
capacity ληg, ληh and zero cost. Each variable uj is linked to the sink t, with an infinite
capacity, and with a cost cj , 1

2(uj − ξj)2. All other arcs in the graph have zero
cost and infinite capacity. They represent inclusion relations in-between groups, and
between groups and variables. The graphs (c) and (d) correspond to a special case of
tree-structured hierarchy in the sense of Jenatton et al. (2010a). Their min-cost flow
problems are equivalent.
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this generic approach could be used to solve Eq. (4.13), we propose to use Algorithm 9
that also exploits the fact that our graphs have non-zero costs only on edges leading
to the sink. As further shown in Mairal et al. (2011) through speed benchmarks, it it
has a significantly better performance in practice. This algorithm clearly shares some
similarities with existing approaches in network flow optimization such as the simplified
version of Gallo et al. (1989) presented by Babenko and Goldberg (2006) that uses a
divide and conquer strategy. Moreover, an equivalent algorithm exists for minimizing
convex functions over polymatroid sets (Groenevelt, 1991). This equivalence, a priori
non trivial, is uncovered through a representation of structured sparsity-inducing norms
via submodular functions, which was recently proposed by Bach (2010a).

Algorithm 9 Computation of the proximal operator for overlapping groups.
1: Input: u ∈ Rp, a set of groups G, positive weights (ηg)g∈G , and λ (regularization

parameter).
2: Build the initial graph G0 = (V0, E0, s, t) as explained in Section 4.7.2.
3: Compute the optimal flow: ξ ← computeFlow(V0, E0).
4: Return: w = u− ξ (optimal solution of the proximal problem).

Function computeFlow(V = Vu ∪ Vgr, E)
1: Projection step: γ ← arg minγ

∑

j∈Vu

1
2(uj − γj)2 s.t.

∑

j∈Vu
γj ≤ λ

∑

g∈Vgr
ηg.

2: For all nodes j in Vu, set γj to be the capacity of the arc (j, t).
3: Max-flow step: Update (ξj)j∈Vu by computing a max-flow on the graph (V,E, s, t).
4: if ∃ j ∈ Vu s.t. ξj 6= γj then
5: Denote by (s, V +) and (V −, t) the two disjoint subsets of (V, s, t) separated by the

minimum (s, t)-cut of the graph, and remove the arcs between V + and V −. Call
E+ and E− the two remaining disjoint subsets of E corresponding to V + and V −.

6: (ξj)j∈V +
u
← computeFlow(V +, E+).

7: (ξj)j∈V −
u
← computeFlow(V −, E−).

8: end if
9: Return: (ξj)j∈Vu .

The intuition behind our algorithm, computeFlow (see Algorithm 9), is the following:
since ξ =

∑

g∈G ξg is the only value of interest to compute the solution of the proximal
operator w = u − ξ, the first step looks for a candidate value γ for ξ by solving the
following relaxed version of problem (4.14):

arg min
γ∈Rp

∑

j∈Vu

1

2
(uj − γj)2 s.t.

∑

j∈Vu

γj ≤ λ
∑

g∈Vgr

ηg. (4.15)

The cost function here is the same as in problem (4.14), but the constraints are weaker:
Any feasible point of problem (4.14) is also feasible for problem (4.15). This problem can
be solved in linear time (Brucker, 1984). Its solution, which we denote γ for simplicity,
provides the lower bound ‖u− γ‖22/2 for the optimal cost of problem (4.14).
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The second step tries to construct a feasible flow (ξ, ξ), satisfying additional capacity
constraints equal to γj on arc (j, t), and whose cost matches this lower bound; this
latter problem can be cast as a max-flow problem (Goldberg and Tarjan, 1988). If
such a flow exists, the algorithm returns ξ = γ, the cost of the flow reaches the lower
bound, and is therefore optimal. If such a flow does not exist, we have ξ 6= γ, the
lower bound is not achievable, and we build a minimum (s, t)-cut of the graph (Ford
and Fulkerson, 1987) defining two disjoints sets of nodes V + and V −; V + is the part
of the graph that could potentially have received more flow from the source (the arcs
between s and V + are not saturated), whereas V − could not (all arcs linking s to V − are
saturated). At this point, it is possible to show that the value of the optimal min-cost
flow on all arcs between V + and V − is necessary zero. Thus, removing them yields
an equivalent optimization problem, which can be decomposed into two independent
problems of smaller sizes and solved recursively by the calls to computeFlow(V +, E+)
and computeFlow(V −, E−). A formal proof of correctness of Algorithm 9 and further
details can be found in Mairal et al. (2011).

4.7.3 Experiments

In this section, we present two experiments demonstrating the applicability and the
benefits of our methods for solving large-scale sparse and structured regularized problems
(additional applications can be found in Mairal et al., 2011).

CUR-like Matrix Factorization

In this experiment, we show how our tools can be used to perform the so-called
CUR matrix decomposition (Mahoney and Drineas, 2009). It consists of a low-rank
approximation of a data matrix X in Rn×p in the form of a product of three matrices—
that is, X ≈ CUR. The particularity of the CUR decomposition lies in the fact that
the matrices C ∈ Rn×c and R ∈ Rr×p are constrained to be respectively a subset of
c columns and r rows of the original matrix X. The third matrix U ∈ Rc×r is then
given by C+XR+, where A+ denotes a Moore-Penrose generalized inverse of the matrix
A (Horn and Johnson, 1990). Such a matrix factorization is particularly appealing when
the interpretability of the results matters (Mahoney and Drineas, 2009). For instance,
when studying gene-expression datasets, it is easier to gain insight from the selection of
actual patients and genes, rather than from linear combinations of them.

In Mahoney and Drineas (2009), CUR decompositions are computed by a sampling
procedure based on the singular value decomposition of X. In a recent work, Bien et al.
(2010) have shown that partial CUR decompositions, i.e., the selection of either rows or
columns of X, can be obtained by solving a convex program with a group-Lasso penalty.
We propose to extend this approach to the simultaneous selection of both rows and
columns of X, with the following convex problem:

min
W∈Rp×n

1

2
‖X−XWX‖2F + λrow

n∑

i=1

‖Wi‖∞ + λcol

p
∑

j=1

‖Wj‖∞. (4.16)
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In this formulation, the two sparsity-inducing penalties controlled by the parameters λrow

and λcol set to zero some entire rows and columns of the solutions of problem (4.16).
Now, let us denote by WI J in R|I|×|J| the submatrix of W reduced to its nonzero rows
and columns, respectively indexed by I ⊆ {1, . . . , p} and J ⊆ {1, . . . , n}. We can then
readily identify the three components of the CUR decomposition of X, namely

XWX = CWI JR ≈ X.

Problem (4.16) has a smooth convex data-fitting term and brings into play a sparsity-
inducing norm with overlapping groups of variables (the rows and the columns of W). As
a result, it can be handled with the optimization tools introduced in this section. We now
compare the performance of the sampling procedure from Mahoney and Drineas (2009)
with our proposed sparsity-based approach. To this end, we consider the four gene-
expression datasets 9_Tumors, Brain_Tumors1, Leukemia1 and SRBCT, with respective
dimensions (n, p) ∈ {(60, 5727), (90, 5921), (72, 5328), (83, 2309)}. 26 In the sequel, the
matrix X is normalized to have unit Frobenius-norm while each of its columns is centered.
To begin with, we run our approach 27 over a grid of values for λrow and λcol in order
to obtain solutions with different sparsity levels, i.e., ranging from |I| = p and |J| = n
down to |I| = |J| = 0. For each pair of values [|I|, |J|], we then apply the sampling
procedure from Mahoney and Drineas (2009). Finally, the variance explained by the
CUR decompositions is reported in Figure 4.13 for both methods. Since the sampling
approach involves some randomness, we show the average and standard deviation of the
results based on five initializations. The conclusions we can draw from the experiments
match the ones already reported in Bien et al. (2010) for the partial CUR decomposition.
We can indeed see that both schemes perform similarly. However, our approach has
the advantage not to be randomized, which can be less disconcerting in the practical
perspective of analyzing a single run of the algorithm. It is finally worth being mentioned
that the convex approach we develop here is flexible and can be extended in different
ways. For instance, we may imagine add further low-rank/sparsity constraints on W
thanks to sparsity-promoting convex regularizations.

4.7.4 Background Subtraction

Following Cevher et al. (2008); Huang et al. (2009), we consider a background sub-
traction task. Given a sequence of frames from a fixed camera, we try to segment out
foreground objects in a new image. If we denote by y ∈ Rn this image composed of n
pixels, we model y as a sparse linear combination of p other images X ∈ Rn×p, plus an
error term e in Rn, i.e., y ≈ Xw + e for some sparse vector w in Rp. This approach is
reminiscent of Wright et al. (2008) in the context of face recognition, where e is further
made sparse to deal with small occlusions. The term Xw accounts for background parts

26. The datasets are freely available at http://www.gems-system.org/.
27. More precisely, since the penalties in problem (4.16) shrink the coefficients of W, we follow a

two-step procedure: We first run our approach to determine the sets of nonzero rows and columns, and
then compute WI J = C

+
XR

+.
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Figure 4.13: Explained variance of the CUR decompositions obtained for our sparsity-
based approach and the sampling scheme from Mahoney and Drineas (2009). For the
latter, we report the average and standard deviation of the results based on five initial-
izations. From left to right and top to bottom, the curves correspond to the datasets
9_Tumors, Brain_Tumors1, Leukemia1 and SRBCT.

present in both y and X, while e contains specific, or foreground, objects in y. The
resulting optimization problem is given by

min
w∈Rp,e∈Rn

1

2
‖y−Xw−e‖22 + λ1‖w‖1 + λ2{‖e‖1 + Ω(e)}, with λ1, λ2 ≥ 0. (4.17)

In this formulation, the only ℓ1-norm penalty does not take into account the fact that
neighboring pixels in y are likely to share the same label (background or foreground),
which may lead to scattered pieces of foreground and background regions (Figure 4.14).
We therefore put an additional structured regularization term Ω on e, where the groups
in G are all the overlapping 3×3-squares on the image.

This optimization problem can be viewed as an instance of least-squares problem
regularized by Ω, with the particular design matrix [X, I] in Rn×(p+n), defined as the
columnwise concatenation of X and the identity matrix. As a result, we could directly
apply the same procedure as the one used in the other experiments. Instead, we further
exploit the specific structure of problem (4.17): Notice that for a fixed vector e, the
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optimization with respect to w is a standard Lasso problem (with the vector of observa-
tions y− e), 28 while for w fixed, we simply have a proximal problem associated to the
sum of Ω and the ℓ1-norm. Alternating between these two simple and computationally
inexpensive steps, i.e., optimizing with respect to one variable while keeping the other
one fixed, is guaranteed to converge to a solution of (4.17). 29 In our simulations, this
alternating scheme has led to a significant speed-up compared to the general procedure.

A dataset with hand-segmented images is used to illustrate the effect of Ω. 30 For
simplicity, we use a single regularization parameter, i.e., λ1 = λ2, chosen to maximize
the number of pixels matching the ground truth. We consider p = 200 images with
n = 57600 pixels (i.e., a resolution of 120×160, times 3 for the RGB channels). As
shown in Figure 4.14, adding Ω improves the background subtraction results for the
two tested images, by removing the scattered artifacts due to the lack of structural
constraints of the ℓ1-norm, which encodes neither spatial nor color consistency.

28. Since successive frames might not change much, the columns of X exhibit strong correlations. As
a result, we use the LARS algorithm (Efron et al., 2004) whose complexity is independent of the level
of correlation in X.

29. More precisely, the convergence is guaranteed since the non-smooth part in (4.17) is separable with
respect to w and e (Tseng, 2001). The result from Bertsekas (1999) may also be applied here, after
reformulating (4.17) as a smooth convex problem under separable conic constraints.

30. http://research.microsoft.com/en-us/um/people/jckrumm/wallflower/testimages.htm
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Figure 4.14: The original image y (line 1), the background (i.e., Xw) reconstructed by
our method (line 2), and the foreground (i.e., the sparsity pattern of e as a mask on the
original image) detected with ℓ1 (line 3) and with ℓ1 + Ω (line 4). The bottom line is
another foreground found with Ω, on a different image, with the same values of λ1, λ2

as for the previous image. For the top left image, the percentage of pixels matching the
ground truth is 98.8% with Ω, 87.0% without. As for the top right image, the result is
93.8% with Ω, 90.4% without (best seen in color).
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5

Application of Structured Sparsity to Neuroimaging

5.1 Multi-scale Mining of fMRI Data with Hierarchical
Structured Sparsity

Abstract of the first section of the chapter: Inverse inference, or “brain reading”, is a
recent paradigm for analyzing functional magnetic resonance imaging (fMRI) data, based on
pattern recognition and statistical learning. By predicting some cognitive variables related to
brain activation maps, this approach aims at decoding brain activity. Inverse inference takes into
account the multivariate information between voxels and is currently the only way to assess how
precisely some cognitive information is encoded by the activity of neural populations within the
whole brain. However, it relies on a prediction function that is plagued by the curse of dimen-
sionality, since there are far more features than samples, i.e., more voxels than fMRI volumes.
To address this problem, different methods have been proposed, such as, among others, uni-
variate feature selection, feature agglomeration and regularization techniques. In this paper, we
consider a sparse hierarchical structured regularization. Specifically, the penalization we use is
constructed from a tree that is obtained by spatially-constrained agglomerative clustering. This
approach encodes the spatial structure of the data at different scales into the regularization,
which makes the overall prediction procedure more robust to inter-subject variability. The regu-
larization used induces the selection of spatially coherent predictive brain regions simultaneously
at different scales. We test our algorithm on real data acquired to study the mental representa-
tion of objects, and we show that the proposed algorithm non only delineates meaningful brain
regions but yields as well better prediction accuracy than reference methods.

The material of this first section is based on the following papers:

R. Jenatton, A. Gramfort, V. Michel, G. Obozinski, F. Bach, and B. Thirion. Multi-
scale Mining of fMRI Data with Hierarchical Structured Sparsity. In International
Workshop on Pattern Recognition in Neuroimaging (PRNI). 2011

R. Jenatton, A. Gramfort, V. Michel, G. Obozinski, E. Eger, F. Bach, and B. Thirion.
Multi-scale Mining of fMRI Data with Hierarchical Structured Sparsity. Preprint
arXiv:1105.0363 Submitted to SIAM Journal on Imaging Sciences. 2011 (long version
of the previous paper)
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5.1.1 Introduction

Functional magnetic resonance imaging (or fMRI) is a widely used functional neu-
roimaging modality. Modeling and statistical analysis of fMRI data are commonly done
through a linear model, called general linear model (GLM) in the community, that incor-
porates information about the different experimental conditions and the dynamics of the
hemodynamic response in the design matrix. The experimental conditions are typically
modelled by the type of stimulus presented, e.g., visual and auditory stimulation, which
are included as regressors in the design matrix. The resulting model parameters—one
coefficient per voxel and regressor—are known as activation maps. They represent the
local influence of the different experimental conditions on fMRI signals at the level of in-
dividual voxels. The most commonly used approach to analyze these activation maps is
called classical inference. It relies on mass-univariate statistical tests (one for each voxel),
and yields so-called statistical parametric maps (SPMs) (Friston et al., 1995). Such maps
are useful for functional brain mapping, but classical inference has some limitations: it
suffers from multiple comparisons issues and it is oblivious of the multivariate structure
of fMRI data. Such data exhibit natural correlations between neighboring voxels form-
ing clusters with different sizes and shapes, and also between distant but functionally
connected brain regions.

To address these limitations, an approach called inverse inference (or “brain-reading”) (De-
haene et al., 1998; Cox and Savoy, 2003) was recently proposed. Inverse inference relies
on pattern recognition tools and statistical learning methods to explore fMRI data.
Based on a set of activation maps, inverse inference estimates a function that can then
be used to predict a target (typically, a variable representing a perceptual, cognitive or
behavioral parameter) for a new set of images. The challenge is to capture the correla-
tion structure present in the data in order to improve the performance of the mapping
learnt, which is measured through the resulting prediction accuracy. Many standard
statistical learning approaches have been used to construct prediction functions, among
them kernel machines (SVM, RVM) (Schölkopf and Smola, 2002) or discriminant anal-
ysis (LDA, QDA) (Hastie et al., 2009). For the application considered in this chapter,
earlier performance results (Cox and Savoy, 2003; LaConte et al., 2005) indicate that we
can restrict ourselves to mappings that are linear functions of the data.

Throughout the chapter, we shall consider a training set composed of n pairs (x, y) ∈
Rp × Y, where x denotes a p-dimensional fMRI signal (p voxels) and y stands for the
target we try to predict. In the experiments we carry out in Section 5.2.4, we will
encounter both the regression and the multi-class classification settings, where Y denotes
respectively the set of real numbers and a finite set of integers. In this chapter, we aim at
learning a weight vector w ∈ Rp and an intercept b ∈ R such that the prediction of y can
be based on the value of w⊤x + b. This is the case for the linear regression and logistic
regression models that we use in Section 5.2.4. It is useful to rewrite these quantities in
matrix form; more precisely, we denote by X ∈ Rn×p the design matrix assembled from
n fMRI data points and by y ∈ Rn the corresponding n targets. In other words, each
row of X is a p-dimensional sample, i.e., an activation map of p voxels related to one
stimulus presentation.
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5.1. Multi-scale Mining of fMRI Data with Hierarchical Structured Sparsity

Learning the parameters (w, b) remains challenging since the number of features
(104 to 105 voxels) exceeds by far the number of samples (a few hundreds of images).
The prediction function is therefore prone to the phenomenon of overfitting in which
the learning set is predicted precisely whereas the algorithm provides very inaccurate
predictions on new samples (the test set). To address this issue, dimensionality reduction
attempts to find a low dimensional subspace that concentrates as much of the predictive
power of the original set as possible for the problem at hand.

Feature selection is a natural approach to perform dimensionality reduction in fMRI,
since reducing the number of voxels potentially allows to identify a predictive region of
the brain. This corresponds to discarding some columns of X. This feature selection
can be univariate, e.g., analysis of variance (ANOVA) (Lehmann and Romano, 2005), or
multivariate. While univariate methods ignore joint information between features, mul-
tivariate approaches are more adapted to inverse inference since they extract predictive
patterns from the data as a whole. However, due to the huge number of possible pat-
terns, these approaches suffer from combinatorial explosion, and some costly suboptimal
heuristics (e.g., recursive feature elimination (Guyon et al., 2002; Martino et al., 2008))
can be used. That is why ANOVA is usually preferred in fMRI. Alternatively, two more
adapted solutions have been proposed: regularization and feature agglomeration.

Regularization is a way to encode a priori knowledge about the weight vector w.
Possible regularizers can promote for example spatial smoothness or sparsity which is a
natural assumption for fMRI data. Indeed, only a few brain regions are assumed to be
significantly activated during a cognitive task. Previous contributions on fMRI-based
inverse inference include Carroll et al. (2009); Rissman et al. (2010); Ryali et al. (2010);
Yamashita et al. (2008). They can be presented through the following minimization
problem:

min
(w,b)∈Rp+1

L(y,X,w, b) + λΩ(w) with λ ≥ 0, (5.1)

where λΩ(w) is the regularization term, typically a non-Euclidean norm, and the fit to
the data is measured through a convex loss function (w, b) 7→ L(y,X,w, b) ∈ R+. The
choice of the loss function will be made more specific and formal in the next sections. The
coefficient of regularization λ balances the loss and the penalization term. In this nota-
tion, a common regularization term in inverse inference is the so-called Elastic net (Zou
and Hastie, 2005; Grosenick et al., 2009), which is a combined ℓ1 and ℓ2 penalization:

λΩ(w) = λ1‖w‖1 + λ2‖w‖22 =
p
∑

j=1

{
λ1|wj |+ λ2w2

j

}
. (5.2)

For the square loss, when setting λ1 to 0, the model is called ridge regression, while when
λ2 = 0 it is known as Lasso (Tibshirani, 1996) or basis pursuit (Chen et al., 1998). The
essential shortcoming of the Elastic net is that it does not take into account the spatial
structure of the data, which is crucial in this context Michel et al. (2011). Indeed, due
to the intrinsic smoothing of the complex metabolic pathway underlying the difference
of blood oxygenation measured with fMRI (Ugurbil et al., 2003), statistical learning
approaches should be informed by the 3D grid structure of the data.
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In order to achieve dimensionality reduction, while taking into account the spatial
structure of the data, one can resort to feature agglomeration. It constructs new fea-
tures, called parcels, by averaging neighboring voxels exhibiting similar activations. The
advantage of agglomeration is that no information is discarded a priori and that it is
reasonable to hope that averaging might reduce noise. Although, this approach has been
successfully used in previous work for brain mapping (Flandin et al., 2002; Thirion et al.,
2006), it often does not consider the supervised information (i.e., the target y) while
constructing the parcels. A recent approach has been proposed to address this issue,
using a supervised greedy top-down exploration of a tree obtained by hierarchical clus-
tering (Michel et al., 2010). This greedy approach has proven to be effective especially
for inter-subject analyses, i.e., when the training and the evaluation sets are related
to different subjects. In this context, methods need to be robust to intrinsic spatial
variations that exist across subjects: despite being co-registered into a common space,
some variability remains between subjects, which implies that there is no perfect voxel-
to-voxel correspondence between volumes. As a result, the performances of traditional
voxel-based methods are strongly affected. Therefore, averaging in the form of parcels is
a good way to cope with inter-subject variability. This greedy approach is nonetheless
suboptimal, as it explores only a subpart of the whole tree.

Based on these considerations, we propose to integrate the multi-scale spatial struc-
ture of the data within the regularization term Ω, while preserving convexity in the
optimization. This notably guarantees global optimality and stability of the obtained
solutions. To this end, we design a sparsity-inducing penalty that is directly built from
the hierarchical structure of the spatial model obtained by Ward’s algorithm (Ward,
1963). Such a penalty has already been successfully applied in several contexts, e.g.,
in bioinformatics, to exploit the tree structure of gene networks for multi-task regres-
sion (Kim and Xing, 2010), and also for topic models and image inpainting (Jenatton
et al., 2010a).

We summarize here the contributions of our chapter:

• We explain how the multi-scale spatial structure of fMRI data can be taken into
account in the context of inverse inference through the combination of a spatially
constrained hierarchical clustering procedure and a sparse hierarchical regulariza-
tion.

• We provide a convex formulation of the problem and propose an efficient opti-
mization procedure.

• We conduct a experimental comparison of several algorithms and formulations on
fMRI data and illustrate the ability of the proposed method to localize in space
and in scale some brain regions involved in the processing of visual stimuli.

The rest of the chapter is organized as follows: we first present the concept of struc-
tured sparsity-inducing regularization and then describe the different regression/classification
formulations we are interested in. After exposing how we handle the resulting large-scale
convex optimization problems thanks to proximal methods, we validate our approach on
both a synthetic setting and a real dataset.
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5.1.2 Combining agglomerative clustering with sparsity inducing
regularizers

Hierarchical clustering allows to construct a tree-structured hierarchy of features on
top of the original voxels features. Moreover, the underlying voxels corresponding to
each of these features correspond to localized spatial patterns on the brain of the form
we hope to retrieve (Chklovskii and Koulakov, 2004). Instead of selecting features in
the tree greedily, we propose to cast the feature selection problem as supervised learning
problem of the form (5.1). It is natural to require of the regularizer Ω that it should
respect the tree structure of the hierarchy so as to induce the selection of localized
patterns.

Constructing the sparsity-inducing norm

The structured sparsity-inducing term Ω is built from the result of the hierarchical
clustering of the voxels. The latter yields a hierarchy of clusters represented as a tree T
(or dendrogram) (Johnson, 1967). The root of the tree is the unique cluster that gathers
all the voxels, while the leaves are the clusters with a single voxel. Among different hier-
archical agglomerative clustering procedures, we use the variance-minimizing approach
of Ward’s algorithm (Ward, 1963), since it minimizes the loss of information at each step
of clustering. In short, two clusters are merged if the resulting parcellation minimizes
the sum of squared differences within all clusters (also known as inertia criterion).

In order to take into account the spatial information, we also add connectivity con-
straints in the hierarchical clustering algorithm, so that only neighboring clusters can
be merged together. The resulting clusters are thus called parcels. Each node of the
tree T either corresponds to a voxel if it is a leaf, or defines a parcel, as the union of its
children’s clusters of voxels (see Figure 5.1).

Figure 5.1: Example of a tree T when
p = 5, with three voxels and two
parcels. The parcel 2 is defined as the
averaged intensity of the voxels {1, 2},
while the parcel 1 is obtained by av-
eraging the parcel 2 and voxel 3. In
red dashed lines are represented the five
groups of variables that compose G. For
instance, if the group containing the
parcel 2 is set to zero, the voxels {1, 2}
are also (and necessarily) zeroed out.
Best seen in color.

We now consider the augmented space of variables (also known as features), formed
by not only the voxels, but also by the parcels. This approximately doubles the number
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5. Application of Structured Sparsity to Neuroimaging

of features of the fMRI signals. In other words, p does not denote the number of voxels
anymore, but instead, the total number of nodes of T . 1 In the following, the level
of activation of each parcel is (recursively) defined by the averaged intensity of the
voxels it is composed of (i.e., local averages) (Flandin et al., 2002; Thirion et al., 2006).
This produces a multi-scale representation of the fMRI data that becomes increasingly
invariant to spatial shifts of the encoding regions within the brain volume. More formally,
if j is a node of T and Pj stands for the set of voxels of the corresponding parcel (i.e.,
the set of leaves of the subtree rooted at node j), we consider the mean of the parcel
that we denote by 〈xPj 〉. In this notation, the linear model we use is of the form

fw(x) = w⊤x̃ =
∑

j∈T
wj 〈xPj 〉 =

∑

i∈V

[ ∑

j∈A(i)

wj

|Pj |
]

xi,

where A(i) is the set of ancestors of a node i in T (including itself), and V corresponds
to the leaves of the tree. To lighten notations, in the remainder of the chapter, we will
denote by X instead of X̃ the matrix of features from the augmented space.

In the perspective of inter-subject validation, the augmented space of variables can be
exploited in the following way: since the information of single voxels may be unreliable,
the deeper the node in T , the more variable the corresponding parcel’s intensity is likely
to be across subjects. This property suggests that, while looking for sparse solutions
of (5.1), we should preferentially select the variables near the root of T , before trying to
access smaller parcels located further down in T .

Traditional sparsity-inducing penalties, e.g., the ℓ1-norm Ω(w) =
∑p

j=1 |wj |, yield
sparsity at the level of single variables wj , disregarding potential structures—for in-
stance, spatial—existing between larger subsets of variables. We leverage here the con-
cept of structured sparsity where Ω penalizes some predefined subsets, or groups, of
variables that reflect prior information about the problem at hand (Baraniuk et al.,
2010; Huang et al., 2009; Jenatton et al., 2011a; Jacob et al., 2009). In particular, we
follow Zhao et al. (2009) that first introduced hierarchical sparsity-inducing penalties.
Given a node j of T , we denote by gj ⊆ {1, . . . , p} the set of indices that record all the
descendants of j in T , including itself. In other words, gj contains the indices of the
subtree rooted at j; see Figure 5.1. If we now denote by G the set of all gj , j ∈ {1, . . . , p},
that is, G , {g1, . . . , gp}, we can define our hierarchical penalty as

Ω(w) ,
∑

g∈G
‖wg‖2 ,

∑

g∈G

[∑

j∈g

w2
j

]1/2
. (5.3)

As shown in Jenatton et al. (2011a), Ω is a norm, and it promotes sparsity at the
level of groups g ∈ G, in the sense that it acts as a ℓ1-norm on the vector (‖wg‖2)g∈G .
Regularizing by Ω therefore causes some ‖wg‖2 (and equivalently wg) to be zeroed out
for some g ∈ G. Moreover, since the groups g ∈ G represent rooted subtrees of T , this
implies that if one node/parcel j ∈ g is set to zero by Ω, the same occurs for all its
descendants (Zhao et al., 2009). To put it differently, if one parcel is selected, then all

1. We can then identify nodes (and parcels) of T with indices in {1, . . . , p}.
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5.1. Multi-scale Mining of fMRI Data with Hierarchical Structured Sparsity

the ancestral parcels in T will also be selected. This property is in accordance with our
concern of robustness with respect to voxel misalignments between subjects, since large
parcels are considered before smaller ones.

The family of norms with the previous property is actually slightly larger and we
consider throughout the chapter norms Ω of the form (Zhao et al., 2009):

Ω(w) ,
∑

g∈G
ηg‖wg‖, (5.4)

where ‖wg‖ denotes either the ℓ2-norm ‖wg‖2 or the ℓ∞-norm ‖wg‖∞ , maxj∈g |wj |
and (ηg)g∈G are (strictly) positive weights that can compensate for the fact that some
features are overpenalized as a result of being included in a larger number of groups than
others. In light of the results from Jenatton et al. (2010a), we will see in Section 5.1.4
that a large class of optimization problems regularized by Ω—as defined in (5.4)— can
be solved efficiently.

5.1.3 Supervised learning framework

In this section, we introduce the formulations we consider in our experiments. As
further discussed in Section 5.2.4, the target y we try to predict corresponds to (discrete)
sizes of objects, i.e., a one-dimensional ordered variable. It is therefore sensible to address
this prediction task from both a regression and a classification viewpoint.

Regression

In this first setting, we naturally consider the square loss function, so that prob-
lem (5.1) can be reduced to

min
w∈Rp

1

2n
‖y−Xw‖22 + λΩ(w) with λ ≥ 0.

Note that in this case, we have omitted the intercept b since we can center the vector y
and the columns of X instead.

Classification

We now look at our prediction task from a multi-class classification viewpoint. Specif-
ically, we assume that Y is a finite set of integers {1, . . . , c}, c > 2, and consider
both multi-class and “one-versus-all” strategies (Rifkin and Klautau, 2004). We need
to slightly extend the formulation (5.1): To this end, we introduce the weight matrix
W , [w1, . . . ,wc] ∈ Rp×c, composed of c weight vectors, along with a vector of intercepts
b ∈ Rc.

A standard way of addressing multi-class classification problems consists in using a
multi-logit model, also known as multinomial logistic regression (see, e.g., (Hastie et al.,
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2009) and references therein). In this case, class-conditional probabilities are modeled
for each class by a softmax function and leads to

min
W∈Rp×c

b∈Rc

1

n

n∑

i=1

log
[ c∑

k=1

ex⊤
i (wk−wyi )+bk−byi

]

+ λ
c∑

k=1

Ω(wk) .

Whereas the regularization term is separable with respect to the different weight vec-
tors wk, the loss function induces a coupling in the columns of W. As a result, the
optimization has to be carried out over the entire matrix W.

In Section 5.2.4, we consider another multi-class classification scheme. The “one-
versus-all” strategy (OVA) consists in training c different (real-valued) binary classifiers,
each one being trained to distinguish the examples in a single class from the observations
in all remaining classes. In order to classify a new example, among the c classifiers, the
one which outputs the largest (most positive) value is chosen. In this framework, we
consider binary classifiers built from both the square and the logistic loss functions. If
we denote by Ȳ ∈ {−1, 1}n×c the indicator response matrix defined as Ȳk

i , 1 if yi = k
and −1 otherwise, we obtain

min
W∈Rp×c

1

2n

c∑

k=1

‖Ȳk −Xwk‖22 + λ
c∑

k=1

Ω(wk),

and

min
W∈Rp×c

b∈Rc

1

n

n∑

i=1

c∑

k=1

log
[

1 + e−Ȳk
i (x⊤

i wk+bk)
]

+ λ
c∑

k=1

Ω(wk).

By invoking the same arguments as in Section 5.1.3, the vector of intercepts b is again
omitted in the above problem with the square loss. The formulations we reviewed in
this section can be solved efficiently within the same optimization framework we now
introduce.

