J. S. Albus, A New Approach to Manipulator Control: The Cerebellar Model Articulation Controller (CMAC), Journal of Dynamic Systems, Measurement, and Control, vol.97, issue.3, pp.220-233, 1975.
DOI : 10.1115/1.3426922

R. D. Beer, Parameter Space Structure of Continuous-Time Recurrent Neural Networks, Neural Computation, vol.76, issue.12, pp.3009-3051, 2006.
DOI : 10.1016/0167-2789(93)90207-H

T. Fukuda, Y. Komata, and T. Arakawa, Stabilization control of biped locomotion robot based learning with GAs having self-adaptive mutation and recurrent neural networks, Proceedings of International Conference on Robotics and Automation, pp.217-222, 1997.
DOI : 10.1109/ROBOT.1997.620041

Y. Gao and M. J. Er, On-line adaptive fuzzy neural identification and control of a class of MIMO nonlinear systems, IEEE Transactions on Fuzzy Systems, vol.11, issue.4, pp.462-477, 2003.

T. Geng, B. Porr, and F. Orgötterorg¨orgötter, A Reflexive Neural Network for Dynamic Biped Walking Control, Neural Computation, vol.3139, issue.5, pp.1156-1196, 2006.
DOI : 10.1111/j.1469-7793.1998.927bs.x

T. Hoinville and P. Hé-naff, Comparative study of two homeostatic mechanisms in evolved neural controllers for legged locomotion, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566), pp.2624-2629, 2004.
DOI : 10.1109/IROS.2004.1389804

URL : https://hal.archives-ouvertes.fr/hal-00523324

G. Horvath and T. Szabo, Kernel CMAC With Improved Capability, IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), vol.37, issue.1, pp.124-138, 2007.
DOI : 10.1109/TSMCB.2006.881295

C. Hsu, Intelligent position tracking control for LCM drive using stable online self-constructing recurrent neural network controller with bound architecture, Control Engineering Practice, vol.17, issue.6, pp.714-722, 2009.
DOI : 10.1016/j.conengprac.2008.11.004

S. Hyon, Compliant terrain adaptation for biped humanoids without measuring ground surface and contact forces, IEEE Transactions on Robotics, vol.25, issue.1, 2009.

A. Konno, R. Sellaouti, F. B. Amar, and F. B. Ouezdou, Design and development of the biped prototype ROBIAN, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292), pp.1384-1389, 2002.
DOI : 10.1109/ROBOT.2002.1014736

E. Kubica, D. Wang, and D. Winter, Feedforward and deterministic fuzzy control of balance and posture during human gait, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164), pp.2293-2298, 2001.
DOI : 10.1109/ROBOT.2001.932964

J. Morimoto, G. Endo, J. Nakanishi, S. H. Hyon, G. Cheng et al., Modulation of simple sinusoidal patterns by a coupled oscillator model for biped walking, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006., pp.15-19, 2006.
DOI : 10.1109/ROBOT.2006.1641932

J. Nakanishi, J. Morimoto, G. Endo, G. Cheng, S. Schaal et al., Robot learning from demonstration, Robotics and Autonomous Systems, vol.47, pp.2-3, 2004.

M. H. Nguyen and G. W. Cottrell, Tau Net a neural network for modeling temporal variability, Neurocomputing, vol.15, issue.3-4, pp.249-271, 1997.
DOI : 10.1016/S0925-2312(97)00009-X

B. A. Pearlmutter, Gradient calculations for dynamic recurrent neural networks: a survey, IEEE Transactions on Neural Networks, vol.6, issue.5, pp.1212-1228, 1995.
DOI : 10.1109/72.410363

F. J. Pineda, Generalization of back-propagation to recurrent neural networks, Physical Review Letters, vol.59, issue.19, pp.2229-2232, 1987.
DOI : 10.1103/PhysRevLett.59.2229

L. Righetti and A. J. Ijspeert, Programmable central pattern generators: an application to biped locomotion control, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006., pp.1585-1590, 2006.
DOI : 10.1109/ROBOT.2006.1641933

A. J. Robinson and F. Fallside, Static and dynamic error propagation networks with application to speech codingProceedings of Neural Information Processing Systems, pp.632-641, 1987.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Learning Internal Representations by Error Propagation, Parallel Distributed Processing: Explorations in the Microstructure of Cognition, pp.318-362, 1986.
DOI : 10.1016/B978-1-4832-1446-7.50035-2

C. Sabourin and O. Bruneau, Robustness of the dynamic walk of a biped robot subjected to disturbing external forces by using CMAC neural networks, Robotics and Autonomous Systems, vol.51, issue.2-3, pp.81-99, 2005.
DOI : 10.1016/j.robot.2005.02.001

V. Scesa, P. Hé-naff, F. B. Ouezdou, and F. Namoun, Time Window Width Influence on Dynamic BPTT(h) Learning Algorithm Performances: Experimental Study, Proceedings of IEEE International Conference on Artificial Neural Networks Part I, LNCS 4131, pp.93-102, 2006.
DOI : 10.1007/11840817_10

URL : https://hal.archives-ouvertes.fr/hal-00523037

V. Scesa, B. Mohamed, P. Henaff, and F. B. Ouezdou, Dynamic Recurrent Neural Network for Biped Robot Equilibrium Control: Preliminary Results, Proceedings of the 2005 IEEE International Conference on Robotics and Automation, pp.4125-4130, 2005.
DOI : 10.1109/ROBOT.2005.1570751

URL : https://hal.archives-ouvertes.fr/hal-00523322

R. Sellaouti and F. B. Ouezdou, Design and control of a 3DOFs parallel actuated mechanism for biped application. Mechanism and Machine Theory, pp.40-1367, 2005.

S. A. Setiawan, S. H. Hyon, J. Yamaguchi, and A. Takanishi, Physical interaction between human and a bipedal humanoid robot-realization of human-follow walking, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C), pp.361-367, 1999.
DOI : 10.1109/ROBOT.1999.770005

E. Song and M. Tahk, Real-time neural-network midcourse guidance, Control Engineering Practice, vol.9, issue.10, pp.1145-1154, 2001.
DOI : 10.1016/S0967-0661(01)00058-2

. Su, . Shun-feng, . Lee, . Zne-jung, and . Wang, Robust and fast learning for fuzzy cerebellar model articulation controllers, IEEE Transactions on Systems, Man, and Cybernetics, Part B, vol.36, issue.1, pp.203-208, 2006.

