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Résumé
La motivation de cette thèse de Doctorat est de modéliser quelques problèmes biologiques

avec des systèmes et des équations de réaction-diffusion. La thèse est divisée en sept chapitres:

• Dans le Chapitre 1 on modélise des ions de calcium et des protéines dans une épine den-
dritique mobile (une microstructure dans les neurones). On propose deux modèles, un
avec des protéines qui diffusent et un autre avec des protéines fixées au cytoplasme. On
démontre que le premier problème est bien posé, que le deuxième problème est presque
bien posé et qu’il y a un lien continu entre les deux modèles.

• Dans le Chapitre 2 on applique les techniques du Chapitre 1 pour un modèle d’infection
virale et réponse immunitaire dans des cellules cultivées. On propose comme avant deux
modèles, un avec des cellules qui diffusent et un autre avec des cellules fixées. On démontre
que les deux problèmes sont bien posés et qu’il y a un lien continu entre les deux modèles.
On étudie aussi le comportement asymptotique et la stabilité des solutions.

• Dans le Chapitre 3 on montre que la croissance a deux effets positives dans la formation de
motifs ou patterns. Le premier est un effet anti explosion (anti-blow-up) car les solutions
sur un domaine croissant explosent plus tard que celles sur un domain fixé, et si la crois-
sance est suffisamment rapide alors elle peut même empêcher l’explosion. Le deuxième est
un effet stabilisant car les valeur propres sur un domaine croissant ont des parties réelles
plus petites que celles sur un domaine fixé.

• Dans le Chapitre 4 on étend la définition de front progressif à des variétés et on en étudie
quelques propriétés.

• Dans le Chapitre 5 on étudie des front progressifs sur la droite réelle. On démontre
qu’il y a deux fronts progressifs qui se déplacent dans des directions opposées et qu’ils se
bloquent mutuellement, générant ainsi une solution stationnaire non-triviale. Cet exemple
montre que pour des modèles à diffusion non-homogène les fronts progressifs ne sont pas
nécessairement des invasions.

• Dans le Chapitre 6 on étudie des fronts progressifs sur la sphère. On démontre que pour des
sous-domaines de la sphère avec des conditions aux limites de Dirichlet le front progressif
est toujours bloqué, tandis que pour la sphère complète le front peut ou bien invahir ou
bien être bloqué, tout en fonction des conditions initiales.

• Dans le Chapitre 7 on étudie un problème elliptique aux valeurs propres nonlinéaires.
Sur S

1 on démontre l’existence de multiples solutions non-triviales avec des techniques
de bifurcation. Sur S

N on utilise les mêmes arguments pour démontrer l’existence de
multiples solutions non-triviales à symétrie axiale, i.e. qui ne dépendent que de l’angle
vertical.

Mot Clés : Equations de réaction-diffusion, analyse nonlinéaire, équations aux dérivées par-
tielles paraboliques, équations aux dérivées partielles elliptiques, sur-solutions et sous-solutions,
méthodes variationelles, méthodes topologiques, Biomathématiques.





Abstract

The motivation of this PhD thesis is to model some biological problems using Reaction-
diffusion systems and equations. The thesis is divided in seven chapters:

• In Chapter 1 we model calcium ions and some proteins inside a moving dendritic spine
(a microstructure in the neurons). We propose two models, one with diffusing proteins
and another with proteins fixed in the cytoplasm. We prove that the first problem is
well-posed, that the second problem is almost well-posed and that there is a continuous
link between both models.

• In Chapter 2 we applied the techniques of Chapter 1 for a model of viral infection of
cells and immune response in cultivated cells. We propose as well two models, one with
diffusing cells and another with fixed cells. We prove that both models are well-posed and
that there is a continuous link between them. We also study the asymptotic behaviour
and stability of solutions for large times, and we perform numerical simulations in Matlab.

• In Chapter 3 we show that growth has two positive effects on pattern formation. First,
an anti-blow-up effect because it allows the solution on a growing domain to blow-up later
than on a fixed domain, and if growth is fast enough then it can even prevent the blow-up.
Second, a stabilising effect because the eigenvalues on a growing domain have smaller real
part than those on a fixed domain.

• In Chapter 4 we extend the definition of travelling waves to manifolds and study some of
their properties.

• In Chapter 5 we study travelling waves on the real line. We prove that there are two
travelling waves moving in opposite directions and that they mutually block, giving rise
to a non-trivial steady-state solution. This example shows that for models with non-
homogeneous diffusion the travelling waves are not necessarily invasions.

• In Chapter 6 we study travelling waves on the sphere. We prove that for sub-domains of
the sphere with Dirichlet boundary conditions the travelling wave is always blocked, but
for the whole sphere the wave can either invade or be blocked, depending on the initial
conditions.

• In Chapter 7 we study an elliptic nonlinear eigenvalue problem on the sphere. In S
1 we

prove the existence of multiple non-trivial solutions using bifurcation techniques. In S
N

we use the same arguments to prove the existence of multiple axis-symmetric solutions,
i.e. depending only on the vertical angle.

Keywords : Reaction-diffusion equations, nonlinear analysis, parabolic partial differential
equations, elliptic partial differential equations, super-solutions and sub-solutions, variational
methods, topological methods, Biomathematics.
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Introduction

The motivation of this PhD thesis is to model some biological problems using Partial Differential
Equations. The general framework is a set of biological entities (either ions, molecules, proteins
or cells) that interact with each other and diffuse within a given domain. Therefore, building
our models via reaction-diffusion systems and equations seems quite natural.

This thesis is divided in seven chapters. The first two deal with reaction-diffusion systems
on Euclidean spaces and modelling:

• Chapter 1. Calcium ions in dendritic spines (microstructures in the neuron).

• Chapter 2. Viral infection of cells and immune response.

The next four chapters deal with reaction-diffusion equations on manifolds:

• Chapter 3. The stabilising effect of growth on pattern formation.

• Chapter 4. Definition and properties of generalised travelling waves on manifolds.

• Chapter 5. Generalised travelling waves on the real line.

• Chapter 6. Generalised travelling waves on the sphere.

The last chapter deals with elliptic nonlinear eigenvalues on the sphere:

• Chapter 7. Bifurcation and multiple periodic solutions on the sphere.

In all seven cases we are interested in pattern formation and the role of geometry. We prove
at least local existence of solutions, but in most cases we managed to find sufficient conditions
for the solutions to be globally defined.

In Chapters 1 and 2 we prove that the models are well-posed problems (global existence,
uniqueness and continuous dependence on initial data) and that the solutions are non-negative.
This implies that any numerical method used to approximate the solutions is robust. Moreover,
in Chapter 2 we also characterised the asymptotic behaviour of the solutions, which permits to
determine the stable states and the long term interaction of cells and viruses.

A recurrent finding is a link between pattern formation and geometry. In Chapter 3 we
prove that growth has two effects on pattern formation. The first one is a stabilising effect:

vii



viii

the eigenvalues of the operator on a growing domain are smaller than the eigenvalues on the
corresponding fixed domain. The second one is an anti-blow-up effect: growth enhances the
possibility of having time-global solutions. We prove that for scalar equations with quadratic
nonlinearities, which exhibit blow-up on the fixed domain, the blow-up time on the growing
domain occurs later. Moreover, if growth is fast enough the solutions are globally defined, i.e.
there is no blow-up at all.

In Chapters 5 and 6 we show that the geometry of the domain plays a crucial role in the
propagation of a travelling wave. Indeed, unlike classical planar travelling waves that invade the
whole Euclidean space, on the sphere the travelling waves do not necessarily invade the whole
domain. More precisely, we prove existence of generalised travelling waves that are eventually
blocked by non-trivial steady-state solutions, which implies that the wave cannot invade the
whole sphere. Since we find the same result on the projection of the sphere to the plane, on a
truncated sphere and on the whole sphere, the geometry of the sphere plays an important role
in the invasive nature of the travelling front.

In Chapter 7 we deal with an elliptic nonlinear eigenvalue problem on the sphere. In the
case of S

1 we prove via topological bifurcation the existence of multiple non-trivial solutions.
In the case of S

N we use the same arguments to prove the existence of multiple axis-symmetric
solutions, i.e. solutions depending only on the vertical angle, thus independent on the horizontal
angles.

Chapter 1. Calcium ions in dendritic spines

The study of synapses is a very recurrent and important topic that lies in the intersection of
Medicine, Neurology, Biology and Chemistry. The current technology of microscopes has shown
that the dendritic spines, the smallest structures of the neuron and the part responsible of the
synapses, possess a twitching motion. The goal of our model is to propose a theoretical frame-
work for this twitching motion and incorporate it into the dynamics of the calcium ions inside
the neuron.

The motivation of Chapter 1 is the two articles of Holcman and his collaborators, [33] and
[34]. In the former they use a stochastic model for each single calcium ion, whilst in the lat-
ter they pass from the microscopic description to a macroscopic reaction-diffusion model via
Fokker-Planck equations and the Law of Mass Action. This reaction-diffusion models describe
the twitching motion of the dendritic spine, but the assumptions on the mechanism that triggers
such twitches are not very realistic. After reviewing the experimental evidence in the literature
(e.g. Farah et al [19], Klee et al [36] and Shiftman et al [59]), we propose to modify the hy-
potheses on the genesis of the twitching to obtain a more accurate model from the biological
point of view. With the new boundary conditions the problem is very nonlinear and strongly
coupled, but we still have a well-posed problem.

We consider calcium ions interacting with some proteins that have 4 binding sites for the



Chapter 0. Introduction ix

ions. Both calcium ions and proteins diffuse all within a moving domain Ω (a dendritic spine)
full of cytoplasm. Let M be the concentration of calcium ions, U the total number of binding
sites and W the total number of free sites and V the cytoplasmic flow field. If we suppose that
the proteins are fixed in the cytoplasm (i.e. they do not diffuse) then the model is





∂tM = ∇ · [D∇M − V M ]− k1MU + k−1[A− U ] ,
∂tU = −k1MU + k−1[A− U ] ,
V = ∇φ , △φ = 0 .

(0.1)

with initial conditions {
M(x, 0) = m0(x) ,
U(x, 0) = A(x) ,

(0.2)

and boundary conditions





M(σ, t) = 0 on Γa × [0, T ] ,
(D∇M − V M) · n(σ, t) = 0 on Γr × [0, T ] ,

∇φ · n(σ, t) = a(σ)λ(t) on Γ× [0, T ],
(0.3)

where Γ := ∂Ω, Γ = Γa∪Γr and Γa∩Γr = ∅. If we allow the diffusion of proteins then (0.1)-(0.3)
becomes 




∂tM = ∇ · [D∇M − V M ]− k1MU + k−1W ,
∂tU = d△U − k1MU + k−1W ,
∂tW = d△U + k1MU − k−1W ,

V = ∇φ , △φ = 0 .

(0.4)

with initial conditions 



M(x, 0) = m0(x) ,
U(x, 0) = A(x) ,
W (x, 0) = 0 ,

(0.5)

and boundary conditions





M(σ, t) = 0 on Γa × [0, T ] ,
(D∇M − V M) · n(σ, t) = 0 on Γr × [0, T ] ,

∇U · n(σ, t) = 0 on Γ× [0, T ],
∇W · n(σ, t) = 0 on Γ× [0, T ],
∇φ · n(σ, t) = a(σ)λ(t) on Γ× [0, T ].

(0.6)

Note that d should be much smaller than D because the proteins we are considering are around
106 times bigger than the calcium ions.

The main results of the calcium ion problem is that both models admit weak, positive
solutions and that there is a continuous link between both models. More precisely, we have the
following three results.

Theorem 0.1 For any T > 0 the reaction-diffusion system (0.1)-(0.3) has global unique weak
solutions M(x, t), U(x, t) and V (x, t) on Ω× (0, T ) with the following properties:
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1. M ∈ L∞ (Ω× (0, T )) and 0 ≤M(x, t) ≤ ‖m0‖∞ + k−1t‖A‖∞ a.e. in Ω× (0, T ).

2. M ∈ L∞
(
0, T ;H1 (Ω)

)
and

‖M(t)‖2 +D

∫ t

0
eC(t−s)‖∇M(s)‖2 ds ≤ eCt

[
‖m0‖2 + k2

−1t‖A‖2
]
.

3. U ∈ L∞ (Ω× (0, T )) and 0 ≤ U(x, t) ≤ A(x) a.e. in Ω× (0, T ).

4. V ∈ L∞
(
0, T ;

[
L2 (Ω)

]n)
and ‖V ‖L∞(0,T ;[L2(Ω)]n) ≤ C‖a‖∞‖A‖∞.

Theorem 0.2 For any T > 0 the reaction-diffusion system (0.4)-(0.6) is well-posed, i.e. it
has global unique weak solutions M(x, t), U(x, t), W (x, t) and V (x, t) on Ω× (0, T ) depending
continuously on the initial data. Moreover, we have the following properties:

1. M ∈ L∞ (Ω× (0, T )) and 0 ≤M(x, t) ≤ ‖m0‖∞ + k−1t‖A‖∞ a.e. in Ω× (0, T ).

2. M ∈ L∞
(
0, T ;H1 (Ω)

)
and

‖M(t)‖2 +D

∫ t

0
eC(t−s)‖∇M(s)‖2 ds ≤ eCt

[
‖m0‖2 + k2

−1t‖A‖2
]
.

3. U,W ∈ L∞ (Ω× (0, T )), they are non-negative and 0 ≤ U(x, t) +W (x, t) ≤ A(x) a.e. in
Ω× (0, T ).

4. U,W ∈ L∞
(
0, T ;H1 (Ω)

)
and

‖U(t)‖2 + ‖W (t)‖2 + 2d

∫ t

0
e

R t
s c(r)dr

(
‖∇U(s)‖2 + ‖∇W (s)‖2

)
ds ≤ e

R t
0

c(s)ds‖A‖2 ,

where c(t) = 2[k−1 + k1α(t)] and α(t) = ‖m0‖∞ + k−1t‖A‖∞.

5. V ∈ L∞
(
0, T ;

[
L2 (Ω)

]n)
and ‖V ‖L∞(0,T ;[L2(Ω)]n) ≤ C‖a‖∞‖A‖∞

Theorem 0.3 If d→ 0 then the sequence (Md, Ud,W d,Vd) of solutions of (0.4)-(0.6) converges
to the solution (M,U,W,V) of (0.1)-(0.3) in the following senses:

1. Md, Ud and W d converge weakly in L2
(
0, T ;L2 (Ω)

)
to M , U and W , respectively.

2. Vd converges to V weakly in L2
(
0, T ;

[
L2 (Ω)

]n)
.

3. Md converges strongly in L2
(
0, T ;L2 (Ω)

)
to M .

4. Ud and W d converge weakly-⋆ in L∞(Ω× (0, T )) to U and W , respectively.
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5. In the limit d = 0 we have U(x, t) +W (x, t) = A(x) a.s. in Ω× (0, T ).

Finally, the solutions of both systems (0.1)-(0.3) and (0.4)-(0.6) are globally defined in time.

Theorem 0.4 Let M , U , W and V be solutions of either (0.1)-(0.3) or (0.4)-(0.6). Then:

1. M,U,W ∈ L∞
(
0,∞;L1 (Ω)

)
.

2. V ∈ L∞
(
0,∞;

[
L2 (Ω)

]n)
.

Chapter 2. Viral infection and immune response

Starting from the assumption that cells and viruses diffuse and interact with each other moti-
vates the framework of a reaction-diffusion system for viruses, normal cells and infected cells. If
we add an immune response via antibodies then we should add as well a new type of cells that
become resistant to viruses when they get in contact with antibodies. Models of this kind are
important because of their potential applications in Cellular Biology and molecular transport,
and could shed a light towards new gene therapies.

Getto et al [24] constructed an Ordinary Differential Equation model for virus infection
of cells and immune response. The authors completely solved the model, and in particular
they found that in the limit the viruses and the non-infected cells cannot coexist. Motivated
by this result, we built up a reaction-diffusion model in order to study the spatial structure
and properties of the solutions. Since the boundary conditions we imposed are homogeneous
Neumann (i.e. no-flux), the problem is significantly easier than the one in Chapter 1 (calcium
ions), which allows a complete description of the asymptotic behaviour and stability of solutions.

We consider a model where virions (i.e. viral particles) v infect cells, but we add an immune
response from the organism via interferons i. There are 3 possible types of cells: wild-type
cells W that has not been in contact with virions, infected cells I that have been in contact
with virions, and resistant cells R that have been in contact with interferons. All five biological
particles are confined within a domain Ω with no-flux boundary conditions.

As in the calcium ion problem, we will consider two models. The first model is a reaction-
diffusion (RD) system, where we allow cells to diffuse:





∂tW = d∆W − iW − vW ,
∂tI = d∆I − µII + vW ,
∂tR = d∆R+ iW ,
∂tv = dv∆v − µvv + αvI − α4vW ,
∂ti = di∆i− µii+ αiI − α3iW ,

(0.7)
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with boundary conditions





∇W · n(σ, t) = 0 on Γ× [0, T ],
∇I · n(σ, t) = 0 on Γ× [0, T ],
∇R · n(σ, t) = 0 on Γ× [0, T ],
∇v · n(σ, t) = 0 on Γ× [0, T ],
∇i · n(σ, t) = 0 on Γ× [0, T ],

(0.8)

and initial conditions 



W (x, 0) = W0(x) ,
I(x, 0) = I0(x) ,
R(x, 0) = R0(x) ,
v(x, 0) = v0(x) .
i(x, 0) = i0(x) .

(0.9)

In the second model we consider that the cells do not diffuse at all. Therefore, we set d = 0
and we thus obtain a hybrid model consisting of PDE equations for the interferons i and virions
v and ODE equations for the three types of cells W, I,R:





∂tW = −iW − vW ,
∂tI = −µII + vW ,
∂tR = iW ,
∂tv = dv∆v − µvv + αvI − α4vW ,
∂ti = di∆i− µii+ αiI − α3iW ,

(0.10)

with boundary conditions

{
∇v · n(σ, t) = 0 on Γ× [0, T ],
∇i · n(σ, t) = 0 on Γ× [0, T ].

(0.11)

We prove that both the RD and the hybrid models are well-posed problems, i.e., they have
unique solutions which are non-negative, uniformly bounded, and depend continuously on the
initial data. We also prove that there is a “continuous link” between these two models.

Theorem 0.5 Fix any T > 0. If the initial conditions (0.9) are non-negative a.e. and bounded
then the RD system (0.7)-(0.8) has unique weak solutions W (x, t), I(x, t), R(x, t), v(x, t) and
i(x, t) on Ω× [0, T ]. Moreover, these solutions are non-negative, uniformly bounded, and depend
continuously on the initial data.

Theorem 0.6 Fix any T > 0. If the initial conditions (0.9) are non-negative a.e. and bounded
then the hybrid system (0.10)-(0.11) has unique weak solutions W (x, t), I(x, t), R(x, t), v(x, t)
and i(x, t) on Ω × [0, T ]. Moreover, these solutions are non-negative, bounded, and depend
continuously on the initial data.
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Theorem 0.7 If d → 0 then the solutions (W d, Id, Rd, vd, id) of the RD system (0.7)-(0.8)
converge to the solution (W, I,R, v, i) of the hybrid system (0.10)-(0.11), in the following sense:

• Strongly in L2
(
0, T ;L2 (Ω)

)
.

• Weakly in L2
(
0, T ;H1 (Ω)

)
.

• Weakly-⋆ in L∞(Ω× (0, T )).

So far we have (essentially) the same results we got for the calcium ion problem. However, the
viral infection problem is easier because the boundary conditions are Neumann homogeneous,
whilst for the calcium ions the boundary conditions were strongly coupled. This feature has
allowed us to study in detail the asymptotic behaviour of solutions.

Theorem 0.8

1. The solutions W, I,R, v, i of the RD system (0.7)-(0.8) are globally-defined and belong to
L∞(Ω× (0,∞)).

2. If W, I,R, v, i are non-negative, steady-state solutions of the RD system (0.7)-(0.8) then

W (x) = W0 ≥ 0 constant,

I(x) ≡ 0,

R(x) = R0 ≥ 0 constant,

v(x) ≡ 0,

i(x) ≡ 0.

Theorem 0.9 If W, I,R, v, i are non-negative, steady-state solutions of the hybrid system (0.10)-
(0.11) then

I(x) ≡ 0,

v(x) ≡ 0,

i(x) ≡ 0.

Moreover, suppose that the initial conditions belong to L∞(Ω). Then the solutions of the hybrid
system (0.10)-(0.11) are globally-defined and have the following asymptotic properties:

1. I(x, t) belongs to L1(0,∞;L2(Ω)), i.e.,

lim
t→∞

∫ t

0

∫

Ω
I2(x, s) dΩ ds <∞.
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2. v(x, t) and i(x, t) belong to L1(0,∞;H1(Ω)), i.e.,

lim
t→∞

∫ t

0

(∫

Ω
v2(x, s) dΩ +

∫

Ω
|∇v(x, s)|2 dΩ

)
ds <∞ ,

lim
t→∞

∫ t

0

(∫

Ω
i2(x, s) dΩ +

∫

Ω
|∇i(x, s)|2 dΩ

)
ds <∞ .

3. v(x, t)W (x, t) and i(x, t)W (x, t) belong to L1(0,∞;L1(Ω)), i.e.,

lim
t→∞

∫ t

0

∫

Ω
v(x, s)W (x, s) dΩ ds <∞ and lim

t→∞

∫ t

0

∫

Ω
i(x, s)W (x, s) dΩ ds <∞ .

4. For any x ∈ Ω,

lim
t→∞

I(x, t) = 0 , lim
t→∞

v(x, t) = 0 , lim
t→∞

i(x, t) = 0 .

5. For any x ∈ Ω, W0(x) > 0 if and only if

lim
t→∞

W (x, t) > 0.

Theorem 0.10 Consider the hybrid system (0.10)-(0.11) and suppose that µv = 0. Then:

1. If v∞(x) is a steady-state solution then ‖∇v∞‖ = 0.

2. Define
v∞(x) := lim sup

t→∞
v(x, t).

If αv ≥ α4µI then ∫

Ω
v∞(x) dΩ ≥

∫

Ω
v0(x) dΩ.

In particular, if v0 6≡ 0 then v∞ 6≡ 0.

Chapter 3. The effect of growth on pattern formation

The study of pattern formation lies in the possibility of predicting the generation of certain
patterns as a consequence of other factors, e.g. the strength of external stimuli and the concen-
tration and diffusion of certain molecules. In Chapter 3 we focus our attention on the effect of
growth in the existence and stability of patterns.

The study of pattern formation in reaction-diffusion systems started with the seminal paper
of Turing [66], where he showed that the diffusion, a process that has a regularising effect, can
drive instabilities when there are several substances interacting.
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The study of the effect of growth and curvature on pattern formation is however more re-
cent. In 1995 Kondo and Asai [38] reproduced numerically the skin patterns of a tropical fish
by adding growth to the classical reaction-diffusion system. In 1999 Crampin et al [15] showed
in 1D that the domain growth may increase the robustness of patterns. In 2004 Plaza et al [52]
derived a reaction-diffusion model for two morphogens on 1D and 2D growing, curved domains.
In 2007 Gjiorgjieva and Jacobsen [28] found that on a 2D sphere the solutions under slow growth
are very similar to the solutions of the 2001 model of Chaplain et al [13] on a fixed sphere. They
also showed numerically that the eigenmodes on the growing domain are smaller than those on
the corresponding fixed domain, and that there is a continuous link between both patterns.

In Chapter 3 we prove that growth has two effects: (i) a regularising, anti-blow-up effect
in the sense that growth not only delays the blow-up but it can even prevent it, and (ii) a
stabilising effect in the sense that the eigenvalues of the linearisation on a growing domain have
smaller real parts than those on a fixed domain.

Let M be an n-dimensional manifold without boundary and consider the reaction-diffusion
system

∂u

∂t
= D∆Mu + F(u) , D =




D1

D2

. . .

DM


 , Dk > 0 , (0.12)

where ∆M is the Laplace-Beltrami operator. Since we are interested in the effect of growth
on pattern formation, we will consider (0.12) on a growing domain (Mt)t≥0. In particular, for
isotropic growth we will assume that there is a growth function ρ(t) such thatMt := ρ(t)M.

Our first result characterises generic reaction-diffusion systems on a growing manifold.

Theorem 0.11 Let (Mt)t≥0 be a growing manifold with metric (gij(ξ, t)). Under the hypotheses
of Fick’s law of diffusion and conservation of mass, any reaction-diffusion system on Mt has
the form

∂tu = D∆Mtu− ∂t[log
√
g(ξ, t) ]u + F(u) , g := det(gij) , (0.13)

where ∆Mt is he Laplace-Beltrami operator on Mt. In the case of isotropic growth we have

∂tu =
D
ρ2(t)

∆Mu− nρ̇(t)
ρ(t)

u + F(u) , (0.14)

where the coefficients of ∆M do not depend on time.

We prove local existence, uniqueness and regularity of solutions of (0.14). Moreover, under
extra assumptions on the nonlinearity we prove that the solutions are global.

Theorem 0.12 There is a time T > 0 such that the reaction-diffusion system (0.14) with initial
condition u0 ∈ C

[
M,RM

]
has a unique solution

u(t) ∈ C
(
[0, T ], C

[
M,RM

])
.
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Theorem 0.13 If F : R
M → R

M is C∞ then

u(t) ∈ C∞
[
M× (0, T ],RM

]
.

Theorem 0.14 Let (Mt)t≥0 be an isotropic growing manifold with growth rate

c(t) := n
ρ̇(t)

ρ(t)
> 0 .

Suppose that the initial condition u0 of the reaction-diffusion system (3.4) is in C
[
M,RM

]

and takes its values inside the rectangle R = (−1, 1)M . Suppose further that for all (z, t) ∈
∂R× [0,∞) we have

F(z) · n(z) < c(t) , (0.15)

where n(z) is the outer normal at z. Then the solution u(t) of (0.14) is global and bounded,
i.e. it exists for all times t ≥ 0 and takes its values inside R. In particular, here is no blow-up
whenever (0.15) holds.

From Theorem 0.14, if the growth rate is sufficiently big to satisfy

c(t) > sup{‖F(z)‖ : z ∈ ∂R}

then the solution is globally bounded, which implies that there is no blow-up. Notice that since
the growth rate c(t) is increasing in n, which implies that the dimension of the space enhances
the regularity of solutions.

We quantitatively asses this anti-blow-up effect of growth for scalar equations. For homo-
geneous equations we compare the corresponding ODE with and without growth. On the one
hand, the ODE on a fixed domain is

{
u̇ = u2,
u(0) = u0 > 0 ,

whose solution is

u(t) =

(
1

u0
− t

)−1

,

which blows up when t→ t1 := 1/u0. On the other hand, the ODE on a growing domain is

{
u̇ = −c(t)u+ u2,
u(0) = u0 > 0 ,

whose solution is

u(t) =

∫ t

0

ds

ρn(s)
×

(
1

u0
−

∫ t

0

ds

ρn(s)

)−1

,



Chapter 0. Introduction xvii

which blows up at time t2, where t2 is defined as
∫ t2

0

dt

ρn(t)
=

1

u0
.

It is easy to show that (i) t2 > t1 := 1/u0, (ii) t1 and t2 are decreasing functions of the initial
condition u0, (iii) t2 is an increasing function on the spatial dimension n, and (iv) if growth is
sufficiently fast, i.e. if the growth function ρ(t) satisfies

∫ ∞

0

dt

ρn(t)
≤ 1

u0

then t2 =∞, i.e. there is no blow-up on the growing domain.

The same results hold for non-homogeneous scalar equations. Indeed, consider the scalar
reaction-diffusion equation

∂tu =
1

ρ2(t)
∆Mu− c(t)u+ u2 ,

u(0, ξ) = u0(ξ) > 0 .

If we define

η(t) :=

∫∫

M
u(t, ξ) dΩ , η(0) =

∫∫

M
u0(ξ) dΩ > 0 .

it can be shown that

η(t) ≥
∫ t

0

ds

ρn(s)
×

(
1

η(0)
− α

∫ t

0

ds

ρn(s)

)−1

.

In particular, for an exponential growth ρ(t) = ert such that nr > αη(0), i.e.

r >
|M|
n

∫∫

M
u0(ξ) dΩ ,

we have blow-up on the fixed manifold but not on the growing manifold.

Besides the anti-blow-up effect of growth, there is a second effect that we found: under
isotropic regimes, we proved that growth has a stabilizing effect on pattern formation, as the
next theorem shows.

Theorem 0.15 Let (Mt)0≤t≤T be an isotropic growing manifold with growth rate c(t). Define
S :=MT and notice that we will use the notation S for the fixed manifold andMT for the final
stage of the growing manifold (Mt)0≤t≤T . Then λ is an eigenvalue of the reaction-diffusion
operator on S,

LS :=
D

ρ2(T )
∆S + dF(0)

if and only if λ− c(T ) is an eigenvalue of the corresponding operator on MT ,

LMT
:=

D
ρ2(T )

∆MT
− c(T )I + dF(0) .
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Theorem 3.5 says that when we compare the spectra of LS and LMT
on the same manifold

S =MT we obtain

spectrum(LMT
) = spectrum(LS)− c(T ) .

Therefore, growth shifts the eigenvalues to the left in the complex plane, which is indeed a
stabilising effect since the real parts are smaller. Moreover, this shift is exactly the growth
rate c(T ) > 0, which implies that the faster growth is, the more stable the patterns are. It
is important to remark that, as far as we know, Theorem 3.5 is the first analytic proof of the
stabilising effect of growth on pattern formation. It is worth to mention that the proof we
provide does not hold for the case of non-isotropic growth.

Chapter 4. Generalised travelling waves on manifolds

We extend the current definitions of travelling waves in Euclidean spaces to curved domains, i.e.
to manifolds. This extension permits a unified framework to study the emergence and stability
of patterns on manifolds, which is the main objective of Chapters 5, 6 and 7.

The study of travelling waves started in 1937 with the pioneering article of Kolmogorov
[37]. Later on, in 1977 Aronson and Weinberger [3] proved the existence of multi-dimensional
travelling waves, and in 1978 Fife and McLeod [20] proved that the travelling waves have an
exponential decay at infinity. However, for the planar travelling waves to exist it is necessary
to have an axis in the domain such that the equation is invariant under translations on that axis.

For non-planar travelling waves there are several approaches, but they could be divided
in two categories: equations with coefficients that are not invariant under translations (i.e. in-
homogeneous media) or domains that do not have an invariant direction (e.g. Euclidean domains
with holes). For the study of such generalised travelling waves we refer the reader to Berestycki
and Hamel [6], [7], [8] and Berestycki et al [9], .

Berestycki and Hamel [8] defined a generalised travelling wave in terms of their level sets,
which are no longer hyper-plans but hyper-surfaces. We realised that the definitions and prop-
erties of generalised travelling waves were easily extended to the case of curved domains, i.e.
manifolds. We adapted the existing proofs for on general Euclidean domains and found that all
the conclusions of Berestycki and Hamel [8] hold for complete, unbounded, Riemannian mani-
folds.

It is worth to mention that of these results are straightforward, e.g. maximum principles
and Harnack’s inequality, because they are local in nature. However, for global results such as
a priori estimates we need uniform bounds of the coefficients.

LetM be a complete, unbounded, Riemannian manifold and consider the reaction-diffusion
equation {

∂tu = D∆Mu+ F (t, x, u) ; t ∈ R, x ∈M ,
u(0, x) = u0(x) ; x ∈M .

(0.16)
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where ∆M is the Laplace-Beltrami operator. The assumptions on the nonlinearity F (t, x, u)
are:

• Either F is C1 and both F and ∂uF are globally bounded, or

• Either F is bounded, continuous in (t, x) and locally Lipschitz continuous in u, uniformly
in (t, x).

The goal of this project is to extend the notion of a travelling wave to manifolds. We start
with several definitions. For any two subsets A,B ⊂M denote

d(A,B) := inf{ d(x, y) : x ∈ A, y ∈ B} ,

where d(·, ·) is the geodesic distance.

Definition 0.1 A generalised profile is a family (Ω±
t ,Γt)t∈R of subsets ofM with the follow-

ing properties:

1. Ω−
t and Ω+

t are non-empty disjoint subsets of M, for any t ∈ R.

2. Γt = ∂Ω−
t ∩ ∂Ω+

t and M = Γt ∪ Ω−
t ∪ Ω+

t , for any t ∈ R.

3. sup{ d(x,Γt) : t ∈ R, x ∈ Ω−
t } = sup{ d(x,Γt) : t ∈ R, x ∈ Ω+

t } = +∞

Suppose that there exist p−, p+ ∈ R such that F (t, x, p±) = 0 for all t ∈ R and all x ∈ M.
Then u ≡ p± are solutions of (0.16).

Definition 0.2 Let u(t, x) be a time-global classical solution of (4.1) such that u 6≡ p±. Then
u(x, t) is a generalized front between p− and p+ if there exists a generalized front (Ω±

t ,Γt)t∈R

such that
|u(t, x)− p±| → 0 uniformly when x ∈ Ω±

t and d(x,Γt)→ +∞.

Definition 0.3 Let u(t, x) be a generalized front. We say that p+ invades p− or that u(t, x)
is a generalised invasion of p− by p+ (resp. p− invades p+ or that u(t, x) is a generalised
invasion of p+ by p−) if

(i) Ω+
t ⊂ Ω+

s (resp. Ω−
s ⊂ Ω−

t ) for all t ≤ s.

(ii) d(Γt,Γs)→ +∞ when |t− s| → +∞.

Definition 0.4 A generalised front u(t, x) has global mean speed c > 0 if the generalised
profile (Ω±

t ,Γt, )t∈R is such that

d(Γt,Γs)

|t− s| → c when |t− s| → +∞.
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For any x ∈M and any r > 0 define

B(x, r) = { y ∈M : d(x, y) ≤ r } ,
S(x, r) = { y ∈M : d(x, y) = r } .

We exhibit some properties of the level sets.

Theorem 0.16 Let p− < p+ and suppose that u(t, x) is a time-global solution of (0.16) such
that

p− < u(t, x) < p+ for all (t, x) ∈ R×M.

1. Suppose u(t, x) is a generalised front between p− and p+ (or between p+ and p−) with the
following properties:

(a) There exists τ > 0 such that sup{ d(x,Γt−τ ) : t ∈ R, x ∈ Γt } < +∞, and

(b) sup{ d(y,Γt) : y ∈ Ω±
t ∩ S(x, r) } → +∞ when r → +∞, uniformly in t ∈ R and

x ∈ Γt.

Then:

(i) sup{ d(x,Γt) : u(t, x) = λ } < +∞ for all λ ∈ (p−, p+).

(ii) p− < inf{u(t, x) : d(x,Γt) ≤ C } ≤ sup{u(t, x) : d(x,Γt) ≤ C } < p+ for all C ≥ 0.

2. Conversely, if (i) and (ii) hold for a certain generalised profile (Ω±
t ,Γt, )t∈R and there

exists d0 > 0 such that for all d ≥ d0 the sets

{ (t, x) ∈ R×M : x ∈ Ω±
t , d(x,Γt) ≥ d }

are connected, then u(t, x) is a generalised front between p− and p+ (or between p+ and
p−).

We prove that the global mean speed is unique and that generalised fronts are monotonic in
time.

Theorem 0.17 Let p− < p+ and suppose that u(t, x) is a generalised front between p− and p+,
where its associated profile (Ω±

t ,Γt, )t∈R satisfies (b) in Theorem 0.16. If u(t, x) has a global
mean speed c > 0 then it is independent of the generalised profile. In other words, if for any
other generalised profile (Ω̃±

t , Γ̃t, )t∈R satisfying (b) the generalised front u(t, x) has global mean
speed c̃, then c̃ = c.

Theorem 0.18 Monotonicity
Let p− < p+ and suppose F (t, x, u) satisfies the following conditions:
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(α) s 7→ F (s, x, u) is non-decreasing for all (x, u) ∈M× R.

(β) There exists δ > 0 such that q 7→ F (t, x, q) is non-increasing for all q ∈ R\(p−+δ, p+−δ).

Let u(t, x) be a generalised invasion of p− by p+ and assume (as in Theorem 0.16) that:

(a) There exists τ > 0 such that sup{ d(x,Γt−τ ) : t ∈ R, x ∈ Γt } < +∞, and

(b) sup{ d(y,Γt) : y ∈ Ω±
t ∩ S(x, r) } → +∞ uniformly in t ∈ R and x ∈ Γt when r → +∞.

Then:

1. p− < u(t, x) < p+ for all (t, x) ∈ R×M.

2. u(t, x) is increasing in time, i.e. u(t+ s, x) > u(t, x) for all s > 0.

Chapter 5. Travelling waves on the real line

As a first application of the concept of generalised travelling waves of Chapter 4, in Chapter
5 we study calcium waves on spherical eggs. We assume that the waves depend only on the
horizontal angle. When we project the waves on the real line we pass from a reaction diffusion
equation with constant coefficients on a curved domain to a reaction-diffusion equation with
non-constant coefficients on a 1D Euclidean domain. The two striking features of the travelling
waves on the real line are (i) the existence of non-trivial steady-state solutions, and (ii) the
travelling wave does not invade the whole domain (as it does in the classical 1D case) but it is
blocked by the non-trivial steady-state solution. Therefore, the curvature of the sphere plays a
crucial role in the properties of the travelling wave.

Gilkey et al [25] studied calcium waves on the eggs of amphibians, which are pretty spher-
ical. They found that the waves seem to be invariant under rotations around the vertical axis,
and that the velocity of the waves is bigger on the northern hemisphere than on the southern one.

Murray [49] constructed a classical reaction-diffusion equation on the sphere in order to model
these calcium waves. However, he found that the model gave the opposite result, namely that the
theoretical velocity is smaller in the northern hemisphere than in the southern one. Therefore,
the parabolic equation model was discarded and the research on calcium waves turned towards
more complex models (e.g. mechano-chemical models based on both parabolic and hyperbolic
equations).

However, we found that the conclusions of Murray seem to be wrong. Projecting the equation
on the whole real line and truncating the coefficients in order to avoid the singularity of the
north and south poles (which are of both mathematical and biological nature), we reproduced
the conclusions of Gilkey et al [25], and as such we find the opposite of Murray’s results [49].
Moreover, we also proved that there are two waves, one travelling from the north to the south
pole and the other in the opposite sense, and that these travelling waves eventually block each
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other, giving rise to non-trivial solutions to the associated elliptic equation. This is an example
of generalised travelling waves on the real line, whose velocity of propagation is not constant.

On the unit sphere S
2 ∈ R

3 we consider the reaction-diffusion equation

∂tu−∆S2u = f(u) , (0.17)

where ∆S2 denotes the Laplace-Beltrami operator and s 7→ f(s) is a bistable nonlinearity, i.e.

• f(0) = 0 and f ′(0) < 0.

• f(1) = 0 and f ′(1) < 0.

• There exists α ∈ (0, 1) such that f(α) = 0, f ′(α) > 0, f(s) < 0 for any s ∈ (0, α) and
f(s) > 0 for any s ∈ (α, 1).

If we restrict our analysis to the class of solutions that are independent of the horizontal angle
φ then (0.17) takes the form

∂tu− ∂θθu− cotθ ∂θu = f(u) , (t, θ) ∈ R× (0, π) . (0.18)

Under the change of variables x = cotθ we obtain an equation on the whole real line,

∂tu− (1 + x2)2∂xxu− x(1 + x2)∂xu = f(u) , (t, x) ∈ R
2 . (0.19)

Notice that the north and south poles (±∞, resp.) are mathematical and biological singularities.
Mathematical singularities because the parametrisation is not bijective on the poles and the
coefficients explode, and biological singularities because the underlying biochemical mechanism
that triggers the calcium waves is still unknown. Therefore, we will restrict our analysis to a
truncated version of (0.19), i.e.

∂tu− a(x)∂xxu− b(x)∂xu = f(u) , (t, x) ∈ R
2, (0.20)

where

a(x) =

{
(1 + x2)2 if |x| ≤ ρ,
(1 + ρ2)2 if |x| ≥ ρ,

b(x) =





−ρ(1 + ρ2) if x < −ρ,
x(1 + x2) if |x| ≤ ρ,
ρ(1 + ρ2) if x > ρ.

For the truncated model (0.20) we have the following four results.

Proposition 0.19 Let (ϕ, c0) be the unique solution of

ϕ′′ − c0ϕ′ + f(ϕ) = 0, lim
z→−∞

ϕ(z) = 0, lim
z→+∞

ϕ(z) = 1. (0.21)
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1. There is a unique (up to translation) travelling wave solution

ϕN := ϕ

(
x+ cN t

1 + ρ2

)
, cN = (c0 + ρ)(1 + ρ2)

for the equation on the north pole, i.e.

∂tu− (1 + ρ2)2∂xxu− ρ(1 + ρ2)∂xu = f(u) . (0.22)

2. There is a unique (up to translation) travelling wave solution

ϕS := ϕ

(
x+ cSt

1 + ρ2

)
, cS = (c0 − ρ)(1 + ρ2)

for the equation on the south pole, i.e.

∂tu− (1 + ρ2)2∂xxu+ ρ(1 + ρ2)∂xu = F (u) . (0.23)

In particular, cN > cS.

Theorem 0.20 Suppose that f(s) is a bistable Lipschitz nonlinearity and let cN > 0. Then
there exists β > 0 such that the reaction-diffusion equation (0.20) has a unique global solution
u(t, x) satisfying

0 < u(t, x) < 1 ∀(t, x) ∈ R
2

and ∣∣∣∣u(t, x)− ϕ
(
x+ cN t

1 + ρ2

)∣∣∣∣ = O(eβt) when t→ −∞, uniformly in x ∈ R.

In particular,

lim
t→−∞

∣∣∣∣u(t, x)− ϕ
(
x+ cN t

1 + ρ2

)∣∣∣∣ = 0 uniformly in x ∈ R.

Furthermore, t 7→ u(t, x) is non-decreasing, and if the initial condition u0(x) is non-decreasing
then x 7→ u(t, x) is also non-decreasing.

Theorem 0.21 Let f(s) be a bistable Lipschitz nonlinearity, and suppose that ρ is sufficiently
large such that cS < 0. Then there exists β > 0 such that the reaction-diffusion equation (0.20)
has a unique global solution v(t, x) satisfying

0 < v(t, x) < 1 ∀(t, x) ∈ R
2

and ∣∣∣∣u(t, x)− ϕ
(
x+ cSt

1 + ρ2

)∣∣∣∣ = O(eβt) when t→ −∞, uniformly in x ∈ R.

In particular,

lim
t→−∞

∣∣∣∣u(t, x)− ϕ
(
x+ cSt

1 + ρ2

)∣∣∣∣ = 0 uniformly in x ∈ R.

Furthermore, t 7→ v(t, x) is non-increasing, and if the initial condition v0(x) is non-decreasing
then x 7→ v(t, x) is non-decreasing.



xxiv

Theorem 0.22 If we define

u∞(x) := lim
t→+∞

u(t, x), v∞(x) := lim
t→+∞

v(t, x).

then u∞(x) and v∞(x) are steady-state solutions of (0.20) satisfying

0 < u(t, x) ≤ u∞(x) ≤ v∞(x) ≤ v(t, x) < 1 ∀(t, x) ∈ R
2.

Chapter 6. Travelling waves on the sphere

Unlike Chapter 5, where we passed from a homogeneous reaction-diffusion equation on a curved
domain to a non-homogeneous reaction-diffusion equation on an Euclidean domain, in Chapter
6 we work directly on the sphere and analyse the properties of generalised travelling waves. We
consider here a reaction-diffusion equation with bistable nonlinearity on two domains, a trun-
cated sphere with non-homogeneous Dirichlet boundary conditions and the whole sphere with
no boundary conditions.

On the truncated sphere we prove that (i) if the nonlinearity is strong enough there are
non-trivial solutions of the elliptic problem, (ii) there is a nontrivial solution of the parabolic
problem that is strictly increasing in time, i.e. a generalised travelling wave, and (iii) the trav-
elling wave is blocked by the non-trivial elliptic solution. On the whole sphere we prove that (i)
there are non-trivial solutions of the elliptic problem and (ii) depending on the initial conditions,
the solution u(t, x) can converge or not to the stable states 0 and 1. In particular, when the
solution does not converge to 0 or 1 the wave does not invade the whole sphere, it does not
vanish and if it converges then its convergence is non-monotonic.

Our results on both domains are evidence of solutions that do not invade the whole domain.
Whether there is invasion or not depends on the geometry of the sphere, the strength of the
nonlinearity (measured in terms of λ) and the initial conditions.

Travelling waves on the truncated sphere

Let δ ∈ (0, π). We define the truncated sphere as

M = {x = (θ, ϕ) ∈ S
2 : δ ≤ θ ≤ π , 0 ≤ ϕ < 2π} , ∂M = {θ = δ},

i.e. M is the sphere minus a symmetrical neighbourhood of the north pole of vertical angle
δ > 0. OnM we will study the nonlinear elliptic equation

{
−∆u = λf(u) onM,

u = 1 on ∂M,
(0.24)

where λ > 0 and f is bistable, i.e.

• f(0) = 0 and f ′(0) < 0.
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• f(1) = 0 and f ′(1) < 0.

• There exists α ∈ (0, 1) such that f(α) = 0, f ′(α) > 0, f(s) < 0 for any s ∈ (0, α) and
f(s) > 0 for any s ∈ (α, 1).

• We extend f on R \ [0, 1] in a C1
B fashion. More precisely, we will assume that there exist

β1 < 0 and β2 > 1 such that :

– f(s) ≡ 0 for s ∈ R \ (β1, β2).

– f(s) > 0 for s ∈ (β1, 0].

– f(s) < 0 for s ∈ (1, β2].

Equation (0.24) is the Euler-Lagrange equation of the functional

Jλ(u) =
1

2

∫

M
|∇u|2 dx− λ

∫

M
F (u) dx , F (z) :=

∫ z

0
f(s) ds , (0.25)

defined on

{u ∈ H1(M) : u = 1 on ∂M} .
It is worth to notice that F (0) = 0,

F (1) =

∫ 1

0
f(s) ds

and the only constant solution of (0.24) on [0, 1] is u ≡ 1.

In order to have a problem defined on H1
0 (M) we use the following change of variables:

w := 1− u , g(s) := −f(1− s) .

Under this framework, equation (0.24) becomes

{
−∆w = λg(w) onM,

w = 0 on ∂M,
(0.26)

where g is bistable and share the same properties of f , except that its zero on (0, 1) is 1 − α.
The associated functional is

Iλ(w) =
1

2

∫

M
|∇w|2 dx− λ

∫

M
G(w) dx , G(z) :=

∫ z

0
g(s) ds . (0.27)

Notice that G(0) = 0, G(1) = −F (1) and the only constant solution of (0.26) on [0, 1] is u ≡ 0.

If the non-linearity is too weak, i.e. if the parameter λ > 0 is small enough, we prove that
the only solution of (0.26) is the trivial solution w ≡ 0.