5.1.4 Optimization

The convex minimization problem (5.1) is challenging, since the penalty Ω as defined
in (5.4) is non-smooth and the number of variables to deal with is large (about p ≈ 105

voxels in the following experiments). To this end, we resort to proximal methods (see, e.g.,
Beck and Teboulle, 2009; Combettes and Pesquet, 2010; Nesterov, 2007; Wright et al.,
2009)). In a nutshell, these methods can be seen as a natural extension of gradient-based
techniques when the objective function to minimize has an amenable non-smooth part.
They have increasingly drawn the attention of a broad research community because of
their convergence rates (optimal within the class of first-order techniques) and their
ability to deal with large non-smooth convex problems. We assume from now on that
the convex loss function L(y,X, .) is differentiable with Lipschitz-continuous gradient,
which notably covers the cases of the square and simple/multinomial logistic functions
(introduced in Section 5.1.3).
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The simplest version of this class of methods linearizes at each iteration the function
L(y,X, .) around the current estimate w0, 2 and this estimate is then updated as the
(unique by strong convexity) solution of the proximal problem:

min
w∈Rp

L(y,X,w0) + (w−w0)⊤∇Lw(y,X,w0) + λΩ(w) +
L

2
‖w−w0‖22.

The quadratic term keeps the update in a neighborhood where L(y,X,w0) is close to its
linear approximation, and L > 0 is a parameter which is a upper bound on the Lipschitz
constant of the gradient of L. This problem can be equivalently rewritten as:

min
w∈Rp

1

2

∥
∥
∥w0 −

1

L
∇Lw(y,X,w0)−w

∥
∥
∥

2

2
+
λ

L
Ω(w). (5.5)

Solving efficiently and exactly this problem is crucial to enjoy the fastest convergence
rates of proximal methods. In addition, when the non-smooth term Ω is not present,
the previous proximal problem exactly leads to the standard gradient update rule. In
simple settings, the solution of problem (5.5) is given in closed form: For instance,
when the regularization Ω is chosen to be the ℓ1-norm, we get back the well-known
soft-thresholding operator (Donoho and Johnstone, 1995).

The work of Jenatton et al. (2010a) recently showed that the proximal problem (5.5)
could be solved efficiently and exactly with Ω as defined in (5.4). The underlying idea
of this computation is to solve a well-ordered sequence of simple proximal problems
associated with each of the terms ‖wg‖ for g ∈ G. We refer the interested readers
to Jenatton et al. (2011c) for further details.

In our experiments, we will use the accelerated proximal gradient scheme (FISTA)
taken from Beck and Teboulle (2009), which is a similar procedure as the one described
above, except that the proximal problem (5.5) is not solved for the current estimate, but
for an auxiliary sequence of points that are linear combinations of past estimates. 3 In
terms of computational complexity, such proximal schemes are guaranteed to be ε close to
the optimal objective function inO(

√

L/ε) iterations (Beck and Teboulle, 2009; Nesterov,
2007). The cost of each iteration is dominated by the computation of the gradient (e.g.,
O(np) for the square loss) and the proximal operator, whose time complexity is linear,
or close to linear, in p for the tree-structured regularization (Jenatton et al., 2011c).

5.1.5 Experiments and results

We now present experimental results on simulated data and real fMRI data.

Simulations

In order to illustrate the proposed method, the hierarchical regularization with the ℓ2-
norm and ηg = 1 for all g was applied in a regression setting on a small two-dimensional

2. For simplicity and clarity of the presentation, we do not consider the optimization of the intercept
that we let unregularized in all our experiments.

3. The Matlab/C++ implementation we use is available at http://www.di.ens.fr/willow/SPAMS/.
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simulated dataset consisting of 300 square images (40 × 40 pixels i.e. X ∈ R300×1600).
The weight vector w used in the simulation— itself an image of the same dimension—
is presented in Fig. 5.2-a. It consists of three localized regions of two different sizes
that are predictive of the output. The images x(i) are sampled so as to obtain a cor-
relation structure which mimics fMRI data. Precisely, each image x(i) was obtained
by smoothing a completely random image — where each pixel was drawn i.i.d from a
normal distribution — with a Gaussian kernel, which introduces spatial correlations be-
tween neighboring pixels. Subsequently, correlations between the regions corresponding
to the three patterns were introduced in order to simulate co-activations between differ-
ent brain regions (0.3 correlation between the two bigger patterns, and −0.2 correlation
between the smallest and lower-corner patterns).

The choice of the weights and of the correlation introduced in images aim at illus-
trating how the hierarchical regularization estimates weights at different resolutions in
the image. The targets were simulated by forming w⊤x(i) corrupted with an additive
white noise (SNR=10dB). The loss used was the square loss as detailed in Section 5.1.3.
The regularization parameter was estimated with two-fold cross-validation (150 images
per fold) on a logarithmic grid of 30 values between 103 and 10−3.

The weights estimated are presented in Fig. 5.2 at different scales, i.e., different
depths in the tree. It can be observed that all three patterns are present in the weight
vector but at different depth in the tree. The small activation in the top-right hand
corner shows up mainly in scale 3 while the bigger patterns appear higher in the tree in
scales 5 and 6. This simulation clearly illustrates the ability of the method to capture
informative spatial patterns at different scales. We now present results on real data.

Description on the data

We apply the different methods to analyze the data of ten subjects from an fMRI
study originally designed to investigate object coding in high-level visual cortex (see
Eger et al., 2008, for details). During the experiment, twelve healthy volunteers viewed
objects of two categories (each one of the two categories is used in half of the subjects)
with four different exemplars in each category. Each exemplar was presented at three
different sizes (yielding 12 different experimental conditions per subject). Each stimulus
was presented four times in each of the six sessions. We averaged data from the four
repetitions, resulting in a total of n = 72 images by subject (one image of each stimulus
by session). Functional images were acquired on a 3-T MR system with eight-channel
head coil (Siemens Trio, Erlangen, Germany) as T2*-weighted echo-planar image (EPI)
volumes. Twenty transverse slices were obtained with a repetition time of 2s (echo time,
30ms; flip angle, 70◦; 2× 2× 2-mm voxels; 0.5-mm gap). Realignment, normalization to
MNI space, and GLM fit were performed with the SPM5 software 4. In the GLM, the
time course of each of the 12 stimuli convolved with a standard hemodynamic response
function was modeled separately, while accounting for serial auto-correlation with an
AR(1) model and removing low-frequency drift terms with a high-pass filter with a cut-

4. http://www.fil.ion.ucl.ac.uk/spm/software/spm5.
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Figure 5.2: Weights estimated in the simulation study. The true coefficients are presented
in a) and the estimated weights at different scales, i.e., different depths in the tree, are
presented in b)-h). The results are best seen in color.

off of 128s. In the present work we used the resulting session-wise parameter estimate
images. All the analysis are performed on the whole brain volume.

The four different exemplars in each of the two categories were pooled, leading to
images labeled according to the three possible sizes of the object. By doing so, we
are interested in finding discriminative information to predict the size of the presented
object.

This can be reduced to either a regression problem in which our goal is to predict
a simple scalar factor (size or scale of the presented object), or a three-category clas-
sification problem, each size corresponding to a category. We perform an inter-subject
analysis on the sizes both in regression and classification settings. This analysis relies on
subject-specific fixed-effects activations, i.e., for each condition, the six activation maps
corresponding to the six sessions are averaged together. This yields a total of 12 images
per subject, one for each experimental condition. The dimensions of the real data set are
p ≈ 7×104 and n = 120 (divided into three different sizes). We evaluate the performance
of the method by cross-validation with a natural data splitting, leave-one-subject-out.
Each fold consists of 12 volumes. The parameter λ of all methods is optimized over
a grid of 30 values of the form 2k, with a nested leave-one-subject-out cross-validation
on the training set. The exact scaling of the grid varies for each model to account for
different Ω.
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Methods involved in the comparisons

In addition to considering standard ℓ1- and squared ℓ2-regularizations in both our
regression and multi-class classification tasks, we compare various methods that we now
review.

First of all, when the regularization Ω as defined in (5.4) is employed, we consider
three settings of values for (ηg)g∈G which leverage the tree structure T . More precisely,
we set ηg = ρdepth(g) for g in G, with ρ ∈ {0.5, 1, 1.5} and where depth(g) denotes the
depth of the root of the group g in T . In other words, the larger ρ, the more averse we
are to selecting small (and variable) parcels located near the leaves of T .

The greedy approach from Michel et al. (2010) is included in the comparisons, for
both the regression and classification tasks. It relies on a top-down exploration of the
tree T . In short, starting from the root parcel that contains all the voxels, we choose at
each step the split of the parcel that yields the highest prediction score. The exploration
step is performed until a given number of parcels is reached, and yields a set of nested
parcellations with increasing complexity. Similarly to a model selection step, we chose
the best parcellation among those found in the exploration step. The selected parcella-
tion is thus used on the test set. In the regression setting, this approach is combined
with Bayesian ridge regression, while it is associated with a linear support vector ma-
chine for the classification task (whose value of C is found by nested cross-validation in
{0.01, 0.1, 1}).

Regression setting. In order to evaluate whether the level of sparsity is critical in
our analysis, we implemented a reweighted ℓ1-scheme (Candes et al., 2008). In this case,
sparsity is encouraged more aggressively as a multi-stage convex relaxation of a concave
penalty. Specifically, it consists in using iteratively a weighted ℓ1-norm, whose weights
are determined by the solution of previous iteration.

To better understand the added value of the hierarchical norm (5.4) over unstructured
penalties, we consider another variant of weighted ℓ1-norm, this time defined in the
augmented space of features. The weights are manually set and reflect the underlying
tree structure T . By analogy with the choice of (ηg)g∈G made for the tree-structured
regularization, we take exponential weights depending on the depth of the variable j,
with ρ = 1.5. 5 We also tried weights (ηg)g∈G that are linear with respect to the depths,
but those led to worse results. We now turn to the models taking part in the classification
task.

Classification setting. As discussed in Section 5.1.3, the optimization in the classifi-
cation setting is carried out over a matrix of weights W ∈ Rp×c. This makes it possible
to consider other regularization schemes.

In particular, we apply ideas from multi-task learning (Obozinski et al., 2009) by
viewing each class as a task. More precisely, we use a regularization norm defined by

5. Formally, the depth of the feature j is equal to depth(gj), where gj is the smallest group in G that
contains j (smallest is understood here in the sense of the inclusion).
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Ωmulti-task(W) ,
∑p

j=1 ‖Wj‖, where ‖Wj‖ denotes either the ℓ2- or ℓ∞-norm of the
j-th row of W. The rationale for the definition of Ωmulti-task is to assume that the set
of relevant voxels is the same across the c different classes, so that sparsity is induced
simultaneously over the columns of W. As a remark, in the “one-versus-all” setting,
although the loss functions for the c classes are decoupled, the use of Ωmulti-task induces
a relationship that ties them together.

Note that the tree-structured regularization Ω we consider does not impose a joint
pattern-selection across the c different classes. Although a multi-task extension of Ω with
ℓ∞-norms has recently been proposed (Mairal et al., 2010b), the cost of the corresponding
proximal operator is significantly higher, which is likely to raise some computational
issues in our large-scale experiments.

Results

We present result of the comparison of our approach based on the hierarchical
sparsity-inducing norm (5.4) with the models presented in the previous section. For
each method, we computed the cross-validated prediction accuracy and the percentage
of non-zero coefficients, i.e., the level of sparsity of the models.

Regression results. The results for the inter-subject regression analysis are given in
Table 5.1. The lowest error in prediction accuracy is obtained by the proposed hier-
archical structured sparsity approach (Tree ℓ2 with ρ = 1), that also yields one of the
lowest (along with greedy) standard deviation indicating that the results are most stable.
This can be explained by the fact that the use of local signal averages in the proposed
algorithm is a good way to get some robustness to inter-subject variability. We also
notice that the sparsity-inducing approaches (Lasso and reweighted ℓ1) have the highest
error in prediction accuracy, probably because the obtained solutions are too sparse, and
suffer from the absence of perfect voxel-to-voxel correspondences between subjects.

In terms of sparsity, we can see, as expected, that ridge regression does not yield
any sparsity and that the Lasso solution is very sparse (in the feature space, with ap-
proximately 7 × 104 voxels). Our method yields a median value of 9.36% of non-zero
coefficients (in the augmented space of features, with about 1.4× 105 nodes in the tree).
The maps of weights obtained with Lasso and the hierarchical regularization for one fold,
are given in Fig. 5.3. The Lasso yields a scattered and overly sparse pattern of voxels,
that is not easily readable, while our approach extracts a pattern of voxels with a com-
pact structure, that clearly outlines brain regions expected to activate differentially for
stimuli with different low-level visual properties, e.g., sizes; the early visual cortex in the
occipital lobe at the back of the brain. Interestingly, the patterns of voxels show some
symmetry between left and right hemispheres, especially in the primary visual cortex
which is located at the back and center of the brain. Such an observation matches very
well with existing neurosciences knowledge of this brain region that processes the visual
contents of both visual hemifields. The weights obtained at different depth level in the
tree, corresponding to different scales, show that the largest coefficients are concentrated
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Square
Loss function: Square

Error (mean,std) P-value w.r.t. Tree ℓ2 (ρ = 1) Median fraction of non-zeros (%)

Regularization:

ℓ2 (Ridge) (8.3, 4.6) 0.096 100.00

ℓ1 (12.1, 6.6) 0.013∗ 0.11

Reweighted ℓ1 (11.3, 8.8) 0.052 0.10

ℓ1 (tree weights) (8.3, 4.7) 0.032∗ 0.02

Tree ℓ2 (ρ = 0.5) (7.8, 4.4) 0.137 99.99

Tree ℓ2 (ρ = 1) (7.1, 4.0) - 9.36

Tree ℓ2 (ρ = 1.5) (8.1, 4.2) 0.080 0.04

Tree ℓ∞ (ρ = 0.5) (8.1, 4.7) 0.080 99.99

Tree ℓ∞ (ρ = 1) (7.7, 4.1) 0.137 1.22

Tree ℓ∞ (ρ = 1.5) (7.8,4.1) 0.096 0.04

Error (mean,std) P-value w.r.t. Tree ℓ2 (ρ = 1) Median fraction of non-zeros (%)

Greedy (7.2, 3.3) 0.5 0.01

Table 5.1: Prediction results obtained on fMRI data (see text) for the regression set-
ting. From the left, the first column contains the mean and standard deviation of the
test error (unexplained variance), computed over leave-one-subject-out folds. The best
performance is obtained with the hierarchical ℓ2 penalization (ρ = 1) constructed from
the Ward tree. Statistical significance is assessed with a Wilcoxon two-sample paired
signed rank test. The superscript ∗ indicates a rejection at 5%.

at the higher scales (scale 6 in Fig. 5.3), showing that the object size cannot be well de-
coded at the voxel level but requires features formed by more macroscopic clusters of
voxels.

Classification results. The results for the inter-subject classification analysis are
given in Table 5.2. The best performance is obtained with a multinomial logistic loss
function, also using the hierarchical ℓ2 penalization (ρ = 1).

For both ℓ1 and hierarchical regularizations, one of the three vectors of coefficients
obtained for one fold are presented in Fig. 5.4. While for ℓ1, the active voxels are
scattered all over the brain, the tree ℓ2 regularization yields clearly delineated sparsity
patterns located in the visual areas of the brain. Like for the regression results, the
highest coefficients are obtained at scale 6 showing how spatially extended is the brain
region involved in the cognitive task. The symmetry of the pattern at this scale is also
particularly striking in the primary visual areas. It also extends more anteriorly into the
inferior temporal cortex, known for high-level visual processing.
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Loss function: Square (“one-versus-all”)

Error (mean,std) P-value w.r.t. Tree ℓ2 (ρ = 1)-ML Median fraction of non-zeros (%)

Regularization:

ℓ2 (Ridge) (29.2, 5.9) 0.004∗ 100.00

ℓ1 (33.3, 6.8) 0.004∗ 0.10

ℓ1/ℓ2 (Multi-task) (31.7, 9.5) 0.004∗ 0.12

ℓ1/ℓ∞ (Multi-task) (33.3,13.6) 0.009∗ 0.22

Tree ℓ2 (ρ = 0.5) (25.8, 9.2) 0.004∗ 99.93

Tree ℓ2 (ρ = 1) (25.0, 5.5) 0.027∗ 10.08

Tree ℓ2 (ρ = 1.5) (24.2, 9.9) 0.130 0.05

Tree ℓ∞ (ρ = 0.5) (30.8, 8.8) 0.004∗ 59.49

Tree ℓ∞ (ρ = 1) (24.2, 7.3) 0.058 1.21

Tree ℓ∞ (ρ = 1.5) (25.8, 10.7) 0.070 0.04

Loss function: Logistic (“one-versus-all”)

Error (mean,std) P-value w.r.t. Tree ℓ2 (ρ = 1)-ML Median fraction of non-zeros (%)

Regularization:

ℓ2 (Ridge) (25.0, 9.6) 0.008∗ 100.00

ℓ1 (34.2, 15.9) 0.004∗ 0.55

ℓ1/ℓ2 (Multi-task) (31.7, 8.6) 0.002∗ 47.35

ℓ1/ℓ∞ (Multi-task) (33.3, 10.4) 0.002∗ 99.95

Tree ℓ2 (ρ = 0.5) (25.0, 9.6) 0.007∗ 99.93

Tree ℓ2 (ρ = 1) (20.0, 11.2) 0.250 7.88

Tree ℓ2 (ρ = 1.5) (18.3, 6.6) 0.500 0.06

Tree ℓ∞ (ρ = 0.5) (30.8, 10.4) 0.004∗ 59.42

Tree ℓ∞ (ρ = 1) (24.2, 6.1) 0.035∗ 0.60

Tree ℓ∞ (ρ = 1.5) (21.7, 8.9) 0.125 0.03

Loss function: Multinomial logistic (ML)

Error (mean,std) P-value w.r.t. Tree ℓ2 (ρ = 1)-ML Median fraction of non-zeros (%)

Regularization:

ℓ2 (Ridge) (24.2, 9.2) 0.035∗ 100.00

ℓ1 (25.8, 12.0) 0.004∗ 97.95

ℓ1/ℓ2 (Multi-task) (26.7, 7.6) 0.007∗ 30.24

ℓ1/ℓ∞ (Multi-task) (26.7, 11.6) 0.002∗ 99.98

Tree ℓ2 (ρ = 0.5) (22.5, 8.8) 0.070 83.06

Tree ℓ2 (ρ = 1) (16.7, 10.4) - 4.87

Tree ℓ2 (ρ = 1.5) (18.3, 10.9) 0.445 0.02

Tree ℓ∞ (ρ = 0.5) (26.7, 11.6) 0.015∗ 48.82

Tree ℓ∞ (ρ = 1) (22.5, 13.0) 0.156 0.34

Tree ℓ∞ (ρ = 1.5) (21.7, 8.9) 0.460 0.05

Error (mean,std) P-value w.r.t. Tree ℓ2 (ρ = 1)-ML Median fraction of non-zeros (%)

Greedy (21.6, 14.5) 0.001∗ 0.01

Table 5.2: Prediction results obtained on fMRI data (see text) for the multi-class classifi-
cation setting. From the left, the first column contains the mean and standard deviation
of the test error (percentage of misclassification), computed over leave-one-subject-out
folds. The best performance is obtained with the hierarchical ℓ2 penalization (ρ = 1)
constructed from the Ward tree, coupled with the multinomial logistic loss function.
Statistical significance is assessed with a Wilcoxon two-sample paired signed rank test.
The superscript ∗ indicates a rejection at 5%.
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a)

b)

c)

d)

Figure 5.3: Maps of weights obtained using different regularizations in the regression
setting. (a) ℓ1 regularization - We can notice that the predictive pattern obtained is ex-
cessively sparse, and is not easily readable despite being mainly located in the occipital
cortex. (b-d) tree ℓ2 regularization (ρ = 1) at different scales - In this case, the regu-
larization algorithm extracts a pattern of voxels with a compact structure, that clearly
outlines early visual cortex which is expected to discriminate between stimuli of different
sizes. 3D images were generated with Mayavi (Ramachandran and Varoquaux, 2011).
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a)

b)

c)

d)

Figure 5.4: Maps of weights obtained using different regularizations in the classification
setting. (a) ℓ1 regularization - We can notice that the predictive pattern obtained is
excessively sparse, and is not easily readable with voxels scattered all over the brain.
(b-d) tree regularization at different scales - In this case, the regularization algorithm
extracts a pattern of voxels with a compact structure, that clearly outlines early visual
cortex which is expected to discriminate between stimuli of different sizes.
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5.1.6 Conclusion

In this chapter, we introduced a hierarchically structured regularization, which takes
into account the spatial and multi-scale structure of fMRI data. This approach copes
with inter-subject variability in a similar way as feature agglomeration, by averaging
neighboring voxels. Although alternative agglomeration strategies do exist, we simply
used the criterion which appears as the most natural, Ward’s clustering, and which
builds parcels with little variance.

Results on a real dataset show that the proposed algorithm is a promising tool for
mining fMRI data. It yields higher prediction accuracy than reference methods, and the
map of weights it obtains exhibit a cluster-like structure. It makes them easily readable
compared to the overly sparse patterns found by classical sparsity-promoting approaches.

For the regression problem, both the greedy method from Michel et al. (2010) and the
proposed algorithm yield better results than unstructured and non-hierarchical regular-
izations. However, in both regression and classification settings, the convex formulation
introduced here leads to the best performance while enjoying the guarantees of convex
optimization. In particular, while the greedy algorithm relies on a two-step approach
that may be far from optimal, the hierarchical regularization induces simultaneously
the selection of the optimal parcellation and the construction of the optimal predictive
model, given the initial hierarchical clustering of the voxels. Moreover, convex methods
yield predictors that are essentially stable with respect to perturbations of the design or
the initial clustering, which is typically not the case of greedy methods.

Finally, it should be mentioned that the performance achieved by this approach in
inter-subject problems suggests that it could potentially be used successfully in medical
diagnosis problems, where brain images –not necessarily functional images– are used to
classify individuals into diseased or control population. Indeed, for difficult problems
of that sort, where the reliability of the diagnostic is essential, the stability of mod-
els obtained from convex formulations and the interpretability of sparse and localized
solutions are useful properties to have in order to provide a credible diagnostic.

5.2 Sparse Structured Dictionary Learning for Brain
Resting-State Activity Modeling

Abstract of the second section of the chapter: We introduce a generative model to study
brain resting-state time series. These signals are represented as linear combinations of latent spa-
tial maps, which we obtain via matrix factorization techniques developed for dictionary learning.
In particular, we propose to learn the spatial components with specific structural constraints,
e.g, small localized clusters of voxels, which can be achieved with sparsity-inducing regularization
schemes recently used for dictionary learning. While brain resting-state time-series are gener-
ally the object of exploratory data analysis, our model provides a natural framework for model
selection and quantitative evaluation. We show that our approach yields improved estimates
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as assessed by the likelihood on unseen data, while exhibiting interpretable spatial components,
that match known areas of interest in the brain.

The content of this second section is built upon the following work:

G. Varoquaux, R. Jenatton, A. Gramfort, G. Obozinski, B. Thirion, and F. Bach. Sparse
Structured Dictionary Learning for Brain Resting-State Activity Modeling. In NIPS
Workshop on Practical Applications of Sparse Modeling: Open Issues and New Direc-
tions. 2010

5.2.1 Introduction

Functional magnetic resonance imaging (fMRI) yields in-vivo time-resolved measure-
ments of brain activity. As the workhorse of neuroimaging, it has been the basis for much
research on brain function, such as the investigation of neural coding corresponding to
specific behavior. The study of intrinsic brain function is receiving increasing interest
from the neuroscience community (Biswal et al., 2010). For this purpose, the spontaneous
brain activity of subjects in the absence of a task is recorded in so-called resting-state
experiments. In this setting, the statistical modeling of the signals is an unsupervised
problem, and independent component analysis (ICA) has been widely used to study
decomposition of the brain-activation time series in a set of interpretable spatial com-
ponents (Beckmann and Smith, 2004; Beckmann et al., 2005; Varoquaux et al., 2010e).
More recently, graphical models learned from the correlation matrices between distant
activation time series have been shown to contain discriminative features of pathologies
or cognitive processes (Cecchi et al., 2009; Varoquaux et al., 2010a; Richiardi et al.,
2010). These two approaches are complementary: on the one hand, spatial ICA extracts
spatial patterns of coactivation, but forgoes any modeling of the correlation structure of
the time series, since it operates on whitened data; on the other hand, learning statisti-
cally sound correlation matrices with the small sample size of neuroimaging data must
rely on the definition of regions of interest to extract the relevant signal (Varoquaux
et al., 2010b).

Here we propose to simultaneously learn spatial patterns as well as the associated
correlation structure by fitting a single model, leveraging recent work on sparse struc-
tured principal component analysis (SSPCA) (Jenatton et al., 2010b). Specifically, the
time series are represented as linear combinations of factors, or dictionary elements, that
are not simply constrained to be sparse (i.e., to use only a small number of voxels) but
that are rather explicitly constrained to be supported by spatially-compact regions. The
motivation for introducing this structure is the high degree of local spatial organiza-
tion of the neuronal maps corresponding to different cognitive functions (Chklovskii and
Koulakov, 2004). In addition, the spatial variability of function across different subjects
limits the ability of brain imaging to resolve functional processes and dictates the use of
brain regions learned from the data for inter-subject comparisons (Thirion et al., 2006).
As detailed in the conclusion, an important consequence of selecting for structured com-
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ponents, as with SSPCA, rather than for independent components, as with ICA, is that
it gives a two level representation, segmenting localized brain regions regardless of the
fluctuations of large scale cognitive networks that have been shown to encode cognitive
or pathology-related brain states.

We introduce a new generative model for spontaneous brain activity that is suitable
for model selection. This model provides a consistent framework for covariance estima-
tion as well as various matrix decomposition methods, such as ICA, the reference method
in neuroimaging (Beckmann and Smith, 2004). As illustrated in our experiments, our
approach seeking structure in the data leads to improvements over other unstructured
decompositions, with both (1) an increase in model likelihood on left-out time series cor-
responding to unseen subjects, as well as (2) decomposition in spatial components that
matches known brain areas of interest and is thus interpretable. Our model is consistent
with current neuroscientific understanding of spontaneous brain activity.

5.2.2 Model and Problem Statement

We start by introducing our generative model and by motivating the use of dictionary
learning. We consider brain resting-state time series measured on m voxels, and denote
by x ∈ Rm one of the time points, a three-dimensional image of brain activity. We assume
that the signal x can be expressed as a linear combination of p dictionary elements that
are the columns of the dictionary matrix D ∈ Rm×p. More precisely, we have

x = Dα + ε, (5.6)

where ε ∼ N (0,Σε) is a zero-mean Gaussian noise vector identically and independently
distributed (i.i.d.) across the different data points acquired at different times. In the
sequel, we shall assume that there is no spatial correlation between different voxels in
the noise term, so that Σε is chosen to be diagonal. The decomposition of the signal
x on the dictionary D is given by the vector α ∼ N (0,Σα) which follows a zero-mean
multivariate Gaussian distribution, also i.i.d. across the observations. We further assume
independence between ε and α, and x is thus Gaussian with covariance matrix

Σx , DΣαD⊤ + Σε. (5.7)

In the experiments, we will use this generative model to evaluate the quality of fit of our
approach, as measured by the corresponding likelihood function.

Now, given a set of n observations of the brain activity images (i.e., n times points)
represented by the rows of the data matrix X ∈ Rm×n, we are interested in expressing
X as

X ≈ DA, (5.8)

where the n decomposition vectors are stacked in the matrix A ∈ Rp×n. Finding such a
pair of matrices (A,D) corresponds precisely to a matrix factorization problem (Singh
and Gordon, 2008; Witten et al., 2009), also known as dictionary learning in signal pro-
cessing (Mairal et al., 2010a). Various penalties and constraints can be imposed on A
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and/or D in order to specify prior knowledge about the target factorization, e.g., positiv-
ity (Lee and Seung, 1999) or sparsity (Lee et al., 2007; Mairal et al., 2010a). Independent
Component Analysis (ICA), widely used in neuroimaging, can also be formulated as a
dictionary-learning problem, with the constrain of minimum mutual information between
the columns of D.

The wide success that ICA has enjoyed in neuroimaging comes from the interpretabil-
ity of the dictionary elements that it extracts. Indeed, unlike dictionary elements learned
by PCA, ICA components display localized and contrasted features that match func-
tional neuroanatomical knowledge. For instance the component shown on Figure 5.6
corresponds to the brain regions composing the well-known default mode network. More
recently, it has been argued that the key to the success of ICA in fMRI is not the indepen-
dence of the components, but their sparsity (Daubechies et al., 2009; Varoquaux et al.,
2010d). In addition, systematic studies of all ICA components learn from resting-state
brain activity show that they are composed of localized features, that correspond either
to functional brain units or to structured artifacts in the signal generated by anatomical
features (Varoquaux et al., 2010e). It thus appears that, for the interpretation of the de-
composition on dictionary elements (i.e., the columns of D), of the spatial compactness
of the salient features that they display plays an important role: imaging neuroscientists
think in terms of brain activation areas forming small localized clusters. Interestingly,
this property can be encoded by using the structured sparsity-inducing regularization
recently introduced in Jenatton et al. (2011a). We now briefly present this regularization
scheme and explain how it has been further exploited for dictionary learning (Jenatton
et al., 2010b).

5.2.3 Structured Sparse Dictionary Learning

The work of Jenatton et al. Jenatton et al. (2011a) considered a norm Ω which
induces structured sparsity in the following sense: the solutions to a learning problem
regularized by this norm have a sparse support which moreover belongs to a predefined
set of possible nonzero patterns. Interesting examples of such sets of supports include
sets of variables forming contiguous segments or rectangles when arranged respectively
on a line or on a grid. More formally, the norm Ω can be defined on Rm by introducing a
set G of subsets of {1, . . . ,m} that we refer to as groups. The choice of the set of groups
G defines the nature of the possible sparsity patterns associated with Ω. For any vector
d ∈ Rm,

Ω(d) ,
∑

g∈G
‖dg‖2 =

∑

g∈G

{
∑

j∈g

d2
j

}1/2

. (5.9)

In other words, Ω consists of a sum of non-squared ℓ2-norms on subsets of variables
specified by g ∈ G. The definition (5.9) covers interesting subcases: for example, when G
is the set of singletons, we get back the ℓ1-norm. As analyzed by (Jenatton et al., 2011a),
Ω promotes sparsity at the level of groups, in the sense that it acts as a ℓ1-norm on the
vector (‖dg‖2)g∈G . Regularizing by Ω therefore causes some ‖dg‖2 (and equivalently
dg) to be zeroed out for some g in G. In the experiments, we design a particular set of
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overlapping groups G that is adapted to the 3-dimensional structure of the voxels. Our
choice of G constrains the sparsity patterns to form rectangular boxes, in order to favor
the selection of clustered voxels. This is achieved by considering for G all axis-aligned
half-spaces of the discrete 3-dimensional space of voxels.

The norm Ω can naturally fit in the dictionary-learning framework (Jenatton et al.,
2010b). Suppose that we look for a pair of matrices A = [α1, . . . ,αn] = [A1, . . . ,Ap] and
D = [d1, . . . ,dp] such that (5.8) holds. If in addition we require to obtain sparse struc-
tured dictionary elements, we can consider the formulation of Jenatton et al. (2010b), 6

that is,

min
A∈Rp×n,D∈Rm×p

1

2
‖X−DA‖2F+λ

p
∑

k=1

Ω(dk) such that ‖Ak‖2 ≤ 1 for all k ∈ J1; pK. (5.10)

The positive scalar λ controls the strength of the regularization, while the constraints on
the rows of the matrix A are required to avoid degenerate solutions. The specific choice
of the ℓ2-norm follows Jenatton et al. (2010b). Problem (5.10) is not jointly convex in A
and D, but convex with respect to one matrix while the other one is kept fixed, and vice
versa. This property calls for an alternate optimization scheme, more precisely a block
coordinate descent scheme; we refer the reader to Jenatton et al. (2010b) and references
therein for more details on the optimization procedure.

5.2.4 Applications and Experiments

We present in this section the experimental validation of our approach. To this end,
we consider the set of brain resting-state time series used in Varoquaux et al. (2010e).
Twelve healthy volunteers were scanned at rest, eyes closed, for a period of 20 minutes.
Each individual dataset is made of n = 820 volumes (time points) with a 3 mm isotropic
resolution, corresponding to approximately 50 000 voxels within the brain. Standard
neuroimaging preprocessing was applied using the SPM5 software 7: after slice-timing
interpolation and motion correction, cerebral volumes were realigned to an inter-subject
template and smoothed with a 6 mm isotropic Gaussian kernel.

