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travailler sur des sujets de recherche si riches et inspirateurs, et dans un cadre humain
et professionnel si exceptionnel. Bernard Rougé m’a fait goûter la beauté de la théorie
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humilité, sans même vouloir en rester le coauteur. Son souci pour mon avenir après la
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tions de la part de Yves Meyer et de Patrick-Luis Combettes. Finalement les commen-
taires et suggestions de Pascal Monasse, ainsi que la soigneuse lecture des rapporteurs
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munauté CVX à Paris, ainsi qu’à Jean-Marc Fournon, Marika Thomas, Alain Thomas-
set, Christian Mellon, Philippe Deterre, le groupe Transgenèse, et la communauté de
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Résumé

Cette thèse aborde quelques-uns uns des problèmes qui surviennent dans la concep-
tion d’un système complet de vision par ordinateur : de l’échantillonnage à la détection
de structures et l’interprétation. La motivation principale pour traiter ces problèmes a
été fournie par le CNES et la conception du satellite SPOT5 d’observation terrestre (qui
a été lancé en avril cette année), ainsi que par les applications de photogrammétrie et
vidéo-surveillance chez Cognitech, Inc. pendant les étapes finales de ce travail. Au-delà
de ces motivations initiales, la plupart des sujets sont traités avec une généralité suffi-
sante pour être d’intérêt pour d’autres systèmes de vision par ordinateur, que ce soient
des appareils photo numériques, ou des systèmes de surveillance semi-automatiques.

Si l’on fait une abstraction très grossière, la chaı̂ne de traitement d’image d’un sa-
tellite d’observation terrestre est composée des parties suivantes :

À bord : Un système optique reçoit la lumière du paysage observé, et le focalise sur
une matrice de capteurs, qui mesure la luminance moyenne reçue par chaque capteur.
Ce signal analogique est envoyé à un convertisseur analogique/numérique, et le signal
numérique résultant est débruité et compressé pour sa transmission à la base terrestre.

Segment sol : Le signal discret reçu est décompressé et restauré pour éliminer le
flou et les artefacts de compression. Certaines corrections géométriques sont parfois
réalisées afin de compenser les déformations dues à une prise de vue pas parfaite-
ment verticale, ou bien pour normaliser la géométrie épipolaire d’une paire stéréo. Des
corrections plus fines encore sont nécessaires afin de compenser les micro-vibrations
subies par le satellite pendant l’acquisition de l’image.

Applications : Les images stockées peuvent être ultérieurement utilisées pour une
myriade d’applications qui essayeront de prendre des mesures sur l’image. Ces me-
sures devraient être les plus précises possibles, ou bien les erreurs devraient être pour
le moins prédictibles ou avoir des statistiques connues. Ceci impose des contraintes
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⇒ ⇒





spécifiques, bien différentes de celles imposées par des systèmes visant un consom-
mateur final, auquel cas des critères d’apparence visuelle et d’esthétique sont plus cri-
tiques. Une des applications principales de l’imagerie satellitaire (et en particulier de
SPOT5 qui contient un instrument spécialment conçu à cette fin) est la construction des
modèles numériques d’élévation et de terrain à partir de paires stéréo. Récemment,
l’utilisation de paires stéréo quasi-simultanées avec une petite différence d’angle de
prise de vue est en train d’être sérieusement considérée. L’avantage d’une telle dispo-
sition, est qu’en évitant au maximum les occlusions et les changements d’illumination
d’une prise de vue à l’autre, elle permet d’obtenir une carte d’élévation assez complète
par corrélation de la paire d’images. En revanche, la magnitude des vecteurs dans la
carte de disparité est beaucoup plus petite qu’en photogrammétrie traditionnelle, et en
conséquence beaucoup plus sensible aux erreurs dans les mesures prises sur l’image
et son interpolation. Voici l’une des raisons pour lesquelles ce projet a mis l’accent
sur la conception du système d’acquisition d’image, et sur les procédures à utiliser
pour échantillonner et interpoler correctement les images produites par ledit système.
Cet effort de précision s’est montré très rentable quand nous nous sommes attaqués à
d’autres problèmes de détection de structures.

Dans ce cadre, nous avons concentré notre travail sur cinq questions.

1. Comment choisir le “meilleur” système d’acquisition parmi une série de pos-
sibles ?

2. Comment quantifier et éviter l’effet de repliement spectral (aliasage) dû à l’échan-
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tillonnage ?

3. Comment corriger l’échantillonnage irrégulier dû aux micro-vibrations du satel-
lite ?

4. Comment remplir les régions dans lesquelles une paire stéréo n’a pas réussi à
fournir une estimation fiable de l’élévation du terrain ?

5. Comment étendre les méthodes de corrélation de paires stéréo à des zones ur-
baines, dans lesquelles la carte d’élévation est bien moins régulière que dans le
cas de modèles de terrain ?

Cette thèse n’a pas l’ambition de fournir des réponses complètes à toutes ces ques-
tions ; nous avons tout simplement essayé de contribuer à la compréhension de chaque
problème. Notons, que la première et la dernière question sont spécialement générales.
Notre réponse sera donc dans ces deux cas, particulièrement partielle.

La première question est assez liée à la seconde et a la troisième. On peut, bien sûr,
étudier les propriétés et les possibilités offertes par chacun des réseaux d’échantillonnage,
comme nous le faisons dans l’appendice A, mais pour obtenir une réponse plus complète
à cette question nous devons estimer dans quelle mesure chacun des systèmes permet
d’éviter les artefacts les plus communs pendant l’acquisition de l’image, tels que le
flou, le bruit, le repliement spectral, et les perturbations du réseau d’échantillonnage
(ou “jitter”, comme ce phénomène est nommé dans une partie de la littérature anglo-
phone sur ce sujet). Ces questions sont traitées dans le chapitre 1, en ce qui concerne le
repliement spectral principalement, mais aussi le bruit et le flou, dans une certaine me-
sure, et ensuite dans le chapitre 2, en ce qui concerne l’échantillonnage perturbé. Notre
Leitmotiv dans ces deux chapitres (ainsi que l’appendice A et l’annexe B) est le souci de
répondre à la première question de différents points de vue. Ces travaux mettent au
centre de nos préoccupations la théorie de Shannon de l’échantillonnage et la théorie
de l’information, et ils utilisent les outils de l’analyse de Fourier harmonique et non-
harmonique. Ils ont mérité donc d’être regroupés dans la partie I de cette thèse, sur
l’échantillonnage d’images et l’interpolation de Shannon.

Quand il s’agit de combler des trous dans un modèle d’élévation ou de terrain
(question 4 et chapitre 3), nous devons adopter un modèle d’interpolation différent. Le
modèle de Shannon, basé sur la supposition que l’image est essentiellement à bande
limitée, n’est plus valable car : (i) la surface du terrain n’a aucune raison d’être à bande
limitée ; (ii) les mesures d’altitude que nous faisons ne sont pas pré-filtrées non plus
par une ” fonction transfert ” à bande limitée ; (iii) même si le modèle de Shannon était
valable pour représenter la surface du terrain, il y a un problème d’échelle, car la taille
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des trous à remplir est souvent beaucoup plus grande que le taux d’échantillonnage as-
socié à toute limite raisonnable pour la bande spectrale. Pour cette raison, le modèle de
Shannon produit soit des interpolateurs beaucoup trop réguliers qui ne peuvent pas
satisfaire les conditions aux bords, soit des interpolateurs beaucoup trop oscillants.
Aussi, dans le chapitre 3, nous nous intéressons à des modèles plus géométriques,
basés sur des équations aux dérivées partielles, qui permettent de mieux exprimer la
structure géométrique particulière des surfaces de terrain.

Enfin, nous arrivons à la dernière question, sur l’extension des méthodes de corrélation
pour les paires stéréo, au cas des paysages urbains. Paradoxalement, bien que les bords
contrastés soient essentiels pour permettre aux méthodes de corrélation de fournir des
cartes d’élévation précises, la corrélation échoue systématiquement près de ces bords
(les arêtes d’un bâtiment par exemple) à cause du phénomène d’adhérence décrit par
Delon et Rougé [57] . En conséquence, les méthodes de corrélation ne fournissent pas
des estimations fiables de la hauteur dans les régions proches d’un bord très contrasté,
et si l’on utilise des méthodes d’interpolation comme ceux du chapitre 3, les murs et
les coins d’un immeuble seraient lissés, arrondis, et d’autres artefacts apparaı̂traient. Il
semble assez évident que pour complémenter ces limitations des méthodes de corrélation
une meilleure approche consisterait à détecter et localiser précisément les bords et
d’autres caractéristiques, et à faire ensuite une mise en correspondance entre les deux
images. Plus ces caractéristiques seront groupées pour former des structures géométriques
complexes, moins il sera probable de les trouver par hasard, et la mise en correspon-
dance sera plus significative. Ceci nous amène au programme de recherches de la
théorie de la Gestalt de Wertheimer [173], Metzger et Kanizsa [108], et leur implémentation
computationnelle introduite par Desolneux, Moisan et Morel [62, 63] basée sur le prin-
cipe de Helmholtz et les modèles à contrario.
Dans le chapitre 4, nous suivons ce programme, et nous nous concentrons sur deux
Gestalts omniprésentes dans les scènes urbaines, qui sont particulièrement utiles pour
la création de modèles d’élévation à partir de paires stéréo, ou même des modèles ar-
chitecturaux à partir d’une seule prise de vue : les segments de ligne droite et leurs
points de fuite. L’utilisation des alignements et points de fuite dépasse largement le
cadre de la conception de systèmes d’imagerie satellitaire. Ils peuvent être utilisés
pour calculer la géométrie épipolaire, calibrer une partie des paramètres internes ou
externes de la caméra ou même prendre des mesures très précises des dimensions tri-
dimensionnelles d’un objet, à partir d’une seule ou plusieurs prises de vue de l’objet,
et ceci en utilisant des connaissances minimales sur la scène, telles que l’orthogonalité
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ou l’appartenance à un même plan. De fait, cette dernière application a été proposée
par Cognitech, Inc., dans le but d’aider à la résolution de certains problèmes de pho-
togrammétrie, dans lesquels l’entreprise est spécialisée, et celle-ci a été la motivation
principale pour nous intéresser à ce problème.

Guide de lecture Chacun des chapitres 1 à 4 ainsi que l’appendice A constitue en
lui-même une unité autonome, et peut être lu indépendamment des autres. La seule
exception est l’annexe B, qui contient à la fois des matériaux permettant de mieux
comprendre les contenus et certains des choix de la partie I, ainsi que des conclusions
d’ensemble de la partie I. Une progression assez logique de lecture pourrait être la
suivante : appendice A, partie I, annexe B, chapitre 3, chapitre 4, sachant qu’il serait
préférable de lire certaines parties de l’annexe B là où elles sont citées dans la partie I.
Cette progression n’a pas été respectée pour des raisons de confidentialité dans le cas
de l’annexe B, et pour éviter de donner trop d’importance à l’appendice A, qui contient,
contrairement aux chapitres 1 à 4, très peu de résultats originaux. Il s’agit simplement
d’une description de l’état de l’art, dont une partie a motivé le reste du travail. De plus,
certains aspects de cette partie sont repris plus rigoureusement, et avec plus de détails
dans le chapitre 1.
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Overview

This thesis deals with a few of the many issues that arise in the design of a complete
computer vision system, from sampling and interpolation, to feature detection and in-
terpretation. The main motivation for addressing these topics was provided by the
design of the SPOT 5 earth observation satellite launched in April this year, the plan-
ning of its successor satellites, as well as a photogrammetry and video-surveillance
application at Cognitech, Inc. during the final stages of this work. Beyond these ini-
tial motivations, most subjects are treated with full generality and can be of interest
for other computer vision systems, let it be e.g. digital cameras, or semi-automated
surveillance systems.

If we make a very coarse abstraction, the image processing chain of an earth obser-
vation satellite consists of the following parts:

On board segment. An optical system gathers the light from the observed landscape,
and focuses it at a sensor array, which measures the average luminance received by
each sensor. This analog signal is sent to a D/A converter, and the corresponding
digital signal is de-noised and compressed for transmission to the earth base segment.

Earth base segment. The received discrete image is decompressed, and restored to
eliminate blur and compression artifacts. Geometric corrections are usually performed,
in order to compensate for the viewing angle, or to standardize the epipolar geometry
of stereo pairs. Even finer corrections are needed to compensate for micro-vibrations
of the satellite during acquisition.

Applications. The stored images can later be used for a myriad of applications, which
will try to perform measurements on the image which should be as precise as possible
or, at least, these errors should be predictable or have known statistics. This imposes
specific constraints on the final image, different from consumer applications where the
visual appearance and aesthetic criteria are critical features. One of the main appli-

xix
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cations of satellite imaging (and in particular of the SPOT5 satellite which contains a
special instrument for this purpose) is the construction of digital elevations models
from stereo pairs. Recently, almost simultaneous stereo pairs with an unusually small
difference in viewing angle have been seriously considered. The advantage of this dis-
position, is that by avoiding changes and occlusions, it can provide a quite complete
height computation by correlation of the image pairs. On the down side, disparity
maps are much smaller than in traditional photogrammetry, and therefore more sensi-
tive to errors in image measurements and interpolation. This is one of the reasons why
a special emphasis was put throughout this project on the design of the acquisition
system, and on how to correctly sample and interpolate images. This effort paid off
later, when we addressed apparently unrelated feature detection issues.

Within this framework we concentrated our work on five questions

1. How to choose the “best” acquisition system among a series of possibilities?

2. How to quantify and avoid the aliasing effect due to sampling?

3. How to compensate for the irregular sampling due to micro-vibrations of the
satellite?

4. How to fill-in the regions where the correlation of stereo pairs failed to provide a
height value?

5. How to extend the stereo-pair correlation methods to urban areas, where the
height map is much less regular than in terrain models?

This thesis does not have the ambition to provide complete and final answers to all
of these questions ; we simply attempt to provide some more insight on each subject.
Note that the first and last questions are especially general and our answer will be
particularly partial.

The first question is quite related to the second and the third ones. We can study
the properties and possibilities of the different possible sampling grids as we do in
appendix A, but a more complete answer to this question involves comparing to what
extent each of the systems allows to avoid common artifacts during image acquisition
such as blurring, noise, aliasing, and perturbations of the sampling grid (or sampling
“jitter” as it is referred to in part of the literature). These questions are addressed in
chapter 1, concerning mainly aliasing, and also to some extent noise and blurring, and
in chapter 2, concerning jitter. Our Leitmotiv in these two chapters (together with
appendix A and annex B) is to try to answer the first question from different points of
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view. Thus, they all share a focus on Shannon’s sampling and information theory and
they involve harmonic and non-harmonic Fourier analysis. We grouped these three
chapters into part I of this thesis, on image sampling and Shannon interpolation.

When it comes to filling in holes in digital elevation models (question 4 and chap-
ter 3), we have to switch to a different interpolation model. The Shannon model, based
on the assumption that the image is essentially band-limited, is no longer valid because
(i) the terrain surface has no reason to be band-limited; (ii) the height measurements
we make are not pre-filtered by a band-limited “transfer function” either; (iii) even if
the Shannon model was valid to represent terrain surfaces, there is a scale problem,
since the size of the holes that need to be filled is often much larger than the sampling
rate corresponding to any reasonable band limit. Therefore the Shannon model leads
to either much too smooth interpolators which cannot satisfy the boundary conditions,
or to much too oscillating interpolators.
For this reason in chapter 3 we turn to more geometric models based on partial dif-
ferential equations, that allow to better express the particular geometric structure of
terrain surfaces.

Finally, we come to the last question, on how to generalize stereo pair correlation
methods to the case of urban landscapes. Paradoxically, even if contrasted edges are
essential for correlation methods to provide accurate elevation maps, they systemati-
cally fail close to the edges (of buildings for instance) due to the adherence effect de-
scribed by Delon and Rougé [57]. Therefore correlation methods do not provide height
measurements close to the edges, and if we use interpolation methods such as those
in chapter 3, walls and corners of buildings become smoothed out, and other artifacts
are created. It seems quite obvious that to complement these limitations of correlation
methods, a better approach would be to detect and precisely locate edges and other fea-
tures, and then match them between both images. The more these features are grouped
into complex geometric structures the less they will be likely to appear, and the more
a match (between two similar such complex structures in both images) will be signif-
icant. This leads us to the full Gestalt programme of Wertheimer [173], Metzger, and
Kanizsa [108], and their computational implementation based on the Helmholtz prin-
ciple and a contrario models introduced by Desolneux et al. [62, 63].
In chapter 4 we follow this programme, concentrating on two features that are partic-
ularly common in urban scenes, and useful for the creation of elevation models from
stereo pairs or even architectural models from single views: line segments and their
vanishing points. The use of alignments and vanishing points goes beyond the design
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of a satellite imaging system. They can be used to compute the epipolar geometry, cal-
ibrate part of the the internal or external parameters of a camera, or even take precise
3D measurements of length ratios from a single or several views of the scene, using
a minimal a priori knowledge of the scene like coplanarity or orthogonality relations.
Actually, this last application was proposed by Cognitech Inc., in order to help solve
some of the photogrammetry problems in which the company is specialized, and this
provided the main motivation for working in this area.

Reading guide. Each of the chapters 1 to 4, as well as appendix A makes up a self-
contained unit, and can be read in isolation of the other chapters. The only exception
is annex B, which contains (i) supporting materials which may help better understand
the contents and certain choices made in part I, and (ii) overall conclusions concerning
part I. A logical reading sequence could be: appendix A, part I, annex B, chapter 3,
chapter 4, taking into account that it could be preferable to read certain parts of annex
B at the point where they are cited in part I. This sequence was not respected in the
organization of the thesis for confidentiality reasons in the case of annex B, and to avoid
giving too much importance to appendix A, which is mainly an overall review of the
state of the art and contains much less original material than the rest of the chapters.
The parts of appendix A that are important for the rest of the thesis, are revisited in
more detail in chapter 1, so it may well be skipped by the reader who wishes to go
directly to the main contributions of this thesis.

In the following sections we summarize the main contributions of each of the four
chapters and the appendix.

Review on Hexagonal Sampling

In this appendix we give a brief account of the different possible image sampling grids
and their properties. The main reason for conducting this study, is that recent devel-
opments at the French Space Agency (CNES) allow for the realization of high resolu-
tion satellite acquisition systems that do not need to locate the sensors on a traditional
square grid. We start with an analysis of the geometric constraints on symmetry and
regularity that leave only two possibilities in the two-dimensional case, namely: square
and hexagonal grids. Next, we review the main properties of these two grids, conclud-
ing that: (i) the hexagonal grid requires a smaller sampling density to represent the
same amount of information, under isotropy hypothesis; (ii) discrete topology (and
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hence morphological operators) are more conveniently expressed in terms of a single
connectivity concept, whereas square grids require two complementary concepts; (iii)
the hexagonal grid allows for the construction of wavelet families with better orienta-
tion selectivity, more accurate distance transforms, and isotropic separable filters with
a slightly larger computational effort; (iv) the discrete Fourier transform can be com-
puted on an hexagonal grid using the same FFT algorithm as in the square grid, if
we only accept to periodize the image along its main axes, instead of periodizing it
along orthogonal axes as in the square grid. Based on these ideas we propose a new
algorithm for converting between square and hexagonal grids using Shannon interpo-
lation, and separable sinc filters.

Optimal reciprocal cell,

and applications to restoration and zoom

In view of the many good properties of hexagonal grids, it was decided to study in
more detail the resolution of both square and hexagonal sampling systems. An im-
portant prerequisite for this study is a thorough development of Fourier analysis and
sampling theory in non-orthogonal grids. Even though the main results are available
in different places it was difficult to find a single reference containing the development
of the results we needed in a unified manner. For this reason we summarize these re-
sults in section 5.1 following mainly Morel and Ladjal [135], Bony [36], and Gasquet
and Witomski [80].

In this context, following Rougé [147] a sampling system is assumed to be com-
posed of the triplet (Γ, H,N) where Γ represents the sampling grid, H its transfer func-
tion, andN the noise statistics, more precisely its standard deviation at each frequency.
In addition some knowledge of natural image statistics is assumed, namely the stan-
dard deviation F at each frequency. From this information we compute a signal-to-
noise ratio

1

b2(ξ)
=
|HF |2(ξ)

N2(ξ)

and a signal-to-aliasing ratio

1

a2(ξ)
=

|HF |2(ξ)∑
γ∗∈Γ∗\{0} |HF |2(ξ + γ∗)

at each frequency, which allows us to determine the spectral domain (reciprocal cell),
which satisfies a minimum specified threshold for both values. The size of this opti-
mal spectral domain, or a weighted average within this domain, provide measures of
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effective resolution in terms of equivalent samples per unit area of an ideal system.
Alternatively, from these two ratios we can measure the mutual information between
a Fourier coefficient of the sampled image and the corresponding Fourier coefficient
of the analog image before sampling. When we average this mutual information over
the whole frequency domain, we obtain a resolution measure in terms of bits per unit
area or bits per sample, where the number of bits measures the portion of the informa-
tion that is common between the original and sampled image, and not due to noise or
aliasing. The maximization of this second resolution measure also leads to an optimal
reciprocal cell. We provide explicit formulas to compute the optimal cells, a complete
characterization, and links between both resolution measures.

When applied to CNES’s sampling systems, the resolution and information mea-
sures we propose provide a tool for analyzing the trade-offs posed by the different
sampling systems. Moreover our optimal reciprocal cells may take very anisotropic
shapes, and they consist sometimes of several connected components, far beyond the
usual Voronoi (square or hexagonal) cell. In such cases, the only way to correctly rep-
resent all the information contained in the samples is to zoom (oversample) the image,
and extrapolate its spectrum, in order to fill in the gaps between connected compo-
nents in the spectral domain, thus avoiding ringing artifacts. To do so, we propose
a modification of the data-fitting term of the deconvolution and zoom method pro-
posed by Malgouyres and Guichard [122], which takes into account the shape of our
optimal reciprocal cell. Our experiments show that this simple modification may ei-
ther significantly reduce aliasing, or significantly improve resolution with respect to
known deconvolution methods. If we want to restrict ourselves to linear deconvolu-
tion/denoising filters, our framework leads to a natural way to generalize the classical
Wiener filter, so that it takes into account not only white noise but also aliasing.

Perturbed Sampling

Satellite images are not sampled on an exactly regular grid, but rather on a slightly
perturbed grid. The sources of these perturbations include: micro-vibrations of the
satellite while it takes the image, and irregularities in the position of the sensors on
the image plane. For certain satellite images, the combined effect of these perturba-
tions can be automatically estimated for each image, by different means developed at
CNES. Therefore, in this chapter the perturbation will be assumed to be known, and
we address the question of how to restore the regularly sampled image from the irreg-
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ular samples, and under what conditions this restoration can be performed in a stable
way. From this viewpoint we analyze the sensitivity of different sampling systems to
perturbations in the sampling grid.

The chapter may be divided in two parts. In the first part we review the mathe-
matical theory, which provides limits on the perturbation, beyond which a stable re-
construction is no longer possible. Satellite image sampling systems exhibit certain
peculiarities, in particular the image is sampled at the critical (or sub-critical) sam-
pling rate, but its spectrum near the Nyquist frequency may be relatively weak. Fur-
thermore, the sampling grid is not a general irregular grid but a small perturbation of
a regular grid, where the perturbation is very smooth (has a small spectral support)
with respect to the image. Unfortunately none of the classical mathematical results on
stable reconstruction from irregular samples takes all of these constraints into account
; they are excessively restrictive in one aspect or the other to be applicable to image
sampling systems. Results based on Kadec’s 1

4
theorem do allow for critical sampling,

but are too restrictive concerning the amplitude of perturbations. On the other hand,
Beurling-Landau-type results take smoothness of the perturbation into account, but
require a much too high sampling density.

In the second part we review the algorithms that are available for reconstruction
from regular samples. As in the case of theoretical results, none of the available al-
gorithms ensures its convergence to an exact solution under the conditions of satellite
imagery, and they do not fully exploit its peculiarities. Nevertheless, two of them pro-
vide reasonable approximations, below the noise level at a quite high computational
cost. For this reason, we propose a new algorithm, that better exploits the special char-
acteristics of perturbed satellite imagery. Under favorable conditions it produces as
good an approximation as the currently available methods, with about 5 times less
computational effort. In several strongly perturbed instances, the accuracy of the new
algorithm is, however, poorer than that of existing ones.

Bernard Rougé conjectured that an exact stable reconstruction of a bandlimited im-
age is possible, when the image has weak high frequencies, and has been sampled on
a perturbed grid, when the grid perturbation is much smoother than the image itself.
This question remains open. Our experiments suggest that the answer to this question
may be negative in the general case, and a more sensible question to ask is whether
stable reconstruction up to a certain accuracy is possible under the same conditions, and
how to determine this attainable accuracy level from the image and the perturbation.
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Interpolation of Digital Terrain Models

Interpolation of Digital Elevation Models becomes necessary in many situations. For
instance when constructing them from contour lines (available e.g. from non-digital
cartography), or from disparity maps based on pairs of stereoscopic views, which often
leaves large areas where point correspondences cannot be found reliably.

The Absolutely Minimizing Lipschitz Extension (AMLE) model is singled out as
the simplest interpolation method satisfying a set of natural requirements. In partic-
ular, a maximum principle is proven, which guarantees not to introduce unnatural
oscillations which is a major problem with many classical methods.

We then discuss the links between the AMLE and other methods, previously pro-
posed in the geoscience literature.
In particular we show its relation with geodesic distance transforms, which are com-
monly used to interpolate level curves. We show that with a particular choice of the
weights or potential function, iterated geodesic distance transforms quickly converge
to AMLE under some rather restrictive assumptions. In the general case, however, we
provide some evidence that the equivalence is not valid, even though possibly useful
from the numerical viewpoint.
We also relate the AMLE to the thin plate method, that can be obtained by a prolon-
gation of the axiomatic arguments leading to the AMLE, and addresses the major dis-
advantage of the AMLE model, namely its inability to interpolate slopes as it does for
values. Nevertheless, in order to interpolate slopes, we have to give up the maximum
principle and authorize the appearance of oscillations. We also discuss the possible
link between the AMLE and Kriging methods that are the most widely used in the
geoscience literature.

We end by numerical comparison between the different methods. Our experiments
show that despite its inability to interpolate slopes, the AMLE produces qualitatively
better results than other methods, since it better preserves ridges. Hence we propose
a simple combination of the AMLE and Kriging models which preserves the slope-
interpolating and ridge-preserving capabilities of Kriging and AMLE respectively. Ei-
ther the combined method, or the AMLE, showed the best approximation results in all
cases, both in terms of L2 distances or qualitative properties.
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Vanishing Point Detection

Vanishing points in digital images result from the projection by a pin-hole camera of a
set of parallel lines in 3D. Most of the proposed computational methods for detection
of vanishing points are forced to rely heavily on additional properties (like orthogo-
nality or coplanarity and equal distance) of the underlying 3D lines or knowledge of
the camera calibration parameters in order to avoid spurious responses. Furthermore,
to the best of our knowledge, the question of determining whether an image contains
vanishing points or not, and the exact number has not been systematically addressed.
In this last part, we show that in many images of man-made environments vanish-
ing points alone (without any additional assumption on the underlying 3D lines be-
yond pure parallelism) are meaningful Gestalts, in the sense of Helmholtz’s perception
principle, recently proposed for computer vision by Desolneux et al. [62], Desolneux,
Moisan, and Morel [64]. This leads to a vanishing point detector with a low false alarms
rate and a high precision level, which doesn’t rely on any a priori information on the
image or calibration parameters, and doesn’t require any parameter tuning.
The key differences of this detector with respect to previous approaches are the follow-
ing: (i) The line segments are themselves detected with almost-zero false alarms rate,
by a refinement of the method proposed by Desolneux, Moisan, and Morel [61], also
based on Helmholtz’s principle; (ii) The threshold to determine a meaningful vanish-
ing point from a large vote in the generalized Hough transform is computed in such
a way that it guarantees a low false alarms rate; (iii) Finally a Minimum Description
Length (MDL) criterion is used to further restrict the number of spurious vanishing
points.

We also discuss two closely related generalizations of the MDL principle: one of
them may serve to avoid the mutual exclusion of two vanishing points, the second one
may be used to avoid, if desired, the masking of a “weak” vanishing point consisting
of a small number of converging lines, by a “stronger” one where a huge number of
lines converge.

Our experiments show that in urban scenes, the number and positions of vanishing
points are correctly estimated. Other experiments on natural images, where acciden-
tal vanishing points are often detected, suggest (and further support the observation
in [63] , on) the need for modelling conflicts between different Gestalts, in this case
between line segments and curved boundaries.
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Notations

Set Algebra
A ∪B union of two sets
A ∩B intersection of two sets
Ac complement of a set (the set containing all the elements

not in A)
◦
A interior of set A
A closure of set A
∂A frontier of set A
Range(f) or R(f) the range of a function f : A→ B, i.e. the image f(A) of

the function’s domain
Probability
E{X} expected value of random variable X
Var{X} variance of random variable X
Cov{X, Y } covariance of random variables X and Y (a matrix if

both are vectors)
H(X) the entropy of a random variable X
Linear Algebra
AT matrix transpose
A complex conjugate of each element in matrix A
A∗ adjoint operator (transpose and complex conjugate in

the case of matrices)
〈x, y〉 or x · y scalar product of x and y

Mathematical Morphology
A⊕B dilation of A by structuring element B
A	B erosion of A by structuring element B
A •B closing of A by structuring element B
A ◦B opening of A by structuring element B

xxix
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Fourier Analysis
F(f) = f̂ Fourier transform of f
F(f) “inverse” Fourier transform of f , such that F(F(f)) =

(2π)df

F−1(f) inverse Fourier transform of f , such that F−1(F(f)) = f

f ∗ g convolution of functions or distributions f and g

h point-spread function
H = ĥ modulation transfer function
D∗ reciprocal cell
|D∗| the area of the reciprocal cell
Γ regular sampling grid
Γ∗ dual grid
det(Γ) refers actually to det(B) where B is a matrix whose

columns are the set of basis vectors generating Γ. Ob-
serve that det(Γ) = |D| for any tile D of Γ.

δ = δ0 Dirac delta
δγ Dirac delta centered at point γ
∆Γ Dirac comb

∑
γ∈Γ δγ

Differential calculus
Df = ∇f gradient of f
Dif derivative with respect to the i-th argument of f
D2f second order derivative matrix
D2f(u, v) second order derivative with respect to vectors u and v,

i.e. the matrix product vT · (D2f) · u.
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Chapter 1

Measuring and Improving Resolution
of Regularly Sampled Images;
Applications to Restoration ∗

Abstract

Traditionally, discrete images are assumed to be sampled on a square grid and from a special
kind of band-limited continuous image, namely one whose Fourier spectrum is contained
within the rectangular “reciprocal cell” associated with the sampling grid. With such a sim-
plistic model, resolution is just given by the distance between sample points.
Whereas this model matches to some extent the characteristics of traditional acquisition sys-
tems, it doesn’t explain aliasing problems, and it is no longer valid for certain modern ones,
where the sensors may show a heavily anisotropic transfer function, and may be located on a
non-square (in most cases hexagonal) grid.
In this chapter we first summarize the generalizations of Fourier theory and of Shannon’s
sampling theorem, that are needed for such acquisition devices. Then we explore its conse-
quences: (i) A new way of measuring the effective resolution of an image acquisition system;
(ii) A more accurate way of restoring the original image which is represented by the samples.
We show on a series of synthetic and real images, how the proposed methods make a better
use of the information present in the samples, since they may drastically reduce the amount
of aliasing with respect to traditional methods. Finally we show how in combination with
Total Variation minimization, the proposed methods can be used to extrapolate the Fourier
spectrum in a reasonable manner, visually increasing image resolution.

∗This chapter was submitted for journal publication jointly with Sylvain Durand and Bernard Rougé,
in October 2002. A preliminary version was published as a CMLA preprint [17] .
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4 CHAPTER 1. REGULAR SAMPLING, RESOLUTION AND RESTORATION

1 Introduction

When an analog image is converted into digital form it is sampled on a regular grid. If
the image is not band-limited at the right frequency, this sampling operation produces
a replication of higher frequency components into lower frequency components of the
spectrum, a phenomenon known as “aliasing”. Aliasing artifacts in digital images and
sampling grids other than the traditional square grid have received little attention in
the mainstream literature on image processing.

Some textbooks on image processing like [40, 145] do introduce the formalisms
needed for sampling in general lattices, they describe the corresponding aliasing prob-
lems and the corresponding generalization of Shannon’s sampling theorem (we present
it here in a similar fashion). Most commonly, however, sampling and aliasing are only
described in the case of rectangular grids and reciprocal cells [84, 100, 153] or at most
in the case of quincunx grids and interlaced television signals [101] . In any case in all
these textbooks the treatment of non-orthogonal sampling grids and aliasing is limited
to a description of the effects and the tools to analyze them, but rarely gives any prac-
tical means of measuring or reducing the amount of aliasing for a given sampling sys-
tem, maybe with the exception of [139] which gives different measures of resolution,
aliasing and interpolation error, as well as a Wiener filtering technique which takes into
account the aliasing noise. Otherwise, the degradation model assumed in the great
majority of the image restoration literature, includes convolution with a band-limited
kernel plus noise, and thus ignores the effects of aliasing. Discussions on how to limit
the aliasing error are far more common in the computer graphics literature, where one
has full control of the sampling system (most notably to its sampling rate and transfer
function), thus leading to approaches that are in most cases not applicable in digital
imaging, where both parameters are dictated by physical constraints of the imaging
optics and the electronics of the sensors.

Concerning sampling on non-orthogonal grids, most textbooks dedicate a section
to compare the properties of hexagonal and square grids, but then present the rest of
the results only for the square grids. More particularly, concerning Fourier analysis
in hexagonal grids, an important part of the literature started by [128] and followed
by many others [68, 129, 176] , deals with specialized FFT algorithms for the hexago-
nal sampling grids. Whereas this is necessary if we want to keep a rectangular peri-
odization pattern, if we consider the image to be periodic along the same axes as the
sampling grid, then we can still use the usual FFT [135] as we do in square grids. We
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believe that the little emphasis that has been given to this property as well as the lack
of specialized literature discouraged the development of hexagonal image processing
despite its advantages.

In fact, most authors agree on several advantages of the hexagonal grid over the
more traditional rectangular grid. We summarize the most important ones here :

• Sampling density: under isotropic conditions a hexagonal grid requires 13.4% less
samples than a square grid to represent the same amount of information.

• Discrete topology: we only need a single natural connectivity concept (6 neigh-
bours), which is consistent with Jordan’s curve theorem, whereas in the square
grid consistency with the continuous case obliges us to switch between 4-connectivity
for the foreground and 8-connectivity for the background or conversely. This
greatly simplifies many morphological operations.

• Isotropic image analysis: It has been shown that in the hexagonal grid we can
construct more isotropic wavelet families with much better orientation selectiv-
ity [49, 56, 97, 112, 114, 130, 157, 161, 162] , more accurate distance transforms [38]
, isotropic 3-separable filters, etc.

For a more thorough discussion on the properties of hexagonal grids see chapter A and
[5, 168] .

Coming back to aliasing, despite the little importance given to the subject in the
image processing literature, it has been recognized by several authors as an important
problem, which significantly limits the quality of image data [34] . More recently, the
importance of aliasing artifacts present in most DVD movies was analyzed [133] , and
the physical constraints of any CCD array leading to a significant amount of aliasing
were described in [147] . At the same time the latter work as well as [116, 131, 149]
propose a physical sampling device that allows to avoid the limitations of CCD arrays
and reduce aliasing. Such sampling devices involve any kind of regular sampling grid
(rectangular, hexagonal, or in general, any grid generated by two independent vectors
on the plane), and may show heavily anisotropic transfer functions.

The main purpose of this chapter is to stress once more the importance of aliasing
in imaging systems, provide ways of measuring to what an extent it may degrade the
image quality, and provide practical methods to reduce the amount of aliasing of any
sampling system, provided we know its three main characteristics: the geometry of the
sampling grid, the transfer function, and the noise. The results can be used both by the
designer of imaging systems who wants to choose between different possibilities the
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one which provides the best image-quality/cost ratio, as well as by the image process-
ing engineer who wants to obtain the best possible reconstructed image from a given
system.

We start by giving in section 2.2 a slightly generalized form of Shannon’s sampling
theorem, since:

1. It applies to any regular sampling grid, not necessarily rectangular.

2. Instead of the classical rectangular (Voronoi) reciprocal cell it allows more general
shapes of this cell which is used both to express the band-limiting condition and
the sinc-interpolation formula.

This form has long been known by the mathematicians and similar forms can be found
in [36, 80, 135, 145] , but its flexibility has not been fully exploited by the image pro-
cessing community yet.

Next, we review in sections 2.3 and 2.4 the common notions of resolution, critical
sampling and sampling efficiency, and extend them to the new formulation. We also
present some simple examples on how to adapt the reciprocal cell to the image contents
in the ideal case of strictly band-limited images and no noise.

In section 3 we describe the main characteristics of some of the sampling systems
mentioned above: both the classical CCD arrays, and the more anisotropic systems de-
scribed in [116, 131, 149] . Then in sections 4 and 5 we extend to this more realistic case
the ideas of resolution and optimal reciprocal cell that were introduced in sections 2.3
and 2.4 in the ideal band-limited case.

Finally in section 6 we present the results of our numerical experiments, comment-
ing the quantitative comparison of the different systems according to the resolution-
based measures that we introduced, and we propose an application of the optimal re-
ciprocal cell to image restoration and spectral extrapolation, which considers not only
convolution and noise, but also aliasing within the degradation model.

Before we start with the main presentation let us present a simple example that
illustrates how important it may be to consider aliasing during restoration. We want to
sample a square wave signal f with period A = 12, with a sampling system consisting
of an aperture of T ≈ 2.38, and a sampling rate of 1, which adds a white noise with
standard deviation 0.01 (i.e. 1% of the wave’s amplitude). Summarizing the sampled
signal will be

g(k) = (f ∗ h)(k) + n(k) for all k ∈ Z (1.1)

where the point-spread function is h(t) = Ï [−T
2
,T

2
](t). Figure 1.1 shows the different
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(b) pre-sampling filter h and transfer function ĥ
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(c) sampled signal g = f ∗ h+ n and sinc-interpolation
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(d) Wiener-filter restoration f1 with voronoi reciprocal cell
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(e) Wiener-filter restoration f2 with optimal reciprocal cell

Figure 1.1: Example of Wiener filter restoration with aliasing. In (d) the spectrum of the re-

stored image is f̂1(ξ) = ĝ(ξ)K(ξ) for |ξ| smaller than the Nyquist frequency and zero oth-

erwise. Here K = H∗
|H|2+σ2 is the Wiener deconvolution filter and H = ĥ is the modulation

transfer function (MTF). Observe that this produces a bad result because we are decon-

volving an aliased coefficient near the zero-crossing of H . In (e) we solve this problem by

deconvolving f̂2(ξ) = ĝ(ξ)K(ξ) for ξ within an optimal reciprocal cell adapted to the MTF,

and f̂2(ξ) = 0 for ξ outside this reciprocal cell.
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stages in the sampling of g and its restoration with a Wiener filter. Observe that the re-
sult is catastrophic for the following reason, that is more clearly explained in figure 1.2:
The MTF (the modulation transfer function i.e. the Fourier transform H = ĥ of the
blurring kernel h) has a zero crossing at a frequency ξ0 ≈ 0.4 just before the Nyquist
frequency. If there was no aliasing, the corresponding Fourier coefficient of the sam-
pled image ĝ(ξ0) should be nearly zero, plus noise. But since the MTF has a second
lobe beyond the Nyquist frequency, some high frequency coefficients (see for instance
the fifth peak at frequency ξ0 − 1 ≈ −0.6) are aliased near frequency ξ0

1. Thus ĝ(ξ0) is
far larger than the expected signal plus noise level, and when we try to deconvolve it
by H∗

|H|2+σ2 (ξ0) ≈ 0.01
0.012+0.012 = 50 it blows up.
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MTF                        
Spectrum of original signal
Voronoi reciprocal cell    
Optimal reciprocal cell    
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Voronoi deconvolution filter
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Figure 1.2: Example of Wiener filter restoration with aliasing (continued). Left: Closeup of the

system’s transfer function ĥ, the spectrum f̂ of the original signal, the voronoi reciprocal

cell (consisting of all frequencies smaller than the Nyquist frequency associated to the sam-

pling rate), and the optimal reciprocal cell, adapted to the MTF. To the right we show the

(periodic) spectrum of the sampled signal with the two Wiener deconvolution filters. Ob-

serve how the optimal reciprocal cell (and the corresponding deconvolution filter) avoids

a region around the zero-crossing of ĥ at ξ0 ≈ 0.4 and substitutes it by the region around

its alias at ξ0 − 1, where the magnitude of ĥ is much larger.

This suggests that we should avoid deconvolving around ξ0, and do it rather around
ξ0− 1 where the real information comes from. Put another way, we defined an alterna-
tive reciprocal cell, which is still compatible with Shannon’s sampling theorem, but is
better adapted to our instrument’s transfer function. In the following sections we shall

1 The magnitude of the non-aliased part of ĝ(ξ0) is |f̂(ξ0)ĥ(ξ0)| + σ = 0.84 ∗ 0.01 + 0.01 = 0.018, but
the actual aliased coefficient is ĝ(ξ0) = 0.13, seven times larger. The largest contribution to ĝ(ξ0) comes
from frequency ξ0 − 1 ≈ −0.6, i.e. |f̂(ξ0 − 1)ĥ(ξ0 − 1)| = 0.58 ∗ 0.20 = 0.12
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develop a general technique for choosing this reciprocal cell in an optimal way.

With the adapted Wiener deconvolution we obtain a reconstruction error ‖f1−f‖
‖f‖ of

20%, which is only slightly better than the original 24% error in the sampled image g,
but it is much better than the 146% reconstruction error of the original Wiener filter. The
ringing artifacts in the result are mainly due to the Fourier coefficients that were lost
between the two lobes of the optimal reciprocal cell. To avoid it we need to extrapolate
the spectrum between these two lobes. In section 6 we propose to do so by minimizing
the total variation.

2 Review of Fourier Analysis in non-square grids

In this section we recall the mathematical basics of sampling theory in the ideal case of
infinite spatial support and compact spectral support (band limited). In the following
section 3 we will discuss how this modeling applies to real acquisition systems. The
main elements of this review are contained in [36, 80, 135] , but here we give slightly
different formulations which are better suited for defining our image resolution mea-
sures.

Section 2.1 defines the geometrical bases of sampling in non-orthogonal grids and
section 2.2 provides a formal proof of Shannon’s sampling theorem on such grids. A
more rigorous proof, as well as different formulations depending on the degree of
regularity of the image are given in appendix A.

Finally sections 2.3 and 2.4 review some common concepts related to image resolu-
tion in the ideal case of compact spectral support and no noise. These concepts will be
generalized in sections 4 and 5 to the more realistic systems described in section 3.

2.1 Sampling grids and tilings of the plane

We will consider our discrete images to be defined on a regular sampling grid

Γ := {n1e1 + n2e2 : n1, n2 ∈ Z} = Ze1 + Ze2 (1.2)

where {e1, e2} is a basis of R2. To each sampling grid we shall associate a dual grid

Γ∗ := {n1e
∗
1 + n2e

∗
2 : n1, n2 ∈ Z} = Ze∗1 + Ze∗2

where < e∗i , ej >= 2πδij
(1.3)

This will be useful when we define the Fourier transform of a discrete image.
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In the sequel we do not impose any further condition on the generating vectors e1

and e2. In practice, however, only two such grids are used, namely:

Γ4 = Z
(

1

0

)
+ Z

(
0

1

)
(square grid)

Γ6 = Z
(

1

0

)
+ Z

(
1/2√
3/2

)
(hexagonal grid).

The reason is that these are the only ones which generate tilings of the plane by regular
polygons, and show the highest number of symmetries. The corresponding dual grids
are

Γ∗4 = 2π

(
Z
(

1

0

)
+ Z

(
0

1

))
(dual square grid)

Γ∗6 = 2π
2√
3

(
Z
(√

3/2

−1/2

)
+ Z

(
0

1

))
(dual hexagonal grid)

as shown in figure 1.3.

Figure 1.3: The most common sampling grids and their corresponding duals. The square and

hexagonal grids can be singled out as the only two possibilities from a series of invariance

properties [5] . As explained in section 2.2, when an image is sampled on a grid Γ, its

Fourier transform is periodic with respect to its dual grid Γ∗, whose generating vectors are

biorthogonal to those of Γ.

Usually, sensor arrays are composed of a set of sensors all with the same shape and
characteristics, with their centers lying on a regular grid, and covering the image plane
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without superposition. More precisely, given a set D ⊂ R2 and a grid Γ we shall say
that:

• (Γ, D) is a covering2, if
⋃
γ∈Γ(D + γ) = R2

• (Γ, D) is a packing2, if ∀γ ∈ Γ, γ 6= 0 =⇒ D ∩ (D + γ) = φ

• (Γ, D) is a tiling, if it is both a packing and a covering.

Here D+ γ represents the translated set {x+ γ : x ∈ D}. We slightly relaxed the usual
covering and packing conditions by considering the closure D and the interior

◦
D of

the set D. We do so for clarity, to simplify the definitions of our sets D (otherwise, we
need a convention to decide whether to include or not in D a point in the border ∂D).
We shall also say that D is a tile of the grid Γ if (Γ, D) is a tiling. Similarly, we say
that D is a sub-tile (resp. a super-tile) if (Γ, D) is a packing (resp. a covering). These
three concepts, when applied to the dual grid Γ∗ will also be useful to choose suitable
spectral domains.

In figure A.3 we showed the only two tilings of the plane where the tile is a regular
polygon. The triangular tile can only cover the plane if –in addition to the integer
translations in Γ– we also allow an horizontal symmetry. We also observed that it has
the smallest symmetry group, whereas the hexagonal tiling possesses the largest one.
For this and other reasons the triangular grid is not very useful in image processing.
In the sequel we shall mostly concentrate on the square and hexagonal sampling grids,
but will occasionally use tiles for these grids, which are not regular polygons. Recall
that in figure A.2 we showed an example, which illustrates how one can construct such
tilings, without changing the sampling grid Γ.

2.2 Shannon’s sampling theorem.

To each sampling grid we shall associate a Dirac comb

∆Γ :=
∑

γ∈Γ

δγ (1.4)

composed of delta-functions, such that < δγ, f >=
∫
f(x)δγ(dx) = f(γ). Sampling on a

grid Γ can then be expressed as simply multiplying by ∆Γ.
A sampled image will be modeled as a Γ-discrete distribution, i.e. a tempered distri-

bution g for which there exists a continuous function f ∈ OM(R2) such that g = ∆Γ · f .
2 Here, set equality is to be understood in the weak sense or “almost everywhere”, namely A = B iff

both sets A\B and B\A have zero measure.
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Similarly, we will say that a tempered distribution g is Γ-periodic if it can be expressed
as a convolution g = ∆Γ∗f for some tempered distribution with fast decay f ∈ O ′C(R2).

Observe that this definition is equivalent to the usual definition of periodicity for
functions, namely that g(x+ γ) = g(x) for all x ∈ R2, γ ∈ Γ.
In fact if g = ∆Γ ∗ f , then g(x + γ0) =

∑
γ∈Γ f(x + γ + γ0) =

∑
γ∈Γ f(x + γ), since the

mapping γ 7→ (γ+γ0) is bijective in Γ. Conversely if g(x+γ) = g(x) then g = ∆Γ∗(χ ·g)

where χ ∈ C∞0 (R2) is a partition of unity (i.e. such that
∑

γ∈Γ χ(x+ γ) ≡ 1).
It is easy to show that such a partition of unity exists. It suffices to start from a non-
negative function ϕ ∈ C∞0 which is strictly positive on a tile D of Γ, and then define
χ(x) = ϕ(x)P

γ∈Γ ϕ(x+γ)
.

We recall the continuous Fourier Transform of f ∈ L1 and its inverse

f̂(ξ) = F(f)(ξ) :=

∫

R2

e−i<x,ξ>f(x)dx (1.5)

(2π)2f(x) = F(f̂)(x) :=

∫

R2

ei<x,ξ>f̂(ξ)dξ (1.6)

as well as some of its properties that we state without proof:

• F(F(f)) = (2π)2f

• F(f ∗ g) = F(f) · F(g)

• F(f · g) = 1
(2π)2F(f) ∗ F(g)

• F(∆Γ) = |D∗|∆Γ∗ where D∗ is a tile of Γ∗.

These properties are not valid in general. The precise conditions, as well as some ex-
tensions of the Fourier transform and its properties to more general classes of functions
and distributions is given in appendix A.1. Here we use these properties to give a for-
mal derivation of the sampling theorem. For a rigorous proof and some variants of its
formulation please refer to appendix A.2.

From the last two properties we deduce that the Fourier transform of a Γ-discrete
image g is Γ∗-periodic:

ĝ = F(∆Γ · f) =
|D∗|
(2π)2

∆Γ∗ ∗ f̂ . (1.7)

Thus ĝ is completely determined if we know its value on a tile D∗ of the dual grid Γ∗.
(In fact, since D∗ is a tile, for any ξ ∈ R2 we can find γ∗ ∈ Γ∗ such that (ξ + γ∗) ∈ D∗,
and therefore by periodicity g(ξ) = g(ξ + γ∗) = g|D∗(ξ + γ∗)). If in addition ĝ|D∗ = f̂ |D∗
then g is completely determined by f̂ |D∗ .
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A slightly stronger condition than ĝ|D∗ = f̂ |D∗ ensures the converse, i.e. that the
continuous image f is completely determined by the discrete image g = ∆Γ · f . It
suffices to require that f be band-limited, i.e. that supp(f̂) ⊆ D∗ with D∗ a sub-tile of Γ∗.
In that case Ï D∗ · (∆Γ∗ ∗ f̂) = Ï D∗ · f̂ = f̂ .3 This allows us to recover f̂ from ĝ as follows:

(2π)2

|D∗| Ï D∗ · ĝ =
(2π)2

|D∗| Ï D∗ · (
|D∗|
(2π)2

∆Γ∗ ∗ f̂) = Ï D∗ · (∆Γ∗ ∗ f̂) = f̂ . (1.8)

Finally we apply the Fourier inversion formula to obtain:

1

|D∗|F( Ï D∗) ∗ g = f (1.9)

This formally shows a generalized form of Shannon’s sampling theorem:

Theorem 1 (Shannon-Whittaker). Consider a function f ∈ L2(Rd) , a d-dimensional sam-
pling grid Γ and a compact reciprocal cell D∗ ⊂ Rd. If the following conditions are met

(S1) the reciprocal cell D∗ is a sub-tile of the dual grid Γ∗

(S2) supp(f̂) ⊆ D∗ (i.e. f is band-limited),

then f can be completely recovered from its samples in Γ, i.e. from

g = ∆Γ · f. (1.10)

In fact, g ∈ l2(Γ), and the reconstruction is given by the following convolution

f(x) =
∑

γ∈Γ

gγs(x− γ) (1.11)

of the sampled image g with the generalized sinc kernel s = 1
S∗F( Ï D∗). This equality holds

in general only in the sense of the L2 norm. If in addition g ∈ l1(Γ), then there is pointwise
equality and uniform convergence.

