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Introduction

La résolution des systèmes algébriques est un problème au centre de l’algèbre et
en particulier de la branche de la géométrie algébrique. Ses applications en mathé-
matiques ou dans l’industrie sont nombreuses. Historiquement et techniquement,
ce problème est indissociable du traitement des multiplicités. Cette thèse concerne
certains aspects particuliers liés à l’efficacité d’une telle résolution. Tout d’abord, au
chapitre I, nous nous intéressons à la minimisation du nombre de variables additives
dans un tel système. Nous mentionnons des applications en cryptographie où des
systèmes, a priori sous-déterminés, doivent être résolus en caractéristique positive.
Puis, au chapitre II, nous proposons une arithmétique rapide pour calculer le pro-
duit, le quotient et plus généralement le point fixe d’une fonction définie sur Qp.
Nous utilisons ensuite cette arithmétique au chapitre III afin de faire de la résolution
locale dans Qp pour des systèmes s’évaluant bien. Au chapitre IV, nous considérons
la décomposition des courbes planes en composantes irréductibles lorsque la taille
du polygone de Newton est petite face au produit des degrés partiels. Enfin, au
chapitre V, nous nous intéressons à la recherche de racines complexes approchées
d’un système lorsque les coefficients sont dans R.

An English version of this introduction can be found in Appendix.

1 Minimisation du nombre de variables additives

Le chapitre I est l’objet d’un travail en commun avec P. Hivert et H. Mourtada
intitulé Computing Hironaka’s invariants: Ridge and Directrix et publié dans
Arithmetic, Geometry, Cryptography and Coding Theory 2009 [BHM10].

Étant donné un idéal I engendré par des polynômes f1,	 , fr∈K[X1,	 ,Xn], on
appelle variété affine définie par I, l’ensemble V(I) des points de K̄

n qui annulent
tous les polynômes de l’idéal I, où K̄ est la clôture algébrique de K. Un point
singulier de la variété est un point x=(x1,	 , xn)∈V(I) tel que pour tout f ∈ I, les
dérivées partielles de f s’annulent aussi en x, c’est-à-dire tel que

f(x1,	 , xn) = ∂ f

∂X1
(x1,	 , xn)=
 =

∂ f

∂Xn

(x1,	 , xn) = 0.

Dans le cas d’un polynôme f en deux variables X et Y , V(f) est une courbe plane C.
Les singularités les plus simples que peut présenter C sont des points multiples , ou
auto-intersection, et des points de rebroussement , ou cusps en anglais, qui sont des
points où la courbe n’admet que des demi-tangentes.
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Par exemple, la courbe définie par f(X,Y )=Y 2−X3 est singulière en l’origine,
c’est un point de rebroussement. La désingularisation consiste à trouver une courbe
non singulière C ′ telle qu’il existe un morphisme birationnel de C ′ vers C.

Depuis les travaux de Hironaka dans les années 1960 et 1970, le problème de
la désingularisation est bien compris en caractéristique nulle (voir [Hir64, Hir67,
Hir70]). Le cas de la caractéristique positive est en revanche, lui, plus compliqué. Par
exemple, la désingularisation de variétés de dimension 3 n’a été faite que récemment
par Cossart et Piltant (voir [CP08, CP09]). Il faut cependant noter que leur preuve
n’est pas constructive. Le cas de la dimension 4 est encore un problème ouvert.
Dans [Hir64, Hir67], Hironaka introduit deux invariants pour la résolution de singu-
larités : le faîte et la directrice. Étant donné un idéal homogène I ⊆K[X1, 	 , Xn]
et un cône C = Spec K[X1, 	 , Xn]/I, ces deux invariants sont des sous-ensem-
bles du cône tangent de la variété au voisinage d’un point x ∈ C. En fait, d’après
Giraud [Gir75], le faîte est le cône tangent d’une variété ayant un contact maximal
avec C au voisinage de x. La directrice est un espace vectoriel, c’est le plus grand
sous-espace vectoriel W de An = Spec K[X1, 	 , Xn] vérifiant C + W = C. Plus
formellement, on a la définition suivante.

Définition 1. Soit C = Spec K[X1, 	 , Xn]/I avec I ⊆ K[X1, 	 , Xn], un idéal
homogène. La directrice de C est la plus grande famille libre (Y1, 	 , Yf), où les Yj

sont des formes linéaires en les Xi, telle que

I =(I ∩K[Y1,	 , Yf])K[X1,	 , Xn].

Autrement dit, la directrice est le plus petit ensemble de variables nécessaires pour
définir I.

Une définition analogue existe pour le faîte qui, lui, est juste un sous-groupe
additif de Kn.

Définition 2. Le faîte de C est le plus grand sous-groupe additif de An engendré
par le plus petit ensemble de polynômes additifs P1,	 , Pe tel que

I = (I ∩K[P1,	 , Pe])K[X1,	 , Xn].

Puisque les notions de forme linéaire et de polynôme additif coïncident en caracté-
ristique nulle, il est clair que le faîte et la directrice sont confondus dans ce cas. Ceci
a pour conséquence qu’une variété de contact maximal est toujours lisse. Cepen-
dant, ce n’est plus vrai en caractéristique positive p et alors, une variété de contact
maximal peut ne pas être lisse. Cet obstacle empêche de généraliser la démonstration
de la résolution de singularité de Hironaka à la caractéristique positive. Nous nous
intéressons à ces deux invariants de variété que sont le faîte et la directrice. Nous y
suivons les travaux de Giraud [Gir72, Gir75] à ce sujet qui introduisent une définition
fonctorielle du faîte.
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Proposition-Définition 3. Soit AK
n l’espace affine sur K de dimension n. Soit F

le foncteur associant à un K-schéma S l’ensemble F (S) des points v ∈AK
n tels que

pour tout S-point c∈C(S),
(v+ c)∈C(S).

Alors le foncteur F est représentable par un schéma F que nous appelons le faîte de C.

Nous obtenons le résultat suivant.

Corollaire 4. (Corollary I.14, [BHM10, Corollary 2.12]) Soit U l’algèbre des
fonctions définies sur AK

n telles que pour tout K-schéma S et tout S-point (u, v)
de F ×KAK

n , on a f(u+ v) = f(u).
Soit I un idéal homogène de K[X1, 	 , Xn] et soit G 6 {γ1, 	 , γs} une base de

Gröbner réduite homogène de J l’idéal du faîte de V(I), alors

I =(I ∩K[γ1,	 , γs])K[X1,	 ,Xn].

De plus, U = K[γ1, 	 , γs] et si K est une K-algèbre engendrée par des polynômes
additifs telle que

I = (I ∩K)K[X1,	 , Xn],

alors U ⊂K.
Par conséquent, les définitions 2 et 3 du faîte coïncident.

Nous donnons, de plus, un algorithme permettant de calculer le faîte d’un idéal.
Nous montrons aussi que si (P1, 	 , Pe) est une famille génératrice du faîte, alors il

existe des entiers α1, 	 , αe tels que la famille
(

P1
pα1√

, 	 , Pe
pαe√ )

est génératrice de

la directrice. Dans le cas d’un corps parfait K, nous pouvons alors en déduire un
algorithme de calcul de la directrice. Malheureusement, savoir si un élément est une
puissance pα-ième peut se révéler indécidable en caractéristique p, et ce, même si
l’anneau considéré est effectif (cf. [FS56]).

2 Algorithmes détendus pour les entiers p-adiques

Le chapitre II est une adaptation avec J. van der Hoeven et G. Lecerf de l’algorith-
mique détendue des séries formelles aux entiers p-adiques. Ce travail a fait l’objet
d’un article Relaxed algorithms for p-adic numbers accepté pour publication au
Journal de Théorie des Nombres de Bordeaux [BHL11].

La normalisation consiste à résoudre les singularités de codimension 1. Dans le
cas d’une courbe singulière C, les lieux singuliers sont des points, ils sont donc tous
de codimension 1. Ainsi, il suffit de normaliser C pour trouver C ′, la désingularisée
de C. Si la caractéristique de K est 0, alors normaliser C = V(f) est équivalent à
calculer la fermeture intégrale de K[X ] dans K(X)[Y ]/(f) (cf. [Sha94, Chapter II,
Section 5]). Soient R et R ′ deux anneaux tels que R est un sous-anneau de R ′, on
dit que b∈R ′ est entier sur R si, de manière équivalente [Lan02, Chapter VII], on a

• le sous-anneau R[b] est de type fini sur R ;
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• il existe m ∈N∗ et a0, 	 , am−1 ∈ R tel que b est racine du polynôme Tm +
am−1T

m−1+
 + a0.

La fermeture intégrale R̄ de R dans R ′ est alors l’ensemble des b∈R ′ entiers sur R.
La notion d’être entier étant stable par les opérations d’anneaux, R̄ est à la fois un
sous-anneau de R ′ et un R-module.

Exemple 5. En reprenant l’exemple précédent, f(X, Y ) = Y 2 − X3, il est clair
que X3/2 = Y ∈ K(X)[Y ]/(f) est entier sur K[X ] et donc que la fermeture inté-
grale K[X ] deK[X ] contient K[X,X3/2]. Cependant, on peut remarquer que X1/2=
Y

X
est racine de T 2−X, par conséquent K[X,X1/2]=K[X1/2]⊆K[X ]. Il s’avère que

cette inclusion large est, en fait, une égalité.

Dans le cas où R est principal, la fermeture intégrale R̄ de R dans une extension
finie deK=FracR est un R-module libre de type fini et de rang n. Au lieu de calculer
une base de R̄ , il est en général plus facile de calculer une base de son complété Rp

pour la valuation p-adique dans un des localisés Kp de K, où p est un premier de R.
Citons [Hal01, Hoe94, Tra84] qui proposent de tels algorithmes. Il suffit de faire ces
calculs de bases locales pour p tel que p2 O disc f . L’avantage du calcul de ces bases
locales est que chaque élément bi de la base (b0,	 , bn−1) s’écrit sous forme

bi=
bi,0+
 + bi,n−1αn−1

pdi
,

où pour tout j, 0 6 j 6 n − 1, bi,j ∈ Rp et pour tout i, valp(bi)> 0. De plus, nous
connaissons une borne pour l’exposant di présent au dénominateur :

2 di6 valp(disc f).

En fait, on peut améliorer cette majoration et l’on obtient [Hoe94, Section 2.3]

2 (d0+
 + dn−1)6 valp(disc f). (1)

Ensuite, il faut recoller les différentes bases locales en une base globale.

Exemple 6. Le polynôme f(Y ) = Y 2 − 5 définit l’extension Q
(

5
√ )

sur Q.

Puisque 5
√

est entier sur Z, on sait que la fermeture intégrale de Z contient Z
[

5
√ ]

.
Comme le discrimiant de f est −4 = −22, le calcul d’une seule base locale, celle
dans Q2

(

5
√ )

, suffit. D’après l’équation (1), une base (1, b1) peut au mieux véri-

fier que b1=
1+ b1,1 5

√

2
avec b1,1∈Z2. Sur F2, le polynôme f se factorise en

f(Y ) =Y 2+1= (Y +1)2,

par conséquent, le développement diadique de 5
√

commence par 1 et

donc val2
(

1+ 5
√

2

)

= 0. On en déduit que b1 =
1+ 5

√

2
est entier. Il s’agit en fait

du nombre d’or ϕ, racine de T 2−T −1. On n’a qu’une seule base locale, donc il n’y a
pas de problème de recollement et la fermeture intégrale de Z dans Q

(

5
√ )

est Z[ϕ].
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Le calcul d’une base intégrale en dimension 1, c’est-à-dire de l’anneau des entiers
sur K[X ] dans un corps de fonctions K(X)[Y ]/(f) est très similaire à celui d’une
base intégrale de l’anneau des entiers dans un corps de nombres Q[Y ]/(f). Nous
avons vu plus haut que les algorithmes les plus courants calculaient d’abord des
bases dans les localisés pour espérer, ensuite, obtenir une base globale. Pour un
corps de fonctions, ces localisés sont les corps des séries de Laurent K((X − α)),
avec α ∈K si K= K̄, pour un corps de nombres, ce sont les corps des nombres p-
adiques Qp, avec p∈N premier. Pour implanter une arithmétique sur de tels objets,
principalement deux représentations s’offrent à l’utilisateur. La première, dite zélée,
consiste à travailler à précision fixe n, c’est-à-dire qu’une série formelle S ∈K[[X ]],

S=
∑

k=0

∞
SkX

k,

sera représentée sous la forme d’un polynôme tronqué de degré n :

S=S0+
 +Sn−1X
n−1+O(Xn).

Cette représentation propose l’avantage d’utiliser toutes les routines rapides de
multiplications de polynômes, en particulier la multiplication de deux séries en préci-
sion n se calcule enM(n)∈ Õ(n) opérations dans le corps de baseK. En contrepartie,
si au cours des calculs, une perte de précision a lieu au point que le résultat final
ne convienne pas, il est nécessaire de reprendre les calculs depuis le début en aug-
mentant la précision souhaitée.

Une seconde façon de représenter les séries calculables est de les voir comme
un vecteur de coefficients calculés (S0, 	 , Sℓ) muni d’une fonction next(n) capable
de renvoyer le coefficient Sn à partir des précédents. Par exemple, l’exponentielle
calculée jusqu’à la précision 10 sera représentée par le vecteur

(

1, 	 , 1

9!

)

et par la
fonction next(n) renvoyant S0=1 si n=0 et Sn6 Sn−1

n
sinon. Une telle représentation

est appelée paresseuse car les coefficients d’une série ne sont calculés que lorsque le
besoin est réel. Il semble naturel de définir la méthode next(n) du produit S T par
le renvoi naïf de S0 Tn+S1 Tn−1+
 +Sn T0, malheureusement, ceci nous donne une
complexité quadratique en la précision pour la multiplication des séries : M(n) ∈
O(n2). En revanche, la perte de précision n’est plus un problème, si l’utilisateur a
besoin des quelques coefficients suivants, il lui suffit de faire appel à la fonction next
autant de fois que nécessaire. Et ce, sans reprendre les calculs depuis le début.
En 1997, puis en 2002, van der Hoeven a proposé une multiplication rapide de ces
séries paresseuses qu’il nomma détendue [Hoe97, Hoe02]. L’idée est de s’autoriser
à faire plus de calculs que nécessaire à certains moments, en faisant des produits
de polynômes de degrés 1, 2, 4,	 , afin de profiter de la complexité de tels produits
(voir figure II.1 au chapitre II). Comparé au produit zélé, le surcoût est au pire
logarithmique de sorte que le produit de deux séries détendues se calcule jusqu’à la
précision n en R(n)∈O(M(n) logn) opérations dans K.

Nous présentons une adaptation à tous les complétés I-adiques d’un anneau.
La motivation principale est la gestion de la retenue qui peut apparaître en effec-
tuant une addition ou une multiplication. En général, ces anneaux contiennent Zp

comme sous-anneau, c’est pourquoi nous nous sommes en particuliers intéressés aux
anneaux d’entiers p-adiques. Cependant, ce ne sont pas les seuls.

2 Algorithmes détendus pour les entiers p-adiques 15



Exemple 7. Complétons l’anneau R[X ] pour la valuation (X2 + 1)-adique.
L’idéal (X2+1) étant premier, le complété R[X ](X2+1) est intègre et est l’ensemble
des éléments S de la forme

S=
∑

k=0

∞
(akX + bk) (X

2+1)k.

L’addition de deux séries S et T se fait bien composante par composante, en revanche
la multiplication peut générer une retenue. Si S=2X − 1, alors

S2=(2X − 1)2=4X2− 4X +1=−(4X +3)+ 4 (X2+1).

Notons cependant que comme le corps résiduel deR[X ](X2+1) estR[X ]/(X2+1)≃C,
alors, d’après [Coh46, Theorem 15], cet anneau est isomorphe à C[[T ]] qui, lui, ne
demande aucune gestion de retenue. Un de ces isomorphismes envoie T sur X2+1
et i sur X +

1

2
X (X2+1)+

3

8
X (X2+1)2+
 .

Nous montrons entre autres que les complexités obtenues pour les séries formelles
se transposent aux entiers p-adiques. Notons I(m) le coût du produit de deux entiers
dont la taille ne dépasse pas m bits et Ip(n) le coût du produit de deux dévelop-
pements p-adiques d’ordre n et dont les coefficients ont une représentation binaire
usuelle.

Proposition 8. (Propositions II.6 et II.7, [BHL11, Propositions 3.1 et 3.2])
Soient a et b deux entiers p-adiques détendus. Le produit a b peut être calculé jusqu’à
la précision n en utilisant O(Ip(n) log n) opérations sur les bits. Pour ce calcul,
l’espace mémoire total nécessaire pour stocker les différentes retenues ne dépasse
pas O(n).

À l’aide de conversions de la base 2 vers la base p et vice versa, le calcule de a b
jusqu’en précision n peut être fait en O(I(n log p) logn) opérations sur les bits et peut
nécessiter O(n log p) bits d’espace mémoire.

Une série récursive est une série formelle S point fixe d’une fonction Φ, c’est-à-
dire telle que S=Φ(S). Si de plus, le calcul du n-ième terme Φ(S)n ne requiert que
la connaissance de S0, 	 , Sn−1, pour tout n > k, alors S est d’ordre k et à partir
des k premiers termes de S et de la fonction Φ, on peut calculer récursivement
n’importe quel terme de S. Si une série est inversible, alors son inverse est une série
récursive d’ordre 1. Nous adaptons aussi les algorithmes pour les p-adiques récursifs,
en particulier, celui du calcul de l’inverse. Nous en concluons que les complexités de
la proposition 8 sont encore valables pour le calcul du quotient a/b de deux entiers p-
adiques en précision n. En section 7, nous donnons une méthode récursive de calcul
de la racine r-ième dans Zp d’un entier p-adique. Si r est premier avec p, le lemme
de Hensel nous assure qu’une telle racine existe dès lors qu’il en existe une modulo p.

3 Résolution détendue des systèmes algébriques

Le chapitre III constitue un travail en cours avec R. Lebreton intitulé Relaxed p-
adic Hensel lifting for algebraic systems [BL12] généralisant le calcul récursif d’une
racine r-ième dans Zp.
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Considérons les systèmes à coefficients rationnels. Savoir si de tels systèmes
ont des solutions rationnelles peut être compliqué : les tailles des numérateurs et
des dénominateurs des solutions peuvent être très grandes. Même en utilisant une
arithmétique rapide sur Q, comme celle disponible avec Gmp [G+91], un surcoût
non négligeable provient des réductions en fractions irréductibles. On peut préférer
résoudre ces systèmes dans Qp, le complété p-adique de Q, pour un ou plusieurs p
bien choisis. Parmi toutes les solutions trouvées, il faut alors déterminer lesquelles
sont susceptibles d’être aussi dans Q.

Exemple 9. Prenons le cas le plus simple d’un système réduit à un polynôme à
une variable :

f(X)=X4− 1.

Clairement, ce polynôme n’admet que deux racines rationnelles 1 et -1. D’ailleurs,
si p=2 ou si p=3mod 4, alors il se factorise sur Qp sous la forme attendue

f(X) = (X − 1) (X +1) (X2+1).

Pourtant, pour certains p premiers, en fait ceux congrus à 1 modulo 4, on trouve 4
racines dans Qp. Par exemple, si p=5, f(X) se factorise en

f(X) = (X − 1) (X − (4+4 p+4 p2+4 p3+O(p4)))

× (X − (2+ p+2 p2+ p3+O(p4))) (X − (3+3 p+2 p2+3 p3+O(p4))).

Il faut savoir alors détecter, à partir de ces 4 racines, celles qui sont éventuellement
rationnelles. Ici, grâce aux développements périodiques des deux premières racines,
il est clair que ce sont celles dans Q. On peut noter que les deux autres racines sont
alors tout simplement des représentants de i et de −i dans Q5.

En général, la période d’un rationnel peut être suffisamment grande pour ne pas
être détectée. On a donc besoin de savoir reconstruire un rationnel à partir d’un
développement p-adique. La borne de Mignotte [GG03, Chapter 6] est une borne
sur la taille des coefficients des facteurs d’un tel polynôme f . En particulier, ceci
nous fournit une borne sur la précision nécessaire avec laquelle on doit factoriser f
dans Qp pour en trouver les racines dans Q.

Dans le cas plus général d’un système à coefficients entiers dont on connaît
une solution x = (x1, 	 , xr) ∈ Qp

r, on peut utiliser la reconstruction rationnelle
(cf. [GG03, Section 5.10]) sur chaque xi afin de voir si xi∈Q. Si c’est le cas, x∈Qr

est une solution rationnelle du système. Des bornes sur les précisions nécessaires
pour faire une telle reconstruction existent, elles sont liées à ce qui est appelé le
Bézout arithmétique (voir [BGS94, KPS01, McK01]).

La proposition suivante nous donne la complexité de calcul d’un vecteur
d’entiers p-adiques récursifs.

Proposition 10. Soit Φ une expression contenant L instructions de type addition,
soustraction ou produit. Soit y ∈ Zp

r récursif d’ordre k tel que y = Φ(y) et y0, 	 ,
yk−1 sont connus, alors le calcul de yn peut se faire en O(L Ip(n) log n) opérations
en utilisant le produit détendu de la proposition 8.
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Parmi les différents algorithmes de résolution des systèmes algébriques, Krone-
cker, présenté dans [GLS01, DL08], résout des systèmes représentés en évaluation,
par exemple représentés par un straight-line program (s.l.p.). Il faut, pour cela, que
ceux-ci n’admettent qu’un nombre fini de solutions dans la clôture algébrique K̄

de K, on dit aussi qu’ils doivent être zéro-dimensionnels . L’intérêt d’une telle repré-
sentation est que certains polynômes peuvent avoir beaucoup de monômes tout
en étant très facilement évaluables. On peut citer par exemple (X1+
 +Xr)

d qui
s’évalue en O(r + log d) multiplications grâce à l’exponentiation rapide, alors que,
développé, il possède

(

r+ d− 1
d

)

monômes. Ou le déterminant d’une matrice carré de

taille r qui est un polynôme en r2 variables avec r! termes mais qui s’évalue en O(r3)
opérations grâce au pivot de Gauss.

Au chapitre III, nous donnons une méthode automatique permettant de calculer
récursivement une racine y ∈ Zp d’un polynôme f(Y ) telle que y0 = y mod p soit
racine simple de f(Y )mod p. Tout d’abord, soit Φ une fonction pour laquelle y est un
point fixe si, et seulement si, y est un zéro de f . En pratique nous prenons toujours

Φ(Y )=
f ′(y0)Y − f(Y )

f ′(y0)
.

Il n’est pas clair qu’une telle fonction définisse un entier p-adique récursif. Nous
montrons que nous pouvons toujours trouver une fonction Ψ faisant de y un
entier p-adique récursif d’ordre 1 et dont la complexité d’évaluation est linéaire
en celle de f . Plus précisément nous avons la proposition suivante.

Proposition 11. (Proposition III.18, [BL12, Proposition 18]) Soit f un
polynôme à une variable sur Zp donné sous forme de straight-line program tel que
sa complexité multiplicative soit L∗. Alors il existe une fonction Ψ obtenue à partir
de Φ et de y0 telle que

y=Ψ(y)

et pour tout n ∈N∗, le calcul de Ψ(y)n ne demande que la connaissance de y0, 	 ,
yn−1. De plus, la complexité d’évaluation de Ψ est majorée par 2L∗+1.

De même, nous montrons que le calcul du quotient de deux entiers p-adiques
peut se généraliser en le calcul de la solution d’un système linéaire régulier. Nous
finissons par traiter le cas d’un système algébrique f de r équations polynomiales à r
variables à coefficients dans Z. Nous supposons que la réduction de f modulo p, f0,
admet une racine régulière y0, un vecteur d’entiers p-adiques. C’est-à-dire que nous
supposons que la différentielle d fy0 en y0 est inversible sur Fp. Cette différentielle
est alors inversible sur Zp, le lemme de Hensel s’applique encore et les propositions 10
et 12 se généralisent à ce contexte.

Proposition 12. (Proposition III.31, [BL12, Proposition 31]) Soit f un
système polynomial à r variables sur Zp donné sous forme de straight-line program
tel que sa complexité multiplicative soit L∗. Alors il existe une fonction Ψ obtenue
à partir de Φ et de y0 telle que

y=Ψ(y)
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et pour tout n ∈N∗, le calcul de Ψ(y)n ne demande que la connaissance de y0,	 ,
yn−1. De plus, la complexité d’évaluation de Ψ est majorée par 3L∗+

r (r+1)

2
.

En particulier, nous pouvons espérer en déduire une amélioration de la com-
plexité de l’algorithmeKronecker de Giusti, Lecerf et Salvy (voir [GLS01, DL08]).

Nous effectuons aussi une étude de complexité dans le cas où f est représenté
de manière dense, c’est-à-dire où chaque polynôme de f est donné par son vecteur
de coefficients.

Tous les algorithmes présentés aux chapitres II et III ont été implantés en C++
dans le paquet algebramix du logiciel de calcul formel Mathemagix [H+02].
Des exemples de code C++ de ces implantations sont disponibles en annexe A.
Des exemples de leur utilisation pour le calcul du produit, du quotient et des
racines r-ièmes et p-ièmes avec Mathemagix sont eux en annexe B.

4 Réduction de polynômes à deux variables

Le chapitre IV est un travail en commun avec G. Lecerf intitulé Reduction of biva-
riate polynomials from convex-dense to dense, with application to factorizations et
accepté pour publication à Mathematics of Computation [BL10]. Nous y étudions la
factorisation d’un polynôme à deux variables. Plus particulièrement, nous cherchons
à réduire un polynôme f ∈K[X,Y ] en un polynôme f̃ dont nous pouvons calculer la
factorisation plus facilement afin d’en déduire celle de f . En effet, la factorisation de
polynômes à deux variables est l’une des briques de base pour la décomposition en
composantes irréductibles des hypersurfaces, c’est-à-dire des variétés définies par une
seule équation. En effet, étant donné un polynôme à deux variables f(X,Y )∈K[X,

Y ], si l’on connaît une factorisation f(0, Y ) = f̃1(Y ) 
 f̃s(Y ) avec f1̃, 	 , fs̃ tous
premiers entre eux, alors par le lemme de Hensel, il existe f1(X, Y ), 	 , fs(X,
Y )∈K[[X ]][Y ] tels que

f(X,Y )= f1(X, Y )
 fs(X,Y ).

À partir d’un facteur fi(X, Y ) =
∑

j=0

di fi,j(X) Y j, il faut alors déterminer si les
séries formelles fi,j(X)∈K[[X ]] appartiennent à K(X). On peut utiliser pour cela
les approximants de Padé-Hermite [GG03, Section 5.9]. On en conclut alors que f
se factorise dans K(X)[Y ] et donc dans K[X, Y ].

En répétant ce procédé, on peut en déduire un algorithme factorisant f(X1,	 ,
Xr) dans K[X1,	 ,Xr] dès lors que f(0,	 , 0,Xr) admet des facteurs premiers entre
eux dans K[Xr].

Si l’on suppose que f s’écrit sous la forme

f(X,Y )=
∑

(i,j)∈N2

fi,jX
iY j ,
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on appelle support de f , l’ensemble S = {(i, j) ∈ N2, fi,j � 0}. Le polygone de
Newton , noté N , est l’enveloppe convexe de S. Il permet entre autres, grâce à
l’algorithme de Newton-Puiseux, de calculer les racines de f lorsque celui-ci est
vu comme un polynôme en Y à coefficients dans K[X ] (voir [Wal78, Chapter IV]
et [Die68, Chapitre III, Appendice]). Il peut servir aussi de critère d’irréductibilité
de f , en effet si f = g h, alors N =N (g) +N (h) [Ost21, Ost75, Ost99], où N (g)
et N (h) sont les polygones de Newton de g et h respectivement et + représente la
somme de Minkowski. Ce critère peut être vu comme une généralisation du critère
d’Eisenstein à deux variables.

Notons π le nombre de points à coordonnées entières dans N , il est appelé la
taille convexe de N .

Il est attendu que la complexité d’un algorithme de factorisation dépende de π
ou de l’aire de N , que nous notons Vol N . Par exemple, dans [Wei10], sous cer-
taines conditions de généricité, on peut trouver un algorithme pour factoriser f
dont la complexité est en O(πω), où ω est l’exposant de l’algèbre linéaire. Pourtant,
les meilleurs bornes de complexité connues pour les factorisations sans carré et
irréductibles dépendent du produit des degrés partiels dX en X et dY en Y (voir
par exemple [Gao03, Lec07, Lec08, Lec10]). Notons, qu’a contrario, il n’est pas
raisonnable d’espérer que la complexité d’un algorithme de factorisation dépende
polynomialement du cardinal σ de S. En effet, le polynôme f(X, Y ) =X p − Y p ∈
Q[X,Y ], avec p premier, est tel que σ=2 mais se factorise en

f(X, Y ) = (X −Y ) (X p−1+X p−2Y +
 +Y p−1),

le second facteur ayant un support de taille p.

Supposons que dX > dY . En caractéristique zéro, la factorisation sans carré
de f peut se calculer, de façon déterministe [Lec08, Proposition 8] (resp. probabi-
liste [Lec08, Proposition 9]), en Õ(dX dY

2 ) (resp. Õ(dX dY )) opérations dans K. En
caractéristique positive p, la factorisation irréductible de f sur K = Fpk peut se
calculer, de façon probabiliste [Lec10], en Õ(k (dX dY )

1,5) opérations dans Fp.

Ces complexités peuvent alors être très pessimistes. Par exemple, la famille de
polynômes fn(X, Y ) = 1 + Y + Xn Y n est telle que le produit des degrés partiels
est n2, pourtant, l’aire du polygone de Newton Nn est n/2.

Le rectangle englobantR deN est le plus petit rectangle de la forme (oX ,oY )+[0,
dX]× [0, dY ] contenant N . Le nombre de points à coordonnées entière dans R, c’est-
à-dire δ=(dX +1) (dY +1), est la taille dense de N .

Théorème 13. (Theorems IV.2 et IV.20, [BL10, Theorems 1.2 et 4.3])
Soit S un sous-ensemble fini de Z2 de taille σ, d’enveloppe convexe N, de taille
convexe π et de taille dense δ. Soit R = (oX , oY ) + [0, dX] × [0, dY ] le rectangle
englobant de S. Il existe une application affine inversible U ∈Aff(Z2) telle que Ñ =

U(N ) est inclus dans un rectangle R̃= [0, d̃X]× [0, d̃Y ] vérifiant

3

8
d̃X d̃Y 6Vol Ñ 6 d̃X d̃Y . (2)
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De plus, U se calcule en O(σ log2 π) opérations sur les bits et la taille dense de Ñ
est au plus 9π.

L’application U se calcule comme composée de transvections , de symétries
axiales et de translations. D’un point de vue géométrique sur la courbe définie
par f , U est la composée d’éclatements et de contractions, de sorte que la fac-
torisation de f̃ =U(f) devient essentiellement équivalente à celle de f .

D’après l’équation (2), on peut remarquer que Vol Ñ ∈O
(

d̃X d̃Y
)

. Or comme U

est inversible sur Z, alors Vol Ñ = Vol N et π ∈ O
(

d̃X d̃Y
)

. On en déduit qu’en

réduisant f à f̃ , en calculant la factorisation souhaitée de f̃ et en appliquant U−1 à
ses facteurs, on peut retrouver la factorisation sans carré de f , de façon déterministe
(resp. probabiliste), en Õ(π1,5) (resp. Õ(π)) opérations dans K lorsque car K = 0

et la factorisation irréductible, de façon probabiliste, de f en Õ(k π1,5) opérations
dans Fp lorsque K=Fpk.

Enfin, nous montrons aussi que le facteur 3/8 apparaissant dans l’équation (2)
est optimal, en général.

Proposition 14. (Proposition IV.21, [BL10, Proposition 4.4]) Soit S un

sous-ensemble de Z2. Avec la convention que VolU(S)
VolR(U(S)) =1 dès que VolS =0, on a

inf
S⊂Z2,|S |<∞

sup
U∈Aff(Z2)

VolU(S)
VolR(U(S)) =

3

8
,

où R(U(S)) représente le rectangle englobant de U(S).

5 Résolution en moyenne des systèmes algébriques
réels

Dans le chapitre V, nous nous intéressons avec L. M. Pardo au calcul en moyenne
d’une racine approchée d’un système algébrique réel. Ce chapitre est issu d’un article
nommé Spherical Radon transform and the average of the condition number on
certain Schubert subvarieties of a Grassmannian accepté pour publication à Journal
of Complexity [BP11b].

Dans [SS93a, SS93b, BCSS98], les auteurs définissent un zéro approché z ′ d’un
vrai zéro z d’un système algébrique complexe homogène f = (f1,	 , fn)∈C[X0,	 ,
Xn]

n, comme étant un élément de Pn(C) pour lequel l’itération de l’opérateur de
Newton converge immédiatement quadratiquement vers z. Soient dR la distance
de Riemann, naturelle, sur la sphère-unité de Cn+1 et dP la distance projective
sur Pn(C) definie par dP(w,w

′)= sin (dR(w,w
′)). Plus formellement, si l’on note z0=

z ′ et pour tout k ∈N, zk+1= zk− d fz |Tf(z)

−1 (f(z)), alors pour tout k, on a

dP(z, zk)6

(

1

2

)

2k−1

dP(z, z
′).
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Le dix-septième problème de Smale pose la question de déterminer si, étant donné
un système homogène générique f de n polynômes en n + 1 variables, il existe
un algorithme capable de calculer un zéro approché z ′ de f en un temps polyno-
mial. L’algorithme présenté par Beltrán et Pardo [BP09a, BP09b, BP11a] en est un
exemple, sa complexité est en O(N 2), où N est la taille dense de f . Cependant, cet
algorithme est probabiliste. Le meilleur algorithme déterministe connu à ce jour est
une adaptation du leur grâce à la smooth analysis , l’exposant apparaissant dans sa
complexité est alors en O(log logN).

Notons di = deg fi et (d) = (d1, 	 , dn). Notons aussi H(d) l’espace des systèmes
algébriques homogènes complexes g = (g1, 	 , gn) en les variables X0, 	 , Xn tels
que deg gi = di. Cet espace est muni naturellement de la norme de Bombieri et
l’on peut dès lors supposer que tous les systèmes intervenant dans la suite sont
de norme 1. En particulier on suppose que f l’est. Beltrán et Pardo proposent
d’appliquer de la déformation homotopique le long d’un grand cercle de S(H(d)), la
sphère-unité de H(d). En partant d’un système g dont ils connaissent une racine ζ,
ils étudient comment ζ évolue le long du grand cercle joignant g à f . Pour que
l’algorithme de Beltrán et Pardo rende une racine approchée de f , il ne faut pas que
ce grand cercle coupe Σ, la variété discriminante. Cette variété Σ est la variété des
systèmes de S(H(d)) dits mal-conditionnés , c’est-à-dire de ceux dont l’ensemble des
zéros n’est pas de dimension zéro ou de ceux dont au moins un zéro est multiple.
C’est une variété de codimension complexe 1 et donc de codimension réelle 2.

Les auteurs introduisent l’ensemble questeur G(d) qui est un ensemble de sys-
tèmes g dont ils savent calculer une racine exacte ζ. En choisissant un couple (g, ζ)
au hasard dans G(d), avec probabilité 1, le grand cercle passant par g et f ne coupe
pas Σ. Par conséquent, avec probabilité 1, l’algorithme de Beltrán et Pardo renvoie
une racine approchée de f .

Dans le chapitre V, nous nous intéressons au cas analogue où f est supposé
à coefficients réels, ce que nous dénoterons par f ∈ H(d)

R . L’adaptation directe de
l’algorithme de Beltrán et Pardo à ce cas-ci n’est pas possible. En effet ΣR = Σ ∩
S(H(d)

R ), la variété discriminante réelle, sépare la sphère-unité S(H(d)
R ) en un nombre

exponentiel de composantes connexes. Pour que la déformation homotopique puisse
réussir, il faut alors espérer choisir g dans la même composante que f , ce qui n’est
pas raisonnable. C’est pourquoi nous proposons de choisir g parmi les systèmes
complexes au lieu des systèmes réels et d’y appliquer ensuite leur algorithme. Nous
en déduisons que notre variante de l’algorithme de Beltrán et Pardo retourne une
racine approchée de f avec probabilité 1.

Notons µnorm(g, ζ) le conditionnement normalisé de g en sa racine ζ. Ce nombre
permet de déterminer à quel point une petite perturbation de g affecte ζ . Il est
lié au conditionnement de la jacobienne de g en ζ et donc, en particulier, lié à la
norme d’opérateur de l’inverse de d gζ qui peut être notée 9d gζ

−19. Le nombre
d’étapes de déformation homotopique exécutée par l’opérateur de Newton à partir
d’un couple (g, ζ) en ciblant f le long du grand cercle L passant par g et f est
majoré par

C(f , g, ζ)=
∫

h∈L

µnorm(h, ξ)
2 dL,
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où ξ est le zéro de h issu de la perturbation de ζ (voir [Shu09]). Une majoration de
la complexité de notre algorithme est donnée par l’espérance E définie par

E=ES
(

H(d)
R
)

×S(G(d))
(C(f , g, ζ)).

Pour le calcul de cette espérance, on peut utiliser la moyenne µav
2 des carrés des

conditionnements définie par :

µav
2 (g)=

1

|V(g)|
∑

ζ∈V(g)

µnorm(g, ζ)
2.

Notons N + 1 = dimCH(d) = dimRH(d)
R , ainsi, N est la taille dense d’un système

de S(H(d)
R ). À l’aide de la transformée de Radon sphérique [Rub02] définie par

Rα[µav
2 ](S(H(d)

R ))=
B
( N −α+2

2
,
α+N +1

2

)

volS(H(d))

∫

S(H(d))

µav
2 (g)

dP

(

g,S
(

H(d)
R
))

N+1−α
dS(H(d)),

nous en déduisons le résultat suivant.

Théorème 15. (Corollary V.13, [BP11b, Corollary 12]) Supposons
que dimRH(d)

R =N +1 et notons

C(2N +1, N , i)= 2

(

N − 1

2

i

)

B
( 2N +3

2
,
1

2

)

B
( N − 1

2
,
1

2

)
.

Alors la borne E de la complexité de la variante réelle de l’algorithme de Beltrán et
Pardo vérifie,

1. si N +1 est pair,

E =
∑

i=0

N−1

2

C(2N +1, N , i)RN−2i[µav
2 ](S(H(d)

R )) ;

2. si N +1 est impair,

R1[µav
2 ](S(H(d)

R )) 6 E 6 2
√
(

R1[µav
2 ](S(H(d)

R ))

B
( N +1

2
,
N

2

)

)

E 6 2
√

ES(H(d))

[

µav
2 (g)

dP

(

g,S
(

H(d)
R
))

N

]

.

Nos résultats sont en fait un peu plus généraux. Étant donné un R-sous-espace
vectoriel M de H(d), nous calculons l’espérance E = ES(M)×S(G(d))(C(f , g, ζ)) de
trouver une racine approchée de f ∈ M de norme 1 à partir d’un couple (g, ζ)

de G(d). Plus haut, l’espace M était celui des systèmes réels H(d)
R , mais il peut très

bien s’agir des systèmes algébriques à support inclus dans un ensemble S donné. Le
théorème 15 est alors un cas particulier du théorème suivant.
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Théorème 16. (Corollary V.10, [BP11b, Corollary 9]) Soient N + 1 =
dimCH(d) et p+1= dimRM. Pour tout i, on note

B0(2N +1, p, i) = 2

(

N − 1− p

2

2

)

B(N +
3

2
,
1

2
)

B(
p− 1

2
,
1

2
)
,

C(2N +1, p, i) = 2

(

N − p+1

2

i

)

B(N +
3

2
,
1

2
)

B(
p− 1

2
,
1

2
)
.

Soit E la borne de la complexité de la variante de l’algorithme de Beltrán et Pardo,

1. si codimRM =1, alors

4 2 p
√

(2N +1+ 3
√

)1/2
ES(H(d))[µav

2 ]6E6
(2N − 1) p

2

√

R0[µav
2 ](S(M )) ;

2. si codimRM est paire, alors

E =
∑

i=0

2N−p−1

2

C(2N +1, p, i)R2(N−i)−p[µav
2 ](S(M)) ;

3. si codimRM est impaire et est plus grande que 1, alors E est bornée par les
quantités suivantes :

E >
∑

i=0

2N−p−2

2 (2N − 1)B0(2N +1, p, i)

i+ 3/2
√

√ R2(N−i)−p−1[µav
2 ](S(M)),

E 6
∑

i=0

2N−p−2

2 8B0(2N +1, p, i)

(2 i+1) (2N − 1)
R2(N−i)−p−1[µav

2 ](S(M)).
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Chapitre I

Computing Hironaka’s invariants:
Ridge and Directrix

Abstract

In this chapter we present Hironaka’s invariants as developed by Giraud: the ridge
and the directrix. We give an effective definition and a functorial one and show their
equivalence. The fruit is an effective algorithm that computes the additive generators
of the "ridge", and the generators of its invariant algebra. This chapter is based on
published article written with P. Hivert and H. Mourtada [BHM10].

1 Introduction

The problem of the resolution of singularities has made a tremendous progress
thanks to Hironaka’s contribution. In this chapter, we want to present some objects
that he introduced to resolve singularities, in particular we compute the subtle
invariant: the ridge (The notion "ridge" is "faîte" in the original (French) literature).
Take an ideal I ⊂ R, for instance R a polynomial ring (or a localization thereof)
over any field. Take x∈ Spec(R/I). The directrix and the ridge live in the tangent
cone at x. The directrix is a vector space, the ridge an additive group. These two
objects are given only by the class of isomorphisms of R/I. Even more, these invari-
ants “commute with smooth morphisms” [Gir75]. In particular, for any isomorphism:

φ: R/I� S/J ,

both R/I and S/J have isomorphic tangent cone, directrix and ridge at x and φ(x).
Giraud shows in [Gir75] that the ridge is the tangent cone of a “maximal contact

variety” (see [Kol07]). The ridge as we will see is generated by additive polynomials.
In characteristic 0, this means that the ridge is a linear space, therefore a “maximal
contact variety” is smooth. In characteristic p> 0, additive polynomials may not be
linear, therefore the ridge may not be linear and a “maximal contact variety” may
not be smooth. This is the crucial fact why Hironaka’s proof is not generalized for
free to positive characteristic. This generates a major difficulty, still not overcome
in the desingularization problem. Another difficulty is that if you blow up a singular
variety V along a singular point x∈V, the points “near” to x are on the Proj of the
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ridge of the tangent cone. In [Hir70], Hironaka shows that, in characteristic p > 0
there are examples of points “near” to x which are not on the Proj of the directrix of
the tangent cone. In the 70’s a large literature about “Hironaka’s groups” appeared:
people has tried to classify the cases where “near” points are not on the Proj of the
directrix of the tangent cone. The ridge and “Hironaka’s groups” are closely related,
but we do not want to say more about this classification problem which is known
to be quite difficult. Nowadays, the ridge seems to be forgotten though it is a very
interesting object.

The contribution of this chapter is the computation of a basis of the ideal of the
ridge whose elements are additive polynomials. Indeed, in [Gir72, Gir75], Giraud
shows how to compute a set of generators of this ideal, but they are not additive
polynomials in general: see Example I.22. We also hope that we clarified Giraud’s
proofs.

Acknowledgment

V. Cossart gave a talk on this topic in Geocrypt and he initiated us in a working
group about desingularization in positive characteristic. He is at the origin of this
work, we would like to thank him for his helpful remarks. The authors are very
grateful to both the referees for their constructive comments about this paper.

2 Notation and prerequisites, naive definitions of
Ridge and Directrix

Until the end of this chapter, K denotes a field of any characteristic. We give in this
section an overview about cones, ridges and directrices.

A linear space of dimension n is An 6 Spec R, where R 6 K[X1, 	 , Xn]. A
cone C embedded in An is given as SpecK[X1,	 , Xn]/I where I ⊂K[X1,	 , Xn] is
a homogeneous ideal.

Definition I.1. (Directrix) The directrix of C is the linear space of equations
in Y1,	 , Yτ, the smallest set of linear forms such that

I =(I ∩K[Y1,	 , Yτ])K[X1,	 , Xn]. (I.1)

In a few words, the smallest list of variables to define I. Geometrically, there are
linear subspaces W ⊂An such that C+W = C (take W =0 for instance), and if W1

and W2 are such, then so isW1+W2. The directrix corresponds to the biggest linear
subspace W of An such that C+W = C.

Definition I.2. (Naive definition of the ridge) The ridge [Hir67] of C is the
additive space of equations in P1,	 , Pe, the smallest set of additive polynomials such
that

I =(I ∩K[P1,	 , Pe])K[X1,	 ,Xn]. (I.2)
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This definition looks inconsistent, existence is not clear. Consistence is given in
Section 3.2. Obviously, they coincide in characteristic 0, but in characteristic p> 0,
they are in general different. In this chapter, following Giraud [Gir72, Gir75], we
show that it is easy to compute the ridge (easier than the directrix). Let us note
that the ridge has good properties (commutes to base changes, for example) that
the directrix has not. For instance, suppose that K has characteristic p > 0 and
that λ∈K is not a p-power, take I=(X p+λ Y p)K[X,Y ], then the directrix is V(X,
Y ), the ridge is V(I), where V(I) stands for the variety defined by ideal I. ChangeK
in K̄ its algebraic closure, then the directrix is V

(

X+ λ
p√

Y
)

, the ridge is still V(I).

3 The Ridge: formal definition, main properties.

3.1 Ridge as a functor

Let AK
n be the n-dimensional affine space over K. As above let C be the cone defined

in AK
n by the homogeneous ideal I , and let G be the quotient R/I. The natural K-

algebra homomorphism

∆: K[X1,	 ,Xn] � K[X1,	 , Xn]⊗K[Y1,	 , Yn]
Xi � Xi+Yi

gives AK
n the natural structure of a group scheme. We will call + the law that it

defines. If we see AK
n as its functor of points, then we can define the subfunctor

of the category of Schemes over K to the category of Sets as follows: for a K-
Scheme S, F (S) is the subset of of the S-points v in AK

n such that (v+ c)∈C(S) for
every S-point c of C(S).

Now, we give some consequences of the definition. Let S be aK-Scheme, firstly, 0
is a S-point which lies in C(S), so for all v in F (S), 0+ v is an element of C(S), that
is to say F (S)⊂C(S). Therefore, seen as functors F is a subset of C. Secondly, F (S)
is a group scheme. The S-point 0 lies trivially in F (S). Let two S-points v and w
in F (S), the definition ensures that translations by v and w send the cone C(S)
to itself, so the composition, which is just the translation by v + w has the same
property. This forces (v+w) to be in F (S). Moreover, the inverse of the translation
by v, which is the translation by −v, preserves C(S), that is to say (−v)∈F (S).
Proposition-Definition I.3. The functor F is representable by a scheme F. We
call this scheme the ridge of C.

The remarks below say that F , the ridge of C is a group scheme, subscheme of C,
so the ridge of F (seen as a subscheme of C) is the ridge F .

Proof.