G. Taga, Y. Yamaguchi, and H. Shimizu, Self-organized control of bipedal locomotion by neural oscillators in unpredictable environment, Biological Cybernetics, vol.63, issue.3, pp.147-159, 1991.
DOI : 10.1007/BF00198086

M. Vukobratovic, ZERO-MOMENT POINT ??? THIRTY FIVE YEARS OF ITS LIFE, International Journal of Humanoid Robotics, vol.01, issue.01, pp.157-173, 2004.
DOI : 10.1142/S0219843604000083

P. J. Werbos, Backpropagation through time: what it does and how to do it, Proceedings of the IEEE, pp.1550-1560, 1990.
DOI : 10.1109/5.58337

H. J. Williams, Homeostatic plasticity improves signal propagation in continuous-time recurrent neural networks, Biosystems, vol.87, issue.2-3, pp.2-3, 2007.
DOI : 10.1016/j.biosystems.2006.09.020

R. J. Williams and J. Peng, An Efficient Gradient-Based Algorithm for On-Line Training of Recurrent Network Trajectories, Neural Computation, vol.1, issue.4, pp.491-501, 1990.
DOI : 10.1162/neco.1989.1.4.552

R. J. Williams and D. Zipser, A Learning Algorithm for Continually Running Fully Recurrent Neural Networks, Neural Computation, vol.11, issue.2, pp.1270-1280, 1989.
DOI : 10.1016/0885-064X(88)90021-0

Y. Wu, Q. Song, and X. Yang, Robust Recurrent Neural Network Control of Biped Robot, Journal of Intelligent and Robotic Systems, vol.135, issue.2, pp.151-169, 2007.
DOI : 10.1007/s10846-007-9133-1

C. Zaoui, O. Bruneau, F. B. Ouezdou, and A. Maalej, Simulations of the dynamic behavior of a bipedal robot with trunk and arms subjected to 3D external disturbances in a vertical posture, during walking and during object handling, Multibody System Dynamics, vol.126, issue.5, pp.261-280, 2009.
DOI : 10.1007/s11044-008-9143-1

B. Mohamed, F. Gravez, and F. B. Ouezdou, Emulation of the Dynamic Effects of Human Torso During a Walking Gait, Journal of Mechanical Design, vol.126, issue.5, pp.830-841, 2004.
DOI : 10.1115/1.1778184

B. A. Pearlmutter, Gradient calculations for dynamic recurrent neural networks: a survey, Transactions on Neural Networks, pp.1212-1228, 1995.
DOI : 10.1109/72.410363

P. J. Werbos, Backpropagation through time: what it does and how to do it Static and dynamic error propagation networks with application to speech coding, Proceedings of the IEEE, pp.1550-1560, 1987.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Learning internal representations by error propagation Parallel distributed processing: explorations in the microstructure of cognition, pp.318-362, 1986.

M. H. Nguyen and G. W. Cottrell, Tau Net a neural network for modeling temporal variability, Neurocomputing, vol.15, issue.3-4, pp.249-271, 1997.
DOI : 10.1016/S0925-2312(97)00009-X

S. Hochreiter, A. S. Younger, and P. R. , Learning to Learn Using Gradient Descent, lecture notes on Comp. Sci. 2130, proc. Intl. Conf. on Artificial Neural Networks (ICANN-2001), pp.87-94, 2001.
DOI : 10.1007/3-540-44668-0_13

K. Doya, Bifurcations of recurrent neural networks in gradient descent learning, Submitted to IEEE Transactions on Neural Networks, 1993.

J. Draye, D. Pavisic, and G. Libert, Dynamic recurrent neural networks: a dynamical analysis, IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), vol.26, issue.5, pp.692-706, 1996.
DOI : 10.1109/3477.537312

R. D. Beer, Parameter space structure of continuous-time recurrent neural networks " , submitted, the supplementary Mathematica notebook, 2005.

F. Tsung, Modeling Dynamical Systems with Recurrent Neural Networks, 1994.

R. J. Williams and D. Zipser, Gradient-based learning algorithms for recurrent connectionist networks, Backpropagation: Theory, Architectures, and Applications, 1990.

M. Vukobratovic and B. Borovac, ZERO-MOMENT POINT ??? THIRTY FIVE YEARS OF ITS LIFE, International Journal of Humanoid Robotics, vol.01, issue.01, pp.157-173, 2004.
DOI : 10.1142/S0219843604000083

R. 1. O-'halloran and F. O. Malley, Materials and technologies for artificial muscle: A review for the mechanical muscle project

C. S. Lee and R. V. Gonzalez, Fuzzy logic versus a PID controller for position control of a muscle-like actuated arm, Journal of Mechanical Science and Technology, vol.32, issue.8, pp.1475-1482, 2008.
DOI : 10.1007/s12206-008-0424-7

Y. Tamura, M. Saito, and R. Nagato, A new motor model representing the stretch-induced force enhancement and shortening-induced force depression in skeletal muscle, Journal of Biomechanics, vol.38, issue.4, pp.877-884, 2005.
DOI : 10.1016/j.jbiomech.2004.04.028

F. Garcia-cordova, A. Guerrero-gonzalez, J. L. Pedreno-molina, and J. C. Moran, Emulation of the animal muscular actuation system in an experimental platform, 2001 IEEE International Conference on Systems, Man and Cybernetics. e-Systems and e-Man for Cybernetics in Cyberspace (Cat.No.01CH37236), pp.64-69, 2001.
DOI : 10.1109/ICSMC.2001.969789

T. Mcgeer, Passive Dynamic Walking, The International Journal of Robotics Research, vol.2, issue.4, pp.62-82, 1990.
DOI : 10.1177/027836499000900206

K. L. Moore and Y. Q. Chen, Relay, feedback tuning of robust PID controllers with iso-damping property, IEEE Transactions on Systems, Man, and Cybernetics Part B, vol.35, issue.1, pp.23-31, 2005.

S. Ho, S. Li-sun, and H. Shinn-ying, Optimizing fuzzy neural networks for tuning PID controllers using an orthogonal simulated annealing algorithm OSA, IEEE Transactions on Fuzzy Systems, vol.14, issue.3, pp.421-434, 2006.
DOI : 10.1109/TFUZZ.2006.876985

G. K. Mann, H. Bao-gang, and R. G. Gosine, Two-level tuning of fuzzy PID controllers, IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), vol.31, issue.2, pp.263-269, 2001.
DOI : 10.1109/3477.915351

URL : https://hal.archives-ouvertes.fr/inria-00122633

E. Harinath and G. K. Mann, Design and Tuning of Standard Additive Model Based Fuzzy PID Controllers for Multivariable Process Systems, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol.38, issue.3, pp.667-674, 2008.
DOI : 10.1109/TSMCB.2008.919232

G. G. Rigatos, TRACKING OF SISO NONLINEAR SYSTEMS, International Journal of Neural Systems, vol.18, issue.04, pp.305-320, 2008.
DOI : 10.1142/S0129065708001610

N. D. Donaldson, H. Gollee, K. J. Hunt, J. C. Jarvis, and M. K. Kwende, A radial basis function model of muscle stimulated with irregular inter-pulse intervals, Medical Engineering & Physics, vol.17, issue.6, pp.431-441, 1995.
DOI : 10.1016/1350-4533(94)00013-Y

R. V. Mayorga and J. Carrera, A RADIAL BASIS FUNCTION NETWORK APPROACH FOR THE COMPUTATION OF INVERSE CONTINUOUS TIME VARIANT FUNCTIONS, International Journal of Neural Systems, vol.17, issue.03, pp.149-160, 2007.
DOI : 10.1142/S0129065707001020