Theorem 0.23 There exists λ > 0 such that for any λ < λ the only solution of (0.26) is w ≡ 0.
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Moreover, if the nonlinearity g(s) does not have the good orientation, that is if its integral
on [0, 1] is non-positive, then w ≡ 0 is a global minimum.

Theorem 0.24 If G(1) ≤ 0 and λ > 0 then w ≡ 0 is the unique global minimum of (0.27).

If the non-linearity is strong enough, i.e. if λ > 0 is sufficiently big, we show that we have
non-trivial solutions of (0.26).

Theorem 0.25 If G(1) > 0 there exists λ♯ > 0 such that for any λ > λ♯ we have at least one
non-trivial solution of (0.26).

Theorem 0.25 is proven using variational techniques, but using topological techniques e.g.
degree theory we can prove that we have at least two different, non-trivial solutions of the elliptic
problem (0.26). Therefore, the non-trivial solutions of (0.26) come in pairs.

Theorem 0.26 If G(1) > 0 then for any λ > λ♭ we have a pair of distinct, non-trivial solutions
of (0.26).

Theorem 0.27 Let λ♭ and λ♯ be as in Theorems 0.25 and 0.26, respectively. Then λ♭ = λ♯.

From Theorems 0.25 - 0.27 it follows that λ♭ is a pitchfork bifurcation point for the elliptic
problem (0.26) because, if there exists one non-trivial solution then there is a second, different
non-trivial solution. More precisely, choosing

λ♭ = inf{λ > 0 : (0.26) has a non-trivial solution}

then for λ < λ♭ the only solution is w ≡ 0 whilst for λ > λ♭ we have two distinct, non-trivial
solutions.

Having proven the existence of a non-trivial solution of the elliptic problem (0.26), we can
now prove that there is a time-increasing solution of





∂tu = ∆u+ λf(u) in (0,∞)×M,
u = 1 on (0,∞)× ∂M,

u(0, x) = 0 for all x ∈M,
(0.28)

i.e. a generalised travelling wave, and that this wave is blocked by the non-trivial solution.

Theorem 0.28 There is a non-trivial solution u(t, x) of (0.28) such that t 7→ u(t, x) is strictly
increasing, 0 < u(t, x) ≤ u⋆(x) for all t > 0 and

lim
t→∞

u(t, x) ≤ u⋆(x) ∀x ∈M .
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Travelling waves on the whole sphere

Consider the elliptic nonlinear equation

−∆u = λf(u) on S
N ⊂ R

N+1. (0.29)

where f ∈ C1(R) is the same bistable nonlinearity as in the truncated sphere model. As before,
we define

F (z) :=

∫ z

0
f(s) ds .

The first result is the same as before:

Theorem 0.29 There exists λ > 0 such that for any λ < λ the only solutions of (6.18) are
constant.

Definition 0.5 Let u be a solution of (6.18). We say that u is stable if

∫

SN

{
|∇w|2 − λf ′(u)w2

}
dx ≥ 0 ∀w ∈ H1(SN ) . (0.30)

Property (6.22) is equivalent to say that the first eigenvalue µ1(u) of the operator

w 7→ −∆w − λf ′(u)w

satisfies µ1(u) ≥ 0.

Theorem 0.30 Let u be a solution of (0.29). If u is stable then it is constant.

From Theorem 0.30, if u is a non-trivial solution of (6.18) then u is necessarily unstable and

{x ∈ S
N : f ′(u(x)) > 0 } 6= ∅ .

Theorem 0.30 has been proven by Casten and Holland [12] and Matano [46] in the case of an
Euclidean convex domain with homogeneous Neumann boundary conditions. As far as we know,
Theorem 6.8 is a new result on manifolds.

Theorem 0.31 There exists λ♭ > 0 such that for any λ > λ♭ we have at least one non-trivial
solution u⋆(x) of (6.18) such that 0 < u⋆ < 1.

We have proved that on the whole sphere S
N there exists λ∗(= λ) such that for any λ ∈ (0, λ∗)

the only solutions of (6.18) are constant, and that there exists λ∗(= λ♭) such that for any
λ ∈ (λ∗,∞) there is a non-trivial solutions of (6.18). We conjecture that λ∗ = λ∗ and that this
is true for any compact, connected, smooth manifold without boundary.

Conjecture 0.32 Let M be a compact, connected, smooth manifold without boundary. Then
λ∗(M) = λ∗(M), i.e.
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• There is bifurcation on the elliptic nonlinear eigenvalue problem

−∆Mu = λf(u)

starting at (λ, u) = (λ∗, 0),

• for any λ < λ∗ the only solutions are trivial (i.e. constant), and

• for any λ > λ∗ we have non-trivial solutions.

In the following chapter we prove Conjecture 0.32 whenM = S
1 and for a bifurcation starting at

the trivial solution u ≡ α. However, the general case of a compact, connected, smooth manifold
M without boundary is an open problem.

We will show that, depending on the initial conditions, the solution u(t, x) can converge or
not to 0 or 1. In particular, when the solution does not converge to 0 or 1 we have that (i) this
solution cannot invade the whole sphere, (ii) it does not vanish, and (iii) if it converges then its
convergence is non-monotonic.

For any p ∈ (0, π) define

A(p) := {x = (ϕ, θ) ∈ S
N : 0 ≤ ϕ < 2π, 0 ≤ θ < p} .

Let u(p, t, x) be a solution of the problem

{
∂tu = ∆u+ λf(u) in (0,∞)× S

N ,
u(p, 0, x) = 0 for all x ∈ S

N ,
(0.31)

where

u0(p, x) =

{
1 if x ∈ A(p),
0 if x ∈ S

N \A(p).
(0.32)

Theorem 0.33 1. If p ∼ 0 then

lim
t→∞

u(p, t, x) = 0 .

2. If p ∼ π then

lim
t→∞

u(p, t, x) = 1 .

3. There exists p̃ ∈ (0, π) such that u(p̃, t, x) does not converge to 0 or 1. If u(p̃, t, x) converges
to a (necessarily untable) solution then its convergence is non-monotonic.

As a final result, we found that the case of a monostable nonlinearity f is much simpler
compared to the bistable case. Indeed, not only we always have invasion but also the global
solution just depends on time, i.e. it is independent of the space variables.
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Let f : [0, 1]→ R be a C1 function such that f(0) = f(1) = 0, f > 0 on (0, 1) and f ′(0) > 0.
Denote t 7→ ξ(t) the unique solution of

ξ′(t) = f(ξ(t)), 0 < ξ(t) < 1 for all t ∈ R and ξ(0) =
1

2
.

The function ξ is increasing and ξ(−∞) = 0, ξ(+∞) = 1. Let M be a connected compact
smooth manifold without boundary (e.g. S

N ) and denote ∆M be the Laplace-Beltrami operator
onM.

Theorem 0.34 If u is a solution of

∂tu = ∆Mu+ f(u) in R×M

such that 0 ≤ u(t, x) ≤ 1 for all (t, x) ∈ R ×M, then u depends only on t. More precisely, we
have either u ≡ 0, u ≡ 1 or there exists T ∈ R such that u(t, x) = ξ(t+T ) for all (t, x) ∈ R×M.

Chapter 7. Bifurcation and multiple periodic solutions on the
sphere

In Chapter 6 we saw how the analysis of non-trivial steady-state solutions, in particular via
topological degree, is determinant of the properties of the generalised travelling waves. In this
chapter we will study in more detail the solutions of the elliptic nonlinear eigenvalue problem

−∆SNu = λf(u) on S
N . (0.33)

We will show that the problem admits multiple non-trivial solutions, whose number is increas-
ing in the parameter λ > 0, and each time we cross an eigenvalue µk there appears a new
non-trivial solution. If λ ∈ (µk, µk+1), we prove the existence of 2k non-trivial solutions in S

1

and k non-trivial solutions on S
N , the latter depending only on the vertical angle, i.e. invariant

under horizontal rotations. We also prove Conjecture 6.12 for the 1D case (i.e. S
1), but the

N -dimensional case, N ≥ 2 it is still an open problem.

As in Chapter 6, f(s) is a globally-bounded bistable nonlinearity with unstable state α ∈
(0, 1). However, f is no longer C1 because here we extend f to R \ [0, 1] as zero. As before we
define

F (z) :=

∫ z

0
f(s) .

Case N = 1. Solutions on the circle

For the case N = 1, (0.33) reduces to the nonlinear ODE





−u′′ = λf(u),
u(0) = ξ,
u′(0) = 0.

(0.34)
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Theorem 0.35 There exist periodic solutions of (0.34) if and only if ξ ∈ (0, α) ∪ (α, β), where
β := F−1(0). Moreover, the periodic solutions come in pairs: if u1(θ) is a T -periodic solution
then there exist another T -periodic solution u2(θ) such that u1 6= u2 and

‖u1‖C0(0,T ) = ‖u2‖C0(0,T ) .

Finally, there exists λ0 > 0 such that (0.34) admits 2π-periodic solutions if and only if λ > λ0.

We can now return to Conjecture 6.12 and prove it for S
1 and for the trivial solution u ≡ α.

Theorem 0.36 Let M be a compact, connected, smooth manifold without boundary and con-
sider the problem

−∆Mu = λf(u) onM. (0.35)

Define

λ∗(M) := sup{λ > 0 : the only solutions of (7.7) are constant} ,
λ∗(M) := inf{λ > 0 : there are non-trivial solutions of (7.7)} .

If M = S
1 then λ∗(S

1) = λ∗(S1) and there is a bifurcation branch starting at (λ∗, α).

We complete the bifurcation analysis with the following theorem.

Theorem 0.37 Let {µk}k∈N be the eigenvalues of (0.34), i.e.

µk =
k2

f ′(α)
.

For any λ ∈ (µk, µk+1) we have at least 2k different non-trivial, 2π-periodic solutions of (0.34).

Case N ≥ 2. Axis-symmetric solutions on the sphere

We parametrise S
N as (θ, ϕ), where θ ∈ (0, π) is the vertical angle and ϕ ∈ S

N−1 are the
horizontal angles. If we search for solutions of (0.33) depending only on θ andindependent of ϕ,
(0.33) reduces to the nonlinear ODE

−u′′ − (N − 1)
cos θ

sin θ
u′ = λf(u), (0.36)

with initial conditions {
u(0) = ξ,
u′(0) = 0.

By studying the properties of the solutions of (0.36) we can deduce the existence of multiple
axis-symmetric solutions of (0.33).
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Theorem 0.38 Let {µk}k∈N be the eigenvalues of (0.33), i.e.

µk =
k(k +N − 1)

f ′(α)
.

For any λ ∈ (µk, µk+1) there are at least k different non-trivial solutions of the ODE (7.13),
i.e. k non-trivial solutions of the nonlinear eigenvalue problem (7.11) that are invariant under
horizontal rotations ϕ ∈ S

N−1.
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Part I

Reaction-diffusion systems and
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Chapter 1

Calcium ions in dendritic spines
Work in collaboration with Kamel Hamdache. Published in Nonlinear Analysis: Real World
Applications, Volume 10, Issue 4, August 2009.

As it was pointed out by D. Holcman and Z. Schuss in Modeling calcium dynamics in dendritic
spines (SIAM J. Appl. Math. 2005, Vol. 65, No. 3, pp. 1006-1026), the concentration of
calcium ions inside the dendritic spines plays a crucial role in the synaptic plasticity, and in
consequence in cognitive processes like learning and memory. The goal of this paper is to study
the reaction-diffusion model of calcium dynamics in dendritic spines proposed by Holcman and
Schuss. We start from the construction of the model of Holcman and Schuss and propose a
modification in order to admit more realistic biological assumptions supported by experimental
evidence but still mathematically solvable. We show that the dynamics of the calcium ions
and the proteins interacting with them follows a system of coupled nonlinear reaction-diffusion
equations, which is degenerate elliptic if the proteins are considered fixed, and strongly elliptic
if they diffuse with a diffusion coefficient d > 0. In the first case we prove a priori estimates,
global existence, global uniqueness and positivity of solutions, whereas in the second case we
prove not only the same features but also that the problem is well-posed. Moreover, we show
that there is a “continuous” link between the two problems in the sense that the solutions of
the problem with d > 0 converge to the solutions of the problem with d = 0.

1.1 Introduction

1.1.1 Dendritic spines

Dendritic spines are tiny bud-like extensions or protrusions on the dendrites with small bulbous
heads and narrow necks. They have lengths around 1 µm and volumes around 0.2 µm2. They
are ubiquitous because, on the one hand, 90% of excitatory synapses occur in dendritic spines,
and on the other hand there are more than 1013 dendritic spines inside the brain. We also
find actin microfilaments, endoplasmic reticulum and polyribosomes inside the head, but other
structures like mitochondria and microtubules appear to be excluded (see Nimchinsky et al [50]).

Synapses take place on the surface of the spine head where several specialized microstruc-
tures can be found, e.g. neuro-receptors and ion channels. Inside the head of the spine there are

3
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several molecules related to the intricate biochemical machinery that codifies the information
from the pre-synaptic neuron, and eventually, emits a electric potential that flows through the
post-synaptic neuron and transmits the excitatory or inhibitory information to another neuron.
This means that the former post-synaptic neuron have become pre-synaptic, and the process
repeats itself until the signal reaches the target neuron.

As we can see, dendritic spines are at the very basis of the information exchange inside the
neural system.

1.1.2 The role of Ca
2+ in spine twitching and synaptic plasticity

One of the main questions addressed by Holcman and his colaborators in [33] and [34] was to
understand the spine twitching and the synaptic plasticity in terms of the binding reactions be-
tween the Ca2+ ions and some proteins inside the spine. They attributed the twitching motion
of the spine to the contraction of actin-myosin AM proteins in the following way. They consid-
ered that once an AM protein has four Ca2+ ions bound there occurs a local contraction of the
AM, and that all local contractions at a given time produces a global contraction of the spine,
which has two consequences: first, it is responsible for the rapid twitching motion of the spine,
and second, it produces a hydrodynamical movement of the cytoplasmic fluid in the direction
of the dendrite. This motion is thus responsible of the transport of the ions, not only Ca2+ but
also Na+, into the neuron, which constitutes the electric potential we mentioned in Section 1.1.1.

Holcman et al [33] also mention that a protein with four Ca2+ ions bound contracts at a
fixed rate until one Ca2+ ion unbinds. The contraction due to Ca2+ binding also appears in
the works of Farah et al [19], Klee et al [36] and Shiftman et al [59], but in all three cases the
proteins suffer a conformational change each time a Ca2+ ion binds, and not only when they
have four Ca2+ ions. We will consider this experimental evidence for the new model we will
propose.

The synaptic plasticity is defined as changes in the synaptic strength, i.e. in the intensity
of the signal transmission between two neurons. These changes can be short-term if they occur
in the range of milliseconds or minutes, or long-term if their duration is measured in hours,
days, weeks or longer. The long-lasting changes in synapses are related to cognitive processes
like learning and memory. These changes are divided in two: Long-Term Potentiation (LTP),
if there is an increase in the synaptic strength, or Long-Term Depression (LTD), if there is a
decrease in the synaptic strength. The major determinant of whether LTP or LTD appears
seems to be the amount of Ca2+ in the post-synaptic cell: small rises in Ca2+ lead to depres-
sion, whereas large increases trigger potentiation (see Purves et al [54], Chapter 24, pp. 575-610).

As we can see, Ca2+ ions inside the dendritic spine play a crucial role in the twitching motion
and synaptic plasticity, and therefore in cognitive processes like learning and memory.



Chapter 1. Calcium ions in dendritic spines

Work in collaboration with Kamel Hamdache. Published in Nonlinear Analysis: Real World

Applications, Volume 10, Issue 4, August 2009. 5

1.1.3 The original model

The mathematical modeling of calcium dynamics related to neuroscience is a vast topic. Since
we will only mention the nonlinear reaction-diffusion model proposed by Holcman and Schuss
[34], we recommend [62] for discussions of the different models for calcium dynamics in neurons.

Following Holcman and Schuss [34] we will consider that the Ca2+ ions have a dynamics
governed by the Langevin equation

ẋ(t) = V (x, t) +
√

2Dẇ(t) . (1.1)

where w(t) is a Brownian motion that represents the thermal fluctuations of the medium, V (x, t)
is the cytoplasmic flow field and D is the diffusion coefficient

D =
kBT

mµ

with kB the Boltzmann constant, T the temperature, m the mass and µ the dynamic viscosity.
The Langevin equation (1.1) has a solution x(t) if V (x, t) is Lipschitz and satisfy the growth
condition (see Øksendal [51], Theorem 5.2.1, p. 68)

|V (x, t)| ≤ C (1 + |x|) .

In order to pass from this microscopic description to a macroscopic level we will not be concerned
on the dynamics of each Ca2+ ion ẋ(t) but rather on the concentration of the Ca2+ ions, which
we will denote M(x, t). When normalized, M(x, t) can be seen as the probability density of the
Ca2+ ions of the diffusion (1.1), and in consequence it solves solves the Fokker-Planck equation

∂tM(x, t) = ∇ · [D∇M(x, t)− V (x, t)M(x, t)] (1.2)

associated to the diffusion (1.1).

Holcman and Schuss [34] also suppose, as we will do, that there are no obstacles inside the
dendritic spine, like organelles and macromolecules. However, it is important to remark that
this is only a simplification of the model and not a biological fact because dendritic spines do
have organelles, as we mentioned in Section 1.1.1.

In the model of Holcman and Schuss [34] there is a reaction term that takes into account the
binding and unbinding processes (i.e. the association and dissociation processes) between the
calcium ions Ca2+ and some fixed proteins inside the spine like calmodulin CaM, actin-myosin
AM and calcineurin. These proteins can carry up to four Ca2+ ions. Since we want to keep
track of the number of free and bound ions at any time and position, we need to classify the
proteins in terms of the number of bound ions.

Define Sj = Sj(x, t) for j = 0, 1, 2, 3, 4, as the number of proteins containing j bound ions
(note that we are not making any distinction between CaM, AM and calcineurin). A protein
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Sj can gain or lose one ion at a time with a constant reaction rate k1 or k−1, respectively.
Therefore, the chemical description of Sj is

Sj−1
k1

⇋

k−1

Sj
k1

⇋

k−1

Sj+1 (1.3)

The Law of Mass Action states that the rate of a reaction is proportional to the product of
the concentrations of the reactants. If we take into account that Sj has j occupied binding sites
and 4− j free binding sites, and on each one the four reactions given in (1.3) we use the Law of
Mass Action, it follows that the dynamics of Sj is given by

dSj

dt
= k1M

[
(5− j)Sj−1 − (4− j)Sj

]
− k−1

[
jSj − (j + 1)Sj+1

]
. (1.4)

Now let Ω be the interior of the dendrite, which we will suppose to be a bounded open set in
R

2 or R
3 with a piecewise smooth Lipschitz boundary. Define Γ := ∂Ω and consider a partition

Γ = Γa ∪ Γr, with Γa the “absorbing” part of the boundary and Γr the “reflecting” part. On
Γa the ions M(x, t) leave the spine and they never return, which is expressed mathematically
as a zero boundary condition. Γa has two components, Ca2+ pumps at the spine head and the
bottom of the spine neck (where the ions enter the dendrite). On Γr the ions M(x, t) cannot
leave the spine, i.e. if they hit the boundary they rebound, which is modelled as no flux boundary
conditions.

Figure 1.1: Dendritic spine. We denote Ω the interior of the spine, Γ its surface, Γa the absorbing
boundary and Γr the reflecting boundary.

In the light of equations (1.2) and (1.3), the reaction-diffusion model of Holcman and Schuss
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[34] is





∂tM = ∇ · [D∇M − V M ]− k1M
[∑4

j=0(4− j)Sj
]

+ k−1

[∑4
j=0 jS

j
]
,

∂tS
j = k1M

[
(5− j)Sj−1 − (4− j)Sj

]
− k−1

[
jSj − (j + 1)Sj+1

]
,

V = ∇φ , ∆φ = 0 ,

(1.5)

where, by convention S−1(x, t) = S5(x, t) = 0. The third equation in (1.5) implies that we
suppose the cytoplasm flux V is incompressible and it is the gradient of a potential function φ.

The initial conditions for the system (1.5) are

M(x, 0) = m0(x) ≥ 0 ; S0(x, 0) =
1

4
A(x) ≥ 0 , Sj(x, 0) = 0 for j = 1, 2, 3, 4, (1.6)

whereas the boundary conditions are





M(σ, t) = 0 on Γa × [0, T ] ,
(D∇M − V M) · n(σ, t) = 0 on Γr × [0, T ] ,

∇φ · n(σ, t) = a(σ)λ(t) on Γ× [0, T ],
(1.7)

where n(σ, t) is the outer normal of Γ, a(σ) is given, and λ(t) is related to the total number
proteins with all four Ca2+ ions bound, i.e. on S4.

1.2 The modified model and main results

1.2.1 New variables

From the system (1.5) we observe that the important variables for the description of the dynamics
for M(x, t) are not the proteins Sj(x, t) but the quantities

U(x, t) =
4∑

j=0

(4− j)Sj(x, t) , W (x, t) =
4∑

j=0

jSj(x, t) . (1.8)

Note that U(x, t) is the total number of free binding sites about x at time t, and W (x, t) is the
total number of occupied binding sites. This change of variables not only simplifies the notation
but also reduces the system (1.5) to a new system on the variables (M,U,W ). Indeed, if we
develop the equations Sj(x, t) in the system (1.5) it follows that

∂tS
0 = k1M

[
0− 4S0

]
− k−1

[
0− 1S1

]
,

∂tS
1 = k1M

[
4S0 − 3S1

]
− k−1

[
1S1 − 2S2

]
,

∂tS
2 = k1M

[
3S1 − 2S2

]
− k−1

[
2S2 − 3S3

]
,

∂tS
3 = k1M

[
2S2 − 1S1

]
− k−1

[
3S3 − 4S4

]
,

∂tS
4 = k1M

[
1S1 − 0

]
− k−1

[
4S4 − 0

]
.
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Multiplying the j-th equation by (4− j) and adding them up we obtain

∂tU = −k1MU + k−1W . (1.9)

Analogously, multiplying by j and adding up we get

∂tW = k1MU − k−1W . (1.10)

In the variables U and W the equation for M(x, t) takes the form

∂tM = ∇ · [D∇M − V M ]− k1MU + k−1W . (1.11)

1.2.2 Modeling the twitching motion of the spine

In Section 1.1.2 we mentioned that each time a Ca2+ ion binds to a protein this latter suffers a
contraction, and that the addition of all these local contractions have two effects: the twitching
of the spine and changes in the cytoplasmic flow field V (x, t). In order to take into account
both effects we will assume that the spine movement depends on the cytoplasmic velocity at the
spine surface Γ, and that this value depends on the total number of Ca2+ ions that are bound
to the proteins. More precisely, if we define

λ(t) :=

∫

Ω
W (x, t) dΩ , (1.12)

which is the total number of occupied binding sites at time t, then our assumption is that the
spine surface Γ moves with velocity V · n proportional to λ(t).

It is worth to mention that Holcman and Schuss [34] supposed that the contraction of a
protein takes place only if it has four Ca2+ ions bound, which implies that

λ(t) =

∫

Ω
S4(x, t) dΩ . (1.13)

However, as we have already mentioned Section 1.1.2, assuming (1.12) instead of (1.13) is bio-
logically more accurate.

Following Holcman and Schuss [34] we will also suppose that there exists a potential φ(x, t)
such that V = ∇φ, whose dynamics is given by the equation

{
∆φ(x, t) = 0 on Ω× [0, T ],

∇φ · n(σ, t) = a(σ)λ(t) on Γ× [0, T ].
(1.14)

where a(σ) ∈ L∞(Γ) is given, together with the orthogonality condition
∫

Ω
φ(x, t) dΩ = 0 (1.15)

and the compatibility condition ∫

Γ
a(σ, t) dS = 0 . (1.16)
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For a fixed t ≥ 0 the problem (1.14) is the Laplace equation with Neumann boundary
conditions; therefore the solution φ exists, and is unique due to the orthogonality condition
(1.15). Moreover, using integration by parts and Poincaré’s inequality it can be shown that
there is a constant C > 0 such that

‖V (t)‖[L2(Ω)]n ≤ C‖W (t)‖ for all t ∈ [0, T ], (1.17)

where ‖ · ‖ denotes the norm in L2(Ω).

1.2.3 The modified model

Observe that (1.9) and (1.10) imply that for all times

U(x, t) +W (x, t) = 4
4∑

j=0

Sj(x, 0) = A(x) ,

so we can reduce further the system (1.9)-(1.11) to





∂tM = ∇ · [D∇M − V M ]− k1MU + k−1[A− U ] ,
∂tU = −k1MU + k−1[A− U ] ,
V = ∇φ , ∆φ = 0 .

(1.18)

with initial conditions {
M(x, 0) = m0(x) ,
U(x, 0) = A(x) ,

(1.19)

and boundary conditions





M(σ, t) = 0 on Γa × [0, T ] ,
(D∇M − V M) · n(σ, t) = 0 on Γr × [0, T ] ,

∇φ · n(σ, t) = a(σ)λ(t) on Γ× [0, T ].
(1.20)

There is an important issue we want to remark. So far we have considered that the proteins
were fixed in the cytoplasm, but this is not true in the real biological situation. In order to
take into account the motion of the proteins we can suppose that they diffuse with a constant
diffusion coefficient d > 0 and that they cannot leave the spine. Under these assumptions, the
model (1.18)-(1.20) with diffusive proteins takes the form





∂tM = ∇ · [D∇M − V M ]− k1MU + k−1W ,
∂tU = d∆U − k1MU + k−1W ,
∂tW = d∆W + k1MU − k−1W ,

V = ∇φ , ∆φ = 0 .

(1.21)

with initial conditions 



M(x, 0) = m0(x) ,
U(x, 0) = A(x) ,
W (x, 0) = 0 ,

(1.22)
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and boundary conditions




M(σ, t) = 0 on Γa × [0, T ] ,
(D∇M − V M) · n(σ, t) = 0 on Γr × [0, T ] ,

∇U · n(σ, t) = 0 on Γ× [0, T ],
∇W · n(σ, t) = 0 on Γ× [0, T ],
∇φ · n(σ, t) = a(σ)λ(t) on Γ× [0, T ].

(1.23)

Note that d should be much smaller than D because the proteins we are considering are around
106 times bigger than the calcium ions.

1.2.4 Main results

From now on we will always assume the following hypotheses:




m0(x) ∈ L∞(Ω) , m0(x) ≥ 0 a.e. in Ω,
A(x) ∈ L∞(Ω) , A(x) ≥ 0 a.e. in Ω,
a(σ) ∈ L∞(Γ) ,

∫
Γ a(σ)dS = 0 .

(1.24)

For the model with fixed proteins (1.18)-(1.20) we prove global existence, global uniqueness,
boundedness and positivity of solutions.

Theorem 1.1 For any T > 0 the reaction-diffusion system (1.18)-(1.20) has global unique weak
solutions M(x, t), U(x, t) and V (x, t) on Ω× (0, T ) with the following properties:

1. M ∈ L∞ (Ω× (0, T )) and 0 ≤M(x, t) ≤ ‖m0‖∞ + k−1t‖A‖∞ a.e. in Ω× (0, T ).

2. M ∈ L∞
(
0, T ;H1 (Ω)

)
and

‖M(t)‖2 +D

∫ t

0
eC(t−s)‖∇M(s)‖2 ds ≤ eCt

[
‖m0‖2 + k2

−1t‖A‖2
]
.

3. U ∈ L∞ (Ω× (0, T )) and 0 ≤ U(x, t) ≤ A(x) a.e. in Ω× (0, T ).

4. V ∈ L∞
(
0, T ;

[
L2 (Ω)

]n)
and ‖V ‖L∞(0,T ;[L2(Ω)]n) ≤ C‖a‖∞‖A‖∞.

For the model with diffusive proteins (1.18)-(1.20) the situation is even nicer because we
have not only the same results of Theorem 1.1 but in addition the problem is well-posed.

Theorem 1.2 For any T > 0 the reaction-diffusion system (1.21)-(1.23) is well-posed, i.e. it
has global unique weak solutions M(x, t), U(x, t), W (x, t) and V (x, t) on Ω× (0, T ) depending
continuously on the initial data. Moreover, we have the following properties:

1. M ∈ L∞ (Ω× (0, T )) and 0 ≤M(x, t) ≤ ‖m0‖∞ + k−1t‖A‖∞ a.e. in Ω× (0, T ).

2. M ∈ L∞
(
0, T ;H1 (Ω)

)
and

‖M(t)‖2 +D

∫ t

0
eC(t−s)‖∇M(s)‖2 ds ≤ eCt

[
‖m0‖2 + k2

−1t‖A‖2
]
.
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3. U,W ∈ L∞ (Ω× (0, T )), they are non-negative and 0 ≤ U(x, t) +W (x, t) ≤ A(x) a.e. in
Ω× (0, T ).

4. U,W ∈ L∞
(
0, T ;H1 (Ω)

)
and

‖U(t)‖2 + ‖W (t)‖2 + 2d

∫ t

0
e

R t
s c(r)dr

(
‖∇U(s)‖2 + ‖∇W (s)‖2

)
ds ≤ e

R t
0

c(s)ds‖A‖2 ,

where c(t) = 2[k−1 + k1α(t)] and α(t) = ‖m0‖∞ + k−1t‖A‖∞.

5. V ∈ L∞
(
0, T ;

[
L2 (Ω)

]n)
and ‖V ‖L∞(0,T ;[L2(Ω)]n) ≤ C‖a‖∞‖A‖∞

There is a link between the model with fixed proteins (1.18)-(1.20) and the model with
diffusive proteins (1.21)-(1.23). Indeed, we have the following “continuity” result.

Theorem 1.3 If d → 0 then the sequence (Md, Ud,W d,Vd) of solutions of (1.21)-(1.23) con-
verges to the solution (M,U,W,V) of (1.18)-(1.20) in the following senses:

1. Md, Ud and W d converge weakly in L2
(
0, T ;L2 (Ω)

)
to M , U and W , respectively.

2. Vd converges to V weakly in L2
(
0, T ;

[
L2 (Ω)

]n)
.

3. Md converges strongly in L2
(
0, T ;L2 (Ω)

)
to M .

4. Ud and W d converge weakly-⋆ in L∞(Ω× (0, T )) to U and W , respectively.

5. In the limit d = 0 we have U(x, t) +W (x, t) = A(x) a.s. in Ω× (0, T ).

Finally, the solutions of both systems (1.18)-(1.20) and (1.21)-(1.23) are globally defined in
time. More precisely, we have the following result.1

Theorem 1.4 Let M , U , W and V be solutions of either (1.18)-(1.20) or (1.21)-(1.23). Then:

1. M,U,W ∈ L∞
(
0,∞;L1 (Ω)

)
.

2. V ∈ L∞
(
0,∞;

[
L2 (Ω)

]n)
.

1 The author would like to thank Prof. Jeff Morgan (University of Houston) for his remarks on the global
definition of the solutions.
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1.3 Proof of Theorem 1.1

1.3.1 A priori estimates

Lemma 1.1 If M(x, t) is a solution of (1.18)-(1.20) such that M(x, t) ≥ 0 a.e. in Ω × (0, T )
then:

1. 0 ≤ U(x, t) ≤ A(x) a.e. In particular, U(x, t) ∈ L∞(Ω× (0, T )).

2. M(x, t) ∈ L∞ (Ω× (0, T )) and M(x, t) ≤ α(t) := ‖m0‖∞ + k−1t‖A‖∞ a.e.

3. There exists a positive constant C = C(D, ‖V · n‖∞,Ω) such that

‖M(t)‖2 +D

∫ t

0
eC(t−s)‖∇M(s)‖2 ds ≤ eCt

[
‖m0‖2 + k2

−1t‖A‖2
]
.

Proof :

1. Using the equations (1.18)-(1.20) we have

U(x, t) = A(x) exp

{
−

∫ t

0
[k1M(x, s) + k−1]ds

}

+ k−1A(x)

∫ t

0
exp

{
−

∫ t

s
[k1M(x, r) + k−1]dr

}
ds .

Therefore U(x, t) ≥ 0 a.e., and using M(x, t) ≥ 0 a.e. it follows that U(x, t) ≤ A(x) a.e.

2. Let α(t) be a smooth function and define Z(x, t) := M(x, t) − α(t). Then the equation
for Z(x, t) is

∂tZ −∇ · (D∇Z − V Z) + k1ZU = −α′(t)− k1α(t)U + k−1(A− U) ,

Z(x, 0) = m0(x)− α(0) ,

Z(σ, t) = −α(t) on Γa × [0, T ] ,

(D∇Z − V Z) · n(σ, t) = 0 on Γr × [0, T ] ,

Choosing α(t) := ‖m0‖∞ + k−1t‖A‖∞ it follows that

∂tZ −∇ · (D∇Z − V Z) + k1ZU ≤ 0 ,

Z(x, 0) ≤ 0 ,

Z(σ, t) ≤ 0 on Γa × [0, T ] ,

(D∇Z − V Z) · n(σ, t) = 0 on Γr × [0, T ] .

Therefore, the Maximum Principle implies that Z(x, t) ≤ 0 a.e.
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3. Multiply (1.18)-(1.20) by M , integrate over Ω and use integration by parts to get

1

2

d

dt
M2 +D‖∇M‖2 =

1

2

∫

Γ
V · nM2 dS − k1

∫

Ω
UM2 dΩ

+ k−1

∫

Ω
[A− U ]M dΩ .

For the first integral, notice that V ·n ∈ L∞(Γ× [0, T ]). Therefore, using trace estimates
we obtain that for any ε > 0 there exists a constant C1 = C1(ε, ‖V · n‖∞,Ω) such that

1

2

∣∣∣∣
∫

Γ
V · nM2 dS

∣∣∣∣ ≤ ε
∫

Ω
|∇M |2 dΩ +

C1

2

∫

Ω
|M |2 dΩ .

For the second and third integrals, observe that U ≥ 0 since M ≥ 0, and in consequence

k−1

∫

Ω
[A− U ]M dΩ ≤ k2

−1

2

∫

Ω
A2 dΩ +

1

2

∫

Ω
M2 dΩ .

Choosing C := C1 + 1 and ε = D/2 we obtain

d

dt
‖M‖2 +D‖∇M‖2 ≤ C‖M‖2 + k2

−1‖A‖2 .

Finally, multiplying by e−Ct and integrating on [0, t] we obtain the result. �

1.3.2 The Fixed Point operator

Define
K :=

{
M ♯ ∈ L2

(
0, T ;L2 (Ω)

)
: M(x, t) ≥ 0 a.e.

}
.

Fix M ♯ ∈ K and set

∂tU = −k1M
♯U + k−1[A− U ] , U(x, 0) = A(x) .

For any finite time interval [0, T ] this linear problem has a unique solution U(x, t) given by

U(x, t) = A(x) exp

{
−

∫ t

0
[k1M

♯(x, s) + k−1]ds

}

+ k−1A(x)

∫ t

0
exp

{
−

∫ t

s
[k1M

♯(x, r) + k−1]dr

}
ds ,

which satisfies 0 ≤ U(x, t) ≤ A(x) a.e. in Ω× (0, T ). With this U(x, t) define

λ(t) :=

∫

Ω
[A(x)− U(x, t)] dΩ

and set the elliptic problem
{

∆φ(x, t) = 0 in Ω,
∇φ · n(σ, t) = a(σ)λ(t) on Γ,
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with a(σ) ∈ L∞(Γ) and
∫
Ω φ(x, t) dΩ =

∫
Γ a(σ) dS = 0. This linear problem has a unique

solution φ(x, t) ∈ L∞
(
0, T ;H1(Ω)

)
satisfying

‖φ‖H1(Ω) ≤ C‖a‖∞‖A‖∞ . (1.25)

Now, define V (x, t) = ∇φ(x, t) and set the linear problem

∂tM = ∇ · [D∇M − V M ]− k1MU + k−1[A− U ] in Ω× (0, T ),

M(σ, t) = 0 on Γa × [0, T ],

(D∇M − V M) · n(σ, t) = 0 on Γr × [0, T ],

M(x, 0) = m0(x) in Ω.

For any finite time interval [0, T ] there exists a unique weak solution M(x, t) satisfying the
estimates in Lemma 1.1.

In summary, we have just constructed a chain of maps M ♯ 7→ U 7→ V 7→M , where each map
is given by a solution of a differential equation. In the light of this, we can define the operator
R(M ♯) := M , and our task now is to show that R has a fixed point.

In order to apply Schauder’s Fixed Point Theorem to the operator R we need to show that
it satisfies the following conditions.

Lemma 1.2 Fix a positive time T > 0. Then:

1. K is a convex closed subset of L2
(
0, T ;L2 (Ω)

)
.

2. R : K → K.

3. R : L2
(
0, T ;L2 (Ω)

)
→ L2

(
0, T ;L2 (Ω)

)
is continuous.

4. R(K) is relatively compact in L2
(
0, T ;L2 (Ω)

)
.

Proof :

1. K is a convex closed subset of L2
(
0, T ;L2 (Ω)

)
. It is immediate.

2. R : K → K. Multiply (1.18)-(1.20) by −M−, integrate over Ω and use integration by
parts. After those calculations we arrive to

1

2

d

dt
‖M−‖2 +D‖∇M−‖2 =

1

2

∫

Γ
V · n|M−|2 dS − k1

∫

Ω
U |M−|2 dΩ

−k−1

∫

Ω
[A− U ]M− dΩ .

From Lemma 1.1 we have 0 ≤ U ≤ A since M ♯ ∈ K. Using this fact and trace estimates we
arrive to

1

2

d

dt
‖M−‖2 + (D − ε)‖∇M−‖2 ≤ C‖M−‖2 ,
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where ε > 0 is arbitrary. Therefore M−(x, t) ≡ 0 a.e. in Ω× (0, T ), and in consequence M ∈ K.

3. R : L2
(
0, T ;L2 (Ω)

)
→ L2

(
0, T ;L2 (Ω)

)
is continuous. Let M ♯

1,M
♯
2 ∈ K, and for each

i = 1, 2 consider the chain of maps

M ♯
i 7−→ Ui 7−→ V i 7−→Mi .

Define M̂ ♯ := M ♯
2 −M ♯

1, Û := U2 − U1, ϕ̂ := ϕ2 − ϕ1, V̂ := V 2 − V 1 and M̂ := M2 −M1. The
differences M̂ and Û solve the equations

∂tM̂ = ∇ · [D∇M̂ − V 1M̂ − V̂ M2]−
[
k1M2 + k−1

]
Û + k1M̂U1 , (1.26)

∂tÛ = −
[
k1M

♯
2 + k−1

]
Û + k1M̂

♯U1 , (1.27)

with homogeneous boundary and initial conditions, whereas V̂ solves

∇ · V̂ = 0 , (1.28)

V̂ · n = −a
∫

Ω
Û dΩ .

We can solve explicitly the equation (1.27):

Û(x, t) = k1

∫ t

0
exp

{
−

∫ t

s

[
k1M

♯
2(x, r) + k−1

]
dr

}
M̂ ♯(x, s)U1(x, s)ds .

Since M ♯
2 ≥ 0 and 0 ≤ U1 ≤ A it follows that

|Û(x, t)| ≤ k1A(x)

∫ t

0
|M̂ ♯(x, s)|ds .

Using Hölder’s inequality we find that

|Û(x, t)|2 ≤ k2
1‖A‖2∞t

∫ t

0
|M̂ ♯(x, s)|2ds ,

and integrating over Ω we obtain

‖Û(t)‖2 ≤ β(t)‖M̂ ♯‖2L2(0,T ;L2(Ω)) ; β(t) = k2
1‖A‖2∞t . (1.29)

Multiply the equation (1.26) by M̂ , integrate over Ω and use integration by parts to obtain

1

2

d

dt
‖M̂‖2 +D‖∇M̂‖2 =

1

2

∫

Γ
V 1 · n|M̂ |2 dS −

∫

Ω
V̂ · ∇M̂M2 dΩ

−
∫

Ω
[k1M2 + k−1] ÛM̂ dΩ− k1

∫

Ω
U1|M̂ |2 dΩ . (1.30)

Let us estimate the right-hand side of (1.30). For the first integral, using V 1·n ∈ L∞ ((0, T )× Ω)
and trace estimates we obtain

1

2

∫

Γ
V 1 · n|M̂ |2 dS ≤ C1

∫

Ω
|M̂ |2 dΩ + ε

∫

Ω
|∇M̂ |2 dΩ . (1.31)
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For the second integral, using Hölder’s inequality it follows that
∫

Ω
V̂ · ∇M̂M2 dΩ ≤ ‖V̂ (t)‖[L2(Ω)]n‖M2(t)‖L∞(Ω×(0,T ))‖∇M̂(t)‖ (1.32)

≤ C2‖Û(t)‖2α2(t) + ε‖∇M̂(t)‖2 ,

with C2 > 0 independent of T . For the third integral we have
∫

Ω
[k1M2 + k−1] ÛM̂ dΩ ≤ (k1α(t) + k−1) ‖Û(t)‖ ‖M̂(t)‖ (1.33)

≤ 1

2
(k1α(t) + k−1)

2 ‖Û(t)‖2 +
1

2
‖M̂(t)‖2 .

In conclusion, from the estimates (1.31)-(1.33) it follows that

1

2

d

dt
‖M̂(t)‖2 + (D − 2ε)‖∇M̂‖2 ≤

[
C1 +

1

2

]
‖M̂(t)‖2

+

[
C2α

2(t) +
1

2
(k1α(t) + k−1)

2

]
‖Û(t)‖2.

Choose ε = D/4, integrate over [0, t] and use (1.29) to obtain

‖M̂(t)‖2 ≤ γ1(t)‖M̂ ♯‖2L2(0,T ;L2(Ω)) + C

∫ t

0
‖M̂(s)‖2 ds ,

where γ1(t) = 2C2α
2(t)+ (k1α(t) + k−1)

2 and C = 2C1 +1. Finally, using Gronwall’s inequality
we get

‖M̂(t)‖2 ≤ eCtγ1(t)‖M̂ ♯‖2L2(0,T ;L2(Ω)) ,

and integrating on [0, T ] yields

‖M̂‖2L2(0,T ;L2(Ω)) ≤ γ(T )‖M̂ ♯‖2L2(0,T ;L2(Ω)) , (1.34)

γ(T ) := TeCTγ1(T ) ,

which implies the continuity of the operator R.

4. R(K) is relatively compact in L2
(
0, T ;L2 (Ω)

)
. We will use Aubin’s compactness theorem

(see Theorem 5.1 in Lions [45], Section 5.5, pp. 57-64, and Tartar [63], Chapter 24, pp. 137-

141). Suppose that the sequence {M ♯
n} is uniformly bounded in L2

(
0, T ;L2(Ω)

)
. Then by

the continuity of R the sequence {RM ♯
n = Mn} is also uniformly bounded in L2

(
0, T ;L2(Ω)

)
,

and the estimates in Lemma 1.1 imply that {Mn} is uniformly bounded in L2
(
0, T ;H1(Ω)

)
.

Furthermore, the sequence of derivatives {∂tMn} is uniformly bounded in L2
(
0, T ;H−1(Ω)

)
.

Indeed, we have

∫ T

0

∫

Ω
|V nMn|2 dΩ dt ≤ T‖Mn‖L∞(Ω×(0,T ))‖V n‖2L∞(0,T ;[L2(Ω)]n)

≤ CTα2(T )‖a‖∞‖A‖∞ ,
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from where it follows that for all t ∈ [0, T ] the expression

∂tMn = ∇ · [D∇Mn − V nMn]− k1MnUn + k−1[A− Un]

defines a uniformly bounded sequence of distributions in H1(Ω). Therefore, applying Aubin’s
theorem to the spaces H1(Ω) ⊂ L2(Ω) ⊂ H−1(Ω) we obtain that the sequence {Mn} is relatively
compact in L2

(
0, T ;L2 (Ω)

)
. �

1.3.3 Conclusion of the proof

Lemma 1.3 For any T > 0 the reaction-diffusion system (1.18)-(1.20) has global unique weak
solutions M(x, t), U(x, t) and V (x, t) in Ω × (0, T ) a.e. Furthermore, M(x, t) ≥ 0 a.e. in
Ω× (0, T ), and the estimates of Lemma 1.1 hold.

Proof : The four statements of Lemma 1.2 imply that we can apply Schauder’s Fixed Point

Theorem to the operator R and obtain a fixed point M ♯(x, t) = M(x, t) in K. This implies that
M(x, t) ≥ 0 a.e. in Ω× (0, T ), and in consequence Lemma 1.1 holds.

Observing carefully the explicit expression of γ(T ) in (1.34) it follows that γ(T ) → 0 if
T → 0. Therefore, the operator R is a contraction if T > 0 is small enough, and in consequence
we have the local uniqueness of (1.18)-(1.20) .

Now choose a time T0 ∈ (0, T ) such that γ(T0) < 1 and perform the very same calculations
we have already made but with initial conditions M(x, T0) and U(x, T0) instead of m0(x) and
A(x), respectively. This yields a different set of bounds

α(T0, t) := ‖M(T0)‖∞ + k1(t− T0)‖U(T0)‖∞ ,

β(T0, t) := k2
1‖U(T0)‖2∞(t− T0) ,

γ1(T0, t) := 2C2α
2(T0, t) + (k1α(T0, t) + k−1)

2 ,

γ(T0, t) := (t− T0)e
C(t−T0)γ1(T0, t) .

Recall that U(T0) ≤ A(x) and ‖M‖∞ ≤ α(T ) and define

α̃(T ) := α(T ) + k1t‖A‖∞ ,

β̃(T ) := β(T ) ,

γ̃1(T ) := 2C2α̃
2(T ) + (k1α̃(T ) + k−1)

2 ,

γ̃(T ) := TeCT γ̃1(T ) .

These new bounds are independent of the initial conditions M(T0) and U(T0). Therefore, if T0

was chosen such that γ̃(T0) < 1 we can extend the uniqueness result to the interval [T0, 2T0],
and repeating this procedure we obtain uniqueness on the whole interval [0, T ], i.e. global
uniqueness. �

From Lemmas 1.1 and 1.3 the proof of Theorem 1.1 follows immediately.



18 Section 1.4 Proof of Theorem 1.2

1.4 Proof of Theorem 1.2

1.4.1 A priori estimates

Lemma 1.4 U(x, t),W (x, t) ∈ L∞ (Ω× (0, T )) and

0 ≤ U(x, t) +W (x, t) ≤ ‖A‖∞ a.e. (1.35)

Proof : For any c ∈ R the function Y := U +W − c satisfies

∂tY = d∆Y ,
∂Y

∂n
= 0 on Γ, Y (x, 0) = A(x)− c .