1. Let N be the maximum degree of a set of generators f1,	 , fm of I. Let Gℓ be
the homogeneous component of degree ℓ of G (G is a graded algebra because I
is homogeneous). Let H 6 ⊕

ℓ≤N
Gℓ the K-vector space which is of finite

dimension, we can find a K-basis of H formed by monomials ei, i∈Λ. It is
easy to compute it, fi=XAi+

∑

B∈Nn,B<Ai
λBX

B. So H is spanned by XB,

with |B | ≤N and B � ⋃
1≤i≤m

Ai +Nn. This family is a basis of H . Note
that H generates G as a K-algebra.
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2. Let s be the composed morphism

s: R� R⊗KR� R⊗KG,

where the first morphism is ∆ and the second morphism is the canonical
one. For every d ∈ N, d ≤ N and f ∈ Id, s(f) is homogeneous of degree d,
therefore s(f)∈R⊗H and it can be uniquely written

s(f) =
∑

ℓ∈Λ

sℓ(f)⊗ eℓ, with sℓ(f)∈Rd−deg(eℓ).

This follows from the fact that R ⊗K H is a free R-module generated by
the 1 ⊗ eℓ’s. Now, f1, 	 , fm span I, so we define J the ideal generated
by sℓ(fi), ℓ∈Λ, 1≤ i≤m.

3. The subscheme of AK
n defined by J represents the functor f . Indeed, it is

sufficient to verify that for a K-algebra B, the functor of points of Spec(R/J)
applied to B coincides with F (B). The data of a B-point of AK

n is equivalent
to the data of a homomorphism v: R� B, which gives rise to

R1∆ R⊗KR� R⊗KG1v⊗1
B ⊗G.

If we want the translation by v to map C in C, i.e. that v belongs to F (B),
(v ⊗ 1) ◦ s must annihilate I. This means that I should be in the kernel
of (v⊗1) ◦ s and therefore the image of the translation by v is included in C.
This is equivalent to (v⊗ 1) ◦ s(f) =∑

ℓ∈Λ
v(sℓ(f))⊗ eℓ=0 for every f ∈ Id,

d ≤ N . But since B ⊗K H is free of base 1 ⊗ eℓ, ℓ ∈ Λ, this is equivalent
to v(sℓ(f))= 0, therefore v factors by R/J and it is an R/J-point. �

Recall that F is an additive group and there is no reason for the si(fj)’s to be
additive polynomials in the general case. The idea of Giraud is to find a condition
on f1,	 , fm to have this property.

We define by the Taylor formula, derivations of f , homogeneous polynomial
of degree s, DA

X f with A ∈ Nn by f (X + Y ) =
∑

A∈Nn,|A|≤s
DA

X f(X) Y A. This

derivations DA
X are known as “Hasse-Schmidt” derivations.

Notations I.4. From now on, we will only use the graded lexical order (grlex).
Hence, “Gröbner basis” will always mean “Gröbner basis with respect to the grlex
order”. The ideal of the ridge will be denoted by J.

For any P =
∑

A∈Nn λA XA ∈ K[X ], P � 0, exp (P ) is the greatest A such
that λA� 0.

For any homogeneous ideal I � {0} in K[X ], the set {exp (P ): P ∈ I \ {0}} is
denoted exp (I) and is called the exponent of the ideal I.

Corollary I.5. (Giraud) If f1, 	 , fm, the homogeneous generators of I, sat-
isfy DA

X fi=0 with A∈ exp (I) and |A|< deg (fi), then J is spanned by the DA
X fi’s

with A∈Nn, |A|<deg (fi).

Proof. We keep the same notations as in Proposition-Definition I.3 and we iden-
tify R⊗KR with K[X, Y ]. Let Ȳi be the class of Yi in R⊗KR/I. Since the YiA’s,
A � exp (I), represent a K-basis of R/I, the ȲiA’s, A � exp (I), give a basis of the
free R-module R⊗KR/I. So with respect to this basis using the Taylor formula, we
have that the sℓ(f)’s, defined as above, are the DA

X fi’s, when the fi’s are as above. �
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Definition I.6. A basis of I which verifies the statement of Corollary I.5 will be
called a Giraud basis of the cone.

By the definition of the Hasse-Schmidt derivations above and for f ∈R we have

f(X + Y )− f(X)− f(Y )=
∑

0<|A|<d

(

DA
X f
)

(X) Y A. (I.3)

Remark I.7. We consider

U = {f ∈RN f(X + Y )− f(Y )∈ J ⊗KK[Y ]}. (I.4)

Clearly this is a subalgebra of R, and it is the invariant algebra of the ridge in AK
n .

Indeed, since the diagonal morphism from R to R⊗KR identifies with

K[X ] � K[X + Y ]

f(X) � f(X + Y ),

then U is the algebra of functions on AK
n such that for every K-scheme S and

every S-point (u, v) of F ×KAK
n , we have f(u+ v)= f(u). Let’s call Π the following

morphism
Π: R � R⊗KR � R/J ⊗KR

f(X) � f(X) � f(X).

Elements of U are those whose images by ∆ and by Π are the same, hence it is the
kernel of ∆−Π. This means it is the kernel of the double morphism (∆,Π). Since R
has a graded structure, it inherits also a graded structure and from formulae (I.3)
and (I.4), for d∈N we have

Ud=
{

f ∈Jd′|DA
X f ∈ J , d≤ d′, d= d′− |A|

}

. (I.5)

By Taylor formula, for all f ∈Ud and for all multi-indices A, |A|≤ d, DA
X f ∈Ud−|A|.

Lemma I.8. With the same notations as above, let H be a K-graded subalgebra
of K[X ], then the following assertions are equivalent:

1. For all f ∈Hd, for all multi-index A, |A| ≤ d, DA
X f ∈Hd−|A|;

2. There exist additive homogeneous polynomials θ1,	 , θs,	 such that

H =K[θ1,	 , θs,	 ].

Furthermore, in positive characteristic p, if the conditions above are fulfilled, up to
a re-indexation of the variables, one can take

θi=Xi
pαi

+ ti(Xi+1,	 , Xn), 1≤ i≤ s<∞, (I.6)

αi≤αi+1, 1≤ i≤ s− 1 and ti, additive polynomials, in K[Xi+1,	 ,Xn].

Proof. For 1 ⇒ 2, we follow Giraud’s idea [Gir72, p. I-29, 30]. Let K be the
subalgebra of H generated by all additive homogeneous polynomials. Let N ∈ N

such that Hd = Kd for all d < N . Let f =
∑

A,|A|=N
fA X

A ∈ HN, fA ∈K, we will

prove that f ∈KN. Let KN− be the algebra generated by K0,	 ,KN−1, we will prove
that f is the sum of elements in KN− and of an additive polynomial.
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Let A be the greatest multi-index for lex such that XA is not additive. If A is
in exp (KN−), let g be a polynomial in KN− such that its greatest monomial for lex
is XA. Then the greatest monomial of (f − fA g) is a XB with B<A. By induction,
we can find a suitable f such that its greatest non additive monomial for lex is not
in exp (KN−). We may assume that A is not the exponent (see Notations I.4) of
an element of KN−, A6 (a1,	 , an), ai= pβi qi, qi relatively prime to p. There exist
multi-indices C and D such that A = C +D, DC

X XA � 0 and DC
X XA � 0. Indeed,

either there are two indices 1≤ i0<i1≤n such that ai0 ai1� 0, take C=A− (0,	 ,0,
i0,0,	 ,0),D=(0,	 ,0, i0,0,	 ,0), either there is only one index 1≤ i0≤n with ai0� 0

and qi0 > 1, take C = (0, 	 , 0, pβi0, 0, 	 , 0) and D = (0, 	 , 0, pβi0 (qi − 1), 0, 	 , 0).
We have DC

X XA DD
X XA = a XA, a ∈K∗. By hypothesis, DC

X f ∈ HN−|C | = KN−|C |
and DD

X f ∈HN−|D |=KN−|D |, A is the exponent of DC
XXADD

XXA∈KN−. This is a
contradiction and A does not exist, hence f is additive.

Let us prove the converse. We denote g=
∑

λB θ
B ∈K[θ1,	 , θs,	 ]. We have

g(X +X′) =
∑

λB θ(X +X′)B

=
∑

λB (θ(X)+ θ(X ′))B

=
∑

λB

(

B

B ′

)

θ(X)B−B ′

θ(X ′)B
′

=
∑

C

PC(θ(X))X ′C ,

with PC ∈K[θ1,	 , θs,	 ].
The next lemma applied to I =H>0 ends the proof. �

Lemma I.9. Let char K = p > 0, with notations as above, let K be a K-graded
subalgebra of K[X ], and I be an ideal generated by a set of additive homogeneous
polynomials φ1,	 , φm,	 , then, up to a re-indexation of the variables, we can take

θi=Xi
pαi

+ ti(Xi+1,	 ,Xn), 1≤ i≤ s≤n<∞,
αi≤αi+1, 1≤ i≤ s− 1 and ti, additive polynomials, in K[Xi+1,	 ,Xn].

Proof. We may assume deg (φi) ≤ deg (φi+1), 1 ≤ i ≤ m − 1. By making linear
combinations among the φi of smallest degree, up to a re-indexation of the variables,
we may assume that

φi=Xi
pαi

+ ti(Xi+1,	 , Xn),

with µi� 0, φi of smallest degree.
We may assume formula (I.6) for every φi. Indeed, let i0 be the smallest index

such that we have not this formula for φi0, then

φi0=
∑

1≤j≤m

µi0,jXj
p
αi0
,

where µi0,j ∈K. Assume for instance that µi,1� 0, then we change φi0 in

φi0,16 φi0−
µi,1

µ1
φ1
p
αi0

−α1∈K[X2,	 ,Xn],

by an easy induction, we change φi0 in φi0,i0−1∈K[Xi0,	 , Xn], the reader ends the
claim. �
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Corollary I.10. Let U be K[θ1, 	 , θs], then it is a polynomial algebra of vari-
ables θ1,	 , θs.
Proof. Left to the reader. �

Corollary I.11. With notations as above, R is a free module over U of basis

XA, A=(a1,	 , an), ai< pαi, 1≤ i≤ s.

Indeed, if exp (XA θB) = exp (XA′

θB
′

) with A = (a1, 	 , an), ai < pαi, 1 ≤ i ≤ s,
A ′=(a1

′ ,	 , an′ ), ai′< pαi, 1≤ i≤ s, B,B ′∈Nn, by formula (I.6), (A,B)=(A ′,B ′). So
the set of XA is U -free.

Furthermore,

{exp (XA θB)|A= (a1,	 , an), ai< pαi, 1≤ i≤ s, B ∈Nn}=Nn,

the set of XA generates S over U .

Proposition I.12. Let (f1, 	 , fm) be a Giraud basis of I. The DA
X fi’s for |A|<

deg fi, i=1,	 ,m generate U.

Proof. Let V be the subalgebra of R generated by the DA
X fi’s for |A| < deg fi,

i=1,	 ,m. Since U is as in formula (I.5), V ⊂U . The polynomials DA
X fi are homo-

geneous, so V is a graded subalgebra of U . Denote by U+ and V+ the ideals
⊕

d>0
Ud

and
⊕

d>0
Vd. From Corollary I.5, we have that V+R=J therefore U+R=V+R=J .

On the other hand since R is faithfully flat over U (see Corollary I.11), we have
that V+U =U+. And we deduce by induction on the degree that V =U . �

3.2 Naive and formal definitions coincide

Proposition I.13. Let J ⊂ K[X1, 	 , Xn] be a homogeneous ideal generated by
additive polynomials, then there exists G 6 {φ1, 	 , φs}, a reduced homogeneous
Gröbner basis of J, such that, up to a re-indexation of the variables,

φi= µiXi
pαi

+ ti(Xi+1,	 , Xn), (I.7)

with µi � 0, 1 ≤ i ≤ s, αi ≤ αi+1, 1 ≤ i ≤ s − 1 and ti, additive polynomials,
in K[Xi+1,	 ,Xn].

Furthermore, up to a re-indexation of the variables, formula (I.7) is true for all
reduced homogeneous Gröbner bases of J.

Proof. The first assertion is a direct consequence of Lemma I.9: it is clear that a set
of generators verifying formula (I.6) is a reduced homogeneous Gröbner basis of J . �

Corollary I.14. Let I be a homogeneous ideal of K[X1,	 ,Xn], let G6 {γ1,	 , γs}
be any reduced homogeneous Gröbner basis of J the ideal of the ridge of V(I), then

I =(I ∩K[γ1,	 , γs])K[X1,	 ,Xn],

U =K[γ1,	 , γs] and if K is a K-algebra generated by additive polynomials such that

I = (I ∩K)K[X1,	 , Xn], (I.8)
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then U ⊂K.

Proof. Let (f1,	 , fm) be a Giraud basis of I, by Corollary I.5, the fi’s generate U ,
so Proposition I.12 forces that there exists a reduced Gröbner basis (θ1,	 , θs) of J
whose the form is

θi=Xi
pi
α

+ ti(Xi+1,	 , Xn).

It follows that (θ1,	 , θs) is a basis of U as aK-algebra. Now, the particular case A=0
gives that the fi’s are elements of U , so I = (I ∩K)K[X1,	 , Xn].

Furthermore, as the ridge of J is J , if G 6 {µ1, 	 , µs} is any reduced homo-
geneous Gröbner basis of J , Corollary I.5 and Proposition I.12 applied to G give
that U =K[µ1,	 , µs].

Let K be a K-algebra generated by additive polynomials such that

I = (I ∩K)K[X1,	 , Xn].

We can find a basis (g1, 	 , gs) of I, with gi ∈ K, and then by Corollary I.5,
the DA

X gi’s, with |A|< deg fi, generate U . But Lemma I.8 ensures that this deriva-
tions are in K. Finally, U ⊂K. �

Proposition I.15. There is a one-to-one correspondence between algebras gener-
ated by homogeneous additive polynomials included in K[X] and ideals generated by
homogeneous additive polynomials of K[X ].







algebras generated by
homogeneous additive

polynomials







� 





ideals generated by
homogeneous additive

polynomials







A � A+K[X ]

K[X ]V(J) � J.

This correspondence preserves the inclusion.

Example I.16. Let us explain the correspondence with an example in an algebraic
closed field of characteristic 3. Denote by U the algebra generated by X3 and Y 3+
Z3. It is clear that the ideal J , image of U by the first arrow, is spanned by these
polynomials.

For the reverse, it is enough to find homogeneous additive polynomials in the
algebra (as in the proof of Lemma I.8). Let such a polynomial P =αX3a+ β Y 3a+
γZ3a be in this algebra. We have

P (X +X ′)−P (X ′)=αX3a+ β Y 3a+ γZ3a.

So the condition P (X + X ′) − P (X ′) ∈ J ⊗ K[X ′] implies β = γ that is to
say P =αX3a+ β (Y 3+Z3)a. This algebra is also equal to U .

Proof. The first arrow is well-defined. The construction of the second arrow is a
consequence of Lemma I.9 and Corollary I.10. The bijection is easy to verify. �

Corollary I.17. Let I1 and I2 be homogeneous ideals of K[X1,	 ,Xn], the following
assertions are equivalent:

1. The ridge of I2 contains (as a subscheme) the ridge J1 of I1;
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2. I2 = (I1 ∩ K[θ1, 	 , θs]) K[X1, 	 , Xn], where G 6 (θ1, 	 , θs) is any reduced
homogeneous Gröbner basis of J1.

Proof. Left to the reader. �

Now the reader should be convinced that the naive definition I.2 and the formal
definition I.3 of the ridge coincide.

4 An algorithm to compute the ridge and the direc-
trix

4.1 An algorithm to compute a “Giraud basis” of the cone

We want to point out that a “Giraud basis” is far from a “reduced Gröbner basis”.
Let us give an example to explain it.

Example I.18. I =(f1, f2)⊂K[X,Y ] where f1=XY , f2=X3+Y 3. Then (f1, f2)
is a “Giraud basis” and not a “reduced Gröbner basis”, (f1, f2, f3=Y 4) is a “reduced
Gröbner basis”.

Remark I.19. A reduced Gröbner basis of the cone truncated to the degree of the
greatest given generator is a “Giraud basis”.

We use this easy remark. Our algorithm for computing a “Giraud basis” is almost
a Gröbner basis algorithm except we trash out any computed S-polynomial whose
degree is greater than the greatest given generator. Actually, since we can know the
degree of a S-polynomial before calculating it (recall all our polynomials are homo-
geneous), if the degree doesn’t match our condition, we skip the computing part.
Although they have not been implemented, any known improvement for computing
a Gröbner basis, such as in [Laz83, BFS04], can be used in this algorithm.

Algorithm I.1
Giraud basis algorithm

Input. Homogeneous polynomials f1, 	 , fm, such that deg f1 ≤ 
 ≤
deg fm, generating I.

Output. Homogeneous polynomials g1,	 , gr, such that deg gi≤deg fm,
generating I and verifying Giraud’s Corollary hypotheses.

1. For i from 1 to m

fi6 fi/lc(fi).

2. Compute a Gröbner basis of I by trashing the polynomials with
higer degrees than deg fm.

3. Minimalize and reduce this basis.

4. Return the truncated reduced Gröbner basis.
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It should be noted that this kind of algorithm has already been implemented in
computer algebra softwares such as Singular [DGPS11].

Example I.20. Let I = (f1, f2) ⊂ K[X, Y ], where f1 = X, f2 = X p + Y p

and p = charK. As f2 is additive, DA
(X,Y )

(f2) = 0, for all A, |A| < p, A ∈ exp (I).
Then (f1, f2) is a “Giraud basis” and not a truncated “reduced Gröbner basis” as in
Example I.18. Let us note that the monomial X p which occurs in the expansion of f2
is in exp (f1), so our algorithm will make an unnecessary computation and give (f1,
Y p) in output.

4.2 From the “Giraud basis” to the ridge

Following Giraud’s Corollary I.5, once we computed a Giraud basis (f1,	 , fm) of the
ideal of the tangent cone, we compute the set E 6 {

DA
X fi, 1≤ i ≤m, |A|<n(i)

}

of generators of the ideal of the ridge. There are two very different cases:

1. charK=0;

2. charK= p> 0.

In case 1, where char K = 0, to compute the ridge (which is also the directrix
by Section 2), we propose the following algorithm. Let us note that, in this case,
where char K = 0, up to a multiplication by invertibles, the DA

X’s are the usual
differential operators, hence in step 2, our algorithm may be apparently improved
when we have a good implementation of the DA

X’s.

Algorithm I.2
Ridge generators in characteristic 0 algorithm

Input. Homogeneous polynomials f1, 	 , fm verifying Giraud’s Corol-
lary hypotheses.

Output. DA
X fi’s of degree 1 for all i, 1≤ i≤m.

1. L6 ∅;
2. For i from 1 to m

a. gi6 fi(X +X ′).

b. For each monomial X ′A in gi

i. h6 coeff
(

gi, X
′A).

ii. If deg h=1 then L←L∪{h}.
3. Return L.

The case 2 is the most interesting and the most difficult. By Giraud’s Corollary I.5,
up to a change of indices on the variables, there is a basis

AF 6 〈φ1,	 , φτ 〉,
where φi=Xi

pqi+
∑

i+1≤j≤n
λjXj

pqi, with λj ∈K, 1≤ i≤ τ , q1≤ q2≤
 ≤ qτ . There
is no hope that AF ⊂E , see the example below.
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Lemma I.21. With hypotheses and notations as above, let us denote

E p6 {ψ ∈E , deg(ψ) is a p-power }.
Then E p generates the ideal of the ridge.

Let us note that this generalizes the case 1.

Proof. We start with an example and a remark.

Example I.22. I = (f), f =X p+Y p−1X +Z p∈K[X, Y ]. Then

E = {X p+Y p−1X +Zp, Y jX, Y i, 1≤ i≤ p− 1, 0≤ j ≤ p− 1},
Ep = {X, Y ,X p+ Y p−1X +Z p},
AF = {X, Y , Zp}.

Remark I.23. With hypotheses and notations as above, elements of minimal degree
of J are additive polynomials.

Indeed, elements of minimal degree of J are linear combinations with coefficients
in K of elements of minimal degree of a set of generators. As J is generated by
additive polynomials (by a general argument or by Proposition I.24 below), these
elements are linear combinations of additive polynomials, hence they are additive.

Let us go back to the proof of Lemma I.21. Take any ψ0∈E of minimal degree
such that deg (ψ0) is not a p-power, let d6 deg (ψ0). Then the ideals of R, the first
generated by ψ∈AF , with degψ<d, and the second generated by φ1,	 , φi, n(i)<d,
n(i) maximal, are equal.

Let i1=max {i, n(i)<d}, thanks to the fact that deg φi>d for i> i1, one must
have ψ0 ∈ (φ1, 	 , φi1). Then replace AF by AF \ {ψ0} and make an induction on
the cardinality of the set of generators. �

Proposition I.24. Let G 6 (θ1, 	 , θs) be a reduced homogeneous Gröbner basis
of J the ideal of the ridge of V(I), I be a homogeneous ideal of K[X1, 	 , Xn],
with deg (θi)≤ deg (θi+1), 1≤ i≤ s− 1. Then θi is an additive polynomial for all i,
1≤ i≤ s.

Proof. By contradiction. Let θi0∈G with i0 minimal such that θi0 is not an additive
polynomial, let d=deg (θi0). Then

θi0 =
∑

B∈Nn, |B |=d
B� (0,	 ,pα,0,	 ,0)

µBX
B+

∑

C∈Nn, |C |=d
C=(0,	 ,pα,0,	 ,0)

µCX
C ,

where µB ∈K and µC ∈K
θi06 θ̃i0+ θ̄i0,

with θ̃i0� 0, θ̄i0 additive.
Let B06 exp (θ̃i0)= (b1,	 , bn).
There exists B ′ coordinate wise strictly smaller than B0 such that

ψ06 DB ′

X (θ̃i0) =DB ′

X (θi0)� 0.
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Indeed, either there exists j, such that bj � 0 and bj< |B0|. Then we can take

B ′= (b1,	 , bi−1, 0, bi+1,	 , bn)
and we have DB ′

X (XB0)=Xj
bj and

ψ0= µB0Xj
bj +

∑

B�B0

(B−B ′)∈Nn

µB
′ XB−B ′

,

or B0=(0,	 , 0, pα q, 0,	 , 0) with q relatively prime to p and q is positive. We take

B ′= (0,	 , 0, pα (q− 1), 0,	 , 0),
DB ′

X (XB0)= (q− 1)Xj and

ψ0=(q− 1) µB0
Xj+

∑

B�B0

(B−B ′)∈Nn

µB
′ XB−B ′

.

As the ridge of the ridge is the ridge,

0� ψ0∈ J.
As deg (ψ0) < deg (θi0), θi0 is not an element of minimal degree of J : i0 ≥ 2. By
Corollary I.5, ψ0 ∈ J , so exp (ψ0) = (B0 − B ′) ∈ exp (θ1, 	 , θi0−1), so (B0 − B ′) ∈
exp (θ1,	 , θi0−1), which contradicts the reducedness of G. �

Algorithm I.3
Computation of θi’s algorithm

Input. Homogeneous polynomials f1, 	 , fm verifying Giraud’s Corol-
lary hypotheses.

Output. DA
X fi’s of degree a p-power for all i, 1≤ i≤m.

1. L6 ∅;
2. For i from 1 to m

a. gi6 fi(X +X ′).

b. For each monomial X ′A in gi

i. h6 coeff
(

gi, X
′A).

ii. If deg h= pr then L←L∪{h}.
3. Return a reduced Gröbner basis of L.

This last algorithm gives us a sequence of θi’s.

Remark I.25. Calling a Gröbner basis algorithm means that all the computation
will be done in S instead of in K[θ1,	 , θs]. Using the techniques of Lemma I.8 and
Lemma I.9, we can find an algorithm with computations in K[θ1,	 , θs]. We do not
think we can save a good amount of time nor memory with such an algorithm that
would compute the polynomial algebra K[θ1,	 , θs] hidden in K[X ].
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Remark I.26. (Computation of the directrix) In the case where K is perfect,
by Definitions I.1 and I.2, the directrix is the reduction of the ridge. Furthermore,
the θi’s, 1≤ i≤ s are pαi-powers, then the ideal of the directrix is

(

θ1
pα1√

,	 , θs
pαs√ )

.

We do not know any direct method to compute it. Indeed Fröhlich and Shepherdson
have even shown that testing if an element is a pth power is not decidable in gen-
eral, even if the considered ring is effective [FS56, Section 7] (see also the example
in [Gat84, Remark 5.10]).
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Chapitre II

Relaxed algorithms for p-adic num-
bers

Abstract

Current implementations of p-adic numbers usually rely on so called zealous algo-
rithms, which compute with truncated p-adic expansions at a precision that can be
specified by the user. In combination with Newton-Hensel type lifting techniques,
zealous algorithms can be made very efficient from an asymptotic point of view.

In the similar context of formal power series, another so called lazy technique is
also frequently implemented. In this context, a power series is essentially a stream
of coefficients, with an effective promise to obtain the next coefficient at every stage.
This technique makes it easier to solve implicit equations and also removes the
burden of determining appropriate precisions from the user. Unfortunately, naive
lazy algorithms are not competitive from the asymptotic complexity point of view.
For this reason, a new relaxed approach was proposed by van der Hoeven in the 90’s,
which combines the advantages of the lazy approach with the asymptotic efficiency
of the zealous approach.

In this chapter, we show how to adapt the lazy and relaxed approaches to the
context of p-adic numbers. We report on our implementation in the C++ library
algebramix of Mathemagix, and show significant speedups in the resolution
of p-adic functional equations when compared to the classical Newton iteration.
This chapter is based on a published article written with J. van der Hoeven and
G. Lecerf [BHL11].

1 Introduction

Let R be an effective commutative ring , which means that algorithms are available
for all the ring operations. Let (p) be a proper principal ideal of R. Any element a
of the completion Rp of R for the p-adic valuation can be written, in a non unique
way, as a power series

∑

i≥0
ai p

i with coefficients in R. For example, the completion

ofK[x] for the ideal (x) is the classical ring of power seriesK[[x]], and the completion
of Z for any prime integer p is the ring of p-adic integers written Zp.
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In general, elements in Rp give rise to infinite sequences of coefficients, which
cannot be directly stored in a computer. Nevertheless, we can compute with finite
but arbitrarily long expansions of p-adic numbers. In the so called zealous approach,
the precision n of the computations must be known in advance, and fast arithmetic
can be used for computations in R/(pn). In the lazy framework, p-adic numbers
are really promises, which take a precision n on input, and provide an nth order
expansion on output.

In [Hoe97] appeared the idea that the lazy model actually allows for asymp-
totically fast algorithms as well. Subsequently [Hoe02], this compromise between
the zealous and the naive lazy approaches has been called the relaxed model. The
main aim of this chapter is the design of relaxed algorithms for computing in the
completion Rp. We will show that the known complexity results for power series
extend to this setting. For more details on the power series setting, we refer the
reader to the introduction of [Hoe02].

1.1 Motivation

Completion and deformation techniques come up in many areas of symbolic and
analytic computations: polynomial factorization, polynomial or differential system
solving, analytic continuation, etc. They make an intensive use of power series
and p-adic integers.

1.1.1 Recursive equations

The major motivation for the relaxed approach is the resolution of algebraic or
functional equations. Most of the time, such equations can be rewritten in the form

Y =Φ(Y ) (II.1)

where the indeterminate Y is a vector in Rp
d and Φ some algebraic or more compli-

cated expression with the special property that

(ỹ − y)∈ pnRp
d� (Φ(ỹ)−Φ(y))∈ pn+1Rp

d,

for all y, ỹ ∈Rp
d and n∈N. In that case, the sequence 0,Φ(0),Φ2(0),	 converges to

a solution y ∈Rp
d of (II.1), and we call (II.1) a recursive equation.

Using zealous techniques, the resolution of recursive equations can often be
done using a Newton iteration, which doubles the precision at every step [BK78].
Although this leads to good asymptotic time complexities in n, such Newton iter-
ations require the computation and inversion of the Jacobian of Φ, leading to a
non trivial dependence of the asymptotic complexity on the size of Φ as an expres-
sion. For instance, at higher dimensions d, the inversion of the Jacobian usually
involves a factor O(d3), whereas Φ may be of size O(d). We shall report on such
examples in Section 5.

The main rationale behind relaxed algorithms is that the resolution of recursive
equations just corresponds to a relaxed evaluation of Φ at the solution itself. In
particular, the asymptotic time complexity to compute a solution has a linear depen-
dence on the size of Φ. Of course, the technique does require relaxed implementations
for all operations involved in the expression Φ. The essential requirement for a
relaxed operation ϕ is that ϕ(y)n should be available as soon as y0,	 , yn are known.
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1.1.2 Elementary operations

A typical implementation of the relaxed approach consists of a library of basic
relaxed operations and a function to solve arbitrary recursive equations built up
from these operations. The basic operations typically consist of linear operations
(such as addition, shifting, derivation, etc.), multiplication and composition. Other
elementary operations (such as division, square roots, higher order roots, exponen-
tiation) are easily implemented by solving recursive equations. In several cases, the
relaxed approach is not only elegant, but also gives rise to more efficient algorithms
for basic operations.

Multiplication is the key operation and Sections 2, 3 and 4 are devoted to it. In
situations were relaxed multiplication is as efficient as naive multiplication (e.g. in
the naive and Karatsuba models), the relaxed strategy is optimal in the sense that
solving a recursive equation is as efficient as verifying the validity of the solution.
In the worst case, as we will see in Proposition II.6, relaxed multiplication com-
plexity R(n) is O(logn) times greater than that of zealous multiplication modulo pn.
If Fp contains many 2pth roots of unity, then this overhead can be further reduced

toO
(

e2 log2log logn
√

)

using similar techniques as in [Hoe07b]. In practice, the overhead
of relaxed multiplication behaves as a small constant, even though the most efficient
algorithms are hard to implement.

In the zealous approach, the division and the square root usually rely on Newton
iteration. In small and medium precisions the cost of this iteration turns out to be
higher than a direct call to one relaxed multiplication or squaring. This will be illus-
trated in Section 6: if p is sufficiently large, then our relaxed division outperforms
zealous division.

1.1.3 User-friendly interface

An important advantage of the relaxed approach is its user-friendliness. Indeed,
the relaxed approach automatically takes care of the precision control during all
intermediate computations. A central example is the Hensel lifting algorithm used in
the factorization of polynomials inQ[x]: one first chooses a suitable prime number p,
then computes the factorization in Z/pZ[x], lifts this factorization into Qp[x], and
finally one needs to discover how these p-adic factors recombine into the ones over Q
(for details see for instance [GG03, Chapter 15]). Theoretically speaking, Mignotte’s
bound [GG03, Chapter 6] provides us with the maximum size of the coefficients of
the irreducible factors, which yields a bound on the precision needed inQp. Although
this bound is sharp in the worst case, it is pessimistic in several particular situations.
For instance, if the polynomial is made of small factors, then the factorization
can usually be discovered at a small precision. Here the relaxed approach offers
a convenient and efficient way to implement adaptive strategies. In fact we have
already implemented the polynomial factorization in the relaxed model with success,
as we intend to show in detail in a forthcoming paper.

1.2 Our contributions

The relaxed computational model was first introduced in [Hoe97] for formal power
series, and further improved in [Hoe02, Hoe07b]. In this chapter, we extend the
model to more general completions Rp. Although our algorithms will be represented
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for arbitrary rings R, we will mainly focus on the case R =Z when studying their
complexities. In Section 2, we first present the relaxed model, and illustrate it on a
few easy algorithms: addition, subtraction, and naive multiplications.

In Section 3, we adapt the relaxed product of [Hoe02, Section 4] to p-adic
numbers. We first present a direct generalization, which relies on products of
finite p-expansions. Such products can be implemented in various ways but essen-
tially boil down to multiplying polynomials over R. We next focus on the case R=Z

and how to take advantage of fast hardware arithmetic on small integers, or efficient
libraries for computations with multiple precision integers, such as Gmp [G+91].
In order to benefit from this kind of fast binary arithmetic, we describe a variant
that internally performs conversion between p-adic and 2-adic numbers in an effi-
cient way. We will show that the performance of p-adic arithmetic is similar to
power series arithmetic over R/(p).

For large precisions, such conversions between p-adic and 2-adic expansions
involve an important overhead. In Section 4 we present yet another blockwise relaxed
multiplication algorithm, based on the fact that Rp≃Rpk for all k≥ 1. This variant
even outperforms power series arithmetic over R/(p). For large block sizes k, the
performance actually gets very close to the performance of zealous multiplication.

In Section 5, we recall how to use the relaxed approach for the resolution of
recursive equations. For small dimensions d, it turns out that the relaxed approach
is already competitive with more classical algorithm based on Newton iteration. For
larger numbers of variables, we observe important speed-ups.

Section 6 is devoted to division. For power series, relaxed division essentially
reduces to one relaxed product [Hoe02, Section 3.2.2]. We propose an extension of
this result to p-adic numbers. For medium precisions, our algorithm turns out to be
competitive with Newton’s method.

In Section 7, we focus on the extraction of rth roots. We cover the case of
power series in small characteristic, and all the situations within Zp. Common tran-
scendental operations such as exponentiation and logarithm are more problematic
in the p-adic setting than in the power series case, since the formal derivation
of p-adic numbers has no nice algebraic properties. In this respect, p-adic numbers
rather behave like floating point numbers. Nevertheless, it is likely that holonomic
functions can still be evaluated fast in the relaxed setting, following [Bre76, CC90,
Hoe99, Hoe01, Hoe07a]. We also refer to [Kob84, Kat07] for more results about
exponentiation and logarithms in Qp.

Algorithms for p-adic numbers have been implemented in several libraries and
computer algebra systems: P-pack [Wan84], Maple, Magma, Pari/Gp [PAR08],
Mathematica [De 04], Sage [So09], Flint [HH09], etc. These implementations all
use the zealous approach and mainly provide fixed-precision algorithms for R=Z.
Only Sage also proposes a lazy interface. However, this interface is not relaxed and
therefore inefficient for large precisions.

Most of the algorithms presented in this chapter have been implemented in the
C++ open source library algebramix of Mathemagix [H+02] (revision 4791,
freely available from http://www.mathemagix.org). Although we only report on
timings for p-adic integers, our code provides support for general effective Euclidean
domains R.
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2 Data structures and naive implementations

In this section we present the data structures specific to the relaxed approach, and
the naive implementations of the ring operations in Rp.

2.1 Finite p-adic expansions

As stated in the introduction, any element a of the completion Rp of R for the p-adic
valuation can be written, in a non unique way, as a power series

∑

i≥0
ai p

i with
coefficients in R. Now assume that M is a subset of R, such that the restriction of
the projection map π: R� R/(p) toM is a bijection betweenM and R/(p). Then
each element a admits a unique power series expansion

∑

i≥0
ai p

i with ai ∈M . In
the case when R=Z and p∈N\ {0, 1}, we will always take M = {0,	 , p− 1}.

For our algorithmic purposes, we assume that we are given quotient and
remainder functions by p

quo(·, p): R � R

rem(·, p): R � M,

so that we have

a= quo(a, p) p+ rem(a, p),

for all a∈R.
Polynomials

∑

i=0

n−1
ai p

i ∈ M [p] will also be called finite p-adic expansions at
order n. In fact, finite p-adic expansions can be represented in two ways. On the
one hand, they correspond to unique elements in R, so we may simply represent
them by elements of R. However, this representation does not give us direct access
to the coefficients ai. By default, we will therefore represent finite p-adic expansions
by polynomials inM [p]. Of course, polynomial arithmetic inM [p] is not completely
standard due to the presence of carries.

2.2 Classical complexities

In order to analyze the costs of our algorithms, we denote by M(n) the cost for mul-
tiplying two univariate polynomials of degree n over an arbitrary ring A with unity,
in terms of the number of arithmetic operations in A. Similarly, we denote by I(n)
the time needed to multiply two integers of bit-size at most n in the classical binary
representation . It is classical [SS71, CK91, Für07] that M(n) =O(n log n log log n)
and I(n) = O(n log n 2log

∗n), where log∗ represents the iterated logarithm of n.
Throughout the chapter, we will assume that M(n)/n and I(n)/n are increasing. We
also assume that M(O(n))=O(M(n)) and I(O(n))=O(I(n)).
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In addition to the above complexities, which are classical, it is natural to intro-
duce Ip(n) as the time needed to multiply two p-adic expansions in Zp at order n
with coefficients in the usual binary representation. When using Kronecker sub-
stitution for multiplying two finite p-adic expansions, we have Ip(n) = I(n (log p +
log n)) [GG03, Corollary 8.27]. We will assume that Ip(n)/n is increasing and
that Ip(O(n))=O(Ip(n)).

It is classical that the above operations can all be performed using linear space.
Throughout this chapter, we will make this assumption.

2.3 The relaxed computational model

For the description of our relaxed algorithms, we will follow [Hoe02] and use a
C++-style pseudo-code, which is very similar to the actual C++ implementation
in Mathemagix. As in [Hoe02], we will not discuss memory management related
issues, which have to be treated with care in real implementations, especially when
it comes to recursive expansions (see Section 5 below).

The main class Padicp for p-adic numbers really consists of a pointer (with ref-
erence counting) to the corresponding abstract representation class Padic_rep

p
. On

the one hand, this representation class contains the computed coefficients ϕ: M [p]
of the number a up till a given order n: N (let us already mention here that ϕ can
eventually be used to store anticipated data, as in the algorithms of Section 3). On
the other hand, it contains a “purely virtual method” next, which returns the next
coefficient an:

class Padic_rep
p

ϕ: M [p]
n: N

virtual next()

Following C++-terminology, the purely virtual function next is only
defined in a concrete representation class which derives from Padic_rep

p
. For

instance, to construct a p-adic number from an element in M , we introduce the
type Constant_Padic_rep

p
that inherits from Padic_rep

p
(inheritance is represented

by the symbol Q) in this way:

class Constant_Padic_rep
p
QPadic_rep

p

c: M
constructor (c̃ : M)

c6 c̃
method next()

if n=0 then return c else return 0

In this piece of code n represents the current precision inherited from Padic_rep
p
.

The user visible constructor is given by

padic(c: M )� Padicp6 (Padicp) newConstant_Padic_rep
p
(c).

This constructor creates a new object of type Constant_Padic_rep
p
to represent c,

after which it address can be casted to the type Padicp of p-adic numbers. From
now on, for the sake of conciseness, we no longer describe such essentially trivial
user level functions anymore, but only the concrete representation classes.
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It is convenient to define one more public top-level function for the extraction
of the coefficient ak, given an instance a of Padicp and a positive integer k: N. This
function first checks whether k is smaller than the order a.n of a. If so, then ak=(a.
ϕ)k is already available. Otherwise, we keep increasing a.n while calling next, until ak
will eventually be computed. For more details, we refer to [Hoe02, Section 2]. We
will now illustrate our computational model on the basic operations of addition and
subtraction.

2.4 Addition

The representation class for sums of p-adic numbers, written Sum_Padic_rep
p
, is

implemented as follows:

class Sum_Padic_rep
p
QPadic_rep

p

a, b: Padicp
γ: R
constructor

(

ã: Padicp, b̃ : Padicp
)

a6 ã; b6 b̃ ; γ6 0
method next()

t6 an+ bn+ γ

γ6 quo(t, p)

return rem(t, p)

In the case when R=Z, we notice by induction over n that we have γ ∈ {0, 1},
each time that we enter next, since 0≤an+bn+ γ≤2 p−1. In that case, it is actually
more efficient to avoid the calls to quo and rem and replace the method next by

method next()
t6 an+ bn+ γ

if t < p then
γ6 0
return t

else
γ6 1
return t− p

Proposition II.1. Given two relaxed p-adic integers a and b, the sum a+ b can be
computed up till precision n using O(n log p) bit-operations.

Proof. Each of the additions ak + bk + γ and subsequent reductions modulo p

take O(log p) bit-operations. �

2.5 Subtraction in Zp

In general, the subtraction is the same as the addition, but for the special case
when R=Z, we may use the classical school book method. In our framework, this
yields the following implementation:
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class Sub_Padic_rep
p
QPadicp

a, b: Padicp
γ: R
constructor

(

ã: Padicp, b̃ : Padicp
)

a6 ã; b6 b̃ ; γ6 0
method next()

t6 an− bn− γ
if t≥ 0 then

γ6 0
return t

else
γ6 1
return t+ p

Proposition II.2. Given two relaxed p-adic integers a and b, the difference a− b
can be computed up till precision n using O(n log p) bit-operations.

Proof. Each call to the function next costs O(log p) bit-operations. �

2.6 Naive product

Here we consider the school book algorithm: each coefficient (a b)n is obtained from
the sum of all products of the form ak bn−k plus the carry involved by the products
of the preceding terms. Carries are larger than for addition, so we have to take them
into account carefully. The naive method is implemented in the following way:

class Naive_Padic_rep
p
QPadic_rep

p

a, b: Padicp
γ: a vector with entries in R, with indices starting at 0.

constructor
(

ã: Padicp, b̃ : Padicp
)

a6 ã; b6 b̃ ;
Initialize γ with the empty vector

method next()
Append a zero γn=0 at the end of γ
t6 0
for i from 0 to n do

s6 ai bn−i+ γi
t6 t+ s
γi6 quo(t, p)

t6 rem(t, p)
return t

Let us precise that, in the pseudo-code, the for loop means that i runs over all
the integer values from 0 to n included.

Proposition II.3. Given two relaxed p-adic integers a and b, the product a b can
be computed up till precision n using O(n2 I(log p)) bit-operations.
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Proof. We show by induction that, when entering in next to compute the coeffi-
cient (a b)n, the vector γ has size n and entries in M . This clearly holds for n =
0. Assume that the hypothesis is satisfied until a certain value n ≥ 0. When
entering next the size of γ is increased by 1, so that it will be n + 1 at the end.
Then, at step i∈{0,	 , n} of the loop we have s≤ (p−1)2+ p−1= p2− p. Since t≤
p − 1 it follows that s+ t≤ p2− 1, whence γi ≤ p − 1 on exit. Each of the O(n2)
steps within the loop takes O(I(log p)) bit-operations, which concludes the proof. �

Since hardware divisions are more expensive than multiplications, performing
one division at each step of the above loop turns out to be inefficient in practice.
Especially when working with hardware integers, it is therefore recommended to
accumulate as many terms ai bn−i as possible in s before a division. For instance,
if p fits 30 bits and if we use 64 bits hardware integers then we can do a division
every 16 terms.

2.7 Lifting the power series product

In this subsection we assume that we are given an implementation of relaxed
power series over R, as described in [Hoe02, Hoe07b]. The representation class
is written Series_rep

R
and the user level class is denoted by SeriesR, in the same way

as for p-adic numbers. Another way to multiply p-adic numbers relies on the relaxed
product in R[[p]]. This mainly requires a lifting algorithm of M [[p]] into R[[p]]
and a projection algorithm of R[[p]] onto M [[p]], The lifting procedure is trivial:

class Lift_Series_rep
p
Q Series_rep

p

a: Padicp
constructor (ã: Padicp)

a6 ã
method next()

return an

Let lift denote the resulting function that converts a p-adic number a: Padicp
into a series in SeriesR. The reverse operation, project, is implemented as follows:

class Project_Padic_rep
p
QPadic_rep

p

f : Seriesp
γ: R
constructor

(

f̃ : SeriesR
)

f6 f̃ ; γ6 0
method next()

t6 fn+ γ

γ6 quo(t, p)
return rem(t, p)

Finally the product c= a b is obtained as project(lift(a) lift(b)).

Proposition II.4. Given relaxed p-adic integers a and b, the product a b can be
computed up till precision n using O(I(log p + log n)M(n) log n) or O(I(n (log p +
log n)) log n) bit-operations.
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Proof. The relaxed product of two power series in size n can be done
with O(M(n) log n) operations in R by [Hoe02, Section 4.3.2, Theorem 6]. In our
situation, the size of the integers in the product are in O(log p + log n). Then, by
induction, one can easily verify that the size of the carry γ does not exceed O(log p+
log n) during the final projection step. We are done with the first bound.

The second bound is a consequence of the classical Kronecker substitution: we
can multiply two polynomials in Z[x] of size n and coefficients of bit-size O(log p)
with O(I(n (log p+ log n))) bit operations [GG03, Corollary 8.27]. �

This strategy applies in full generality and gives a “softly optimal algorithm”. It
immediately benefits from any improvements in the power series product. Never-
theless, when n is not much larger than p, practical implementations of this method
involve a large constant overhead. In the next sections, we will therefore turn our
attention to “native” counterparts of the relaxed power series products from [Hoe02,
Hoe07b].

2.8 Timings

We conclude this section with some timings for our C++ implementation of
naive multiplication inside the algebramix package of the Mathemagix
system [H+02]. Timings are measured using one core of an Intel Xeon X5450
at 3.0 GHz running Linux and Gmp 5.0.0 [G+91]. As a comparison, we display
timings on the same platform, obtained for the Maple 14 package Padic. Pre-
cisely, we created two random numbers to precision n, did their product via the
function evalp, and then asked for the coefficient of order n/2. Notice that tim-
ings for small precisions are not very relevant for Maple because of the overhead
due to the interpreter. As another comparison, we report on the performances of
Pari/Gp version 2.3.5. For all these three cases we observe that asymptotically fast
algorithms are not used. In fact Pari/Gp carefully implements the zealous strategy
on the binary representation modulo pn: as expected, such timings are better than
ours, but no so much neither. We shall come back in Section 4 on this critical issue
of taking better advantage of native binary representations within the lazy model.

n 8 16 32 64 128 256 512 1024
Naive_Mul_Padicp 2.9 3.8 8.3 22 68 250 920 3600
Maple 14 240 320 520 1200 3500 11000 38000 160000
Pari/Gp 0.52 1.0 2.7 8.4 28 99 360 1300

Table II.1. Naive products, for p= 536870923, in microseconds.

3 Relaxed product

In this section, we extend the relaxed product of [Hoe02, Section 4.3.1] to more
general p-adic numbers. We also present a special version for R = Z, which uses
internal base conversions between base 2 and base p, and takes better advantage of
the fast arithmetic in Gmp [G+91].

50 Relaxed algorithms for p-adic numbers



3.1 Fast relaxed multiplication algorithm

Let a and b denote the two p-adic numbers that we want to multiply, and let c be
their product. Let us briefly explain the basic idea behind the speed-up of the relaxed
algorithm with respect to naive lazy multiplication.

The first coefficient c0 is simply obtained as the remainder of a0 b0 in the division
by p. The corresponding quotient is stored as a carry in a variable γ similar to the
one used in Naive_Mul_Padic_rep

p
. We next obtain c1 by computing a0 b1+a1 b0+ γ

and taking the remainder modulo p; the quotient is again stored in γ. At the next
stage, which basically requires the computation of a0 b2+ a1 b1+ a2 b0+ γ, we do a
little bit more than necessary: instead of a1 b1, we rather compute (a1+ a2 p) (b1+
b2 p). For c3, it then suffices to compute a0 b3 and a3 b0 since a1 b2+a2 b1 has already
been computed as part of (a1+ a2 p) (b1+ b2 p). Similarly, in order to obtain c4, we
only need to compute a0 b4, a4 b0, a3 b1 and a1 b3, since a2 b2 is already known. In
order to anticipate more future computations, instead of computing a3 b1, a1 b3, we
compute (a1+ a2 p) (b3+ b4 p) and (a3+ a4 p) (b1+ b2 p).

In Figure II.1 below, the contribution of each ai bj to the product ci+j, corre-
sponds to a small square with coordinates (i, j). Each such square is part of a larger
square which corresponds to a product

(ak+
 + ak+2q−1 p
2q−1) (bl+
 + bl+2q−1 p

2q−1).

The number inside the big square indicates the stage k+ l at which this product is
computed. For instance the products

(a3+ a4 p+ a5 p
2+ a6 p

3) (b7+ b8 p+ b9 p
2+ b10 p

3),
(a7+ a8 p+ a9 p

2+ a10 p
3) (b3+ b4 p+ b5 p

2+ b6 p
3).

correspond to the two 4× 4 squares marked with 10 inside.
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Figure II.1. Relaxed product.