The objective of the experiments is to compare our sparse structured approach
(SSPCA) with a standard sparse dictionary learning formulation (Sparse PCA, SPCA)—
i.e., using the ℓ1-norm in place of Ω in the formulation (5.10)— and with principal com-
ponent analysis (PCA). This validation scheme is based solely on the decomposition DA
and thus makes no distinction between ICA and PCA. Indeed, the matrices A, D found
by ICA and PCA are identical up to a rotation, therefore leading to the same likelihood
on unseen data 8. For a set of dictionary sizes, p ∈ {10, 40, 70, . . . , 220}, we perform a

6. In fact, Jenatton et al. (2010b) considers a weighted non-convex variant of Ω that leads to the
same set of sparsity patterns, but more aggressively. In the experiments, we adopt the very same setting
as Jenatton et al. (2010b); we do not detail this variant for simplicity. Moreover, though non-convex,
the optimization with the variant of Ω follows along the same line thanks to a variational formulation.

7. Wellcome Department of Cognitive Neurology; www.fil.ion.ucl.ac.uk/spm
8. However, the spatial components obtained by these two methods are different.
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6-fold cross-validation that respects splits of the data by subjects, i.e., each fold contains
all the time points for two subjects. After learning a decomposition (Â, D̂) on 5 out
of the 6 folds, we compute an estimate Σ̂x of Σx as defined in (5.7), where Σ̂α is the
sample covariance for Â, and Σ̂ε is obtained from the residuals. If we now denote by
Σheld-out

x the sample covariance matrix of the time-series data points computed from the
held-out fold, we evaluate the different approaches based on the likelihood L of the held
out data in our Gaussian generative model, which is

L(Σ̂x,Σ
held-out
x ) , − log |Σ̂x| − Tr(Σ̂

−1
x Σheld-out

x ). (5.11)

To lower the computational burden, the space of voxels is down-sampled to m ≈ 5 000,
where the activation of a single voxel is replaced by the average activation of a 2×2×2-
cube of voxels. The cross-validation scores are displayed on Figure 5.5. Both SPCA
and SSPCA are non-convex, and solutions therefore depend on the initialization of the
algorithms. We experimentally observed that the cross-validation scores are quite stable
under random initialization of A and D. Moreover, we assess the statistical significance
of the cross-validation scores in Table 5.3 and carry out paired t-tests.
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Figure 5.5: (left) Cross-validation scores: Average likelihood on unseen data obtained
for SSPCA, SPCA and PCA/ICA over the 6 folds, with different dictionary sizes. The
likelihood corresponds here to L normalized by 104. No error bars are displayed on
this figure, the statistical significance of the results being assessed in Table 5.3. (right)
Outline of the regions defined by the different dictionary elements for p = 100 displayed
on 2D cuts, as well as a 3D view with a representation of the cortical folds. The outlines
drawn correspond to 25% of the maximum value of the dictionary elements. A poorly-
structured pink region stands out outside the upper frontal regions: it is a well known
movement-pattern often extracted in ICA analysis (map 9 on Figure 2 of Varoquaux
et al. (2010e)).

On Figure 5.5, we can see that, as the number of elements in the dictionary learned
increases, the various learning procedures extract a more detailed representation and the
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Dictionary sizes 10 40 70 100 130 170 200 220

p-values

SSPCA
vs.
SPCA

5.10−2 3.10−3 1.10−3 7.10−5 1.10−4 4.10−6 8.10−6 1.10−5

SSPCA
vs.
PCA/ICA

4.10−2 3.10−3 5.10−3 2.10−3 1.10−3 8.10−4 6.10−4 6.10−4

Table 5.3: P-values from paired t-tests carried out on the series of likelihood results
over the 6 cross-validation scores. For the models learned using SSPCA, the average
likelihood on the held-out data is significantly higher than those obtained using SPCA
and PCA at the 1% significance level for dictionary sizes greater than 40.

likelihood of unseen data increases. However for PCA and ICA, this generalization score
reaches a plateau and decreases as the algorithms overfit and learn dictionary elements
from signal that is not reproducible across folds, that is between different subjects. Inter-
estingly, the optimal number of ICA components set by this model-selection procedure,
50, corresponds roughly to the number selected on the same dataset by a different pro-
cedure unrelated to the proposed generative model (Varoquaux et al., 2010e). For the
penalized methods, SPCA and SSPCA, the generalization score keeps increasing with
the number of elements in the dictionary: the penalization controls over-fitting. SSPCA
generalizes best for large dictionary sizes and is thus best suited for obtaining a detailed
description of resting-state brain covariance.

In our experiments, the generalization scores of models learned by SSPCA and SPCA
do not reach a maximum. This could indicate that the best description of the resting
brain involves a higher number of regions. Indeed, Tucholka et al. (2008) argues that,
in a task-based fMRI study, the optimal number of regions lies around 500. As the com-
putational cost of these methods scales in p2, our experiments were limited by available
computational resources and we plan to explore larger dictionary sizes in the future.

5.2.5 Discussion

The key idea behind the study of resting-state brain activity is that the correlations
in the signal observed by fMRI reveal regions of the brain that function together. This
is why modeling the covariance matrix of fMRI time series is receiving increasing atten-
tion (Varoquaux et al., 2010b; Cecchi et al., 2009). However, with the limited number
of samples, learning a covariance between the time series of all the 50 000 brain voxels is
an ill-posed problem. The generative model defined by equations (5.7) and (5.8) can be
interpreted as decomposing the covariance of the observed signal in a structured part,
given by the dictionary elements D and the covariance Σα, and an unstructured part,
given by the diagonal covariance Σε. As such, this model is well-suited for the study of
resting-state functional connectivity.

The dictionary elements estimated by SSPCA are spatial maps displaying one or
two localized features. As such, they define a set of regions that explain well the signal.
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Figure 5.6: (left) Dictionary element estimated by ICA, corresponding to the brain
network known as the default mode network. As it is usually done in neuroimaging, the
spatial map learned by decomposition of the functional images is displayed, thresholded,
on an anatomical brain image. (right) Three dictionary elements corresponding to the
same brain regions. The different colormaps (red, green and blue) correspond to the
different dictionary elements learned. The transparency reflects the structured sparsity,
rather than an arbitrary threshold 9. This is why the different elements displayed on
the figure have a block-like outline that reflect the shape of the groups used in norm Ω.
Some displayed patterns do not seem to be rectangular boxes (e.g., the green patterns).
However, a closer look at these dictionary elements shows that boxes are indeed selected,
and that small numerical values (just as regularizing by ℓ2-norm may lead to) give the
visual impression of having zeroes between the two green areas.

Figure 5.5 shows the outline of all the regions defined by such a decomposition. These
regions either correspond to functional brain regions, located in the gray matter, or
are characteristic of non-neural signals, such as movement, most-often considered as
artifacts to be accounted for in fMRI studies. We find that the brain regions segmented
by SSPCA are well positioned on functionally-relevant anatomical structures, such as
cortical folds, and correspond well to the regions forming the well-known brain networks
extracted most-often by ICA (see Figure 5.6).

Compared to standard ICA-based procedures for fMRI, our approach based on
SSPCA offers several improvements that go beyond better cross-validation performance
for large dictionaries. First of all, it naturally extracts regions: no thresholding is neces-
sary to recover sparsity as in Varoquaux et al. (2010d) and spatially scattered dictionary
elements are penalized. In addition, ICA has no intrinsic notion of noise: it forgoes ex-
plained variance and explains all the data at hand by estimating a rotation matrix, called
the mixing matrix, that maps whitened signals to dictionary elements. As a result, ICA
procedures used in fMRI rely on PCA to select a subspace maximizing the explained
variance (Beckmann and Smith, 2004; Varoquaux et al., 2010e). On the contrary, SPCA
and SSPCA perform subspace selection and signal decomposition in a single step, relying
on the penalization to model noise. Thus, when using SSPCA, the proportion of the
observed signal modelled as noise is set by the structured-sparsity prior.

9. The optimization procedure we rely on (Jenatton et al., 2010b) is not based on thresholding to
set coefficients explicitly to zero, but on successive re-weighing of coefficients, some of which converge
to zero. As a result the sparsity of the dictionary element is given by the error tolerance set in the
optimization.
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5. Application of Structured Sparsity to Neuroimaging

But the most important improvement of SSPCA over ICA is probably to differen-
tiate the estimation of localized regions from the grouping distant regions in networks:
D encodes only local information and all long-distance structure can be found in Σα.
Indeed, a large body of work has shown that the amount of correlation between dis-
tant brain regions is modulated by cognitive brain processes (Richiardi et al., 2010) or
pathologies (Vanhaudenhuyse et al., 2010; Cecchi et al., 2009; Varoquaux et al., 2010a).
When estimating dictionary elements on multiple subjects with different long-distance
correlation structures, brain regions extracted by ICA will be affected while there is no
reason to believe that the underlying localized functional units differ. SSPCA is more
robust to such variations in the data. As such, it is more suited to extract regions
that will be used in a second step to perform principled inter-subject inference on the
correlation structure (Varoquaux et al., 2010a).

5.2.6 Conclusion

We introduced in this paper a generative model for brain resting-state activity. We
use the dictionary-learning framework to learn this model from fMRI time-series. In these
settings, we can compare several dictionary-learning techniques using cross-validation.
We apply sparse-structured PCA, an approach with assumptions that match current
understanding of brain spontaneous activity, and show that it generalizes better than
alternative methods, including ICA, the reference method in neuroimaging. These pre-
liminary results suggest that SSPCA is a good candidate for learning regions from the
data, which is a challenging problem, critical for brain covariance modeling (Varoquaux
et al., 2010b). Our proposed model could be extended in further work to estimating a
subject-specific covariance matrix with common dictionary elements. This would enable
principled inter-subject comparison on brain covariance using a consistent framework
based on dictionary learning.
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6

Local Analysis of Sparse Coding in Presence of
Noise

Abstract of the chapter: A popular approach within the signal processing and machine
learning communities consists in modelling signals as sparse linear combinations of atoms selected
from a learned dictionary. While this paradigm has led to numerous empirical successes in various
fields ranging from image to audio processing, there have only been a few theoretical arguments
supporting these evidences. In particular, sparse coding, or sparse dictionary learning, relies on
a non-convex procedure whose local minima have not been fully analyzed yet. In this chapter,
we consider a probabilistic model of sparse signals, and show that, with high probability, sparse
coding admits a local minimum along some curves passing through the reference dictionary
generating the signals.

Our study takes into account the case of over-complete dictionaries and noisy signals, thus
extending previous work limited to noiseless settings and/or under-complete dictionaries. The
analysis we conduct is non-asymptotic and makes it possible to understand how the key quantities
of the problem, such as the coherence or the level of noise, are allowed to scale with respect to
the dimension of the signals, the number of atoms, the sparsity and the number of observations.

This work in progress constitutes a first step towards the more involved proof of the existence
of the local minimum over the entire manifold of normalized dictionaries.

The material of this chapter is based on some work in progress which has been achieved
with the collaboration of Francis Bach and Rémi Gribonval.

6.1 Introduction

Modelling signals as sparse linear combinations of atoms selected from a dictionary
has become a popular paradigm in many fields, including signal processing, statistics,
and machine learning. This line of research has witnessed the development of several
well-founded theoretical frameworks (e.g., see Tropp, 2006; Wainwright, 2009; Zhang,
2009) and efficient algorithmic tools (e.g., see Bach et al., 2011, and references therein).

However, the performance of such approaches hinges on the representation of the
signals, which makes the question of designing “good” dictionaries prominent. A great
deal of effort has been dedicated to come up with efficient predefined dictionaries, e.g., the
various types of wavelets (Mallat, 1999). These representations have notably contributed
to many successful image processing applications such as compression. More recently,
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6. Local Analysis of Sparse Coding in Presence of Noise

the idea of simultaneously learning the dictionary and the sparse decompositions of
the signals —also known as sparse dictionary learning, or simply, sparse coding— has
emerged as a powerful framework, with state-of-the-art performances in many tasks,
including denoising, inpainting and image classification (e.g., see Mairal et al., 2010a,
and references therein).

Although sparse dictionary learning can alternatively be formulated as convex (Bach
et al., 2008; Bradley and Bagnell, 2009b), non-parametric Bayesian (Zhou et al., 2009)
and submodular (Krause and Cevher, 2010) problems, the most popular and widely
used definition of sparse coding brings into play a non-convex optimization problem.
Despite its empirical and practical success, there has only been a little theoretical anal-
ysis of the properties of sparse dictionary learning. For instance, Maurer and Pontil
(2010); Vainsencher et al. (2010) derive generalization bounds which quantify how much
the expected signal-reconstruction error differs from the empirical one, computed from
a random and finite-size sample of signals. The bounds obtained in Maurer and Pon-
til (2010); Vainsencher et al. (2010) are non-asymptotic and uniform with respect to
the whole class of dictionaries considered (e.g., those with normalized atoms). As dis-
cussed later, the questions raised in this chapter explore a different and complementary
direction.

Another theoretical aspect of interest consists of characterizing the local minima of
sparse coding, in spite of the non-convexity of its formulation. This problem is closely
related to the question of identifiability, that is, whether it is possible to recover a
reference dictionary that is assumed to generate the observed signals. The authors
of Gribonval and Schnass (2010) pioneered research in this direction by considering
noiseless signals in the case where the reference dictionary forms a basis. Still in a
noiseless setting, Geng et al. (2011) extended the analysis to over-complete dictionaries,
i.e., these composed of more atoms than the dimension of the signals. To the best of
our knowledge, comparable analysis have not been carried out yet for noisy signals. In
particular, the structure of the proofs of Gribonval and Schnass (2010); Geng et al.
(2011) hinges on the absence of noise and cannot be straightforwardly transposed to
take into account some noise; this point will be made more formal in the subsequent
sections.

In this chapter, we therefore analyze the local minima of sparse coding in presence
of noise and make the following contributions:

• Within a probabilistic model of sparse signals, we derive a non-asymptotic charac-
terization of the probability of finding a local minimum along some curves passing
through the reference dictionary.

• The analysis we conduct makes it possible to better understand (a) how many
signals are required to hope for identifiability, (b) what the impact of the degree
of over-completeness is, (c) what parameters contribute to the curvature around
minima, and (d) what level of noise appears as manageable.

• We show that under deterministic coherence-based assumptions, such a local min-
imum along a curve is guaranteed to exist with high probability.

This work is in progress and represents a first milestone towards the more involved
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result guaranteeing the existence of a local minimum in a neighborhood of the reference
dictionary. Importantly, the neighborhood has to be understood as being within the
entire manifold of normalized dictionaries, as opposed to be just along single curves.
Arguments based on (1) concentration of the measure uniformly over all such curves,
and (2) the discretization of this set of curves through ǫ-nets (Massart, 2003) seem to
indicate that the current conclusions of this chapter shall still apply with small changes.

Notation. For all vectors v ∈ Rp, we denote by sign(v) ∈ {−1, 0, 1}p the vector such
that its j-th entry [sign(v)]j is equal to zero if vj = 0, and to one (respectively, minus one)
if vj > 0 (respectively, vj < 0). We extensively manipulate matrix norms in the sequel.
For any matrix A ∈ Rn×p, we define its Frobenius norm by ‖A‖F , [

∑n
i=1

∑p
j=1 A2

ij ]1/2;
similarly, we denote the spectral norm of A by |||A|||2 , max‖x‖2≤1 ‖Ax‖2, and refer to
the operator ℓ∞-norm as |||A|||∞ , max‖x‖∞≤1 ‖Ax‖∞ = maxi∈J1;nK

∑p
j=1 |Aij |.

For any square matrix B ∈ Rn×n, we denote by diag(B) ∈ Rn the vector formed by
extracting the diagonal terms of B, and conversely, for any b ∈ Rn, we use Diag(b) ∈
Rn×n to represent the (square) diagonal matrix whose diagonal elements are built from
the vector b.

Moreover, we introduce the ordering . such that for any scalar a, b ∈ R, the relation-
ship a . b holds if and only if there exists a non-negative universal constant ω satisfying
a ≤ ωb.

6.2 Problem statement

We introduce in this section the material required to define our problem and state
our results.

6.2.1 Background material on sparse coding

Let us consider a set of n signals X , [x1, . . . ,xn] ∈ Rm×n of dimension m, along
with a dictionary D , [d1, . . . ,dp] ∈ Rm×p composed of p atoms—also referred to as
dictionary elements. Sparse coding simultaneously learns a dictionary D and a set of n
sparse vectors A , [α1, . . . ,αn]∈Rp×n such that each signal xi can be well approximated
by xi ≈ Dαi for i in J1;nK. By sparse, we mean that the vector αi has k ≪ p non-
zero coefficients, so that we aim at reconstructing xi from only a few atoms. Before
introducing the standard formulation of sparse coding (Olshausen and Field, 1997; Lee
et al., 2007; Mairal et al., 2010a), we define the following elements:

Definition 4
For any dictionary D ∈ Rm×p and signal x ∈ Rm, we define the function fx as

fx(D) , min
α∈Rp

1

2
‖x−Dα‖22 + λ‖α‖1. (6.1)
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Similarly for any set of n signals X , [x1, . . . ,xn] ∈ Rm×n, we introduce

Fn(D) ,
1

n

n∑

i=1

fxi(D). (6.2)

The standard approach to perform sparse coding (Olshausen and Field, 1997; Lee
et al., 2007; Mairal et al., 2010a) consists in solving the minimization

min
D∈D

Fn(D), (6.3)

where the regularization parameter λ in Eq. (6.1) controls the level of sparsity, while
D ⊆ Rp×n denotes a compact (generally convex) set; in this chapter, D is chosen to
be the set of dictionaries with unit ℓ2-norm atoms, which is a natural choice in image
processing (Mairal et al., 2010a). Note however that other choices for the set D may
also be relevant depending on the application at hand (e.g., see Jenatton et al., 2011c,
where in the context of topic models, the atoms in D belong to the unit simplex).

The goal of the chapter is to characterize some local minima of the function Fn

under a generative model for the signals xi. Although the function Fn is Lipschitz
continuous (Mairal et al., 2010a), its minimization is challenging since it is non-convex
and subject to the constraints of D. Moreover, Fn is defined through the minimization
over the vectors A, which, at first sight, does not lead to a simple and convenient
expression. We next show that Fn has a simple form in some specific favorable scenarios.

Closed-form expression for Fn: We leverage here a key property of the function
fx. Let denote by α̂ ∈ Rp a solution of problem (6.1), that is, the minimization defining
fx. If the sign of α̂ is known in advance, say ŝ ∈ {−1, 0, 1}p with support defined by
J , {j ∈ J1; pK; ŝj 6= 0}, then α̂ has a simple closed-form expression (e.g., see Fuchs,
2005; Wainwright, 2009). In particular, if we use the notation DJ ∈ Rp×|J| to denote
the dictionary restricted to the |J| atoms indexed by J, and assuming that D⊤

J DJ is
invertible, we have

α̂J =
[
D⊤

J DJ

]−1[
D⊤

J x− λŝJ

] ∈ R|J| and α̂Jc = 0.

This property is appealing in that it makes it possible to obtain a closed-form expression
for fx (and hence, Fn), provided that we can control the sign patterns of α̂. In the light
of this remark, it is natural to define the following function:

Definition 5
Let s ∈ {−1, 0, 1}p be a sign vector with support J. For any dictionary D ∈ Rm×p such
that D⊤

J DJ is invertible, and for any signal x ∈ Rm, we define the function φx as

φx(D|s) ,
1

2

[‖x‖22 − (D⊤
J x− λsJ)⊤(D⊤

J DJ)−1(D⊤
J x− λsJ)

]
. (6.4)

We define Φn analogously to Fn for a sign matrix S ∈ {−1, 0, 1}p×n.
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Based on the previous definition, note that we have the relationship

fx(D) =
1

2
‖x−Dα̂‖22 + λ‖α̂‖1 = φx(D|ŝ).

As it will be further discussed later, showing that the functions Fn and Φn coincide will
amount to studying the sign recovery property of ℓ1-regularized least-squares problems,
which is a topic already well-understood (e.g., see Wainwright, 2009, and references
therein). We now introduce the generative model of sparse signals.

6.2.2 Probabilistic model of sparse signals

Throughout the chapter, we assume the signals we observe are generated indepen-
dently according to a specific probabilistic model. Let us consider a fixed reference
dictionary D0 ∈ D. Each signal x ∈ Rm is built from the following independent steps:

(1) Draw without replacement k atoms out of the p available in D0. This proce-
dure thus defines a support J , {j ∈ J1; pK; δ(j) = 1} whose size is |J| = k,
and where δ(j) denotes the indicator function equal to one if the j-th atom is
selected, zero otherwise. Note that E[δ(j)] = k

p , and for i 6= j, we further have

E[δ(j)δ(i)] = k(k−1)
p(p−1) ≤ k2

p2 . Our result also holds for any sampling scheme for
which the conditions above on the expectation are satisfied.

(2) Define a sparse vector α0 ∈ Rp whose entries in J are generated i.i.d. according
to a symmetric distribution with a compact support bounded away from zero.
Formally, there exist some strictly positive scalars (α, α) such that for all j ∈ J , it
holds that |[α0]j | ∈ [α, α] almost surely. On the other hand, for j not in J, [α0]j
is set to zero. As discussed later in Section 6.3.1, our analysis can probably be
extended to the class of distributions with non-compact supports containing zero,
with a sufficiently small mass at zero.

(3) Eventually generate the signal x = D0α0 + ε, where the entries of the addi-
tive noise ε ∈ Rm are assumed i.i.d. Gaussian with zero-mean and variance σ2.
The Gaussian assumption is made here for simplicity; our study can be similarly
conducted for more general sub-Gaussian noises.

With this generative model in place, we can state more precisely our objective: we want
to show that

Pr
(
Fn has a local minimum in a “neighborhood” of D0

) ≈ 1,

where the probability is with respect to the two sources of randomness, i.e., α0 and
ε. Note that we loosely refer to a certain “neighborhood” since in our regularized
formulation, a local minimum cannot appear exactly at D0. The proper meaning of this
neighborhood is the subject of the next section.

Importantly, we have so far referred to D0 as the reference dictionary generating
the signals. However, and as already discussed in Gribonval and Schnass (2010); Geng
et al. (2011), we know that for any permutation matrix Σ and any diagonal matrix
Diag(s) with the vector s in {−1, 1}p, we have D0α0 = (D0Σ−1Diag(s)−1)(Diag(s)Σα0)
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with ‖Diag(s)Σα0‖1 = ‖α0‖1. As a result, while solving (6.3), we cannot hope for the
identifiability of the specific D0, but we focus instead on the identifiability of the whole
equivalence class defined by the transformations described above. From now on, we
simply refer to D0 to denote one element of this equivalence class.

6.2.3 Oblique manifold and tangent space

The minimization of Fn is carried out over D, which is the set of dictionaries with unit
ℓ2-norm atoms. This set turns out to be a manifold, known as the oblique manifold (Absil
et al., 2008). Since D0 is assumed to belong to D, it is therefore natural to consider the
behavior of Fn according to the geometry of D. More specifically, let us consider the set
of matrices

WD0 ,
{

W ∈ Rm×p; diag(W⊤D0) = 0 and diag(W⊤W) = 1
}

.

Now, for any matrix W ∈ WD0 , for any velocity vector v ∈ Rp with ‖v‖2 = 1, and for
all t ∈ R, we introduce the parameterized dictionary:

D(t) , D0Diag[cos(vt)] + WDiag[sin(vt)], (6.5)

where Diag[cos(vt)] and Diag[sin(vt)] ∈ Rp×p stand for the diagonal matrices with diag-
onal terms equal to {cos(vjt)}j∈J1;pK and {sin(vjt)}j∈J1;pK respectively. By construction,
we have D(t) ∈ D for all t ∈ R and D(0) = D0. Moreover, in the notation of our
parametrization, the set of matrices given by

{

M ∈ Rm×p; M =
[∂D(t)

∂t

]

t=0
, WDiag(v), with W ∈ WD0 and ‖v‖2 = 1

}

corresponds to the tangent space of D at D0 (Absil et al., 2008), intersected with the
set of matrices in Rm×p with unit Frobenius norm (indeed, we have ‖WDiag(v)‖F = 1).
Note that the parameter v is essential in that the set WD0 does not contain every
direction from the tangent space of D at D0, as illustrated in the example below:

Example: Why is the parameter v important? Consider the dictionary D0 =
[d1

0,d
2
0] with m = p = 2 and the following choices of atoms

d1
0 ,

[

0
1

]

and d2
0 ,

[

1
0

]

.

In this case, the set WD0 is given by

WD0 =
{

W = [w1,w2] ∈ R2×2; w1 = ±
[

1
0

]

and w2 = ±
[

0
1

]
}

,

while the entire tangent space at D0 is the following vector space
{

W = [w1,w2] ∈ R2×2; (w1)⊤d1
0 = 0, and (w2)⊤d2

0 = 0
}

.

154



6.2. Problem statement

Figure 6.1: Illustration of the parametrization of the set D of dictionaries with unit ℓ2-
norm atoms. The dictionary D(t) is a curve of D passing through the reference dictionary
D0 (in red). The curve is parametrized by W ∈ WD0 and v, so that WDiag(v) defines
a direction of the tangent space at D0 (in gray).

In particular, we can see that the matrix M =

[

1 0
0 0

]

does belong to the tangent

space whereas we obviously have M /∈ WD0 . Moreover, the matrix M can be

written as M = WDiag(v), with the vector v =

[

1
0

]

, ‖v‖2 = 1, and the matrix

W =

[

1 0
0 1

]

∈ WD0 .

We can then describe the neighborhood of D0 through the triplet (t,v,W). In
particular, instead of studying the local minima of D 7→ Fn(D), we focus on the function
t 7→ Fn(D(t)) for any pair (v,W). Loosely speaking, this corresponds to explore every
curve of D passing through D0; see Figure 6.1. We next describe the last ingredient
required to state our results.

6.2.4 Mutual coherence

Our analysis needs the reference dictionary D0 to respect some coherence-based
properties. We thus define the mutual coherence of the dictionary D0 (e.g., see Donoho
and Huo, 2001; Feuer and Nemirovski, 2003; Lounici, 2008) by

µ0 , max
i,j∈J1;pK,i6=j

|[di
0]⊤[dj

0]| ∈ [0, 1].

The term µ0 gives a measure of the level of correlation in D0, and it is for instance
equal to zero in the case of an orthogonal dictionary. Similarly, we introduce µ(t) for
the dictionary D(t). For any t ∈ R, we notably have the simple inequality:

µ(t) , max
i,j∈J1;pK,i6=j

|[di(t)]⊤[dj(t)]| ≤ µ0 + 3|t|. (6.6)
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In particular, note that we have µ(0) = µ0. We now see how the coherence is exploited
in our study.

Assumption on the reference dictionary D0: For the theoretical analysis we con-
duct here, we consider a deterministic coherence-based assumption, such that the coher-
ence µ0 and the level of sparsity k should be inversely proportional. Such an assumption
was considered for instance in the previous work by Geng et al. (2011).

The need for this constraint on µ0 appears twice in the analysis, first to control the
supports of the solutions of (6.1) (see Section 6.3.3 for more details), and second, to be
able to guarantee for the function Fn some curvature in a certain neighborhood of D0.
More specifically, we shall assume that

• (Support recovery) For some η0 ∈ (0, 1), it holds that

µ0 ≤
1− η0

2− η0

1

k
.

Based on this assumption, we have for all J ⊆ J1; pK with |J| ≤ k,

|||[D0]⊤Jc [D0]J
[
[D0]⊤J [D0]J

]−1|||∞
(∗)
︷︸︸︷

≤ kµ0

1− kµ0
≤ 1− η0, (6.7)

where the first inequality (∗) is proved in Lemma 16, while the second inequality
follows from the assumption. The condition displayed in Eq. (6.7) is well-known
and is often referred to as the irrepresentability condition (e.g., see Fuchs, 2005;
Zhao and Yu, 2006; Wainwright, 2009). As further discussed in Section 6.3.3,
it is a central element to control the supports of the solutions of ℓ1-regularized
least-squares problems. As a side comment, it worth noting that we impose the
irrepresentability condition via a condition on the coherence, which is a stronger
requirement (Van de Geer and Bühlmann, 2009).

• (Curvature) We also need the following condition to hold

1− k

p

1 + pµ0

1− kµ0
> 0, or equivalently, µ0 <

p− k
2pk

. (6.8)

where the second inequality is equivalent to µ0 ≤ 1−η0

2−η0

1
k . Note that the first

inequality (∗) is proved in Lemma 16.
• (Curvature) We also need the following condition to hold

1− k

p

1 + pµ0

1− kµ0
> 0, or equivalently, µ0 <

p− k
2pk

.

This second assumption is required to show that the second derivative of Fn is
positive in some neighborhood of D0. Lemma 11 makes this statement more
formal and precise.
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In the main results from Section 6.3.1, we shall further simplify the assumptions above
through numerical constants (for more details, see Assumption (1) in Theorem 5), so
that k

p
1+pµ0

1−kµ0
and terms depending only on kµ0 will be regarded as universal constants.

After having described the different components of our problem, we now present the
core contribution of this chapter.

6.3 Main result and structure of the proof

This section contains the statement of the main result of this chapter (see Theorem 5
and Corollary 6) which shows that under appropriate scalings of (n, p, k,m, σ, µ0), it is
possible to prove that, with high probability, problem (6.3) admits a local minimum
along some curves passing through D0. The proofs of the results of this section may be
found in Appendix 6.6.

6.3.1 Main result

We begin with a complete statement of our result, before giving a simplified (but
also easier to interpret) corollary:

Theorem 5 (Local minimum of sparse coding along curves)
Consider n independent signals following the generative model from Section 6.2.2, with
the reference dictionary D0 ∈ Rm×p. Denoting by N(n) , log2(n)/

√
n and σ(t) ,

max{σ;α|t|}, let us introduce the following set of assumptions for some t ∈ R:

(1) [Coherence]: kµ0 ≤ min
{

1
2 ; p−2k

3p

}

(2) [Dictionary perturbation]: tmin . |t| . 1
k with







tmin & λp
α2k

max
{

λ;α
√

k
pkµ0;αN(n)

}

tmin &
[

p
α2k

(α2k + σ2m) λ2

σ2(t)
exp(−ζ λ2

σ2(t)
)

] 1
2

for some universal constant ζ > 0

(3) [Regularization]: σ(t)
√

log(p) . λ . αmin
{

1; α
α

k
p

}

(4) [First/second/third-derivative conditions]:

λmax
{

λ;α
√

k
pkµ0;αN(n)

}(

λ2m+ λ
√
m
√
α2k + σ2m+ α2k + σ2m

)

. α4 k2

p2

(5) [Taylor-expansion perturbation]:

λ2

σ2(t)
exp(−ζ λ2

σ2(t)
) . α6 k3

p3
1

(α2k+σ2m)(λ2m+λ
√

m
√

α2k+σ2m+α2k+σ2m)2

(6) [Sample complexity]: N(n) . min
{

α2

α2
k
p ; λ2

σ2(t)
exp(− ζ

2
λ2

σ2(t)
)
}

.

Consider some W ∈ WD0 and ‖v‖2 = 1 parameterizing D(u). Under Assumptions (1)-
(6), u 7→ Fn(D(u)) admits a local minimum in [−t, t] with probability exceeding 1−c0/n,
for some universal constant c0 > 0.
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We discuss in the next section the main building blocks of this result and give a
high-level structure of the proof.

The statement of Theorem 5 presents the precise conditions under which the existence
of a local minimum for sparse coding can be proved to happen with high probability. We
now derive a corollary that constitutes a simplified version of Theorem 5 and that makes
it possible to better understand how the different quantities involved in our problem,
such that the coherence µ0 and the noise σ, are allowed to vary with (n, p, k,m).

Corollary 6 (Local minimum of sparse coding, specific scaling)
Consider n independent signals following the generative model from Section 6.2.2, with
the reference dictionary D0 ∈ Rm×p. Denoting by N(n) , log2(n)/

√
n, let us introduce

the following set of assumptions for any β > 3:

(1) [Coherence]: µ0 . α4

α4
1√

log(p)kp

(2) [Noise level]: σ . 1
β

α
p

(3) [Regularization]: λ = O
(

α

√
log(p)

p

)

(4) [Sparsity level]: log(p) max
{

m
p2 ; α4

α4

}

. k

(5) [Minimum signal intensity]:
(

log(p)
pβ−3

)1
6
. α

α

(6) [Sample complexity]: N(n) . min
{

α4

α4
k

p
√

log(p)
; log(p)

pβ/2

}

.