R. Savitha, S. Suresh, and N. Sundararajan, A FULLY COMPLEX-VALUED RADIAL BASIS FUNCTION NETWORK AND ITS LEARNING ALGORITHM, International Journal of Neural Systems, vol.19, issue.04, pp.253-267, 2009.
DOI : 10.1142/S0129065709002026

S. Suresh, N. Kannan, N. Sundararajan, and P. Saratchandran, NEURAL ADAPTIVE CONTROL FOR VIBRATION SUPPRESSION IN COMPOSITE FIN-TIP OF AIRCRAFT, International Journal of Neural Systems, vol.18, issue.03, pp.219-231, 2008.
DOI : 10.1142/S0129065708001543

A. M. Schaefer and H. G. Zimmermann, RECURRENT NEURAL NETWORKS ARE UNIVERSAL APPROXIMATORS, International Journal of Neural Systems, vol.17, issue.04, pp.253-263, 2007.
DOI : 10.1142/S0129065707001111

J. Liang, Z. Wang, and X. Liu, Global synchronization in an array of discrete-time neural networks with mixed coupling and time-varying delays, International Journal of Neural Systems, vol.191, pp.57-63, 2009.

V. Scesa, B. Mohamed, P. Henaff, and F. B. Ouezdou, Dynamic Recurrent Neural Network for Biped Robot Equilibrium Control: Preliminary Results, Proceedings of the 2005 IEEE International Conference on Robotics and Automation, pp.4125-4130, 2005.
DOI : 10.1109/ROBOT.2005.1570751

URL : https://hal.archives-ouvertes.fr/hal-00523322

G. Puscasu and B. Codres, NONLINEAR SYSTEM IDENTIFICATION BASED ON INTERNAL RECURRENT NEURAL NETWORKS, International Journal of Neural Systems, vol.19, issue.02, pp.115-125, 2009.
DOI : 10.1142/S0129065709001884

H. Serhan, C. Nasr, and P. Henaff, Designing a muscle like system based on PID controller and tuned by neural network, Proc. of IEEE Int. Joint Conference on Neural Networks, pp.10090-10097, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00523295

S. Takagi, T. Oki, T. Yamamoto, and M. Kaneda, A skill-based PID controller using artificial neural networks, 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation
DOI : 10.1109/ICSMC.1997.637551

G. Taga, Y. Yamaguchi, and H. Shimizu, Self-organized control of bipedal locomotion by neural oscillators in unpredictable environment, Biological Cybernetics, vol.63, issue.3, pp.147-159, 1991.
DOI : 10.1007/BF00198086

G. Endo, J. Morimoto, J. Nakanishi, and G. Cheng, An empirical exploration of a neural oscillator for biped locomotion control, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004, pp.3036-3042, 2004.
DOI : 10.1109/ROBOT.2004.1307523

T. Matsubara, J. Morimoto, J. Nakanishi, M. Sato, and K. Doya, Learning CPG-based biped locomotion with a policy gradient method, Robotics and Autonomous Systems, vol.54, issue.11, pp.911-920, 2006.
DOI : 10.1016/j.robot.2006.05.012

M. Garcia, A. Chatterjee, A. Ruina, and M. Coleman, The Simplest Walking Model: Stability, Complexity, and Scaling, Journal of Biomechanical Engineering, vol.120, issue.2, pp.281-288, 1998.
DOI : 10.1115/1.2798313

A. Goswami, B. Espiau, and A. Keramane, Limit cycles in a passive compass gait and passivity-mimicking control laws, Autonomous Robots, vol.4, issue.3, pp.273-286, 1997.
DOI : 10.1023/A:1008844026298

A. Goswami, B. Thuilot, and B. Espiau, A Study of the Passive Gait of a Compass-Like Biped Robot: Symmetry and Chaos, The International Journal of Robotics Research, vol.17, issue.12, pp.1282-1301, 1998.
DOI : 10.1177/027836499801701202

T. Mcgreer, Passive Dynamic Walking, The International Journal of Robotics Research, vol.2, issue.4, pp.62-82, 1990.
DOI : 10.1177/027836499000900206

C. Sabourin, O. Bruneau, and J. Fontaine, Pragmatic rules for realtime control of the dynamic walking of an under-actuated biped robot, Proc. IEEE Conf. on Rob. and Automation, pp.4216-4221, 2004.

H. Ohta, M. Yamakita, and K. Furuta, From Passive to active dynamic walking, Proc. IEEE Conf. Decision Control, pp.3883-3885, 1999.

M. W. Spong, Bipedal locomotion, robot gymnastics, and motor air hockey: A rapprochement, Proc. TITech COE/Super Mechano- Systems workshop, pp.34-41, 1999.

M. W. Spong, Passivity based control of the campass gait biped, Proc. IFAC Trienmial World Congr, pp.19-23, 1999.

A. D. Kuo, Stabilization of Lateral Motion in Passive Dynamic Walking, The International Journal of Robotics Research, vol.18, issue.9, pp.917-930, 1999.
DOI : 10.1177/02783649922066655

S. H. Collins, M. Wisse, and A. Ruina, A Three-Dimensional Passive-Dynamic Walking Robot with Two Legs and Knees, The International Journal of Robotics Research, vol.20, issue.7, pp.273-286, 1997.
DOI : 10.1177/02783640122067561

M. W. Spong and F. Bullo, Controlled symmetries and passive walking, IEEE Transactions on Automatic Control, vol.50, issue.7, pp.1025-1031, 2005.
DOI : 10.1109/TAC.2005.851449

A. D. Ames, R. D. Gregg, E. D. Wendel, and S. Sastry, Towards the geometric reduction of controlled three-dimensional robotic bipedal walkers, Proc. Workshop Lagrangian Hamiltonian Methods Nonlinear Control, pp.117-124, 2006.

M. W. Spong and G. Bhatia, Further results on control pf the compass gait biped, Proc. IROS 2003, pp.27-30

A. Konno, R. Sellaouti, F. B. Amar, and F. B. Ouezdou, Design and development of the biped prototype ROBIAN, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292), pp.1384-1389, 2002.
DOI : 10.1109/ROBOT.2002.1014736

R. Sellaouti, A. Konno, and F. B. Ouezdou, Design of a 3 DOFs parallel actuated mechanism for a biped hip joint, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292), pp.1161-1166, 2002.
DOI : 10.1109/ROBOT.2002.1014700

C. Chevallereau and Y. Aoustin, Optimal reference trajectories for walking and running of a biped robot, Robotica, vol.19, issue.05, pp.557-569, 2001.
DOI : 10.1017/S0263574701003307

URL : https://hal.archives-ouvertes.fr/hal-00794833

Z. Tang, Z. Sun, C. Zhou, and L. Hu, Reference trajectory generation for 3-Dimensional walking of a humanoid robot, Tsinghua Science and Technology, vol.12, issue.5, pp.577-584, 2007.
DOI : 10.1016/S1007-0214(07)70136-0