Given a p-adic number a, it will be convenient to denote

ai	 j= ai+ ai+1 p+
 + aj−1 p
j−1−i.
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For any integer n, we also define ln to be the largest integer such that 2ln divides n+2
if n+2 is not a power of 2. Otherwise, if n+2=2m, we let ln=m−1. For instance,
l0=0, l1=0, l2=1, l3=0, l4=1, etc. In fact, this can be seen in Figure II.1, where
the greatest square with number n inside has size precisely 2ln× 2ln.

We can now describe our fast relaxed product. Recall that ϕ is the finite p-expan-
sion inherited from Padic_rep

p
that stores the coefficients known to order n. In the

present situation we also use ϕ for storing the anticipated products.

class Relaxed_Mul_Padic_rep
p
QPadic_rep

p

a, b: Padicp
γa, γb: vectors of vectors over R, with indices starting from 0

constructor
(

ã: Padicp, b̃ : Padicp
)

a6 ã, b6 b̃
Initialize γa and γb with the empty vector

method next()
On entry, γa and γb have size 2n; resize them to 2 (n+1)

Initialize γ2na and γ2n
b with the zero vector of size l2n+1

Initialize γ2n+1
a and γ2n+1

b with the zero vector of
size l2n+1+1

ta6 0, tb6 0

for q from 0 to ln do
k6 (n+2)/2q

ta7 γn,q
a , tb7 γn,q

b

ta7 a2q−1	 2q+1−1 b(k−1)2q−1	 k2q−1

if k=2 then break
tb7 a(k−1)2q−1	 k2q−1 b2q−1	 2q+1−1

sa6 ϕn	n+2ln+1+ ta

for i from 0 to 2ln+1− 1 do ϕn+i6 si
a

if n+2� 2ln+1 then γn+2ln+1,ln
a 6 s2ln+1

a

sb6 ϕn	 n+2ln+1+ tb

for i from 0 to 2ln+1− 1 do ϕn+i6 si
b

if n+2� 2ln+1 then γn+2ln+1,ln
b 6 s2ln+1

b

return ϕn

Example II.5. Let us detail how our algorithm works with the first four steps of
the multiplication c= a b with

a = 676=4+5× 7+6× 72+73,

b = −1=6+ 6× 7+ 6× 72+6× 73+O(74).

Computation of c0. Since l0= l1= 0, the entries γ0a, γ0b, γ1a, γ1b are set to (0). In the
for loop, q takes the single value 0, which gives k=2, ta=a0 b0=3+3×7, and tb=0.
Then we deduce sa=3+3× 7, and we set ϕ0=3, ϕ1=3. In return we have c0=3.
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Computation of c1. We have l1=0, l2=1 and l3=0, so that γ2
a and γ2

b are initialized
with (0, 0), while γ3a and γ3

b are initialized with (0). In the for loop, q takes again
the single value 0, and k is set to 3. We obtain ta= a0 b1=3+3× 7 and tb= a1 b0=
2+4× 7. It follows that sa=6+3× 7, and then that sb=1+1× 7+1× 72. Finally
we set ϕ1=1, ϕ2=1, γ3,0b = s2

b =1, and we return c1=1.

Computation of c2. We have l2=1, l4=1 and l5=0, so that γ4a and γ4b are initialized
with (0,0) and γ5a and γ5b with (0). During the first step of the for loop we have q=0,
k=4, ta=a0 b2=3+3×7 and tb=a2 b0=1+5×7. In the second step we have q=1,
k=2, and we add a1	 3 b1	 3=(a1+ a2× 7) (b1+ b2× 7)=2+4× 72+6× 73 to ta, its
value becomes 5+3×7+4×72+6×73. Then we get sa=6+3×7+4×72+6×73,
and then sb= 2× 7 + 5× 72+ 6× 73. Finally we set ϕ2= 0, ϕ3= 2, ϕ4= 5, ϕ5= 6,
and return 0 for c2.

Computation of c3.We have l3=0, l6=2 and l7=0, hence γ6
a and γ6

b are set to (0,0,0),
and γ7

a and γ7
b to (0). In the for loop, q takes the single value 0. We have k = 5,

ta= a0 b3= 3+ 3× 7 and tb= γ3,0
b + a3 b0= 7. Then we deduce sa= 5+ 7+ 72 which

yields γ5,0a =1, and then sb=5+2× 7. In return we thus obtain c3=5.

Proposition II.6. Given relaxed p-adic integers a and b, the product a b can be com-
puted up till precision n using O(Ip(n) log n) bit-operations. For this computation,
the total amount of space needed to store the carries γa and γb does not exceed O(n).

Proof. The proof is essentially the same as for [Hoe02, Section 4.3.2, Theorem 6],
but the carries require additional attention. We shall prove by induction that all
the entries of γa and γb are always in {0,1} when entering next for the computation
of ϕn. This holds for n=0. Assume now that it holds for a certain n≥0. After the
first step of the loop, namely for q=0, we have ta≤ (p− 1)2+1≤ p2− 1. After the
second step, when q=1, we have ta≤ (p2− 1)2+ p2− 1+ 1≤ p4− 1. By induction,
it follows that ta≤ p2q+1− 1, at the end of the qth step.

At the end of the for loop, we thus get ta ≤ p2
ln+1 − 1. This implies sa ≤

2 p2
ln+1 − 2, whence γn+2ln+1,ln

a ∈ {0, 1}. The same holds for superscripts b instead

of a. Notice that if n+2� 2ln+1 then 2ln+1≤n+1, hence n+2ln+1≤ 2n+1. This
implies that γn+2ln+1,ln

a and γn+2ln+1,ln
b are well defined.

If n + 2 = 2ln+1, then s2ln+1
a = s2ln+1

b = 0, since sa and sb are bounded
by (pn+1− 1)2/pn < pn+2. On the other hand, the map n� (n + 2ln+1, ln) is
injective, so that each entry of γa and γb can be set to 1 at most once. It thus
follows that all the carries are carefully stored in the vectors γa and γb.

If n + 2 = 2ln u, with u ≥ 2, then n + 2ln+1 + 2 = 2ln (u + 2), with u + 2 ≥ 2.
This implies that, when we arrive at order n ′ = n + 2ln+1, then the value ln′ is at
least ln. Therefore all the carries are effectively taken into account. This proves the
correctness of the algorithm.

The cost of the algorithm at order n is

O

(

∑

i=0

n
∑

q=0

li

Ip(2
i)

)

=O

(

∑

2q≤n

n

2q
Ip(2

q)

)

=O

(

Ip(n)
∑

2q≤n

1

)

=O(Ip(n) logn),
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using our assumption that Ip(n)/n is increasing. Finally,

O

(

∑

i=0

n

(1+ li)

)

=O

(

∑

i=0

n
∑

q=0

li

1

)

=O

(

∑

2q≤n

n

2q

)

=O(n)

provides enough space for storing all the carries. �

In practice, instead of increasing the sizes of carry vectors by one, we double
these sizes, so that the cost of the related memory allocations and copies becomes
negligible. The same remark holds for the coefficients stored in ϕ.

When multiplying finite p-adic expansions using Kronecker substitution, we
obtain a cost similar to the one of Proposition II.4. Implementing a good pro-
duct for finite p-adic expansions requires some effort, since we cannot directly use
binary arithmetic available in the hardware. In the next subsection, we show that
minor modifications of our relaxed product allow us to convert back and forth
between the binary representation in an efficient manner. Finally, notice that in
the case when R=K[x] and (p) = (x), the carries γa and γb are useless.

3.2 Variant with conversion to binary representation

In this subsection, we assume that R=Z and we adapt the above relaxed product
in order to benefit from fast binary arithmetic available in the processor or Gmp. In
fact we shall convert from base p to base 2 in order to perform most of the internal
computations efficiently, but backward conversions are needed for the output. These
conversions can be naturally integrated in an efficient manner as described in the
following algorithm:

class Binary_Mul_Padic_rep
p
QPadic_rep

p

a, b: Padicp
βa, βb, δa, δb, γ: vectors over Z, with indices starting from 0.

constructor
(

ã: Padicp, b̃ : Padicp
)

a6 ã, b6 b̃
Initialize βa, βb, δa, δb and γ with empty vectors

method next()
If n+2 is a power of 2, then

Resize βa, βb, δa, δb and γ to ln+1
Fill the new entries with zeros

εa6 an, εb6 bn, τ 6 0

for q from 0 to ln do
if q > 0 then

εa6 βq−1
a + p2

q−1
εa

εb6 βq−1
b + p2

q−1
εb

if n+2=2q+1 then
δq
a6 εa, δq

b6 εb

τ7 δq
a εb+ γq
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if n+2=2q+1 then break
τ7 εa δq

b

βln
a 6 εa, βln

b 6 εb

for q from ln down to 0 do
γq6 quo(τ , p2

q

), τ 6 rem(τ , p2
q

)

return τ

Proposition II.7. Given two relaxed p-adic integers a and b, the computation of
the product a b up till precision n can be done using O(I(n log p) logn) bit-operations
and O(n log p) bit-space.

Proof. When computing ϕn, the vectors βa, βb, δa, δb and γ are resized to rn,
where rn is the largest integer such that 2rn≤n+2. From 2rn+1>n+2≥ 2ln+1, we
deduce that rn>ln, which means that the read and write operations in these vectors
are licit.

For any integers n and q such that 2q+1<n+2, we write µ(n, q) for the largest
integer less than n such that lµ(n,q) = q. We shall prove by induction that, when
entering next for computing ϕn, the following properties hold for all q ≥ 0 such
that 2q+1<n+2:

a) βq
a=a(k−1)2q−1	 k2q−1=aµ(n,q)−2q+1	 µ(n,q)+1 where k=

µ(n, q) + 2

2q
, and similarly

for βq
b,

b) δqa= a2q−1	 2q+1−1, and similarly for δqb, and

c) γq≤ 2 p2
q

.

These properties trivially hold for when n= 0. Let us assume that they hold for a
certain n≥ 0.

Now we claim that, at the end of step q of the first loop, the value of εna

is a(k−1)2q−1	 k2q−1 = an−2q+1	 n+1 with k = (n + 2)/2q. This clearly holds for
when q = 0 because εa = an and k = n + 2. Now assume that this claim holds
until step q − 1 for some q ≥ 1. When entering step q, we have that µ(n, q −
1) = n − 2q−1, and part (a) of the induction hypothesis gives us that βq−1

a =
an−2q+1	n−2q−1+1. From these quantities, we deduce:

βq−1
a + p2

q−1
εa = an−2q+1	 n−2q−1+1+ p2

q−1
an−2q−1+1	n+1

= an−2q+1	 n+1= a(k−1)2q−1	 k2q−1,

with k = (n + 2)/2q, which concludes the claim by induction. If n + 2 is not a
power of 2 then part (a) is clearly ensured at the end of the computation of ϕn.
Otherwise n+2=2ln+1, and βln

a is set to an−2ln+1	n+1, and part (a) is again satisfied
when entering the computation of ϕn+1.

When δqa is set to εa, the value of εa is a(k−1)2q−1	 k2q−1 with k=2. This ensures
that part (b) holds when entering the computation of ϕn+1.

As to (c), during step q of the first loop, the value of τ is incremented by at most

2 (p2
q− 1)2+2 p2

q≤ 2 p2
q+1− 2 p2

q

+2.
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At the end of this loop, we thus have

τ ≤ 2 p2
ln+1− 2 p+2 (ln+1).

It follows that τ/p2
ln
< 2 p2

ln
+ 2 (ln + 1)/p2

ln
. If ln ∈ {0, 1} then it is clear

that 2 (ln + 1) ≤ p2
ln, since p ≥ 2. If ln ≥ 1 then d (p2

ln
)

d ln
= log (2) log (p) 2ln p2

ln ≥
8 (log 2)2 ≥ 2. We deduce that 2 (ln + 1) ≤ p2

ln holds for all integer ln ≥ 0. Before
exiting the function we therefore have that γln≤2 p2

ln, γln−1≤ p2ln−1≤ 2 p2
ln−1

, etc.,
which completes the induction.

Since n + 2 = 2ln u, with u ≥ 2, we have n + 2k + 2 = 2k (2ln−k u + 1),
whence ln+2k≥ k, for any k ≤ ln. All the carries stored in γ are therefore properly
taken into account. This proves the correctness of the algorithm.

At precision n, summing the costs of all the calls to next amounts to

O

(

∑

i=0

n
∑

q=0

li

I(2q log p)

)

= O

(

∑

2q≤n

n

2q
I(2q log p)

)

= O

(

I(n log p)
∑

2q≤n

1

)

= O(I(n log p) logn).

Furthermore,

O

(

∑

2q+1≤n+2

2q log p

)

= O(n log p)

provides a bound for the total bit-size of the auxiliary vectors βa, βb, δa, δb and γ. �

Again, in practice, one should double the allocated sizes of the auxiliary vectors
each time needed so that the cost of the related memory allocations and copies
becomes negligible. In addition, for efficiency, one should precompute the powers
of p.

3.3 Timings

In following Table II.2, we compare timings for power series over Fp, and for p-adic
integers via the technique of Section 2.7, called Series_Mul_Padic_rep

p
, and

via Binary_Mul_Padic_rep
p
of Proposition II.7. In Series_Mul_Padic_rep

p
the

internal series product is the relaxed one reported in the first line.

n 8 16 32 64 128 256 512 1024 2048 4096
Relaxed mul. in Fp[[x]] 2 7 20 50 140 360 930 2300 5700 14000
Series_Mul_Padic

p
19 59 160 420 1 100 2600 6200 14000 34000 79000

Binary_Mul_Padic
p

8 16 37 89 170 360 800 1900 4300 10000

Naive_Mul_Padic
p

2.9 3.8 8.3 22 68 250 920 3600 14000 56000

Table II.2. Fast relaxed products, and naive lazy product, for p=536870923, in microsec-
onds.
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For convenience, we recall the timings for the naive algorithm of Section 2.6
in the last line of Table II.2. We see that our Binary_Mul_Padic_rep

p
is faster

from size 512 on. Since handling small numbers with Gmp is expensive, we also
observe some overhead for small sizes, compared to the fast relaxed product of
formal power series. On the other hand, since the relaxed product for power
series makes internal use of Kronecker substitution, it involves integers that are
twice as large as those in Binary_Mul_Padic_rep

p
. Notice finally that the lifting

strategy Series_Mul_Padic_rep
p
, described in Section 2.7, is easy to implement,

but not competitive.

4 Blockwise product

As detailed in Section 4.1 below for R = Z, the relaxed arithmetic is slower than
direct computations modulo pn in binary representation. In [Hoe07b], an alterna-
tive approach for relaxed power series multiplication was proposed, which relies on
grouping blocks of k coefficients and reducing a relaxed multiplication at order n to
a relaxed multiplication at order n/k, with FFT-ed coefficients in M 2k−1.

Unfortunately, we expect that direct application of this strategy to our case gives
rise to a large overhead. Instead, we will now introduce a variant, where the blocks
of size k are rather rewritten into an integer modulo pk. This aims at decreasing the
overhead involved by the control instructions when handling objects of small sizes,
and also improving the performance in terms of memory management by choosing
blocks well suited to the sizes of the successive cache levels of the platform being
used.

We shall start with comparisons between the relaxed and zealous approaches.
Then we develop a supplementary strategy for a continuous transition between the
zealous and the relaxed models.

4.1 Relaxed versus zealous

The first line of Table II.3 below displays the time needed for the product modulo pn

of two integers taken at random in the range 0, 	 , pn−1. The next line concerns
the performance of our function binary that converts a finite p-expansion of size n
into its binary representation. The reverse function, reported in the last line, and
written expansion, takes an integer in 0, 	 , pn − 1 in base 2 and returns its p-adic
expansion.

n 8 16 32 64 128 256 512 1024 2048 4096 8192
mod. mul. 0.38 0.52 1.0 2.9 9.0 27 85 250 690 1800 4500
binary 1.0 2.2 4.5 9.8 20 44 100 250 560 1400 3300
expansion 2.5 5.2 10 22 46 96 220 490 1200 3000 7300

Table II.3. Zealous product modulo pn and conversions, for p= 536870923, in microsec-
onds.
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Let us briefly recall that binary can be computed fast by applying the classical
divide and conquer paradigm as follows:

binary(a, pn)= binary(a0	h, p
h) + ph binary(ah	 n, p

n−h), where h= ⌊n/2⌋,

which yields a cost in O(I(n log p) logn). Likewise, the same complexity bound holds
for expansion. Within our implementation we have observed that these asymptoti-
cally fast algorithms outperform the naive ones whenever pn is more than around 32
machine words.

Compared to Tables II.1 and II.2, these timings confirm the theoretical bounds:
the relaxed product does not compete with a direct modular computation in binary
representation. This is partly due to the extra O(log n) factor for large sizes. But
another reason is the overhead involved by the use of Gmp routines with integers
of a few words. In Table II.4, we report on the naive and the relaxed products in
base p32. Now we see that our naive product becomes of the same order of efficiency
as the zealous approach up to precision 1024. The relaxed approach starts to win
when the precision reaches 256 in base p32.

k l 32 64 128 256 512 1024 2048 4096 8192
Naive_Mul_Padic

pk
1.8 4.1 10 27 84 280 1000 3900 15000

Binary_Mul_Padic
pk

3.2 6.1 16 53 170 570 1800 5300 15000

Table II.4. Relaxed product modulo (pk)l, for p=536870923 and k=32, in microseconds.

4.2 Monoblock strategy

If one wants to compute the product a b of two p-adic numbers a and b, then: one
can start by converting both of them into pk-adic numbers A and B respectively,
multiply A and B as pk-adic numbers, and finally convert A B back into a p-adic
number. The transformations between p-adic and pk-adic numbers can be easily
implemented:

class To_Blocks
pk

QPadic_rep
pk

a: Padicp
constructor (ã: Padicp)

a6 ã
method next()

return binary(ank	 (n+1)k)

class From_Blocks
p
QPadic_rep

p

a: Padicpk

b: p-expansion of size k
constructor

(

ã: Padicpk
)

a6 ã
method next ()

if nmod k=0 then b= p_expansion(an/k, p)
return bnmodk
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If to_blocks and from_blocks represent the top level functions then the product c
of a and b can be simply obtained as c = from_blocks(to_blocks(a) to_blocks(b)).
We call this way of computing products the monoblock strategy .

Notice that choosing k very large is similar to zealous computations. This
monoblock strategy can thus be seen as a mix of the zealous and the relaxed
approaches. However, it is only relaxed for pk-expansions, not for p-expansions.
In fact, let A and B still denote the respective pk-adic representations of a and b,
so that c = from_blocks(C), for C = A B. Then the computation of c0 requires
the knowledge of C0 = A0 B0, whence it depends on all the coefficients a0, 	 ,
ak−1 and b0, 	 , bk−1, which breaks the main requirement on relaxed operations
recalled in Section 1.1.1. In the next paragraphs we derive an actual relaxed pro-
duct from this strategy, at the price of a reasonable overhead.

4.3 Relaxed blockwise product

We are now to present a relaxed p-adic blockwise product. This product depends on
two integer parameters m and k. The latter still stands for the size of the blocks to
be used, while the former is a threshold: below precision m one calls a given product
on p-expansions, while in large precision an other product is used on pk-expansions.

If a and b are the two numbers in Rp that we want to multiply as a p-expansions,
then we first rewrite them a= a0	m+ pm ā and b= b0	m+ pm b̄ , where

ā = a/pm=
∑

i=0

∞
am+i p

i and b̄ = b/pm=
∑

i=0

∞
bm+i p

i.

Now multiplying a and b gives

c= a0	m b0	m+ pm (a0	m b̄ + ā b0	m) + p2m ā b̄ ,

where the product ā b̄ can be computed in base pk, as it is detailed in the following
implementation:

class Blocks_Mul_Padic_rep
p
QPadic_rep

p

a, b, c, ā , b̄ : Padicp
Ā , B̄ : Padicpk

constructor
(

ã: Padicp, b̃ : Padicp
)

a6 ã, b6 b̃

ā 6 a/pm, b̄ 6 b/pm

Ā 6 to_blocks(ā ), B̄ 6 to_blocks(b̄ )

c̄ 6 from_blocks(Ā B̄ )
c6 a0	m b0	m+ pm (a0	m b̄ + ā b0	m)+ p2m c̄

method next()
return cn

In Figure II.2 below, we illustrate the contribution of each ai bj to the pro-
duct ci+j computed with the present blockwise version. In both bases p and pk the
naive product is used, and the numbers inside the squares indicate the degrees at
which the corresponding product is actually computed.
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Figure II.2. Blockwise product for m=3 and k=4.

Proposition II.8. If m≥k−1, then Blocks_Mul_Padic_rep
pk
is relaxed for base p.

Proof. It is sufficient to show that the computation of c̄n−2m only involves terms in a
and b of degree at most n. In fact c̄n−2m requires the knowledge of the coefficients
of Ā and B̄ to degree at most l = ⌊(n − 2 m)/k⌋, hence the knowledge of the
coefficients of a and b to degree k (l + 1) − 1 + m ≤ n − 2 m + k − 1 + m =
n + k − 1−m, which concludes the proof thanks to the assumption on m. Notice
that the latter inequality is an equality whenever n − 2 m is a multiple of k.
Therefore m≥ k− 1 is necessary to ensure the product to be relaxed. �

4.4 Timings

In the following table, we use blocks of size k = 32, and compare the blockwise
versions of the naive product of Section 2.6 to the relaxed one of Section 3.2. The
first line concerns the monoblock strategy: below precision 32 we directly use the
naive p-adic product; for larger precisions we use the naive pk-adic product. The
second line is the same as the first one except that we use a relaxed pk-adic product.
In the third line the relaxed blockwise version is used with m= 32: we use the naive
product for both p- and pk-adic expansions. The fourth line is similar except that
the fast relaxed product is used beyond precision 32.

n 8 16 32 64 128 256 512 1024 2048 4096
mono Naive_Mul_Padic

p
3.5 5.5 11 53 95 190 380 870 2200 6500

mono Binary_Mul_Padic
p

3.4 5.5 11 57 110 220 500 1200 3000 7800

blocks Naive_Mul_Padic_rep
p

8.0 11 17 46 140 320 700 1600 3700 9400

blocks Binary_Mul_Padic_rep
p

8.0 11 17 46 140 330 750 1700 3900 9100

Table II.5. Blockwise products to precision n, for p= 536870923 and k=32, in microsec-
onds.
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When compared to Table II.4, we can see that most of the time within the
monoblock strategy is actually spent on base conversions. In fact, the strategy
does not bring a significant speed-up for a single product, but for more complex
computations, the base conversions can often be factored.

For instance, assume that a and b are two d×d matrices with entries in Zp. Then
the multiplication c = a b involves only O(d2) base conversions and O(d3) pk-adic
products. For large d, the conversions thus become inexpensive. In Section 7, we
will encounter a similar application to multiple root extraction.

5 Application to recursive p-adic numbers

A major motivation behind the relaxed computational model is the efficient expan-
sion of p-adic numbers that are solutions to recursive equations. This section is an
extension of [Hoe02, Section 4.5] to p-adic numbers.

Let us slightly generalize the notion of a recursive equation, which was first
defined in the introduction, so as to accommodate for initial conditions. Consider
a functional equation

Y =Φ(Y ), (II.2)

where Y is a vector of d unknowns in Rp. Assume that there exist a k∈N∗ and initial
conditions c0, 	 , ck−1 ∈Md, such that for all n ≥ k and y, ỹ ∈ Rp

d with y0 = c0, 	 ,
yk−1= ck−1, we have

(ỹ − y)∈ pnRp
d� (Φ(ỹ)−Φ(y))∈ pn+1Rp

d. (II.3)

Stated otherwise, this condition means that each coefficient bn = Φ(b)n with n ≥
k only depends on previous coefficients b0, 	 , bn−1. Therefore, setting c = c0 +
c1 p+
 + ck−1 p

k−1, the sequence c,Φ(c),Φ(Φ(c)) converges to a unique solution b∈
Rp

d of (II.2) with b0= c0,	 , bk−1= ck−1. We will call (II.2) a recursive equation and
the entries of the solution b recursive p-adic numbers .

5.1 Implementation

Since p induces an element p=(p,	 , p) in Rd and an isomorphism Rp
d≃ (Rd)p, we

may reinterpret a solution b=Φ(b) as a p-adic number over Rd. Using this trick, we
may assume without loss of generality that d=1. In our implementation, recursive
numbers are instances of the following class that stores the initial conditions b0,	 ,
bk−1 and the equation Φ:

class Recursive_Padic_rep
p
QPadic_rep

p

Φ: function from Rp to Rp

b0,	 , bk−1: initial conditions in M
constructor

(

Φ̃: function, b̃0,	 , b̃k−1: M
)

Φ6 Φ̃, b06 b̃0,	 , bk−16 b̃k−1

method next()
If n<k then return bn
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return Φ(this)n

In the last line, the expression Φ(this) means the evaluation of Φ at the concrete
instance of the p-adic b=Φ(b) being currently defined.

Example II.9. Consider Φ(b)= p b+1, with one initial condition b0=1. It is clear
that b is recursive, since the n first terms of p b can be computed from the only n−1
first terms of b. We have b1= b2=
 =1. In fact, b=1/(1− p).

5.2 Complexity analysis

If Φ is an expression built from L constants, sums, differences, and products (all
of arity two), then the computation of b simply consists of performing these L
operations in the relaxed model. For instance, when using the relaxed product of
Proposition II.6, this amounts to O(L Ip(n) log n) operations to obtain the n first
terms of b.

This complexity bound is to be compared to the classical approach via the
Newton operator. In fact, one can compute b with fixed-point p-adic arithmetic
by evaluating the following operator NΦ(z) = z − (z −Φ(z))/(1−Φ′(z)). There are
several cases where the relaxed approach is faster than the Newton operator:

1. The constant hidden behind the “O” of the Newton iteration is higher than
the one with the relaxed approach. For instance, if b is really a vector in Rp

d,
then the Newton operator involves the inversion of a d × d matrix at pre-
cision n/2, which gives rise to a factor O(d3) in the complexity (assuming
the naive matrix product is used). The total cost of the Newton operator
to precision n in Zp is thus in O((d L + d3) Ip(n)). Here O(d L) bounds
the number of operations needed to evaluate the Jacobian matrix. In this
situation, if L≪d2, and unless n is very large, the relaxed approach is faster.
This will be actually illustrated in the next subsection.

2. Even in the case d= 1, the “O” hides a non trivial constant factor due to a
certain amount of “recomputations”. For moderate sizes, when polynomial
multiplication uses Karatsuba’s algorithm, or the Toom-Cook method, the
cost of relaxed multiplication also drops to a constant times the cost of
zealous multiplication [Hoe02, Hoe07b]. In such cases, the relaxed method
often becomes more efficient. This will be illustrated in Section 6 for the
division.

3. When using the blockwise method from Section 4 or [Hoe07b] for power
series, the overhead of relaxed multiplication can often be further reduced. In
practice, we could observe that this makes it possible to outperform Newton’s
method even for very large sizes.

For more general functional equations, where Φ involves non-algebraic operations,
it should also be noticed that suitable Newton operators Φ are not necessarily
available. For instance, if the mere definition of Φ involves p-expansions, then the
Newton operator may be not defined anymore, or one needs to explicitly compute
with p-expansions. This occurs for instance for R=Z, when Φ involves the “symbolic
derivation” b�∑

n≥1
n bn p

n−1.
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5.3 Timings

In order to illustrate the performance of the relaxed model with respect to Newton
iteration, we consider the following family of systems of p-adic integers:

Φd,i(x1,	 , xd)= 1+ p
∑

k=1

d

(k+ i) xk
(k+i)mod3

, for i∈{1,	 , d}.
The number of p-adic products grows linearly with d. Yet, the total number of
operations grows with d2.

In Table II.6, we compute the 256 first terms of the solution b=Φd(b) with the
initial condition b= (1, 	 , 1) +O(p). We use the naive product of Section 2.6 and
compare to the Newton iteration directly implemented on the top of the routines of
Gmp. In fact the time we provide in the line “Matrix multiplication” does not cor-
responds to a complete implementation of the iteration but only to two products of
two d×d matrices with integers modulo p64. These two operations necessarily occurs
for inverting the Jacobian matrix to precision p128 when using the classical algorithm
as described in [GG03, Algorithm 9.2]. This can be seen as a lower bound for any
implementation of the Newton method. However the line “Newton implementation”
corresponds to our implementation of this method, hence this is an upper bound.
The next line of the table, named “Naive iteration”, corresponds to the computation
from b=(1,	 , 1) of Φd(b) modulo p2, then Φd(Φd(b)) modulo p3, etc. This sequence
converges linearly to the solution.

d 1 2 4 8 16 32 64 128
Matrix multiplication 0.002 0.014 0.12 0.9 7.2 56 460 3600
Newton implementation 0.13 0.31 2.3 13 95 700 5500 43000
Naive iteration 3.8 7.7 17 40 110 328 1114 3992
Naive_Mul_Padic

p
0.34 0.42 1.4 3.3 8.7 26 94 420

Table II.6. 256 first terms of b=Φd(b), for p= 536870923, in milliseconds.

Although Newton iteration is faster for tiny dimensions d ≤ 2, its cost growths
as d3 for larger d, whereas the relaxed approach reported on the last line only grows
as d2. For d=1, we notice that the number b is computed with essentially one relaxed
product. Notice that, due to the linear convergence, the naive iteration behaves well
when the dimension is large and the precision relatively small.

In the next table we report of the same computations but with the relaxed
product of Section 3.2 at precision 1024; the conclusions are essentially the same:

d 1 2 4 8 16 32 64 128
Matrix multiplication 0.014 0.12 0.98 7.9 62 490 4000 31000
Newton implementation 0.58 1.2 13 90 640 4900 38000 300000
Naive iteration 109 217 446 934 2047 4806 12537 36542
Binary_Mul_Padic

p
2.4 2.6 9.4 21 52 150 480 2300

Table II.7. 1024 first terms of b=Φd(b), for p= 536870923, in milliseconds.
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6 Relaxed division

We are now to present relaxed algorithms to compute the quotient of two p-adic
numbers. The technique is similar to power series, as treated in [Hoe02], but with
subtleties.

6.1 Division by a “scalar”

The division of a power series in K[[x]] by an element of K is immediate, but it
does not extend to p-adic numbers, because of the propagation of the carries. We
shall introduce two new operations. Let β ∈M play the role of a “scalar”. The first
new operation, written mul_rem(β: M, a: Padicp), returns the p-adic number c
with coefficients cn = rem(β an, p). The second operation, written mul_quo(β: M,

a: Padicp), returns the corresponding carry, so that

β a = mul_rem(β, a) + pmul_quo(β, a)

=
∑

n=0

∞
rem(β an, p) p

n+
∑

n=0

∞
quo(β an, p) p

n+1.

These operations are easy to implement, as follows:

class Mul_Rem_Padic_rep
p
QPadic_rep

p

β: M
a: Padicp
constructor

(

β̃ : M, ã: Padicp
)

β6 β̃ , a6 ã
method next()

return rem(βan, p)

class Mul_Quo_Padic_rep
p
QPadic_rep

p

β: M
a: Padicp
constructor

(

β̃ : M, ã: Padicp
)

β6 β̃ , a6 ã
method next()

return quo(β an, p)

Proposition II.10. Let a be a relaxed p-adic number and let β∈M. If β is invertible
modulo p, with given inverse γ = β−1 mod p, then the quotient c=a/β is recursive
and c satisfies the equation

c=mul_rem(γ, a− pmul_quo(β, c)), c0= γ a0mod p.

If R = Z, then a/β can be computed up till precision n using O(n I(log p)) bit-
operations.

Proof. It is clear from the definitions that the proposed formula actually defines
a recursive number. Then, from β c=mul_rem(β, c) + pmul_quo(β, c), we deduce
that β c− pmul_quo(β, c)=mul_rem(β, c), hence

c=mul_rem(γ, β c− pmul_quo(β, c))=mul_rem(γ, a− pmul_quo(β, c)).
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The functionsmul_rem andmul_quo both take O(n I(log p)) bit-operations if R=Z,
which concludes the proof. �

6.2 Quotient of two p-adic numbers

Once the division by a “scalar” is available, we can apply a similar formula as for
the division of power series of [Hoe02].

Proposition II.11. Let a and b be two relaxed p-adic numbers such that b0 is
invertible of given inverse γ = b0

−1 mod p. The quotient c = a/b is recursive and
satisfies the following equation:

c=
a− (b− b0) c

b0
, c0= γ a0mod p.

If R=Z, then a/b can be computed up till precision n using O(I(n log p) log n) bit-
operations.

Proof. The last assertion on the cost follows from Proposition II.7. �

Remark II.12. Notice that p is not assumed to be prime, so that we can replace p
by pk, and thus benefit from the monoblock strategy of Section 4.2. This does
not involve a large amount of work: it suffices to write from_blocks(to_blocks(a)/

to_blocks(b)). Notice that this involves inverting b0	 pk modulo pk.

6.3 Timings

In following Table II.8 we display the computation time for our division algorithm.
We compare several methods:

• The first line “Newton” corresponds to the classical Newton iteration [GG03,
Algorithm 9.2] used in the zealous model.

• The second line corresponds to one call of Gmp’s extended g.c.d. function.

• The third line is a comparison with Pari/Gp version 2.3.5.

• The next two lines Naive_Mul_Padic
p
and Binary_Mul_Padic

p
correspond to

the naive product of Section 2.6, and the relaxed one of Section 3.2.

• Then the next lines “mono Naive_Mul_Padic
p
” and “mono

Naive_Mul_Padic
p
” correspond to the monoblock strategy from Section 4.2

with blocks of size 32.

• Similarly the lines “blocks Naive_Mul_Padic
p
” and “blocks

Naive_Mul_Padic
p
” correspond to the relaxed block strategy from Section 4.3

with blocks of size 32.

• Finally the last line corresponds to direct computations in base p32 (with no
conversions from/to base p).
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When compared to Tables II.1 and II.2, we observe that the cost of one division
algorithm is merely that of one multiplication whenever the size becomes sufficiently
large, as expected. We also observe that our “monoblock division” is faster than the
zealous one for large sizes; this is even more true if we directly compute in base p32.

n 8 16 32 64 128 256 512 1024 2048
Newton 3 4 7 18 49 140 430 1300 3700
Gmp’s extended g.c.d. 3 6 14 35 92 250 730 2200 5600
Pari/Gp 0.68 1.1 2.8 8.5 28 99 360 1300 4800
Naive_Mul_Padic

p
4 7 15 35 95 300 1000 3700 14000

Binary_Mul_Padic
p

9 21 44 93 200 420 920 2000 4800

mono Naive_Mul_Padic
p

6 10 20 95 160 280 540 1200 2800

mono Binary_Mul_Padic
p

6 10 20 110 170 320 660 1500 3600

blocks Naive_Mul_Padic
p

10 16 27 70 190 430 900 1900 4500

blocks Binary_Mul_Padic
p

10 16 27 65 180 410 900 2000 4500

Naive_Mul_Padic
p32

6 22 42 88 200 500 1500

Table II.8. Divisions, for p= 536870923, in microseconds.

7 Higher order roots

For power series in characteristic 0, the rth root g of f is recursive, with equation g=
∫

f ′/(r gr−1) and initial condition g0= f0
1/r (see [Hoe02, Section 3.2.5] for details).

This expression neither holds in small positive characteristic, nor for p-adic integers.
In this section we propose new formulas for these two cases, which are compatible
with the monoblock strategy of Section 4.2.

7.1 Regular case

In this subsection we treat the case when r is invertible modulo p.

Proposition II.13. Assume that r is invertible modulo p, and let a be a relaxed
invertible p-adic number in Rp such that a0 is an rth power modulo p. Then any rth
root b0 of a0 modulo p can be uniquely lifted into an rth root b of a. Moreover, b is
a recursive number for the equation

b=
a− br+ r b0

r−1 b

r b0
r−1 . (II.4)

The n first terms of b can be computed using

• O(log rM(n) logn) operations in K, if R=K[[x]] and p=x, or

• O(log r I(n log p) log n) bit-operations, if R=Z.

Proof. Since r is invertible modulo p, the polynomial xr−a is separable modulo p.
Any of its roots modulo p can be uniquely lifted into a root in Rp by means of the
classical Newton operator [Lan02, Proposition 7.2].
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Since a0 is invertible, so is b0. It is therefore clear that equation (II.4) uniquely
defines b, but it is not immediately clear how to evaluate it so that it defines a
recursive number. For this purpose we rewrite b into b0 + c, with c of valuation at
least 1:

b=
a− (b0+ c)r+ r b0

r−1 (b0+ c)

r b0
r−1 =

a−∑k=2
r (

r

k

)

b0
r−k ck+ (r− 1) b0

r

r b0
r−1 .

Since r is invertible modulo p, we now see that it does suffice to know the terms to
degree n− 1 of b in order to deduce bn.

The latter expanded formula is suitable for an implementation but unfortunately
the number of products to be performed grows linearly with r. Instead we modify the
classical binary powering algorithm to compute the expression needed with O(log r)
products only, as follows. In fact we aim at computing βr= (b0+ c)r− r b0r−1 c− b0r
in a way to preserve the recursiveness. We proceed by induction on r.

If r= 1, then βr = 0. If r= 2 then β2= c2. Assume that r= 2 h, and that βh is
available by induction. From

βh
2 = (b0+ c)r+(h b0

h−1 c+ b0
h)2− 2 (h b0

h−1 c+ b0
h) (βh+ h b0

h−1 c+ b0
h)

= (b0+ c)r− (h b0
h−1 c+ b0

h)2− 2 (h b0
h−1 c+ b0

h) βh,

we deduce that

βr = βh
2+ (h b0

h−1 c+ b0
h)2+2 (h b0

h−1 c+ b0
h) βh− r b0r−1 c− b0r

= βh (βh+2 (h b0
h−1 c+ b0

h))+ (h b0
h−1 c)2.

Since βh and c have positive valuation, the recursiveness is well preserved through
this intermediate expression.

On the other hand, if r is odd then we can write r = h + 1, with h even, and
assume that βh is available by induction. Then we have that:

βr = (b0+ c) βh+(b0+ c) (h b0
h−1 c+ b0

h)− (h+1) b0
h c− b0h+1

= (b0+ c) βh+h b0
h−1 c2.

Again the recursiveness is well preserved through this intermediate expression. The
equation of b can finally be evaluated using O(log r) products and one division.
By [Hoe02, Section 4.3.2, Theorem 6], this concludes the proof for power series. By
Propositions II.7 and II.11, we also obtain the desired result for p-adic integers. �

For the computation of the rth root in Z/p Z, we have implemented the
algorithms of [GG03, Theorems 14.4 and 14.9]: each extraction can be done
with Õ(r log p) bit-operations in average, with a randomized algorithm. This is
not the bottleneck for our purpose, so we will not discuss this aspect longer in
this chapter.

Remark II.14. Notice that (p) is not assumed to be prime in Proposition II.13.
Therefore, if we actually have an rth root b of a modulo pk, then b can be seen as
a pk-recursive number, still using equation (II.4). Hence, one can directly apply the
monoblock strategy of Section 4.2 to perform internal computations modulo pk.
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7.2 pth roots

If K is a field of characteristic p, then f ∈ K[[x]] is a pth power if, and only if,
f ∈Kp[[xp]]. If it exists, the pth root of a power series is unique. Here, Kp represents
the subfield of the pth powers of K. By the way, let us mention that, for a general
effective field K, Fröhlich and Shepherdson have shown that testing if an element
is a pth power is not decidable [FS56, Section 7] (see also the example in [Gat84,
Remark 5.10]).

In general, for p-adic numbers, an rth root extraction can be almost as compli-
cated as the factorization of a general polynomial in Rp[x]. For instance, with R=
Z
[

2
√ ]

and p= 2
√

we have that r=2= p2 has valuation 2 in Rp. We will not cover
such a general situation. We will only consider the case of the p-adic integers, that
is for when R=Z and p is prime.

From now on, let a denote a p-adic integer in Zp from which we want to extract
the pth root (if it exists). If the valuation of a is not a multiple of p, then a is not
a pth power. If it is a multiple of p, then we can factor out pvala and assume that a
has valuation 0. The following lemma is based on classical techniques, we briefly
recall its proof for completeness:

Lemma II.15. Assume that p is prime, and let a∈Zp be invertible.

• If p ≥ 3, then a is a pth power if, and only if, a0 + p a1 = a0
p modulo p2. In

this case there exists only one pth root.

• If p=2, then a is a pth power if, and only if, a1= a2=0. In this case there
exist exactly two square roots.

Proof. If a= bp in Zp then b0= a0. After the translation x= a0+ y in xp− a= 0,
we focus on the equation (b0+ y)p− a=0, which expands to

h(y) = yp+
∑

i=1

p−1
(

p

i

)

b0
p−i yi− (a− b0p) = 0. (II.5)

For any i∈ {1,	 , p− 1}, the coefficient
(

p

i

)

has valuation at least one because p is

prime. Reducing the latter equation modulo p2, it is thus necessary that a0+ p a1=b0
p

modulo p2.

Assume now that a0+ p a1= b0
p holds modulo p2. After the change of variables y

by p z and division by p2, we obtain

h̃(z) = pp−2 zp+
∑

i=2

p−1
(

p

i

)

b0
p−i pi−2 zi+ b0

p−1 z− a− b0
p

p2
=0. (II.6)

We distinguish two cases: p≥ 3 and p=2.

If p ≥ 3, then any root of h̃ must be congruent to (a− b0p)/(b0p−1 p2) modulo p.
Since h̃

′
((a − b0

p)/(b0
p−1 p2)) = b0

p−1 has valuation 0, the Newton operator again
ensures that h̃ has exactly one root [Lan02, Proposition 7.2].
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If p= 2, then h̃(z) rewrites into z2+ b0 z − a− b0
2

p2
= z2+ z − a− 1

4
. Since h̃ ′

(z) =

b0 mod p = 1 mod 2, any root of h̃ modulo 2 can be lifted into a unique root of h̃
in Z2. The possible roots being 0 and 1, this gives the extra condition a2=0. �

7.3 Square roots in base 2

In the following proposition we show that the square root of a 2-adic integer can be
expressed into a recursive number that can be computed with essentially one relaxed
product.

Proposition II.16. Let a be a relaxed 2-adic integer in Z2 with a0 = 1 and a1 =
a2 = 0. Let b be a square root of a, with b0 = 1 and b1 being 0 or 1, and let c =
(b−b0−2 b1)/4, and ã=(a− (b0+2 b1)

2)/8. Then c is a recursive number with initial
condition c0= ã0 and equation

c=
ã − 2 c2

b0+2 b1
. (II.7)

The n first terms of b can be computed using O(I(n log p) log n) bit-operations.

Proof. Equation (II.7) simply follows from

(b0+2 b1+4 c)2− a=(b0+2 b1)
2+8 (b0+2 b1) c+ 16 c2− a=0.

The cost is a consequence of Propositions II.7 and II.11. �

Remark II.17. As in the preceding regular case, we can see c as a pk-recursive
number as soon as c is known modulo pk. In fact letting C = C0 + C̃ , with C0 =
Cmod pk, equation (II.7) rewrites into

(b0+2 b1)C = ã − 2 (C0+ (C −C0))
2

= ã − 2C0
2− 4C0 (C −C0)− 2 (C −C0)

2,

which gives

(b0+2 b1+4C0)C = ã +2C0
2− 2 (C −C0)

2.

The latter equation implies that C is pk-recursive, so that we can naturally benefit
from the monoblock strategy from Section 4.2.

7.4 pth roots in base p

In this subsection we assume that p is an odd prime integer. We will show that the
pth root is recursive and can be computed using similar but slightly more compli-
cated formulas than in the regular case.

Proposition II.18. Let a be an invertible relaxed p-adic integer in Zp such that a=
a0
pmod p2. Let b denote the pth root of a, with b0= a0, let ã = (a− (b0+ p b1)

p)/p2,
and let c=(b− b0)/p. Then c is a recursive number with initial condition c0= b1 and
equation

c= c0+
ã − γp

(b0+ p c0)p−1 , (II.8)
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where

γr=
(b0+ p c)r− r p (b0+ p c0)r−1 (c− c0)− (b0+ p c0)r

p2
, for all r≥ 0.

The n first terms of b can be computed with O(log p I(n log p) log n) bit-operations.

Proof. As a shorthand we let β = b0+ p c0 and d= c− c0. Equation (II.8) simply
follows from

bp− a = (β+ p d)p− a
= p2 γp+ p2 βp−1 d+ βp− a
= p2 γp+ p2 βp−1 d− p2 ã =0.

Since

γp=
∑

i=2

p
(

p

i

)

βp−i pi−2 di,

and since d has positive valuation, equation (II.8) actually defines c as a recursive
number.

As in the regular case, we need to provide an efficient way to compute γr. We
proceed by induction on r. If r=1, then γr=0. If r=2, then γr=d2, which preserves
the recursiveness. Assume now that r = 2 h and that γh is available by induction.
From

(p2 γh)
2 = (β+ p d)r+(h pβh−1 d+ βh)2

−2 (h p βh−1 d+ βh) (p2 γh+ h p βh−1 d+ βh)

= (β+ p d)r− (h pβh−1 d+ βh)2− 2 (h p βh−1 d+ βh) p2 γh,

we deduce that

p2 γr = (p2 γh)
2+ (h pβh−1 d+ βh)2+2 (h pβh−1 d+ βh) p2 γh− r p βr−1 d− βr

= p2 γh (p
2 γh+2 (h pβh−1 d+ βh))+ (h p βh−1 d)2,

whence

γr= γh (p
2 γh+2 (h pβh−1 d+ βh))+ (hβh−1 d)2.

Since γh and d have positive valuation, the recursiveness is well preserved through
this intermediate expression.

On the other hand, if r is odd, then we can write r = h + 1, with h even, and
assume that γh is available by induction. Then we have that:

p2 γr = p2 (β+ p d) γh+(β + p d) (h p βh−1 d+ βh)− (h+1) p βh d− βh+1

= p2 (β+ p d) γh+h p2 βh−1 d2,

whence

γr= (β+ p d) γh+ h βh−1 d2,

which again preserves the recursiveness. Finally the equation of d can be evaluated
with O(log r) products and one division, which concludes the proof by Proposi-
tions II.7 and II.11. �
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Remark II.19. As in the regular case, we can see c as a pk-recursive number as
soon as c is known modulo pk. In fact, letting C = C0 + D, with C0 = C mod pk,
equation (II.8) rewrites into

C =C0+
Ã −Γp

(b0+ pC0)p−1 ,

where Ã= (a− (b0+ pC0)
p)/p2, and

Γr=
(b0+ pC)r− r p (b0+ pC0)r−1 (C −C0)− (b0+ pC0)r

p2
, for all r≥ 0.

Notice that division by p2 in base pk, with k > 2, is equivalent to multiplication
by pk−2 and division by pk, which corresponds to a simple shift. Then Γp can be
computed by recurrence with the same formula as γp, mutatis mutandis . In this
way C is pk-recursive, so that we can naturally benefit from the monoblock strategy
of Section 4.2.

7.5 Timings

In the following table, we give the computation time of the square root using our fast
relaxed product of Section 4.3 that has been reported in Table II.5. Since, in terms
of performances, the situation is very similar to the division, we only compare to the
zealous implementation in Pari/Gp version 2.3.5. Furthermore, with Maple 14,
the computation of a square root of a nonnegative integer lesser than p8, via sqrt

or rootp took more than 3 minutes.

n 8 16 32 64 128 256 512 1024 2048
blocks Binary_Mul_Padicp 14 22 39 91 230 520 1100 2400 5400
Pari/Gp 5 11 28 74 210 670 2300 8100 30000

Table II.9. Square root, for p= 536870923, in microseconds.