Consider some W ∈ WD0 and ‖v‖2 = 1 parameterizing D(u). Under Assumptions
(1)-(6), u 7→ Fn(D(u)) admits a local minimum in [−1/p, 1/p] with probability exceeding
1− c0/n, for some universal constant c0 > 0.

Some comments and remarks are in order:
Assumption (1): While we hoped for a coherence scaling in O(1/k), the relation-
ship between the first, second and third derivatives of Φn (see Assumption (4)
in Theorem 5) has led us to consider a coherence in O(1/

√

kp log(p)), which un-
fortunately brings into play the full size of the dictionary, as opposed to just the
sparsity level as in the noiseless setting of Geng et al. (2011). We could improve
this weakness of our analysis by refining the upper bound of the third derivative
of Φn (which is currently scaling in O(α2k)).
Assumption (2): We observe a quite natural scaling of the noise which should
decrease in O(1/p) as the number of atoms increases. The noiseless setting can
be easily handled and leads to the same scalings as those displayed in Corollary 6.
In fact, it suffices to follow the proof of Corollary 6, noticing that σ(t) becomes
equal to α|t| when σ is set to zero. In both the noisy and noiseless settings, the
perturbation of the reference dictionary is chosen to be in the order of |t| = O(1/p).
Assumption (3): The choice of the regularization parameter is driven by the con-
straints imposed in Proposition 10 and the fact that we want the perturbation
of the Taylor expansion—which is proportional to λ2

σ2(t)
exp(−ζ λ2

σ2(t)
), to remain

small.
Assumption (4): Perhaps surprisingly, we need to impose a lower bound on the
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6.3. Main result and structure of the proof

sparsity level k. We do so in order to guarantee enough curvature for the function
Φn. In fact, the second derivative of t 7→ Φn(D(t)|sign(A0)) evaluated at t = 0 is
proportional to k/p, as proved in Lemmas 10 and 11.
Assumption (5): Our study relies on the exact recovery of the supports of {αi

0}i∈J1;nK.
This is only possible when the minimum magnitude of the signals α is bounded
sufficiently away from zero, as quantify by the inequality

( log(p)
pβ−3

)1/6
. α

α . Note
that this inequality points out that it is likely to extend our result to the case
of distributions of α0 with some small enough mass at zero. Interestingly, and
more generally, a question of interest is whether we can conduct a similar analysis
without having to go through exact recovery, since, in the end, we essentially care
about the dictionary and the function Fn, regardless of the behavior of the learned
coefficients α.
Assumption (6): The sample complexity we obtain indicates we need in the order
of O(log2(p)p3) ≈ O(k2p3) signals to be able to prove the existence of a local
minimum, compared to O(kp3) in Geng et al. (2011). We believe that by refining
the concentration bounds, it is possible to replace the term N(n) = log2(n)/

√
n

by log(n)/
√
n, which would thus lead to the same scaling as in Geng et al. (2011).

We now look at a more detailed description of the proof of Theorem 5.

6.3.2 Architecture of the proof

The proof is based upon three building blocks that we now present. The main idea
consists in first focusing on the study of the function t 7→ fx(D(t)), before looking at
the behavior of t 7→ Fn(D(t)) whose properties will stem from the concentration of the
average of the independent random variables {fxi(D(t))}i∈J1;nK. We give below some
details regarding the three steps we follow:

(1) Proving that the functions t 7→ φx(D(t)|sign(α0)) and t 7→ fx(D(t)) coincide
for suitable values of t ∈ Tcoincide ⊆ R, and that this event happens with high
probability. The consequence of this point is that we can study a smooth function
with an explicit representation instead of dealing with the intricate function fx.
This step is fully described in Section 6.3.3.

(2) Computing the second-order Taylor expansion of t 7→ φx(D(t)|sign(α0)) at t = 0,
along with a uniform upper bound on the third derivative of this function. Again,
the terms in this expansion and the upper bound should be viewed as random
variables whose value need to be controlled with high probability. Importantly,
since t 7→ φx(D(t)|sign(α0)) and t 7→ fx(D(t)) may differ, we need to account
for this event (even though it happens with low probability). This points results
in a perturbed Taylor development for the function t 7→ fx(D(t)), as analyzed in
Lemma 7. Details of this second ingredient are given in Section 6.3.4.

(3) Aggregating the results for n (independent) signals, based on the computation
of step (2). For all the random quantities, we proceed in the same way: we first
show they are bounded with high probability, and conditionally to these events,
we apply Hoeffding’s and Bernstein’s inequalities for a concentration around the
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expectation: We then have the expression of the perturbed Taylor development
for the function t 7→ Fn(D(t)), which is valid with high probability.
The final conclusion follows by invoking Lemma 7 that guarantees the existence
of a local minimum within a set Tmin ⊆ R. It finally remains to check that
Tmin ⊆ Tcoincide. This third building block is presented in details in Section 6.3.5.

The presence of noise in our analysis has led us to consider a structure of proof radically
different from the schemes proposed in the related work Gribonval and Schnass (2010);
Geng et al. (2011). In particular, our formulation in problem (6.3) differs from that
of Gribonval and Schnass (2010); Geng et al. (2011) where the ℓ1-norm of A is mini-
mized over the equality constraint AD = X and the dictionary normalization D ∈ D.
Optimality is then characterized through the linearization of the equality constraint, a
technique that could not be easily extended to the noisy case.

The remainder of this section is dedicated to the description of the three key ingre-
dients we referred to above.

6.3.3 Exact sign recovery for perturbed dictionaries

The objective of this section is to determine the conditions under which the two
functions t 7→ Φn(D(t)|sign(A0)) and t 7→ Fn(D(t)) coincide. As briefly exposed in
Section 6.2.1, it turns out that this question comes down to studying exact recovery for
some ℓ1-regularized least-squares problems. Let us momentarily assume that

fx(D) = min
α∈Rp

1

2
‖x−Dα‖22 + λ‖α‖1,

has a solution α̂ with support J, and that the matrix D⊤
J DJ is invertible. In this case,

and according to Definition 6.4 of φx, we have the equality

fx(D) = φx(D|sign(α̂)).

Within our probabilistic model for the signal x = D0α0 + ε, the sign vector sign(α̂) is
a random variable that depends on both the coefficients α0 and the noise ε, which is
obviously difficult to control. It is therefore interesting to study when sign(α̂) = sign(α0)
holds.

Exact sign recovery in the problem associated with fx(D0) has already been well-
studied (e.g., see Fuchs, 2005; Zhao and Yu, 2006; Wainwright, 2009). In particular, exact
recovery is guaranteed to happen with high probability provided that (a) the dictionary
D0 satisfies the so-called irrepresentability condition—as assumed in Eq. (6.7), and that
(b) the non-zero coefficients of α0 are far enough from the noise level.

However, in our context, we need the same conclusion to hold not only at the dic-
tionary D0, but also at D(t) 6= D0 for some values of t ∈ R. We make this statement
precise in the following proposition:

Proposition 10 (Exact recovery for perturbed dictionaries)
Let us consider some W ∈ WD0 and some normalized vector v ∈ Rp, ‖v‖2 = 1,
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parametrizing D(t). Assume that the signal x ∈ Rm is generated according to the model
from Section 6.2.2. Let η ∈ (0, η0). Let Tcoincide ⊆ R be the set

Tcoincide ,
{

t ∈ R; |t| ≤ min
{

1,
1

3

[1− η
2− η −

1− η0

2− η0

]1

k

}}

.

Define for any t ∈ Tcoincide the regularization parameter

λ ≥ 3
max{σ, α|t|}

η

√

6 log(p) and threshold(λ) ,
(2
√

2 + 1)λ

1− kµ(t)
.

Moreover, consider the noise condition

threshold(λ) < α.

There exists a universal constant ζ > 0 such that for any t ∈ Tcoincide with probability
exceeding

1− 8 exp
(

− ζ λ2

max{σ2, α2t2}
)

,

the vector α̂(t) ∈ Rp defined by

α̂(t) =

([
[D(t)]⊤J [D(t)]J

]−1[
[D(t)]⊤J x− λsign([α0]J)

]

0

)

,

is the unique solution of minα∈Rp [1
2‖x − D(t)α‖22 + λ‖α‖1], and exact sign recovery

holds, namely, sign(α̂(t)) = sign(α0).

The structure of the proof closely follows that of Wainwright (2009), except that
additional terms measuring the perturbation between D0 and D(t) have to be controlled.
Interestingly, this perturbation measured by the parameter |t| acts as a second source
of noise, where the variance σ2 is comparable to α2t2. In addition, the result from
Proposition 10 indicates that the perturbation should remain small—that is, D(t) close
to D0 with |t| in the order of O(1/k)—if we want to guarantee exact recovery at the
dictionary D(t). In the same vein, some precaution needs to be taken to prevent the
non-zero coefficients of α0 from being too small.

In the light of Definition 6.4, the previous proposition shows that for suitable values
of t, the functions t 7→ φx(D(t)|sign(α0)) and t 7→ fx(D(t)) coincide with probability
greater than 1 − 8 exp(−ζ λ2

max{σ2,α2t2}); we therefore refer to this event as Ecoincide. In

other words, with probability Pr(Ecoincide), we can equivalently study the smooth function
t 7→ φx(D(t)|sign(α0)) in lieu of t 7→ fx(D(t)), which constitutes one of the building
block of our approach.

Importantly, the event Ecoincide is only concerned with a single signal; when we con-
sider a collection of n independent signals, we should instead study the event

⋂n
i=1 E i

coincide

to guarantee that Φn and Fn do coincide. However, as the number of observations n
becomes large, it is unrealistic and not possible to ensure that exact recovery will hold
simultaneously—and with high probability—for the n signals. To get around this issue,
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6. Local Analysis of Sparse Coding in Presence of Noise

we will exploit the fact that the quantities we need to control are averages over n random
variables.

It is now natural to consider the local behavior of t 7→ φx(D(t)|sign(α0)) through its
Taylor expansion around t = 0.

6.3.4 Computation of the Taylor expansion of t 7→ φx(D(t)|sign(α0))

We want to characterize some local minima of t 7→ fx(D(t)) via the function t 7→
φx(D(t)|sign(α0)). The assumptions we make through the coherence µ0 and the pertur-
bation parameter t guarantee that for any support J ⊆ J1; kK, the matrix [D(t)]⊤J [D(t)]J is
invertible; under these conditions, and according to Definition 6.4, t 7→ φx(D(t)|sign(α0))
is a smooth function for which we can compute a Taylor expansion. As precisely de-
scribed in Lemma 15 and Section 6.8, we then obtain an expression of the form

∣
∣
∣φx(D(t)|sign(α0))−

(

φx(D0|sign(α0)) + axt+ bxt
2
)∣
∣
∣ ≤ Lx|t|3, (6.9)

which is valid for any t that preserves the smoothness of φx. The quantities ax, bx and
Lx are random variables that are combinations of linear, quadratic and bilinear forms
with respect to α0 and/or ε. These random variables can be shown to concentrate
around their expectation, as further discussed in Propositions 11, 12 and 13.

On the event Ecoincide (see Section 6.3.3), the functions t 7→ fx(D(t)) and t 7→
φx(D(t)|sign(α0)) coincide, so that the development in Eq. (6.9) directly applies for
fx. When the previous property is not true anymore, i.e., on the event Ec

coincide, we use
the fact that the difference between fx and φx can always be upper bounded. More
specifically, we can notice from the definitions of both fx and φx that for any D ∈ Rm×p

and any s ∈ {−1, 0, 1}p such that φx is properly defined, we have

fx(D) ≤ 1

2
‖x‖22 and φx(D|s) ≤ 1

2
‖x‖22.

We thus end up with the following perturbed Taylor expansion
∣
∣
∣fx(D(t))−

(

fx(D0) + axt+ bxt
2
)∣
∣
∣ ≤ Lx|t|3 + rx, with rx = 21Ec

coincide
‖x‖22. (6.10)

In order to prove the existence of a local minimum around D0, we will subsequently
have to probabilistically control a upper bound of the gradient ax, a lower bound of the
curvature bx, along with upper bounds on the third derivative Lx and the perturbation
rx.

6.3.5 Aggregation of n signals and existence of a local minimum

Starting from the expansion in Eq. (6.10) for n independent signals {xi}i∈J1;nK,
the final step of the proof consists in concentrating the random variables 1

n

∑n
i=1 axi ,

1
n

∑n
i=1 bxi , 1

n

∑n
i=1 Lxi and 1

n

∑n
i=1 rxi . To this end, we make use of Hoeffding’s and

Bernstein’s inequalities conditioned to an appropriate event where the random variables
at stake are bounded. The discussion of the existence of a local minimum then follows
from the next lemma:
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Lemma 7 (Local minimum from perturbed Taylor expansion)
Let f be a continuous real-valued function. Assume there exist (a, b, L, r) such that
|a|, b, L and r are strictly positive, with

θ ,
|a|L
b2
∈ (0, 1).

Let us define

t0 , max

{ |a|
b
,

1√
1− θ

√
r

b

}

,

and assume that for all t ∈ [−t0, t0],

|f(t)− (f(0) + at+ 2bt2)| ≤ L|t|3 + r.

If the following condition holds

r <
b3

L2

[
1− θ],

then f admits a local minimum in Tmin , (−t0, t0).

After enforcing the conditions required by Lemma 7, it remains to check a last
inequality. Indeed, while Proposition 10 says we cannot go too far from D0 to guarantee
exact recovery, we need at the same time, and according to Lemma 7, to go far enough
to ensure the existence of a local minimum. This results in testing the inclusion Tmin ⊆
Tcoincide, or equivalently, the inequality (with the notation from Lemma 7):

max

{ |a|
b
,

1√
1− θ

√
r

b

}

≤ |t| ≤ min
{

1,
1

3

[1− η
2− η −

1− η0

2− η0

]1

k

}

.

6.4 Some experimental validations

In this section, we try to illustrate the results from Section 6.3.1 through some
simulations. Although we do not manage to exactly highlight the scalings found in
Corollary 6, our experiments still underline the main interesting trends put forward by
our results.

In the setting we consider, we take p = 20,m = 10 and the reference dictionary D0

has its entries generated i.i.d. according to a standard Gaussian distribution. Moreover,
the sparsity level k is fixed to 4, while the non-zero coefficients of α0 are uniformly
drawn over the segment [−α,−α] ∪ [α, α], with α = 1 and α = 0.1. The level of noise
is set according to Corollary 6, i.e., σ = α/p, whereas the number of signals is equal to
n = 2500.

We study the behavior of the solutions of problem (6.3), by looking at the variations
with respect to one parameter while keeping the other ones fixed (to the values mentioned
above). This protocol leads to the series of results displayed in Figure 6.2, indexed by
the letters (a) to (e).

We detail two important aspects of the experiment, namely, the choice of the reg-
ularization parameter λ, and how we deal with the invariances of problem (6.3) (see
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Figure 6.2: Estimation error, i.e., the normalized Frobenius distance between D0 and the
solution of problem (6.3), versus some varying parameters. The curves represent the av-
erage error and standard deviation based on 10 runs, for random and fixed initializations.
Details about the setting can be found in the text.

details in the end of Section 6.2.2). On the one hand, since our analysis relies on exact
recovery and we know in advance the correct sparsity level (i.e., the “oracle” value of
k), we first tune λ over a logarithmic grid of values so that the learned α̂’s match this
sparsity level. Note that this tuning step is performed over an auxiliary set of signals.

On the other hand, we know that the dictionary D̂ that we learn by minimizing
problem (6.3) may differ from D0 up to sign flips and atom permutations. To account
for these possible transformations, we solve, as a post-processing step, the following
problem

min
s∈{−1,1}p

Σ∈P

∥
∥D̂−D0ΣDiag(s)

∥
∥

2

F
,

where Σ belongs to the set of permutation matrices P. Let us denote by Σ(j) the result
of the permutation of the index j by Σ. Since both D̂ and D0 have normalized atoms,
the previous problem is equivalent to

max
s∈{−1,1}p

Σ∈P

p
∑

j=1

sj [d̂j ]⊤d
Σ(j)
0 = max

Σ∈P

p
∑

j=1

∣
∣[d̂j ]⊤d

Σ(j)
0

∣
∣.

We recognize here an assignment problem based on the absolute correlation matrix
D̂⊤D0, which can be efficiently solved using the Hungarian algorithm (Kuhn, 1955).

To solve problem (6.3), we use the stochastic algorithm from Mairal et al. (2010a) 1

where the batch size is fixed to 512, while the number of epochs is chosen so as to pass

1. The code is available at http://www.di.ens.fr/willow/SPAMS/.
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over each signal 25 times (on average). We consider two types of initialization, one
starting from a random dictionary, and the other one using the correct dictionary D0 as
a starting point.

Let us comment on Figure 6.2. The measure we consider in the experiments is the nor-
malized Frobenius distance between D0 and the (transformed) solution of problem (6.3).
The results from Figure 6.2 show the error averaged over 10 runs, corresponding to 10
different initial dictionaries in the random initialization case. 2 Overall, it is interesting
to see that the curves based on the random and fixed initialization roughly have the
same behavior. Plot (a) shows that the number of signals is indeed beneficial to obtain
a local minimum around D0. The scaling in O(p3) advocated by Corollary 6 (in this
case, about 8000 signals) seems reasonable, though slightly pessimisitc, in that the error
does not decrease much and stabilizes from about 4000 signals.

Plot (b) shows that, when the coherence is small enough (µ0 decreases as m increases
with p fixed, and hence the problem becomes easier), the initialization does not seem
to matter anymore. However, we still observe an increasing error since the number of
signals remains fixed to 2500.

As for plot (c), it is interesting to see that the quality of the solution does not seem
to be affected as α decreases. This contradicts Corollary 6 and confirms the fact that we
should probably not go through exact recovery to prove our results. Moreover, notice
that the case α = α = 1 corresponding to α0 distributed on the hypercube appears as
more complex, which our theory is not able to predict so far.

We now turn to plot (d). This simulation confirms that the noise is an important
factor; we observe a sharp transition around values close to 1/k, which may indicate
that our scaling in O(1/p) is too pessimistic.

Finally, the figure in plot (e) seems to point out that the sparser the signals, the
better the learned dictionary. It may be interesting to better understand in future work
why dense signals harm the identifiability of the dictionary. One potential explanation
would be that as k increases, we need more signals, while the simulation kept n fixed.

6.5 Conclusion

We have conducted a non-asymptotic analysis of the local minima of sparse coding in
the presence of noise, thus extending prior work which focused on noiseless settings (Gri-
bonval and Schnass, 2010; Geng et al., 2011). Within a probabilistic model of sparse
signals, we have shown that a local minimum exists with high probability along some
curves passing through the reference dictionary. The natural next step to undertake is
to prove the existence of a local minimum in a neighborhood of the reference dictionary,
i.e., within the entire manifold of normalized dictionaries, as opposed to just along single
curves. Arguments based on (1) concentration of the measure uniformly over all such
curves, and (2) the discretization of this set of curves through ǫ-nets (Massart, 2003)
shall be useful to this end.

2. Note that due to the stochastic optimization tool used here, even the curves for the fixed initial-
ization exhibit some small variations.
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Our study can be further developed in multiple ways. On the one hand, while we have
assumed deterministic coherence-based conditions scaling in O(1/k), it may interesting
to consider non-deterministic assumptions (Tropp, 2008; Candès and Plan, 2009), which
are likely to lead to improved scalings.

On the other hand, we may also use more realistic generative models for α0, for
instance, spike and slab models (Ishwaran and Rao, 2005), or signals with compressible
priors (Cevher, 2008). Similarly, it may be interesting to look at misspecified models,
e.g., with a certain fraction of non-sparse signals.

Moreover, a more ambitious question is about the possible characterization of a global
minimum for sparse coding (modulo the inevitable invariances of the problem).

Finally, it is also of interest to study the case of sparse structured dictionary learn-
ing (e.g., see Jenatton et al., 2011c, and references therein), where the ℓ1-norm would
be replaced by other sparsity-inducing norms capable of modelling classes of structured
signals.

6.6 Proofs of the main results

This section contains the detailed proofs of the main results of the chapter.

6.6.1 Proof of Theorem 5

The proof is based on the different building blocks presented in Section 6.3.2. Note
that the assumption of the theorem on kµ0 makes it possible to upper bound the terms
depending only on kµ0 by universal constants.

To begin with, we consider the event Etaylor over which we control the first-, second-,
third-order and perturbation terms displayed in Eq. (6.10) for each of the n signals.
These terms are respectively controlled in Propositions 11, 12, 13 and 14. Using the
union bound and setting τ = 2 log(n), the probability of the event of interest is lower
bounded by

Pr(Etaylor) ≥ 1−
∑

y∈
{

c
(0)
ax ,c

(0)
bx

,c
(0)
Lx

,2
}

1−
[

1− y

n2

]n+1
≥ 1− c0

n
,

for some universal constant c0 > 0.
On the event Etaylor, and according to Propositions 11, 13 and Lemmas 8, 12, we

have that
∣
∣
∣
1

n

n∑

i=1

axi

∣
∣
∣ . λmax

{

λ;α

√

k

p
kµ0;αN(n)

}

,

and
∣
∣
∣
1

n

n∑

i=1

Lxi

∣
∣
∣ . max{1, N(n)}(λ2m+ λ

√
m
√

α2k + σ2m+ α2k + σ2m).

Still on the event Etaylor, and since the theorem assumes that N(n) . α2

α2
k
p and λ . αα

α
k
p ,

we also have λ2 . αλ . α2 α
α

k
p . α2 k

p , so that we obtain the following lower bound for
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the curvature term (see Proposition 12 and Lemma 10):

1

n

n∑

i=1

bxi & α2k

p
.

It now remains to handle the perturbation term. To this end, we apply Proposition 14
by considering the random variables {1[Ei

coincide]c‖xi‖22}i∈J1;nK. Combining the results
from both Proposition 10 and Lemma 14, we have the following upper bounds of the
expectation and the variance

E
[

1[Ei
coincide]c‖xi‖22

]

. (α2k + σ2m)
λ2

σ2(t)
exp

(

− ζ λ2

σ2(t)

)

E
[

1[Ei
coincide]c‖xi‖42

]

. (α2k + σ2m)2 λ4

σ4(t)
exp

(

− ζ λ2

σ2(t)

)

,

where the universal constant ζ > 0 comes from Proposition 14. In addition, since we
assume that the sample complexity N(n) satisfies N(n) . λ2

σ2(t)
exp(− ζ

2
λ2

σ2(t)
), we can

apply Proposition 14 by setting τ = log(n) and using for ς2 the upper bound above,
which leads to

1

n

n∑

i=1

rxi . (α2k + σ2m)
λ2

σ2(t)
exp

(

− ζ λ2

σ2(t)

)

.

With the previous elements in place, we can apply Lemma 7 which explicits the
relationships that the first-, second-, third-order and perturbation terms must satisfy to
guarantee the existence of a local minimum. Writing directly these relationships leads to
the inequalities numbered (4) and (5) in the theorem. Note that the term θ in Lemma 7
can be guaranteed to be no greater than 1/2 by setting the multiplicative constant of λ
small enough, so that terms in 1/(1− θ) can be seen as universal constants.

The remaining conditions, that is, inequalities (2) and (3), result, on the one hand,
from the constraints imposed on λ and t by Proposition 10, and, on the other hand,
from the test Tmin ⊆ Tcoincide, as explained in Section 6.3.5.

6.6.2 Proof of Corollary 6

The proof of Corollary 6 mostly consists in checking that the proposed choices of
scalings satisfy the conditions required by Theorem 5.

We first discuss the choice of λ = O(α
√

log(p)/p). Let β be a scalar greater than 3.
At the cost of having a more stringent constraint on the noise σ(t), we can always have
the equality β log(p) = ζ λ2

σ2(t)
, which leads in turn to the advertised scaling of σ(t) and

the choice |t| = O(1/p). Note that we will have to check that the conditions imposed by
tmin in Theorem 5 are valid with |t| = O(1/p). Moreover, since we constrain the sparsity
level by log(p)α4

α4 . k, we indeed satisfy condition (3) from Theorem 5.
We now turn to the coherence condition (1) from Theorem 5: We need to check the

inequality
α4

α4

1
√

log(p)kp
.
p− 2k

3kp
.
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To this end, it suffices to notice that α
α ≤ 1 and k <

√
kp <

√

log(p)kp, along with the
fact that for some universal constant z ∈ (0, 1), we have z 1

k ≤
p−2k
3kp .

In the light of the previous points, and since we ask for log(p) m
p2 . k, we obtain the

following simplifications:

(α2k + σ2m) . α2k

(λ2m+ λ
√
m
√

α2k + σ2m+ α2k + σ2m) . α2k

λ2

σ2(t)
exp

(

− ζ λ2

σ2(t)

)

.
log(p)

pβ

λ . α

√

k

p
kµ0.

In addition, the constraint of the corollary on the sample complexity N(n) implies that

N(n) .
α4

α4

k

p
√

log(p)
= O

(
√

k

p
kµ0

)

.
α2

α2

k

p
,

as required by condition (6) in Theorem 5. Similarly, the inequalityN(n) . λ2

σ2(t)
exp(− ζ

2
λ2

σ2(t)
)

from condition (6) in Theorem 5 exactly corresponds to condition (6) in the corollary
where N(n) . log(p)/pβ/2.

At this stage of the proof, it remains to check conditions (2), (4) and (5) from
Theorem 5:

Condition (2): On the one hand, we have

λp

α2k
max

{

λ;α

√

k

p
kµ0;αN(n)

}

. α

√

log(p)

p

p

α2k
α

√

k

p
kµ0 .

α2

α2

1

p

which is indeed less than |t| = 1/p. On the other hand, the second constraint of
tmin reads

[
p

α2k
(α2k + σ2m)

λ2

σ2(t)
exp(−ζ λ2

σ2(t)
)

] 1
2

.
[
p

α2k
α2k

log(p)

pβ

] 1
2

.
α

α

√

log(p)

p(β−1)/2
.

Having α
α

√
log(p)

p(β−1)/2 . |t| = 1
p is then equivalent to

(
log(p)
pβ−3

)1/2
. α

α , which is true

thanks to condition (5) in the corollary.
Condition (4): We have

λmax
{

λ;α

√

k

p
kµ0;αN(n)

}(

λ2m+ λ
√
m
√

α2k + σ2m+ α2k + σ2m
)

. λα

√

k

p
kµ0α

2k . α4k
2

p2
,

as required by Theorem 5.
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Condition (5): We first have

α6k
3

p3

1

(α2k + σ2m)(λ2m+ λ
√
m
√
α2k + σ2m+ α2k + σ2m)2

&
α6

α6

1

p3
,

so that it suffices to check that

λ2

σ2(t)
exp

(

− ζ λ2

σ2(t)

)

=
log(p)

pβ
.
α6

α6

1

p3
,

which is in turn guaranteed thanks to condition (5) in the corollary.
We have examined all the conditions required by Theorem 5 for which the scalings
proposed in the corollary apply; this concludes the proof.

6.6.3 Proof of Proposition 10

First and foremost, we look at the assumption made on the parameter t. For any
t ∈ Tcoincide, we have

|t| ≤ 1

3

[1− η
2− η −

1− η0

2− η0

]1

k
≤ 1

3

[1− η
2− η

1

k
− µ0

]

,

which, by Eq. (6.6) and (6.7), leads to

µ(t) ≤ 1− η
2− η

1

k
<

1

k
.

This inequality shows that the matrix [D(t)]⊤J [D(t)]J is invertible for any J ⊆ J1; pK with
|J| ≤ k, and

|||[D(t)]⊤Jc [D(t)]J
[
[D(t)]⊤J [D(t)]J

]−1|||∞ ≤
kµ(t)

1− kµ(t)
≤ 1− η.

The core of the proof relies on the control of four probabilistic events:

E1 =
{
ε ∈ Rm; ‖[D(t)]⊤J ε‖∞ ≤

√
2λ
}
,

E2 =
{
ε ∈ Rm; ‖[D(t)]⊤Jc(I− [P(t)]J)ε‖∞ ≤ λ

η

3

}
,

E3 =
{
α0 ∈ Rp; ‖[D(t)]⊤Jc(I− [P(t)]J)[D0]J[α0]J‖∞ ≤ λ

η

3

}
,

E4 =
{
α0 ∈ Rp; ‖[D(t)]⊤J ([D(t)]J − [D0]J)[α0]J‖∞ ≤

√
2λ
}
.

First, notice that given our noise assumption, Lemma 18 shows that

‖[α̂(t)−α0]J‖∞ ≤ threshold(λ) < α ≤ min
j∈J
|[α0]j |,

which implies in turn that sign(α̂(t)) = sign(α0). It remains to prove that α̂(t) is the
unique solution of the Lasso program. To this end, we take advantage of Lemma 19.
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On the event
⋂4

i=1 E i, we have

‖[D(t)]⊤Jc(I− [P(t)]J)x‖∞ + λ|||[D(t)Jc ]⊤[D(t)]J[[D(t)]⊤J [D(t)]J]−1|||∞
which is first upper bounded by

‖[D(t)]⊤Jc(I− [P(t)]J)ε‖∞ + ‖[D(t)]⊤Jc(I− [P(t)]J)[D0]J[α0]J‖∞ + λ(1− η),

and then by
λ
η

3
+ λ

η

3
+ λ(1− η) = λ(1− η

3
) < λ.

Putting together the pieces with sign(α̂(t)) = sign(α0), Lemma 19 leads to the desired
conclusion.

The remainder of the proof is dedicated to the control of the four events E i, i in
J1; 4K. Note that we always proceed in the same way: conditionally on the draw of J, we
compute uniform bounds, i.e., that depend only on k, leading to the conclusion without
conditioning.

Event E1: Consider the centered Gaussian variable uj = ε⊤[d(t)]j for j in J. Since
D(t) has unit ℓ2-norm columns, the variance of uj is σ2. Applying Lemma 6 along with
the union bound, we have

Pr(E1) ≥ 1− 2k exp
(

− λ2

σ2

)

.

Event E2: We proceed similarly and consider uj = ε⊤(I− [P(t)]J)[d(t)]j for j in Jc.
Since D(t) is normalized and the spectral norm of a projector is bounded by one, the
variance of uj is upper bounded by σ2. We obtain,

Pr(E2) ≥ 1− 2(p− k) exp
(

− η2

18

λ2

σ2

)

.

Events E3 and E4: For the treatment of these events, we simply invoke Lemma 17.
Finally, by independence of α0 and ε combined with the union bound, we have

Pr(∩4
i=1E i) = Pr(E1∩E2)Pr(E3∩E4) ≥

[

1−Pr([E1]c)−Pr([E2]c)
][

1−Pr([E3]c)−Pr([E4]c)
]

.

Putting the different pieces together, the probability of exact recovery is lower bounded
by

Pr(∩4
i=1E i) ≥ 1− 8 max{p− k, k} exp

(

−min
{

1,
η2

18
,
1

2
,
η2

54

} λ2

max{σ2, α2t2}
)

= 1− 8 exp
(

− η2

54

λ2

max{σ2, α2t2} + log
(

max{p− k, k})
)

,

so that there exists a universal constant ζ > 0 such that

Pr(∩4
i=1E i) ≥ 1− 8 exp

(

− ζ λ2

max{σ2, α2t2}
)

.
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6.6.4 Proof of Lemma 7

The function f is lower and upper bounded by the functions φl and φu defined as

φl(t) = f(0) + at+ 2bt2 − L|t|3 − r and φu(t) = f(0) + at+ 2bt2 + L|t|3 + r.

Let us first assume that a < 0. We recall that θ = |a|L/b2 and it is assumed to belong
to (0, 1). Observe that

φl(|a|/b)−f(0) = −r+a
|a|
b

+2b
|a|2
b2
−L |a|

3

b3
= −r+L

|a|3
b3

[ b2

|a|L −1
]

= −r+
|a|2
b

(1−θ).