Therefore, applying the Maximum Principle to the cases c = 0 and c = ‖A‖∞ we obtain the
first and second inequalities in (1.35), respectively. �

Lemma 1.5 If M(x, t) ≥ 0 a.e. in Ω× (0, T ) then:

1. M ∈ L∞ (Ω× (0, T )) and 0 ≤M(x, t) ≤ α(t) := ‖m0‖∞ + k−1t‖A‖∞ a.e. in Ω× (0, T ).

2. M ∈ L∞
(
0, T ;H1 (Ω)

)
and

‖M(t)‖2 +D

∫ t

0
eC(t−s)‖∇M(s)‖2 ds ≤ eCt

[
‖m0‖2 + k2

−1t‖A‖2
]
.

3. U,W ∈ L∞ (Ω× (0, T )) and 0 ≤ U(x, t) +W (x, t) ≤ A(x) a.e. in Ω× (0, T ).

4. U,W ∈ L∞
(
0, T ;H1 (Ω)

)
and

‖U(t)‖2 + ‖W (t)‖2 + 2d

∫ t

0
e

R t
s c(r)dr

(
‖∇U(s)‖2 + ‖∇W (s)‖2

)
ds ≤ e

R t
0

c(s)ds‖A‖2 ,

where c(t) = 2[k−1 + k1α(t)].

5. V ∈ L∞
(
0, T ;

[
L2 (Ω)

]n)
and ‖V ‖L∞(0,T ;[L2(Ω)]n) ≤ C‖a‖∞‖A‖∞.

Proof : The only statements we need to prove are 3 and 4 because the other ones can be proved
using exactly the same arguments we have already performed in Section 1.3.

Let us first prove statement 3. An integration by parts in (1.21)-(1.23) yields

1

2

d

dt
‖U−‖2 + d‖∇U−‖2 + k1

∫

Ω
M |U−|2 = −k−1

∫

Ω
WU− dΩ .

We affirm that WU− ≥ 0. Indeed, by Lemma 1.4 we have that U +W ≥ 0, which implies that
0 ≤ U−(U + W ) = −|U−|2 + U−W . Therefore U−W ≥ 0, and in consequence ‖U−(t)‖2 ≡ 0.
The argument for proving ‖W−(t)‖2 ≡ 0 is the same.
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For statement 4, integration by parts yields

1

2

d

dt
‖U‖2 + d‖∇U‖2 + k1

∫

Ω
M |U |2 dΩ = k−1

∫

Ω
WU dΩ ,

1

2

d

dt
‖W‖2 + d‖∇W‖2 + k−1

∫

Ω
|W |2 dΩ = k1

∫

Ω
MUW dΩ .

Adding both equalities we get

1

2

d

dt

[
‖U‖2 + ‖W‖2

]
+ d

[
‖∇U‖2 + ‖∇W‖2

]
≤ c(t)

2
‖U‖ ‖W‖ ,

where c(t) = 2[k−1 + k1α(t)]. Multiplying this inequality by e−
R t
0

c(s)ds and integrating on [0, T ]
we obtain the result. �

1.4.2 The Fixed Point operator

Define

K :=
{
M ♯ ∈ L2

(
0, T ;L2 (Ω)

)
: 0 ≤M(x, t) ≤ ‖m0‖∞ + k−1t‖A‖∞ a.e. in Ω× (0, T )

}
.

Fix M ♯ ∈ K and set

∂tU = d∆U − k1M
♯U + k−1W in Ω× (0, T ),

∂tW = d∆U + k1M
♯U − k−1W in Ω× (0, T ),

∇U · n(σ, t) = 0 on Γ× [0, T ],

∇W · n(σ, t) = 0 on Γ× [0, T ].

For any finite time interval [0, T ] this linear system has unique solutions U(x, t) and W (x, t),
which are non-negative and satisfy 0 ≤ U(x, t) +W (x, t) ≤ A(x) a.e. in Ω× (0, T ). With these
U(x, t) and W (x, t) set

{
∆φ(x, t) = 0 in Ω,

∇φ · n(σ, t) = a(σ)
∫
ΩW (x, t) dΩ on Γ,

with a(σ) ∈ L∞(Γ) and
∫
Ω φ(x, t)dΩ =

∫
Γ a(σ)dS = 0. This linear problem has a unique solution

φ(x, t) ∈ L∞
(
0, T ;H1(Ω)

)
satisfying

‖φ‖H1(Ω) ≤ C‖a‖∞‖A‖∞ . (1.36)

Now, define V (x, t) = ∇φ(x, t) and set

∂tM = ∇ · [D∇M − V M ]− k1MU + k−1[A− U ] in Ω× (0, T ),

M(σ, t) = 0 on Γa × [0, T ],

∇M · n(σ, t) = 0 on Γr × [0, T ],

M(x, 0) = m0(x) in Ω.
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For any finite time interval [0, T ] there exists a unique weak solution M(x, t) such that 0 ≤
M(x, t) ≤ ‖m0‖∞ + k−1t‖A‖∞ a.e. in Ω× (0, T ).

We have just constructed a chain of maps M ♯ 7→ (U,W ) 7→ V 7→M , and our goal is to show
that the operator R(M ♯) := M has a fixed point.

1.4.3 Conclusion of the proof

Let M ♯
1,M

♯
2 ∈ K, and for each i = 1, 2 consider the chain of maps

M ♯
i 7−→ Ui 7−→ V i 7−→Mi .

Define M̂ ♯ := M ♯
2 −M ♯

1, Û := U2 − U1, Ŵ := W2 −W1, ϕ̂ := ϕ2 − ϕ1, V̂ := V 2 − V 1 and
M̂ := M2 −M1. The differences M̂ , Û and Ŵ solve the equations

∂tM̂ = ∇ · [D∇M̂ − V 1M̂ − V̂ M2]− k1ÛM2 − k1U1M̂ + k−1Ŵ ,

∂tÛ = d∆Û − k1ÛM
♯
2 − k1U1M̂

♯ + k−1Ŵ , (1.37)

∂tŴ = d∆Ûk1ÛM
♯
2 + k1U1M̂

♯ − k−1Ŵ ,

with homogeneous initial and boundary conditions, whereas V̂ = ∇φ̂ solves

∇ · V̂ = 0 ,

V̂ · n = a

∫

Ω
Ŵ dΩ .

Lemma 1.6 If for i = 1, 2, M ♯
i (x, t) ≥ 0 a.e. in Ω× (0, T ) then there exist positive continuous

functions C1(t), C2(t) and C3(t) such that

d

dt
‖M̂(t)‖2 ≤ C1(t)

(
‖M̂(t)‖2 + ‖Û(t)‖2 + ‖Ŵ (t)‖2

)
.

d

dt

(
‖Û(t)‖2 + ‖Ŵ (t)‖2

)
≤ C2(t)

(
‖Û(t)‖2 + ‖Ŵ (t)‖2 + ‖M̂ ♯(t)‖2

)
, (1.38)

d

dt

(
‖Û(t)‖2 + ‖Ŵ (t)‖2

)
≤ C3(t)

(
‖Û(t)‖2 + ‖Ŵ (t)‖2

)
.

Proof : Multiply (1.37) by M̂ and integrate by parts to get

1

2

d

dt
‖M̂‖2 +D‖∇M̂‖2 = −k1

∫

Ω
|Û |2V̂ 1 · n dS −

∫

Ω
M2V̂ · ∇M̂ dΩ (1.39)

− k1

∫

Ω
ÛM2M̂ dΩ− k1

∫

Ω
U1|M̂ |2 dΩ + k−1

∫

Ω
ŴM̂

Noticing that all the functions are in L∞ we can deduce the first estimate in (1.38). Indeed,
since ‖V̂ ‖ ≤ C‖Ŵ‖ it follows that

∫

Ω
M2V̂ · ∇M̂ dΩ ≤ ε‖∇M̂‖2 + C(t)‖Ŵ‖2 ,
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and the other four integrals in (1.39) can be estimated similarly in order to get

d

dt
‖M̂(t)‖2 ≤ C1(t)

(
‖M̂(t)‖2 + ‖Û(t)‖2 + ‖Ŵ (t)‖2

)
.

Multiply (1.37) by Û and integrate by parts to get

1

2

d

dt
‖Û‖2 + d‖∇Û‖2 = −k1

∫

Ω
|Û |2M ♯

2 dΩ− k1

∫

Ω
U1M̂

♯Û dΩ + k1

∫

Ω
Ŵ Û dΩ . (1.40)

Observe that second integral in (1.40) can be estimated in two ways, either

∫

Ω
U1M̂

♯Û dΩ ≤ C
(
‖Û(t)‖2 + ‖M̂ ♯(t)‖2

)

or either ∫

Ω
U1M̂

♯Û dΩ ≤ C(t)‖Û(t)‖2 .

In the first case we can deduce that

d

dt
‖Û(t)‖2 ≤ C(t)

(
‖Û(t)‖2 + ‖Ŵ (t)‖2 + ‖M̂ ♯(t)‖2

)
, (1.41)

whereas in the second case we can show that

d

dt
‖M̂(t)‖2 ≤ C(t)

(
‖Û(t)‖2 + ‖Ŵ (t)‖2

)
. (1.42)

Now perform the same estimates for Ŵ and add up both the estimates for Û and Ŵ . It follows
then that with estimates of type (1.41) we obtain the second inequality in (1.38), whereas with
estimates of type (1.42) we get the third inequality in (1.38). �

Lemma 1.7 For any T > 0 the reaction-diffusion system (1.21)-(1.23) is a well-posed problem,
i.e. it has global unique weak solutions M(x, t), U(x, t), W (x, t) and V (x, t) which depend
continuously on the initial data. Moreover, M(x, t), U(x, t) and W (x, t) are non-negative a.e.
in Ω× (0, T ) and the estimates of Lemma 1.5 hold.

Proof : Using Gronwall’s lemma in the second equation in (1.38) we have

‖Û(t)‖2 + ‖Ŵ (t)‖2 ≤ C2(t)‖M̂ ♯(t)‖2L2(0,T ;L2(Ω)) .

Plugging inequality into the first equation in (1.38) and using again Gronwall’s lemma we obtain
that there exists a positive continuous function θ(t) such that

‖M̂(t)‖2 ≤ θ(t)‖M̂ ♯(t)‖2L2(0,T ;L2(Ω)) .

Integrating on [0, T ] we have

‖M̂(t)‖2L2(0,T ;L2(Ω)) ≤ Tθ(T )‖M̂ ♯(t)‖2L2(0,T ;L2(Ω)) ,
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which implies that the operator R is continuous. Therefore, applying Schauder’s Fixed Point
Theorem it follows that R has a fixed point M(x, t). With this M(x, t) we can construct
U(x, t), W (x, t) and V (x, t), and the four of them are global solutions of the problem (1.21)-
(1.23). Moreover, since M(x, t) ≥ 0 a.e. in Ω× (0, T ) then the estimates of Lemma 1.5 hold.

Now suppose we have non-homogeneous initial conditions. Then adding up the first and
third equations in (1.38) and using Gronwall’s lemma we can show that there exists a positive
continuous function κ(t) such that

‖M̂(t)‖2 + ‖Û(t)‖2 + ‖Ŵ (t)‖2 ≤ κ(t)
(
‖M̂(0)‖2 + ‖Û(0)‖2 + ‖Ŵ (0)‖2

)
.

Therefore, the solutions are unique and depend continuously on the initial data. �

From Lemmas 1.5 and 1.7 the proof of Theorem 1.2 follows immediately.

1.5 Proof of Theorems 1.3 and 1.4

1.5.1 Proof of Theorem 1.3

For any 0 < d ≤ d0 let (Md, Ud,W d,Vd) be the weak solutions of (1.21)-(1.23) and let d → 0.
First, Lemma 1.5 implies that the sequence Ud is bounded in

X := L2
(
0, T ;L2 (Ω)

)
∩ L∞(Ω× (0, T )) ,

which implies that a subsequence, still denoted Ud, converges weakly-⋆ in X to a limit U0.
Similarly, a subsequence W d converges weakly-⋆ in X to a limit W 0.

Second, Lemma 1.5 also affirms that the sequence Vd is uniformly bounded in

Y := L∞
(
0, T ;

[
L2 (Ω)

]n)
,

then there is a subsequence Vd converging weak-⋆ in Y to a limit V0.
Third, from Lemma 1.5 the sequence Md is uniformly bounded in

Z := L2
(
0, T ;L2 (Ω)

)
∩ L2

(
0, T ;H1 (Ω)

)
∩ L∞

(
0, T ;H1 (Ω)

)
∩ L∞(Ω× (0, T )) ,

hence a subsequenceMd converges weak-⋆ in Z to a limitM0. Moreover, using classical estimates
of type ∫ T

0

∫

Ω
|VdMd −V0M0| dΩdt ≤ C1‖Vd −V0‖+ C2‖Md −M0‖

it follows that VdMd → V0M0 strongly in
[
L1(Ω× (0, T ))

]n
and MdUd → M0U0 strongly in

L1(Ω×(0, T )). This implies that the sequence ∂tM
d is uniformly bounded in L2

(
0, T ;H−1 (Ω)

)
,

so applying Aubin’s compactness theorem we have that the convergence Md → M0 is in fact
strong in L2

(
0, T ;L2 (Ω)

)
.
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In the light of the former convergences we obtain that a subsequence (Md, Ud,W d,Vd) of
weak solutions of (1.21)-(1.23) converges weakly in L2

(
0, T ;L2 (Ω)

)
to (M0, U0,W 0,V0), which

is a weak solution of (1.18)-(1.20). However, the uniqueness of the problem (1.18)-(1.20) implies,
on the one hand, that (M0, U0,W 0,V0) = (M,U,W,V), and on the other hand, that the whole
original sequence (Md, Ud,W d,Vd) converges weakly in L2

(
0, T ;L2 (Ω)

)
. Moreover, since in

the limit we have ∂t(U + W ) = 0 and U,W ∈ L∞(Ω × (0, T )) then U(x, t) + W (x, t) = A(x)
a.e. in Ω× (0, T ).

1.5.2 Proof of Theorem 1.4

From Theorems 1.1 and 1.2 we have that U(x, t) +W (x, t) ≤ A(x) for all t > 0 and all x ∈ Ω.
Therefore, U(x, t) and W (x, t) are globally defined in time and

‖U‖L∞(Ω×(0,∞)) ≤ ‖A‖L∞(Ω) , ‖W‖L∞(Ω×(0,∞)) ≤ ‖A‖L∞(Ω) .

On the model with diffusive proteins (1.21)-(1.23), if we integrate the equations for M and W
and use the boundary conditions we obtain

∂t

∫

Ω

(
M(x, t) +W (x, t)

)
=

∫

Ω
∇ · [D∇M − V M ] dΩ +

∫

Ω
∆W dΩ

= D

∫

Γa

∇M · n dS ≤ 0 .

The last inequality holds because M ≥ 0 in Ω and M = 0 on Γa imply ∇M · n ≤ 0 on Γa.
Therefore, ∫

Ω

(
M(x, t) +W (x, t)

)
dΩ ≤

∫

Ω
m0(x) dΩ ,

and in consequenceM ∈ L∞
(
0,∞;L1 (Ω)

)
. For the model with fixed proteins (1.18)-(1.20), inte-

gratingM−U and repeating the previous argument it can be shown thatM ∈ L∞
(
0,∞;L1 (Ω)

)
.

Notice that since the boundary condition for V = ∇φ depends on W , it necessarily lies in
L∞(Γ× (0,∞)). Therefore, integrating we find a constant C such that

∫

Ω
|∇φ|2 dΩ =

∫

Γ
φa(σ)λ(t) dS ≤ C

(∫

Γ
|∇φ|2 dΩ

)1/2

.

On the other hand, using (1.15) and trace inequalities we obtain that

‖∇φ(t)‖L2(Ω) dΩ ≤ C ∀t ≥ 0 .

In consequence, V = ∇φ is globally defined and V ∈ L∞
(
0,∞;L2 (Ω)

)
.

1.6 Final remarks

1.6.1 On the cytoplasmic flux

Throughout this article we have supposed that the cytoplasmic flow field V is incompressible
(∇ · V = 0) and that it comes from a potential (V = ∇φ). These two hypothesis are assumed
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in the model of Holcman and Schuss [34], but the cytoplasmic flow could have been modeled in
a more realistic way without affecting the results we presented. Indeed, we could consider that
V follows Stokes’ equation

− µ∆V +∇p = 0 in Ω, (1.43)

∇ · V = 0 in Ω,

V = λ(t)f on Γ,

with f ∈
[
H1/2(Γ) ∩ L∞(Γ)

]n
. Under these assumptions the problem (1.43) has a unique

solution V ∈
[
H1(Ω)

]n
satisfying

‖V ‖[H1(Ω)]n ≤ C|λ(t)| · ‖f‖[H1/2(Γ)]
n ,

which can be used instead of (1.17) to obtain the same results of Theorems 1.1, 1.2 and 1.3.

1.6.2 On the diffusion coefficient

If we wish to take into account the existence of obstacles inside the spine, like organelles or
macromolecules, we can add them in two forms: either as “exterior domains”, i.e. we take out
a tiny section from the domain Ω and suppose that the boundary of the section belongs to the
boundary of Ω, or either by considering that the diffusion coefficients are no longer constant.
The results we presented here are still valid in both situations provided that the exterior domains
have C1 boundaries, D, d ∈ C1(Ω̄× [0, T ]) and

0 < D1 ≤ D(x, t) ≤ D2 , 0 < d1 ≤ d(x, t) ≤ d2 .

1.6.3 On the reactions between calcium and the proteins

As in Holcman and Schuss [34], we assumed in the model that all binding sites have the same
affinity for the Ca2+ ions, but this is not the real case. Indeed, calcineurin has one binding
site with high affinity and three with low affinity (see Klee et al [36]), AM-type proteins like
Troponin have two low affinity sites and two high affinity sites (see Farah et al [19]), and CaM
with two Ca2+ ions bound has more affinity to bind calcium than CaM with no Ca2+ ions bound
(see Shiftman et al [59]). Nevertheless, such distinctions were not considered here in order to
keep things as simple as possible.

1.7 Discussion

All the results we presented here are new and can be considered as the sequel of the works of
Holcman et al [33] and [34], and in particular of [34] where Holcman and Schuss proposed the
reaction-diffusion system (1.5) as a model for calcium dynamics inside a dendritic spine. Our
main results are Theorem 1.1, where we proved that the system (1.5) in its modified form (1.18)-
(1.20) has global unique positive solutions, Theorem 1.2, where we proved that if the proteins
diffuses then the corresponding problem (1.21)-(1.23) is well-posed, and Theorem 1.3, where we



Chapter 1. Calcium ions in dendritic spines

Work in collaboration with Kamel Hamdache. Published in Nonlinear Analysis: Real World

Applications, Volume 10, Issue 4, August 2009. 25

showed that the solutions of (1.21)-(1.23) converge to the solutions of (1.18)-(1.20) when d→ 0.

We mentioned also that the experimental evidence suggests that the twitching motion of the
spine should depend on the total number of occupied binding sites. We made the assumption
that the spine twitching depends on the cytoplasmic velocity V at the spine surface Γ, and
that this value depends on the total number of Ca2+ ions that are bound to the proteins. This
renders a strong coupling between M , U , W and V but nevertheless we succeeded to solve this
coupled system.

There are at least two tasks that we consider interesting to address in the future. First, it
could be illustrative to perform numerical simulations for both reaction-diffusion models (1.21)-
(1.23) and (1.21)-(1.23) in order to compare them with the simulations of the Langevin equation
(1.1) that appeared in Holcman et al [33], [34], and also with experimental data. Second, given
that the solutions are globally defined in time, we would like to study the asymptotic behaviour
and stability of the solutions for large times.



26 Section 1.7 Discussion



Chapter 2

Viral infection and immune response
Work in collaboration with Anna Marciniak-Czochra. Already submitted.

In this work we extend the ODE model for virus infection and immune response proposed by
P. Getto et al (Modelling and analysis of dynamics of viral infection of cells and of interferon
resistance, J. Math. Anal. Appl., No. 344, 2008, pp. 821-850) to account for the spatial effects
of the processes, such as diffusion transport of virions, biomolecules and cells. This leads to two
different nonlinear PDE models, a first one where the cells and the biomolecules diffuse (which
we call the reaction-diffusion model) and a second one where only the biomolecules can diffuse
(the hybrid model). We show that both the reaction-diffusion and the hybrid models are well-
posed problems, i.e., they have global unique solutions which are non-negative, bounded, and
depend continuously on the initial data. Moreover, we prove that there exists a “continuous”
link between these two models, i.e., if the diffusion coefficient of the cells tends to zero then the
solution of the reaction-diffusion model converges to the solution of the hybrid model. We also
prove that the solutions are uniformly bounded and integrable for all times. We characterize
the asymptotic behavior of the solutions of the hybrid system and present several relations
concerning the survivability of viruses and cells. Finally, we show that the solutions of the
hybrid model converge to the steady state solutions, which implies that the latter are globally
stable. We finish with several numerical simulations performed in Matlab.

2.1 Introduction

2.1.1 Spatial effects of viral infection and immunity response

When a virion, i.e., an individual viral particle, enters a healthy cell, it modifies the genetic
structure of its host. After infection, the altered biochemical machinery of the host starts
to create new virions. The virions are then released from the host cell and may infect other
cells. However, the infected cell activates intrinsic host defenses, which include, among others,
activation of the innate immunity system and release of biomolecules called interferons (IFN),
which communicate with the other cells and induce them to deploy protective defenses. The
dynamics of such complex virus-host system results from the intra- and extracellular interactions
between invading virus particles and cells producing substances, which confer resistance to virus.

These key processes have been addressed by the mathematical model proposed by Getto,

27
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Kimmel and Marciniak-Czochra in [24]. The model was motivated by the experiments involving
vesicular stomatitis virus (VSV) [16, 42] and respiratory syncytial virus (RSV). The work of P.
Getto et al [24] is focused on the study of the role of heterogeneity of intracellular processes,
reflected by a structure variable, in the dynamics of the system and stability of stationary
states. It is shown that indeed the heterogeneity of the dynamics of cells in respect to the age
of the individual cell infection may lead to the significant changes in the behavior of the model
solutions, exhibiting either stabilizing or destabilizing effects.

Another interesting aspect of the dynamics of the spread of viral infection and development of
resistance is related to the spatial structure of the system and the effects of spatial processes, such
as random dispersal of virions and interferon particles. In a series of experiments on the vesicular
stomatitis virus infection [16, 42], it was observed that the spatial structure of the system may
influence the dynamics of the whole cell population. The role of spatial dimension and diffusion
transport of virions and interferon molecules were experimentally studied using two type of
experiments: a one-step growth experiment in which all cells were infected simultaneously, and
a focal-infection experiment in which cell population was infected by a point source of virus.
A spreading cicular wave of infection followed by a wave of dead cells was observed. The
experiments were performed on two different cell cultures: DBT (murine delayed brain tumor)
cells, which respond to IFN and can be activated to resist the replication of viruses, and BHK
(baby hamster kidney) cells, which are not known to produce or respond to IFN. In case of focal
infection both in DBT and BHK populations spread of infection (rings) was observed. The size
of the rings was dependent on the type of the virus (N1, N2, N3, N4 -gene ectopic strains as
well as M51R mutant and XK3.1). However, for all virus types, it was observed that in DBT
cells the speed of the infection propagation was decreasing with time, while in case of BHK the
radius of the infected area was growing linearly in time. Results of the experiments showed that
the rate of infectious progeny production in one-step growth experiments was a key determinant
of the rate of focal spread under the absence of IFN production. Interestingly, the correlation
between one-step growth and focal growth did not apply for VSV strains XK3.1 and M51R in
the cells producing IFN. Focal infection in DBT cells led only to the limited infection, the spread
of which stopped after a while.

These experiments indicated suitability of focal infections for revealing aspects of virus-
cell interactions, which are not reflected in one-step growth curves. Motivated by Duca et al
experiments, we devise a model of spatio-temporal dynamics of viral infection and interferon
production, which involves virions, uninfected, infected and resistant cells, as well as the in-
terferon. We assume that interferon is produced by infected cells and spread by diffusion to
neighboring uninfected cells, making them resistant. At the same time, the virus is spread, also
by diffusion and the final outcome is the result of competition beween these two processes.

2.1.2 The original model

The point of departure for this work is a system of nonlinear ordinary differential equations
developed by P. Getto et al [24] to model wild-type cells interacting with virions and the con-
sequent interferon-based immune response. The model describes time dynamics of five different
types of entities interacting in a culture: three different types of cells (wild-type, infected and
resistant) and two different biomolecules (virions and interferons).
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P. Getto et al [24] considered a culture of wild-type cells infected by virions. When a wild-
type cell interacts with a virion it becomes an infected cell. Infected cells produce further virions,
but they also release interferons. If an interferon reaches a wild-type cell before a virion does,
then this cell becomes a resistant cell. Virions, interferons and infected cells are supposed to
have an exponential death rate, whilst there is no death rate associated to wild-type and resis-
tant cells, because they are considered to live longer than infected cells. In the other words, the
model describes the time scale of in vitro experiments, which is short comparing to the life span
of healthy cells.

Under these hypotheses the following nonlinear ODE model was proposed:





W ′ = −iW − vW , ← wild-type cells
I ′ = −µII + vW , ← infected cells
R′ = iW , ← resistant cells
v′ = −µvv + αvI − α4vW , ← virions
i′ = −µii+ αiI − α3iW , ← interferons

(2.1)

where all coefficients coefficients are positive constants.

2.1.3 Biological hypotheses of the new model

In this work we will modify the ODE model (2.1) by introducing spatial random dispersion of
cells, virions and IFN molecules. We consider two models: In the first model (which we call
the reaction-diffusion model) we assume that all cells, virions and interferons diffuse, whilst the
second model (which we call the hybrid model) is based on the hypothesis that only virions
and interferons diffuse. The diffusion terms are supposed to follow Fick’s Law with constant
diffusion coefficients and it is modeled by adding Laplacian operators to the ODE system.

Concerning the boundary conditions, we assume that the whole system is isolated within
a bounded domain Ω ⊂ R

N (N = 2, 3). This implies no-flux boundary conditions, i.e., ho-
mogeneous Neumann conditions, on Γ = ∂Ω. It is worth to remark, however, that the results
presented here are also valid for other boundary conditions such as homogeneous Dirichlet and
Robin (mixed).

Since the cells are far bigger than the interferon molecules and the virions, we can suppose
that d is much smaller than both di and dv. In order to compare the two latter diffusion
coefficients, one can recall that interferons are biolomecules and virions in general have several
proteins (including DNA or RNA). Under the light of this argument we assume that dv is smaller
than di, but both are of the same order. This leads to the following conditions,

0 < d≪ dv ≤ di .
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2.1.4 The reaction-diffusion (RD) model

Let Ω ⊂ R
N (N = 2, 3) be a bounded domain with Lipschitz boundary Γ, and let T > 0. We

consider in Ω× [0, T ] a reaction-diffusion (RD) system





∂tW = d∆W − iW − vW ,
∂tI = d∆I − µII + vW ,
∂tR = d∆R+ iW ,
∂tv = dv∆v − µvv + αvI − α4vW ,
∂ti = di∆i− µii+ αiI − α3iW ,

(2.2)

with boundary conditions





∇W · n(σ, t) = 0 on Γ× [0, T ],
∇I · n(σ, t) = 0 on Γ× [0, T ],
∇R · n(σ, t) = 0 on Γ× [0, T ],
∇v · n(σ, t) = 0 on Γ× [0, T ],
∇i · n(σ, t) = 0 on Γ× [0, T ],

(2.3)

and initial conditions 



W (x, 0) = W0(x) ,
I(x, 0) = I0(x) ,
R(x, 0) = R0(x) ,
v(x, 0) = v0(x) .
i(x, 0) = i0(x) .

(2.4)

2.1.5 The hybrid model

Since d is much smaller than both di and dv it is plausible to consider that d = 0. Under this
assumption we obtain a hybrid model consisting of PDE equations for the interferons i and
virions v and ODE equations for the three types of cells W, I,R. The system takes the form





∂tW = −iW − vW ,
∂tI = −µII + vW ,
∂tR = iW ,
∂tv = dv∆v − µvv + αvI − α4vW ,
∂ti = di∆i− µii+ αiI − α3iW ,

(2.5)

with boundary conditions

{
∇v · n(σ, t) = 0 on Γ× [0, T ],
∇i · n(σ, t) = 0 on Γ× [0, T ].

(2.6)

2.2 Main results

In this Section we formulate main results of the work. The proofs are presented in the following
sections.
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2.2.1 Existence and uniqueness results

Throughout this work we denote ‖ · ‖ the norm in L2(Ω) and ‖ · ‖∞ the norm in L∞(Ω).

We will prove that both the RD and the hybrid models are well-posed problems, i.e., they
have unique solutions (in the weak sense) which are non-negative, uniformly bounded, and
depend continuously on the initial data.

Theorem 2.1 Fix any T > 0. If the initial conditions (2.4) are non-negative a.e. and lie
in L∞(Ω) then the RD system (2.2)-(2.3) has unique weak solutions W (x, t), I(x, t), R(x, t),
v(x, t) and i(x, t) on Ω× [0, T ]. Moreover, these solutions are non-negative, uniformly bounded,
and depend continuously on the initial data.

Theorem 2.2 Fix any T > 0. If the initial conditions (2.4) are non-negative a.e. and lie in
L∞(Ω) then the hybrid system (2.5)-(2.6) has unique weak solutions W (x, t), I(x, t), R(x, t),
v(x, t) and i(x, t) on Ω×[0, T ]. Moreover, these solutions are non-negative, bounded, and depend
continuously on the initial data.

We also prove that there is a “continuous link” between these two models, as the next result
shows.

Theorem 2.3 If d → 0 then the solutions (W d, Id, Rd, vd, id) of the RD system (0.7)-(0.8)
converge to the solution (W, I,R, v, i) of the hybrid system (0.10)-(0.11), in the following sense:

• Strongly in L2
(
0, T ;L2 (Ω)

)
.

• Weakly in L2
(
0, T ;H1 (Ω)

)
.

• Weakly-⋆ in L∞(Ω× (0, T )).

2.2.2 Asymptotic results for the RD system

Theorem 2.4

1. The solutions W, I,R, v, i of the RD system (2.2)-(2.3) are globally-defined and belong to
L∞(Ω× (0,∞)).

2. If W, I,R, v, i are non-negative, steady-state solutions of the RD system (2.2)-(2.3) then

W (x) = W0 ≥ 0 constant,

I(x) ≡ 0,

R(x) = R0 ≥ 0 constant,

v(x) ≡ 0,

i(x) ≡ 0.
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2.2.3 Asymptotic results for the hybrid system

Regularity of solutions W, I,R, v, i follows from a classical theory for evolution systems and
depends on the regularity of initial conditions (see eg. [58], for reaction-diffusion systems coupled
with ODEs). In the remainder of this paper we assume that the solutions are (at least) C1.

Theorem 2.5 If W, I,R, v, i are non-negative, steady-state solutions of the hybrid system (2.5)-
(2.6) then

I(x) ≡ 0,

v(x) ≡ 0,

i(x) ≡ 0.

Moreover, suppose that the initial conditions belong to L∞(Ω). Then the solutions of the
hybrid system (2.5)-(2.6) are globally-defined and have the following asymptotic properties:

1. I(x, t) belongs to L1(0,∞;L2(Ω)), i.e.,

lim
t→∞

∫ t

0

∫

Ω
I2(x, s) dΩ ds <∞.

2. v(x, t) and i(x, t) belong to L1(0,∞;H1(Ω)), i.e.,

lim
t→∞

∫ t

0

(∫

Ω
v2(x, s) dΩ +

∫

Ω
|∇v(x, s)|2 dΩ

)
ds <∞ ,

lim
t→∞

∫ t

0

(∫

Ω
i2(x, s) dΩ +

∫

Ω
|∇i(x, s)|2 dΩ

)
ds <∞ .

3. v(x, t)W (x, t) and i(x, t)W (x, t) belong to L1(0,∞;L1(Ω)), i.e.,

lim
t→∞

∫ t

0

∫

Ω
v(x, s)W (x, s) dΩ ds <∞ and lim

t→∞

∫ t

0

∫

Ω
i(x, s)W (x, s) dΩ ds <∞ .

4. For any x ∈ Ω,

lim
t→∞

I(x, t) = 0 , lim
t→∞

v(x, t) = 0 , lim
t→∞

i(x, t) = 0 .

5. For any x ∈ Ω, W0(x) > 0 if and only if

lim
t→∞

W (x, t) > 0.

Theorem 2.6 Consider the hybrid system (2.5)-(2.6) and suppose that µv = 0. Then:

1. If v∞(x) is a steady-state solution then ‖∇v∞‖ = 0.
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2. Define

v∞(x) := lim sup
t→∞

v(x, t).

If αv ≥ α4µI then ∫

Ω
v∞(x) dΩ ≥

∫

Ω
v0(x) dΩ.

In particular, if v0 6≡ 0 then v∞ 6≡ 0.

2.3 Numerical simulations

In order to solve numerically the considered systems we used the method of lines, under which
the system of nonlinear partial differential equations was converted to a large system of ordinary
differential equations by discretising of Laplacian (three coordinates for the 1D Laplacian and
five coordinates in the 2D case). The discretised system of ordinary differential equations was
numerically solved using the CVODE package and numerical estimates of the Jacobian matrix.
This program offers an implicit method for time discretization, originally developed for stiff
problems of ODEs. Space discretization is a gridpoint on a unit interval. The size of the spatial
grid is adjusted according to the value of the diffusion coefficient. Time discretization is per-
formed implicitly. Homogeneous Neumann boundary conditions (zero flux) are implemented as
a reflection at the boundary (see e.g. [2]). The graphical visualization of the numerical solutions
in space and time is realized using Matlab.

The domain is the 2D square [0, 1] × [0, 1]. The initial concentration in the 2D simulations
are W0 = 1 and v0 = 0.5 on the sub-square [0.4, 0.6]× [0.4, 0.6] and zero otherwise. These initial
conditions are exactly those in the numerical simulation of the ODE model in P. Getto et al
[24]. For the simulation of the hybrid model we used a 30× 30 grid in space and 50 time steps.
The pictures correspond to the final stage t = 50. We fixed the parameters α3 = 1, α4 = 4,
µI = 0.3, µi = 0.4 and αi = 0.8.

From the numerical simulations we could assess the effect of the spatial structure (i.e. the
diffusion) in the virus proliferation:

• When µv > 0 the viral diffusion plays against virions and helps the wild-type cells. In
pictures 3.1-3.3 we can see that, as the diffusion coefficient grows, the concentration of
wild-type cells seems to grow.

• When µv = 0 the viral diffusion has a positive effect on the viral concentration and plays
against the wild-type cells. In pictures 3.4-3.6 we can see that, as the diffusion coefficient
grows, the concentration of virions grows as well.

As we can see in both cases, the spatial structure (represented by the diffusion term) has
crucial effect on the final concentration of wild-type cells and virions. Indeed, if µv > 0 the
diffusion helps the cells and punishes the virions whilst if µv = 0 it has the opposite effect.
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Figure 2.1: dv = 0.001, µv = 0.2 and αv = 0.8.

Figure 2.2: dv = 0.01, µv = 0.2 and αv = 0.8.
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Figure 2.3: dv = 0.1, µv = 0.2 and αv = 0.8.

Figure 2.4: dv = 1, µv = 0 and αv = 2.
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Figure 2.5: dv = 0.001, µv = 0 and αv = 2.

Figure 2.6: dv = 0.0001, µv = 0 and αv = 2.
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2.4 The fixed point operator and a priori estimates

2.4.1 Construction of the fixed point operator R
Our approach follows the ideas used by K. Hamdache and M. Labadie in [39].

Define

K :=
{

(v♯, i♯) ∈ L2
(
0, T ;

[
L2 (Ω)

]2
)
∩ [L∞(Ω× [0, T ])]2 : v♯(x, t) ≥ 0, i♯(x, t) ≥ 0 a.e. in Ω× [0, T ]

}
.

Fix (v♯, i♯) ∈ K and set

∂tW − d∆W + i♯W + v♯W = 0 in Ω× (0, T ),

∂tI − d∆I + µII − v♯W = 0 in Ω× (0, T ),

∂tR− d∆R− i♯W = 0 in Ω× (0, T ), (2.7)

∇W · n(σ, t) = 0 on Γ× [0, T ],

∇I · n(σ, t) = 0 on Γ× [0, T ],

∇R · n(σ, t) = 0 on Γ× [0, T ].

For any finite time interval [0, T ], the linear system (2.7) has a unique solution (W (x, t), I(x, t), R(x, t)),
which is non-negative and bounded.

With these functions W (x, t), I(x, t) and R(x, t) set

∂tv − dv∆v + µvv − αvI + α4vW = 0 in Ω× (0, T ),

∂ti− di∆i+ µii− αiI + α3iW = 0 in Ω× (0, T ), (2.8)

∇v · n(σ, t) = 0 on Γ× [0, T ].

∇i · n(σ, t) = 0 on Γ× [0, T ],

Again, for any finite time interval [0, T ] the linear, uncoupled system (2.8) has a unique solution
(v(x, t), i(x, t)), which is non-negative and bounded.

Our goal is to show that the operator R[(v♯, i♯)] := (v, i), defined for the chain of maps
(v♯, i♯) 7→ (W, I,R) 7→ (i, v) constructed above, has a fixed point.

2.4.2 Positivity of solutions

From now on we will assume that the coefficients

d, dv, di, µI , µv, µi, α3, α4

are all positive, and that the initial conditions (2.4) are non-negative and bounded.

Lemma 2.1 Let (v♯, i♯) 7→ (W, I,R) 7→ (v, i) be solutions of (2.7)-(2.8).
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1. If v♯ and i♯ are non-negative and bounded then W , I and R are non-negative and bounded.

2. If W , I and R are non-negative and bounded then v and i are non-negative and bounded.

Proof :

1. The equation for W is

∂tW − d∆W + (i♯ + v♯)W = 0 in Ω× (0, T ),

∇W · n(σ, t) = 0 on Γ× [0, T ],

W (x, 0) = W0(x) ≥ 0 in Ω.

Applying Maximum Principle we obtain that W (x, t) ≥ 0 for all (x, t) ∈ Ω× (0, T ).

Define Z1 := W − γ1, where γ1 ∈ R. Then Z1 solves

∂tZ1 − d∆Z1 + (i♯ + v♯)Z1 = −(i♯ + v♯)γ1 in Ω× (0, T ),

∇Z1 · n(σ, t) = 0 on Γ× [0, T ],

Z1(x, 0) = W0(x)− γ1 in Ω.

Choosing γ1 = ‖W0‖∞ and using non-negativity of i♯ and v♯ we obtain

∂tZ1 − d∆Z1 + (i♯ + v♯)Z1 ≤ 0 in Ω× (0, T ),

∇Z1 · n(σ, t) = 0 on Γ× [0, T ],

Z1(x, 0) ≤ 0 in Ω.

Hence, Maximum Principle implies that Z1(x, t) ≤ 0 for all (x, t) ∈ Ω × (0, T ), and in
consequence W (x, t) ≤ ‖W0‖∞ for all (x, t) ∈ Ω× (0, T ).

For I, notice that v♯ and W are non-negative. Therefore, similarly as above Maximum
Principle yields that I(x, t) ≥ 0 for all (x, t) ∈ Ω× (0, T ).

Now, due to the boundedness of I, the function Z2 := I − γ2 solves

∂tZ2 − d∆I + µIZ2 = v♯W − µIγ2 in Ω× (0, T ),

∇Z2 · n(σ, t) = 0 on Γ× [0, T ],

Z2(x, 0) = I0(x)− γ2 in Ω.

Choosing

γ2 = max

{
‖I0‖∞,

‖v♯‖∞‖W0‖∞
µI

}

and applying Maximum Principle, we obtain that I(x, t) ≤ γ2 for all (x, t) ∈ Ω× (0, T ).
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Finally, Maximum Principle implies that R(x, t) ≥ 0 for all (x, t) ∈ Ω × (0, T ). For the
boundedness of R, define Z3 := R− γ3(t). It yields

∂tZ3 − d∆I = i♯W − γ′3(t) in Ω× (0, T ),

∇Z3 · n(σ, t) = 0 on Γ× [0, T ],

Z3(x, 0) = R0(x)− γ3(0) in Ω.

Choosing
γ3(t) = ‖R0‖∞ + t‖i♯‖∞‖W0‖∞

and applying Maximum Principle we obtain that R(x, t) ≤ γ3(t) for all (x, t) ∈ Ω× (0, T ).

2. Using the same argument as before we can prove that 0 ≤ v(x, t) ≤ γ4 and 0 ≤ i(x, t) ≤ γ5

for all (x, t) ∈ Ω× (0, T ), where

γ4 = max

{
‖v0‖∞,

αv‖I0‖∞
µv

}
, γ5 = max

{
‖i0‖∞,

αi‖I0‖∞
µi

}
. �

2.4.3 A priori estimates

Lemma 2.2 Let (v♯, i♯) 7→ (W, I,R) 7→ (v, i) be solutions of (2.7)-(2.8). Then the functions
W, I,R, v, i belong to L2

(
0, T ;H1(Ω)

)
.

Proof :

• Multiply (2.7) by W and integrate by parts to obtain

1

2

d

dt
‖W‖2 + d‖∇W‖2 = −

∫

Ω
(i♯ + v♯)W 2 dΩ .

Since i♯ and v♯ are non-negative, it follows that

1

2

d

dt
‖W‖2 + d‖∇W‖2 ≤ 0 .

Integrating over [0, t] yields

‖W (t)‖2 + 2d

∫ t

0
‖∇W (s)‖2 ds ≤ ‖W (0)‖2 .

• Multiply (2.7) by I and integrate by parts to obtain

1

2

d

dt
‖I‖2 + d‖∇I‖2 + µI‖I‖2 =

∫

Ω
v♯WI dΩ .

Recall the identity
∫

Ω
|v♯WI| dΩ ≤ 1

4ε

∫

Ω
|v♯W |2 dΩ + ε

∫

Ω
|I|2 dΩ .
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Choosing ε = µI/2 and using the uniform bounds in Lemma 2.1, it follows that there is a
constant C > 0, depending on the L∞ norm of the initial data, such that

d

dt
‖I‖2 + 2d‖∇I‖2 + µI‖I‖2 ≤ C .

Here we can keep or discard the term µI‖I‖2, leading to two different estimates:

– If we discard the term, the integration over [0, T ] yields

‖I(t)‖2 + 2d

∫ t

0
‖∇I(s)‖2 ds ≤ ‖I(0)‖2 + Ct ,

which implies that I ∈ L2
(
0, T ;H1(Ω)

)
.

– If we keep the term, after multiplying by eµI t and integrating over [0, T ],

‖eµI t/2I(t)‖2 + 2d

∫ t

0
eµIs‖∇I(s)‖2 ds ≤ ‖I(0)‖2 + C(eµI t − 1) .

Therefore,

‖I(t)‖2 + 2d

∫ t

0
e−µI(t−s)‖∇I(s)‖2 ds ≤ ‖I(0)‖2e−µI t + C(1− e−µI t) .

This estimate will be useful for the study of the asymptotic behavior when t→∞.

• Multiply (2.7) by R and integrate by parts to obtain

1

2

d

dt
‖R‖2 + d‖∇R‖2 =

∫

Ω
iWRdΩ .

Therefore,
d

dt
‖R‖2 + 2d‖∇R‖2 ≤ C + ‖R‖2 .

Multiplying by e−t and integrating over [0, t] leads to

‖R(t)‖2 + 2d

∫ t

0
et−s‖∇R(s)‖2 ds ≤ ‖R(0)‖2et + C(et − 1) .

• Repeating the argument for v and i yields

‖v(t)‖2 + 2dv

∫ t

0
‖∇v(s)‖2 ds ≤ ‖v(0)‖2 + Ct,

‖v(t)‖2 + 2dv

∫ t

0
e−µv(t−s)‖∇v(s)‖2 ds ≤ ‖v(0)‖2e−µvt + C(1− e−µvt),

‖i(t)‖2 + 2di

∫ t

0
‖∇i(s)‖2 ds ≤ ‖i(0)‖2 + Ct,

‖i(t)‖2 + 2di

∫ t

0
e−µi(t−s)‖∇i(s)‖2 ds ≤ ‖i(0)‖2e−µit + C(1− e−µit). �
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2.4.4 Continuity of the operator R
Let (v♯

1, i
♯
1) 7→ (W1, I1, R1) 7→ (v1, i1) and (v♯

2, i
♯
2) 7→ (W2, I2, R2) 7→ (v2, i2) be two solutions of

the systems (2.7)-(2.8), with the same initial conditions (v♯
0 = v0, i

♯
0 = i0,W0, I0, R0, v0, i0).

Define

v̂♯ = v♯
2 − v♯

1 ,

î♯ = i♯2 − i♯1 ,
Ŵ = W2 −W1 ,

Î = I2 − I1 ,
R̂ = R2 −R1 ,

v̂ = v2 − v1 ,
î = i2 − i1 .

Lemma 2.3 There exists a positive continuous function C(t) such that
[∫ t

0

(
‖v̂‖2 + ‖̂i‖2

)
ds

]
≤ C(t)

[∫ t

0

(
‖v̂♯‖2 + ‖̂i♯‖2

)
ds

]
. (2.9)

Proof : The differences v̂, î, Ŵ , Î, R̂ solve the system

∂tv̂ − dv∆î+ µvv̂ + α4W2v̂ + α4v̂1Ŵ − αv Î = 0 ,

∂tî− di∆î+ µiî+ α3W2î+ α3i1Ŵ − αiÎ = 0 ,

∂tŴ − d∆Ŵ + i♯2Ŵ +W1î
♯ + v♯

2Ŵ +W1v̂
♯ = 0 .

∂tÎ − d∆Î + µI Î +W2v̂
♯ + v♯

1Ŵ = 0 ,

∂tR̂− d∆R̂+ i♯2Ŵ +W1î
♯ = 0 .

with homogeneous initial and boundary conditions.

Multiply the equation for Î by Î and integrate by parts to obtain

1

2

d

dt
‖Î‖2 + d‖∇Î‖2 + µI‖Î‖2 = −

∫

Ω
v̂♯W2Î dΩ +

∫

Ω
v♯
1Ŵ Î dΩ .

Noticing that all the functions are in L∞, we deduce that there exists C > 0, depending on the
initial conditions and the model coefficients, such that

d

dt
‖Î‖2 + 2d‖∇Î‖2 ≤ C

(
‖v̂♯‖2 + ‖Ŵ‖2 + ‖Î‖2

)
. (2.10)

Using the same argument we can show that

d

dt
‖Ŵ‖2 + 2d‖∇Ŵ‖2 ≤ C

(
‖̂i♯‖2 + ‖v̂♯‖2 + ‖Ŵ‖2

)
, (2.11)

d

dt
‖R̂‖2 + 2d‖∇R̂‖2 ≤ C

(
‖̂i♯‖2 + ‖Ŵ‖2

)
.
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From (2.10)-(2.11) and d ≥ 0, it follows that

d

dt

(
‖Ŵ‖2 + ‖Î‖2 + ‖R̂‖2

)
≤ C

(
‖̂i♯‖2 + ‖v̂♯‖2 + ‖Ŵ‖2 + ‖Î‖2

)
.