2.3 Choice of the reciprocal cell.

The main difference between this formulation of Shannon’s sampling theorem and the
more classical one is (apart from the fact that we are using a possibly non-orthogonal
sampling grid) the introduction of one additional degree of freedom, namely the re-
ciprocal cell D∗, which has to meet both conditions (S1) and (S2). As long as both
conditions are met the reconstruction formula is valid, but we are free to chose any of
them. In practice D∗ is most commonly assumed to be in one of the two cases:

3 Since D∗ is a sub-tile of Γ∗, if ξ ∈ D∗ then ξ + γ∗ 6∈ D∗ for γ∗ ∈ Γ∗\{0}. Now, since supp(f) ⊆
D∗, only the term in γ∗ = 0 is non-zero in

∑
γ∗∈Γ∗ f̂(ξ + γ∗). This shows that (∆Γ∗ ∗ f̂)|D∗ = f̂ |D∗ .

Consequently Ð D∗ · (∆Γ∗ ∗ f̂) = Ð D∗ · f̂ . But again, since supp(f̂) ⊆ D∗ we have Ð D∗ · f̂ = f̂ .
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Spectral support of the image. That means we takeD∗ = supp(f̂). This choice has the
obvious advantage that it always satisfies (S2), but it presents several disadvantages.
First there is no reason why this definition should lead to a convenient filter in the
reconstruction formula (1.11). The alternative we discuss below addresses exactly this
issue. Secondly, f̂ will likely have no compact support, so that actually we will be
forced to consider an “essential support” where the energy of f̂ is large enough. We
shall come back to this idea in the next section.

Voronoi reciprocal cell. The other canonical choice consists of choosing D∗ to be the
largest and most isotropic cell that satisfies (S1), namely we choose as a reciprocal cell
the Voronoi set D∗Vor = Vor(Γ∗) of the dual grid, as defined below.

D∗Vor = Vor(Γ∗) = {γ∗ ∈ Rd : ∀γ∗0 ∈ Γ∗, γ∗0 6= 0⇒ ‖γ∗‖ < ‖γ∗ + γ∗0‖} (1.12)

It can be easily verified that D∗Vor is an admissible tile for the dual grid Γ∗, hence it
always satisfies condition (S1) in Shannon’s sampling theorem. In addition its mathe-
matical and numerical treatment is much easier. In fact, in dimension 2, the Voronoi cell
can be expressed as the product of three one-dimensional indicator functions, thus the
spatial-domain convolution is “three-separable” in the sense that it can be expressed
as a sequence of three one-dimensional convolutions. (In the case of the square grid,
the third convolution would be in the direction of the diagonal and becomes unnec-
essary). Figure 1.4 shows the Voronoi cell corresponding to the square and hexagonal
grids, plus an intermediate case where the basis vectors of the grid form an angle of
80◦.

Whereas the Voronoi reciprocal cell provides more convenient formulas and always
satisfies (S1), it does not address the band-limiting condition (S2). In order to do so, it
should be adapted to the spectral support of the image supp(f̂). In fact as we will see
in section 5, D∗Vor is the most sensible choice whenever f̂ is expected to be isotropic and
radially decreasing, which is often the case in many imaging systems. However, many
of the high resolution systems currently under development and study at CNES and
other research centers, as well as some other more common situations do not satisfy
these conditions (see section 3), which motivated to a large extent the present study.

But before going into the more complicated resolution measures, let us start with a
few simple examples of systems that would prefer a Voronoi reciprocal cell, and others
that would require another kind of D∗. These simple examples will be enough to show
some of the central ideas in the rest of the chapter. To do so we introduce a simple
quantitative measure of sampling density and sampling efficiency, which is used to
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(a) square grid (b) hexagonal grid (c) intermediate grid

Figure 1.4: Voronoi reciprocal cell for three grids: square (generating vectors at 90◦), hexag-

onal (60◦), and an intermediate case where the generating vectors form an angle of 80◦. Ob-

serve that the shape of this cell is in general a (not necessarily regular) hexagon, except in

the square case. Hence the corresponding convolution filters in Shannon’s reconstruction

formula are in general 3-separable, whereas in the square case they are 2-separable.

give a precise meaning to phrases like: “this is the best sampling grid”, or “this is the
best reciprocal cell for this image”.

2.4 Critical Sampling.

Definition 1 (Sampling density). The sampling density of a grid Γ is the number of sam-
ples per unit area, given by ρ(Γ) = 1

det(Γ)
.4 Equivalently the sampling density can be computed

as ρ(Γ) = 1
|D| for any admissible tile D.

One would like to satisfy Shannon’s sampling theorem with as least samples as
possible, i.e. with the lowest possible value of ρ(Γ). The following definition expresses
this desired limiting case:

Definition 2 (Critical sampling). Γ is a critical sampling grid for an image f iff

(i) (Γ∗, supp(f̂)) is a packing, and

(ii) ρ(Γ) = inf
{
ρ(Γ1) : (Γ∗1, supp(f̂)) is a packing

}
.

In such a case, since (Γ∗, supp(f̂)) is a packing, there exists a reciprocal cell D∗ satis-
fying both conditions in Shannon’s theorem. The trade-off between sampling density

4 det(Γ) refers here to det(B) where B is a matrix whose columns are the set of basis vectors generat-
ing Γ. Observe that det(Γ) = |D| for any tile D of Γ.
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and the packing condition becomes clearer if we express the sampling density directly
in terms of the dual grid. In fact from the definition of dual grid we observe that

ρ(Γ) =
1

2π
det Γ∗ =

1

(2π)2ρ(Γ∗)
=
|D∗|
(2π)2

(1.13)

for any admissible tile D∗ of the dual grid Γ∗. So we want a dual grid with the smallest
possible tile, which still contains supp(f̂). The ideal situation is when supp(f̂) is itself a
tile, which leads us to the following definition.

Definition 3 (Sampling efficiency). The sampling efficiency of a grid Γ with respect to an
image f , which satisfy Shannon’s theorem is defined as | supp(f̂)|

(2π)2ρ(Γ)
or equivalently as

| supp(f̂)|
|D∗| (1.14)

for any tile D∗ of the dual grid Γ∗.

Thus, for a given spectral support, the sampling efficiency is inversely proportional
to the sampling density, and we obtain critical sampling when the sampling efficiency
is maximal among all grids satisfying Shannon’s theorem. The sampling efficiency
actually coincides with the packing density, which has been studied in a more general
setting, and in more dimensions. In dimension two the main result states that the max-
imal packing density with a circular tile is attained for the hexagonal grid (even if we
allow much more general transformations that just integer multiples of two generating
vectors) [27, 143, 174] . Restating this result in sampling terms we can say that when the
spectral support of f is a circular domain, then the maximal sampling efficiency (crit-
ical sampling) is obtained when the dual sampling grid Γ∗ is hexagonal. Figure A.6
and table A.1 illustrate how this happens and to what an extent the hexagonal sam-
pling is more efficient than the square sampling in this case. From these figures we can
conclude that a circular spectral support satisfying Shannon’s theorem requires 13.4%

more samples in the case of a square grid than in the case of an hexagonal grid.
Observe that despite the fact that the square grid is not the most efficient sampling

in this case, the square dual sampling grid shown in figure A.6 is still the best possible
choice among square grids. In this case we say that this square grid is critical within
its geometry, but not globally critical:

Definition 4. Γ is a critical sampling grid for an image f within its geometry iff

(i) (Γ∗, supp(f̂)) is a packing, and
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(ii) ρ(Γ) = inf
{
ρ(Γ1) : (Γ∗1, supp(f̂)) is a packing, and ∃a ∈ R, Γ1 = aΓ

}
.

In the examples discussed so far, in particular for both examples in figure A.6, the
Voronoi reciprocal cell is admissible in Shannon’s theorem, even in the case of critical
or partially critical sampling. And this, due to the isotropy of the spectral support.

This is no longer the case in the following example, where the spectral support of
f is assumed to be elliptic with eccentricity 2 and with the major axis at 45◦ from the
horizontal. Assume that we want to sample an image with such a support with a ver-
tical/horizontal rectangular sampling grid. If we stick to Voronoi reciprocal cells, then
our most efficient sampling will be far from critical (even within geometry), as shown
in figure 1.5(a). We can obtain a more efficient sampling by relaxing the sampling rate
in the horizontal direction, thus leading to the reciprocal cell in figure 1.5(b) with the
shape of a parallelogram. This is still not critical, since we can still relax a little bit
the vertical sampling rate (though with a more complicated D∗), but this is enough for
illustration purposes.

Observe that a correct choice of D∗ is necessary only when applying Shannon’s
theorem to visualize, restore or interpolate the image. In the coding phase, any other
reciprocal cell which forms a tiling would do just as well. The rectangular cell shown
in figure 1.5(c) contains all the information about the original image. Some parts of
the original spectral support were lost but they reappear as aliases in other regions,
not used by the rest of the spectral support. If we display the sampled image as is
(without any interpolation), we would in fact see these aliasing artifacts, but since we
know the shape of the spectral support, we can relocate each coefficient to its correct
position. To do so we need some spectral space of course, and we have to oversample
at the rate given by the Voronoi cell in figure 1.5(a). This is one of the main ideas
that will be exploited in sections 4 through 6, but in a more realistic case, with noise,
with unbounded spectral support but known decay rate, and some other more realistic
details that will be the subject of the next section.

3 Modeling of image acquisition systems

In the previous section we assumed an ideal situation, but real sampling systems
present two limitations which force us to deal with approximations to Shannon’s sam-
pling theorem:

• noise, due to the fact that sampling systems can only make approximate measure-
ments, and
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(a) Voronoi reciprocal cell (b) More efficient sampling (c) Non-admissible recip-
rocal cell, which still allows
an anti-aliasing

Figure 1.5: The figures above show the dual grid Γ and its generating vectors as well as

the spectral support of the image to be sampled in dark-gray, and the chosen reciprocal

cell in light-gray. We also show some aliases of the spectral support supp(ĥ) + γ∗ and the

chosen reciprocal cell D∗ + γ∗ for some γ∗ ∈ Γ∗. Observe that Voronoi reciprocal cells (as

in subfigure a) no longer yield a critical sampling when the spectral support is strongly

anisotropic. To obtain a more efficient sampling we have to use a better adapted reciprocal

cell like the parallelogram in subfigure (b). If displayed as-is (i.e. with no interpolation

or with the usual sinc or zero-padding interpolation) the sampled image will show some

aliasing artifacts as illustrated in subfigure c, but these can be solved by using an admissible

reciprocal cell in the reconstruction formula. Equivalently, one can translate the aliased

Fourier coefficients to their original location. The value of γ∗ ∈ Γ∗ to be used for this

translation can be deduced from the knowledge of the admissible reciprocal cell. Once the

Fourier coefficients were translated to their correct location, we can resample at the rate

given by the Voronoi reciprocal cell in subfigure (a).
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• the fact that the analog image before sampling actually has no compact spectral
support, and is neither periodic nor has an infinite spatial support.

In fact, a generic image sampling system can be viewed as a combination of:

• an optical system whose purpose is to focus the incoming light in the focal plane,
and

• a set of sensors distributed on the focal plane which count the number of photons
which meet this precise location during a certain period of time.

and the whole system might be moving during capture. The whole action of the sam-
pling system can be modeled by the following formula:

g = Ï Ω · (∆Γ · (F(H) ∗ f) + n) (1.15)

where

• f represents the ideal image just before it enters the imaging system, this is as-
sumed to be a radon measure;

• n represents the noise due to the imprecision in the sensor measurements;

• Γ represents the geometry of the array of sensors, which are assumed to be dis-
tributed on a regular grid;

• Ω represents the extent of the sensor array, which can never be infinite;

• H represents the transfer function of the instrument, which is a combination of
several effects to be detailed later.

We observe that even in the absence of noise, and even if the transfer function H had
a compact support, the resulting sampled image would have no compact spectral sup-
port, due to multiplication by Ï Ω. Hence the periodization of the finite-extent sampled
image g (needed to obtain a discrete spectrum) will introduce some aliasing. However
this difficulty can be solved by a standard technique which consists of multiplying the
whole image by a smooth window having a very smooth transition between 0 and 1
near ∂Ω. With this technique this necessary amount of aliasing can be usually reduced
to a level much below the noise level, so in the sequel we will assume a simplified
image model:

g = ∆Γ · (F(H) ∗ f) + n (1.16)
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in which the sampled image g can be considered infinite or periodic.
Now let’s consider the transfer function (abbreviated MTF and denoted by H). It

can be modeled as the product of three main effects:

H = HsenHmovHopt. (1.17)

The first term is due to the fact that the sensors do not pick the value of f at one point
but rather integrate all the photons that arrive at its sensitive region which usually has
a square shape, thus:

Hsen(ξ, η) = F(
1

c2
Ï |x|<c/2 ∗ Ï |y|<c/2)e−β1c|ξ|−β2c|η| = sinc(ξc/2) sinc(ηc/2)e−β1c|ξ|−β2c|η|

(1.18)
where c represents the size of the sensor. The exponential term, takes into account the
conductivity between one sensor and its neighbour. The second term in equation (1.17)
takes into account the fact that the system might be moving during capture. If it moves
a distance d at direction v then:

Hmov(w) = F(
1

d
Ï |〈x,v〉|<d/2) = sinc(〈w,v〉 d/2). (1.19)

Finally, the optical system itself is not perfect and it also convolves the signal by a
transfer function which might be very complicated. The following model is commonly
assumed

Hopt(ξ, η) = e−αc
√
ξ2+η2 (1.20)

for values of α of about 0.3 in our case, which means that in the useful region the image
is low-pass filtered much more by the sensors themselves than by the optical system.
Figure 1.6 shows some level lines of H for three instances of the previously described
imaging system, where the (square) sensors of size c are assumed to be distributed at
regular spacings of c on a square grid: (a) ccd1: an ideal case with a still camera (d = 0)
where the optics and sensor isolation are assumed to be perfect (α = βi = 0); (b) ccd2: a
less ideal case, with a still camera, but more realistic values for optics and conductivity
(α ≈ 0.30 and β2 ≈ 0.14); (c) same situation as before but with the camera moving a
distance d = 2.35c along a direction v which forms an angle of 11◦ with the horizontal.

Observe that all these systems produce highly aliased images. In figure 1.6(a) for
instance, the transfer function only decayed from 1 to 0.6 at the border of the reciprocal
cell. In order to reduce aliasing to a minimum we would ideally want the reciprocal
cell to cover a larger region, e.g. up to the first zero-crossing of the sinc function. But
that would require to double the sampling rate in both directions, which is not easy to
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(a) ccd1
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(c) ccd3

Figure 1.6: Modulation Transfer Functions and the corresponding Voronoi cells for three imaging

systems composed of square CCD arrays. (a) Perfect optics and fixed camera; (b) more

realistic optics; (c) the camera moves at uniform speed during capture.

Legend: In all subfigures the dashed lines represent the boundaries of the Voronoi reciprocal

cell and its aliases. The X-shaped dots in the midpoint of each Voronoi cell represent the

points in the dual (“aliasing”) grid Γ∗. The remaining curves are the level-lines of the MTF.
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do without changing the size of the sensors, because this would require the sensors to
overlap.5

However, several mechanisms have been proposed at the French Spatial Agency
(CNES), which allow to increase the sampling rate without reducing the size of the
sensors. Some of them (called hypermode and supermode) have been implemented
on the SPOT5 earth observation satellite (launched in April this year) [116, 147] . Other
novel mechanisms for improving the sampling rate involve both square and hexag-
onal grids. The corresponding transfer functions for all these systems are shown in
figures 1.7, 1.8 and 1.9. More details about how such transfer functions are obtained
from the real systems can be found in annex B, section 2.
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(b) Hipermode

Figure 1.7: Modulation transfer function and the corresponding Voronoi cell for the Supermode

sampling system used by the SPOT5 HRG earth observation satellite, and the Hipermode

sampling system which has also been considered during its design. (See also the legend in

figure 1.6.)

None of these systems exactly satisfies Shannon’s compact support condition, and
therefore they produce aliased images. But for some of them (see for instance fig-
ure 1.9(c)) aliasing effects may be far below the noise level and thus imperceptible,
meaning that we unnecessarily increased the sampling rate. In order to find the right
balance between increasing resolution and reducing aliasing artifacts on one hand, and

5 On the other hand reducing the size of the sensors wouldn’t help, because this zero crossing would
move to a higher frequency, and we would have the same aliasing problem, just at another scale.
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(a) Sq0
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(b) Sq1
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Figure 1.8: Modulation transfer function and the corresponding Voronoi cell for some high-

resolution square sampling systems. (See also the legend in figure 1.6.)
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(a) Hex0
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(b) Hex1
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(c) Hex2

Figure 1.9: Modulation transfer function and the corresponding Voronoi cell for some high-

resolution hexagonal sampling systems. (See also the legend in figure 1.6.)
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on the other reducing the sampling rate to a minimum (which is dictated by bandwidth
limitations), we need to extend the notions of critical sampling, sampling density and
sampling efficiency introduced in section 2.4 to the case of infinite spectral support.

In this sense, it has been proposed [147] to consider the essential spectral support of
the image to be sampled, namely:

ess supp(f̂) :=
{
ξ ∈ R2 : |f̂ | ≥ σ|Ω|

}
. (1.21)

i.e. the region over which the spectrum of the image is larger than the noise level (here
we assumed a white iid Gaussian noise with variance σ2 on an image domain Ω). Then
we can apply the usual critical sampling and sampling efficiency definitions with the
essential instead of the real spectral support. In [67] this criterion has been refined in
order to take into account the signal to noise ratio at each location within the essential
spectral support. The result is a resolution measure which is invariant with respect
to any linear post-processing that can be done to reduce noise or aliasing. In the next
section we further develop these ideas, and propose a resolution measure which will
also allow us to choose the best reciprocal cell (section 5).

4 Resolution and information measures

4.1 Nominal Resolution

Usually resolution is defined in terms of dots-per-inch (dpi), lines-per-inch (lpi), etc.
which measures the sampling density. This usual definition of resolution is what we
shall call spectral nominal resolution √rnom (the reason for the word spectral will become
clear in a minute), which we define precisely as the density of the sampling grid:

rnom := ρ(Γ)

Note that rnom is measured in terms of sampling points per unit area (e.g. dots per
square inch). To obtain a dpi-style measure of resolution we simply use

√
rnom. We

also define a spatial nominal resolution which is proportional to the distance between
neighboring samples, namely:

Rnom = r
− 1

2
nom.

Usually we will measure these resolutions in terms of c where c2 is the area covered by
each of the sensors. Thus:

• a typical square CCD array (Sq0) has nominal resolution rnom = 1c−2, Rnom = 1c.
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• a pair of CCD arrays in quincunx arrangement (SPOT5’s supermode) has nomi-
nal resolution rnom = 2c−2, Rnom = 1√

2
c.

• a system of four CCD arrays (Hipermode) has nominal resolution rnom = 4c−2,
Rnom = 1

2
c

• the hexagonal system Hex1 has rnom = 2
√

3c−2 ≈ 3.46c−2, Rnom = 1√
2
√

3
c

Now consider a tileD∗ of the dual grid Γ∗, for instance the Voronoi cell of Γ∗. Given
the relationship between Γ and Γ∗ we can show that the spectral nominal resolution

rnom =
1

(2π)2

1

ρ(Γ∗)
=

1

(2π)2

∫

D∗
1 (1.22)

is in fact proportional to the area of the Voronoi cell of the dual grid Γ∗, whereas the
spatial nominal resolution R2

nom is proportional to (the square root of) the area of the
Voronoi cell of the sampling grid Γ (which explains the names we chose).

Considering noise and aliasing in the resolution measure. The spectrum of the sam-
pled image ĝ may contain at different points very different amounts of noise and alias-
ing, which is not reflected by equation (1.22) which gives the same weight 1 to all
Fourier coefficients of ĝ.
Assume an image acquisition system is defined by a triplet (Γ, H, n). Then, according
to equation (1.16) the Fourier transform of the acquired image is:

ĝ = F(∆Γ) ∗ (H · f̂) + n̂

= |D∗|∆Γ∗ ∗ (H · f̂) + n̂

= |D∗|
∑

ω0∈Γ∗
(H · f̂)(·+ ω0) + n̂

(1.23)

which we can rewrite in terms of

G = |D∗|H · f̂ (1.24)

Galias(ξ) =
∑

γ∗∈Γ∗\{0}
G(ξ + γ∗) (1.25)

as follows:
ĝ = G+Galias + n̂. (1.26)

This last expression shows clearly the aliasing and noise errors present in the sampled
image g. Thus it is not fair to consider all pixels equal. In the next section we shall
refine our resolution measure by substituting the 1 in equation (1.22) by a weighting
function w(G(ξ), Galias(ξ), n̂(ξ)), which is close to 1 in the absence of aliasing and noise,
and close to 0 when either aliasing and noise dominates over the signal.
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4.2 Effective resolution

Once such a weighting function w is defined we can define the effective resolution as:

reff(Γ, D∗, H, n, f) :=
1

(2π)2

∫

D∗
w(G(ξ), Galias(ξ), n̂(ξ))dξ. (1.27)

But this definition has two problems. First, it depends on the image f before sampling
which is unknown. And secondly it will give a different value for each realization of
the image f and the noise n. We would be tempted to solve both problems by defining

reff(Γ, D∗, H,N , I) := E{reff(Γ, D∗, H, n, f)} (1.28)

Where the expected value is taken with respect to the random variables n ∼ N and
f ∼ I. We shall come back later to the problems posed by the computation of such
expected value. For the moment let us concentrate on the choice of a suitable weighting
function w.

Conditions on the weighting function w. A first condition we want to impose is
that w be independent of any invertible6 linear filtering k that we can perform on the
digitized image g. The reason for this is that it is very common to apply “anti-aliasing”
or “denoising” filters to an image after sampling, in order to reduce these artifacts (in
section 6 we give an example of such manipulations). However, we want our measure
to reflect the resolution of the “best image” that we can obtain by such manipulations
from the acquisition system.
In order to express this condition in terms of w observe that F(k ∗g) = k̂ ·G+ k̂ ·Galias +

k̂ · n̂ = k̂ · ĝ. Hence we require that:

w(k̂ ·G, k̂ ·Galias, k̂ · n̂) = w(G,Galias, n̂), for all k (1.29)

or put another way, the weighting function only depends on relative noise and aliasing.

w(G,Galias, n̂) = w(1,
Galias

G
,
n̂

G
) = W (

Galias

G
,
n̂

G
). (W0)

Next, we don’t care about the phase of relative noise or aliasing, we just consider its
magnitude.

W (a, b) = W (|a|, |b|). (W1)

6 Here we mean that k should be invertible in the sense that k̂ 6= 0 almost everywhere.
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Finally, we should impose a few conditions, to ensure that W actually behaves like
a weighting function, which penalizes high levels of relative noise and aliasing:

W (a, b) ∈ [0, 1] (W2)

W (0, 0) = 1 (W3)

W (+∞, b) = W (a,+∞) = 0 (W4)

W (·, b) non-increasing for all b, W (a, ·) non-increasing for all a. (W5)

This still leaves a huge number of possibilities. For our experiments we considered
the following two functions:

W (a, b) = (1− a

θalias

)+(1− b

θnoise

)+, (1.30)

W (a, b) = min{(1− a

θalias

)+, (1− b

θnoise

)+}. (1.31)

Observe that both functions satisfy a stronger condition than equation (W4). Namely,
W (a, b) = 0 whenever a ≥ θalias or b ≥ θnoise, i.e. when either the relative aliasing or
noise exceeds the specified thresholds. In principle we should set θalias ≈ θnoise ≈ 1

meaning that whenever the aliasing or the noise are larger than the real signal, then
we should ignore the corresponding Fourier coefficient because it contains almost no
useful information. However, as we shall see in section 6, our experiments indicate
that we obtain better results for θalias ≈ 0.2 and θnoise ≈ 5, which may indicate that our
perceptual system tolerates noise much better than aliasing artifacts.

Computing the expected value in equation (1.28). In order to compute the expected
value in equation (1.28) we need suitable noise and image models. The noise model
doesn’t pose any serious problems, usually a white noise model N = N(0, σ) is accu-
rate enough. But accurate statistical image models I are unknown in general. In its
absence we can compute the empirical expected value by taking the mean of equation
(1.27) for a large number of images. But this is computationally very expensive, and its
mathematical treatment is also much too complicated!!

A more sensible choice is to modify equation (1.28), by evaluating w not on a par-
ticular realization of the relative aliasing and noise, but on its expected value directly:

reff(Γ, D∗, H,N , I) :=
1

(2π)2

∫

D∗
W

(√
E{|Galias(ξ)|2}

E{|G(ξ)|2} ,

√
E{|n̂(ξ)|2}
E{|G(ξ)|2}

)
dξ (1.32)

Note that this expression is much simpler, since it doesn’t take into account any pos-
sible dependency between f̂(ξ) and f̂(ξ′) for ξ 6= ξ′, except for the term E{|Galias(ξ)|}



4. RESOLUTION AND INFORMATION MEASURES 29

which considers the dependency between f̂(ξ) and its aliases f̂(ξ + γ∗) for all γ∗ ∈ Γ∗.

We will also simplify this term by substituting
√

E{|(Hf̂)alias(ξ)|2} by
√
|HF |2alias(ξ)

where F (ξ) =

√
E{|f̂(ξ)|2}. So, we define:

reff(Γ, D∗, H,N, F ) :=
1

(2π)2

∫

D∗
W

(√
|HF |2alias(ξ)

|HF |2(ξ)
,

√
N2(ξ)

|HF |2(ξ)

)
dξ (1.33)

which no longer depends on the image and noise models I, N , but just on (the square

root of) the second order moments F (ξ) =

√
E{|f̂(ξ)|2} and N(ξ) =

√
E{|n̂(ξ)|2}, for

n ∼ N , f ∼ I. Now for a white noise model N = N(0, σ), we just have a constant
N(ξ) = σ. (Note however that this study works equally well for any other zero-mean
colored Gaussian noise model, which is determined by the function N(ξ)). Finally if
the images are supposed to be in the BV space (bounded variation), a reasonable as-
sumption is F (ξ) ∼ 1

|ξ| except near the origin. In fact this assumption is quite accurate:
by taking the empirical expected value E{|f̂(ξ)|2} for a large family of images, we ob-
tain a function F (ξ) whose shape is quite similar to that of 1

|ξ| (see figure 1.10).
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Figure 1.10: Learning the decay rate of Fourier coefficients of natural images. After computing

(the square root of) the mean of |f̂ |2 for several natural images f , we obtain a roughly

rotationally invariant function F , which was used as image model in our experiments.

Here the mean was taken over each ring where r ≤ |ξ| < r + 1. The result shows that the

Fourier coefficients decay like |f̂ |(ξ) ≈ C|ξ|−p with 1 ≤ p ≤ 2, and typically p ≈ 1.6.

We note that despite the many simplifications we did between equations (1.28) and (1.33),
we find that both expressions yield experimentally comparable reff values, which in-
dicates that these simplifications did not essentially affect the notion of resolution that
we wanted to capture initially. We can conclude that the image model we used in equa-



30 CHAPTER 1. REGULAR SAMPLING, RESOLUTION AND RESTORATION

tion (1.33), namely a coloured Gaussian noise, where |f̂(ξ)| ∼ N(0, F (ξ)2), is accurate
enough for computing image resolution as defined in equation (1.28).

4.3 Information density.

The previous definition of effective resolution was motivated by perceptual arguments
on the influence of noise and aliasing artifacts, that lead us to a certain choice of weight-
ing function W .
On the other hand we can attempt to measure the amount of information of the orig-
inal image h ∗ f that is preserved by the samples g. So in this section we will choose
as weighting function the mutual information between the Fourier coefficient ĝ(ξ) of
the sampled image and the corresponding Fourier coefficient of the original image
G(ξ) = H(ξ)f̂(ξ). This choice leads to a measure of effective information density

Ieff :=
1

(2π)2

∫

D∗
I(ĝ(ξ), G(ξ))dξ (1.34)

which measures the number of bits of information (per unit area) of the original image
that can be obtained from the sampled image. The reciprocal cell will be chosen, as in
the previous section in such a way that (Γ∗, D∗) is a packing.

Observe that this packing condition means that, if all f̂(ξ) are independent then all
G(ξ) and ĝ(ξ′) are independent except when ξ = ξ ′. Hence the integral

∫
D∗ I(ĝ(ξ), G(ξ))dξ

equals the mutual information I(ĝ, G|D∗) between the sampled image (in the Fourier
domain) and the Fourier transform of the original image G = Hf̂ restricted to the re-
ciprocal cell D∗.
We could still refine this model by computing I(ĝ, G) without restriction to a reciprocal
cell, and without assuming the independence between the Fourier coefficients of f̂ , but
for the moment we are interested in a simpler model which still allows some qualita-
tive comparisons with our results of the previous section on resolution measures.

In any case the mutual information I(ĝ(ξ), G(ξ)) inside the integral (and hence the
information density measure Ieff) also depends on the statistical model we choose for
the image. The following theorem gives a general lower bound, as well as the value
of Ieff for two simple image models. In order to simplify the notation we express the
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theorem in terms of the following dimensionless variables:

a2(ξ) =
Var{Galias(ξ)}

Var{G(ξ)} (relative aliasing) (1.35)

b2(ξ) =
Var{n̂(ξ)}
Var{G(ξ)} =

|N |2(ξ)

|HF |2(ξ)
(relative noise) (1.36)

k2(ξ) =
Cov{G(ξ), Galias(ξ)}2

Var{G(ξ)}Var{Galias(ξ)}
(relative covariance) . (1.37)

Observe that in the case where f̂(ξ) is independent of f̂(ξ′) for all ξ 6= ξ′, we have a
more convenient way of writing the relative aliasing, namely:

a2(ξ) =
|HF |2alias(ξ)

|HF |2(ξ)
(1.38)

where F (ξ) =

√
E{f̂(ξ)} as in the previous section. Next we simply state the theorem.

The details of the proof are given in appendix B

Theorem 2. Given a sampled image g which relates to the original image h ∗ f through equa-
tions (1.16) and (1.26), the mutual information between ĝ(ξ) and G(ξ) = H(ξ)f̂(ξ) is always
lower bounded by:7

I(ĝ(ξ), G(ξ)) ≥ 1

2
log2

(
22H(G(ξ)) + 22H(Galias(ξ)) + 22H(n̂(ξ))

22H(Galias(ξ)+n̂(ξ))

)
. (1.39)

This lower bound is achieved when G(ξ), Galias(ξ) and n̂(ξ) are all independent zero-mean
Gaussian variables. In that case the mutual information reduces to:

I(ĝ(ξ), G(ξ)) =
1

2
log2

(
1 +

1

a2 + b2
(ξ)

)
. (1.40)

Finally, if we refine the previous model, by considering the dependence between G(ξ) and
Galias(ξ) through its covariance, the mutual information is:

I(ĝ(ξ), G(ξ)) =
1

2
log2

(
1 +

1 + a2k2 + 2ak

a2(1− k2) + b2
(ξ)

)
. (1.41)

Non-independent Gaussian Modeling. Observe that in the last equation of the the-
orem, we considered the dependence between G(ξ) and Galias(ξ), since both terms de-
pend on the Fourier coefficients f̂(ξ + γ∗) (for γ∗ ∈ Γ∗) of the original image, which are
not necessarily independent. On the other hand we still consider n̂(ξ) to be indepen-
dent of the other terms since it is usually a white noise.

7 Note that here H denotes the entropy operator, whereasH denotes the modulation transfer function.
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Effective and Nominal Information Density. Finally our information density mea-
sure becomes, in the non-independent Gaussian case:

Ieff(Γ, D∗, H,N, F, k) =
1

(2π)2

∫

D∗

1

2
log2

(
1 +

1 + a2k2 + 2ak

a2(1− k2) + b2
(ξ)

)
dξ (1.42)

which can be written as

Ieff =
1

(2π)2

∫

D∗
Wk (a(ξ), b(ξ)) dξ (1.43)

withWk(a, b) = 1
2

log(1+ 1+a2k2+ak
a2(1−k2)+b2

). Observe that if we consider aliasing to be indepen-
dent from the original image (k = 0), then W0(a, b) = 1

2
log(1 + 1

a2+b2
). We observe that

this function W0 satisfies all requirements (W0-W5) except for (W2) and (W3). Instead
W0(a, b) ∈ [0,+∞] with W0(0, 0) = +∞. But this is normal since we are not measuring
resolution in terms of sampling per unit area, we are measuring information in terms
of bits per unit area.
For k 6= 0,Wk still satisfies (W0,W1,W5) and it partially satisfies (W4). In factWk(a,+∞) =

0 but Wk(+∞, b) may be positive. This happens for instance when Var{G(ξ)} <<

Var{Galias(ξ)}. In this case we have infinite relative aliasing, but the sampled coefficient
(essentially Galias(ξ)) still gives some information about G(ξ) through the covariance
between G(ξ) and Galias(ξ).

An ideal system with no aliasing (H = Ï D∗) and no noise N(ξ) = 0 would yield
infinite information density, but as a reference to compare with our system, we can
consider the “nominal information density” to be the one that is obtained by a semi-
ideal system with no aliasing (H = Ï D∗) and a minimal amount of noise N(ξ) = ε.

Inom(Γ, D∗, ε, F ) :=
1

(2π)2

∫

D∗

1

2
log2

(
1 +
|F (ξ)|2
ε2

)
dξ (1.44)

Aliasing vs. Noise in Information and Resolution Measures. The previous defini-
tion of effective information density shows that for a given level of relative distortion
d, if this distortion comes from (image-independent) noise, then information decreases
to a larger extent than if it comes from (image-dependent) aliasing. In fact, in the first
case, a = 0, b = d and W (a, b) = 1

2
log2(1 + 1

d2 ), whereas in the second case a = d, b = 0

and W (a, b) = 1
2

log2(1 + 1
d2

1+k2d2+kd
1−k2 ), which is larger.

With respect to the resolution measures introduced in the previous subsections, we
observed the contrary: for a given level of relative distortion, if it comes from noise,
resolution decreases less than if it comes from aliasing (cf. the discussion on the choice
of parameters θnoise >> θalias).
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This comes from the fact that image-independent distortions such as white noise are
more easily ignored by our perceptual system than image-dependent distortions such
as aliasing. From an information-theoretical point of view, however, the latter gives us
more information than the former for reconstructing the original image, provided we
know the statistics of the dependence between the distortion (aliasing) and the original
image.
So, if we know how to correct aliasing artifacts from knowledge of image statistics,
then it makes sense to introduce this statistical knowledge in our information measure.
Otherwise, it is better to consider it as noise and eliminate it.

5 Optimal Reciprocal Cell

In the previous section, all measures of image resolution or information that we de-
fined, depend upon the shape of the reciprocal cell D∗. In this section we address the
problem of choosing such a reciprocal cell. However, once we defined our measures of
image resolution and information, we just define the optimal reciprocal cells as those
that maximize either resolution or information. This presents, however some technical
difficulties, so we shall first introduce a general technique to construct tilings, and then
we shall apply it to our information and resolution measures.

We start with the definition of the canonical reciprocal cell associated to a resolution
measure u and an aliasing grid Γ∗.

Definition 5 (Canonical Tiling). Given Γ∗ a regular grid in Rd, and a function u : Rd → R,
the set

Rmax =
{
ξ ∈ Rd : u(ξ) > u(ξ + γ) for all γ ∈ Γ∗, γ 6= 0

}
(1.45)

is called canonical tiling associated to the function and the grid.

Since we are selecting among all possible aliases of a frequency ξ, the one which
gives the highest resolution u(ξ + γ), it is quite clear that if Rmax is a tiling, then it
maximizes

∫
R
u(x)dx with respect to all packings R.

It is also clear that Rmax is a packing because we only select one point within the set
{ξ + γ}γ∈Γ.

Showing that the “canonical tiling” is actually a tiling and the only one which max-
imizes

∫
R
u(x)dx is a little bit more technical, and requires some further properties that

we state in the following definition.
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Definition 6. Given a regular grid Γ∗ ⊂ Rd, a function u : Rd → R is called an admissible
alias selector if it satisfies the following conditions

(A1) The associated canonical tiling Rmax is bounded.

(A2) For almost every ξ ∈ Rd, there is a single γ0 ∈ Γ∗ such that u(ξ+γ0) = supγ∈Γ∗ u(ξ+γ).

The purpose of condition (A1) is to provide reciprocal cells Rmax with compact sup-
port which allow us to apply Shannon’s sampling theorem. The purpose of condition
(A2) is to avoid some situations that might lead Rmax to be a sub-tiling. In the sequel
we will use the following (equivalent but more convenient) formulation for condition
(A2):

(A2’) The associated anomaly set Au,Γ∗ defined below has zero measure.

Au,Γ∗ =
{
ξ ∈ Rd : card(Gξ,u,Γ∗) 6= 1

}

where Gξ,u,Γ∗ =

{
γ0 ∈ Γ∗ : u(ξ + γ0) = sup

γ∈Γ∗
u(ξ + γ)

}
.

The examples below illustrate how we might fail to meet this condition.

Example. If u is Γ-periodic thenRmax is clearly empty. But an admissible alias selector
cannot be Γ-periodic, since periodicity would imply thatGξ,u,Γ∗ = ξ+Γ∗ for any ξ. Thus
the anomaly set would be all of Rd.

Example. If |u(x)|monotonically increases to umax when |x| → ∞without ever attain-
ing this value, thenRmax is also empty. But an admissible alias selector will never show
such a behaviour, since it would imply that Gξ,u,Γ∗ = φ for any ξ. Thus the anomaly set
would be all of Rd also in this case but for a different reason.

Appendix C gives some simpler sufficient conditions for a function u to be an ad-
missible alias selector. However, the previous examples cover almost all anomalous
cases.

Proposition 1. Let Γ∗ be a regular grid in Rd. For any function u : Rd → R, the associated
canonical tiling Rmax is such that (Γ∗, Rmax) is a packing of Rd.

If in addition u is an admissible alias selector then (Γ∗, Rmax) is also a covering and hence a
tiling.

Finally, such a tiling is the unique8 solution to the following optimization problem:

Rmax = arg sup
{R : (Γ∗,R) is a packing}

∫

R

v(u(x))dx (1.46)

8 up to a set of zero measure
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for any non-negative, strictly increasing function v : [umin,∞) → [0,∞) where umin =

infx u(x).

Observe that if we do not require uniqueness of R in the sense of maximization of∫
R
v(u(x))dxwe can avoid the technical hypothesis that u is an admissible alias selector

by modifying the definition of Rmax as follows:

Rmax = { ξ ∈ Rd : for all γ ∈ Γ∗, γ 6= 0 =⇒ u(ξ) > u(ξ + γ) or

u(ξ) = u(ξ + γ) and ξ ≺ (ξ + γ) }

where ≺ is any arbitrary order in Rd (e.g. compare first the magnitude, then the an-
gle to the first axis, etc.). With this definition proposition 1 still holds (except for the
uniqueness of Rmax), and we do not need the hypothesis that u be an admissible alias
selector. Then instead of uniqueness, we resolved the ambiguity in the maximization
by introducing an arbitrary ordering of the frequency space. Here we judged unique-
ness as an important property, and it is easy to show that the functions we considered
are admissible alias selectors. For this reason we keep the original definition of Rmax.

Proof. To prove that (Γ∗, Rmax) is a packing, consider x ∈ Rmax. Then for all γ ∈ Γ∗\{0}
we have u(x) > u(x + γ). This means that (x + γ) /∈ Rmax, so x /∈ (Rmax + γ), and we
conclude that (Γ∗, Rmax) is a packing.

To prove that (Γ∗, Rmax) is a covering consider any x ∈ Rd\Au,Γ∗ . Because x /∈ Au,Γ∗ ,
we have that Gx,u,Γ∗ consists of a single element γx and (x+ γx) ∈ Rmax. Since Au,Γ∗ has
zero measure this means that for almost every point x ∈ Rd, there is γx ∈ Γ∗ such that
x ∈ (Rmax + γ), so (Γ∗, Rmax) is a covering.

To show the last part of the proposition, observe first that for all x ∈ Rmax, v(u(x)) >

0. In fact, since v is increasing, v(u(x)) = 0 would mean u(x) = umin, and consequently
u(x) ≤ u(y) for all y, and in particular for y = x + γ, with γ ∈ Γ∗. Hence v(u(x)) = 0

implies x /∈ Rmax, which proves that for x ∈ Rmax, v(u(x)) > 0.
Next consider any packing (Γ∗, R), and any point x ∈ R\Rmax. Since (Γ∗, Rmax) is
a tiling there is some γx ∈ Γ∗ such that (x + γx) ∈ Rmax, except if x ∈ N1 where
N1 has zero measure. Note that γx 6= 0 (otherwise x ∈ Rmax would contradict our
initial assumption) and the packing condition of R implies that (x + γx) /∈ R except
for x ∈ N1 ∪ N2, where N2 has zero measure. If we call τ the mapping x 7→ (x + γx)

then τ maps (R\Rmax)\(N1 ∪ N2) (which we shall abbreviate as R1) into a subset of
(Rmax\R). Now from the definition of Rmax we deduce that u(τ(x)) > u(x), and since v
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is increasing v(u(τ(x))) > v(u(x)). Therefore
∫

R

v(u(x))dx−
∫

Rmax

v(u(x))dx =

∫

R\Rmax

v(u(x))dx−
∫

Rmax\R
v(u(x))dx (1.47)

=

∫

(R\Rmax)\(N1∪N2)

v(u(x))dx−
∫

Rmax\R
v(u(x))dx

(1.48)

≤
∫

τ((R\Rmax)\(N1∪N2))

v(u(y))dy −
∫

Rmax\R
v(u(x))dx

(1.49)

≤ 0. (1.50)

Since in equation (1.49) the integration domain τ(R1) ⊆ Rmax, and we have v(u(y)) > 0,
so the first inequality is tight iff τ(R1) has zero measure. From the construction of τ and
the fact that N1 andN2 have zero measure, we conclude that R\Rmax has zero measure.
Then the second inequality is tight only if ((Rmax\R)\τ(R1)) has zero measure. Using
the previous condition this means that (Rmax\R) has zero measure.
So R is optimal iff it coincides with Rmax at almost every point.

The easiest way to define a tiling of the spectral domain, which produces little alias-
ing, is the following. Consider u(ξ) = Var{G(ξ)} and define

D∗tiling = {ξ : Var{G(ξ)} > Var{G(ξ + γ∗)} for all γ∗ ∈ Γ∗, γ∗ 6= 0} . (1.51)

According to the previous proposition then, (Γ∗, D∗tiling) is a tiling of the spectral do-
main. In addition, by its construction, it is a tiling that concentrates as much of the en-
ergy of the original image G as possible. In fact it maximizes

∫
D∗ Var{G(ξ)}dξ among

all packings (Γ∗, D∗). This tiling will be useful in the sequel, when we consider the
resolution-optimizing reciprocal cell.

Similarly, we can apply the proposition to u(ξ) = 1+a2k2+ak
a2(1−k2)+b2

(ξ) and v(u) = log2(1+u)

to define the information maximizing reciprocal cell as:

D∗I-opt :=

{
ξ :

1 + a2k2 + ak

a2(1− k2) + b2
(ξ) >

1 + a2k2 + ak

a2(1− k2) + b2
(ξ + γ∗) for all γ∗ ∈ Γ∗, γ∗ 6= 0

}
.

(1.52)
This reciprocal cell is in fact, according to proposition 1, a tiling that maximizes the ef-
fective information density (for a given sampling grid, image and noise model), among
all packings of the spectral domain:

D∗I-opt = arg sup
{D∗:(Γ∗,D∗) is a packing}

Ieff(Γ, D∗, H,N, F, k). (1.53)
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Its definition differs from D∗tiling, even in the Gaussian independent case where k =

0. Nevertheless, our experiments show that in practice both criteria produce almost
identical reciprocal cells (see figures 1.11 to 1.14).

We could define the resolution-optimal reciprocal cell in a similar way, but then
we would not obtain a unique solution. This is due to the fact that in our effective
resolution measure we included a thresholding operation that may prevent the support
of v ◦ u to form a covering with Γ. Hence we can no longer apply proposition 1 to
u(ξ) = W (a(ξ), b(ξ)), v = Id.
However we can consider a limiting case:

D∗R-opt := {ξ : a(ξ) < θalias and b(ξ) < θnoise} (1.54)

and characterize all resolution-optimizing reciprocal cells in terms of D∗R-opt and D∗tiling,
as follows:

Proposition 2. Consider W in equations (1.30-1.31) and assume that θalias ≤ 1. Then the
maximum of ∫

D∗
W (a(ξ), b(ξ))dξ

among all packings (Γ∗, D∗), is attained whenever D∗R-opt ⊆ D∗ ⊆ D∗tiling. (Inclusions are in
the weak, “almost everywhere” sense, i.e. up to a set of zero measure).

Proof. First we show that D∗R-opt ⊆ D∗tiling. In fact ξ ∈ D∗R-opt iff:

θalias > a(ξ) and θnoise > b(ξ)

⇒ Var{G(ξ)} > θ−2
aliasVar{Galias(ξ)} ≥ Var{Galias(ξ)}

≥ Var{G(ξ + γ∗)} for all γ∗ ∈ Γ∗, γ∗ 6= 0

⇒ ξ ∈ D∗tiling. (1.55)

Now observe that D∗R-opt = supp(W (a(ξ), b(ξ))). This means that the (non-constrained)
maximum of

∫
D∗W (a(ξ), b(ξ))dξ is attained for any D∗ ⊇ D∗R-opt. If in addition D∗ ⊆

D∗tiling then (Γ∗, D∗) is a packing andD∗ solves the (constrained) maximization problem.

From the proof it is clear that (Γ∗, D∗R-opt) is a packing, and it becomes a tiling only if
θalias = 1, θnoise is sufficiently large and the maximal alias Var{G(ξ+γ∗max)} is larger than
the squared sum of the remaining aliases

∑
γ∗∈Γ∗\{0,γ∗max} Var{G(ξ+γ∗)}. Thus in general

it will not be a tiling and all reciprocal cells D∗ such that D∗R-opt ⊆ D∗ ⊆ D∗tiling will
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maximize reff among all possible packings. Thus we shall keep the minimal resolution-
optimizing reciprocal cell as a reference.

Finally let’s observe that if both the image model F and the transfer function H

are isotropic, then G is also isotropic and it is easy to verify that in this case both the
information-maximizing reciprocal cell D∗I-opt and D∗tiling coincide with the Voronoi re-
ciprocal cell D∗Vor.

6 Examples and Applications

6.1 Optimal Reciprocal Cells

Figures 1.11, 1.12, 1.13 and 1.14 show the optimal reciprocal cells that were obtained
for the different sampling systems that were presented in section 3. In all simula-
tions we assumed a signal to noise ratio of 48 dB 9 Both the first and second col-
umn show the boundary of D∗tiling (in black) and the boundary of D∗R-opt (in white)
for θalias = θnoise = 0. The difference between these two columns is the background
information that is showed: In the first column the gray-level represents the relative
aliasing in log-scale log10 a(ξ), whereas the second column shows the relative noise in
log scale log10 b(ξ).
Finally the third column shows the information-optimal reciprocal cell D∗I-opt, in the
case where the Fourier coefficients of the image f̂(ξ) are modeled as independent, zero-
mean Gaussian variables. Even though the definition of D∗I-opt is not exactly the same
as that of D∗R-opt, the resulting regions are hardly distinguishable in all cases.
Observe how, even in a simple situation like ccd3 that may arise even with a digital
camera, the optimal reciprocal cell might consist of more than one connected compo-
nent.

6.2 Resolution and Information measures

Once we obtained the optimal reciprocal cells we can compute the corresponding ef-
fective resolution and information density measures. These are displayed in table 1.1,
along with some further information which gives some indication of sampling effi-

9 To compute the SNR in dB we apply the usual formula dB = 10 log10( ‖f‖
2

‖n‖2 ). Then a SNR of 48 dB
(more precisely 48.1648... dB) is obtained when the standard deviation of the noise is σ = ‖f‖

256S , where
S is the area of the image domain and ‖f‖

S is the normalized L2 norm of the image, or its empirical
standard deviation if we assume it with zero mean.
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(c) ccd3

Figure 1.11: Optimal reciprocal cells for the three CCD sampling systems in figure 1.6.

Legend: In all figures above, the dashed lines represent the boundaries of the Voronoi recip-

rocal cell and its aliases. The crosses represent the points in the dual (“aliasing”) grid Γ∗.

The remaining curves are the level-lines of the MTF.

In the first and second columns the thick black curve represents the boundary of the opti-

mal tilingD∗tiling, and the thick white line represents the boundary of the resolution-optimal

reciprocal cell D∗R-opt. In the last column the thick white line represents the boundary of

the information-optimal reciprocal cell D∗I-opt.

The gray-scale represents: in the first column the value of the relative aliasing log10a(ξ)

in logarithmic scale; in the second column the value of the relative noise log10b(ξ) also

in logarithmic scale; in the third column the value of the mutual information density

log2(1 + 1
a2+b(2)

(ξ)) measured in bits/c2.
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Figure 1.12: Optimal reciprocal cells for the sampling systems in figure 1.7. (See also the

legend in figure 1.11.)
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(a) Sq0
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(c) Sq2

Figure 1.13: Optimal reciprocal cells for the three Square sampling systems in figure 1.8. (See

also the legend in figure 1.11.)
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(a) Hex0
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(b) Hex1
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(c) Hex2

Figure 1.14: Optimal reciprocal cells for the three hexagonal sampling systems in figure 1.9.

(See also the legend in figure 1.11.)
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System
Rnom

(c)

Reff

(c)

Inom

(bits/c2)

Ieff

(bits/c2)

A

(%)

B

(%)
Rnom
Reff

(%) IeffR
2
nom

(bits/sample)

ccd1 1.0000 1.2601 8.18 2.45 32.98 0.38 79.36 2.45

ccd2 1.0000 1.1703 6.86 3.48 23.58 1.23 85.44 3.48

ccd3 1.0000 1.1525 5.63 3.95 23.14 5.72 86.77 3.95

Sq0 1.0000 1.1463 6.66 3.91 20.81 1.57 87.24 3.91

Hex0 0.9306 1.0380 7.44 5.14 18.84 1.97 89.65 4.45

Supermode 0.7071 0.7843 9.51 8.76 11.91 9.78 90.16 4.38

Sq1 0.7071 0.7761 9.99 8.91 13.68 8.68 91.11 4.46

Hex1 0.5373 0.6716 11.40 11.35 3.81 18.37 80.00 3.28

Hipermode 0.5000 0.7093 10.30 10.27 2.42 18.31 70.50 2.57

Sq2 0.4472 0.6653 11.68 11.67 1.67 18.37 67.22 2.33

Hex2 0.3517 0.6626 11.82 11.82 0.00 18.24 53.09 1.46

Table 1.1: Quantitative evaluation of the sampling system (H,n,Γ, D∗R-opt) with θalias =

θnoise = 1, and for (H,n,Γ, D∗I-opt) with independent Gaussian model for the image Fourier

coefficients, and signal to noise ratio of 48 dB.