E. Viel, La marche humaine, la course et le saut, 2000.

S. Bouisset and B. Maton, Muscles, posture et mouvement, 1995.

P. Allard and J. Blanchi, Analyse du mouvement humain par la biomécanique, 2000.

D. Winter, Biomechanics and Motor Control of Human Movement, 2005.
DOI : 10.1002/9780470549148

A. Bouchet and J. Cuilleret, Anatomie topographique, descriptive et fonctionnelle, 1997.

I. Kapandji, Physiologie articulaire, tome Membre inférieur, Maloine, 1999.

C. Williams, Tuning a PID Temperature Controller, 2003.

H. Serhan, C. Nasr, and P. Henaff, Designing a Muscle Like System Based on PID Controller and Tuned by Neural Network, IEEE WCCI Congress, pp.10090-10097, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00523295

G. Taga, Y. Yamaguchi, and H. Shimizu, Self-organized control of bipedal locomotion by neural oscillators in unpredictable environment, Biological Cybernetics, vol.63, issue.3, pp.147-159, 1991.
DOI : 10.1007/BF00198086

G. Endo, J. Morimoto, J. Nakanishi, and G. Cheng, An empirical exploration of a neural oscillator for biped locomotion control, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004, pp.3036-3042, 2004.
DOI : 10.1109/ROBOT.2004.1307523

T. Matsubara, J. Morimoto, J. Nakanishi, M. Sato, and K. Doya, Learning CPG-based biped locomotion with a policy gradient method, Robotics and Autonomous Systems, vol.54, issue.11, pp.911-920, 2006.
DOI : 10.1016/j.robot.2006.05.012

M. Garcia, A. Chatterjee, A. Ruina, and M. Coleman, The Simplest Walking Model: Stability, Complexity, and Scaling, Journal of Biomechanical Engineering, vol.120, issue.2, pp.281-288, 1998.
DOI : 10.1115/1.2798313

A. Goswami, B. Espiau, and A. Keramane, Limit cycles in a passive compass gait and passivity-mimicking control laws, Autonomous Robots, vol.4, issue.3, pp.273-286, 1997.
DOI : 10.1023/A:1008844026298

A. Goswami, B. Thuilot, and B. Espiau, A Study of the Passive Gait of a Compass-Like Biped Robot: Symmetry and Chaos, The International Journal of Robotics Research, vol.17, issue.12, pp.1282-1301, 1998.
DOI : 10.1177/027836499801701202

T. Mcgreer, Passive Dynamic Walking, The International Journal of Robotics Research, vol.2, issue.4, pp.62-82, 1990.
DOI : 10.1177/027836499000900206

C. Sabourin, O. Bruneau, and J. Fontaine, Pragmatic rules for realtime control of the dynamic walking of an under-actuated biped robot, Proc. IEEE Conf. on Rob. and Automation, pp.4216-4221, 2004.

H. Ohta, M. Yamakita, and K. Furuta, From Passive to active dynamic walking, Proc. IEEE Conf. Decision Control, pp.3883-3885, 1999.

M. W. Spong, Bipedal locomotion, robot gymnastics, and motor air hockey: A rapprochement, Proc. TITech COE/Super Mechano- Systems workshop, pp.34-41, 1999.

A. D. Kuo, Stabilization of Lateral Motion in Passive Dynamic Walking, The International Journal of Robotics Research, vol.18, issue.9, pp.917-930, 1999.
DOI : 10.1177/02783649922066655

S. H. Collins, M. Wisse, and A. Ruina, A Three-Dimensional Passive-Dynamic Walking Robot with Two Legs and Knees, The International Journal of Robotics Research, vol.20, issue.7, pp.273-286, 1997.
DOI : 10.1177/02783640122067561

M. W. Spong and F. Bullo, Controlled symmetries and passive walking, IEEE Transactions on Automatic Control, vol.50, issue.7, pp.1025-1031, 2005.
DOI : 10.1109/TAC.2005.851449

A. D. Ames, R. D. Gregg, E. D. Wendel, and S. Sastry, Towards the geometric reduction of controlled three-dimensional robotic bipedal walkers, Proc. Workshop Lagrangian Hamiltonian Methods Nonlinear Control, pp.117-124, 2006.

M. W. Spong and G. Bhatia, Further results on control pf the compass gait biped, Proc. IROS 2003, pp.27-30

A. Konno, R. Sellaouti, F. B. Amar, and F. B. Ouezdou, Design and development of the biped prototype ROBIAN, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292), pp.1384-1389, 2002.
DOI : 10.1109/ROBOT.2002.1014736

R. Sellaouti and F. B. Ouezdou, Design and control of a 3DOFs parallel actuated mechanism for biped application, Mechanism and Machine Theory, pp.1367-1393, 2005.

C. Chevallereau and Y. Aoustin, Optimal reference trajectories for walking and running of a biped robot, Robotica, vol.19, issue.05, pp.557-569, 2001.
DOI : 10.1017/S0263574701003307

URL : https://hal.archives-ouvertes.fr/hal-00794833

Z. Tang, Z. Sun, C. Zhou, and L. Hu, Reference trajectory generation for 3-Dimensional walking of a humanoid robot, Tsinghua Science and Technology, vol.12, issue.5, pp.577-584, 2007.
DOI : 10.1016/S1007-0214(07)70136-0

E. Viel, La marche humaine, la course et le saut, 2000.

S. Bouisset and B. Maton, Muscles, posture et mouvement, 1995.

P. Allard and J. Blanchi, Analyse du mouvement humain par la biomécanique, 2000.

D. Winter, Biomechanics and Motor Control of Human Movement, 2005.
DOI : 10.1002/9780470549148

A. Bouchet and J. Cuilleret, Anatomie topographique, descriptive et fonctionnelle, 1997.

I. Kapandji, Physiologie articulaire, tome Membre inférieur, Maloine, 1999.

C. Williams, Tuning a PID Temperature Controller

H. Serhan, C. Nasr, and P. Henaff, Designing a Muscle Like System Based on PID Controller and Tuned by Neural Network, IEEE WCCI Congress, pp.10090-10097, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00523295

H. Serhan, C. Nasr, P. Henaff, and F. Benouezdou, A new control strategy for ROBIAN biped robot inspired from human walking, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2008.
DOI : 10.1109/IROS.2008.4650612

URL : https://hal.archives-ouvertes.fr/hal-00523317

R. Achard, P. De-schutter, and E. , Complex Parameter Landscape for a Complex Neuron Model, PLoS Computational Biology, vol.87, issue.7, p.94, 2006.
DOI : 10.1371/journal.pcbi.0020094.sg008

J. E. Baker, Reducing bias and inefficiency in the selection algorithm, Proceedings of the International Conference on Genetic Algorithms and their Application, pp.14-21, 1987.