As a result, if the condition r < |a|2
b (1− θ) is satisfied, we have φl(|a|/b) > f(0). Let us

now consider that r ≥ |a|2
b (1− θ) holds, or equivalently,

t′ ,
1√

1− θ

√
r

b
>
|a|
b
. (6.11)

We study the sign of φl(t
′)− f(0), that is,

φl(t
′)− f(0) = −r + at′ + 2b[t′]2 − L[t′]3 =

r

ν(1− θ)
[

− θ
√

1− θ + (1 + θ)ν − 1√
1− θν

2
]

=
r

ν(1− θ)ψθ(ν),

where we have introduced the quantity ν , L
√
r/b3/2. The second-order polynomial

function ψθ admits two distinct positive roots

u1 = θ
√

1− θ and u2 =
√

1− θ,

and for any u ∈ (u1, u2), ψθ(u) is strictly positive. Moreover, using Eq. (6.11), we already
know that ν ≥ u1. It is then sufficient to notice that ν ≤ u2 is equivalent to imposing
the condition

r ≤ b3

L2
(1− θ).

To summarize, we have proved so far that, under the conditions of the lemma, it holds
that φl(t0) > f(0). Now, notice that φl(−t0) − φl(t0) = −2a t0, so that for any a < 0,
we end up with the following chains of inequalities

f(0) < φl(t0) ≤ f(t0) and f(0) < φl(t0) < φl(−t0) ≤ f(−t0).

On the compact set [−t0; t0], since f is continuous, it has a global minimum. Moreover,
given that f(0) < min{f(−t0), f(t0)} and 0 ∈ [−t0; t0], this minimum lies in the interior
of Tmin = (−t0; t0).

Eventually, the case a > 0 can be dealt with in a similar fashion.
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6.7 Control of the Taylor expansion

This section of the appendix is dedicated to the intermediate results necessary to
probabilistically control the Taylor expansion of the function t 7→ φx(D(t)|sign(α0)).
We begin with the control of the first order term. Note that the concrete computation
of the Taylor expansion is postponed to Section 6.8.

6.7.1 Concentration of the first-order terms

Lemma 8 (Upper bound of the first-order term ax)
There exist a universal constant c

(0)
ax and coefficients {c(j)

ax }j∈J1;3K depending only on kµ0

such that for any τ ≥ 2,

Pr
(

|ax| ≤ c(1)
ax

max{λ2, λα, λσ, σ2, σα}τ
)

≥ 1− c(0)
ax

exp(−τ),

and

|E[ax]| ≤ c(2)
ax
λα

√

k

p
kµ0 + λ2c(3)

ax
.

Proof. The first part of the proof simply consists in gathering the concentration results of
all the lemmas from Section 6.7.1, and applying the union bound. The second conclusion
follows by putting together the non-vanishing expectation terms appearing in the lemmas
from Section 6.7.1, and using the upper bound from Lemma 9.

Lemma 9 (Upper bound of the leading expectation term)
For any W ∈ WD0 and for any vector v with unit ℓ2-norm, we have

∣
∣
∣E
[

Tr
([

[D0]⊤J [D0]J
]−1

[D0]⊤J [WDiag(v)]J
)]
∣
∣
∣ ≤

√

k

p

kµ0

1− kµ0

√

1 + kµ0.

Proof. By definition of W, we know that diag(W⊤D0) = 0, and since Diag(v) is diag-
onal, it holds that diag(D⊤

0 WDiag(v)) = 0. As a consequence, we can freely subtract
the identity matrix in the trace, and we have

Tr
([

[D0]⊤J [D0]J
]−1

[D0]⊤J [WDiag(v)]J
)

= Tr
((

I− [[D0]⊤J [D0]J
]−1)

[D0]⊤J [WDiag(v)]J
)

≤
∥
∥I− [[D0]⊤J [D0]J

]−1∥
∥

F
‖[D0]⊤J [WDiag(v)]J‖F

≤ kµ0

1− kµ0
‖[D0]⊤J [WDiag(v)]J‖F

≤ kµ0

1− kµ0
|||[D0]J[D0]⊤J |||1/2

2 ‖[WDiag(v)]J‖F

≤ kµ0

1− kµ0

√

1 + kµ0‖[WDiag(v)]J‖F,
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where we have repeatedly used Lemma 16. Now, we have by definition of the sampling
procedure and the normalization of both v and W,

E[‖[WDiag(v)]J‖2F] = E
[ p
∑

j=1

δ(j)v2
j‖wj‖22

]

=
k

p
.

The conclusion follows by Jensen’s inequality.

Proposition 11 (Concentration of 1
n

∑n
i=1 axi)

There exist a universal constant c
(0)
ax and a coefficient c

(1)
ax depending only on kµ0 such

that for any τ ≥ 2, we have

Pr
(∣
∣
∣
1

n

n∑

i=1

axi − E[ax]
∣
∣
∣ ≤ c(1)

ax
max{λ2, λα, λσ, σ2, σα} τ

2

√
n

)

≥ [1− c(0)
ax

exp(−τ)
]n+1

.

Proof. The proof consists in conditioning for each independent signal xi to the event
defined in Lemma 8 where the first order terms we want to concentrate are bounded.
For any τ2 ≥ 2, and with probability exceeding

[
1− c(0)

ax exp(−τ2)
]n, we thus have for all

i ∈ J1;nK
|axi | ≤ c(1)

ax
max{λ2, λα, λσ, σ2, σα}τ2.

We then consider the collection of independent, bounded variables {axi}i∈J1;nK, and the
conclusion follows by applying Hoeffding’s inequality (see Lemma 23), that is,

Pr
(∣
∣
∣
1

n

n∑

i=1

axi−E[ax]
∣
∣
∣ ≤ c(1)

ax
max{λ2, λα, λσ, σ2, σα}τ1τ2√

n

)

≥ [1−2 exp(−τ2
1 )
][

1−c(0)
ax

exp(−τ2)
]n
,

for any τ1 ≥ 0 and τ2 ≥ 2. We can further simplifying the right-hand side since for any
τ ≥ 1,

[
1− 2 exp(−τ2)

][
1− exp(−τ)

]n ≥ [1− 2 exp(−τ)
]n+1

.

Details of the concentration of the first-order terms

This section contains all the intermediate results necessary to concentrate the first-
order term of the Taylor expansion. In particular, we will have to make use of the
concentration inequalities from Lemmas 22, 25 and 26. In any case, we need to control
bilinear or quadratic forms that bring into play the Frobenius norm of a matrix. Upper
bounds of this norm are obtained by exploiting the following facts

• According to Lemma 16, we have ‖[D⊤
J DJ]−1‖F ≤ 1/(1 − kµ0) and |||DJD⊤

J |||2 ≤
1 + kµ.

• Projectors have their spectral norm bounded by one.
• The dictionary D0 and the matrix W have unit ℓ2-norm columns, so that in combi-

nation with the fact that the vector v is also normalized, we have ‖D0Diag(v)‖F =
1 and ‖WDiag(v)‖F = 1.
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The names of the next Lemma refer to the notation introduced in Lemma 15.

Lemma (Concentration of Aεα)
There exist universal constants c0, c1 > 0 such that for any τ ≥ 1, the term Aεα is upper
bounded by σατ, with probability exceeding 1− c0 exp(−c1τ).

Lemma (Concentration of Asα)
For any τ ≥ 2, we have

∣
∣
∣Asα − λE[|[α0]1|] Tr

([
[D0]⊤J [D0]J

]−1
[D0]⊤J [WDiag(v)]J

)
∣
∣
∣ ≤ 64λαkµ0

√
1 + kµ0

1− kµ0
τ

with probability exceeding 1− 4 exp(−τ).

Lemma (Concentration of Aεs,1)
There exist universal constants c0, c1 > 0 such that for any τ ≥ 1, the term Aεs,1 is
upper bounded by

λσ
1

1− kµ0
τ

with probability exceeding 1− c0 exp(−c1τ).

Lemma (Concentration of Aεs,2)
There exist universal constants c0, c1 > 0 such that for any τ ≥ 1, the term Aεs,2 is
upper bounded by

λσ

√
1 + kµ0

(1− kµ0)3/2
τ

with probability exceeding 1− c0 exp(−c1τ).

Lemma (Concentration of Ass)
There exist universal constants c0, c1 > 0 such that for any τ ≥ 1, the term Ass is upper
bounded by

2λ2

√
1 + kµ0

(1− kµ0)2
τ

with probability exceeding 1− c0 exp(−c1τ).

Lemma (Concentration of Aεε)
There exist universal constants c0, c1 > 0 such that for any τ ≥ 1, the term Aεε is upper
bounded by

σ2 1√
1− kµ0

τ

with probability exceeding 1− c0 exp(−c1τ).

6.7.2 Concentration of the second-order terms

Lemma 10 (Upper bound of the second-order term bx)
There exist a universal constant c

(0)
bx

and coefficients {c(j)
bx
}j∈J1;3K depending only on kµ0
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such that for any τ ≥ 1,

Pr
(

|bx| ≤ c(1)
bx

max{λ2, λα, λσ, σ2, σα, α2}τ
)

≥ 1− c(0)
bx

exp(−τ),

and

α2k

p

[

1− k

p

1 + pµ0

1− kµ0

]

− λα c(2)
bx
− λ2 c

(3)
bx
≤ E[bx] ≤ α2k

p
+ λα c

(2)
bx

+ λ2 c
(3)
bx
.

Proof. The first part of the proof simply consists in gathering the concentration results of
all the lemmas from Section 6.7.2, and applying the union bound. The second conclusion
follows by putting together the non-vanishing expectation terms appearing in the lemmas
from Section 6.7.2, and using the lower/upper bounds from Lemma 11.

Lemma 11 (Upper bound of the leading expectation term)
Let P0 be the orthogonal projector that projects onto the span of [D0]J. For any W ∈
WD0 and for any vector v with unit ℓ2-norm, we have

k

p

[

1− k

p

1 + pµ0

1− kµ0

]

≤ E
[

Tr
(
[WDiag(v)]⊤J (I−P0)[WDiag(v)]J

)] ≤ k

p
.

Proof. First, by definition of the sampling procedure and the normalization of both v
and W, we have

E[‖[WDiag(v)]J‖2F] = E
[ p
∑

j=1

δ(j)v2
j‖wj‖22

]

=
k

p
.

As a result, the right-hand side is easily proved by upper bounding the spectral norm of
I−P0 by one. We now turn to the lower bound. We start with the following inequality

Tr
(
[WDiag(v)]⊤J P0[WDiag(v)]J

) ≤ |||[D0]⊤J [D0]J]−1|||2‖[D0]⊤J [WDiag(v)]J‖2F
≤ 1

1− kµ0
‖[D0]⊤J [WDiag(v)]J‖2F,

where we have used Lemma 16. Developing the Frobenius norm with the property
Diag(W⊤D0) = 0, we obtain

‖[D0]⊤J [WDiag(v)]J‖2F =
p
∑

j=1

p
∑

i=1
i6=j

δ(j)δ(i)v2
j ([wj ]⊤di

0)2,

so that

E
[

‖[D0]⊤J [WDiag(v)]J‖2F
]

=
k(k − 1)

p(p− 1)
‖D⊤

0 WDiag(v)‖2F.

Since k(k−1)
p(p−1) ≤ k2

p2 and ‖WDiag(v)‖2F = 1, the expectation above is upper bounded by

E
[

‖[D0]⊤J [WDiag(v)]J‖2F
]

≤ k2

p2
|||D0D⊤

0 |||2.

Applying Lemma 16, we have |||D0D⊤
0 |||2 ≤ 1+pµ0, and the advertised conclusion follows.
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Proposition 12 (Concentration of 1
n

∑n
i=1 bxi)

There exist a universal constant c
(0)
bx

and a coefficient c
(1)
bx

depending only on kµ0 such
that for any τ ≥ 2, we have

Pr
(∣
∣
∣
1

n

n∑

i=1

bxi − E[bx]
∣
∣
∣ ≤ c(1)

bx
max{λ2, λα, λσ, σ2, σα, α2} τ

2

√
n

)

≥ [1− c(0)
bx

exp(−τ)
]n+1

.

Proof. The proof essentially follows that of Proposition 11. It uses Lemma 10 in place
of Lemma 8, which leads to

Pr
(∣
∣
∣
1

n

n∑

i=1

bxi − E[bx]
∣
∣
∣ ≤ c(1)

bx
max{λ2, λα, λσ, σ2, σα, α2}τ1τ2√

n

)

≥
[
1− 2 exp(−τ2

1 )
][

1− c(0)
bx

exp(−τ2)
]n
,

for any τ1 ≥ 0 and τ2 ≥ 2. We apply simplifications similar to those found in the proof
of Proposition 11.

Details of the concentration of the second-order terms

This section contains all the intermediate results necessary to concentrate the second-
order term of the Taylor expansion. In particular, we will have to make use of the
concentration inequalities from Lemmas 22, 25 and 26. In any case, we need to control
bilinear or quadratic forms that bring into play the Frobenius norm of a matrix. Upper
bounds of this norm are obtained by exploiting the following facts

• According to Lemma 16, we have ‖[D⊤
J DJ]−1‖F ≤ 1/(1 − kµ0) and |||DJD⊤

J |||2 ≤
1 + kµ.

• Projectors have their spectral norm bounded by one.
• The dictionary D0 and the matrix W have unit ℓ2-norm columns, so that in combi-

nation with the fact that the vector v is also normalized, we have ‖D0Diag(v)‖F =
1 and ‖WDiag(v)‖F = 1.

The names of the next Lemma refer to the notation introduced in Lemma 15.

Lemma (Concentration of Bαα)
Let P0 be the orthogonal projector that projects onto the span of [D0]J. There exist
universal constants c0, c1 > 0 such that for any τ ≥ 1, we have

∣
∣
∣Bαα − E[([α0]1)2] Tr([WDiag(v)]⊤J (I−P0)[WDiag(v)]J)

∣
∣
∣ ≤ α2τ

with probability exceeding 1− c0 exp(−c1τ).

Lemma (Concentration of Bsα,1)
For any τ ≥ 2, the term Bsα,1 is upper bounded by

33λατ

with probability exceeding 1− 4 exp(−τ).
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Lemma (Concentration of Bsα,2)
For any τ ≥ 2, the term Bsα,2 is upper bounded by

65λα
1

1− kµ0
τ

with probability exceeding 1− 4 exp(−τ).

Lemma (Concentration of Bsα,3)
For any τ ≥ 2, the term Bsα,3 is upper bounded by

65λα

√
1 + kµ0

(1− kµ0)2
τ

with probability exceeding 1− 4 exp(−τ).

Lemma (Concentration of Bεα,1)
There exist universal constants c0, c1 > 0 such that for any τ ≥ 1, the term Bεα,1 is
upper bounded by

σα
1√

1− kµ0
τ

with probability exceeding 1− c0 exp(−c1τ).

Lemma (Concentration of Bεα,2)
There exist universal constants c0, c1 > 0 such that for any τ ≥ 1, the term Bεα,2 is
upper bounded by

σα

√
1 + kµ0

1− kµ0
τ

with probability exceeding 1− c0 exp(−c1τ).

Lemma (Concentration of Bεs,1)
There exist universal constants c0, c1 > 0 such that for any τ ≥ 1, the term Bεs,1 is
upper bounded by

1

2
λσ

1√
1− kµ0

τ

with probability exceeding 1− c0 exp(−c1τ).

Lemma (Concentration of Bεs,2)
There exist universal constants c0, c1 > 0 such that for any τ ≥ 1, the term Bεs,2 is
upper bounded by

2λσ

√
1 + kµ0

(1− kµ0)2
τ

with probability exceeding 1− c0 exp(−c1τ).

Lemma (Concentration of Bεs,3)
There exist universal constants c0, c1 > 0 such that for any τ ≥ 1, the term Bεs,3 is
upper bounded by

λσ
1

(1− kµ0)3/2
τ
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with probability exceeding 1− c0 exp(−c1τ).

Lemma (Concentration of Bεs,4)
There exist universal constants c0, c1 > 0 such that for any τ ≥ 1, the term Bεs,4 is
upper bounded by

λσ
1

(1− kµ0)5/2
τ

with probability exceeding 1− c0 exp(−c1τ).

Lemma (Concentration of Bss)
There exist universal constants c0, c1 > 0 such that for any τ ≥ 1, the term Bss is upper
bounded by

12λ2

√
1 + kµ0

(1− kµ0)3
τ

with probability exceeding 1− c0 exp(−c1τ).

Lemma (Concentration of Bεε,1)
There exist universal constants c0, c1 > 0 such that for any τ > 1, the term Bεε,1 is
upper bounded by

σ2 1

1− kµ0
τ

with probability exceeding 1− c0 exp(−c1τ).

Lemma (Concentration of Bεε,2)
There exist universal constants c0, c1 > 0 such that for any τ ≥ 1, the term Bεε,2 is
upper bounded by

2σ2 1 + kµ0

(1− kµ0)3/2
τ

with probability exceeding 1− c0 exp(−c1τ).

6.7.3 Control of the third derivative

Proposition 13 (Upper bound on the third derivative of Φn)
There exist a constant cLx > 0 depending only on kµ0 such that for any sign matrix S ∈
{−1, 0, 1}p×n and for all |t| ≤ 1 such that t 7→ Φn(D(t)|S) is three times differentiable,
we have

∣
∣
∣
1

n

n∑

i=1

∇3[φxi(D(t)|si)
]−

∣
∣E
[∇3[φx(D(t)|s)

]]∣
∣

∣
∣
∣ ≤

cLx

[
λ2m+ λ

√
m(α2k + σ2m)1/2√τ + (α2k +σ2m)τ

]
τ√
n
,

with probability exceeding [1− 2 exp(−τ)]n+1, for any τ ≥ 1.
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6.7. Control of the Taylor expansion

Proof. The proof essentially follows that of Proposition 11. It uses Lemma 12 in place
of Lemma 8, which leads to

∣
∣
∣
1

n

n∑

i=1

∇3[φxi(D(t)|si)
]−

∣
∣E
[∇3[φx(D(t)|s)

]]∣
∣

∣
∣
∣ ≤

cLx

[
λ2m+ λ

√
m(α2k + σ2m)1/2√τ2 + (α2k +σ2m)τ2

] τ1√
n
,

with probability exceeding [1− 2 exp(τ2
1 )][1− exp(−τ2)]n, for any τ1 ≥ 0 and any τ2 ≥ 1.

We apply simplifications similar to those found in the proof of Proposition 11.

Lemma 12 (Upper bound on the third derivative of φx)
There exist a constant cLx > 0 depending only on kµ0 such that for any sign vector
s ∈ {−1, 0, 1}p and for all |t| ≤ 1 with t 7→ φx(D(t)|s) three times differentiable, we have

|∇3[φx(D(t)|s)
]| ≤ cLx

[
λ2m+ λ

√
m(α2k + σ2m)1/2√τ + (α2k + σ2m)τ

]
.

with probability exceeding 1− exp(−τ), for any τ ≥ 1. Moreover, we have

∣
∣E
[∇3[φx(D(t)|s)

]]∣
∣ ≤ cLx

[
λ2m+ λ

√
m(α2k + σ2m)1/2 + (α2k + σ2m)

]
.

Proof. The core of the proof consists of upper bounding the derivative of the three parts
Txx, Tsx and Tss composing φx (see Section 6.8 for their complete expressions). We
proceed by using Cauchy Schwartz’s inequality, upper bounding the ℓ2-norm of sign
vectors by

√
m, and applying the bounds from Section 6.8, which leads to

|∇3[φx(D(t)|s)
]| ≤ cLx

(

λ2m+ λ
√
m‖x‖2 + ‖x‖22

)

,

for some positive constant cLx depending only on kµ0. Now, combined with Lemma 13,
we obtain the first desired conclusion. Finally, since

E[‖x‖22] ≤ (α2k + σ2m),

we obtain by Jensen’s inequality E[‖x‖2] ≤ (α2k + σ2m)1/2, and the second conclusion
follows.

6.7.4 Control of the residual term

Proposition 14
Consider n independent draws {(αi

0, ε
i)}i∈J1;nK following the generative model from Sec-

tion 6.2.2. Consider also n independent events {E i}i∈J1;nK defined on the same probability
space as that of (α0, ε). Let us define n non-negative scalars {ςi}i∈J1;nK such that for any
i ∈ J1;nK, ς2

i is greater than, or equal to, the variance of 1Ei‖xi‖22. Moreover, introduce
ς2 , 1

n

∑n
i=1 ς

2
i . For any τ ≥ 1, if we have

τ2 ≤ 3

20

ς

(α2k + σ2m)

√
n,
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then it holds that

Pr
( 1

n

n∑

i=1

1Ei‖xi‖22 − E[1E‖x‖22] ≤ 2ς
τ√
n

)

≥ [1− 2 exp(−τ)
]n+1

.

Proof. The proof consists in conditioning to the event (see Lemma 13)

n⋂

i=1

{

(αi
0, ε

i) ∈ Rp × Rm; ‖xi‖22 ≤ 5(α2k + σ2m)τ
}

,

and then considering the collection of independent, zero-mean, bounded variables {1Ei‖xi‖22−
E[1E‖x‖22]}i∈J1;nK. The conclusion follows by applying Bernstein’s inequality (see Lemma 24),
that is, for any τ1 ≥ 0 and for any τ ≥ 1, if it holds that τ1 ≤ 3

2
ς

10(α2k+σ2m)τ

√
n, we then

have

Pr
( 1

n

n∑

i=1

1Ei‖xi‖22 − E[1E‖x‖22] ≤ 2ς
τ1√
n

)

≥ [1− 2 exp(−τ2
1 )
][

1− exp(−τ)
]n
.

Setting τ1 = τ , and further simplifying the right-hand side since for any τ ≥ 1,

[
1− 2 exp(−τ2)

][
1− exp(−τ)

]n ≥ [1− 2 exp(−τ)
]n+1

,

we obtain the desired conclusion.

Lemma 13 (Control of the ℓ2-norm of a signal)
Let x be a signal following the generative model from Section 6.2.2. For any τ ≥ 1, we
have

Pr(‖x‖22 ≤ 5(α2k + σ2m)τ) ≥ 1− exp(−τ).

Proof. The result is a direct application of Lemma 20. We recall that we have x =
[D0]J[α0]J + ε, and that the norm of x can be expressed as follows

‖x‖2 =
∥
∥
∥[α[D0]J σI ]

(
1
α [α0]J

1
σ ε

)
∥
∥
∥

2
.

Lemma 14 (Truncated expectation of the ℓ2-norm of a signal)
Let x be a signal following the generative model from Section 6.2.2. Consider an event
E defined on the same probability space as that of (α0, ε). For any τ ≥ 2, we have

E[1E‖x‖22] ≤ 5(α2k + σ2m)τ
[

Pr(E) + 9 exp(−τ)
]

.

Moreover, it holds that

E[1E‖x‖42] ≤ 25(α2k + σ2m)2τ2
[

Pr(E) + 33 exp(−τ)
]

.
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6.7. Control of the Taylor expansion

Proof. Let fix some τ ≥ 2. We introduce the event

K ,
{

(α0, ε) ∈ Rp × Rm; ‖x‖22 ≤ 5(α2k + σ2m)τ
}

,

and define lτ as the largest integer such that τ ∈ [lτ , lτ + 1). We can then “discretize”
the event Kc as

Kc ⊆
∞⋃

l=lτ

Kc
l , with Kc

l =
{

(α0, ε) ∈ Rp × Rm;
‖x‖22

5(α2k + σ2m)
∈ [l, l + 1)

}

.

We now have

E[1E‖x‖22] = E[1E∩K‖x‖22] + E[1E∩Kc‖x‖22]

≤ 5(α2k + σ2m)Pr(E)τ +
∞∑

l=lτ

E[1E∩Kc
l
‖x‖22]

≤ 5(α2k + σ2m)
[

Pr(E)τ +
∞∑

l=lτ

(l + 1)E[1E∩Kc
l
]
]

≤ 5(α2k + σ2m)
[

Pr(E)τ +
∞∑

l=lτ

(l + 1)E[1{(α0,ε)∈Rp×Rm; ‖x‖2
2≥5(α2k+σ2m)l}]

]

.

Applying Lemma 13, we continue with the upper bound

E[1E‖x‖22] ≤ 5(α2k + σ2m)
[

Pr(E)τ +
∞∑

l=lτ

(l + 1) exp(−l)
]

.

We recognize here the derivative of the Taylor series of u 7→ ulτ +1/(1− u) for u ∈ (0, 1),
which leads to ∞∑

l=lτ

(l + 1)ul =
lτ − lτu+ 1

(1− u)2
ulτ .

When setting u = 1/e, we obtain with τ ∈ [lτ , lτ + 1)

∞∑

l=lτ

(l + 1) exp(−l) ≤ 2
lτ

1− 1/e
exp(−lτ ) ≤ 2

eτ

1− 1/e
exp(−τ) ≤ 9τ exp(−τ).

We thus reach the first advertised conclusion. The second result follows along the same
lines, except that we end up with

E[1E‖x‖42] ≤ 25(α2k + σ2m)2
[

Pr(E)τ2 +
∞∑

l=lτ

(l + 1)2 exp(−l)
]

.

As above, and noticing that (1 + l)2 = (1 + l)(2 + l) − (1 + l), we can recognize the
difference of the second and first derivatives of the Taylor series of u 7→ ulτ +1/(1 − u)
for u ∈ (0, 1), which gives

∞∑

l=lτ

(l + 1)2ul =
l2τ (1− u)2 + 2lτ (1− u) + u+ 1

(1− u)3
ulτ .
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Again, when setting u = 1/e, and with similar upper bounds as before, we obtain

∞∑

l=lτ

(l + 1)2 exp(−l) ≤ 33τ2 exp(−τ),

which concludes the proof.

6.8 Computation of the Taylor expansion

For any sign vector s with support J, the function D 7→ φx(D|s) as defined in (6.4)
is smooth as long as the matrix D⊤

J DJ is invertible. In this section, we derive a second-
order Taylor expansion of the composition t 7→ φx(D(t)|s) around the value t = 0,
assuming that the smoothness conditions described above are satisfied for values of t
small enough. Moreover, we are interested in this expansion in the specific setting from
Section 6.2.2 where each signal x is equal to x = D0α0 + ε, and where the sign vector
s is such that s = sign(α0).

Throughout the different computations, we will need to refer to the orthogonal pro-
jector onto the span of [D0]J, which we denote by P0. In addition, the matrix ΠJ ∈ Rp×|J|

that projects onto the columns indexed by J, i.e., DJ = DΠJ, is represented by Π to ease
notation. For short, we refer to Diag(v), Diag(cos(vt)) and Diag(sin(vt)) as respectively
V, C and S. Finally, we denote by Θ0 the inverse of [D0]⊤J [D0]J.

Lemma 15 (Taylor expansion of φx(.|s))
Assuming the invertibility conditions for D(t) around t = 0, the function t 7→ φx(D(t)|s)
admits a second-order Taylor expansion around t = 0, and we have

φx(D(t)|s) = φx(D0|s) + axt+ bxt
2 + o(t2),

with the following expressions for ax and bx:

ax = − ε⊤(I−P0)WVα0
︸ ︷︷ ︸

Aεα

−λ s⊤ΠΘ0Π⊤D⊤
0 WVα0

︸ ︷︷ ︸

Asα

+λ ε⊤(I−P0)WVΠΘ0Π⊤s
︸ ︷︷ ︸

Aεs,1

−λ ε⊤D0ΠΘ0Π⊤VW⊤D0ΠΘ0Π⊤s
︸ ︷︷ ︸

Aεs,2

+λ2 s⊤ΠΘ0Π⊤sym(VW⊤D0)ΠΘ0Π⊤s
︸ ︷︷ ︸

Ass

− ε⊤D0ΠΘ0Π⊤VW⊤(I−P0)ε
︸ ︷︷ ︸

Aεε

,
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and

bx = α⊤
0 VW⊤(I−P0)WVα0

︸ ︷︷ ︸

Bαα

+λ
[ 1

2
s⊤V2α0

︸ ︷︷ ︸

Bsα,1

− s⊤ΠΘ0Π⊤VW⊤(I−P0)WVα0
︸ ︷︷ ︸

Bsα,2

+ s⊤(ΠΘ0Π⊤D⊤
0 WV)2α0

︸ ︷︷ ︸

Bsα,3

]

+ ε⊤D0ΠΘ0Π⊤VW⊤(I−P0)WVα0
︸ ︷︷ ︸

Bεα,1

+ ε⊤(I−P0)WVΠΘ0Π⊤D⊤
0 WVα0

︸ ︷︷ ︸

Bεα,2

+λ
[ 1

2
ε⊤D0ΠΘ0Π⊤V2s
︸ ︷︷ ︸

Bεs,1

−2 ε⊤(I−P0)WVΠΘ0Π⊤sym(VW⊤D0)ΠΘ0Π⊤s
︸ ︷︷ ︸

Bεs,2

− ε⊤D0ΠΘ0Π⊤VW⊤(I−P0)WVΠΘ0Π⊤s
︸ ︷︷ ︸

Bεs,3

+ ε⊤(D0ΠΘ0Π⊤VW⊤)2D0ΠΘ0Π⊤s
︸ ︷︷ ︸

Bεs,4

]

−λ
2

2
s⊤ΠΘ0Π⊤[V2D⊤

0 D0 + D⊤
0 D0V2 − 2VW⊤WV + 8sym(VW⊤D0)ΠΘ0Π⊤sym(VW⊤D0)

]
ΠΘ0Π⊤s

︸ ︷︷ ︸

Bss

+ ε⊤((P0 − I)WVΠΘ0Π⊤VW⊤(I−P0) + D0ΠΘ0Π⊤VW⊤(I−P0)WVΠΘ0Π⊤D⊤
0

)
ε

︸ ︷︷ ︸

Bεε,1

+ 2ε⊤(I−P0)(WVΠΘ0Π⊤D⊤
0 )2ε

︸ ︷︷ ︸

Bεε,2

.

Some details about the computation of the Taylor expansion

In this section, we detail the computations underlying Lemma 15. For convenience,
we rewrite φx(D(t)|s) as

φx(D(t)|s) =
1

2
‖x‖22−

1

2
x⊤D(t)ΠJΣ(t)−1Π⊤

J D(t)⊤x
︸ ︷︷ ︸

Txx

+λs⊤
J Σ(t)−1Π⊤

J D(t)⊤x
︸ ︷︷ ︸

Tsx

− λ
2

2
s⊤

J Σ(t)−1sJ
︸ ︷︷ ︸

Tss

.

where we have introduced Σ(t) , Π⊤
J D(t)⊤D(t)ΠJ.

Derivatives of t 7→ Σ(t)−1. We gather here the formula related to the derivatives of
Σ(t) and Σ(t)−1.
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∇Σ(t) = Π⊤
J

[

−VSD⊤
0 D0C−CD⊤

0 D0SV + VCW⊤WSV + VSW⊤WCV

−VSD⊤
0 WS + CD⊤

0 WCV− SW⊤D0SV + VCW⊤D0C
]

ΠJ

∇2Σ(t) = Π⊤
J

[

−V2CD⊤
0 D0C + 2VSD⊤

0 D0SV−CD⊤
0 D0CV2

−V2SW⊤WS + 2VCW⊤WCV− SW⊤WSV2

−V2CD⊤
0 WS− 2VSD⊤

0 WCV−CD⊤
0 WSV2

−SW⊤D0CV2 − 2VSW⊤D0CV−V2SW⊤D0C
]

ΠJ

∇3Σ(t) = Π⊤
J

[

V3SD⊤
0 D0C + 3V2CD⊤

0 D0SV + 3VSD⊤
0 D0CV2 + CD⊤

0 D0SV3

−V2CW⊤WS− 3V2SW⊤WCV− 3VCW⊤WSV2 − SW⊤WCV2

V3SD⊤
0 WS− 3V2CD⊤

0 WCV + 3VSD⊤
0 WSV2 −CD⊤

0 WCV3

−V3CW⊤D0C + 3V2SW⊤D0SV +−3VCW⊤D0CV2 + SW⊤D0SV3
]

ΠJ

and

∇[Σ(t)−1] = −Σ(t)−1∇Σ(t)Σ(t)−1

∇2[Σ(t)−1] = −∇[Σ(t)−1]∇Σ(t)Σ(t)−1 −Σ(t)−1∇2Σ(t)Σ(t)−1 −Σ(t)−1∇Σ(t)∇[Σ(t)−1]

∇3[Σ(t)−1] = −Σ(t)−1∇3Σ(t)Σ(t)−1 − 2∇[Σ(t)−1]∇2Σ(t)Σ(t)−1 − 2Σ(t)−1∇2Σ(t)∇[Σ(t)−1]

−2∇[Σ(t)−1]∇Σ(t)∇[Σ(t)−1]−∇2[Σ(t)−1]∇Σ(t)Σ(t)−1

−Σ(t)−1∇Σ(t)∇2[Σ(t)−1].