Integrating over [0, t] we obtain that

‖Ŵ‖2 + ‖Î‖2 + ‖R̂‖2 ≤ C
[∫ t

0

(
‖̂i♯‖2 + ‖v̂♯‖2

)
ds

]
+ C

[∫ t

0

(
‖Ŵ‖2 + ‖Î‖2

)
ds

]
.

Applying Gronwall’s Lemma it follows that there exists a positive continuous function C(t) such
that

‖Ŵ‖2 + ‖Î‖2 + ‖R̂‖2 ≤ C(t)

[∫ t

0

(
‖̂i♯‖2 + ‖v̂♯‖2

)
ds

]
. (2.12)

On the other hand, multiply the equation for î by î and integrate by parts to obtain

1

2

d

dt
‖̂i‖2 + di‖∇î‖2 + µi‖̂i‖2 + α3

∫

Ω
W2î

2 dΩ = −α3

∫

Ω
i1Ŵ î dΩ + αi

∫

Ω
Î î dΩ .

Proceeding as before we can show that there exists a constant C1 > 0 such that

d

dt
‖̂i‖2 + 2di‖∇î‖2 ≤ C1

(
‖̂i‖2 + ‖Ŵ‖2 + ‖Î‖2

)
.

Analogously, we can show that

d

dt
‖v̂‖2 + 2dv‖∇v̂‖2 ≤ C1

(
‖v̂‖2 + ‖Ŵ‖2 + ‖Î‖2

)
.

Using (2.12) we obtain that

d

dt

(
‖̂i‖2 + ‖v̂‖2

)
≤ C1

(
‖̂i‖2 + ‖v̂‖2

)
+ C(t)

[∫ t

0

(
‖̂i♯‖2 + ‖v̂♯‖2

)
ds

]
.

Integrating over [0, t] yields

‖̂i‖2 + ‖v̂‖2 ≤ C1

[∫ t

0

(
‖̂i‖2 + ‖v̂‖2

)
ds

]
+ C(t)

[∫ t

0

(
‖̂i♯‖2 + ‖v̂♯‖2

)
ds

]
.

Applying Gronwall’s Lemma, it follows that

‖̂i‖2 + ‖ŵ‖2 ≤ C(t)

[∫ t

0

(
‖̂i♯‖2 + ‖v̂♯‖2

)
ds

]
.

Integrating again over [0, t] we obtain (2.9). �
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2.5 Proof of the theorems

2.5.1 Proof of Theorem 2.1

Lemma 2.4 Fix a positive time T > 0. Then:

1. K is a convex closed subset of L2
(
0, T ;

[
L2 (Ω)

]2
)
.

2. R : K → K.

3. R : L2
(
0, T ;

[
L2 (Ω)

]2
)
→ L2

(
0, T ;

[
L2 (Ω)

]2
)

is continuous.

4. R(K) is relatively compact in L2
(
0, T ;

[
L2 (Ω)

]2
)
.

Proof :

1. By construction, K is convex and closed.

2. If i♯ ≥ 0 and v♯ ≥ 0 then from Lemma 2.1 it follows that i ≥ 0 and v ≥ 0.

3. By Lemma 2.3 the operator R is continuous.

4. We will use Aubin’s compactness theorem (see Theorem 5.1 in Lions [45], Section 5.5, pp.

57-64, and Tartar [63], Chapter 24, pp. 137-141). Suppose that the sequence {(v♯
n, i

♯
n)}

is uniformly bounded in L2
(
0, T ;

[
L2(Ω)

]2
)
. Then, by the continuity of R, the sequence

{R[(v♯
n, i

♯
n)] = (vn, in)} is also uniformly bounded in L2

(
0, T ;

[
L2(Ω)

])
, and the estimates

in Lemma 2.2 imply that {(vn, in)} is uniformly bounded in L2
(
0, T ;

[
H1(Ω)

]2
)
. Further-

more, the sequence of derivatives {(∂tvn, ∂tin)} is uniformly bounded in L2
(
0, T ;

[
H−1(Ω)

]2
)
,

because the expressions

∂tvn = ∇ · (dv∇vn)− µvvn + αvIn − α4vnWn ,

∂tin = ∇ · (di∇in)− µiin + αiIn − α3inWn ,

define two uniformly bounded sequences of distributions in H1(Ω). Therefore, applying

Aubin’s theorem to the spaces
[
H1(Ω)

]2 ⊂
[
L2(Ω)

]2 ⊂
[
H−1(Ω)

]2
, we obtain that the

sequence {(vn, in)} is relatively compact in L2
(
0, T ;

[
L2(Ω)

]2
)
. �

We can now conclude the existence of solutions of the reaction-diffusion system (2.2)-(2.3):

From Lemma 2.4 we see that the operator R satisfies Schauder’s Fixed Point Theorem
(Corollary B.3, p. 262 in Taylor [65]). Therefore, the system (2.2)-(2.3) has solutionsW, I,R, v, i.
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Moreover, from the fact that v and i coincide with v♯ and i♯, respectively, we can derive two
consequences. First, from Lemma 2.1 it follows that W, I,R, v, i are non-negative and bounded.

Second, from Lemma 2.2 we have that W, I,R, v, i belong to L2
(
0, T ;

[
H1(Ω)

]2
)
.

Lemma 2.5 The solutions W (x, t), I(x, t), R(x, t), v(x, t) and i(x, t) of the reaction-diffusion
system (2.2)-(2.3) are unique and depend continuously on the initial data (2.4).

Proof : Notice that v and i coincide with v♯ and i♯, respectively. Bearing this in mind, and
repeating the arguments in Lemma 2.3, we can show that there is a positive constant C such
that

d

dt

(
‖Ŵ‖2 + ‖Î‖2 + ‖R̂‖2 + ‖v̂‖2 + ‖̂i‖2

)
≤ C

(
‖Ŵ‖2 + ‖Î‖2 + ‖R̂‖2 + ‖v̂‖2 + ‖̂i‖2

)
.

Therefore, Gronwall’s lemma implies that there exists a positive continuous function C(t) such
that

‖Ŵ‖2 + ‖Î‖2 + ‖R̂‖2 + ‖v̂‖2 + ‖̂i‖2 ≤ C(t)
(
‖Ŵ0‖2 + ‖Î0‖2 + ‖R̂0‖2 + ‖v̂0‖2 + ‖̂i0‖2

)
. �

2.5.2 Proof of Theorem 2.2

So far we have only considered the reaction-diffusion system (2.2)-(2.3). However, for the hybrid
system (2.5)-(2.6) the same results hold. Indeed, on one hand, in Lemmas 2.2-2.5 we have only
used that d ≥ 0. On the other hand, we can use the integral representations of W , I and R in
order to deduce that they are bounded and non-negative, which proves the analogue of Lemma
2.1 in the hybrid case. �

2.5.3 Proof of Theorem 2.3

For any 0 < d ≤ d0 let (W d, Id, Rd, vd, id) be a weak solution of (2.2)-(2.3) and let d→ 0.

First, from Lemma 2.2 it follows that the sequence W d is bounded in

L2
(
0, T ;H1 (Ω)

)
∩ L∞(Ω× (0, T )) ,

which implies that a subsequence, still denoted W d, converges weakly in L2
(
0, T ;H1 (Ω)

)
and

weakly-⋆ in L∞(Ω× (0, T )) to W 0. This result is also valid for the sequences Id, Rd vd and id.

Second, using classical estimates of type

∫ T

0

∫

Ω
|idW d − i0W 0| dΩdt ≤ C1‖id − i0‖+ C2‖W d −W 0‖

it can be shown that the sequence ∂tW
d is uniformly bounded in L2

(
0, T ;H−1 (Ω)

)
. In con-

sequence, applying Aubin’s compactness theorem yields the strong convergence id → i0 in
L2

(
0, T ;L2 (Ω)

)
. This result is also valid for the sequences Id, Rd vd and i0.
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Finally, we obtain that a subsequence (W d, Id, Rd, vd, id) of weak solutions of (2.2)-(2.3)
converges strongly in L2

(
0, T ;L2 (Ω)

)
, weakly in L2

(
0, T ;H1 (Ω)

)
and weakly-⋆ in L∞(Ω ×

(0, T )). Since the limit (W 0, I0, R0, v0, i0) is by construction a weak solution of (2.5)-(2.6), the
uniqueness of the hybrid system (2.5)-(2.6) implies that the limit is the same for any converging
subsequence. �

2.5.4 Proof of Theorem 2.4

Lemma 2.6 The solutions W, I,R, v, i of the RD system (2.2)-(2.3) are globally-defined and
belong to L∞(Ω× (0,∞)).

Proof :

1. Define N(x, t) := W (x, t) + I(x, t) +R(x, t). Then N satisfies
{
∂tN − d∆N ≤ 0 in Ω× [0, T ],
∇N · n = 0 on Γ× [0, T ].

Therefore, Maximum Principle provides

N(x, t) ≤ ‖N0‖∞ ∀(x, t) ∈ Ω× [0, T ].

Moreover, since this bound is independent of t and T , it follows that N(x, t) is defined for
all t ∈ R. In consequence, the positivity of W, I,R implies that these three functions exist
for all times and that they are uniformly bounded, i.e.,

W (x, t), I(x, t), R(x, t) ≤ ‖N0‖∞ ∀(x, t) ∈ Ω× [0,∞).

2. From Lemma 2.1 we obtain that 0 ≤ v(x, t) ≤ γ4 and 0 ≤ i(x, t) ≤ γ5 for all (x, t) ∈
Ω× (0, T ), where

γ4 = max

{
‖v0‖∞,

αv‖I0‖∞
µv

}
, γ5 = max

{
‖i0‖∞,

αi‖I0‖∞
µi

}
.

Again, since the bounds are independent of t and T , the solutions v and i exist for all
times. �

Lemma 2.7 If W, I,R, i, v are non-negative, steady-state solutions of the RD system (2.2)-(2.3)
then

W (x) = W0 ≥ 0 constant,

I(x) ≡ 0,

R(x) = R0 ≥ 0 constant,

v(x) ≡ 0,

i(x) ≡ 0.
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Proof : If W, I,R, i, v are non-negative, steady-state solutions of system (2.2)-(2.3), then





−d∆W = −iW − vW ,
−d∆I = −µII + vW ,
−d∆R = iW ,
−dv∆v = −µvv + αvI − α4vW ,
−di∆i = −µii+ αiI − α3iW ,

(2.13)

with boundary conditions 



∇W · n(σ) = 0 on Γ,
∇I · n(σ) = 0 on Γ,
∇R · n(σ) = 0 on Γ,
∇v · n(σ) = 0 on Γ,
∇i · n(σ) = 0 on Γ.

(2.14)

Multiplying the equation for W by W and integrating by parts we obtain

d‖∇W‖2 +

∫

Ω
(i+ v)W 2 dΩ = 0.

Therefore iW = vW = 0 and W (x) = W0 constant. Using same argument for I yields

d‖∇I‖2 + µI‖I‖2 = 0,

which implies that I(x) ≡ 0. For R we obtain

d‖∇R‖2 = 0,

and therefore, R(x) = R0 is constant, whilst for v, i we obtain

dv‖∇v‖2 + µv‖v‖2 = 0,

di‖∇i‖2 + µi‖i‖2 = 0,

and, in consequence, v(x) = i(x) ≡ 0. �.

2.5.5 Proof of Theorem 2.5

Lemma 2.8 If W, I,R, i, v are non-negative, steady-state solutions of the hybrid system (2.5)-
(2.6) then

I(x) ≡ 0,

v(x) ≡ 0,

i(x) ≡ 0.
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Proof : The steady-state-solutions of system (2.5)-(2.6) solve





0 = −iW − vW ,
0 = −µII + vW ,
0 = iW ,

−dv∆v = −µvv + αvI − α4vW ,
−di∆i = −µii+ αiI − α3iW ,

(2.15)

with boundary conditions {
∇v · n(σ) = 0 on Γ,
∇i · n(σ) = 0 on Γ.

(2.16)

From the first three equations in (2.15)-(2.16) it follows immediately that

iW = vW = µII = 0.

Since µI > 0 then necessarily I = 0. Moreover, v and i solve

−dv∆v = −µvv,

−di∆i = −µii.

In consequence, since µv > 0 and µi > 0 it follows that v = i = 0. It is worth to mention that
in this case we have no restriction on W and R. �

Lemma 2.9 Suppose that the initial conditions belong to L∞(Ω). For any x ∈ Ω, the solutions
of the hybrid system (2.5)-(2.6) are integrable in the following sense:

1.

lim
t→∞

∫ t

0
I(x, s) ds <∞ and lim

t→∞

∫ t

0

∫

Ω
I(x, s) dΩ ds <∞.

2.

lim
t→∞

∫ t

0
v(x, s)W (x, s) ds <∞ and lim

t→∞

∫ t

0

∫

Ω
v(x, s)W (x, s) dΩ ds <∞.

3.

lim
t→∞

∫ t

0
i(x, s)W (x, s) ds <∞ and lim

t→∞

∫ t

0

∫

Ω
i(x, s)W (x, s) dΩ ds <∞.

Proof :

1. Adding the equations of W, I,R we obtain that

∂tW + ∂tI + ∂tR+ µII ≤ 0.

Integrating over [0, t] it follows that, for any (x, t) ∈ Ω× [0,∞) we have

W (x, t) + I(x, t) +R(x, t) + µI

∫ t

0
I(x, s)ds ≤W (x, 0) + I(x, 0) +R(x, 0). (2.17)
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Therefore, from (2.17) and using uniform boundedness of the initial conditions we can
deduce that

lim
t→∞

∫ t

0
I(x, s) ds <∞ and lim

t→∞

∫ t

0

∫

Ω
I(x, s) dΩ ds <∞.

2. Integrating over [0, t] the equation for I yields

I(x, t)− I(x, 0) +

∫ t

0
I(x, s) ds =

∫ t

0
v(x, s)W (x, s) ds.

Therefore, using the previous result on the integrability of I we obtain that

lim
t→∞

∫ t

0
v(x, s)W (x, s) ds <∞ and lim

t→∞

∫ t

0

∫

Ω
v(x, s)W (x, s) dΩ ds <∞.

3. Integrating over [0, t] the equation for W yields

W (x, t)−W (x, 0) +

∫ t

0
vW (x, s) ds =

∫ t

0
i(x, s)W (x, s) ds.

Since the left-hand side has a limit so does the right-hand side, i.e.,

lim
t→∞

∫ t

0
i(x, s)W (x, s) ds <∞ and lim

t→∞

∫ t

0

∫

Ω
i(x, s)W (x, s) dΩ ds <∞. �

Lemma 2.10 The solutions of the hybrid system satisfy the following properties:

1. ∂tI is uniformly bounded for t ∈ [0,∞). Moreover, for any x ∈ Ω,

lim
t→∞

I(x, t) = 0, lim
t→∞

∫

Ω
I2(x, t) dΩ = 0 and lim

t→∞

∫ t

0

∫

Ω
I2(x, s) dΩ ds <∞.

2.

lim
t→∞

∫ t

0

(
‖v(s)‖2 + ‖∇v(s)‖2

)
ds <∞ and lim

t→∞

∫ t

0

(
‖i(s)‖2 + ‖∇i(s)‖2

)
ds <∞.

3. ∂tv and ∂ti are bounded distributions in L1
(
0,∞;H1(Ω)

)
.

Proof :
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1. Since the functions I, v and W are uniformly bounded in Ω × (0,∞), from the equation
for I it follows that ∂tI is uniformly bounded as well. Therefore, using

lim
t→∞

∫ t

0
I(x, s) ds <∞

we can infer that
lim
t→∞

I(x, t) = 0 for all x ∈ Ω.

Now consider a sequence
0 < t0 < t1 < · · · < tn →∞

and define
fn(x) := I(x, tn).

We have already proven that

lim
n→∞

fn(x) = 0 and 0 ≤ fn(x) ≤ N0(x),

where
N0(x) := W (x, 0) + I(x, 0) +R(x, 0) ∈ L∞(Ω).

Therefore, we can apply Lebesgue’s Dominated Convergence Theorem to obtain

lim
n→∞

∫

Ω
f2

n(x)dΩ =

∫

Ω
lim

n→∞
f2

n(x)dΩ =

∫

Ω
0dΩ = 0.

Since this holds for any arbitrary sequence (tn)n∈N then

lim
t→∞

∫

Ω
I2(x, t) dΩ = 0.

For the last statement, if we integrate the equation for I over Ω× [0, t] we obtain

‖I(t)‖2 + 2µI

∫ t

0

∫

Ω
I2(x, s) dΩ ds = ‖I(0)‖2 + 2‖I‖L∞(Ω×(0,t))

∫ t

0

∫

Ω
v(x, s)W (x, s) dΩ ds.

Since the right-hand side converges as t→∞ then the left converges as well, which implies
that

lim
t→∞

∫ t

0

∫

Ω
I2(x, s) dΩ ds <∞.

2. Multiplying the equation for v by v and integrating by parts yields

1

2

d

dt
‖v(t)‖2 + dv‖∇v(t)‖2 + µv‖v(t)‖2 = αv

∫

Ω
Iv dΩ− α4

∫

Ω
v2W dΩ.

Integrating over [0, t] it can be shown that there is a constant C > 0, independent of t,
such that

‖v(t)‖2 + 2dv

∫ t

0
‖∇v(s)‖2 ds+ µv

∫ t

0
‖v(s)‖2 ds ≤ ‖v(0)‖2 + C

∫ t

0

∫

Ω
I2(x, s) dΩ ds.
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But from the previous results it follows that the right-hand side converges. In consequence,
the left-hand side converges, i.e.,

lim
t→∞

∫ t

0

(
‖v(s)‖2 + ‖∇v(s)‖2

)
ds <∞.

The proof for i is exactly the same as for v.

3. Let ϕ(x, t) be a test function in L1
(
0,∞;H1(Ω)

)
. Calculating the dual product in

L1
(
0, t;H1(Ω)

)
yields

〈∂tv, ϕ〉 = −dv

∫ t

0

∫

Ω
∇v · ∇φdΩ dt− µv

∫ t

0

∫

Ω
vϕ dΩ dt

+αv

∫ t

0

∫

Ω
Iϕ dΩ dt− α4

∫ t

0

∫

Ω
vWϕdΩ dt .

Using the uniform boundedness and integrability of I and W it can be shown that there
exist three positive constants C1, C2 and C3, independent of t, such that

|〈∂tv, ϕ〉| ≤ C1 + C2‖ϕ‖L1(0,t;H1(Ω)) + C3‖v‖L1(0,t;H1(Ω)) .

This implies that |〈∂tv, ϕ〉| is bounded for any test function in L1
(
0, t;H1(Ω)

)
with norm

less than one, uniformly in t. Therefore, ∂tv is a bounded distribution in L1
(
0,∞;H1(Ω)

)
.

The proof for i is exactly the same as for v. �

Lemma 2.11 Suppose that the initial conditions belong to L∞(Ω). For any x ∈ Ω fixed, the
solutions of the hybrid system (2.5)-(2.6) satisfy the following properties:

1.

lim
t→∞

v(x, t)W (x, t) = 0 and lim
t→∞

i(x, t)W (x, t) = 0,

2.

lim
t→∞

v(x, t) = lim
t→∞

i(x, t) = 0.

3.

lim
t→∞

∫ t

0
v(x, s) ds <∞ and lim

t→∞

∫ t

0
i(x, s) ds <∞ .

Proof :

1. Integrating the equation for I over [0, t] we obtain

∫ t

0
v(x, s)W (x, s)dt = I(x, t)− I(x, 0) + µI

∫ t

0
I(x, s)ds .
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On one hand, using the previous results it follows that the right-hand side is uniformly
bounded in t. In consequence,

lim
t→∞

∫ t

0
v(x, t)W (x, t)ds <∞.

On the other hand,
∂t(vW ) = v∂tW +W∂tv

is uniformly bounded because v, W , ∂tv and ∂tW are all uniformly bounded. In conse-
quence,

lim
t→∞

v(x, t)W (x, t) = 0.

2. Integrating over Ω× [0, t] the equation for v and using Fubini’s Theorem yields

∫

Ω
v(x, t) dΩ−

∫

Ω
v(x, 0) dΩ =

∫ t

0

∫

Ω
∆v(x, t) dΩ dt− µv

∫ t

0

∫

Ω
v(x, t) dΩ dt

+αv

∫ t

0

∫

Ω
I(x, s) dΩ dt+ α4

∫ t

0

∫

Ω
v(x, s)W (x, s) dΩ dt.

Now recall that v satisfies homogeneous Neumann boundary conditions. Therefore,

∫ t

0

∫

Ω
∆v(x, t) dΩ dt =

∫ t

0

∫

∂Ω
∇v(x, t) · n dS dt = 0,

which implies that

∫

Ω
v(x, t) dΩ−

∫

Ω
v(x, 0) dΩ = −µv

∫ t

0

∫

Ω
v(x, t) dΩ dt+ αv

∫ t

0

∫

Ω
I(x, s) dΩ dt

+α4

∫ t

0

∫

Ω
v(x, s)W (x, s) dΩ dt.

From the previous results and the uniform boundedness of W , I and v it follows that

lim
t→∞

∫ t

0

∫

Ω
v(x, t) dΩ dt <∞.

Since ∂tv is uniformly bounded it follows that

lim
t→∞

∫

Ω
v(x, t) dΩ = 0. (2.18)

Now let ε > 0 and choose x0 ∈ Ω. Define

B(ε,x0) = {x ∈ Ω : |x− x0| < ε}.

From (2.18) there exists T (ε) > 0 such that
∫

Ω
v(x, t) dΩ < ε|B(ε,x0)| for all t ≥ T (ε).
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In consequence, ∫

B(ε,x0)
v(x, t) dΩ ≤

∫

Ω
v(x, t) dΩ < ε|B(ε,x0)|,

which implies that
1

|B(ε,x0)|

∫

B(ε,x0)
v(x, t) dΩ ≤ ε.

Therefore, since v(x, t) is continuous, we have

v(x0, t) = lim
|B(ε,x0)|→0

1

|B(ε,x0)|

∫

B(ε,x0)
v(x, t) dΩ ≤ ε,

which implies that
lim
t→∞

v(x0, t) ≤ ε.

Since ε > 0 and x0 ∈ Ω are arbitrary it follows that

lim
t→∞

v(x, t) = 0 for all x ∈ Ω.

The proof for i(x, t) is exactly the same.

3. Define

C∞ := lim
t→∞

∫ t

0

∫

Ω
v(x, s) dΩ ds.

From the previous results we have that C∞ is well-defined, finite and positive. Now, for
any n ∈ N define

An :=

{
x ∈ Ω : lim

t→∞

∫ t

0
v(x, s) ds > nC∞

}
.

On the one hand,

lim
t→∞

∫ t

0

∫

An

v(x, s) dΩ ds > nC∞|An| .

On the other hand,

lim
t→∞

∫ t

0

∫

An

v(x, s) dΩ ds ≤ lim
t→∞

∫ t

0

∫

Ω
v(x, s) dΩ ds = C∞ .

Therefore,

|An| <
1

n
. (2.19)

Moreover, since
A1 ⊃ A2 ⊃ · · · ⊃ An ⊃ · · ·

it follows that

A∞ :=

{
x ∈ Ω : lim

t→∞

∫ t

0
v(x, s) ds diverges

}
=

∞⋂

n=1

An.



Chapter 2. Viral infection and immune response

Work in collaboration with Anna Marciniak-Czochra. Already submitted. 53

In consequence, from (2.19) we obtain that |A∞| = 0, which implies that

lim
t→∞

∫ t

0
v(x, s) ds <∞ a.e. in Ω.

Finally, since t 7→ v(x, t) is continuous we conclude that

lim
t→∞

∫ t

0
v(x, s) ds <∞ for all x ∈ Ω.

The proof for i is the same. �

Lemma 2.12 For any x ∈ Ω, W0(x) > 0 if and only if

lim
t→∞

W (x, t) > 0.

Proof : Integrating over [0, t] the equation for W we obtain

W (x, t) = W0(x)× exp

{
−

∫ t

0
v(x, s) ds−

∫ t

0
i(x, s) ds

}
.

In consequence, the result follows immediately from Lemma 2.11. �

2.5.6 Proof of Theorem 2.6

Lemma 2.13 If v∞(x) is a steady-state solution of the hybrid system (2.5)-(2.6) and µv = 0
then ‖∇v∞‖ = 0.

Proof : Following the proof of Lemma 2.8 it follows that

dv∆v∞ = 0.

Therefore, integrating by parts yields ‖∇v∞‖ = 0. �

Lemma 2.14 If v is solution of the hybrid system (2.5)-(2.6) and µv = 0 then

lim
t→∞

∫

Ω
v(x, t) dΩ ≥

∫

Ω
v0(x) dΩ + (αv − α4µI)

∫ ∞

0

∫

Ω
I(x, s) dΩ dt.

Proof : Integrating over Ω× [0, t] the equation for v and using Fubini’s Theorem yields

∫

Ω
v(x, t) dΩ−

∫

Ω
v(x, 0) dΩ =

∫ t

0

∫

Ω
∆v(x, t) dΩ dt+αv

∫ t

0

∫

Ω
I(x, s) dΩ dt+α4

∫ t

0

∫

Ω
v(x, s)W (x, s) dΩ dt.



54 Section 2.5 Proof of the theorems

Now recall that v satisfies homogeneous Neumann boundary conditions. Therefore,
∫ t

0

∫

Ω
∆v(x, t) dΩ dt =

∫ t

0

∫

∂Ω
∇v(x, t) · n dS dt = 0,

which implies that
∫

Ω
v(x, t) dΩ =

∫

Ω
v(x, 0) dΩ + αv

∫ t

0

∫

Ω
I(x, s) dΩ dt+ α4

∫ t

0

∫

Ω
v(x, s)W (x, s) dΩ dt.

On the other hand, integrating the equation for I yields
∫ t

0
v(x, s)W (x, s) dt = I(x, t)− I0(x) + µI

∫ t

0
I(x, s) dt.

In consequence,
∫

Ω
v(x, t) dΩ =

∫

Ω
v0(x) dΩ + (αv − α4µI)

∫ t

0

∫

Ω
I(x, s) dΩ dt (2.20)

+α4

∫

Ω
I(x, t) dΩ− α4

∫

Ω
I0(x) dΩ .

Now recall that I0(x) is non-negative and

lim
t→∞

∫

Ω
I(x, t) dΩ = 0.

Therefore, taking the limit t→∞ and applying Lebesgue’s dominated convergence theorem in
(2.20) we obtain

lim
t→∞

∫

Ω
v(x, t) dΩ ≥

∫

Ω
v0(x) dΩ + (αv − α4µI)

∫ ∞

0

∫

Ω
I(x, s) dΩ dt. �

Lemma 2.15 Define
v∞(x) := lim sup

t→∞
v(x, t).

If αv ≥ α4µI then ∫

Ω
v∞(x) dΩ ≥

∫

Ω
v0(x) dΩ.

In particular, if v0 6≡ 0 then v∞ 6≡ 0.

Proof : If αv ≥ α4µI then from Lemma 2.14 we have

lim
t→∞

∫

Ω
v(x, t) dΩ ≥

∫

Ω
v0(x) dΩ .

Recall that v(x, t) is uniformly bounded. Therefore, applying Fatou’s lemma we obtain
∫

Ω
v∞(x) dΩ ≥ lim

t→∞

∫

Ω
v(x, t) ≥

∫

Ω
v0(x) dΩ. �
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2.6 Discussion

We proved that both the reaction-diffusion and the hybrid models are well-posed problems, i.e.,
they have global unique solutions (in the weak sense), which are non-negative, bounded and
depend continuously on the initial data. We also showed that, when d→ 0, the solution of the
reaction-diffusion model coverges to the solution of the hybrid model.

We provided several asymptotic estimates for the solutions of the hybrid model. First, we
proved that the solutions are uniformly bounded and integrable over Ω × (0,∞). Second, we
showed that virions and wild-type cells cannot coexist, because the product of their concentra-
tions tends to zero as t → ∞. Third, we proved that if µv > 0 then the virus concentration
tends to zero as t → ∞ and W tends to a non-zero, non-homogeneous limit. Fourth, if µv = 0
and αv ≥ α4µI then the global virus concentration is bigger than the original concentration.

One striking result for the hybrid model is the global stability of the steady-state solutions.
Indeed, we characterized the steady-state solutions and showed that they coincide with the limits
of the corresponding time-dependent solutions. Indeed, for µv > 0,

lim
t→∞

I(x, t) = 0 = I∞(x) ,

lim
t→∞

v(x, t) = 0 = v∞(x) ,

lim
t→∞

i(x, t) = 0 = i∞(x) ,

whilst W (x, t) has an explicit limit,

W∞(x) = W0(x) exp

{
−

∫ ∞

0
v(x, s) ds−

∫ ∞

0
i(x, s) ds

}
.

Finally, in the numerical simulations we found that the spatial structure (i.e. the diffusion)
plays a crucial role in the proliferation of virions. Indeed, dv has a positive effect when µv = 0
and a negative effect when µv > 0. Therefore, the spatial structure permits the existence of
richer patterns than in the original ODE system of P. Getto et al [24], which confirms what we
have conjectured at the beginning of the project.
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Part II

Reaction-diffusion equations and
systems on manifolds
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Chapter 3

The effect of growth on pattern
formation

Based on abundant numerical and experimental evidence, it has been conjectured that growth
should have some kind of stabilising effect on pattern formation. In this paper we answer affir-
matively this question: under an isotropic regime, growth shifts the eigenvalues of the reaction-
diffusion system towards the left on the complex plane. Since the real parts of the eigenvalues
are smaller, we can interpret this fact as a gain of stability. We also prove that growth enhances
the possibility of a solution to be global: a local solution (i.e. defined up to a finite time) has
more chances to be global (i.e. to exist for all times) on a growing manifold than on a fixed
manifold. Moreover, if growth is fast enough we show that the solutions are always global. We
illustrate this anti-blow-up effect with two scalar examples, for which there is blow-up on fixed
domains. We show that on growing domains the blow-up occurs later than in fixed domains, and
that if growth is fast enough then here is no blow-up. We finish with a discussion of the results,
showing that the classical linear stability analysis for bifurcations apply to this framework, and
pointing out the possible applications of our results to regulatory dynamics in pattern formation,
embryogenesis and tumor growth.

3.1 Introduction

Since the seminal paper of Turing [66], the most frequently used framework for modeling pattern
formation in biological and chemical systems are reaction-diffusion systems of the form

∂u

∂t
= D∆u + F(u) , D =




D1

D2

. . .

DM


 , Dk > 0 , (3.1)

where u = u(x, t), x is the position in a domain in R
N and t ≥ 0 is time. However, as Plaza

et al [52] remark, this framework does not take into account the effects of domain growth and
curvature, which are crucial for the development of an organism. Therefore, it is necessary to
develop reaction-diffusion models that consider these two important features.

59
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There have been several works aiming at studying the effect of growth on pattern formation.
In 1995 Kondo and Asai [38] reproduced numerically the complex behavior of patterns on the skin
of Pomacanthus, a tropical fish, by just adding growth to the classical reaction-diffusion system
(3.1). Based on this evidence, Meinhardt [47] emphasized that this result suggests a new way to
look at the process of regulatory features in embryogenesis, not only in Pomacanthus but also in
other organisms like Drosophila. In 1999 Crampin et al [15] showed in a 1-dimensional simulation
that domain growth may be a mechanism for increased robustness in pattern formation. They
managed to find a critical growth rate, under which there is a sequence of mode-doubling pattern
transitions, and they also showed that if the growth rate is much bigger or smaller than this
critical value the mode-doubling pattern dissappears. In 2004 Plaza et al [52] derived a reaction-
diffusion model for two morphogens on 1 and 2-dimensional growing domains. They used this
model to perform numerical calculations in squares and cones with isotropic growth, and in the
light of the simulations, they concluded that growth has a stabilising effect on pattern formation.
More precisely, and we quote:

“New patterns can be robustly selected due to the effect of either curvature and/or
growth, which would be unstable otherwise”.

In 2007 Gjiorgjieva and Jacobsen [28] studied the effect of growth on pattern formation on
a 2-dimensional sphere. They showed that the solutions under slow growth are very similar to
the solutions of the model of Chaplain et al [13] on a fixed sphere, which implies that there
is a continuity link between growing and fixed patterns. But they also found something very
interesting, which is worth quoting:

“In general, the range of eigenmodes which yield Turing pattern formation for a
growing sphere is larger than the range for a fixed sphere, which implies that growth
increases the number of possible patterns. However, the dominant eigenmode deter-
mining the pattern is smaller for growing spheres [. . . ] This shows that, although
a larger class of patterns is allowed for growing spheres, a lower mode is typically
selected”.

All these four numerical examples reinforce the conjecture that growth should have some kind
of stabilising effect on pattern formation. In this paper we affirmatively answer this question,
showing that (i) under an isotropic regime growth has indeed a stabilising effect on patterns,
i.e. the eigenvalues of a growing domain have real parts smaller than those on fixed domains;
and (ii) growth enhances the possibility of a solution to be globally defined, i.e. blow-up on
growing manifolds occur later than on fixed manifolds, and if growth is fast enough we can even
avoid blow-up. We will finish with a discussion of the results, showing that the classical linear
stability analysis for bifurcations apply to our case, and pointing out the possible applications
of our findings to regulatory dynamics in pattern formation, embryogenesis and tumor growth.

3.2 Main results

3.2.1 Reaction-diffusion systems on growing manifolds

Let us define the mathematical objects we will work with throughout this paper.
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Definition 3.1 A manifold M will be for us a smooth (C∞), compact, connected, oriented
Riemannian manifold without boundary. We will denote its parametrisation by

X : Ω̂ ⊂ R
n −→ M

ξ = (ξ1, . . . , ξn) 7−→ X(ξ)

and its metric by (gij(ξ)).

The following definition is standard and well-known, but it is necessary for the sake of
completeness. Moreover, it will allow us to set our notation.

Definition 3.2 The Laplace-Beltrami operator on a Riemannian manifoldM with parametri-
sation (ξ, t) = (ξ1, . . . ξn, t) and metric (gij(ξ, t)) is (using the sum convention on repeated in-
dices)

∆Mφ :=
1√
g
∂ξj

[
√
g gij ∂ξi

φ] , (3.2)

where (gij) = (gij)
−1 and g = det(gij).

Definition 3.3 A f growing manifold will be for us a monoparametric family of manifolds
(Mt)t≥0 such that for any t ≥ 0:

• Mt is a manifold with metric (gij(ξ, t)).

• The function t 7→ g(t, ξ) = det(gij(t, ξ)) is strictly increasing.

• The parametrisation X(ξ, t) is C∞ in both variables ξ and t.

• The mapping t 7→ g(ξ, t) := det(gij(ξ, t)) is strictly increasing.

We will use the notation ∆Mt and ∆M to emphasize the time dependence or independence
of the coefficients of the Laplace-Beltrami operator, respectively.

Definition 3.4 A function ρ : [0,∞) → [1,∞) is a growth function or growth factor if it
is a C1 function satisfying ρ(0) = 1 and ρ̇(t) ≥ 0 for all t ≥ 0.

Definition 3.5 A growing manifold (Mt)t≥0 has isotropic growth if there is a growth function
ρ(t) and a manifold M such that Mt := ρ(t)M, meaning that if X(ξ, t) is the parametrisation
of Mt then there is a parametrisation X̃ of M such that X(ξ, t) = ρ(t)X̃(ξ).

It is important to keep in mind that at time t = T the growing manifoldM0≤t≤T coincides
with the fixed manifold MT , but they are “dynamically” different. Indeed, in the growing
manifold M0≤t≤T the growth dynamics is included, whereas in the fixed manifold MT growth
does not play any role.
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Theorem 3.1 Let (Mt)t≥0 be a growing manifold with metric (gij(ξ, t)). Under the hypotheses
of Fick’s law of diffusion and conservation of mass, any reaction-diffusion system on Mt has
the form

∂tu = D∆Mtu− ∂t[log
√
g(t, ξ) ]u + F(u) , (3.3)

where the Laplace-Beltrami operator ∆Mt is given in (3.2). In the case of isotropic growth we
have

∂tu =
D
ρ2(t)

∆Mu− nρ̇(t)
ρ(t)

u + F(u) , (3.4)

where the coefficients of ∆M do not depend on time.

Definition 3.6 For a growing manifold (Mt)t≥0 we define its growth rate as

c(t, ξ) := ∂t[log
√
g(t, ξ) ] .

Observe that since t 7→ g(t, ξ) is strictly increasing it follows that t 7→ c(t, ξ) is strictly
increasing as well. Theorem 3.1 says that in the case of isotropic growth the growth rate is
independent of the spacial variable ξ and takes the form

c(t) = n
ρ̇(t)

ρ(t)
.

In particular, if the growth function is exponential, i.e. ρ(t) = aert then c(t) := nr, hence the
growth rate is constant. Note also that in the case of a 2-dimensional growing manifold (St)t≥0

with orthogonal tangent vectors we have

(gij) =

[
h2

1 0
0 h2

2

]

and thus we recover the equations in Plaza et al [52]:

∂tu = D∆Stu− ∂t[log(h1h2)]u + F(u) ,

∂tu =
D
ρ2(t)

∆Su− 2
ρ̇(t)

ρ(t)
u + F(u) .

3.2.2 Properties of solutions: existence and uniqueness

We will prove that in the case of isotropic growth, the reaction-diffusion system (3.4) has a
time-local unique solution. Moreover, if the initial condition is continuous and the nonlinearity
F(u) is C∞ then the local solution is C∞ for positive times.

Theorem 3.2 There is a time T > 0 such that the reaction-diffusion system (3.4) with initial
condition u0 ∈ C

[
M,RM

]
has a unique solution

u(t) ∈ C
(
[0, T ], C

[
M,RM

])
.

Theorem 3.3 If F : R
M → R

M is C∞ then

u(t) ∈ C∞
[
M× (0, T ],RM

]
.
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3.2.3 The anti-blow-up effect of growth

We will show that under specific conditions, depending on the initial condition u0 and the
nonlinearity F(u), the locally defined solution u(t) is in fact globally defined. Moreover, those
conditions are less restrictive on growing manifolds than on fixed manifolds, which implies that
growth has an enhancing effect on the regularity of solutions.

Theorem 3.4 Let (Mt)t≥0 be an isotropic growing manifold with growth rate c(t). Suppose
that the initial condition u0 of the reaction-diffusion system (3.4) lies in C

[
M,RM

]
and takes

its values inside the rectangle R = (−1, 1)M . Suppose further that for all (z, t) ∈ ∂R × [0,∞)
we have

F(z) · n(z) < c(t) ∀t ≥ 0 , (3.5)

where n(z) is the outer unit normal at z. Then the solution u(t) of (3.4) is global and bounded,
i.e. it exists for all times t ≥ 0 and takes its values inside R. In particular, there is no blow-up
whenever (3.5) holds.

From Theorem 3.4, if the growth rate is sufficiently big to satisfy

c(t) > sup{‖F(z)‖ : z ∈ ∂R}

then the solution is globally bounded, which implies that there is no blow-up. Notice that since
the growth rate c(t) is increasing in n, the dimension of the space enhances the regularity of
solutions.

The next two examples show a direct consequence of Theorem 3.4 on scalar equations: if on
a fixed domain we have blow-up at time t1 then on the corresponding growing domain we have
blow-up at time t2 > t1. Moreover, if growth is fast enough then a solution that blows up on a
fixed domain is actually globally defined on the corresponding growing domain. This illustrates
the anti-blow-up effect of growth on pattern formation: on growing domains the blow-up occurs
later than on fixed domains, and it could even do not occur at all.

Example 3.1 Consider the scalar ODE

{
u̇ = u2,
u(0) = u0 > 0 ,

whose solution is

u(t) =

(
1

u0
− t

)−1

,

which blows up when t→ t1 := 1/u0. Now consider the equivalent problem on a growing domain,
i.e. suppose u(t) is a scalar, homogeneous solution of (3.4). Then u solves the scalar ODE

{
u̇ = −c(t)u+ u2,
u(0) = u0 > 0 .
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Under the change of variables

v(t) := e
R t
0

c(s)dsu(t)

we have

v̇ = e−
R t
0

c(s)dsv2 ,

and since

c(t) = n
ρ̇(t)

ρ(t)

it follows that

e−
R t
0

c(s)ds =
1

ρn(t)
,

which implies that

v̇ =
1

ρn(t)
v2 .

In consequence,

v(t) =

(
1

u0
−

∫ t

0

ds

ρn(s)

)−1

,

which blows up at time t2, where t2 is defined as

∫ t2

0

dt

ρn(t)
=

1

u0
.

However, since ρ(t) > 1 for t > 0 it follows that

∫ t1

0

dt

ρn(t)
< t1 :=

1

u0
.

Therefore (a) t2 > t1 := 1/u0, (b) t1 and t2 are decreasing functions of the initial condition u0,
(c) t2 is an increasing function on the spatial dimension n, and (d) if growth is sufficiently fast,
i.e. if the growth function ρ(t) satisfies

∫ ∞

0

dt

ρn(t)
≤ 1

u0

then t2 =∞, i.e. there is no blow-up on the growing domain.

Let us study some special cases of growth in 1D, i.e. n = 1.

• If there is no growth then ρ(t) = 1 and t2 = t1.

• If growth is linear then ρ(t) = 1 + αt, α > 0. In consequence,

t2 =
1

α

(
eα/u0 − 1

)
=

1

u0
+

1

α

∞∑

n=2

1

n!

(
α

u0

)n

>
1

u0
= t1.
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• Suppose that we have quadratic growth. If ρ(t) = 1 + βt2 and u0 > 2
√
β/π then

t2 =
1√
β

tan

(√
β

u0

)
>

1

u0
= t1 .

However, if u0 ≤ 2
√
β/π then

∫ ∞

0

dt

1 + βt2
=

π

2
√
β
<

1

r
≤ 1

u0
.

Therefore t2 = ∞, i.e. there is no blow-up. Let us consider another quadratic growth:
ρ(t) = (1 + t)2. If u0 > 1 then

t2 =
1

u0 − 1
>

1

u0
= t1 .

However, if u0 ≤ 1 then t2 =∞, i.e. there is no blow-up.

• Suppose that growth is exponential, i.e. ρ(t) = ert, r > 0. If r < u0 then

t2 = −1

r
log

(
1− r

u0

)
=

1

u0
+

1

r

∞∑

n=2

1

n

(
r

u0

)n

>
1

u0
= t1.

However, if r ≥ u0 then ∫ ∞

0
e−rtdt =

1

r
≤ 1

u0
.

Therefore t2 =∞, i.e. there is no blow-up.

Example 3.2 Suppose u(t, ξ) is a local solution of the scalar reaction-diffusion equation

∂tu =
1

ρ2(t)
∆Mu− c(t)u+ u2 ,

u(0, ξ) = u0(ξ) > 0 .

Define

η(t) :=

∫∫

M
u(t, ξ) dΩ , η(0) =

∫∫

M
u0(ξ) dΩ > 0 .

On the one hand,

η(t) =

∫∫

M
u(t, ξ) dΩ ≤ α

(∫∫

M
u2(t, ξ) dΩ

)1/2

, α = |M|, .

On the other hand,

η̇ =

∫∫

M
∂tu(t, x) dΩ

=

∫∫

M

(
1

ρ2(t)
∆Mu− c(t)u+ u2

)
dΩ

=

∫∫

M

(
−c(t)u+ u2

)
dΩ .
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Therefore,

η̇ ≥ −c(t)η + αη2 .

Under the change of variables

ζ(t) := e
R t
0

c(s)dsη(t)

we obtain

ζ̇ ≥ e−
R t
0

c(s)dsζ2 ,

which implies that

ζ(t) ≥
(

1

η(0)
− α

∫ t

0

ds

ρn(s)

)−1

.

Let t1 be the blow-up time for the fixed manifold and t2 the blow-up time for the growing manifold.
As in Example 3.2, using ρ(t) > 1 for t > 0 we have (a) t2 > t1 = (αη(0))−1, (b) t1 and t2 are
decreasing functions of the initial condition η(0), (c) t2 is an increasing function on the spatial
dimension n, and (d) if growth is sufficiently fast, i.e. if the growth function ρ(t) satisfies

∫ ∞

0

dt

ρn(t)
≤ 1

αη(0)

then t2 =∞, i.e. there is no blow-up on the growing manifold. In particular, for an exponential
growth ρ(t) = ert such that nr > αη(0), i.e.

r >
|M|
n

∫∫

M
u0(ξ) dΩ ,

we have blow-up on the fixed manifold but not on the growing manifold.

3.2.4 The stabilising effect of growth

Under isotropic regimes, growth has a stabilising effect on pattern formation.

Theorem 3.5 Let (Mt)0≤t≤T be an isotropic growing manifold with growth rate c(t). Define
S :=MT and notice that we will use the notation S for the fixed manifold andMT for the final
stage of the growing manifold (Mt)0≤t≤T . Then λ is an eigenvalue of the reaction-diffusion
operator on S,

LS :=
D

ρ2(T )
∆S + dF(0)

if and only if λ− c(T ) is an eigenvalue of the corresponding operator on MT ,

LMT
:=

D
ρ2(T )

∆MT
− c(T )I + dF(0) .

Theorem 3.5 says that when we compare the spectra of LS and LMT
on the same manifold

S =MT we obtain

spectrum(LMT
) = spectrum(LS)− c(T ) .
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Therefore, growth shifts the eigenvalues to the left in the complex plane, which is indeed as a
stabilising effect since the real parts are smaller. Moreover, this shift is exactly the growth rate
c(T ) > 0, which implies that the faster growth is, the more stable the patterns are.

It is important to remark that, as far as we know, Theorem 3.5 is the first analytic proof of
the stabilising effect of growth on pattern formation. Moreover, as it will be clear in the proof of
Theorem 3.5, the stabilising effect is not only true for the linearisation around the trivial state
u ≡ 0, but rather for the linearisation around any steady state u0.

3.3 Proof of Theorem 3.1

We will divide the proof in three parts.

3.3.1 Parametrisation and Riemannian metric

Let Mt be a growing manifold parametrized by X = X(ξ, t), and suppose that the motion

ψt : Ω̂ ⊂ R
n −→ Mt

ξ = (ξ1, . . . , ξn) 7−→ ψt(ξ) = X(ξ, t)

is C∞ in both variables (ξ, t). Remark that the manifoldsMt are supposed to be all embedded
in the same Euclidean space in order to have the motion ψt(ξ) well defined as a function of t,
and that for any fixed t ≥ 0 the function ψt(ξ) is a parametrisation forMt.

We will suppose that for all t ≥ 0 the manifold Mt has a C∞ metric (gij(ξ, t)) with the
following properties:

(a) Symmetric: gij = gji for all i, j.

(b) Positive definite: gijv
ivj > 0 for all v = (v1, . . . , vn) 6= 0.