8 Conclusion

From more than a decade a major stream in complexity theory for computer algebra
has spread the idea that high level algorithms must be parameterized in terms of a
small number of elementary operations (essentially integer, polynomial and matrix
multiplication), so that the main goal in algorithm design consists of reducing as fast
as possible to these operations. Although many asymptotically efficient algorithms
have been developed along these lines, an overly doctrinaire application of this
philosophy tends to be counterproductive.

For example, when it comes to computations in completions, we have seen
that there are two general approaches: Newton’s method and the relaxed (or lazy)
approach. It is often believed that Newton’s method is simply the best, because
it asymptotically leads to the same complexity as integer or polynomial multipli-
cation. However, this “reduction” does not take into account possible sparsity in
the data, non asymptotic input sizes, more involved types of equations (such as
partial differential equations), etc.
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In this chapter, we have demonstrated that, in the area of computations with p-
adic numbers, the relaxed approach can be more efficient than methods based on
Newton iteration. The gains are sometimes important: in Tables II.6 and II.7, we
have shown that Hensel lifting in high dimensions can become more than 10 times
faster, when using the relaxed approach. At other moments, we were ourselves
surprised: in Table II.8, we see that, even for the division of p-adic numbers, a
naive implementation of the relaxed product yields better performances than a
straightforward use of Gmp, whenever p is sufficiently large.

Of course, the detailed analysis of the mutual benefits of both approaches
remains an interesting subject. On the one hand, Newton iteration can be improved
using blockwise techniques [Ber00, Hoe10]. On the other hand, the relaxed imple-
mentation can be improved for small sizes by ensuring a better transition between
hardware and long integers, and massive inlining. At huge precisions, the recur-
sive blockwise technique from [Hoe07b] should also become useful. Finally, “FFT-
caching” could still be used in a more systematic way, and in particular for the
computation of squares.

To conclude our comparison between Newton iteration and the relaxed approach,
we would like to stress that, under most favourable circumstances, Newton iter-
ation can only be hoped to be a small constant times faster than the relaxed
approach, since the overhead O(log n) of relaxed multiplication should really be
read as (1/2) log (n/128) or less. In other extreme cases, Newton iteration is sev-
eral hundreds times slower, or even does not apply at all (e.g. for the resolution
of partial differential equations).

Let us finally mention that the relaxed resolution of recursive systems of equa-
tions has been extended to more general systems of implicit equations [Hoe09]. The
computation of such local solutions is the central task of the polynomial system
solver called Kronecker (see [DL08] for an introduction). We are confident that
the results of [Hoe09], which were presented in the power series context, extend to
more general completions, and that the relaxed model will lead to an important
speed-up.
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Chapitre III

Relaxed p-adic Hensel lifting for alge-
braic systems

Abstract

This chapter is an extension of Chapter II, Section 7.1. Given a ring R and (p) a
proper principal ideal of R, we aim at solving a system of polynomial equations P =
(P1, 	 , Pr) in R[Y1, 	 , Yr]r in the p-adic completion Rp of R. For this, we assume
that P0 = P mod p has a regular modular root y0 ∈ (R/(p))r and we lift this root
into a root y in Rp

r. It is a work in progress with R. Lebreton [BL12].

1 Introduction

1.1 Preliminaries

Let R be an effective commutative ring , which means that algorithms are given
for any ring operation and for equality test. Given a proper principal ideal (p)
with p ∈R, we write Rp for the completion of the ring R for the p-adic valuation.
Any element a ∈ Rp can be written in a non unique way a =

∑

i∈N
ai p

i with
coefficients ai∈R. Two classical examples are the completions K[[X ]] of the ring of
polynomials K[X ] for the ideal (X) and Zp of the ring of integers Z for the ideal (p),
with p a prime number.

Let S be the set of regular elements, that is of non zero divisors, in R, we
denote K6 S−1R the total ring of fractions of R and Kp its p-adic completion. We
still denote M a subset of R such that the restriction of the canonical projection π:
R� R/(p) to M is a bijection between M and R/(p). We also assume that we
have quotient and remainder by p functions

quo(·, p): R � R

rem(·, p): R � M,

such that we have

a= quo(a, p) p+ rem(a, p),
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for all a∈R.
We recall that the complexity of the computation of the relaxed product of two

elements of Rp known to precision n is denoted by R(n). In particular, if R=K[[X ]],
then one has R(n) ∈ O(M(n) log n) but this can be improved depending on K,
see [Hoe07b], if R = Z, then one has R(n) ∈ O(I(n log p) log n), as in [BHL11].
Whenever a complexity bound is given, if it depends on n, then this complexity is
assumed to be for n approaching +∞.

1.2 Models of computation

In this paper, we will use the straight-line program (s.l.p.) model of computation.
We give a short presentation of this notion and refer to [BCS97] for more details.
Let R be a ring and A a R-algebra.

A s.l.p. is merely an ordered sequence of operations between elements of A.
An operation of arity r is a map from a subset D of Ar to A. We usually work
with the binary arithmetic operations +,−, ·, /:A2� A. We also define the 0-ary
operations rc for r ∈ R whose constant output is r. We denote the set of all these
operations Rc. Finally, we consider the unary scalar multiplications r × · for r ∈R
and we still denote R their set. We also consider the unary scalar divisions ·/s
for s∈S, we still denote S their set. Let us fix a set of operations Ω, usually Ω={+,
−, ·, /}∪R∪S ∪Rc.

A s.l.p. starts with a number ℓ of inputs indexed from −ℓ+1 to 0. Then it has k
instructions (Γ1,	 , Γk) with instructions Γi= (ωi; ui,1,	 , ui,ri) where −ℓ < ui,1,	 ,
ui,ri < i and ri is the arity of the operation ωi ∈ Ω. The s.l.p. Γ is executable
in D on a= (a0, 	 , aℓ−1) with result sequence b= (b−ℓ+1,	 , bk) ∈Aℓ+k, if bi = aℓ+1

whenever −ℓ+1≤ i≤ 0 and bi=ωi(bu,1,	 , bu,ri) whenever 1≤ i≤ k.
A s.l.p. Γ is executable over the algebra A on the input a ∈ Aℓ if for all opera-

tions ωi, its inputs belong to its definition set Di. Its multiplicative complexity L∗(Γ)
is the number of operations ωi of Γ that belongs to {·, /}.

Example III.1. Let R = Z, A = Z[X, Y ] and Γ be the s.l.p. with two inputs
indexed −1, 0 and

Γ1=(·;−1,−1), Γ2= (·; 1, 0), Γ3=(1c), Γ4= (−; 2, 3), Γ5= (3× ·; 1).

First, its multiplicative complexity is L∗(Γ) = 2. Then, Γ is executable on (X,
Y )∈A2, and for this input it outputs

X Y X2 X2Y 1 X2Y − 1 3X2

−1 0 1 2 3 4 5
.

Remark III.2. For the sake of simplicity, we will associate an arithmetic expression
with its “canonical” s.l.p.

For example, the arithmetic expression ϕ: Y � Y 4 + 1 can be represented
by the s.l.p. with one input and instructions Γ1 = (·; 0, 0), Γ2 = (·; 1, 1), Γ3= (1c),
Γ4=(+; 2, 3).
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Of course the notion of s.l.p. is more precise than the arithmetic expression. So
we will use this equivalence whenever the choice of the s.l.p. corresponding to an
arithmetic expression does not matter.

1.3 Relaxed recursive p-adic numbers

The relaxed model was motivated by its efficient implementation of recursive p-adic
numbers. Let us recall that recursive functions and p-adic numbers of order k were
introduced in Chapter II, Sections 1.1.1 and 5. However, we give another definition
of an algebraic recursive p-adic polynomial of order 1, more suitable to this chapter.

Definition III.3. Let Φ ∈ Rp[Y ] and y a fixed point of Φ, i.e. y = Φ(y), such
that y0= ymod p. Let us denote, for all n∈N∗, Φn=Φ ◦
 ◦Φ�

n times

and Φ0= Id. We say

that Φ allows the computation of recursive p-adic number y if for all n∈N, we have

(y−Φn(y0))∈ pn+1Rp.

Proposition III.4. Let Φ∈Rp[Y ] with a fixed point y. If Φ(Y )=
∑

k=0

d
ck (Y − y0)k

is such that νp(c1)> 0, where y0= ymod p, then Φ allows the computation of y.

Proof. By induction on n. At first, we have (y− y0)∈ pRp and

y−Φ(y0)=Φ(y)−Φ(y0)=
∑

k=1

d

ck (y− y0)k.

Therefore, νp(c1 (y − y0)) ≥ 2 and for all k ≥ 2, νp(ck (y − y0)
k) ≥ k ≥ 2, so

that (y−Φ(y0))∈ p2Rp.
Assume that for an n∈N, we have (y−Φn(y0))∈ pn+1Rp, then νp(Φn(y0)− y0)≥

1 and

y−Φn+1(y0) = Φ(y)−Φ(Φn(y0))

=
∑

k=1

d

ck [(y− y0)k− (Φn(y0)− y0)k]

=
∑

k=1

d

ck (y−Φn(y0))

[

∑

ℓ=0

k−1

(y− y0)ℓ (Φn(y0)− y0)k−1−ℓ

]

.

Therefore, νp(c1 (y−Φn(y0)))≥n+2 and for all k≥2 and for all ℓ, 0≤ ℓ≤k−1, we
have νp((y −Φn(y0)) (y − y0)ℓ (Φn(y0)− y0)k−1−ℓ)≥ n+ 1+ ℓ+ k − 1− ℓ≥ n+ k ≥
n+2. Thus, (y−Φn+1(y0))∈ pn+2Rp. �

A more general definition can be found in [Hoe09]. But in general, the preceding
proposition justifies the recursive aspect of y. However, we refer to [Hoe11] for
recursive power series defined by algebraic, differential equations or a combination
thereof.

The definition of a recursive p-adic number is effective: given y0∈R/(p) a root of
the reduced polynomial P̄ ∈R/(p)[Y ], we can compute recursively y1, y2,	 , thanks
to Proposition III.4.
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We have to be cautious with Φ because, even if Φ(y)n does not depend on yn,
yn could still be involved in the computation of this coefficient. Here is an example.

Warning III.5. Take Rp=Zp for any prime number p. Let Φ(Y ) =Y 2+ p, and y

be the only solution of Y =Φ(Y ) satisfying y0=0. We can check that Φ allows the
computation of y since c1=0.

At the first step, we find y1 = 1. Then we compute Φ(y)2 = (y2 + p)2 = (y2)2.
In the relaxed product algorithm, we compute y0 y2 and r = (y1+ y2 p) (y1+ y2 p).
Then Φ(y)2=2 y0 y2+ r0=0 y2+ r0. We face two problems.

First y2 is involved in the computation of Φ(y)2, although Φ(y)2 does not depend
on y2. More importantly, the p-adic number r involves and depends on y2. Since we
do not know y2, we must proceed otherwise.

Because of the issue introduced in Warning III.5, we need to force the shift
inside Φ. In other terms, we must explicit the fact that yn is not required in the
computation of (Φ(y))n. For this matter, we introduce two new operators

pi× ·: Rp � Rp ·/pi: piRp � Rp

a � pi a, a � a/pi.

Their implementations are trivial, using the same C++-style pseudo code as
in [BHL11]: the operation pi× · corresponds to

class Left_Shift_Padic_rep
p
QPadic_rep

p

a: Padicp
i: N
constructor (ã: Padicp, ı̃ : N)

a6 ã; i6 ı̃
method next()

if n< 0 then return 0
return an−i

and ·/pi corresponds to
class Right_Shift_Padic_rep

p
QPadic_rep

p

a: Padicp
i: N
constructor (ã: Padicp, ı̃ : N)

a6 ã; i6 ı̃
method next()

return an+i

Let Ω′ be the set of operations {+,−, ·, /, pi× ·, ·/pi}∪R∪S ∪Rc.

Definition III.6. Let Γ=(Γ1,	 ,Γk) be a s.l.p. over the R-algebra Rp with ℓ inputs
and operations in Ω′. If −ℓ+ 1≤ i≤ k and −ℓ+ 1≤ j ≤ 0, the shift sh(Γ, i, j) of
the ith operation of Γ with respect to its jth input is an element of Z∪ {+∞}. It
is defined recursively on i such that:

− if i≤ 0, then

sh(Γ, i, j) =

{

0, if i= j,
+∞, otherwise;
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− if i > 0 and Γi=(ωi: ui,1,	 , ui,ri), then if

• ωi∈{+,−, ·, /} and Γi=(ωi; u, v), then ri=2 and

sh(Γ, i, j)=min (sh(Γ, u, j), sh(Γ, v, j));

• ωi∈Rc and Γi= (ω; ), then ri=0 and

sh(Γ, i, j)=+∞;

• ωi= ps× · and Γi=(ω; u), then ri=1 and

sh(Γ, i, j)= sh(Γ, u, j)+ s;

• ωi= ·/ps and Γi= (ω;u), then ri=1 and

sh(Γ, i, j) = sh(Γ, u, j)− s.

• ωi∈R∪S and Γi= (ω; u), then ri=1 and

sh(Γ, i, j) = sh(Γ, u, j);

We abbreviate sh(Γ)6 sh(Γ, 0, k) if Γ has one input.

This definition simply formalizes which terms of the jth input is involved in the
result of the ith computation from a syntaxic point of view.

Proposition III.7. With the notation of Definition III.6, let y=(y1,	 , yr)∈ (Rp)
r

be such that Γ is executable on y and a ∈R be the result of the ith operation of Γ
on the input y. Then for all n ∈ N, the computation of an involves at most the
terms (yj)l of the jth input yj for 0≤ l≤ r− sh(Γ, i, j −n).

Example III.8. We carry on with Warning III.5. For the natural s.l.p. Γ with one
input associated to Φ: Z� Z2+1, we have sh(Γ)=0. This formalizes the previous
remark that the computation of Φ(y)n involves yl for 0≤ l≤n.

Now take the s.l.p. corresponding to

Ψ: pRp � Rp

Z � p2
(

Z

p

)

2

+ p

(see Remark III.2). Then

sh(Ψ)= sh

(

p2
(

Z

p

)

2
)

= sh

((

Z

p

)

2
)

+2= sh

(

Z

p

)

+2= sh(Z) + 1= 1.

Moreover, Ψ is executable on the solution y of y =Φ(y) because y ∈ p Rp. So this
s.l.p. Ψ solves the problem raised in Warning III.5.

Thanks to this, we are now able to explicit which s.l.p. Ψ are suited to be put
in the implementation of the class Recursive_Padic

p
.
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Definition III.9. Let y be a recursive p-adic and its recursive equation Φ ∈K[Y ]
with denominators not in p R. Let Ψ be a s.l.p. with one input and operations in Ω′.

Then Ψ is said to be a shifted algorithm for Φ and y0 if:

• sh(Ψ)≥ 1;

• Ψ is executable on y over the R-algebra Rp;

• Ψ computes Φ(Y ) on the input Y over the R-algebra K[Y ].

Remark III.10. There is no uniqueness of a shifted operator. For example,
if Φ(Y ) =Y 3+ p∈Z[Y ] and y0=0, then

Ψ: pRp � Rp Ψ1: pRp � Rp

Z � p3
(

Z

p

)

3

+ p, Z � p2
(

Z

(

Z

p

)

2
)

+ p.

are two distinct shifted algorithms for Φ and y0 = 0. Indeed sh(Ψ) = 2, sh(Ψ1) = 1
and they are executable on y because y0=0.

We have now dealt with the algorithmic issues of relaxed recursive p-adic num-
bers. Now, we have to assess the complexity.

Proposition III.11. Let Ψ be a shifted algorithm for the recursive p-adic y whose
multiplicative complexity is L∗. Then the first n terms of the relaxed p-adic can be
computed with asymptotically L∗R(n) arithmetic operations.

Proof. The cost of the computation of the first n terms of y is the cost of the
evaluation of Ψ(y) in Rp. We recall that addition, subtraction, multiplication in R×
Rp and division in Rp × S up to the precision n have an arithmetic complexity
in O(n). Scalars from R are decomposed in Rp in constant complexity. Finally,
multiplication and division in Rp × Rp are done in O(R(n)) arithmetic operations
(see [BHL11]).

Since the multiplicative complexity L∗ of Ψ counts exactly the latest operations,
we have shown that the number of arithmetic operations done in the computation
of the first n terms of y is asymptotically equivalent to L∗R(n). �

2 Simple root lifting of univariate polynomials

In [BHL11, Section 7], it is showed how to compute the rth root of a p-adic number a
in a recursive relaxed way, r being relatively prime to p. In this section, we extend
this result to the relaxed lifting of a simple root of any polynomial P ∈R[Y ]. Hensel’s
lemma ensures that from any modular simple root y0∈R/(p) of P̄ ∈R/(p)[Y ], there
exists a unique lifted root y ∈Rp of P such that y= y0mod p.

From now on, P is a polynomial with coefficients in R and y ∈Rp is the unique
root of P lifted from the modular simple root y0∈R/(p).
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Proposition III.12. The polynomial

Φ(Y )6 P ′(y0)Y −P (Y )
P ′(y0)

∈K[Y ]

allows the computation of y.

Proof. It is clear that if P (y) = 0 and P ′(y0)� 0, then

y=
P ′(y0) y−P (y)

P ′(y0)
=Φ(y).

Furthermore, let us write P (Y ) = P (y0) + P ′(y0) (Y − y0) + P̃ (Y ) (Y − y0)
2

with P̃ ∈R[Y ], then we have

Φ(Y ) =
P ′(y0)Y −

(

P (y0) +P ′(y0) (Y − y0)+ P̃ (Y ) (Y − y0)2
)

P ′(y0)

=
−P (y0)+P ′(y0) y0+ P̃ (Y ) (Y − y0)2

P ′(y0)
.

As P ′(y0) � 0 mod p, in fact Φ(Y ) ∈ Rp[Y ] and since Φ(Y ) =
∑

k=0

d
ck (Y − y0)

k

with c1=0, Φ allows the computation of y. �

In the following subsections, we will derive some shifted algorithms associated
to the recursive equation Φ depending on the representation of P .

2.1 Dense polynomials

We assume in this subsection that the polynomial P is given as the vector of its
coefficients (c0, c1,	 , cd) in the monomial basis (1, Y ,	 , Y d). To have a shifted algo-
rithm, we need to express Φ(Y ) with a positive shift. Remark, from Definition III.6,
that the shift of

Φ(Y )=
1

P ′(y0)
(−c0+(P ′(y0)− c1) Y − c2Y 2−
 − cdY d)

is 0. Here is a way to obtain a positive shift:

Lemma III.13. For all positive integer k, the s.l.p.

Γ: Z� pk
(

Z − y0
p

)

k

is executable on y and sh(Γ)= k− 1.

Proof. Since y0= ymod p, y− y0

p
∈Rp and Γ is executable on y. Furthermore, we have

sh

(

pk
(

y− y0
p

)

k
)

= sh

((

y− y0
p

)

k
)

+ k= sh

(

y− y0
p

)

+ k= k− 1. �

That is why we will express P in the monomial basis (1, (Y − y0),	 , (Y − y0)d).
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Algorithm III.1
Dense polynomial shifted algorithm computation

Input. A polynomial P ∈R[Y ] with simple root y0 in R/(p)

Output. A shifted algorithm Ψ associated to the operator Φ

1. Compute t[1]6 Z − y0

p
.

2. For i from 2 to d
t[i]6 t[i− 1] · t[1].

3. Return
(P (y0)−P ′(y0) y0)+

(

1

2
P ′′(y0)

)

× (p2× t[2]) +
 +
(

1

d!
P (d)(y0)

)

× (pd× t[d])

P ′(y0)
.

Proposition III.14. Given a polynomial P of degree d in dense representation
and an approximate zero y0, one may define a shifted algorithm Ψ associated to
the operator Φ thanks to Algorithm III.1. The precomputation of such an operator
involves O(M(d) log d) operations in R, while the evaluation of Ψ(y) to precision n
can be done in O(d R(n)) operations, if R = Z, then the evaluation can be done
in O(d I(n log p) logn) bit-operations.

Proof. First, let us prove that Ψ is a shifted algorithm for Φ. Term by term, we
have sh(P ′(y0))=+∞, sh(P (y0)−P ′(y0) y0)=+∞ and for all k, 2≤ k ≤ d,

sh

(

1

k!
P (k)(y0) p

k

(

Z − y0
p

)

k
)

= k− 1≥ 1.

Due to Lemma III.13, we can execute Ψ on y over the R-algebra Rp. More-
over Φ(Y ) = Ψ(Y ) over the R-algebra K[Y ] since Ψ(Y ) is the Taylor expansion
of P in a neighborhood of y0.

The coefficients of P in the basis (1, (Y − y0),	 , (Y − y0)d) can be obtained from
those of the shifted polynomial P (Y + y0), which is precomputed in O(M(d) log d)
arithmetic operations in R. Using Proposition III.11 and L∗(Ψ)=d, we deduce that
the evaluation of Ψ(y) at precision n can be done in O(dR(n)) operations. �

Remark III.15. Let us remark that if 2, 3,	 , d are invertible in R, then one can
do this precomputation in O(M(d)) operations in R by [BP94, Chapter 1, Section 2].

2.2 Polynomials as straight-line programs

In [BHL11, Proposition 7.1], the case of the polynomial P (Y )=Y d− a was studied.
Although the general concept of shifted algorithm was not introduced, an algorithm
of multiplicative complexity O(L∗(P )) was given. The shifts were only present in the
implementation in Mathemagix [H+02]. We clarify and generalize this approach
to any polynomial P given as a s.l.p. and propose a shifted algorithm Ψ whose
complexity is linear in L∗(P ).

In this subsection, we fix a polynomial P given as a s.l.p. with operations in Ω6
{+,−, ·}∪R∪S∪Rc and multiplicative complexity L∗6 L∗(P ), and an element y0∈
R/(p). We define the polynomials

TP(Y )6 P (y0) +P ′(y0) (Y − y0), EP(Y )6 P (Y )−TP(Y ).

82 Relaxed p-adic Hensel lifting for algebraic systems



Definition III.16. We are going to define recursively a vector τ ∈R2 and a s.l.p. ε
with operations in Ω′6 {+,−, ·,/, pi×·, ·/pi}∪R∪S ∪Rc. First, we initialize ε06
0, τ 06 (y0, 1). Then we define εi and τ i recursively on i with 1≤ i≤ k by:

• if Γi=(ac; ), then εi6 0, τ i6 (a, 0);

• if Γi=(a× ·; u), then εi6 a× εu, τ i6 a τu;

• if Γi=(±; u, v), then εi6 εu± εv, τ i6 τu± τ v;
• if Γi= (·; u, v) and we denote τu= (a, b), τ v= (c, d), then τ i= (a c, a d+ b c)

and

εi = εu · εv+ p× [((b× εv+ d× εu)/p) · (Z − y0)]+ (a× εv+ c× εu) (III.1)

+(b d)× [p2× ((Z − y0)/p)2].
In the latter expression, the multiplications denoted by · are the ones between p-
adics. Finally, we set εP 6 εk and τP 6 τ k where k is the number of instructions in
the s.l.p. P.

Lemma III.17. The s.l.p. εP is a shifted algorithm for EP and y0. Its multiplicative
complexity is bounded by 2 L∗ + 1. Also, τP is the vector of coefficients of the
polynomial TP in the basis (1, (Y − y0)).
Proof. Let us call Pi the ith result of the s.l.p. P on the input Y over R[Y ],
with 0 ≤ i ≤ k. We note Ei 6 EPi

and T i 6 TPi
for all 0 ≤ i ≤ k. Let us prove

recursively that εi is a shifted algorithm for Ei and y0, and that τ i is the vector of
coefficients of T i in the basis (1, (Y − y0)).

For the initial step i= 0, we have P0= Y and we verify that E0(Y ) = ε0(Y ) = 0
and T 0(Y )= y0+(Y − y0). The s.l.p. ε0 is executable on y overRp and its shift is+∞.

Now we prove the result recursively for i>0. We detail the case when Γi=(·;u,v),
the others cases being straightforward. Equation (III.1) corresponds to the last
equation of

Pi = PuPv

⇔ Ei+T i = (Eu+T u) (Ev+ T v)

⇔ Ei = EuEv+EuT v+T uEv+(T u T v−T i)
⇔ Ei = EuEv+ (Pv

′(y0)E
u+Pu

′(y0)E
v) (Y − y0)+ (Pv(y0)E

u+Pu(y0)E
v)

+Pu
′(y0)Pv

′(y0) (Y − y0)2.

Moreover we have τ i= (Pu(y0)Pv(y0), Pu
′(y0)Pv(y0) +Pu(y0)Pv

′(y0)). The s.l.p. εi is
executable on y over Rp because (∀0≤ j < i, sh(εj)>0)⇒ (b×εv(y)+d×εu(y))/p∈
Rp. Concerning the shifts, since sh(εu), sh(εv)> 0, we have

sh(εu · εv)=min (sh(εu), sh(εv))> 0,

sh(p× [((b× εv+ d× εu)/p) · (Y − y0)])
= 1+min (sh((b× εv+ d× εu)/p), sh(Y − y0))
= 1+min (min (sh(εu), sh(εv))− 1, 0)> 0,

sh(a× εv+ c× εu) =min (sh(εu), sh(εv))> 0,

sh((b d)× [p2× ((Y − y0)/p)2])= 1.
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Altogether sh(εi)> 0. Then take i= r to conclude the proof.
Concerning multiplicative complexity, we slightly change ε0 such that it com-

putes once and for all ((Y − y0)/p)2 before returning zero. Then for all instructions ·
in the s.l.p. P , the s.l.p. εP gains two multiplications between p-adics (see opera-
tions · in equation (III.1)). So L∗(εP)≤ 2L∗+1. �

Proposition III.18. Let P be a univariate polynomial over Rp given as a s.l.p.
such that its multiplicative complexity is L∗, then the following algorithm Ψ:

Ψ: Z� −P (y0) +P ′(y0) y0− εP(Z)
P ′(y0)

is a shifted algorithm for the associated Φ and approximate zero y0 whose evaluation
complexity is bounded by 2L∗+1.

Proof. We have Φ(Y ) = Ψ(Y ) over K[Y ] because Φ(Y ) = [(−P (y0) + P ′(y0) y0) +
EP(Y )]/P ′(y0). Because of Lemma III.17 and νp(P

′(y0)) = 0, the s.l.p. Ψ is exe-
cutable on y over Rp and its shift is positive. We conclude with L∗(Ψ) = L∗(εP)≤
2L∗+1 as the division by P ′(y0) consists of the division of an element of Rp by an
element of R. �

Remark III.19. If we add the square operation ·2 to the set of operations Ω of P , we
can gain a few multiplications in εP . In Definition III.16, if Γi=(·2;u) and τu=(a, b)
then put

εi= εu · (εu+2× (a+ b× (Z − y0)))+ b2× [p2× ((Z − y0)/p)2].
So we reduce the multiplicative complexity of εP and Ψ by the number of square
operations in the s.l.p. P .

Theorem III.20. Let P be a polynomial over R and y0∈R/(p) such that P (y0)=
0 mod p and P ′(y0) � 0 mod p. Denote y ∈ Rp the unique solution of P lifted
from y0. Assume that P is given as a s.l.p. whose multiplicative complexity is L∗.
The computation to precision n of y in the relaxed model can be done in

(2L∗+1)R(n)= Õ(L∗n)

arithmetic operations.

Proof. By Propositions III.12 and III.18, y can be computed as a recursive p-
adic number with the shifted algorithm Ψ. Proposition III.11 gives the announced
complexity. �

3 Relaxed linear algebra over p-adic numbers

As a generalization of the results of the previous section, we will lift a simple root
of a system of r equations with r unknowns in Section 4. For this matter, one needs
to solve a linear system with the Jacobian matrix in a relaxed way, as we describe
in this section.
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For any matrix A ∈Ms×r(Rp), we will denote by aij the coefficient of A lying
on the ith row and the jth column. Furthermore, A can be seen as a p-adic matrix,
i.e. a p-adic number whose coefficients are matrices overM , in this case, the matrix
of order n will be denoted by An∈Ms×r(M), so that A=

∑

n=0

∞
An p

n.

3.1 Inversion of a “scalar” matrix

We can generalize the remark of [BHL11, Section 6.1]: because of the propagation of
the carries, the computation of the inverse of a regular r× r matrix with coefficients
in M is not immediate in the p-adic case.

We shall introduce eight new operators:

add_rem, add_quo: Rp×Rp � Rp,

Add_rem, Add_quo: Mr×s(Rp)×Mr×s(Rp) � Mr×s(Rp)
mul_rem, mul_quo: M ×Rp � Rp,

Mul_rem, Mul_quo: Mr(M)×Mr×s(Rp) � Mr×s(Rp).

The functions add_rem and Add_rem compute the sum of their arguments as if each
argument were series in R/(p)[[x]]. In other words, it computes the sum coefficient-
wise, without taking care of the carry. The functions add_quo and Add_quo are
defined by

b+ a = add_rem(b, a)+ p add_quo(b, a)

=
∑

n=0

∞
rem(bn+ an, p) p

n+
∑

n=0

∞
quo(bn+ an, p) p

n+1.

B+A = Add_rem(B,A)+ pAdd_quo(B,A)

=
∑

n=0

∞
rem(Bn+An, p) p

n+
∑

n=0

∞
quo(Bn+An, p) p

n+1.

The fifth one, mul_rem, computes the p-adic integer whose coefficient of order n
is rem(β an, p), while the operator mul_quo computes the corresponding carries as
well, so that

β a = mul_rem(β, a) + pmul_quo(β, a)

=
∑

n=0

∞
rem(β an, p) p

n+
∑

n=0

∞
quo(β an, p) p

n+1.

The operators Mul_rem and Mul_quo are matricial counterparts of mul_rem

and mul_quo, so that we have

BA=Mul_rem(B, A)+ pMul_quo(B, A).

They are computed recursively. On 2× 2 matrices, we define for all (i, j)∈{1, 2}2,

(βa)ij = add_rem(mul_rem(βi1, a1j),mul_rem(βi2, a2j))

+ p [add_quo(mul_rem(βi1, a1j),mul_rem(βi2, a2j))

+mul_quo(βi1, a1j)+mul_quo(βi2, a2j)].
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Then recursively for matrices B =
(

B11 B12

B21 B22

)

∈ M2r(M ) and A =
(

A11 A12

A21 A22

)

∈
M2r(Rp), we set

Mul_rem(B, A)ij = Add_rem(Mul_rem(Bi1, A1j),Mul_rem(Bi2, A2j)),

Mul_quo(B, A)ij = Add_quo(Mul_rem(Bi1, A1j),Mul_rem(Bi2, A2j))

+Mul_quo(Bi1, A1j)+Mul_quo(Bi2, A2j).

The operators add_rem, add_quo, mul_rem and mul_quo compute their outputs at
precision n in O(n) arithmetic operations (see [BHL11]).

Proposition III.21. Let B and A be two p-adic matrices such that B ∈Mr(M)
and A ∈Mr×s(Rp), then Mul_rem(B, A), Mul_quo(B, A) and, therefore B A, can
be computed to precision n in O(r2 s n) operations, if R = Z, it can be computed
in O(r2 s n I(log p)) bit-operations.

Proof. To compute Mul_rem(B, A) and Mul_quo(B, A), we need to do O(r2 s)
operations among add_rem, add_quo, mul_rem and mul_quo. �

Proposition III.22. Let A be a relaxed matrix over p-adic numbers of size r × s
and let B∈Mr(M ). If B is invertible modulo p, with given inverse Γ=B−1mod p,
then the product C =B−1A is recursive and C satisfies the equation

C =Mul_rem(Γ, A− pMul_quo(B, C)), C0=ΓA0mod p.

Furthermore, C can be computed up until precision n using O(r2 s n) operations.

Proof. From the definitions of Mul_rem and Mul_quo, it is quite clear that C is
recursive. The computation of Γ can be performed in O(rω) operations in R/(p).
Furthermore, the functions Mul_rem and Mul_quo both take O(r2 s n) operations.

Therefore C can be computed up to precision n with O(r2 s n) operations. �

3.2 Inversion of a matrix over Rp

We can now apply the division of matrices over p-adic integers, as in [Hoe02].

Proposition III.23. Let A ∈Ms×r(Rp) and B ∈Mr(Rp) be two relaxed matrices
such that B0 is invertible of inverse Γ=B0

−1mod p. Then the product C =B−1A is
recursive and satisfies the following equation:

C =B0
−1

(

A− p×
(

B −B0

p
C

))

, C0=ΓA0mod p.

Furthermore, C can be computed to precision n using O(r2 s R(n)) operations, if R=
Z, it can be computed using O(r2 s I(n log p) log n) bit-operations.

Proof. It is clear that the (n + 1)st term of C in the left hand member depends
only on the (n+1) first terms of A, B and the n first terms of C. Therefore C is a

recursive matrix. As B −B0

p
and C are two matrices over Rp, the cost for multiplying

them is bounded by O(r2 s R(n)). Then it remains to apply Proposition III.22 for
the last product. �
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Remark III.24. One may notice that if B ∈ Mr(R), then the matrix pro-
duct B −B0

p
C can be computed up to precision n linearly in O(r2 s n) operations.

Therefore, so can C.

4 Root lifting for locally regular algebraic systems

In this section, we aim at computing a p-adic root y∈Rp
r of a polynomial system P =

(P1, 	 , Pr) ∈ R[Y ]r =R[Y1, 	 , Yr]r in a relaxed recursive way. That is, we assume
that P has a modular root y0 = (y1,0, 	 , yr,0) ∈ (R/(p))r which is regular, i.e. its
Jacobian matrix dP (y0) is invertible inMr(R/(p)), so that Hensel’s lemma ensures
the existence and the uniqueness of y ∈Rp

r such that P (y) = 0 and y0= ymod p.
From now on, P is a polynomial system with coefficients in R and y ∈ Rp

r is the
unique root of P lifted from the modular regular root y0∈R/(p).

First, Proposition III.12 extends as follows:

Proposition III.25. The polynomial system

Φ(Y ) =dPy0

−1(dPy0
(Y )−P (Y ))∈K[Y ]r

allows the computation of y.

Proof. This is a straightforward adaptation of the proof of Proposition III.12. By
writing P (Y ) =P (y0) + dPy0(Y − y0) +

∑

i,j=1

r
P̃i,j(Y ) (Yi− yi,0) (Yj − yj ,0), for

some P̃i,j ∈K[Y ], we have

Φ(Y ) =dPy0

−1

(

−P (y0)+ dP (y0) y0+
∑

i,j=1

r

P̃i,j(Y ) (Yi− yi,0) (Yj− yj,0)
)

.

Therefore, Φ allows the computation of y. �

As in the univariate case, we may have to introduce some shift in Φ. In the
following, we will present how to determine some shifted algorithms Ψ associated
to Φ for the approximate root y0.

4.1 Dense algebraic systems

We assume that each Pi is a polynomial of total degree d. We assume that P is
given with a dense representation, that is, each Pi is given as its vector of coeffi-
cients (ck)k∈Nr in the monomial basis (Y k)k∈Nr, where for all k∈Nr, k=(k1,	 , kr),
Y k= Y1

k1
 Yr
kr. And if we denote |k|= k1+
 + kr, then |k| ≤ d.

As in the univariate case, the shift of Φ(Y ) is 0. We may adapt Lemma III.13
and Proposition III.14 from the univariate polynomial case to the multivariate poly-
nomial case straightforwardly as follows. As a consequence of the following lemma,
we will express Pi in the monomial basis ((Y − y0)

k)k∈Nr.

Lemma III.26. For all list k ∈Nr with |k|> 0, the s.l.p.

Γ: Z� p|k|
(

Z − y0

p

)

k

= p|k|×
[(

Z1− y1,0
p

)

k1

·
 ·(Zr− yr,0
p

)

kr
]
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is executable on y and for all j, 1≤ j ≤ r,

sh(Γ, r− j , 1)=
{

+∞, if kj=0,
|k |, otherwise.

Algorithm III.2
Dense polynomial system shifted algorithm computation

Input. A polynomial system P ∈R[Y ] with regular root y0 in (R/(p))r

Output. A shifted algorithm Ψ associated to the operator Φ

1. For i from 1 to r
Compute t[i][1]6 Zi− yi,0

p
.

For j from 2 to d
t[i][j]6 t[i][j − 1] · t[i][1].

2. For i from 1 to r
Compute

Ni 6 (

Pi(y0)−
∑

j=1

r
∂Pi

∂ Yj

(y0)

)

+
1

2

∑

j1,j2=1

r
∂2Pi

∂ Yj1 ∂ Yj2

(y0)× (p2× (t[i][j1] · t[j2]))

+
 +
1

d!

∑

j1,	 ,jd=1

r
∂rPi

∂ Yj1
 ∂ Yjd

(y0)× (pd× (t[i][j1] ·
 · t[i][jd])).
3. Return dPy0

−1(N1,	 , Nr).

Proposition III.27. Given a polynomial system P = (P1, 	 , Pr) ∈ R[Y ]
in dense representation, such that each Pi has total degree at most d, and an
approximate zero y0, one may define a shifted algorithm Ψ associated to the
operator Φ thanks to Algorithm III.2. The precomputation of such an operator
involves O(M((2 d)r) r2 log d) operations in R, while the evaluation of Ψ(y)
to precision n can be done in O

(
(

r+ d

r

)

R(n)
)

operations and if R = Z,
in O

(
(

r+ d

r

)

I(n log p) log n
)

bit-operations.

Proof. By Kronecker substitution, the coefficients of each Pi in the basis ((Y −
y0)

k)k∈Nr can be obtained from the shifted of a univariate polynomial of degree at
most ∆ = (2 d + 1)r [BP94, Chapter 1, Section 8]. Therefore, it can be computed
in O(M(∆) log∆)=O(M((2 d)r) r log d) arithmetic operations in R.

It remains to evaluateΨ at y. The only multiplications between p-adics are those
of type t[1][j1] ·
 · t[1][jr], j1+
 + jr≤d, this yields O

(
(

r+ d

r

)
)

products. Then, the
remaining products are between a p-adic number and a partial derivative which lies
in R. At last, since d Py0

∈Mr(R), by Proposition III.23 and Remark III.24, the
last computation can be done in O(r2n) operations. �

Remark III.28. Remark III.15 still applies, so that the precomputation can be
done in O(M((2 d)r) r) operations in R.
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4.2 Algebraic systems as straight-line programs

We keep basically the same notations as in Section 2.2. Given an algebraic sys-
tems P , we define

TP (Y )6 P (y0)+ dPy0(Y − y0), EP (Y )6 P (Y )−TP (Y ).

We adapt Definition III.16 so that we may define τ and ε for multivariate polyno-
mials.

Definition III.29. We define recursively vectors τj∈Rr+1, indexed from 0 to r and
s.l.p.’s εj for j, 1≤ j≤r, with operations in Ω′6 {+,−, ·,/, pi×·, ·/pi}∪R∪S∪Rc.

First we initialize εj
−r+i6 0, τj

−r+i6 (yi,0, 0,	 , 0, 1�
j

, 0,	 , 0) for all i, 1≤ i≤ r.

Then we define εji and τji recursively on i with 1≤ i≤ kj where kj is the number of
instructions in the s.l.p. Pj, by almost the same formulae as in Definition III.16.
Let us detail how we define recursively εji and τji if Γi= (·, u, v):

Let τju=(a0, a1,	 , ar) and τjv= (b0, b1,	 , br), then
τj
i = (a0 b0, a0 b1+ a1 b0,	 , a0 br+ ar b0),

εj
i = εj

u εj
v+ p×

[

(εj
u/p) ·

(

∑

ℓ=1

r

bℓ× (Zℓ− y0,ℓ)
)

+

(

∑

ℓ=1

r

aℓ× (Zℓ− y0,ℓ)
)

· (εjv/p)
]

+
∑

1≤ℓ1,ℓ2≤r

aℓ1 bℓ2× [p2× [((Zℓ1− y0,ℓ1)/p) · ((Zℓ2− y0,ℓ2)/p)]]. (III.2)

As before, we set εPj
6 εj

kj and τPj
6 τj

kj.

Lemma III.30. The s.l.p. εP 6 (εP1,	 , εPr
) is a shifted algorithm for EP and y0.

Its complexity is bounded by 3 L∗+
r (r+1)

2
. Also, if TP 6 (TP1

,	 ,TPr
), then τPj

is the
vector of coefficients of the polynomial TPj

in the basis (1, (Y1− y1,0),	 , (Yr− yr,0)).
Proof. From Lemma III.17, it is clear that εP is a shifted algorithm for EP and y0

as is τPi
the coefficients of TPi

in the basis (1, (Y1− y1,0),	 , (Yr− yr,0)).
Concerning the multiplicative complexity, we perform the same change for ε10

as for ε0 in the proof of Lemma III.17 by computing ((Yi− yi,0)/p) · ((Yj − yj,0)/p)
before returning zero, therefore we have to perform r (r+1)

2
product of p-adics. Then,

Therefore, for all instruction · in the s.l.p. Pj, εPj
gains three multiplications

between p-adics (see operations · in equation (III.2)). So L∗(εP )≤ 3L∗+
r (r+1)

2
. �

Proposition III.31. Let P be a polynomial system of r polynomials in r variables
over Rp, given as a s.l.p., such that its multiplicative complexity is L∗, then the
following algorithm Ψ:

Ψ: Z� dPy0

−1((−P (y0)+dPy0(y0))− εP (Z))

is a shifted algorithm for the associated Φ and approximate zero y0 whose evaluation
complexity is bounded by 3L∗+

r (r+1)

2
.

Proof. We just need to prove the bound for the multiplicative complexity as the
remaining part is straightforwardly analogous to Proposition III.18.
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The evaluation of dPy0

−1(·) consists of a product of the inverse of a matrix over R
and of a vector over Rp, as in Proposition III.22 and Remark III.24, with s = 1,

therefore L∗(Ψ)=L∗(εP )≤ 3L∗+
r (r+1)

2
. �

Theorem III.32. Let P be a system of r polynomials in r variables over R and y0∈
(R/(p))r such that P (y0) = 0 mod p and det d P (y0) � 0 mod p. Denote y ∈ Rp

n

the unique solution of P lifted from y0. Assume that P is given as a s.l.p. whose
multiplicative complexity is L∗. The computation at precision n of y in the relaxed

model can be done in
(

3L∗+
r (r+1)

2

)

R(n) arithmetic operations.

Proof. By Propositions III.25 and III.31, y can be computed as a p-adic vector
with the shifted algorithm Ψ. By Proposition III.11, we obtain the announced
complexity. �
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Chapitre IV

Reduction of bivariate polynomials
from convex-dense to dense

Abstract

In this chapter we present a new algorithm for reducing the usual sparse bivariate
factorization problems to the dense case. This reduction simply consists of com-
puting an invertible monomial transformation that produces a polynomial with a
dense size of the same order of magnitude as the size of the integral convex hull of
the support of the input polynomial. This approach turns out to be very efficient
in practice, as demonstrated with our implementation. This chapter is based on an
article done with G. Lecerf and accepted for publication [BL10].

1 Introduction

Let K be a field. Throughout this chapter, F represents the bivariate polynomial
in the variables X and Y over K that we want to factor. At the present time,
the best known complexity bounds for the squarefree and irreducible factorization
problems are essentially obtained in terms of the dense size of F . This is relevant
to many situations but, in many others, it is important to take the sparsity of F
into account. In this chapter, we present a simple method to transform F in a way
that is compatible to factorizations, but so that the dense size becomes of the same
order of magnitude as the size of the integral convex hull of the support of F . In the
next paragraphs, we give precise definitions for the sparse and dense sizes, state our
main complexity result on support reduction, and then corollaries on factorizations.

1.1 Sizes of polynomials

Let S be a finite subset of points in Z2. The bounding rectangle of S is the smallest
rectangle of the form (oX , oY ) + [0, dX]× [0, dY ] that contains S, where oX , oY ∈ Z

and dX , dY ∈N. We define the dense size of S as (dX +1) (dY +1). We write IntS
for the integral convex hull of S, that is the set of integer points inside the convex
hull of S seen as a subset of R2, so that

IntS =Z2∩
{

∑

e∈S
te e|te∈R≥0 and

∑

e∈S
te=1

}

.
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The convex size of S is defined as the cardinality |IntS | of IntS.
For our purposes it will be convenient to consider bivariate Laurent polynomials .

Any such polynomial F ∈K[X, Y , X−1, Y −1] can be stored as a vector of nonzero
terms, with each term composed of a coefficient and an exponent, regarded as a
vector in Z2. This storage is usually called the sparse representation of F . For any (i,
j)∈Z2, we let Fi,j denote the coefficient of X i Y j in F . The support of F is defined as

SuppF = {(i, j)∈Z2|Fi,j � 0}.
The sparse size of F , written as σ, refers to the cardinality of the support of F .
We also define the dense size (resp. the convex size) of F as the dense size (resp.
convex size) of its support.

The Newton polygon of F , written NewtonF , is the convex hull of the support
of F in R2. If F factors into GH, then it is known from Ostrowski [Ost21] (trans-
lated in [Ost99], and revisited later in [Ost75]) that:

NewtonF =NewtonG+NewtonH = {a+ b|a∈NewtonG, b∈NewtonH}.
The latter sum of the convex hulls of G and H is usually called the Minkowski sum.
In general, even if the sparse size of F is small compared to its convex size, the
irreducible factors of F can be dense with respect to their Newton polygons, what
we call convex-dense for short. For example, simply consider F = Y p−X p ∈Q[X,
Y ], where p is a prime integer: here σ=2 and F factors into X −Y and F/(X −Y )
whose sparse size is exactly p. This shows that the irreducible factorization of F
cannot be achieved in time polynomial in σ, and that the convex size of F is a
relevant quantity to analyze the complexity of factorization problems.

Example IV.1. Let F =X−1Y −1+1+2X3+3 Y 2. The sparse size of F is σ=4.
The Newton polygon of F is drawn in Figure IV.1: the black disks represent the
monomials of F , while the white disks are the other monomials contained in the
Newton polygon. The convex size of F is therefore π = 8, and since the bounding
rectangle of the support of F is (−1,−1)+ [0, 4]× [0, 3], the dense size of F is 20.

Figure IV.1. Newton polygon of F =X−1Y −1+1+2X3+3 Y 2.

1.2 Main result

The method we propose in this chapter concerns all the usual types of factorization,
including the squarefree, the irreducible and the absolute ones. Our main result is a
pretreatment, applied to the input polynomial, which consists of a monomial trans-
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formation that preserves the sparse size and roughly the convex size, but decreases
the dense size. The monomial transformations considered are the maps of the affine
group over Z2, written Aff(Z2). To be precise, these are the maps U

U : (i, j)�(

α β

α ′ β ′

)(

i

j

)

+

(

γ

γ ′

)

, (IV.1)

with α, β, γ, α ′, β ′, and γ ′ in Z, such that α β ′−α ′ β=±1. Such a map U preserves
the absolute value of the volumes in R2.