System
rnom

(samples/c2)
reff

(samples/c2)
Inom

(bits/c2)
Ieff

(bits/c2)

A

(%)

B

(%)
reff/rnom

(%)
Ieff/rnom

(bits/sample)

ccd1 1.00 0.63 8.18 2.45 32.98 0.38 63 2.45

ccd2 1.00 0.73 6.86 3.48 23.58 1.23 73 3.48

ccd3 1.00 0.75 5.63 3.95 23.14 5.72 75 3.95

Sq0 1.00 0.76 6.66 3.91 20.81 1.57 76 3.91

Hex0 1.15 0.93 7.44 5.14 18.84 1.97 80 4.45

Supermode 2.00 1.63 9.51 8.76 11.91 9.78 81 4.38

Sq1 2.00 1.66 9.99 8.91 13.68 8.68 83 4.46

Hex1 3.46 2.22 11.40 11.35 3.81 18.37 64 3.28

Hipermode 4.00 1.99 10.30 10.27 2.42 18.31 49 2.57

Sq2 5.00 2.26 11.68 11.67 1.67 18.37 45 2.33

Hex2 8.08 2.28 11.82 11.82 0.00 18.24 28 1.46

Table 1.2: Same as table 1.1 with spectral resolution measures expressed in (samples per

unit area), instead of spatial resolution (expressed in mean distance between samples).
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ciency and quality of the different systems.
The first two columns show the spatial nominal and effective resolutions Rnom and
Reff , both expressed as multiples of the size c of the sensors. Observe that at equal
sampling rate (equal Rnom), the first four systems have quite different effective resolu-
tion. In particular, the case of the CCD array which is blurred due to a moving camera
(ccd3) performs much better than the ideal CCD array (ccd1) where the only low-pass
filter is performed by the sensors themselves. This is due to the high amount of alias-
ing present in ccd1, which is not that much the case in ccd3. This can be observed
in columns 4 and 5 which show the average amount of relative aliasing and noise:
A =

∫
D∗ a(ξ)dξ/|D∗| and B =

∫
D∗ b(ξ)dξ/|D∗| respectively. The sampling efficiency in

terms of resolution is measured by the ratio Rnom/Reff which expresses how much of
the nominal resolution (sampling rate) is effectively attained by this system.
Column four shows the information density measure Ieff , expressed in terms of bits
of mutual information per unit area, where the unit area c2 is the surface of a single
sensor. This is to be compared with the nominal information density Inom as defined
in equation (1.44). Note that unlike nominal resolution Inom, Ieff takes into account the
amount of noise and the decay rate of Fourier coefficients in the image. We can also
compare Ieff to the information density one would obtain in an even more ideal situa-
tion where we do not only have an ideal transfer function H = Ï D∗Vor

, but also an ideal
decay rate of Fourier coefficients, i.e. F (ξ) = constant. In such an ideal case the infor-
mation density would be Iideal = |RC|

(2π)2
1
2

log2(1 + SNR). Since in our case SNR = 48 dB,
we would have Iideal = |RC|

(2π)2 8 bits = R2
nom8 bits, and we would at most have 8 bits of

mutual information per sample. Hence another way of representing the efficiency of
sampling is the product IeffR

2
nom (last column) which represents the number of bits of

mutual information per sample and is bounded by 8.
Observe that both the effective resolution and information measures yield Supermode
and Sq1 as the most effective sampling systems. Resolution may be further increased,
but the cost in terms of sampling rate per increase in resolution will start growing faster
beyond this point.

6.3 Application to Restoration

Finally we show an unexpected application of these results. We started with the def-
inition of a resolution measure. To do so, we realized that we needed to adapt the
reciprocal cell. Otherwise, our resolution measure would be under-estimated. Now,
once we found the optimal reciprocal cell, we should use it for restoration as well. The
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procedure is as follows:

From the discrete image g obtained by equation (1.16) we compute the discrete
Fourier transform ĝ. In order to remove aliasing from this image without loosing any
good information, we need to oversample. We do so either by adding zeros between
the samples g before the Fourier transform, or equivalently by periodically extending
ĝ. Then we multiply this Γ∗-periodic ĝ by Ï D∗R-opt

and take the inverse Fourier transform
to obtain a zoomed version of g with some aliased or noisy coefficients removed and
some aliased coefficients re-placed at their correct locations. The sampled image g and
the corrected F(ĝ Ï D∗R-opt

) can be observed in figures 1.15(b) and 1.16(b) respectively.

This actually improves the image but in most cases the difference is hardly percep-
tible. In order to observe the full advantage of this procedure we need to deconvolve
the transfer function. We shall do so by two novel procedures.

Wiener Filter for sampled images. The classical way for restoring images by means
of linear filters is the Wiener Filter which is usually derived in a continuous setting,
which does not take sampling into account:

g = h ∗ f + n. (1.56)

With this assumption the Wiener Filter restoration is defined as

u = k ∗ g where k = arg min
k

E{‖k ∗ g − f‖2} (1.57)

where the statistical models for f and n are usually colored Gaussian with zero mean
and known variance as in sections 4.2 and 4.3. The solution is found to be

k̂(ξ) =
H(ξ)

|H(ξ)|2(1 + b2(ξ))
(1.58)

where b2(ξ) is the relative noise as defined in equation (1.36). Note that to derive this
result a crucial assumption is that f̂(ξ), n̂(ξ) and f̂(ξ′) are all independent whenever
ξ 6= ξ′, which is as discussed before not a very accurate image model. Note also that
the denominator has to be understood as |H(ξ)|2 + σ2

|F (ξ)|2 when H(ξ) tends to zero, we
only used the notation above for convenience).

Now this formulation doesn’t take sampling into account and this is why aliasing
doesn’t come up in the final result. If we start from the complete image model with
sampling:

g = ∆Γ · (h ∗ f) + n (1.59)
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(a) Original image and its Fourier spectrum

(b) Sampled image zoomed by zero-padding

(c) Deconvolved by Total Variation

Figure 1.15: Sampling with the Sq2 system and deconvolution by Total Variation mini-

mization. Observe how the aliased second harmonic of the roof’s texture explodes when

deconvolved by a wrong Fourier coefficient of the transfer function.
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→
(a) Optimal reciprocal cell D∗R-opt

(shown in transparent dark gray), op-
timal tiling D∗tiling (shown in trans-
parent medium gray), and Voronoi
cell D∗Vor (shown in transparent light
gray).

(b) Fourier coefficients reordered after D∗R-opt

(c) Deconvolved by Total Variation with D∗R-opt

Figure 1.16: Deconvolution of the image in figure 1.15 by Total Variation minimization

with the data-fitting term integrated over the optimal reciprocal cell D∗R-opt. Observe how

the errors in the previous figure are reduced by placing aliasing-dominated regions at their

correct locations in the Fourier spectrum.
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→
(a) Optimal reciprocal cell D∗R-opt

(shown in transparent dark gray), op-
timal tiling D∗tiling (shown in trans-
parent medium gray), and Voronoi
cell D∗Vor (shown in transparent light
gray).

(b) Standard Wiener Restoration using the filter in equation (1.58)

(c) Wiener Restoration for sampled images using the filter in equation (1.60)

Figure 1.17: Deconvolution of the image in figure 1.15 by two kinds of Wiener Restoration.
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and then perform the same minimization as in equation (1.57) under the same statisti-
cal assumptions as before we get

k̂(ξ) =
H(ξ)

|H(ξ)|2(1 + a2(ξ) + b2(ξ))
. (1.60)

A similar approach has been proposed by Pratt [139] more than 20 years ago, but has
since then been apparently forgotten. However, as it is shown in figure 1.17(c) this sim-
ple procedure manages to reduce much of the annoying aliasing present in the classical
Wiener restoration shown in figure 1.17(b). As it can be observed, some ringing arti-
facts are still present, due to the zero-padding. But this can be solved by the Total
Variation approach we present in the following paragraph.

Total Variation on adapted reciprocal cell. A better approach is to apply Total Vari-
ation minimization introduced by Rudin, Osher, and Fatemi [152], which is specially
well suited for this kind of problems where the spectrum is known on a region which
consists of several connected components, as proposed by Malgouyres [121], Malgo-
uyres and Guichard [122]. In fact this is a good means of choosing the unknown
Fourier coefficients in a way that minimizes the ringing artifacts that would otherwise
be created by the gaps between two connected components.

Specifically, the most straightforward method of deconvolution and spectral ex-
trapolation by TV minimization, would consist of minimizing TV (u) under the con-
straint that the sample difference ‖∆Γ · ((h∗u)−g)‖ be smaller than the noise level ‖n‖.
Equivalently, we want to find u which minimizes

∫
|∇u(x)|dx+ λ

∑

x∈Γ

|(h ∗ u)(x)− g(x)|2 (1.61)

where λ is a properly chosen Lagrange multiplier.
However, as it has been observed in [121, 122] , this procedure may lead to pixeliza-

tion artifacts, especially when the spatial support of the filter h is small with respect
to the sampling rate. In the extreme case where h is a delta function, the solution u of
(1.61) may also become a series of delta functions at certain areas, which is certainly
not what we want. Even in more realistic cases, such as the filter h corresponding to a
CCD array with perfect optics, the pixelization artifacts of (1.61) may be very strong.

To avoid this problem, Malgouyres and Guichard propose to rewrite the data-fitting
term in the Fourier domain as follows

u = arg inf
u

∫
|∇u(x)|dx+ λ

∫

D∗Vor

|Hû− ĝ|2dξ. (1.62)
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The modification we propose is to integrate the data-fitting term over the D∗R-opt (after
periodic extension of ĝ) instead of over D∗Vor

u = arg inf
u

∫
|∇u(x)|dx+ λ

∫

D∗R-opt

|Hû− ĝ|2dξ. (1.63)

The benefit of doing so becomes evident when we compare the solutions of equa-
tions (1.62) and (1.63), as shown in figures 1.15(c) and 1.16(c) respectively.

Note how the proposed method produces a correct deconvolution, and even allows
to extrapolate the spectrum, whereas the solution of equation (1.62) produces a catas-
trophic result in this case. The reason is that the high-energy second harmonic of the
roof texture which falls outside of D∗Vor, say at ξ 6∈ D∗Vor is translated (due to sampling
and aliasing) to a region very near one of the zero-crossings of H , say at ξ + γ∗ ∈ D∗Vor.
This means that ĝ(ξ + γ∗) ≈ H(ξ)f̂(ξ) since H(ξ + γ∗) ≈ 0. Hence equation (1.62),
which doesn’t know about aliasing, tries to deconvolve the high-energy aliased coeffi-
cient ĝ(ξ + γ∗) with H(ξ + γ∗) which is almost zero, producing the instability that we
can observe in the result. Equation (1.63) instead, deconvolves ĝ(ξ + γ∗) with H(ξ),
thus producing the correct result, closer to f̂(ξ).

This kind of error is not very common in more traditional systems where the trans-
fer function is quite isotropic or the noise level too large with respect to aliasing, and
hence (according to the last observation of the previous section) the optimal reciprocal
cell is included in it. Furthermore this effect can be reduced by adding a threshold,
which avoids to deconvolve coefficients where H is below the threshold. But this is
not a very efficient solution, because it consists of treating aliasing as if it was white
noise, and for highly anisotropic transfer functions with many zero-crossings, it may
force us to use a quite high threshold, thus forcing us to unnecessarily throw a way a
lot of information.

Sometimes even in some more traditional systems addressing aliasing may be im-
portant. Figure 1.18 shows what happens when we try to deconvolve an image that has
been obtained by the ccd3 system, a CCD array with good optics and a signal-to-noise
ratio of 48 dB, which moved during acquisition a distance of 2.35 pixels, at constant
speed, at a direction slightly deviated from the horizontal. We assume that we try to
deconvolve the whole MTF including the sensor, the optics and the motion blur. It can
be observed that some very annoying aliasing remains if we apply the naı̈ve restora-
tion, which is removed if we apply the aliasing-aware restoration.
Same comment for figure 1.19 which illustrates the same effect on a Supermode sys-
tem at a signal-to-noise ratio of 48 dB, which is higher than the actual SNR of SPOT5.
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→
(a) Optimal reciprocal cell D∗R-opt

(shown in transparent dark gray), op-
timal tiling D∗tiling (shown in trans-
parent medium gray), and Voronoi
cell D∗Vor (shown in transparent light
gray).

(b) Deconvolved by Total Variation with D∗Vor

(c) Deconvolved by Total Variation with D∗R-opt

Figure 1.18: Deconvolution of a rotated and scaled version of figure 1.15(a) after sampling

with the ccd3 system with a SNR of 48 dB, by Total Variation minimization with the data-

fitting term integrated first over the Voronoi cellD∗Vor, and then over the optimal reciprocal

cell D∗R-opt. Observe how the aliasing errors are reduced by placing aliasing-dominated

regions at their correct locations in the Fourier spectrum.
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→
(a) Optimal reciprocal cell D∗R-opt

(shown in transparent dark gray), op-
timal tiling D∗tiling (shown in trans-
parent medium gray), and Voronoi
cell D∗Vor (shown in transparent light
gray).

(b) Deconvolved by Total Variation with D∗Vor

(c) Deconvolved by Total Variation with D∗R-opt

Figure 1.19: Deconvolution of a rotated and scaled version of figure 1.15(a) after sampling

with the Supermode system with a SNR of 48 dB, by Total Variation minimization with

the data-fitting term integrated first over the Voronoi cellD∗Vor, and then over the optimal

reciprocal cell D∗R-opt. Observe how the aliasing errors are reduced by placing aliasing-

dominated regions at their correct locations in the Fourier spectrum.
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With the actual SNR aliasing is largeley below the noise level, and there is not a big dif-
ference between both procedures. Note that in both cases, in order to obtain a clearly
visible result we rotated and scaled the original image, in such a way that a high energy
harmonic falls in the right place.

Importance of aliasing vs. noise in image restoration. Finally we show an example
which illustrates the different roles played by the thresholds θalias and θnoise used in
the resolution measure. Figure 1.20 shows a synthetic image which was chosen to
better illustrate our results. It is a radial chirp image centered at x0, where the local
frequency at a point x is around x − x0. Thus, the image and its spectrum have a
very similar shape. We simulated a sampling of this image with the Sq2 system, and
we applied the Equation (1.63) with two different values of R-opt. In the first case
we set θalias = θnoise = 1 as before, and in the second case we set θalias = 0.3 whereas
θnoise = 3, i.e. we tolerate higher distortions from noise than from aliasing. The result,
as anticipated at the end of section 4.3, confirms that this is a sensible choice, because
we perceive better distortions due to image-correlated aliasing than distortions due to
image-independent noise. Another reason may be that TV too may do a better job at
filtering white noise than aliasing errors.

7 Discussion and future work

In this chapter we propose a new way of measuring the effective resolution of an image
acquisition system, which takes into account the noise level, and the geometric distri-
bution of sensors and their transfer functions. This definition is motivated by modern
imaging systems, which may consist of hexagonal or square grids of sensors, and may
show a better resolution in certain preferred directions.

Our experiments suggest that the proposed measure can not only be used to com-
pare the resolution of different imaging systems, but also to avoid aliasing artifacts that
may cause serious problems in restoration. When this restoration is done in conjunc-
tion with total variation minimization in order to avoid ringing by fill-in the spectrum
between connected components of the optimal reciprocal cell, we actually extrapolate
the spectrum in a reasonable manner with a visual effect of sharpness and increased
resolution.

However this spectrum extrapolation should not be confused with other “super-
resolution” methods like in [78, 144] , where a very detailed knowledge of image
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(a) Original image and its Fourier spectrum

(b) Deconvolved by Total Variation with D∗R-opt, θalias = θnoise = 1

(c) Deconvolved by Total Variation with D∗R-opt, θalias = 0.3 and θnoise = 3

Figure 1.20: Deconvolution by Total Variation minimization with the data-fitting term in-

tegrated over the optimal reciprocal cell D∗R-opt, for two different values of the thresholds.

Observe that to completely eliminate visible aliasing we need an aliasing threshold θalias

smaller than one. On the other hand, deconvolved noise is less visible or better dealt with

by TV and we can tolerate higher values of the threshold θnoise without any serious visible

artifacts.
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statistics is used to produce plausible interpolations. In our work we used a minimal
knowledge of image statistics, namely the decay rate of Fourier coefficients, but we
used a very detailed knowledge of the image acquisition device, its geometry, transfer
function and noise. On the other hand this kind of knowledge is usually not used in
super-resolution algorithms, in any case not the aliasing part.
Thus there is a potential to integrate both approaches to obtain better super-resolution
methods which exploit both detailed image statistics and image acquisition models.
The mutual information density measure and the corresponding reciprocal cell pro-
vide a first indication on how these approaches could be integrated. We calculated this
measure to include up to second order statistics (through the relative covariance k be-
tween pairs of Fourier coefficients), but this model can be refined as much as we want.
Nevertheless, image statistics are more relevant when expressed in more local bases,
such as wavelets or wavelet packets bases as in [99, 144] , and this would oblige us to
approximate the effect of the transfer function and aliasing in such bases. Such an in-
tegration of both approaches to super-resolution will be the subject of future research.

Appendix

A Proof of Shannon’s sampling theorem

In this section we give a more rigorous proof of Shannon’s sampling theorem. The
main elements of the theory and the proof were obtained from [36, 80, 135] . We rewrite
the proofs here to unify the notation, and because we state the theorem under slightly
different hypothesis which are more useful for the purposes of this chapter. In [36]
for instance we can find all the elements of Fourier and distribution theory in multiple
dimension, but not a proof of the sampling theorem. On the other hand [80] gives
a proof of the sampling theorem in L2 but in dimension 1. Finally [135] constructs
the theory of Fourier series in several dimensions and gives a proof of the sampling
theorem under conditions very similar to 5.

In the next section we recall the basic elements of the theory that we will use in
section A.2 to give the proof. Finally in section A.3 we discuss to what an extent the
hypothesis we assumed on the continuous image are verified by real systems.



56 CHAPTER 1. REGULAR SAMPLING, RESOLUTION AND RESTORATION

A.1 Basic results from Fourier analysis and distribution theory

The Fourier transform and its conjugate are defined initially for f ∈ L1(Rd) as

f̂(ξ) =F(f)(ξ) :=

∫

R2

e−i<x,ξ>f(x)dx (1.64)

F(F )(x) :=

∫

R2

ei<x,ξ>F (ξ)dξ. (1.65)

The Fourier transform maps L1 to continuous functions which tend to 0 at infinity, but
F(f) is not necessarily in L1. Whenever f̂ ∈ L1 we have the inversion formula

F(F(f)) = (2π)df, if f ∈ L1, f̂ ∈ L1.

On the contrary the Schwartz class S of functions with fast decay at infinity for all
derivatives, is closed under F , so:

f ∈ S =⇒ F(f) ∈ S ∧ F(F(f)) = (2π)df.

The Schwartz class allows us to extend the definition of the Fourier transform to
more general classes. First we can extend it to the class of tempered distributions S ′,
so that for u ∈ S ′, the Fourier transform is û = F(u) such that

∀ϕ ∈ S, < F(u), ϕ >=< u,F(ϕ) >

< F(u), ϕ >=< u,F(ϕ) >

The definition is consistent with the definition in L1 ⊂ S , and it isometrically maps S ′
into itself, and satisfies the Fourier inversion formula, but now in the sense of tempered
distributions:

f ∈ S ′ =⇒ F(f) ∈ S ′ ∧ (1.66)

F(F(f)) = (2π)df. (1.67)

The extension of the Fourier transform to S ′ provides an extension to L2(Rd) ⊂
S ′(Rd). Since S is complete and dense in L2 we can show that this is the only extension
of F : S → S . We can check that this extension maps L2 to itself, that the map is
continuous, that it preserves the L2 norm up to a factor (2π)

d
2 and that it satisfies the

Fourier inversion formula (in the sense of the L2 norm):

f ∈ L2 =⇒ F(f) ∈ L2 ∧ (1.68)

F(F(f)) = (2π)df ∧ (1.69)

‖F(f)‖L2 = (2π)
d
2‖f‖L2
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The Fourier transform in L2 is closely related to the more elementary notion of
Fourier series of periodic functions. Any Γ-periodic function f ∈ L2

Γ admits a Fourier
series development

f(x) =
∑

k∈Γ∗

cke
i<k,x> (1.70)

where equality holds in the sense of the L2(D) norm and the Fourier coefficients are
unique and defined by

ck =
1

S

∫

D

e−i<x,k>f(x)dx

for any tile D of Γ, where S = |D| denotes the area of any such tile. The link with the
Fourier transform of distributions is given by:

û = (2π)d
∑

k∈Γ∗

ck(u)δk

which is valid for any Γ-periodic function u.
Similarly, convolution is defined by the usual formula for f, g ∈ L1(Rd)

(f ∗ g)(x) =

∫

Rd
f(x− y)g(y)dy

and then extended in several ways. The main difficulty is that the decay rate at infinity
of both terms need to compensate for the integral to converge. For our purposes it
suffices to know that it is well defined in the following cases

∀u ∈ E ′,∀ϕ ∈ C∞0 , (u ∗ ϕ) ∈ C∞0 with

supp(u ∗ ϕ) = supp(u) + supp(ϕ)
(1.71)

∀u ∈ E ′,∀v ∈ S ′, (u ∗ v) ∈ S ′

∀u ∈ O′C ,∀v ∈ S ′, (u ∗ v) ∈ S ′

∀u ∈ S,∀v ∈ S ′, (u ∗ v) ∈ OM .

Our notation follows [36] : E ′ denotes the compact support distributions,O′C the distri-
butions with fast decay at infinity, andOM the functions having slow growth at infinity
and an infinite number of continuous derivatives. Observe that we have the following
inclusions relationships between these spaces:

C∞0 −−−→ S −−−→ OM −−−→ C∞y
y

y
y

E ′ −−−→ O′C −−−→ S ′ −−−→ D′
(1.72)
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In addition S ⊂ Lp ⊂ S ′ for all p ≥ 1. In all the previous cases where the convolu-
tion is well defined, its Fourier transform exchanges with convolution in the following
manner:

if u and v satisfy one of the following conditions:

u ∈ E ′ ∧ v ∈ S ′

u ∈ O′C ∧ v ∈ S ′

u ∈ S ∧ v ∈ S ′

then F(u ∗ v) = F(u) · F(v). (1.73)

which is also valid for F instead of F .

The multiplication of two distributions is not always well defined either. For our
purposes it suffices to know that we can safely multiply a tempered distribution by a
slowly growing regular function

f ∈ OM ∧ g ∈ S ′ =⇒ f · g ∈ S ′ (1.74)

and that the Fourier transform maps distributions with compact support into OM :

f ∈ E ′ =⇒ F(f) ∈ OM . (1.75)

These two results allow to obtain the dual form of equation (1.73), namely:

if u and v satisfy one of the following conditions:

û ∈ E ′ ∧ v ∈ S ′

u ∈ OM ∧ û ∈ O′C ∧ v ∈ S ′

u ∈ S ∧ v ∈ S ′

then F(u · v) =
1

(2π)d
F(u) ∗ F(v). (1.76)

To conclude we state two more results that we will need in the following section.
The first is valid for f ∈ S ′, f ∈ S or f ∈ L2, with the corresponding meaning of
equality in each case:

F(f(x)e−i<x,ω>) = τωf̂ (1.77)

F(∆Γ) = S∗∆Γ∗ . (1.78)

In the last line S∗ = |D∗| denotes the area of any tile D∗ of Γ∗.
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A.2 Shannon’s sampling theorem

The formal proof given in section 2.2 is actually only valid if we impose a strong regu-
larity and fast decay on the analog image f :

Theorem 3 (Shannon-Whittaker in S). Given a function f ∈ S(Rd) (with fast decay and
an infinite number of continuous derivatives), a d-dimensional sampling grid Γ and a compact
reciprocal cell D∗ ⊂ Rd. If the following conditions are met

(S1) (D∗,Γ∗) is a packing

(S2) supp(f̂) ⊂ D∗ (i.e. f is band-limited),

then f can be completely recovered from its samples in Γ, i.e. from

g = {fγ}γ∈Γ. (1.79)

In fact the reconstruction is given by the following convolution

f =
1

S∗
F( Ï D∗) ∗ g (1.80)

of the sampled image g with the generalized sinc kernel s = 1
S∗F( Ï D∗).

Proof. Since f ∈ S (which is included in OM ) and ∆Γ ∈ S ′ the product g = ∆Γ · f
defining the sampled image g makes sense and is in S ′ according to (1.74).
Now again, since f has compact spectral support we can apply (1.76) in the case when
u = f is such that û ∈ E ′ and v = ∆Γ ∈ S ′ to obtain: F(f ·∆Γ) = 1

(2π)d
F(f) ∗ F(∆Γ). Fi-

nally applying (1.78) to compute the Fourier transform of the Dirac comb the previous
equation becomes Poisson’s formula:

F(f ·∆Γ) =
S∗

(2π)d
f̂ ∗∆Γ∗,

where both members are tempered distributions, and equality is to be understood in
this sense.
Multiplying both sides by Ï D∗ ∈ OM we still get the following equality in S ′

F(f ·∆Γ) · Ï D∗ =
S∗

(2π)d
(f̂ ∗∆Γ∗) · Ï D∗ =

S∗

(2π)d
f̂ . (1.81)

Regarding the last equality observe that (S1) and (S2) ensure that there is no aliasing,
in other words, that supp(f̂ ∗ δγ∗) ∩ D∗ = φ for any γ∗ ∈ Γ∗\0. Thus (f̂ ∗ ∆Γ∗) · Ï D∗ =
∑

γ∗∈Γ∗(f̂ ∗ δγ∗) · Ï D∗ actually has only one non-zero term, namely when γ∗ = 0.
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Finally we only have to compute the inverse Fourier transform on both sides of
(1.81). According to the Fourier inversion formula (1.67) the right-hand side gives S∗f ,
and to compute the left-hand side we apply once again (1.76) to obtain

1

(2π)d
F(F(g)) ∗ F( Ï D∗) = S∗f.

Observe that we can apply (1.76) for u = F(g) and v = Ï D∗ ∈ S ′, because g ∈ O′C . In
fact, g is clearly a distribution and it has a fast decay because so does f ∈ S .

To complete the proof we only need to apply once more the Fourier inversion for-
mula to obtain F(F(g)) = (2π)dg and rearrange the terms in the last equation.

Note that this proof shows the interpolation equation (1.80) only in the sense of S ′
(tempered distributions). We shall see later that it is also valid pointwise with uniform
convergence and with less restrictive hypothesis on the decay rate of the continuous
signal f at infinity. Part of the proof, however, will require results from Fourier series
in L2.

We can still give a proof which is completely based on distribution arguments if
we trade some decay speed in f for a slightly over-critical sampling which allows for
interpolation kernels swith a more regular spectrum. This form of Shannon’s sampling
theorem is also interesting for the numerical implementation, since the more regular
form of ŝ means a faster decay rate for s and hence faster approximate interpolation.

Theorem 4 (Shannon-Whittaker in OM ). Given a function f : Rd → R, a d-dimensional
sampling grid Γ and a compact reciprocal cell D∗ ⊂ Rd. If

(S1) (D∗,Γ∗) is a packing

(S2’) supp(f̂) ⊂
◦
D∗ (i.e. f is band-limited, and D∗ is slightly over-critical),

then f can be completely recovered from its samples in Γ, i.e. from

g = ∆Γ · f. (1.82)

In fact the reconstruction is given by the following convolution

f =
1

S∗
F(ϕ) ∗ g (1.83)

of the sampled image g with any kernel s = 1
S∗F(ϕ) satisfying the following conditions:

(S3) ϕ ∈ C∞0 , supp(ϕ) ⊆ D∗, ϕ|supp(f̂) ≡ 1.

Such a kernel always exists but is not unique.
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Proof. Since f has compact spectral support, according to equation (1.75), it has an
infinite number of continuous derivatives and grows slowly, i.e. f ∈ OM . Since in
addition ∆Γ ∈ S ′ the product g = ∆Γ · f defining the sampled image g makes sense
and is in S ′ according to (1.74).
Then we derive Poisson’s formula exactly as before:

F(f ·∆Γ) =
S∗

(2π)d
f̂ ∗∆Γ∗.

Now let’s construct ϕ satisfying (S3). Let K = supp(f̂) denote the compact spectral
support of f . From (S2) there is a positive distance d(∂D∗, K) = ε > 0 between the
border of D∗ and K. Let ψ ∈ C∞0 be a test function with support in a zero-centered ball
of radius ε/2, and let Kε be the dilation of K by the same ball. Then it is easy to see
from (1.71) that ϕ = ψ ∗ Ï Kε satisfies all conditions in (S3).

Multiplying both sides of the Poisson formula by ϕ ∈ C∞0 we still get the following
equality in S ′

F(f ·∆Γ) · ϕ =
S∗

(2π)d
(f̂ ∗∆Γ∗) · ϕ =

S∗

(2π)d
f̂ . (1.84)

The last equality is shown in exactly the same manner as before. The only non-zero
term in the convolution is when γ∗ = 0 because supp(ϕ) ⊆ D∗, and this term is (f̂ ∗ δ0) ·
ϕ = f̂ because ϕ|supp(f̂) ≡ 1.

Finally we only have to compute the inverse Fourier transform on both sides of
(1.84). According to the Fourier inversion formula (1.67) the right-hand side gives S∗f ,
and to compute the left-hand side we apply once again (1.76) to obtain

1

(2π)d
F(F(g)) ∗ F(ϕ) = S∗f.

Observe that this time we can apply (1.76) for v = F(g) and u = ϕ, but the image and
the kernel play inverse roles as in the previous case. As for the sampled image g the
best thing we can say is that it grows slowly, but it is not inOM since it is a distribution.
So g ∈ S ′ is a tempered distribution and so is v = F(g) ∈ S ′ according to (1.66). Thus
the necessary decay rate for the formula to hold is provided by u = ϕ ∈ C∞0 ⊂ S .

To complete the proof we only need to apply once more the Fourier inversion for-
mula to obtain F(F(g)) = (2π)dg and rearrange the terms in the last equation.

Finally we provide an optimal formulation we know of Shannon’s sampling the-
orem in the case of critical sampling. It is optimal in the sense that it holds with the
weakest hypothesis, and that it provides the strongest results.
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Theorem 5 (Shannon-Whittaker in L2). Given a function f ∈ L2(Rd) , a d-dimensional
sampling grid Γ and a compact reciprocal cell D∗ ⊂ Rd. If the following conditions are met

(S1) (D∗,Γ∗) is a packing

(S2) supp(f̂) ⊂ D∗ (i.e. f is band-limited),

then f can be completely recovered from its samples in Γ, i.e. from

g = {f(γ)}γ∈Γ . (1.85)

In fact, g ∈ l2(Γ), and the reconstruction is given by the following convolution

f(x) =
∑

γ∈Γ

gγs(x− γ) (1.86)

of the sampled image g with the generalized sinc kernel s = 1
S∗F( Ï D∗). This equality holds

in general only in the sense of the L2 norm. If in addition g ∈ l1(Γ), then there is pointwise
equality and uniform convergence.

Proof. Since f is has compact spectral support, f̂ ∈ E ′ and we deduce Poisson’s formula
in the same manner as in theorem 3

F(f ·∆Γ) =
S∗

(2π)d
f̂ ∗∆Γ∗,

where both members are tempered distributions, and equality is to be understood in
this sense.
Now observe that the right-hand side of Poisson’s formula F = S∗

(2π)d
f̂ ∗ ∆Γ∗ is a Γ∗-

periodic function in L2(R) for any tile R of Γ∗ (this is due to the fact that f ∈ L2(Rd)
and hence also f̂ ∈ L2(Rd), according to (1.68)). Therefore F admits a Fourier series
development:

F (ξ) =
∑

γ∈Γ

cγe
i<ξ,γ> (1.87)

where {c−γ}Γ is in l2(Γ), and the equality is valid in the L2(R) for any tile R of Γ∗.
On the other hand the left-hand side of the Poisson formula can be written:

F (ξ) =
∑

γ∈Γ

f(γ)e−i<γ,ξ>. (1.88)

So the uniqueness of the Fourier series development (1.70) means that c−γ = f(γ) = gγ ,
and we conclude that the sampled image g ∈ l2(Γ) is square-summable.
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Multiplying F by Ï D∗ ∈ L2 we still get the following equality in L2(Rd)

∑

γ∈Γ

f(γ) Ï D∗(ξ)e−i<γ,ξ> = F (ξ) Ï D∗(ξ) =
S∗

(2π)d
((f̂ ∗∆Γ∗) · Ï D∗)(ξ) =

S∗

(2π)d
f̂(ξ). (1.89)

To show the last equality observe as in theorem 3 that (S1) and (S2) ensure that there is
no aliasing.

Finally we only have to compute the inverse Fourier transform on both sides of
(1.81). According to the Fourier inversion formula (1.69) the right-hand side gives S∗f ,
and to compute the left-hand side we use the continuity of F (1.68) to obtain

F(
∑

γ∈Γ

f(γ) Ï D∗(ξ)e−i<γ,ξ>) =
∑

γ∈Γ

f(γ)F( Ï D∗(ξ)e−i<γ,ξ>).

Using equation (1.77) we substitute F( Ï D∗(ξ)e−i<γ,ξ>) = F( Ï D∗)(x− γ), to obtain:

f(x) =
1

S∗

∑

γ∈Γ

gγF( Ï D∗)(x− γ)

which is equivalent to (1.86), and the convergence of the series towards f holds in
the sense of the L2(Rd) norm. If in addition g ∈ l1(Γ) (i.e.

∑
γ |gγ| < +∞) then, since

s = 1
S∗F( Ï D∗) is bounded10, we also have

∑
|γ|<n |gγs(x − γ)| ≤ ∑|γ|<n |gγ| = cn → 0

(where the sequence cn is independent of x), Therefore the series converges uniformly
to a function h which is continuous over Rd. So, the series converges also to h in L2(J)

for any bounded interval J . We conclude that h = f almost everywhere overRd, which
means that f(x) = h(x) for all x ∈ Rd, since f and h are continuous.

A.3 Suitability of the hypotheses in real systems

As we explained in section 3 in real image acquisition systems the continuous image f
to be sampled can be modeled as a convolution:

f = h ∗O (1.90)

where O represents the landscape, i.e. the photons that meet the imaging system, and
the kernel h depends on the filtering performed by the optics of the acquisition device,
the sensors and the movement of the whole system. Thus O can be modeled as a
positive Radon measure with compact support, and hence O ∈ E ′. As for the kernel h,
despite the approximate models introduced in section 3, it is commonly accepted that

10 In fact |s(x)| ≤ 1
S∗
∫
Rd | Ð D∗(ξ)e−i<ξ,x>|dξ ≤ 1

S∗
∫
D∗ 1dξ = |D∗|

S∗ ≤ 1, where the last inequality holds
because D∗ is a sub-tile of Γ∗.
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it has compact spectral support. However this support is usually much larger than its
essential support (beyond the noise level), so from an engineering point of view this
remark is not very useful. But it is useful for checking the vailidity of the theorem for
real images.

Now since ĥ ∈ E ′ we conclude that f̂ = ĥ · Ô is also in E ′ according to (1.73), and
f ∈ OM . So this is enough to satisfy the conditions of theorem 4 with over-critical
sampling.

To meet the hypothesis of the two other versions we shall need to assume some
more regularity on the kernel h. For theorem 4 we shall need to assume that the transfer
function ĥ ∈ C∞0 is a test function. Then according to (1.73) we have f̂ = ĥ · Ô with
Ô ∈ OM . Therefore f has both compact support and an infinite number of derivatives,
so f̂ ∈ C∞0 ⊂ S , and f ∈ S according to (A.1), so f meets the hypothesis in theorem 4.

Finally, for theorem 5 it suffices to assume that ĥ is continuous (and in addition
of compact support as before). So it is in L1 ∩ L2, and ĥ ∈ OM ∩ L2 according to
equations (1.68) and (1.75). We can conclude that f = h ∗ O is C∞ that it tends to zero
at infinity and f ∈ L2.

B Proof of the lower bound on mutual information den-

sity

The proof of theorem 2 is a simple application of the following results from information
theory, which can be found for instance in [51] .

Lemma 1. Given any three random variables X1, X2, X3

H(X1 +X2 +X3) ≥ H(Y1 + Y2 + Y3) where Yi are indep. normal (1.91)

with H(Xi) = H(Yi)

and = iff Xi are indep. normal.

Lemma 2. Given any pair of random variables X1, X2:

H(X1 +X2 |X1) = H(X2 |X1) ≤H(X2) (1.92)

with = iff X1, X2 indep.

Lemma 3. The entropy of any normally distributed random vector X with zero mean and
covariance matrix K is

H(X) =
1

2
log2 (2eπ|K|) (1.93)
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where |K| denotes the determinant of K.
In particular, for a zero-mean, normally distributed random variable X the entropy is:

H(X) =
1

2
log2 (2eπVar{X}) . (1.94)

Lemma 4. Given any normally distributed random vector X with zero mean and covariance
matrix K, the sum

∑
iXi is also zero-mean, normally distributed, with variance:

Var{
∑

i

Xi} = 1TK1 (1.95)

where 1 is a column vector of ones having the same size as X.
In particular, given two independent, zero-mean, normally distributed random variables Y1, Y2,
the sum Y1+Y2 is also zero-mean normally distributed with Var{Y1+Y2} = Var{Y1}+Var{Y2}.

Proof. (of theorem 2)
The mutual information is defined in terms of entropy H as follows:

I(ĝ(ξ), G(ξ)) =H(G(ξ) +Galias(ξ) + n̂(ξ))−
H(G(ξ) +Galias(ξ) + n̂(ξ) |G(ξ))

=H(G(ξ) +Galias(ξ) + n̂(ξ))−
H(Galias(ξ) + n̂(ξ) |G(ξ)). (1.96)

If we apply lemmas 1 and 2 to each term of the previous equation with X1 = G(ξ),
X2 = Galias(ξ) and X3 = n̂(ξ) we obtain the following lower bound:

I(ĝ(ξ), G(ξ)) ≥ H(Y1 + Y2 + Y3)− H(Galias(ξ) + n̂(ξ)) (1.97)

with Yi independent and normally distributed. Hence we can apply lemmas 4 and 3 to
obtain:

H(Y1 + Y2 + Y3) =
1

2
log2 (2πe(Var{Y1 + Y2 + Y3}))

=
1

2
log2 (2πe(Var{Y1}+ Var{Y2}+ Var{Y3}))

=
1

2
log2

(
22H(Y1) + 22H(Y2) + 22H(Y3)

)

=
1

2
log2

(
22H(G(ξ)) + 22H(Galias(ξ)) + 22H(n̂(ξ))

)
(1.98)

where in the last equation we used the fact that Yi in lemma 2 are such that H(Yi) =

H(Xi). Finally if we combine this last expression with H(Galias(ξ)+n̂(ξ)) = 1
2

log2(22H(Galias(ξ)+n̂(ξ))),
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we obtain equation (1.39). Finally, a similar but simpler application of lemmas 4 and 3,
shows that in the independent Gaussian case we actually have

22H(Galias(ξ)+n̂(ξ)) = 22H(Galias(ξ)) + 22H(n̂(ξ))

so that the lower-bound in equation (1.39) becomes

1

2
log2

(
1 +

22H(G(ξ))

22H(Galias(ξ)) + 22H(n̂(ξ))

)
.

Then equation (1.40) follows directly by applying lemma 3 in the scalar case.
To prove the third part of the theorem we go back to equation (1.96). To develop the

first term, in that equation, observe that the covariance matrix of (G(ξ), Galias(ξ), n̂(ξ))

consists of a 2 by 2 diagonal block (corresponding to (G(ξ), Galias(ξ))), and a 1 by 1
diagonal block (corresponding to n̂(ξ)). Hence:

1TK1 = Var{G(ξ)}+ Var{Galias(ξ)}
+ 2Cov{G(ξ), Galias(ξ)}+ Var{n̂(ξ))} (1.99)

and we can develop the first term as follows:

H(G(ξ) +Galias(ξ) + n̂(ξ)) =
1

2
log(2eπ( Var{G(ξ)}+ Var{Galias(ξ)}

+ 2Cov{G(ξ), Galias(ξ)}+ Var{n̂(ξ))} )) (1.100)

To develop the second term in equation (1.96) we use the definition of conditional
entropy, and then lemma 3, to obtain:

H(Galias(ξ) + n̂(ξ) |G(ξ)) = H(G(ξ), Galias(ξ) + n̂(ξ))− H(G(ξ))

=
1

2
log(2eπ( Var{G(ξ)}Var{Galias(ξ) + n̂(ξ)}

− Cov{G(ξ), Galias(ξ) + n̂(ξ)}2 ))

=
1

2
log(2eπ( Var{G(ξ)}(Var{Galias(ξ)}+ Var{n̂(ξ)})

− Cov{G(ξ), Galias(ξ)}2)). (1.101)

In the last line we applied lemma 4 to the independent Gaussian variablesGalias(ξ), n̂(ξ)

together with the fact that Cov{G(ξ), Galias(ξ) + n̂(ξ)} = Cov{G(ξ), Galias(ξ)} due to the
independence of G(ξ) and n̂(ξ).

Finally we combine the two terms in equation (1.96) using the previous dimension-
less variables to obtain equation (1.41) which is always well defined, since k(ξ) ∈ [0, 1],
because (Var{G(ξ)}Var{Galias(ξ)}−Cov{G(ξ), Galias(ξ)}2) must be non-negative, since it
is the determinant of the (positive semi-definite) covariance matrix of (G(ξ), Galias(ξ)).
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C Sufficient conditions for admissibility

Definition 6 for an admissible alias selector is quite general but a bit technical. Here we
present a set of sufficient conditions that may be easier to verify. In particular they can
be easily checked for the function u we apply it to, namely u(ξ) = 1

2
log2(1 + 1

a(ξ)2+b(ξ)2 )

when a and b are the relative aliasing and noise measures for a given transfer function
and image and noise models.

Lemma 5. Let Γ∗ be a regular grid in Rd. For any function u : Rd → R, satisfying the
following properties

(i) u(x) ≥ 0, ∀x ∈ Rd

(ii) u(x)→ 0, when |x| → ∞

(iii) (Γ∗, supp(u)) is a covering

(iv) The periodicity set Pu,Γ∗ of u and Γ∗ defined below has zero measure

Pu,Γ∗ =
{
x ∈ Rd : ∃γ ∈ Γ∗\{0}, u(x) = u(x+ γ) > 0

}

(iv) the associated optimal tiling Rmax is bounded

then u is an admissible alias selector.

Proof. Recall from the definition of admissible alias selector that the anomaly set is
defined as

Au,Γ∗ =
{
ξ ∈ Rd : card(Gξ,u,Γ∗) 6= 1

}

where Gξ,u,Γ∗ =

{
γ0 ∈ Γ∗ : u(ξ + γ0) = sup

γ∈Γ∗
u(ξ + γ)

}
.

For each point x consider the set Gx,u,Γ∗ (that we abbreviate in the sequel by Gx), and
let’s characterize the anomaly set by the following case discussion.

Case 1: If Gx consists of a single element γx, then x is not in the anomaly set Au,Γ∗ .
Case 2: We cannot have Gx = φ because this would mean that there is a sequence

{γn} of elements in Γ∗, such that limu(x + γn) = ux, and the limit ux is strictly larger
than any u(x + γn). Since γ takes values in Γ∗ this means that {γn} is unbounded, so
according to (ii) we have limu(x+ γn) = ux = 0. Since (i) imposes u to be non-negative
this means that u(x+γn) = ux = 0 for all n, which gives an infinite number of elements
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in Gx, contradicting our initial supposition that Gx = φ.

Case 3: Similarly, if Gx = {γn : n ∈ N} has an infinite number of different elements
we conclude that ux = 0. Let’s call the set of such points zero-set of u and Γ∗:

Zu,Γ∗ = {x : ux = 0} .

Clearly any point y ∈ ⋃γ∈Γ∗(supp(u) + γ) is excluded from the zero-set, i.e. y /∈ Zu,Γ∗ .
Therefore, (iii) implies that the zero-set Zu,Γ∗ has zero measure.

Case 4: Finally if Gx contains a finite number of elements but more than one, then x
belongs to the periodicity set of u and Γ∗.

We conclude that the anomaly set is the union of the zero set and the periodicity set,
both of zero measure. So the anomaly set Au,Γ∗ = Pu,Γ∗ ∪ Zu,Γ∗ also has zero measure.

More generally, observe that in proposition 1 the anomaly set can as well be divided
into two sets: A+ consisting of all points x such that Gx has more than one element,
and A0 consisting of all points x such that Gx is empty. Observe that we could tolerate
that A+ has a positive measure, but not that A0 has a positive measure. In the latter
case there is no maximal tiling, whereas in the former case we have several possible
maximal tilings. Indeed for any x ∈ A+, to build a maximal tiling Rmax, we can sub-
stitute x by (x + γ) for any γ ∈ Gx, without changing the value of the integrand in∫
Rmax

v(u(x))dx.



Chapter 2

Irregular Sampling and Reconstruction
Algorithms ∗

Abstract

Satellite images are sampled on a slightly perturbed grid, due to micro-vibrations of the in-
strument during capture. This perturbation can be estimated with high accuracy, but it must
be also corrected in the images for certain stereo and multi-spectral applications. In this chap-
ter we show to what an extent future satellites being developed at CNES satisfy the conditions
required by irregular sampling theory to make the problem of resampling on a regular grid
well posed, whereas most current imaging systems do not allow for such a well posed re-
construction due to aliasing. Then we discuss the available reconstruction algorithms and
propose a new one, which is to some extent better adapted to the sampling conditions of such
satellites.

1 Introduction

Satellite images are not sampled on an exactly regular grid, but rather on a slightly
perturbed grid. The sources of these perturbations include: micro-vibrations of the
satellite while it takes the image, and irregularities in the position of the sensors on the
image plane. For certain satellite images, the combined effect of these perturbations
can be automatically estimated for each image, by different means developed at CNES.
Physical models of the satellites exists, which allow to predict certain vibration modes
that can be activated at one time or another. For this reason the perturbations in the

∗A very early version of this chapter was published in the procedings of the GRETSI’01 symposium
in Toulouse [18] .
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sampling grid can be modeled quite accurately by:

ε(x) =
M∑

k=1

ak(x) cos(〈ωk, x〉+ ϕk) (2.1)

where the modulation functions ak(x) are extremely smooth and bounded by a con-
stant Ak which is usually inversely proportional to the frequency ωk. The vibration
frequencies ωk themselves are usually at least an order of magnitude smaller than the
Nyquist cut-off frequency associated to the sampling rate. The number M of vibra-
tion modes is also relatively small. This produces very smooth perturbations where
the distance between successive samples does not deviate from one pixel by more than
about 10%. But accumulated over a large distance the absolute perturbation may reach
several pixels. All in all the perturbation is so smooth that it does not produce a visible
geometrical distortion of the image, so it’s correction is not strictly necessary from an
aesthetic or presentation point of view. However, such perturbations must be taken
into account by algorithms which interpolate these images to obtain sub-pixel accu-
racy. Such an example is the production of highly accurate digital elevation models
from stereo pairs [91] , or super-resolution of color images from multi-spectral images
using a high resolution panchromatic channel [151] . These applications require im-
age registration with an accuracy even finer than 0.1 pixels in the disparity map. To
achieve such an accuracy, the micro-vibrations in the original image sampling must be
corrected before registration.

In this chapter we study the problem of resampling the image on a regular grid,
given its samples on a perturbed grid and the corresponding perturbation. We note
that this perturbation can be obtained with a high level of accuracy from cues given
both by gyroscopes mounted on the satellite and by analyzing the images themselves
[142] . Nevertheless we shall not deal here with the estimation of the perturbation (i.e.
the position of the sampling points in the irregular grid), and we shall rather assume
that the irregular grid is given with a high level of accuracy.

The chapter is organized as follows. First (section 2) we review the conditions re-
quired by irregular sampling theory to make the reconstruction problem well-posed,
and we analyze how these conditions apply to satellite imaging systems. Then (sec-
tion 3) we review some state-of-the-art reconstruction algorithms and point out the
characteristics of satellite images that are not exploited by these methods. Next (sec-
tion 4), we propose a new algorithm, based on a pseudo-inverse iteration, which better
exploits these characteristics. Finally, we discuss the results of our simulations (section
5).
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2 Existence theorems

2.1 Problem statement.

We assume that the continuous image f before sampling is band-limited, i.e. that f ∈
L2(R2) and supp(f̂) ⊆ [−π, π]2. We shall note this space of band-limited functions by
PW , for Payley-Wiener. We have seen in chapter 1 that this is not strictly the case in
real systems, and that sometimes the reciprocal cell needs to be adapted to the transfer
function. Furthermore, even with an adapted reciprocal cell, f̂ may have an important
part of the energy outside this cell. We shall return later in this section to the question of
to what an extent sampling systems satisfy these hypotheses. For the moment we keep
it because most of the theory on irregular sampling is developed in this framework,
and results are not straightforwardly generalizable to arbitrary spectral domains.
Secondly, we assume that we know the positions of the samples

Λ = {λk}k∈Z2 , λk ∈ R2 (2.2)

and the values of f at these points

s̃k = f(λk) , k ∈ Z2. (2.3)

Then the problem consists of finding the regular samples of f from the vector s̃ of
irregular samples

sk = f(k) , k ∈ Z2. (2.4)

In the general irregular sampling case, the sampling set Λ doesn’t need to have any par-
ticular structure (beyond a minimal density), and some theorems and algorithms apply
to this general case. In satellite imaging systems, however, we shall restrict ourselves
to the perturbed sampling case, in which the samples

λk = k + ε(k) , k ∈ Z2 (2.5)

are a perturbation of the regular grid, where some additional properties may be as-
sumed about the particular form of the perturbation function ε. Classical results make
statements about the amplitude of ε, even though a model of the form given in equa-
tion (2.1) would be more appropriate in satellite imaging. Here we shall emphasize the
fact that ε may be assumed regular (low frequency) with respect to the image f .
Before we present the existence results we should make a precision. We are only in-
terested in stable reconstructions. The precise sense of stable reconstructions is slightly
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different in different settings, but in general terms, it intends to make sure that the
operator mapping f(Λ) to f(Z2) (or equivalently to f ) has a bounded norm, not de-
pending on f ∈ PW .

We divide the remaining of this section in two parts. First we study the perturbed
sampling case, where precise bounds on the amplitude of ε are known if we are sam-
pled at the Nyquist rate (section 2.2). Then we discuss the results that are known in the
general irregular sampling case (section 2.3). These statements have two differences
with respect to the results in section 2.2: First they require over-sampling (in the gen-
eralized sense of Beurling-Landau densities); Secondly, when interpreted in terms of
perturbed sampling, these results can be rewritten in terms of the regularity of the grid
perturbation ε, instead of its amplitude.

2.2 Perturbed critical sampling

The main result on the limits of perturbed sampling in the one-dimensional case is due
to Kadec [104] (see also [175, section 1.10, page 42] ) and can be stated as follows:

Theorem 6 (1D Kadec). If there is a constant c such that

|ε(k)| = |λk − k| ≤ c <
1

4
(2.6)

then the family {eiλkξ}k∈Z forms a Riesz basis of L2[−π, π]. Hence there exists a stable recon-
struction formula of any band-limited function f ∈ L2(R) from its irregular samples f(λk).