R. D. Beer, On the Dynamics of Small Continuous-Time Recurrent Neural Networks, Adaptive Behavior, vol.2, issue.3, pp.469-509, 1995.
DOI : 10.1177/105971239500300405

R. D. Beer, Parameter Space Structure of Continuous-Time Recurrent Neural Networks, Neural Computation, vol.76, issue.12, pp.3009-3051, 2006.
DOI : 10.1016/0167-2789(93)90207-H

R. D. Beer and B. C. Daniels, Saturation probabilities of continuous-time sigmoidal networks, 2010.

E. L. Bienenstock, L. N. Cooper, and P. W. Munro, THEORY FOR THE DEVELOPMENT OF NEURON SELECTIVITY: ORIENTATION SPECIFICITY AND BINOCULAR INTERACTION IN VISUAL CORTEX, Journal of Neuroscience, vol.2, issue.1, pp.32-48, 1982.
DOI : 10.1142/9789812795885_0006

S. Bullock, The fallacy of general purpose bio-inspired computing, Artificial Life X : Proceedings of the International Conference on the Simulation and Synthesis of Living Systems, pp.540-545, 2006.

D. Paolo and E. A. , Homeostatic adaptation to inversion of the visual field and other sensorimotor disruptions, 2000.

D. Paolo and E. A. , Evolving robust robots using homeostatic oscillators (Cognitive Science Research Paper No. 548), School of Cognitive and Computing Sciences, 2002.

D. Paolo and E. A. , Spike-timing dependent plasticity for evolved robots, Adaptive Behavior, vol.10, pp.3-4, 2002.

D. Paolo and E. A. , Evolving spike-timing-dependent plasticity for single-trial learning in robots, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.361, issue.1811, pp.361-2299, 2003.
DOI : 10.1098/rsta.2003.1256

S. Doncieux, E ´ volution de controîeurs neuronaux pour animats volants : me´thodologieme´thodologie et applications Doctoral dissertation in French, AnimatLab, issue.LIP6, pp.149-150, 2003.

D. Floreano and F. Mondada, Evolution of plastic neurocontrollers for situated agents, 1996.

D. Floreano and J. Urzelai, Evolutionary robots: The next generation, Evolutionary Robotics III, pp.231-266, 2000.

J. M. Goaillard, A. L. Taylor, D. J. Schulz, and E. Marder, Functional consequences of animal-to-animal variation in circuit parameters, Nature Neuroscience, vol.67, issue.11, pp.1424-1430, 2009.
DOI : 10.1038/nn.2404

D. E. Goldberg, Genetic algorithms in search, optimization , and machine learning, 1989.

I. Harvey, P. Husbands, D. Cliff, A. Thompson, and N. Jakobi, Evolutionary robotics at Sussex, Proceedings of the International Symposium on Robotics and Manufacturing, ISRAM1996, pp.293-298, 1996.
DOI : 10.1016/s0921-8890(96)00067-x

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.101.146

T. Hoinville and P. He´naffhe´naff, Comparative study of two homeostatic mechanisms in evolved neural controllers for legged locomotion, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566), pp.2004-2624, 2004.
DOI : 10.1109/IROS.2004.1389804

URL : https://hal.archives-ouvertes.fr/hal-00523324

T. Hoinville and P. He´naffhe´naff, Evolving plastic neural controllers stabilized by homeostatic mechanisms for adaptation to a perturbation, Artificial Life IX: Proceedings of the International Conference on the Simulation and Synthesis of Living Systems, pp.81-87, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00522803

P. Husbands, T. M. Smith, M. Shea, N. Jakobi, J. Anderson et al., Brains, Gases and Robots, Proceedings of the International Conference on Artificial Neural Networks, pp.98-51, 1998.
DOI : 10.1007/978-1-4471-1599-1_5

H. Iizuka and E. A. Di-paolo, Toward Spinozist Robotics: Exploring the Minimal Dynamics of Behavioral Preference, Adaptive Behavior, vol.1, issue.4, pp.359-376, 2007.
DOI : 10.1177/1059712307084687

H. Iizuka and E. A. Di-paolo, Extended Homeostatic Adaptation: Improving the Link between Internal and Behavioural Stability, 2008.
DOI : 10.1007/978-3-540-69134-1_1

N. Jakobi and M. Quinn, Some problems (and a few solutions) for open-ended evolutionary robotics, 1998.
DOI : 10.1007/3-540-64957-3_67

A. Kepecs, M. C. Van-rossum, S. Song, and J. Tegne´rtegne´r, Spike-timing-dependent plasticity: common themes and divergent vistas, Biological Cybernetics, vol.87, issue.5-6, pp.5-6, 2002.
DOI : 10.1007/s00422-002-0358-6

H. Kitano, Towards a theory of biological robustness, Molecular Systems Biology, vol.406, issue.137, pp.1-7, 2007.
DOI : 10.1038/msb4100179

E. Marder, A. E. Tobin, and R. Grashow, How tightly tuned are network parameters? Insight from computational and experimental studies in small rhythmic motor networks, Progress in Brain Research, vol.165, pp.193-200, 2007.
DOI : 10.1016/S0079-6123(06)65012-7

B. Mathayomchan and R. Beer, Center-Crossing Recurrent Neural Networks for the Evolution of Rhythmic Behavior, Neural Computation, vol.14, issue.9, pp.2043-2051, 2002.
DOI : 10.1126/science.8178157

G. Mchale and P. Husbands, Quadrupedal locomotion: GasNets, CTRNNs and hybrid CTRNN/PNNs compared, Artificial Life IX: Proceedings of the International Conference on the Simulation and Synthesis of Living Systems, pp.106-112, 2004.

K. D. Miller and D. J. Mackay, The Role of Constraints in Hebbian Learning, Neural Computation, vol.1, issue.1, pp.100-126, 1994.
DOI : 10.1007/BF00198765

A. A. Prinz, D. Bucher, and E. Marder, Similar network activity from disparate circuit parameters, Nature Neuroscience, vol.7, issue.12, pp.1345-1352, 2004.
DOI : 10.1038/nn1352

K. O. Stanley, B. D. Bryant, and R. Miikkulainen, Evolving adaptive neural networks with and without adaptive synapses, The 2003 Congress on Evolutionary Computation, 2003. CEC '03., pp.2557-2564, 2003.
DOI : 10.1109/CEC.2003.1299410

E. Tuci and M. Quinn, Behavioural Plasticity in Autonomous Agents: A Comparison between Two Types of Controller, Proceedings of the International Conference on Applications of Evolutionary Computing, EvoWorkshops2003, pp.661-672, 2003.
DOI : 10.1007/3-540-36605-9_60

G. G. Turrigiano and S. B. Nelson, Hebb and homeostasis in neuronal plasticity, Current Opinion in Neurobiology, vol.10, issue.3, pp.358-364, 2000.
DOI : 10.1016/S0959-4388(00)00091-X

J. Urzelai and D. Floreano, Evolution of Adaptive Synapses: Robots with Fast Adaptive Behavior in New Environments, Evolutionary Computation, vol.4, issue.4, pp.495-524, 2001.
DOI : 10.1162/neco.1990.2.1.85

H. Williams, Homeostatic plasticity in recurrent neural networks, From Animals to Animats 8: Proceedings of the International Conference on Simulation of Adaptive Behavior, pp.344-353, 2004.