3.3.2 The general model with growth and curvature

Let Ω(t) be a domain inMt with boundary ∂Ω(t). Suppose that the parametrisation of Ω(t) is

Ω(t) := ψt(Ω̂) = X(Ω̂, t) ,

∂Ω(t) := ψt(∂Ω̂) = X(∂Ω̂, t) ,

where Ω̂ is a domain in R
n.

Suppose that φ = φ(X, t) denotes the concentration (given in molecules per unit area) of
a morphogen (i.e. a chemical substance) at a point X ∈ Mt, and let J be the flux vector of
the molecules φ. The Fick’s law of diffusion states that the flux vector J of the molecules is
proportional to the gradient of the concentration of the molecules, i.e.

J = −D∇φ ,
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where D is the diffusion coefficient, which is assumed to be constant. The law of conservation
of mass states that the rate of change on the concentration of molecules in Ω(t) is equal to the
net flux of molecules on the boundary ∂Ω(t), i.e.

d

dt

∫∫

Ω(t)
φdV = −

∫

∂Ω(t)
〈J,n〉 dS . (3.6)

The minus sign comes from the fact that n is the unit outward normal on ∂Ω(t) and therefore
〈J,n〉 is the exit flux.

Using the last two relations we obtain

d

dt

∫∫

Ω(t)
φdV = D

∫

∂Ω(t)
〈∇φ|∂Ω(t),n〉 dS . (3.7)

For the sake of clarity let us recall each term in (3.7).

(a) dV is the volume element for the n-manifold Ω(t); in local coordinates we have dV =
√
g dξ.

(b) dS the “area” (i.e. the (n− 1)-volume) element for the (n− 1)-manifold ∂Ω(t).

(c) ∇φ|∂Ω(t) is the restriction of the vector field ∇φ to ∂Ω(t) and n is the unit outward normal.

(d) If TXΩ(t) is the tangent plane at X ∈ Ω(t) then the inner product 〈·, ·〉 is defined as

〈u, v〉 := gij(ξ, t)u
ivj for any u, v in TXΩ(t).

Now we calculate both sides of (3.7). For the left hand side, using the change of variables
φ̃(ξ, t) := φ(X(ξ, t), t) we obtain

d

dt

∫∫

Ω(t)
φ(X, t) dV =

d

dt

∫∫

Ω̂
φ̃(ξ, t)

√
g dξ

=

∫∫

Ω̂
[∂tφ̃
√
g + φ̃∂t

√
g ]dξ

=

∫∫

Ω̂

[
∂tφ̃+ φ̃

∂t
√
g

√
g

]√
g dξ

=

∫∫

Ω(t)

[
∂tφ̃+ φ̃

∂t
√
g

√
g

]
dV .

For the right hand side in (3.7) we will use Stokes’ theorem, which in the general case of on
a n-manifold N with boundary ∂N can be written as

∫∫

M
dω =

∫

∂M
ω , (3.8)

where ω is a (k − 1) differential form, k ≤ n. If ω is the (n− 1)-form

ω = 〈F |∂Ω(t),n〉 dS
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with F a vector field on the submanifold Ω(t) ⊂Mt then (3.8) becomes
∫∫

Ω(t)
div(F ) dV =

∫

∂Ω(t)
〈F |∂Ω(t),n〉 dS . (3.9)

In the light of (3.9) we have that
∫

∂Ω(t)
〈∇φ|∂Ω(t),n〉 dS =

∫∫

Ω(t)
div(∇φ) dV .

Putting all two pieces together in (3.7) we obtain
∫∫

Ω(t)

[
∂tφ̃+ φ̃ ∂t(log

√
g)−Ddiv(∇φ̃)

]
dV = 0 .

Recall that Ω(t) was an arbitrary domain in Mt, and let us drop the tildes for a more
convenient notation. Therefore we obtain the equation of the diffusive part of the model:

∂tφ = Ddiv(∇φ)− ∂t[log
√
g]φ , (3.10)

where the operator div(∇φ) is the Laplace-Beltrami operator △Mt we introduced in Definition
3.2.

Now consider a morphogen vector u = (u1, . . . , uM ) and suppose that there is an extra term
F(u) that models reaction kinetics, i.e. the chemical interactions between the morphogens.
Then the mass balance equation (3.6) takes the form

d

dt

∫∫

Ω(t)
u dS = −

∫

∂Ω(t)
〈J,n〉 dS +

∫∫

Ω(t)
F(u) dS . (3.11)

Now let us assume that the flux is J = −D∇u, where the matrix of diffusivities D is diagonal,
i.e.

D =



D1

. . .

DM


 ,

and with constant and positive coefficients Di. Under these assumptions the equation (3.11)
takes the form

d

dt

∫∫

Ω(t)
u dS = D

∫

∂Ω(t)
〈∇u|∂Ω(t),n〉 dS +

∫∫

Ω(t)
F(u) dS . (3.12)

Notice that in (3.12) each morphogen diffuses independently of the other and without obsta-
cles. Therefore we can take separately the equations for each of the components ui of u in (3.12)
and repeat the former calculations using φ = ui. Proceeding that way we obtain the general
model for a reaction-diffusion system on the growing manifoldMt,

∂tu = D∆Mtu− ∂t[log
√
g ]u + F(u) .

This proves part (a) of Theorem 3.1.
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3.3.3 The isotropic growth model

In the case of isotropic growth we have

X(ξ, t) = ρ(t) X̃(ξ) ,

which implies the following identities:

gij(ξ, t) = ρ2(t) g̃ij(ξ) , (3.13)

gij(ξ, t) =
1

ρ2(t)
g̃ij(ξ) ,

√
g = ρn

√
g̃ ,

∆Mt =
1

ρ2(t)
∆M .

If we substitute the relations (3.13) in the general model given in (3.4) we obtain the model
for a n-dimensional manifold with isotropic growth:

∂tu =
D
ρ2(t)

∆Mu− nρ̇(t)
ρ(t)

u + F(u) .

This proves part (b) of Theorem 3.1 and concludes its proof. �

3.4 Proof of Theorem 3.2

Let M be a manifold and consider the reaction-diffusion equation

∂tu = Lu + G(t,u) , u(0) = u0 , (3.14)

where L is a second-order elliptic operator and the nonlinearity G is C∞ in its arguments. Let
X be a Banach space such that the following conditions hold:

1. X is a space of functions u :M→ R
M .

2. etL : X→ X is a strongly continuous semigroup for t ≥ 0.

3. There exists a constant C > 0 such that ‖etL‖ ≤ C for all t ≥ 0.

4. The nonlinearity
G : X −→ X

u 7−→ G(t,u)

is locally Lipschitz in u, uniformly in t.

Remark 3.7 The space X we have in mind is C
[
M,RM

]
, but there are other possible choices.

Indeed, if we ask the nonlinearity G(t,u) to be C∞, bounded and with derivatives bounded
then Lp

[
M,RM

]
and Hk

[
M,RM

]
are suitable spaces as well.
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Lemma 3.8 The reaction-diffusion system (3.4) can be reduced to the system (3.14) with

L := D∆M ,

G(t,u) := −nρ(t)ρ̇(t)u + ρ2(t)F(u) .

Moreover, if F(z) is locally Lipschitz in z ∈ R
M then G(t, z) is also locally Lipschitz in z ∈ R

M ,
uniformly in t ∈ [0, T ].

Proof : Define the change of variables

s(t) :=

∫ t

0

dr

ρ2(r)
. (3.15)

Then for any function f(t) we have that

∂sf = ρ2(t)∂tf .

Multiply the system (3.4) by ρ2(t) and define ũ(s, x) := u(t(s), x). Then the system (3.4) takes
the equivalent form

∂sũ = D∆Mũ + G(s, ũ) ,

where

G(t, ũ) = −nρ(t)ρ̇(t)ũ + ρ2(t)F(ũ) .

Renaming the variables (s, ũ) as (t,u) we obtain (3.14). �

Now we have all the elements to prove Theorem 3.2. By the Lemma 3.8 the problem (3.4)
is equivalent to (3.14). Moreover, (3.14) can be expressed in the integral form

u(t) = etLu0 +

∫ t

0
e(t−s)LG(s,u(s)) ds . (3.16)

Define the operator

Ψu(t) := etLu0 +

∫ t

0
e(t−s)LG(s,u(s)) ds

on the Banach space C ([0, T ],X) with norm

‖u(t)‖X := sup
s∈[0,T ]

‖u(s)‖ ,

where ‖ · ‖ is the norm in R
M . Now fix α > 0 and define

Z := {u ∈ C ([0, T ],X) : u(0) = u0 , ‖u(t)− u0‖X ≤ α} .

The final time T > 0 will be chosen later in order to have that Ψ : Z→ Z is a contraction.



72 Section 3.4 Proof of Theorem 3.2

Observe that Z is a closed subset of C ([0, T ],X). Moreover, Z is bounded because if u ∈ Z
then for all t ∈ [0, T ] we have

‖u(t)‖X ≤ ‖u(t)− u0‖X + ‖u0‖X ≤ α+ ‖u0‖X .

Now we affirm that there is a constant K1 > 0 such that if u ∈ Z then ‖G(t,u(t))‖X ≤ K1

for all t ∈ [0, T ]. Indeed, recall that G(t,u) is locally Lipschitz continuous uniformly in t. Hence,
if K is the Lipschitz constant for G then for any u ∈ Z we have

‖G(t,u(t))‖X ≤ ‖G(t,u(t))−G(t,u0)‖X + ‖G(t,u0)‖X
≤ K‖u(t)− u0‖X + ‖G(t,u0)‖X
≤ Kα+ ‖G(t,u0)‖X .

The assumptions on the space X imply that there exists a C > 0 such that

‖etL‖L(X) ≤ C .

This fact and the boundedness of G imply that

∥∥∥∥
∫ t

0
e(t−s)LG(s,u(s)) ds

∥∥∥∥
X

≤ K1Ct .

Therefore, it is possible to choose T > 0 such that K1CT ≤ α/2. Moreover, from the assumpions
on X we have that etL is a strongly continuous semigroup for t ≥ 0, which implies that there is
a T > 0 such that ‖etLu0 − u0‖X ≤ α/2 for all t ∈ [0, T ].

In conclusion, if we choose T > 0 is sufficiently small then ‖Ψu(t)−u0‖X ≤ α, which implies
that Ψ(Z) ⊂ Z.

Let us find the conditions under which Ψ is a contraction. If we calculate

‖Ψu(t)−Ψv(t)‖X =

∥∥∥∥
∫ t

0
e(t−s)L

[
G(s,u(s))−G(s,v(s))

]
ds

∥∥∥∥
X

≤ CKt sup
s∈[0,t]

‖u(s)− v(s)‖X

≤ CKT‖u(t)− v(t)‖X

we can see that Ψ : Z → Z will be a contraction if we choose T > 0 such that CKT < 1. In
that case we obtain that there is a unique solution u(t) ∈ C ([0, T ],X) of (3.16), or equivalently
a unique solution of (3.14).

This completes the proof of Theorem 3.2. �
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3.5 Proof of Theorem 3.3

Fix t′ ∈ (0, T ] and consider a solution u(t) of (3.14) written in its integral form (3.16). Recall
two properties of the Laplace-Beltrami operator. First, the map

et△M : C(M)→ C1(M)

is continuous for all t > 0, and second, there exists a constant C > 0 such that

‖et△M‖L(C(M),C1(M)) ≤ Ct−1/2

(see Taylor [65], p. 274). This implies that the operator L satisfies the same type of inequality,
i.e.,

‖etL‖L(C[M,RM ],C1[M,RM ]) ≤ Ct−1/2 ,

with a bigger constant C > 0, of course, that depends on the diffusion coefficients of the matrix
D. Consequently, for any t1 ∈ (0, t′] and u0 ∈ C

[
M,RM

]
we have that u(t1) ∈ C1

[
M,RM

]
.

Now, if we consider u(t1) as a new initial condition we have that u(t2) ∈ C2
[
M,RM

]
for

any t2 ∈ (t1, t
′]. Repeating this iterative argument we can construct a sequence

0 < t1 < t2 < · · · < tn → t′

such that u(tn) ∈ Cn
[
M,RM

]
for any tn ∈ (tn−1, t

′]. In the limit we get that u(t′) ∈
C∞

[
M,RM

]
for any t′ ∈ (0, T ].

Concerning the time derivatives, recall that if u(ξ, t) is a solution of (3.4) then

∂tu =
D
ρ2(t)

∆Mu− nρ̇(t)
ρ(t)

u + F(u) .

Therefore, if F(u) and ρ(t) are C∞ in their arguments then ∂tu(ξ, t) is continuous in time, and
in consequence u(ξ, t) is C1 in time. Now, if we derivate (3.4) with respect to time we see that
∂2

t u(ξ, t) is continuous in time as well, and so u(t, x) is C2 in time. Continuing this way it
follows that u(t, x) is C∞ in time.

In conclusion, u(ξ, t) ∈ C∞
[
(0, T ]×M,RM

]
. �

3.6 Proof of Theorem 3.4

Lemma 3.9 Let M be a manifold and consider the reaction-diffusion system

∂tu = D∆Mu + F(u) , u(ξ, t) = u0(ξ) . (3.17)

Suppose that u0(ξ) ∈ C
[
M,RM

]
and that it takes its values inside the rectangle

R =

M∏

j=1

(aj , bj) .
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Suppose further that for all z ∈ ∂R we have

F(z) · n(z) < 0 , (3.18)

where n(z) is the outer unit normal at z. Then the solution u(ξ, t) of (3.17) exists for all times
t ≥ 0 and takes its values inside R.

Proof : This is Proposition 4.3 in Taylor [65], Chapter 15 (p.295). �

Lemma 3.10 LetMt be a growing manifold. Suppose that the initial condition of the reaction-
diffusion system (3.4) is in C

[
M,RM

]
and takes its values inside the rectangle

R =

M∏

j=1

(aj , bj) .

Suppose further that for all (z, t) ∈ ∂R× [0,∞) we have

F(z) · n(z) < c(t)n(z) · z ∀t ≥ 0, (3.19)

where n(z) is the outer unit normal at z and c(t) is the growth rate. Then the solution u(t) of
(3.4) is global and bounded, i.e. it exists for all times t ≥ 0 and takes its values inside R.

Proof : From Lemma 3.8 the reaction-diffusion system (3.4) can be transformed into

∂tu = D∆Mu + G(t,u) ,

where G(t,u) := −nρ(t)ρ̇(t)u + ρ2(t)F(u). Taking a careful look at the proof of Lemma 3.9 in
Taylor [65] we see that it also holds for nonlinearities that depend on time, provided

G(t, z) · n(z) < 0 for all (z, t) ∈ ∂R× [0,∞), (3.20)

where n(z) is the outer unit normal at z. Therefore, since condition (3.20) is equivalent to
hypothesis (3.19), we can apply Lemma 3.9 to obtain that the solution u(t) of (3.4) exists for
all times t ≥ 0 and takes its values inside R. �

Now we can conclude the proof of Theorem 3.4. If R = (−1, 1)M then n(z) · z = 1 for all
z ∈ ∂R, which implies that (3.19) reduces to (3.5). Therefore, using Lemma 3.10 we obtain the
result. �

3.7 Proof of Theorem 3.5

Let (Mt)0≤t≤T be an isotropic growing manifold and define the fixed manifold S :=MT . The
linearisation of the operator on the fixed manifold S is

LS :=
D

ρ2(T )
∆S + dF(0)
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whilst the linearisation on the growing manifold (Mt)0≤t≤T ) at time t = T is

LMT
:=

D
ρ2(T )

∆MT
− c(T )I + dF(0) , c(T ) := n

ρ̇(T )

ρ(T )
.

Since LS and LMT
are second-order elliptic linear operators, their spectra consists of pure

eigenvalues, i.e. the continuum spectrum for any of both spectra is empty. Let λ ∈ C be an
eigenvalue on LS . Then there exists a non-trivial function φ : S → C solution of

LSφ = λφ.

Therefore, since
LMT

= LS − c(T )I

it follows that φ :MT → C is a non-trivial solution of

LMT
φ = (λ− c(T ))φ ,

which implies that λ− c(T ) is an eigenvalue of LMT
. �

3.8 Discussion

Reaction-diffusion systems on growing manifolds

We have shown here that the same results presented by Plaza et al [52] hold in the case of any
n-dimensional manifold (in the sense of Definition 3.1). Moreover, the techniques we used to
prove Theorem 3.1 are independent of the choice of an orthogonal parametrisation. This implies
that one can choose the coordinate system that is better for explicit calculations, regardless if
it is orthogonal or not.

Linear stability analysis

The following lemma summarizes the properties of the Laplace-Beltrami operator ∆M.

Lemma 3.11 Let M be a manifold and consider the operator −∆M. Then:

1. All eigenvalues of −∆M are real and nonnegative.

2. Zero is an eigenvalue with multiplicity one.

3. All eigenspaces are finite dimensional.

4. There exists infinitely eigenvalues

0 = λ1 < λ2 ≤ · · · ≤ λk →∞ ,

and they accumulate only at infinity (i.e. theres is no finite accumulation point.

5. The eigenvectors of −∆M constitute an orthonormal basis of L2(M).
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6. All eigenvectors are smooth.

Proof : See Rosenberg [57], Theorems 1.29 (p.32) and 1.31 (p.35). �

Lemma 3.11 states that the Laplace-Beltrami operator ∆M possesses the very same spec-
tral properties than the Laplacian operator in euclidean, regular and bounded domains with
Neumann boundary conditions. Therefore, all the linear stability analysis performed by Murray
[49] can be applied to the case of a manifold, mutatis mutandis. Furthermore, the statement of
Gjorgjieva and Jacobsen [28] we quoted in the Introduction holds for any 2-dimensional manifold:
growth increases the number of possible patterns but (generically) chooses lower eigenmodes.
Indeed, let us assume the following conditions:

• The manifoldM is 2-dimensional.

• We have only two morphogens, whose diffusion coefficients are different (say 1 and d > 1).

• The nonlinearity F(u) depends on a real parameter γ in the form

F(γ,u) = γ

[
f(u, v)
g(u, v)

]

• The growth factor is exponential: ρ(t) = ert.

Under these conditions the system becomes

ut = e−rt∆Mu− 2ru+ γf(u, v) ,

vt = e−rtd∆Mv − 2rv + γg(u, v) ,

which is exactly the system (5)-(6) in Gjorgjieva and Jacobsen [28]. Moreover, if we substitute
the spherical harmonics they use by the corresponding eigenvectors for ∆M we can perform the
same analysis they have already done, thus obtaining the same results for a general 2-dimensional
manifold. An open question we would like to address in the future is whether the linear stability
analysis of Gjorgjieva and Jacobsen [28] is also valid for n-dimensional manifolds with more
general growth functions.

Qualitative properties of solutions

Whenever a pattern formation problem is addressed there are several “natural” questions related
to the system (3.4). In this work we answered affirmatively the questions of existence, uniqueness
and regularity, and we showed that growth shifts the eigenvalues of the system (3.4) towards the
left in the complex plane (Theorem 3.5). We have also noticed that the linear stability results of
Gjorgjieva and Jacobsen [28] can be extrapolated to general surfaces. However, the bifurcation
analysis is far from being complete, and symmetry breaking and asymptotic behavior for large
times are open questions. We aim to study these properties in future works.



Chapter 3. The effect of growth on pattern formation 77

The anti-blow-up effect of growth on pattern formation

Growth has an anti-blow-up effect because it enhances the possibility of global existence of
solutions. Indeed, condition (3.5) in Theorem 3.4 is less restrictive than condition (3.18) in
Lemma 3.9 because even if (3.18) does not hold (3.5) can be fulfilled. In that case, a solution
of the system (3.17) on the fixed manifold M is perhaps only a time-local solution, but as a
solution of the system (3.4) on the growing manifold (Mt)t≥0 it could be globally defined in
time. In order to quantitatively assess this anti-blow-up effect we provided two examples on the
scalar case, where there is blow-up for the corresponding equation. We found that on a growing
manifold the blow-up occurs at a later time than on the fixed manifold, and if growth is fast
enough then the blow-up does not occur at all.

The stabilising effect of growth on pattern formation

As it was shown in Theorem 3.5, growth shifts the spectrum towards the left in the complex plane
by the explicit factor c(T ) > 0. This implies that the real parts of the eigenvalues are smaller
on the growing manifold (Mt)0≤t≤T at time t = T than on the corresponding fixed manifold
S =MT , which is a gain of stability. It is worth to mention that our proof does not work for
non-isotropic growing manifolds because we considered the growth rate to be independent of
the space variable ξ. It would be interesting to see if the stabilising effect of growth holds for
not only for non-isotropic growing manifolds property but also for more general growth regimes,
e.g. then the growth factor is not exogenous but it is also one of the unknowns of the problem.
From Theorem 3.5 we can also infer that growth is a regulatory mechanism for stability, in the
sense that it enhances stability and selects the most stable patterns for expression. This fact is
very important because it suggests that growth is an important factor in self-regulation features
occurring in embryogenesis (see Meinhardt [47]) and tumor growth (see Chaplain et al [13]).
Whether these applications are possible is a crucial problem, which we would like to study in
detail in the future.

Exponential growth factor

A very special type of growth factor is ρ(t) = aert because c(t) is constant if and only if the
growth factor ρ(t) is of exponential type. This observation implies that the simplest case of
growth to be added on a model is exponential, and therefore it is important to work on the
exponential case before approaching a more general growth factor in order to gain some insight.
In that spirit we have shown that if r > 0 is big enough then the solutions of the system (3.4)
are globally defined (i.e. there is no blow-up). But there are more features of the exponential
growth. For example, Gjiorgjieva [27] showed that the system (3.4) on a 2-dimensional sphere
with two morphogens and exponential isotropic growth has a constant equilibrium solution if
and only if ρ(t) is exponential (see Lemma 5.1, p.50), and we can show that her result holds
for any manifold and for any number of morphogens. Indeed, (3.4) has a constant equilibrium
u0 = (u0

1, . . . , u
0
M ) if and only if

n
ρ̇(t)

ρ(t)
u0 = F(u0) .
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Therefore, if u0 6≡ 0 then for any u0
i 6= 0 we have

ρ̇(t)

ρ(t)
=
Fi(u0)

nu0
i

, (3.21)

which implies that ρ̇(t)/ρ(t) is constant, and in consequence ρ(t) is exponential. Therefore, if
we have a constant equilibrium then the growth function is exponential and its growth rate
is completely determined by the nonlinearity. In other words, whenever we find a constant
equilibrium the growth factor is necessarily exponential, i.e. ρ(t) = aert, and we can calculate
the growth exponent r > 0 using (3.21).



Chapter 4

Generalised travelling waves on
manifolds

In the article of H. Berestycki and F. Hamel, Generalised transition waves and their properties,
there is a generalization of the classical definition of a transition wave in Euclidean spaces (e.g.
a travelling wave or an invasive front) to the case where the level sets of the wave are no longer
planes but surfaces. We will prove that the same results and properties on general transition
waves that appear in the cited article hold in the case of a non-compact complete Riemannian
manifold, namely: (1) the wave is associated to a generalised front, which moves “close” to the
level sets of the wave; (2) there is a mean propagation speed of the wave, which is independent
of the choice of the associated front; (3) in the case of an invasion the wave is an increasing
function of time.

4.1 Definition of general travelling waves on manifolds

4.1.1 Complete Riemannian manifolds

Let M be a n-dimensional, C∞ Riemannian manifold, and let gij(ξ) be its metric in the local
coordinates ξ ∈ R

n. We will suppose thatM is closed, connected, without boundary, unbounded
(i.e. non-compact) and complete. Recall that a manifold M is complete if any of the following
statements hold (see Bishop and Crittenden [11], Theorem 5, p. 154):

1. M is complete as a metric space, i.e. any Cauchy sequence in M has a limit inM.

2. All bounded closed subsets ofM are compact.

3. All geodesics are infinitely extendible.

These conditions are equivalent, and they imply the next result:

(∗) Any x, y ∈ M can be joined by a geodesic whose arc length equals the geodesic distance
d(x, y).

79
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The geodesic distance is defined as:

d(x, y) := inf{ |γ| : γ ∈ G } ,

where G is the set of all continuous and piecewise C∞ curves from x to y, and |γ| is the arc
length of a curve γ. Moreover, the geodesic distance is a continuous functions, and the topology
it generates is equivalent to the topology of M as a manifold (see Bishop and Crittenden [11],
pp. 124-125).

4.1.2 Reaction-diffusion equations on manifolds

From now on, we will work on a manifoldM with the properties stated in Section 4.1.1.

Consider the scalar reaction-diffusion equation

{
∂tu = D∆Mu+ F (t, x, u) ; t ∈ R, x ∈M ,
u(0, x) = u0(x) ; x ∈M .

(4.1)

∆M is the Laplace-Beltrami operator, which in local coordinates takes the form (note that we
use the sum convention)

∆Mu =
1√
g
∂j [
√
g gij ∂iu ] , (4.2)

where ∂i := ∂ξi
, (gij) = (gij)

−1 and g = det(gij). Another way of expressing the Laplace-
Beltrami operator is

∆Mu = gij∂iju+
1√
g
∂j [ g

ij√g ]∂iu

= gij∂iju− gijΓk
ij∂ku ,

where ∂ij = ∂2
ξiξj

and

Γk
ij =

1

2
gkl[∂jg

il + ∂ig
jl − ∂lg

ij ]

are the Schwartz-Christoffel symbols.

The assumptions on the nonlinearity F (t, x, u) are:

• Either F is C1 and both F and ∂uF are globally bounded, or

• Either F is bounded, continuous in (t, x) and locally Lipschitz continuous in u, uniformly
in (t, x).

We can also suppose that F does not depend on the variables (t, x), i.e. F = F (u).
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4.1.3 Fronts, waves and invasions

For any two subsets A,B ⊂M denote

d(A,B) := inf{ d(x, y) : x ∈ A, y ∈ B} .

Definition 4.1 Generalised profile
A generalised profile is a family (Ω±

t ,Γt)t∈R of subsets of M with the following properties:

1. Ω−
t and Ω+

t are non-empty disjoint subsets of M, for any t ∈ R.

2. Γt = ∂Ω−
t ∩ ∂Ω+

t and M = Γt ∪ Ω−
t ∪ Ω+

t , for any t ∈ R.

3. sup{ d(x,Γt) : t ∈ R, x ∈ Ω−
t } = sup{ d(x,Γt) : t ∈ R, x ∈ Ω+

t } = +∞

Suppose that there exist p−, p+ ∈ R such that F (t, x, p±) = 0 for all t ∈ R and all x ∈ M.
Then u ≡ p± are solutions of (4.1).

Definition 4.2 Generalised front
Let u(t, x) be a time-global classical solution of (4.1) such that u 6≡ p±. Then u(x, t) is a

generalised front between p− and p+ if there exists a generalised profile (Ω±
t ,Γt)t∈R such that

|u(t, x)− p±| → 0 uniformly when x ∈ Ω±
t and d(x,Γt)→ +∞.

Observe that the generalised profile (Ω±
t ,Γt, )t∈R is not uniquely determined. However, it

is important to bear in mind that any generalised front u(t, x) is by definition associated to a
certain generalised profile.

Definition 4.3 Generalised invasion
Let u(t, x) be a generalised front. We say that p+ invades p− or that u(t, x) is a generalised

invasion of p− by p+ (resp. p− invades p+ or that u(t, x) is a generalised invasion of p+ by p−) if

(i) Ω+
t ⊂ Ω+

s (resp. Ω−
s ⊂ Ω−

t ) for all t ≤ s.

(ii) d(Γt,Γs)→ +∞ when |t− s| → +∞.

Remark that if p+ invades p− (resp. p− invades p+) then u(t, x)→ p± when t→ ±∞ (resp.
when t→ ∓∞), locally uniformly inM with respect to the geodesic distance d(·, ·).

Example 4.1 Let us consider the reaction diffusion equation (4.1) in M = R
n with D = 1. In

this case the Laplace-Beltrami operator ∆M is the classical Laplacian ∆ = ∂ii, and (4.1) takes
the form {

∂tu = ∆u+ F (u) ; t ∈ R, x ∈ R
n ,

u(0, x) = u0(x) ; x ∈ R
n .

. (4.3)

If we are looking for generalised travelling waves of the form u(t, x) = φ(x · e− ct), with e ∈ R
n

is a unit vector and c > 0, the natural choice for the generalised front is

Γt = {x ∈ R
n : x · e− ct = 0} , Ω±

t = {x ∈ R
n : ±(x · e− ct) > 0} .
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In this framework, (4.1) becomes

cφ′ + φ′′ + F (φ) = 0 .

Example 4.2 Consider the parametrization

S1 × R −→ M ⊂ R
3

(ξ, z) 7−→ (x, y, z) = (r cos ξ , sin ξ, z)

where ξ ∈ [0, 2π) and r > 0 is fixed. The Laplace-Beltrami operator is

∆M =
1

r2
∂ξξ + ∂zz .

If we want to study travelling waves in the axial direction z, it is a natural guess to consider
u(t, x) = φ(z − ct). In this case (4.1) takes the same form as in Example 4.1, i.e.

cφ′ + φ′′ + F (φ) = 0 ,

and the corresponding front is

Γt = {(x, y, z) ∈M : z − ct = 0} , Ω±
t = {(x, y, z) ∈M : ±(z − ct) > 0} .

From now on, for the sake of simplicity, we will call a profile any generalised profile, a front
any generalised front, and a invasion any generalised invasion.

Definition 4.4 Global mean speed

A front u(t, x) has global mean speed c > 0 if the profile (Ω±
t ,Γt, )t∈R is such that

d(Γt,Γs)

|t− s| → c when |t− s| → +∞.

In Example 4.1 we have

Γt = {x ∈ R
n : x · e− ct = 0} ,

which implies that

d(Γt,Γs) = c|t− s| .

In consequence, the velocity of propagation of the profile (Ω±
t ,Γt, )t∈R coincides with its global

mean speed.

Remark 4.5 All these definitions hold also in the case of a reaction-diffusion equation or system
on a growing manifoldMt (see Labadie [39] and Plaza et al [52] for the definition and properties
of reaction-diffusion equations on growing manifolds).
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4.2 Properties of fronts on manifolds

For any x ∈M and any r > 0 define

B(x, r) = { y ∈M : d(x, y) ≤ r } ,
S(x, r) = { y ∈M : d(x, y) = r } .

Theorem 4.1 Level sets
Let p− < p+ and suppose that u(t, x) is a time-global solution of (4.1) such that

p− < u(t, x) < p+ for all (t, x) ∈ R×M.

1. Suppose u(t, x) is front between p− and p+ (or between p+ and p−) with the following
properties:

(a) There exists τ > 0 such that sup{ d(x,Γt−τ ) : t ∈ R, x ∈ Γt } < +∞, and

(b) sup{ d(y,Γt) : y ∈ Ω±
t ∩ S(x, r) } → +∞ when r → +∞, uniformly in t ∈ R and

x ∈ Γt.

Then:

(i) sup{ d(x,Γt) : u(t, x) = λ } < +∞ for all λ ∈ (p−, p+).

(ii) p− < inf{u(t, x) : d(x,Γt) ≤ C } ≤ sup{u(t, x) : d(x,Γt) ≤ C } < p+ for all C ≥ 0.

2. Conversely, if (i) and (ii) hold for a certain profile (Ω±
t ,Γt, )t∈R and there exists d0 > 0

such that for all d ≥ d0 the sets

{ (t, x) ∈ R×M : x ∈ Ω±
t , d(x,Γt) ≥ d }

are connected, then u(t, x) is a front between p− and p+ (or between p+ and p−).

Theorem 4.2 Uniqueness of the global mean speed
Let p− < p+ and suppose that u(t, x) is a front between p− and p+, where its associated

profile (Ω±
t ,Γt, )t∈R satisfies (b) in Theorem 4.1. If u(t, x) has a global mean speed c > 0 then

the speed is independent of the profile. In other words, if for any other profile (Ω̃±
t , Γ̃t, )t∈R

satisfying (b) the front u(t, x) has global mean speed c̃, then c̃ = c.

Theorem 4.3 Monotonicity
Let p− < p+ and suppose F (t, x, u) satisfies the following conditions:

(α) s 7→ F (s, x, u) is non-decreasing for all (x, u) ∈M× R.

(β) There exists δ > 0 such that q 7→ F (t, x, q) is non-increasing for all q ∈ R\(p−+δ, p+−δ).
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Let u(t, x) be an invasion of p− by p+ and assume (as in Theorem 4.1) that:

(a) There exists τ > 0 such that sup{ d(x,Γt−τ ) : t ∈ R, x ∈ Γt } < +∞, and

(b) sup{ d(y,Γt) : y ∈ Ω±
t ∩ S(x, r) } → +∞ uniformly in t ∈ R and x ∈ Γt when r → +∞.

Then:

1. p− < u(t, x) < p+ for all (t, x) ∈ R×M.

2. u(t, x) is increasing in time, i.e. u(t+ s, x) > u(t, x) for all s > 0.

4.3 Proofs

4.3.1 Proof of Theorem 4.1

Proposition 4.4 sup{ d(x,Γt) : u(t, x) = λ } < +∞ for all λ ∈ (p−, p+).

Proof : Suppose it is not true. Then there is a λ ∈ (p−, p+) and a sequence (tn, xn)n∈N in
R×M such that u(tn, xn) = λ and d(xn,Γtn)→ +∞ when n→ +∞.

Up to extraction of a subsequence, either xn ∈ Ω−
tn for all n, or either xn ∈ Ω+

tn for all n.
Since u(t, x) is a generalised wave then in the first case u(tn, xn) → p−, whilst in the second
case u(tn, xn)→ p+, hence in any case we reach a contradiction. �

Proposition 4.5 p− < inf{u(t, x) : d(x,Γt) ≤ C } ≤ sup{u(t, x) : d(x,Γt) ≤ C } < p+ for all
C ≥ 0.

Proof : Suppose it is not true. Then there exist C > 0 and a sequence (tn, xn)n∈N in R ×M
such that d(xn,Γtn) ≤ C and u(tn, xn) → p− or p+ when n → +∞. Since both cases can be
treated with similarly let us only prove the case

u(tn, xn)→ p− when n→ +∞ . (4.4)

Since d(xn,Γtn) ≤ C for all n, Property (a) implies that there exist τ > 0 and a sequence
(x̃n)n∈N such that x̃n ∈ Γtn−τ for all n and

sup{ d(xn, x̃n) : n ∈ N } < +∞ .

From the definition of a front it follows that there exists d > 0 such that

d(y,Γt) ≥ d implies that u(t, y) ≥ p− + p+

2
for all (t, y) ∈ R× Ω+

t .

From Property (b) there exists r > 0 such that, for each n, there exists yn ∈ Ω+
tn−τ satisfying

d(x̃n, yn) = r and d(yn,Γtn−τ ) ≥ d .

Therefore

u(tn − τ, yn) ≥ p− + p+

2
for all n. (4.5)
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On the other hand, the function v(t, x) := u−p− is non-negative. Moreover, recalling F (t, x, p−) =
0 it follows that v satisfies the nonlinear equation

∂tv = D∆Mv + F (t, x, u) in R×M.

This implies that v satisfies the linear equation

∂tv = D∆Mv + b(t, x)v in R×M,

where

b(t, x) =





F (t,x,u(t,x))−F (t,x,p−)
u(t,x)−p−

= F (t,x,u(t,x))
u(t,x)−p−

, if u(t, x) 6= p−,

Θ, if u(t, x) = p−,

• Θ = ∂uF (t, x, p−) if F is C1 in u, uniformly in (t, x), and both F and ∂uF are globally
bounded, or

• Θ = K, if F (t, x, ·) is Lipschitz continuous and bounded in u, uniformly in (t, x).

In both cases b(t, x) is at least bounded and measurable. Therefore we can apply Harnack’s
inequality to v(t, x) and obtain that there exists C1 > 0 such that

u(tn − τ, yn)− p− = v(tn − τ, yn) ≤ C1v(tn, xn) = C1[u(tn, xn)− p−] .

It is important to remark that C1 depends on τ but is independent of n. In consequence, we
can take the limit n→ +∞ and use (4.4)-(4.5) to obtain

p+ − p−
2

≤ 0 ,

which is a contradiction. �

We suppose here that Propositions 4.4 and 4.5 hold, and that there exists d0 > 0 such that
for all d ≥ d0 the sets

{ (t, x) ∈ R×M : x ∈ Ω±
t , d(x,Γt) ≥ d }

are connected.

Define

m− := lim inf{u(t, x) : x ∈ Ω−
t , d(x,Γt)→ +∞} ,

M− := lim sup{u(t, x) : x ∈ Ω−
t , d(x,Γt)→ +∞} .

We affirm that m− = M−. Indeed, if m− < M− then λ := (m− + M−)/2 ∈ (m−,M−).
Moreover, by hypothesis p− ≤ m− ≤ M− ≤ p+, which implies that λ ∈ (p−, p+). Therefore,
using Property (i) it follows that there exists C > 0 such that

d(x,Γt) < C for all (t, x) ∈ R×M with u(t, x) = λ.
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On the other hand, by definition of lim inf and lim sup there exists two points (t1, x1), (t2, x2) ∈
R× Ω−

t such that

u(t1, x1) < λ < u(t2, x2) and d(xi,Γti) ≥ max{C, d0} for i = 1, 2.

Now recall that by hypothesis the set

{ (t, x) ∈ R×M : x ∈ Ω−
t , d(x,Γt) ≥ max{C, d0} }

is connected. Therefore, since u(t, x) is continuous there exist

(t, x) ∈ R× Ω−
t such that d(x,Γt) ≥ max{C, d0} and u(t, x) = λ,

which contradicts the definition of C0.

Therefore m− = M−, and in consequence u(t, x) has a limit, i.e.

u(t, x)→ m− uniformly in x ∈ Ω−
t when d(x,Γt)→ +∞ .

Similarly, switching all − signs by + we obtain that

u(t, x)→ m+ uniformly in x ∈ Ω+
t when d(x,Γt)→ +∞ .

We now affirm that p− = min{m−,m+} and p+ = max{m−,m+}. Indeed, if p− <
min{m−,m+} then there exist ε > 0 and C > 0 such that

u(t, x) ≥ p− + ε > p− for all (t, x) with d(x,Γt) ≥ C.

But by Property (ii) we also have that

inf{u(t, x) : d(x,Γt) ≤ C } > p− .

In consequence,

inf{u(t, x) : (t, x) ∈ R×M} > p− ,

which contradicts the fact that the range of u(t, x) is the whole interval (p−, p+).

In conclusion, p− = min{m−,m+}, and analogously we can show that p+ = max{m−,m+}.

Finally, note that if m− = p− and m+ = p+ then u(t, x) is a front between p− and p+, whilst
if m− = p+ and m+ = p− then u(t, x) is a front between p+ and p−.

This concludes the proof of Theorem 4.1.
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4.3.2 Proof of Theorem 4.2

Let p− < p+ and suppose that the front u(t, x) has global mean speed c > 0 with respect to
the profile (Ω±

t ,Γt)t∈R. Let (Ω̃±
t , Γ̃t)t∈R be another profile for u(t, x) satisfying (b) in Theorem

4.1. We have to prove that u(t, x) has also a global mean speed with respect to the new profile
(Ω̃±

t , Γ̃t)t∈R, and that it is precisely c.

Proposition 4.6 There exists C > 0 such that

d(x, Γ̃t) ≤ C for all t ∈ R and all x ∈ Γt . (4.6)

Proof : If (4.6) does not hold then there is a sequence (tn, xn)n∈N such that

xn ∈ Γtn and d(xn, Γ̃tn)→ +∞ when n→ +∞ . (4.7)

Up to extraction of a subsequence, either xn ∈ Ω̃−
tn for all n, or either xn ∈ Ω̃+

tn for all n. Since

both cases can be proven similarly, we will suppose that xn ∈ Ω̃−
tn for all n.

Since u(t, x) is a front then there exists A > 0 such that

|u(t, x)− p+| ≤ p+ − p−
2

for all (t, x) ∈ R× Ω+
t with d(x,Γt) ≥ A. (4.8)

Property (b) implies that for each n there exists r > 0 and yn ∈ Ω+
tn such such that

d(xn, yn) = r and d(yn,Γtn) ≥ A . (4.9)

Note that the uniformity of the limit in (b) implies that r > 0 is independent of n. Therefore,
using (4.7) and (4.9) it follows that

d(yn, Γ̃tn)→ +∞ when n→ +∞ .

Moreover, if n is sufficiently big then yn ∈ Ω̃−
tn because, should yn ∈ Ω̃+

tn , then using Γ̃tn =

∂Ω̃−
tn ∩ ∂Ω̃+

tn we would obtain

d(xn, Γ̃tn) ≤ d(xn, Ω̃
+
tn) ≤ d(xn, yn) = r ,

which contradicts (4.7).
In the light of this we have that u(tn, yn) → p− when n → +∞. But we also have that

yn ∈ Ω+
tn , so using (4.8)-(4.9) we obtain

|u(tn, yn)− p+| ≤ p+ − p−
2

for all n.

In consequence, making n→ +∞ it follows that

|p− − p+| ≤ p+ − p−
2

,

which is a contradiction. In conclusion, (4.6) holds. �

Now let ε > 0. Then for any two times t, s ∈ R:
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• There exist x ∈ Γt and y ∈ Γs such that d(x, y) ≤ d(Γt,Γs) + ε.

• There exist x̃ ∈ Γ̃t and ỹ ∈ Γ̃s such that d(x̃, ỹ) ≤ d(Γ̃t, Γ̃s) + ε.

• d(x, x̃) ≤ d(x, Γ̃t) + ε and d(y, ỹ) ≤ d(y, Γ̃s) + ε.

Therefore, by virtue of (4.6) we have

d(x̃, ỹ) ≤ d(x̃, x) + d(x, y) + d(y, ỹ)

≤ (C + ε) + (d(Γt,Γs) + ε) + (C + ε)

≤ d(Γt,Γs) + 2C + 3ε .

and in consequence

d(Γ̃t, Γ̃s) ≤ d(Γt,Γs) + 2C + 3ε .

Since ε > 0 was arbitrary then

d(Γ̃t, Γ̃s) ≤ d(Γt,Γs) + 2C for all t, s ∈ R,

which implies that

lim sup
|t−s|→+∞

d(Γ̃t, Γ̃s)

|t− s| ≤ lim sup
|t−s|→+∞

d(Γt,Γs)

|t− s| = c . (4.10)

Now observe that interchanging the roles of the sets Ω±
t and Ω̃±

t it can be shown that there
exists C̃ > 0 such that

d(x̃,Γt) ≤ C̃ for all t ∈ R and all x̃ ∈ Γ̃t ,

i.e. the “tilde” version of (4.6). In the light of this, it can be shown as well that

d(Γt,Γs) ≤ d(Γ̃t, Γ̃s) + 2C̃ for all t, s ∈ R,

and in consequence

c = lim inf
|t−s|→+∞

d(Γt,Γs)

|t− s| ≤ lim inf
|t−s|→+∞

d(Γ̃t, Γ̃s)

|t− s| . (4.11)

From (4.10) and (4.11) we deduce that the limit

lim
|t−s|→+∞

d(Γ̃t, Γ̃s)

|t− s|

exists and is equal to c.

This concludes the proof of Theorem 4.2.
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4.3.3 Proof of Theorem 4.3

Proposition 4.7 p− < u(t, x) < p+ for all (t, x) ∈ R×M.

Proof : Define

m := inf{u(t, x)− p− : (t, x) ∈ R×M}
and suppose m < −δ < 0. Let (tn, xn)n∈N be a sequence in R×M such that

u(tn, xn)− p− → m when n→∞ .

Since u(t, x) is a front and
u(tn, xn)→ m+ p− < p− < p+

we have that the sequence d(xn,Γtn) is bounded (otherwise u(tn, xn) would converge to either
p− or p+ by definition). From Property (a) it follows that, for any n ∈ N, there exists a point
x̃n ∈ Γtn−τ such that the sequence d(xn, x̃n)n∈N is bounded. Since u(t, x) is a front there exists
d > 0 such that u(t, x) ≥ p− whenever d(x,Γt) ≥ d.

From Property (b) there is a sequence (yn)n∈N such that, for any n ∈ N:

• yn ∈ Ω+
tn−τ ,

• d(yn, x̃n) = r,

• d(yn,Γtn−τ ) ≥ d.

Using this properties we have that

u(tn − τ, yn) ≥ p− for all n ∈ N. (4.12)

Define
w(t, x) := u(t, x)− p− +m ≥ 0 .

If n ∈ N is big enough then it follows from condition (β) that w satisfies

∂tw ≥ D∆Mw + F (t, x, u) ≥ D∆Mw + F (t, x, w) for all t ≥ tn.

Therefore, using the same argument of Proposition 4.5 we can show that there exists a function
b ∈ L∞(R×M) such that w satisfies the linear equation

∂tw ≥ D∆Mw + b(t, x)w in R×M.

As before, we apply Harnack’s inequality to w(t, x) and obtain that there exists C1 > 0, inde-
pendent of n, such that

w(tn − τ, yn)− p− = u(tn − τ, yn)− p− −m ≤ C1v(tn, xn) = C1[u(tn, xn)− p− −m] .

Making n→ +∞ and using (4.4)-(4.5) it follows that the left-hand side converges to

p+ − p− −m > 0 ,
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whilst the right-hand side converges by definition to zero. In consequence, we have obtained a
contradiction.

We have thus shown that m ≥ 0, which implies that p− < u(t, x) for all (t, x) ∈ R×M. The
inequality u(t, x) < p+ can be proven with the same arguments. �

Remark 4.6 Decreasing δ > 0 if necessary we can assume that 2δ < p+ − p−. Moreover, from
Definition 4.2 there exists A > 0 such that for all (t, x) ∈ R×M:

• If x ∈ Ω−
t and d(x,Γt) ≥ A then u(t, x) ≤ p− + δ.

• If x ∈ Ω+
t and d(x,Γt) ≥ A then u(t, x) ≥ p+ − δ/2.

Since p+ invades p− there exists s0 > 0 such that

Ω+
t+s ⊂ Ω+

t and d(Γt+s,Γt) ≥ 2A for all t ∈ R and all s ≥ s0. (4.13)

Let t ∈ R, s ≥ s0 and x ∈ Ω be fixed. On the one hand, if x ∈ Ω+
t then (4.13) implies

that x ∈ Ω+
t+s and d(,Γt+s) ≥ 2A because any continuous path from x to Γt+s meets Γt. On

the other hand, if x ∈ Ω−
t and d(,Γt) ≤ 2A then using (4.13) it follows that d(,Γt+s) ≥ A and

x ∈ Ω+
t+s. In both cases we obtain that

us(t, x) := u(t+ s, x) ≥ p+ − δ/2 ≥ p+ − δ .

Proposition 4.8 Define

ω−
A := { (t, x) ∈ R×M : x ∈ Ω−

t and d(x,Γt) ≥ A } .

Then for all s ≥ s0 we have

us(t, x) ≥ u(t, x) for all (t, x) ∈ ω−
A .