Note that in this case stability of the reconstruction is formulated in terms of exis-
tence of a Riesz basis in the Fourier domain. The fact that the functions ϕk(ξ) = eiλkξ

form a Riesz basis implies that the operator

G : L2[−π, π]→ L2[−π, π] G(f) =
∑

k

〈f, ϕk〉ϕk (2.7)

is invertible, auto-adjoint and positive. Then the family {ϕ̃k} defined by ϕ̃k = G−1(ϕk)

is also a Riesz basis biorthogonal to the {eiλkξ}k∈Z. Finally the reconstruction formula
is provided by

f̂(ξ) =
∑

k

〈
f̂ , ϕk

〉
ϕ̃k(ξ) (2.8)

=
∑

k

f(λk)ϕ̃k(ξ) =
∑

k

f(λk)G
−1ϕk(ξ) (2.9)

= G−1
∑

k

f(λk)ϕk(ξ), (2.10)
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where G−1 may be computed iteratively by a Neumann series, because G = a(I − R),
with a > 0 and ‖R‖ < 1. However this iteration may be too slow to converge and more
efficient numerical methods are required.

Another important observation about Kadec’s theorem is that the maximal value of
the constant for the theorem to hold is known exactly. In fact we can build counterex-
amples with ε(x) ≤ 1

4
, for which the theorem doesn’t hold (see [175, p 44 and section

3.3 p 122] ). This is not the case for the generalization to two dimensions:

Theorem 7 (2D Kadec). If the perturbation ε is such that

|ε(k)| = ‖λk − k‖ ≤ 0.11 (2.11)

then the family {ei〈λk,ξ〉}k∈Z2 forms a Riesz basis of L2([−π, π]2). Hence there exists a stable
reconstruction formula of any band-limited function f ∈ L2(R2) from its irregular samples
f(λk).

The first generalization of this kind is due to Favier and Zalik [71], where they give
a bound of 0.05, and this bound was later improved by Chui and Shi [45]. Nevertheless
the bound is not shown to be sharp as in the one-dimensional case.

For a particular kind of perturbations that we call separable Jaffard [98] showed that
the two-dimensional case can be reduced to the one-dimensional case, and therefore
the 0.25 constant is still valid.

Theorem 8 (separable 2D Kadec). Assume that the perturbation ε is separable, i.e. the
perturbation

ε(n,m) =

(
δ1
n

δ2
n

)
+

(
0

θ2
m

)
(2.12)

can be expressed as a combination of an arbitrary vector only depending on the horizontal
coordinate n, plus a vertical correction only depending on the vertical coordinate m. If in
addition there is a constant c such that

|δ1
n| ≤ c and |θ2

m| ≤ c and c <
1

4
for all n ∈ Z and m ∈ Z (2.13)

then the family {ei〈λk,ξ〉}k∈Z2 = {ei[(n+δ1
n)ξ1+(n+δ2

n+m+θ2
m)ξ2]}(n,m)∈Z2 forms a Riesz basis of

L2([−π, π]2).

Observe in particular that there is no condition on δ2
n.

The proof proceeds by showing that the Riesz basis biorthogonal to {ei〈λk,ξ〉}k∈Z2 can
be written as {ϕ̃n(ξ1)ψ̃m(ξ2)eiδ

2
nξ2}(n,m)∈Z2 where {ϕ̃n(ξ1)}n∈Z and {ψ̃m(ξ2)}m∈Z are (one-

dimensional) Riesz bases biorthogonal to {ei(n+δ1
n)ξ1}n∈Z and {ei(m+θ2

m)ξ2}m∈Z respec-
tively. Hence the result follows by applying twice the one-dimensional Kadec theorem.
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Jaffard’s result is of interest in satellite imaging because many of the sampling sys-
tems analyzed in chapter 1 actually impose that the perturbations be separable if we
choose the coordinate system in a convenient way (see annex B, section 5 for more
details). Changing the coordinate system also changes the shape of the canonical re-
ciprocal cell [−π, π]2. In some cases this change goes in the correct sense, making f

more close to band-limited, in other cases the converse is true. In table 2.1, we sum-
marize the results of applying both versions of the two-dimensional Kadec theorem to
some of the sampling systems in chapter 1 . In some cases the band-limited hypoth-
esis becomes “less true” in other cases the bound on the maximal perturbations that
are allowed becomes smaller. Clearly the Hypermode system yields the best results,
much better than the Sq2 system which offers roughly the same effective resolution.
The reader should be warned to take this comparison with care, since the table only
represents the best combination of perturbation bounds and closeness to band-limited
that we were able to show with the mathematical results that are available. However,
these bounds are by no means necessarily the optimal ones.

2.3 Irregular over-critical sampling

When we consider general irregular sampling sets (not necessarily perturbations of the
regular grid), the stable reconstruction condition is usually stated as follows.

Definition 7 (set of (stable) sampling). A set Λ = {λk}k∈Zd is called a set of stable sam-
pling or simply set of sampling if there is a constant C > 0 such that

‖f‖L2 ≤ C‖f(Λ)‖l2 (2.14)

holds for all band-limited functions f ∈ PW .

A classical result by Beurling and Landau [31, 115] , states necessary and sufficient
conditions for stable sampling in terms of the Beurling density. A simplified version of
their results can be written as follows:

D(Λ) = lim
r→∞

inf
x∈Rd

#(Br(x) ∩ Λ)

(r)d
(2.15)

where Br(x) is a cube of side r and centered at x.

Theorem 9 (Beurling-Landau). If Λ is a set of stable sampling then D(Λ) ≥ 1. Conversely,
if D(Λ) > 1 then Λ is a set of stable sampling.
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Deviation from
band-limitedness
D∗non−sep D∗sep sup |ε|

Hipermode 1.7% 1.7% 0.25p = 0.13c
Sq0 18.0% 18.0% 0.25p = 0.25c
Sq1 6.0% 13.0% 0.11p = 0.08c
Sq2 2.2% 13.2% 0.11p = 0.05c

Hex0 16.3% 16.3% 0.25p = 0.25c
Hex1 2.2% 12.7% 0.11p = 0.06c
Hex2 0.6% 13.5% 0.11p = 0.04c

Table 2.1: Comparison of several systems in terms of “band-limitedness” and maximal pertur-
bations allowed for stable reconstruction. D∗non−sep represents the canonical reciprocal cell

[−π, π]2, in which f̂ has to be band-limited to apply the non-separable 2D Kadec theorem 7.

D∗sep represents the canonical reciprocal cells [−π, π]2 in which f̂ has to be band-limited to

apply the separable 2D Kadec theorem 8. This reciprocall cell is obtained after a suitable

change of coordinate system as explained in annex B, section 5. In the separable case we can

apply the result of Jaffard with maximal perturbation 0.25 pixels, otherwise we can only

use the result of Chui with maximal perturbation 0.11 pixels. (Remember from chapter 1

that this distance in pixels represents different values for the different sampling systems if

expressed as a multiple of the size c of the sensors, which represents a constant distance

on the ground.) However, for some changes of coordinate system the image becomes very

far away from band-limited. Here we measure the deviation from band-limitedness as the

percentage 100
√∫

R2\D∗ |H|2/
∫
D∗ |H|2 of the transfer function H that lies outside of the

chosen spectral domain D∗. We observe that except for Hypermode, Sq0 and Hex0, the

best band-limitedness occurs in the non-separable case. (However Sq0 and Hex0 are not

suficiently band-limited anyway). So we can apply the separable 2D Kadec theorem, and

still obtain the smallest possible deviation from band-limitedness, only for Hypermode,

Sq0 and Hex0.
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Even if the result was shown originally in the one-dimensional Payley-Wiener frame-
work, several generalizations have been proposed to higher dimensions and shift-
invariant Lp spaces [3, 87] . See also [4, p 6] for a review of different generalizations
of this result.

Remark 1. The definition of set of sampling should be distinguished from the weaker
condition of set of uniqueness which simply requires that for all band-limited functions
f , if f(Λ) = 0 then f = 0. It can be shown that there are sets of uniqueness with
arbitrarily small density whereas sets of sampling satisfy D(Λ) ≥ 1.

Remark 2. Note that Kadec’s theorem deals with the critically sampled case where
D(Λ) = 1 which is undetermined by Beurling-Landau’s results. On the other hand
Beurling’s result provides a sufficient condition for stable reconstruction in cases where
Kadec’s theorem does not apply (because, e.g. the perturbation is too big) but requires
oversampling (D(Λ) > 1) for the sufficient condition to hold.

In practice, even if the Beurling density is larger than 1, the ratio between the frame
constants may be extremely large, thus making the problem very ill conditioned. In
order to obtain well conditioned systems, practical reconstruction algorithms must
impose a stronger condition, that involves a more local version of Beurling’s density,
namely

Definition 8. A sampling set X ⊆ Ω is said to be γ-dense if

⋃

x∈X
Bγ(x) = Ω. (2.16)

Note that γ is, strictly speaking, the inverse of a density, in the sense that in the
d-dimensional case

D(Λ) ≥ 1

γd

where equality holds e.g. if the sampling set Λ is a regular grid and γ is the minimal
radius such that Λ is γ-dense. Hence, to make the link to chapter 1 , γ plays the role
of spatial resolution Rnom, whereas D(Λ) plays the role of spectral resolution rnom. In
section 3.2 we shall review two algorithms which are shown to be convergent when
the sampling set is γ-dense, with γ < 1 (and thus D(Λ) > 1). Furthermore Gröchenig
[86] proposed an extension of this proof of convergence, which could be used to give
a new proof of the Beurling-Landau result, “with the additional benefit of an explicit
and efficient numerical algorithm attached to the proof” (quoted from [86] ).
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3 Available Reconstruction Algorithms

3.1 Based on Kadec’s condition (perturbed sampling)

There are a number of works that propose numerical algorithms that are convergent
under the conditions of Kadec’s theorem [76] . We did not consider such algorithms in
this chapter for two reasons: (i) They are formulated in the one-dimensional case, and
their generalization to the two-dimensional case is not self-evident, except possibly
in the separable case; (ii) They require either high oversampling rates or very small
perturbation amplitudes for the filters to be of a reasonable size when the method is
generalized to more dimensions. For these reasons they did not seem to be of interest
in our particular case.

3.2 Based on Beurling-Landau type conditions (irregular sampling)

ACT algorithm

One of the best performing reconstruction methods available is the ACT algorithm de-
veloped initially by Feichtinger, Gröchenig, and Strohmer [72] and further analyzed,
refined and generalized by Gröchenig and Strohmer [88], Rauth [141]. The method in-
telligently combines an accelerated version of the frame iteration derived from the proof
of Kadec’s theorem, with adaptive weights in order to improve the condition number of
the problem, a conjugate gradient iteration which accelerates convergence, and the for-
mulation of the problem as a Toeplitz system which makes the computation of each
iteration even faster. Furthermore the preparation steps before the conjugate gradi-
ent iteration can start, can benefit from the USFFT (for unequally spaced fast Fourier
transform) algorithm by Beylkin [32, 33].

More precisely, the algorithm is based on a representation of an N × N periodic
band-limited function f as a trigonometric polynomial of order N 2

f(x) =
∑

n∈[1,N ]2

ane
2πi
N
〈n,x〉 (2.17)

so that the interpolation conditions become

s̃k = f(λk) =
∑

n∈[1,N ]2

ane
2πi
N
〈n,λk〉 (2.18)

or equivalently in matrix form

s̃ = V a, where V = ((vkn)), vkn = e
2πi
N
〈n,λk〉 (2.19)
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i.e. V is the van der Monde matrix associated to the trigonometric polynomial. Now
the problem is reduced to solving for a the system of linear equations (2.19). But if
Λ contains some regions with extremely dense sampling the system will not be well
balanced. In order to improve the condition number we multiply the k-th equation by
a weight

wk = area ({x : |x− λk| < |x− λj|, ∀j 6= k}) (2.20)

which is inversely proportional to the sampling density at λk. In addition, instead of
solving the linear system (2.19) directly, it will be more convenient to solve the normal
equations as an optimization problem

min
a
‖V ∗ diag(w)V a− V ∗ diag(w)s̃‖2 (2.21)

because the N 2 ×N 2 matrix T = V ∗ diag(w)V can be shown to have Toeplitz structure,
so that the multiplication Ta can be efficiently computed in N 2 log2(N 2) time using
Fourier methods. In addition the non-harmonic series

tn =
∑

k∈[1,M ]2

e−
2πi
N
〈n,λk〉wk (2.22)

bn =
∑

k∈[1,M ]2

e−
2πi
N
〈n,λk〉wks̃k (2.23)

defining T = V ∗ diag(w)V and b = V ∗ diag(w)s̃ in equation (2.21) can be approximated
using the USFFT [32] in CM 2 log2(M2) time each, where C is a constant, which is
inversely proportional to the required precision.

Algorithm 1 Reconstruction from irregular samples using ACT algorithm

Require: M 2 irregular samples in vector s̃, and degree N 2 ≤ M2 of trigonometric
polynomial.

Ensure: N 2 regular samples in vector s.
1: Compute T = V ∗ diag(w)V and b = V ∗ diag(w)s̃ using the USFFT
2: Minimize ‖Ta− b‖2 using conjugate gradients.
3: Compute the regular samples sk = f(k) for k ∈ [1, N ]2 by applying the inverse FFT

to a.

The overall procedure can be summarized as shown in algorithm 1. The complexity
of step 1 is as we said O(2M 2 log(M 2)), the second step takes 4N 2 log2(N 2) per itera-
tion. The conjugate gradient algorithm ensures convergence (under certain conditions)
in N 2 iterations, but numerically, there is little precision to gain beyond about N iter-
ations. Finally step 3 is computed very fast in N 2 log2(N 2) iterations. Note that the
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method is particularly efficient for highly oversampled data, i.e. N � M , for two rea-
sons: (i) if we are highly oversampled, as we shall see later the convergence rate of CG
is faster; (ii) The bulk of the work depending on the large number M 2 of samples is
done in step 1. The rest of the algorithm’s complexity depends only on the size N 2 of
the spectrum. In our case, however, we are critically sampled (M = N ) and the total
complexity becomes about 4N 3 log2(N 2), if CG converges in N iterations. In [88, 141]
many criteria are given, to obtain estimates of error at each iteration, to decide when to
stop the algorithm (because no further improvement of the approximation is possible),
as well as to estimate the optimal size N 2 of the spectrum.

The convergence rate of the CG algorithm is determined by the condition number
κ = cond(T ), or the ratio of the largest to the smallest eigenvalue of T . More precisely
at each iteration the approximation error is decreased by a factor

√
κ−1√
κ+1

[83] . Gröchenig
[85], Gröchenig and Strohmer [88] provided a useful characterization of the condition
number of T in the 2-dimensional case

Proposition 3 (ACT convergence rate). If the sampling set is γ-dense with

γ <
log 2

4π
(2.24)

then the condition number of T is

κ ≤ 4

(2− e4πγ)2
(2.25)

and algorithm 1 converges to the exact solution s.

Note that the sampling has to be much more dense than the critical sampling rate,
for the algorithm to ensure convergence to the exact result, which is not the case in
satellite imaging.1 Nevertheless, even when T is not invertible (and has an infinite
condition number), the CG iteration chooses among the minimizers of ‖Ta − b‖ the
one of minimal norm, i.e. a = T+b, where T+ is the pseudo-inverse of T . Therefore, if
we know the a-priori spectral decay rate of the image

|f̂(ω)| ≤ Cφ(ω)

typically φ(ω) = (1 + ω)−r for r ∈ [1, 2] or a combination of this natural decay rate, and
the known transfer function, in that case we can regularize the solution by imposing
this decay rate. Specifically we minimize the modified system

min ‖TDc− b‖, a = Dc (2.26)
1 The bound on the density γ can be significantly relaxed in the one-dimensional case and in the case

of a “separable” two-dimensional perturbation.
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where D = diag
(
{φ(2π

N
n)}n

)
is a diagonal matrix containing the corresponding values

of φ(ω). This way we shall obtain the solution solution a = D(TD)+b, which is among
all minimizers of ‖Ta − b‖ the one which best follows the prescribed spectral decay
rate, i.e. D−1a is of minimal norm.

This discussion explains why the ACT algorithm of Gröchenig and Strohmer [88]
provides good approximations to the exact solution, even when the convergence con-
ditions in proposition 3 are not satisfied as in the case of satellite imaging, while at the
same time the convergence rate is not that good.
We also tried limiting the size N of the spectrum to a smaller value than M , in such
a way that the density condition in proposition 3 is satisfied. In this case we cannot
expect to recover the high frequencies of f , but convergence should be faster. In prac-
tice, the accelerated convergence is minimal and does not compensate for the loss in
accuracy, so we always kept the regularized version described above, imposing a poly-
nomial decay for f̂ .

Aldroubi’s algorithm

More recently (actually we discovered this method by the end of this project) Aldroubi
and Gröchenig [4] proposed a different method which has different convergence prop-
erties, and is directly formulated in the more general shift-invariant weighted d-dimensional
Lp spaces V p

ν (φ), where ν is a weight that is introduced in the Lp norm to control the de-
cay rate of the function in the spatial domain, and the generator φ must satisfy certain
regularity properties that depend on p and ν. The particular Payley-Wiener framework
we are dealing with here is obtained for p = 2, ν = 1 and φ = sinc.

Assume that our sampling set Λ is γ0-dense, so that Rd =
⋃
k Bγ(λk) for any γ > γ0.

Now build a partition of unity {βk}k such that

0 ≤ βk ≤ 1

supp(βk) ⊂ Bγ(λk)∑

k

βk = 1.

Such a partition is called a bounded partition of unity. Then define an operator QΛ by :

QΛf =
∑

k

f(λk)βk. (2.27)

Note that for the particular partition of unity given by βk = Ï Vk where Vk is the Voronoi
cell associated to λk in the set Λ, the quasi-interpolant operatorQΛ corresponds to near-
est neighbour interpolation. This construction, however, allows for a more smooth and
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bounded interpolation in the case where we take for instance irregular spline functions
of higher order.

Furthermore we consider the projection operator P from Lpν to V p
ν (φ) (in the Payley-

Wiener framework this corresponds to removing the frequencies beyond [−π, π]2), then
for sufficiently small γ it is shown that the operator PQΛ − I is a contraction. This
justifies the iteration




f1 = PQΛf

fn+1 = PQΛ(f − fn) + fn = f1 + (PQΛ − I)fn
(2.28)

with convergence
‖f − fn‖Lpν ≤ Cαn‖f − f1‖Lpν (2.29)

for some convergence rate α < 1 depending on γ.
Now we explain how we implemented the operators PQΛ and (PQΛ − I) in the

Payley-Wiener framework, since this is not explained in detail in [4] . At each step
we assume that fn is represented by its samples on Z2. This is sufficient to completely
reconstruct fn(x) at any point x ∈ R2, because –thanks to the projector P– we have
fn ∈ PW . On the other hand, the result of applying the quasi interpolator QΛfn or QΛf

must be computed on a finer grid (Z/z)2 for some zoom factor z > 1, otherwise there
would be no sense in applying the projector P afterwards. The choice of this zoom
factor is for the moment quite arbitrary, in the absence of a criterion that allows us to
compute its influence in the approximation error.2 As a rule we took z = n when a
precision of 10−n was required. This choice seemed to be enough in our experiments
(larger values of z did not significantly improve the convergence rate), but it is possibly
excessive.

In order to save time in the calculation of the nearest-neighbour interpolation, we
pre-compute at the beginning of the iteration the mapping x 7→ k(x) which assigns to
each point x ∈ (Z/z)2 in the fine grid, the index k to the closest point λk(x) ∈ Λ in the
irregular sampling grid. Then the quasi-interpolator is computed for all x ∈ (Z/z)2

simply by

(QΛf)(x) = s̃k(x) (2.30)

(QΛfn)(x) = fn(λk(x)) (2.31)

2 QΛf has no reason to be band-limited, nor in any spline-like space, even if f is band-limited. How-
ever the Fourier coefficients of QΛf should exhibit a certain decay rate of its Fourier coefficients, which
depends on the sampling density. From this decay rate it should be possible to compute a more accurate
criterion to choose the appropriate zoom factor z for a given precision.
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which shows the need of resampling fn(Λ) on the irregular grid from its regular sam-
ples f(Z2).
This is an easier problem than the inverse irregular to regular sampling problem we
are trying to solve, since we only need to do Shannon interpolation. However, we can-
not do it simply by Fourier methods, because the target grid is irregular. Separable
filtering doesn’t work either, unless the irregular grid is separable as well. Therefore,
to efficiently solve the problem in the general case, with any given desired precision,
we used high-order B-spline interpolation with oversampling, as described by Unser
[171]. Briefly, we approximate the sinc filter by the cardinal B-spline:

sinc ≈ β
(k)
int = F−1

(
β̂(k)

∑+∞
l=−∞ β̂

(k)(w + 2πl)

)
(2.32)

where the k-th order B-spline is defined by the recursion β (k) = β(0) ∗ β(k−1), β(0) =

I[− 1
2
, 1
2

]. Note that this has the advantage that the filter can be decomposed in two parts.
The denominator is a prefilter with infinite spatial support that is applied in the Fourier
domain, where the image has finite support. Then the numerator, which has a small
spatial support (of k × k pixels in the two-dimensional case), is applied in the spatial
domain in a non-separable way, since it has to be evaluated on the irregular grid.
Furthermore, in order to improve accuracy with a minimal computational cost, we
use a B-spline approximation of the sinc filter corresponding to o times the original
sampling rate (we can do so because f and fn are band-limited), and we apply it to
an o-times oversampled version of the image (o times zero-padded in the Fourier do-
main). This improves accuracy because the B-spline approximation is very good except
close to the Nyquist frequency. With oversampling, the part of the spectrum where the
B-spline approximation is bad, lies outside the spectral support of the image.
From the spline interpolation error kernel in Unser’s article, we can compute the ex-
pected error or the worst-case error given the spectral behaviour of f . Figure 2.1 shows
the expected relative L2 error when interpolating a band-limited function f by k-th
order B-spline interpolation with o-times oversampling, for different orders and over-
sampling factors. The graphic shows also the number of flops per pixel needed to
interpolate for a given order and oversampling factor. Given this pre-computed chart,
and a desired approximation precision δ, we simply choose from it the value of k and
o which minimizes the computational cost and with expected error smaller than δ.
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Figure 2.1: Expected error in spline interpolation versus computational complexity. The errors are

computed on the basis of a white-noise image, with spectrum limited to [−π, π]2. The com-

putational complexity is computed on the base of an image of size 512×512, and assuming

that the values of the B-spline functions are tabulated to the required accuracy. Both the

error and number of operations per interpolated pixel are computed for o-oversampled k-

th order B-spline interpolation with orders k ∈ {1, 3, 5, . . . , 21}, and oversampling factors

o ∈ {1, 2, 3, 4}. Beyond precision 10−14 results are inaccurate because we are close to the

machine precision.
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4 A new reconstruction algorithm

The slow convergence of Gröchenig’s algorithm for our particular kind of data and
the absence of a convergence theorem in this situation led us to the study of new al-
gorithms. In particular we tried to combine : (i) the fact that we are in the perturbed
sampling case (which is only exploited by the algorithms in section 3.1), with (ii) the
fact that the perturbation is very smooth (which is only exploited by the algorithms in
section 3.2), and (iii) the fact that the image itself is very regular, since it may have a
fast decay near the Nyquist frequency, due to the instrument’s transfer function and
higher sampling rates than conventional systems.

The algorithm is very similar to Aldroubi’s algorithm, it is based on alternating
two operators, whose combination is a perturbation of the identity, and such that one
of them simulates the original perturbed sampling. Only the choice of operators is
different.
Observe that the irregular sampling process may be written in the following manner.
Given a band-limited image f (or equivalently its regular samples s = ∆Z2 · f , since
we can reconstruct f = sinc ∗s), and the perturbation ε, consider the warping function
φε = I + ε. Then the irregular samples can be written as a regular sampling of the
warped image

s̃ = ∆Z2 · (f ◦ φε) = ∆Z2 · ((sinc ∗s) ◦ φε) = A+s. (2.33)

We abbreviate this irregular sampling operator byA+.3 Now all the problem is reduced
to inverting the operator A+. Its inverse is still a linear operator, but not necessarily a
convolution-sampling operator. Nevertheless we can still approximate the inverse of
A+ by a convolution-sampling pair (that we shall call A−) as follows: 4

s1 = ∆Z2 · ((sinc ∗s̃) ◦ φ−1
ε ) = A−s. (2.34)

This corresponds to performing the inverse warp from the irregular samples, seen as
regular samples of the warped image f̃ = f ◦ φε, by assuming that f̃ is also band-
limited to [−π, π]2, which is not the case. In addition, some information has been lost
because f̃ has been sampled at the Nyquist rate corresponding to [−π, π]2, while the
spectrum of f̃ is usually larger.

3 Note that this operator can be efficiently calculated using the FFT, spatial convolutions and sam-
pling, by the same oversampled B-spline procedure described at the end of the previous section.

4Note that the computation of φ−1
ε (Z2) can also be formulated as a perturbed sampling problem, but

in this case, we largely have the necessary oversampling rate. Hence we can compute it very quickly
using the ACT algorithm.
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Note that in the case of constant ε, both operators A+ and A− reduce to (opposite)
translations by Shannon interpolation and one is the inverse of the other. Therefore,
for very smooth “almost constant” ε we could expect A− to be close to the inverse of
A+.
In the following we shall assume that A− is a good approximation of the inverse of A+

in the sense that

A−A+ = (I − α), with ‖αf‖ ≤ a‖f‖, and a < 1 (2.35)

for all f in a certain class. Then we have the equality

s1 = A−A+s = (I − α)s (2.36)

And (I − α)−1 can be expanded as a Neumann series, to recover s from s1 by the
following iteration

sn = s1 + αsn−1 = (I − αn)s (2.37)

so that

‖sn − s‖ = ‖αns‖ ≤ an‖s‖ (2.38)

Under the assumption given in equation (2.35), this means that the approximation er-
ror is reduced at each iteration by a factor a < 1, so the convergence is geometric.

In practice the operator α is applied in two steps: First, a simulation s̃(n−1) of the
perturbed image from the current estimate s(n−1) of the regular image:

s̃(n−1) = A+s(n−1); (2.39)

and secondly a correction of the errors found in this simulation with respect to the
known perturbed image s̃:

s(n) = s(n−1) − A−(s̃(n−1) − s̃). (2.40)

4.1 Convergence analysis

Now we return to the conjecture in equation (2.35). It turns out that we cannot assume
‖α‖ < 1 in general, but we may obtain ‖αf‖ < ‖f‖ for all sufficiently regular f , if ε is
sufficiently small in amplitude:

Proposition 4. Let f ∈ L2(R2) with supp(f̂) ⊆ [−π, π]2 = R, and let s = ∆Z2 · f be the
regular samples of f , and s̃ = ∆Z2 · (f ◦ φε) its irregular samples, with a small perturbation ε
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with a much smaller spectral support supp(ε̂) ⊂ R. Then the operator α of the pseudo-inverse
algorithm can be expanded up to third order as follows:

αs = ∆Z2 ·
(〈

[F−1( Ï Rc) ∗D 〈Df, ε〉 −D aliasR 〈Df, ε〉], ε
〉)

+O(ε3) (2.41)

The proof is given in appendix A, at the end of this chapter. Concerning the notation
used in this proposition, observe that the aliasing operator associated to a sampling
grid Γ (in our case Γ = Z2) or equivalently, to its Voronoi reciprocal cell R is

(aliasR f)(x) = F−1( Ï R) ∗
( ∑

k∈Γ∗,k 6=0

f(x)ei〈k,x〉
)

(2.42)

or equivalently in the Fourier domain

F(aliasR f)(ω) = Ï R ·
( ∑

k∈Γ∗,k 6=0

f̂(ω + k)

)
(2.43)

i.e. the error that is incurred when sampling and sinc-interpolating a non-band-limited
function f .

Observe that αs doesn’t have a linear term, it depends quadratically on ε. From this
expression we can also see that ‖αs‖ depends essentially on the part of the spectrum
of 〈Df, ε〉which goes beyond our spectral domain R. But this can be controlled if both
ε has a small spectral support, and f has relatively weak high frequencies.

Proposition 5. If ε is of the form given in equation (2.1) then

‖αs‖2 ≤ 4π2‖ε‖1,∞

(
M∑

k=1

νk‖Ak‖1

(
‖f̂ Ï B+

k
‖2 + ‖f̂ Ï B−k ‖2

)
)

+O(ε3), (2.44)

where ‖Ak‖1 denotes the sum of the amplitudes in the x and y directions, ‖ε‖1,∞ = supx∈R2(|ε1(x)|+
|ε2(x)|) is the maximal 1-norm of ε in the whole image, and νk = (1+‖ωk‖∞/(2π)) only varies
between 1 (for low frequencies) and 1.5 (for high frequencies). Finally the spectral domain B+

k

is
B+
k = {ω ∈ R : ∃γ ∈ 2πZ2, γ 6= 0, (ω + ωk + γ) ∈ R} (2.45)

the high frequency ring of width ωk within R = [−π, π]2. Similarly B−k is a symmetrical set
with respect to the origin.

If in addition we assume that f is sufficiently regular, in the sense that

‖f̂(w) Ï B+
k

(w)‖ ≤ area(B+
k )

area([−π, π]2)
‖f̂‖ (2.46)
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then the upper bound (2.44) can be simplified to

‖αs‖2 ≤ 4π2‖ε‖1,∞

(
M∑

k=1

µk‖Ak‖1

)
+O(ε3), (2.47)

where µk =
(

1 + ‖ωk‖∞
2π

)
2‖ωk‖∞

π
varies quadratically between 0 and 3, depending on the fre-

quency ωk.

The proof is given in appendix A, at the end of this chapter.
This proposition shows clearly that α may in general be unbounded. The only way

to ensure that ‖αf‖ ≤ a‖f‖ with a < 1 is to ensure that f has relatively small high
frequencies. This is usually the case for the initial image f , because of the acquisition
conditions. But it may not be the case for the iterates fn. Thus, a way to avoid the
divergence of this algorithm is to precede each application of α by a projector P which
controls the high frequencies, for instance:

Pf = Ï R\Bk0
∗ f, where k0 = arg max

k
‖ωk‖∞, Bk = B+

k ∪B−k (2.48)

To complete the analysis we consider the complementary projector

Qf = Ï Bk0
∗ f (2.49)

which satisfies P + Q = I within the Payley-Wiener space. Now it is more reasonable
to assume that ‖αP‖ ≤ a < 1. The modified iteration is:

s1 = A−A+s = (I − αP )s− αQs (2.50)

sn = s1 + αPsn−1 = (I − (αP )n)s−
(
n−1∑

k=0

(αP )k

)
αQs (2.51)

so that
‖sn − s‖
‖s‖ ≤ an +

(
1 + an

1− a

) ‖αQs‖
‖s‖ (2.52)

This equation shows that the modified iteration has a limit to accuracy which is de-
termined by ‖αQs‖. This term will be small when the high frequencies Qs of s are
relatively small, and α does not excessively amplify these high frequencies, which is
the case when ε is smooth too.

Now we return to the problem of showing that ‖αP‖ ≤ a < 1. The main idea is
to try to deduce this from proposition 5. Now a major problem in applying it is that
ε may have to be small, so that the unknown third order term O(ε3) is smaller than a
given constant c < 1. To solve this problem we have to apply this result locally, in such
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a way that the amplitude of ε is sufficiently reduced.
More precisely, assume that within any interval I of size smaller than L we have that
maxx,y∈I |ε(x)− ε(y)| ≤ 2δ. Then we can consider ε̃ = ε− ε̄, which satisfies |ε̃| ≤ δ and
hence in proposition 5, the third order term is smaller than c < 1. This analysis is valid
because adding a constant to ε doesn’t change α, which can be easily verified.
Now we still have to translate a statement about a global upper bound of ‖αP‖, into
statements about upper bounds of ‖αP Ï I‖ for intervals of size smaller than L. We do
so by considering a partition of unity:

∑

k∈Z2

gk = 1, with supp(gk) ⊆ BL(Lk) (2.53)

such as e.g. the rescaled first order B-splines gk(x) = β(1)(x/L − k). Then, since α is
linear we can write

‖αPf‖2 = ‖
∑

k∈Z2

αgkPf‖2 =
∑

m,n∈Z2

〈αgmPf, αgnPf〉 (2.54)

Suppose that we can bound this term by

∑

m,n∈Z2

〈αgmPf, αgnPf〉 ≤
∑

m,n∈Z2

bn,m‖gmPf‖ ‖gnPf‖ (2.55)

where for all n, we have
∑∞

m=−∞ |bn,m| ≤ a2 < 1. 5 If this conjecture holds, then we
have

‖αPf‖2 ≤ yTBy (2.56)

where B = ((|bn,m|)) is the matrix composed of the coefficients bn,m in equation (2.55),
and the vector y has coordinates yn = ‖gnPf‖ . Using Gerschgorin’s theorem [55] , we
deduce that the eigenvalues of B lie within the union of the circles Dn, plus the limits
D±∞, where each Dn is centered at |bn,n| and has radius rn =

∑
m6=n |bm,n|. Hence all

the eigenvalues of B are smaller than
∑∞

m=−∞ |bn,m| ≤ a2 < 1. In conclusion yTBy ≤
a2‖y‖2, i.e.

‖αPf‖2 ≤ a2
∑

n

‖gnPf‖2 = a2

∫

R2

|Pf |2
(∑

n

g2
n

)
(2.57)

5 Observe that for n = m the value of bn,m is provided by proposition 5 and the previous discussion
on the local application of this proposition. In the case |n−m| > 1, the two window functions gn and gm
have no common support, and the only reason for 〈αgmPf, αgnPf〉 to be non-zero is that αf expands
the spatial support of f , due to the sinc filters it contains. Finally, the case |n − m| = 1 may require a
stationarity hypothesis on f in order to show that for a given n,

∑
|n−m|=1 |bn,m| ≤ 8|bn,n|.
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But since gn is a partition of unity with gn ∈ [0, 1], we have that g2
n ≤ gn and hence

∑
n g

2
n ≤ 1. In fact this sum is a function which oscillates between 1 and 0.5. Finally,

the projection operator can only make decrease the norm of f , and we have:

‖αPf‖2 ≤ a2

∫

R2

|Pf |2 = a2‖Pf‖2 ≤ a2‖f‖2. (2.58)

In order to complete this proof we still need to show conjecture (2.55) and provide a
criterion to compute the maximal size L of a neighborhood, within which ε is suffi-
ciently small, for the third order term O(ε3) in proposition 5 to be smaller than a given
constant c < 1.

4.2 Numerical approximation

When applying the operator α in equation (2.37) or the operator αP in the modified
algorithm in equation (2.51) the operators A+ and A− will be approximated in our
algorithm by αδ = A−δ A

+
δ −I , whereas in equation (2.36) it will be approximated by α′δ =

A−δ A
+ − I , since the first application if A+ is performed by the acquisition system, not

by our algorithm. It is easy to show that limδ→0 αδ = limδ→0 α
′
δ = α where δ = 1/σ for

the damped sinc approximation, and δ = 1/m for the cardinal B-spline approximation.
Hence for a sufficiently small δ we shall have ‖αδ‖ < a < 1 and ‖α′δ‖ < a < 1. To
summarize, the iterations with the numerical approximation of the sinc filter are as
follows:

s
(1)
δ = (I − α′δ)s (2.59)

s
(n)
δ = αδ · s(n−1)

δ + s
(1)
δ (2.60)

=

(
I +

(
n−2∑

i=1

αiδ

)
(αδ − α′δ)− αn−1

δ α′δ

)
· s

Observe that the relative error ‖s(n)
δ − s‖/‖s‖ still has a term ‖αn−1

δ α′δ‖ < an that de-
creases geometrically with the iterations, but a second term appears which may in-
crease with the iterations but is bounded by a

1−a‖αδ−α′δ‖ (provided ‖α‖ ≤ a < 1). This
second term can be kept below the noise level as long as a < 1 and δ is sufficiently
small.

5 Experiments

In order to test and compare the performance of the different algorithms we con-
structed a set of simulated satellite images. We started from a very high resolution
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aerial image g which was later filtered with the transfer function of different imaging
systems, particularly a CCD array with sharp optics, and the supermode and hyper-
mode systems (see [116, 148] and annex B). In all cases the transfer function was trun-
cated beyond the corresponding Voronoi cell so that aliasing effects were not taken
into account, and we obtained perfectly band-limited images. The application of the
transfer function is done simply to simulate the spectral contents of images obtained
with different instruments. This produced the reference image s with spectral support
[−π, π]2.

Then we simulated different perturbations ε such that supp(ε̂) ⊆ [− π
T
, π
T

]2 for dif-
ferent values of T > 1, and for different standard deviations for ε(x) (typically 0.25,
0.5 and 1). With the given perturbation we simulated the perturbed images s̃ with a
high precision (usually 10−8) using the oversampled B-spline interpolation technique
described at the end of section 3.2 (Aldroubi’s algorithm). Finally we added some
white noise to the irregular samples with standard deviation 10−3 times smaller than
the standard deviation of the image (SNR = 60dB = 103). Then we asked the three
methods to recover s up to a precision of 10−3.

Concerning the pseudo-inverse method, we observed that the stabilized version
(the one in equations (2.50) and (2.51) which applies αP at each iteration), even if it
avoids divergence, it converges with an accuracy which is less precise than the one ob-
tained by intermediate iterates of the divergent version in equations (2.36) and (2.37).
Furthermore, the point at which it starts to diverge can be detected (without knowl-
edge of s of course), at the point where the residual stops decreasing. This usually
happens one or two iterations after the actual error stops decreasing. For this reason
we always applied the non-convergent version, because it usually provides a better ac-
curacy, and the divergence point can be determined. In the graphs, however, we show
many more iterations beyond the detection of the divergence point (for all algorithms),
in order to show its behaviour.

Figures 2.2 to 2.5 show some representative results. The experiments confirm the
influence of the regularity of the image and of the the amplitude and the regularity
of the perturbation in the convergence of the pseudo-inverse algorithm. They also
show how the ACT algorithm, usually provides the finest accuracy, but at the cost of
more computations. The pseudo-inverse algorithm, on the other hand, is the fastest to
provide a good approximation, especially for regular images and perturbations, even
though its precision may be less fine than that of the other two methods if the image
is very sharp. In many cases the computational effort of the pseudo-inverse with re-
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spect to the ACT algorithm to reach the same accuracy is a factor of 3, 5 or even 10
times smaller. Finally, Aldroubi’s method presents an intermediate behaviour, often
producing an approximation level just between those of the pseudo-inverse and the
ACT algorithms, and also with an intermediate computational cost.

Further experiments on the pseudo-inverse algorithm confirm the convergence prop-
erties described in section 4.1. For instance, if the image has a spectral contents similar
to Hipermode, the perturbation consists of a single sinusoidal oscillation with ampli-
tudeA and period T , then the minimal reconstruction error ‖f−fn‖ during the pseudo-
inverse iterations was at least 5 times smaller than the initial error ‖f − f̃‖ whenever
A
T
< 0.1. Similarly, if the perturbation was a colored noise with standard deviation

A (maximal perturbation is more than 2.5A) and spectrum in [− 2π
T
, 2π
T

]2, then we ob-
tained a reconstruction error 5 times smaller than the initial error whenever A

T
< 0.05.

This means that if the image is sufficiently smooth, for perturbations with frequen-
cies smaller than π

10
for instance we can still obtain a reasonable reconstruction with

perturbation amplitudes up to about 2 pixels.

T 5 10 20
A \ ε sin rand sin rand sin rand
0.125 4.1e-09 , 6.0e-08 1.4e-04 , 3.7e-03 4.3e-09 , 6.1e-08 1.7e-04 , 4.4e-03 4.3e-09 , 6.2e-08 1.5e-06 , 3.6e-05
0.250 4.5e-07 , 1.3e-05 1.1e-01 , 5.7e+00 2.0e-07 , 5.7e-06 1.5e-02 , 7.3e-01 1.4e-07 , 4.2e-06 1.9e-03 , 9.4e-02
0.500 1.7e-01 , 9.9e+00 1.2e+00 , 1.2e+02 3.7e-03 , 2.1e-01 7.6e-02 , 7.5e+00 2.1e-03 , 1.2e-01 2.3e-02 , 2.2e+00
1.000 1.9e+00 , 2.1e+02 3.2e+00 , 5.8e+02 1.7e-01 , 1.9e+01 9.0e-01 , 1.6e+02 6.9e-02 , 7.6e+00 4.0e-02 , 7.0e+00
2.000 3.1e+00 , 6.2e+02 2.7e+00 , 7.7e+02 1.8e+00 , 3.5e+02 2.5e+00 , 6.9e+02 9.3e-02 , 1.9e+01 5.9e-01 , 1.7e+02
4.000 2.0e+00 , 6.2e+02 2.0e+00 , 7.8e+02 2.1e+00 , 6.6e+02 2.0e+00 , 7.6e+02 1.1e+00 , 3.2e+02 2.0e+00 , 7.4e+02

Table 2.2: Accuracy test of the pseudo-inverse algorithm. In this experiment the reference im-

age f has spectral contents similar to Hipermode. The perturbation εis either a purely hor-

izontal oscillation A sin(2πx/T ) (sin column) or its Fourier transform is a white noise with

standard deviationA inside [− 2π
T ,

2π
T ]2 and zero outside this cell (rand column). Then start-

ing from the perturbed image f̃ , for a given value of T and A, we computed the pseudo-

inverse reconstruction to obtain a sequence fn of approximations to the reference f , and

kept the iteration n that minimizes the reconstruction error ‖fn − f‖. To the left of each

column we show ‖fn−f‖
‖f̃−f‖ (the improvement with respect to the original), and to the right

of each colomn we show ‖fn−f‖
δ where δ = 10−3 is the approximation level used to chose

appropriate B-spline filters.
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(a) Image spectrum similar to a CCD array
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(b) Image spectrum similar to Supermode
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(c) Image spectrum similar to Hypermode

Figure 2.2: The influence of the spectral contents of the image on the performance of the meth-

ods. Observe that for images with weak high frequencies such as hypermode, the pseudo-

inverse method reaches the attainable precision much faster than the other two methods.

For sharper images, however, the pseudo-inverse attains a less precise accuracy than the

other two methods. In all cases the method of Gröchenig, Strohmer and Rauth attains

the most precise accuracy faster, but intermediate precisions may be attained faster by Al-

droubi’s method.

In all cases, the perturbation is a colored noise with standard deviation of 0.5 pixels (max-

imal perturbation is 1.25 pixels), and spectral contents inside [− π
T ,

π
T ]2 for T = 20, and the

SNR of the sampled image is 60 dB, i.e. the L2 norm of the noise is 10−3 times smaller than

the L2 norm of the image. The approximation level of the oversampled B-spline filters was

fixed at the same level.
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(a) supp(ε̂) ⊆ (− π
20 ,

π
20 )2
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(b) supp(ε̂) ⊆ (− π
10 ,

π
10 )2

Figure 2.3: The influence of the spectral contents of the perturbation on the performance of the

methods. Observe that when the frequency of the perturbation increases the performance

of the proposed pseudo-inverse method is affected to a larger extent than the other meth-

ods. In both cases, the spectral contents of the image is similar to a CCD with good optics.

For less sharp images like supermode or hypermode the degradation of the performance

of the pseudo-inverse is less important.

In both cases the SNR of the sampled image is 60 dB, i.e. the L2 norm of the noise is 10−3

times smaller than the L2 norm of the image. The approximation level of the oversam-

pled B-spline filters was fixed at the same level. The perturbation is a colored noise with

standard deviation of 0.5 pixels (maximal perturbation is 1.25 pixels), and spectral contents

inside [− π
T ,

π
T ]2 for T = 20 (subfigure a), or T = 10 (subfigure b).
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(a) Var{ε} = 0.252

100 101 102 103 104 105
10−3

10−2

10−1

100

flops per pixel

re
la

tiv
e 

L2  e
rr

or

Strohmer
pinv    
Aldroubi

(b) Var{ε} = 0.52
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(c) Var{ε} = 1

Figure 2.4: The influence of the amplitude of the perturbation on the performance of the meth-

ods. Observe that the attainable accuracy is affected for all methods by this amplitude.

In all cases, the spectral contents of the image is similar to supermode and the SNR of

the sampled image is 60 dB, i.e. the L2 norm of the noise is 10−3 times smaller than the L2

norm of the image. The approximation level of the oversampled B-spline filters was fixed

at the same level. The perturbation is a colored noise with standard deviation of 0.5 pixels

(maximal perturbation is 1.25 pixels), and spectral contents inside [− π
T ,

π
T ]2 for T = 20.



5. EXPERIMENTS 95

100 101 102 103 104 105
10−5

10−4

10−3

10−2

10−1

100

flops per pixel

re
la

tiv
e 

L2  e
rr

or

Strohmer
pinv    
Aldroubi

(a) Var{ε} = 0.252

100 101 102 103 104 105
10−3

10−2

10−1

100

flops per pixel

re
la

tiv
e 

L2  e
rr

or

Strohmer
pinv    
Aldroubi

(b) Var{ε} = 0.52
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(c) Var{ε} = 1

Figure 2.5: The influence of noise on the performance of the methods. The conditions of

this experiment are exactly the same as those in figure 2.4, except that we added no noise.

Observe how noise only acts as a limit to the attainable accuracy (at 10−3 in figure 2.4),

without any further effects.
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6 Conclusions and perspectives

We reviewed the theory of irregular sampling and the available algorithms and dis-
cussed its application to satellite imaging. Unfortunately none of the results on ex-
istence of a stable reconstruction formula do exactly apply to our case. Kadec-type
results are too restrictive in terms of the allowed amplitude, whereas Beurling-Landau-
type results are too restrictive in terms of the spectral support of the image. However
Kadec’s results do not make use of the regularity of the image6, nor of the regularity
(the small spectral support) of the perturbation. On the other hand the results of Beurl-
ing and Landau do exploit the regularity of the perturbation in some way (the density
condition can be translated in the case of perturbed sampling in terms of a bound on
Dε), but not the regularity of the image, and the fact that the sampling is perturbed
(not just a general irregular sampling). The question of whether these particular prop-
erties could eventually be used to relax Kadec’s or Beurling’s results is to the best of
our knowledge still open.

Concerning reconstruction algorithms, none of the algorithms we analyzed pro-
vides a convergence result in the conditions we need to apply it. Nevertheless two of
them, and the new pseudo-inverse algorithm we propose here, do provide reasonable
approximations, below the noise level that usually occurs in satellite imagery.
It seems that our problem requires a shift in the formulation of the problem. We do
no longer look for the conditions under which exact stable reconstruction is possible
(this may not be possible, even if we take into account the regularity of the image and
the perturbation), but for conditions under which the problem of reconstructing the
regular samples up to a certain accuracy is reasonably well posed, and for criteria to
determine which is the best possible attainable accuracy given the characteristics of the
perturbation.

From an engineering point of view the choice between the three methods we out-
lined here depends on many factors, ranging from the importance of speed vs. ac-
curacy, to the acquisition conditions. Under certain conditions, the pseudo-inverse
produces results with the same accuracy as the ACT method, with less than 5 times
less computations. In other conditions, the accuracy of the pseudo-inverse may be 10
times poorer than that of the ACT method.

We did not address here possible aliasing problems (or its equivalent in the irreg-

6in the sense that the image is not only band-limited but its Fourier coefficients also are small close
to the Nyquist frequency
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ular sampling case). The function was assumed to be perfectly band-limited. The
instrument’s transfer function was used only within [−π, π]2 in order to simulate the
kind of decay rate that we get from the sampling instrument. But beyond [−π, π]2 ei-
ther f or the transfer function were assumed to be zero, which is not strictly true.
A more accurate approach would be to assume f inside V p(H) for the known transfer
function H . But computing orthogonal projections to V p(H) can be computationally
very expensive. Alternatively we can use Aldroubi’s algorithm to find the best ap-
proximation f̃ ∈ V p(φ) to the real f (given the irregular samples f(Λ)) by using a
convenient, e.g. spline-like, generator φ which allows for fast computation, and at the
same time is close to H . Note that in such a case the correct projector P in Aldroubi’s
algorithm should be a projection from Lp into V p(φ) which is as close as possible to
V p(H). This can be done by the oblique projection PV p(φ)⊥V p(H) as suggested by Al-
droubi and Feichtinger [2], Unser [171]. The only difference from the computational
point of view is the calculation of the prefilter, which can be done with the same cost
in the Fourier domain.

Appendix

A Proofs of convergence analysis.

In the proof of propositions 4 and 5 we use several times the following two results

Lemma 6. If a function f : R2 → R has spectral support supp(f̂) ⊆ R in a rectangular region
R = [−r1, r1]× [−r2, r2], then

‖Df‖2
L2 ≤ (r2

1 + r2
2)‖f‖2

L2 (2.61)

and therefore Df = O(f).

This result follows simply from Parseval’s formula and the fact that F(Df)(w) =

wf̂ . We shall apply it both to bound the norm of the image f and the perturbation ε.
The next result provides a convenient development of the inverse warp φ−1

ε as a
truncated power series in ε. (Recall that φ−1

ε is the inverse of the warp φε(x) = x+ ε(x)

mapping the regular grid Z2 to the irregular grid Λ).

Lemma 7. The inverse warp φ−1
ε can be expanded as

φ−1
ε (x) = x− ε1(x) +O(ε3) where ε1(x) = ε(x− ε(x)) (2.62)
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Proof. Let’s consider the approximation φ̃−1
ε = x − ε1(x) and test how it approximates

the inverse of φε(x) = x+ ε(x):

φ̃−1
ε (φε(x)) =x+ ε(x)− ε(x+ ε(x))− ε(x+ ε(x)))

x−Dε(x) · d(x)−D2ε(d(x), d(x)) +O(ε3). (2.63)

In the last equation we used the abbreviation d(x) = ε(x)− ε(x+ ε(x)), which can itself
be expanded as

d(x) = Dε(x) · ε(x) +O(ε2). (2.64)

Using lemma 6 we conclude that d(x) = O(ε2), D2ε = O(ε) so that the second order
term in equation (2.63) is actually O(ε5) and is absorbed in O(ε3). Furthermore the first
order term Dε(x) · d(x) is actually O(ε3), because Dε = O(ε) using once more lemma 6.
So equation (2.63) can be rewritten as

φ̃−1
ε (φε(x)) = x+O(ε3) = φ−1

ε (φε(x)) +O(ε3). (2.65)

Proof of proposition 4. We start by writing step by step the application of the operator
I − α = A−A+ to an image s = ∆Γf such that supp(f̂) ⊆ R. (Recall that the sam-
pling grid is Γ = Z2 and R = [−π, π]2 is the corresponding reciprocall cell, so that the
Shannon interpolation filter is F−1( Ï R) = sinc. We shall note by sincc = F−1( Ï Rc) the
complementary filter. Note that sincc ∗f = f − sinc ∗f ).

f = sinc ∗s s = ∆Γf (2.66)

f̃ = f ◦ φε s̃ = ∆Γ · f̃ = A+s (2.67)

Since the spectral support of f̃ goes beyond R, it cannot be recovered from s̃. How-
ever, the interpolation of s̃ yields a certain function f̃ ′ with spectral support in R, that
coincides with f̃ at the sampling points

f̃ ′ = sinc ∗ s̃ = sinc ∗ f̃ + alias(f̃) s̃ = ∆Γ · f̃ ′ (2.68)

Next we apply A−s̃ = ∆Γ · ((sinc ∗ s̃) ◦ φ−1
ε ) in three steps: convolution (we just did it

as f̃ ′ = sinc ∗ s̃), inverse warp, and sampling

f ′1 = f̃ ′ ◦ φ−1
ε s1 = ∆Γ · f ′1 = A−s̃ (2.69)
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Finally consider the interpolation of s1:

f1 = sinc ∗ s1 = sinc ∗ f ′1 + alias(f ′1) s1 = ∆Γ · f1 = A−s̃ (2.70)

In the sequel we shall use the abbreviation

S(f) = sinc ∗(∆Γ · f) = sinc ∗f + aliasR(f) (2.71)

for the sampling-interpolation pair of operators (of course S is the identity if supp(f̂) ⊆
R). With this notation the last equation becomes f1 = S(f ′1).