H. Williams, Homeostatic plasticity improves continuous-time recurrent neural networks as a behavioural substrate, Proceedings of the International Symposium on Adaptive Motion in Animals and Machines, 2005.

H. Williams, Homeostatic adaptive networks. Doctoral dissertation, 2006.

H. Williams and J. Noble, Homeostatic plasticity improves signal propagation in continuous-time recurrent neural networks, Biosystems, vol.87, issue.2-3, pp.252-259, 2007.
DOI : 10.1016/j.biosystems.2006.09.020

R. Wood and E. A. Di-paolo, New Models for Old Questions: Evolutionary Robotics and the ???A Not B??? Error, 2007.
DOI : 10.1007/978-3-540-74913-4_114

P. Manoonpong, F. Pasemann, and F. Wörgötter, Sensor-driven neural control for omnidirectional locomotion and versatile reactive behaviors of walking machines, Robotics and Autonomous Systems, vol.56, issue.3, 2008.
DOI : 10.1016/j.robot.2007.07.004

A. R. Marchand, W. J. Barnes, C. , and D. , Primary afferent depolarizations of sensory origin within contact-sensitive mechanoreceptive afferents of a crayfish leg, 1997.
URL : https://hal.archives-ouvertes.fr/hal-00330749

E. Marder and D. Bucher, Central pattern generators and the control of rhythmic movements, Current Biology, vol.11, issue.23, pp.986-996, 2001.
DOI : 10.1016/S0960-9822(01)00581-4

K. Matsuoka, Sustained oscillations generated by mutually inhibiting neurons with adaptation, Biological Cybernetics, vol.33, issue.6, pp.367-376, 1985.
DOI : 10.1007/BF00449593

M. Crea, D. A. , R. , and I. A. , Organization of mammalian locomotor rhythm and pattern generation, Brain Res. Rev, vol.57, pp.134-146, 2008.

F. Nadim and Y. Manor, The role of short-term synaptic dynamics in motor control, Current Opinion in Neurobiology, vol.10, issue.6, pp.683-690, 2000.
DOI : 10.1016/S0959-4388(00)00159-8

A. Pitti, M. Lungarella, and Y. Kuniyoshi, Generating spatiotemporal joint torque patterns from dynamical synchronization of neurons by octopamine and serotonin, 2009.

S. Grillner, T. Deliagina, O. Ekeberg, A. Manira, R. H. Hill et al., Neural networks coordinating locomotion and body orientation in lamprey ? biological and mathematical models, J. Neurophysiol, vol.18, pp.270-279, 1995.

S. Grillner and P. Wallen, Cellular bases of a vertebrate locomotor system???steering, intersegmental and segmental co-ordination and sensory control, Brain Research Reviews, vol.40, issue.1-3, pp.92-106, 2002.
DOI : 10.1016/S0165-0173(02)00193-5

T. Hoinville, Évolution de contrôleurs neuronaux plastiques De la locomotion adaptée vers la locomotion adaptative, 2007.

T. Hoinville and P. Henaff, Comparative study of two homeostatic mechanisms in evolved neural controllers for legged locomotion, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566), pp.2624-2629, 2004.
DOI : 10.1109/IROS.2004.1389804

URL : https://hal.archives-ouvertes.fr/hal-00523324

A. Ijspeert, Central pattern generators for locomotion control in animals and robots: A review, Neural Networks, vol.21, issue.4, pp.642-653, 2008.
DOI : 10.1016/j.neunet.2008.03.014

L. G. Lei, M. K. Habib, K. Watanabe, and K. Izumi, Central pattern generators based on Matsuoka oscillators for the locomotion of biped robots, 2008.

C. Liu, C. Qijun, and Z. Jiaqi, Coupled Van Der Pol oscillators utilised as central pattern generators for quadruped locomotion, Proceedings, 2009.

A. C. De-pine-filho, M. S. Dutra, R. , and L. S. , Modeling of a bipedal robot using mutually coupled Rayleigh oscillators, Biological Cybernetics, vol.92, issue.1, pp.1-7, 2005.
DOI : 10.1007/s00422-004-0531-1

D. Prisco, G. V. Pearlstein, E. , L. Ray, D. Robitaille et al., A cellular mechanism for the transformation of a sensory input into a motor command, J. Neurosci, vol.20, pp.8169-8176, 2000.

M. S. Dutra, A. C. De-pina-filho, and V. F. Romano, Modeling of a bipedal locomotor using coupled nonlinear oscillators of Van der Pol, Biological Cybernetics, vol.88, issue.4, pp.286-292, 2003.
DOI : 10.1007/s00422-002-0380-8

G. Endo, J. Nakanishi, J. Morimoto, and G. Cheng, Experimental studies of a neural oscillator for biped locomotion with QRIO, Proceedings of IEEE International Conference on Robotics and AutomationICRA) 2005, pp.596-602, 2005.

J. Gallagher, R. Beer, K. Espenschied, Q. , and R. , Application of evolved locomotion controllers to a hexapod robot, Robotics and Autonomous Systems, vol.19, issue.1, pp.95-103, 1996.
DOI : 10.1016/S0921-8890(96)00036-X

T. Geng, B. Porr, and F. Wörgötter, A Reflexive Neural Network for Dynamic Biped Walking Control, Neural Computation, vol.3139, issue.5, pp.1156-1196, 2006.
DOI : 10.1111/j.1469-7793.1998.927bs.x

M. D. Gill, P. Skorupski, and R. , Modulation of spontaneous and reflex activity of crayfish leg motor references Beer Parameter space structure of continuous-time recurrent neural networks, Neural Comput, vol.18, pp.3009-3051, 1996.

R. Beer and H. Chiel, A Distributed Neural Network Architecture for Hexapod Robot Locomotion, Neural Computation, vol.235, issue.1, pp.356-365, 1992.
DOI : 10.1146/annurev.en.11.010166.000535

N. Brunel, Dynamics of networks of randomly connected excitatory and inhibitory spiking neurons, Journal of Physiology-Paris, vol.94, issue.5-6, pp.445-463, 2000.
DOI : 10.1016/S0928-4257(00)01084-6

J. Buchli, F. Iida, and A. Ijspeert, Finding Resonance: Adaptive Frequency Oscillators for Dynamic Legged Locomotion, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.3903-3910, 2006.
DOI : 10.1109/IROS.2006.281802

A. Büschges, Sensory Control and Organization of Neural Networks Mediating Coordination of Multisegmental Organs for Locomotion, Journal of Neurophysiology, vol.93, issue.3, pp.1127-1135, 2005.
DOI : 10.1152/jn.00615.2004

J. Conradt and P. Varshavskaya, Distributed central pattern generator control for a serpentine robot, Proceedings of the International Conference on Artificial Neural Networks (ICANN), pp.338-341, 2003.