Derivatives of t 7→ D(t). We gather here the formula related to the derivatives of
D(t):

∇D(t) = [−D0Diag(sin(vt)) + WDiag(cos(vt))]Diag(v)

∇2D(t) = −D(t)Diag(v)2

∇3D(t) = [D0Diag(sin(vt))−WDiag(cos(vt))]Diag(v)3.

Derivatives of t 7→ φx(D(t)|s). The different derivatives of the three terms Txx, Tsx

and Tss can be computed by applying the product rule, based on the derivatives of D(t)
and Σ(t)−1 (see above). We only give the formula for the first derivatives, namely

∇Txx = x⊤(∇D(t)ΠJΣ(t)−1ΠJD(t)⊤+ D(t)ΠJ∇[Σ(t)−1]ΠJD(t)⊤

+D(t)ΠJΣ(t)−1ΠJ[∇D(t)]⊤)x

∇Tsx = λs⊤
J(∇[Σ(t)−1]Π⊤

J D(t)⊤ + Σ(t)−1Π⊤
J [∇D(t)]⊤)x

∇Tss =
λ2

2
s⊤

J ∇[Σ(t)−1]sJ.
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We obtain the results advertised in Lemma 15 by evaluating the different derivatives at
t = 0. Simplifications arise by making use of the following facts:

x = D0α0 + ε

I = Π⊤
J ΠJ

α0 = ΠJΠ⊤
J α0

P0D0ΠJ = D0ΠJ.

Some details about the upper bound of the third derivative

We need to upper bound quantities of the form ‖D0CVhΠJ‖F and ‖D0SVhΠJ‖F for
h in J0; 3K. Thanks to the normalization of the vector v and the columns of D0, it easy
to obtain upper bounds by constant terms when h ≥ 1. Moreover, since | sin(t)| ≤ |t|, it
is also simple to derive upper bounds scaling in |t| as soon as the sine term (i.e., S) is
present. In the case of ‖D0CΠJ‖F, we can notice that for any matrix A

‖AD0CΠJ‖2F = Tr(Π⊤
J C⊤D⊤

0 A⊤AD0CΠJ)

= Tr(AD0CΠJΠ⊤
J C⊤D⊤

0 A⊤)

≤ Tr(AD0ΠJΠ⊤
J D⊤

0 A⊤)

≤ |||D0ΠJΠ⊤
J D⊤

0 |||2‖A‖2F
≤ (1 + kµ0)‖A‖2F

In the light of the remarks above, a little calculation leads to the following upper
bounds:

‖∇Σ(t)‖F ≤ 2(
√

1 + kµ0 + |t|
√

1 + kµ0 + |t|+ t2)

|t|≤1
︷︸︸︷

≤ 8
√

1 + kµ0

‖∇2Σ(t)‖F ≤ 2(
√

1 + kµ0 + 1 + |t|
√

1 + kµ0 + 3|t|+ 2t2)

|t|≤1
︷︸︸︷

≤ 16
√

1 + kµ0

‖∇3Σ(t)‖F ≤ 2(
√

1 + kµ0 + 3 + |t|
√

1 + kµ0 + 7|t|+ 4t2)

|t|≤1
︷︸︸︷

≤ 32
√

1 + kµ0,

and for |t| ≤ 1,

‖∇[Σ(t)−1]‖F ≤ 8
√

1 + kµ0

(1− kµ0)2

‖∇2[Σ(t)−1]‖F ≤ 144(1 + kµ0)

(1− kµ0)3

‖∇3[Σ(t)−1]‖F ≤ 3872(1 + kµ0)3/2

(1− kµ0)4
.
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Based on these upper bounds, we can further control the terms appearing in Tsx and
Txx, namely

‖∇3[Σ(t)−1Π⊤
J D(t)⊤]‖F ≤ 8‖∇3[Σ(t)−1]Π⊤

J D(t)⊤‖F

≤ 30976(1 + kµ0)3/2((1 + kµ0)1/2 + 1)

(1− kµ0)4
,

and

‖∇3[D(t)ΠJΣ(t)−1Π⊤
J D(t)⊤]‖F ≤ 27‖D(t)ΠJ∇3[Σ(t)−1]Π⊤

J D(t)⊤‖F

≤ 104544(1 + kµ0)3/2((1 + kµ0)1/2 + 1)2

(1− kµ0)4
,

where we use the fact there are respectively 8 and 27 terms appearing in ∇3Tsx and
∇3Txx. Moreover, the upper bound by ((1 +kµ0)1/2 + 1) exploits that for any matrix A

‖D(t)ΠJA‖F ≤ ‖D0CΠJA‖F + ‖WSΠJA‖F

≤ Tr(A⊤Π⊤
J C⊤D⊤

0 D0CΠJA⊤)1/2 + ‖WSΠJ‖F‖A‖F

≤ (|||Π⊤
J CD⊤

0 D0CΠJ|||1/2
2 + 1)‖A‖F

≤ ((1 + kµ0)1/2 + 1)‖A‖F,

where we can notice in the last inequality that the coherence of D0C is lower than that
of D0, and we can therefore make use of Lemma 16.

6.9 Technical lemmas

The final section of this appendix gathers different technical lemmas required by the
main results of the chapter.

6.9.1 Properties related to the mutual coherence

Lemma 16
Let D ∈ Rm×p be a dictionary with coherence µ and normalized columns (i.e., with unit
ℓ2-norm). For any J ⊆ J1; pK with |J| ≤ k, We have

|||DJD⊤
J |||2 = |||D⊤

J DJ|||2 ≤ 1 + kµ.

Similarly, it holds

|||D⊤
J DJ|||∞ ≤ 1 + kµ and |||D⊤

JcDJ|||∞ ≤ kµ.

Moreover, if we further have kµ < 1, then D⊤
J DJ is invertible and

max
{

|||[D⊤
J DJ]−1|||∞, |||[D⊤

J DJ]−1|||2, ‖[D⊤
J DJ]−1‖F

}

≤ 1

1− kµ,
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with, in addition,

max
{

|||[D⊤
J DJ]−1− I|||∞, |||[D⊤

J DJ]−1− I|||2, ‖[D⊤
J DJ]−1− I‖F

}

≤ kµ

1− kµ.

Proof. These properties are already well-known (see, e.g. Fuchs, 2005). We briefly prove
them. First, we introduce H = D⊤

J DJ − I. A straightforward elementwise upper bound
leads to ‖H‖F ≤ |J|µ ≤ kµ. As a consequence, we have

|||D⊤
J DJ|||2 ≤ 1 + |||H|||2 ≤ 1 + ‖H‖F ≤ 1 + kµ.

By definition of |||.|||∞, we also have

|||D⊤
J DJ|||∞ ≤ 1 + |||H|||∞ = 1 + max

i∈J

∑

j∈J,j 6=i

|[di]⊤dj | ≤ 1 + kµ.

Note that for |||D⊤
JcDJ|||∞, there are no diagonal terms to take into account.

Now, if kµ < 1 holds, then we have max{|||H|||∞, |||H|||2, ‖H‖F} < 1 and there are
convergent series expansion of [I + H]−1 in each of these norms (Horn and Johnson,
1990). By sub-multiplicativity, we obtain

‖[D⊤
J DJ]−1‖ = ‖

∞∑

t=0

(−1)tHt‖ ≤
∞∑

t=0

‖H‖t ≤ 1/(1− kµ),

where ‖.‖ stands for one the three aforementioned matrix norms. The last result lies in
the fact that ‖[D⊤

J DJ]−1 − I‖ = ‖∑∞
t=1(−1)tHt‖ ≤ kµ/(1− kµ).

6.9.2 Lemmas related to the study of problem (6.1)

Lemma 17 (Control of the perturbation of D0)
For any J ⊆ J1; pK, we introduce the orthogonal projector

[P(t)]J , [D(t)]J[[D(t)]⊤J [D(t)]J]−1[D(t)]⊤J

that projects onto the span of [D(t)]J.
Fix τ > 0, and consider a random vector α0 that follows the generative model from
Section 6.2.2. For any J ⊆ J1; pK with |J| = k, and for all |t| ≤ 1 such that [D(t)]⊤J [D(t)]J
is invertible, we have

Pr(‖[D(t)]⊤Jc(I− [P(t)]J)[D0]J[α0]J‖∞ > τ) ≤ 2(p− k) exp
( −τ2

6α2t2

)

,

and

Pr(‖[D(t)]⊤J ([D(t)]J − [D0]J)[α0]J‖∞ > τ) ≤ 2k exp
( −τ2

4α2t2

)

.
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6. Local Analysis of Sparse Coding in Presence of Noise

Proof. We focus on the first inequality. Consider for j ∈ Jc the zero-mean sub-Gaussian
variable uj , [d(t)j ]⊤(I− [P(t)]J)[D0]J[α0]J. The variance of uj is upper bounded by

E[u2
j ] ≤ α2[d(t)j ]⊤(I− [P(t)]J)[D0]J[D0]⊤J (I− [P(t)]J)d(t)j

= α2‖[D0]⊤J (I− [P(t)]J)d(t)j‖22
≤ α2‖Diag(tan(vJt))W

⊤
J (I− [P(t)]J)d(t)j‖22

≤ α2|||WJDiag(tan(vJt))|||22
≤ α2‖WJDiag(tan(vJt))‖2F
= α2

∑

j∈J

tan2(vjt),

where the first inequality exploits the definition of D0, i.e., D0 = Diag(cos(vt))−1D(t)−
WDiag(tan(vt)), combined with the relation (I − [P(t)]J)[D(t)]J = 0, while the other
upper bounds use the normalization of d(t) and WJ, along with the fact that projectors
have their spectral norm bounded by one. The final result follows by applying Lemma 6
and the union bound over |Jc| = p− k terms. Moreover, if |t| ≤ 1, we have |vjt| ≤ 1 and
tan2(vjt) ≤ 3(vjt)

2, which leads to
∑

j∈J tan2(vjt) ≤ 3‖v‖22t2 = 3t2.
For the second inequality, we proceed similarly with uj , [d(t)j ]⊤([D(t)]J−[D0]J)[α0]J

for j ∈ J. In this case, the variance of uj is upper bounded by

E[u2
j ] ≤ α2[d(t)j ]⊤([D(t)]J − [D0]J)([D(t)]J − [D0]J)⊤d(t)j

= α2‖([D(t)]J − [D0]J)⊤d(t)j‖22
≤ α2|||[D(t)]J − [D0]J|||22
≤ α2|||[D0]J(Diag(cos(vJt))− I) + WJDiag(sin(vJt))|||22
≤ 2α2‖[D0]J(Diag(cos(vJt))− I)‖2F + ‖WJDiag(sin(vJt))‖2F
= 2α2

∑

j∈J

(cos(vjt)− 1)2 + sin2(vjt) = 2α2
∑

j∈J

2(1− cos(vjt))

≤ 2α2
∑

j∈J

(vjt)
2 ≤ 2α2t2

where we have used the same arguments as above, along with the inequality 2(1 −
cos(z)) ≤ z2. The conclusion results from the application of Lemma 6 along with the
union bound over |J| = k terms.

Lemma 18
Let J ⊆ J1; pK and s ∈ {−1, 0, 1}|J|. Consider a dictionary D ∈ Rm×p such that D⊤

J DJ

is invertible. Consider also the vector α ∈ Rp defined by

α =

(

[D⊤
J DJ]−1[D⊤

J x− λs]

0

)

,

with x ∈ Rm and λ a nonnegative scalar. If the vector x can be written as x =
[D0]J[α0]J + ε for some (D0,α0, ε) ∈ Rm×p × Rp × Rm, then we have

‖[α−α0]J‖∞ ≤ |||[D⊤
J DJ]−1|||∞

[

λ+ ‖D⊤
J (DJ − [D0]J)[α0]J‖∞ + ‖D⊤

J ε‖∞
]

.
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Proof. The proof consists of simple algebraic manipulations. We first plug the expression
of x into that of α and then use the triangle inequality for ‖.‖∞, along with the definition
and the sub-multiplicativity of |||.|||∞.

Lemma 19
Let x ∈ Rm be a signal. Consider J ⊆ J1; pK and a dictionary D ∈ Rm×p such that
D⊤

J DJ is invertible. Consider also a sign vector s ∈ {−1, 1}|J| and define α̂ ∈ Rp by

α̂ =

(

[D⊤
J DJ]−1[D⊤

J x− λs]

0

)

,

for some regularization parameter λ ≥ 0. Let us introduce the projector PJ , DJ[D⊤
J DJ]−1D⊤

J

that projects onto the span of DJ. If the following two conditions hold






sign
(

[D⊤
J DJ]−1[D⊤

J x− λs]
)

= s,

‖D⊤
Jc(I−PJ)x‖∞ + λ|||D⊤

JcDJ[D⊤
J DJ]−1|||∞ < λ,

then α̂ is the unique solution of minα∈Rp [1
2‖x−Dα‖22+λ‖α‖1] and we have sign(α̂J) = s.

Proof. We first check that α̂ is a solution of the Lasso program. It is well-known (e.g.,
see Fuchs, 2005; Wainwright, 2009) that this statement is equivalent to the existence of
a subgradient z ∈ ∂‖α̂‖1 such that −D⊤(x − Dα̂) + λz = 0, where zj = sign(α̂j) if
α̂j 6= 0, and |zj | ≤ 1 otherwise.

We now build from s such a subgradient. Given the definition of α̂ and the assump-
tion made on its sign, we can take zJ , s. It now remains to find a subgradient on Jc

that agrees with the fact that α̂Jc = 0. More precisely, we define zJc by

λzJc , D⊤
Jc(x−Dα̂) = D⊤

Jc(I−PJ)x + λD⊤
JcDJ[D⊤

J DJ]−1s.

Using our assumption, we have ‖zJc‖∞ < 1. We have therefore proved that α̂ is a
solution of the Lasso program. The uniqueness comes from Lemma 1 in Wainwright
(2009).

6.9.3 Some useful concentration results

In this section, we first recall some known concentration results before proving more
specific lemmas.

Compilation of some known results

Definition 6 (Sub-Gaussian variables, e.g., see Buldygin and Kozachenko (2000); Ver-
shynin (2010))
A zero-mean random variable z is sub-Gaussian with parameter σ > 0 if and only if for
any t ≥ 0

E[exp(tz)] ≤ exp
(σ2t2

2

)

.
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We notably have for any t ≥ 0 the tail probability

Pr(|z| > t) ≤ 2 exp
(

− t2

2σ2

)

.

Moreover, if {zj}j∈J1;pK is a collection of p independent sub-Gaussian variables with
parameters σj, then

∑p
j=1 zj is also sub-Gaussian, with parameter

∑p
j=1 σ

2
j .

Lemma 20 (From Hsu et al. (2011))
Let us consider z ∈ Rm a random vector of independent sub-Gaussian variables with
parameters upper bounded by σ > 0. Let A ∈ Rm×p be a fixed matrix. For all t > 0, it
holds

Pr
(

‖Az‖22 > σ2(‖A‖2F + 2
√

Tr[(A⊤A)2]t+ 2|||A⊤A|||2t)
)

≤ exp(−t).

In particular, for any t ≥ 1, we have

Pr
(

‖Az‖22 > 5σ2‖A‖2Ft
)

≤ exp(−t).

Lemma 21 (From Krahmer and Ward (2010))
Let M ∈ Rp×p be a matrix with all its diagonal terms equal to zero. Consider a vector
y with independent Rademacher entries. We have for all t > 0

Pr(|y⊤My| > t) ≤ 2 exp
(

− 1

64
min

{ 96
65 t

|||M|||2
,

t2

‖M‖2F

})

.

Lemma 22 (From Hanson and Wright (1971), as stated in Nelson (2010))
Let M ∈ Rp×p be a symmetric matrix. Consider a vector y with i.i.d. sub-Gaussian
entries with parameter upper bounded by σ. There exist universal constants c0, c1 > 0
such that we have for all t > 0

Pr(|y⊤My− Tr(M)| > t) ≤ c0 exp
(

− c1 min
{ t

σ2‖M‖F

,
t2

σ4‖M‖2F

})

.

Lemma 23 (Hoeffding’s Inequality, e.g., see Boucheron et al. (2004))
Let {zj}j∈J1;pK be a collection of independent, bounded random variables such that for
any j ∈ J1; pK, it holds that zj ∈ [zj , zj ] almost surely. For any t ≥ 0, we have

Pr
(∣
∣
∣

p
∑

j=1

zj −
p
∑

j=1

E[zj ]
∣
∣
∣ > t

)

≤ 2 exp
(

− 2t2
∑p

j=1(zj − zj)2

)

.

Lemma 24 (Bernstein’s Inequality, e.g., see Boucheron et al. (2004))
Let {zj}j∈J1;pK be a collection of independent, zero-mean and bounded random variables
such that for any j ∈ J1; pK, it holds that |zj | ≤ z almost surely. Let us denote by σ2

j the

variance of zj and define σ2 , 1
p

∑p
j=1 σ

2
j . For any t ≥ 0, we have

Pr
(1

p

p
∑

j=1

zj > t
)

≤ exp
(

− t2

2σ2 + 2/3zt

)

.
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In particular, for any t ≤ 3σ
2z

√
p, we have

Pr
(1

p

p
∑

j=1

zj >
2σt√
p

)

≤ exp
(− t2).

Some more specific tail bounds

Lemma 25
Let M ∈ Rn×p be a matrix. Consider two independent sub-Gaussian vectors y ∈ Rn

and x ∈ Rm with i.i.d. entries of respective parameters σx and σy. There exist universal
constants c0, c1 > 0 such that we have for all t ≥ 1

Pr(|x⊤My| ≤ σxσy‖M‖Ft) ≥ 1− c0 exp(−c1t).

Proof. We simply apply the result from Lemma 22 on the quadratic form
[

1/σx x
1/σy y

]⊤
1

2

[

0 σxσyM
σxσyM⊤ 0

] [

1/σx x
1/σy y

]

.

Notice that the Frobenius norm of the augmented matrix is bounded by
√

2/2σxσy‖M‖F,
with

√
2/2 < 1.

Lemma 26
Let M ∈ Rn×n be a matrix. Consider a random vector y ∈ Rn with i.i.d. entries. Assume
the distribution of these entries to be symmetric and bounded, with ‖y‖∞ ≤ σ almost
surely. For all t ≥ 2, it holds that

Pr
(

|y⊤M sign(y)− E[|y1|]Tr(M)| ≤ 64σ‖M‖Ft
)

≥ 1− 4 exp(−t).

Proof. We start by splitting y⊤M sign(y) into

n∑

i=1

Mii|yi|+
n∑

i=1

sign(yi)|yi|
∑

k 6=i

sign(yk)Mik.

The expectation of the first term is equal to E[|y1|]Tr(M), while the second term is cen-
tered. Since the first term consists of a sum of independent bounded random variables,
we can apply Hoeffding’s inequality (see Lemma 23), that is, for all t ≥ 0,

Pr(|
n∑

i=1

Mii(yi − E[|yi|])| ≥ t) ≤ 2 exp
(

− 2t2

σ2‖diag(M)‖22

)

,

where we have used the fact that |yi| ∈ [0, σ] almost surely. Let us focus on the second
residual term. Notice that

n∑

i=1

sign(yi)|yi|
∑

k 6=i

sign(yk)Mik = sign(y)⊤Diag(|y|)Moffsign(y),
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where Moff stands for the matrix M with its diagonal terms set to zero. By symmetry,
the magnitude of yi is independent of its sign. So, conditionally on the values of |yi|, we
can apply Lemma 21, that is, for all t ≥ 2,

Pr(|sign(y)⊤Diag(|y|)Moffsign(y)| ≤ 45σ‖Moff‖Ft) ≥ 1− 2 exp(−t),

where we have used the fact 64 × 65/96 ≤ 45, and ‖Diag(|y|)Moff‖F ≤ σ‖Moff‖F.
Putting the pieces together with the union bound, the inequality ‖Moff‖F+‖diag(M)‖2 ≤√

2[‖Moff‖2F + ‖diag(M)‖22]1/2 =
√

2‖M‖F, and the simplification 45
√

2 ≤ 64, we obtain
the desired conclusion.
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7

Conclusion

The main thread of this thesis is structured sparsity which we have studied from
various angles, with statistical, algorithmic and applied considerations. We have first
introduced structured sparsity-inducing norms. They are capable of encoding high-order
structural information about the problem at hand, unlike standard sparsity-promoting
penalties based on cardinality. We have precisely characterized what type of prior knowl-
edge they can model, and have derived analysis for consistent structured variable selec-
tion, in both low- and high-dimensional settings.

Our second contribution lies in the use of structured sparsity-inducing norms within
the framework of dictionary learning. We have shown how the nonzero patterns of the
decompositions and/or dictionary elements can self-organize to best adapt to the consid-
ered class of signals. In addition, we have proposed an efficient and simple optimization
tool built upon nested block-coordinate descent procedures. These points are eventually
illustrated by an application to face recognition where we learn localized features more
robust to occlusions.

The third section of the thesis is dedicated to convex optimization. It proves that
problems regularized by structured sparsity-inducing norms can be efficiently solved by
proximal methods. In particular, we have shown how the proximity operator can be
computed exactly in various settings, based on dual formulations. This algorithmic
development notably paves the way for numerous large-scale applications, ranging from
topic models to background subtraction.

The fourth chapter discusses at greater length two applications of structured sparsity
to neuroimaging, in both supervised and unsupervised settings. We have first considered
the inter-subject prediction of sizes of objects from fMRI signals. A sparse hierarchical
regularization is shown to well capture the multi-scale aspects of the data, while dealing
properly with the inter-subject variability. Furthermore, we have studied brain resting-
state time series where structured dictionary learning has proved to be a promising tool.

The last chapter of this thesis is slightly next to the scope of structured sparsity
developed throughout the four previous chapters. It studies the local minima of the
standard non-convex formulation of sparse coding. In particular, we have proposed
a non-asymptotic analysis within a probabilistic model of sparse noisy signals, thus
extending earlier work limited to noiseless settings and/or under-complete dictionaries.
Our main result notably shows that, with high probability, a local minimum indeed
exists along some curves passing through the reference dictionary generating the signals.
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7. Conclusion

This thesis has explored several questions related to structured sparsity, hence provid-
ing with some answers, either full or partial. These answers raise in turn new challenges
and new directions for future research which we now discuss.

Throughout this thesis, we make the key assumption that we have at disposal some
structural prior knowledge that justifies the use of our norms. This point can of course
be debatable. Even though we have seen that dictionary learning relaxes in some sense
this constraint, it is rather rare to have an exact match between the structure we can
actually model and what the real data dictate. This remark suggests that an important
question is to be able to learn from the data the adequate structure. This is an obviously
difficult question, notably due to the combinatorial and discrete nature of the problem.
Further exploring submodular tools (Bach, 2010a,b) in this case seems an interesting
avenue of research.

Moreover, this thesis focuses on the use of structured sparsity only via the regulariza-
tion. It would also be of interest to consider structured data-fitting terms, for instance,
to model specific forms of noise and outliers (Liu et al., 2010a).

On the applied side, the last few years have been witnessing an increasing number
of applications of structured sparsity in various fields. Only recently, the domain of
natural language processing (NLP) has been considered (Martins et al., 2011). Further
developments of structured sparsity in NLP seem natural since it is a field where a
great deal of structural information is available, e.g., hierarchical in n-grams models.
Moreover, the large-scale problems typical from NLP could benefit from recent stochastic
extensions of proximal methods (Duchi and Singer, 2009; Hu et al., 2009; Xiao, 2010).
The contribution from this thesis regarding the computation of proximal operators for
structured norms could be directly applied.
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A

Proofs

This section of the appendix gathers the proofs and some technical elements encoun-
tered throughout the manuscript.

A.1 Proofs and Technical Elements of Chapter 1

A.1.1 Proof of Proposition 5

We recall that L(w) = 1
n

∑n
i=1 ℓ

(
yi,w

⊤xi
)
. Since w 7→ Ω(w) is convex and goes

to infinity when ‖w‖2 goes to infinity, and since L is lower bounded, by Weierstrass’
theorem, the problem in (2.2) admits at least one global solution.
•First case: Q invertible. The Hessian of L is

1

n

n∑

i=1

xix
⊤
i

∂2ℓ

∂y′2 (yi,w
⊤xi).

It is positive definite since Q is positive definite and mini∈{1,...,n}
∂2ℓ
∂y′2 (yi,w

⊤xi) > 0. So
L is strictly convex. Consequently the objective function L+µΩ is strictly convex, hence
the uniqueness of its minimizer.
•Second case: {1, . . . , p} belongs to G. We prove the uniqueness by contradiction. As-
sume that the problem in (2.2) admits two different solutions w and w̃. Then one of the
two solutions is different from 0, say w 6= 0.

By convexity, it means that any point of the segment [w, w̃] =
{
aw + (1− a)w̃; a ∈

[0, 1]
}

also minimizes the objective function L + µΩ. Since both L and µΩ are convex
functions, it means that they are both linear when restricted to [w, w̃].

Now, µΩ is only linear on segments of the form [v, tv] with v ∈ Rp and t > 0. So we
necessarily have w̃ = tw for some positive t. We now show that L is strictly convex on
[w, tw], which will contradict that it is linear on [w, w̃]. Let E = Span(x1, . . . ,xn) and
E⊥ be the orthogonal of E in Rp. The vector w can be decomposed in w = w′ + w′′

with w′ ∈ E and w′′ ∈ E⊥. Note that we have w′ 6= 0 (since if it was equal to 0, w′′

would be the minimizer of µΩ, which would imply w′′ = 0 and contradict w 6= 0). We
thus have (w⊤x1, . . . ,w

⊤xn) = (w′⊤x1, . . . ,w
′⊤xn) 6= 0.

This implies that the function s 7→ ℓ(yi, sw
⊤xi) is a polynomial of degree 2. So it is

not linear. This contradicts the existence of two different solutions, and concludes the
proof of uniqueness.
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Remark 7
Still by using that a sum of convex functions is constant on a segment if and only if
the functions are linear on this segment, the proof can be extended in order to replace
the alternative assumption “{1, . . . , p} belongs to G” by the weaker but more involved
assumption: for any (j, k) ∈ {1, . . . , p}2, there exists a group g ∈ G which contains both
j and k.

A.1.2 Proof of Theorem 1

For w ∈ Rp, we denote by Z(w) its zero pattern (i.e., the indices of zero-components
of w). To prove the result, it suffices to prove that for any set I ⊂ {1, . . . , p} with Ic /∈ Z
and |I| ≤ k − 1, the probability of

EI =
{
Y ∈ Rn: there exists w solution of the problem in (2.2) with Z(w) = Ic}

is equal to 0. We will prove this by contradiction: assume that there exists a set
I ⊂ {1, . . . , p} with Ic /∈ Z, |I| ≤ k − 1 and Pr(EI) > 0. Since Ic /∈ Z, there exists
α ∈ Hull(I)\I. Let J = I∪{α} and GI = {g ∈ G : g∩I 6= ∅} be the set of active groups.
Define RJ = {w ∈ Rp : wJc = 0}. The restrictions LJ : RJ → R and ΩJ : RJ → R of L
and Ω are continuously differentiable functions on

{
w ∈ RJ : wI 6= 0

}
with respective

gradients

∇LJ(w) =

(
∂LJ

∂wj
(w)

)⊤

j∈J

and ∇ΩJ(w) =

(

wj

(
∑

g∈GI ,
g∋j

(ωg

j )2‖ωg ◦w‖−1
2

))⊤

j∈J

.

Let f(w, Y ) = ∇LJ(w) + µ∇ΩJ(w), where the dependence in Y of f(w, Y ) is hidden
in ∇LJ(w) = 1

n

∑n
i=1(xi)J

∂ℓ
∂y′ (yi,w

⊤xi).
For Y ∈ EI , there exists w ∈ RJ with Z(w) = Ic, which minimizes the convex

function LJ + µΩJ . The vector w satisfies f(w, Y ) = 0. So we have proved EI ⊂ E ′
I ,

where

E ′
I =

{
Y ∈ Rn : there exists w ∈ RJ with Z(w) = Ic and f(w, Y ) = 0

}
.

Let ỹ ∈ EI . Consider the equation f(w, ỹ) = 0 on
{
w ∈ RJ : wj 6= 0 for any j ∈ I}.

By construction, we have |J | ≤ k, and thus, by assumption, the matrix

XJ =
(
(x1)J , ..., (xn)J

)⊤ ∈ Rn×|J |

has rank |J |. As in the proof of Proposition A.1.1, this implies that the function LJ

is strictly convex, and then, the uniqueness of the minimizer of LJ + µΩ, and also the
uniqueness of the point at which the gradient of this function vanishes. So the equation
f(w, ỹ) = 0 on

{
w ∈ RJ : wj 6= 0 for any j ∈ I} has a unique solution, which we will

write wỹ
J .

On a small enough ball around (wỹ
J , ỹ), f is continuously differentiable since none of

the norms vanishes at wỹ
J . Let (fj)j∈J be the components of f and HJJ =

( ∂fj

∂wk

)

j∈J,k∈J
.

The matrix HJJ is actually the sum of:

196



A.1. Proofs and Technical Elements of Chapter 1

a) the Hessian of LJ , which is positive definite (still from the same argument as in
the proof of Theorem A.1.1),

b) the Hessian of the norm ΩJ around (wỹ
J , ỹ) that is positive semidefinite on this

small ball according to the Hessian characterization of convexity (Borwein and
Lewis, 2006, Theorem 3.1.11).

Consequently, HJJ is invertible. We can now apply the implicit function theorem to
obtain that for Y in a neighborhood of ỹ,

wY = ψ(Y ),

with ψ = (ψj)j∈J a continuously differentiable function satisfying the matricial relation

(. . . ,∇ψj , . . . )HJJ + (. . . ,∇yfj , . . . ) = 0.

Let cα denote the column vector of H−1
JJ corresponding to the index α, and let D the

diagonal matrix whose (i, i)-th element is ∂2ℓ
∂y∂y′ (yi,x

⊤
i wY ). Since (. . . ,∇yfj , . . . ) =

1
nDXJ , we have

∇ψα = − 1

n
DXJcα.

Now, since XJ has full rank, cα 6= 0 and none of the diagonal elements of D is null (by
assumption on ℓ), we have ∇ψα 6= 0. Without loss of generality, we may assume that
∂ψα/∂y1 6= 0 on a neighborhood of ỹ.

We can apply again the implicit function theorem to show that on an open ball in
Rn centered at ỹ, say Bỹ, the solution to ψα(Y ) = 0 can be written y1 = ϕ(y2, . . . , yn)
with ϕ a continuously differentiable function.

By Fubini’s theorem and by using the fact that the Lebesgue measure of a singleton
in Rn equals zero, we get that the set A(ỹ) =

{
Y ∈ Bỹ : ψα(Y ) = 0

}
has thus zero

probability. Let S ⊂ EI be a compact set. We thus have S ⊂ E ′
I .

By compacity, the set S can be covered by a finite number of ball Bỹ. So there exist
ỹ1, . . . , ỹm such that we have S ⊂ A(ỹ1)∪· · ·∪A(ỹm). Consequently, we have Pr(S) = 0.

Since this holds for any compact set in EI and since the Lebesgue measure is regular,
we have Pr(EI) = 0, which contradicts the definition of I, and concludes the proof.

A.1.3 Proof of the minimality of the Backward procedure (see
Algorithm 1)

There are essentially two points to show: (1) G spans Z, and (2) G is minimal.
The first point can be shown by a proof by recurrence on the depth of the DAG.

At step t, the base G(t) verifies {⋃g∈G′ G, ∀G′ ⊆ G(t)} = {g ∈ Z, |g| ≤ t} because an
element g ∈ Z is either the union of itself or the union of elements strictly smaller. The
initialization t = ming∈Z |g| is easily verified, the leafs of the DAG being necessarily in
G.
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As for the second point, we proceed by contradiction. If there exists another base
G∗ that spans Z such that G∗ ⊂ G, then

∃ e ∈ G, e /∈ G∗.