Now we are ready to compute the Taylor developement of αf = f1−f with respect
to ε. To do so we start by computing the third order Taylor development of f̃ and f̃ ′.

f̃ = f +Df · ε +
1

2
D2f(ε, ε) +O(ε3) (2.72)

f̃ ′ = f +sinc ∗ (Df · ε) +
1

2
sinc ∗ (D2f(ε, ε))

+ aliasR(Df · ε) +
1

2
aliasR(D2f(ε, ε)) +O(ε3) (2.73)

Since according lemma 7, the inverse warp is φ−1
ε = x − ε1(x) + O(ε3), the Taylor

development of f ′1 can be written

f ′1 = f̃ ′ −Df̃ ′ · ε1 +
1

2
D2f(ε1, ε1) +O(ε3). (2.74)

In order to express this development in terms of f and ε, we first expand ε1(x) as

ε1(x) = ε(x− ε(x)) = ε(x)−Dε(x) · ε(x) +O(ε3) (2.75)

= ε(x) +O(ε2) (2.76)

and secondly, we expand Df̃ ′ and D2f̃ ′ up to the right order using equation (2.73)

Df̃ ′ = Df +sinc ∗ (D2f(ε, ·) +Df ·Dε) + (2.77)

+D aliasR(Df · ε) +O(ε2)

D2f̃ ′ = D2f +O(ε). (2.78)

Substituting the last three equations in equation (2.74) we obtain

f ′1 = f + sinc ∗ (Df · ε) +sinc ∗ (D2f(ε, ε))

+ aliasR(Df · ε) + aliasR(D2f(ε, ε))



 = f̃ ′ +O(ε3)

−Df · ε1 − (sinc ∗ (D2f(ε, ·) +Df ·Dε)) · ε1

− (D aliasR(Df · ε)) · ε1



 = Df̃ ′ · ε1 +O(ε3)

+D2f(ε1, ε1)
}

= D2f̃ ′(ε1, ε1) +O(ε3)

+O(ε3). (2.79)
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Sampling and reinterpolation of f ′1 introduces new aliases in all terms except for f̃ ′

whose spectral support is already in R:

f1 = f +sinc ∗ (Df · ε)
�� ��+ 1

2 sinc ∗ (D2f(ε, ε))

+ aliasR(Df · ε)
�� ��+ 1

2 aliasR(D2f(ε, ε))





= f̃ ′ +O(ε3)

− sinc ∗ (Df · ε1)
�� ��− sinc ∗

(
(sinc ∗ (D2f(ε, ·)) · ε1

)
− sinc ∗ ((sinc ∗ (Df ·Dε)) · ε1)

− sinc ∗ (D aliasR(Df · ε)) · ε1

− aliasR(Df · ε1)
�� ��− aliasR

(
(sinc ∗ (D2f(ε, ·)) · ε1

)
− aliasR ((sinc ∗ (Df ·Dε)) · ε1)

− aliasR(D aliasR(Df · ε)) · ε1





=
S(Df̃ ′ · ε1)

+O(ε3)

�� ��+ 1
2 sinc ∗ (D2f(ε1, ε1))�� ��+ 1
2 aliasR(D2f(ε1, ε1))





= S(D2f̃ ′(ε1, ε1)) +O(ε3)

+O(ε3). (2.80)

Finally we use the expression of ε1 given in equation (2.75) in order to group the
terms

= sinc ∗
[
(Df · ε)− (Df · (ε−Dε · ε+O(ε3)))−

(
(sinc ∗ (Df ·Dε)) · (ε+O(ε2))

)]

= sinc ∗ (sincc ∗ [Df ·Dε] · ε) +O(ε3) (2.81)

�� ��= sinc ∗
[

1

2
D2f(ε, ε) +

1

2
D2f(ε+O(ε2), ε+O(ε2))−

(
(sinc ∗D2f(ε, ·)) · (ε+O(ε2))

)]

= sinc ∗
(
sincc ∗

[
D2f(ε, ·)

]
· ε
)

+O(ε3) (2.82)

Similarly we conclude that

= aliasR (sincc ∗ [Df ·Dε] · ε) +O(ε3) (2.83)�� ��= aliasR
(
sincc ∗

[
D2f(ε, ·)

]
· ε
)

+O(ε3) (2.84)

Taking into account that D(Df · ε) = D2f(ε, ·) +Df ·Dε, and recalling the notation
S(g) = sincc ∗ g + aliasR(g) for the sampling-interpolation pair, we can summarize
equation (2.80) as follows:

f ′1 = f + S([sincc ∗ (D(Df · ε))−D aliasR(Df · ε)] · ε) +O(ε3) (2.85)

Then, equation (2.41) follows by sampling once more (since sampling after applying S
is equivalent to just sampling).
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Proof of proposition5. We abbreviate the main term in equation (2.85) as

Cεf = S([sincc ∗ (D(Df · ε))−D aliasR(Df · ε)] · ε) (2.86)

and we further decompose both components of the vector Cε =
(
C1,ε

C2,ε

)
, as well as ε =(

ε1
ε2

)
and D =

(
D1

D2

)
:

Cj,εf = S (sincc ∗ (Dj(D1fε1 +D2fε2))−Dj alias∗D(D1fε1 +D2fε2)) + o(ε3) for j = 1, 2

(2.87)

This way αf can be written as

αf = Cεf · ε+ o(ε3) (2.88)

= C1,εfε1 + C2,εfε2 + o(ε3) (2.89)

To find an upper bound of ‖αf‖L2 we apply first the triangular inequality to the
scalar product Dεf · ε, and then we compute the max of εj over the whole domain:

‖αf‖2 ≤ ‖C1,εfε1‖2 + ‖C2,εfε2‖2 + o(ε3) (2.90)

≤ ‖C1,εf‖2 ‖ε1‖∞ + ‖C2,εf‖2 ‖ε2‖∞ + o(ε3) (2.91)

(2.92)

(Observe that we could as well have applied Cauchy-Schwartz, but this would intro-
duce a factor in ‖ε‖L2 which depends on the image size). Next, we apply once again
the triangular inequality, this time to ‖Cj,εf‖:

‖Cj,εf‖ ≤‖sincc ∗Dj(D1fε1)‖ +‖Dj aliasR(D1fε1)‖ +

‖sincc ∗Dj(D2fε2)‖ +‖Dj alias∗D(D2fε2)‖ +o(ε3) (2.93)

Finally, each of the four terms (for j = 1) can be upper bounded, by taking into account
the link between differentiation in the Fourier domain, the aliases and the different
spectral supports:

‖sincc ∗D1(D1fε1)‖ ≤
N∑

k=1

|A1,k| (‖f̂ Ï B+
k
‖+ ‖f̂ Ï B−k ‖) π2 (2.94)

‖sincc ∗D1(D2fε2)‖ ≤
N∑

k=1

|A2,k| (‖f̂ Ï B+
k
‖+ ‖f̂ Ï B−k ‖) π(π + |w1,k|) (2.95)

‖D1 alias∗D(D1fε1)‖ ≤
N∑

k=1

|A1,k| (‖f̂ Ï B+
k
‖+ ‖f̂ Ï B−k ‖) (π − 1

2
|w1,k|)2 (2.96)

‖D1 alias∗D(D2fε2)‖ ≤
N∑

k=1

|A2,k| (‖f̂ Ï B+
k
‖+ ‖f̂ Ï B−k ‖) π2 (2.97)
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A similar upper bound can be found for j = 2, and by substituting |w1,k| and |w2,k| by
the common upper bound |wk|∞ (the largest coordinate in module), we obtain (2.44),
after simply rearranging the terms. This completes the proof of the first part of the
proposition.

To show the second part we just observe that the upper bound area(B+
k )

area([−π,π]2)
‖f̂‖ for

‖f̂ Ï B+
k
‖, can be itself upper-bounded by:

area(B+
k )

area([−π, π]2)
= (λ1 + λ2)− λ1λ2 ≤ 2 sup{λ1, λ2} =

2|wk|∞
π

(2.98)

where λj =
|wj,k|

2π
.

Sample application As an application of the upper bound provided by proposition 5,
assume that εhasN vibrating modes, with amplitude |Aj,k| < A and frequency |wk|∞ <
π
T

. Then, ‖εj‖∞ < NA, so

‖αf‖
‖f‖ ≤ (4NA)24π2 2

T
(1 +

1

2T
)

To have convergence in the pseudo-inverse algorithm, this value should be smaller
than 1 (minus the term in O(ε3)), i.e.:

A ≤ 1

8Nπ
√

2
T

(1 + 1
2T

)

For instance, for T = 10 we may obtain convergence for A ≤ 0.18 1
N

. For a single
vibrating mode (N = 1) this means that the maximal perturbation amplitude 2A of the
sinusoidal functions shouldn’t exceed 0.36 pixels, which is already larger than Kadec’s
result. However, since we do not control the third order term, this does not ensure
convergence.

Perspectives. The upper bound for ‖αs‖we just showed is not very tight, and can be
improved in several ways.

First the regularity hypothesis we assume on f (white noise) is very weak. Natural
images are usually much more regular, with a faster decay of Fourier coefficients. If we
take into account this decay and the decay imposed by the transfer function, we can
obtain a tighter upper bound.

Secondly, our upper bound considers the worst case, which is rarely attained, espe-
cially when ε contains many Fourier coefficients. If we consider mean errors (by taking
expected values instead of sup’s, the upper bounds would be still smaller. For instance
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the expected value of ‖εj‖∞ for εj with N Fourier coefficients having amplitude ≤ A,
but a random phase, is

√
NA, which is considerably smaller than the preceding upper-

bound NA.
Finally, this upper bound should be applied locally as explained in the main text.

Since this allows to reduce the amplitude (to the local variations, not taking into ac-
count very low-frequency components of the perturbation), as well as the number N
of terms defining ε, since only a few are significant in a small domain.
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Chapter 3

Interpolation of Digital Terrain Models
using AMLE and Related Methods ∗

Abstract
Interpolation of Digital Elevation Models (DEMs) becomes necessary in many situations. For
instance when constructing them from contour lines (available e.g. from non-digital cartogra-
phy), or from disparity maps based on pairs of stereoscopic views, which often leaves large
areas where point correspondences cannot be found reliably.
The Absolutely Minimizing Lipschitz Extension (AMLE) model is singled out as the simplest
interpolation method satisfying a set of natural requirements. In particular, a maximum prin-
ciple is proven, which guarantees not to introduce unnatural oscillations which is a major
problem with many classical methods. We then discuss the links between the AMLE and
other existing methods. In particular we show its relation with geodesic distance transforma-
tion. We also relate the AMLE to the thin plate method, that can be obtained by a prolongation
of the axiomatic arguments leading to the AMLE, and addresses the major disadvantage of
the AMLE model, namely its inability to interpolate slopes as it does for values. Nevertheless,
in order to interpolate slopes, we have to give up the maximum principle and authorize the
appearance of oscillations. We also discuss the possible link between the AMLE and Kriging
methods that are the most widely used in the geoscience literature.
We end by numerical comparisons of the different methods. Our experiments show that de-
spite its inability to interpolate slopes, the AMLE produces qualitatively better results than
other methods, since it better preserves ridges. Hence we propose a simple combination of
the AMLE and Kriging models which preserves the slope-interpolating and ridge-preserving
capabilities of Kriging and AMLE respectively. Either the combined method or the AMLE
showed the best approximation results in all cases both in qualitative and quantitative terms.

∗A preliminary version of this chapter was jointly published with Frédéric Cao, Yann Gousseau and
Bernard Rougé in IEEE Trans. GARS [8] . Early versions of this work were submitted to CNES as
an internal report [9] , and presented at the European Workshop of Mathematical Morphology [10] .
Another application of thin-plate splines to elastic fingerprint matching was published with Laurent
Cohen in the proceedings of the IEEE WACV [11] .
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1 Introduction

In this chapter, we study the problem of interpolating two dimensional data. This is
motivated by several problems that may be encountered when trying to reconstruct
digital elevation models:

• For instance, for maps which are not yet available in digital form, the elevation is
only known on a limited number of level curves, and we then have to interpolate
in order to retrieve a three dimensional model of elevation.

• One way to construct elevation models is to find points of correspondence be-
tween two images from a stereo vision pair of a scene. Most existing matching
algorithms fail on some parts of the image and no elevation can be retrieved [57]
. Interpolation is then also necessary.

In both cases, we may assume that the elevation is regular in the areas where it is a pri-
ori unknown. In the first case, the lines whose level is known are in general chosen such
that they are representative of the real elevation. Therefore, the elevation between two
adjacent lines always lies between the corresponding levels. Moreover it is not likely
that oscillations between both lines can be significant, else some additional level lines
would have also been represented. This implies that a reasonable interpolation method
must not artificially create some oscillations between given level curves, otherwise it
may create some arbitrary information which cannot be inferred from the data. In the
second case, correlation is commonly used to find point correspondences. In this case,
one of the major reasons why matching fails is that the variations of the image are not
high enough in some region, which implies that the corresponding elevation is likely
to be regular.
An interpolation model called AMLE was introduced and characterized by Aronsson
[24, 25]. It was later proposed for digital images by Caselles, Morel, and Sbert [42] as
the most simple interpolator satisfying a set of natural axioms. We think that these
axioms are also very well suited for the interpolation of digital elevation models. We
recall these axioms in section 2. A very nice property of the AMLE, that can be mathe-
matically proved, is that it does not create any artifacts nor oscillations. This model is a
real interpolation model that exactly fits the data1. It can interpolate values on isolated
curves and even isolated points (for instance mountain or hill top).

1Here we mean a model that actually fits the data on curves and isolated points, and doesn’t have
zero capacity for points like Laplace’s operator for instance (see section 2 for a discussion).
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We show in section 3 how the AMLE can be related to other methods already
used for DEM interpolation. First, it can be viewed as the stationary state of iterated
geodesic distance transformations (see section 3.1). Second, it may happen that the
elevation is known not only on isolated points but on a domain and we want to recon-
struct the elevation outside this set. In this case, we can take advantage of the value
on the boundary of the domain but also of some higher order information such as
the slope of the data. The AMLE cannot handle more than zero-th order information
and neither do geodesic distance interpolators. The thin plate model discussed in sec-
tion 3.2 can be viewed as an attempt to generalize the axiomatic approach leading to
the AMLE. It allows to interpolate values as well as gradient fields on the boundary of
the interpolation domain, but it does not guarantee to avoid oscillations as the AMLE
model does. Kriging methods (see section 3.3) are also related to the thin-plate model
in some cases, and we compare the AMLE, the thin-plate and Kriging in section 4
by showing some interpolation results for both methods. The experiments suggested
a simple combination of the AMLE and Kriging models which outperformed all the
other methods in most cases. Finally in section 5 we discuss some issues for future
research.

2 The AMLE model

In this section, we introduce the Absolutely Minimizing Lipschitz Extension (AMLE)
model. It has been introduced by Caselles, Morel and Sbert in [42] as one of the per-
tinent models for image interpolation, though it had been previously studied from a
completely theoretical point of view by Aronsson [24, 25] and Jensen [102] . The ap-
proach they use is axiomatic, that is, from a small number of natural postulates, they
derive a classification of interpolation operators. Among the ones satisfying the largest
number of these natural properties, the AMLE model will be particularly relevant in
the problems we are interested in. In particular, it will be very efficient to interpolate
data between level lines. This shall be interesting for elevation reconstruction from a
scanned map where only a few level lines (iso-level curves) are available. We shall also
use it to interpolate scattered data obtained from a correlation between stereo pairs of
a scene.

Let us now give the main ideas leading to the AMLE model. We assume that the eleva-
tion we want to interpolate is the interior of a domain Ω in the plane. We assume that
we only know the value ϕ of elevation on ∂Ω, the boundary of Ω. Note that this is re-
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alistic in the interpolation of iso-level lines. We assume that it is possible to interpolate
ϕ inside Ω. Let us denote by E(Ω, ϕ) : Ω → R the obtained elevation. We now review
some natural properties that E(Ω, ϕ) should satisfy.

(P1) The interpolation is stable, that is to say, if we interpolate the values of E(Ω, ϕ)

on a subdomain of Ω, the result does not change. More precisely, for any subdomain
Ω′ ⊂ Ω, we have

E(Ω′, E(Ω, ϕ)|∂Ω′) = E(Ω, ϕ)|Ω′, (3.1)

where the subscript |A designs the restriction of a function to the set A. This property
was introduced by [24] and lead to his geometric characterization of AMLE.

(P2) The interpolation respects the global elevation ordering, that is

if ϕ ≤ ψ on ∂Ω, then E(Ω, ϕ) ≤ E(Ω, ψ). (3.2)

(P3) Finally, we give a more technical property giving the behavior of E on second
order polynomials. It consists in assuming the existence of a function F such that
if u(x) = c + 〈p, x− x0〉 + 1

2
〈A(x− x0), (x− xo)〉 is a second order polynomial with

coefficients given by the constant c, the real 2-vector p and the real 2× 2 matrix A, then

lim
r→0

E(D(x0, r), u|D(x0,r))(x0)− u(x0)

r2/2
= F (A, p, c, x0). (3.3)

To these three basic axioms, we add a set of natural geometric properties.
(P4) The interpolation does not depend on the position of Ω. In other terms, it

commutes with translation.
(P5) It does not depend on the orientation of Ω either. Put another way, it commutes

with plane rotations.
(P6) It is also scale invariant (i.e. commutes with dilations).
(P7) The reference level is arbitrary, hence the interpolation must commute with the

addition of a fixed value.
(P8) The elevation unit is also arbitrary. Therefore, the interpolation has to commute

with multiplication by a fixed constant.
Before we give the general form of an interpolation operator satisfying these proper-
ties, let us give some notations.
If u : Ω ⊂ R2 → R is a real-valued function taking values in a region Ω of the plane,
the gradient of u denoted by Du, is the vector with coordinates (ux, uy) of the partial
derivatives of u with respect to x and y. We denote by Du⊥, the vector obtained from
Du by a rotation of angle π/2 (the orientation does not matter; we arbitrarily chose it
such that (Du,Du⊥) is counterclockwise if Du 6= 0, e.g. we can choose the convention
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Du⊥ = (−uy, ux)). We also denote by D2u the Hessian matrix of u, that is to say, the
symmetric matrix whose coefficients are the second order derivatives of u. As usual,
we canonically associate a quadratic form to D2u. Using this quadratic form we can
compute the second order derivative in any direction as well as mixed derivatives. In
particular we use the notation uξξ = D2u

(
Du
|Du| ,

Du
|Du|

)
to represent the second deriva-

tive of u in the direction of the gradient, and similarly uηη = D2u
(
Du⊥
|Du| ,

Du⊥
|Du|

)
and

uηξ = D2u
(
Du⊥
|Du| ,

Du
|Du|

)
to represent the second derivative of u in the direction of the

level curves, and the mixed derivative, respectively. The following result characterizes
all interpolators satisfying the required axioms:

Theorem 10 (Caselles, Morel Sbert [42] ). Assume that E(Ω, ϕ) satisfies the properties
(P1)-(P8). Then, it is a viscosity solution of an equation of the form

G (uξξ, uηη, uηξ) = 0, (3.4)

where G(a, b, c) is positively homogeneous of degree 1 and nondecreasing with respect to the

matrix

(
a c

c b

)
.

If we assume that G is differentiable at the point (0, 0, 0), then, G is linear, that is G(a, b, c) =

αa+ βb+ γc where (α, β, γ) satisfies the property αβ − γ2 ≥ 0.

The viscosity solution theory is the correct mathematical setting for nonlinear ellip-
tic equations of the type 3.4. We refer the reader to [52, 65] for complete details.

In the following, we shall assume that the function G in Equation (3.4) is differ-
entiable, and thus linear. We see, that the most simple equations correspond to the
following three cases: 2

1. G(a, b, c) = a+ b. In this case, the equation is ∆u = 0, that is Laplace equation.

2. G(a, b, c) = a, yielding the equation D2u
(
Du
|Du| ,

Du
|Du|

)
= 0, which is Aronsson’s

AMLE model.

3. G(a, b, c) = b, yielding the equation D2u
(
Du⊥
|Du| ,

Du⊥
|Du|

)
= 0. This equation means

that the curvature of the iso-level lines equals 0. As a consequence, these curves
are straight lines.

2 The other cases we could derive from theorem 10 are also excluded if we want an interpolator
satisfying (P1)-(P8), which interpolate both curves and points and lead to regular interpolators (finite
‖Du‖L∞(Ω)) if the boundary data is regular too (Lipschitz)). A discussion in [42] shows this on a simple
example where the boundary data are available on a circle and its center.
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Laplace’s equation is well known for regular interpolation since it can describe the
equilibrium temperature distribution in a domain with source on the boundary. Nev-
ertheless, by classical results of potential theory, this model does not allow to fix val-
ues at isolated points, and we say that it has zero capacity for points. For instance, if
Ω = D(0, 1)\{0} in the plane (the pointed unit disk) and if we fix ϕ = 0 on the unit cir-
cle and ϕ = 1 at the origin, the solution of Laplace equation is identically zero, letting
the value at the origin ignored! It is possible to prove that any linear combination of
the form αD2u

(
Du
|Du| ,

Du
|Du|

)
+ βD2u

(
Du⊥
|Du| ,

Du⊥
|Du|

)
with positive α and β satisfies the same

undesirable property.
The equation D2u

(
Du⊥
|Du| ,

Du⊥
|Du|

)
= 0 may not have a unique solution. In [123] , Mas-

nou and Morel found a way to choose the best solution by introducing a variational
condition. This algorithm, called disocclusion gives impressive results in restoring im-
ages, but the domain Ω must be simply connected (which is a too strong condition for
our application) and the fact that iso-level curves are straight curves somehow gives
unrealistic elevation models.

On the contrary, the AMLE model can interpolate isolated values. In the case of the
pointed disk, the solution is the one we can expect, that is u(x) = 1 − |x|. The AMLE
model is mathematically well posed as exposed in the following theorem.

Theorem 11 (Aronsson [24] and Jensen [102] ). Let Ω be a bounded domain. Assume that
ϕ is continuous on ∂Ω. Then, there exists a unique viscosity solution of

D2u

(
Du

|Du| ,
Du

|Du|

)
= 0 (3.5)

with boundary value equal to ϕ. Moreover, the AMLE satisfies the properties (P1)-(P8).

(A generalization of this result, which relaxes the continuity assumption on the
boundary data ϕ, was proven by Cao in [41] ).

The reason why this model is named AMLE is given by the following proposition.

Theorem 12 (Jensen [102] ). Let Ω be a bounded domain and ϕ be a Lipschitz function on
∂Ω.3 Then the AMLE is the unique function u interpolating ϕ and satisfying the property

∀Ω′ ⊂ Ω,∀w Lipschitz in ∂Ω′, w = u on ∂Ω′ ⇒
‖Du‖∞ ≤ ‖Dw‖∞.

3 Here this means that the sup |ϕ(x)−ϕ(y)|
|x−y| with respect to x, y ∈ ∂Ω is finite, where |x− y| is the usual

euclidean distance in R2, not the geodesic distance inside ∂Ω.
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This means that the AMLE minimizes the Lipschitz constant on any subdomain,
which is an important property when interpolating elevation models because it is a
way to ensure that the interpolation will not create information that is not present in
the original data.
Many interpolation methods may produce oscillations (Gibbs effects, overshoots) which
are not apparent from the original data. Such oscillations appear rather as a byproduct
of regularity assumptions which do not match the given data. Theorem 12 ensures that
the AMLE interpolator cannot create such oscillations.

Section 4 shows some experimental results using this model, and in appendix C.1
we give some details on the numerical solution of this equation and its computational
complexity.

3 Relations to Previous Work on DEM interpolation

Whereas the AMLE model has been recently proposed for image processing in [42] ,
it is essentially new in the geoscience domain [7] . In this section we explore the close
relationships between AMLE and other classical methods that have been proposed in
the geoscience literature.

3.1 Geodesic distance transformations.

Interpolators based on geodesic distances are to the best of our knowledge the main
tool for constructing DEMs from contour lines, and fast algorithms have been proposed
by Pierre Soille [163, 165] . Starting from the assumption that the boundary can be
partitioned into two disjoint regions ∂Ω = ∂Ω1∪∂Ω2, such that the boundary conditions
are constant in each of the regions, i.e. u|∂Ω1 = c1 ∈ R and u|∂Ω2 = c2 ∈ R, the geodesic
distance interpolator can be defined as:

u(x) =
c2dΩ,g(x, ∂Ω1) + c1dΩ,g(x, ∂Ω2)

dΩ,g(x, ∂Ω1) + dΩ,g(x, ∂Ω2)
(3.6)

where dΩ,g(x,A) is the generalized geodesic distance from a point x to a set A, i.e. the
minimal usual geometric length of a path C entirely contained in Ω, which minimizes
the geodesic distance

∫
C
g among all paths joining x to a point y ∈ A. Whereas in [163]

a constant weighting function g was used, in a later article [165] it was proposed to
use the Euclidean distance to the border g(x) = [d(x, ∂Ω)]c as a weighting function, in
order to avoid certain artifacts occurring when geodesic paths C become tangent to the
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border.4

This produces results which are very close to the AMLE model, which is not sur-
prising since the AMLE model can under certain conditions be obtained as a fixed
point of weighted geodesic distance interpolations. In fact, assuming that e.g. c1 ≤ c2

consider the following iteration:

un(x) =
c2L

n
1 (x) + Ln2 (x)c1

Ln1 (x) + Ln2 (x)
where Lni (x) =




dΩ,1(x, ∂Ωi) if n = 0

dΩ,|Dun−1|(x, ∂Ωi) if n > 0
. (3.7)

If the iteration converges to a fixed point

u∞(x) =
c2L

∞
1 (x) + L∞2 (x)c1

L∞1 (x) + L∞2 (x)
with L∞i (x) = dΩ,|Du∞|(x, ∂Ωi) (3.8)

and this fixed point is twice differentiable then u∞ is AMLE. Indeed, the geodesic paths
associated to a C1 potential |Du∞| can be shown to be the gradient curves5 of u∞.
Hence, equation (3.8) means that u∞ is linear along its own gradient curves, i.e. ‖Du∞‖
is constant in the direction of Du∞, or put another way u∞ satisfies the AMLE equa-
tion D2u(Du,Du) = 0. The details of the proof are developed in section A.2, and in
section A.3 we extend this result under weaker assumptions on the fixed point. In gen-
eral, however, the AMLE interpolation needn’t satisfy even the weakest assumptions,
so fixed points and AMLE interpolations are not always equivalent, but our simula-
tions show that they are very close even when the hypothesis needed for equivalence
are not satisfied.

This result has two important implications: (i) the different variations of (non-
iterated) geodesic distance transform methods can be interpreted as truncated imple-
mentations of the AMLE model and (ii) they can be used to write faster algorithms to
solve the AMLE in the particular case of contour line interpolation.

3.2 The thin plate model

A major drawback of the AMLE model is that it cannot interpolate slopes, it can only
interpolate boundary data. As we shall see later in this section and in section 4 this
does not always represent a serious problem, and there are many reasons for keeping
the AMLE method despite this drawback. However, the fact that it cannot interpolate
slopes may result in flat mountain tops and slope discontinuities across some level

4Here the complement operation is defined as gc = −g + maxΩ g. It is essentially a negation with a
shift in order to avoid the weight gc from becoming negative or zero.

5A gradient curve of a function g is a curve such that its tangent vector is always parallel to Dg
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curves. This is not really serious, at the sides of a mountain or when looking at the
DEM as a gray-level image, but it becomes sometimes visible when representing the
DEM as a 3D surface, producing undesirable artifacts.

Actually the fact that the AMLE cannot interpolate slopes comes from the axiomatic
approach that leads to this model. Hence, in order to avoid these artifacts, we have to
go back to our assumptions and do the necessary adaptations. First, we will require
our operator E to interpolate not only boundary data, but also boundary slopes. Put
another way, our operator will take the form E(Ω, ϕ, ψ) : Ω → R where ϕ = u|∂Ω is
the boundary data as usual, and ψ = ∂u

∂n
|∂Ω is the derivative of u in the direction of

the inner normal n to Ω. The stability (P1) and invariance properties (P4-P8) can be
trivially generalized to the new notation. The other two axioms will require, however,
certain adaptations.
First, once we require E to interpolate slopes as well, (P2) does no longer make sense.
A reasonable generalization is to require an order for the slopes as well as for the data:

(P2’) If ϕ1 ≤ ϕ2 and ψ1 ≤ ψ2 on ∂Ω then E(Ω, ϕ1, ψ1) ≤ E(Ω, ϕ2, ψ2).
Similarly, since it is not possible to interpolate data and slopes with second order

operators, we will require at least fourth order. Hence, we have to modify the regular-
ity property as follows:

(P3’) If u(x) is a fourth order polynomial with coefficients c0, . . . , cm then

lim
r→0

E(u, u|D(x0,r),
∂u
∂n
|D(x0,r))(x0)− u(x0)

r4

= F (cm, . . . , c0, x0).

(3.9)

Among fourth order differential operators the biharmonic operator ∆2 = ∂4

∂x4 +

2 ∂2

∂x2∂y2 + ∂4

∂y4 is well known, and its application to surface interpolation dates back
to Duchon [66] , Meinguet [127] and Franke [77] . The interpolating operator u =

E(Ω, ϕ, ψ) consists of solving the biharmonic problem




∆2u|Ω = 0

u|∂Ω = ϕ
∂u
∂n
|∂Ω = ψ

(3.10)

and is known to have a unique solution under quite general conditions on Ω, ϕ and ψ.
This interpolator was called thin-plate spline because it closely models the shape taken
by a thin metal plate when forced to the given boundary conditions. In such a situation,
the plate minimizes its bending energy

J(u) =

∫∫

Ω

(
∂2u

∂x2

)2

+ 2

(
∂2u

∂x∂y

)2

+

(
∂2u

∂y2

)2

dx dy (3.11)
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subject to the boundary conditions u|∂Ω = ϕ and ∂u
∂n
|∂Ω = ψ. We can easily show that

the biharmonic equation (3.10) is the Euler-Lagrange of the bending energy (3.11).

This thin-plate spline model has been introduced as an interpolation tool for spa-
tial data by Mitas and Mitasova [132] and the references therein. The authors also
discuss some variations of the model like the thin-plate spline with tension with the
aim of avoiding the oscillations that it may produce. This approach however relies on
a trade-off between Laplacian interpolation (which has zero capacity for points) and
biharmonic interpolation, and requires the empirical selection of a tension parameter.
So in the rest of this section we shall concentrate on the thin-plate model.

Both from the PDE formulation and from the variational formulation, it is straight-
forward to verify that the thin-plate spline operator satisfies the invariance properties
(P4-P8). Similarly, the stability property (P1’) and the regularity property (P3’) are di-
rect consequences of its PDE formulation. The maximum principle (P2’), however, re-
mains more subtle. Actually, Boggio and Hadamard [35, 92] conjectured that it should
be true for quite general domains Ω, since Boggio showed that it was true for circular
domains. Nevertheless 40 years later a number of counterexamples disproved the con-
jecture. For instance, Coffman and Duffin [47] showed it is false for rectangular Ω, and
Garabedian [1, 79] showed it is false for elliptic domains with eccentricity two. In any
case, the maximum principle remains valid for small perturbations of circular domains
[89] .

Unfortunately there is no equivalent for Theorem 12 either. We do know [137] that
for bounded and Lipschitz domains Ω, if ∆2u = 0 in Ω then

‖Du‖L∞(Ω) ≤ C‖Du‖L∞(∂Ω). (3.12)

But the constant C is not necessarily 1 and depends on the Lipschitz character of the
domain Ω.

Furthermore, to the best of our knowledge it is not known whether an interpolation
operator exists, which satisfies all of the axioms (P1), (P2’-P3’) and (P4-P8). If it exists it
would be a nice generalization of the AMLE model for slope-interpolating operators.
In its absence the thin-plate model comes close by satisfying all but the maximum
principle (P2’), which is also satisfied by the thin-plate model for certain very regular
domains Ω.
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3.3 Kriging

A widely used procedure to interpolate data is Kriging, a method originally developed
in the framework of Geostatistics. We present here a brief account of this method, and
give some details on a specific case to be used in our experiments. General references
on the subject are [124] , [53] , [103] . The surface to interpolate is modeled as a realiza-
tion of a random fieldX , of which we know valuesX(x1), ..., X(xn) at some sites of R2.
Through some second order properties of X (usually to be estimated from the data), a
“predictor” X̂ is constructed, defined as a linear combination of the known values of
X :

X̂(x) =
n∑

i=1

λ(x)X(xi). (3.13)

This predictor satisfies two conditions. First, X̂ is requested to be unbiased, that is, for
all x, writing E for the mathematical expectation,

EX(x) = EX̂(x). (3.14)

The predictor also minimizes the least square error, that is, for all x,

E

(∣∣∣X̂(x)−X(x)
∣∣∣
2
)

= min
{λi}

E



∣∣∣∣∣
∑

i

λiX(xi)−X(x)

∣∣∣∣∣

2

 . (3.15)

In other words, X̂ is a Best Linear Unbiased Predictor (BLUP), a well known pre-
dictor in Statistics.

If the field X is second order stationary (EX is constant and E(X(x)X(y)) = C(x−
y), for some function C), then X̂ is found by inverting a linear system depending only
on C and the data {x1, ..., xn} (see [53] ). However, and this is quite clear in the case
of DEM, X cannot be assumed to be stationary. Therefore X is assumed to have a
“drift”, that is E(X(x)) =

∑
j αjfj(x), for some functions {fj} of R2. The general math-

ematical framework in which to address the Kriging problem is the one of “intrinsic
random functions”, a concept first introduced by Matheron ([125] ) following the work
of Gel’fand and Vilenkin ([81] ). Let us briefly introduce this particular type of random
fields. We define Pk to be the set of polynomials of R2 of degree less or equal to k, and
an increment with respect to Pk to be a set {(βj, yj)}j=1...m of (R×R2)m, for some integer
m, such that

m∑

j=1

βjf(yj) = 0,
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for all functions f ∈ Pk. An intrinsic random function of order k (k-IRF) is a random
field such that there exist a function γ : R2 → R, a “generalized covariance”, such that

var

(∑

i

βiX(yi)

)
=
∑

i,j

βiβjγ(yi − yj),

for all increments {(βi, yi)}. These fields are completely determined by the generalized
covariance γ, up to a polynomial of degree k. Let us write Nk for the dimension of the
space Pk, and {pi}i=1...Nk for a basis of this space. In this chapter, we are interested in
particular fields of the form:

X(x) =

Nk∑

i=0

aipi(x) + ε(x), (3.16)

where ε is a k-IRF such that Eε = 0, and the a′is are random variables. Fields of the
type (3.16) may be shown to be k-IRF, and are said to have a polynomial drift. The
Kriging problem is then expressed, in this particular case, in the same manner as in the
stationary case, that is to say that X̂ must satisfy (3.14) and (3.15). It may be shown that
this predictor X̂ is obtained by inverting a linear system, depending only on γ and the
data (xi).

We then consider the following function, defined for α > 0, which may be shown
to be a valid generalized covariance, provided Int(α/2) ≤ k, where Int(α) is the integer
part of α/2:

γ(x) =

{
Cα|x|α if α

2
/∈ N

Cα|x|α log(|x|) if α
2
∈ N

, (3.17)

where Cα are convenient constants depending on α. In the remaining of this chap-
ter, we consider Kriging with fields having such a generalized covariance. This is
primarily motivated by the fact that, as we will see more precisely, this choice of γ
lead to the same solution of the interpolation problem as with the thin-plates spline
method, when choosing α = 2. We will thus be in a position to compare our results
with thin-plates and Kriging interpolators, in a unified manner with various values
of α (see Section 4). We further assume that the value of k (the degree of the poly-
nomial drift) is 1, and thus allows for values 0 < α < 4. In this case, and when
α = 2, X̂ (actually the realization of X̂ corresponding to the realization of X) may
be shown to be a solution of the biharmonic problem (3.10), on R2, with limit con-
ditions (keeping the same notations as in (3.10)) u(xi) = φ(xi), for i = 1, ..., n, and
∂u
∂n

= 0 at infinity (see [126] and [110] ). Numerically, the equivalence may be seen by
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considering radial basis functions as discussed in Appendix C.3. Explicitly, we write
g = (γ(x0 − x1), ..., γ(x0 − xn)), p = (p1(x0), ..., pNk(x0)), z = (Z(x1), ..., Z(xn))T, and
define the matrices G = ((γ(xi − xj))) and P = ((pj(xi))).6 Then, the value of the
predictor at a point x0 is given by (see [53] ):

Ẑ(x0) = ga + pb, (3.18)

where a and b are column vectors such that

Ga + Pb = z

PTa = 0.
(3.19)

When k = 1 and γ is given by (3.17) with α = 2, these are the same equations as in the
resolution of the thin-plate problem through radial functions as in [37] , since in that
case the variogram γ(x) = |x|2 log(x) is the fundamental solution of the biharmonic
equation ∆2γ = δ. More generally, when α 6= 2, the Kriging solution may be obtained
by using γ as a radial function.

4 Experiments

The following figures and tables show some results of interpolation by both the AMLE
model, and the classical thin-plates and Kriging models discussed in this paper. To
illustrate these methods we chose the elevation model shown in figure 3.1(a) (where
height is represented as a three-dimensional illuminated surface). This is a 12.42 ×
6.9km DEM around Mount Sainte Victoire where each pixel represents a 30 × 30m
patch. Height values vary between 190 and 1011m and have a precision of about 2m.
As explained in Section 3.3, we chose a Kriging model with generalized covariance
given by Equation (3.17), so that thin-plate interpolation corresponds mathematically
to the case α = 2. The use of radial functions enables these two methods to agree also
from the numerical point of view.

As a first experiment we quantized this elevation model by keeping only the level
curves at regular intervals of 50m height, as a way to simulate the kind of data that can
be obtained from scanning non-digital cartography, see figure 3.1(b). Then we try to
reconstruct the original DEM by interpolation using the AMLE model (see figure 3.2(a))
and the thin-plate models (see figure 3.2(b)).

6 Let’s recall that in our experiments we only consider 1-IRFs, so k = 1, Nk = 3, and the basis of Pk is
made up of p1

(
x
y

)
= 1, p2

(
x
y

)
= x, and p3

(
x
y

)
= y.
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As a second experiment we simulated the kind of interpolation domains that arise
in DEMs produced from stereoscopic views. We present four examples: in the first
one we eliminate the top of a mountain (figure 3.3(a)), in the following two, we elim-
inate a closed region on the side of it (figures 3.3(b) and 3.3(c)) and in the last one we
eliminate a flat region (figure 3.3(d)). The corresponding interpolations by the Kriging
models for different variograms can be observed in figures 3.4, 3.6, 3.8 and 3.10. The
corresponding interpolations by the AMLE model can be observed in figures 3.5(b),
3.7(b), 3.9(b) and 3.11(b). In table 3.1 we display the L2 distances between original and
interpolated DEMs for the different methods.

In these experiments we can observe how (unlike the AMLE model), the thin-plate
and Kriging models allow to interpolate slopes, and produce C1 interpolators (i.e. with
one continuous derivative) across imposed level curves. Thanks to this ability they al-
low to roughly recreate the mountain top in figure 3.4.
On the other hand, they are somehow much more diffusive than the AMLE model, pro-
ducing too smooth reliefs. For instance in examples b and c (figures 3.7(b) and 3.9(b))
we see how the AMLE model better preserved the ridges. In the second case AMLE is
better both visually and in terms of RMS error, whereas in the first case AMLE is visu-
ally better despite a slightly larger RMS error. A similar observation can be made about
the last example (d) in figure 3.11(b), where AMLE is visually better despite a slightly
larger RMS error. In general, the AMLE produces a better result when the region to
be interpolated is entirely contained on one side of the mountain or in a roughly flat
region. In those cases the relative slope variations around the boundary are not impor-
tant so it is not necessary to actually impose them: the average slope is implicit in the
boundary data.
Furthermore the fact that thin-plate and Kriging do not satisfy a maximum principle
means that they are less safe than the AMLE model, in the sense that it can create un-
natural oscillations. With respect to Kriging, we can observe how a larger value of α
can be used to reduce the diffusive behaviour of the thin-plate (α = 2), and make it
better preserve ridges, although not as good as the AMLE. However, larger values of
α lead also to increasingly ill-conditioned systems and to even more unnatural oscilla-
tions, as it can be observed for instance in figure 3.6(d).

4.1 A simple combination of the AMLE and thin-plate models

These experiments suggest that it would be interesting to combine the slope-interpolating
capability of thin-plate and Kriging models with the better ridge preservation of the
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AMLE model. Here we show a very simple way to combine them which allows to
preserve many of the good properties of both models.

Let’s write our interpolator u = u1 + u2 as a linear combination of two functions u1

and u2 which are respectively solutions of the following PDE’s:

D2u1(Du1, Du1) = 0 for x ∈ Ω

u1(x) = ϕ(x) for x ∈ ∂Ω
(3.20)

and
∆2u2(x) = 0 for x ∈ Ω

u2(x) = 0, for x ∈ ∂Ω

∂u2

∂n
(x) = ψ(x)− ∂u1

∂n
(x) for x ∈ ∂Ω.

(3.21)

This means that we interpolate the boundary data ϕ as usual with AMLE (obtaining
u1). Then we check at the boundary the slope differences v = ψ − ∂u1

∂n
between the

imposed slope ψ and the AMLE slope ∂u1

∂n
. Then we build a correction term by thin-

plate interpolation with zero boundary condition and slope condition at the boundary
equal to the slope difference v.

Observe that the combined interpolator u actually matches the boundary values
u = ϕ and slopes ∂u

∂n
= ψ as the thin-plate, and Kriging. However, it is not necessarily

biharmonic, and it inherits to a large extent the ridge-preservation property of AMLE.
This effect is quite visible in figure 3.9(c) and even the hill top in figure 3.5(c). Thanks to
this combination of the good properties of both methods, the combined method shows
also the lowestL2 interpolation error with respect to the reference in all cases we tested,
except in example c, where the AMLE model produced the best result (see table 3.1).

On the down-side, this procedure might create unnatural oscillations so as the thin-
plate and Kriging do. This effect can be observed e.g. in the interpolation of example
b, which is shown in figure 3.7(c). To reduce this effect we might be interested in
interpolating with u = u1 +βu2 for some β ∈ (0, 1), thus coming closer to AMLE, at the
cost of a worse match of the slope boundary conditions. Alternatively we could use
Kriging with a small power like α = 1 (instead of α = 2 used for the thin-plate), at the
cost of a more diffusive behaviour, i.e. less ridge preservation.

5 Discussion and Further Work

In this chapter we propose the AMLE as a new method for interpolating digital eleva-
tion models and explore its relationship to previously used methods.
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(a) Original DEM

(b) Quantized DEM

Figure 3.1: (a) Elevation model used throughout the experiments. It represents a 12.4 ×
6.9km area around Mount Sainte Victoire with heights values ranging between 190 and

1011 metres. The horizontal sampling is 30m, whereas the vertical precision is about 2m

standard deviation. In all figures all axes values are expressed in metres, but the vertical

axis has been stretched by a factor of three with respect to the real aspect ratio in order to

better visualize the irregularities of the terrain. (b) In the quantized DEM light gray colors

represent known data points whereas dark gray colors represent unknown points to be

interpolated. It has been obtained from the original by only keeping level-curves at regular

intervals of 50m height.
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(a) AMLE interpolation

(b) Thin-plate interpolation

Figure 3.2: Interpolations of the quantized elevation model from figure 3.1b. Light gray col-

ors represent known data points whereas dark gray colors represent interpolated points.

Observe how AMLE produces certain flat regions and slope discontinuities, but better pre-

serves ridges and avoids some oscillations produced by the thin-plate spline.
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(a) Original DEM for example a (b) Original DEM for example b

(c) Original DEM for example c (d) Original DEM for example d

Figure 3.3: Reference data and interpolation domains chosen for the second experiment.

The surface represents the ground truth for the elevation model. Light gray colors rep-

resent known data points that can be used by the interpolators whereas dark gray colors

represent the region to be interpolated.
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(a) Reference elevation model in fig-
ure 3.3(a)

(b) Kriging interpolation of figure 3.3(a),
α = 1

(c) Kriging (and thin plates) interpolation
of figure 3.3(a), α = 2

(d) Kriging interpolation of figure 3.3(a),
α = 3

Figure 3.4: Interpolations of the first example, figure 3.3(a) (to be continued in the next

figure). Legend: Light gray colors represent known data points whereas dark gray colors

represent interpolated points.
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(a) Reference elevation model in fig-
ure 3.3(a)

(b) AMLE interpolation of figure 3.3(a) (c) AMLE + thin-plate interpolation of fig-
ure 3.3(a)

Figure 3.5: Interpolations of the first example, figure 3.3(a) (continued from previous fig-

ure). Observe how the bad performance of AMLE is corrected by the combined method,

while still preserving ridges better than the Kriging methods. Legend: Light gray colors

represent known data points whereas dark gray colors represent interpolated points.
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(a) Reference elevation model in fig-
ure 3.3(b)

(b) Kriging interpolation of figure 3.3(b),
α = 1

(c) Kriging (and thin plates) interpolation of
figure 3.3(b), α = 2

(d) Kriging interpolation of figure 3.3(b),
α = 3

Figure 3.6: Interpolations of the second example, figure 3.3(b) (to be continued in the next

figure). Among Kriging methods, ridges are best preserved by the highest values of α, but

at the cost of more oscillations than lower values of α and AMLE. Lower values of α, on the

other hand are much too diffusive. Legend: Light gray colors represent known data points

whereas dark gray colors represent interpolated points.
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(a) Reference elevation model in fig-
ure 3.3(b)

(b) AMLE interpolation of figure 3.3(b) (c) AMLE + thin-plate interpolation of fig-
ure 3.3(b)

Figure 3.7: Interpolations of the second example, figure 3.3(b) (continued from the previous

figure). Observe how AMLE (and to some extent the combined AMLE + thin-plate method)

better preserve the ridges than Kriging methods. The combined method, however, may

introduce unnatural oscillations, so as Kriging and thin-plate methods do. Legend: Light

gray colors represent known data points whereas dark gray colors represent interpolated

points.
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(a) Reference elevation model in fig-
ure 3.3(c)

(b) Kriging interpolation of figure 3.3(c),
α = 1

(c) Kriging (and thin plates) interpolation
of figure 3.3(c), α = 2

(d) Kriging interpolation of figure 3.3(c),
α = 3

Figure 3.8: Interpolations of the third example, figure 3.3(c) (to be continued in the next

figure). Legend: Light gray colors represent known data points whereas dark gray colors

represent interpolated points.
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(a) Reference elevation model in fig-
ure 3.3(c)

(b) AMLE interpolation of figure 3.3(c) (c) AMLE + thin-plate interpolation of fig-
ure 3.3(c)

Figure 3.9: Interpolations of the third example, figure 3.3(c). (continued from the previous

figure). Observe how AMLE preserves the ridges remarkably better than Kriging. Legend:
Light gray colors represent known data points whereas dark gray colors represent interpo-

lated points.
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(a) Reference elevation model in fig-
ure 3.3(d)

(b) Kriging interpolation of figure 3.3(d),
α = 1

(c) Kriging (and thin plates) interpolation
of figure 3.3(d), α = 2

(d) Kriging interpolation of figure 3.3(d),
α = 3

Figure 3.10: Interpolations of the fourth example, figure 3.3(d) (to be continued in the next

figure). Legend: Light gray colors represent known data points whereas dark gray colors

represent interpolated points.

method example a example b example c example d

AMLE 52.88 25.21 25.03 10.64
Kriging, α = 1 26.57 28.22 37.22 7.15

Kriging, α = 2 (thin plates) 16.72 24.84 37.00 5.41
Kriging, α = 3 20.57 22.40 32.41 5.81

Kriging, α = 3.9 27.94 25.90 29.01 8.75
AMLE + thin plate 13.98 21.87 35.82 5.37

Table 3.1: L2 distances between originals and interpolated for examples a-d, figure 3.3 (all

values are expressed in metres)
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(a) Reference elevation model in fig-
ure 3.3(d)

(b) AMLE interpolation of figure 3.3(d) (c) AMLE + thin-plate interpolation of fig-
ure 3.3(d)

Figure 3.11: Interpolations of the fourth example, figure 3.3(d). (continued from the pre-

vious figure). Legend: Light gray colors represent known data points whereas dark gray

colors represent interpolated points.
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method example a example b example c example d

AMLE 0.2 (1.97) 1.1 (15.36) 3.9 (20.49) 1.1 (11.77)
Kriging, α = 1 0.14 (2.78) 1.84 (22.78) 1.74 (20.58) 0.69 (9.45)

Kriging, α = 2 (thin plates) 0.15 (2.89) 2.23 (23.47) 1.97 (21.72) 0.86 (9.78)
Kriging, α = 3 0.16 (2.78) 2.11 (22.78) 1.74 (20.58) 0.87 (9.45)

Kriging, α = 3.9 0.17 (2.78) 1.94 (22.78) 1.20 (20.58) 0.82 (9.45)

N 197 768 745 471
M 140 296 285 216

Table 3.2: Computational resources for the examples in table 3.1. All values are expressed

in seconds (and Mflops). At the end we indicate the size of the problem in terms of N (size

of region to be interpolated in pixels) and M (size of region boundary, i.e. the number of

interpolation constraints).

Unlike other methods that have been proposed in the geoscience literature, the
AMLE satisfies a maximum principle, which ensures that it does not create oscillations.
We also showed through experiments that it also preserves ridges much better than
Kriging and thin-plate methods, which are much more diffusive. Even though Kriging
for high values of α comes a bit closer to the AMLE (in terms of ridge preservation), it’s
exactly when α is high that Kriging produces the most undesirable oscillations. Also in
terms of computational efficiency it can be faster than Kriging, depending on the data.

In the case of interpolation of iso-level lines AMLE can be interpreted (under cer-
tain regularity hypothesis) as iterated weighted geodesic distance interpolators, which
explains why it shares some qualitative properties with this method. Furthermore,
since this iteration converges faster than numerical schemes for solving AMLE, it can
be used to accelerate these schemes.