H. Cruse, C. Bartling, G. Cymbalyuk, J. Dean, and M. Dreifert, A modular artificial neural net for controlling a six-legged walking system, Biological Cybernetics, vol.11, issue.5, pp.421-430, 1995.
DOI : 10.1007/BF00201417

T. P. Vogels, A. , and L. F. , Signal Propagation and Logic Gating in Networks of Integrate-and-Fire Neurons, Journal of Neuroscience, vol.25, issue.46, pp.10786-10795, 2005.
DOI : 10.1523/JNEUROSCI.3508-05.2005

T. Wadden and O. Ekeberg, A neuro-mechanical model of legged locomotion: single leg control, Biol. Cybern, vol.79, pp.161-173, 1998.

H. J. Williams, Homeostatic plasticity improves signal propagation in continuous-time recurrent neural networks, Biosystems, vol.87, issue.2-3, pp.252-259, 2007.
DOI : 10.1016/j.biosystems.2006.09.020

Y. Woosung, N. Y. Chong, S. Ra, H. K. Chang, and J. Y. Bum, Self-stabilizing bipedal locomotion employing neural oscillators, " distributed pattern generators, Front. Neurorobotics, vol.3, 2008.

F. Rowat and I. Selverston, Modeling the gastric mill central pattern generator of the lobster with a relaxation-oscillator network, Neurophysiology, vol.70, pp.1030-1053, 1993.

P. Rowat and A. Selverston, Oscillatory mechanisms in Pairs of neurons connected with fast inhibitory synapses, Journal of Computational Neuroscience, vol.4, issue.2, pp.103-127, 1997.
DOI : 10.1023/A:1008869411135

G. Taga, Y. Yamaguchi, and H. Shimizu, Self-organized control of bipedal locomotion by neural oscillators in unpredictable environment, Biological Cybernetics, vol.63, issue.3, pp.147-159, 1991.
DOI : 10.1007/BF00198086

T. Singer, B. Seymour, J. O. Doherty, H. Kaube, R. J. Dolan et al., Empathy for Pain Involves the Affective but not Sensory Components of Pain, Science, vol.303, issue.5661, pp.1157-1162, 2004.
DOI : 10.1126/science.1093535

J. W. Brown and T. S. Braver, A computational model of risk, conflict, and individual difference effects in the anterior cingulate cortex, Brain Research, vol.1202, pp.99-108, 2008.
DOI : 10.1016/j.brainres.2007.06.080

R. Mars, M. Coles, M. Grol, C. Holroyd, S. Nieuwenhuis et al., Neural dynamics of error processing in medial frontal cortex, NeuroImage, vol.28, issue.4, pp.1007-1013, 2005.
DOI : 10.1016/j.neuroimage.2005.06.041

H. Gemba, K. Sasaki, and V. B. Brooks, ???Error??? potentials in limbic cortex (anterior cingulate area 24) of monkeys during motor learning, Neuroscience Letters, vol.70, issue.2, pp.223-227, 1986.
DOI : 10.1016/0304-3940(86)90467-2

W. J. Gehring, M. G. Coles, D. E. Meyer, and E. Donchin, The errorrelated negativity: An event-related potential accompanying errors, Psychophysiology, vol.27, p.34, 1990.

J. Hohnsbein, M. Falkenstein, and J. Hoorman, Error processing in visual and auditory choice reaction tasks, Journal of Psychophysiology, vol.3, p.32, 1989.

J. W. Brown and T. S. Braver, Learned Predictions of Error Likelihood in the Anterior Cingulate Cortex Science, pp.1118-1121, 2005.

L. Van-leijenhorst, P. M. Westenberg, and E. A. Crone, A Developmental Study of Risky Decisions on the Cake Gambling Task: Age and Gender Analyses of Probability Estimation and Reward Evaluation, Developmental Neuropsychology, vol.46, issue.2, pp.179-196, 2008.
DOI : 10.1080/87565640701884287

K. Matsumoto, W. Suzuki, and K. Tanaka, Neuronal Correlates of Goal-Based Motor Selection in the Prefrontal Cortex, Science, vol.301, issue.5630, pp.229-232, 2003.
DOI : 10.1126/science.1084204

D. E. Rumelhart and D. Zipser, Feature Discovery by Competitive Learning*, Cognitive Science, vol.14, issue.1, pp.75-112, 1985.
DOI : 10.1207/s15516709cog0901_5

H. Ahn and R. Picard, Affective-Cognitive Learning and Decision Making: A Motivational Reward Framework for Affective Agents, The 1st International Conference on Affective Computing and Intelligent Interaction, 2005.
DOI : 10.1007/11573548_111

D. J. Kruger, X. T. Wang, and A. Wilke, Towards the development of an evolutionarily valid domain-specific risk-taking scale, Evolutionary Psychology, pp.555-568, 2007.

J. Van-gelder, R. E. De-vries, J. Van, and . Plight, Evaluating a dual-process model of risk: affect and cognition as determinants of risky choice, Journal of Behavioral Decision Making, vol.35, issue.1, pp.45-61, 2008.
DOI : 10.1002/bdm.610

B. Pawlowski, R. Atwal, and R. I. Dunbar, Sex differences in everyday risk-taking behavior in humans, Evolutionary Psychology, pp.29-42, 2008.

P. Horvarth and M. Zuckerman, Sensation seeking, risk appraisal, and risky behavior. Personality and individual differences, pp.41-52, 1993.

T. Geng, B. Porr, and F. Wörgötter, Fast Biped Walking with a Sensor-driven Neuronal Controller and Real-time Online Learning, The International Journal of Robotics Research, vol.25, issue.3, pp.243-259, 2006.
DOI : 10.1177/0278364906063822

G. Taga, Y. Yamaguchi, and H. Shimizu, Self-organized control of bipedal locomotion by neural oscillators in unpredictable environment, Biological Cybernetics, vol.63, issue.3, pp.147-159, 1991.
DOI : 10.1007/BF00198086

T. Wadden and O. Ekeberg, A neuro-mechanical model of legged locomotion: single leg control, Biological Cybernetics, vol.79, issue.2, pp.161-173, 1998.

H. Cruse, C. Bartling, M. Dreifert, J. Schmitz, D. E. Brunn et al., Walking: A Complex Behavior Controlled by Simple Networks, Adaptive Behavior, vol.17, issue.4, pp.385-418, 1995.
DOI : 10.1177/105971239500300403

D. A. Mccrea and I. A. Rybak, Organization of mammalian locomotor rhythm and pattern generation, Brain Research Reviews, vol.57, issue.1, pp.134-146, 2008.
DOI : 10.1016/j.brainresrev.2007.08.006

P. F. Rowat and A. I. Selverston, Learning algorithms for oscillatory networks with gap junctions and membrane currents, Network: Computation in Neural Systems, vol.2, issue.1, pp.17-41, 1991.
DOI : 10.1088/0954-898X_2_1_002

E. Marder and R. Calabrese, Principles of rhythmic motor pattern generation, Physiological Reviews, vol.76, issue.3, p.687717, 1996.