Proof : Fix s ≥ s0 and define

ε∗ := inf{ ε > 0 : us ≥ u− ε in ω−
A } (4.14)

Since u(t, x) is bounded it follows that ε∗ ≥ 0 is well defined.

We claim that ε∗ = 0. Indeed, let us suppose that ε∗ > 0. Then there exists a sequence

0 < ε1 < ε2 < · · · < εn

such that εn < ε∗ for all n ∈ N and εn → ε∗. Moreover, using (4.14) we have, for each n ∈ N, a
point (tn, xn) ∈ ω−

A such that

u(tn + s, xn) < u(tn, xn)− εn .
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Observe that the sequence d(xn,Γtn) is bounded. If it is not, we can find a subsequence such
that d(xn,Γtn)→ +∞, which implies that

u(tn, xn)− p− → 0 . (4.15)

But on the other hand we have

u(tn, xn)− p− > u(tn + s, xn) + εn − p− ≥ εn ,

and in consequence
u(tn, xn)− p− → ε∗ > 0

which contradicts (4.15).

Since d(xn,Γtn) is bounded, from assumption (a) there exists a sequence of points x̃n ∈ M
such that x̃n ∈ Γtn−τ and

sup{ d(xn, x̃n) : n ∈ N } < +∞ .

By hypothesis p+ invades p−, which implies that Ω−
tn−t ⊃ Ω−

tn for all t ≥ 0. In consequence,

using that xn ∈ Ω−
tn and d(xn,Γtn) ≥ A it follows that xn ∈ Ω−

tn−τ and d(xn,Γtn−τ ) ≥ A for all

n ∈ N. Therefore, we can find a sequence yn ∈ Ω−
tn−τ such that

A = d(yn,Γtn−τ ) = d(xn,Γtn−τ )− d(xn, yn) .

Hence

d(xn, yn) = d(xn,Γtn−τ )−A
≤ d(xn, x̃n)−A < +∞ .

Since the sequence d(xn, yn) is bounded we can construct a sequence of continuous paths in
M

Pn := γn([0, 1]) , γn : [0, 1]→ Ω−
tn−τ

such that γn(0) = xn and γn(1) = yn for all n ∈ N. Moreover, the completeness of the manifold
M alows us to choose the paths Pn such as their length is precisely d(xn, yn) and

d(γn(σ),Γtn−τ ) ≥ A for all σ ∈ [0, 1].

In consequence, using Remark 4.6 we can infer that

u(tn − t, γn(σ)) ≤ p− + δ for all σ ∈ [0, 1], n ∈ N and t ≥ 0.

In the light of this we obtain that

u(tn − τ, xn)− ε∗ < u(tn − τ, xn) ≤ p− + δ .

Moreover, from standard parabolic estimates we have that u(t, x) is uniformly continuous, which
implies that there exists a small ρ independent of n ∈ N such that

u(t, x)− ε∗ < p− + δ
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for all (t, x) ∈ R×M satisfying

t ∈ (tn − τ − ρ, tn − τ + ρ) and d(x, xn) < ρ .

Let us focus in the region where u − ε∗ ≤ p− + δ. On the one hand, since F (t, x, ·) is
non-increasing in this region it follows that

∂t(u− ε∗) = D∆(u− ε∗) + F (t, x, u)

≤ D∆(u− ε∗) + F (t, x, u− ε∗) .

On the other hand, due to the fact that F (·, x, q) is non-decreasing for all (x, q) ∈ M× R we
have that

∂tu
s = D∆us + F (t+ s, x, us)

≥ D∆us + F (t, x, us) .

Therefore, we can use the arguments in Proposition 4.5 to obtain that there exists b(t, x) ∈
L∞(R×M) such that the function

v := us − (u− ε∗) ≥ 0

satisfies the linear inequality

∂tv ≥ D∆Mv + b(t, x)v .

In consequence, applying Harnack’s inequality we obtain that there exists a constant C1 > 0
such that

v(tn − τ, yn) ≤ C1v(tn, yn) .

On the one hand, if we recall that yn ∈ Ω−
tn−τ and d(yn,Γtn−τ ) we obtain that

v(tn − τ, yn) = us(tn − τ, yn)− u(tn − τ, yn) + ε∗

≥ (p+ − δ)− (p− + δ) + ε∗

> ε∗ > 0.

But on the other hand we have that

v(tn, yn) = u(tn + s, yn)− u(tn, yn) + ε∗

< −εn + ε∗ → 0 .

Since this contradicts Harnack’s inequality, we conclude that ε∗ = 0, and the proof of the
proposition is complete. �

Proposition 4.9 us ≥ u in R×M for all s ≥ s0.
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Proof : Fix s ≥ s0. From Proposition 4.8 we have that us(t, x) ≥ u(t, x) for all (t, x) ∈ ω−
A ,

but the inequality is also valid when (t, x) ∈ R×M\ ω−
A . Indeed, this can be proven using the

same argument of Proposition 4.8, taking into that F (t, x, )̇ is non-increasing in [p+ − δ,+∞)
and that us(t, x) ≥ u(t, x) when (t, x) 6∈ ω−

A . �

Proposition 4.10 Define

s∗ := inf{s > 0 : uσ ≥ u for all σ ≥ s} .

Then s∗ = 0.

Proof : By definition 0 ≤ s∗ ≤ s0. Let us assume that s∗ > 0 in order to reach a contradiction.

Since us∗ ≥ u in R×M we have two possibilities:

• Case 1. inf{us∗(t, x)− u(t, x) : d(x,Γt) ≤ A} > 0.

• Case 2. inf{us∗(t, x)− u(t, x) : d(x,Γt) ≤ A} = 0.

We will show that none of these two cases can hold.

Proof of Case 1.

Using standard parabolic estimates it follows that ∂tu is globally bounded, which implies that
there exists η0 such that

us∗−η(t, x) ≥ u(t, x) for all η ∈ [0, η0] and all (t, x) satisfying d(x,Γt) ≤ A. (4.16)

We claim that
us∗−η ≥ u for all η ∈ [0, η0] and all x ∈ ω−

A . (4.17)

Indeed, let x ∈ Ω−
t . If d(x,Γt) = A then (4.16) implies that us∗−η(t, x) ≥ u(t, x), whilst if

d(x,Γt) > A then by Remark 4.6 it follows that u(t, x) ≥ p− + δ. This implies that we can
repeat the same arguments presented in Proposition 4.8 to prove that the claim holds.

On the other hand, by Remark 4.6 we also obtain that

us∗(t, x) ≥ u(t, x) ≥ p− − δ/2 if x ∈ Ω+
t and d(x,Γt) ≥ A.

In consequence, using standard parabolic estimates and decreasing η0 if necessary, we have that

us∗−η(t, x) ≥ p− − δ for all η ∈ [0, η0] and all x ∈ Ω+
t such that d(x,Γt) ≥ A. (4.18)

In consequence, form (4.17), (4.16) and (4.18) it follows that

us∗−η(t, x) ≥ u(t, x) for all (t, x) ∈ R×M.

Since this contradicts the minimality of s∗, Case 1 cannot hold.
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Proof of Case 2.

By definition of the infimum, there exists a sequence (tn, xn) ∈ R×M such that

d(xn,Γtn) ≤ A and us∗(tn, xn)− u(tn, xn)→ 0 when n→ +∞.

Let us again remark that us∗ is a supersolution of (4.1) and us∗ ≥ u. Therefore, applying
Harnack inequality to the difference there exists C1 > 0 such that

0 ≤ us∗(tn − s∗, xn)− u(tn − s∗, xn) ≤ C1[u
s∗(tn, xn)− u(tn, xn)] .

Therefore, using us∗(tn − s∗, xn) = u(tn, sn) it follows that

u(tn, xn)− u(tn − s∗, xn)→ 0 when n→ +∞.

Moreover, by induction we can show that

u(tn, xn)− u(tn − ks∗, xn)→ 0 when n→ +∞, for all k ∈ N.

Now fix ε > 0. By Definition 4.2 and Proposition 4.7 there exists Bε > 0 such that

p− < u(t, x) ≤ p− + ε for all x ∈ Ω−
t satisfying d(x,Γt) ≥ Bε.

Since p+ invades p− then for all s ≤ t it follows that Ω−
s ⊃ Ω+

t , and also that d(Γs,Γt)→ +∞
when |t−s| → +∞. These two properties and the boundedness of the sequence d(xn,Γtn) imply
that there exists m ∈ N such that

xn ∈ Ω−
tn−ms∗ and d(xn,Γtn−ms∗) ≥ Bε for all n ∈ N.

Therefore, for all n ∈ N we obtain that

p− < u(tn −ms∗, xn) ≤ p− + ε .

In consequence,
u(tn, xn)− p− → 0 when n→ +∞. (4.19)

From Definition 4.2 and Remark 4.6 there exist two positive real numbers B and 2δ < p+−p−
such that

p+ − δ/2 ≤ u(t, x) < p+ for all x ∈ Ω+
t satisfying d(x,Γt) ≥ B.

Using Hypothesis (a) and the boundedness of the sequence d(xn,Γtn) we can construct a
sequence x̃n such that

x̃n ∈ Γtn−τ for all n ∈ N and sup{d(xn, x̃n) : n ∈ N} < +∞.

Moreover, by Hypothesis (b) there exist r > 0 and a sequence yn such that

yn ∈ Ω+
tn−τ , d(yn, x̃n) = r and d(yn,Γtn−τ ≥ B for all n ∈ N.

In consequence, we have that

p+ − δ/2 ≤ u(tn − τ, yn) < p+ for all n ∈ N.

Let us recall some important facts:
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• u(t, x) and p− are both solutions of (4.1).

• F (t, x, q) is locally Lipschitz and continuous in q, uniformly in (t, x).

• The sequence d(xn, yn) is bounded.

Using these facts and Harnack inequality on the function

v := u− p− > 0

we obtain that there is a C1 > 0 such that

v(tn − τ, yn) ≤ C1v(tn, xn) .

On the one hand we know that v(tn, yn) → 0 because of (4.19), but on the other hand we
have that

v(tn − τ, yn) = u(tn − τ, yn)− p−
≥ p+ − δ/2− p−
> δ/2 > 0 .

Thus we have reached a contradiction, which implies that Case 2 cannot hold. �

Proposition 4.11 If s > 0 then us(t, x) > u(t, x) for all (t, x) ∈ R×M.

Proof : Choose any s > 0 and assume there is a point (t0, x0) ∈ R×M such that us(t0, x0) =
u(t0, x0). Since us is a supersolution of (4.1) and us ≥ u, using the maximum principle we obtain
that us(t, x) = u(t, x) for all (t, x) ∈ (−∞, t0]×M.

Consider an arbitrary point (t, x) ∈ (−∞, t0]×M. Then for any k ∈ N we have that

0 ≤ u(t, x)− p− = u(t− ks, x)− p− .

If we recall that u(t, x) is a invasion of p− by p+ and take the limit k → +∞ it follows that
u(t, x) ≡ p−, which contradicts Proposition 4.7. �

This concludes the proof of Theorem 4.3.
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Chapter 5

Travelling waves on the real line

In the present work we consider a classical reaction-diffusion model on the sphere with truncated
(hence bounded) coefficients. We show that this problem admits a global solution, which belongs
to the family of generalised travelling waves defined by H. Berestycki and F. Hamel (Generalized
travel ling waves for reaction-diffusion equations), and whose propagating speed is greater on
the northern half of the sphere than on the southern half. This result is important because it
seems to contradict the findings of J.D. Murray (see his book Mathematical Biology), and thus
reopens the discussion on the modeling of fertilization waves on eggs. We also prove that there
is a second generalised travelling wave, moving in the opposite direction of the first one. Both
waves eventually block each other, giving rise to non-trivial steady-state solutions.

5.1 Introduction

5.1.1 Calcium waves and fertilized eggs

The study of embryos after fertilization is a primary topic in Developmental Biology. The ex-
periments performed in this area help us understand the processes involved in the development
of the embryo, and in particular cellular proliferation and differentiation. Two of those experi-
ments concern the eggs of the fruit fly Drosophila and the fresh-water fish Medaka.

In the present work we will discuss the biological and chemical mechanisms that are triggered
after fertilization of a Medaka egg (see Murray [49] and the references therein for a full description
of the phenomenon). Gilkey and his collaborators ([25] and [56]) observed that, just after
fertilization, there appears a calcium wave on the surface of the egg, moving from the fertilization
point (which we will call north pole N) to the diametrically opposite point (south pole S).
Moreover, the wave front is independent of rotations around the axis NS (see Figure 5.1).

According to Gilkey et al [25], the wave front takes an average of 2 minutes to cross the egg
from N to S. Therefore, given that the egg has 1100 µm of diameter, the wave moves at an
average propagation speed of 12.5 µm/s.

One of the most striking discoveries in Gilkey et al [25] is that the velocity of the wave
front decreases as it crosses the egg. They noticed that it takes about 30-60% longer to cross
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Figure 5.1: Activation fronts in real experiments. Source: L.R. Wolpert (2002) Principles of Develop-
ment.

the vegetal half (the southern half of the egg) than the animal one (the northern half). They
measured the velocity on the animal and vegetal halves, and they found that in average it is
14.6 µm/s and 10.2 µm/s, respectively.

5.1.2 The reaction-diffusion model on the sphere

The goal of this work is to prove that a classical reaction-diffusion model on the sphere admits
a travelling wave, whose propagating speed is greater on the northern half than on the southern
half. This result is important because in some sense it contradicts the findings of Murray [49],
and thus reopens the discussion on the modeling of fertilization waves on eggs.

In order to obtain a travelling wave, it is standard to consider reaction-diffusion models of
the form

∂tu−D∆Mu = f(u) , (5.1)

where M is the unit sphere in R
3 and ∆M is the Laplacian operator on M . The nonlinearity

f(u) that describes the calcium kinetics must be of calcium-stimulate-calcium-release type (see
Gilkey et al [25]): (a) f is globally bounded and Lipschitz; (b) it has only three steady states
(i.e. equilibria) u1 < u2 < u3; (c) u1 and u3 are stable whilst u2 is unstable. These features
imply that the nonlinearity f(u) has to be of bistable type. Up to normalization, suppose that
u1 = 0 and u3 = 1. More precisely, we will assume that (1) f ∈ C1([0, 1]); (2) f(0) = f(1) = 0;
(3) f ′(0) < 0, f ′(1) < 0; (4) there exists α ∈ (0, 1) such that f(s) < 0 for s ∈ (0, α) and f(s) > 0
for s ∈ (α, 1); (5) f is extended by zero outside the interval [0, 1]. An example of a nonlinearity
f satisfying these properties is

f(u) = Au(u− α)(1− u) , A > 0.

In spherical coordinates, a point p = (x, y, z) can be written as (r, θ, ϕ), where r is the
distance between p and the origin O, θ ∈ (0, π) is the vertical angle between the segment Op
and the z axis, and φ ∈ (0, 2π) is the horizontal angle between the x axis and the projection of
Op to the xy plane. The Laplacian in spherical coordinates is

∆u =
1

r2
∂rr(ru) +

1

r2 sin θ
∂θ(sin θ ∂θu) +

1

r2 sin2 θ
∂φφu .
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Let r > 0 and consider the sphere

M = {(x, y, z) ∈ R
3 : x2 + y2 + z2 = r} .

If r is constant then the Laplace-Beltrami operator is

∆Mu =
1

r2 sin θ
∂θ(sin θ ∂θu) +

1

r2 sin2 θ
∂φφu .

Recall that, in the experiments with amphibian eggs, the calcium waves are almost independent
of the horizontal angle φ. In that case the Laplace-Beltrami operator reduces to

∆Mu =
D

r2
[∂θθu+ cotθ ∂θu] .

From now on, we will only consider solutions that are independent of φ. In that framework,
(5.1) reduces to

∂tu−
D

r2
[∂θθu+ cotθ ∂θu] = f(u) , (t, θ) ∈ R× (0, π) . (5.2)

Assuming after re-scaling that D = 1 and r = 1, it follows that (5.2) simply becomes

∂tu− ∂θθu− cotθ ∂θu = f(u) , (t, θ) ∈ R× (0, π) . (5.3)

5.1.3 Murray’s approach

Murray’s goal was to find a travelling wave solution of (5.3), i.e. a function ϕ(z) such that

u(t, θ) = ϕ(θ − ct) ; ϕ(−∞) = 1 , ϕ(+∞) = 0.

Suppose that such a solution exists. Then it satisfies the equation

ϕ′′ + [c+ cot θ]ϕ′ + f(ϕ) + 0 . (5.4)

Now consider in (5.4) that θ is fixed. From the classical results of Fife and Mcleod [20] on
travelling waves, it follows that there exists a travelling wave ϕ(z) moving with velocity

c = c0 − cot θ

where c0 is the unique velocity of the travelling wave

U ′′ + c0U
′ + f(U) + 0, U(−∞) = 1, U(+∞) = 0, U ′ < 0 in R,

which moves from the left to the right in the real line.

Observe that on the northern hemisphere {0 < θ < π/2} we have cot θ > 0, whilst on the
southern hemisphere {π/2 < θ < π} we have cot θ < 0. Therefore, the asymptotic velocity on
the northern hemisphere is smaller that the velocity on the southern hemisphere. This remark
led Murray to search for a different model (based on a mechanochemical approach) in order to
describe calcium waves on eggs, and the reaction-diffusion model was thus abandoned.

Actually, the previous argument shows that the ansatz u(t, θ) = ϕ(θ − ct) is not possible.
Indeed, there cannot exist a travelling wave moving in the θ direction with constant speed.
However, we will see that other solutions do exist, and that they belong to the class of generalised
travelling waves introduced by H. Berestycki and F. Hamel [8].
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5.1.4 Modified equation

In order to overcome the difficulty mentioned in the previous paragraph, we will consider the
change of variables, i.e.

x = cotθ, x ∈ R.

One can readily compute

∂x

∂θ
= −(1 + x2),

∂

∂θ
= −(1 + x2)

∂

∂x
, (5.5)

∂2

∂θ2
= (1 + x2)2

∂2

∂x2
+ 2x(1 + x2)

∂

∂x
. (5.6)

Using the former identities one can show that equation (5.2) becomes

∂tu− (1 + x2)2∂xxu− x(1 + x2)∂xu = f(u) , (t, x) ∈ R
2 . (5.7)

Notice that θ = 0 corresponds to x = +∞, whilst θ = π corresponds to x = −∞. As we
have seen in the previous section, we cannot expect to have classical travelling wave solutions.
Therefore, the solutions we will be looking for are generalised travelling waves, moving from N
to S.

In the biological experiment, the calcium wave is triggered by the fertilisation of the egg.
Before fertilisation there is no wave, and after fertilisation the wave is already in motion. More-
over, the underlying biochemical mechanism that ignites the travelling wave is still unknown.
Therefore, the fertilisation can be considered as a “biological singularity”, in the same spirit as
the lighting of a match is a “physical singularity” (commonly modelled as a Dirac delta).

In the light of the former argument, we will consider a version of equation (5.7) where the
coefficients are bounded when x→ ±∞. More precisely, we will consider the reaction-diffusion
problem

∂tu− a(x)∂xxu− b(x)∂xu = f(u) , (t, x) ∈ R
2, (5.8)

where

a(x) =

{
(1 + x2)2 if |x| ≤ ρ,
(1 + ρ2)2 if |x| ≥ ρ,

b(x) =





−ρ(1 + ρ2) if x < −ρ,
x(1 + x2) if |x| ≤ ρ,
ρ(1 + ρ2) if x > ρ.

5.1.5 On intuition and the real dynamics of the travelling waves

From (5.5) we can see that the drift term in the θ variable is

cot θ
∂

∂θ
= −x(1 + x2)

∂

∂x
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whilst the drift term in the x variable is

x(1 + x2)
∂

∂x
.

Therefore, the drift term in the x variable is the negative of the drift in the θ variable, which
implies that the waves move in opposite directions because the sign of their corresponding ve-
locities is different (see Fife and Mcleod [20]). In consequence, when considering θ as fixed
we are not seeing the whole picture because, as it can be seen in (5.6), there is a first-order
term that is “hidden” in the second-order derivative. Moreover, the fact that θ and x move in
opposite directions implies that any intuition we have for the travelling wave should be consid-
ered for waves moving backwards, i.e. from right to left instead of the classical left to right sense.

Recalling the argument of the previous section, the asymptotic velocity near x = +∞ is
bigger that the velocity near x = −∞. But on the x variable we have N = +∞ and S = −∞
because the travelling wave moves from right to left. Therefore, the velocity on the north pole
is bigger than the velocity on the south pole, i.e. cN > cS . However, without the change of
variables one would be considering that the travelling wave moves from left to right, which leads
to the opposite conclusion.

5.2 Main results

Let us start studying the behavior of the solutions when |x| > ρ, which corresponds to neigh-
borhoods of the north and south poles.

Proposition 5.1 Asymptotic velocities of the travelling waves
Let (ϕ, c0) be the unique solution of

ϕ′′ − c0ϕ′ + f(ϕ) = 0, lim
z→−∞

ϕ(z) = 0, lim
z→+∞

ϕ(z) = 1. (5.9)

1. There is a unique (up to translation) travelling wave solution

ϕN := ϕ

(
x+ cN t

1 + ρ2

)
, cN = (c0 + ρ)(1 + ρ2)

for the equation on the north pole, i.e.

∂tu− (1 + ρ2)2∂xxu− ρ(1 + ρ2)∂xu = f(u) . (5.10)

2. There is a unique (up to translation) travelling wave solution

ϕS := ϕ

(
x+ cSt

1 + ρ2

)
, cS = (c0 − ρ)(1 + ρ2)

for the equation on the south pole, i.e.

∂tu− (1 + ρ2)2∂xxu+ ρ(1 + ρ2)∂xu = f(u) . (5.11)
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In particular, cN > cS.

Proof : From the standard theory, equation (5.9) has a unique (up to translations) solution
(ϕ(z), c0). Now, if we define

u(t, x) = ϕ

(
x+ cN t

1 + ρ2

)

and choose cN = (c0 + ρ)(1 + ρ2) then it is easy to see that u(t, x) satisfies (5.10), i.e. the
equation on the north pole. Analogously,

ϕ

(
x+ cSt

1 + ρ2

)
, cS = (c0 − ρ)(1 + ρ2)

is the unique (up to translations) solution of (5.11), i.e. the equation on the south pole. �

From Proposition 5.1 we have that cN > cS , which is consistent with the experimental results
in Gilkey et al [25] and in a certain sense contradicts the conclusions of Murray [49]. From now
on we will consider the truncated equation (5.8).

Theorem 5.1 Global solution for N
Suppose that f(s) is a bistable Lipschitz nonlinearity and let cN > 0. Then there exists β > 0

such that the reaction-diffusion equation (5.8) has a unique global solution u(t, x) satisfying

0 < u(t, x) < 1 ∀(t, x) ∈ R
2

and ∣∣∣∣u(t, x)− ϕ
(
x+ cN t

1 + ρ2

)∣∣∣∣ = O(eβt) when t→ −∞, uniformly in x ∈ R.

In particular,

lim
t→−∞

∣∣∣∣u(t, x)− ϕ
(
x+ cN t

1 + ρ2

)∣∣∣∣ = 0 uniformly in x ∈ R.

Furthermore, t 7→ u(t, x) is non-decreasing, and if the initial condition u0(x) is non-decreasing
then x 7→ u(t, x) is also non-decreasing.

If ρ is sufficiently large such that ρ > c0, the travelling wave ϕS moves from left to right, i.e.
from the the south pole S to the north pole N . Therefore, it travels in the opposite direction of
the wave ϕN . We will now construct a generalised travelling wave v(t, x) related to the classical
travelling wave ϕS , in the same way we did for the wave u(t, x) related to ϕN .

Theorem 5.2 Global solution for S
Let f(s) be a bistable Lipschitz nonlinearity, and suppose that ρ is sufficiently large such that

cS < 0. Then there exists β > 0 such that the reaction-diffusion equation (5.8) has a unique
global solution v(t, x) satisfying

0 < v(t, x) < 1 ∀(t, x) ∈ R
2
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and ∣∣∣∣u(t, x)− ϕ
(
x+ cSt

1 + ρ2

)∣∣∣∣ = O(eβt) when t→ −∞, uniformly in x ∈ R.

In particular,

lim
t→−∞

∣∣∣∣u(t, x)− ϕ
(
x+ cSt

1 + ρ2

)∣∣∣∣ = 0 uniformly in x ∈ R.

Furthermore, t 7→ v(t, x) is non-increasing, and if the initial condition v0(x) is non-decreasing
then x 7→ v(t, x) is non-decreasing.

So far we have constructed two globally-defined generalised travelling waves: u(t, x) moving
from right to left and v(t, x) moving in the opposite direction. We will show that u(t, x) and
v(t, x) are ordered and they mutually block each other, giving rise to two steady-state (not
necessarily distinct) solutions of (5.8).

Theorem 5.3 Steady-state solutions
If we define

u∞(x) := lim
t→+∞

u(t, x), v∞(x) := lim
t→+∞

v(t, x).

then u∞(x) and v∞(x) are steady-state solutions of (5.8) satisfying

0 < u(t, x) ≤ u∞(x) ≤ v∞(x) ≤ v(t, x) < 1 ∀(t, x) ∈ R
2.

Figure 5.2: generalised travelling waves and their steady-state limits. The arrows indicate the dynamics
of the solutions as t→∞.

5.3 Proofs

5.3.1 Supersolutions and subsolutions

Lemma 5.1 Exponential decay
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Let ϕ(z) be the solution of (5.9) and consider the functions

ϕ(z), ϕ′(z), ϕ′′(z), f(ϕ(z)). (5.12)

1. If z < 0 then all functions in (5.12) are asymptotically equivalent to eλz, where

λ =
c0 +

√
c20 − 4f ′(0)

2
> 0.

2. If z > 0 then all functions in (5.12) are asymptotically equivalent to e−µz, where

µ =
c0 +

√
c20 − 4f ′(1)

2
> 0.

Proof : Let us start recalling the following properties of the travelling front ϕ(z) (see Fife et al
[20] and Guo et al [29]):

z < 0 ⇒
{
α0e

λz ≤ ϕ(z) ≤ β0e
λz,

γ0e
λz ≤ ϕ′(z) ≤ δ0eλz,

(5.13)

z > 0 ⇒
{
α1e

−µz ≤ 1− ϕ(z) ≤ β1e
−µz,

γ1e
−µz ≤ ϕ′(z) ≤ δ1e−µz,

where αj , βj , γj , δj are positive constants. In the light of (5.13), if z < 0 then ϕN (z) and
ϕ′(z) are asymptotically equivalent to eλz. Moreover, since F is Lipschitz then also f(ϕ(z))
shares the same property. Finally, from (5.9) we can deduce that ϕ′′(z) has the same behavior.
Analogously, if z > 0 then all functions are asymptotically equivalent to e−µz. �

Lemma 5.2 Supersolution and subsolution for N

Suppose that f is Lipschitz, i.e. there exists K > 0 such that

|f(s2)− f(s1)| ≤ K|s2 − s1| ∀s1, s2 ∈ R.

Assume that ρ is sufficiently large such that

K < L := λ(c0 + ρ).

If we define

w±(t, x) := ϕ

(
x+ cN t

1 + ρ2

)
± eβt

then for any β ∈ (K,L) there exists a time T < 0 such that w+ is a supersolution (resp. w− is
a subsolution) of (5.8) for all (t, x) ∈ (−∞, T ]× R.
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Proof : Define

Lu := ∂tu− a(x)∂xxu− b(x)∂xu− f(u).

Since ϕN is solution of (5.10) then a straightforward calculation yields

Lw± = ±βeβt + [ ρ(1 + ρ2)− b(x) ]ϕ′ + [ (1 + ρ2)2 − a(x) ]ϕ′′ + f(ϕ)− f(w±).

We will study now the sign of Lw± in all possible cases.

1. Case x ≥ ρ.

In this case we have

Lw± = ±βeβt + f(ϕ)− f(w±).

From the Lipschitz condition of F we have

|f(ϕ)− f(w±)| ≤ Keβt ,

which implies that

f(ϕ)− f(w+) ≥ −Keβt,

f(ϕ)− f(w−) ≤ Keβt.

In consequence

Lw+ ≥ (β −K)eβt,

Lw− ≤ (K − β)eβt.

Therefore, choosing β > K it follows that Lw+ > 0 and Lw− < 0 for all t ∈ R and all x ≥ ρ.

2. Case x ≤ ρ.

Define

z :=
x+ cN t

1 + ρ2
.

Since

lim
t→−∞

z = −∞

there exists T < 0 such that z < 0 for all (t, x) ∈ (−∞, T ]× (−∞, ρ].

(a) Suppose that x ≤ −ρ. Then

Lw± = ±βeβt + 2ρ(1 + ρ2)ϕ′ + f(ϕ)− f(w±).



106 Section 5.3 Proofs

From the Lipschitz condition on f it follows that

Lw+ > (β −K)eβt + 2ρ(1 + ρ2)ϕ′,

Lw− < (K − β)eβt + 2ρ(1 + ρ2)ϕ′.

From Lemma 5.1 we have

ϕ′(z) = O(eλz) = O(eLt) ∀x ≤ ρ.
Therefore,

Lw+ > (β −K)eβt +O(eLt),

Lw− < (K − β)eβt +O(eLt).

In consequence, if β ∈ (K,L) and T < 0 is small enough then Lw+ > 0 and Lw− < 0
for all (t, x) ∈ (−∞, T ]× (−∞,−ρ].

(b) Suppose that −ρ ≤ x ≤ ρ. Then

Lw+ > βeβt + [ ρ(1 + ρ2)− b(x) ]ϕ′ + [ (1 + ρ2)2 − a(x) ]ϕ′′,

Lw− < −βeβt + [ ρ(1 + ρ2)− b(x) ]ϕ′ + [ (1 + ρ2)2 − a(x) ]ϕ′′.

From Lemma 5.1 we also have

ϕ′′(z) = O(eλz) = O(eLt) ∀x ≤ ρ.
Therefore,

Lw+ > βeβt +O(eLt),

Lw− < −βeβt +O(eLt).

In consequence, if β ∈ (K,L) and T < 0 is small enough then Lw+ > 0 and Lw− < 0
for all t ≤ T and x ∈ [−ρ, ρ]. �

5.3.2 Global solution for N

We will start constructing a sequence of local solutions (un). Afterwards, passing to the limit
n→ +∞ we will obtain a global solution.

Lemma 5.3 Local solution
For any n ∈ N such that n > −T the equation

∂tu− a(x)∂xxu− b(x)∂xu = f(u) , (t, x) ∈ [−n, T ]× R (5.14)

with initial condition

u(−n, x) = max{w−(σ, x) : σ ≤ −n} ∀x ∈ R (5.15)

has a solution un(t, x) satisfying

w−(t, x) ≤ un(t, x) < 1 ∀(t, x) ∈ [−n, T ]× R.
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Proof : From Lemma 5.2, w+ and w− are super and subsolution of (5.14)-(5.15) satisfying

un(−n, x) ≥ w−(σ, x) ∀σ ≤ −n.

Therefore, from the standard theory (e.g. Evans [18], Theorem 1, p.508) and the strong maxi-
mum principle we obtain that the problem (5.14)-(5.15) has a solution un(t, x) such that

w−(t, x) ≤ un(t, x) ≤ 1 ∀(t, x) ∈ [−n, T ]× R. �

Lemma 5.4 Monotonicity of the local solutions

1. t 7→ un(t, x) is non-decreasing.

2. The sequence (un)n>−T is non-decreasing.

Proof :

1. From the definition of un(−n, x) it follows that

un(−n, x) ≥ w−(σ, x) ∀σ ≤ −n.

From the maximum principle it follows that

un(−n+ t, x) ≥ w−(σ + t, x) ∀σ ≤ −n, ∀t ∈ [0, T + n], ∀x ∈ R. (5.16)

In consequence,

un(−n+ t, x) ≥ max{w−(σ + t, x) : σ ≤ −n}
= max{w−(σ, x) : σ ≤ −n+ t}
≥ max{w−(σ, x) : σ ≤ −n}
= un(−n, x) .

In consequence, the maximum principle implies that t 7→ un(t, x) is non-decreasing.

2. Using (5.16) and t = 1 we obtain

un(−n+ 1, x) ≥ max{w−(σ, x) : σ ≤ −n+ 1}
= un−1(−n+ 1, x).

Once again, the maximum principle yields

un(t, x) ≥ un−1(t, x) ∀t ∈ [−n+ 1, T ], ∀x ∈ R,

which implies that the sequence (un)n>−T is non-decreasing. �
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Lemma 5.5 Definition of the global solution
Define

u(t, x) := lim
n→∞

un(t, x). (5.17)

Then u(t, x) is a global, non-trivial solution of (5.8).

Proof : From Lemma 5.4 the sequence (un)n>−T is non-decreasing, and it is bounded from
above because

un(t, x) < 1 ∀n > −T.
Therefore, the limit (5.17) is well defined. Moreover, since the sequence (un)n>−T and the
coefficients in (5.8) are bounded, it follows that u(t, x) is a solution of (5.8) defined for (t, x) ∈
(−∞, T ]× R.

We claim that u(t, x) is non-trivial. Indeed, recall that w+(t, x) is supersolution and that
t 7→ w+(t, x) is increasing. Therefore,

w−(σ, x) ≤ w+(σ, x) ≤ w+(−n, x) ∀σ ≤ −n, ∀x ∈ R,

which implies that

un(−n, x) = max{w−(σ, x) : σ ≤ −n}
≤ w+(−n, x).

In consequence, the maximum principle implies that

w−(t, x) ≤ un(t, x) ≤ w+(t, x) ∀t ∈ [−n, T ], ∀x ∈ R.

Taking the limit n→ +∞ yields

w−(t, x) ≤ u(t, x) ≤ w+(t, x) ∀t ∈ (−∞, T ], ∀x ∈ R,

and hence u(t, x) is a non-trivial solution of (5.8).

Now notice that the coefficients of (5.8) are bounded. Therefore, we can use standard
parabolic estimates (e.g. Ladyženskaja et al [41]) to show that u(t, x) is in fact a globally
defined solution of (5.8). �

Theorem 5.2 Global solution for N
Suppose that f(s) is a bistable Lipschitz nonlinearity with Lipschitz constant K, and suppose

ρ is large enough such that
K < L := λ(c0 + ρ).

For any β ∈ (K,L) the reaction-diffusion equation (5.8) has a unique global solution u(t, x) such
that

0 < u(t, x) < 1 ∀(t, x) ∈ R
2
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and ∣∣∣∣u(t, x)− ϕ
(
x+ cN t

1 + ρ2

)∣∣∣∣ = O(eβt) when t→ −∞, uniformly in x ∈ R. (5.18)

In particular,

lim
t→−∞

∣∣∣∣u(t, x)− ϕ
(
x+ cN t

1 + ρ2

)∣∣∣∣ = 0 uniformly in x ∈ R, (5.19)

Furthermore, t 7→ u(t, x) is non-decreasing, and if the initial condition u0(x) is non-decreasing
then x 7→ u(t, x) is also non-decreasing.

Proof :

1. From Lemma 5.5 we have a global nontrivial solution u(t, x) of (5.8). Moreover, since v ≡ 0
and v ≡ 1 are solutions of (5.8) then the maximum principle implies that 0 < u(t, x) < 1.

2. By construction we have

lim
t→−∞

∣∣∣∣w
±(t, x)− ϕ

(
x+ cN t

1 + ρ2

)∣∣∣∣ = 0 uniformly in x ∈ R.

Therefore, since w−(t, x) < u(t, x) < w+(t, x) we deduce (5.19).

3. Let σ > 0. From Lemma 5.4 we have that t 7→ un(t, x) is non-decreasing, i.e.

un(t+ σ, x) ≥ un(t, x) ∀t ∈ [−n, T − σ], ∀x ∈ R.

Therefore, taking the limit n→ +∞ we obtain

u(t+ σ, x) ≥ u(t, x) ∀t ∈ (−∞, T − σ], ∀x ∈ R.

Finally, since both mappings t 7→ un(t, x) and t 7→ un(t, x) are globally defined, the
maximum principle yields

u(t+ σ, x) ≥ u(t, x) ∀(t, x) ∈ R
2.

4. Define v(t, x) := ∂xu(t, x). Then v(t, x) solves the equation

∂tv − a(x)∂xxv − [a′(x) + b(x)]∂xv + b′(x)v − f ′(u)v = 0 .

Recalling that u0(x) is increasing it follows that v0(x) ≥ 0 for all x ∈ R. In consequence,
the Maximum Principle yields

∂xu(t, x) = v(t, x) ≥ 0 ∀(t, x) ∈ R
2.

5. Using the same arguments as in Berestycki et al [9], Section 3, we can prove that condition
(5.18) ensures uniqueness of the solution. �
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5.3.3 Global solution for S

Theorem 5.3 Global solution for S
Suppose that f(s) is a bistable Lipschitz nonlinearity with Lipschitz constant K, and suppose

ρ is large enough such that
K < M := λ(ρ− c0).

For any β ∈ (K,M) the reaction-diffusion equation (5.8) has a unique global solution v(t, x)
such that

0 < v(t, x) < 1 ∀(t, x) ∈ R
2

and ∣∣∣∣v(t, x)− ϕ
(
x+ cSt

1 + ρ2

)∣∣∣∣ = O(eβt) when t→ −∞, uniformly in x ∈ R. (5.20)

In particular,

lim
t→−∞

∣∣∣∣v(t, x)− ϕ
(
x+ cN t

1 + ρ2

)∣∣∣∣ = 0 uniformly in x ∈ R, (5.21)

Furthermore, t 7→ v(t, x) is non-increasing, and if the initial condition u0(x) is non-decreasing
then x 7→ v(t, x) is also non-decreasing.

Proof : The same arguments in the proof of Theorem 5.2 hold here as well. Indeed:

1. If we define

p±(t, x) := ϕ

(
x+ cSt

1 + ρ2

)
± eβt

and we take a careful look at the proof of Theorem 5.2 we can see that it holds for p±(t, x),
provided β ∈ (K,M). Therefore, p+ is a supersolution (resp. p− is a subsolution) of (5.8)
for all (t, x) ∈ (−∞, T ]× R.

2. Define
vn(t, x) := min{p+(σ, x) : σ ≤ n}.

Following the proofs of Lemmas 5.3 and 5.4, it can be shown that

• There exists a non-trivial solution vn(t, x) of (5.8) for all (t, x) ∈ [−n, T ]× R.

• The mapping t 7→ vn(t, x) is non-increasing.

• The sequence (vn)n>−T is non-increasing.

3. In the light of the former properties, it can be shown that (see Lemma 5.5)

v(t, x) := lim
n→+∞

vn(t, x)

is a global, nontrivial solution of (5.8). Moreover, the mapping t 7→ v(t, x) is non-
increasing, and if the initial condition v0(x) is non-decreasing then x 7→ v(t, x) is non-
decreasing (see Theorem 5.2).

4. From the definition of p± it follows that v(t, x) satisfies (5.20) and (5.21), and applying
the results of Berestycki et al [9], Section 3, it can be proven that it is unique. �
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5.3.4 Steady-state solutions and blocking of the waves

Theorem 5.4 Steady-state solutions

If we define

u∞(x) := lim
t→+∞

u(t, x), v∞(x) := lim
t→+∞

v(t, x).

then u∞(x) and v∞(x) are steady-state solutions of (5.8) satisfying

0 < u(t, x) ≤ u∞(x) ≤ v∞(x) ≤ v(t, x) < 1 ∀(t, x) ∈ R
2. (5.22)

Proof :

1. Recall that t 7→ u(t, x) is non-decreasing and bounded from above by 1. Therefore, the
limit

u∞(x) := lim
t→+∞

u(t, x)

is well-defined and satisfies

0 < u(t, x) ≤ u∞(x) ≤ 1 ∀(t, x) ∈ R
2. (5.23)

Similarly, since t 7→ v(t, x) is non-increasing and bounded from below by 0 it follows that

v∞(x) := lim
t→+∞

v(t, x)

is well-defined and satisfies

0 ≤ v∞(x) ≤ v(t, x) < 1 ∀(t, x) ∈ R
2. (5.24)

Now notice that the coefficients of (5.8) are uniformly bounded. Therefore, we can use
standard parabolic estimates to show that both u∞(x) and v∞(x) are steady-state solutions
of (5.8).

2. Let C be an arbitrary compact subset of R. Then

lim
t→−∞

p+(t, x) = ϕ(+∞) = 1 and lim
t→−∞

w−(t, x) = ϕ(−∞) = 0 uniformly in C.

Therefore, there exists T < 0 such that

p+(t, x) >
1

2
> w−(t, x) ∀(t, x) ∈ (−∞, T ]× C.

In consequence, if n > −T and x ∈ C then

vn(−n, x) = min{p+(σ, x) : σ ≤ −n}
≥ max{w−(σ, x) : σ ≤ −n}
= un(−n, x).
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Using the maximum principle we obtain

vn(t, x) ≥ un(t, x) ∀(t, x) ∈ [−n, T ]× C,

and taking the limit n→ +∞ it follows that

v(t, x) ≥ u(t, x) ∀(t, x) ∈ (−∞, T ]× C.

Now recall that u and v are both global solutions of (5.8). Hence, from the maximum
principle we can infer that

v(t, x) ≥ u(t, x) ∀(t, x) ∈ R× C.

Therefore, taking the limit t→ +∞ and using (5.23) and (5.24) we obtain

0 < u(t, x) ≤ u∞(x) ≤ v∞(x) ≤ v(t, x) < 1 ∀(t, x) ∈ R× C.

Finally, C being arbitrary it follows that (5.22) holds. �

5.4 Discussion

We have proven the existence of two generalised travelling waves, which move in opposite di-
rections and mutually block. This is an important mathematical result per se because it illus-
trates the pertinence of a general definition of a travelling wave beyond the classical framework
u(t, x) = ϕ(x− ct), even in the case of regular and bounded coefficients.

From the biological point of view, we managed to show that the reaction-diffusion model
is good enough to produce calcium waves, which travel from the north pole to the south pole,
whose velocities decrease as they advance, and that eventually stop before reaching the south
pole. This is good news because we recovered the qualitative properties of the experiments
form the original reaction-difusion equation without adding new equations (as it is done in the
mechano-chemical models).

It is important to remark that the boundedness of the coefficients was of crucial in the proofs
we used, which were based on sub- and super-solutions and in the asymptotic behaviour of the
waves as |t| → ∞. In that regard, the original problem with unbounded coefficients was not
completely solved. We plan to study the behaviour of the generalised travelling waves as ρ→∞
in further projects.



Chapter 6

Travelling waves on the sphere
Work in collaboration with Henri Berestycki and François Hamel. To be submitted.

In the previous chapter we projected the equation from the sphere to the real line, but now we will
work directly on the sphere. We consider the classical reaction-diffusion equation with bistable
nonlinearity on two domains, a truncated sphere with non-homogeneous Dirichlet boundary
conditions and the whole sphere with no boundary conditions.

On the truncated sphere we prove that (1) if the nonlinearity is strong enough there are
non-trivial solutions of the elliptic problem, (2) there is a nontrivial solution of the parabolic
problem that is strictly increasing in time, i.e. a generalised travelling wave, and (3) the travel-
ling wave is blocked by the non-trivial elliptic solution. On the whole sphere we prove that (1)
there are non-trivial solutions of the elliptic problem and (2) depending on the initial conditions,
the solution u(t, x) can converge or not to the stable states 0 and 1. In particular, when the
solution does not converge to 0 or 1 we have that (1) this solution cannot invade the whole
sphere, (2) it does not vanish, and (3) if it converges then its convergence is non-monotonic.

Our results on both domains (the truncated and the whole sphere) evidence that having
solution that does not invade the whole domain depends on the geometry of the sphere, the
strength of the nonlinearity (measured in terms of λ) and the initial conditions.

6.1 Elliptic equation on the truncated sphere

Let us consider the sphere S
2 ⊂ R

3 with spherical co-ordinates

0 ≤ θ ≤ π , 0 ≤ ϕ < 2π .

We will denote M a truncated sphere (see Figure 6.1):

M = {x = (θ, ϕ) : δ < θ ≤ π 0 ≤ φ < 2π} , ∂M = {θ = δ}.

OnM we will study the nonlinear elliptic equation
{
−∆u = λf(u) onM,

u = 1 on ∂M,
(6.1)

113
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Figure 6.1: Truncated sphere.

where λ > 0 and f is bistable (see Figure 6.2):

• f(0) = 0 and f ′(0) < 0.

• f(1) = 0 and f ′(1) < 0.

• There exists α ∈ (0, 1) such that f(α) = 0, f ′(α) > 0, f(s) < 0 for any s ∈ (0, α) and
f(s) > 0 for any s ∈ (α, 1).

• We extend f on R \ [0, 1] in a C1
B fashion. More precisely, we will assume that there exist

β1 < 0 and β2 > 1 such that :

– f(s) ≡ 0 for s ∈ R \ (β1, β2).

– f(s) > 0 for s ∈ (β1, 0].

– f(s) < 0 for s ∈ (1, β2].

Equation (6.1) is the Euler-Lagrange equation of the functional

Jλ(u) =
1

2

∫

M
|∇u|2 dx− λ

∫

M
F (u) dx , F (z) :=

∫ z

0
f(s) ds , (6.2)

defined on
{u ∈ H1(M) : u = 1 on ∂M} .

It is worth to notice that F (0) = 0,

F (1) =

∫ 1

0
f(s) ds

and the only constant solution of (6.1) is u ≡ 1. In order to have a problem defined on H1
0 (M)

we use the following change of variables:

w := 1− u , g(s) := −f(1− s) .
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Figure 6.2: Bistable nonllinearity f(s).

Under this framework, equation (6.1) becomes
{
−∆w = λg(w) onM,

w = 0 on ∂M,
(6.3)

where g is bistable and shares the same properties of f , except that its zero on (0, 1) is 1 − α.
The associated functional is

Iλ(w) =
1

2

∫

M
|∇w|2 dx− λ

∫

M
G(w) dx , G(z) :=

∫ z

0
g(s) ds . (6.4)

Notice that G(0) = 0, G(1) = −F (1) and the only constant solution of (6.3) is w ≡ 0.

6.1.1 Trivial solutions

Theorem 6.1 There exists λ > 0 such that for any λ < λ the only solution of (6.3) is w ≡ 0.

Proof : Let w be a solution of (6.3). On the one hand, from (6.3) we have
∫

M
|∇w|2 dx = λ

∫

M
g(w)w dx .

Therefore, since g is Lipschitz, it follows that
∫

M
|∇w|2 dx ≤ λK

∫

M
w2 dx , (6.5)

where K > 0 is the Lipschitz constant of g. On the other hand, if µ1 is the first eigenvalue of
the Dirichlet problem 




−∆φ = µ1φ onM,
φ = 0 on ∂M,
φ > 0 onM\ ∂M,
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then we have Rayleigh’s formula (see Evans, Theorem 2, p. 336)

0 < µ1 = min

{ ∫
M |∇w|2 dx∫
Mw2 dx

: w ∈ H1
0 (M) , v 6≡ 0

}
.