The major disadvantage of AMLE is the fact that it cannot interpolate slopes as
well as values. For this purpose we proposed a reasonable generalization to slope-
interpolating operators of the axiomatic approach that leads to the AMLE model. None
of the currently known methods satisfies all of these axioms. The thin-plate method
comes closest by satisfying all but the maximum principle, hence it may produce un-
natural oscillations. The search for a (possibly non-linear) fourth-order differential op-
erator satisfying all of the proposed axioms remains an interesting problem for future
research, since it might lead to a slope-interpolating operator with all the advantages
of AMLE.
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The discussion in this chapter suggests to try fourth order differential operators satis-
fying a differential equation like

D4u(q(u), q(u), q(u), q(u))(x) = 0, for x ∈ Ω (3.22)

or minimizing the variational principle
∫

Ω

|D2u(q(u), q(u))(x)|pdx (3.23)

both subject to the usual boundary conditions

u(x) = ϕ(x), for x ∈ ∂Ω (3.24)
∂u

∂n
(x) = ψ(x) for x ∈ ∂Ω. (3.25)

In both cases q(u) represents the eigenvector of the Hessian matrix D2u which corre-
sponds to the eigenvalue closest to 0

q(u) = arg min
q∈Ker(D2u−λI),‖q‖=1

|D2u(q, q)|, (3.26)

i.e. the orientation of minimal curvature of u. Put another way q(u) represents the ori-
entation of the ridges, and the PDE or variational principle just described, mean that
we prefer to diffuse in the direction of the ridges, rather than across ridges.
However, such fourth order differential equations are usually very unstable numer-
ically and it is difficult to obtain existence and uniqueness results under reasonable
hypothesis.

An alternative could be an adaptation of the model proposed in [26] for image dis-
occlusion. In this model the image gray-levels u and the gradient orientations θ = Du

|Du|
are jointly propagated inside Ω in such a way that they match the boundary conditions,
while the interpolated vector flow θ is regular and the interpolated image u follows this
vector flow, i.e. θ ≈ Du

|Du| . This procedure is good for image disocclusion because it al-
lows to smoothly propagate edges inside the occlusion.
When interpolating elevation models, the main characteristics we want to preserve
are ridges rather than edges. Therefore an adaptation of this disocclusion procedure,
where we jointly propagate the elevation u and the ridge orientation θ = q(u), while
the interpolated vector flow θ is regular and the interpolated elevation u follows this
vector flow, i.e. θ ≈ q(u), would be of interest for the interpolation of elevation data.

In the absence of such a generalized interpolator, which satisfies all desired axioms,
and in addition shows better ridge preservation, we can use a combination of AMLE
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and Kriging or thin-plate methods. We showed here how a simple combination of
such methods did in many cases better than all known methods, both in terms of L2

differences and in terms of visual quality. The good results obtained by such a sim-
ple combination suggests that there is still much room for improvement by a smarter
combination of known methods. Eventually, manual tuning of the α and β parameters
for the proposed combined method at each connected component of the interpolation
domain, may be required to obtain the best results.

Appendix

A AMLE and weighted geodesic distance interpolations

A.1 Review of weighted geodesic distance interpolation

For the sake of completeness we recall here the precise definition of weighted geodesic
distances as defined in [164] . They are defined in three steps:

Definition 9 (Geodesic time, curves and distance). The weighted geodesic time to reach
a set A ⊆ Ω from a point x ∈ Ω within a region Ω ⊆ R2 with potential g : Ω→ R+ is defined
as

tΩ,g(x,A) = min
γ

∫ 1

0

g(γ(p))|γ ′(p)|dp (3.27)

where the minimization is performed over all continuous curves γ : [0, 1] → Ω joining x and
A, i.e. such that γ(0) = x and γ(1) ∈ A.

The corresponding set GΩ,g(x,A) of geodesic curves or simply geodesics is the set of
minimizers of equation (3.27):

GΩ,g(x,A) = arg min
γ

∫ 1

0

g(γ(p))|γ ′(p)|dp. (3.28)

Finally the geodesic distance is the minimal geometric length of a geodesic curve:

dΩ,g(x,A) = min
γ∈GΩ,g(x,A)

∫ 1

0

|γ′(p)|dp. (3.29)

The members of the set ĜΩ,g(x,A) of minimizers of (3.29) are called minimal length geodesics.

For convenience we shall also use the notation γ̃ for the arc-length parameterization
of the curve γ, such that γ̃(s) = γ(p) with ds = |γ ′(p)|dp, so that |γ̃ ′(s)| = 1 and <

γ̃′′, γ̃′ >= 0, with |γ̃ ′′(s)| = κ equal to the curvature of γ.
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Based of the geodesic distance we can define a geodesic distance interpolator with
potential g as in equation (3.6). Then a fixed point is a geodesic distance interpolator
whose gradient module is the same potential we used in the interpolation.

Definition 10 (Geodesic distance interpolator and fixed point). Given a region Ω whose
boundary can be partitioned in two disjoint regions ∂Ω = ∂Ω1 ∪ ∂Ω2, and the boundary
conditions u|∂Ω1 = c1 ∈ R and u|∂Ω2 = c2 ∈ R, a geodesic distance interpolator with
potential g is defined as

u(x) = EΩ,g(c1, c2)(x) =
c2L1(x) + L2(x)c1

L1(x) + L2(x)
where Li(x) = dΩ,g(x, ∂Ωi). (3.30)

Such an interpolator is called a fixed point if

u = EΩ,g(c1, c2) with g(x) = |Du(x)| (3.31)

for all x ∈ Ω.

A.2 Equivalence with AMLE in the twice differentiable case

Our first two results are not the best way to show the equivalence between fixed points
and AMLE, but they provided a convenient way to deduce the weight needed in equa-
tion (3.30) to have an AMLE.

Proposition 6. If γ ∈ GΩ,g(x,A) is a twice differentiable geodesic and the potential g is also
differentiable, then we have

〈Dg, γ̃ ′′〉 − g|γ̃ ′′|2 = 0. (3.32)

If in addition g(x) 6= 0 for x ∈ A, any geodesic arrives normal to the set A, i.e. for some k ∈ R

γ′(1) = knA (3.33)

where nA is normal to the set A.

Proof. We consider any admissible curve γ : [0, 1] → Ω joining x and A, i.e. such that
γ(0) = x and γ(1) ∈ A. A variation γ + δγ to this curve is still admissible if δγ(0) = 0

and δγ(1) is tangent to A. The variation of the geodesic time becomes:

δt = −t+

∫ 1

0

g(γ(p) + δγ(p))|γ ′(p) + δγ ′(p)|dp

=

∫ 1

0

〈δγ(p), Dg(γ(p))〉 |γ ′(p)|+ 〈δγ
′, γ′〉
|γ′| g(γ(p))dp+ o(δγ)
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after a Taylor development of u and x 7→ |x| around γ(p). Integrating by parts and
reparameterizing γ with the arc-length parameter we get

δt = [g(γ(p)) 〈γ̃ ′(s(p)), δγ(p)〉]p=1
p=0 +

∫ L

0

〈
δγ,

[
Dg(γ̃(s))− d

ds

(
g
(
γ̃(s)

)
γ̃′(s)

)]〉
ds+ o(δγ).

To minimize the geodesic time we should have δt = o(δγ) for any admissible small
variation o(δγ). So, from the previous equation, we deduce that for γ to be a geodesic
we should have: first γ ′(1) orthogonal to δγ(1) and hence tangent to A, whenever
g(γ(1)) 6= 0, and second

Dg =
d

ds

(
g
(
γ̃(s)

)
γ̃′(s)

)

= (〈γ̃′, Dg〉)γ̃ ′ − gγ̃′′.

Multiplying the last equation by γ̃ ′ yields 〈γ̃ ′, Dg〉 = 〈γ̃ ′, Dg〉, but multiplying by γ̃ ′′

yields

〈Dg, γ̃ ′〉 − g|γ̃ ′′|2 = 0.

In the next proposition we need to assume that the pair of (upwards and down-
wards) geodesics from a point do not change when we move along the geodesic. In
that case, geodesic distance interpolators are affine along geodesics, which allows to
obtain a differential equation linking the direction of geodesics and the interpolator.
Later we shall state conditions under which this hypothesis of geodesics stability is
satisfied.

Definition 11 (Globally stable geodesics). A pair (γ1, γ2) of minimal length geodesics to
level curves γi ∈ ĜΩ,g(x, χu=ci) where c1 ≤ u(x) ≤ c2 is called globally stable, if for any
y ∈ Range(γ1)∪Range(γ2), there is a minimal length geodesic pair (δ1, δ2) from y to the same
level curves δi ∈ ĜΩ,g(y, χu=ci), such that

Range(δ1) ∪ Range(δ2) = Range(γ1) ∪ Range(γ2). (3.34)

Put another way, the geodesics are globally stable, if they do not change when we move along
the geodesic.

Proposition 7. If u = EΩ,g(c1, c2) is a twice differentiable weighted geodesic distance interpo-
lator, such that the pairs (γ1, γ2) of geodesics γi ∈ GΩ,g(x, χu=ci) used in the interpolation are
globally stable, then we have

〈Du, γ̃i′′〉+D2u(γ̃i
′, γ̃i

′) = 0. (3.35)
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Proof. Observe that under the hypothesis of geodesics stability L1(x) +L2(x) = L mea-
sures the total length of the stable geodesic through x, which has a constant length L

when x moves along the geodesic.
Now consider a point xh at distance h from x measured along the geodesic γ1 ∈

GΩ,g(x, χu=c1), i.e.
xh = γ̃1(h).

Then L1(xh) = L1(x)− h and L2(xh) = L2(x) + h. Thus

u(xh)− u(x)

h
=
c1 − c2

L

and we deduce that du(γ̃1(s))
ds

= c1−c2
L

at s = 0. Similarly we obtain du(γ̃2(s))
ds

= c2−c1
L

at
s = 0 (the sign changes because the γ1 and γ2 go in opposite directions).

Now consider the upwards concatenation of γ1 and γ2, i.e. γ : [0, 1] → Ω such that
γ(0) = γ1(1), γ(1) = γ2(1), and Range(γ) = Range(γ1) ∪ Range(γ2). Since the geodesic
pairs are globally stable, the previous argument actually shows that d

ds
u(γ̃(s)) = c2−c1

L

all along the curve, and that this value is constant. Hence d2

ds2
u(γ̃(s)) = 0.

The rest of the proof consists of simply applying the chain rule to this last expres-
sion, to obtain equation (3.35).

Proposition 7 suggests that a simple way for a geodesic distance interpolator to
satisfy AMLE is that γ̃ ′ = Du

|Du| , so that the first term in equation (3.35) becomes zero
and the equation reduces to 1

|Du|2D
2u(Du,Du) = 0.

Now we wonder how to deduce g such that γ̃ ′ = Du
|Du| . To do so, we first observe that

this property, along with proposition 7 implies that γ̃ ′′ =
〈D2u,Du〉
|Du|2 , and we substitute

in proposition 6 (to simplify the computations we use just a sufficient condition for
proposition 1) and we obtain

Dg = gγ̃′′ = g
〈D2u,Du〉
|Du|2 . (3.36)

A simple way to satisfy this equation (and hence proposition 1) is to set g = |Du|.
This argument shows that for this choice of potential g = |Du|, if the geodesics are

globally stable and if they follow the direction of Du, then the corresponding geodesic
distance interpolator, if twice differentiable is AMLE. But this argument doesn’t show
that for this choice of potential we actually have γ̃ ′ = Du

|Du| . Note that proposition 6
does not uniquely determine geodesics from the potential g, it only imposes a 1D local
constraint on them. The actual geodesics are chosen globally and also depend on the
set A.
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The surprising fact, to be established in the next proposition, is that for our choice of
potential g = |Du|, and boundary conditions (A is a level curve of u), the geodesics are
actually locally determined if u is C1, namely by the gradient direction.

Proposition 8. Let u : Ω→ R be differentiable inside Ω, and the potential be g = |Du|. Then
the geodesic time to go from one level curve to another level-curve of u is independent of the
position of the starting point on the first level curve. More precisely, let x ∈ Ω, and χu=c be
any non-empty level-curve of u. Then

tΩ,g(x, χu=c) = |c− u(x)|. (3.37)

Furthermore, the geodesic γ ∈ GΩ,g(x, χu=c) attaining this geodesic time satisfies

γ̃′ = σ
Du

|Du| where σ = sign(c− u(x)) (3.38)

at almost every point where |Du| 6= 0 . Therefore, if u is C1, equation (3.38) holds at every
point where |Du| 6= 0.

Proof. The first part follows directly from Cauchy-Schwartz inequality

|D(u(γ(p))| |γ ′(p)| ≥ 〈σDu(γ(p)), γ ′(p)〉 = σ
d

dp
u(γ(p)).

which becomes an equality only if |Du| = 0 or γ ′ = kσDu for some k > 0. Equivalently,
it becomes an equality iff |Du| = 0 or γ̃ ′ = σ Du

|Du| . Now we integrate on both sides with
respect to p to obtain

∫ 1

0

|D(u(γ(p))| |γ ′(p)|dp ≥ σ(c− u(x)) = |c− u(x)|

And this lower bound is attained iff γ̃ ′ = σ Du
|Du| at almost every point where Du 6= 0.

Thus the geodesic time attains the lower bound |c− u(x)|.

The second part of this result can also be shown in another way, which better ex-
plains the dynamic programming principle behind this proposition. This is important
for the implementation of this scheme. Indeed the first part allows us to write:

tΩ,g(x, χu=c) = tΩ,g(x, χu=c′) + tΩ,g(x
′, χu=c) (3.39)

for any intermediate level c′ such that σu(x) < σc′ < σc, and for any intermediate point
x′ ∈ χu=c′ in the intermediate level curve. This means that the geodesic time minimiza-
tion can be performed independently between each pair of level curves. Put another
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way, the set of geodesics at each point can be constructed by dynamic programming.
Now consider a geodesic γ ∈ GΩ,g(x, χu=c) and an intermediate point x′ = γ(p) on the
geodesic. Then equation (3.39) shows that γ1 = γ|[0,p] ∈ GΩ,g(x, χu=c′) and γ2 = γ|[p,1] ∈
GΩ,g(x

′, χu=c). Now applying the second part of proposition 6 to γ1 we deduce that at
the point x′ = γ(p), the geodesic γ is orthogonal to the level curve χu=c′ , or equivalently,
that it is parallel to the gradient of u, i.e. γ̃ ′(p) = σ Du

|Du|(γ(p))

The main result is a direct consequence of propositions 7 and 8:

Corollary 1. Assume that the interpolation domain Ω and “level-curve” boundary conditions
are chosen as in definition 10, with c1 < c2.
If u is a twice differentiable fixed point, then it is AMLE. Conversely if u is a twice differentiable
AMLE it is a fixed point.

Proof. If u is twice differentiable (either AMLE or fixed point), it is in particular C 1,
and the geodesics to level curves of u that are obtained with potential g = |Du|, satisfy,
according to proposition 8, either γ̃ ′ = σ Du

|Du| or Du(γ(p)) = 0 everywhere along the
geodesic.

The case Du(γ(p)) = 0 is excluded either from the fact that u is a geodesic distance
interpolator (with c1 < c2), or a twice differentiable AMLE with Lip(u, ∂Ω) > 0.

In either case since u is twice differentiable, γ̃ ′ = σ Du
|Du| , γ is also twice differentiable

and we can apply the chain rule to obtain:

d2

ds2
u(γ̃(s)) = 〈Du, γ̃i′′〉+D2u(γ̃i

′, γ̃i
′).

Now if u is a fixed point, γ̃ ′ = σ Du
|Du| everywhere, means that geodesics are globally

stable, so using proposition 7 we get d2

ds2
u(γ̃(s)) = 0, and the first term is zero (because

Du is parallel to γ ′). Hence D2u(γ̃i
′, γ̃i

′) = 1
|Du|2D

2u(Du,Du) = 0, so, u is AMLE.

Conversely if u is AMLE then D2u(γ̃i
′, γ̃i

′) = 1
|Du|2D

2u(Du,Du) = 0, so d2

ds2
u(γ̃(s)) =

0 (because the first term is zero since Du is parallel to γ ′). This means that u is affine
along the globally stable geodesics, so u is fixed point.

A.3 Partial results in the weakly differentiable case

In the previous section we showed the equivalence between fixed points and AMLE
in the case where both are twice differentiable. However this hypothesis is not well
justified, since the AMLE is not necessarily regular. The most widespread conjecture
is that the AMLE is C1,1/3 (C1, with Hölder regularity of the first derivative of order 1

3
,
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i.e. |Du(x)−Du(y)| ≤ |x− y|1/3), but even this result has not been proved. An example
for this behaviour is the function u(x, y) = |x|4/3 − |y|4/3, which is C1,1/3 but not C2.

In this section we try to generalize the results in the previous section to the weakest
possible case. In particular we show that a fixed point which is C1 except at a non-
dense set of isolated points is AMLE. However, the converse seems not to be true.
Indeed our experiments suggest that at points where the AMLE is not C 2, the fixed
points tend to become non-differentiable (in the sense that |Du| is still defined and
non-null, since Lipshitz, but the orientation of the gradient isn’t). The level curves of
the fixed points tend to show angles at such regions.

We start by generalizing the concept of gradient and gradient module for a lipshitz
image u which is not necessarily differentiable everywhere.

Definition 12 (maximal and minimal slope). The maximal slope of u : Ω → R at a point
x ∈ Ω is

|D+u|(x) = lim
r→0

sup
|y|=r

u(x+ y)− u(x)

r
(3.40)

and the minimal slope is

|D−u|(x) = − lim
r→0

inf
|y|=r

u(x+ y)− u(x)

r
(3.41)

The upwards gradient of u is a set of vectors d with module equal to the maximal slope and with
a direction along which u locally reaches the maximal slope:

D+u(x) =

{
|D+u|(x) d : |d| = 1 ∧ |D+u|(x) = lim

r→0+

u(x+ dr)− u(x)

r

}
(3.42)

and similarly we define the downwards gradient

D−u(x) =

{
|D−u|(x) d : |d| = 1 ∧ |D−u|(x) = − lim

r→0+

u(x+ dr)− u(x)

r

}
. (3.43)

As an example imagine that u is a pyramid of height 1 and square basis, where the
square has side 2. Assume that we place the coordinate system parallel to the sides of
the square, centered at the center of the basis and that x belongs to one of the edges of
the pyramid (the one placed in the first quadrant for instance). In that case we get:

|D+u| =
√

2/2 = 1/
√

2

|D−u| = 1

D+u = { 1

2
(−1,−1) }

D−u = { (0, 1), (1, 0) }
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In addition we say that the gradient module is discontinuous at x if |D+u|(x) 6=
|D−u|(x). Note that in the previous example the gradient module is discontinuous at
the edges. In the classical sense, however, the gradient module would be undefined
at the edges and would be equal to 1 everywhere else. Thus in the classical sense the
gradient module would admit a continuous completion, which is not the case in the
sense we just defined.

Now we can redefine the geodesic time even in the case where the gradient is not
defined on a set of zero measure in the 1D sense (like the edge of the pyramid in the
previous example). However we have to restrain ourselves to the particular potential
g = |Du| and level-curve-like sets A which are entirely above or below the starting
point x. The prototype for such sets will be the level curves A = χu=c.

Definition 13 (Geodesic time, curves and distance). The weighted geodesic time to reach
a set A ⊆ Ω from a point x ∈ Ω within a region Ω ⊆ R2 with potential g : Ω→ R+ is defined
as

t(x,A) =





minγ
∫ 1

0
|D+u|(γ(p)) |γ ′(p)| dp if u(A) ≥ u(x)

minγ
∫ 1

0
|D−u|(γ(p)) |γ ′(p)| dp if u(A) ≤ u(x)

undefined if ∃a, b ∈ A, u(a) < u(x) < u(b)

(3.44)

where the minimization is performed over all continuous curves γ : [0, 1] → Ω joining x and
A, i.e. such that γ(0) = x and γ(1) ∈ A. 7

The corresponding set G(x,A) of geodesic curves or simply geodesics is the set of mini-
mizers of equation (3.44).

Finally the geodesic distance is the geometric length of the shortest geodesic curve:

d(x,A) = min
γ∈G(x,A)

∫ 1

0

|γ′(p)|dp. (3.45)

The members of the set Ĝ(x,A) of minimizers of (3.45) are called minimal length geodesics.

With this definition we can generalize proposition 8 on the lower bound for the
geodesic time and the orientation of geodesics. We need first a technical lemma.

Lemma 8. Consider a point x ∈ Ω and a level c > u(x). Consider a geodesic γ ∈ G(x, χu=c)

from x to the level curve.

7 Note that this definition is consistent with the previous one, since they coincide whenever the
gradient module is continuous, i.e. when |D+u| = |D−u| = |Du|.
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Then for any member d+ ∈ D+u(γ(p)) of the upwards gradient

|D+u|(γ(p)) |γ ′(p)| ≥
〈
d+, γ′(p)

〉
(3.46)

with equality iff |D+u|(γ(p)) = 0 or γ′(p)
|γ′(p)| = d+

|D+u|(p) .
If in addition, γ′(p)

|γ′(p)| = d+

|D+u|(p) , and u is Lipschitz, then

〈
d+, γ′(p)

〉
=

d

dp
u(γ(p)). (3.47)

Similarly, the same result holds for a lower level c < u(x), by substituting D+ and d+ by
D− and d−.

Proof. The first part of the lemma is just a simple application of Cauchy-Schwartz.
For the second part consider dr = γ(p+ r)− γ(p), so that

u(γ(p+ r))− u(γ(p))

r
=
u(γ(p) + dr)− u(γ(p))

|dr|

(〈
dr
|dr|

,
γ(p+ r)− γ(p)

r

〉)

Taking the limit when r → 0 the left term tends to d
dp
u(γ(p)) and the scalar product

in the right term tends to
〈
d+

|d+| , γ
′(p)
〉

. To establish the second part of the theorem we
only need to show that

lim
r→0

u(γ(p) + dr)− u(γ(p))

|dr|
= |D+u|(γ(p)).

We already know from the definition of upwards gradient that

lim
r→0

u(γ(p) + d+r)− u(γ(p))

|d+|r = |D+u|(γ(p)).

In addition, if C is the Lipschitz constant of u, using a Taylor development of γ we
obtain:

u(γ(p) + dr) = u(γ(p) + rγ ′(p) + o(r))

= u(γ(p) + rγ ′(p)) + C o(r)

= u(γ(p) + r′d+) + o(r′)

where in the last line we used the hypothesis γ′(p)
|γ′(p)| = d+

|D+u|(p) , and r′ = |γ′(p)|r. Finally

lim
r→0

u(γ(p) + dr)− u(γ(p))

|dr|
= lim

r→0

u(γ(p) + rd+)− u(γ(p))

r|d+|
= |D+u|(γ(p)).
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Proposition 9. If u is Lipschitz then the geodesic time from x to a level curve at level c is

t(x, χu=c) = |c− u(x)|. (3.48)

If in addition the level c > u(x) is higher than u(x), then any upwards geodesic γ ∈ G(x, χu=c)

attaining this lower bound satisfies

γ′(p) = kd+ for some k > 0, and d+ ∈ D+u(γ(p)) (3.49)

for almost every p where γ(p) is differentiable, and |D+u|(γ(p)) 6= 0.
Similarly for downwards geodesics, substituting D+ and d+ by D− and d−.

Proof. After applying the lemma, the proof follows exactly as in proposition 8

Finally we generalize proposition 7 which establishes that fixed points are affine
along the geodesics with slope c2−c1

L
. Here, we assume weaker hypothesis, and the

fixed points are no longer affine, but close enough to affine to allow us to show that
they are also AMLE.
When accepting less regular u we have to also accept that at certain points D+u con-
tains more than one direction as in the case of the edge of the pyramid presented at
the beginning of this section. This means that at such points the minimization of the
geodesic distance might choose one direction or the other depending on the global
length.
Thus geodesics can no longer be assumed globally stable, but a weaker stability as-
sumption turns out to be sufficient.

Definition 14 (Locally stable geodesics). A pair (γ1, γ2) of minimal length geodesics to
level curves γi ∈ Ĝ(x, χu=ci) where c1 ≤ u(x) ≤ c2 is called locally stable, if there exists
ε > 0 such that for all s < ε and y = γ̃1(s) or y = γ̃2(s), there is a minimal length geodesic
pair (δ1, δ2) from y to the same level curves δi ∈ ĜΩ,g(y, χu=ci), such that

length(δ1) = length(γ1) + σs+ o(s)

length(δ2) = length(γ2)− σs+ o(s)
where σ =





+1 if y = γ̃2(s)

−1 if y = γ̃1(s)
(3.50)

Put another way, the geodesics are locally stable, if their total length does not change to the first
order, when we move an infinitesimal distance along the geodesic.

Proposition 10. Let u be a Lipschitz fixed point, whose geodesic pairs are locally stable. Con-
sider any point x and any pair (γ1, γ2) of minimal length geodesics γi ∈ ĜΩ,g(x, χu=ci) from
the point x to the level curves. If the geodesic orientation follows the gradient at x, i.e. if

γ̃2
′(0) ∈ D+u

|D+u|(x) and γ̃1
′(0) ∈ D−u

|D−u|(x)
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then
|D+u|(x) = |D−u|(x) =

c2 − c1

L
(3.51)

where L = length(γ1) + length(γ2) = d(x, χu=c1) + d(x, χu=c2) is the total length of the
geodesic pair.

Proof. Since u is Lipschitz and its geodesics follow the gradient orientation at x, we can
apply lemma 8 in the particular case of arc-length parameterization, to obtain

|D+u|(x) =
d

ds
u(γ̃2(s))

∣∣∣∣
s=0

. (3.52)

Now consider xh = γ̃2(h), and the pair of geodesics (δ1,h, δ2,h) from xh to the same
level curves. Since u is a fixed point:

u(xh) =
c1 length(δ2,h) + length(δ1,h)c2

length(δ2,h) + length(δ1,h)
(3.53)

and since the geodesics are locally stable, for h < ε

u(xh)− u(x0)

h
=
c2 − c1 + o(1)

L
(3.54)

where L = length(γ2) + length(γ1).
This shows that |D+u|(x) = d

ds
u(γ̃2(s))

∣∣
s=0

= limh→0+
u(xh)−u(x0)

h
= c2−c1

L
.

Similarly we show that |D−u|(x) = − d
ds
u(γ̃1(s))

∣∣
s=0

= limh→0+
u(x0)−u(xh)

h
= c2−c1

L
.

In the next lemma we establish sufficient regularity conditions for u, in order to
meet the hypothesis of proposition 10, which is the basis of our main result. In fact we
show global stability, while only local stability is needed, which suggests that there is
still room for weakening the hypothesis and still keeping our main result.

Lemma 9. Assume that a fixed point u : Ω → R is Lipschitz and C1 with |Du(x)| 6= 0. 8

Then for all x ∈ Ω the corresponding geodesic pairs are globally stable and

|Du(x)| = |D+u(x)| = |D−u(x)| = c2 − c1

L(x)
(3.55)

where L(x) = d(x, χu=c1) +d(x, χu=c2) is the total length of a pair of minimal length geodesics
from x.

8 The hypothesis that |Du(x)| 6= 0 is technical and can be possibly deduced from the fact that u is
a fixed point whenever c1 < c2 (strict inequality), and the interior of Ω consists of a single connected
component. The case c1 = c2 obviously leads to flat interpolators. So does a connected component of
the interior of Ω whose boundary is entirely contained in either ∂Ω1 or ∂Ω2.
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Proof. Applying proposition 9 we deduce that the geodesics γ follow the gradient di-
rection Du

|Du|(x) at almost every x ∈ Ω. But since Du is continuous and non-zero, so is
γ̃, so that actually γ̃ ′(s) = Du

|Du|(x) for all x ∈ Ω and for all geodesics passing through
x = γ̃(s).

Thus the hypothesis of proposition 10 are satisfied everywhere, which allows us to
deduce equation (3.55).

Finally we show that under the hypothesis of the lemma, fixed points are AMLE.
Since these hypothesis do not allow us to take second order derivatives, we can ei-
ther use viscosity solutions, or use Aronsson’s characterization of AMLE as a minimal
Lipschitz extension which is also minimal Lipschitz on each subdomain.

Theorem 13. Under the hypothesis of lemma 9, if u is a fixed point then u is AMLE.

Proof. First let’s show that u is a minimal Lipschitz extension (MLE). This means that
the Lipschitz constant Lip(u,Ω) = supx∈Ω |Du(x)| inside the domain, is the same as the
Lipschitz constant Lip(u, ∂Ω) at the boundary which in our case is just Lip(u, ∂Ω) =
c2−c1
d

where d is the geometric distance between the two level-curves ∂Ω1 = χu=c1 and
∂Ω2 = χu=c2 . Actually it is sufficient to show that Lip(u,Ω) ≤ Lip(u, ∂Ω) because the
inverse inequality is always true.
But this is very simple because from equation (3.55) we know that:

|Du(x)| ≤ c2 − c1

L(x)
≤ c2 − c1

d
= Lip(u, ∂Ω)

because no geodesic can be shorter than the distance d between the level lines. This
shows that u is MLE.

Secondly we show that u is also absolutely minimizing (AMLE), and a sufficient
condition is that for every subdomain Ω1 ⊆ Ω we also have Lip(u,Ω1) ≤ Lip(u, ∂Ω1).
Assume that this is not the case, so there are two points p and q inside Ω1 such that
|u(p)−u(q)|
|p−q| is strictly larger than Lip(u, ∂Ω1). This means that we can find x on the seg-

ment pq such that |Du(x)| > Lip(u, ∂Ω1).9 Now consider a minimal length geodesic
pair from x, with total length L(x), which meets the boundary at x1 and x2. According

9It is not necessary here that the segment pq be contained in the subdomain, since we can cut it into
several pieces if necessary
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to the lemma we have

|Du(x)| = c2 − c1

L(x)
=
u(x2)− u(x1)

L(x)

≤ u(x2)− u(x1)

|x2 − x1|

≤ u(x2)− u(x1)

d
= Lip(u, ∂Ω1)

since the geodesic can’t be shorter than the straight-line |x2−x1|which in turn can’t be
shorter than the distance d between the two parts of the boundary. But this contradicts
the direct conclusion from our initial assumption that |Du(x)| > Lip(u, ∂Ω1).

This shows that u is AMLE in the sense given by Aronsson. Hence by the unique-
ness established by Jensen this means that u is the viscosity solution of D2u(Du,Du).

Possible generalization of the last lemma and theorem

The hypothesis of the last theorem are still too strong. It probably holds under slightly
weaker assumptions. We can’t accept for instance that u be non-differentiable along a
whole interval of a geodesic, even if it is Lipschitz. In that case geodesics might be not
even locally stable (this is the case at the edge of a pyramid for instance). However we
can possibly accept that u be not C1 at a few points, provided they are not dense. This
is a first attempt in this direction, but the argumentation is still a bit confusing...

Lemma 10. Assume that u is Lipschitz everywhere. In addition assume that within Ω\P u

is C1 and Du 6= 0, where the set P is non-dense, i.e. for all x ∈ Ω, there is ε > 0 such that
(B(x, ε)\{x})∩P = ∅. Then the corresponding geodesic pairs are globally stable for all x ∈ Ω.

In addition, for all x ∈ Ω we have

|Du|(x) ≤ sup
y∈B(x,ε)

c2 − c1

L(y)
. (3.56)

where |Du|(x) = max{|D+u|(x), |D−u|(x)}.

Proof. Consider a point x ∈ Ω, and ε > 0 such that (B(x, ε)\{x}) ∩ P = ∅. Let (γ1, γ2)

be a minimal length geodesic pair from x, and let xh = γ̃2(h), for h < ε, and (δ1,h, δ2,h) a
pair of minimal length geodesic curves. Applying proposition 9, for s ∈ (0, h], we find
that

γ̃2
′(s) =

Du

|Du|(γ2(s)) and ˜δ1,h
′
(h− s) = − Du

|Du|(
˜δ1,s(h− s)) (3.57)

for almost every s in the interval. (we can write Du
|Du| instead of d+

|d+| ∈ D+u
|D+u| because u

is C1 with non-null gradient in this interval). But this means that γ̃2
′(s) and ˜δ1,h

′
(h− s)
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are continuous for s ∈ (0, h], so that actually equation (3.57) is valid for all s ∈ (0, h].
Since the curves are continuous, and they coincide at s = h, we conclude that for all
s ∈ [0, h]

γ̃2(s) = ˜δ1,h(h− s).

So both pairs of geodesics coincide along the geodesic path between x and xh. But
then, the dynamic programming principle in equation (3.48) shows that they coincide
along the whole geodesic path, i.e. they are globally stable.

Hence, the second part follows for x ∈ Ω\P directly from proposition 10. For x ∈ P
observe that |Du|(x) ≤ supy∈B(x,ε) |Du|(y) = supy∈B(x,ε)

c2−c1
L(y)

.

The proof of theorem 13 follows in the same manner. We just substitute |Du(x)| by
the sup over a small neighborhood. However there might be an issue with the contra-
diction between the strict and non-strict inequalities that may become compatible with
the sup.

A.4 Experiments

The following experiment illustrates the conclusions of the previous section.
We chose an interpolation domain where the AMLE solution is known to be C 1 but

not C2. It consists of two level curves of a pyramid with square basis plus the summit.
In this case the convergence to the fixed point turned out to be very fast. At each

iteration we computed the relative L2 difference between the geodesic distance inter-
polator and AMLE, i.e. dk = ‖uamle−uk‖

‖uamle‖ and we obtained the following values:

d0 = 0.0347

d1 = 0.0164

d2 = 0.0086

d3 = 0.0065

d4 = 0.0064

(3.58)

This means that in L2 norm the fixed point comes after about four iterations very close
to the AMLE and then it doesn’t change significantly. From a qualitative point of view,
we observe that the interpolator doesn’t seem to be C1 along the diagonals (as it can
be observed in the level-lines display in figure 3.12), so that our theorem cannot be
applied here. In fact, if it was C1 along the diagonal, symmetry arguments show that
the downwards geodesics from a point in the diagonal would follow the diagonal, and
we would create a discontinuity. However, the irregularity that we obtain along the
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(a) AMLE interpolation (b) Fixed point of iterated geodesic dis-
tance interpolations

Figure 3.12: Comparison of AMLE and fixed point of geodesic distance interpolations

diagonal allows the downwards geodesics to escape from the diagonal, and we obtain
a solution which is very close to AMLE.

This example suggests that the equivalence between AMLE and fixed points is not
true in the general case. Fixed points seem to provide, nevertheless, a very fast initial-
ization to a solution which is very close to AMLE, and can be later refined by a few
iterations of the usual scheme to solve the AMLE.

B Numerical Analysis

In this section we discuss the numerical implementation of the two finite difference
schemes we used for interpolating elevation data, namely the AMLE and the thin-
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plate models. The computational complexity issues are discussed in section C, where
the efficiency of these two methods is compared with Kriging and geodesic distance
interpolations.

B.1 AMLE model using finite differences

We shall use the AMLE model studied above as the basic equation to interpolate data
given on a set of curves and/or a set of points which may be irregularly sampled. In
[42] a consistent finite-difference scheme was proposed for solving the AMLE. For the
sake of completeness we reproduce here the main elements of their method. It consists
of a particular discretization of the equation

D2u

(
Du

|Du| ,
Du

|Du|

)
= 0

with boundary conditions
u(x) = u0(x) x ∈ Ω.

It is easy to see that there is a relation between iterative methods for the solution of
elliptic problems and time stepping finite difference methods for the solution of the
corresponding parabolic problems. Because of that, we study the equation

∂u

∂t
= D2u

(
Du

|Du| ,
Du

|Du|

)
,

with the following initial and boundary data

u(0, x) = u0(x) x ∈ Ω (3.59)

u(t, x) = ϕ(x) (t, x) ∈ (0,+∞)× ∂Ω. (3.60)

Using an implicit Euler scheme we transform this evolution problem into a sequence
of nonlinear elliptic problems. Thus, we may write the following implicit difference
scheme in the image grid

u
(n+1)
i,j = u

(n)
i,j + ∆tD2u

(n+1)
i,j

(
Du

(n+1)
i,j

|Du(n+1)
i,j |

,
Du

(n+1)
i,j

|Du(n+1)
i,j |

)
(3.61)

i, j = 1, . . . , N . To solve the above nonlinear system we use a nonlinear over-relaxation
method (NLOR). Writing the system as a set of k = N 2 algebraic equations, one for
each unknown u(n+1)

i,j (i, j = 1, ..., N ),

fp(x1, x2, . . . , xk) = 0, p = 1, 2, . . . , k,
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the basic idea of NLOR is to introduce a relaxation factor ω and iteratively compute

x
(n+1)
i = x

(n)
i − ω

fi(x
(n+1)
1 , . . . , x

(n+1)
i−1 , x

(n)
i , . . . , x

(n)
k )

fii(x
(n+1)
1 , . . . , x

(n+1)
i−1 , x

(n)
i , . . . , x

(n)
k )

,

i = 1, 2, . . . , k

(3.62)

where fii = ∂fi
∂xi

. The convergence criterion can be shown to be the same as the over-
relaxation method for linear systems, replacing the matrix by the Jacobian of the equa-
tions fp = 0, and stability is guaranteed for values of the relaxation parameter 0 < ω <

2.

B.2 Thin-plate using finite differences

We assume that we are given a regular square grid Γ = hZ2, and that the values of u are
known on Ω̃c = Γ ∩ Ωc, and we want to obtain the values of u on Ω̃ = Γ ∩ Ω satisfying
equation (3.10) up to a certain tolerance.

To solve it, we could consider as in the case of the AMLE, the differential equation

∂u

∂t
(x; t) = −∆2u(x; t) for x ∈ Ω, t ≥ 0

u(x; 0) = ϕ(x), for x ∈ ∂Ω

∂

∂n
u(x; 0) = ψ(x) for x ∈ ∂Ω

(3.63)

(where the bilaplacian operator is taken with respect to the spatial x variable) and try
to find the steady state when t→∞, for any initial condition. 10 However, since in this
case the differential operator is linear, it will be more convenient to directly discretize
the original problem:

∆2u(x) = 0 for x ∈ Ω

u(x) = ϕ(x), for x ∈ ∂Ω

∂u

∂n
(x) = ψ(x) for x ∈ ∂Ω.

(3.64)

The discretization of this equation leads to a linear system L2U = W where Ui,j is
an approximation of the solution u(hi, hj) on a regular grid of step h, L2 is a second-
order accurate discretization of the bilaplacian operator, which takes into account the

10This presents the advantage that this equation can be solved using explicit methods for which each
iteration is inexpensive. But the stability condition in this case, for explicit methods is very tight and we
are forced to take very small time-steps. Thus, we are forced to use explicit methods for each time step,
which take as long to solve as the original, linear system.
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Vi,j
h4

=





Ui,j−2

+ 2Ui−1,j−1 − 8Ui,j−1 − 2Ui+1,j−1

Ui−2,j − 8Ui−1,j + 20Ui,j − 8Ui+1,j + Ui+2,j

+ 2Ui−1,j+1 − 8Ui,j+1 − 2Ui+1,j+1

Ui,j+2

if (i, j) ∈ Ω̃

Ui,j if (i, j) ∈ (Ω̃⊕B)\Ω̃

.

(3.66)

boundary conditions, and W contains the boundary conditions. More precisely, if V =

L2U then the vector V is defined as shown in Equation (3.66), and the right-hand side
is

Wi,j =





0 if (i, j) ∈ Ω̃

u0(hi, hj) if (i, j) ∈ (Ω̃⊕B)\Ω̃
(3.65)

where u0 contains the known values of u outside of Ω. Note that L2 operates on a vector
U of values defined on the dilated domain Ω̃⊕B, and returns a vector V defined on the
same domain. Here we denote by B a diamond-shaped structuring element matching
the support of the discrete bilaplacian operator.

Now we need to find a convenient way to invert the operator L2 in order to obtain
U fromW . Observe that L2 is a very sparse linear operator, and numerical analysis pro-
vides many ways to limit the computational effort of inverting such an operator. Here
we used a combination of biconjugate gradients with preconditioning, and multigrid.
Multigrid is especially useful when interpolating on large domains, since it allows to
quickly propagate the boundary data towards the interior.

Specifically the combined algorithm consists of the following steps:

1. Smooth the boundary values W by means of a 3 × 3 bilinear filter and resample
on a coarser regular grid, to obtain a coarse vector W 1 containing four times less
pixels than U . 11 Do the same for the indicator function of Ω̃ and threshold it
at θ ∈ (0, 1) to obtain the domain Ω̃1 on the coarse grid. Finally compute the
discretization L2,1 of the bilaplacian operator on the coarse grid.

11 Here the filtering is done by taking into account only the boundary values, not the zeros contained
in W when x ∈ Ω. If, however, an initial approximation is available inside Ω, it can be used to filter W ,
and obtain a coarse initial approximation at the coarser level.
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2. Iterate step 1 S times, obtainingW S , Ω̃S and L2,S which are coarse representations
of W and Ω̃ at scale level S.

3. Solve L2,SUS = W S by a conjugate gradient iteration, by using an incomplete LU
factorization as a preconditioner, and taking any arbitrary initial condition.

4. Project US to the finer grid S − 1 by bilinear interpolation, and use this value as
an initial condition to solve L2,S−1US−1 = W S−1 by conjugate gradients. Here we
are already quite close to the solution so only a few iterations should be needed.
Hence, it is better not to use preconditioning, because its calculation is too expen-
sive, compared to the savings.

5. Iterate step 4, S times, until we obtain U = U 0 on the original grid.

The optimal number of steps in the multigrid algorithm depends on the size of
the region to be interpolated. We typically obtained the best results with two or three
dyadic steps. We also obtained fast convergence in some cases without any multi-
grid step, just solving the preconditioned biconjugate gradient algorithm at the finest
level. In certain cases, where the biconjugate gradient method converged too slow we
switched to a successive over-relaxation (SOR) method for solving the system.

One final remark should be made regarding the boundary conditions. The way
we discretized the bilaplacian operator ensures that the condition u|∂Ω = ϕ is satisfied
(at least in a discrete sense, up to the approximation level of our grid). The second
boundary condition, however, is more subtle. The following argument intends to show
that imposing u on a dilated boundary Ω̃⊕B − Ω̃ (where B is a structuring element of
radius 2h), actually corresponds to imposing ∂u

∂n
on the boundary.

Consider, for simplicity the one dimensional case. Assume that Ω = (0, N) where
N > 5. Then, according to our discretization of the bilaplacian operator (in 1D) the
solution should satisfy

∆2u(h)h4 + o(h6) =

u(−h)− 4u(0) + 6u(h)− 4u(2h) + u(3h) = 0.
(3.67)

The boundary condition u(0) is directly imposed by the method. In order to find out
if the interpolator meets the boundary condition u’(0), we compare the given value
u′(lh) with the interpolated value u′(rh) for two sequences lh ∈ Ωc and rh ∈ Ω both
converging to the boundary value 0. The boundary condition is met if limh→0 u

′(lh) −
u′(rh) = u(0−) − u(0+) = 0. Consider for instance lh = −0.5h and rh = 2.5h. The
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discrete approximation of the difference u′(−0.5h)− u′(2.5h), can be written, using the
previous equation as

h

2
(u′(−0.5h)− u′(2.5h)) + o(h2) =

= −u(−h) + u(0) + u(2h)− u(3h)

= −3u(0) + 6u(h)− 3u(2h)

= 3
h

2
(u′(0.5h)− u′(1.5h)) + o(h2).

(3.68)

We can conclude that u′(−0.5h) = 3u′(0.5h)−3u′(1.5h)+u′(2.5h)+o(h). Finally let h→ 0

to conclude that u′(0−) = u′(0+), which means that asymptotically, for a sufficiently
fine grid, the derivative of the interpolator at ∂Ω (i.e. u(0+)) matches the boundary
condition u′(0−).

C Algorithmic complexity

In this section we briefly discuss the complexity of the algorithms we used for comput-
ing the different interpolation methods proposed. The computing times we needed on
a SUN Ultra-SPARC processor at 336 MHz to run the examples in table 3.1 are given in
table 3.2. These figures should be taken with care when comparing methods, because
our implementations of these algorithms are not optimal in all cases, and they are im-
plemented in different languages (C for AMLE and Matlab for thin-plate and Kriging).
In the following paragraphs we give an indication of the computational complexity as
well as some possible improvements in their implementations. This should be more
useful to compare the performance of the different methods.

In all cases we assume that the region Ω to be interpolated consists ofN grid-points,
and that its boundary ∂Ω is composed of L grid-points. Furthermore, we call M the
number of interpolation constraints, which in the case of AMLE and distance trans-
forms is M = L and in the case of thin-plate and Kriging is usually in the range
M ∈ [L, 2L]. This is due to the fact that in order to impose slopes on the boundary,
what we do in practice is impose the values on a dilated boundary, which is normally
composed of about 2L points, except if data is not available on the dilated boundary
as in the case of contour-line interpolation.
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C.1 AMLE using finite differences

The numerical method in [42] and outlined in section B.1 consists of evolving the
PDE ∂u

∂t
= D2u

(
Du
|Du| ,

Du
|Du|

)
with the same boundary condition u(x; t) = ϕ(x), (x, t) ∈

∂Ω × (0,+∞) and any initial condition u(x; 0) = u0(x), x ∈ Ω until a steady state is
found (for t→∞), which satisfies the AMLE equationD2u(Du,Du) = 0 up to a certain
tolerance.
Each time step is discretized in an implicit manner, using one iteration of non-linear
over-relaxation to solve it. The global complexity is then nNC flops, where n is the
number of iterations needed to reach the steady-state, and C ≈ 50 is the constant
number of floating point operations per point and iteration. In our examples, N ≈
200 and we need about n = 100 iterations to achieve a precision of 2 decimal digits,
and about n = 200 iterations for a precision of 4 digits. Total running times for these
examples are 0.2 and 0.3 seconds respectively on a Sun SPARC workstation.

The number of iterations is highly dependent though on the size of the maximal
gap in the interpolation domain. In a bigger example with N ≈ 100, 000 we need about
n = 3000 iterations (10 minutes) for a precision of 2 decimal digits.

C.2 AMLE through iterated geodesic distance transforms

As we observed in section 3.1, in the special case of contour-line interpolation, the
AMLE can be obtained (under certain hypotheses) by iterated weighted geodesic dis-
tance transform interpolations. The complexity of one iteration is CN flops, where C
is a small constant, if we compute the weighted geodesic distances by a propagation
algorithm like the one in [164] , which visits each pixel just a few number of times. The
total complexity of AMLE through geodesic distances is then nCN flops, but the num-
ber of iterations n is here much smaller than in the case of finite differences, typically
two or three.
The iteration is not ensured to converge to the AMLE, but this can be used as a good
initial approximation for the finite difference scheme, which would then take just a few
iterations to converge to the steady state.

C.3 Thin-plate and Kriging through radial basis functions

Kriging and thin-plate interpolations can be both computed, as explained in section 3.3,
by
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1. Solving equation (3.19) in order to find the Kriging coefficient vectors a and b.
This takes 1

3
(M + Nk)

3 flops in the case of k-IRF, where Nk = 3 for the common
case of k = 1 which is used for α ∈ [1, 4), and then:

2. Using equation (3.18) to find the value of the interpolator at each point, which
takes (M +Nk)N flops.

So the total complexity is 1
3
(M + Nk)

3 + (M + Nk)N flops, i.e. 1
3
(M + 3)3 + (M + 3)N

in the particular case of k = 1, which includes the thin-plate. This is much faster than
AMLE when M is small with respect to N (a roughly circular interpolation domain for
instance), but much slower whenM is large, which happens e.g. when the interpolation
domain has a very irregular boundary.

C.4 Thin-plate through finite differences

In the special case of α = 2 Kriging coincides with the thin-plate model and we can
use a finite difference method to solve it. The spatial discretization of the biharmonic
equation with boundary conditions (3.10) leads to a sparse (block-banded) (N+M)×N
linear system with 21 bands (one for each point in the 5 × 5 stencil used to discretize
the bilaplacian operator). To solve this system we used either a multi-grid approach,
or a preconditioned conjugate-gradient method, with an incomplete LU factorization
as a preconditioner. The total complexity is then nm(N + M), where n is the number
of iterations of the conjugate gradient algorithm and m is the number of non-zero el-
ements per row in the incomplete LU factorization. In our experiments m ≈ 150 and
n << (N + M), typically n ≈ 50 for a four digit precision. Thus, for large values of M
this method performs much better that the radial basis function method derived from
Kriging.
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Chapter 4

Vanishing Point detection without any
a priori information ∗

Abstract

Vanishing points in digital images result from the projection by a pin-hole camera of a set of
parallel lines in 3D. Most of the proposed computational methods for detection of vanishing
points are forced to rely heavily on additional properties (like orthogonality or coplanarity
and equal distance) of the underlying 3D lines or knowledge of the camera calibration pa-
rameters in order to avoid spurious responses.
In this chapterwe show that in many images of man-made environments vanishing points
alone (without any additional assumption on the underlying 3D lines beyond pure paral-
lelism) are meaningful Gestalts, in the sense of Helmholtz’s perception principle, recently
proposed for computer vision by Desolneux et al. [62, 64]. This leads to a vanishing point
detector with a low false alarms rate and a high precision level, which doesn’t rely on any a
priori information on the image or calibration parameters, and doesn’t require any parameter
tuning.
The key differences of this detector with respect to previous approaches are the following: (i)
The line segments are themselves detected with almost-zero false alarms rate, by a refinement
of the method proposed by Desolneux et al. [61], also based on Helmholtz’s principle; (ii) The
threshold to determine a meaningful vanishing point from a large vote in the generalized
Hough transform is computed in such a way that it guarantees a low false alarms rate; (iii)
Finally a Minimum Description Length (MDL) criterion is used to further restrict the number
of spurious vanishing points.

∗A shorter version of this chapter was submitted jointly with Agnès Desolneux and Sébastien
Vamech, and accepted for publication in an upcomming special issue on “Perceptual Organization in
Computer Vision” of IEEE Transactions of Pattern Analysis and Machine Intelligence [15] . A prelimi-
nari version was published as a CMLA preprint [14] , and in the proceedings of a special meeting at the
Mathematisches Forschungsinstitut Oberwolfach [12] , and presented at the Image Analysis seminar of
the Jacques-Luis Lions Laboratory, Univerité de Paris 6.
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1 Introduction

Sets of parallel lines in 3D space are projected into a 2D image obtained with a pin-
hole camera to a set of concurrent lines. The meeting point of these lines in the image
plane, is called a vanishing point [70] , and may eventually belong to the line at infinity
of the image plane in the case of 3D lines parallel to the image plane. Even though
concurrence in the image plane doesn’t necessarily imply parallelism in 3D (it only
implies that all 3D lines intersect the line defined by the focal point and the vanishing
point), the counterexamples for this implication are extremely rare in real images, and
the problem of grouping sets of parallel lines in 3D and their corresponding vanishing
points in the image plane is reduced to finding significant sets of concurrent lines in
the image plane.