A. Ishiguro, A. Fujii, and P. E. Hotz, Neuromodulated Control of Bipedal Locomotion Using a Polymorphic CPG Circuit, Adaptive Behavior, vol.11, issue.1, pp.7-17, 2003.
DOI : 10.1177/10597123030111001

R. D. Beer, H. J. Chiel, R. D. Quinn, K. S. Espenschied, and P. Larsson, A Distributed Neural Network Architecture for Hexapod Robot Locomotion, Neural Computation, vol.235, issue.1, pp.356-365, 1992.
DOI : 10.1146/annurev.en.11.010166.000535

G. N. Orlovsky, T. Deliagina, and S. Grillner, Neuronal control of locomotion: from mollusc to man, Anonymous, 1999.

D. A. Mccrea and I. A. Rybak, Organization of mammalian locomotor rhythm and pattern generation, Brain Research Reviews, vol.57, issue.1, pp.134-146, 2008.
DOI : 10.1016/j.brainresrev.2007.08.006

T. Graham-brown, The Intrinsic Factors in the Act of Progression in the Mammal, Proceedings of the Royal Society B: Biological Sciences, vol.84, issue.572, pp.308-319, 1911.
DOI : 10.1098/rspb.1911.0077

A. J. Ijspeert, Central pattern generators for locomotion control in animals and robots: A review, Neural Networks, vol.21, issue.4, pp.642-653, 2008.
DOI : 10.1016/j.neunet.2008.03.014

G. Taga, Y. Yamaguchi, and H. Shimizu, Self-organized control of bipedal locomotion by neural oscillators, Biological Cybernetic, vol.65, p.147159, 1991.

H. Kimura, S. Akiyama, and K. Sakurama, Realization of dynamic walking and running of the quadruped using neural oscillator, Auton. Robots, vol.7, p.247258, 1999.

J. Endo, J. Morimoto, T. Matsubara, J. Nakanishi, and G. Cheng, Learning CPG-based Biped Locomotion with a Policy Gradient Method: Application to a Humanoid Robot, The International Journal of Robotics Research, vol.11, issue.7, pp.213-228, 2008.
DOI : 10.1177/0278364907084980

J. Morimoto, J. Endo, J. Nakanishi, and G. Cheng, A Biologically Inspired Biped Locomotion Strategy for Humanoid Robots: Modulation of Sinusoidal Patterns by a Coupled Oscillator Model, IEEE Transactions on Robotics, vol.24, issue.1, pp.185-191, 2008.
DOI : 10.1109/TRO.2008.915457

K. Matsuoka, Sustained oscillations generated by mutually inhibiting neurons with adaptation, Biological Cybernetics, vol.33, issue.6, pp.367-376, 1985.
DOI : 10.1007/BF00449593

D. R. Mcmillen, M. T. Gabriele, and . Deleuterio, Simple Central Pattern Generator model using phasic analog neurons. Physical review, pp.6994-6999, 1999.

L. Righetti, J. Buchli, and A. J. Ijspeert, Adaptive Frequency Oscillators and Applications. The Open Cybernetics and Systemics Journal, pp.64-69, 2009.

L. Righetti, J. Buchli, and A. J. Ijspeert, Dynamic Hebbian learning in adaptive frequency oscillators, Physica D: Nonlinear Phenomena, vol.216, issue.2, pp.269-281, 2006.
DOI : 10.1016/j.physd.2006.02.009

J. Nakanishi, J. Morimoto, G. Endo, G. Cheng, S. Schaal et al., Learning from demonstration and adaptation of biped locomotion, Robotics and Autonomous Systems, vol.47, issue.2-3, pp.79-91, 2004.
DOI : 10.1016/j.robot.2004.03.003

P. F. Rowat and A. I. Selverston, Learning algorithms for oscillatory networks with gap junctions and membrane currents, Network: Computation in Neural Systems, vol.2, issue.1, pp.17-41, 1991.
DOI : 10.1088/0954-898X_2_1_002

Y. P. Ivanenko, G. Cappellini, N. Dominici, R. E. Oppele, and F. Lacquaniti, Modular Control of Limb Movements during Human Locomotion, Journal of Neuroscience, vol.27, issue.41, pp.11149-11161, 2007.
DOI : 10.1523/JNEUROSCI.2644-07.2007

E. Marder and R. L. Calabrese, Principles of rhythmic motor pattern generation, Physiol Rev, vol.76, p.687717, 1996.

A. D. Kuo, The Relative Roles of Feedforward and Feedback in the Control of Rhythmic Movements, Motor Control, vol.6, issue.2, pp.129-145, 2002.
DOI : 10.1123/mcj.6.2.129

O. Kiehn and S. J. Butt, Physiological, anatomical and genetic identification of CPG neurons in the developing mammalian spinal cord, Progress in Neurobiology, vol.70, issue.4, pp.347-361, 2003.
DOI : 10.1016/S0301-0082(03)00091-1

S. M. Williams and D. Purves, Publisher: Sinauer Associates, Neuroscience, 2001.

G. Taga, Nonlinear Dynamics of Human Locomotion: from Real-Time Adaptation to Development . Book Chapter Adaptive Motion of Animals and Machines, pp.189-204, 2006.

T. G. Graham-brown, On the fundamental activity of the nervous centres: together with an analysis of the conditioning of rhythmic activity in progression, and a theory of the evolution of function in the nervous system, J. Physiol, vol.48, p.1841, 1914.

C. Perret, J. M. Cabelguen, and D. Orsal, Analysis of the pattern of activity in knee flexor motoneurons during locomotion in the cat Stance and Motion: Facts and Concepts, p.133141, 1988.

G. F. Koshland and J. L. Smith, Mutable and immutable features of paw-shake responses after hindlimb deafferentation in the cat, J. Neurophysiol, vol.62, p.162173, 1989.

G. Taga, A model of the neuro-musculo-skeletal system for anticipatory adjustment of human locomotion during obstacle avoidance, Biological Cybernetics, vol.78, issue.1, pp.9-17, 1998.
DOI : 10.1007/s004220050408

T. Wadden and O. Ekeberg, A neuro-mechanical model of legged locomotion: single leg control, Biological Cybernetics, vol.79, issue.2, pp.161-173, 1998.

T. Geng, B. Porr, and F. Wörgötter, Fast Biped Walking with a Sensor-driven Neuronal Controller and Real-time Online Learning, The International Journal of Robotics Research, vol.25, issue.3, pp.243-259, 2006.
DOI : 10.1177/0278364906063822

J. Nassour, P. Hénaff, B. Ouezdou, F. Cheng, and G. , Experience-based learning mechanism for neural controller adaptation: Application to walking biped robots, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.2616-2621, 2009.
DOI : 10.1109/IROS.2009.5354797

URL : https://hal.archives-ouvertes.fr/hal-00519941

T. Kohonen, Self-Organizing Maps. Springer Series in Information Sciences Third Extended Edition, 501 pages, 1995.

H. Ahn and R. Picard, Affective-Cognitive Learning and Decision Making: A Motivational Reward Framework For Affective Agent: The 1st International Conference on Affective Computing and Intelligent Interaction, pp.22-24, 2005.