Let S be a finite subset of Z2. The set S is said to be normalized if it belongs
to N2 and if it contains at least one point in {0} ×N, and also at least one point
in N×{0}. For such a normalized set, we write dX for the largest abscissa involved
in S and, analogously, dY for the largest ordinate, so that the bounding rectangle
is R= [0, dX]× [0, dY ]. The following theorem will be proven in Section 4.2:

Theorem IV.2. For any normalized finite subset S of Z2, of cardinality σ, convex
size π, bounding rectangle [0, dX] × [0, dY ], and dense size δ = (dX + 1) (dY +
1), one can compute an invertible affine map U ∈ Aff(Z2) as in (IV.1), together
with U(S), with O(σ log2 δ) bit-operations, such that U(S) is normalized of dense
size at most 9π.

Here, by the number of bit-operations we mean the size of the Boolean cir-
cuit that performs the computation, as in the computation tree model considered
in [BCS97, Chapter 4]. The rest of this introduction is devoted to applications of
Theorem IV.2 to factorizations of bivariate polynomials. Roughly speaking, given
a polynomial F with a small convex size compared to its dense size, we can use
the algorithm underlying Theorem IV.2 on the support of F in order to construct
another polynomial to factor, with the same convex size as F but with a dense size
of the same order of magnitude as the convex size. Therefore, any fast factoriza-
tion algorithm in terms of the dense size leads to a fast algorithm in terms of the
convex size. Another important application of our Theorem IV.2, developed by
Chèze in [Chè10], concerns the decomposition of multivariate rational functions.

The proof of Theorem IV.2 is organized as follows. In our first section we explain
a naive approach to reduce S so that the ratio of the volumes of its convex hull
and of its bounding rectangle increases. The second section provides us with a
uniform bound on the latter ratio reached at the end of the reduction process. The
last section is then devoted to a faster dichotomic reduction algorithm, to practical
performances, and to a proof that our reduction technique leads to an essentially
optimal volume ratio in the worst case.

1.3 Applications

We shall now explain how Theorem IV.2 can be used to reduce convex-dense fac-
torization problems to the usual dense case. For the cost analysis we use the
computation tree model for counting the number of operations in the ground field K.
Let us recall that the “soft-Oh” notation f(n) ∈ Õ(g(n)) means that f(n) ∈
g(n) logO(1) (3 + g(n)) (we refer the reader to [GG03, Chapter 25, Section 7] for
details).
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If U is an affine map of Z2 as in (IV.1), then we consider its action on the
monomials, and we write U(X i Y j) for Xαi+βj+γ Y α′i+β ′j+γ ′

. By linearity, this
action extends to K[X, Y ,X−1, Y −1] as follows:

U(F ) =
∑

(i,j)∈SuppF

Fi,jU(X
i Y j).

Greatest common divisor

A Laurent polynomial is said to be normalized if its support is normalized. Let F
and G be two normalized polynomials in K[X,Y ] of degree at most dX in X and dY
in Y , and with supports included in a common convex polygon of convex size π.
This situation naturally occurs for instance when computing the discriminant of F ,
say in Y , where G is set to ∂

∂Y
F .

Thanks to Theorem IV.2, we can compute a reduction map U with O(σ log2 δ)
bit-operations such that the partial degrees of F̃ = U(F ) and G̃ = U(G) are at
most d̃X in X and d̃Y in Y , and with d̃X d̃Y ∈O(π). Without loss of generality we can
further assume that d̃X ≥ d̃Y , so that the computation of H̃ = gcd (F̃ , G̃) in K[X,

Y ] can be done with Õ(π1.5) operations in K, assuming that K has cardinality at
least (6 d̃Y +3) d̃X, by [GG03, Corollary 11.9, part i ]. Under the same assumptions
on the cardinality of K, a randomized variant can also obtain the same g.c.d. with
an expected number of operations only in Õ(π), by [GG03, Corollary 11.9, part ii ].

There exists a unit h in K[X, Y , X−1, Y −1] (that is a term c X i Y j with c

invertible in K) such that H = h U−1(H̃ ) is normalized. We say that H is a
normalization of U−1(H̃ ). By the aforementioned Ostrowski theorem, it is classical
to deduce that H is the actual g.c.d. of F and G, and that the convex size of H is at
most π. Finally, the computation of H from H̃ takes Õ(π log δ) more bit-operations.
Of course this approach leads to a significant speedup when compared to a direct
application of [GG03, Corollary 11.9] as soon as π is much smaller than δ.

Squarefree factorization

Let U be an invertible affine map over Z2 as in equation (IV.1), and let L be the
linear part of U . Let F still be a normalized polynomial in K[X, Y ] of degree at
most dX in X and dY in Y , of sparse size σ, and of convex size π. If the squarefree
factorization of F writes into F =F1

1 F2
2
 Fr

r, where the Fi are the pairwise coprime
squarefree factors, then

L(F ) =L(F1)
1L(F2)

2
 L(Fr)
r.

As for the g.c.d., thanks to Theorem IV.2, we can compute a reduction map U with
O(σ log2 δ) bit-operations such that the partial degrees of F̃ =U(F ) are at most d̃X
in X and d̃Y in Y , and with d̃X d̃Y ∈O(π). Without loss of generality we can again
assume that d̃X ≥ d̃Y .

If K has characteristic 0, then the squarefree factorization of F̃ takes Õ(π1.5)
operations inK by [Lec08, Proposition 8]. This cost further drops to an expected one
in Õ(π) with the randomized variant of [Lec08, Proposition 9]. Then the squarefree
factors can be easily deduced by applying U−1 and normalizing. Other algorithms
of [Lec08] concerning the separable factorization can be also adapted in the same
way to the benefit of sparsity.
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Irreducible factorization

If F is a Laurent polynomial, then U(F ) is irreducible if, and only if, F is irreducible.
If F is normalized, then F is irreducible in K[X,Y ] if, and only if, F is irreducible
in K[X,Y ,X−1, Y −1]. The irreducible factorization in K[X,Y ] can thus be deduced
from the one in K[X, Y , X−1, Y −1]. As for the squarefree factorization, we first
compute a reduction map U , then we compute the irreducible factorization of U(F ),
and finally we apply U−1 and normalize all the factors.

With this strategy, informally speaking, the algorithms of [Lec10] for instance
show that the number of operations in a prime finite field can grow with only Õ(π1.5).
In Section 4.3 we report on examples that illustrate the speedup gained thanks to
the reduction process.

1.4 Related work

Fast arithmetic operations on sparse polynomials are still a matter of active research.
At the present time, the best performances are achieved essentially with supports
being close to rectangles, thanks to the Kronecker substitution that reduces the
product to a single variable [GG03, Chapter 8, Section 4]. Recent progress has been
accomplished for instance in [HL10], but even when softly linear time algorithms
are available for the sparse product, the overhead compared to dense sizes remains
important. These facts motivate the strategy of the present chapter: by a direct
reduction to the dense case we avoid relying on sparse arithmetic at all.

Concerning the irreducible factorization of bivariate polynomials, the Hensel
lifting and recombination technique is the most popular. It leads to the best known
complexity bounds [BLS+04, Lec06, Lec07, Lec10] in the dense case. Hensel lifting
is used in Bernardin’s implementation within Maple [Ber97, Ber98], and in Steel’s
implementation in Magma [Ste05, BHKS09]. In order to benefit from fast Hensel
lifting, which means here with a softly linear cost, in the bivariate case, one first
needs to assume that F is separable, say in Y , and then find a value X0 such
that F (X0, Y ) remains separable. Unfortunately, the shift of X spoils the sparse
and convex sizes. One possible solution consists of the direct computation of the
irreducible factorization in K[[X ]][Y ] but, at the present time, no algorithm with
softly linear time is known for that task. Efforts have been made in this direction.
For instance, in [AGL04] an algorithm for computing a factor of a given convex
support is designed for special cases, with time polynomial in the convex size of the
input polynomial. In [BHKS09], Puiseux series solutions of F are computed directly,
with no shift in X. The best known complexity bounds for the Puiseux expansions
seem to be found in [Pot08, PR11]. Recently, in [Wei10], Weimann proposed partial
generalizations of the algorithms of [Lec06, Lec07]: if K is a number field, and if the
polynomials supported by the exterior facets of the Newton polygon are separable,
then, from their irreducible factors, one can deduce the factorization with O(πω)
operations in K, where ω is the linear algebra exponent (known to be between 2
and 2.37, but unfortunately close to 3 in practice). Compared to these methods,
our approach has the advantage that it can be performed from the outset with no
separability assumption, that it does not need to compute the Newton polygon, and
that it can benefit from fast Hensel lifting.
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Another important class of factorization algorithms is due to Gao in [Gao03],
who showed that the absolute factorization can be performed in softly quadratic time
in terms of the dense size. The first half of his algorithm consists of computing a basis
of the first De Rham cohomology group of the complementary of the hypersurface
defined by F . In [GR03] it has been shown that this task can be done in time poly-
nomial in the convex size. When a fast sparse polynomial product is available, one
can even compute the probable number of absolute factors in time softly quadratic
in the convex size, over finite fields with sufficiently large characteristic [HL10,
Section 7]. However, these approaches still suffer an overhead when compared to the
dense case, and it requires the input polynomial to be separable.

The factorization of sparse polynomials in terms of the sparse size is an active
research area. Although this is not the main goal of the present chapter, let us
mention briefly important results for multivariate polynomials. Polynomial time
in terms of the sparse size of the output has been investigated by Zippel in [Zip79,
Zip81] (see also [Zip93, Chapter 17]). Specifically, he proposed a probabilistic variant
of Hensel lifting that runs in time polynomial in the total sparse size of the lifted
factors of F in K[[X ]][Y ]. His results have been extended and refined in [Gat83,
Kal85, GK85, Kal89]. These techniques perform well only if the lifted factors are
very sparse. Finally, another class of results focuses on the only computation of
the irreducible factors of a bounded given degree. A polynomial time bound has
been proved recently for this task in [AKS07] for two variables and, independently,
in [KK06] directly with several variables.
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2 Support reduction

This section is devoted to the reduction algorithm underlying Theorem IV.2. We
start with a naive version that is to be refined in Section 4.

2.1 Bounding rectangles

Let S be a normalized finite subset of Z2 with bounding rectangle R= [0, dX]× [0,
dY ]. We introduce the integers b, d, f and h as follows:

• b= dX −max(i,j)∈S (i− j),
• d= dX + dY −max(i,j)∈S (i+ j),

• f = dY +min(i,j)∈S (i− j),
• h=min(i,j)∈S (i+ j).

Then, let us define the following eight points, drawn in Figure IV.2 below:

A= (h, 0), B=(dX − b, 0), C =(dX , b), D=(dX , dY − d),
E =(dX − d, dY ), F = (f , dY ), G=(0, dY − f), H =(0, h).
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The rectangle R′ supported by lines (AH), (BC), (DE), (FG) is the smallest
rectangle containing S whose edges are parallel to the two main bissectors. The
octagon O=ABCDEFGH contains S and any of its edges contains a point of S,
O is the bounding octagon of S.

f

dY

dX

h
b

d

R′

RA B

C

D

EF

G

H

(0, 0)

O

Figure IV.2. Bounding octagon O and bounding rectangles R and R′

for S = {(2, 0), (1, 1), (5, 2), (7, 2), (2, 3), (0, 4), (7, 4), (8, 4), (5, 5)}.

2.2 Elementary transformations

Our reduction algorithm will only use the three following elementary transforma-
tions. The first one, written λ, corresponds to substituting Y /X into Y , this yields
the following map of Z2:

λ: Z2 � Z2

(i, j) � (i− j , j).

We will need to swap X and Y . This is the role of µ:

µ: Z2 � Z2

(i, j) � (j , i).

Finally, translations in X are necessary to normalize the supports occurring in the
reduction algorithm:

τk: Z2 � Z2

(i, j) � (i+ k, j).
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2.3 Reduced sets of points

Applying λ to S modifies the volume of the bounding rectangle. For instance
Figure IV.3 is the image of Figure IV.2 by λ: the height of R does not change,
but the horizontal length becomes dX + dY − b − f . The points (i, j) in S that
are sent to the far left of λ(S) are such that i − j is minimal. Analogously, those
that are sent to the far right of λ(S) are such that i− j is maximal. Applying λ−1

instead of λ will result in the horizontal length of the new R being the differ-
ence between max (i+ j) and min (i+ j), namely dX + dY − d−h.

λ(A)

λ(F )
λ(G)

λ(H)

dX − b−dY + f

(0, 0) λ(B)

λ(C)

λ(D)

λ(E)

Figure IV.3. Image of the octagon of Figure IV.2 by λ, and its new bounding rectangle.

h

λ−1(A)

λ−1(H)

λ−1(G)

(0, 0) λ−1(B)

λ−1(C)

λ−1(E)λ−1(F )
λ−1(D)

dX + dY − d

Figure IV.4. Image of the octagon of Figure IV.2 by λ−1, and its new bounding rectangle.

From now on and until the end of this chapter, η represents a real number in [0,
3/4).

Definition IV.3. A finite subset S of Z2 is said to be η-reduced whenever S is
normalized, with dX greater than or equal to dY, and such that b, d, f and h, as
defined in Section 2.1, satisfy the following two conditions:

1. b+ f ≤ (1+ η) dY, and
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2. d+ h≤ (1+ η) dY.

If S has only one point, then it is already η-reduced. In the next subsection, we
propose an algorithm for reducing any finite subset of points of Z2. We shall see
that η is used for controlling the tradeoff between the quality of the reduction and
the time needed to reduce. The strongest reduction corresponds to η=0.

2.4 Degenerate case

In this subsection we consider the case when S is degenerate, which means that
all the points of S are aligned. If S is normalized and is a singleton, then it is the
origin and it is already η-reduced, whatever the value of η is. Otherwise we have
the following proposition:

Proposition IV.4. For any degenerate normalized finite set of points S of cardi-
nality σ, convex size π, and bounding rectangle [0, dX]× [0, dY ], one can compute an
invertible affine map U ∈Aff(Z2) as in (IV.1), together with U(S), with O(σ log2 δ)
bit-operations, where δ=(dX +1) (dY +1), such that:

• |α|, |β |, |α ′|, and |β ′| are at most max (dX , dY , 1),

• |γ | and |γ ′| are at most dX dY,

• U(S) is normalized of dense size π.

Proof. According to the hypotheses, the following two situations can occur: the
points of S are either on the segment between (0,0) and (dX , dY ), or on the segment
joining (0, dY ) to (dX , 0). Let us first deal with the former case. Let g ≥ 0 be the
g.c.d. of dX and dY , and let u and v be the Bézout coefficients so that g=u dX+v dY
holds with |u| ≤ dY and |v | ≤ dX. We refer the reader to [GG03, Lemma 3.12] for
instance for these classical facts. We take U to be the linear map whose matrix is

(

u v

−dY /g dX/g

)

.

Since IntS={(i dX/g, i dY /g)|i∈{0,	 , g}} we have that π= g+1 and that U(IntS)
is the segment joining (0, 0) to (g, 0). It follows that U(S) has dense size exactly π.

The latter case, where S is on the segment joining (0, dY ) to (dX , 0), is similar,
taking

U : (i, j)�(

−u v

dY /g dX/g

)(

i

j

)

+

(

u dX
−dX dY /g

)

.

By [GG03, Theorem 3.13] the computation of g, u, and v can be done with O(log2δ)
bit-operations using the naive version of the Euclidean algorithm. Then applying U
to all the points of S takes O(σ log2 δ) bit-operations by multiplying naively the
integers in quadratic time [GG03, Chapter 2, Section 3]. �

We remark that the value of η does not intervene in this degenerate case.
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2.5 Reduction algorithm

Until the end of this section we assume that S is a nondegenerate finite set of points.
The following algorithm computes U ∈Aff(Z2) such that U(S) is η-reduced.

Algorithm IV.1
Support reduction algorithm

Input. A nondegenerate normalized finite subset S of N2 of cardi-
nality σ, and a real number η in

[

0,
3

4

)

.

Output. U ∈Aff(Z2), such that U(S) is η-reduced.
1. Compute (dX , dY ) for S, as defined in Section 2.1.

2. Initialize U with the identity.

3. Repeat

a. If dX<dY then
S6 µ(S)
U6 µ◦U
Swap dX and dY .

b. Compute b, d, f , h for S, as defined in Section 2.1.

c. If b+ f > (1+ η) dY then
S6 τdY −f ◦ λ(S)
U6 τdY −f ◦ λ ◦U
dX6 dX + dY − b− f

else if d+ h> (1+ η) dY then
S6 τ−h ◦λ−1(S)
U6 τ−h ◦λ−1 ◦U
dX6 dX + dY − d−h

else return U .

Proposition IV.5. Algorithm IV.1 is correct. For any nondegenerate normalized
finite subset S of N2 with bounding rectangle [0, dX] × [0, dY ], Algorithm IV.1
performs at most O(max (dX , dY )) steps in the main Repeat loop.

Proof. After each reduction step in the main loop, either dX and dY are swapped,
or dX decreases by at least 1 and dY is left unchanged. Therefore the number of steps
is bounded by O(max (dX , dY )). Since S remains normalized all along the process,
the algorithm always terminates with S being η-reduced. �

Example IV.6. Assume η = 0 and let F = 1 + X Y + X5 Y 2, whose support S
is {(0, 0), (1, 1), (5, 2)}, as drawn in Figure IV.5 below. After the first step of the
algorithm, where λ is applied, S becomes as in the left part of Figure IV.6. In
the second step, λ is applied once more and makes S reduced, as shown in the
right part of Figure IV.6. In the end, the algorithm returns U = τ1 ◦ λ2, so that
we have U(F ) = X + Y + X2 Y 2. The bounding rectangle of U(F ) corresponds
to dX = dY =2, while its bounding octagon O is defined by b= f =h=1, and d=0.
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Figure IV.5. Input set S = {(0, 0), (1, 1), (5, 2)}.

Figure IV.6. S after one, and then two reduction steps.

Example IV.7. Let S be {(0, 0), (1,1), (5,2)} as in Example IV.6 and Figure IV.5,
and assume η=1/2. Since b+ f =4 and (1+ η) dY =3, the input set S can be reduced
by applying λ to obtain the same set as in the left part of Figure IV.6. However, after
this reduction, we have b+ f = 3 which is not strictly greater than (1 + η) dY = 3.
We thus see with this example that the reduction process stops earlier with η=1/2
than with η=0.

2.6 Bit-cost analysis

The main difficulty in analyzing the bit-cost of Algorithm IV.1 resides in bounding
the size of the entries of the map U . This is the purpose of the following lemma:

Lemma IV.8. Let S be a nondegenerate normalized finite subset S of N2 with
bounding rectangle [0, dX] × [0, dY ], and let U be an affine map as in (IV.1) that
sends S to a normalized set S̃ with bounding rectangle [0, d̃X]× [0, d̃Y ]. Then we have:

• |α| ≤ 2 d̃X dY, |β | ≤ 2 dX d̃X, |α ′| ≤ 2 dY d̃Y, and |β ′| ≤ 2 dX d̃Y,

• |γ | ≤ 4 dX dY d̃X and |γ ′| ≤ 4 dX dY d̃Y.

Proof. Since S is nondegenerate, then it contains at least three points A=(xA, yA),
B = (xB , yB), and C = (xC , yC) that are not aligned. Computing the images of A,

B, and C by the linear part L=
(

α β

α ′ β ′

)

of U leads to:

{

|α (xB−xA)+ β (yB− yA)| ≤ d̃X
|α (xC−xA)+ β (yC− yA)| ≤ d̃X.

It follows that
{

|α (xB−xA) (xC−xA)+ β (yB− yA) (xC −xA)| ≤ dX d̃X ,
|α (xC−xA) (xB−xA)+ β (yC − yA) (xB−xA)| ≤ dX d̃X ,

whence

|β | |(yB− yA) (xC−xA)− (yC − yA) (xB−xA)| ≤ 2 dX d̃X.
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Since
∣

∣(yB − yA) (xC − xA)− (yC − yA) (xB − xA)
∣

∣ is a nonzero integer, we deduce
that |β | ≤ 2 dX d̃X. The bounds for α, α ′ and β ′ can be obtained mutatis mutandis .

Since points of the image of S by L have abscissae (resp. ordinates) with absolute
values at most 4 dX dY d̃X (resp. 4 dX dY d̃Y ), the absolute value of γ (resp. γ ′) is at
most 4 dX dY d̃X (resp. 4 dX dY d̃Y ). �

Proposition IV.9. For any nondegenerate normalized finite subset S of N2 of
cardinality σ, with bounding rectangle [0, dX] × [0, dY ], and dense size δ = (dX +
1) (dY +1), Algorithm IV.1 takes O(σmax (dX , dY ) log δ) bit-operations.

Proof. Since the maximum of dX and dY never increases during the main loop,
the bit-size of the points in S remains in O(log δ). Therefore Lemma IV.8 implies
that all the entries in U also remain bounded by O(log δ) at every step. Each
reduction step thus takes O(σ log δ) bit-operations. The conclusion follows from
Proposition IV.5. �

3 Dense size of reduced sets

Let S be a finite subset of Z2. In this section, we carry on using the notation of
Section 2.1, and we further write Vol S for the volume of the convex hull of S. In
the next paragraphs, we show that Vol S cannot be too small compared to the
volume Vol R of the bounding rectangle R of S, whenever S is reduced. In the
second subsection, we deduce similar bounds in terms of discrete sizes while taking
care of the degenerate cases.

3.1 Continuous bound

Recall that η is a real constant in [0, 3/4). The following theorem guarantees that
the volume spanned by an η-reduced set of points can be uniformly controlled in
terms of the volume of its bounding rectangle:

Theorem IV.10. If S is an η-reduced set of points, then Vol S ≥ 3− 4 η

8
Vol R,

where R is the bounding rectangle of S.

Proof. In Lemma IV.11 below, we shall show that the volume of S is larger or equal
to the volume of at least one of the following polygons:

Q1 = ACEG,

Q2 = BDFH,

P1=ABDEG, P2=BCEGH,

P3=BCEFH, P4=BDEGH,

P5=ABDFG, P6=ACDFH,

P7=ACEFH, P8=ACDFG.
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Then, Lemma IV.12 asserts that VolQi≥ 1− η

2
VolR, for all i ∈ {1, 2}; and finally,

for the eight pentagons, the combination of Lemmas IV.13 and IV.15 below provides
us with VolP i≥ 3− 4 η

8
VolR, for all i∈{1,	 , 8}. �

Lemma IV.11. Let S be a normalized finite set of points (not necessarily η-
reduced). Then at least one of the polygons Q1, Q2, P1, 	 , P8 defined above has
at most VolS.

Proof. From the definitions of the bounding rectangle, and of b, d, f , h, there
exist eight points I, J , K, L, M , N , O and P in S such that I ∈ [AB], J ∈ [BC],	 ,
P ∈ [AH ], as drawn on the following figure (note that some of these points may
coincide in particular degenerate cases):

R

EF

H

I

D

P

G

J

LN

A B

M

O
K

C

O

Figure IV.7. Points of S lying on the bounding octagon O.

Since VolS is the volume of the convex hull spanned by S, it is already clear that

Vol(IJKLMNOP )≤VolS .

By considering the subdivision of I JKLMNOP into the triangle IJP and
the polygon JKLMNOP , we see that Vol(AJP ) ≤ Vol(IJP ) or Vol(BJP ) ≤
Vol(I JP ), according to the slope of (PJ) being positive or not. It follows
that Vol(AJKLMNOP )≤Vol S or Vol(BJKLMNOP )≤Vol S. In other words,
moving I on its supporting segment [A,B]makes Vol(IJKLMNOP ) either decrease
or increase. Doing so with K, M and O, and then with some points among J ,
L, N and P , so that Vol(IJKLMNOP ) decreases, we are led to distinguish the
following cases:

• If I, K, M and O all move clockwise, that is I moves to A, K moves to C,
M moves to E and O moves to G, then we get the polygon AJCLENGP
whose volume is at least VolQ1.

• If I, K, M and O all move counterclockwise, then we get the
polygon BJDLFNHP whose volume is at least VolQ2.

3 Dense size of reduced sets 103



• Otherwise two consecutive points among the cycle I, K,M , and O move into
opposite directions. We now remark that the symmetries i� dX− i, j�
dY − j and (i, j)� (j , i) preserve the problem, the volumes, exchange the
roles of Q1 and Q2, and globally preserve the set of the eight pentagons P1,	 ,
P8. We can thus restrict ourselves to considering for instance the case for
when I moves to B and K moves to C, and examine the following subcases:

◦ M moves to E and O to H . If N moves to F , then we get the
polygon BCLEFHP , that has volume at least Vol P3. Otherwise,
if N moves to G, then we get the polygon BCLEGHP , which has
volume at least VolP2.

◦ M moves to E and O to G. If P moves to H , then we get the
polygon BCLENGH , that has volume at least Vol P2. Otherwise,
if P moves to A, then we get the polygon BCLENGA, which has
volume at least VolQ1.

◦ M moves to F and O to H . If L moves to D, then we get the
polygon BCDFNHP , that has volume at least Vol Q2. Otherwise,
if L moves to E, then we get the polygon BCEFNHP , which has
volume at least VolP3.

◦ M moves to F and O to G. Let us assume that P moves to A. Then
if L moves to D, then we get the polygon BCDFNGA, which has
volume at least VolP5. Otherwise, if L moves to E, then we get the
polygon BCEFNGA, that has volume at least VolQ1. The symme-
tries then handle the situation of P moving to H instead of A. �

Lemma IV.12. If S is an η-reduced set of points, then

VolQi≥ 1− η
2

VolR, for i∈{1, 2}.

G

H

F

D

C

E

BA

Figure IV.8. Quadrangle Q1 in octagon O and rectangle R.
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Proof. Since the roles of Q1 and Q2 are interchanged by the symmetry i� dX− i,
it suffices to prove the lemma for Q1 only. We compute the volume of Q1 as the
difference between the volume dX dY of the bounding rectangle and the volume of
the four triangles outside of Q1:

VolQ1 = dX dY − 1

2
((dX −h) b− (dY − b) d− (dX − d) f − (dY − f)h)

=
1

2
(dY − b− f) (dX − d−h) + 1

2
dX dY . (IV.2)

Since S is η-reduced, we have (1+ η) dY − b− f ≥0, dX−d−h≥0, thus dY − b− f ≥
−η dY . This yields VolQ1≥ 1

2
dX dY − η

2
dX dY =

1− η

2
VolR. �

Lemma IV.13. If S is an η-reduced set of points, then

VolPi≥ 3− 4 η

8
VolR, for i∈{1, 3, 5, 7}.

BA

C

D

EF

G

H

Figure IV.9. Pentagon P1 in octagon O and rectangle R.

Proof. Thanks to the symmetries, it suffices to prove the lemma for P1. The volume
of P1 is computed as the difference of the volume of R with those of the four triangles
outside of P1:

VolP1=VolR− 1

2
(b (dY − d)+ d2+ f (dX − d)+h (dY − f)).

From (IV.2) we deduce that:

VolP1−VolQ1=
1

2
(b (dX − dY −h)+ d (dY − d)).

Then, from

4 b (dX − dY −h)+ dY
2 =4 b (dX − b−h)+ (2 b− dY )2,

and dX − b − h ≥ 0, it follows that 4 b (dX − dY − h) + dY
2 ≥ 0, and that

VolP1−VolQ1≥− 1

8
dY
2 . The conclusion comes from Lemma IV.12:

VolP1≥ 1− η
2

dX dY − 1

8
dY
2 ≥ 3− 4 η

8
VolR. �
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Remark IV.14. For η= 0, the inequality of Lemma IV.13 turns out to be sharp.
For instance, with S = {(dX/2, 0), (0, dX/2), (dX , dX)} we have b = f = h =

1

2
dX

and d=0. Pentagon P1, as drawn on the following figure, has volume 3

8
dX
2 .

A=B

C

D=EF

G=H

Figure IV.10. Minimal pentagon P1 with dX = dY .

Lemma IV.15. If S is an η-reduced set of points, then

VolPi≥ 3− 4 η

8
VolR, for i∈{2, 4, 6, 8}.

A B

C

EF

H

G D

Figure IV.11. Pentagon P2 in octagon O and rectangle R.

Proof. Thanks to the symmetries, it suffices to prove the lemma for P2. Specifically
we shall prove that the following quantity is nonnegative:

θ(b, d, f , h) = 8VolP2− (3− 4 η)VolR
= (5+ 4 η) dX dY +4h (b− dX)− 4 b2+4 d (b− dY ) + 4 f (d− dX)
= (1+ 4 η) dX dY +4 (dX − d) (dY − f −h)− 4 (b− d) (b−h).
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Since f + h ≤ dY , we have that (1 + 4 η) dX dY + 4 (dX − d) (dY − f − h) ≥ 0.
Therefore, if h≥ b≥ d or d≥ b≥h, then the lemma is proved.

Otherwise, if b≤ d and b≤h, |b− d| |b−h| is maximal for b=0 and, for d=h=
(1+ η) dY /2, since d+h≤ (1+ η) dY . It follows that−4 (b−d) (b−h)≥−(1+ η)2 dY

2 .
From dX ≥ dY and η ∈ [0, 3/4) we deduce that (1 + 4 η) dX ≥ (1 + η)2 dY , and that
θ(b, d, f , h)≥ 0.

It remains to study the case for when b≥ d and b≥h. Using dX − d≥ b− d, we
obtain:

θ(b, d, f , h)≥ (1+ 4 η) dX dY +4 (b− d) (dY − b− f).

Then applying b+ f ≤ (1+ η) dY leads to:

θ(b, d, f , h) ≥ (1+4 η) dX dY − 4 (b− d) η dY
≥ (1+4 η) dX dY − 4 η dX dY ≥ 0,

which concludes the proof. �

3.2 Discrete bound

For our algorithmic purposes, we need to control the number of integral points in
the convex hull, instead of its volume.

Proposition IV.16. If S is an η-reduced subset of N2 of convex size π and with
bounding rectangle R= [0, dX]× [0, dY ], then the following inequalities hold:

3− 4 η

18
(dX +1) (dY +1)≤π ≤ (dX +1) (dY +1).

Proof. As R contains S, the convex size π is always at most (dX + 1) (dY + 1).
If S is degenerate, then dY = 0 and π = dX + 1, so that the proposition is correct.
Let us now assume that S is nondegenerate. We decompose Int S into Intb S ∪
IntiS, where IntbS are the points lying upon the boundary of the Newton polygon
of S, while Inti S are the other ones strictly inside. Pick’s Theorem (see [Cox69,
Chapter 13, Proposition 51] or [GS93]) relates VolS to |IntbS | and |IntiS |, as follows:

VolS = 1

2
|IntbS |+ |IntiS |− 1.

It follows that π ≥VolS, and that π≥ 3− 4 η

8
dX dY by Theorem IV.10.

Whenever dY = 1, we have b+ d+ f + h ∈ {0, 1, 2}. If b+ h= 1 and d+ f = 1,
then from b+ f ≤1 and d+h≤1, we can deduce that f =h which implies f =h=0
because f +h≤ 1. Therefore, b= d=1, which is impossible since b+ d≤ 1. Finally,
we must have b+ h=0 or d+ f =0, hence π ≥ dX +1.

If dY ≥2, the conclusion follows from dX≥2 (dX+1)/3 and dY ≥2 (dY +1)/3. �
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Remark IV.17. In the case for when η = 0, if α is such that the
inequality α |Int R| ≤ |Int S | holds for every reduced finite subset S in Z2,
with Vol S > 0, then necessarily we have that α ≤ 3/8. In fact, it suffices to
consider the family Sn = {(n/2, 0), (0, n/2), (n, n)} for n even. We have |Int S2|=
4 and |IntSn+2|= |IntSn|+3

( n

2
+1
)

, and deduce that

|IntSn|
|IntRn|

=
3n (n+2)+ 8

8 (n+1)2

is decreasing and converges to 3/8. In general, the constant 3− 4 η

18
thus may be rather

pessimistic for large S.

4 Faster reduction algorithm

The last ingredient now missing to prove Theorem IV.2 is a reduction algorithm
with a number of reduction steps that grows only with the logarithm of the dense
size. This is the goal of this section.

4.1 Dichotomic approach

This section is dedicated to a fast variant of Algorithm IV.1. We do not compute
exactly the same output, however. Roughly speaking, the main idea is to determine
quickly how many times λ or λ−1 can be applied before two consecutive swaps.

Let S be a normalized finite subset of N2 with bounding rectangle [0, dX]× [0,
dY ], and let q be a positive integer. The points (i, j) in S that are sent to the far
left of λq(S) are such that i− q j is minimal. Analogously, those that are sent to the
far right of λq(S) are such that i− q j is maximal. This motivates the introduction
of bq, dq, fq, and hq as

• bq= dX −max(i,j)∈S (i− q j),
• dq= dX + q dY −max(i,j)∈S (i+ q j),

• fq= q dY +min(i,j)∈S (i− q j),
• hq=min(i,j)∈S (i+ q j).

For q=1, these definitions coincide with those of b, d, f , and h of Section 2.1. The
following inequalities hold:

bq+ dq≤ q dY , bq+hq≤ dX ,
fq+ hq≤ q dY , dq+ fq≤ dX.

The height of the bounding rectangle of λq(S) is still dY , while the horizontal length
becomes dX + q dY − bq − fq. In the same manner, the horizontal length of the
bounding rectangle of λ−q(S) becomes dX + q dY − dq− hq.

From now on, the reduction factor η is supposed to be positive, that is in (0,
3/4). We write ⌊a⌋ for the integer part of a (⌊a⌋ ≤ a < ⌊a⌋+ 1), and log2 a for the
logarithm of a in base 2. The fast algorithm we propose summarizes as follows:
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Algorithm IV.2
Dichotomic support reduction algorithm

Input. A nondegenerate normalized finite subset S of N2 of cardi-
nality σ, and a real number η in

(

0,
3

4

)

.

Output. U ∈Aff(Z2), such that U(S) is η-reduced.
1. Compute (dX , dY ) for S, as defined in Section 2.1.

2. Initialize U with the identity.

3. Initialize m with ⌊log2 (dX/(η dY ))⌋.
4. Repeat

a. If dX<dY then
S6 µ(S)
U6 µ◦U
Swap dX and dY
m6 ⌊log2 (dX/(η dY ))⌋.

b. If m< 0 then return U .

c. Compute b2m, d2m, f2m, h2m for S as defined above.

d. If b2m+ f2m> 2m (1+ η) dY then

S6 τ2mdY −f2m◦ λ2
m

(S)
U6 τ2mdY −f2m◦ λ2

m ◦U
dX6 dX +2m dY − b2m− f2m

else if d2m+h2m> 2m (1+ η) dY then

S6 τ−h2m
◦ λ−2m(S)

U6 τ−h2m
◦λ−2m◦U

dX6 dX +2m dY − d2m−h2m.
e. m6 m− 1.

Proposition IV.18. Assume that η > 0. For any nondegenerate normalized finite
subset S of N2, of cardinality σ and dense size δ, Algorithm IV.2 is correct and runs
in O(σ log2 δ) bit-operations.

Proof. Let us consider that the bounding rectangle of S is [0, dX]× [0, dY ] at input.
Without loss of generality, we can assume that dX ≥ dY holds in order to simplify
the proof. Then we let ℓ0=dX and ℓ1=dY , and define the sequence (Si)i with S0=S
and Si is the current value of the set just after the ith swap, that is at the end of
step (a). We write r for the total number of swaps performed during the execution
of the algorithm, we let ℓi be the largest abscissa in Si, and mi be ⌊log2 (ℓi/(η ℓi+1))⌋.
By convention, ℓr+1 is the largest ordinate in Sr.

For when i+2≤r holds, we have that ℓi+2≤ ℓi− η ℓi+1. By descending induction,
starting with ℓr ≥ 1 and ℓr−1 ≥ 1, we shall prove that ℓi ≥ ϕr−i−1, where ϕ is the

positive root η+ 4+ η2
√

2
>1 of the characteristic equation x2− η x−1=0. Since this is

true for i= r and i= r− 1, and since ℓi≥ η ℓi+1+ ℓi+2≥ η ϕr−i−2+ ϕr−i−3= ϕr−i−1,
we deduce that dX = ℓ0≥ ϕr−1. The number of swaps r thus drops to O(log dX).
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By Lemma IV.8, since all the S i are normalized, each reduction step amounts
to O(σ log δ) bit-operations. On the other hand, the total number of steps
is
∑

i=0

r
mi,

∑

i=0

r

mi ∈ O

(

∑

i=0

r

log2

(

ℓi

ℓi+1

)

+ r log2
1

η

)

∈O(log δ),

which concludes the cost analysis.
We shall prove that when the algorithm stops, the final value of S is η-reduced.

We now focus on what happens just after the last swap. In short, we let M be mr

and TM+1 be Sr. We denote by Tm the current value of S just before entering step (e),
where m being the corresponding current value of m. Therefore T0 corresponds to
the output of the algorithm and we want to prove that it is η-reduced. If T0 = T1,
then we are done.

If A is a subset of points, then we write ℓx(A) for the horizontal length of the
bounding rectangle of A. Let us now assume that T0 is the normalization of λ(T1). In
this case, of course, λ−1 does not reduce T0. Let us prove that λ does not reduce T0
either. If Tm were the normalization of λ2

m

(Tm+1) for all m in {0,	 , M }, then we
would deduce that

ℓx(T0) ≤ ℓx(TM+1)−
∑

m=0

M

2m η ℓr+1= ℓr− (2M+1− 1) η ℓr+1

< ℓr− (ℓr/(η ℓr+1)− 1) η ℓr+1= η ℓr+1,

which is impossible. Therefore there exists a largest integer µ∈{0,	 ,M } such that
for all m in {0,	 , µ− 1}, Tm is the normalization of λ2

m

(Tm+1). This yields that T0
is the normalization of λ2

µ−1(Tµ) and also that

ℓx(T0)<ℓx(Tµ)− (2µ− 1) η ℓr+1. (IV.3)

One of the following two cases arises:

• If Tµ=Tµ+1, then we have that

ℓx(λ(T0)) = ℓx(λ
2µ(Tµ)) = ℓx(λ

2µ(Tµ+1))≥ ℓx(Tµ+1)− 2µ η ℓr+1.

Combined with (IV.3) it follows that ℓx(λ(T0))> ℓx(T0)− η ℓr+1, and hence
that T0 is η-reduced.

• Otherwise, if Tµ is the normalization of λ−2µ(Tµ+1), then we have
that ℓx(Tµ)<ℓx(Tµ+1)− 2µ η ℓr+1, so that

ℓx(T0)≤ ℓx(Tµ+1)− (2µ+1− 1) η ℓr+1.

Since Tµ+1 is the normalization of λ(T0), we deduce that

ℓx(λ(T0))= ℓx(Tµ+1)≥ ℓx(T0)+ (2µ+1− 1) η ℓr+1,

whence that T0 is η-reduced.
Finally, the last case for when T0 is the normalization of λ−1(T1) can be treated in
the same way. �

110 Reduction of bivariate polynomials from convex-dense to dense



Remark IV.19. At each step of the algorithm, the current degree, say d̃Y , in Y ,
is smaller than the initial dY . Therefore whenever one chooses η < 1

dY
from the

outset, the reduction is at least
⌈

d̃Y

dY

⌉

= 1. Therefore the algorithm behaves the

same as with η=0 and Proposition IV.18 is still valid if η=0. However, there is no
uniform η > 0 such that, for every input, the behaviour of the algorithm is the same
as with η=0.

4.2 Proof of Theorem IV.2

We prove a slightly more precise theorem than Theorem IV.2, which contains bounds
on the bit-size of the entries of the affine map U :

Theorem IV.20. For any normalized finite subset S of Z2, of cardinality σ, convex
size π, bounding rectangle [0, dX]× [0, dY ], and dense size δ=(dX +1) (dY +1), one
can compute an invertible affine map U ∈Aff(Z2) as in (IV.1), with O(σ log2 δ) bit-
operations, such that:

• |α|, |β |, |α ′|, and |β ′| are at most max (2max (dX , dY )2, 1),

• |γ | and |γ ′| are at most 4max (dX , dY )3,

• U(S) is normalized of dense size at most 9π.

Proof. Proposition IV.4 already covers the degenerate case. In the nondegenerate
situation, the theorem follows from Proposition IV.16 for the dense size of the
output, from Proposition IV.18 with taking η=1/4 for the bit-complexity, and from
Lemma IV.8 for the size of the entries of U . �

4.3 Timings

We report on performances obtained with our implementation in Maple 14 for
computing the irreducible factorization of the following polynomials in Q[X,Y ]:

Pn =

(

Xn+1+
∑

i=0

n

iX iY n−i

)(

Y n+1+
∑

i=0

n

(n− i)X iY n−i

)

×
(

X⌊n/2⌋−1Y ⌊n/2⌋−1+
∑

i=0

n

X i Y n−i

)

.

The source code is available from
http://www.lix.polytechnique.fr/~berthomieu/convex-dense.htm.
In Table IV.1, we display timings, in seconds obtained using an Intel Xeon X5450
at 3.0 GHz running Linux. The first line contains the time spent in the direct
call of the native function factor. The second line concerns the time spent in
our Algorithm IV.1 with η = 0. The last line corresponds to calling factor on the
reduced polynomial. Indeed, as an optimization, Algorithm IV.1 is run on the set
of vertices of the convex hull of the support of the input polynomial. For a set of
size σ, it is classical that the convex hull can be computed in time softly linear in σ:
we refer the reader to [PS85, Chapter 3, Theorem 3.7] for instance.
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n 8 16 32 64 128
dense factorization 0.04 0.25 2.3 48 1100
reduction 0.06 0.14 0.28 0.54 1.1
convex factorization 0.04 0.06 0.22 1.5 25

Table IV.1. Factorization of Pn, in seconds.

As expected, our reduction strategy leads to a significant speedup. In fact, with
this family, notice that the dense size grows with n2 while the convex size only
grows with n. We have also tried Algorithm IV.2: the gains are not substantial since
most of the time is spent in the factorization. Finally, let us mention that one could
investigate the design of a reduction algorithm featuring a dichotomy in the size of
the exponents, in a way similar to the half-g.c.d. algorithm (see for instance [GG03,
Chapter 11]). This would probably lead to a bit-complexity bound in Õ(σ log δ).
However, the practical impact would be minor as long as the sizes of the exponents
are intended to fit into one machine word.

4.4 Optimality of the reduction

It is natural to ask if our algorithm computes the best transformation U of Z2, that
maximizes the ratio of the volumes of U(S) andR(U(S)), whereR(U(S)) represents
the bounding rectangle of U(S).

First, let us mention that the transformations λ, µ and τ1 used within our algo-
rithm actually generate Aff(Z2). In fact, it is classical that SL(Z2) is generated by λ

and the rotation ρ=
(

0 −1
1 0

)

by the angle p/2 [Ser73, Chapter 7, Theorem 2]. Since ρ

can be decomposed into ρ= µλ µ λ−1 µ λµ, and since det µ=−1, we deduce that λ
and µ generate GL(Z2). However, we will not prove that our algorithm returns
the best U ∈ Aff(Z2) on all input. Roughly speaking, we will only prove that the
bound 3/8 of the ratio of the volumes at the end of our reduction algorithm is the
best bound one can expect in general when η=0. This bound is attained with the
example of Figure IV.10. Specifically, we aim at proving there is no transformation U
such that for all finite subset S ⊂Z2, the inequality VolU(S)≥αVolR(U(S)) holds
with α> 3/8:

Proposition IV.21. With the convention VolU(S)
VolR(U(S)) = 1 whenever Vol S = 0, one

has

inf
S⊂Z2,|S |<∞

sup
U∈Aff(Z2)

VolU(S)
VolR(U(S)) =

3

8
,

where R(U(S)) represents the bounding rectangle of U(S).

Proof. The degenerate case, that is when VolS=0, follows from Proposition IV.4,
so that from now on, we can assume that Vol S > 0. By Theorem IV.10, there
exists U ∈Aff(Z2) such that VolU(S)≥ 3

8
VolR(U(S)), whence

inf
S⊂Z2,|S |<∞

sup
U∈Aff(Z2)

VolU(S)
VolR(U(S)) ≥

3

8
.
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We shall show that supU∈Aff(Z2)
VolU(S)

VolR(U(S)) =
3

8
holds for when S={(1,0), (0,1),(2,2)},

which will conclude the proof.
For the rest of the proof, S represents the particular set of points {(1, 0), (0, 1),

(2, 2)}. As Vol U(S) is constant, and equals 3/2 for all U , it suffices to show that,
for any U ∈Aff(Z2), VolR(U(S))≥4. As translating and swapping X and Y do not
change VolR(U(S)), we can assume that U ∈SL(Z2). Let

(

α β

α ′ β ′

)

be the matricial

representation of U , with α β ′ − β α ′ = 1. Let ρ be the rotation by the angle p/2.
As VolR(ρ(U(S))) = VolR(U(S)), one can apply ρ, or ρ−1, once or twice so that
we can further assume that α≥ 1 and α ′≥ 0 hold.

If α ′ = 0, then α β ′ = 1 so that α = 1 and β ′ = 1. Since the image of (2, 2)
is (2+2 β,2), the height of the bounding rectangle of U(S) is 2, and VolR(U(S))≥4
as soon as the horizontal length of R(U(S)) is greater or equal to 2. In fact, this
length is the maximum of |β − 1|, |2 β + 1| and |β + 2|. If |β − 1|= 0, then β = 1
and 2 β +1=3. Otherwise, if |β − 1|=1, then either β =0 and β +2=2, or β =2
and β+2=4. In this way we observe that, in all cases, the length is at least 2. We
can now restrict to considering α ′≥ 1.

If β=0, then α=1 and β ′=1. The horizontal length of U(S) is 2 and its height
is 2 α ′+ 1. Therefore we have again that VolR(U(S))≥ 4. Similarly, when β ′= 0,
we have β =−1 and α ′ = 1: the height of U(S) is 2 and its horizontal length is at
least α+1≥2, which yields the same conclusion. Thus, we can now further restrict
to considering the case that none of the coefficients of the matrix of U is zero.

From U(1,0)−U(0,1)=(α− β,α′− β ′), we have VolR(U(S))≥|α− β | |α ′− β ′|.
Whenever |α− β |≥2 and |α ′− β ′|≥2, we are done. Therefore, it remains to examine
the following cases:

• If α= β, then αβ ′− βα ′=α (β ′−α ′) = 1 implies α= β =1 and β ′=α ′+1.
A direct calculation yields VolR(U(S)) = 3 (3α ′+2)≥ 4.

• If α ′= β ′, then αβ ′− βα ′=α ′ (α− β)= 1 implies α ′= β ′=1 and α= β+1,
and then VolR(U(S)) = 3 (3 β +2)≥ 4, since β ≥ 1 holds in this case.

• If |α− β |=1, then we distinguish:

◦ if β=α+1, then the horizontal length of R(U(S)) is at least 3 α+2≥
5,

◦ if α= β+1, then the horizontal length of R(U(S)) is at least 3 β+2≥
5.

• If |α ′− β ′|=1, then we distinguish:

◦ if β ′=α′+1, then the height of R(U(S)) is at least 3α′+2≥ 5,

◦ if α ′= β ′+1, then the height of R(U(S)) is at least 3 β ′+2≥ 5. �
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Chapitre V

Spherical Radon transform and con-
dition number

Abstract

We study the average complexity of certain numerical algorithms when adapted to
solving systems of multivariate polynomial equations whose coefficients belong to
some fixed proper real subspace of the space of systems with complex coefficients.
A particular motivation is the study of the case of systems of polynomial equations
with real coefficients. Along these pages, we accept methods that compute either
real or complex solutions of these input systems. This study leads to interesting
problems in Integral Geometry: the question of giving estimates on the average of
the normalized condition number along great circles that belong to a Schubert sub-
variety of the Grassmannian of great circles on a sphere. We prove that this average
equals a closed formula in terms of the spherical Radon transform of the condition
number along a totally geodesic submanifold of the sphere. This chapter is based
on an accepted for publication article written with Luis Miguel Pardo [BP11b].