By definition of the set Z, there exists in turn G′ ⊆ G∗, G′ 6= {e} (otherwise, e would
belong to G∗), verifying e =

⋃

g∈G′ g, which is impossible by construction of G whose
members cannot be the union of elements of Z.

A.1.4 Proof of Proposition 6

The proposition comes from a classic result of Fenchel Duality (Borwein and Lewis,
2006, Theorem 3.3.5 and Exercise 3.3.9) when we consider the convex function

hJ : wJ 7→
λ

2
[ΩJ(wJ)]2 ,

whose Fenchel conjugate h∗
J is given by κJ 7→ 1

2λ [Ω∗
J(κJ)]2 (Boyd and Vandenberghe,

2004, example 3.27). Since the set

{wJ ∈ R|J |; hJ(wJ) <∞} ∩ {wJ ∈ R|J |; LJ(wJ) <∞ and LJ is continuous at wJ}

is not empty, we get the first part of the proposition. Moreover, the primal-dual variables
{wJ ,κJ} is optimal if and only if

{

−κJ ∈ ∂LJ(wJ),

κJ ∈ ∂[λ
2 [ΩJ(wJ)]2] = λΩJ(wJ)∂ΩJ(wJ),

where ∂ΩJ(wJ) denotes the subdifferential of ΩJ at wJ . The differentiability of LJ at
wJ then gives ∂LJ(wJ) = {∇LJ(wJ)}. It now remains to show that

κJ ∈ λΩJ(wJ)∂ΩJ(wJ) (A.1)

is equivalent to

w⊤
J κJ =

1

λ
[Ω∗

J(κJ)]2 = λ [ΩJ(wJ)]2 . (A.2)

As a starting point, the Fenchel-Young inequality (Borwein and Lewis, 2006, Proposition
3.3.4) gives the equivalence between (A.1) and

λ

2
[ΩJ(wJ)]2 +

1

2λ
[Ω∗

J(κJ)]2 = w⊤
J κJ . (A.3)

In addition, we have (Rockafellar, 1997)

∂ΩJ(wJ) = {uJ ∈ R|J |; u⊤
J wJ = ΩJ(wJ) and Ω∗

J(uJ) ≤ 1}. (A.4)

Thus, if κJ ∈ λΩJ(wJ)∂ΩJ(wJ) then w⊤
J κJ = λ [ΩJ(wJ)]2 . Combined with (A.3), we

obtain w⊤
J κJ = 1

λ [Ω∗
J(κJ)]2 .
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Reciprocally, starting from (A.2), we notably have

w⊤
J κJ = λ [ΩJ(wJ)]2 .

In light of (A.4), it suffices to check that Ω∗
J(κJ) ≤ λΩJ(wJ) in order to have Eq. (A.1).

Combining Eq. (A.2) with the definition of the dual norm, it comes

1

λ
[Ω∗

J(κJ)]2 = w⊤
J κJ ≤ Ω∗

J(κJ)ΩJ(wJ),

which concludes the proof of the equivalence between Eq. (A.1) and Eq. (A.2).

A.1.5 Proofs of Propositions 7 and 8

In order to check that the reduced solution wJ is optimal for the full problem in
Eq. (2.5), we complete with zeros on Jc to define w, compute κ = −∇L(w), which is
such that κJ = −∇LJ(wJ), and get a duality gap for the full problem equal to

1

2λ

(

[Ω∗(κ)]2 − λw⊤
J κJ

)

.

By designing upper and lower bounds for Ω∗(κ), we get sufficient and necessary condi-
tions.

Proof of Proposition 7

Let us suppose that w∗ =
(w∗

J
0Jc

)
is optimal for the full problem in Eq. (2.5). Following

the same derivation as in Lemma 32 (up to the squaring of the regularization Ω), we
have that w∗ is a solution of Eq. (2.5) if and only if for all u ∈ Rp,

u⊤∇L(w∗) + λΩ(w∗)(u⊤
J rJ + (Ωc

J)[uJc ]) ≥ 0,

with

r =
∑

g∈GJ

ωg ◦ ωg ◦w∗

‖ωg ◦w∗‖2
.

We project the optimality condition onto the variables that can possibly enter the active
set, i.e., the variables in ΠP(J). Thus, for each K ∈ ΠP(J), we have for all uK\J ∈
R|K\J |,

u⊤
K\J∇L(w∗)K\J + λΩ(w∗)

∑

g∈GK\J ∩(GJ )c

‖ωg

K\J ◦ ug∩K\J‖2 ≥ 0.

By combining Lemma 31 and the fact that GK\J ∩ (GJ)c = GK\GJ , we have for all
G ∈ GK\GJ , K\J ⊆ g and therefore ug∩K\J = uK\J . Since we cannot compute the dual
norm of uK\J 7→ ‖ωg

K\J ◦uK\J‖2 in closed-form, we instead use the following upperbound

‖ωg

K\J ◦ uK\J‖2 ≤ ‖ωg

K\J‖∞‖uK\J‖2,
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so that we get for all uK\J ∈ R|K\J |,

u⊤
K\J∇L(w∗)K\J + λΩ(w∗)

∑

g∈GK\GJ

‖ωg

K\J‖∞‖uK\J‖2 ≥ 0.

Finally, Proposition 6 gives λΩ(w∗) =
{− λw∗⊤∇L(w∗)

} 1
2 , which leads to the desired

result.

Proof of Proposition 8

The goal of the proof is to upper bound the dual norm Ω∗(κ) by taking advantage
of the structure of G; we first show how we can upper bound Ω∗(κ) by (Ωc

J)∗[κJc ]. We
indeed have:

Ω∗(κ) = max∑

g∈GJ
‖ωg◦v‖2+

∑

g∈(GJ )c ‖ωg◦v‖2≤1
v⊤κ

≤ max∑

g∈GJ
‖ωg

J ◦vJ ‖2+
∑

g∈(GJ )c ‖ωg◦v‖2≤1
v⊤κ

= max
ΩJ (vJ )+(Ωc

J )(vJc )≤1
v⊤κ

= max {Ω∗
J(κJ), (Ωc

J)∗[κJc ]} ,

where in the last line, we use Lemma 33. Thus the duality gap is less than

1

2λ

(

[Ω∗(κ)]2 − [Ω∗
J(κJ)]2

)

≤ 1

2λ
max{0, [(Ωc

J)∗[κJc ]]2 − [Ω∗
J(κJ)]2},

and a sufficient condition for the duality gap to be smaller than ε is

(Ωc
J)∗[κJc ] ≤ (2λε+ [Ω∗

J(κJ)]2)
1
2 .

Using Proposition 6, we have −λw⊤∇L(w) = [Ω∗
J(κJ)]2 and we get the right-hand side

of Proposition 8. It now remains to upper bound (Ωc
J)∗[κJc ]. To this end, we call upon

Lemma 29 to obtain:

(Ωc
J)∗[κJc ] ≤ max

g∈(GJ )c







∑

j∈g

{

κj
∑

h∈j,h∈(GJ )cωh
j

}2






1
2

.

Among all groups g ∈ (GJ)c, the ones with the maximum values are the largest ones,
i.e., those in the fringe groups FJ = {g ∈ (GJ)c ; ∄g′ ∈ (GJ)c, g ⊆ g′}. This argument
leads to the result of Proposition 8.

A.1.6 Proof of Theorem 2

Necessary condition: We mostly follow the proof of Zou (2006); Bach (2008b). Let
ŵ ∈ Rp be the unique solution of

min
w∈Rp

L(w) + µΩ(w) = min
w∈Rp

F (w).
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The quantity ∆̂ = (ŵ−w⋆)/µ is the minimizer of F̃ defined as

F̃ (∆) =
1

2
∆⊤Q∆− µ−1q⊤∆ + µ−1 [Ω(w⋆ + µ∆)− Ω(w⋆)] ,

where q = 1
n

∑n
i=1 εixi. The random variable µ−1q⊤∆ is a centered Gaussian with

variance
√

∆⊤Q∆/(nµ2). Since Q→ Q⋆, we obtain that for all ∆ ∈ Rp,

µ−1q⊤∆ = op(1).

Since µ→ 0, we also have by taking the directional derivative of Ω at w in the direction
of ∆

µ−1 [Ω(w⋆ + µ∆)− Ω(w⋆)] = [r⋆
J⋆ ]⊤∆J⋆ + Ω[J⋆]c(∆[J⋆]c) + o(1),

so that for all ∆ ∈ Rp

F̃ (∆) = ∆⊤Q⋆∆ + [r⋆
J⋆ ]⊤∆⋆

J + Ω[J
⋆]c(∆[J⋆]c) + op(1) = F̃lim(∆) + op(1).

The limiting function F̃lim being stricly convex (because Q⋆ ≻ 0) and F̃ being convex,
we have that the minimizer ∆̂ of F̃ tends in probability to the unique minimizer of F̃lim

(Fu and Knight, 2000) referred to as ∆∗.
By assumption, with probability tending to one, we have J⋆ = {j ∈ J1; pK, ŵj 6= 0},

hence for any j ∈ [J⋆]c µ∆̂j = (ŵ −w⋆)j = 0. This implies that the nonrandom vector
∆∗ verifies ∆∗

[J⋆]c = 0.

As a consequence, ∆∗
J⋆ minimizes ∆⊤

J⋆Q⋆
J⋆J⋆∆J⋆ + [r⋆

J⋆ ]⊤∆⋆
J, hence r⋆

J⋆ = −QJ⋆J⋆∆∗
J⋆ .

Besides, since ∆∗ is the minimizer of F̃lim, by taking the directional derivatives as in the
proof of Lemma 32, we have

(Ω[J⋆]c)∗[Q⋆
[J⋆]cJ⋆∆∗

J⋆ ] ≤ 1.

This gives the necessary condition.

Sufficient condition: We turn to the sufficient condition. We first consider the prob-
lem reduced to the hull J⋆,

min
w∈R|J⋆|

L⋆
J(wJ⋆) + µΩJ(wJ⋆).

that is strongly convex since QJ⋆J⋆ is positive definite and thus admits a unique solution
ŵJ⋆ . With similar arguments as the ones used in the necessary condition, we can show
that ŵJ⋆ tends in probability to the true vector wJ⋆ . We now consider the vector ŵ ∈ Rp

which is the vector ŵJ⋆ padded with zeros on [J⋆]c. Since, from Theorem 1, we almost
surely have Hull({j ∈ J1; pK, ŵj 6= 0}) = {j ∈ J1; pK, ŵj 6= 0}, we have already that the
vector ŵ consistently estimates the hull of w⋆ and we have that ŵ tends in probability
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to w⋆. From now on, we consider that ŵ is sufficiently close to w⋆, so that for any
g ∈ GJ⋆ , ‖ωg ◦ ŵ‖2 6= 0. We may thus introduce

r̂ =
∑

g∈GJ⋆

ωg ◦ ωg ◦ ŵ

‖ωg ◦ ŵ‖2
.

It remains to show that ŵ is indeed optimal for the full problem (that admits a unique
solution due to the positiveness of Q). By construction, the optimality condition (see
Lemma 32) relative to the active variables J⋆ is already verified. More precisely, we have

∇L(ŵ)J⋆ + µ r̂J⋆ = QJ⋆J⋆(ŵJ⋆ −w⋆
J⋆)− qJ⋆ + µ r̂J⋆ = 0.

Moreover, for all u[J⋆]c ∈ R|[J⋆]c|, by using the previous expression and the invertibily of
Q, we have

u⊤
[J⋆]c∇L(ŵ)[J⋆]c = u⊤

[J⋆]c

{

−µQ[J⋆]cJ⋆Q−1
J⋆J⋆ r̂J⋆ + Q[J⋆]cJ⋆Q−1

J⋆J⋆qJ⋆ − q[J⋆]c

}

.

The terms related to the noise vanish, having actually q = op(1). Since Q → Q⋆ and
r̂J⋆ → r⋆

J⋆ , we get for all u[J⋆]c ∈ R|[J⋆]c|

u⊤
[J⋆]c∇L(ŵ)[J⋆]c = −µu⊤

[J⋆]c

{

Q⋆
[J⋆]⋆J⋆ [Q⋆

J⋆J⋆ ]−1r⋆
J⋆

}

+ op(µ).

Since we assume (Ω[J⋆]c)∗[Q⋆
[J⋆]cJ⋆ [Q⋆

J⋆J⋆ ]−1r⋆
J⋆ ] < 1, we obtain

−u⊤
[J⋆]c∇L(ŵ)[J⋆]c < µ(Ωc

J⋆)[u[J⋆]c ] + op(µ),

which proves the optimality condition of Lemma 32 relative to the inactive variables: ŵ
is therefore optimal for the full problem.

A.1.7 Proof of Theorem 3

Since our analysis takes place in a finite-dimensional space, all the norms defined on
this space are equivalent. Therefore, we introduce the equivalence parameters a(J⋆), A(J⋆) >
0 such that

∀u ∈ R|J⋆|, a(J⋆)‖u‖1 ≤ ΩJ⋆ [u] ≤ A(J⋆)‖u‖1.

We similarly define a([J⋆]c), A([J⋆]c) > 0 for the norm (Ωc
J⋆) on R|[J⋆]c|. In addition, we

immediatly get by order-reversing:

∀u ∈ R|J⋆|, A(J⋆)−1‖u‖∞ ≤ (ΩJ⋆)∗[u] ≤ a(J⋆)−1‖u‖∞.

For any matrix Γ, we also introduce the operator norm ‖Γ‖m,s defined as

‖Γ‖m,s = sup
‖u‖s≤1

‖Γu‖m.
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Moreover, our proof will rely on the control of the expected dual norm for isonormal
vectors: E [(Ωc

J⋆)∗(v)] with v a centered Gaussian random variable with unit covariance
matrix. In the case of the Lasso, it is of order (log p)1/2.

Following Bach (2008b) and Nardi and Rinaldo (2008), we consider the reduced
problem on J⋆,

min
w∈Rp

LJ⋆(wJ⋆) + µΩJ(wJ⋆)

with solution ŵJ⋆ , which can be extended to Jc with zeros. From optimality conditions
(see Lemma 32), we know that

(Ω⋆
J)∗[QJ⋆J⋆(ŵJ⋆ −w⋆

J⋆)− qJ⋆ ] ≤ µ, (A.5)

where the vector q ∈ Rp is defined as q , 1
n

∑n
i=1 εixi. We denote by

ν , min{|w⋆
j |; w⋆

j 6= 0}

the smallest nonzero components of w⋆. We first prove that we must have with high
probability ‖ŵg‖∞ > 0 for all g ∈ GJ⋆ , proving that the hull of the active set of ŵJ⋆ is
exactly J⋆ (i.e., no active group is missing).
We have

‖ŵJ⋆ −w⋆
J⋆‖∞ ≤ ‖Q−1

J⋆J⋆‖∞,∞‖QJ⋆J⋆(ŵJ⋆ −w⋆
J⋆)‖∞

≤ |J⋆|1/2κ−1 (‖QJ⋆J⋆(ŵJ⋆ −w⋆
J⋆)− qJ⋆‖∞ + ‖qJ⋆‖∞) ,

hence from (A.5) and the definition of A(J⋆),

‖ŵJ⋆ −w⋆
J⋆‖∞ ≤ |J⋆|1/2κ−1 (µA(J⋆) + ‖qJ⋆‖∞) . (A.6)

Thus, if we assume µ ≤ κν
3|J⋆|1/2A(J⋆)

and

‖qJ⋆‖∞ ≤
κν

3|J⋆|1/2
, (A.7)

we get
‖ŵJ⋆ −w⋆

J⋆‖∞ ≤ 2ν/3, (A.8)

so that for all g ∈ GJ⋆ , ‖ŵg‖∞ ≥ ν
3 , hence the hull is indeed selected.

This also ensures that ŵJ⋆ satisfies the equation (see Lemma 32)

QJ⋆J⋆ (ŵJ⋆ −w⋆
J⋆)− qJ⋆ + µr̂J⋆ = 0, (A.9)

where

r̂ =
∑

g∈GJ⋆

ωg ◦ ωg ◦ ŵ

‖ωg ◦ ŵ‖2
.

We now prove that the ŵ padded with zeros on [J⋆]c is indeed optimal for the full
problem with high probability. According to Lemma 32, since we have already proved
(A.9), it suffices to show that

(Ω[J⋆]c)∗[∇L(ŵ)[J⋆]c ] ≤ µ.
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Defining q[J⋆]c|J⋆ , q[J⋆]c −Q[J⋆]cJ⋆Q−1
J⋆J⋆qJ⋆ , we can write the gradient of L on [J⋆]c as

∇L(ŵ)[J⋆]c = −q[J⋆]c|J⋆ − µQ[J⋆]cJ⋆Q−1
J⋆J⋆ r̂J⋆

= −q[J⋆]c|J⋆ − µQ[J⋆]cJ⋆Q−1
J⋆J⋆(r̂J⋆ − r⋆

J⋆)− µQ[J⋆]cJ⋆Q−1
J⋆J⋆r⋆

J⋆ ,

which leads us to control the difference r̂J⋆ − r⋆
J⋆ . Using Lemma 30, we get

‖r̂J⋆ − r⋆
J⋆‖1 ≤ ‖ŵJ⋆ −w⋆

J⋆‖∞
(
∑

g∈GJ⋆

‖ωg
J⋆ ‖2

2

‖ωg◦w‖2
+
∑

g∈GJ⋆

‖ωg◦ωg◦w‖2
1

‖ωg◦w‖2

3
)

,

where w = t0ŵ + (1− t0)w⋆ for some t0 ∈ (0, 1).
Let J = {k ∈ J⋆ : w⋆

k 6= 0} and let ϕ be defined as

ϕ = sup
u∈Rp:J⊂{k∈J⋆:uk 6=0}⊂J⋆

g∈GJ⋆

‖ωg ◦ ωg ◦ u‖1
‖ωg

J
◦ ωg

J
◦ u

J
‖1
≥ 1.

The term ϕ basically measures how close J⋆ and J are, i.e., how relevant the prior
encoded by G about the hull J⋆ is. By using Eq. (A.8), we have

‖ωg ◦w‖22 ≥ ‖ωg

J
◦w

J
‖22 ≥ ‖ωg

J
◦ ωg

J
◦w

J
‖1
ν

3
≥ ‖ωg ◦ ωg ◦w‖1

ν

3ϕ
,

along with
‖ωg ◦w‖2 ≥ ‖ωg

J
◦w

J
‖2 ≥ ‖ωg

J
‖2
ν

3
≥ ‖ωg

J⋆‖2
ν

3
√
ϕ

and
‖w‖∞ ≤

5

3
‖w⋆‖∞.

Therefore we have

‖r̂J⋆ − r⋆
J⋆‖∞ ≤ ‖ŵJ⋆ −w⋆

J⋆‖∞
∑

g∈GJ⋆

(
‖ωg

J⋆ ‖2
2

‖ωg◦w‖∞
+ 5ϕ

ν

‖w⋆‖∞‖ωg
J⋆ ◦ωg

J⋆ ‖1

‖ωg◦w‖2

)

≤ 3
√

ϕ‖ŵJ⋆ −w⋆
J⋆ ‖∞

ν

(

1 + 5ϕ‖w⋆‖∞

ν

)
∑

g∈GJ⋆ ‖ωg

J⋆‖2.

Introducing α = 18ϕ3/2‖w⋆‖∞

ν2

∑

g∈GJ⋆ ‖ωg

J⋆‖2, we thus have proved

‖r̂J⋆ − r⋆
J⋆‖1 ≤ α‖ŵJ⋆ −w⋆

J⋆‖∞. (A.10)

By writing the Schur complement of Q on the block matrices Q[J⋆]c[J⋆]c and QJ⋆J⋆ ,
the positiveness of Q implies that the diagonal terms diag(Q[J⋆]cJ⋆Q−1

J⋆J⋆QJ⋆[J⋆]c) are less

than one, which results in ‖Q[J⋆]cJ⋆Q
−1/2
J⋆J⋆ ‖∞,2 ≤ 1. We then have

‖Q[J⋆]cJ⋆Q−1
J⋆J⋆(r̂J⋆ − r⋆

J⋆)‖∞ = ‖Q[J⋆]cJ⋆Q
−1/2
J⋆J⋆ Q

−1/2
J⋆J⋆ (r̂J⋆ − r⋆

J⋆)‖∞ (A.11)

≤ ‖Q[J⋆]cJ⋆Q
−1/2
J⋆J⋆ ‖∞,2‖Q−1/2

J⋆J⋆ ‖2‖r̂J⋆ − r⋆
J⋆‖2(A.12)

≤ κ−1/2‖r̂J⋆ − r⋆
J⋆‖1 (A.13)

≤ κ−3/2α|J⋆|1/2 (µA(J⋆) + ‖qJ⋆‖∞) , (A.14)
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where the last line comes from Eq. (A.6) and (A.10). We get

(Ωc
J⋆)∗[Q[J⋆]cJ⋆Q−1

J⋆J⋆(r̂J⋆ − r⋆
J⋆)] ≤ α|J⋆|1/2

κ3/2a([J⋆]c)
(µA(J⋆) + ‖qJ⋆‖∞) .

Thus, if the following inequalities are verified

α|J⋆|1/2A(J⋆)

κ3/2a([J⋆]c)
µ ≤ τ

4 , (A.15)

α|J⋆|1/2

κ3/2a([J⋆]c)
‖qJ⋆‖∞ ≤ τ

4 , (A.16)

(Ωc
J⋆)∗[q[J⋆]c|J⋆ ] ≤ µτ

2 , (A.17)

we obtain

(Ωc
J⋆)∗[∇L(ŵ)[J⋆]c ] ≤ (Ωc

J⋆)∗[−q[J⋆]c|J⋆ − µQ[J⋆]cJ⋆Q−1
J⋆J⋆r⋆

J⋆ ]

≤ (Ωc
J⋆)∗[−q[J⋆]c|J⋆ ] + µ(1− τ) + µτ/2 ≤ µ,

i.e., J⋆ is exactly selected.
Combined with earlier constraints, this leads to the first part of the desired proposi-

tion.
We now need to make sure that the conditions Eq. (A.7), (A.16) and (A.17) hold

with high probability. To this end, we upperbound, using Gaussian concentration in-
equalities, two tail-probabilities. First, q[J⋆]c|J⋆ is a centered Gaussian random vector
with covariance matrix

E
[
q[J⋆]c|J⋆q⊤

[J⋆]c|J⋆

]
= E

[

q[J⋆]cq⊤
[J⋆]c − q[J⋆]cq⊤

J⋆Q−1
J⋆J⋆QJ⋆[J⋆]c

−Q[J⋆]cJ⋆Q−1
J⋆J⋆qJ⋆q⊤

[J⋆]c + Q[J⋆]cJ⋆Q−1
J⋆J⋆qJ⋆q⊤

J⋆Q−1
J⋆J⋆QJ⋆[J⋆]c

]

=
σ2

n
Q[J⋆]c[J⋆]c|J⋆ ,

where Q[J⋆]c[J⋆]c|J⋆ , Q[J⋆]c[J⋆]c − Q[J⋆]cJ⋆Q−1
J⋆J⋆QJ⋆[J⋆]c . In particular, (Ωc

J⋆)∗[q[J⋆]c|J⋆ ]

has the same distribution as ψ(v), with ψ : u 7→ (Ωc
J⋆)∗(σn−1/2Q

1/2
[J⋆]c[J⋆]c|J⋆u) and v a

centered Gaussian random variable with unit covariance matrix.
Since for any u we have u⊤Q[J⋆]c[J⋆]c|J⋆u ≤ u⊤Q[J⋆]c[J⋆]cu ≤ ‖Q1/2‖22‖u‖22, by using

Sudakov-Fernique inequality (Adler, 1990, Theorem 2.9), we get:

E[(Ωc
J⋆)∗[q[J⋆]c|J⋆ ] = E sup

(Ωc
J⋆ )(u)≤1

u⊤q[J⋆]c|J⋆ ≤ σn−1/2‖Q‖1/2
2 E sup(Ωc

J⋆ )(u)≤1 u⊤v

≤ σn−1/2‖Q‖1/2
2 E[(Ωc

J⋆)∗(v)].

In addition, we have

|ψ(u)− ψ(s)| ≤ ψ(u− s) ≤ σn−1/2a([J⋆]c)−1‖Q
[J⋆]c[J⋆]c|J⋆‖1/2

∞ (u−s)
.
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On the other hand, since Q has unit diagonal and Q[J⋆]cJ⋆Q−1
J⋆J⋆QJ⋆[J⋆]c has diagonal

terms less than one, Q[J⋆]c[J⋆]c|J⋆ also has diagonal terms less than one, which implies

that ‖Q1/2
[J⋆]c[J⋆]c|J⋆‖∞,2 ≤ 1. Hence ψ is a Lipschitz function with Lipschitz constant

upper bounded by σn−1/2a([J⋆]c)−1. Thus by concentration of Lipschitz functions of
multivariate standard random variables (Massart, 2003, Theorem 3.4), we have for t > 0:

Pr
[

(Ωc
J⋆)∗[q[J⋆]c|J⋆ ]≥ t+σn−1/2‖Q‖1/2

2 E [(Ωc
J⋆)∗(v)]

]

≤ exp

(

−nt
2a([J⋆]c)2

2σ2

)

.

Applied for t = µτ/2 ≥ 2σn−1/2‖Q‖1/2
2 E [(Ωc

J⋆)∗(v)], we get (because (u − 1)2 ≥ u2/4
for u ≥ 2):

Pr
[

(Ωc
J⋆)∗[q[J⋆]c|J⋆ ]≥ t

]

≤ exp

(

−nµ
2τ2a([J⋆]c)2

32σ2

)

.

It finally remains to control the term Pr(‖qJ⋆‖∞ ≥ ξ), with

ξ =
κν

3
min

{

1,
3τκ1/2a([J⋆]c)

4αν

}

.

We can apply classical inequalities for standard random variables (Massart, 2003, The-
orem 3.4) that directly lead to

Pr(‖qJ⋆‖∞ ≥ ξ) ≤ 2|J⋆| exp

(

−nξ
2

2σ2

)

.

To conclude, Theorem 3 holds with

C1(G, J⋆) =
a([J⋆]c)2

16
, (A.18)

C2(G, J⋆) =

(

κν

3
min

{

1,
τκ1/2a([J⋆]c)ν

24ϕ3/2‖w⋆‖∞
∑

g∈GJ⋆ ‖ωg

J⋆‖2

})2

, (A.19)

C3(G, J⋆) = 4‖Q‖1/2
2 E [(Ωc

J⋆)∗(v)] , (A.20)

and

C4(G, J⋆) =
κν

3A(J⋆)
min

{

1,
τκ1/2a([J⋆]c)ν

24ϕ3/2‖w⋆‖∞
∑

g∈GJ⋆ ‖ωg

J⋆‖∞

}

,

where we recall the definitions: v a centered Gaussian random variable with unit covari-
ance matrix, J = {j ∈ J⋆ : w⋆

j 6= 0}, ν = min{|w⋆
j |; j ∈ J},

ϕ = sup
u∈Rp:J⊂{k∈J⋆:uk 6=0}⊂J⋆

g∈GJ⋆

‖ωg ◦ ωg ◦ u‖1
‖ωg

J
◦ ωg

J
◦ u

J
‖1
,

κ = λmin(QJ⋆J⋆) > 0 and τ > 0 such that (Ωc
J⋆)∗[Q[J⋆]cJ⋆Q−1

J⋆J⋆r⋆] < 1− τ .
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A.1.8 A first order approach to solve Eq. 2.2 and Eq. 2.5

Both regularized minimization problems Eq. 2.2 and Eq. 2.5 (that just differ in the
squaring of Ω) can be solved by using generic toolboxes for second-order cone program-
ming (SOCP) (Boyd and Vandenberghe, 2004). We propose here a first order approach
that takes up ideas from Micchelli and Pontil (2006); Rakotomamonjy et al. (2008) and
that is based on the following variational equalities: for x ∈ Rp, we have

‖x‖21 = min
z∈Rp

+,
∑p

j=1
zj≤1

p
∑

j=1

x2
j

zj
,

whose minimum is uniquely attained for zj = |xj |/‖x‖1. Similarly, we have

2‖x‖1 = min
z∈Rp

+

p
∑

j=1

x2
j

zj
+ ‖z‖1,

whose minimun is uniquely obtained for zj = |xj |. Thus, we can equivalently rewrite
Eq. 2.2 as

min
w∈Rp,

(ηg)g∈G∈R|G|
+

+
1

n

n∑

i=1

ℓ
(
yi,w

⊤xi
)µ

2

p
∑

j=1

w2
j ζ−1

j +
µ

2
‖(ηg)g∈G‖1, (A.21)

with ζj = (
∑

g∋j(ω
g

j )2(ηg)−1)−1. In the same vein, Eq. 2.5 is equivalent to

min
w∈Rp,

(ηg)g∈G∈R|G|
+ ,

∑

g∈G
ηg≤1

1

n

n∑

i=1

ℓ
(
yi,w

⊤xi
)λ

2

p
∑

j=1

w2
j ζ−1

j , (A.22)

where ζj is defined as above. The reformulations Eq. A.21 and Eq. A.22 are jointly
convex in {w, (ηg)g∈G} and lend themselves well to a simple alternating optimization
scheme between w (for instance, w can be computed in closed-form when the square
loss is used) and (ηg)g∈G (whose optimal value is always a closed-form solution). If the

variables (ηg)g∈G ∈ R|G|
+ are bounded away from zero by a smoothing parameter, the

convergence of this scheme is guaranteed by standard results about block coordinate
descent procedures (Bertsekas, 1999).

This first order approach is computationally appealing since it allows warm-restart,
which can dramatically speed up the computation over regularization paths. Moreover,
it does not make any assumptions on the nature of the family of groups G.

A.1.9 Technical lemmas

In this last section of the appendix, we give several technical lemmas. We consider
I ⊆ J1; pK and GI = {g ∈ G; g ∩ I 6= ∅} ⊆ G, i.e., the set of active groups when the
variables I are selected.
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We begin with a dual formulation of Ω∗ obtained by conic duality (Boyd and Van-
denberghe, 2004):

Lemma 27
Let uI ∈ R|I|. We have

(ΩI)∗[uI ] = min
(ξg

I )g∈GI

max
g∈GI

‖ξg

I‖2

s.t. uj +
∑

g∈GI ,G∋j

ωg

jξg

j = 0 and ξg

j = 0 if j /∈ G.

Proof. By definiton of (ΩI)∗[uI ], we have

(ΩI)∗[uI ] = max
ΩI(vI)≤1

u⊤
I vI .

By introducing the primal variables (αg)g∈GI
∈ R|GI |, we can rewrite the previous max-

imization problem as

(ΩI)∗[uI ] = max
v,
∑

g∈GI
αg≤1

u⊤
I vI , s.t. ∀ g ∈ GI , ‖ωg

I ◦ uG∩I‖2 ≤ αg,

which is a second-order cone program (SOCP) with |GI | second-order cone constraints.
This primal problem is convex and satisfies Slater’s conditions for generalized conic
inequalities, which implies that strong duality holds (Boyd and Vandenberghe, 2004).
We now consider the Lagrangian L defined as

L(vI ,αg, γ, τ g, ξ
g

I) = u⊤
I vI + γ(1−

∑

g∈GI

αg) +
∑

g∈GI

(

αg

ωg

I ◦ uG∩I

)⊤(
τ g

ξg

I

)

,

with the dual variables {γ, (τ g)g∈GI
, (ξg

I)g∈GI
} ∈ R+×R|GI |×R|I|×|GI | such that for all

g ∈ GI , ξg

j = 0 if j /∈ G and ‖ξg

I‖2 ≤ τ g. The dual function is obtained by taking the
derivatives of L with respect to the primal variables vI and (αg)g∈GI

and equating them
to zero, which leads to

∀j ∈ I, uj +
∑

g∈GI ,G∋j ω
g

jξg

j = 0

∀g ∈ GI , γ − τ g = 0.

After simplifying the Lagrangian, the dual problem then reduces to

min
γ,(ξg

I )g∈GI

γ s.t.