What are vanishing points needed for? The usefulness of precise measurements of
vanishing points, among other geometric primitives, was demonstrated in many dif-
ferent frameworks [54, 70, 118, 154] .
A common situation in architectural environments is to find a set of three orthogo-
nal dominant orientations. If the corresponding vanishing points are detected in the
image, they provide three independent constraints on the 5 internal calibration param-
eters of the camera [118] . More importantly, it is very common to have cameras with
zero skew and aspect ratio equal to 1 (a natural camera). In this case the internal pa-
rameters are reduced to 3 (the focal length, and the position of the principal point (the
orthogonal projection of the focal point into the image plane), and the camera can be
calibrated from a single image of a building, for instance, with the only assumption
that the walls and the floor are orthogonal to each other [118] .
Even more impressive is the result described in [54] , where it is shown that (without
any knowledge of camera calibration or position) the ratios of lengths between two
parallel segments in 3D can be computed from the lengths of the imaged segments, if
we only know the vanishing line of a plane containing one of the endpoints of both
segments, and the vanishing point of the two parallel segments. A typical application
of this result is to measure the height of objects standing (vertical) on the floor, relative
to a reference object standing (vertical) on the floor parallel to them. 1 The only points
that are required are: two horizontal vanishing points, a vertical vanishing points, and

1 Note that here we used the word “vertical” for clarity and to fix ideas, but actually no orthogonality
relationship is required, only 3D parallelism.
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the endpoints of the target and reference segments. Then the computations only in-
volve measuring ratios of lengths of segments defined by these points.
Finally when using vanishing points in conjunction with other properties such as or-
thogonality, common segments between planes, and a few length ratios, and/or knowl-
edge that the camera is a natural camera), full 3D reconstructions are possible from a
single view, even of Renaissance paintings which carefully respected perspective laws
[118] .
When several views are available, vanishing point correspondences can be helpful in
determining the epipolar geometry or fundamental matrix [70] . Alternatively if the
intrinsic parameters are known, vanishing points can be used to find some informa-
tion about extrinsic parameters, i.e. the relative position of the two cameras. In cite [23]
for instance, vanishing points were used to decouple the relative rotation between the
two cameras, from the relative translation to which vanishing points are insensitive.

Available methods for vanishing point detection. Since the seminal work of Barnard
[169] , automated computational methods for vanishing points detection in digital im-
ages have been based on some variation of the Hough transform in a conveniently
quantized Gaussian sphere. Several refinements of these techniques followed, but
most recent works suggest that this simple technique often leads to spurious vanish-
ing points[160] . In order to eliminate these false alarms most authors considered some
kind of joint Gestalt, which adds some other property to 3D parallelism like coplanarity
and equal distance between lines [156] or orthogonality between the three main 3D
directions [120, 146, 160] . In addition, knowledge of the intrinsic camera calibration
parameters is commonly assumed [23, 120] by these methods, or they are designed
mostly for omnidirectional images [23] . To the best of our knowledge, the question of
reliably determining whether an image actually contains some vanishing points and its
number, has not yet been addressed systematically.

The proposed approach. In this chapter we show that 3D parallelism alone is a sig-
nificant Gestalt in many images of man-made environments and that it can be reliably
and automatically detected with a low number of false alarms and a high precision
level, without using any secondary property, or any a priori information on the im-
age or calibration parameters, and without any parameter-tuning. We do not claim
that secondary properties (like equal distance, or orthogonality) should not be used in
any circumstance; this can be useful for some applications, and our technique could
be eventually extended to these situations. But in many applications a pure vanishing



160 CHAPTER 4. VANISHING POINT DETECTION

point detector is more useful, since it can be used to determine some calibration param-
eters of the camera (which are needed in other approaches relying on orthogonality for
instance), or for other applications such as single view metrology as explained above.
The key improvements with respect to previous vanishing point detectors are the fol-
lowing:

1. The primitives that are accumulated in (an equivalent of) the Gaussian sphere are
line segments, which are themselves detected with an almost-zero false alarms
rate, by a refinement of the method presented in [61] .

2. Our criterion to determine a meaningful vanishing point from a large vote in the
Gaussian sphere is deduced from the Helmholtz principle, thus producing a low
number of false alarms, without need for threshold-tuning.

3. Finally a Minimum Description Length (MDL) criterion is used to further re-
strict the number of spurious vanishing points and to deal with the masking
phenomenon.

The rest of the chapter is organized as follows. Section 2 gives some background on
the Gestalt principles used in this chapter, and presents the refinements of the align-
ment detection algorithm, that were necessary to adapt it for vanishing point detec-
tion. Section 3 describes the vanishing point detection algorithm itself, and Section 4
presents the results of our experiments.

2 Detection of Line Segments

As a primitive for our vanishing point detector we use a set of line segments (edges)
that have been obtained with a refinement of the method presented in [61] . In the
following subsection 2.1 we briefly review the method and its philosophy, then we dis-
cuss the limitations that should be addressed in order to produce useful primitives for
vanishing point detection and we describe our proposed refinements (subsection 2.2).
The initial review of the line segment detector will also serve the reader as an intro-
duction to vanishing point detection, since we follow exactly the same methodology.

2.1 Helmholtz principle and alignment detection

The general guiding principle that will be used throughout this chapter is due to
Helmholtz and was recently proposed in [62, 64] as a general technique for feature
detection:
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Assume we are observing n independent objects, and that k out of them share a
given common property. Then the grouping of these k objects is perceived as a
Gestalt if the event G =“at least k out of n objects share the property” is extremely
rare in a random setting.

The random setting can be for instance the assumption that the observed property is
independent for all the n objects with probability p of occurring. Hence the probability
of observing the configuration G becomes the tail of the binomial distribution:

B(p, n, k) =
n∑

i=k

(
n

i

)
pi(1− p)n−i. (4.1)

The notion of “extremely rare” is formalized as the expected number of occurrences of
the event being smaller than a small value ε. This expectation can be upper-bounded
simply by NTB(p, n, k), where NT is the number of times we test for an event like G
in the image. Now if we actually observe a group G of k among n objects sharing the
given property, the previous observations lead us to define the number of false alarms
of the geometric configuration G as:

NFA(G) := NTB(p, n, k). (4.2)

We also say that G is an ε-meaningful event if NFA(G) ≤ ε. These definitions ensure that
the expected number of detections of an event like G under a random setting is lower
than ε.

In the case of alignments [61] , the objects we consider are pixels, the groups of
objects we shall consider are sets of pixels forming discrete line segments, and the
common property we shall test for is whether the gradient direction of these pixels
coincide (up to a certain precision level to be specified) with the direction orthogonal
to the line segment.

Now assume we are observing a segment A of length l, and that the gradient orien-
tation can be measured with a precision pπ. Then the probability that the gradient at
a single pixel be aligned with that of the line segment is p, and the probability that at
least k among the l independent pixels be aligned is B(p, k, l). On the other hand the
total number of tests on an N ×N image is NT = N2(N 2− 1) ≈ N 4 which corresponds
to the total number of possible oriented discrete line segments. So the number of false
alarms for such an alignment A is defined as

NFA(A) := N 4B(p, l, k), (4.3)

and the alignment is ε-meaningful if NFA(A) ≤ ε.
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Highly significant segments may still be meaningful if we consider a subset or a
superset of this segment, even if the superset contains no aligned points or if the sub-
set contains only aligned points. To avoid this kind of “spurious responses” we will
consider, among a family of nested ε-meaningful segments, only the most significant
one, i.e.a segment A is maximal meaningful if it is meaningful and:

1. it does not contain any more meaningful segment, i.e. ∀B, B ⊆ A ⇒ NFA(B) ≥
NFA(A)

2. it is not contained in any more meaningful segment, i.e. ∀B, B ⊇ A⇒ NFA(B) ≥
NFA(A)

2.2 Limitations of maximal meaningful alignments and proposed re-

finements

Multiple responses. The main limitation of the maximal meaningful alignments just
described [61] is that we may obtain several candidates for each segment as it was
shown in [13] . This is due to the fact that correctly sampled images are at least slightly
blurred, which means that edges are a little bit thicker than one or two pixels. Hence
many thin segments contained in the actual thick segment are still meaningful. Among
all these segments we are interested in selecting a single one, namely the one which
best estimates its position and orientation. We do so because multiple responses may
lead to : (i) a larger localization error of the detected vanishing point (since only a few
of these multiple responses are at the correct orientation while the others are slightly
deviated from it but still meaningful ); or (ii) accidental vanishing points (since a set of
multiple responses might itself become an artificial vanishing point). The selection of
the best candidate among multiple responses can be achieved by the following crite-
rion:

MDL with wide segment. Once all maximal meaningful segments have been found,
we start a competition between neighboring segments in order to determine the best
candidate. The competition is based on the principle that each pixel belongs to a single
segment, namely the most meaningful segment among all meaningful segments meet-
ing that point. More precisely a pixel x is assigned to segment A iff ∀B, (NFA(B) ≤
ε) ∧ (x ∈ B ⊕ Dr) ⇒ NFA(B) > NFA(A). (Note that segment B competes not
only for its own pixels, but also for pixels in a slightly dilated segment B ⊕ Dr, with
Dr a disk of radius r ≈ 1). Then we recompute NFA(A) for all maximal meaningful
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segments using equation (4.3), with the only modification that instead of the number
k of aligned points in A is now lower, we use the number k ′ ≤ k of aligned points
in A which in addition have been assigned to the segment. Therefore NFA(A) increases,
and if NFA(A) is still smaller than ε the segment is called a maximal MDL meaningful
segment. A similar criterion (with r = 0) was already considered in [61] in order to
avoid oblique edges that may appear as a side effect of several parallel edges. With
the modification we propose here (r = 1), the same criterion can be used to eliminate
multiple almost parallel candidates of a blurred edge.

Canny points. In [13] we considered a second, more classical, criterion to avoid mul-
tiple responses for a single edge. It consisted of considering only alignments of Canny
points, which are defined as those pixels where the Canny operator D2u(Du,Du) has
a zero crossing. It produces similar results to the wide-segment MDL criterion, but
it is more prone to eliminate important segments altogether as it can be observed in
figure 4.1. On the other hand, it has the good property of allowing a significant accel-
eration of the algorithm. Currently we are looking for ways to use this criterion in con-
junction with MDL, in order to accelerate the algorithm without missing any segments
beyond multiple responses. For the results on vanishing point detection presented in
this chapter we only used the wide segment MDL criterion.

Quantization of gradient orientation. In [58] and [59, chapter 3], it has been pointed
out how the quantization of the gray-levels in an image translates into a very non-
uniform distribution of the gradient orientation, leading in turn to a large number
of wrongly detected segments at certain preferred orientations if this problem is not
dealt with properly. In the same work two possible solutions are proposed. The first
one consists of translating the image by half a pixel in both directions using Fourier
interpolation. This transform actually converts the quantization noise and the cor-
responding noise in gradient orientation into quasi-white noise, and quasi-uniform
noise respectively. The second solution consists of thresholding the gradient magni-
tude, and substituting the orientations of gradients below the threshold by uniform
noise in [0, 2π]. The choice of the threshold on the gradient magnitude is given by

|Du| ≥ q

pπ
(4.4)

where q is the amplitude of the image quantization noise, and pπ is the angular pre-
cision for testing the alignment of gradients (1/p different orientations). For smaller
gradients, the orientation noise due to image quantization would deviate too much
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from uniform, but for larger gradients the uniform approximation is acceptable. For
the usual angular precision p = 1

16
, this means thresholding gradients smaller than 5

times the quantization step (usually 1 gray-level). But for finer precisions we will re-
quire a higher threshold (e.g. 20 gray-levels for p = 1

64
). Here we adopted this second

solution (with a a different gradient threshold at each precision level) because it has
the advantage that it allows for sub-pixel accuracy in the location of the endpoints of
detected line segments, whereas in the first solution we can only evaluate the gradient
at half-pixels.

Parameters. It would seem that the method we just described depends on two pa-
rameters: the precision p and the false alarms threshold ε. However, we can say that
the method is parameterless, for the following reasons. First we can fix both param-
eters once and for all at ε = 1 and p = 1

16
and these values worked well in all our

experiments. Secondly, the choice of ε has been shown not to be critical at all. In fact
the results do not change significantly if we set, say ε = 0.1 or ε = 10, since the out-
put of the algorithm varies rather like log ε, i.e.very slowly. Finally, for the precision
parameter p the chosen value is actually an optimal compromise: less precise values
would require much too long segments to be meaningful, while more precise values
would require edges which are very contrasted with respect to image noise to obtain
a sufficient number of aligned points. In [13] we described a method to automati-
cally select the optimal p for each segment. As a rule no segment is detected beyond
precisions p = 1/4 and p = 1/64, while 8, 25, 45, 20, 3 percent of the segments chose
precisions p = 1

4
, 1

8
, 1

16
, 1

32
, 1

64
respectively. In addition most of the segments that pre-

ferred precisions other than p = 1
16

, are also detected at p = 1
16

, only with a larger NFA.
For these reasons in our experiments we fixed always p = 1

16
. Images taken at extreme

contrast or noisy conditions or very aliased images may require the adaptive method
that automatically selects the best p.

3 Detection of Vanishing Points

As in the case of alignments we shall define a meaningful vanishing point in terms of
the Helmholtz principle. Our objects in this case will be all the meaningful segments
obtained by the method we described in the previous section. The common property
we shall seek among these segments is a common point v∞ met by all their supporting
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(a) Maximal meaningful segments at preci-
sion p = 1/16 (63)
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(c) Multi-precision Maximal Canny MDL
meaningful segments (11)

Figure 4.1: Comparison between: (a) the method proposed in [61] ; and the adaptations

we proposed to adapt them for vanishing point detection: (b) multi-precision and MDL,

(c) multi-precision, Canny and MDL.
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lines2. Due to measurement errors, we shall never find a large number of segments
intersecting in a single point v∞; we shall rather find a family of lines intersecting a
more or less small subset V of the image plane, which we shall call vanishing region.
To consider all possibilities we need to consider a finite family of such regions {Vj}Mj=1,
such that it covers the whole (infinite) image plane, i.e.

M⋃

i=j

Vj = P2. (4.5)

In [170] , an intelligent such partition is proposed whereas most works use a partition
of the image plane such that the projection of each vanishing region on the Gaussian
sphere has a quasi-constant area [120, 146, 160, 169] . This partition has the advan-
tage that it assigns the same precision to all 3D orientations, but it requires knowledge
of the internal camera calibration parameters. However a practical application of the
Helmholtz principle (Sections 3.1 and 3.2) leads to a different partition of the image
plane into vanishing regions (to be introduced in Section 3.3), which shares some qual-
itative properties with the common Gaussian sphere partition. Further refinements of
the proposed detection method are presented in Sections 3.4 and 3.5.

3.1 Meaningful vanishing regions

Here we adapt the Helmholtz principle to the case where the objects that are observed
are the supporting lines l1, l2, . . . , lN of the N line segments found in the previous sec-
tion. The common property we shall test for, is whether a group of k such lines inter-
sects one of the vanishing regions Vj . Figure 4.2(a) illustrates this construction. Under
the assumption that all lines are independent with the same distribution, the proba-
bility of such an event is B(pj, N, k), where pj is the probability that a line meets the
vanishing region Vj . Moreover, since the M regions Vj are chosen to sample all possible
vanishing regions, we make NT = M such tests. Thus the number of false alarms for a
vanishing region Vj can be defined as:

NFA(Vj) := MB(pj, N, k), (4.6)

and as usual, the vanishing region is ε-meaningful if k is sufficiently large to have
NFA(Vj) ≤ ε.

2If the segments are pin-hole projections of 3D lines with a common orientation d∞, then this point
v∞ is the pin-hole projection of the 3D orientation d∞
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In order to actually find the value of NFA and the value of the minimal value k(j, ε)

of k such that Vj becomes meaningful, we need to know the probabilities pj . This is the
subject of the next section.

3.2 Probability of a line meeting a vanishing region.

Up to this point the analysis is formally almost equivalent to the case of meaningful
alignments, stressing the duality of the events “n lines meet at a point” and “n points
belong to a single line”. The threshold k(j, ε) is computed in the same manner and
from the same binomial tail as in the previous case. The only thing that changed is
the interpretation of the parameters: the total number of segments N plays here the
role of the length of the segment in the case of alignments, and the number of events
M represents the total number of possible vanishing regions (instead of N 4, the total
number of possible segments). The specific geometry of the vanishing point problem
comes into play only at this point when computing the probability pj of a random line
meeting (the image and) a vanishing region Vj .

Gratefully this geometric probability problem has been very elegantly solved in
[155] who gives a closed form formula in terms of the internal and external perimeters
of both regions. Here we state the main result from integral geometry that is needed
to compute pj . We refer the reader to appendix A for a summary of the main ideas of
the proof, and to the treaty by Santaló [155] for a complete development of the theory
leading to this and other interesting results.

First the polar coordinates parameterization for a random line on the plane G is
considered (see figure 4.3(a)):

G(ρ, θ) = {(x, y) ∈ R2 : x cos θ + y sin θ = ρ} (4.7)

and it is shown from symmetry arguments that the only translation and rotation invari-
ant measure for sets of lines is dG = dρ dθ (up to an irrelevant multiplicative constant).
It is important to be careful when choosing this measure, because it is not self-evident,
and we could be easily misled by wrong arguments as it is illustrated by the Bertrand
paradox in figure 4.4. We encourage the reader to look at the figure and find the right
answer by himself. Evidently each solution corresponds to a different measure for the
set of random lines, which corresponds to a different concept of “symmetry”. But only
one of the answers corresponds to the rotation and translation invariant measure for
sets of lines.
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(a) Vanishing region V and a set of lines meeting it

(b) Interior vanishing
region

(c) Exterior vanishing
region

Figure 4.2: Meaningful Vanishing regions. (a) The problem consists of estimating the ex-

pected number of occurrences of the event “at least k out of N lines meet a vanishing

region Vj”, given that the lines meet (are visible in) the image domain Ω. In order to com-

pute the associated probabilities p = P [G meets Vj |G meets Ω] we distinguish two cases:

(b) Interior vanishing regions Vj ⊆ Ω : in this case we have p = Per(Vj)/Per(Ω); (c) Exterior

vanishing regions Vj ∩ Ω = ∅ : in this case we have p = (Li − Le)/Per(Ω).
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(a) Parameterization of a
random line G(ρ, θ) in the
plane

(b) Support function p(θ)

of a convex set

Figure 4.3: (a) With this parameterization the measure dG = dρdθ becomes translation

and rotation invariant. (b) The support function p(θ) defined in equation (4.17) uniquely

determines the convex set K and plays a central role when computing the probability of a

line meeting a convex set K.

Once we chose this measure we can formulate the main result from integral geom-
etry that we shall use here.

Proposition 11. Consider two convex sets K1 and K2 of the plane. Then the measure of all
lines meeting both sets is:

µ[G ∩K1 6= ∅ andG ∩K2 6= ∅] =





L2 = Per(K2) if K1 ⊆ K2

Li − Le if K1 ∩K2 = ∅
Per(K1) + Per(K2)− Le otherwise

(4.8)

where the external perimeter Le is the perimeter of the convex hull of K1 and K2 and the
internal perimeter Li is the length of the “internal envelope” of both sets, which is composed
of the internal bitangents to K1 and K2 and parts of their perimeters. Figure 4.2(c) illustrates
this construction for K1 = Ω and K2 = Vj .

This result can be directly applied to our problem of determining pj in the case
where the vanishing region Vj ⊆ Ω is contained in the (convex) image domain Ω. Since
we can only observe line segments that intersect the image domain, the probability we
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σ
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(a) Compute p = P (σ > a|σ > 0)

r/2

r

(b) p = 1
4 ?
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B

(c) p = 1
3 ?

r/2

r/2

r/2
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(d) p = 1
2 ?

Figure 4.4: “Bertrand paradox”: Given a random line G which meets the circumscribed circle C
of a regular triangle of side a, what’s the probability that the length of the cord σ be larger than a?
(a) Formulates the problem; (b) The event σ > a is equivalent to the event “G meets the

inner circle C ′” with radius r/2. Since area(C ′) = area(C)/4 we conclude that p = 1/4. (c)

Without loss of generality fix one side of the cord at the point A. Then σ > a iff the other

side of the cord B, is within an arc of length 1/3 of the whole perimeter, and we conclude

that p = 1/3; (d) Without loss of generality assume that the cord is horizontal. Then those

meeting the condition are within the gray zone, whose width is half the diameter of the

circle, so p = 1/2.
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are interested in is actually:

pj = P [G ∩ Vj 6= ∅ | G ∩ Ω 6= ∅] =
µ[G ∩ Vj 6= ∅ and G ∩ Ω 6= ∅]

µ[G ∩ Ω 6= ∅]

=
µ[G ∩ Vj 6= ∅]
µ[G ∩ Ω 6= ∅] =

Per(Vj)

Per(Ω)
.

(4.9)

For vanishing regions Vj ∩ Ω = ∅ external to the image domain, we just apply the
second case of equation (4.8) and the probability becomes

pj = P [G ∩ Vj 6= ∅ | G ∩ Ω 6= ∅] =
µ[G ∩ Vj 6= ∅ and G ∩ Ω 6= ∅]

µ[G ∩ Ω 6= ∅]

=
Li − Le
Per(Ω)

.

(4.10)

Note that the intermediate case where there is an intersection but no inclusion is treated
as this second case with Li = Per(K1) + Per(K2), which is true in the limiting case
when K2 is tangent but exterior to K1. In the other limiting case, when K2 is tangent
but interior to K1, we still have Li = Per(K1) + Per(K2), but Le = Per(K1), so Li−Le =

Per(K2) and we are back in the first case.

3.3 Partition of the image plane into vanishing regions

In this section we address the problem of choosing a convenient partition of the image
plane into vanishing regions. For this purpose we use the following criteria:

Equal probability. We try to build a partition such that the probability pj = P [G ∩
Vj 6= ∅] that a random line G of the image meets a vanishing region Vj is constant for
all regions. Without this equiprobability condition, certain vanishing regions would
require many more meeting lines to become meaningful than others, i.e. they would
not be equally detectable, which is not desirable. 3 We can easily deduce from the re-
sults of the previous section that this equiprobability condition implies that the size
of Vj increases dramatically with its distance from the image, which agrees with the
fact that the localization error of a vanishing point increases with its distance from the
image. Thus, with the equiprobability condition, we obtain the localization error of the
vanishing points as a consequence of their detectability.

3For instance the partition into regions whose projection into the Gaussian sphere has constant area,
does not necessarily satisfy this equal probability condition. This was observed by [120] in the case of
uniformly distributed 3D lines. In this case, lines almost parallel to the image plane become much less
probable than lines which are almost orthogonal. Despite the correction proposed in [120] , this still
leads to problems in the detection of vanishing points when the perspective effect is very low (distant
vanishing points, or lines almost parallel to the image plane), as observed by [160] .
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1pixel
θ

l

Figure 4.5: Uncertainty cone of a line segment [160] . When a line segment of length l has

been detected in a digital image, we can consider that the position of its endpoints has an

uncertainty of about half a pixel. Hence the supporting line of this segment lies within an

“uncertainty cone” centered at the baricenter of the segment, and with angle dθ = sin−1 1
l .

Angular precision. The size and shape of the vanishing regions should be in accor-
dance with the angular precision of the detected line segments. In [160] the author
addresses this problem by considering a localization error of 1 pixel at the ends of the
segment, so the precision of the segment’s orientation is dθ = sin−1 1

l
, where l is the

length of the segment. The supporting line of the segment should be rather considered
as a “cone” with angle dθ (see Figure 4.5). When such a cone intersects a vanishing
region the corresponding accumulator is updated by a value proportional to the an-
gular fraction of the cone covered by the vanishing region. This fraction becomes 1
if the vanishing region is larger than the width of the cone. Using Shufelt’s concept
within our framework would require complex geometric probability calculations for
which we do not have a closed form formula yet. So we use a similar concept which
resembles thresholding by not considering fractional intersections. If an alignment has
a sufficiently precise orientation, for its uncertainty cone to be completely contained
in a vanishing region, then we count the intersection of the supporting line and the
vanishing region. Otherwise, the intersection is uncertain, and we consider that the
segment does not meet the vanishing region. This way we still count intersections of
convex sets with lines (for which we know know to compute probabilities), instead
of intersections of convex sets and cones (for which we don’t have a closed form ex-
pression). Despite this modification we still consider the angular precision of detected
segments in a way similar to Shufelt’s work. This leads us to construct the vanishing
regions in such a way that their size is comparable to the width of the corresponding
vanishing cones.
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Figure 4.6: Construction of the exterior vanishing regions Vj , and computation of the correspond-
ing probability (Li − Le)/Per(Ω) that a random line meeting the image domain Ω also meets Vj .
Observe that the correspondence between the angular sizes of internal and external tiles

implies that pe = pi = 4 sin(dθ)
π . To compute the probability pe of a line meeting an exter-

nal tile Ve observe that Li − Le is composed of two arcs of circle of angle α, the upper an

lower sides of Vj of length q′ − q = d′−d
cos θ , and two line segments of length li − le. Hence

Li−Le = 2(Rα+q′−q+li−le). Furthermore the right triangles of angles β and β ′ imply that

li = R tanβ and le = R tanβ′. Finally, since α+β = 2θ+β′, and Per(Ω) = 2Rπ, substituting

all equations into (4.10) we obtain pe = 1
π

(
2θ +

[
β + 1

cosβ − tanβ
]β=arccos(R cos θ/d′)

β=arccos(R cos θ/d)

)
.
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Figure 4.7: Tilings of the image plane by equal probability vanishing regions for different angular
precision levels. Only the exterior tiles are shown, except the last ring of “infinite” tiles,

whose probability may be smaller. The interior tiles form a regular square partition of the

circle, with squares of size comparable to the “inner-most ring” of exterior tiles. Observe

how the size of the tiles increases for the more distant tiles. The axes represent distances

relative to the radius of the circular image domain. Note that for higher angular precisions

the image has been zoomed out, to allow the visualization of the more distant tiles.
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Geometric construction. Now we shall construct a partition of the plane into van-
ishing regions that closely satisfies both criteria above. The partition is composed of
two families of vanishing regions {V (i)

j } and {V (e)
j }. The first (“interior”) one consists

of regions entirely contained in the image domain Ω, and the second (“exterior”) one
consists of regions outside the image domain.

For simplicity, we shall approximate the image domain by its circumscribed circle,
and consider the image domain Ω as a circle of radius R = N/

√
2. In order to meet

the angular precision requirement, all exterior regions V will be portions of sectors of
angle dθ lying between distances d and d′ from the image centerO. Figure 4.7 illustrates
this construction and figure 4.6 the trigonometric calculation of the probability that a
random line meeting the image domain Ω does also meet V . In the case of exterior tiles
of angular precision dθ at distances d and d′) this probability becomes

pe(d, d
′) =

Li − Le
Per(Ω)

=
1

π

(
2dθ +

[
β +

1

cos β
− tan β

]β=arccos(R cos(dθ)/d′)

β=arccos(R cos(dθ)/d)

)
. (4.11)

Note that it will be occasionally more handy to think of pe as a function of the angles
β = arccos(R cos(dθ)/d) and β ′ = arccos(R cos(dθ)/d′) instead of the distances d and d′.

Concerning the interior regions, we chose a simple tiling of the circle Ω with square
tiles. The side of each square is chosen to be equal to the side of the exterior tiles closest
to the image domain, i.e. 2R sin(dθ). The perimeter of the interior regions is therefore
equal to 8R sin(dθ), and the probability that a line meets an interior vanishing region
is:

pi =
Per(V )

Per(Ω)
=

4 sin(dθ)

π
(4.12)

This ensures that all interior regions have the same probability, and that their size is
in accordance with the coarsest angular precision dθ of the line segments. Now we
have to choose the values of d and d′ to ensure that all exterior regions have the same
probability pe = pi. To do so, we start with the first ring of exterior regions setting
d1 = R, and we choose d′1 by solving the equation pe(d1, d

′
1) = pi for d′1.4 Then we fill the

second ring of exterior tiles by setting d2 = d′1 and solving the equation pe(d2, d
′
2) = pi

for d′2. We iterate this process until we get d′ ≥ d∞, where d∞ is such that

lim
d′→∞

pe(d∞, d
′) = pi. (4.13)

4 This can be formulated as finding the zero of a convex function of β ′1 with known derivative, so a
modified Newton method can be applied, which ensures a solution within a given precision in both the
x and y axes.
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To compute this limit observe that for d′ →∞we have β ′ → π
2

and then
(

1
cosβ′ − tan β ′

)
→

0, hence:

lim
d′→∞

pe(d, d
′) =

1

π

(
2dθ +

π

2
− β − 1

cos β
+ tan β

)
where β = arccos

(
R cos(dθ)

d

)
.

From the previous equation we can easily deduce that the value of d∞ satisfying equa-
tion (4.13) is finite and satisfies

4 sin(dθ) = 2dθ +
π

2
− β∞ −

1

cos β∞
+ tan β∞ where β∞ = arccos

(
R cos(dθ)

d∞

)
.

(4.14)
Regions in the last ring will then be unbounded, with probability ≤ pi. They represent
parallel lines in the image plane. Figure 4.7 shows some examples of this partition of
the image plane for different precision levels dθ.

3.4 Final remarks

In this section we introduce some additional criteria to suppress spurious vanishing
points and to eliminate the angular precision parameter dθ.

Multi-precision analysis. The choice of a fixed value for the angular precision pa-
rameter dθ requires a compromise between detectability and localization error of van-
ishing points. We are interested in the highest possible precision level (smaller local-
ization error in the vanishing point). On the other hand if the precision level is too
fine with respect to the angular precision of the segments, the vanishing region will
be hardly detected. The optimal level will approximately match the precision of the
segments converging to this vanishing point, and our strategy will be to try to adjust
the precision level automatically to this value. Figure 4.8 shows the value of the min-
imal number of concurrent lines needed for the vanishing region to be 1-meaningful,
as a function of the total number of lines in the image (N ) for several angular precision
dθ. From this figure or from simple calculations on the definition of the NFA, we find
that for a total N = 1000 lines, we need about 300 concurrent lines to be meaningful at
precision dθ = π

16
, whereas only 15 concurrent lines are enough at precision dθ = π

1024
.

But we would only need 7 concurrent lines, if the total number of lines was N = 100.
This discussion motivates the procedure described below.

As in the case of alignments, instead of fixing a single angular precision level, we
will consider multiple dyadic precision levels dθ = 2−sπ for n different values of s
in a certain range [s1, sn]. In our experiments s = 4, 5, . . . , 7 showed to be the most
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Figure 4.8: Detection thresholds k for vanishing regions as a function of the total number N of
lines detected in the image. For each given precision level dθ = 2−sπ (for s = 4, 5, . . . , 10), we

construct a partition∪j=1NVj = P2 of the image plane into regions such that the probability

of a line meeting each region is constant P (G ∪ Vj 6= 0 | G ∪ Ω 6= 0) = 4 sin(dθ)/π. Then,

given N random lines which meet the image domain Ω we compute the minimal number

k of lines that should meet Vj for Vj to be ε-meaningful, i.e. for the event “at least k among

N lines meet Vj” to have an expected number of ocurrences larger than ε = 1. The figure

plots k as a function of N for several precision levels s.
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useful range, but this can be adjusted to the range of precision levels of the extracted
segments. According to the discussion above, at each precision level dθ we should
only keep those segments with a precision level no coarser than dθ. Coarser segments
would significantly increaseNs (thus increasing the detection threshold k) without sig-
nificantly increasing the number k of lines meeting the vanishing region. Now we can
apply the previously described method for all precision levels. This procedure, how-
ever, may multiply the expected number of false alarms by a factor no larger than n.
So, in order to keep the false alarms rate smaller than ε we modify equation (4.6) as
follows:

NFA(Vj,s) =
Ms

n
B(ps, Ns, k). (4.15)

The vanishing region is considered ε-meaningful if k is large enough to obtain NFA(Vj,s) ≤
ε. With this definition the total expected number of false alarms from this multi-
precision analysis can be easily shown to be no larger than ε. The problem is that a
single vanishing point may be meaningful at several different precision levels, and we
only want to keep the best explanation for it.

Local maximization of meaningfulness. When a huge number of segments meet a
vanishing region Vj,s they also meet some of the neighboring regions at the same preci-
sion level s, as well as all coarser regions Vj,s′ ⊇ Vj,s and some finer regions Vj,s′′ ⊆ Vj,s.
Therefore, these neighboring regions too, are likely to become meaningful, but are not
necessarily the best explanation. To choose among them the best explanation we intro-
duce the following maximality concept: A vanishing region Vj,s from a multi-precision
family of partitions of the image plane is maximal if it is more meaningful than any
other region intersecting it. More precisely, Vj,s is maximal if:

∀s′ ∈ [s1, sn],∀j ′ ∈ {1, . . . ,Ms′}, Vj′,s′ ∩ Vj,s 6= ∅ ⇒ NFA(Vj′,s′) ≥ NFA(Vj,s) (4.16)

where A denotes the closure of a set A. Note that the the condition Vj′,s′ ∩ Vj,s 6= ∅ in-
cludes both neighboring regions at the same level, as well as coarser regions containing
Vj,s and finer regions contained in it.5

Minimum Description Length. Figure 4.9 shows all the maximal 1-meaningful van-
ishing regions that are detected for the photograph of a building. Clearly the first three

5 We used this condition instead of inclusion, because the equal probability constraint that we used to
construct our partition means that regions at precision level s+ 1 cannot always be completely included
in a single region at the coarsest precision level s. In this situation this “non-empty intersection”-type
condition is better suited.
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correspond to real orientation in the 3D scene, whereas the other three are an artificial
mixture of different orientations. Observe that these mixtures are less meaningful than
the original ones, because only a small portion of the segments in each direction can
participate. Therefore, these artificial vanishing regions can be filtered out by an MDL
criterion similar to the one we used for segments. Among all maximal meaningful van-
ishing regions we start a competition between them, based on the principle that each
segment has to choose a single vanishing region which best explains its orientation.
More precisely, a segment with supporting line l is assigned to the vanishing region
Vj,s such that NFA(Vj,s) is smallest among all regions Vj,s met by l. Then we recompute
NFA(Vj,s) for all meaningful segments using equation (4.15), with the only modifica-
tion that instead of k we consider k′ ≤ k which is the number of lines that do not only
meet Vj,s, but also have been assigned to the vanishing region Vj,s. If the number of false
alarms is still smaller than ε, then the vanishing region is a maximal MDL meaningful.

3.5 Algorithm

Summarizing, our method for vanishing region detection can be described as in algo-
rithm 2 to obtain all maximal meaningful vanishing regions, followed by algorithm 3,
if we only want the MDL maximal meaningful regions.

In order to avoid mutual exclusions, the MDL criterion may also be run iteratively
as in algorithm 4. In the first iteration the Vj1 with lowest NFA is selected as MDL
meaningful. Then k (and the corresponding NFA) is updated for the remaining mean-
ingful Vj’s by discounting all segments meeting Vj1 . Thus the new NFA can only
increase (see line 20) and the number of meaningful regions decreases (line 22). In
the i-th iteration the i-th meaningful region Vji with lowest NFA is selected as MDL
meaningful, and the remaining meaningful regions are updated by discounting from
k (and the corresponding NFA) all the segments meeting Vji . The iteration stops when
NFA(V ) > ε for all remaining regions V .

Sometimes this procedure will still miss some weak vanishing points which are
“masked” by stronger vanishing points composed of much more segments. These
may not be perceived at first glance, but only if we manage to unmask it by getting rid
of the “clutter” in one way or another. For instance we may focus our attention into
the corresponding region, or we can hide the stronger features. This unmasking mech-
anism can be simulated by zooming into a certain region of interest as illustrated in
Figure 4.12, or by continuing our MDL iteration as follows: When no more meaningful
MDL vanishing regions exist, remove all line segments that meet the already detected
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Algorithm 2 Detect all maximal ε-meaningful vanishing regions

Require: all maximal MDL 1-meaningful alignments A1, A2, . . . , AN
Ensure: all maximal ε-meaningful vanishing regions Vj,s

1: for all alignments Ai ∈ {A1, A2, . . . , AN} do
2: Let li be the supporting line for the segment Ai
3: Let dθi = sin−1(length(Ai)/2) be the angular precision of the segment Ai.
4: Initialize the set Vi = ∅ (vanishing regions met by li).
5: end for
6: Let {s1, . . . , sn} be a range of n precision levels adapted to the angular precision of the

alignments, i.e.
s1 = bmini log2(π/dθi)c, sn = dmaxi log2(π/dθi)e.

7: for s = s1 to sn do
8: Let {li1 , . . . , liNs} be the supporting lines of the segments with angular precision finer

than dθ = 2−sπ.
9: Compute the boundaries of the partition {V1,s, . . . , VMs,s}.

10: Compute the probability ps of a random line G meeting any of the Vj,s’s.
11: for k0 = 0 to Ns do
12: Precompute the binomial tail distribution B(k0, Ns, ps) =

∑Ns
k=k0

(
Ns
k

)
pks(1− ps)Ns−k.

13: end for
14: for j = 0 to Ms do
15: Initialize the accumulator kj,s = 0.
16: Initialize the set Lj,s = ∅ (lines meeting Vjs).
17: end for
18: for all lines li ∈ {li1 , · · · , liNs} do
19: for all vanishing regions Vj,s met by li do
20: Increment the accumulator kj,s by one.
21: Add li to the set Lj,s.
22: Add Vj,s to the set Vi.
23: end for
24: end for
25: end for
26: for all vanishing regions Vj,s do
27: Compute NFAj,s = MsB(kj,s, Ns, ps).
28: if NFAj,s ≤ ε/n then
29: Mark Vj,s as meaningful.
30: end if
31: end for
32: for all meaningful vanishing regions Vj,s do
33: ismaximal = true
34: for all meaningful vanishing regions Vj′,s′ meeting Vj,s do
35: if NFAj′,s′ < NFAj,s then
36: ismaximal = false
37: break
38: end if
39: end for
40: if ismaximal then
41: Mark Vj,s as maximal meaningful.
42: end if
43: end for
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Algorithm 3 Detect all MDL maximal ε-meaningful vanishing regions

Require: all maximal ε-meaningful vanishing regions Vj,s,
and the corresponding meeting lines Lj,s.

Ensure: all maximal MDL ε-meaningful vanishing regions Vj,s
1: Initialize k′j,s = 0 for all input Vj,s’s.
2: for all lines li do
3: Compute (ji, si) = arg min{NFAj,s : Vj,s is maximal meaningful and li ∈ Lj,s}

(this is the most meaningful vanishing region meeting line li).
4: Increment k′ji,si by one
5: end for
6: for all maximal meaningful vanishing regions Vj,s do
7: Compute NFA′j,s = MsB(k′j,s, Ns, ps)

8: if NFAj,s ≤ ε/n then
9: Mark Vj,s as MDL maximal meaningful.

10: end if
11: end for

vanishing points Vj1 , . . . , Vji . Thus the total numberN of segments will decrease and so
will do NFA(Vj) = MB(p,N, k) in equation (4.6) or line 27 of algorithm 2. Thus some
vanishing points may become meaningful again and we can restart the previous iter-
ation. This iteration allows to distinguish a first group of features that are meaningful
on its own right, from a second group which is only detected in the absence of the first
group’s masking effect (see algorithm 5).

The complexity of algorithm 2 for N lines and M tested vanishing regions is dom-
inated by the line-cell intersections in line 19, which requires o(N

√
M). This is due

to the fact that all M regions are delimited by only o(
√
M) lines and circles. Thus we

only need to compute these o(
√
M) line-line or line-circle intersections for each of the

N lines. Then, from the intersection points we can immediately retrieve the vanishing
regions that are concerned. The memory requirements are however quite demanding
because we need hash tables or a similar data structure in order to efficiently handle
each of the M sets Lj,s ∈ 2{l1,...,lN}, and for each of the N sets Vi ∈ 2{V1,...,VM}.

The simple MDL algorithm 3 takes o(M ′′ + NM ′) operations where M ′′ << M is
the total number of maximal meaningful regions and M ′ ≈

√
M is the average num-

ber of regions met by a single line. However, this number could be brought down to
o(M ′′+N) if we use a sorted data structure for Vi, which does not significantly penalize
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Algorithm 4 Detect all MDL maximal ε-meaningful vanishing regions avoiding mutual ex-

clusions
Require: M = the set of all maximal ε-meaningful vanishing regions Vj,s.

The corresponding set of meeting lines Lj,s, number of false alarms NFAj,s for all
Vj,s ∈M.
The set Vi of vanishing regions met by li, for all i = 1, . . . , N .

Ensure: The setM′ of all MDL maximal ε-meaningful vanishing regions Vj,s
1: for all maximal meaningful vanishing regions Vj,s ∈M do
2: Initialize NFA′j,s = NFAj,s and L′j,s = Lj,s.
3: end for
4: for all lines li do
5: Initialize V ′i = Vi ∩M (we only care about maximal meaningful vanishing regions).
6: end for
7: InitializeM′ = ∅
8: while M 6= ∅ do
9: (j, s) = arg min{NFA′j,s : Vj,s ∈M} (this is the most meaningful vanishing region in

M).
10: Add Vj,s toM′.
11: for all lines li ∈ Lj,s do
12: for all Vj′,s′ ∈ V ′i ∩M do
13: Remove li from L′j′,s′ (set of lines meeting Vj′,s′).
14: Remove Vj′,s′ from V ′i (set of maximal meaningful vanishing regions met by li).
15: end for
16: end for
17: Remove Vj,s fromM.
18: for all Vj′,s′ ∈M do
19: Update k′j′,s′ = #L′j′,s′ (it may have decreased).
20: Update NFA′j′,s′ = MsB(k′j′,s′ , Ns′ , ps′) (it may have increased).
21: if NFA′j′,s′ > ε/n then
22: Remove Vj′,s′ fromM (it is no longer meaningful).
23: end if
24: end for
25: end while
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Algorithm 5 Detect all unmasked MDL maximal ε-meaningful vanishing regions

Require: The set of detected lines L = {l1, . . . , lN}.
Ensure: A series of setsM′

0, . . . ,M′
m, such that

M′
0 contains the set all MDL maximal meaningful vanishing regions, and for h ∈

[1,m]

M′
h contains all vanishing regions that become MDL maximal meaningful, when

we remove all lines contributing to a vanishing region in all previous levels
0, . . . , h− 1.

1: Initialize m = 0.
2: InitializeMm = Algorithm 2(L).
3: while Mm 6= ∅ do
4: M′

m = Algorithm 4(Mm).
5: Remove

⋃
Vj,s∈M′m L

′
j,s from L.

6: Increment m by one.
7: Mm = Algorithm 2(L).
8: end while

the complexity of insertions.
The more elaborate MDL algorithm 4 which takes about o(NM ′′) per iteration where
M ′′ << M is the number of meaningful regions that have been detected at that itera-
tion.
The number M is fixed and equal to 270360, 67828, 17195, when the finest angular pre-
cision level is respectively π

1024
, π

512
, π

256
, i.e. we have M ≈ p−2/4 where p is the precision

level (inverse of the number of distinguishable orientations).

An optimized version of this software runs on a 1GHz Pentium processor in 0.16
seconds for N = 64, 0.24s for N = 128, 0.41s for N = 256, 0.79s for N = 512, up to 1.88s
forN = 1024. In an image of size 512×512 we usually detect a few hundred alignments,
so the running time of the vanishing point detector part is negligible with respect to
the alignment detection module which does the bulk of the work. The complexity of
the latter module is o(N 4) for an image of size N , and the running time for N = 512 is
about 40 seconds, also on a 1GHz Pentium processor.
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4 Experiments and Discussion

Figures 4.9, 4.11 and 4.13 show the results of applying our algorithm for vanishing
point detection on several images.6 In most cases consisting of man-made environ-
ments the most relevant orientations are detected, without any false alarms. Figure 4.10
illustrates the need of the MDL criterion in order to filter out artificial vanishing points
that may appear when the real vanishing points are extremely meaningful. Note that
after MDL (figures 4.9(b) to 4.9(d)) we only get the main three directions (two horizon-
tal and one vertical).

Figure 4.12 illustrates the masking phenomenon. Here the less meaningful direc-
tions corresponding to the wall are “masked” by the many segments in the horizontal
and vertical directions, but it can be “unmasked”. See the figure captions for a more
detailed explanation.

Finally Figure 4.13 shows the limitations of the proposed method when applied
to natural images not containing vanishing points (see caption for details). This and
other similar experiments further enforce the conclusion in [64] on the importance of
addressing the conflicts between Gestalts. Indeed if we were able to resolve the con-
flict between the alignment and the curved boundaries Gestalts we would eliminate
many “false” line segments and thus further reduce the number of false alarms in the
vanishing point detection phase. Our experiments suggest that this approach might
be complementary to (and in certain cases better adapted than) other approaches to
reducing spurious responses rather based on joint Gestalts at the vanishing point de-
tection level.

It is quite difficult to build an experimental setup which allows to fairly compare
our method with previously proposed ones. The reason is that our assumptions are
quite different here, since we do not treat the same problem: whereas most previous
works [120, 146, 156, 160] look for joint Gestalts that combine 3D parallelism with some
other property, whereas here he try to push the pure partial Gestalt of 3D parallelism
to its limits.

An exception is the recent work in [23] , which only relies on 3D parallelism and has
been shown to produce highly accurate vanishing points, but assumes knowledge of

6 In all our experiments we used ε = 1, for coherence with previous works. But we could also
have used a much smaller value, since in all the examples presented here all real vanishing points have
NFA < 0.0001. Furthermore ε = 1 means that we can expect in average one false vanishing point in a
random image, which is quite high with respect to the reduced number of vanishing points we usually
find in real images.
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the camera calibration parameters and omnidirectional images, which is not exploited
by our method. The importance of this knowledge is not thoroughly discussed in [23] ,
but it was crucial in [120] in order to reduce spurious responses. The work in [23] relies
on a Hough transform as in [120] in order to determine the number of vanishing points
and is therefore prone to the same sensitivity to the internal calibration parameters.
For this reason the method proposed in [23] can be considered as complementary to
our method. In fact our method could be used either in the initialization its step to
determine the number and approximate positions of vanishing points more reliably, or
as a validation step to reduce the number of false alarms.

5 Conclusions and Perspectives

We presented a fully automatic vanishing point detector which requires no a priori
information, and discussed its applications to the calibration of internal and exter-
nal camera parameters, single and multiple view photogrammetry, and registration,
among others. In this section we discuss some ideas for further improvement or gen-
eralization of the proposed method as well as its relationships work with other areas
of research in computer vision, that we consider worth exploring.

Gestalt collaborations, conflicts and masking. The experiments commented in the
previous section showed how different variants of the MDL criterion can be used to
deal with common problems in feature detection, such as multiple or spurious re-
sponses, as well as the masking phenomenon. We also suggested how it could be
used to reduce the number of false alarms of the proposed vanishing point detector
when applied to images that actually contain no vanishing points.
More generally, the MDL criterion can be viewed as a technique for solving conflicts
between competing Gestalts, and other similar techniques can be applied as well. The
importance of addressing the collaborations and conflicts of grouping laws, and the
masking issue has been remarked long ago within the Gestalt community [108, 173] ,
and more recently in the computer vision community [63] .
The two methods presented here actually only address the collaboration between ob-
jects in the same category (either edgels in the case of alignments, or segments in the
case of vanishing points). The experiments shown here further support the conclusion
stated in [63] that in order to come closer to the full programme of Wertheimer and
Kanisza, we need to move up one more level in the hierarchy and also consider collab-
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Figure 4.9: Detected line segments for a building image and the only three maximal MDL

vanishing points that are detected. They correspond to the two horizontal orientations and

to one vertical orientation. Note that no orthogonality hypothesis was used, thus it can be

used a posteriori in order to calibrate some camera parameters. For each vanishing point

we only display the segments that contributed to this point at the automatically chosen

precision.
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Figure 4.10: Before applying the MDL criterion some spurious vanishing regions remain.

Note that they arise from mixtures of real vanishing regions, and that they are significantly

less meaningful and less precise than the real vanishing regions. Therefore, during MDL,

most segments vote for the real vanishing region instead of these “mixed” ones, so that

after MDL their number of false alarms decreases and they are no longer meaningful.
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Figure 4.11: Detected line segments for an image of a painting by Uccello and the only

two maximal MDL vanishing points that are detected. Note that the vanishing points

corresponding to the oblique wall and the staircase are missed. This is due to the fact

that both the alignment detection and the vanishing point detection are global, and the less

meaningful segments and vanishing points are masked by the more meaningful horizontal

and vertical orientations (see figure 4.12)
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Figure 4.12: Illustration of the “masking” phenomenon. When we select the wall subimage

in the previous figure, more alignments are detected, and a new vanishing point that was

masked in the global image becomes meaningful. This is due to two cooperating effects.

First the masking phenomenon at the alignment detection level means that we detect in

this subimage more meaningful segments than in the global image. Secondly, at the van-

ishing points detection level, the total number of segments is smaller, which means that

the minimal number of concurrent lines for a vanishing region to become meaningful k

is also small. A similar result may be obtained by restarting the MDL iteration a second

time with the remaining segments after all MDL meaningful vanishing points have been

detected and the contributing segments removed.
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Figure 4.13: Accidental vanishing points. When applied to images of man-made environ-

ments which actually contain vanishing points, the method very rarely detects accidental

vanishing points. But this does happen in natural images in which we do not perceive

such vanishing points. Here we show one of the worst such examples that we found in

our experiments. In this case the detected vanishing points are probably not perceived

because they are made up mostly of segments that are not perceived as straight lines in

the first place. Many of these segments would be better explained as meaningful curved

boundaries, and therefore will never give rise to vanishing points. Hence the false alarms

in the vanishing points detection phase are here to some extent the result of some special

kind of false alarms in the alignment detection phase. Further experiments on natural im-

ages showed this kind of false alarms of vanishing points (due to some false alarms in line

segments which are actually curved boundaries) to be the most prominent one.
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orations and conflicts between different grouping laws (such as alignments and curved
boundaries in the case of the Lena image). They also show possible mechanisms based
on the MDL for dealing with conflicts between grouping laws and the masking phe-
nomenon. These mechanisms could eventually be generalized to other partial or joint
Gestalts.

The question of efficiency and false negatives. The feature detection methods pre-
sented in this chapter are focused on minimizing false positives (i.e. false alarms). They
can be viewed as verification methods, that given a feature reliably decide whether the
feature is significant (and thus perceived) or not. In order to obtain a low false alarms
rate with no missing feature we just sample the whole feature space, and verify every
single feature. We could say that these methods concentrate on verification, rather than
search.
In this sense there is a nice complementarity with the work of Amit and Geman [20]
which on the contrary focuses on the search or visual selection process, rather than the
verification step. This search is guided by a computational economy principle, which
turns up to be tightly related to minimizing false negatives (i.e. misdetections). More
specifically he builds search strategies, often in the form of a coarse-to-fine tree, in
which he can prune with inexpensive computations large branches of the tree having
a negligible probability of containing the searched feature.
A combination of Geman’s visual selection methods with the a-contrario models used
here and in [60, 62, 63, 64] , would possibly lead to very efficient methods with both a
low false positive and a low false negative rate.
Without pretending to develop an optimized search strategy as in Geman’s papers,
we present in the following paragraphs a few ideas that could be used to make the
proposed methods more efficient.