1 Introduction

1.1 The context of our new results

The main result of these pages is motivated by the study of the real version of Smale’s
17th Problem. In [Sma00], S. Smale proposed the following problem:

Problem V.1. (Smale’s 17th Problem) “Can a zero of n complex polynomial
equations in n unknowns be found approximately, on the average, in polynomial time
with a uniform algorithm?”
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This problem was answered affirmatively in [BP09b]: The authors exhibited a
ZPP (Las Vegas) algorithm that solves systems of complex multivariate polynomial
equations in average time O(N 3), where N is the input length for dense encoding of
multivariate polynomials (cf. also [BP09a] for a survey on the topic). Another ZPP
algorithm solving the same problem in average time O(N 2) was shown in [BP11a].

There is, however, much room for improvement and further research. Some open
questions follow:

• Find a deterministic average polynomial time algorithm that solves sys-
tems of multivariate complex polynomial equations. Some deep advances
in this direction have been made in [BC11]. These authors use the pow-
erful “smoothed analysis”, by Cheng and Spielman, to exhibit a deterministic
algorithm with sub-exponential average time with a small exponent of
order O(log2 log2 N). But the problem of a deterministic average polyno-
mial time algorithm remains open.

• Find an algorithm (either deterministic or probabilistic) with polynomial
complexity on average that solves systems of multivariate polynomial equa-
tions when the inputs are given by encoding alternatives to dense encoding:
sparse/fewnomial systems, straight-line program encoding, etc... To our
knowledge, no meaningful advance has been made to date in this direction.

In his original statement of Problem 17th, S. Smale also addressed the question
about real solving:

Problem V.2. (Smale’s 17th Problem, real case) “...Similar, more difficult,
problems may be raised for real polynomial systems (and even with inequalities).”

Namely, try to solve real systems in average polynomial time. In these pages we
focus on this real case of Smale’s problem. To date, real solving systems of systems
of polynomial equations with real coefficients has shown strong resistance to be
solved in polynomial time on average.

There are two main approaches dealing with this kind of problems: Sym-
bolic/Geometric and Numerical Solving. We are not concerned here with
Symbolic/Geometric methods, in here. The reader interested in this approach may
follow [BGH+12, BGHP05, BGHP09, BGH+10, BPR06] and references therein.

In this chapter, we are concerned with the numerical approach. A serious attempt
to solve numerically systems of polynomial equations with real coefficients was made
in the series of manuscripts [CKMW08, CKMW09, CKMW10]. Their proposal is
based on the study of the probability distribution of a real condition number and
then apply exhaustive search. The complexity has not been shown to be tractable.

Other studies of the properties of real systems on average have been made
in [BCL06, BP08, McL02] and references therein. Other attempts to use search
algorithms (in this case, using exclusive methods) may be found in [DY93] and
references therein.
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On a completely different basis, a very positive experiment, using evolutive algo-
rithms, is exhibited in [Bor11]: The experiment shows excellent performance and a
high probability of success to find an approximate zero for real zeros of real systems
of multivariate polynomial equations. However, these experiments lack appropriate
mathematical foundations.

Nevertheless, search is not necessarily the unique approach to numerical solving
of real systems. Firstly, because we may not be interested in computing all solutions
(which certainly forces an exponential running time) but computing one solution
(see [BP06] for a discussion between universal and non-universal solving in numerical
analysis). As in the methods shown to be efficient in the complex case, one may
try to use an homotopic deformation technique approach (also called path following
methods or continuation methods) to compute just one (real or complex) solution of
systems of real polynomial equations. See, for instance, the books [AG90, BCSS98,
Mor87, SW05], or surveys like [BP09a, Li03] and references therein for different
statements of the algorithmic scheme of continuation methods.

The main drawback to the use of an homotopic deformation technique for sys-
tems with real coefficients is the codimension of the discriminant variety ΣR in the
space of polynomial equations with real coefficients H(d)

R . Since the codimension
of ΣR in H(d)

R is one and since the number of real solutions (in Pn(R)) is constant
along each connected components of H(d)

R \ΣR, we conclude:

• The number of connected components outside the discriminant variety is
exponential in the number (n+1) of variables.

• The probability that for any two randomly chosen systems f , g∈H(d)
R , every

continuous path joinging them in H(d)
R intersects the discriminant variety ΣR

is greater than the probability that they have a different number of real
solutions (in Pn(R)). To our knowledge there is no precise estimate for this
quantity. See some related estimates in [AW05, BP08, SS93b, SS96, Wsc05]
and references therein.

• In the case of linear deformations, for any two randomly chosen systems f ,
g∈H(d)

R of norm 1, the expected number of points in the intersection between
the great circle joigning f and g and the discriminant variety equals the
(codimension one) volume of the projection of the discriminant variety onto
the sphere in H(d)

R of radius one. This is a mere consequence of Crofton-
Poincaré’s formula.

The facts cause some troubles for the standard method based on a lifting of these
paths (through a covering map) and force alternatives. One could be the proposal
in [BS09]: follow a path inside the solution variety. This method has the inconve-
nience that there is no known method to construct the path to be followed without
prior knowledge of the zero to be computed. This could be, perhaps, improved if
we were able to compute geodesics with respect to the non-linear condition number
metric (cf. the excellent manuscript [BDMS09], for instance). But, for the moment,
there is no efficient method to compute them. Another proposal for real systems of
equations could be that of [BS11], which traces real curves connecting the solutions
of one system of equations to those of another but, in this case, no estimate of the
number of steps is provided and, hence, no complexity estimate is known.
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A different proposal is the one we suggest in these pages. First we choose to
follow simplest paths as in the complex case: great circles on spheres. Then, instead
of trying to solve real systems of multivariate polynomial equations by homotopic
deformation that follows a path that goes from real systems to real systems, we
propose to open up the space and apply an homotopic deformation by following
paths that begin in a complex (not real) initial system of equations and ends in a real
system of equations . This may be modeled in a simple saying:

Apply the (complex) algorithm described in [BP11a] to real systems of polynomial
equations and study its average complexity.

Certainly this approach is not expected to provide only real solutions of real
systems: we just want to know if there is a low average complexity algorithm that
computes approximate zeros of a single solution of systems of equations with real
coefficients, accepting both real and complex solutions without establishing any
preference among them.

This study leads to interesting problems in Integral Geometry, some of which are
solved here. In principle, studying the average complexity of this kind of algorithm
leads to the question of giving estimates on the average behavior of condition number
along great circles that belong to certain Schubert subvariety of the Grassmannian of
great circles on a sphere. We prove that this average equals a closed formula in terms
of the spherical Radon transform of the condition number along an N -dimensional
totally geodesic submanifold of the sphere of systems of polynomial equations with
complex coefficients. This is the main result in these pages.

1.2 Statement of the main results

The first result explains the behavior of the expected value of an integrable function
in certain Schubert subvarieties of real Grassmannians given as the set of great circles
that intersect a given vector subspace. In order to state it we need to introduce some
notation.

Let Sn⊆Rn+1 be the real hypersphere of radius one centered at the origin. For
a real vector subspace M ⊆Rn+1 we denote by S(M)⊆Sn the hypersphere defined
byM . From now on, we assume that the codimension of M inRn+1 is greater than 2.
We assume that Sn is endowed with the standard Riemannian structure and we
denote by d Sn its canonical volume form. We denote by dR the Riemannian distance
in Sn and by dP the “projective” distance (i.e. dP(f , g) = sin dR(f , g), for all f ,
g∈Sn). As the total volume of Sn is finite, we may define a probability distribution
on Sn in the canonical way. Similarly, we may define in S(M) and Sn×S(M) their
canonical probability distributions. Given a point (g, f) ∈ Sn × S(M), we denote
by L(g,f) the great circle in Sn passing through f and g. We may assume on L(g,f)

the standard volume form dL(g,f) (the standard length). We begin by recalling the
definition of spherical Radon Transform from [Rub02].

Definition V.3. ([Rub02]) With the same notation, let ϕ: Sn� R+ be an
integrable function, and let k=n− p be the codimension ofM in Rn+1. The spherical
Radon transform of ϕ with respect to S(M ) of order α is defined in the following
terms:

Rαϕ(S(M))= ρn,p(α)

∫

Sn

ϕ(g)

dP(g, S(M))n−p−α dSn,
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where

ρn,p(α) =
B(

n− p−α+1

2
,
α+ p− 1

2
)

νn
,

νn is the standard volume of the unit sphere Sn and B is the usual Beta function.

Remark V.4. Our normalization constant ρn,p(α) differs slightly from γn,p(α),
the one used in [Rub02]. Multiplying by ρn,p(α)

−1 γn,p(α) we obviously obtain the
original definition of B. Rubin.

Then, we prove:

Theorem V.5. With the same notation as above, for every integrable function ϕ:
Sn� R+, let E be the expectation given by the following identity:

E =E(g,f)∈Sn×S(M)

[

∫

L(g,f)

ϕ(h) dL(g,f)(h)

]

.

Moreover, for every n, p and i, let us define the constants:

C(n, p, i)6 2

(

n− p

2
− 1

i

)

B(
n+2

2
,
1

2
)

B(
p− 1

2
,
1

2
)
and B0(n, p, i)6 2

(

n− p− 3

2

2

)

B(
n+2

2
,
1

2
)

B(
p− 1

2
,
1

2
)
.

In terms of the value of the codimension k = n − p, the following equalities and
inequalities hold:

1. If k=1, then

4 2 p
√

(n+ 3
√

)1/2
ESn[ϕ]≤E ≤ (n− 2) p

√

2
R0 ϕ(S(M));

2. If k ∈ 2N∗, then

E =
∑

i=0

n−p−2

2

C(n, p, i)Rn−p−2i−1 ϕ(S(M ));

3. If k ∈ (2N∗+1), then

E ≥
∑

i=0

n−p−3

2 (n− 2)B0(n, p, i)

i+ 3/2
√

√ Rn−p−2i−2 ϕ(S(M)),

E ≤
∑

i=0

n−p−3

2 8B0(n, p, i)

(2 i+1) (n− 2)
Rn−p−2i−2 ϕ(S(M)).
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Remark V.6. Note that using Gautschi’s [Gau60] and Kershaw’s [Ker83] inequal-
ities we also have the following sharp bounds of our coefficients:

2

(

n− p

2
− 1

i

)

p− 3

2

n+ 3
√

√

≤C(n, p, i)≤ 2

(

n− p

2
− 1

i

)

p− 3+ 3
√

n+
3

2

√

,

(n− 2)B0(n, p, i)

i+ 3/2
√

√ ≥ 2

(

n− p− 3

2

i

)

(n− 2)
(2 p− 3)

(2 i+ 3
√

) (n+ 3
√

)

√

,

and

8B0(n, p, i)

(2 i+1) (n− 2)
≤ 16

(

n− p− 3

2

i

)

2 (p− 3+ 3
√

)

√

(2 i+1) (n− 2) 2n+3
√ .

Note that the largest integral terms in identities (2) and (3) of Theorem V.5 corre-
spond to the case i= 0. Some less sharp, but illustrative, upper and lower bounds
are exhibited in the following corollary.

Corollary V.7. With the same notation as above, for k=n− p≥ 2, E is bounded
as follows:

2
p+

1

2

n+ 3
√

√

R1 ϕ(S(M))≤E ≤ 2
p− 1+ 3

√

n+
3

2

√

1

B(
n− p

2
,
p

2
)
R1 ϕ(S(M)).

Note that the upper bound satisfies:

1

B(
n− p

2
,
p

2
)
R1 ϕ(S(M)) =ESn

[

ϕ(g)

dP(g, S(M))n−p−1

]

,

where ESn means expectation.
In the path to the proof of this statement, we also prove the following integral

formula in some incidence subvariety of the Grassmann manifold:
Let L be the Grassmannian given as the set of great circles in Sn and denote

by LM the semialgebraic subset defined as those great circles L∈L such that L∩M �
∅. We shall see that LM may be decomposed as a union of two real manifolds CM ∪
G2,p+1(R), where CM is the manifold of all great circles L∈L that intersect S(M)
in exactly 2 points and, G2,p+1(R) is the Grassmannian of great circles in S(M). In
fact, CM is formed by smooth regular points of maximal dimension in LM and is a
dense semialgebraic subset of LM.

The Riemann manifold CM is endowed with a natural volume form that we
denote by d νM. This volume form extends to its closure LM as a measure in the
obvious way. For every function ϕ:LM� R we denote by

∫

LM

ϕd νM ,

the integral of the restriction of ϕ to CM with respect to d νM and for every
subset F ⊆ LM we denote by νM[F ] the volume of the intersection F ∩ CM .
We will prove that the volume νM [LM] is finite and, hence, this induces a nat-
ural probability distribution in LM.
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Next, for every L∈LM, we have a function dM: L� R+ given by dM(h)=dP(h,

S(M))codimRn+1(M )−1. We may define a measure on every line L ∈ LM that we
denote d νM given by

ELM
[ϕ] =

1

volM[L]

∫

L

ϕdM(x) dL,

where

volM[L] =

∫

L

dM(x) dL=B

(

k+2

2
,
1

2

)

∂M(L)k−1,

where k= codimRn+1(M) and ∂M(L)=max {dP(h, S(M)), h∈L}.
In the path to prove the main result (Theorem V.5) we also prove the following

statement:

Proposition V.8. With the same notation as above, for every integrable function ϕ:
Sn� R+ the following equality holds :

ELM
[ELM

[ϕ]] =ESn[ϕ].

In particular, we have

vol[LM] =
vol[Sn] vol[S(M)]

B(
k+1

2
,
1

2
)

,

where k is the codimension of M in Rn+1.

1.3 The case of polynomial equations

As said before, the motivation of this study is the analysis of the average complexity
of homotopic deformation algorithms for polynomial system solving. Here we will
state some corollaries of Theorem V.5 and of Proposition V.8 above. We need some
additional notation to state these corollaries.

For every positive integral number d ∈ N, let Hd be the complex vector space
spanned by the homogeneous polynomials f ∈C[X0,	 ,Xn] of degree d. The complex
space Hd is naturally endowed with a unitarily-invariant Hermitian inner product,
known as Bombieri’s Hermitian product (other authors use the terms Bombieri-
Weyl’s or even Kostlan’s norm for the associated norm, cf. [BCSS98] for details). For
every degree list (d)= (d1,	 , dn) of positive integer numbers, we denote by H(d) the
complex vector space given as the product H(d)=

∏

i=1

n
Hdi. Note that if for every i,

1≤ i≤ n, fi∈C[X0,	 , Xn] is homogeneous of degree di, then H(d) may be seen as
the vector space of homogeneous systems of equations f =(f1,	 , fn). The complex
space H(d) is endowed with the unitarily-invariant Hermitian product 〈·, ·〉∆ defined
as the Cartesian product of Bombieri’s Hermitian products in Hdi.

Let us denote by N +1 the complex dimension of H(d) and by D=
∏

i=1

n
di the

Bézout number associated to the list (d)= (d1,	 , dn).
Let ‖·‖∆ be the norm associated to 〈·, ·〉∆ and let us denote by S2N+1=S(H(d))

the unit sphere in H(d) with respect to the norm ‖·‖∆.
For every systems of equations f = (f1, 	 , fn) ∈ H(d), we denote by VP(f) ⊆

Pn(C) the complex projective algebraic variety of their common zeros. Namely,

VP(f)= {ζ ∈Pn(C), fi(ζ)= 0, 1≤ i≤n}.
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Given f ∈ H(d) and given ζ ∈ VP(f), we denote by µnorm(f , ζ) the normalized
condition number of f at ζ (as introduced in [SS93a]) and for every positive real α∈
R, we will denote by µav

α (f) the average of the αth power of condition number of f
along its complex zeros. Namely,

µav
α (f)=

1

♯(VP(f))

∑

ζ∈V
P
(f)

µnorm
α (f , ζ).

Studies of the average values of µav(f)
α, for 1≤α< 4 are exhibited in [BP11a].

From [Shu09] (and the explicit descriptions of the constants in [BC11, Bel11,
DMS11], the number of deformation homotopy steps along a great circle path per-
formed by Newton’s method from an initial system g with initial zero ζ ∈VP(g) and
target system f is bounded by the quantity:

C(f , g, ζ)=
∫

L

µnorm(h, ζh)
2 dL,

where L is the great circle containing g and f (which is assumed not to intersect
the discriminant variety Σ⊆S(H(d)).

Now we consider a probabilistic (we see it is Zero-Error Probability or, in fact,
Las Vegas in our case) algorithm based on the one introduced in [BP11a], with set
of initial pairs G(d) that we call BP in the sequel. We also consider M ⊆H(d) a real
vector subspace of the space of complex systems. For instance, M can be the real
vector subspace H(d)

R of H(d) of systems of equations with real coefficients. Another
example could be the sparse case defined by the real vector space of polynomials
with coefficients in a given polytope.

We denote by S(M)⊆ S2N+1 the sphere of radius 1 given by points in M with
respect to Bombieri-Weyl’s norm.

Our goal is the design of algorithms adapted to M as input space. Our proposal
here will be the following variation of BP:

Algorithm V.1
Variant of BP algorithm for real systems

Input. A system f ∈M .

Output. Either Failure or an approximate zero z ∈Pn(C) of f with
associated zero ζ ∈Pn(C).

1. Guess at random (g, ζ)∈ G(d).
2. Apply deformation homotopy with initial pair (g, ζ) and target f .

The first obvious consequence of our study is the following one:

Corollary V.9. Let Σ⊆S2N+1 be the discriminant variety (as defined in [BCSS98,
SS93a]). Assume that dim (Σ ∩ S(M))< dim S(M). Then, the probability that the
algorithm above outputs Failure is 0. Namely, the probability that the algorithm
outputs an approximate zero associated to some input system f ∈M =H(d)

R is 1.
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Nevertheless, the problem is not the soundness of the algorithm, but the average
complexity. The usual upper bound for the average complexity of such an algorithm
(assuming Gaussian distribution on M ) will be the expected value

EM =EM[Time] =EG(d)×S(M)[C(f , g, ζ)].

The following statements are different estimates for this quantity E.
As in the previous subsection, we will denote by L the Grassmannian of real

great circles in S2N+1 and by LM the great circles in L that intersect S(M ).
From Theorem V.5 we also obtain the following consequence:

Corollary V.10. With the same notation as above, assume dimM = p+1 and let
us C(2N+1, p, i), B0(2N+1, p, i) be the same constants as defined in Theorem V.5.
Let k=2N − p+1 be the codimension, then, we have

1. If k=1, then:

4 p

√

(N +2)1/2
ES2N+1[µav

2 ]≤E ≤
(

N − 1

2

)

p

2

√

R0[µav
2 ](S(M));

2. If k∈2N∗, then the average estimate of the complexity based on the condition
number EM satisfies:

EM =
∑

i=0

2N−p−1

2

C(2N +1, p, i)R2(N−i)−p[µav
2 ](S(M));

3. If k ∈ (2N∗+1), then

EM ≥
∑

i=0

2N−p−2

2 (2N − 1)B0(2N +1, p, i)

i+ 3/2
√

√ R2(N−i)−p−1[µav
2 ](S(M)), (V.1)

EM ≤
∑

i=0

2N−p−2

2 8B0(2N +1, p, i)

(2 i+1) (2N − 1)
R2(N−i)−p−1[µav

2 ](S(M)).

We also have:

Corollary V.11. With the same notation as above, the following inequalities hold:

2
p+

1

2

2N +1+ 3
√

√

R1[µav
2 ](S(M))≤EM ≤ 2

p− 1+ 3
√

2N +
5

2

√
(

R1[µav
2 ](S(M))

B(N +
1− p

2
,
p

2
)

)

.

Or, equivalently,

2 p+
1

2

2N +1+ 3
√

√

R1[µav
2 ](S(M)) ≤ EM ,

EM ≤ 2
p− 1+ 3

√

2N +
5

2

√

ES2N+1

[

µav
2 (g)

dP(g,S(M))2N−p

]

.
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Corollary V.12. With the same notation as above, let p+1 be the dimension of M
and k = 2N − p+ 1 be the codimension of M in H(d). Then the following equality
holds:

EM =T (N , p)ELM

[

1

∂M(L)

∫

L

µav
2 (h) dL

]

,

where

T (N , p) =
2B(N +

3

2
,
1

2
)

B(N +1− p

2
,
1

2
)
.

Note that, according to Gautschi’s and Kershaw’s bounds, T (N, p) is asymptotically
in Θ

((

1− p

2N

)

1/2
)

.
Now we are in conditions to exhibit some average complexity upper bounds for

the application of the algorithm in [BP11a] to systems with real coefficients. This
is resumed in the following corollary.

Corollary V.13. Assume now that M is the real vector subspace of systems with
real coefficients ( i.e. M =H(d)

R ). Denote by ER the expected number of steps of the
underlying homotopy of [Shu09] ( i.e. ER=EM under our hypothesis). As dimRM=
p=N +1 and dimRH(d)=2N +2, then the codimension k of M is N + 1 and the
following holds:

1. If the codimension (N +1)∈ 2N∗, then ER satisfies:

ER=
∑

i=0

N−1

2

C(2N +1, N , i)RN−2i[µav
2 ](S(H(d)

R )),

2. If the codimension (N + 1) ∈ (2 N∗ + 1), then ER satisfies the following
inequalities:

2
N +

1

2

2N +1+ 3
√

√

R1[µav
2 ](SN) ≤ ER ≤

2
N − 1+ 3

√

2N +
5

2

√

ES2N+1

[

µav
2 (g)

dP(g,SN)N

]

,

and therefore

R1[µav
2 ](SN)≤ER≤ 2

√
(

R1[µav
2 ](SN)

B(
N +1

2
,
N

2
)

)

= 2
√

ES2N+1

[

µav
2 (g)

dP(g,SN)N

]

,

where SN =S(H(d)
R ) and S2N+1=S(H(d)).

The manuscript is structured as follows. In Section 2 we establish some basic facts
about the underlying geometry of LM as semialgebraic set and we also describe
the Riemannian structure at regular points. In Section 3 we prove some technical
results from Integral Geometry (mostly computing some normal Jacobians and basic
integrals). In Section 4 we prove Theorem V.5, Corollary V.7 and Proposition V.8
(the results stated in Section 1.2 above). In Section 5 we prove the corollaries stated
in Section 1.3 above.
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2 The underlying geometry

The aim of this section is to prove the following statement concerning the geometry
of the Schubert variety (as semialgebraic set) LM. We have not found an appro-
priate reference where both the algebraic geometry and the Riemannian metric
statements (including an explicit description of the tangent spaces to the smooth
points of LM) of the following lemma are stated. As we need both of them to prove
our Theorem V.5, we decided to include a self-contained proof.

Lemma V.14. Let M ⊆ Rn+1 be a proper vector subspace of dimension p + 1
and codimension k = n − p > 0. Let LM be the set of great circles in L such
that L∩S(M)� ∅. Then, the following properties hold:

1. The semialgebraic set LM decomposes as the union of two Riemannian man-
ifolds CM ∪G2,p+1(M), where

• CM is the set of great circles L ∈ L such that L intersects S(M) in
exactly two points ( i.e. ♯ (L∩S(M))= 2),

• G2,p+1(M) may be identified with the Grassmannian of great circles
in S(M).

2. Manifold CM is made of smooth regular points of maximal dimension in LM

and it is a dense subset of LM with respect to the topology induced in LM by
the Riemannian metric of L.

3. The dimension of CM equals the dimension of LM and satisfies:

dimRCM =dimRLM =n+ p− 1.

4. For every great circle L ∈ CM given as the intersection with S(M) of a real
plane spanned by a matrix A in the Stiefel manifold ST2,n+1(R), the tangent
space TLCM can be isometrically identified with

TLCM = {B ∈TLG2,n+1(R), ∃η ∈TfS
p, (Idn+1−ATA) ηT =BTAfT },

where {±f } = L ∩ S(M), G2,n+1(R) is the Grassmannian of great circles
in Sn, AT , ηT , BT , fT are respectively the transposed matrices of A, η, B, f
and Idn+1 is the (n+1)× (n+1) identity matrix.

2.1 Some known facts about Grassmannian, Schubert and
incidence varieties

We have not found any appropriate reference for the details of this statement, hence
we prove it here. Firstly, we just identify M =Rp+1 and S(M ) =Sp and prove the
lemma for this particular case.
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We denote by Ln=G2,n+1(R) (or simply L when no confusion arises) the Grass-
mannian of great circles in Sn. Recall that the Stiefel manifold ST2,n+1(R) is the
real manifold of dimension 2 n − 1 whose points are orthonormal bases of planes
in Rn+1 (written as 2 × (n + 1) matrices). For every matrix A ∈ ST2,n+1(R) the
tangent space TA ST2,n+1(R) is given by the following identity:

TA ST2,n+1(R)6 {B ∈M2,n+1(R), BAT +ABT =0},

where AT still means transpose. For the remainder of this section we simplify nota-
tion by writing ST(R) =ST2,n+1(R).

There is a natural left action defined by O(2) over ST(R) and L is the orbit
manifold defined by this left action and the Riemannian structure of L is defined
through the Riemannian structure of ST(R).

We denote by [A] the O(2)-orbit defined by A ∈ ST(R) and we denote
by Span(A)⊆Rn the vector subspace of dimension 2 spanned by the rows of A.

Lemma V.15. Let π: ST(R)� L be the canonical projection onto the orbit space.
Then, for every A∈ST(R), the tangent mapping TA π: TA ST(R)� T[A]L is given
by the following identity:

TAπ(B)=B (Idn+1−ATA).

Proof. Note that the tangent space to the orbit TA [A] ⊆ TA ST(R) is identified
with the vector space of antisymmetric matrices TId2 O(2) by the isomorphism ψ:
TId2 O(2)� TA [A], given by ψ(N) = N A. Note that for every A ∈ ST(R) the
inverse mapping ψ−1 is given by ψ−1(B) =BAT .

As T[A]L≃ TA ST(R)/TA[A], the orthogonal complement of TA [A] in TA ST(R)
can be isometrically identified with T[A]L. Thus, the mapping TAπ: TA ST(R)�
T[A]L can be isometrically identified with the orthogonal projection onto the orthog-
onal complement of TA [A] in TA ST(R). Now, for every matrix B ∈ TA ST(R), the
following decomposition holds: TA ST(R) =TA [A]⊕⊥TA [A]

⊥:

B=BATA+B (Idn+1−ATA).

This orthogonal projection then satisfies TA π(B)=B (Idn+1−ATA), as claimed. �

Then, we conclude:

Proposition V.16. The Grassmannian L is a Riemannian manifold whose dimen-
sion satisfies:

dimL=dimST(R)− dimO(2)= 2 (n− 1).

Moreover, for every L = [A] ∈ L, the tangent space TL L is given by the following
equality:

TLL≃{B ∈M2,n+1(R), ABT =BAT =0},

where the metric is the one induced by Frobenius metric in TAST(R). That is,

〈B1, B2〉F =Tr(B1B2
T).
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Proof. Since AAT = Id2, for every B ∈TAST2,n+1, the following equalities hold:

B (Idn+1−ATA)AT =B (AT −AT)= 0.

Analogously, we have A (Idn+1−ATA)BT =0. This proves that the image of TA π
is contained in {B ∈M2,n+1(R), B AT =ABT =0}. Comparing their dimensions we
conclude that they are the same vector subspace of dimension 2 (n+1). �

We now consider the incidence manifold I(R) given by the following equality:

I(R)= {([A], f)∈L×Sn, f ∈ Span(A)}.

The following are also well-known facts:

Proposition V.17. The incidence manifold I(R) is a compact Riemannian man-
ifold whose dimension satisfies:

dim I(R) =dimL+1=2n− 1.

For every ([A], f) ∈ I(R), the tangent space T([A],f) I(R) is given by the following
equality:

T([A],f) I(R)= {(B, η)∈T[A]L×TfS
n, (Idn−ATA) ηT =BTAfT },

and the metric structure in T([A],f) I(R) is the one induced by those of T[A] L
and TfS

n.

Proof. (Sketch) Let (A(t), f(t)) be a lifting to ST(R) × Sn of a smooth curve
inside I(R), such that (A(0), f(0)) = (A, f). The fact that f(t) belongs to the
vector subspace Vt spanend by rows of A(t) may also be written as the fact that the
orthogonal projection of f(t) onto Vt equals f(t). This yields the equation:

fT(t)6 AT(t)A(t) fT(t).

Differentiating at t=0, we obtain:

ḟ
T = Ȧ

T
AfT +AT Ȧ fT +ATA ḟ

T
.

Thus, (B, η)∈T[A]L×TfS
n isi n T([A],f) I(R) if, and only if, the following equality

is satisfied:

(Idn+1−ATA) ηT =(BTA+ATB) fT .

Now, as f isi n the vector space V0 spanned by the rows of A and, as B ∈T[A]L, we
conclude that ABT =BAT =0. We thus conclude that the rows of B are orthogonal
to any vector in V0 and, in particular, to f . This yields B fT = 0 and, hence,
ATBfT =0. �

Let π1, π2 be the restrictions to I(R) of the two canonical projections from L×
Sn. Namely, we consider the mappings:

π1: I(R)� L, π2: I(R)� Sn,
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given by

π1([A], f)= [A], π2([A], f) = f.

Proposition V.18. With these notation, π1 and π2 are submersions. In particular,
for every p < n, the inverse image I(Sp) = π2

−1(Sp) is a Riemannian submanifold
of I(R) whose dimension satisfies:

dim I(Sp)=n+ p− 1.

Moreover, for every ([A], f)∈I(Sp), the tangent space T([A],f) (I(Sp)) satisfies:

T([A],f) (I(Sp))=T([A],f)π2
−1(TfS

p).

Namely, the following equality holds:

T([A],f)I(Sp) = {(B, η)∈T[A]L×TfS
p, (Idn+1−ATA) ηT =BTAfT },

and the Riemannian metric is the one induced as subspace of T[A]L× TfS
p.

Proof. It follows from standard arguments from the fact that π2 is a submersion.
The reader may follow them in [Dem89, Chapter III], for instance. �

2.2 The Schubert variety LM: Proof of Lemma V.14

Definition V.19. We define the Schubert variety LM as

LM =π1(I(Sp)) =π1(π2
−1(Sp)),

where we have identified S(M) as a submanifold of Sn. Namely, LM is the semial-
gebraic set of all great circles in Sn that intersect S(M).

Without loss of generality we may assume M = Rp+1, where Rp+1 is identified
with the vector subspace of Rn+1 whose last n− p coordinates are zero. Accordingly,
S(M) is identified with Sp.

Let us also define the mapping π1
(2): I(Sp)� L as the restriction

π1
(2)=π1|π2

−1(Sp).

Let CM be the set of points [A]∈LM such that ♯(Span(A)∩Sp)=2. In other words,
CM is the set of great circles in Sn such that their intersection with Sp consists of
exactly two points ±f . Note that LM \CM is the set of great circles in Sn which are
completely embedded in Sp. In particular, LM \CM=G2,p+1(R) is the Grassmannian
of great circles in Sp. The following proposition implies Lemma V.14.

Proposition V.20. With these notation, the following properties hold:

1. For every ([A], f) ∈ I(Sp), the tangent mapping T([A],f) π1
(2) is injective if,

and only if, [A] ∈ CM. In particular, π1
(2): I(Sp)� LM is an immersion at

every ([A], f)∈I(Sp) such that [A]∈CM;
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2. For every [A]∈CM and ([A], f)∈I(Sp) the following properties hold:

• The point [A] is a regular point of maximal dimension in LM;

• The mapping π1
(2): I(Sp)� LM is a 2-fold smooth covering map and

a submersion in a neighborhood of ([A], f);

• The following equality holds:

dim([A],f) I(Sp) =dim[A]LM =dimLM =n+ p− 1.

In particular, for every [A]∈CM the tangent spaces satisfy:

T[A]LM = T([A],f)π1
(2)(T([A],f)I(Sp)).

Namely,

T[A]LM = {B ∈T[A]L, ∃η ∈TfS
p, (Idn+1−ATA) ηT =BTAfT },

where Span(A)∩Sp= {±f }.

Proof. First of all the following inequalities obviously hold.

dim[A]LM ≤ dimLM ≤ dim([A],f) I(Sp)=n+ p− 1.

There is a natural isometric action of the orthogonal group O(n+1) on the compact
Stiefel manifold ST(R) which may be translated to the Grassmannian L and, then,
to the incidence variety I(R) as follows:

O(n+1)×I(R)�I(R)

(U , ([A], f))� ([AU ], f U).

Let us now consider the Lie subgroup O(p + 1, n − p) = O(p + 1) × O(n − p)
of O(n + 1). This group acts isometrically both on I(Sp) and LM . Up to some
isometry defined by some orthogonal matrix U ∈O(p+1, n− p), we may assume

([A], f)=

([(

1 0 0 
 0 0
0 r 0 
 0 s

)]

, (1, 0, 0,	 , 0, 0)),
where r2+ s2=1, and s� 0 if, and only if, [A]∈CM.

Now we prove that T([A],f) π1
(2) is a monomorphism if and only if s� 0. Note that

for every (B, η)∈T([A],f) (I(Sp)) the following properties hold:

BAT =0, 〈η, f 〉=0, η= (x1,	 , xp+1, 0,	 , 0)∈TfS
n,

and

(Idn+1−ATA) ηT =BTAfT .

Let (B, η)∈T([A],f) (I(Sp)) be in the kernel of T([A],f)π1
(2). Then,

T([A],f)π1
(2)(B, η) =B=0

and we have:

η=(0, x2,	 , xp+1, 0,	 , 0), (Idn+1−ATA) ηT =0.
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As s2+ r2=1, we also have

(Idn+1−ATA)=











0 0 
 0
0 s2 
 −r s� � Idn−2 �
0 −r s 
 r2











.

Hence,

0= (Idn+1−ATA)





























0
x2
x3�
xp+1

0�
0
0





























=





























0
s2 x2
x3�
xp+1

0�
0

−r s x2





























.

Thus, if s � 0, we conclude η = 0 and T([A],f) π1
(2) is a linear monomorphism.

Otherwise, if s = 0, ([0], (0, 1, 0, 	 , 0)) would be a non-zero element in the kernel
of T([A],f)π1

(2). This proves claim 1 of the proposition.
Recall now that the real Grassmannian L may be viewed as an affine semialge-

braic set (cf. [BCR98], for instance). Then, LM may also be viewed as a semialgebraic

subset of the Grassmannian. As π1
(2) is an immersion at ([A], f), there is some

semialgebraic subset V of LM containing [A] and such that V is diffeomorphic to
some open neighborhood of ([A], f) in I(Sp). In particular, we have

n+ p− 1= dim[A]V = dim[A] I(Sp)≤ dim[A]LM

≤ dimLM ≤n+ p− 1,

for all [A]∈CM and the last statement of claim 2 holds.
Moreover, for every [A]∈CM and for every f such that ([A], f)∈I(Sp), there is

a compact neighborhood of ([A], f) in I(Sp) such that the restriction of π1
(2) to its

interior is injective and, hence, a proper embedding. In particular, [A] is a smooth
regular point of LM of maximal dimension and π1

(2) is a 2-fold covering map in a
neighborhood of [A]. This proves the other two statements of claim 2. The last claim
of the proposition immediately follows from these facts and the previously proved
statements. �

3 Some geometric integration tools

In this section we prove the following statements concerning normal Jacobians of
certain mappings we define.

With the same notation as in Section 2 above, let M ⊆ Rn+1 be a real vector
subspace of dimension p + 1 and codimension k = n − p and let Φ: Sn × S(M) \
Diag� LM be the mapping given by:

Φ(g, f) =L(g,f), ∀(g, f)∈Sn×S(M) \Diag,
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where Diag= {(g, f), g=±f } and L(g,f) is the great circle containing g and f . In
terms of classes [A]moduloO(2) of matrices A in the Stiefel manifold, the mapping Φ
is given by the following rule:

Φ(g, f) =







f

GSf(g)

(1−〈f , g〉2)1/2






,

where GSf(g) = g−〈f , g〉 f .

Proposition V.21. With this notation, for every g∈Sn \S(M) and f ∈S(M), the
normal Jacobian of Φ satisfies:

NJ(g,f)Φ=
∂M(Φ(g, f))n

dP(g, S(M))n−1
,

where ∂M(Φ(g, f))= ∂M(L(g,f))=max {dP(h, S(M )), h∈L(g,f)}.

With the same notation we define the following incidence variety:

IC(M)= π1
−1(π1(π2

−1(S(M)))) =π1
−1(LM)= {([A], g)∈I(R), [A]∈LM}.

We have two canonical projections:

p1 = π1|IC(M): IC(M)� LM

and p2 = π2|IC(M): IC(M)� Sn.

Observe that p1 is onto and that dim p1
−1(L)= 1. Thus,

dim IC(M) =n+ p− 1+ 1=n+ p.

The following property holds:

Proposition V.22. With the same notation as above, given ([A], g)∈IC(M), such
that g∈Sn \S(M). Then ([A], g) is a smooth regular point in IC(M), p1 and p2 are
submersions at ([A], g) and, if Span(A)∩S(M)={±f }, the quotient of the normal
Jacobians of p1 and of p2 satisfies the following equality:

NJ([A],g) p1

NJ([A],g) p2
=

(

1

‖g−〈f , g〉 f ‖

)

k−1

=

(

∂M([A])

dP(g, S(M))

)

k−1

,

where k is the codimension of M in Rn+1.

With the same notation, for every g ∈ Sn, we denote by IC(M)g the fiber by
projection p2 over g. Namely, IC(M)g = p2

−1({g}). We also prove the following
statement.

Proposition V.23. With the same notation, let I(g) be the following quantity:

I(g) =

∫

(L,g)∈IC(M)g

1

∂M(L)

NJ(L,g) p1

NJ(L,g) p2
d IC(M)g.
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Following the values of the codimension k=n− p, we have

1. If k=1:

I(g) = 2 νp−1

∫

0

1 (1− t2)
p

2
−1

(1− r2 (1− t2))1/2
d t,

where r2=1− dP(g, S
p)2. In particular, we have

νp−1B

(

1

2
,
p

2

)

≤ I(g)≤ νp−1B
( 1

2
,
p

2

)

dP(g, Sp)
;

2. If k ∈ 2N∗, then

I(g) =
∑

i=0

k

2
−1

2 νp−1

dP(g, Sp)2i+1

B
(

i+
1

2
,
n

2
− i− 1

)

kB
( k

2
− i, i+1

)
;

3. If k ∈ (2N∗+1), then

I(g)=
∑

i=0

∞
2 νp−1

dP(g, Sp)2i+1

B
(

i+
1

2
,
n

2
− i− 1

)

kB
( k

2
− i, i+1

)
.

In the latter case, we may also exhibit the following upper and lower bounds given
by finite sums:

I(g)≤
∑

i=0

k−3

2 4 νp−1

dP(g, Sp)2i+2

B
(

i+
1

2
,
n

2
− i− 3

2

)

(k− 1)B
( k− 1

2
− i, i+1

)
,

and

I(g)≥
∑

i=0

k−3

2 4 νp−1

dP(g, Sp)2i+2

B
(

i+1,
n

2
− i− 3

2

)

(k− 1)B
( k− 1

2
− i, i+1

)
.

Remark V.24. Let s= dP(g, S(M)) and r be such that r2 + s2 = 1 and let F be
the following function

F (r, s) =

∫

0

1/s

(1+ r2 z2)
n−p−2

2 (1− s2 z2)
p−2

2 d z

=
1

dP(g, S(M))
F1

(

1

2
,
p+2−n

2
,
2− p
2

,
3

2
;−cot (dR(g, S

p)), 1

)

,

where F1 is Appell’s hypergeometric function and cot (dR(g,S(M))) is the cotangent
of the Riemannian distance of g to S(M). Then, quantity I(g) can be rewritten

I(g) = 2 νp−1F (r, s).

Remark V.25. Whenever the codimension is greater than 2, the following bounds
hold:

νp−1

dP(g, Sp)k−1
B

(

k− 1

2
,
p

2

)

≤ I(g)≤ 2 νp−1

dP(g, Sp)k−1
.
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Here we follow the same notation as in Section 2 above. In Section 3.3 we prove
Proposition V.21, in Section 3.4 we prove Proposition V.22 and in Section 3.5 we
prove Proposition V.23.

We assume M =Rp+1 as real vector subspace of Rn+1, Sp is the sphere S(M)
as Riemannian submanifold of Sn. We denote by L the Grassmannian of great
circles in Sn and by LM the semialgebraic subset of L given as the lines L ∈ L
that intersect S(M). Finally, CM is the manifold given as the subset of LM such
that ♯(L ∩ S(M)) = 2. Before getting into the proofs of these two propositions, we
need to establish some basic facts.

3.1 Normal Jacobians and the Co-area formula

Our first statement is a classical formula discovered by Federer that can be found
in many places in the literature. Some classic references are [Fed69, Mor09, San04].
Our formulation below has been taken from [BCSS98, p. 241].

Let X and Y be Riemannian manifolds, and let F : X� Y be a C1 surjective
map. Let p= dim Y be the real dimension of Y . For every point x ∈X such that
the tangent mapping Tx F is surjective, let (v1

x, 	 , vpx) be an orthonormal basis
of ker (Tx F )⊥. Then, we define the normal Jacobian of F at x, NJx F , as the volume
in TF (x) Y of the parallelepiped spanned by (Tx F (v1

x), 	 , Tx F (vpx)). In the case
that TxF is not surjective, we define NJxF as 0.

Note that, in particular, normal Jacobians remain equal under the action of
Riemannian isometries. Namely, the following statement holds:

Proposition V.26. Let X, Y be two Riemannian manifolds, and let F : X� Y

be a C1 map. Let x1, x2 ∈X be two points. Assume that there exist isometries ϕX:
X� X and ϕY : Y� Y such that ϕX(x1) =x2, and

F ◦ ϕX = ϕY ◦F .
Then, the following equality holds:

NJx1F =NJx2F .

Moreover, if there exists an inverse G: Y� X, then

NJxF =
1

NJF (x)G
.

Theorem V.27. (Co-area formula) Consider a differentiable map F : X� Y,
where X and Y are Riemannian manifolds of respective real dimensions n ≥ p.
Consider a measurable function f : X� R, such that f is integrable. Then, for
every y∈Y except in a zero-measure set, F−1(y) is empty or a real submanifold of X
of real dimension n − p. Moreover, the following equality holds (and the integrals
appearing on it are well-defined):

∫

X

f NJxF dX =

∫

y∈Y

(

∫

x∈F−1(y)

f(x) dF−1(y)

)

dY ,

where NJxF is the normal Jacobian of F in x.
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3.2 Distances in LM: Some technical results

We denote by dP: (Sn)2 � R+ the “projective” distance on the sphere as
in [BCSS98] (i.e. dP(f , g) = sin dR(f , g), where dR(f , g) is the standard Rie-
mannian (arclength) distance in Sn.

Let L = [A] ∈ CM be a great circle that intersects Sp in exactly two points.
Assume Span(A)∩Sp={±f }. Up to some isometry in O(p+1)×O(n− p) we may
assume that f =(1, 0,	 , 0) and that

L= [A] =

[(

1 0 0 
 0 0
0 r 0 
 0 s

)]

,

where r2+s2=1. Moreover, the following mapping is an isometry between L and S1:

ϕ: S1 � L,

(λ, µ) � (λ, µ r, 0,	 , 0, µ s).
Lemma V.28. With this notation, let g = ϕ(λ, µ) be any point in L, then the
following properties hold:

• dP(g, S
p) = |µ s|,

• ∂M(L)=max {dP(g, S
p), g ∈L}= |s|,

• dP(g, S
p)

∂M(L)
= |µ|= ‖g−〈f , g〉 f ‖= (1−〈f , g〉2)1/2.

The proof comes from simple calculations. The following statement also holds:

Lemma V.29. For every L ∈ CM, the following equality holds for every positive
integer r ∈N, r≥ 2:

Ir(L)=

∫

L

dP(x, S
p)r dL=

νr+2

νr+1
∂M(L)r=B

(

r+3

2
,
1

2

)

∂M(L)r,

where νr is the volume of the rth dimensional sphere, namely

νr= vol[Sr] =
p
r/2

Γ
( r

2
+1
).

Proof. Using the isometry ϕ above, we have dP(g,S
p)= |s µ|=∂M(L) |µ| and hence,

we have:

Ir(L)= ∂M(L)r
∫

S1

|µ|r d νS1.

Now, we project π: S1� [−1, 1], where π(λ, µ) = µ. The normal Jacobian NJx π
equals (1 − |π(x)|2)1/2 (cf. [BCSS98, p. 206], for instance) and we use the Co-area
formula to conclude:

Ir(L)= ∂M(L)r
∫

−1

1 |µ|r
(1− µ2)1/2

d µ=2 ∂M(L)r
∫

0

1 µr

(1− µ2)1/2
d µ.
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The following equality is classical (cf. [Cho00], for instance) and finishes the proof:

2

∫

0

1 µr

(1− µ2)1/2
d µ=

νr+2

νr+1
. �

We may define a density function on every great circle L ∈ CM. We denote d L(M)

the probability distribution defined in the following terms. For every integrable
function Φ: Sn� R+, we define:

EL(M)[Φ]=

∫

L

ΦdL(M)=
νk

νk+1 ∂M(L)

∫

L

Φ(x) dP(x, S
p)k−1 dL,

where k=n− p is the codimension of M in Rn+1.

3.3 Normal Jacobians I: Proof of Proposition V.21

We follow the same notation as in previous sections and subsections.
As the normal Jacobian is invariant under the action of isometries (Proposi-

tion V.26 above), we may assume that

f =(1, 0,	 , 0)∈Sp, g= (λ, µ r, 0,	 , 0, µ s)∈Sn,

where r2+ s2=1 and λ2+ µ2=1. Hence,

Φ(g, f) =

[

1 0 0 
 0 0
0 r 0 
 0 s

]

.

We may decompose Φ=π ◦ ϕ as the composition of the following two mappings:

• A first mapping into the Stiefel manifold:

ϕ: Sn×Sp \Diag � ST(R)

(h1, h2) � 



h2
GSh2

(h1)

(1−〈h1, h2〉2)1/2



,

where GSh2(h1) =h1−〈h1, h2〉 h2 was defined above.

• The canonical projection π: ST(R)� ST(R)/O(2) = L. In this case the
tangent mapping TA π is the orthogonal projection of Lemma V.15 above,
and it is given by the following matrix:

Idn+1−ATA=











0 0 
 0
0 s2 
 −r s� � Idn−2 �
0 −r s 
 r2











.

Then, for every (ġ , ḟ )∈TgS
n× TfS

p, the following equality holds:

T(g,f)Φ
(

ġ , ḟ
)

=TAπ
(

T(g,f) ϕ(ġ , ḟ )
)

,

where A= ϕ(g, f).
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We start by computing the tangent mapping T(g,f) ϕ, which is given by the
following identities:

T(g,f) ϕ: TgS
n×TfS

p � Tϕ(g,f) ST(R)

T(g,f) ϕ
(

ġ , ḟ
) � 





ḟ
(

GSf(g)

(1−〈f , g〉2)1/2
˙

)






,

where
(

GSf(g)

(1− 〈f , g〉2)1/2

)˙

=
(1−〈f , g〉2)1/2 ρḟ , ġ(f , g) + (1−〈f , g〉2)−1/2 τḟ , ġ(f , g)

(1−〈f , g〉2) ,

and

ρḟ , ġ(f , g) = GSf(ġ)−
(

〈g, ḟ 〉 f + 〈g, f 〉 ḟ
)

= ġ −〈ġ , f 〉 f −
(

〈g, ḟ 〉 f + 〈g, f 〉 ḟ
)

,

τḟ , ġ(f , g) = 〈f , g〉
[

〈g, ḟ 〉+ 〈ġ , f 〉
]

GSf(g).