{

∀j ∈ I,uj +
∑

g∈GI ,G∋j ω
g

jξg

j = 0 and ξg

j = 0 if j /∈ G,
∀g ∈ GI , ‖ξg

I‖2 ≤ γ,

which is equivalent to the displayed result.

Since we cannot compute in closed-form the solution of the previous optimization
problem, we focus on a different but closely related problem, i.e., when we replace the
objective maxg∈GI

‖ξg

I‖2 by maxg∈GI
‖ξg

I‖∞, to obtain a meaningful feasible point:
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Lemma 28
Let uI ∈ R|I|. The following problem

min(ξg
I )g∈GI

max
g∈GI

‖ξg

I‖∞

s.t. uj +
∑

g∈GI ,g∋j

ωg

jξg

j = 0 and ξg

j = 0 if j /∈ g,

is minimized for (ξg

j)∗ = − uj
∑

h∈j,h∈GI
ωh

j

.

Proof. We proceed by contradiction. Let us assume there exists (ξg

I)g∈GI
such that

max
g∈GI

‖ξg

I‖∞ < max
g∈GI

‖(ξg

I)∗‖∞

= max
g∈GI

max
j∈g

|uj |
∑

h∈j,h∈GI
ωh

j

=
|uj0 |

∑

g∈j0,g∈GI
ωh

j0

,

where we denote by j0 an argmax of the latter maximization. We notably have for all
g ∋ j0:

|ξg

j0
| < |uj0 |

∑

h∈j0,h∈GI
ωh

j0

.

By multiplying both sides by ωg

j0
and by summing over g ∋ j0, we get

|uj0 | = |
∑

g∈GI ,g∋j0

ωg

j0
ξg

j0
| ≤

∑

g∋j0

ωg

j0
|ξg

j0
| < |uj0 |,

which leads to a contradiction.

We now give an upperbound on Ω∗ based on Lemma 27 and Lemma 28:

Lemma 29
Let uI ∈ R|I|. We have

(ΩI)∗[uI ] ≤ max
g∈GI







∑

j∈g

{

uj
∑

h∈j,h∈GI
ωh

j

}2






1
2

.

Proof. We simply plug the minimizer obtained in Lemma 28 into the problem of Lemma 27.

We now derive a lemma to control the difference of the gradient of ΩJ evaluated in
two points:
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Lemma 30
Let uJ ,vJ be two nonzero vectors in R|J |. Let us consider the mapping wJ 7→ r(wJ) =
∑

g∈GJ

ωg
J ◦ωg

J ◦wJ

‖ωg
J ◦wJ ‖2

∈ R|J |. There exists zJ = t0uJ + (1 − t0)vJ for some t0 ∈ (0, 1) such

that

‖r(uJ)− r(vJ)‖1 ≤ ‖uJ − vJ‖∞
(
∑

g∈GJ

‖ωg
J ‖2

2

‖ωg
J ◦zJ ‖2

+
∑

g∈GJ

‖ωg
J ◦ωg

J ◦zJ ‖2
1

‖ωg
J ◦zJ ‖3

2

)

.

Proof. For j, k ∈ J , we have

∂rj

∂wk
(wJ) =

∑

g∈GJ

(ωg

j )2

‖ωg

J ◦wJ‖2
Ij=k −

∑

g∈GJ

(ωg

j )2wj

‖ωg

J ◦wJ‖32
(ωg

k)2wk,

with Ij=k = 1 if j = k and 0 otherwise. We then consider t ∈ [0, 1] 7→ hj(t) =
rj(tuJ + (1− t)vJ). The mapping hj being continuously differentiable, we can apply the
mean-value theorem: there exists t0 ∈ (0, 1) such that

hj(1)− hj(0) =
∂hj(t)

∂t
(t0).

We then have

|rj(uJ)− rj(vJ)| ≤
∑

k∈J

∣
∣
∣
∣

∂rj

∂wk
(z)

∣
∣
∣
∣|uk − vk|

≤ ‖uJ − vJ‖∞




∑

g∈GJ

(ωg

j )2

‖ωg

J ◦ zJ‖2
+
∑

k∈J

∑

g∈GJ

(ωg

j )2|zj |
‖ωg

J ◦ zJ‖32
(ωg

k)2|zk|


 ,

which leads to

‖r(uJ)− r(vJ)‖1 ≤ ‖uJ − vJ‖∞
(
∑

g∈GJ

‖ωg
J ‖2

2

‖ωg
J ◦zJ ‖2

+
∑

g∈GJ

‖ωg
J ◦ωg

J ◦zJ ‖2
1

‖ωg
J ◦zJ ‖3

2

)

.

Given an active set J ⊆ J1; pK and a direct parent K ∈ ΠP(J) of J in the DAG of
nonzero patterns, we have the following result:

Lemma 31
For all g ∈ GK\GJ , we have K\J ⊆ g.

Proof. We proceed by contradiction. We assume there exists g0 ∈ GK\GJ such that
K\J * g0. Given that K ∈ P, there exists G′ ⊆ G verifying K =

⋂

g∈G′ gc. Note that
g0 /∈ G′ since by definition g0 ∩K 6= ∅.

We can now build the pattern K̃ =
⋂

g∈G′∪{g0} g
c = K ∩ gc

0 that belongs to P.
Moreover, K̃ = K ∩ gc

0 ⊂ K since we assumed gc
0 ∩K 6= ∅. In addition, we have that

J ⊂ K and J ⊂ gc
0 because K ∈ ΠP(J) and g0 ∈ GK\GJ . This results in J ⊂ K̃ ⊂ K,

which is impossible by definition of K.
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We give below an important Lemma to characterize the solutions of (2.2).

Lemma 32
The vector ŵ ∈ Rp is a solution of

min
w∈Rp

L(w) + µΩ(w)

if and only if
{

∇L(ŵ)Ĵ + µ r̂Ĵ = 0

(Ωc
Ĵ
)∗[∇L(ŵ)Ĵc ] ≤ µ,

with Ĵ the hull of {j ∈ J1; pK, ŵj 6= 0} and the vector r̂ ∈ Rp defined as

r̂ =
∑

g∈GĴ

ωg ◦ ωg ◦ ŵ

‖ωg ◦ ŵ‖2
.

In addition, the solution ŵ satisfies

Ω∗[∇L(ŵ)] ≤ µ.
Proof. The problem

min
w∈Rp

L(w) + µΩ(w) = min
w∈Rp

F (w)

being convex, the directional derivative optimality condition are necessary and sufficient
(Borwein and Lewis, 2006, Propositions 2.1.1-2.1.2). Therefore, the vector ŵ is a solution
of the previous problem if and only if for all directions u ∈ Rp, we have

lim
ε→0
ε>0

F (ŵ + εu)− F (ŵ)

ε
≥ 0.

Some algebra leads to the following equivalent formulation

∀u ∈ Rp, u⊤∇L(ŵ) + µu⊤
Ĵ

r̂Ĵ + µ (Ωc
Ĵ
)[uĴc ] ≥ 0. (A.23)

The first part of the lemma then comes from the projections on Ĵ and Ĵc.
An application of the Cauchy-Schwartz inequality on u⊤

Ĵ
r̂Ĵ gives for all u ∈ Rp

u⊤
Ĵ

r̂Ĵ ≤ (ΩĴ)[uĴ].

Combined with the equation (A.23), we get ∀u ∈ Rp, u⊤∇L(ŵ) + µΩ(u) ≥ 0, hence
the second part of the lemma.

We end up with a lemma regarding the dual norm of the sum of two disjoint norms
(see Rockafellar, 1997):

Lemma 33
Let A and B be a partition of J1; pK, i.e., A ∩ B = ∅ and A ∪ B = J1; pK. We consider
two norms uA ∈ R|A| 7→ ‖uA‖A and uB ∈ R|B| 7→ ‖uB‖B, with dual norms ‖vA‖∗A and
‖vB‖∗B. We have

max
‖uA‖A+‖uB‖B≤1

u⊤v = max {‖vA‖∗A, ‖vB‖∗B} .
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A.2 Proofs and Technical Elements of Chapter 2

A.2.1 Links with Tree-Structured Nonconvex Regularization

We present in this section an algorithm introduced by Donoho (1997) in the more
general context of approximation from dyadic partitions (see Section 6 in Donoho, 1997)
for solving the following problem

min
v∈Rp

1

2
‖u− v‖22 + λ

∑

g∈G
δg(v), (A.24)

where the u in Rp is given, λ is a regularization parameter, G is a set of tree-structured
groups in the sense of Definition 1, and the functions δg are defined as in Eq. (4.4)—that
is, δg(v) = 1 if there exists j in g such that vj 6= 0, and 0 otherwise. This problem can
be viewed as a proximal operator for the nonconvex regularization

∑

g∈G δ
g(v). As we

will show, it can be solved efficiently, and in fact it can be used to obtain approximate
solutions of the nonconvex problem presented in Eq. (4.1), or to solve tree-structured
wavelet decompositions as done by Baraniuk et al. (2010).

We now briefly show how to derive the dynamic programming approach introduced by
Donoho (1997). Given a group g in G, we use the same notations root(g) and children(g)
introduced in Section 4.3.5. It is relatively easy to show that finding a solution of
Eq. (A.24) amounts to finding the support S ⊆ {1, . . . , p} of its solution and that the
problem can be equivalently rewritten

min
S⊆{1,...,p}

−1

2
‖uS‖22 + λ

∑

g∈G
δg(S), (A.25)

with the abusive notation δg(S) = 1 if g∩S 6= ∅ and 0 otherwise. We now introduce the
quantity

ψg(S) ,

{

0 if g ∩ S = ∅
−1

2‖uroot(g)‖22 + λ+
∑

h∈children(g) ψh(S) otherwise.

After a few computations, solving Eq. (A.25) can be shown to be equivalent to minimizing
ψg0(S) where g0 is the root of the tree. It is then easy to prove that for any group g in
G, we have

min
S⊆{1,...,p}

ψg(S) = min
(

0,−1

2
‖uroot(g)‖22 + λ+

∑

h∈children(g)

min
S′⊆{1,...,p}

ψh(S′)
)

,

which leads to the following dynamic programming approach presented in Algorithm 10.
This algorithm shares several conceptual links with Algorithm 7 and 8. It traverses the
tree in the same order, has a complexity in O(p), and it can be shown that the whole
procedure actually performs a sequence of thresholding operations on the variable v.
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Algorithm 10 Computation of the Proximal Operator for the Nonconvex Approach
Inputs: u ∈ Rp, a tree-structured set of groups G and g0 (root of the tree).
Outputs: v (primal solution).
Initialization: v← u.
Call recursiveThresholding(g0).

Procedure recursiveThresholding(g)

1: η ← min
(

0,−1
2‖uroot(g)‖22 + λ+

∑

h∈children(g) recursiveThresholding(h)
)

.
2: if η = 0 then
3: vg ← 0.
4: end if
5: return η.

A.2.2 Proofs

Proof of Lemma 2

Proof. The proof relies on tools from conic duality (Boyd and Vandenberghe, 2004).
Let us introduce the cone C , {(v, z) ∈ Rp+1; ‖v‖ ≤ z} and its dual counterpart
C∗ , {(ξ, τ) ∈ Rp+1; ‖ξ‖∗ ≤ τ}. These cones induce generalized inequalities for which
Lagrangian duality also applies. We refer the interested readers to Boyd and Vanden-
berghe (2004) for further details.

We can rewrite problem (4.7) as

min
v∈Rp,z∈R|G|

1

2
‖u− v‖22 + λ

∑

g∈G
ωgzg, such that (v|g, zg) ∈ C, ∀g ∈ G,

by introducing the primal variables z = (zg)g∈G ∈ R|G|, with the additional |G| conic
constraints (v|g, zg) ∈ C, for g ∈ G.

This primal problem is convex and satisfies Slater’s conditions for generalized conic
inequalities (i.e., existence of a feasible point in the interior of the domain), which im-
plies that strong duality holds (Boyd and Vandenberghe, 2004). We now consider the
Lagrangian L defined as

L(v, z, τ , ξ) =
1

2
‖u− v‖22 + λ

∑

g∈G
ωgzg −

∑

g∈G

(

zg

v|g

)⊤(
τg

ξg

)

,

with the dual variables τ = (τg)g∈G in R|G|, and ξ = (ξg)g∈G in Rp×|G|, such that for all
g ∈ G, ξ

g
j = 0 if j /∈ g and (ξg, τg) ∈ C∗.

The dual function is obtained by minimizing out the primal variables. To this end,
we take the derivatives of L with respect to the primal variables v and z and set them
to zero, which leads to

v− u−
∑

g∈G
ξg = 0 and ∀g ∈ G, λωg − τg = 0.
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After simplifying the Lagrangian and flipping (without loss of generality) the sign of ξ,
we obtain the dual problem in Eq. (4.8). We derive the optimality conditions from the
Karush–Kuhn–Tucker conditions for generalized conic inequalities (Boyd and Vanden-
berghe, 2004). We have that {v, z, τ , ξ} are optimal if and only if

∀g ∈ G, zgτg − v⊤
|gξg = 0, (Complementary slackness)

∀g ∈ G, (v|g, zg) ∈ C, ∀g ∈ G, λωg − τg = 0,

∀g ∈ G, (ξg, τg) ∈ C∗, v− u +
∑

g∈G ξg = 0.

Combining the complementary slackness with the definition of the dual norm, we have

∀g ∈ G, zgτg = v⊤
|gξg ≤ ‖v|g‖‖ξg‖∗.

Furthermore, using the fact that ∀g ∈ G, (v|g, zg) ∈ C and (ξg, τg) = (ξg, λωg) ∈ C∗, we
obtain the following chain of inequalities

∀g ∈ G, λzgωg = v⊤
|gξg ≤ ‖v|g‖‖ξg‖∗ ≤ zg‖ξg‖∗ ≤ λzgωg,

for which equality must hold. In particular, we have v⊤
|gξg = ‖v|g‖‖ξg‖∗ and zg‖ξg‖∗ =

λzgωg. If v|g 6= 0, then zg cannot be equal to zero, which implies in turn that ‖ξg‖∗ =
λωg. Eventually, applying Lemma 34 gives the advertised optimality conditions.

Conversely, starting from the optimality conditions of Lemma 2, and making use
again of Lemma 34, we can derive the Karush–Kuhn–Tucker conditions displayed above.
More precisely, we define for all g ∈ G,

τg , λωg and zg , ‖v|g‖.

The only condition that needs to be discussed is the complementary slackness condition.
If v|g = 0, then it is easily satisfied. Otherwise, combining the definitions of τg, zg and
the fact that

v⊤
|gξg = ‖v|g‖‖ξg‖∗ and ‖ξg‖∗ = λωg,

we end up with the desired complementary slackness.

Optimality condition for the projection on the dual ball

Lemma 34 (Projection on the dual ball)

Let w ∈ Rp and t > 0. We have κ = Π‖.‖∗≤t(w) if and only if

{

if ‖w‖∗ ≤ t, κ = w,

otherwise, ‖κ‖∗ = t and κ⊤(w− κ) = ‖κ‖∗‖w− κ‖.

Proof. When the vector w is already in the ball of ‖.‖∗ with radius t, i.e., ‖w‖∗ ≤ t,
the situation is simple, since the projection Π‖.‖∗≤t(w) obviously gives w itself. On the
other hand, a necessary and sufficient optimality condition for having κ = Π‖.‖∗≤t(w) =
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arg min‖y‖∗≤t ‖w−y‖2 is that the residual w−κ lies in the normal cone of the constraint
set (Borwein and Lewis, 2006), that is, for all y such that ‖y‖∗≤ t, (w−κ)⊤(y−κ)≤ 0.
The displayed result then follows from the definition of the dual norm, namely ‖κ‖∗ =
max‖z‖≤1 z⊤κ.

Proof of Lemma 3

Proof. First, notice that the conclusion ξh = Π‖.‖∗≤λωh
(v|h + ξh) simply comes from the

definition of ξh and v, along with the fact that ξg = ξ
g
|h since g ⊆ h. We now examine

ξg.
The proof mostly relies on the optimality conditions characterizing the projection

onto a ball of the dual norm ‖ · ‖∗. Precisely, by Lemma 34, we need to show that either

ξg = u|g − ξh
|g, if ‖u|g − ξh

|g‖∗ ≤ tg,

or
‖ξg‖∗ = tg and ξg⊤(u|g − ξh

|g − ξg) = ‖ξg‖∗‖u|g − ξh
|g − ξg‖.

Note that the feasibility of ξg, i.e., ‖ξg‖∗ ≤ tg, holds by definition of κg.
Let us first assume that ‖ξg‖∗ < tg. We necessarily have that u|g also lies in the

interior of the ball of ‖.‖∗ with radius tg, and it holds that ξg = u|g. Since g ⊆ h, we
have that the vector u|h − ξg = u|h − u|g has only zero entries on g. As a result, ξh

g = 0

(or equivalently, ξh
|g = 0) and we obtain

ξg = u|g = u|g − ξh
|g,

which is the desired conclusion. From now on, we assume that ‖ξg‖∗ = tg. It then
remains to show that

ξg⊤(u|g − ξh
|g − ξg) = ‖ξg‖∗‖u|g − ξh

|g − ξg‖.

We now distinguish two cases, according to the norm used.

ℓ2-norm: As a consequence of Lemma 34, the optimality condition reduces to the con-
ditions for equality in the Cauchy-Schwartz inequality, i.e., when the vectors have same
signs and are linearly dependent. Applying these conditions to individual projections we
get that there exists ρg, ρh > 0 such that

ρgξg = u|g − ξg and ρhξh = u|h − ξg − ξh. (A.26)

Note that the case ρh = 0 leads to u|h − ξg − ξh = 0, and therefore u|g − ξg − ξh
|g = 0

since g ⊆ h, which directly yields the result. The case ρg = 0 implies u|g − ξg = 0 and
therefore ξh

|g = 0, yielding the result as well. Now, we can therefore assume ρh > 0
and ρg > 0. From the first equality of (A.26), we have ξg = ξ

g
|g since (ρg + 1)ξg = u|g.

Further using the fact that g ⊆ h in the second equality of (A.26), we obtain

(ρh + 1)ξh
|g = u|g − ξg = ρgξg.
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This implies that u|g − ξg − ξh
|g = ρgξg − ρg

ρh+1ξg, which eventually leads to

ξg =
ρh + 1

ρgρh
(u|g − ξg − ξh

|g).

The desired conclusion follows ξg⊤(u|g − ξg − ξh
|g) = ‖ξg‖2‖u|g − ξg − ξh

|g‖2.
ℓ∞-norm: In this case, the optimality corresponds to the conditions for equality in

the ℓ∞-ℓ1 Hölder inequality. Specifically, ξg = Π‖.‖∗≤tg
(u|g) holds if and only if for all

ξ
g
j 6= 0, j ∈ g, we have

uj − ξ
g
j = ‖u|g − ξg‖∞sign(ξg

j ).

Looking at the same condition for ξh, we have that ξh = Π‖.‖∗≤th

(
u|h− ξg

)
holds if and

only if for all ξh
j 6= 0, j ∈ h, we have

uj − ξ
g
j − ξh

j = ‖u|h − ξg − ξh‖∞sign(ξh
j ).

From those relationships we notably deduce that for all j ∈ g such that ξ
g
j 6= 0, sign(ξg

j ) =

sign(uj) = sign(ξh
j ) = sign(uj − ξ

g
j ) = sign(uj − ξ

g
j − ξh

j ). Let j ∈ g such that ξ
g
j 6= 0.

At this point, using the equalities we have just presented,

|uj − ξ
g
j − ξh

j | =
{

‖u|g − ξg‖∞ if ξh
j = 0

‖u|h − ξg − ξh‖∞ if ξh
j 6= 0.

Since ‖u|g − ξg‖∞ ≥ ‖u|g − ξg − ξh
|g‖∞ (which can be shown using the sign equalities

above), and ‖u|h − ξg − ξh‖∞ ≥ ‖u|g − ξg − ξh
|g‖∞ (since g ⊆ h), we have

‖u|g − ξg − ξh
|g‖∞ ≥ |uj − ξ

g
j − ξh

j | ≥ ‖u|g − ξg − ξh
|g‖∞,

and therefore for all ξ
g
j 6= 0, j ∈ g, we have uj − ξ

g
j − ξh

j = ‖u|g − ξg − ξh
|g‖∞sign(ξg

j ),
which yields the result.

Proof of Lemma 5

Proof. Notice first that the procedure computeSqNorm is called exactly once for each
group g in G, computing a set of scalars (ρg)g∈G in an order which is compatible with
the convergence in one pass of Algorithm 6—that is, the children of a node are processed
prior to the node itself. Following such an order, the update of the group g in the original
Algorithm 6 computes the variable ξg which updates implicitly the primal variable as
follows

v|g ←
(
1− λωg

‖v|g‖2
)

+
v|g.

It is now possible to show by induction that for all group g in G, after a call to the
procedure computeSqNorm(g), the auxiliary variable ηg takes the value ‖v|g‖22 where v
has the same value as during the iteration g of Algorithm 6. Therefore, after calling the
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procedure computeSqNorm(g0), where g0 is the root of the tree, the values ρg correspond
to the successive scaling factors of the variable v|g obtained during the execution of
Algorithm 6. After having computed all the scaling factors ρg, g ∈ G, the procedure
recursiveScaling ensures that each variable j in {1, . . . , p} is scaled by the product of
all the ρh, where h is an ancestor of the variable j.

The complexity of the algorithm is easy to characterize: Each procedure computeSqNorm

and recursiveScaling is called p times, each call for a group g has a constant number of
operations plus as many operations as the number of children of p. Since each child can
be called at most one time, the total number of operation of the algorithm is O(p).

Sign conservation by projection

The next lemma specifies a property for projections when ‖.‖ is further assumed to
be a ℓq-norm (with q ≥ 1). We recall that in that case, ‖.‖∗ is simply the ℓq′-norm, with
q′ = (1− 1/q)−1.

Lemma 35 (Projection on the dual ball and sign property)

Let w ∈ Rp and t > 0. Let us assume that ‖.‖ is a ℓq-norm (with q ≥ 1). Consider also a
diagonal matrix S ∈ Rp×p whose diagonal entries are in {−1, 1}. We have Π‖.‖∗≤t(w) =
SΠ‖.‖∗≤t(Sw).

Proof. Let us consider κ = Π‖.‖∗≤t(w). Using essentially the same argument as in the
proof of Lemma 34, we have for all y such that ‖y‖q′≤ t, (w−κ)⊤(y−κ)≤ 0. Noticing
that S⊤S = I and ‖y‖q′ = ‖Sy‖q′ , we further obtain (Sw − Sκ)⊤(y′ − Sκ) ≤ 0 for
all y′ with ‖y′‖q′ ≤ t. This implies in turn that SΠ‖.‖∗≤t(w) = Π‖.‖∗≤t(Sw), which is
equivalent to the advertised conclusion.

Based on this lemma, note that we can assume without loss of generality that the
vector we want to project (in this case, w) has only nonnegative entries. Indeed, it
is sufficient to store beforehand the signs of that vector, compute the projection of the
vector with nonnegative entries, and assign the stored signs to the result of the projection.

Non-negativity constraint for the proximal operator

The next lemma shows how we can easily add a non-negativity constraint on the
proximal operator when the norm Ω is absolute (Stewart and Sun, 1990, Definition 1.2),
that is, a norm for which the relation Ω(u) ≤ Ω(w) holds for any two vectors w and
u ∈ Rp such that |uj | ≤ |wj | for all j.

Lemma 36 (Non-negativity constraint for the proximal operator)

Let κ ∈ Rp and λ > 0. Consider an absolute norm Ω. We have

arg min
z∈Rp

[1

2
‖[κ]+− z‖22 + λΩ(z)

]

= arg min
z∈Rp

+

[1

2
‖κ− z‖22 + λΩ(z)

]

. (A.27)
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Proof. Let us denote by ẑ+ and ẑ the unique solutions of the left- and right-hand side
of (A.27) respectively. Consider the normal cone NRp

+
(z0) of Rp

+ at the point z0 (Borwein
and Lewis, 2006) and decompose κ into its positive and negative parts, κ = [κ]+ +
[κ]−. We can now write down the optimality conditions for the two convex problems
above (Borwein and Lewis, 2006): ẑ+ is optimal if and only if there exists w ∈ ∂Ω(ẑ+)
such that ẑ+ − [κ]+ + λw = 0. Similarly, ẑ is optimal if and only if there exists (s,u) ∈
∂Ω(ẑ)×NRp

+
(ẑ) such that ẑ−κ+λs+u = 0. We now prove that [κ]− = κ− [κ]+ belongs

to NRp
+

(ẑ+). We proceed by contradiction. Let us assume that there exists z ∈ Rp
+ such

that [κ]⊤−(z− ẑ+) > 0. This implies that there exists j ∈ {1, . . . , p} for which [κj ]− < 0
and zj − ẑ+

j < 0. In other words, we have 0 ≤ zj = zj − [κj ]+ < ẑ+
j = ẑ+

j − [κj ]+.
With the assumption made on Ω and replacing ẑ+

j by zj , we have found a solution to
the left-hand side of (A.27) with a stricly smaller cost function than the one evaluated
at ẑ+, hence the contradiction. Putting the pieces together, we now have

ẑ+ − [κ]+ + λw = ẑ+ − κ + λw + [κ]− = 0, with (w, [κ]−) ∈ ∂Ω(ẑ+)×NRp
+

(ẑ+),

which shows that ẑ+ is the solution of the right-hand side of (A.27).

A.2.3 Counterexample for ℓq-norms, with q /∈ {1, 2,∞}.
The result we have proved in Proposition 9 in the specific setting where ‖.‖ is the

ℓ2- or ℓ∞-norm does not hold more generally for ℓq-norms, when q is not in {1, 2,∞}.
Let q > 1 satisfying this condition. We denote by q′ , (1− q−1)−1 the norm parameter
dual to q. We keep the same notation as in Lemma 3 and assume from now on that
‖u|g‖q′ > tg and ‖u|h‖q′ > tg + th. These two inequalities guarantee that the vectors u|g

and u|h − ξg do not lie in the interior of the ℓq′-norm balls, of respective radius tg and
th.

We show in this section that there exists a setting for which the conclusion of Lemma 3
does not hold anymore. We first focus on a necessary condition of Lemma 3:

Lemma 37 (Necessary condition of Lemma 3)

Let ‖.‖ be a ℓq-norm, with q /∈ {1, 2,∞}. If the conclusion of Lemma 3 holds, then the
vectors ξ

g
|g and ξh

|g are linearly dependent.

Proof. According to our assumptions on u|g and u|h − ξg, we have that ‖ξg‖q′ = tg and
‖ξh‖q′ = th. In this case, we can apply the second optimality conditions of Lemma 34,
which states that equality holds in the ℓq-ℓq′ Hölder inequality. As a result, there exists
ρg, ρh > 0 such that for all j in g:

|ξg
j |q

′
= ρg|uj − ξ

g
j |q and |ξh

j |q
′

= ρh|uj − ξ
g
j − ξh

j |q. (A.28)

If the conclusion of Lemma 3 holds—that is, we have ξg = Π‖.‖∗≤tg
(u|g − ξh

|g), notice
that it is not possible to have the following scenarios, as proved below by contradiction:
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• If ‖u|g − ξh
|g‖q′ < tg, then we would have ξg = u|g − ξh

|g, which is impossible since
‖ξg‖q′ = tg.

• If ‖u|g−ξh
|g‖q′ = tg, then we would have for all j in g, |ξh

j |q
′

= ρh|uj−ξ
g
j−ξh

j |q = 0,
which implies that ξh

|g = 0 and ‖u|g‖q′ = tg. This is impossible since we assumed
‖u|g‖q′ > tg.

We therefore have ‖u|g − ξh
|g‖q′ > tg and using again the second optimality conditions of

Lemma 34, there exists ρ > 0 such that for all j in g, |ξg
j |q

′
= ρ|uj−ξ

g
j −ξh

j |q. Combined
with the previous relation on ξh

|g, we obtain for all j in g, |ξg
j |q

′
= ρ

ρh
|ξh

j |q
′
. Since we can

assume without loss of generality that u only has nonnegative entries (see Lemma 35),
the vectors ξg and ξh can also be assumed to have nonnegative entries, hence the desired
conclusion.

We need another intuitive property of the projection Π‖.‖∗≤t to derive our counterex-
ample:

Lemma 38 (Order-preservation by projection)

Let ‖.‖ be a ℓq-norm, with q /∈ {1,∞} and q′ , 1/(1 − q−1). Let us consider the
vectors κ,w ∈ Rp such that κ = Π‖.‖∗≤t(w) = arg min‖y‖q′ ≤t ‖y −w‖2, with the radius

t satisfying ‖w‖q′ > t. If we have wi < wj for some (i, j) in {1, . . . , p}2, then it also
holds that κi < κj.

Proof. Let us first notice that given the assumption on t, we have ‖κ‖q′ = t. The
Lagrangian L associated with the convex minimization problem underlying the definition
of Π‖.‖∗≤t can be written as

L(y, α) =
1

2
‖y−w‖22 + α

[‖y‖q′

q′ − tq
′]
, with the Lagrangian parameter α ≥ 0.

At optimality, the stationarity condition for κ leads to

∀ j ∈ {1, . . . , p}, κj −wj + αq′|κj |q
′−1 = 0.

We can assume without loss of generality that w only has nonnegative entries (see
Lemma 35). Since the components of κ and w have the same signs (see Lemma 35), we
therefore have |κj | = κj ≥ 0, for all j in {1, . . . , p}. Note that α cannot be equal to zero
because of ‖κ‖q′ = t < ‖w‖q′ .

Let us consider the continuously differentiable function ϕw : κ 7→ κ − w + αq′κq′−1

defined on (0,∞). Since ϕw(0) = −w < 0, limκ→∞ ϕw(κ) = ∞ and ϕw is strictly
nondecreasing, there exists a unique κ∗

w > 0 such that ϕw(κ∗
w) = 0. If we now take

w < v, we have

ϕv(κ∗
w) = ϕw(κ∗

w) + w − v = w − v < 0 = ϕv(κ∗
v).

With ϕv being strictly nondecreasing, we thus obtain κ∗
w < κ∗

v. The desired conclusion
stems from the application of the previous result to the stationarity condition of κ.
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Based on the two previous lemmas, we are now in position to present our counterex-
ample:

Proposition 15 (Counterexample)

Let ‖.‖ be a ℓq-norm, with q /∈ {1, 2,∞} and q′ , 1/(1−q−1). Let us consider G = {g, h},
with g ⊆ h ⊆ {1, . . . , p} and |g| > 1. Let u be a vector in Rp that has at least two different
nonzero entries in g, i.e., there exists (i, j) in g × g such that 0 < |ui| < |uj |. Let us
consider the successive projections

ξg , Π‖.‖∗≤tg
(u|g) and ξh , Π‖.‖∗≤th

(u|h − ξg)

with tg, th > 0 satisfying ‖u|g‖q′ > tg and ‖u|h‖q′ > tg + th. Then, the conclusion of
Lemma 3 does not hold.

Proof. We apply the same rationale as in the proof of Lemma 38. Writing the stationarity
conditions for ξg and ξh, we have for all j in g

ξ
g
j + αq′(ξg

j )q′−1 − uj = 0, and ξh
j + βq′(ξh

j )q′−1 − (uj − ξ
g
j ) = 0, (A.29)

with Lagrangian parameters α, β > 0. We now proceed by contradiction and assume
that ξg = Π‖.‖∗≤tg

(u|g − ξh
|g). According to Lemma 37, there exists ρ > 0 such that for

all j in g, ξh
j = ρξ

g
j . If we combine the previous relations on ξg and ξh, we obtain for all

j in g,

ξ
g
j = C(ξg

j )q′−1, with C ,
q′(α− βρq′−1)

ρ
.

If C < 0, then we have a contradiction, since the entries of ξg and u|g have the same
signs. Similarly, the case C = 0 leads a contradiction, since we would have u|g = 0 and
‖u|g‖q′ > tg. As a consequence, it follows that C > 0 and for all j in g, ξ

g
j = exp

{ log(C)
2−q′

}
,

which means that all the entries of the vector ξg
g are identical. Using Lemma 38, since

there exists (i, j) ∈ g × g such that ui < uj , we also have ξ
g
i < ξ

g
j , which leads to a

contradiction.
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