Therefore,

µ1

∫

M
w2 dx ≤

∫

M
|∇w|2 dx . (6.6)

Combining (6.5) and (6.6) we get

µ1

∫

M
w2 dx ≤ λK

∫

M
w2 dx .

In consequence, if λ < λ := µ1/K then necessarily w ≡ 0. �

Observe that λ does not depend on the solution w of (6.3). Moreover, the argument in
the proof of Theorem 6.1 relies on having a positive first eigenvalue for the Laplace-Beltrami
operator on M. Therefore, we cannot extend this result (at least with the current proof) for
either Neumann conditions or the whole sphere S

2.

Theorem 6.2 If G(1) ≤ 0 and λ > 0 then w ≡ 0 is the unique global minimum of (6.4).

Proof : If G(1) ≤ 0 and λ > 0 then −λG(z) has a minimum at z = 0. In consequence, w ≡ 0
is the unique minimum of (6.4). �

6.1.2 Non-trivial solution: variational approach

Theorem 6.3 If G(1) > 0 there exists λ♯ > 0 such that for any λ > λ♯ we have at least one
non-trivial solution of (6.3).

Proof : Since g(s) is Lipschitz continuous of constant K then

s 7→ h(s) := Ks+ g(s)

is monotone non-decreasing on [0, 1]. We extend the function h as h ≡ 0 on R \ [0, 1]. Define
the operator

Lλw := −∆w + λKw

It is easy to see that w is solution of (6.3) if and only if it is a solution of

{
Lλw = λh(w) onM,

w = 0 on ∂M.
(6.7)

Define w0 ≡ 1 and let w1 be a solution of

{
Lλw1 = λh(w0) onM,

w1 = 0 on ∂M.
(6.8)
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Using the maximum principle we obtain 0 ≤ w1 ≤ w0, and the strong maximum principle gives
w1 < 1 onM. Recursively, given 0 ≤ wn ≤ 1 define wn+1 as the solution of

{
Lλwn+1 = λh(wn) onM,

wn+1 = 0 on ∂M.
(6.9)

Since h is non-decreasing, it follows from the maximum principle that the sequence {wn}n∈N is
non-increasing and bounded from below, hence it converges (both pointwise and in H1

0 (M)) to
a solution 0 ≤ w(λ) ≤ 1 of (6.7). Furthermore, wλ is the maximal solutions of (6.7). Indeed, if φ
is also a solution then the maximum principle implies 0 ≤ φ ≤ 1 = w0. Applying the maximum
principle again we obtain by recurrence that 0 ≤ φ ≤ wn for all n ∈ N. Therefore, in the limit
we obtain 0 ≤ φ ≤ w(λ). Define

I1(w) :=
1

2

∫

M
|∇w|2 dx , I2(λ,w) := −λ

∫

M
G(w) dx ,

that is Iλ(w) = I1(w) + I2(λ,w). Since G is Lipschitz continuous then there exists a constant
C > 0 such that

|I2(λ,w)| ≤ λCI1(w)1/2 ∀w ∈ H1
0 (M) .

In consequence,

Iλ(w) ≥ I1(x)− λCI1(w)1/2 ,

which implies that there exists a constant C > 0 such that if ‖w‖H1
0
(M) ≥ R(λ) := Cλ then

Iλ ≥ 1. Define

Zλ :=
{
w ∈ H1

0 (M) : ‖w‖H1
0
(M) ≤ R(λ)

}
,

which is a bounded, convex, closed subset of H1
0 (M). It can be shown that the functional Iλ(w)

is coercive and weakly lower semi-continuous. In consequence, Iλ has a minimum w̃(λ) ∈ Zλ .
Moreover, since Iλ(0) = 0 and Iλ(w) ≥ 1 on ∂Zλ, it follows that w̃(λ) ∈ Int(Zλ). Therefore,
w̃(λ) is a weak solution of (6.3). Since G(1) > 0, we can find φ0 ∈ H1

0 (M) such that

∫

M
G(φ0) dx > 0.

Therefore, if λ > 0 is sufficiently large then φ0 ∈ Zλ and Iλ(φ0) < 0, which implies that w̃ 6≡ 0.
Observe that λ 7→ R(λ) is non-decreasing and for any φ ∈ H1

0 (M) the mapping λ 7→ Iλ(φ) is
decreasing. Therefore, if φ ∈ Zλ and Iλ(φ) < 0 then φ ∈ Zµ and Iµ(φ) < 0 for all µ > λ. In
conclusion, if we define

λ♯ := inf

{
λ > 0 : min

H1
0
(M)

Iλ < 0

}

then for any λ > λ♯ we have a solution w̃(λ) of (6.3) such that w̃((λ) 6≡ 0. Therefore, the
maximal solution w(λ) that we constructed before is non-trivial. �
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6.1.3 Pair of non-trivial solutions: topological approach

Theorem 6.4 If G(1) > 0 then there exists λ♭ > 0 such that for any λ > λ♭ we have a pair of
distinct, non-trivial solutions of (6.3).

The proof of Theorem 6.4 will be done in several steps. Define

Γ+ := {s ∈ R : g(s) > 0} = (0, 1− α) ,

Γ− := {s ∈ R : g(s) < 0} = (1− α, 1) ,

and let T be the set of functions θ ∈ C1
B(R) such that θ ≥ 1/2 on R, θ < 1 on Γ+, θ > 1 on Γ−

and θ = 1 on R \ (0, 1). For any θ ∈ T define

Iλ(θ, w) =
1

2

∫

M
|∇w|2 dx− λ

∫

M
Gθ(w) dx , Gθ(z) :=

∫ z

0
θ(s)g(s) ds . (6.10)

Using Lebesgue’s dominated convergence theorem, if θ ∈ T is such that ‖1− θ‖L∞(M) is small
enough then Gθ(1) > 0. Therefore, we can apply Theorem 6.3 to the functional Iλ(θ, ·) to ensure
that there exists λ♭ = λ♭(θ) > 0 such that for any λ > λ♭ there exists a maximal, non-trivial
solution y(λ) of {

−∆y = λθ(y)g(y) onM,
y = 0 on ∂M.

(6.11)

Since θ(z)g(z) ≤ g(z) for all z ∈ R and the inequality is strict on Γ+∪Γ−, it follows that y(λ)
is a strict sub-solution of (6.3) for any λ > λ♭. As in the proof of Theorem 6.3, we canconstruct
an increasing sequence {zn}n∈N that converges to a solution of (6.3). We start with z0 = y(λ)
and recursively define {

Lλzn+1 = λh(zn) onM,
zn+1 = 0 on ∂M.

(6.12)

In the limit we obtain a solution of (6.3), that we will denote z(λ). Recall that w1(λ) (as
defined in the proof of Theorem 6.3) is the solution of (6.8), which implies that it is a strict
super-solution of (6.3). In consequence, applying the strong maximum principle and Hopf’s
lemma we obtain

0 < y(λ) < z(λ) < w1(λ) < 1 on M,

0 > ∂νy(λ) > ∂νz(λ) > ∂νw1(λ) on ∂M.

Using Schauder estimates, it can be shown that for every λ ≥ 0 there exists a constant q(λ) > 0
such that for any U ∈ L∞(M) with ‖U‖L∞(M) ≤ K + 1, the solution V of the problem

{
LλV = λU onM,
V = 0 on ∂M,

(6.13)

satisfies ‖U‖C1,β(M) ≤ q(λ) for any β ∈ (0, 1). We consider the space

E = {u ∈ C1(M) : u = 0 on ∂M}



Chapter 6. Travelling waves on the sphere

Work in collaboration with Henri Berestycki and François Hamel. To be submitted. 119

and define the operator T : R×E→ E as the unique solution v = T (λ, u) of the linear equation

{
Lλv = λh(u) onM,

v = 0 on ∂M.
(6.14)

For any λ > λ♭ define Aλ as the set of all functions φ ∈ E such that

y(λ) < φ < w1(λ) onM,

∂νy(λ) > ∂νφ > ∂νw1(λ) on ∂M, and

‖φ‖C1,β(M) < q(λ) .

It is easy to see that Aλ is an open, bounded, convex subset of E. Choose any φ ∈ Aλ. Since
y(λ) (resp. w1(λ)) is a strict, nontrivial sub-solution (resp. super-solution) of (6.3), the strong
maximum principle and the monotonicity of s 7→ h(s) yield

y(λ) < T (λ, y(λ) ≤ T (λ, φ) ≤ T (λ,w1(λ)) < w1(λ) onM,

∂νy(λ) > ∂νT (λ, y(λ) ≥ ∂νT (λ, φ) ≥ ∂νT (λ,w1(λ)) > ∂νw1(λ) on ∂M
and ‖h(φ)‖L∞(M) ≤ K+1. Therefore ‖T (λ, φ)‖C1(M) < q(λ), which implies that T (λ,Aλ) ⊂ Aλ.

Moreover, from Schauder estimates it follows that T (λ,Aλ) is compact in E.

Define Φ(λ, u) := u − T (λ, u). Since T (λ, ·) has no fixed point on ∂Aλ then Φ(λ, u) 6= 0 on
∂Aλ for all λ > λ♭. Therefore, its Leray-Schauder degree

deg (Φ(λ, ·), Aλ, 0)

is well defined. Choose a ∈ Aλ and for t ∈ [0, 1] define

Ψt(λ, u) := t [u− T (λ, u)] + (1− t) [u− a] .

We claim that Ψt(λ, u) 6= 0 on ∂Aλ. Indeed, Ψ1(λ, u) = Φ(λ, u), which does not vanish on ∂Aλ.
On the other hand, Ψ0(λ, u) = u− a, which it has no zeroes on ∂Aλ. Finally, if t ∈ (0, 1) then
from the convexity of Aλ it follows that

t T (λ, u) + (1− t)a ∈ Aλ .

Therefore, Ψt(λ, u) 6= 0 on ∂Aλ. In consequence, the degree

deg (Ψt(λ, ·), Aλ, 0)

is well defined and constant for t ∈ [0, 1]. But since

deg (Ψ0(λ, ·), Aλ, 0) = 1

it follows that

deg (Φ(λ, ·), Aλ, 0) = 1 .
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In conclusion, Φ(λ, ·) has a zero in Aλ, which is equivalent to a non-trivial solution z♭(λ) of
(6.3).

Now we will find a second, non-trivial solution of (6.3). Since g ∈ C1
B(R) then G ∈ C2

B(R),
which implies that for any z ∈ R we have

G(z) = G(0) +G′(0) z +
G′′(0)

2
z2 + o(z2) =

g′(0)

2
z2 + o(z2) .

Moreover, from the regularity of G it follows that the functional

G : H1
0 (M)→ R , G(w) =

∫

M
G(w) dx

is a C2-functional. In consequence, for any φ ∈ H1
0 (M) we have that

G(φ) =
g′(0)

2

∫

M
|φ|2 dx+ o

(
‖φ‖2H1

0
(M)

)
.

Therefore, Iλ : H1
0 (M)→ R is a C2-functional, which implies that for any φ ∈ H1

0 (M) small we
have

Iλ(φ) =
1

2

∫

M
|∇φ|2 dx− λg′(0)

2

∫

M
|φ|2 dx+ o

(
‖φ‖2H1

0
(M)

)
.

Since g′(0) < 0 then Iλ(·) is equivalent to the norm in H1(M) for φ small. In consequence, if
ρ > 0 is sufficiently small and φ ∈ H1

0 (M) is a solution of (6.3) such that ‖φ‖H1
0
(M) ≤ ρ then

necessarily we have φ ≡ 0.

Fix λ > λ♭ and define

P+ := {φ ∈ E : φ > 0 inM and ∂νφ < 0 on ∂M} ,
B(λ) :=

{
(µ, φ) ∈ [0, λ]× P+ : ρ < ‖φ‖C1(M) < q(µ)

}
,

Bµ(λ) := {φ ∈ E : (µ, φ) ∈ B(λ)} .

Let ∂B(λ) the topological boundary of B(λ) in the space [0, λ]×E. Since Φ(·, ·) does not vanish
on ∂B(λ) and the degree is constant under homotopy, it follows that

deg (Φ(µ, ·), Bµ(λ), 0)

is well-defined and constant for any µ ∈ [0, λ]. However, if µ is small enough then Theorem 6.1
implies that the only zero of Φ(µ, u) is u ≡ 0, which lies outside of Bµ(λ). Therefore,

deg (Φ(µ, ·), Bµ(λ), 0) = 0 ∀µ ∈ [0, λ] ,

and in particular
deg (Φ(λ, ·), Bλ(λ), 0) = 0 .

Using the additive and excision properties of the degree it follows that

deg (Φ(λ, ·), Bλ(λ) \ Aλ, 0) = −deg (Φ(λ, ·), Aλ, 0) = −1 .

Therefore, there exists a nontrivial solution z♯(λ) of (6.3) such that z♯(λ) 6≡ z♭(λ). �



Chapter 6. Travelling waves on the sphere

Work in collaboration with Henri Berestycki and François Hamel. To be submitted. 121

Lemma 6.1 Let θ ∈ T and denote Iλ(w) and Iλ(θ, w) the functionals associated to the nonlinear
elliptic equations (6.3) and (6.11) (resp.). Define

A♭(θ) :=

{
λ > 0 : min

H1
0
(M)

Iλ(θ, ·) < 0

}
, λ♭(θ) := inf A♭(θ) ,

A♯ :=

{
λ > 0 : min

H1
0
(M)

Iλ(·) < 0

}
, λ♯ := inf A♯ .

Then

1. λ♭(θ) ≤ λ♯.

2. Given ε > 0 there exists θ(ε) ∈ T such that λ♯ ≤ λ♭(θ(ε)) + ε.

Proof :

1. Let λ ∈ A♭(θ) and let y ∈ H1
0 (M) be the global minimum of Iλ(θ, ·). Then Iλ(θ, y) < 0

and y is a non-trivial solution of (6.3) such that 0 ≤ y ≤ 1. Moreover,

Iλ(θ, y)− Iλ(y) = λ

∫

M
[G(y)−Gθ(y)] dx (6.15)

= λ

∫

M

∫ y

0
[1− θ(s)]g(s) ds dx ≥ 0 .

Therefore Iλ(y) ≤ Iλ(θ, y) < 0, which implies that λ ∈ A♯.

2. Let λ ∈ A♭(θ), denote u ∈ H1
0 (M) the global minimum of Iλ(·) and consider a sequence

{θn}n∈N ⊂ T such that

‖1− θn‖L∞(M) ≤
1

n
.

For any n ∈ N and x ∈M define

Gn(x) :=

∫ u(x)

0
[1− θn(s)]g(s) ds .

Then Gn ≥ 0, Gn ∈ C0(M) and there exists a constant C > 0 such that

‖Gn‖L∞(M) ≤
C

n
.

Therefore, using Lebesgue’s dominated convergence theorem if follows that

lim
n→∞

∫

M
Gn(x) dx = 0 . (6.16)

Since Iλ(u) < 0 then if ε > 0 is small enough we have Iλ(u) + ε < 0. In consequence,
choosing n large enough we obtain that

Iλ(θn, u) < Iλ(u) + ε < 0 ,

which implies that λ ∈ A♭(θn). �
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Theorem 6.5 Let λ♭ and λ♯ be as in Theorems 6.3 and 6.4, respectively. Then λ♭ = λ♯.

Proof : Notice that in the definition of λ♭ given in the proof of Theorem 6.4, the function
θ ∈ C1

B(R) can be chosen arbitrarily as long as θ ∈ T is close enough to θ ≡ 1 in the L∞(R)
norm. Therefore, if we choose a sequence {θn}n∈N ⊂ T such that

lim
n→∞

‖1− θn‖L∞(M) = 0

then using Lemma 6.1 we obtain the result. �

From Theorems 6.3 - 6.5 it follows that λ♭ is a pitchfork bifurcation point for the elliptic
problem (6.3) because, if there exists one non-trivial solution then there is a second, different
non-trivial solution. More precisely, choosing

λ♭ = inf{λ > 0 : (6.3) has a non-trivial solution}

then for λ < λ♭ the only solution is w ≡ 0 whilst for λ > λ♭ we have two distinct, non-trivial
solutions.

6.2 Reaction-diffusion equations on the truncated sphere

Let λ > λ♭(= λ♯) and let z♭(x) a non-trivial solution of the elliptic problem (6.3). Then
u⋆(x) := 1− z♭(x) is a non-trivial solution of (6.1). The next theorem shows that the problem





∂tu = ∆u+ λf(u) in (0,∞)×M,
u = 1 on (0,∞)× ∂M,

u(0, x) = 0 for all x ∈M,
(6.17)

admits a generalised travelling wave solution u(t, x), strictly increasing in time, which is blocked
by the non-trivial solution u⋆(x).

Theorem 6.6 There is a non-trivial solution u(t, x) of (6.17) such that t 7→ u(t, x) is strictly
increasing, 0 < u(t, x) ≤ u⋆(x) for all t > 0 and

lim
t→∞

u(t, x) ≤ u⋆(x) ∀x ∈M .

Proof : Observe that u ≡ 0 and u⋆ are strict sub-solution and super-solution of (6.17), respec-
tively. Therefore, the strong maximum principle implies that there exists a solution u(t, x) of
(6.17) such that 0 < u(t, x) < u⋆(x) for all t > 0. Moreover, t 7→ u(t, x) is increasing. Indeed,
if we differentiate (6.17) we obtain that ∂tu(t, x) solves a linear equation with non-negative ini-
tial and boundary conditions . Therefore, from the strong maximum principle it follows that
∂tu(t, x) > 0 for all (t, x) ∈ (0,∞)×M. �
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6.3 Elliptic equation on the N-sphere

Consider the elliptic nonlinear equation

−∆u = λf(u) on S
N ⊂ R

N+1. (6.18)

where f ∈ C1
B(R) is a bistable nonlinearity with the same properties as in Section 6.1.

6.3.1 Trivial solutions

Lemma 6.2 There exists λ0 > 0 such that for any λ < λ0 the only constant solutions of (6.18)
are 0, α and 1.

Proof : Suppose that the conclusion is false. Then there exist a decreasing sequence λn → 0
and a sequence of non-constant solutions 0 < un < 1 such that the pair (λn, un) is a solution of
(6.18). From (6.18) it follows that

lim
n→∞

∫

SN

|∇un|2 dx = 0 .

Therefore, up to a sub-sequence we can suppose that un converges in H1(SN ) to a constant
ρ ∈ [0, 1]. Moreover, using standard elliptic estimates and regularity results, it follows that
un → ρ in C1(SN ). In consequence, since f is Lipschitz we obtain

lim
n→∞

f(un) = f(ρ).

But integrating (6.18) on S
N we obtain

∫

SN

f(un) = 0 ∀n ∈ N . (6.19)

In consequence, f(ρ) = 0, which implies that ρ ∈ {0, α, 1}. However, if ρ 6= α then for n suf-
ficiently large we would have either 0 < un(x) < α or α < un(x) < 1, which would contradict
(6.19). Therefore ρ = α.

If we write un = kn + vn where

kn :=

∫

SN

un dx and

∫

SN

vn dx = 0 ,

then kn → α and vn → 0 in C1(SN ). From (6.18) we deduce that vn is solution of

−∆vn = λnf(kn) + λn[ f(kn + vn − f(kn) ] . (6.20)

Using standard elliptic estimates and Poincaré-Wirtinger inequality it can be shown that

‖vn‖L∞(SN ) ≤ λn|f(kn)|+ λnK‖vn‖L∞(SN ) ,
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which implies that

‖vn‖L∞(SN ) ≤
λn

1−Kλn
|f(kn)| .

Since un is not constant then ‖vn‖L∞(SN ) > 0 and f(kn) 6= 0 for all n ∈ N. In consequence,

lim
n→∞

‖vn‖L∞(SN )

f(kn)
= 0 .

Define
wn :=

vn

λnf(kn)
.

Then wn is solution of

−∆wn = 1 +An(x) , An(x) :=
f(kn + vn)− f(kn)

f(kn)
. (6.21)

On the one hand, since

lim
n→∞

|An(x)| ≤ lim
n→∞

K‖vn‖L∞(SN )

|f(kn)
= 0 ,

we have that

lim
n→∞

∫

SN

An dx = 0 .

But on the other hand, integrating (6.21) we obtain

|SN |+
∫

SN

An dx = 0 ∀n ∈ N ,

which is a contradiction. �

The proof of Lemma 6.2, albeit non-constructive, holds for any arbitrary manifold without
boundary.

Lemma 6.3 Let ϕ be any spherical angle in the parametrisation of S
N . Then ∂ϕ and the

Laplace-Beltrami operator commute.

Proof : For N = 1 the Riemannian metric is gij = [1], which implies that the Laplace-Beltrami
is constant, and as such it commutes with the angular derivative.

For N = 2, we choose the spherical coordinates (ϕ, θ) such that ϕ ∈ (0, 2π) is the horizontal
angle and θ ∈ (0, π) is the vertical angle. Then the Riemanian metric is

gij =

(
sin2 θ 0

0 1

)
.

Therefore, the coefficients of the Laplace-Beltrami operator do not depend on the horizontal an-
gle ϕ, which implies that the partial derivative ∂ϕ commutes with the Laplace-Beltrami operator.
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For N ≥ 3, we use the parametrisation

x1 = cosϕ1 ,

x2 = sinϕ2 cosϕ2 ,

x3 = sinϕ2 sinϕ2 cosϕ3 ,
...

xN = sinϕ2 sinϕ2 · · · sinϕN−1 cosϕN ,

xN+1 = sinϕ2 sinϕ2 · · · sinϕN−1 sinϕN ,

where (ϕ1, . . . , ϕn) ∈ (0, π)N−1 × (0, 2π). Then the Riemannian metric is

gij =




1 0 0 · · · 0
0 sin2 ϕ1 0 · · · 0
0 0 sin2 ϕ1 sin2 ϕ2 · · · 0

. . .

0 0 0 · · · sin2 ϕ1 sin2 ϕ2 · · · sin2 ϕN−1



,

which implies that the coefficients of the Laplace-Beltrami operator are independent of the angle
ϕN . Therefore, choosing ϕ = ϕN we obtain that ∂ϕ and the Laplace-Beltrami operator com-
mute. �

Theorem 6.7 There exists λ > 0 such that for any λ < λ the only solutions of (6.18) are
constant.

Proof : Let u be a solution of (6.18) and let ϕ be any spherical angle. Differentiating (6.18)
and using Lemma 6.3 we find that ∂ϕu satisfies the equation

−∆∂ϕu = λf ′(u)∂ϕu .

Integrating by parts we find
∫

S2

|∇ (∂ϕu) |2 dx = λ

∫

S2

f ′(u)|∂ϕu|2 dx .

Moreover, since ∫

SN

∂ϕu dx = 0

it follows that

µ2

∫

SN

|∂ϕu|2 dx ≤ λK
∫

SN

|∂ϕu|2 dx .

where µ2 is the first non-zero eigenvalue of the Laplace-Beltrami operator satisfying the minimax
relation

µ2 = inf

{∫
SN |∇u|2 dx∫

SN u2 dx
: u ∈ H1(SN ),

∫

SN

u dx = 0

}
.
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Therefore, if λ < λ := µ2/K then ∂ϕu ≡ 0. But since ϕ was an arbitrary spherical angle then u
is constant. �

The proof of Theorem 6.7 is constructive and gives an explicit interval [0, λ) for which there
only solutions of (6.18) are constant. However, it only holds for the N -sphere because it relies
strongly on the invariance under rotations.

6.3.2 Stability of solutions

Definition 6.4 Let u be a solution of (6.18). We say that u is stable if

∫

SN

{
|∇w|2 − λf ′(u)w2

}
dx ≥ 0 ∀w ∈ H1(SN ) . (6.22)

Property (6.22) is equivalent to say that the first eigenvalue µ1(u) of the operator

w 7→ −∆w − λf ′(u)w

satisfies µ1(u) ≥ 0.

Theorem 6.8 Let u be a solution of (6.18). If u is stable then it is constant and u ∈ R \ (0, 1).

Proof : Let u be a stable solution of 6.18 and ϕ any spherical angle. Using Lemma 6.3 it follows
that

−∆∂ϕu− λf ′(u)∂ϕu = 0 ,

and in consequence ∫

SN

{
|∇ (∂ϕu) |2 − λf ′(u)|∂ϕu|2

}
dx = 0 .

Therefore ∂ϕu is an eigenfunction associated to the first eigenvalue, which implies that ∂ϕu ≥ 0.
However, since ∫

SN

∂ϕu dx = 0

we necessarily have ∂ϕu ≡ 0. Finally, since ϕ was arbitrary then u is constant. Moreover, if u
is stable then

{x ∈ S
N : f ′(u(x)) > 0 } = ∅ .

In particular, if u ≡ c is a constant solution on (0, 1) then c = α and u ≡ α is unstable. �

Theorem 6.8 has been proven by Casten and Holland [12] and Matano [46] in the case of
an Euclidean convex domain with homogeneous Neumann boundary conditions. As far as we
know, Theorem 6.8 is a new result on manifolds.
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6.3.3 Non-trivial solutions

Theorem 6.9 There exists λ♭ > 0 such that for any λ > λ♭ we have at least one non-trivial
solution u⋆(x) of (6.18) such that 0 < u⋆ < 1.

Proof : If u is solution of (6.18) then w := 1− u is solution of

−∆u = λg(u) , (6.23)

where g(s) := −f(1− s) and

G(z) :=

∫ z

0
g(s) ds .

Since G(1) = −F (1), without loss of generality we can suppose that F (1) ≥ 0. Define

Γ :=
{
γ ∈ C

(
[0, 1];H1

0 (SN )
)

: γ(0) = 0, γ(1) = 1
}
,

c(λ) := inf
γ∈Γ

max
0≤t≤1

Iλ(γ(t)) .

Suppose that F ∈ C2
B(R). Therefore, for any z ∈ R small we have

F (z) = F (0) + F ′(0)z +
F ′′(0)

2
z2 + o

(
z2

)
=
f ′(0)

2
z2 + o

(
z2

)
.

This implies that Iλ : H1(SN )→ R is a C2 functional. Therefore, for any φ ∈ H1(SN ) small we
have

Iλ(φ) =
1

2

∫

SN

|∇φ|2 dx− λg′(0)

2

∫

SN

|φ|2 dx+ o
(
‖φ‖2H1(SN )

)
.

Therefore, using that g′(0) < 0 it follows that Iλ(·) is equivalent to the norm in H1(SN ) near
zero, i.e. there exist a > 0 and η > 0 such that Iλ(w) ≥ a whenever ‖w‖H1(SN ) ≤ η. On the

other hand, Iλ(1) = −λF (1)|S2| ≤ 0, and it is easy to show (see e.g. Evans [18], p. 482) that
Iλ(·) satisfies the Palais-Smale condition. Therefore, applying the Mountain Pass Theorem we
obtain a critical point u⋆ ∈ H1(SN ) of Iλ(·) such that Iλ(u⋆) = c(λ) ≥ a, i.e. a solution of (6.18)
different from u ≡ 0 and u ≡ 1.

In order to show that u0 6≡ α, observe that Iλ(α) = −λF (α) > 0, hence Iλ(α) grows linearly
in λ. On the other hand, as it will be shown in Lemma 6.5, c(λ) grows as

√
λ. In consequence,

there exists λ♭ > 0 such that for any λ > λ♭ we have Iλ(u0) = c(λ) < Iλ(α).

To finish we have to prove that 0 < u⋆ < 1. By regularity we have that u⋆ ∈ C(SN ), hence
it attains its minimum at x0. In consequence ∆u⋆(x0) ≥ 0, which implies that f(u⋆(x0)) ≤ 0,
and it follows that u(x0) ≤ β1 or u(x0) ≥ 0. Suppose u(x0) ≤ β1. Then v(x) := u(x) − β1 is a
non-negative solution of the linear equation

−∆v = λb(x)v , b(x) =

{
f ′(β1) if u(x) = β1,
f(u(x))−f(β1)

u(x)−β1
if u(x) 6= β1.
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From Harnack’s Inequality, for any open neighbourhood U there exists C = C(U) > 0 such that

0 ≤ sup
U
v ≤ C inf

U
v ,

and S
N being compact then

0 ≤ sup
SN

v ≤ C inf
SN
v .

In consequence, since v(x0) = 0 it follows than v ≡ 0, which contradicts the fact that u⋆ is
non-trivial. Therefore u⋆(x) ≥ u⋆(x0) > β1 for all x ∈ S

N . Repeating the previous argument
several times it can be shown that 0 < u⋆ < 1. �

Notice that we have used the notation λ♭ in both the truncated sphereM and the N -sphere
S

N . We did so in order to stress that in both cases λ♭ is the potential first bifurcation point.
However, it is a slight abuse of notation: we invite the reader to bear in mind that λ♭ = λ♭(M)
and λ♭ = λ♭(SN ) are not necessarily equal.

Lemma 6.5 There is a constant κ > 0 such that c(λ) ≤ κ
√
λ.

Proof : It suffices to show that there is a path γ(t) from u ≡ 0 to u ≡ 1 such that Iλ(γ(t)) ≤ κ
√
λ

for all t ∈ [0, 1].
For N = 2 let µ ∈ (0, π) and for any x = (φ, θ) ∈ S

2 define

v1(x) :=

{
1− θ/µ if θ ∈ [0, µ],
0 if θ ∈ (µ, π],

v2(x) :=

{
1 if θ ∈ [0, π − µ],
π/µ− θ/µ if θ ∈ (π − µ, π].

We readily compute
∫

S2

|∇vi|2 dx = 2π

∫ π

0
|∂θvi|2 sin θ dθ ≤ 2π

1

µ2
µ =

2π

µ
, (6.24)

∫

S2

|G(vi)| dx = 2π

∫ π

0
|G(vi)| sin θ dθ ≤ 2πK

∫ π

0
vi dθ = πKµ .

Now define the path

γ(t) :=





3tv1(x) if t ∈ [0, 1/3],
3(2/3− t)v1(x) + 3(t− 1/3)v2(x) if t ∈ (1/3, 2/3],
3(1− t)v2(x) + 3(t− 2/3) · 1 if t ∈ (2/3, 1].

Then γ(t) is a piecewise linear path passing by 0 7→ v1 7→ v2 7→ 1 (see Figure 6.3)
Using (6.24) it is easy to see that

Iλ(γ(t)) ≤ 2π

µ
+ λπKµ .
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Figure 6.3: The path γ(t). It passes through v1 = γ(1/3) (dotted blue line) and v2 = γ(2/3) (solid red
line).

Therefore, if we choose µ =
√

1/λ and define κ := max{2π,Kπ} we obtain

Iλ(γ(t)) ≤ κ
√
λ ∀t ∈ [0, 1] .

For N arbitrary, we repeat the previous argument with v1 and v2 depending only on an arbitrary
spherical angle ϕ ∈ (0, π). Proceeding that way we can find a constant C > 0 depending only
on |SN−1| such that

Iλ(γ(t)) ≤ C

µ
+ λCKµ ,

Therefore, if we choose µ =
√

1/λ and define κ := max{C,CK} we obtain the result. �

Observe that the proof of Lemma 6.5 implies λ♭ > 1/π2.

6.4 Reaction-diffusion equation on the N-sphere

6.4.1 Bistable nonlinearity

Let λ > λ♭ and let u⋆(x) a non-trivial solution of the elliptic problem (6.18) such that 0 <
u⋆(x) < 1. We will consider the parabolic problem

{
∂tu = ∆u+ λf(u) in (0,∞)× S

N ,
u(0, x) = u0(x) ∈ [0, 1] for all x ∈ S

N .
(6.25)

If u0(x) is not constant then (6.25) has a non-trivial solution 0 < u(t, x) < 1 for all t > 0 because
u ≡ 0 and u ≡ 1 are strict sub and super-solutions, respectively.
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Lemma 6.6 Let u(t, x) be a solution of (6.25). Then

1.
lim
t→∞

u(t, x) = 0

if and only if there exists t0 = t0(λ) > 0 such that u(t0, x) < α for all x ∈ S
N .

2.
lim
t→∞

u(t, x) = 1

if and only if there exists t1 = t1(λ) > 0 such that u(t1, x) > α for all x ∈ S
N .

Proof :

1. Suppose that u(t, x) be a solution of (6.25). If

lim
t→∞

u(t, x) = 0

then for any x ∈ S
N there exists t(λ, x) > 0 such that u(t(λ, x), x) < α. Therefore, from

the compactness of S
N it follows that there exists t0 = t0(λ) > 0 such that u(t0, x) < α

for all x ∈ S
N .

If u(t0, x) < α for all x ∈ S
N then there exists δ ∈ (0, α) such that u(t0, x) ≤ δ < αfor all

x ∈ S
N . Let v(t) be the solution of the ODE

{
v̇ = λf(v) in (0,∞),
v(0) = δ .

Since v(t) is a solution of (6.25) with initial condition v(0) = δ and u(t0, x) ≤ v(0) for all
x ∈ S

N , the maximum principle implies that u(t0 + t, x) ≤ v(t) for all (t, x) ∈ [0,∞)× S
N .

But since f is bistable then
lim
t→∞

v(t) = 0 .

In consequence,
lim
t→∞

u(t, x) = 0 .

2. The previous argument can be applied to w = 1− u . �

For any p ∈ (0, π) define

A(p) := {x = (ϕ, θ) ∈ S
N : 0 ≤ ϕ < 2π, 0 ≤ θ < p} .

We will study the parabolic problem (6.25) with initial condition

u0(p, x) =

{
1 if x ∈ A(p),
0 if x ∈ S

N \A(p).
(6.26)
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Lemma 6.7 For any p ∈ (0, π) let u(p, t, x) be a solution of (6.25) with initial condition (6.26).
Define

L0 := {p ∈ (0, π) : ∃t0 = t0(p, λ) s.t. u(p, t0, x) < α ∀x ∈ S
N} ,

Lπ := {p ∈ (0, π) : ∃t1 = t1(p, λ) s.t. u(p, t1, x) > α ∀x ∈ S
N} .

Then:

1. If p is small (resp. π − p small) then p ∈ L0 (resp. p ∈ Lπ).

2. L0 and Lπ are non-empty, open, connected and disjoint.

Proof :

1. Let v(p, t, x) a solution of the heat equation

{
∂tv −∆v = 0,

v0(x) = u0(p, x).

Then eλKtv(p, t, x) is a super-solution of (6.25), and thus the maximum principle implies
that

u(p, t, x) ≤ eλKtv(p, t, x).

If K(x, y, t) is the kernel of the heat equation on S
N then

u(1, x) ≤ eλKv(1, x)

= eλK

∫

SN

K(x, y, 1)u0(p, y) dy

= eλK

∫

A(p)
K(x, y, 1) dy .

By the properties of heat kernels, there is a constant C > 0 such that K(x, y, 1) ≤ C for
all x, y ∈M, which implies that

u(p, 1, x) ≤ eλKC|A(p)|.

If |A(p)| < ε then u(p, 1, x) ≤ eλKCε. Choosing ε > 0 small enough we can ensure that

u(p, 1, x) < α ∀x ∈ S
N .

In consequence, if p is small then p ∈ L0. Using w := 1− p and the previous argument it
can be shown that if π − p is small then p ∈ Lπ.

2. L0 and Lπ are disjoint from Lemma 6.6. Let us prove that L0 is open and connected; the
argument for Lπ will be the same with w = 1 − u. The connectedness is an immediate
consequence of the monotonicity of the initial condition on p and the maximum principle.
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We prove now the openness of L0. Let u(p, t, x) and u(q, t, x) be two solutions of (6.25)
and suppose that p ∈ L0. Since any solution u(t, x) of (6.25) satisfies

u(t, x) = et∆u0(x) + λ

∫ t

0
e(t−s)∆f(u(s)) ds

and f is Lipschitz, using Gronwall’s inequality it can be shown that there exists a positive,
continuous function C(λ, t) for t > 0 such that h(t, x) ≤ C(λ, t)h(0, x), where

h(t, x) := |u(q, t, x)− u(p, t, x)| .

Therefore, if |p − q| is sufficiently small and u(p, t0, x) < α then u(q, t0, x) < α, and in
consequence q ∈ L0. �

Theorem 6.10 There exists p̃ ∈ (0, π) such that u(p̃, t, x) does not converge to 0 or 1. If
u(p̃, t, x) converges to a (necessarily unstable) solution then its convergence is non-monotonic.

Proof : From Lemma 6.7 it follows that there exists at least one p̃ ∈ (0, π) such that for any
t > 0 the function x 7→ u(p̃, t, x) − α changes sign. In consequence, Lemma 6.6 implies that
u(p̃, t, x) cannot converge to 0 or 1 as t→∞.

Let û(x) be an unstable solution of (6.18). Denote ϕ1 > 0 be the first eigenfunction and µ1

its corresponding eigenvalue of the linear operator

Lφ = µφ , Lφ := −∆φ− λf ′(û)φ .

From the instability of u⋆ it follows that µ1 < 0. We claim that there exists ε > 0 such that
v(x) := û(x)− εφ1 is a strict super-solution of (6.18). Indeed,

−∆v − λf(v) = −∆û−∆εφ1 − λf(û− εφ1)

= −∆εφ1 −∆u⋆ − λ
[
f(u⋆)− f ′(u⋆)εφ1 + o

(
|εφ1|2

) ]

= µ1εφ1 + λo
(
|εφ1|2

)
,

which is negative for ε sufficiently small. In consequence, if u(p̃, t, x) < u⋆(x) and t 7→ u(p̃, t, x)
is increasing then for ε small enough we have

lim
t→∞

u(p̃, t, x) ≤ v(x) < u⋆(x) .

If the convergence is from above then it can be shown analogously that w(x) := u⋆(x) + εφ1 is
a strict super-solution. �

6.4.2 Monostable nonlinearity

We will show that the dynamics in the monostable case is much simpler compared to the bistable
case because the generalised travelling wave solutions invade the whole domain regardless of the
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initial condition and depend only on time.

Let f : [0, 1]→ R be a C1 function such that f(0) = f(1) = 0, f > 0 on (0, 1) and f ′(0) > 0.
Denote t 7→ ξ(t) the unique solution of

ξ′(t) = f(ξ(t)), 0 < ξ(t) < 1 for all t ∈ R and ξ(0) =
1

2
.

The function ξ is increasing and ξ(−∞) = 0, ξ(+∞) = 1.

Let M be a connected compact smooth manifold without boundary (e.g. S
N ) and denote

∆M be the Laplace-Beltrami operator onM.

Theorem 6.11 If u is a solution of

∂tu = ∆Mu+ f(u) in R×M

such that 0 ≤ u(t, x) ≤ 1 for all (t, x) ∈ R ×M, then u depends only on t. More precisely, we
have either u ≡ 0, u ≡ 1 or there exists T ∈ R such that u(t, x) = ξ(t+T ) for all (t, x) ∈ R×M.

Proof : From the strong parabolic maximum principle, either u = 0 in R ×M, or u = 1 in
R×M, or 0 < u < 1 in R×M. From now on, we consider the case 0 < u < 1 in R×M. Our
goal is to prove that there exists T ∈ R such that u(t, ·) = ξ(t+ T ) for all t ∈ R. Define

m(t) := min
M

u(t, ·) and M(t) := max
M

u(t, ·), t ∈ R.

One has
0 < m(t) ≤M(t) < 1 for all t ∈ R. (6.27)

We first claim that M(t) → 0 as t → −∞. Assume not. Then there exist ε ∈ (0, 1) and a
sequence (tn)n∈N → −∞ such that M(tn) ≥ ε for all n ∈ N. Since M is compact, connected
and without boundary, the Harnack inequality yields the existence of a constant C ∈ (0, 1) such
that

m(t+ 1) ≥ CM(t) for all t ∈ R. (6.28)

In particular, m(tn + 1) ≥ Cε for all n ∈ N. Observe that Cε ∈ (0, 1) and let τ be the unique
real number such that ξ(τ) = Cε. Therefore, m(tn + 1) ≥ ξ(τ) for all n ∈ N. The parabolic
maximum principle implies that m(t) ≥ ξ(t − tn − 1 + τ) for all n ∈ N and for all t ≥ tn + 1.
Passing to the limit as n→ +∞ for every fixed t ∈ R yields m(t) ≥ 1, which contradicts (6.27).
In consequence M(t)→ 0+ as t→ −∞ and m(t)→ 0+ as t→ −∞.

Define

L := sup

{
f(v)

v
: v ∈ (0, 1]

}
> 0 .

For any fixed s ∈ R we have u(s, ·) ≤M(s) inM and

∂tu ≤ ∆Mu+ Lu .



134 Section 6.4 Reaction-diffusion equation on the N-sphere

Therefore, from the parabolic maximum principle it follows that M(t) ≤ M(s) eL(t−s) for all
t ≥ s, and in particular M(t) ≤M(t− 1) eL for all t ∈ R. From (6.28) one infers that

M(t) ≤ C−1eLm(t) for all t ∈ R,

which implies that the function t 7→ M(t)/m(t) is bounded from above by C−1eL and from
below by 1 in R. Define t 7→ δm(t) and t 7→ δM (t) as

m(t) = ξ(t+ δm(t)) and M(t) = ξ(t+ δM (t)) for all t ∈ R.

Since ξ : R → (0, 1) is increasing and onto, δm and δM are well defined. Furthermore, δm(t) ≤
δM (t) for all t ∈ R, and

lim
t→−∞

(t+ δm(t)) = lim
t→−∞

(t+ δM (t)) = −∞

because m(t) → 0+ and M(t) → 0+ when t → −∞. Since there exists a constant K > 0 such
that

ξ(t) ∼ K ef
′(0)t as t→ −∞, (6.29)

there holds
M(t)

m(t)
∼ ef ′(0)(δM (t)−δm(t)) as t→ −∞.

The boundedness of M(t)/m(t) and the positivity of f ′(0) imply that

lim sup
t→−∞

(
δM (t)− δm(t)

)
< +∞. (6.30)

We now claim that
lim inf
t→−∞

δM (t) > −∞. (6.31)

Assume not. Then there exists a sequence (tn)n∈N → −∞ such that δM (tn)→ −∞ as n→ +∞.
Let τ be any fixed real number. Let n0 ∈ N be such that δM (tn) ≤ τ for all n ≥ n0. For all
n ≥ n0, there holds

u(tn, ·) ≤M(tn) = ξ(tn + δM (tn)) ≤ ξ(tn + τ),

whence from the maximum principle it follows that u(t, ·) ≤ ξ(t+ τ) and M(t) ≤ ξ(t+ τ) for all
t ≥ tn. Taking the limit n→ +∞ implies that M(t) ≤ ξ(t+ τ) for all t ∈ R. Since τ is arbitrary
in R, one gets by taking the limit τ → −∞ that M(t) ≤ 0 for all t ∈ R, which is a contradiction.
Thus (6.31). Similarly, one can prove that

lim sup
t→−∞

δm(t) < +∞. (6.32)

Together with (6.30)-(6.32) and δm ≤ δM it follows that

lim sup
t→−∞

(
|δm(t)|+ |δM (t)|

)
< +∞. (6.33)

Define
T := lim sup

t→−∞
δM (t).
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Our goal is to prove that u(t, x) = ξ(t + T ) for all (t, x) ∈ R ×M. Let (tn)n∈N be a sequence
such that tn → −∞ and δM (tn)→ T as n→ +∞. For all n ∈ N and (t, x) ∈ R×M, set

un(t, x) =
u(t+ tn, x)

ξ(t+ tn + T )
.

Then there holds

ξ(t+ tn + δm(t+ tn))

ξ(t+ tn + T )
≤ m(t+ tn)

ξ(t+ tn + T )
≤ un(t, x) ≤ M(t+ tn)

ξ(t+ tn + T )
=
ξ(t+ tn + δM (t+ tn))

ξ(t+ tn + T )

for all n ∈ N and (t, x) ∈ R ×M. From (6.29) and (6.33) it follows that the functions un are
locally bounded from below and above by two positive constants, that is, for all R > 0, there is
a constant CR > 1 such that C−1

R ≤ un(t, x) ≤ CR for all n ∈ N and (t, x) ∈ [−R,R]×M. On
the other hand, the functions un are solutions of

∂tun = ∆Mun +
(f

(
un(t, x)ξ(t+ tn + T )

)

un(t, x)ξ(t+ tn + T )
− f

(
ξ(t+ tn + T )

)

ξ(t+ tn + T )

)
un(t, x) in R×M,

with ξ(t + tn + T ) → 0 as n → +∞ locally uniformly in t ∈ R. From standard parabolic
estimates, the functions un converge then locally uniformly in R ×M, up to extraction of a
subsequence, to a classical positive solution u∞ of

∂tu∞ = ∆Mu∞ in R×M.

Furthermore, for all t ∈ R, there holds

max
M

un(t, ·) ≤ M(t+ tn)

ξ(t+ tn + T )
=
ξ(t+ tn + δM (t+ tn))

ξ(t+ tn + T )
.

Hence (6.29) and the definition of T imply that lim supn→+∞ maxM un(t, ·) ≤ 1 for all t ∈ R.
Thus maxM u(t, ·) ≤ 1 for all t ∈ R. On the other hand, there exists a sequence (xn)n∈N of
points ofM such that

un(0, xn) =
M(tn)

ξ(tn + T )
=
ξ(tn + δM (tn))

ξ(tn + T )
→ 1 as n→ +∞.

Therefore, there exists a point x∞ ∈ M such that u∞(0, x∞) = 1. The strong maximum
principle yields u∞ = 1 in (−∞, 0] ×M and u∞ = 1 in R ×M. It follows in particular that
minM un(0, ·)→ 1 as n→ +∞. But

min
M

un(0, ·) =
m(tn)

ξ(tn + T )
=
ξ(tn + δm(tn))

ξ(tn + T )
∼ ef ′(0)(δm(tn)−T ) as n→ +∞.

Since f ′(0) > 0, one infers that δm(tn)→ T as n→ +∞.

In order to conclude, let ε be any positive real number, and let n0 ∈ N be such that

T − ε ≤ δm(tn) ≤ δM (tn) ≤ T + ε for all n ≥ n0.



136 Section 6.5 Discussion

Since ξ is increasing, there holds

ξ(tn + T − ε) ≤ ξ(tn + δm(tn)) ≤ u(tn, ·) ≤ ξ(tn + δM (tn)) ≤ ξ(tn + T + ε) for all n ≥ n0,

whence from the maximum principle we have ξ(t+ T − ε) ≤ u(t, ·) ≤ ξ(t+ T + ε) for all n ≥ n0

and t ≥ tn. By letting n → +∞ and then ε → 0+, one concludes that u(t, ·) = ξ(t + T ) for all
t ∈ R. �

6.5 Discussion

We analysed a classical elliptic equation with bistable nonlinearity and a 1D parameter λ on two
domains, a truncated sphere and the whole sphere. In both cases we found that when λ > 0 is
small the solutions have to be constant whilst when λ > 0 is sufficiently big there are non-trivial
solutions. In order to find the non-trivial solutions we used variational and topological argu-
ments, and in the case of the truncated sphere we showed that there are at least two distinct
non-trivial solutions.