Now we consider the following orthonormal bases of the tangent spaces Tf S
p

and TgS
n:

• Tf S
p is generated by the list of tangent vectors

{

ḟ2,	 , ḟp+1

}

where ḟi is the
vector whose coordinates are all zero excepting the ith coordinate which is 1.
Therefore f = f1.

• TgS
n is generated by the list of tangent vectors {ġ1,	 , ġn}, where
◦ ġ1=(−µ, λ r, 0,	 , 0, λ s),
◦ ġ2=(0, s, 0,	 , 0,−r),
◦ and for every i, 3 ≤ i ≤ n, ġi is the vector whose coordinates are all

zero excepting the ith coordinate which is 1.

Now some calculations would yield

• For every i, 3≤ i≤ p+1, we have

T(g,f) ϕ
(

0, ḟi
)

=





ḟi

− 〈f , g〉
(1−〈f , g〉2)1/2

ḟi



=





ḟi

−λ

µ
ḟi



.

• As for the case i=2 we have:

T(g,f) ϕ(0, ḟi) =

(

ḟi
u1

)

,

where

u1=

(

−r,−λ
µ
s2, 0,	 , 0, λ

µ
r s

)

.

• For every j, 3≤ j ≤n, we have

T(g,f) ϕ(ġj , 0)=

(

0
1

µ
ġj

)

.
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• For j=1 we have

T(g,f) ϕ(ġ1, 0)=

(

0
u2

)

,

where

u2=λµ (0, r, 0,	 , 0, s).
• Finally, for j=2, we have

T(g,f) ϕ(ġ2, 0)=

(

0
1

µ
ġ3

)

.

Now we consider the following matrices in Tϕ(g,f) ST(R) which are part of an
orthonormal basis with respect to Frobenius inner product. In fact, all of them
belong to TΦ(g,f)CM and also to TΦ(g,f)L.

• The matrix E1,2 given by:

E1,2=

(

0 s 0 
 0 −r
0 0 0 
 0 0

)

.

• For every i, 3≤ i≤ p+1, let E1,i be the matrix given as:

E1,i=

(

ḟi
0

)

.

• The matrix E2,2 given by

E2,2=

(

0 0 0 
 0 0
0 s 0 
 0 −r

)

.

• For every j, 3≤ j ≤n, let E2,j be the matrix given as:

E2,j=

(

0
ġj

)

.

Now, we have:

• For every i, 3≤ i≤ p+1,

T(g,f)Φ(0, ḟi)= TAπ
(

T(g,f) ϕ
(

0, ḟi
))

= T(g,f) ϕ
(

0, ḟi
)

=E1,i− λ

µ
E2,i.

• For i=2,

T(g,f)Φ
(

0, ḟ2
)

= TAπ
(

T(g,f) ϕ
(

0, ḟ2
))

=T(g,f) ϕ
(

0, ḟ2
)

(Idn+1−ATA)

= sE1,2+
λ s

µ
E2,2.

• For every j, 3≤ j ≤n,

T(g,f)Φ(ġj , 0)= TAπ(T(g,f) ϕ(ġj , 0))=T(g,f) ϕ(ġj , 0)=
1

µ
E2,j.
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• For j=1,

T(g,f)Φ(ġ2, 0)=TAπ(T(g,f) ϕ(ġ2, 0))= T(g,f) ϕ(ġ2, 0) (Idn+1−ATA) = 0.

• Finally, for j=2,

T(g,f)Φ(ġ2, 0)=TAπ (T(g,f) ϕ(ġ2, 0))= T(g,f) ϕ(ġ2, 0)=
1

µ
E2,2.

In particular, we conclude that the kernel of T(g,f) Φ is the vector subspace generated
by (ġ2,0)∈Tg S

n×Tf S
p. The restriction of T(g,f)Φ to the orthogonal complement of

its kernel, taking orthonormal basis, is given by a triangular matrix of the following
form:







s ∗ ∗
0 Idp−1 ∗
0 0

1

µ
Idn−1






.

Then, the normal Jacobian satisfies

NJ(g,f)Φ=
|s|
µn−1

=
∂M(L)n

dP(g, Sp)n−1
,

as wanted. �

3.4 Normal Jacobians II: Proof of Proposition V.22

Once again we follow the same notation as above.
First of all, observe that if ([A], g)∈IC(M), then [A]∈CM and this is a smooth

point of maximal dimension in LM. Now, we proceed by computing the tangent
space T([A],g) IC(M). Again, due to the right action of O(p+1)×O(n− p) on I(Sp)

and I(R). Since Proposition V.26 about the invariance of normal Jacobians holds,
we may assume:

([A], g) =

([(

1 0 0 
 0 0
0 r 0 
 0 s

)]

, (λ, µ r, 0,	 , 0, µ s)),
where r2 + s2 = 1, λ2 + µ2 = 1, µ � 0 (since g � Sp) and (then) s � 0. Let us also
write f = (1, 0, 0, 	 , 0) ∈ Sp ∩ Span(A). Observe that ‖g − 〈f , g〉 f ‖ = (1 − 〈f ,
g〉2)1/2= |µ|. For sake of simplicity, assume µ≥ 0 from now on.

We need to compute an orthonormal basis of T([A],g) IC(M) and then its images
under the two projections T([A],g) p1 and T([A],g) p2. This is done in the following
technical lemma:

Lemma V.30. Let v1= (0,−s, 0,	 , 0, r), v2= (µ,−λ r, 0,	 , 0,−λ s) and (e1,	 ,
en+1) be the canonical orthonormal basis of Rn+1. Let (ω1,	 , ωn+1) and (ω1

′, ω3
′,	 ,

ωp+1
′ ) be defined as follows:

• ω1=
(

(

0 −s λ 0 
 0 r λ

0 −s µ 0 
 0 r µ

)

, v1

)

,

• ω2=
(

(

0 
 0
0 
 0

)

, v2

)

,
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• ωi=
(

(

0 
 0 λ 0 
 0
0 
 0 µ 0 
 0

)

, ei

)

, for 3≤ i≤ p+1,

• ωj=

(

(

0 
 0 0 0 
 0

0 
 0 µ−1 0 
 0

)

, ej

)

, for p+2≤ j ≤n,

• ω1
′ =
(

(

0 s µ 0 
 0 −r µ

0 −s λ 0 
 0 r λ

)

, 0
)

,

• ωi
′=
(

(

0 
 0 −µ 0 
 0
0 
 0 λ 0 
 0

)

, 0
)

, for 3≤ i≤ p+1.

Then, the following family is an orthonormal basis of T([A],g) IC(M):

β =

{

1

2
√ ω1, ω2,

1

2
√ ω3,	 , 1

2
√ ωp+1,

1

1+ µ−2
√ ωp+2,	 , 1

1+ µ−2
√ ωn

}

∪{ω1
′, ω3

′,	 , ωp+1
′ }.

Proof. From Section 2 we have the following description of T([A],g)IC(M):
A pair (B, η)∈ T[A]L× TgS

n is in the tangent space T([A],g) IC(M) if, and only
if, the following properties hold:

1. BAT =0, since B ∈T[A]L;
2. 〈η, g〉=0, since η ∈TgS

n,

3. (Idn+1−ATA) ηT =BTAgT , since (B, η)∈T([A],g) I(R);

4. There exists ν ∈Tf S
p, such that B=T([A],f) π1

(2)(B,ν) As, B already satisfies
property (1) above, this may be rewritten as:

∃ν ∈TfS
p, (Idn+1−ATA) νT =BTAfT .

Let us rewrite these properties in terms of matrices and coordinates to prove that β
is an orthonormal basis of T([A],g) IC(M).

The condition BAT =0 implies that we may assume

B=

(

0 −s x2 b1,3 
 r x2
0 −s y2 b2,3 
 r y2

)

.

Let ei, 1≤ i≤n+1 be the canonical (usual) orthonormal basis ofRn+1 and let v1=(0,
−s,	 , r) and v2=(µ,−λ r,0,	 ,−λ s). The following family is an orthonormal basis
of TgS

n:

β= {v1, v2, e3,	 , en}.
As AgT =

(

λ

µ

)

, we conclude

BTAgT =

















0
(−s) (λx2+ µ y2)
λ b1,3+ µ b2,3�
λ b1,n+ µ b2,n

(r) (λ x2+ µ y2)

















.
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Hence, property (3) may be rewritten as:

(Idn+1−ATA) ηT =











0 0 
 0
0 s2 
 −r s� � Idn−2 �
0 −r s 
 r2











ηT =

















0
(−s) (λ x2+ µ y2)
λ b1,3+ µ b2,3�
λ b1,n+ µ b2,n

(r) (λx2+ µ y2)

















.

Observe that (Idn+1 − AT A) v1
T = v1

T and (Idn+1 − AT A) v2
T = 0. Hence, assuming

that η= z1 v1+ z2 v2+
∑

i=3

n
zi ei, property (3) becomes:

















0
(−s) z1
z3�
zn
r z1

















=

















0
(−s) (λx2+ µ y2)
λ b1,3+ µ b2,3�
λ b1,n+ µ b2,n

(r) (λ x2+ µ y2)

















.

Now we consider property (4). Since ν ∈TfS
p, we may assume that

ν = (0, u2,	 , up+1, 0,	 , 0)∈Rn+1.

As AfT =
(

1
0

)

, property (4) may be rewritten as:











0 0 
 0
0 s2 
 −r s� � Idn−2 �
0 −r s 
 r2







































0
u2
u3�
up+1

0�
0
0





























=





























0
s2 u2
u3�
up+1

0�
0

−r s u2





























=

















0
−s x2
b1,3�
b1,n
r x2

















.

This yields these equalities

−s u2 = x2,

b1,j = 0, p+2≤ j ≤n.
Putting all these properties together, we get the following characterization of tangent
space T([A],g) IC(M):

((

0 −s x2 b1,3 
 r x2
0 −s y2 b2,3 
 r y2

)

, η

)

∈T([A],g)IC(M)

if, and only if, the following properties hold:

• b1,j=0, p+2≤ j ≤n,
• η= z1 v1+ z2 v2+

∑

i=3

n
zi ei,

• λ x2+ µ y2= z1,
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• λ b1,i+ µ b2,i= zi, 3≤ i≤ p+1,

• µ b2,j= zj, p+2≤ j ≤n.
The collection of vectors in β described in the statement of the lemma satisfies
these properties, they are linearly independent and a family of orthonormal vectors
with the accurate number of elements (equal to the dimension of T([A],g) IC(M )) as
wanted. �

Then, note that ker (T([A],g) p1) = Span({ω2}) and T([A],g) p1(B, η) = B.
Then, using this orthonormal basis, we immediately compute the list of vectors
in T([A],g) p1(β). They are mutually orthogonal and we may compute the normal
Jacobian as the product of their norms, yielding the following equality:

NJ([A],g) p1=

(

1

2
√
)p
(

µ−1

1+ µ−2
√

)

n−p−1

=

(

1

2
√
)p
(

1

1+ µ2
√

)

n−p−1

.

On the other hand,

ker (T([A],g) p2) =Span({ω1
′, ω3

′,	 , ωp+1
′ }), and T([A],g) p2(B, η)= η.

Again, we may compute the list of vectors in T([A],g) p2(β) and then compute the
corresponding normal Jacobian, obtaining:

NJ([A],g) p2=

(

1

2
√
)p
(

1

1+ µ−2
√

)

n−p−1

.

Then, the quotient satisfies:

NJ([A],g) p1

NJ([A],g) p2
=

(

1

2
√
)p
(

µ−1

1+ µ−2
√

)

n−p−1

(

1

2
√
)p
(

1

1+ µ−2
√

)

n−p−1 =

(

1

µ

)

n−p−1

,

which proves Proposition V.22 as wanted. �

3.5 Fibers over “complex” points: Proof of Proposition V.23

We begin with the following statement.

Proposition V.31. With the same notation as above, for every g ∈ Sn \ Sp, there
is an isometry

Ψg: S
p� IC(M)g.

In particular, the volume of the fiber IC(M )g is constant and independent of g. In
fact,

vol[IC(M )g] = νp= vol[Sp].

Proof. Simply observe that the following mapping is an isometry, an immersion
and its image is the fiber IC(M)g, where g= (0, r, 0,	 , 0, s), r2+ s2=1, s� 0:

Ψg: S
p� I(R),
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given by

Ψg(x1,	 , xp+1) =

([

x1 −s x2 x3 
 xp+1 0 
 0 r x2
0 r 0 
 0 0 
 0 s

]

, g

)

.

First of all, it is clear that Ψg(x)∈IC(M)g for all x∈Sp. The matrix

ψ(x)=

(

x1 −s x2 x3 
 xp+1 0 
 0 r x2
0 r 0 
 0 0 
 0 s

)

is in the Stiefel manifold ST(R) and so the orbit Ψ(x)= [ψ(x)] is in the Grassman-
nian L. But observe that

(

(x1,−s x2, x3,	 , xp+1, 0,	 , 0, r x2)− r x2
s

g
)

∈ Span(ψ(x))∩Rp+1� ∅.
Thus Ψg(x)∈IC(M)∩ p2−1(g) as wanted.

Additionally, observe that the tangent mapping is given by

TxΨg(η) =

((

η1 −s η2 η3 
 ηp+1 0 
 0 r η2
0 0 0 
 0 0 
 0 0

)

, 0

)

,

where η = (η1,	 , ηp+1) ∈ x⊥= Tx S
p is orthogonal to x. Moreover, for η, η ′∈ Tx Sp

we have:

〈TxΨg(η), TxΨg(η
′)〉= η1 η1

′ + s2 η2 η2
′ +
∑

i=3

p+1

ηi ηi
′+ r2 η2 η2

′ = 〈η, η ′〉,

and Ψg is an isometry. Then, its normal Jacobian is 1 and the equality between the
corresponding volumes holds. �

Corollary V.32. For every point g∈Sn \Sp and for every couple ([A], g)∈IC(M ),
the quotient of normal Jacobians satisfies

NJ([A],g) p1

NJ([A],g) p2
=

(

1

sn−p−1

)

(s2+ r2 x2
2)

n−p−1

2 ,

where x = (x1, x2, x3, 	 , xp+1) ∈ Sp is such that Ψg(x) = ([A], g), s2 = dP(g, S
p)2

and r2+ s2=1.

Proof. According to Proposition V.22, the quotient of normal Jacobians satisfies:

NJ([A],g) p1

NJ([A],g) p2
=

(

1

‖g−〈f , g〉 f ‖

)

n−p−1

=

(

1

1−〈f , g〉2
)

n−p−1

2 ,

where Span(A)∩Sp={±f }. With the same notation as in the proof of the previous
proposition, we may assume g=(0, r, 0,	 , 0, s), r2+ s2=1, s� 0, and Ψg(x)= ([A],
g). Thus, we have seen that

v=
(

(x1,−s x2, x3,	 , xp+1, 0,	 , 0, r x2)− r x2
s

g
)

∈ Span(A)∩Rp+1,
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and, hence we may choose

f =
v

‖v‖ ,

to compute the normal Jacobian. Observe that

v=
(

x1,−x2
s
, x3,	 , xp+1, 0,	 , 0),

and

‖v‖2=1+

(

1

s2
− 1

)

x2
2=1+

r2 x2
2

s2
,

whereas

〈v, g〉2= r2x2
2

s2
.

Hence

1−〈f , g〉2=1− 〈v, g〉
2

‖v‖2 =1−
r2x2

2

s2

1+
r2x2

2

s2

=
s2

s2+ r2 x2
2 .

Finally, we conclude:

NJ([A],g) p1

NJ([A],g) p2
=

(

1

1−〈f , g〉2
)

n−p−1

2 =

(

s2+ r2 x2
2

s2

)

n−p−1

2 ,

as wanted. �

3.5.1 Proof of Proposition V.23

As in the proof of Proposition V.31, assuming that x=(x1, x2,	 , xm) and g=(0, r,
0,	 , 0, s), r2+ s2=1, s� 0, we have

I(g)=
1

dP(g, Sp)

(
∫

x∈Sp

(

s2+ r2x2
2

s2

)

n−p−2

2 dSp

)

.

Integrating in polar coordinates we get:

I(g) =
1

dP(g, Sp)

∫

−1

1





∫

S
1−t2

√

p−1
dSP−1





(

s2+ r2 t2

s2

)

n−p−2

2 (1− t2)−1/2 d t.

Then,

I(g)=
2 νp−1

dP(g, Sp)

∫

0

1
(

s2+ r2 t2

s2

)

n−p−2

2 (1− t2)
p−2

2 d t. (V.2)

In other words.

I(g) =
2 νp−1

dP(g, Sp)

∫

0

1
(

(1− t2)+ t2

s2

)

k

2
−1

(1− t2)
p

2
−1

d t, (V.3)

where k=n− p is the codimension.
In the case of codimension 1, this equation becomes:

I(g) = 2 νp−1

∫

0

1 (1− t2)
p

2
−1

(1− r2 (1− t2))1/2
d t,
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as wanted. In particular, the upper and lower bounds are given by

2 νp−1

∫

0

1

(1− t2)
p

2
−1

d t≤ I(g)≤ 2 νp−1

(1− r2)1/2
∫

0

1

(1− t2)
p

2
−1

d t,

which yields

νp−1B

(

1

2
,
p

2

)

≤ I(g)≤ νp−1B
( 1

2
,
p

2

)

dP(g, Sp)
,

as wanted.
In the case of even codimension k=n− p=2 τ , with τ ∈N∗, equation (V.3) yields:

I(g)=
2 νp−1

dP(g, Sp)

∑

i=0

τ−1 ∫

0

1 (
τ − 1
i

)

(

t2

s2

)

i

(1− t2)τ−i+
p

2
−2

d t.

Then,

I(g)=
∑

i=0

τ−1
(

τ − 1
i

)

2 νp−1

dP(g, Sp)2i+1

∫

0

1

t2i (1− t2)
n

2
−i−2

d t,

and

I(g)=
∑

i=0

τ−1
νp−1

dP(g, Sp)2i+1

B
(

i+
1

2
,
n

2
− i− 1

)

τ B(τ − i, i+1)
.

In the case of odd codimension k=n− p=2 τ+1, with τ ∈N∗ , equation (V.3) yields:

I(g) =
2 νp−1

dP(g, Sp)

∫

0

1
(

(1− t2)+ t2

s2

)

τ− 1

2 (1− t2)
p

2
−1

d t.

Observing that

t

s
≤
(

(1− t2) + t2

s2

)

1/2

=

(

s2+ r2 t2

s2

)

1/2

≤ 1

s
, (V.4)

equation (V.3) becomes:

I(g) =
2 νp−1

dP(g, Sp)

∫

0

1
(

(1− t2)+ t2

s2

)

(τ−1)+
1

2 (1− t2)
p

2
−1

d t.

Then, expanding
(

(1− t2)+ t2

s2

)

τ−1
yields

I(g)=
∑

i=0

τ−1
2 νp−1

dP(g, Sp)2i+1

(

τ − 1
i

)

∫

0

1

t2i (1− t2)
n

2
−i− 5

2

(

(1− t2)+ t2

s2

)

1/2

d t,

where
(

τ − 1

2

i

)

=

(

τ − 1

2

)

i

i!
=

1
(

τ +
1

2

)

B
(

τ − i+ 1

2
, i+1

).

and
(

τ − 1

2

)

i
is Pochhammer symbol:

(

τ − 1

2

)

i

=
Γ
(

τ +
1

2

)

Γ
(

τ − i+ 1

2

).

Thus,

I(g)≤
∑

i=0

τ−1
2 νp−1

dP(g, Sp)2i+2

∫

0

1
t2i (1− t2)

n

2
−i− 5

2 d t

τ B(τ − i, i+1)
,
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and

I(g)≥
∑

i=0

τ−1
2 νp−1

dP(g, Sp)2i+2

∫

0

1
t2i+1 (1− t2)

n

2
−i− 5

2 d t

τ B(τ − i, i+1)
.

Namely,

I(g)≤
∑

i=0

τ−1
2 νp−1

dP(g, Sp)2i+2

B(i+
1

2
,
n

2
− i− 3

2
)

τ B(τ − i, i+1)
,

and

I(g)≥
∑

i=0

τ−1
2 νp−1

dP(g, Sp)2i+2

B
(

i+1,
n

2
− i− 3

2

)

τ B(τ − i, i+1)
. �

Remark V.33. One may want a close formula for the latter case. In that case, we
have to be careful when expanding equation (V.3) as we have to distinguish both

cases when 1− t2≥ t2

s2
and when 1− t2≤ t2

s2
. Hence

I(g) =
2 νp−1

dP(g, Sp)

∑

i=0

∞ (

τ − 1

2

i

)

×




∫

0

1

1+s2
√

(

t2

s2

)

i

(1− t2)
n

2
−i−2

d t+

∫

1

1+s2
√

1
(

t2

s2

)

n−p

2
−i−1

(1− t2)
p

2
+i−1

d t



.

This yields

I(g) = 2 νp−1

∑

i=0

∞ (

τ − 1

2

i

)

×





∫

0

1

1+s2
√ t2i (1− t2)

n

2
−i−2

d t

dP(g, Sp)2i+1
+

∫

1

1+s2
√

1 tn−p−2i−2 (1− t2)
p

2
+i−1

d t

dP(g, Sp)n−p−2i−1



.

and, hence,

I(g) =
νp−1

τ +
1

2

∑

i=0

∞
1

B
(

τ − i+ 1

2
, i+1

)

×





B
(

1

1+ s2
; i+

1

2
,
n

2
− i− 1

)

dP(g, Sp)2i+1
+

B
(

s2

1+ s2
;
p

2
+ i,

n− p− 1

2
− i
)

dP(g, Sp)n−p−2i−1



,

where B(x; a, b) is the incomplete Beta function:

B(x; a, b)=

∫

0

x

ta−1 (1− t)b−1d t.

3.5.2 Proof of Remark V.24

This remark immediately follows from equation (V.2). Making the obvious change
of variable, this equation yields:

I(g) = 2 νp−1

∫

0

1/s

(1+ r2 z2)
n−p−2

2 (1− s2 z2)
p−2

2 d z.
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And, by the standard definition of Appell’s F1 hypergeometric function, we imme-
diately obtain:

I(g)=
νp−1

2 dP(g, Sp)
F1

(

1

2
,
p+2−n

2
,
2− p
2

,
3

2
;−cot (dR(g, S

p)), 1

)

,

where cot (dR(g, S
p)) is the cotangent of the Riemannian distance of g to Sp. �

4 Proof of the main results

4.1 Proof of Theorem V.5

As above, we assume M =Rp+1, S(M) = Sp and k = n − p the codimension of Sp

in Sn. Let ϕ: Sn� R+ be an integrable function and let I be the quantity:

I =

∫

(g,f)∈Sn×Sp

(

∫

L(g,f)

ϕ(h) dL(g,f)(h)

)

dSn dSp,

where L(g,f)∈ L is the great circle containing g and f and dL(g,f) is the standard
measure on the great circle.

Let Φ: Sn×Sp \Diag� LM, be the mapping discussed in Section 3 and given
by Φ(g, f)=L(g,f)∈LM, where LM is the semialgebraic set of great circles in L that
intersect Sp. According to the Co-area formula (Theorem V.27) we have:

I =

∫

LM

(

∫

Φ−1(L)

θ(g, f)

NJ(g,f)Φ
dΦ−1(L)

)

dLM ,

where

θ(g, f)=

∫

L(g,f)

ϕ(h) dL(g,f)(h).

Note that, for L∈CM, if L∩Sp={±f }, we have Φ−1(L)=L×{f }∪L×{−f } and
we conclude:

I =2

∫

LM

(
∫

L

θ(g, f)

NJ(g,f)Φ
dL

)

dLM.

Now, from Proposition V.21 we conclude:

I =2

∫

LM

θ(g, f)

∂M(L)

(
∫

L

dP(g, S(M))n−1

∂M(L)n−1
dL

)

dLM.

Then, from Lemma V.29 we conclude that the inner integral is constant and inde-
pendent of L and, hence, the following holds:

I =2B

(

n+2

2
,
1

2

)
∫

LM

θ(g, f)

∂M(L)
dLM ,

i.e.

I =2B

(

n+2

2
,
1

2

)
∫

LM

(

1

∂M(L)

∫

L

ϕ(h) dL(h)

)

dLM.
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Now, considering the incidence variety IC(M) given by

IC(M)= {([A], g)∈L×Sn, g ∈ Span(A), [A]∈LM},

and the canonical projections p1: IC(M)� LM and p2: IC(M)� Sn, and
applying twice the Co-area formula allows to conclude:

I =2B

(

n+2

2
,
1

2

)
∫

(L,g)∈IC(M )

(

NJ(L,g) p1

∂M(L)
ϕ(g)

)

dIC(M ),

and,

I =2B

(

n+2

2
,
1

2

)
∫

Sn

(

∫

p2
−1(g)

1

∂M(L)
ϕ(g)

NJ(L,g) p1

NJ(L,g) p2
d p2

−1(g)(L)

)

dSn.

Namely, we have:

I =2B

(

n+2

2
,
1

2

)
∫

Sn

ϕ(g)

(

∫

IC(M)g

1

∂M(L)

NJ(L,g) p1

NJ(L,g) p2
d IC(M )g(L)

)

dSn.

According to the notation used in Proposition V.23, this equality may be rewritten
as:

I =2B

(

n+2

2
,
1

2

)
∫

Sn

ϕ(g) I(g) dSn.

This proposition implies the following cases according to the codimension k=n− p:
• If k=1, the following inequalities result from Proposition V.23:

I ≥ 2 νp−1B

(

1

2
,
p

2

)

B

(

n+2

2
,
1

2

)
∫

Sn

ϕ(g) dSn,

and

I ≤ 2 νp−1B

(

1
2
,
p

2

)

B

(

n+2
2

,
1
2

)
∫

Sn

ϕ(g)
dP(g, Sp)

dSn.

As E is an expectation, we have

E =
1

νn νp
I ,

and hence the following two inequalities:

E ≥ 2 νp−1B
( 1

2
,
p

2

)

B
( n+2

2
,
1

2

)

νp

1

νn

∫

Sn

ϕ(g) dSn,

E ≤ 2 νp−1B
( 1

2
,
p

2

)

B
( n+2

2
,
1

2

)

νpB
(

1,
n− 2

2

)

B
(

1,
n− 2

2

)

νn

∫

Sn

ϕ(g)

dP(g, Sp)
dSn.

According to Definition V.3, these two inequalities may be rewritten as

C(n, p)ESn[ϕ]≤E ≤D(n, p)Rn−p−1 ϕ(Sp),

where

C(n, p) =
2 νp−1B

( 1

2
,
p

2

)

B
( n+2

2
,
1

2

)

νp
,
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and

D(n, p) =
C(n, p)

B
(

1,
n− 2

2

) =
n− 2

2
C(n, p).

Using Gautschi’s [Gau60] and Kershaw’s [Ker83] inequalities we conclude:

4
p (2 p+1)

(p+ 3
√
− 2) (n+ 3

√
)

√

≤C(n, p)≤ 4
p (p+ 3

√
− 1)

(2 p− 1) (n+3)

√

,

whereas

n− 2

2

p (2 p+1)

(p+ 3
√
− 2) (n+ 3

√
)

√

≤D(n, p)≤ n− 2

2

p (p+ 3
√
− 1)

(2 p− 1) (n+3)

√

,

• If k ∈ 2N∗ is an even integer number we have:

I =
∑

i=0

k

2
−1

4B

(

n+2

2
,
1

2

)

νp−1

B
(

i+
1

2
,
n

2
− i− 1

)

kB
( k

2
− i, i+1

)

∫

Sn

ϕ(g)

dP(g, Sp)2i+1
dSn.

Namely, in terms of Definition V.3, we have proved

I =
∑

i=0

k

2
−1

4B
( n+2

2
,
1

2

)

νp−1B
(

i+
1

2
,
n

2
− i− 1

)

νn

kB
( k

2
− i, i+1

)
Rk−2i−1 ϕ(Sp).

Namely, we have

E =
1

νn νp
I =

∑

i=0

k

2
−1

C(n, p, i)Rk−2i−1 ϕ(Sp),

where

C(n, p, i) = 2

(

n− p

2
− 1

i

)

B
( n+2

2
,
1

2

)

B
( p− 1

2
,
1

2

) .

• If k∈ (2N∗+1) is an odd integer, according to Proposition V.23 we may use
the finite sum bounds to conclude:

E ≤
∑

i=0

k−3

2
(

k− 3

2

i

)

4 νp−1B
( n+2

2
,
1

2

)

B
(

i+
1

2
,
n− 2 i− 3

2

)

νp νn

∫

Sn

ϕ(g)

dP(g, Sp)2i+2
dSn.

On the other hand the same proposition also yields:

E ≥
∑

i=0

k−3

2
(

k− 3

2

i

)

4 νp−1B
( n+2

2
,
1

2

)

B
(

i+1,
n− 2 i− 3

2

)

νp νn

∫

Sn

ϕ(g)

dP(g, Sp)2i+2
dSn.

Thus, we conclude

∑

i=0

k−3

2

A1(n, p, i)R
k−2i−2 ϕ(Sp)≤E ≤

∑

i=0

k−3

2

A2(n, p, i)R
k−2i−2 ϕ(Sp),
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where

A1(n, p, i) = 2

(

k− 3

2

i

)

(n− 2)B
( n+2

2
,
1

2

)

Γ(i+1)

B
( p− 1

2
,
1

2

)

Γ
(

i+
3

2

) ,

and

A2(n, p, i) = 4

(

k− 3

2

i

)

B(
n+2

2
,
1

2
) Γ
(

i+
1

2

)

Γ
( n

2
− 1
)

B
( p− 1

2
,
1

2

)

Γ
(

i+
3

2

)

Γ
( n

2

) .

Now, using Gautschi’s [Gau60] and Kershaw’s [Ker83] inequalities, we con-
clude:

A1(n, p, i)≥
(

n− p− 3

2

i

)

B
( n+2

2
,
1

2

)

B
( p− 1

2
,
1

2

)

2 2
√

(n− 2)

2 i+ 3
√√ =

B0(n, p, i) (n− 2)

i+ 3/2
√

√ .

A2(n, p, i)= 16

(

n− p− 3

2

i

)

B
( n+2

2
,
1

2

)

B
( p− 1

2
,
1

2

)

1

(2 i+1) (n− 2)
=

8B0(n, p, i)

(2 i+1) (n− 2)
. �

4.2 Proof of Corollary V.7

With the same notation as above, we make use of inequalities (V.4) to conclude from
equation (V.3):

2 νp−1

dP(g, Sp)k−1

∫

0

1

tk−2 (1− t2)
p

2
−1

d t≤ I(g)≤ 2 νp−1

dP(g, Sp)n−p−1 .

Namely,
νp−1B

( n− p

2
,
p

2

)

dP(g, Sp)k−1
≤ I(g)≤ 2 νp−1

dP(g, Sp)k−1
.

From the proof of Theorem V.5 above, we conclude

E ≥ 2B
( n+2

2
,
1

2

)

νp−1B
( n− p

2
,
p

2

)

νp νn

∫

Sn

ϕ(g)

dP(g, Sp)k−1
dSn,

and

E ≤ 2B
( n+2

2
,
1

2

)

νp−1

νp νn

∫

Sn

ϕ(g)

dP(g, Sp)k−1
dSn.

According to Definition V.3, this means:

E ≥ 2B
( n+2

2
,
1

2

)

νp−1

νp
R1 ϕ(Sp),

and

E ≤ 2B
( n+2

2
,
1

2

)

νp−1

νpB
( n− p

2
,
p

2

) R1 ϕ(Sp).

Using Gautschi’s [Gau60] and Kershaw’s [Ker83] inequalities, we finally obtain:

2 p+1

2 (n+ 3
√

)

√

R1 ϕ(Sp)≤E ≤ 2
2 (p+ 3

√
− 1)

2n+3

√

1

B
( n− p

2
,
p

2

)R1 ϕ(Sp),

as wanted. �
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4.3 Proof of Proposition V.8

With the same notation as in the Introduction, according to Lemma V.29, for
every L∈CM, we have:

ELM
[ϕ] =

1

B
( n− p+2

2
,
1

2

)

∂M(L)n−p−1

∫

L

ϕ(g) dP(g, S
p)n−p−1 dL.

Then, we use the Co-area formula (Theorem V.27) as in the proof of Theorem V.5
above, to conclude:
∫

LM

ELM
[ϕ] =

∫

Sn

ϕ(g)

B
( n− p+2

2
,
1

2

)

×
(

∫

IC(M)

dP(f , Sp)n−p−1

∂M(L)n−p−1

NJ(L,g) p1

NJ(L,g) p1
d [p2

−2(g)](L)

)

dSn(g)

According to Proposition V.22, this yields:

∫

LM

ELM
[ϕ] =

∫

Sn

ϕ(g)

B
( n− p+2

2
,
1

2

)

(

∫

IC(M)g

d [p2
−2(g)](L)

)

dSn(g).

Then, applying Proposition V.31 we conclude:
∫

LM

ELM
[ϕ] =

νp

B
( n− p+2

2
,
1

2

)

∫

Sn

ϕ(g) dSn(g)=
νp νn

B
( n− p+2

2
,
1

2

) ESn[ϕ].

Now, taking ϕ=1, we conclude:

vol[LM ] =
νp νn

B
( n− p+2

2
,
1

2

) ESn[1] =
νp νn

B
( n− p+2

2
,
1

2

),

and Proposition V.8 follows immediately. �

5 Proof of the statements related to polynomial
equation solving.

We follow the notation introduced in Section 1.3. We will use the notation S2N+1

to denote S(H(d)) and Sp to denote S(M ). As in [SS93a, SS93b], let V(d)⊆S2N+1×
Pn(C) be the solution variety. Namely,

V(d)= {(f , ζ)∈S2N+1×Pn(C), ζ ∈V(f)}.

5.1 Proof of Corollary V.9

Let us define Σ̃ ⊆ LM as the subset of all great circles L ∈ LM that intersect the
discriminant variety Σ. As dim (Σ∩S(M))< dimS(M), using the double fibration
as in Section 2 above, we may conclude that the codimension of Σ̃ in LM is at least 1
and, hence, it is a semialgebraic set of volume zero. Namely,

ELM
[χΣ̃] = 0,
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where ELM
means expectation in LM and χΣ̃: LM� {0, 1} is the characteristic

function defined by Σ̃.
Let us define the mapping ΘΣ̃: V(d)� R+ given by the following identity:

ΘΣ̃(g, ζ) =ESp[C(f , g, ζ)] = 1

νp

∫

Sp

χΣ̃(L(g,f)) dS
p,

where L(g,f) is the great circle passing through g and f . Let G(d) ⊆ V(d) be the
strong questor set defined in [BP11a], endowed with its probability distribution. The
probability that the algorithm outputs Failure is at most the expectation EG(d)

[ΘΣ̃].
By [BP11a, Theorem 7], the following equality holds:

EG(d)
[ΘΣ̃] =

1

ν2N+1

∫

S2N+1

1

D
∑

ζ∈V
P
(g)

ΘΣ̃(g, ζ) dS
2N+1.

Namely, this expectation satisfies:

EG(d)
[ΘΣ̃] =

1

ν2N+1 νp

∫

S2N+1×Sp

1

D
∑

ζ∈V
P
(g)

χΣ̃(L(g,f)) dS
2N+1dSp.

In other terms,

EG(d)
[ΘΣ̃] =

1

ν2N+1 νp

∫

S2N+1×Sp

χΣ̃(L(g,f)) dS
2N+1 dSp.

According to Proposition V.21 and the Co-area formula, we have:

EG(d)
[ΘΣ̃] =

1

ν2N+1 νp

∫

CM

(

∫

L(g,f)

χΣ̃(L(g,f))
dP(g,Sp)n−1

∂M(L(g,f))n
dL(g,f)

)

dCM.

Finally, as dP(g,S
p)≤ ∂M(L(g,f)) we have

0≤EG(d)
[ΘΣ̃]≤

2 p

ν2N+1 νp

∫

LM

χΣ̃(L(g,f))
1

∂M(L(g,f))
dLM.

As Σ̃ has zero measure in LM, we conclude EG(d)
[ΘΣ̃] = 0 and the claim of Corol-

lary V.9 follows. �

5.2 Proof of Corollaries V.10, V.11 and V.12

Again we use the same strategy based on [BP11a]. Let us define the mapping Θ:
V(d)� R+ given by the following identity:

Θ(g, ζ)=ESp[C(f , g, ζ)]= 1

νp

∫

Sp

C(f , g, ζ) dSp,

where dSp is the volume form associated to the Riemannian structure of SN and νp
is the volume of Sp.

Let G(d) ⊆ V(d) be the strong questor set defined in [BP11a], endowed with its
probability distribution. By [BP11a, Theorem 7], the following equality holds:

EM[Time] =EG(d)
[Θ]=

1

ν2N+1

∫

S2N+1

1

D
∑

ζ∈V
P
(g)

Θ(g, ζ) dS2N+1, (V.5)
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where E denotes expectation, D=
∏

i=1

n
di is the Bézout number associated to the

list (d) = (d1, 	 , dn), d S2N+1 the volume form in S2N+1 and ν2N+1 the volume of
this sphere.

Now observe that equation (V.5) may be rewritten as:

EM =
1

ν2N+1 νp

∫

S2N+1×Sp

1

D
∑

ζ∈V
P
(g)

C(f , g, ζ) dS2N+1dSp.

From the definition of µav
2 (g), we immediately conclude:

EM =
1

ν2N+1 νp

∫

S2N+1×Sp

(

∫

L(g,f)

µav
2 (h) dL(g,f)

)

dS2N+1 dSp.

In other words,

EM =E(g,f)∈S2N+1×Sp

[

∫

L(g,f)

µav
2 (h) dL(g,f)(h)

]

.

Then, Corollary V.10 immediately follows from Theorem V.5, whereas Corol-
lary V.11 immediately follows from Corollary V.7.

As for Corollary V.12, we apply the Co-area formula and Proposition V.21 to
conclude:

EM =
1

ν2N+1 νp

∫

LM

(

∫

(g,f)∈Φ−1(L)

C(L(g,f))

NJ(g,f)Φ
dΦ−1(L)

)

dLM ,

where

C(L(g,f))=

∫

L(g,f)

µav
2 (h) dL(g,f).

As L=L(g,f), using Proposition V.21 we conclude:

EM =
1

ν2N+1 νp

∫

LM

C(L)

(

∫

Φ−1(L)

dP(g,S(M ))2N

∂M(L)2N+1
dΦ−1(L)

)

dLM.

Namely,

EM =
1

ν2N+1 νp

∫

LM

C(L)

∂M(L)

(

∫

Φ−1(L)

dP(g,S(M))2N

∂M(L)2N
dΦ−1(L)

)

dLM .

For great circles L∈CM, this equals:

EM =
2

ν2N+1 νp

∫

LM

C(L)

∂M(L)

(
∫

L

dP(g,S(M))2N

∂M(L)2N
dL

)

dLM.

Then, according to Lemma V.29, this yields:

EM =
2B
( 2N +3

2
,
1

2

)

ν2N+1 νp

∫

LM

C(L)

∂M(L)
dLM.

According to Proposition V.8, this equality becomes:

EM =
2B
(

N +
3

2
,
1

2

)

B
(

N +1− p

2
,
1

2

)

1

vol[LM]

∫

LM

1

∂M(L)

(
∫

L

µav
2 (h) dL

)

dLM.
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Namely, we proved

EM =T (N , p)ELM

[

1

∂M(L)

∫

L

µav
2 (h) dL

]

,

where

T (N , p) =
2B
(

N +
3

2
,
1

2

)

B
(

N +1− p

2
,
1

2

),

and Corollary V.12 follows. �
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Annexe

Introduction (translated into
English)

Algebraic system solving is a problem at the heart of algebra and in particular of
algebraic geometry. Its applications in mathematics and in industry are multiple.
Historically and technically, this problem is inseparable from multiplicities han-
dling. This thesis is about some particular aspects linked to the efficiently of such
a resolution. Firstly, in Chapter I, we deal with minimizing the number of additive
variables in such a system. We mention applications in cryptography wherein some
systems, a priori underdetermined, must be solved in positive characteristic. Then,
in Chapter II, we propose fast arithmetic routines for computing the product, the
quotient and more generally the fixed point of a function defined over Qp. We use
these routines in Chapter III to solve some systems, which can be well evaluated,
locally in Qp. In Chapter IV, we consider the plane curves decomposition into
irreducible components when the size of the Newton polygon is small compared
to the product of the partial degrees. Finally, in Chapter V, we want to find an
approximate complex root of a system with coefficients in R.

a Minimization of the number of additive variables

Chapter I is based on a joint work with P. Hivert and H. Mourtada titled Computing
Hironaka’s invariants: Ridge and Directrix and published in Arithmetic, Geometry,
Cryptography and Coding Theory 2009 [BHM10].

Let I be an ideal spanned by polynomials f1,	 , fr∈K[X1,	 ,Xn], the set V(I)
of points x of K̄n such that every polynomial of I vanishes at x is called the affine
variety defined by I, where K̄ is the algebraic closure of K. A singular point of
the variety is a point x = (x1, 	 , xn) ∈ V(I) such that for every f ∈ I, the partial
derivatives of f also vanish at x, i.e. such that

f(x1,	 , xn) = ∂ f

∂X1
(x1,	 , xn)=
 =

∂ f

∂Xn

(x1,	 , xn) = 0.

If f is a bivariate polynomial in X and Y , then V(f) is a plane curve C. The most
simple singularities that C can have are nodes , or self-intersection, and cusps , which
are points wherein the curve only has half-tangents.

For example, the curve defined by f(X, Y ) = Y 2−X3 is singular at the origin,
it is a cusp. Desingularization consists of finding a non singular curve C ′ such that
there exists a birationnal morphism from C ′ to C.
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Since Hironaka’s work in the 1960’s and the 1970’s, the desingularization problem
is well-understood in characteristic zero (see [Hir64, Hir67, Hir70]). The positive
characteristic case is however more difficult. For example, the desingularization of
threefolds has only been done recently by Cossart and Piltant (see [CP08, CP09]).
It should be noted that their proof is not constructive. The case of fourfolds is
still an open problem. In [Hir64, Hir67], Hironaka introduces two invariants for
the resolution of singularities: the ridge and the directrix . Given a homogeneous
ideal I ⊆K[X1, 	 , Xn] and a cone C = Spec K[X1, 	 , Xn]/I, these two invariants
are subsets of the tangent cone of the variety in the neighborhood x ∈ C. In fact,
according to Giraud [Gir75], the ridge is the tangent cone of a variety with a maximal
contact with C in a neighborhood of x. The directrix is a vector space, this is the
biggest vector subspace W of An= SpecK[X1, 	 , Xn] such that C +W = C. More
formally, we have the following definition.

Definition 1. Let C = SpecK[X1,	 , Xn]/I with I ⊆K[X1,	 , Xn], a homogeneous
ideal. The directrix of C is the biggest free family (Y1, 	 , Yf), where each Yj is a
linear form in the Xi, such that

I =(I ∩K[Y1,	 , Yf])K[X1,	 , Xn].

In other words, the directrix is the smallest set of needed variables to define I.

An analogous definition exists for the ridge, which is just an additive subgroup
of Kn.

Definition 2. The ridge of C is the biggest additive subgroup of An spanned by the
smallest set of additive polynomials P1,	 , Pe such that

I = (I ∩K[P1,	 , Pe])K[X1,	 , Xn].

Since the notions of linear form and additive polynomial are the same in char-
acteristic zero, it is clear that the ridge and the directrix are the same object in
this case. Therefore, a maximal contact variety is always smooth. However, this is
not true in positive characteristic p, so that a maximal contact variety can be not
smooth. This obstacle prevents an extension of Hironaka’s proof for desingularizing
in positive characteristic. We deal with these two invariants of variety, the ridge
and the directrix. We follow Giraud’s work [Gir72, Gir75] wherein he introduces a
functorial definition of the ridge.

Proposition-Definition 3. Let AK
n be the affine space over K of dimension n.

Let F be the functor mapping a K-scheme S to the set F (S) of points v ∈AK
n such

that for every S-point c∈C(S),
(v+ c)∈C(S).

Then the functor F is representable by a scheme F that we call the ridge of C.

We have the following result.

Corollary 4. (Corollary I.14, [BHM10, Corollary 2.12]) Let U be the algebra
of functions defined over AK

n such that for every K-scheme S and every S-point (u,
v) in F ×KAK

n , we have f(u+ v) = f(u).
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Let I be a homogeneous ideal of K[X1, 	 , Xn] and let G 6 {γ1, 	 , γs} be any
homogeneous reduced Gröbner basis of J the ideal of the ridge of V(I), then

I =(I ∩K[γ1,	 , γs])K[X1,	 ,Xn].

Furthermore, U =K[γ1, 	 , γs] and if K is a K-algebra generated by additive poly-
nomials such that

I = (I ∩K)K[X1,	 , Xn],

then U ⊂K.
Thus, Definitions 2 and 3 of the ridge coincide.

Furthermore, we give an algorithm for computing the ridge of an ideal. We also
show that if (P1,	 ,Pe) is a family spanning the ridge, then there exist integers α1,	 ,
αe such that the family

(

P1
pα1√

,	 , Pe
pαe√ )

spans the directrix. If K is a perfect field,

then we can deduce an algorithm computing the directrix. Unfortunately, knowing
if an element is a pαth power in characteristic p can be undecidable even if the
considered ring is effective (see [FS56]).

b Relaxed algorithms for p-adic integers

Chapter II is an adaptation with J. van der Hoeven and G. Lecerf of the relaxed
routines of formal power series for the p-adic integers. This work gave rise to an
article Relaxed algorithms for p-adic numbers accepted for publication in Journal
de Théorie des Nombres de Bordeaux [BHL11].

The normalization consists of solving codimension 1 singularities. In the case of
a singular curve C, singular loci are points, so they all have codimension 1. Thus,
it suffices to normalize C to find C ′, the desingularized of C. If the characteristic
of K is 0, then normalizing C=V(f) is equivalent to computing the integral closure
of K[X ] in K(X)[Y ]/(f) (see [Sha94, Chapter II, Section 5]). Let R and R ′ be two
rings such that R is a subring of R ′, b∈R ′ is integral over R if, equivalently [Lan02,
Chapter VII],

• the subring R[b] is finitely generated over R;

• there exist m ∈N∗ and a0, 	 , am−1 ∈R such that b is a root of the polyno-
mial Tm+ am−1T

m−1+
 + a0.

The integral closure R̄ of R in R ′ is the set of all b ∈ R ′ integral over R. Since
the notion of being integral is stable by ring operations, R̄ is a subring of R ′ and
a R-module.

Example 5. With the same example as above, f(X, Y ) = Y 2 − X3, it is clear
thatX3/2=Y ∈K(X)[Y ]/(f) is integral overK[X ], so that the integral closureK[X ]

of K[X ] contains K[X,X3/2]. However, on can see that X1/2=
Y

X
is a root of T 2−X,

therefore K[X, X1/2] =K[X1/2]⊆K[X ]. Indeed, this not strict inclusion is in fact
an equality.
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When R is principal, the integral closure R̄ of R in a finite extension of K =
Quot R is a free finitely generated R-module of rank n. Instead of computing a
basis of R̄ , it is in general easier to compute a basis of its completion Rp for the p-
adic valuation in one of the localizations Kp of K, where p is a prime of R. Let us
mention that such algorithms exist in [Hal01, Hoe94, Tra84]. It suffices to compute
these local bases for p such that p2 O disc f . The main advantage of computing local
bases is that each element bi of the basis (b0,	 , bn−1) can be written

bi=
bi,0+
 + bi,n−1αn−1

pdi
,

where for all j, 0≤ j ≤ n − 1, bi,j ∈Rp and for all i, valp(bi)≥ 0. Furthermore, we
know a bound for the exponent di:

2 di≤ valp(disc f).

In fact, one can improve this upper bound and get [Hoe94, Section 2.3]

2 (d0+
 + dn−1)≤ valp(disc f). (1)

Then, one has to compute a global basis from all these local bases.

Example 6. Polynomial f(Y ) = Y 2 − 5 defines the extension Q
(

5
√ )

over Q.
Since 5

√
is integral over Z, one knows that the integral closure of Z contains Z

[

5
√ ]

.
As the discriminant of f is −4=−22, only one computation of a local basis, namely
the one in Q2

(

5
√ )

, suffices. According to equation (1), a basis (1, b1) can at best

be such that b1=
1+ b1,1 5

√

2
with b1,1∈Z2. Over F2, polynomial f factors as

f(Y ) =Y 2+1= (Y +1)2,

therefore, the dyadic expansion of 5
√

starts with 1, so that val2
(

1+ 5
√

2

)

= 0. One

deduces that b1=
1+ 5

√

2
is integral. Indeed, it is the golden ratio ϕ, root of T 2−T −1.

There is only one local basis, so there is no problem to compute a global basis and
the integral closure of Z in Q

(

5
√ )

is Z[ϕ].

The computation of an integral basis in dimension 1, that is the ring of integral
elements over K[X ] in a function field K(X)[Y ]/(f) is very similar to the compu-
tation of an integral basis of the ring of integral elements in a number field Q[Y ]/
(f). We have seen above that the most common algorithms first compute some
bases in some localizations to obtain then a global basis. For a function field, these
localizations are the fields of Laurent series K((X − α)), with α ∈K if K= K̄, for
a number field, these are the fields of p-adic numbers Qp, with p ∈ N prime. For
implementing some arithmetic routines over such objects, mainly two frameworks
are available. The first one, the so-called zealous framework, consists of working
with a fixed precision n, i.e. a power series S ∈K[[X ]],

S=
∑

k=0

∞
SkX

k,
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will be represented by a truncated polynomial of degree n:

S=S0+
 +Sn−1X
n−1+O(Xn).

The main advantage of this representation is that one can use all the fast routines
available for computing the product of polynomials, in particular, the product of two
series in precision n+1 can be computed in M(n)∈ Õ(n) operations in the ground
field K. As a drawback, if during these computations, there is a loss of precision
such that the result is not precised enough, one has to resume the computation from
the beginning with increasing the needed precision.

Another way is to represent every computable series by a vector of computed
coefficients (S0, 	 , Sℓ) endowed with a next(n) function capable of returning the
coefficient Sn from the preceding ones. For example, the exponential computed
up till precision 10 will be represented by vector

(

1, 	 , 1

9!

)

and by the next(n)

returning S0=1 if n=0 and Sn6 Sn−1

n
otherwise. Such a representation is called lazy

because the coefficients are only computed when needed. It seems natural to define
the next(n) method of the product S T by the naive return of S0 Tn+S1 Tn−1+
 +
Sn T0, unfortunately, this gives rise to a complexity quadratic in the precision for the
product of two series: M(n)∈O(n2). However, the loss of precision is not a problem
anymore, if one needs some few more coefficients, one may just call the next(n)
function as many times as needed without resuming the computation from the
beginning. In 1997, and then in 2002, van der Hoeven proposed a fast product for
lazy series called the relaxed product [Hoe97, Hoe02]. The main idea is to allow some
unneeded computations at the time by doing products of polynomials of degree 1,
2, 4, 	 , in order to profit from their complexities (see Figure II.1 in Chapter II).
Compared to the zealous product, the overhead is at worst logarithmic, so that
the product of two series up till precision n is computed in R(n) ∈ O(M(n) log n)
operations in K.

We present an adaptation to all I-adic completions of a ring. The main moti-
vation is the handling of the carry which can appear while doing an addition or a
multiplication. In general, these rings contain Zp as a subring, that is why we deal
in particular with the rings of p-adic integers. However, these are not the only ones.

Example 7. Let us complete the ring R[X ] for the (X2+1)-adic valuation. As the
ideal (X2+1) is prime, the completion R[X ](X2+1) is an integral domain and is the
set of all elements S written

S=
∑

k=0

∞
(akX + bk) (X

2+1)k.

The sum of two series S and T is done component-wise, but the product can be the
root of a carry. If S =2X − 1, then

S2=(2X − 1)2=4X2− 4X +1=−(4X +3)+ 4 (X2+1).
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Let us notice, however, that as the residue field ofR[X ]/(X2+1) isR[X ]/(X2+1)≃
C, then, according to [Coh46, Theorem 15], this ring is isomorphic to C[[T ]] wherein
there is no carry handling. One of these isomorphisms send T onto X2 + 1 and i

onto X +
1

2
X (X2+1)+

3

8
X (X2+1)2+
 .

We show that the complexity bounds obtained for formal power series can be
transposed to the p-adic integers. Let us denote I(m) the cost of the product of
two integers whose bit-size is at most m bits and Ip(n) the cost of the product
of two p-adic expansions of order n and whose coefficients have the usual binary
representations.

Proposition 8. (Propositions II.6 and II.7, [BHL11, Propositions 3.1
and 3.2]) Let a and b be two relaxed p-adic integers. The product a b can be com-
puted up till precision n using O(Ip(n) log n) bit-operations. For this computation,
the total amount of space needed does not exceed O(n).

By making use of conversions from base 2 to base p and vice versa, the compu-
tation of a b up till precision n can be done using O(I(n log p) log n) bit-operations
and O(n log p) bit-space.

A recursive series is a power series S fixed point of a function Φ, i.e. such
that S=Φ(S). If, furthermore, the computation of the nth term Φ(S)n only needs
to know S0, 	 , Sn−1, for every n ≥ k, then S has order k and from the k first
terms of S and the function Φ, one can compute recursively any term of S. If a
series is invertible, then its inverse is a recursive series of order 1. We adapt some
algorithms for recursive p-adic numbers, in particular, this of the computation of
the inverse. We deduce that the complexity bounds of Proposition 8 are still valid
for the computation of the quotient a/b of two p-adics integers up till precision n.
In Section 7, we give a recursive method to compute the rth root in Zp of a p-adic
integer. If r and p are coprime, Hensel’s lemma ensures that such a root exists as
soon as there exists a root modulo p.

c Relaxed resolution of algebraic systems

Chapter III is a work in progress with R. Lebreton named Relaxed p-adic Hensel
lifting for algebraic systems [BL12] extending the recursive computation of a rth
root in Zp.

Let us consider systems with rational coefficients. Knowing if such systems have
rational solutions can be complicated: the size of the numerators and of the denom-
inators can be very big. Even by making use of fast routines over Q, such as those
provided by Gmp [G+91], a non negligible overhead comes from the reduction to
irreducible fractions. One can rather solve these systems in Qp, the p-adic comple-
tion of Q, for one or multiple well-chosen p. Amongst all the computed solutions,
one must determine those being susceptible to be in Q.
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Example 9. Let us consider the simplest case of a univariate polynomial:

f(X)=X4− 1.

Clearly, this polynomial only has two rational roots 1 and −1. Indeed, if p = 2
or p=3mod 4, then f factors over Qp as

f(X) = (X − 1) (X +1) (X2+1).

And yet, for some prime p, in fact those congruent with 1 modulo 4, one finds 4
roots in Qp. For example, if p=5, f(X) factors as

f(X) = (X − 1) (X − (4+4 p+4 p2+4 p3+O(p4)))

× (X − (2+ p+2 p2+ p3+O(p4))) (X − (3+3 p+2 p2+3 p3+O(p4))).

One needs to know how to detect, from these 4 roots, which ones are possibly
rational. In here, thanks to the periodic expansions of the first two roots, it is
clear that they are the ones in Q. One can notice that the other two roots are just
representatives of i and −i in Q5.

In general, the period of a rational might be big enough not to be detected.
One needs to know how to reconstruct a rational number from a p-adic expansion.
Mignotte’s bound [GG03, Chapter 6] is a bound on the size of the coefficients of the
factors of such a polynomial f . In particular, this gives a bound on the precision
needed to factor f in Qp in order to find the roots in Q.

In the more general case of a solution x = (x1, 	 , xr) ∈ Qp
r, one may use the

rational reconstruction (see [GG03, Section 5.10]) for each xi, to see if they all are
in Q. If they are, then x ∈Qr is a rational solution of the system. Bounds on the
needed precision to do such a reconstruction exist, they are all linked to the so-called
arithmetic Bézout (see [BGS94, KPS01, McK01]).

The following proposition gives us a complexity bound on the computation of a
vector of recursive p-adic integers.

Proposition 10. Let Φ be an expression with L instructions of type addition,
subtraction or product. Let y∈Zp

r recursive of order k such that y=Φ(y) and y0,	 ,
yk are known, then the computation of yn can be done in O(L Ip(n) logn) operations
by making use of the relaxed product of Proposition 8.

Among the different algorithms for algebraic systems solving, Kronecker, pre-
sented in [GLS01, DL08], solves systems represented in evaluation, for example
represented by a straight-line program (s.l.p.). The systems must admit only a finite
number of solutions in the algebraic closure K̄ of K, they are said zero-dimensional .
The main interest of such a representation is that some polynomials may have a
lot of monomials but still be easily evaluated. For example (X1 + 
 + Xr)

d can
be evaluated in O(r + log d) products thanks to the exponentiation by squaring,
although, expanded, it has

(

r+ d− 1
d

)

monomials. Or the determinant of square matrix
of size r which is a polynomial with r2 variables and r! terms but which can be
evaluated in O(r3) operations thanks to the Gaussian elimination.
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In Chapter III, we give an automatic method for computing recursively a root y
of a polynomial f(Y ) such that y0= ymod p is a simple root of f(Y )mod p. First,
let Φ be function for which y is a fixed point, if and only if, y is a zero of f . In
practice, we always take

Φ(Y )=
f ′(y0)Y − f(Y )

f ′(y0)
.

It is not clear that such a function defines a recursive p-adic integer. We show that
we can always find a function Ψ such that y is a recursive p-adic integer of order 1
and such that its evaluation complexity is linear in this of f . More precisely, we
have the following proposition:

Proposition 11. (Proposition III.18, [BL12, Proposition 18]) Let f be a uni-
variate polynomial over Zp given as a straight-line program such as its multiplicative
complexity is L∗. Then there exists a function Ψ obtained from Φ and y0 such that

y=Ψ(y)

and for all n∈N∗, the computation Ψ(y)n only needs y0,	 , yn−1. Furthermore, the
evaluation complexity of Ψ is bounded by 2L∗+1.

We also show that the computation of the quotient of two p-adic integers can be
extended to the computation of the solution of regular linear system. We conclude
by dealing with the case of an algebraic system f of r polynomial equations in r

variables with coefficients in Z. We assume that the reduction of f modulo p, f0,
has a regular root y0, vector of p-adic integers. That is, we assume that the differ-
ential d fy0 in y0 is invertible over Fp. This differential is then invertible over Zp, so
that Hensel’s lemma applies and Propositions 10 and 11 can be generalized to this
situation.

Proposition 12. (Proposition III.18, [BL12, Proposition 31]) Let f be a
r-variate polynomial system over Zp given as a straight-line program such as its
multiplicative complexity is L∗. Then there exists a function Ψ obtained from Φ

and y0 such that

y=Ψ(y)

and for all n∈N∗, the computation Ψ(y)n only needs y0,	 , yn−1. Furthermore, the

evaluation complexity of Ψ is bounded by 3L∗+
r (r+1)

2
.

In particular, we can hope to deduce an improvement in the complexity of Kro-
necker algorithm by Giusti, Lecerf and Salvy (see [GLS01, DL08]).

We also do a complexity study when f has dense representation, i.e. when each
polynomial of f is given by its vector of coefficients.

All the algorithms presented in Chapters II and III have been implemented in
the C++ library algebramix for Mathemagix [H+02]. Some examples of these
implementations in C++ can be found in Appendix A. Examples for their use for
computing the product, the quotient or the rth and pth roots with Mathemagix
are in Appendix B.
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d Reduction of bivariate polynomials

Chapter IV is a joint work with G. Lecerf entitled Reduction of bivariate polyno-
mials from convex-dense to dense, with application to factorizations and accepted for
publication in Mathematics of Computation [BL10]. We study the factorization of a
bivariate polynomial. In particular, we look for reducing a polynomial f ∈K[X,Y ]

into a polynomial f̃ whose factorization can be computed more easily in order to
deduce this of f . Indeed, bivariate polynomial factorization is at the root of the
decomposition of hypersurfaces into irreducible components, that is varieties defined
by only one equation. Indeed, given a bivariate polynomial f(X, Y ) ∈K[X, Y ], if

one knows a factorization f(0, Y ) = f1̃(Y ) 
 f̃s(Y ) with f̃1, 	 , f̃s relatively prime,
then by Hensel’s lemma, there exist f1(X, Y ),	 , fs(X, Y )∈K[[X ]][Y ] such that

f(X,Y )= f1(X, Y )
 fs(X,Y ).

From a factor fi(X, Y ) =
∑

j=0

di fi,j(X) Y j one has to determine if the

power series fi,j(X) ∈ K[[X ]] are in K(X). One can use Padé-Hermite approx-
imants [GG03, Section 5.9] and concludes that f factors in K(X)[Y ] and therefore
in K[X, Y ].

By repeating this process, one can deduce an algorithm for factoring f(X1,	 ,Xr)
in K[X1,	 ,Xr] as soon as f(0,	 , 0,Xr) has coprime factors in K[Xr].

Assuming f is written

f(X,Y )=
∑

(i,j)∈N2

fi,jX
iY j ,

the set S = {(i, j) ∈N2, fi,j � 0} is called the support of f . The Newton polygon,
denoted N , is the convex hull of S. Thanks to it and Newton-Puiseux algorithm,
one can compute the roots of f when it is seen as a polynomial in Y with coefficients
inK[X ] (see [Wal78, Chapter IV] and [Die68, Chapitre III, Appendice]). It helps also
as an irreducible criterion for f , indeed, if f = g h, then N =N (g) +N (h) [Ost21,
Ost75, Ost99], where N (g) and N (h) are Newton polygons of g and h and + is
the Minkowski sum. This criterion can be seen as a generalization of Eisenstein’s
criterion for bivariate polynomial.

The number of points with integral coordinates in N is called the convex size
of N and is denoted π. The complexity bound for factoring is expected to depend
on π or the area of N , denoted Vol N . For example, in [Wei10], under some con-
ditions of genericity, one can find an algorithm for factoring f whose complexity
bound is in O(πω), where ω is the exponent of the linear algebra. And yet, the
best complexity bounds for the squarefree and irreducible factorizations depend on
the product of the partial degrees dX in X and dY in Y (see for example [Gao03,
Lec07, Lec08, Lec10]). Let us remark that, on the contrary, one cannot expect a
complexity bound to depend on the cardinal σ of S. Indeed, the polynomial f(X,
Y )=X p−Y p∈Q[X,Y ], for some prime p, is such that σ=2 but factors as

f(X, Y ) = (X −Y ) (X p−1+X p−2Y +
 +Y p−1),
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where the second factor has a support of size p.

Let us assume that dX ≥ dY . In characteristic zero, the squarefree factorization
of f can be computed, in a deterministic way [Lec08, Proposition 8] (resp. proba-
bilistic way [Lec08, Proposition 9]), in Õ(dX dY

2 ) (resp. Õ(dX dY )) operations in K.
In positive characteristic p, the irreducible factorization of K over K=Fpk can be
computed, in a probabilistic way [Lec10], in Õ(k (dX dY )

1.5) operations in Fp.

These complexity bounds may seem rather pessimistic. For example, the polyno-
mials family fn(X,Y )=1+Y +Xn Y n is such that he product of the partial degrees
is n2 while the size of the Newton polygon Nn is n/2.

The bounding rectangleR of N is the smallest rectangle of the form (oX , oY )+[0,
dX] × [0, dY ] containing N . The number of points with integral coordinates in R,
that is δ= (dX +1) (dY +1) is the dense size of N .

Theorem 13. (Theorems IV.2 and IV.20, [BL10, Theorems 1.2 and 4.3])
Let S be a finite subset of Z2 of size σ, convex hull N, convex size π and dense
size δ. Let R = (oX , oY ) + [0, dX] × [0, dY ] be the bounding rectangle of S. There
exists an invertible linear map U ∈ Aff(Z2) such that Ñ = U(N ) is included in a
rectangle R̃= [0, d̃X]× [0, d̃Y ] verifying

3

8
d̃X d̃Y ≤Vol Ñ ≤ d̃X d̃Y . (2)

Furthermore, U can be computed in O(σ log2 π) bit-operations and the dense size
of Ñ is at most 9π.

The map U can be computed as the composite function of shear mappings , axial
symmetries and translations. From a geometric point of view on the curve defined
by f , U is the composition of blowups and blowdowns, so that the factorization
of f̃ =U(f) is essentially equivalent to that of f .

According to equation (2), on can notice that Vol Ñ ∈O
(

d̃X d̃Y
)

. Though, as U

is invertible over Z, then Vol Ñ = VolN and π ∈ O
(

d̃X d̃Y
)

. One deduces that by

reducing f to f̃ , computing the wanted factorization of f̃ and applying U−1 to
its factors, one can find the squarefree factorization of f , in a deterministic (resp.
probabilistic) way, in Õ(π1.5) (resp. Õ(π)) operations in K when charK=0 and the
irreducible factorization, in a probabilistic way, of f in Õ(k π1.5) operations in Fp

when K=Fpk.

At last, we also show that the 3/8 factor appearing in equation (2) is optimal,
in general.

Proposition 14. (Proposition IV.21, [BL10, Proposition 4.4]) Let S be a

subset of Z2. With the convention that VolU(S)
VolR(U(S)) =1 whenever VolS =0, one has

inf
S⊂Z2,|S |<∞

sup
U∈Aff(Z2)

VolU(S)
VolR(U(S)) =

3

8
,
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where R(U(S)) represents the bounding rectangle of U(S).

e Resolution in average of real algebraic systems

In Chapter V, we are interested, with L. M. Pardo, in the computation in average
of an approximate root of a real algebraic system. This chapter is based on an
article named Spherical Radon transform and the average of the condition number on
certain Schubert subvarieties of a Grassmannian accepted for publication in Journal
of Complexity [BP11b]

In [SS93a, SS93b, BCSS98], the authors define an approximate zero z ′ of an
actual zero z of a homogeneous complex algebraic system f =(f1,	 , fn)∈C[X0,	 ,
Xn]

n, as an element of Pn(C) for which the iteration of Newton operator converges
immediately quadratically to z. Let dR be the natural Riemannian distance over
the unit-sphere of Cn+1 and dP be projective distance over Pn(C) defined by dP(w,
w ′) = sin (dR(w, w

′)). Formally speaking, denote z0 = z ′ and for all k ∈N, zk+1 =

zk− d fz |Tf(z)

−1 (f(z)), then for all k, one has

dP(z, zk)≤
(

1

2

)

2k−1

dP(z, z
′).

Smale’s seventeenth problem is about whether or not there exists an algorithm for
computing in polynomial time an approximate zero z ′ of a homogeneous generic
system f of n polynomials in n+ 1 variables. The algorithm presented by Beltrán
and Pardo [BP09a, BP09b, BP11a] is an example of such an algorithm whose com-
plexity bound is in O(N 2), where N is the dense size of f . However, their algorithm
is probabilistic. Today, the best known deterministic algorithm is an adaptation of
theirs thanks to the smooth analysis , the exponent appearing in its complexity is
in O(log logN).

Let us denote di = deg fi and (d) = (d1, 	 , dn). Let us denote also H(d) the
space of complex homogeneous systems g = (g1,	 , gn) in variables X0,	 , Xn such
that deg gi= di. This space is naturally endowed with Bombieri’s norm and one can
assume that each system in the following has norm 1, in particular, f is assumed to
have norm 1. Beltrán and Pardo propose to apply homotopic deformation technique
along a great circle of S(H(d)), the unit-sphere of H(d). From a system g for which
they know a root ζ , they study how ζ evolves along the great circle passing through g
and f . For Beltrán and Pardo’s algorithm to return an approximate root of f , the
great circle must not pass through Σ, the discriminant variety. This variety Σ is the
variety of the ill-conditioned systems of S(H(d)), that is of the systems whose set of
zeros has not dimension zero or whose at least one zero is multiple. This is a variety
of complex codimension 1 and therefore of real codimension 2.

The authors introduced the questor set G(d) which is a set of systems g for
which they know how to compute an exact root ζ . By picking at random a pair (g,
ζ) in G(d), with probability 1, the great circle passing through g and f does not
intersect Σ. Therefore, with probability 1, Beltrán and Pardo’s algorithm returns
an approximate root of f .
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In Chapter V, we deal with the analogous case wherein f is assumed to have real
coefficients, which we denote f ∈H(d)

R . A straightforward adaptation of Beltrán and
Pardos’ algorithm is not possible. Indeed, ΣR= Σ ∩ S(H(d)

R ), the real discriminant
variety, cuts the unit-sphere S(H(d)

R ) off in an exponential number of connected
components. Therefore if we want to apply homotopic deformation technique, we
have to pick up g in the same component as f , which is not reasonable. That is
why, we propose to choose g among the complex systems instead of only the real
systems and then to use their algorithm. We deduce that our variant of Beltrán and
Pardo’s algorithm returns an approximate root of f with probability 1.

Let us denote µnorm(g, ζ) the normalized condition number of g at its root ζ.
This number determine how much a small perturbation of g affects ζ. It is linked to
the condition number of the Jacobian matrix of g at ζ and therefore, in particular,
to the operator norm of the inverse of d gζ which can be denoted 9d gζ

−19. The
number of homotopic deformation steps performed by the Newton operator starting
with a pair (g, ζ) and targeting f along a great circle L passing through g and f is
bounded by

C(f , g, ζ)=
∫

h∈L

µnorm(h, ξ)
2 dL,

where ξ is the zero of h obtained from the perturbation of ζ (see [Shu09]). A
complexity bound of our algorithm is given by the expectation E defined by

E=ES
(

H(d)
R
)

×S(G(d))
(C(f , g, ζ)).

In the computation of this expectation, one can use the average of the square of the
condition numbers µav

2 defined as follows:

µav
2 (g)=

1

|V(g)|
∑

ζ∈V(g)

µnorm(g, ζ)
2.

Let us denote N + 1 = dimCH(d) = dimRH(d)
R , therefore, N is the dense size of a

system in S(H(d)
R ). Thanks to the spherical Radon transform [Rub02] defined by

Rα[µav
2 ](S(H(d)

R ))=
B
( N −α+2

2
,
α+N +1

2

)

volS(H(d))

∫

S(H(d))

µav
2 (g)

dP

(

g,S
(

H(d)
R
))

N+1−α
dS(H(d)),

we deduce the following result:

Theorem 15. (Corollary V.13, [BP11b, Corollary 12]) Let us
assume dimRH(d)

R =N +1 and denote

C(2N +1, N , i)= 2

(

N − 1

2

i

)

B
( 2N +3

2
,
1

2

)

B
( N − 1

2
,
1

2

)
.

Then the bound E of the complexity of our real variant of Beltrán and Pardo’s
algorithm verifies,

1. if N +1 is even,

E =
∑

i=0

N−1

2

C(2N +1, N , i)RN−2i[µav
2 ](S(H(d)

R ));
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2. if N +1 is odd,

R1[µav
2 ](S(H(d)

R )) 6 E 6 2
√
(

R1[µav
2 ](S(H(d)

R ))

B
( N +1

2
,
N

2

)

)

E 6 2
√

ES(H(d))

[

µav
2 (g)

dP

(

g,S
(

H(d)
R
))

N

]

.

In fact, our results are a little more general. Given a R-vector subspace M of H(d),
we compute the expectation E=ES(M)×S(G(d))(C(f , g, ζ)) for finding an approximate
root of f ∈M with norm 1 starting with a pair (g, ζ) in G(d). Above, the spaceM was
this of real systems H(d)

R , but it can be the space of algebraic systems with support
included in a given set S. Theorem 15 is then a special case of the following theorem:

Theorem 16. (Corollary V.10, [BP11b, Corollary 9]) Let N +1=dimCH(d)

and p+1= dimRM. For all i, denote

B0(2N +1, p, i) = 2

(

N − 1− p

2

2

)

B(N +
3

2
,
1

2
)

B(
p− 1

2
,
1

2
)
,

C(2N +1, p, i) = 2

(

N − p+1

2

i

)

B(N +
3

2
,
1

2
)

B(
p− 1

2
,
1

2
)
.

Let E be the complexity bound for the variant of Beltrán and Pardo’s algorithm,

1. if codimRM =1, then

4 2 p
√

(2N +1+ 3
√

)1/2
ES(H(d))[µav

2 ]6E6
(2N − 1) p

2

√

R0[µav
2 ](S(M )) ;

2. if codimRM is even, then

E =
∑

i=0

2N−p−1

2

C(2N +1, p, i)R2(N−i)−p[µav
2 ](S(M));

3. if codimRM is odd and greater than 1, then E is bounded by the following
quantities:

E >
∑

i=0

2N−p−2

2 (2N − 1)B0(2N +1, p, i)

i+ 3/2
√

√ R2(N−i)−p−1[µav
2 ](S(M)),

E 6
∑

i=0

2N−p−2

2 8B0(2N +1, p, i)

(2 i+1) (2N − 1)
R2(N−i)−p−1[µav

2 ](S(M)).
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Annexe A

Implementations in C++

In this appendix, we give some examples of our implementation in C++ for Math-
emagix of algorithms for p-adic integers. In the following, we present the source
code of a p-adic integer obtained from the application of a binary operator Op to
other p-adics f and g, for example, operator Op can be the binary plus or minus.
The operator Op has to apply coefficient-wise on f and g with maybe a propagation
of a carry. We assume furthermore that C is the ground ring and that M is a system
of representatives of C/(p) such as {0,	 , p− 1} if C=Z. At last, V is a variant, in
our case, it is derived either from series_carry_naive when ones needs to use
series for which the operations may involved a carry or from series_naive when
one needs to use classical formal power series.

#define Series series<M, V>

#define Series_rep series_rep<M, V>

typedef unsigned int nat;

template<typename Op, typename M, typename V>

class binary_series_rep: public Series_rep {

protected:

const Series f, g;

C carry;

public:

inline binary_series_rep (const Series& f2, const Series& g2):

f (f2), g (g2), carry (0) {}

virtual void Increase_order (nat l) {

Series_rep::Increase_order (l);

increase_order (f, l);

increase_order (g, l);

}

virtual M next () {

return Op::op_mod (f[this->n].rep, g[this->n].rep,

M::get_modulus (), carry);

}

};

In this piece of code, Op::op_mod in the next () function applies the operator Op
to the nth coefficients of f and of g, adds the possible carry and then take the
remainder modulo p. Finally, the quotient is stored in carry.

The method increase_order (nat l) is called when one wants to know the
current series up till precision l. It takes care of increasing the precision of the
different p-adics involved in the computation of said p-adic.

The following piece of code represents our implementation of the relaxed mul-
tiplication with conversions between base p and base 2 as described in Chapter II
Section 3.2.
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template<typename M, typename V>

class mul_series_rep: public Series_rep {

public:

typedef Lift_type (M) L;

protected:

Series f, g;

int lnz_f; // last non-zero coefficient in f

int lnz_g; // last non-zero coefficient in g

nat zeros_f; // bit 2^p set if f[2^p-1 ... 2^{p+1}-1] = 0

nat zeros_g; // bit 2^p set if g[2^p-1 ... 2^{p+1}-1] = 0

vector<L> b_f, d_f, b_g, d_g; // binary representations for the segments

// b_f[q] is the last segment of f of size 2^q

// d_f[q] is the "diagonal segment" of size 2^q

vector<L> powers_of_p; // p^(2^i)

vector<L> carry; // carry[q] is the carry in size 2^q

L get_power_of_p (const Modulus& p, nat i) {

// lazy access to p^(2^i), for i >= 0

// with its own memory allocation

static const L zero (0);

while (i >= N (powers_of_p))

powers_of_p << vector<L> (zero, max ((nat) 1, N (powers_of_p)));

if (powers_of_p [i] == zero) {

if (i == 0) powers_of_p[0]= L(* p);

else powers_of_p[i]= square (get_power_of_p (p, i - 1));

}

return powers_of_p [i];

}

public:

mul_series_rep (const Series& f2, const Series& g2):

f (f2), g (g2), lnz_f (-1), lnz_g (-1), zeros_f (0), zeros_g (0) {}

~mul_series_rep () {}

void Set_order (nat l2) {

Series_rep::Set_order (l2);

nat m= log_2 (next_power_of_two (l2 + 1));

if (N(b_f) < m) {

vector<L> tmp (L(0), m - N(b_f));

b_f << tmp; d_f << tmp;

b_g << tmp; d_g << tmp;

carry << tmp;

}

}

void Increase_order (nat l) {

Set_order (l);

increase_order (f, l);

increase_order (g, l);

}

M next () {

Modulus p= M::get_modulus ();

nat k= this->n;

if (exact_neq (f[k], M(0))) lnz_f= k;

if (exact_neq (g[k], M(0))) lnz_g= k;

if (k == 0) {

C r= 0;

if (lnz_f < 0) zeros_f |= 1;

if (lnz_g < 0) zeros_g |= 1;

176 Implementations in C++



if ((zeros_f&1) == 0 && (zeros_g&1) == 0) {

C q= 0;

mul_mod (r, * f[0], * g[0], p, q);

carry[0]= as<L> (q);

}

b_f[0]= d_f[0]= lift (f[0]);

b_g[0]= d_g[0]= lift (g[0]);

return M (r, true);

}

else {

k = 2 * (this->n + 2);

L t= 0, e_f= lift (f[this->n]), e_g= lift (g[this->n]);

nat q= -1;

while ((k&1) == 0 && k != 2) {

q++; k= k >> 1;

if (q > 0) {

e_f= b_f[q-1] + get_power_of_p (p, q-1) * e_f;

e_g= b_g[q-1] + get_power_of_p (p, q-1) * e_g;

}

if (k == 2) {

if (lnz_f < ((int) (1<<q)-1)) zeros_f |= (1<<q);

if (lnz_g < ((int) (1<<q)-1)) zeros_g |= (1<<q);

d_f[q]= e_f; d_g[q]= e_g;

}

t += carry[q];

if (q == 0 ||

((zeros_f & (1<<q)) == 0 && lnz_g >= ((int) (((k-1)<<q)-1))))

t += d_f[q] * e_g;

if (k == 2) break;

if (q == 0 ||

((zeros_g & (1<<q)) == 0 && lnz_f >= ((int) (((k-1)<<q)-1)))) {

t += e_f * d_g[q];

}

}

b_f[q]= e_f; b_g[q]= e_g;

while (q != (nat) -1) {

t = rem (t, get_power_of_p (p, q), carry[q]);

q--;

}

return M (as<C> (t), true);

}

}

};

Finally, this last class is a recursive p-adic integer as presented in Chapter II
Section 5 and in particular, the quotient of two p-adic integers as in Section 6.2.

#define Recursive_series_rep recursive_series_rep<M, V>

template<typename M, typename V>

class div_series_rep: public Recursive_series_rep {

protected:

Series f, g;

public:

div_series_rep (const Series& f2, const Series& g2):

f(f2), g(g2) {}

virtual void Increase_order (nat l) {

Recursive_series_rep::Increase_order (l);

increase_order (f, l);

increase_order (g, l);

}

Series initialize () {
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typedef typename Series_variant(C) SV;

ASSERT (g[0] != 0, "division by zero");

M u= invert (g[0]);

this->initial (0)= u * f[0];

Series tmp= f - lshiftz (this -> me () * rshiftz (g))

- carry_mul_series (this -> me (), g[0]);

return as<Series> (u * as<series<M,SV> > (tmp));

}

};

Method initialize () takes care of assigning the first coefficients of the current
series, with this->initial (nat k) and returns an equation for which the series
is a fixed point.

In this equation, lshiftz (Series s) (resp. rshiftz (Series s)) is just a
division (resp. multiplication) by p, carry_mul_series (Series a, M b) is our
implementation of mul_quo and finally, this->me () returns said series at its cur-
rent stage of computation so that further coefficients may be computed. In the
last line, as<series<M,SV> > converts the p-adic integer tmp into a series over Fp,
so that the next product behaves like mul_rem. In the end, the obtained series is
converted back into a p-adic integer. The returned expression is used in the next ()

method defined in recursive_series_rep, the method evaluates the expression at
the current stage and returns its nth coefficient.
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Annexe B

Examples in Mathemagix

In this appendix, we present how to use our implementations of p-adic inte-
gers, presented in Chapter II, in Mathemagix, in particular with the interpreter
Mathemagix-light.

Welcome to Mathemagix-light 0.4
This software falls under the GNU General Public License

It comes without any warranty whatsoever

www.mathemagix.org

(c) 2001-2010

a The basics with p-adic integers

First of all, we tell Mathemagix that we need to use the library algebramix.
Mmx] use "algebramix"

Let us create two 13-adic integers x and y such that x∈N and y ∈Z.
In the following, @p_expansion (a, modulus p) converts a natural integer a into a
vector of its coefficients in base p. Then, p_adic (v) creates a p-adic integer from
this vector:
Mmx] x: P_adic Modular Integer == p_adic (@p_expansion

(12345678901234567890, modulus 13));

mmout << "x = " << x << ".";

x = 1+ 12 p+7 p2+4 p4+ 11 p5+ p6+ 10 p7+ 12 p8+ p9+O(p10).

Mmx] y: P_adic Modular Integer == -p_adic(@p_expansion

(98765432109876543210, modulus 13));

mmout << "y = " << y << ".";

y = 9+ 12 p3+ 10 p4+5 p5+ 11 p6+5 p7+3 p8+3 p9+O(p10).

By default, the precision until which a p-adic integer is printed is 10. Let
us increase the precision up till 20 and print x and y. This is done thanks
to the set_output_order (x, l) function which takes as its first argument
any P_adic Modular Integer and as its second argument the precision.
Mmx] set_output_order (x, 20);

mmout << "x = " << x << ",\n\ny = " << y << ".";
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x = 1+ 12 p+7 p2+4 p4+ 11 p5+ p6+ 10 p7+ 12 p8+ p9+2 p10+8 p12+6 p13+
2 p14+7 p15+5 p16+ p17+O(p20),

y = 9+ 12 p3+ 10 p4+5 p5+ 11 p6+ 5 p7+3 p8+3 p9+ 2 p10+ 11 p11+ 12 p13+
5 p14+7 p15+7 p16+ p17+ 12 p18+ 12 p19+O(p20).

Basic ring operations are done in a classic way using +, -, *.
Mmx] mmout << "x + y = " << (x+y) << ",\n\nx - y = " << (x-y)

<< ",\n\nx * y = " << (x*y) << ".";

x + y = 10+ 12 p+7 p2+ 12 p3+ p4+4 p5+3 p7+3 p8+5 p9+4 p10+ 11 p11+
8 p12+5 p13+8 p14+ p15+3 p17+ 12 p18+ 12 p19+O(p20),

x - y = 5 + 11 p+ 7 p2+ p3+ 6 p4+ 5 p5+ 3 p6+ 4 p7+ 9 p8+ 11 p9+ 12 p10+
p11+7 p12+7 p13+9 p14+ 12 p15+ 10 p16+ 12 p17+O(p20),

x * y = 9+ 4 p+6 p2+4 p3+9 p4+ 10 p5+ 5 p6+ 11 p7+ 2 p8+ 12 p9+3 p11+
7 p12+7 p13+9 p14+4 p15+7 p16+ 10 p17+ 12 p18+2 p19+O(p20).

Likewise, the division is performed by using /, when possible, i.e. when the divisor
is not in pZp.
Mmx] set_output_order (x, 50); z == x/y;

mmout << "z = x/y = " << z << ".";

z = x/y = 3+ 4 p+2 p2+6 p3+4 p4+3 p5+ 12 p6+ 11 p7+6 p8+2 p9+6 p10+
p11+9 p12+2 p13+ 10 p14+8 p16+2 p17+ 12 p18+2 p19+5 p20+ 12 p21+8 p22+
9 p23+ 7 p24+ 3 p25+8 p26+ 7 p27+ 11 p28+9 p29+ 9 p30+ 5 p31+ 3 p33+ 6 p34+
12 p35+ 2 p37+ 6 p38+ 2 p40+ 5 p41+ 9 p42+3 p43+ 3 p44+ 9 p45+ 6 p46+ 3 p47+
11 p48+7 p49+O(p50).

The multiplication by pr can either be performed by creating a p-adic integer equals
to p and then by multiplying by this p-adic r times:
Mmx] p: P_adic Modular Integer == p_adic (@p_expansion

(13, modulus 13));

mmout << "p = " << p << ",\n\nx*p^3 = " << x*p*p*p << ",";

p = p+O(p50),

x*p^3 = p3 + 12 p4 + 7 p5 + 4 p7 + 11 p8 + p9 + 10 p10 + 12 p11 + p12 + 2 p13 +
8 p15+6 p16+2 p17+7 p18+5 p19+ p20+O(p50),

or it can be performed by shifting by r with the operator << r:
Mmx] mmout << "x*p^3 = " << (x << 3) << ".";

x*p^3 = p3 + 12 p4 + 7 p5 + 4 p7 + 11 p8 + p9 + 10 p10 + 12 p11 + p12 + 2 p13 +
8 p15+6 p16+2 p17+7 p18+5 p19+ p20+O(p50).

The reciprocal operator >> r is a shift in the other way, it returns the quotient of
a division by pr:
Mmx] mmout << "x/p^2 = " << (x >> 2) << ".";

180 Examples in Mathemagix



x/p^2 = 7 + 4 p2+ 11 p3+ p4+ 10 p5+ 12 p6+ p7+ 2 p8+ 8 p10+ 6 p11+ 2 p12+
7 p13+5 p14+ p15+O(p50).

b Computation of rth roots in Zp

b.a Separable roots

Recall that by Hensel’s lemma, if r and p are coprime, then an element a∈Zp with
zero valuation is a rth power in Zp if, and only if, a0 is a rth power in Fp.
Since 3 = 24 = 34 = 104 = 114 in F13, z is in fact a 4th power of four ele-
ments in Z13. As explained in Chapter II, Section 7.1, since 4 and 13 are coprime,
we can compute recursively any of these 4th roots. This is done thanks to
the separable_root (a, r) function which computes a rth root of a:
Mmx] set_output_order (x, 20);

t1 == separable_root (z, 4); t2 == separable_root (z, 4);

t3 == separable_root (z, 4); t4 == separable_root (z, 4);

mmout << "t1 = " << t1 << ",\n\nt2 = " << t2

<< ",\n\nt3 = " << t3 << ",\n\nt4 = " << t4 << ".";

t1 = 3 + 6 p + 9 p2 + 3 p3 + p4 + 4 p5 + 8 p8 + 10 p9 + 11 p10 + 7 p11 + 6 p12 +
12 p13+2 p14+7 p15+3 p16+8 p17+ p18+5 p19+O(p20),

t2 = 10 + 6 p + 3 p2 + 9 p3 + 11 p4 + 8 p5 + 12 p6 + 12 p7 + 4 p8 + 2 p9 + p10 +
5 p11+6 p12+ 10 p14+5 p15+9 p16+4 p17+ 11 p18+7 p19+O(p20),

t3 = 2 + 7 p + 3 p2 + 7 p3 + 10 p4 + 11 p5 + 11 p9 + 5 p10+ 2 p11+ 6 p12+ p14+
11 p15+7 p16+9 p17+7 p18+8 p19+O(p20),

t4 = 10 + 6 p + 3 p2 + 9 p3 + 11 p4 + 8 p5 + 12 p6 + 12 p7 + 4 p8 + 2 p9 + p10 +
5 p11+6 p12+ 10 p14+5 p15+9 p16+4 p17+ 11 p18+7 p19+O(p20).

Each call computes randomly one of the roots. Unfortunately, the fourth call
returned t4 = t2, while we would like it to return the remaining one, that is t4 =
11+O(p):
Mmx] t4 == separable_root (z, 4);

mmout << "t4 = " << t4 << ".";

t4 = 11 + 5 p + 9 p2 + 5 p3 + 2 p4 + p5 + 12 p6 + 12 p7 + 12 p8 + p9 + 7 p10 +
10 p11+6 p12+ 12 p13+ 11 p14+ p15+5 p16+3 p17+5 p18+4 p19+O(p20).

Let us verify now that they all are indeed 4th root of z. We set the precision up
to 10000 and we check that for each i, 1≤ i≤ 4, ti4− z=0mod 1310000.
Mmx] set_output_order (z, 10000);

mmout << "t1^4-z = " << (t1^4-z) <<",\tt2^4-z = "

<< (t2^4-z) << ",\n\nt3^4-z = " << (t3^4-z) << ",\tt4^4-z = "

<< (t4^4-z) << ".";

t1^4-z = O(p10000), t2^4-z = O(p10000),
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t3^4-z = O(p10000), t4^4-z = O(p10000).

Likewise, since 325=3 in F13, t1 is a 25th root in Z13. However, there is no other 25th
root of 3 in F13 than 3 itself. So that there is only one element u1 ∈ Z13 such
that u125= t1, its expression up till precision 20 is
Mmx] set_output_order (t1, 20); u1 == separable_root (t1, 25);

mmout << "u1 = " << u1 << ".";

u1 = 3 + 3 p+ 5 p2+ 7 p3+ 9 p4+ 11 p5+ 11 p6+ 6 p7+ p8+ 2 p9+ p10+ 7 p11+
3 p13+7 p14+8 p15+ 11 p16+6 p17+ 11 p18+5 p19+O(p20).

The verification up till precision 10000 gives us
Mmx] set_output_order (u1, 10000);

mmout << "u1^25-t1 = " << (u1^25-t1) << ".";

u1^25-t1 = O(p10000).

b.b pth roots in Zp

According to Section 7.2, in some favorable cases, if a∈Zp, we can compute a pth
root of a, which is unique in Zp whenever p > 2. For instance, let us consider a
favorable a∈Z65537, that is such that a065537= a0+ 65537 a1+O(655372):
Mmx] a : P_adic Modular Integer == p_adic (@p_expansion

(1452^65537+(65537^2)*(12795747464538920304), modulus 65537));

set_output_order (a, 20);

mmout << "a = " << a << ".";

a = 1452 + 52260 p + 40972 p2 + 38287 p3 + 16016 p4 + 48904 p5 + 23409 p6 +
7285 p7 + 2056 p8 + 20520 p9 + 58620 p10 + 196 p11 + 26660 p12 + 21951 p13 +
60415 p14+ 9757 p15+ 31425 p16+ 31575 p17+ 14102 p18+ 11450 p19+O(p20).

Its 65537th root in Z65537 is given by a call to the pth_root function:
Mmx] b == pth_root (a);

mmout << "b = " << b << ",";

b = 1452 + 20721 p + 2726 p2 + 15103 p3 + 13802 p4 + 7612 p5 + 1459 p6 +
30524 p7 + 21602 p8 + 1590 p9 + 63017 p10 + 55101 p11 + 62886 p12 + 9164 p13 +
8286 p14+ 27926 p15+ 4729 p16+ 24077 p17+ 45627 p18+ 38227 p19+O(p20),

whose verification is:
Mmx] set_output_order (b, 10000);

mmout << "b^65537-a = " << (b^65537-a) << ".";

b^65537-a = O(p10000).

Now, when p=2, a favorable c∈Z2 is such that c=1+O(8):
Mmx] c : P_adic Modular Integer == p_adic (@p_expansion

(1+8*7638473,modulus 2)); set_output_order (c, 20);

mmout << "c = " << c << ".";

c = 1+ p3+ p6+ p9+ p10+ p11+ p13+ p14+ p18+O(p20).
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One of its square root is d1:
Mmx] d1 == pth_root (c);

mmout << "d1 = " << d1 << ".";

d1 = 1+ p2+ p3+ p4+ p7+ p8+ p9+ p12+ p13+ p14+ p16+ p17+O(p20).

In fact, we made the choice that whenever p=2 and c=1+O(8), pthroot always
returns the root d1 verifying d1 = 1 + O(4). The other one d2, which satisfies d2 =
3+O(4), is naturally obtained as the opposite of d1:
Mmx] d2 == -d1;

mmout << "d2 = " << d2 << ".";

d2 = 1+ p+ p5+ p6+ p10+ p11+ p15+ p18+ p19+O(p20).

Let us verify that both d1 and d2 are indeed square roots of c, up till at least
precision 1000000:
Mmx] set_output_order (d1, 1000000);

mmout << "d1^2 - c = " << (d1^2-c) << ",\td2^2-c = "

<< (d2^2-c) << ".";

d1^2 - c = O(p1000000), d2^2-c = O(p1000000).
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Résumé
Contributions à la résolution des systèmes algébriques :

réduction, localisation, traitement des singularités ; implantations

Cette thèse traite de certains aspects particuliers de la résolution des systèmes algébriques.
Dans un premier temps, nous présentons une façon de minimiser le nombres de variables addi-

tives apparaissant dans un système algébrique. Nous utilisons pour cela deux invariants de variété
introduits par Hironaka : le faîte et la directrice. Dans un second temps, nous proposons une
arithmétique rapide, dite détendue, pour les entiers p-adiques. Cette arithmétique nous permet
ensuite de résoudre efficacement un système algébrique à coefficients rationnels localement, c’est-
à-dire sur les entiers p-adiques. En quatrième partie, nous nous intéressons à la factorisation d’un
polynôme à deux variables qui est une brique élémentaire pour la décomposition en composantes
irréductibles des hypersurfaces. Nous proposons un algorithme réduisant la factorisation du poly-
nôme donné en entrée à celle d’un polynôme dont la taille dense est essentiellement équivalente
à la taille convexe-dense de celui donné en entrée. Dans la dernière partie, nous considérons la
résolution en moyenne des systèmes algébriques réels. Nous proposons un algorithme probabiliste
calculant un zéro approché complexe du système algébrique réel donné en entrée.

Mots clefs. Résolution des systèmes algébriques, algorithmes, nombres p-adiques, factorisa-
tion de polynômes.

Abstract
Contributions to algebraic system solving:

reduction, localization, singularities handling; implementations

This PhD thesis deals with some particular aspects of the algebraic systems resolution.
Firstly, we introduce a way of minimizing the number of additive variables appearing in an

algebraic system. For this, we make use of two invariants of variety introduced by Hironaka: the
ridge and the directrix. Then, we propose fast arithmetic routines, the so-called relaxed routines,
for p-adic integers. These routines allow us, then, to solve efficiently an algebraic system with
rational coefficients locally, i.e. over the p-adic integers. In a fourth part, we are interested in the
factorization of a bivariate polynomial, which is at the root of the decomposition of hypersurfaces
into irreducible components. We propose an algorithm reducing the factorization of the input
polynomial to that of a polynomial whose dense size is essentially equivalent to the convex-dense
size of the input polynomial. In the last part, we consider real algebraic systems solving in average.
We design a probabilistic algorithm computing an approximate complex zero of the real algebraic
system given as input.

Key words. Algebraic systems solving, algorithms, p-adic numbers, polynomial factorization