On the truncated sphere we proved the existence of a generalised travelling wave, i.e. a
non-trivial solution u(t, x) of the corresponding parabolic equation that is increasing in time,
and we showed that u(t, x) is blocked by the non-trivial elliptic solution u⋆(x).

On the whole sphere the existence of a generalised wave depends on the initial condition
u0(x) given in (6.26): (a) if p ∼ 0 then the solution converges to 0, (b) if p ∼ π then it converges
to 1, and (c) there exists p̃ ∈ (0, π) such that the solution does not converge to 0 or 1. In
particular, when the solution does not converge to 0 or 1 we have that (i) this solution cannot
invade the whole sphere, (ii) it does not vanish, and (iii) if it converges then its convergence is
non-monotonic.

Our results on both domains (the truncated and the whole sphere) evidence that having
solution that does not invade the whole domain depends on the geometry of the sphere, the
strength of the nonlinearity (measured in terms of λ) and the initial conditions. On the con-
trary, when the nonlinearity f is monostable we always have invasion, even for more general
domains. This illustrates the importance of the bistable nonlinearity and its interplay with the
geometry of the domain in the diversity of patterns that we can have.

We have proved that on the whole sphere S
N there exists λ∗(= λ) such that for any λ ∈ (0, λ∗)

the only solutions of (6.18) are constant, and that there exists λ∗(= λ♭) such that for any
λ ∈ (λ∗,∞) there is a non-trivial solutions of (6.18). We conjecture that λ∗ = λ∗ and that this
is true for any compact, connected, smooth manifold without boundary, i.e.

Conjecture 6.12 Let M be a compact, connected, smooth manifold without boundary. Then
λ∗(M) = λ∗(M), i.e.

• There is bifurcation on the elliptic nonlinear eigenvalue problem

−∆Mu = λf(u)
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starting at (λ, u) = (λ∗, 0),

• for any λ < λ∗ the only solutions are trivial (i.e. constant), and

• for any λ > λ∗ we have non-trivial solutions.

In the following chapter we prove Conjecture 6.12 when M = S
1 and for a bifurcation starting

at the trivial solution u ≡ α.

It is worth to mention that G. Flores and R. Plaza [21] found the same result, namely that
the travelling wave does not invade the whole sphere, using the mechanochemical model of Lane
et al [40]. This model consists on two equations, a nonlinear parabolic equation for the calcium
concentration, coupled with a nonlinear hyperbolic equation for the elastic deformation of the
egg surface. Since in both the reaction-diffusion and the mechanochemical models the waves
are blocked, this suggests that the blockage of the wave could be considered as the effect of the
geometry of the sphere and the bistable nonlinearity. It would be interesting to study other
curved domains in the future in order to assess the exact role of geometry in pattern formation.
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Chapter 7

Bifurcation and multiple periodic
solutions on the sphere
Work in collaboration with Henri Berestycki and François Hamel. To be submitted.

In this chapter we prove that the nonlinear eigenvalue problem

−∆SNu = λf(u) on S
N

admits multiple non-trivial solutions, whose number is increasing in the parameter λ > 0, and
each time we cross an eigenvalue µk there appears a new non-trivial solution. If λ ∈ (µk, µk+1),
we prove the existence of 2k non-trivial solutions in S

1 and k non-trivial solutions on S
N , the

latter depending only on the vertical angle, i.e. invariant under horizontal rotations.

The bifurcation analysis proves Conjecture 6.12 of Chapter 6 for M = S
1. However, Con-

jecture 6.12 is an open problem for manifolds other than S
1, in particular for S

N , N ≥ 2.

7.1 Bifurcation on S
1

We will study the nonlinear ODE





−u′′ = λf(u),
u(0) = ξ,
u′(0) = 0,

(7.1)

where λ > 0 is a parameter, f(s) is a Lipschitz, globally bounded bistable nonlinearity, and

F (z) :=

∫ z

0
f(s) .

We extend f to R \ [0, 1] as zero (see Figure 7.1).

7.1.1 Properties of solutions

We begin proving global existence and uniqueness of solutions of (7.1).

141
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Figure 7.1: Bistable nonlinearity f(s) and its integral F (z). We define f ≡ 0 on R \ [0, 1].

Theorem 7.1 For any ξ ∈ [0, 1] there exists a unique global solution u(θ) of (7.1). In particular,
if there exists θ∗ ≥ 0 such that u(θ∗) = α and u′(θ∗) = 0 then u ≡ α.

Proof : If we multiply (7.1) by u′ and integrate over [0, θ] we obtain

(u′(θ))2

2
= λ

[
F (ξ)− F (u(θ))

]
. (7.2)

Therefore, using that f and F are continuous and globally bounded it follows that u′ and u′′ are
globally bounded. In consequence, the existence and uniqueness of ODEs implies that we have
a unique, globally-defined solution u(θ).

Now suppose that there exists θ∗ ≥ 0 such that u(θ∗) = α and u′(θ∗) = 0. Notice that F (α)
is the unique global minimum of F (z). Therefore, multiplying (7.1) by u′ and integrating from
θ∗ to θ we obtain

(u′(θ))2

2
= λ

[
F (α)− F (u(θ))

]
≤ 0 ∀θ ≥ 0 .

In consequence u′ ≡ 0, which implies that u ≡ α. �

We will study in detail the properties and dynamics of the solutions of (7.1).

1. If ξ ∈ (α, 1) then u′′(0) < 0.

Proof : From (7.1) we have u′′(0) = −λf(ξ) < 0.

2. Let ξ ∈ (α, 1). There exists θ1 > 0 such that u(θ) > α for all θ ∈ [0, θ1), u(θ1) = α and
u′(θ1) > 0. Moreover, u is strictly decreasing on [0, θ1] (see Figure 7.2).

Proof : Since u′(0) = 0 and u′′(0) < 0 there exists θ0 > 0 such that u′(θ0) < 0. Denote
by l(θ) the tangent of u at θ0. Since l is not parallel to the horizontal line u = α then
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Figure 7.2: The solution u(θ) intersects the line u = α the first time in θ1 with u′(θ1) < 0.

they intersect at θ∗ < ∞. But since u is concave, i.e. u′′ < 0 if u ∈ (α, 1), it follows
that u(θ) ≤ l(θ). In consequence, there exists θ1 < θ∗ such that u(θ1) = 0. On the
other hand, since u′′(θ) < 0 for all θ ∈ [0, θ1) it follows that u is strictly decreasing and
u′(θ1) < u′(θ0) < 0.

3. For any ξ ∈ (α, β) define ξ̄ as the unique point on (0, α) such that F (ξ̄) = F (ξ) (see
Figure 7.3). Then there exists θ2 > θ1 such that u(θ2) = ξ̄, u′(θ2) = 0 and u′′(θ2) < 0. In
particular, u(θ2) = ξ̄ is not only a strict local minimum of u but also its global minimum
(see Figure 7.4).

Proof : Suppose that u(θ) > ξ̄ for all θ ∈ [0,∞). Since u′(θ1) < 0, from (7.2) and the
continuity of u′ it follows that u′(θ) < 0 for all θ > θ1. This implies that u is strictly
decreasing and bounded from below, hence there exists L ∈ [ξ̄, α) ⊂ (0, α) such that

lim
θ→∞

u(θ) = L .

Applying Rolle’s Theorem twice we obtain that

lim
θ→∞

u′(θ) = lim
θ→∞

u′′(θ) = 0 .

Therefore, using (7.1) and the continuity of f yields f(L) = 0, which contradicts the fact
that L ∈ (0, α). In consequence, there exists θ2 > θ1 such that u(θ2) = ξ̄, and from (7.2)
we also have u′(θ2) = 0. Moreover, u′′(θ2) = −λf(ξ̄) > 0, which implies that u has a strict
local minimum at θ2, which coincides with the global minimum of u by using (7.2).
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Figure 7.3: Definition of ξ̄.

Figure 7.4: There exists θ2 > θ1 such that u(θ2) = ξ̄ is not only a strict local minimum of u but also its
global minimum.
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4. If ξ ∈ (α, β) there exists θ3 > θ2 such that u(θ3) = 0, u′(θ3) > 0 and u′′(θ3) = 0 (see
Figure 7.5).

Figure 7.5: The solution u and its four important points θi, i = 1, 2, 3, 4.

Proof : Same proof as for θ1.

5. If ξ ∈ (α, β) there exists θ4 > θ3 such that u(θ4) = ξ, u′(θ4) = 0 and u′′(θ4) > 0. In
particular, u(θ4) = ξ is a strict local maximum and the global maximum of u (see Figure
7.5).

Proof : Same proof as for θ2.

6. If ξ ∈ (α, β) then u(θ) is T -periodic, where T := θ4.

Proof : Define v(θ) := u(θ + θ4). Then v is solution of (7.1) with v(0) = u(θ4) = ξ and
and v′(0) = u′(θ4) = 0. Therefore, from the uniqueness of the solutions of (7.1) (Theorem
7.1) it follows that v(θ) = u(θ) for all θ ≥ 0, i.e. u(θ) = u(θ + θ4) for all θ ≥ 0. But the
previous analysis shows that θ4 is the first θ > 0 for which u(θ) = ξ. In consequence, u is
periodic of period T := θ4.

7. The periodic solution u is symmetric with respect to the half period T/2, i.e. u(ξ, θ) =
u(ξ, T − θ) for all θ ∈ [0, T/2]. In particular, u(ξ, T/2) = u(ξ̄, 0) = ξ̄.
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Proof : Both u(ξ, θ) and u(ξ, T −θ) are solutions of (7.1) with the same initial conditions
u(ξ) = 0 and u′(0) = 0. Therefore, the local uniqueness of the solutions yields the result.

8. Let u(ξ, θ) the T -periodic solution of (7.1) with u(ξ, 0) = ξ. If ξ̄ ∈ (0, α) then ξ ∈ (0, β)
and u(ξ̄, θ) = u(ξ, θ + T/2).

Proof : Both u(ξ̄, θ) and u(ξ, θ + T/2) are solutions of (7.1) with the same initial condi-
tions u(0) = ξ̄ and u′(0) = 0.

9. If ξ ∈ [β, 1) then u′(θ) < 0 for all θ > 0, i.e. u is strictly decreasing. In particular, u
cannot be periodic.

Proof : Recall that for any ξ ∈ [β, 1) ⊂ (α, 1) there exists θ1 > 0 such that u(θ1) = α
and u′(θ1) < 0 (see Figure 7.2). If there exists θ∗ > θ1 such that u′(θ∗) = 0 and u(θ∗) < α
then u(θ∗) ≤ α and F (ξ) ≥ 0 > F (u(θ∗)), which contradicts (7.2).

10. Let ξ ∈ (α, β) and suppose u(ξ, t) is a T -periodic solution of (7.1). Then T satisfies the
inequality

T ≥ h(ξ)√
λ
, h(ξ) :=

2|ξ − ξ̄|√
2[F (ξ)− F (α)]

. (7.3)

In particular,

lim
ξ→α

h(ξ) =
4√

λf ′(α)
. (7.4)

Proof : On the one hand, from (7.2) we have

|u′|∞ =
√

2λ[F (ξ)− F (α)] .

On the other hand, from the mean-value theorem there exists θ∗ ∈ (0, T/2) such that

|u′(θ∗)| = 2|ξ − ξ̄|
T

.

Therefore, since ξ > α > ξ̄ and F (ξ) = F (ξ̄) we have

T ≥ 2|ξ − ξ̄|
|u′|∞

=
2|ξ − ξ̄|√

2λ[F (ξ)− F (α)]

=
2|ξ − α|√

2λ [F (ξ)− F (α)]
+

2|ξ̄ − α|√
2λ

[
F (ξ̄)− F (α)

] .
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If |ξ − α| is small then |ξ̄ − α| is small as well and

F (ζ)− F (α) ∼ f ′(α)

2
(ζ − α)2 , ζ ∈ {ξ, ξ̄} ,

which implies that
2|ξ − ξ̄|√

2λ[F (ξ)− F (α)]
∼ 4√

λf ′(α)
.

Theorem 7.2 There exist periodic solutions of (7.1) if and only if ξ ∈ (0, α)∪(α, β). Moreover,
the periodic solutions come in pairs: u(ξ, θ) is a T -periodic solution if and only if u(ξ̄, θ) =
u(ξ, T/2 + θ) is a T -periodic solution and

‖u(ξ, ·)‖C0(0,T ) = ‖u(ξ̄, ·)‖C0(0,T ) = ξ .

Finally, there exists λ0 > 0 such that (7.1) admits 2π-periodic solutions if and only if λ > λ0.

Proof : We have already proven that there exist periodic solutions of (7.1) if and only if
ξ ∈ (0, α) ∪ (α, β). Moreover, the previous analysis also showed that ‖u(ξ, ·)‖C0(0,T ) = ξ and
u(ξ̄, θ) = u(ξ, T + θ). In consequence, the periodic solutions come in pairs and

‖u(ξ, ·)‖C0(0,T ) = ‖u(ξ̄, ·)‖C0(0,T ) = ξ .

Let us fix λ = 1 and consider the problem





−u′′ = f(u),
u(0) = ξ,
u′(0) = 0.

(7.5)

Define

T := {T > 0 : there exists ξ ∈ (α, β) such that u(ξ, θ) is a T -periodic solution of (7.1)} .

From (7.3)-(7.4) it can be shown that

T0 := inf T ≥ inf{h(ξ) : ξ ∈ (α, β) } > 0 .

Now, let ξ ∼ α and define (as before) θ1 and θ2 as the first positive times such that u(ξ, θ1) = α
and u(ξ, θ2) = ξ̄, respectively. On the one hand, since f(α) = 0 we have

(u′(ξ, θ1))
2

2
=

(u′(ξ, θ1))
2

2
+

(u′(ξ, θ2))
2

2
= F (ξ̄)− F (α)

=
f ′(α)

2
(ξ̄ − α)2 ,
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which implies that

lim
ξ̄→α

∣∣∣∣
u′(ξ, θ1)

ξ̄ − α

∣∣∣∣ =
√
f ′(α) > 0 .

On the other hand, since f is Lipschitz continuous on R then it is Hölder continuous on the
bounded interval [ξ̄, α] of any exponent γ ∈ (0, 1). In consequence,

|u′(ξ, θ1)| = |u′(ξ, θ1)− u′(ξ, θ2)|
= |u′′(θ∗)| · |θ1 − θ2| θ∗ ∈ (θ1, θ2)

= |f(u(ξ, θ∗))| · |θ1 − θ2| u(ξ, θ∗) ∈ (ξ̄, α)

≤ Kγ |u(ξ, θ∗)− α|γ · |θ1 − θ2|
≤ Kγ |ξ̄ − α|γ · |θ1 − θ2| ,

where Kγ > 0 is the Hölder constant. Therefore,

lim inf
ξ̄→α
|θ1 − θ2| · |ξ̄ − α|1−γ ≥ 1√

f ′(α)
> 0 ,

which implies that

lim inf
ξ̄→α
|θ1 − θ2| =∞ .

In conclusion sup T = ∞. Moreover, from the continuous dependence of u(ξ, θ) on ξ it can
be shown that T is connected, i.e. T = (T0,∞) or T = [T0,∞). In consequence, there is a
T -periodic solution of (7.5) if and only if T > T0. Therefore, for any λ > 0 if follows that there
exists a T -periodic solution of (7.1) if and only if

T >
T0√
λ
.

In particular, there exist 2π-periodic solutions of (7.1) if and only if

λ > λ0 :=

(
T0

2π

)2

. �

Notice that the proof of Theorem (7.2) also implies that, for any integer k ≥ 1, we have
2π/k-periodic solutions of (7.1) if and only if

λ > λ0(k) , λ0(k) :=

(
kT0

2π

)2

. (7.6)

Moreover, Theorem (7.2) states that if there is a solution u(ξ, θ) of (7.1) in R and ξ ∈ (0, α) ∪
(α, β) then necessarily u(ξ, θ) is periodic.
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7.1.2 Proof of Conjecture 6.12 for S
1

We return to Conjecture 6.12 and prove it for S
1 and for a bifurcation starting at the trivial

solution u ≡ α.

Theorem 7.3 LetM be a compact, connected, smooth manifold without boundary and consider
the problem

−∆Mu = λf(u) onM. (7.7)

Define

λ∗(M) := sup{λ > 0 : the only solutions of (7.7) are constant} ,
λ∗(M) := inf{λ > 0 : there are non-trivial solutions of (7.7)} .

If M = S
1 then λ∗(S

1) = λ∗(S1) and there is a bifurcation branch starting at (λ∗, α).

Proof : LetM = S
1. From Theorem 7.2, there exists λ0 > 0 such that (7.7) admits non-trivial,

2π-periodic solutions if and only if λ > λ0. In consequence, λ∗(S
1) = λ∗(S1) = λ0. �

7.1.3 Bifurcation analysis

Lemma 7.1 On the space of 2π-periodic solutions, the eigenvalues and eigenvectors of (7.1)
around the unstable state α of the bilinear nonlinearity fare {(µk, φk)}k≥1, where

µk :=
k2

f ′(α)
, φk := (ξ − α) cos(kθ) .

Proof : Let u(ξ, θ) be a 2π-periodic solution of (7.1) and define v := u− α. It follows that the
linearisation of (7.1) around u ≡ α is





−v′′ = λf ′(α)v,
v(0) = ξ − α,
v′(0) = 0.

(7.8)

The general solution of (7.8) is

v(θ) = a cos(ωθ) + b sin(ωθ) , ω =
√
λf ′(α) .

Using the initial conditions we obtain that a = ξ − α and b = 0. Moreover, if v is 2π-periodic
then ω = k, where k is a positive integer. �

Let us show there exists a bifurcation branch and exhibit some of its properties.

1. Global Rabinowitz Alternative. Let (B, ‖ · ‖) be a Banach space. Let F : R×B→ B
be a map of the form

F (λ, x) = x− λKx− g(λ, x) ,
with K compact and g(λ, x) = o(‖x‖). Assume λ0 is a characteristic value of K of odd
algebraic multiplicity. Then there is a continuum C of non-trivial zeroes of F , starting at
(λ0, 0), which
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(a) either goes to infinity in R×B

(b) or returns to a different bifurcation point (λ1, 0).

Proof : This is a very well-known result in topological bifurcation. For a proof see e.g.
the original paper of Rabinowitz [55].

2. Each time λ crosses µk we have a bifurcation branch Ck starting at (µk, α).

Proof : Notice that Ek := ker(−φ′′ − µkφ) has dimension 1 and λ 7→ λ − µk changes

sign when λ crosses µk. Moreover, the operator K := (∆S1)−1 is compact because it is
the Green function of the Laplace-Beltrami operator. Therefore, we can apply the Global
Rabinowitz Alternative, which implies that there is a bifurcation branch Ck that starts at
(µk, α).

3. Define λ0(k) as in (7.6). Then Ck in unbounded, confined in the box

Bk :=
{
(λ, u) ∈ R× C0(S1) : λ > λ0(k) , α < ‖u‖C0(S1) < β

}
.

and does not come back to another bifurcation point. Moreover, if u ∈ Ck then u− α has
exactly k + 1 zeroes on (0, 2π) (see Figure 7.6).

Figure 7.6: Global Rabinowitz Alternative. Scenarios A, B and D are discarded, hence C holds.

Proof : We will consider all possibilities for Ck (see Figure 7.6). (i) According to (7.6), we
have 2π/k-periodic solutions if and only if λ > λ0(k), which implies that A cannot hold.
(ii) If there exists w ∈ Ck and θ̂ ∈ [0, 2π] such that u(θ̂) = β then from Theorem 7.2 u
would be non-periodic. Therefore, B cannot hold. (iii) If C returns to a bifurcation point
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then by continuity we have that along the path Ck there is a function w ∈ Ck and a point
θ∗ ∈ [0, 2π] such that w(θ∗) = α and w′(θ∗) = 0 (see Figure 7.7). But from Theorem 7.1
it follows that w ≡ α. In consequence D cannot hold.

We thus conclude that the only possibility is C, i.e. Ck is unbounded and Ck ∈ Bk. More-
over, if u ∈ Ck then u− α has exactly k + 1 zeroes on (0, 2π), the same as cos(kθ).

Figure 7.7: If the functions on Ck lose or gain a zero (they move upwards or downwards, respectively)
then there is a double zero of u− α, i.e. there exists w ∈ Ck such that w(θ∗) = α and w′(θ∗) = 0.

4. There are two distinct bifurcation branches, Ck and Sk, starting at (µk, α).

Proof : As we saw in Theorem 7.2, the solutions of (7.1) come in pairs, u(ξ, θ) and u(ξ̄, θ).
We will call Ck the branch for ξ ∈ (α, β) and Sk the branch for ξ ∈ (0, α).

Theorem 7.4 For any λ ∈ (µk, µk+1) we have at least 2k different non-trivial, 2π-periodic
solutions of (7.1).

Proof : According to the previous analysis, each time λ crosses µk there are two distinct
bifurcation branches Ck and Sk. Moreover, all solutions the branches Ck and Sk have exactly
k + 1 zeroes, which imply that the branches do not intersect (see Figure 7.8). Therefore, by
induction it can be shown that for λ ∈ (µk, µk+1) we have at least 2k different non-trivial,
2π-periodic solutions of (7.1), one for each Cn and another for each Sn, 1 ≤ n ≤ k. �
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Figure 7.8: Bifurcation diagram in terms of the initial condition u(0) = ξ. For any k ∈ N the branches
Ck are above α whilst the branches Sk are below α. For any λ ∈ (µk, µk+1) we have at least 2k different
solutions.

7.2 Bifurcation on S
N

7.2.1 Eigenvalues and eigenvectors

Lemma 7.2 The Laplace-Beltrami operator satisfies the following properties on L2(SN ):

1. L2(SN ) is the direct sum of the orthogonal eigenspaces Ek, k ≥ 0, where Ek is the space of
harmonic polynomials of degree k, related to the eigenvalue k(k +N − 1), and

dim Ek =

(
N + k − 1
N − 2

)
+

(
N + k − 2
N − 2

)
.

2. Under the parametrisation (θ, ϕ) ∈ S
N , where θ ∈ (0, π) is the vertical angle and ϕ ∈ S

N−1,
the Laplace-Beltrami operator is

∆SNY = ∂θθY + (N − 1)
cos θ

sin θ
∂θY +

1

sin2 θ
∆SN−1Y . (7.9)

3. The subspace of Ek of harmonic polynomials that are independent of ϕ ∈ S
N−1 is one-

dimensional. Its generator Y 0
k is for N = 2 the Lagrange (spherical) polynomial of degree

2 whilst for N ≥ 3 is the Gegenbauer (ultraspherical) polynomial of degree k and order
(N − 1)/2.
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4. Since Y k
0 is independent of ϕ then Y k

0 (θ) solves

∂θθY + (N − 1)
cos θ

sin θ
∂θY + k(k +N − 1)Y k

0 = 0 . (7.10)

5. The explicit solution of (7.10) is Y k
0 (θ) = Pk,N (cos θ), where

Pk,N (t) =
(−1)k

2k

Γ
(

N
2

)

Γ
(
k + N

2

) 1

(1− t2)N−2

2

dk

dtk

[
(1− t2)k+N−2

2

]
.

6. Pk,N (t) has exactly k distinct roots on (−1, 1) and between two consecutive roots of Pk,N (t)
there is exactly one root of Pk−1,N (t). In consequence, Y k

0 changes sign exactly k+1 times
and Y k−1

0 and Y k
0 do not have a common zero.

Proof : These are well-known facts. For the proofs see e.g. Gallier [23], Gurarie [30] and Mo-
rimoto [48]. �

7.2.2 Groups, actions and equivariance

Let E and F be two Banach spaces and suppose there exists a Lie group Γ that acts linearly on
both spaces. We denote γ (resp. γ̃ the linear action of Γ on E (resp. F). A nonlinear operator
T : E→ F is called Γ-equivariant if it commutes with the action of Γ, i.e. if

T (γx) = γ̃T (x) ∀(λ, x) ∈ R×E , ∀γ ∈ Γ .

For scalar functions u : S
N → R the action is defined as

γ ∗ u(x) := u(γ−1x) .

For any x ∈ E we define the isotropy group of x as

Γx := {γ ∈ Γ : γx = x} .

From the continuity of the action of Γ on E it follows that Γx is a closed subgroup of Γ.

Let H be a closed subgroup of γ. We define the space of fixed points of H as

EH := {x ∈ E : γx = x ∀γ ∈ H} .

It is easy to check that EH is closed and that if T : E→ F is Γ-equivariant then T (EH) ⊂ FH.
This last feature is very important because if we are looking for solutions that are symmetric
with respect to H, i.e. solutions whose isotropy group is H, then we can restrict our analysis to
TH : EH → FH.
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7.2.3 Symmetries and reduction to an ODE

Our goal is to prove the existence of multiple non-trivial solutions of

−∆SNu = λf(u) , (7.11)

where f is the same bistable nonlinearity as in the S
1 case, extended as zero on R \ [0, 1] (see

Figure 7.1). We will collect the necessary ingredients to prove the existence of solutions of (7.11)
that depend only on the vertical angle θ, thus independent of the equatorial variables ϕ ∈ S

N−1.

1. Define the nonlinear differential operator

T : R× C2(SN ) ⊂ R× C0(SN )→ C0(SN )

as

T (λ, u) := ∆SNu+ λf(u) .

Then T is SO(N + 1)-equivariant, i.e. it commutes with the rotations on R
N+1.

Proof : It is well-known (and easy to prove) that the Laplacian operator on R
N+1 is

SO(N + 1)-equivariant. Therefore, since S
N is SO(N + 1)-invariant and

∆RN+1 |SN = ∆SN

it follows that the Laplace-Beltrami operator ∆SN is SO(N + 1)-equivariant i.e. it com-
mutes with the rotations on R

N+1. Moreover, since f is autonomous, i.e. it does not
depend explicitly on (θ, ϕ) ∈ S

N , we have that u 7→ f(u) is SO(N+1)-equivariant. There-
fore T is SO(N + 1)-equivariant. �

2. The eigenspaces Ek are also irreducible subspaces on the action of SO(N + 1). In conse-
quence, the action of SO(N + 1) on the diagonal decomposition

L2(SN ) =

∞⊕

k=1

Ek

is also diagonal.

Proof : See e.g. Gurarie [30]. �

3. Let H ⊂ SO(N + 1) be the isotropy subgroup of the north pole eN+1 = (0, . . . , 0, 1) ∈ S
N .

Then

H = {rotations in the horizontal variables ϕ ∈ S
N−1} = SO(N)
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and

[
L2(SN )

]H
=

∞⊕

k=1

Fk , Fk = (Ek)
H = span(Y k

0 ) , dimFk = 1 . (7.12)

Proof : The rotations that leave the north pole invariant are those on the equatorial

variables ϕ ∈ S
N−1, which implies that H ∼= SO(N). moreover, since we have already

proved that the action of SO(N + 1) is diagonal and that the only subspace of Ek that is
invariant with respect to rotations on ϕ is the 1D sub-space generated by Y k

0 , we obtain
(7.12). �

4. The operator

T (λ, u) = ∆SNu+ λf(u)

restricted to
[
C2(SN )

]H
, i.e. to functions u = u(θ), takes the form

TH(λ, u) = u′′ + (N − 1)
cos θ

sin θ
u′ + λf(u) .

Proof : Direct application of (7.9). �

7.2.4 Existence and uniqueness of axis-symmetric solutions

We will study the nonlinear ODE

−u′′ − (N − 1)
cos θ

sin θ
u′ = λf(u), (7.13)

with initial conditions {
u(0) = ξ,
u′(0) = 0,

and we define ξ̄ as before (see Figure 7.4).

Theorem 7.5 For any ξ ∈ (α, 1) there exists a unique solution u(ξ, θ) of (7.13) defined at least
on [0, π/2] and satisfying ξ̄ ≤ u ≤ ξ on that interval. Moreover, 0 ≤ u ≤ 1 on its whole interval
of existence. Finally, if there exists θ∗ ≥ 0 such that u(ξ, θ∗) = α and u′(ξ, θ∗) = 0 then u ≡ α.

Proof : Choose θ > 0 in the interval of existence of the solution u(ξ, ·). Multiplying (7.13) by
u′ and integrating over [0, θ] yields

(u′(θ))2

2
+ (N − 1)

∫ θ

0

cos η

sin η
(u′(η))2 dη = λ[F (ξ)− F (u(θ))] . (7.14)
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From (7.14) it follows that u′ is uniformly bounded on [0, π/2], and from (7.13) we obtain that
u′′ is uniformly bounded as well on [0, π/2]. Therefore, u is bounded on [0, π/2].

Since u′(ξ, 0) = 0 and u′′(ξ, 0) < 0, for small θ > 0 we have ξ̄ < u(ξ, θ) < ξ. Suppose there
exists θ1 ∈ (0, π/2) such that u(ξ, θ1) = ξ̄. From (7.14) it follows that u′(θ1) = 0, hence using
(7.13) we get u′′(ξ, θ1) > 0. This implies that ξ̄ is strict local minimum of u. Similarly, if there
exists θ2 ∈ (0, π/2) such that u(θ2) = ξ then ξ is a strict local maximum of u. Therefore, we
conclude that ξ̄ ≤ u ≤ ξ on [0, π/2].

Suppose now that there exists θ0 such that u(ξ, θ0) > 1. By continuity, if ε > 0 is sufficiently
small then u(ξ, θ) > 1 for any θ ∈ [θ0 − ε, θ0 + ε]. But recall that f ≡ 0 on R \ [0, 1]. Therefore
f(u(θ)) ≡ 0 on [θ0 − ε, θ0 + ε], which implies that u ∈ ker ∆SN , and as such u is necessarily
constant. Since this contradicts the hypothesis of an initial condition ξ ∈ (0, 1), we thus have
u ≤ 1. The same argument applies for u < 0.

Now suppose there exists θ∗ such that u(ξ, θ∗) = α and u′(ξ, θ∗) = 0. Since F (α) is the
unique global minimum of F , if we integrate from θ∗ to θ we obtain

(u′(ξ, θ))2

2
+ (N − 1)

∫ θ

θ∗

cos η

sin η
(u′(ξ, η))2 dη = λ[F (α)− F (u(θ))] ≤ 0 .

Therefore, choosing θ ∼ θ∗ and the adequate side (either θ < θ∗ or θ > θ∗) for having a non-
negative integral we can show that u′ ≡ 0 on a non-empty open set. In consequence, the local
existence and uniqueness of solutions of (7.13) yields u ≡ α. �

7.2.5 Bifurcation analysis of axis-symmetric solutions

The linearisation of (7.13) at u = α is, using the notation u = α+ v,

−v′′ − (N − 1)
cos θ

sin θ
v′ = λf ′(α)v . (7.15)

If we restrict ourselves to the space of functions that are invariant under horizontal rotations
ϕ ∈ S

N−1, i.e. to the space of fixed points of the isotropy group H = SO(N), we have the
following bifurcation theorem.

Theorem 7.6 Each time λ crosses an eigenvalue of (7.15), i.e.

µk :=
k(k +N − 1)

f ′(α)
, k ≥ 0 ,

there is a bifurcation branch Ck starting at (µk, α). Moreover, any u ∈ Ck crosses exactly k + 1
times the value α. Finally, Ck is unbounded and is contained in the cylinder

Z0 :=
{

(λ, u) ∈ R×
[
C0(SN )

]H
: λ > 0 , 0 < ‖u‖C0(S1) < 1

}
.
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Proof : Consider the linear operator

LH : R×
[
C2(SN )

]H ⊂ R×
[
C0(SN )

]H →
[
C0(SN )

]H
,

LHv := v′′ + (N − 1)
cos θ

sin θ
v′ + λf ′(α)v .

The projection of LH to the eigenspace Fk yields the scalar linear equation ln(λ)vn, where

ln(λ) := λf ′(α)− n(n+N − 1) , n ∈ N .

Since ln(λ) changes sign when λ crosses µk if and only if n = k, the Global Rabinowitz Alterna-
tive yields the existence of a bifurcation branch Ck starting at (µk, α), which is either unbounded
or returns to another bifurcation point.

Observe that the starting point of the branch is the corresponding eigenfunction in Fk, i.e.
the Gegenbauer polynomial Pk,N (cos θ). Since Pk,N (t) has exactly k + 1 roots it follows that
Pk,N (cos θ) crosses α exactly k+ 1 times. By continuity, all functions in Ck close to (µk, α) have
exactly k + 1 crossings of α. If Ck returns to a different bifurcation point (µn, α) with n 6= k,
then the same argument implies that near (µn, α) the functions in Cn have exactly n+ 1 zeroes.
By continuity, there must be a function u0 ∈ Ck∩(R×{α})c and a point θ0 such that u0(θ0) = α
and u′0(θ0) = 0. But from Theorem (7.5) that implies u0 ≡ α, which contradicts the definition
of u0.

Therefore Ck cannot return to a bifurcation point. In consequence, the Global Rabinowitz
Alternative implies that Ck is unbounded. Moreover, the previous argument also shows that all
functions in Ck have exactly k+ 1 crossings of α, because if there were a gain or a loss of a zero
along Ck then the branch would return to R× {α}, i.e. to another bifurcation point, which we
have proved to be impossible.

We claim that the solutions of (7.13) at ∂Z0 are constant. Indeed, if λ = 0 then the solutions
are in the kernel of the Laplace-Beltrami operator, and as such are constant. If ‖u‖C0(SN )H = 1
then by continuity there exists θ0 such that u0(θ0) = 1 and u′0(θ0) = 0. However, since u ≡ 1
is a solution of (7.13) then Theorem 7.5 implies that u0 ≡ 1. In consequence, if u ∈ Ck ∩ ∂Z0

then u0 is constant, and as such u0 either never crosses α or u0 ≡ α. Since both possibilities
contradict that Ck is continuous and cannot return to another bifurcation point, respectively,
we obtain that Ck ∩ ∂Z0 = ∅, hence Ck cannot leave the cylinder Z0. �

Theorem 7.7 For any λ ∈ (µk, µk+1) there are at least k different non-trivial solutions of
(7.13), i.e. k solutions of (7.11) that are invariant under horizontal rotations ϕ ∈ S

N−1.

Proof : From Theorem 7.6, each time we cross an eigenvalue µk there is an unbounded bifurca-
tion branch Ck starting at (µk, α) (see Figure 7.9). Since Ck ⊂ Z0, it follows that for any λ > µk

the branch Ck intersects at least once the transversal section of the Z0 of level λ. Therefore, by
induction, for any λ ∈ (µk, µk+1) we have k solutions of (7.13), one for each bifurcation branch
Cn, 1 ≤ n ≤ k. �
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Figure 7.9: Bifurcation diagram. For any λ ∈ (µk, µk+1) we have at least k different solutions with
symmetry H, hence k orbits of solutions under the action of SO(N + 1).

7.3 Discussion

We have proved the existence of multiple non-trivial solutions for the semilinear elliptic problem
(7.11) on S

N . More precisely, if λ ∈ (µk, µk+1) then for N = 1 there are at least 2k non-trivial
solutions whilst for N ≥ 2 there are at least k non-trivial solutions.

The analysis on N = 1 is complete, but for N ≥ 2 we have only proved the existence of axis-
symmetric solutions. Therefore, an open problem is to prove the existence of multiple solutions
that are not axis-symmetric. However, this is not straightforward because our analysis relies on
the Global Rabinowitz Alternative, and as such we need to have eigenspaces of odd dimension
and bifurcation branches Ck that are bounded on the u-direction (i.e. the function space)and
unbounded on the λ-direction (i.e. the parameter space).

We proved Conjecture 6.12 forM = S
1 and for a bifurcation starting at the trivial solution

u ≡ α. However, the general case of a N -dimensional manifold, N ≥ 2 it is still an open problem.
We plan to address the case M = S

N in future works.

The parity of the dimension of the eigenspaces depends on N , which suggests that the argu-
ment we presented cannot be extended for all N . However, since the eigenspaces for N = 2 have
odd dimension, the Global Rabinowitz alternative gives the existence of a bifurcation branch Ck
starting at (µk, α) for all k ∈ N. We could try to prove that Ck is bounded on the u- direction
and unbounded on the λ-direction, but the arguments we used are based on a double zero ar-
gument(if u(θ) = α and u′(θ) = 0 then u ≡ α), which cannot be applied to non-axis-symmetric
functions because the variables are no longer 1D.
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The equivalent to zeroes in more dimensions are nodal sets, i.e. the number of connected
parts of u−1(R \ {0}). But unlike zeroes on Ck, the number of nodal sets are not a topological
invariant and their study is still still a current research topic (for more details see e.g. Eremenko
et al [17] and Leydold [43]). In consequence, there is still some work to do before we can affirm
that that Ck in unbounded on λ. We plan to address this problem in future research.
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Chapter 8

Conclusions

The aim of this thesis was to study several biological problems via reaction-diffusion systems
in order to assess the effect of some parameters on pattern formation. The parameters we
chose were the coupling of nonlinear terms, the effect of diffusion on a previously studied ODE
system, the effect of growth on a domain on the stability of the patterns, the effect of the domain
geometry on patterns and the intensity of the nonlinear term.

8.1 Reaction-difusion systems and modelling

8.1.1 Calcium dynamics in neurons

In the calcium project we constructed a model with a strong nonlinear coupling, which was nec-
essary in order to have a realistic model that takes into account the twitching of the dendritic
spine. Despite the complexity of the realistic model, we managed to prove that the reaction-
diffusion system admits non-negative, globally-defined solutions. We studied separately two
sub-models, one with fixed proteins and at the other with diffusive proteins, and we proved that
there is a continuous link between both models: as the diffusion parameter of the proteins goes
to zero, the solutions of the model with diffusive proteins converge to the solutions of the model
with fixed proteins.

There are some open problems that we would like to address in future works. We would like
to implement some numerical simulations in order to get a better understanding of the solutions
at large times. With the insight of the simulations, we could try to assess the decay rate of
the calcium concentration, which according the approximations of Holcman and Schuss [34] it
has two different exponential decay rates, one faster at the beginning of the process and one
slower at the end. The numerical evidence could also shed light on the existence and stability
of non-trivial steady-state solutions.

8.1.2 Virus infection and immune response

One of the main goals of the virus project was to assess the effect of viral diffusion on both the
cells and the viral particles. We found that this effect depends on the virions’ (viral particles)
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decay rate µv. If µv > 0 then the diffusion plays against the virions and favours the wild-type
cells, whilst if µ = 0 we have the opposite pattern,i.e. the diffusion favours the proliferation of
viruses and plays against the wild-type cells. One interpretation is that the strength of the viral
infection comes in numbers, i.e. for a cell to become infected several particles are needed; in
terms of concentration, this suggests that there is a minimal concentration threshold that has
to be present in order to transform a wild-type cell into an infected cell.

As virions diffuse their concentration diminishes. Therefore, if there is a decay rate then the
diffusion makes it harder for the virions to reach the furthest cells in enough numbers to infect
them, which leads to thir eventual extinction. On the other hand, in the absence of a decay rate
the virions will eventually invade the whole domain. Indeed, the current amount of virions does
not decrease because they cannot die, but in fact it increases because there are new virions that
are produced by the newly infected cells.

We plan in the future to apply our results to real biological situations using real data. One
ambitious goal we have is to study a real virus (say AIDS) and measure the effect of diffusion in
in vitro experiments. In the light of our results we conjecture that, if it were possible to indirectly
modify the decay rate and/or the diffusion rate of the virions then we could drastically impact
the final state of contagion.

8.2 Reaction-diffusion equations and systems on manifolds

8.2.1 The effect of growth on pattern formation

We showed that growth has two effects on pattern formation.

The first is a regularising effect in the sense that growth gives more chances for solutions to
be global in time. In particular, growth delays nay possible blow-up and can even prevent it.
This was to be intuitively expected because, as the domain grows, the solution has more room
to move around before blowing up, and if growth is faster than the solution then there is no
room for the latter to reach the “boundaries” and “explode”.

The second is a stabilising effect in the sense that the eigenvalues have smaller real parts
on (isotropic) growing domains than on fixed domains. The striking fact is that this stabilising
effect is clearly quantifiable: it is a parallel shift to the left on the complex plane, which depends
on the growth rate, and is constant in the case of exponential growth.

There are several open problems that we would like to address in the future. First, it would
be interesting to check the regularising and stabilising effects of isotropic growth via numerical
simulations. Second, we would like to extend the analysis to non-isotropic growth because
for several biological applications such as tumour growth and embryo development it is more
realistic to assume a non-homogeneous growth function. Third, for several other applications
such as wound healing and tissue interaction, adding a priori an exogenous growth function is
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not very realistic. We plan to study other models where growth is endogenous and unknown,
i.e. it is another unknown of the problem.

8.2.2 Generalised travelling waves on manifolds

H. Berestycki and F. Hamel [8] generalised the usual definition of travelling waves, in a very
general setting. These new notions, which cover all usual situations, were motivated by several
of their works on domains with obstacles (holes), in which the distance is no longer a straight
line but a geodesic distance can still be defined. The level sets of the travelling waves in this
new framework are no longer hyper-planes moving at a constant velocity but hyper-surfaces
parametrised by time.

Since the new definition does not depend on the geometry of the Euclidean space but only
on the definition of a geodesic distance, we could extend the notion of a travelling wave to man-
ifolds. We needed to reformulate the classical results for parabolic equation to the framework of
manifolds. Some of these results were straightforward, e.g. maximum principles and Harnack’s
inequality, because they are local in nature. However, for global results such as a priori estimates
we needed to have uniform bounds of the coefficients.

Under this framework we managed to recover the results of H. Berestycki and F. Hamel [8]
in a very direct fashion. This permits to extend the analysis of travelling waves as solutions of
reaction-diffusion equations on curved domains (manifolds).

8.2.3 Travelling waves on the real line

Motivated by the previous project, where we defined travelling waves on manifolds, we wanted
to tackle the problem of calcium waves on the 2-sphere, which is a well-known problem in Math-
ematical Biology. Our first model consisted on considering solutions that depends only on the
vertical angle. As we projected the equation on the real line, the singularity of the poles rendered
the coefficients unbounded.

In order to overcome this technical difficulty, we considered a new model, where the coeffi-
cients were truncated at a certain level ±ρ. It turned out that there were three different patterns:
(i) On (ρ,∞) there is a wave moving from right to left, with an asymptotic velocity cN . (ii) On
(−∞,−ρ) there is a wave moving from left to right with asymptotic velocity cS < cN . (iii) On
[−ρ, ρ] there are two generalised travelling waves, one moving from left to right and the other
from right to left, and they eventually block each other. These waves are generalised because
even if they are monotone in time they are not of the form ϕ(x ± ct). Moreover, their asymp-
totic velocity does not exist because the waves are blocked and hence their velocities tend to zero.

This project provides an example of a generalised, non-classical travelling wave without
asymptotic velocity. Furthermore, the analysis indirectly implies the existence of non-trivial
solutions of the corresponding elliptic equation.
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Since the model was truncated, a natural open problem is to study the behaviour of solutions
as the truncating parameter ρ→∞. We are not sure about whether in the limit the travelling
wave remains blocked or it becomes an invasion: on the one hand, it seems that the blocking
was originated by the truncation because it allowed the existence of pseudo-classical travelling
waves near ±∞. But on the other hand, given the geometry of the sphere, as the wave invades
the south pole (x = −∞) there is less space for the diffusion, which could lead to a slow-down
of the wave and eventually a total stop. We plan to study future works which possibility holds.

8.2.4 Travelling waves on the sphere

We constructed two models on the sphere one on a truncated 2-sphere with Dirichlet boundary
conditions and another on the N -sphere.

On both domains we proved that for λ ∈ (0, λ) the only solutions are constant whilst for
(λ♭,∞) we have a non-trivial solution u⋆ of the corresponding elliptic problem. In the case of
the truncated sphere, we proved that there is a generalised travelling wave, which is increasing
in time, and that this wave is blocked by u⋆. In the case of the whole sphere the result is more
subtle: depending on the initial conditions, the travelling wave can either converge to zero, to 1
or do not converge to any of those two stable states.

Our results show that the fact that we do not necessarily have invasion on the sphere, i.e.
the generalised travelling wave does not converge towards u ≡ 1. Given that this finding is
common in our three models on the sphere, it seems safe to assume that the fact of not having
an invasion is an intrinsic property of the geometry of the sphere. It is important to stress that
the results on the truncated sphere are also valid on the N -truncated sphere because we never
used arguments concerning S

2 or R
3.

On the contrary, when the nonlinearity f is monostable instead of bistable we always have
invasion, even for more general domains. This illustrates the importance of the bistable non-
linearity and its interplay with the geometry of the domain in the diversity of patterns that we
can have. However, the complete analysis of the reaction-diffusion problem on the sphere with
monostable nonlinearity is still an open problem that we plan to address in future works.

8.3 Elliptic equations and nonlinear eigenvalues on the sphere

8.3.1 Bifurcation and multiple periodic solutions on the sphere

We have proved the existence of multiple non-trivial solutions for the semilinear elliptic problem
(7.11) on S

N . More precisely, if λ ∈ (µk, µk+1) there are at least 2k non-trivial solutions whilst
for N ≥ 2 there are at least k non-trivial solutions.

For N = 1 the analysis is complete. We proved that the solutions of (7.1) on R are periodic
and that given λ > λ0 we have 2π-periodic solutions. Moreover, for each λ ∈ (µk, µk+1) there
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are at least 2k non-trivial solutions of (7.1).

We also proved Conjecture 6.12 for M = S
1 and for a bifurcation starting at the trivial

solution u ≡ α. However, the general case of a manifold of dimension N ≥ 2 is an open problem.

For N ≥ 2 we proved that for each λ ∈ (µk, µk+1) there are at least k non-trivial solutions
of (7.11) that are axis-symmetric, i.e. they depend only on the vertical angle θ. Unfortunately,
the arguments we presented cannot extended directly to a non-axis-symmetric framework. On
the one hand, the equivalent of zeroes to higher dimensions, i.e. the concepts of nodal sets and
nodal domains, are not a topological invariant and they are not completely studied. On the
other hand, the argument we used to characterise the boundedness of the bifurcation branches
on the u-direction relies on the fact that the variable θ is one-dimensional.

Therefore, an open problem is to prove the existence of multiple solutions on S
N that are

not axis-symmetric. For N = 2 the eigenspaces have odd dimension, hence from the Global
Rabinowitz Alternative it follows that each time we cross an eigenvalue µk there is a bifurcation
branch Ck starting from (µk, α). We conjecture that for S

2 the bifurcation branches have the
same qualitative features as in the axis-symmetric case, i.e. they are bounded on the u-direction
and unbounded on the λ-direction. However, this is an open problem as well.

Another open problem is the bifurcation analysis for a monostable nonlinearity. In this case
the bifurcation will start at (µk, 0) because f ′(0) > 0. We plan to address this topic in future
works.
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