Improving efficiency of the alignment detector. In order to improve the efficiency
of the alignment detector which is currently the bottleneck of our vanishing point de-
tector we can think of different ways to safely and quickly prune the search tree, i.e.
determining with little computations a subset of segments, such that the complement
has zero or almost zero probability of containing a meaningful segment.

Gradient thresholding and Canny points. Instead of considering all pairs of points
as alignment candidates we can search among pairs of points with gradient above the
threshold in equation (4.4), or even Canny points.
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N\n 2 4 8 16 32 64

64 24 12 8 6 5 4
128 28 14 10 7 6 5
256 32 16 11 8 7 6
512 36 18 12 9 8 6

1024 40 20 14 10 8 7

Table 4.1: Minimal number l of independent points for a segment to be meaningful at

angular precision equal to π/n, in an image of size NxN . The actual length of the segment

is 2l pixels.

Hough Transform. Pushing the previous idea a bit further, we can first select the
set of candidate supporting lines, from a Hough transform of gradients above the
threshold (we can also use the gradient orientation and its angular precision q

|Du| to
limit the number of bins to which the point contributes). Now we can compute the
minimal number of points needed in a bin, for that line to contain at least one mean-
ingful segment. Observe that at precision p, a segment of length at least l = min{l :

MB(p, l, l) < ε} is needed to define a meaningful alignment. For the common pre-
cision of p = 1/16, this minimal length varies linearly between 12 and 20 (when the
size of the image varies exponentially between 128 and 1024), but it doubles when the
precision is p = 1/4. However points with weak gradient (according to equation (4.4))
don’t count. So a simple strategy consists of searching for significant segments only
along lines containing at least l aligned points with gradient above the threshold. Such
lines can be easily extracted by means of a Hough transform.

MDL. The MDL criterion itself may be used, in conjunction with the Hough trans-
form in the previous paragraph, in order to further prune the search tree in a safe way,
if we only look for MDL maximal segments. Assume a particularly long and signif-
icant segment A has been detected. Then we can proceed the search in two different
ways:

Less meaningful segments B cannot take away an aligned point from A. Thus the
number of points contributing to the Hough transform decreases by the same
amount as aligned points in A, and so does the number of candidates supporting
lines, reducing the search space.

More meaningful segments C (i.e. with NFA(C) ≤ NFA(A) ≤ ε) will require even
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more aligned points, so the Hough transform thresholds in table 4.1 will increase
(since we are looking now for NFA(ε)-meaningful segments), thus reducing the
search space too.

In conclusion each newly detected segment allows us to reduce the search space in two
different ways. The larger and meaningful the segment is, the more it will reduce this
space. A reasonable way to organize the search using these two principles may be as
follows:
Start with the line containing the largest number of points satisfying the gradient
threshold equation (4.4) (this is just the global maximum of the Hough transform).
Search the most meaningful segment A along this line. This one has chances to be also
very long.
Update the Hough transform thresholds for NFA(A)-meaningfulness, and look for any
more meaningful segment A′. A first good guess may be the second global maximum
of the Hough transform (if it is still NFA(A)-meaningful).
We iterate this procedure until we get the most meaningful segment C. At this point
C is certainly MDL maximal meaningful, and it certainly owns all the aligned points
in C. So we may definitely discard all aligned points in C from further processing, i.e.
now we look for less meaningful segments B, so me can update the Hough transform
accordingly, and we may restart the iteration. Of course, a non-trivial data structure is
needed to avoid repeating the same computations more than once.

Improving precision of detected segments. We can use at least two mechanisms to
further increase the angular precision of the detected line segments.

Local search. Use an appropriate image interpolation based on the available knowl-
edge of the image formation, to obtain a continuous version of Du. The interpolation
method should also allow fast computation of the gradient. A good compromise might
be achieved by bilinear interpolation of an oversampled image. Then, instead of con-
sidering discrete segments (where the pixel centers are not exactly aligned), consider
the alignment of regularly spaced points along the continuous line segment. Finally,
once an MDL maximal meaningful alignment A has been found, perform a gradient
descent of NFAA′ among all segments A′ whose endpoints lie within a neighborhood
of less than one pixel from A. One or two iterations of gradient descent should be
enough to obtain subpixel accuracy in the location of the segment’s endpoints.
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Grouping of aligned segments. The current procedure, due to its global nature, may
sometimes “fill in the gaps” between two aligned segments. Even if the points in the
gap are not aligned, if the gap is small enough, the combined segment may be more
meaningful than each of the two segments alone. However, if the gap is too big, the
aligned segments will not be grouped into a single segment. But we want the detected
segments to be as long as possible in order to increase their angular precision given by
sin−1 1

l
, where l is the length of the segment. Hence we could add a third grouping law

allowing the detected segments to group together if they are significantly aligned with
aligned orientations.

Improving detectability of segments. Instead of MDL with dilated segments, we
can consider segments of different widths and detect the most meaningful among all
widths. This would not only solve the multiple response problem as well, but it may
also detect low-contrast blurred edges as well, which currently escape our detector
(note that for wide segments, the number of points increases no also with the length,
but also with the width of the segment). This way, the angular precision sin−1 w

l
can be

computed automatically as well, but it depends now also on the detected width w of
the segment. A potential problem with this approach is that oriented textured regions
may appear as a large almost square block, if we use gradient orientations modulo π.
This problem may be partially solved by considering “signed” orientations, i.e. modulo
2π. This way the two sides of a ridge are distinguished as distinct edges.

Link to Sampling and Information theory. The number of false alarms defined in
equation (4.3) for the alignment detector involves the length l of the line segment and
the number k of aligned points. But l and k are not measured in terms of pixels; in-
stead we count only one every two pixels on a line. The argument that lead to this
choice in [61] , is that we need at least a 2 × 2 neighborhood to compute a gradient
orientation, if we use the usual [−1, 1] stencil for finite differences. Therefore when
we compute gradient orientations on an image where the pixels are all independent
we obtain independent measures only at the pixels with e.g. even coordinates, i.e. one
every two points on a line, or one every four points in the image. In practice this is
implemented as follows. Assume we are computing the NFA of a segment A of length
L pixels, and we count K aligned points. Then we define l = L/2 and k = K/2, and as
usual NFA(A) = N 4B(p, l, k).
Now we could argue that if the image is band-limited, we could, by Fourier interpo-
lation, obtain uncorrelated measurements of gradient orientation at every single pixel
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(though not necessarily independent). This is however not true for real images, be-
cause it is impossible to construct sampling instruments which produce band-limited,
non-aliased images where all pixels are independent, as it has been suggested in chap-
ter 1 . In fact if we want to have images where aliasing effects are reasonably controlled,
with a standard CCD array the ratio Reff/Rnom which can be roughly interpreted as the
mean distance (measured in pixels, i.e. as a factor of the sampling period) between two
independent points is about 1.2. With the more efficient Supermode instrument this
ratio is about 1.1. More interestingly when images are acquired by an optical system
with a wide field of view there is often a radial geometric distortion. After the image
has been rectified to avoid straight-lines to become curved, resolution is finer on the
center than near the corners, and theReff/Rnom ratio changes from one point to another.
In any case, if the characteristics of the acquisition system are known, then the align-
ment detector could be adapted to them by defining l = L/C and k = K/C, where
C = C ′Reff/Rnom represents the distance between two independent gradient orienta-
tions and C ′ ∈ [1, 2] is a constant that depends on the interpolation method used to
estimate the gradient orientation from the image pixels. This corresponds to changing
our a-contrario model (from which we seek large deviations) from assuming that the
sampled image is white noise, to assuming that the observed landscape, before sampling, is
a white noise, and taking into account the degradations introduced by the acquisition
system.
If such informations about the instrument are not taken into account and corrected,
then we can still use the original a-cotrario model, but segments may become less
meaningful, not detected or detected at a precision different from the optimal one,
or with less angular precision. In this situation it is more advisable to use a large range
of angular precisions during alignment detection. As an example, in an image taken
in the conditions previously described (a rectified image from a wide field of view
camera, sampled by a CCD array), not enough segments were detected at the usual
precision p = 1/16. Expanding the range of precision levels from p = 1/4 to p = 1/16

we obtained many more segments and both vanishing points were detected.

Even when the exact acquisition conditions are known, a trade-off must be solved
concerning to what an extent aliasing and noise should be removed, and the transfer
function deconvolved from the raw image before alignment detection. Lower alias-
ing and noise thresholds mean that we can afford higher angular precision levels, thus
contributing to higher detectability. On the other hand lower thresholds also mean
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a smaller optimal reciprocal cell and hence a coarser effective resolution, so we have
less independent points, and detectability decreases. Furthermore, restoration meth-
ods may themselves introduce certain correlations which may lead at the end to false
detections. The trade-off does not only concern detectability but also efficiency, for two
reasons. First if the effective resolution is known then the image may be downsampled
without loss of information by a factor z, thus reducing the running time of the algo-
rithm by a factor z4. Secondly, if we master the kinds of errors in our image, then we
can also reduce the ranges of precision levels that should be tested, thus reducing time
of computation as well.

Improving the efficiency of the vanishing point detector. In certain situations where
the number of detected segments is very small it may not be worth building a complete
tiling of the plane into vanishing regions. It may not be worth both from the computa-
tional and from the detectability point of view, as we justify below.
In such cases it is more interesting to consider the vanishing region family {Vi,j}i<j
composed of the intersections

Vij = Cone(Ai) ∩ Cone(Aj)

of the uncertainty cones for all pairs of segments. 7 Here we use the same principle as
has been proposed in [63] to detect strips containing a large number of points, or in the
previous paragraph to improve the efficiency of the alignment detector. The total num-
ber of vanishing regions is M ′ ∈ [N(N − 1), 4N(N − 1)] roughly proportional (up to a
constant smaller than 4) to the square of the total number N of detected segments. But
all M cells are delimited by a total of 2N ≈ 2

√
M ′ lines. So the line-cell intersections

can be computed as in the previous case in O(N
√
M ′) operations. So the method is

useful when M ′ < M , i.e. when the number of segments N <
√
M is small with respect

to (the square root of) the number of cells. But since the number of cells M in the parti-
tion method is roughly proportional to n2 where n is related to the maximal precision
level through dθ = π

n
, we find that this method is useful from the computational point

of view whenever the number of segments N < n is smaller than the number of orien-
tations that determines the maximal precision. Also whenN < nwe haveM ′ < M and
the number of tests is reduced, so the number of false alarms NFA(V ) = MB(p,N, k)

decreases, and the vanishing regions become also more detectable.
7Occasionally these vanishing regions may be composed of two distinct connected components. In

such a case the computation of the probability of a line meeting such a region is not a solved problem,
and we may be better off splitting this region into two.
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Now both N and n are usually linearly related to the size of the image and we often
have N ≈ n, but the variations may be very large between images of natural envi-
ronments and of man-made environments, so a sensible choice between both methods
cannot be fixed a priori. Thus an adaptive algorithm which selects the cheapest of both
methods based on the relationship between N (the total number of detected segments)
and n (the maximal precision of a detected segment), would be needed to accelerate
the performance of vanishing point detection in extreme cases.

Appendix

A Proof of the main results on integral geometry.

The first case K1 ⊆ K2, in proposition 11 is a direct consequence of the following
lemma

Lemma 11. Given a convex set K, the measure of a random line G meeting the set equals its
perimeter.

Proof. Since our measure has been chosen to be translation invariant we may assume
without loss of generality that that the origin of our coordinate system O is inside K.
In such a case, the convex set K (containing the origin of the coordinate system) is
completely described by the support function, see figure 4.3(b))

p(θ) := sup{ρ : G(ρ, θ) ∩K 6= φ}. (4.17)

Then we observe that the arc-length parameter s of ∂K can be written after some cal-
culus as (see [155, section 1.1.2, pages 2–3] )

ds = (p(θ) + p′′(θ)) dθ, (4.18)

which allows to compute the length L of ∂K as:

L =

∫

∂K

ds =

∫ 2π

0

p(θ) dθ (4.19)

because the integral of p′′(θ) is zero.
But by definition of the support function, the set of lines meetingK with orientation

θ are described by ρ ∈ [0, p(θ)]. So the measure of all lines intersecting K, is also:

µ[G ∩K 6= φ] =

∫

G∩K 6=φ
dG =

∫ 2π

0

∫ p(θ)

0

dρ dθ =

∫ 2π

0

p(θ) dθ (4.20)
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This shows that the measure of all lines intersecting K is the length L of ∂K, i.e.
µ[G ∩K 6= φ] = L.

The reader can easily check that the first case in proposition 11, follows directly
from the lemma forK = K2, since the inclusionK1 ⊆ K2 means that the eventG∩K1 6=
∅ is implied by the event G ∩K2 6= ∅. To show the second case a generalization of this
lemma is required. Its proof may be found in [155, section 1.3.2, page 31] .

Lemma 12. Let C be a piecewise differentiable curve in the plane that has a finite length L. Let
G be a random line in the plane, which intersects the curve C at n different points. Then

∫
n dG = 2L. (4.21)

Observe that lemma 11 is a particular case of this lemma when C = ∂K, since in
that case

n =





2 if G ∩
◦
K 6= ∅

1 if G ∩
◦
K = ∅ and G ∩K = ∅

0 if G ∩K = ∅.
Put another way n = 1 in the limit case when G is tangent to K but this case has clearly
zero measure, and therefore

∫
n dG =

∫

G∩K 6=∅
2 dG = 2µ[G ∩K 6= ∅].

Now we consider case 2 in proposition 11, namely the case when K1 ∩ K2 = ∅.
Following [155, section 1.3.3, pages 32–34] we consider four curves, namely the two
perimeters ∂K1, ∂K2, and the interior and exterior envelopes Ce and Ci. Let C be the
concatenation of these four curves.

It turns out that the three different cases whereGmeets bothK1 andK2, only one of
them, or neither of them but still separating them can be characterized by the number
n of intersections of G with the curve C:

n = 10⇔ G meets both K1 and K2

n = 6⇔ G meets either K1 or K2 but not both.

n = 4⇔ G separates K1 and K2 without meeting either of them.

In the last equation, to separate, means thatK1 andK2 are on different half-planes with
respect to the line G. Let’s call m10, m6 and m4 the measures of the sets of lines in each
case, and

m6 = m′6 +m′′6 (4.22)
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to make the difference between the lines that meet only K1 from those meeting only
K2. Then from simple disjoint union arguments (up to a set of zero measure) we can
establish the following equations

m′6 = L1 −m10 (4.23)

m′′6 = L2 −m10 (4.24)

m4 +m6 +m10 = Le (4.25)

The last equation follows from the application of lemma 11 to the convex set delimited
by Ce, which is met by G in all three cases. In addition, if we apply lemma 12 to the
concatenated curve C we get

4m4 + 6m6 + 10m10 = 2(L1 + L2 + Li + Le) (4.26)

Finally equations (4.22) through (4.26) define a linear system of 5 equations in the 5
unknowns m4, m6, m′6, m′6, m10. Solving for m10 we get

µ[G ∩K1 6= ∅ andG ∩K2 6= ∅] = m10 = Li − Le (4.27)

which completes the proof of case 2.
The last case is dealt with in the same way, with the only exception that m4 = 0 and

instead of Ci we consider ∂K1 ∪ ∂K2.
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Appendix A

Review of Hexagonal Sampling ∗

Abstract

In this appendix we give a brief account of the state of the art in hexagonal sampling and the
properties of hexagonal sampling grids, when compared to other possible regular grids in the
plane.
Current imaging systems under development at the French Space Agency (CNES), which con-
sidered the use of such grids provided the initial motivation for this study. It is widely known
that hexagonal sampling grids are optimal in many ways, but their use has been delayed,
possibly due to the difficulty in extending efficient algorithms that have been developped for
orthogonal grids. For this reason we extend our study to the algorithms that have been gener-
alized to this case, and we give an account of the real difficulties that remain. In particular, in
the case of Fourier analysis, it turns out that there exist simpler solutions than those originally
considered.
The conclusions of this study provided the motivation for the research described in chapter 1
which focuses on Fourier analysis, and resolution measurement and improvement on general
regular grids. For this reason some of the facts stated in this appendix are revisited with more
detail in the chapter 1.

1 Introduction

Except for some experimental work with optical computers which treat analogous im-
ages by optical means and holograms, most proven image analysis technologies today
resort to digital means, both for storing images and operating on them.
Thus a method has to be chosen to transform the original analogous image, into a
digitally storable image. This procedure, known as digitalization, comprises a (2D)
discretization of the image plane, as well as a (1D) discretization of the image inten-
sity values. The latter problem being more simple, we shall concentrate mainly on the

∗A preliminary version of this appendix was presented as my DEA thesis [6] .
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first problem, namely the discretization of the image plane. Among the many different
ways to perform this operation, taking samples of the image from a regularly spaced
square grid is the most commonly used one. A hexagonal grid, however, has many
more attractive properties than the square grid, and often allows to solve problems
more effectively and efficiently, as we shall point out throughout this review.

This appendix is organized as follows. Section 2 discusses the problem of digital-
ization and characterizes the different options we have, according to a certain set of
assumptions. As a result, the square and hexagonal grids are singled out as the only
reasonable possibilities. Then section 3 discusses the relative merits of both methods
from a theoretical viewpoint, whereas sections 4 and 5 show how these properties be-
come important when implementing respectively morphological and linear operators.
In particular, section 6 presents some methods to construct wavelets on a hexagonal
grid, and section 7 discusses how other miscellaneous operations can be implemented
in both cases.
It should be emphasized that most of this appendix is organized as a review of the state
of the art in hexagonal image processing, and contains little original material. It was
the starting point of this thesis in 1999, and a the bibliography has not been thoroughly
updated since then, except for a few isolated and remarkable cases. In particular, a
similar review by Staunton [168], appeared during the later stages of this work. It puts
a stronger emphasis on the hardware needed for hexagonal image processing, whereas
this review concentrates mainly on the mathematical and algorithmic aspects. All in
all there might be a certain overlap between both reviews. Finally in appendix A and
section 5.4 we discuss the accuracy and efficiency trade-offs that we face when con-
verting between square and hexagonal grids, and we described a new algorithm we
developed to solve them.

2 Digitalization

Digitalizing an image means partitioning the image plane into regions or tiles, and
then assigning to that region a value that represents the light intensity of the analog
image within that region, to conform a “pixel” or picture element.

This section explores the many ways in which such a partition can be made. To
start, let us observe that the feasibility of an image acquisition system, already imposes
a restriction on how such a partition can be made. In the particular case of satellite
images, for instance, it consists of a sliding bar of equally spaced sensors, as described
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in [147] . The relative orientations of the bar of sensors and the motion, as well as the
sampling rate can still be freely chosen.

This imposes several constraints on the possible tilings, namely:

1. The fact that the sensors are all equal imposes a constraint on the shape of the
tiles, which should resemble the region over which the sensor captures informa-
tion. Hence all tiles should have the same shape.

2. Secondly, the fact that the sensors are equally spaced within the bar (and assum-
ing a constant sampling rate) means that the centers of the tiles should lie on
the lattice n1v1 + n2v2, where (n1, n2) ∈ Z2 are integers, v1 ∈ R2 determines the
orientation of the bar of sensors and the separation between them, and v2 ∈ R2

determines the direction of motion, as well as the constant sampling rate.

3. Finally, to avoid redundancy, we should impose that the plane is a disjoint union
of the tiles, which further restricts the possible shapes of the tiles.

These assumptions, along with further considerations on the spectral contents of
the original and digitized images, leaves only a few choices for reasonable tilings
[116, 149] . In the following section, however, we shall slightly relax the previous
assumptions. This will give us more insight on the properties of the different tilings,
and will enable us to arrive to the same conclusion, from very different considerations.

2.1 Tilings of the plane

To study the different ways in which the plane can be partitioned, we shall slightly
modify conditions 1-3, in the following manner:

1. As in the previous section we shall consider all tiles to have the same shape T ⊂
R2. In addition we shall assume that T is a compact connected set, which is quite
reasonable in view of the previous discussion.

2. Instead of requiring the centers of the tiles to lie on a lattice (or put another way,
that they are obtained by translations in two directions), we shall consider a sub-
group G of the group Is+(R2) of rigid transforms (or direct isometries) of the
plane. This subgroup may also contain rotations, in addition to translations.
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3. Finally the disjoint union condition means in this setting that:

⋃

g∈G
g(T ) = R2 (A.1)

if g(
◦
P ) ∩ h(

◦
P ) 6= ∅ then g(P ) = h(P ) (A.2)

Berger [29, section 1.7] characterizes all possible tiling groups G satisfying equa-
tions (A.1) and (A.2). In fact, he shows that G is always discrete (generated by a finite
number of elements). Furthermore, he shows, the subgroup Γ = G ∩ Tr(R2) of trans-
lations contained in G is actually a lattice, i.e. there is a basis {v1,v2} of R2 such that Γ

is exactly the set of translations with vectors in Zv1 + Zv2.

Since the translation part of G has always the same structure, the different tilings
will be distinguished by the rotations they contain. In fact there are only 5 cases as
shown in figure A.1. The first figure (a) corresponds to the case when there is no rota-
tion, figure (b) to the case when there is a rotation of order 2 (and none of higher order,
and figures (c), (d) and (f) to the cases when there is a rotation of order higher than
2. In such a case, G must contain three different rotations, of angles 2π/α1, 2π/α2 and
2π/α3, where αi ∈ N, for i = 1, 2, 3, αi ≥ 3 for at least one i ∈ {1, 2, 3}, and

∑
1
αi

= 1.
This means that there are only three cases as shown in the table below:

1/α1 1/α2 1/α3

Case (c) 1/3 1/3 1/3

Case (d) 1/2 1/4 1/4

Case (e) 1/2 1/3 1/6

If in addition to direct isometries, we consider subgroups of Is(R2), i.e. all isome-
tries, including reflections, we find 12 other tilings. The corresponding drawings can
be found in [29, pp. 39–40]. Another representation of the 5+12 tiling groups, which
explicitly shows the centers of rotations and the axes of reflections and glide-reflections
is shown in [90, pp 40–42].

We should note two more things. First the shapes of the tiles in figure A.1 can be
modified in many different ways, which are compatible with the group G. Figure A.2
gives an example for case (a).

Secondly, figure A.1 shows marked tiles, in such a way that g(
◦
P )∩h(

◦
P ) 6= ∅ actually

means that g = h rather than g(T ) = h(T ). We can also relax this and choose the tiles
to be invariant under the action of some or all members of G − Γ. Applying this to
cases (c), (d) and (e), we obtain the triangular, square and hexagonal tilings shown in
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(a) No rotations (b) Order 2

(c) Order 3 (triangular) (d) Order 4 (square) (e) Order 6 (hexagonal)

Figure A.1: The five possible tiling groups by direct isometries. G contains: (a) no rotations; (b)

one rotation of order 2; (c) rotations up to order 4; (e) rotations up to order 6. (This figure

was reproduced from [29, page 33, figures 1.7.4.1 to 1.7.4.5], which in turn was reproduced

from [39] ).

Figure A.2: The shape of a tile can be modified, and still admit the same symmetry group

G. Thus, the two tiles above are admissible for case (a) in the previous figure. (Adapted

from [29, page 34, figures 1.7.4.6 to 1.7.4.7]).
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figure A.3. These are the only edge-to edge tilings by regular polygons, and will be the
subject of the next section 2.2.

(a) Triangular (b) Square (c) Hexagonal

Figure A.3: The three regular tilings of the plane. Observe that the symmetry groups for these

tilings correspond respectively to figures A.1(c) (triangular), A.1(d) (square), and (c) to

A.1(e) (hexagonal). The hexagonal tiling possesses the largest symmetry group. In addition

only the square and hexagonal ones are tilings if we only allow integer translations in the

group G. The triangular tile requires, in addition to translations, a symmetry with respect

to an horizontal axis in order to cover the whole plane. For this and other reasons the

triangular tiling is not very useful in image processing. (Adapted from [90, page 21, figure

1.2.1] ).

2.2 Regular tilings and tilings by regular polygons

A more general and thorough classification of tilings is given in [90] . Under this
general classification tilings in the sense of the previous section are called monohedral,
meaning that they are generated by only one tile. The group G is called the symmetry
group of the tiling, since it leaves the tiling globally invariant.

Within this class of monohedral tilings we are interested in those having the richest
symmetry group. This can be achieved by letting the tiles be regular polygons and
yields the three tilings shown in the previous section. The fact that these three are
the only edge-to-edge tilings by regular polygons is proved in [90, section 2.1] and
in [30, section 12.6]. In fact, both prove more general results: the first characterizes
all polyhedral edge-to-edge tilings of the plane by regular polygons, while the latter
characterizes all monohedral tilings of Rn by regular polytopes.
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Another concept which also leads to the same three tilings is the concept of regu-
larity. Any tiling is said to be regular if its symmetry group is transitive on the flags.
By flag in a tiling we mean all triplets (V,E, T ), consisting of a vertex V , an edge E
and a tile T which are mutually incident. It can be shown that a regular tiling consists
of regular polygons, and thus this characterization leads to the same three tilings in
figure A.3.
Again [90] gives many examples of the tilings that are obtained if we impose transitiv-
ity of the symmetry group only on the tiles (isogonal tilings), edges (isotoxal tilings),
or vertices (isohedral tilings); these pictures help understand why we need to impose
transitivity on the flags to obtain the regularity we want.

Finally let us make an observation which distinguishes the triangular tiling from
the square and hexagonal ones. Unlike hexagonal and square tilings, the triangular
tiling is not generated by a subgroup consisting only of translations (i.e. Γ). In fact, in
the square and hexagonal tilings, for all non-translational transformations g ∈ (G−Γ),
there is a translation in Γ having the same effect on the grid. But this is not the case for
the only rotation of the triangular tiling. More intuitively, the triangular grid contains
both upward and downward pointing triangles, and only one of them can be obtained
from the original prototile by mere translations.
Hence, square and hexagonal grids can be generated from a prototile by mere trans-
lations (i.e. they satisfy equations (A.1) and (A.2) for G = Γ), whereas the triangular
grid cannot. Put another way, the triangular grid fails to satisfy condition 2, as stated
at the beginning of this section, or using the terminology of Serra [159] it doesn’t have
a module structure.

2.3 Tiling-grid duality

If for each tile in any of the regular tilings in figure A.3 we consider the center of
mass, then the edges of the tiling clearly form the Voronoi diagram of the centers.
Furthermore if we join by a line segment the centers of every two tiles which share an
edge, we obtain a grid which is the dual of the tiling. It is interesting to note that if we
consider the edges of this grid as delimiting a tile, then the dual grid of a triangular
tiling is hexagonal, and vice-versa, whereas the square grid is self-dual, except for a
translation of half its diagonal (see figure A.4). In the particular case of the hexagonal
tiling, the resulting triangular grid is the Delaunay triangulation of the centers of the
hexagons.
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Figure A.4: Tiling-grid duality By taking the centers of the tiles, and joining the centers of

adjacent tiles by edges, we obtain a new (dual) tiling. Triangular and hexagonal tilings are

dual, whereas the square tiling is self-dual. (This figure is reproduced from [43, page 32,

figure 1.1.3] ).

2.4 Conclusion

We have analyzed different ways to tile the image plane, under a set of reasonable
assumptions. In all cases the analysis leads to three possibilities, namely the triangu-
lar, square and hexagonal tilings. Within these three, the hexagonal is singled out as
the one having the richest symmetry group (6 symmetries and rotations up to order
6, against 4 and 3 for the square and triangular tilings). Furthermore, the triangular
tiling (unlike the other two) fails to have a module structure, and should be discarded.
Maybe the only reason to keep it is that it represents the grid which is dual to the
hexagonal lattice. This property, however, is unlikely to be required in image process-
ing applications.

3 Properties of Square and Hexagonal Grids

In this section we explore the properties of the square and hexagonal grids, which
according to the previous section are the only possible ones under reasonable assump-
tions. Occasionally we will show some results also for the triangular grid, which may
be useful as well.

We know from the previous sections that (in the first two cases) the centers of the
tiles will lie on a grid Γ = Zv1 +Zv2, where {v1,v2} is a basis of R2. For the square grid
Γ4 we can choose for instance v1 = T

(
1
0

)
,v2 = T

(
0
1

)
, whereas for the hexagonal grid
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Γ6, we can choose v1 = T
(

1
0

)
, v2 = T

( 1/2√
3/2

)
, where T is the spacing between adjacent

points in the grid.
The triangular grid, however, has no module structure, but it can be considered as

a sort of quincunx grid: Γ3 = Γ′3 ∪ Γ′′3, where Γ′3 = Zv1 + Zv2, Γ′′3 = 2
3
(v1 + v2) + Zv1 +

Zv2, with {v1,v2} as for the hexagonal grid. This should, however, not be confused
with the quincunx representation of the square grid, since –unlike the square case–,
in the triangular grid, the tiles corresponding to the Γ′3 and Γ′′3 subgrids have different
orientations.

Then given an analog image f : R2 → R, the digitalization consists of constructing
a discrete image {yx}x∈Γ, where yx depends primarily on the values of f within the tile
centered at x. Our main concern will be of course that the digital image preserves as
many as possible of the properties of the original analog image. The extent to which
these properties are preserved depends of course on the procedure used to obtain yx

from the values of f within the corresponding tile, but it also depends on the choice of
the grid, as it shall become apparent throughout this section. An extensive treatment
of these questions can be found in [159, chapters 5-6] and [43, chapter 1] , of which
we present a summary here.

3.1 Discrete Connectivity

One of the properties that depends most heavily on the grid choice is the possibility
to define a concept of discrete connectivity, which is coherent with the Jordan curve
theorem in R2 :

Theorem 14 (Jordan Curve Theorem in R2). Every continuous, simple, closed curve C :

[0, 1] → R2 divides the plane in two open sets R2 − R(C) = C1 ∪ C2. One of these sets (the
interior) is simply connected and bounded and its boundary is the range of the curve: ∂C1 =

R(C). Hence, any continuous curve α : [0, 1]→ R2, joining an interior point P1 = α(0) ∈ C1

with an exterior point P2 = α(1) ∈ C2 intersects γ in at least one point.

In order to translate this theorem to the discrete case, we need to define the concepts
of continuity and connectivity in the discrete case.

Definition 15 (B-adjacency). Two points x and y on a grid Γ are said to be B-adjacent if
y ∈ {x} ⊕B.

Adjacency is symmetric and reflexive, as long as the structuring element or neigh-
borhood B contains the origin, and is symmetric with respect to it.
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As for the choice of B, the most common choices are the following:
In the hexagonal grid Γ6 there is only one sensible choice, namely

B6 = {0, v1, v2, −v1, −v2, v1 − v2, −v1 + v2}.

It consists of all points at distance T from the origin. It can also be defined as the set of
all tiles sharing an edge with the tile in the origin.
In the square grid Γ4 there are two possibilities:

• The 4 neighbors which are at distance T from the origin: B4 = {0,v1,v2,−v1,−v2}.
This is also the set of tiles sharing an edge with the origin.

• The 8-neighbors, which add the diagonals: B8 = B4 ∪ {v1 + v2,−v1 + v2 v1 −
v2,−v1 − v2}, i.e. it adds the tiles sharing one vertex with the origin

In the triangular grid Γ3 we can define three different neighborhoods. Due to its
pseudo-quincunx structure, however, the definition of these depends on whether we
are on the grid Γ′3 or Γ′′3. We give the definitions for the Γ′3 grid, and observe that the
corresponding neighborhoods for the Γ′′3 grid consist of a horizontal reflection of them.

• B3 is the origin plus the 3 points sharing an edge with it (all points are at distance
2
3
T ).

• B12 is the origin plus the 12 points sharing a vertex with it. Within these points 3
are at distance 2

3
T , 6 at distance T and 3 at distance 4

3
T .

• B9 consists of the same points as B12 except the three which are at distance 4
3
T .

Definition 16 (B-connectivity). A discrete B-path (the equivalent of a continuous curve)
on a grid Γ is a finite sequence P = {xn}Ni=1 of points xn ∈ Γ, such that each pair of successive
points is B-adjacent. Two points x and y on the grid are B-connected if there exists a B-path
joining them (with x1 = x and xN = y). A subset X ⊆ Γ is B-connected if all pair of points
within the set are connected by paths involving points of the set.

TheB−connectedness relationship is clearly the transitive closure of theB-adjacency
relationship, and hence an equivalence relationship. The corresponding equivalence
classes are called connected components. Observe, however, that a set X ⊆ Γ consist-
ing of a single connected component, may still have “holes”. To avoid this we define
simple connectedness as follows:
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Definition 17 (Simply connected sets). A path is called simple or an B-arc (the discrete
equivalent of a simple curve) if for all n ∈ N, 1 < n < N xn has exactly two B-adjacent
points in P and it is called a B-loop (the discrete equivalent of a closed curve) if x1 and xN are
adjacent.
Two B-paths P = {x1, . . . , xN} and P ′ = {x1, . . . , xk, x

′
1, . . . , x

′
M , xk+1, . . . , xN} are B-

adjacent if x′i are all B-adjacent to either xk or xk+1. The transitive closure of the path ad-
jacency relation is an equivalence relation between paths. A set X ⊆ Γ is called B-simply
connected, if it is B-connected and for all pairs of points in X all paths joining these two
points are equivalent.

Now we are ready to state the Jordan curve theorem in the discrete case. Observe,
however, that in the square grid, if we use B4 connectedness, the complement of a sim-
ple loop can contain more than two simply connected components (see figure A.5(a)).
Similarly if we use B8 connectedness, the complement of a simple loop can consist of a
single simply connected component (see figure A.5(b)). Similar situations occur in the
triangular grid. On the other hand, in the hexagonal grid, the Jordan curve theorem
can be translated directly:

Theorem 15 (Jordan curve for hexagonal grids). Every simple B6-loop L divides the
hexagonal grid Γ6 in two B6-connected components Γ6 − L = C1 ∪ C2. One of these sets
(the interior) plus the loop is B6-simply connected and bounded and its boundary is the loop:
∂6(C1 ∪ L) = L. (Here the boundary of a set X is defined as ∂6X = X − (X 	 B6)). Hence,
any path joining points in C1 and C2 hits the loop L in at least one point.

In the square grid we need a turnaround to make this theorem valid, we have to
use 4-connectivity for the loop and 8-connectivity for the sets (or conversely):

Theorem 16 (Jordan curve for square grids). Every simpleB4-loop (B8-loop) L divides the
square grid Γ4 in twoB8-connected components (B4-connected components) Γ4−L = C1∪C2.
One of these sets (the interior) plus the loop is B8-simply connected (B4-simply connected) and
bounded and its boundary is the loop: ∂4(C1 ∪ L) = L (∂8(C1 ∪ L) = L). Here the boundary
of a set X is defined as ∂4X = X − (X 	 B4) or ∂8X = X − (X 	 B8). Hence, any B8-path
(B4-path) joining points in C1 and C2 hits the loop L in at least one point.

A similar result is valid for the triangular grid if we use B3 and B12 connectivity.
It is not known to the authors whether there is an equivalent Jordan curve theorem
involving B9 connectivity in the triangular grid.
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It should be noted that the use of two complementary connectivity concepts in the
square or triangular grids, makes algorithms more complex, and makes it impossible to
develop algorithms that operate in the same manner on an image and its complement.

Another way to turn around this problem in the square grid, is to define aB6 neigh-
borhood, but this is even less isotropic than the B4 and B8 neighborhoods normally
used.

3.2 Optimal Sampling

The performance of the different grids for representing a given signal can be measured
in different ways, depending on the assumptions that are made on the original image,
and the properties that should be preserved in the digitized image. In most cases
the hexagonal grid is optimal in terms of the number of samples that are needed to
accurately represent a given signal.

Maximal Density Packings and Minimal Density Coverings

In section 2 we studied all the ways in which we can cover the plane with a disjoint
union of displaced tiles, where the displacements should be within a subgroup of the
rigid transforms. We concluded that only three of these tiling groups were reasonable,
which in turn imposes certain restrictions on the shape of the tile.

On the other hand the acquisition system may also impose a restriction on the shape
of the tile (given e.g. by the support of the MTF or the PSF), which is often incompatible
with the restriction imposed by the tiling group. This happens for instance if the tile is
required to be a circle.

Hence we shall weaken the disjoint union condition, which leads to the study of
packings and coverings, which are lower and upper approximations to the disjoint
union condition. More precisely:

Definition 18 (Packing and Covering). Given a couple (G, T ), where the tile T ⊂ R2 is a
compact subset of the plane, and G ⊆ Is(R2) is a subset of rigid transforms (not necessarily a
subgroup), we say that (G, T ) is a covering of the plane R2 if it satisfies equation (A.1), and
we say that it is a packing of the plane if it satisfies equation (A.2).

In what follows we shall be interested in coverings and packings with circular tiles,
were G consists just of translations. In fact rotations and reflections are irrelevant for a
circular tile. In addition, the extent to which a covering or a packing resemble a tiling
will be given by its density:
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(a) 4-connectivity

(b) 8-connectivity

(c) 6-connectivity

Figure A.5: Paradoxal situations. (a) If we use 4-connectedness in the regular grid, then

a simple closed curve can delimit more than 2 connected components. (b) if we use 8-

connectedness, the complement of a simple closed curve can be a single connected com-

ponent (the ”interior” and the ”exterior” of the curve can connect through the curve). (c)

using the natural 6-connectedness of the hexagonal grid, a simple closed curve, always

divides the planes in 2 regions.
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Definition 19 (Density of packing or covering). The density of a covering or packing
(G, T ) is given by ρ(G, T ) = lims→∞(nµ(T )/s2), where µ(T ) is the Lebesgue measure (the
area) of the tile, and n is the number of elements g(T ), g ∈ G of the covering (packing) which
are included in a square of area s2 which is centered at the origin.

It is clear from the definition that coverings have ρ ≥ 1, packings have ρ ≤ 1 and
tilings (which are both packings and coverings) have density 1. Looking at figure A.6,
we see that the computation of the packing density for circular tiles can be reduced to
computing the ratio between the area of a circle and its circumscribed regular polygon
(triangle, square or hexagon, depending on the grid). Similarly the covering density
is reduced to area ratio between a circle and its inscribed regular polygon. Table A.1
shows the results of these calculations (cf. [136, 168] ).

Figure A.6: Densest packings of circular tiles for the square and hexagonal grids.

Grid Packing Density Covering Density

Triangular π
3
√

3
≈ 60.46% 4π

3
√

3
≈ 241.84%

Square π
4
≈ 78.54% π

2
≈ 157.08%

Hexagonal π
2
√

3
≈ 90.69% 2π

3
√

3
≈ 120.92%

Table A.1: Maximal (minimal) densities of packings (coverings) by circles for the three regular
grids.

Wütrich [174] and the references therein [27, 143] show that among all coverings
of the plane (G, T ) by circles T , the minimum density ρ(G, T ) is attained when G is
the group which generates the hexagonal lattice. Similarly among all packings of the
plane (G, T ) by circles T , the maximum density is attained when G is the group which
generates the hexagonal lattice. The proof seems to date back to 1940 by Fejes Tóth
[73], see also [50, p. 8-9] .
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This is a strong result, since it shows that if the sensors have circular symmetry,
the hexagonal grid is optimal, not only among the regular grids, but also among all
possible dispositions of the sensors on the plane!
As a consequence, the minimum number of samples that are needed to discretize an
image with a certain regularity will be attained when the sampling grid is hexagonal.
The next sections show this in the cases where the regularity of the image is measured
by its spectral contents (section 3.2) or by its morphology (section 3.2).

Shannon sampling theorem

Most often the regularity of a signal is measured in terms of the support of its Fourier
transform, or by the speed with which it decreases at infinity. Assume that an analog
image f is known to be band-limited, meaning that its Fourier transform f̂ is zero (or
negligible with respect to noise) outside of a compact set S ⊂ R2. As observed by
Rougé [149] , this is often the case when we know the MTF of the acquisition system.
In such a case, Shannon’s theorem states that the signal can be completely recon-
structed by its samples over a regular grid Γ as long as this grid admits a reciprocal
cell D∗ ⊇ S containing the support of f̂ (see section 5.1 or [135, 149] for a definition of
reciprocal cell and the notation used in this section). The reconstruction is achieved by
convolution with the inverse Fourier transform of the indicator function of D∗:

f̃ = ∆Γ · f (A.3)

f = 1
|D∗|F(ID∗) ∗ f̃ (A.4)

or equivalently

f(x) = 1
|D∗|

∑
γ∈Γ f(γ)F(ID∗)(x− γ) (A.5)

Shannon’s condition is in fact a packing condition, as defined in the previous sec-
tion. Since the sampling resolution is directly proportional to the size of the reciprocal
cell D∗, the optimal sampling grid will be the one with the smallest reciprocal cell
which contains S. But this is equivalent to say that (Γ∗, S) is a packing with the largest
possible density ρ = |S|/|D∗|.
When S is a circle (as is often the case, at least approximately), then we know from
the previous section that the optimal sampling is achieved when the dual grid Γ∗ is
hexagonal, which means that Γ is also hexagonal. In addition the results obtained in
the previous section for packing densities mean that when a signal is circularly band-
limited, critical hexagonal sampling requires 1− 78.54

90.69
= 13.4% less samples than critical

square sampling.
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When S is not exactly circular, it may not be obvious how to choose the shape of
the reciprocal cell D∗ in such a way that it is admissible for a given grid geometry, and
meets Shannon’s criterion. Klaas [111] gives a characterization, which describes all
admissible reciprocal cells for the hexagonal grid, which are in addition symmetrical
with respect to the horizontal and vertical axes. Figure A.7 reproduces some examples
shown in his paper. Observe in particular how the reciprocal cell in subfigure e closely
approximates the shape of the essential support of the MTF for SPOT 5 as shown in
[116] .

Figure A.7: Some of the reciprocal cells which are admissible for the hexagonal grid, and are in ad-
dition symmetric with respect to the horizontal and vertical axes. As it can be seen, the reciprocal

cell is determined by a continuous curve which joins the horizontal axis with the midpoint

between the origin and its closest north-east point in the grid. This curve must in addition

stay within a rectangle contained in the first quadrant. (Reproduced from [111, page 59,

Bilder 3a-e] ).

Morphological sampling theorem

The Shannon theorem is suitable for discretizing images that will be later treated by
linear filters, since it ensures that the filters we apply to the discretized image are co-
herent with the corresponding filters on the original image and the sampling process.
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Similarly, when working with morphological filters, it is most convenient to sample
the image in such a way that the discrete image preserves homotopy of the original
image.1 In addition we will ask that the result of applying a discrete morphological
filter to the discrete image is homotopical to applying the corresponding continuous
filter to the original image. To make this possible with a finite number of samples, we
need to impose a certain regularity on the original image. The results are presented, in
most of the literature, for binary images.

Definition 20 (Regular model). A binary image X ⊆ R2 is said to be B-regular (where
B ⊆ R2 is a structuring element), if it is open and closed with B, i.e. if X = X •B = X ◦B.

Theorem 17 (Morphological critical sampling). Let X ⊆ R2 be an image, and σ(X, aΓ)

its sampling on a grid aΓ, which is assumed to be either the hexagonal or the square grid withB6

connectivity and spacing a between neighboring tiles. Let Dr be the disk of radius r = f(aΓ).
Then the following holds:

(i) if X is Dr-regular then X and σ(X,Γ) are homotopic

(ii) r = f(aΓ) is the smallest radius such that (i) holds.

This means that for a given grid resolution aΓ, we can safely sample Dr-regular
images if and only if f(aΓ) ≤ r. Under these conditions the original image can be
reconstructed by dilation of the sampled image. For less regular images, the digital
image may not be homotopical to the original image and reconstruction may be im-
possible.

With respect to the function f which actually measures the critical sampling, dif-
ferent authors have proposed (and proved) different results. Serra [159] proposed a
conservative value, which coincides with the results obtained by Haralick [93] under
slightly different assumptions. Later Florencio [75] claimed (and proved) that this
value was actually between

√
3 and 2 times smaller. Table A.2 shows the results. The

critical radius of regularity is given as a function of the spacing a of the sampling. We
also give the value of r2 as a function of the area A of the unit tile (observe that A = a2

for the square grid, whereasA =
√

3a2/2 for the hexagonal grid). Then we can compute
the critical sampling resolution 1/A directly as a function of the degree of regularity r.

1Two sets A ⊆ R2 and B ⊆ Γ are said homotopic if there is a one to one correspondence between
A = {connected components of A and Ac} and B = {connected components of B and Bc}, which also
preserves connectivity of arbitrary unions of the elements of A and B. A more detailed definition of
homotopy and some examples can be found in [75, 159] .
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(cf. Serra) (cf. Florencio)
Grid r = f(aΓ) r2 r = f(aΓ) r2

aΓ4

√
2a 2A

1√
2
a

1

2
A

aΓ6 a
2√
3
A

1√
3
a

2

3
√

3
A

Table A.2: Smallest radius of regularity r for critical morphological sampling on a grid with spac-
ing a and tile of area A.

Whichever result is true we should note that for a given Dr-regular signal, the
hexagonal lattice requires between 1/

√
3 and 4/3

√
3 times the samples needed to repre-

sent the same signal with a square grid preserving homotopy, i.e. the critical resolution
for the hexagonal grid is between 42.26% and 23.03% smaller than that of the square
grid.
In addition, the square grid is assumed to posses 6-way connectivity to prove this re-
sult, and we have seen that it is impossible to obtain 6-way connectivity in the square
grid in an isotropic manner. Hence from the morphological point of view there are
very strong arguments in favor of the hexagonal grid.

Mean Quantization Error

If we assume the original image to consist of random points which are uniformly dis-
tributed in the plane, the mean absolute error due to nearest-neighbor spatial quan-
tization can be computed for the different grids. In [105, 106] this error was found
for the hexagonal grid to be between 10% lower and 5% higher than the square grid.
For the triangular grid, however, the quantization error is between 1% lower and 13%
higher when compared to the square grid. It should be noted that in their calculations,
a pseudo-hexagonal grid was used, having the same horizontal and vertical spacing as
the square grid (i.e. the one generated by the vectors v1 =

(
1
0

)
, v2 =

(
1/2
1

)
).

Experimental studies

In [117] triangular, square and hexagonal grids are compared for a given resolution.
The comparison is made in terms of the errors in peak height and peak density that
occur when a surface containing randomly located peaks is digitized at a certain reso-
lution. It turns out that the hexagonal grid gives the smallest number of errors.



3. PROPERTIES OF SQUARE AND HEXAGONAL GRIDS 221

Summary

We have seen under different regularity models, that for a given regularity of the im-
age, critical sampling (e.g. allowing exact reconstruction) requires a smaller number of
samples in the hexagonal than in the square and triangular grids. The difference varies
between 13% and 42% (depending on the hypothesis) less samples than the square
grid, and is much larger when compared with the triangular grid.
Conversely, for a given regularity of the original signal and sub-critical grid resolution
the hexagonally sampled signal is usually closer to the original than the squarely sam-
pled one, according to both theoretical and experimental results.
Finally, the hexagonal grid is singled out as optimal among all possible coverings and
packings by circular tiles.

3.3 Recursivity

Tile-Recursivity Chassery [43] points out as a disadvantage, that the hexagonal grid
is not recursive, in the sense that there is no way to combine a set of hexagonal tiles so
that their union is also a hexagon. In the square and triangular grids, we can combine
22, 32, 42, 52, etc. cells to form a larger cell with the same geometry. Such constructions
are useful for developing hierarchical algorithms like those based on quad-trees.

Nevertheless, in the hexagonal grid, there is one way to combine 7, 72, 73, etc. tiles
so that they form an approximately hexagonal shape, which has as well 6 coarse scale
tiles as neighbors. The problem with this construction (in addition to the fact that it
is an approximation), is that the coarse tile (or rather the basis of the coarse grid) is
rotated 19.1o with respect to the original grid. (In [172] such a construction is used to
build an orthogonal wavelet basis for the hexagonal grid).
A similar problem occurs with the triangular grid, where the coarse tile is reflected
horizontally with respect to its central fine-scale tile. Figure A.8

Lattice-Recursivity For most applications, however, we can relax the recursivity con-
dition of the previous paragraph, by only requiring the coarse lattice to be a subset of
the original lattice. This is always possible, without changing the geometry of the grid
if the grid has a module structure (as in the square and hexagonal case). We only need
to multiply the grid basis by an integer factor. Such a construction, with a factor of 2
was used by several authors [49, 97, 130, 157, 162] to construct wavelet bases of differ-
ent types.
In addition we can obtain a lattice hierarchy, by selecting as the basis of the coarse
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(a) Triangular grid (b) Square grid (c) Hexagonal grid

Figure A.8: Tile-Recursivity. In the triangular and square grids we can combine n2 tiles

to form a larger tile of the same shape. In the hexagonal grid, this is only possible in an

approximate manner, rotating the grid basis, and increasing the side of the hexagons by
√

7. (Subfigure (c) was reproduced from [43, page 128, figure 4.27] ).

grid any pair of linearly independent vectors v ′1, v′2 ∈ Γ, such that ‖v′1‖ = ‖v′2‖ and
< v′1/‖v′1‖,v′2/‖v′2‖ >=< v1/‖v1‖,v2/‖v2‖ >. This includes the hexagonal case de-
picted in figure A.8(c).

3.4 Miscellaneous properties

Human visual system As an application of the previous ideas let us observe that
many authors [168, 172] have pointed out the following fact about the human visual
system. The roughly circular sensory cells in the human retina tend to pack them-
selves efficiently, thus leading to a hexagonal configuration. In addition, the distribu-
tion of sensory cells is roughly pyramidal, with the finest resolution near the fovea,
and coarser resolution at more distant points.

Principal Directions. Serra [159] shows the following result about grids. Two non-
parallel straight lines in a grid may have an empty intersection. Consider for instance
the lines {k(e1 + e2) : k ∈ Z} and {e1 + k(e2 − e1) : k ∈ Z} in the square grid, which
do not intersect. In that case we say that they cross. Otherwise, if there is a single point
where they intersect we say that they meet.

Let Γ be a grid and α, β two primitive vectors in the grid. Then any lines D2 ⊂ Γ

parallel to α meets any other line D2 ⊂ Γ parallel to β if and only if {α,β} define a
basis of Γ.
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Now let α, β, γ be three primitive vectors of Γ and u, v, w any three points of Γ

where we draw lines parallel to α, β, γ respectively. Then any such line meets the
other two if and only if:

1. {α, β} is a basis of Γ

2. {α+ εβ + ε′γ = 0 for some ε, ε′ ∈ {−1,+1}

In such a case we say that {α, β, γ} is a set of principal directions. We can verify that
there can not be more than three principal directions.

This justifies the choice of the third vector in the Her coordinate system for the
Hexagonal grid: it is chosen in such a way that {ẽ1, ẽ2, ẽ3} is a set of principal direc-
tions. Otherwise we would not be able to convolve along the third direction as well.
From these results it becomes also clear why we can consider 3-separable filters but
not 4-separable filters in 2-D grids. In addition it becomes clear that only in the regular
hexagonal grid we can have an “isotropic” set of three principal directions (with the
same norm and forming the same angle to each other). In the square grid this is not
possible.

Perceptual Quality Square sampling avoids jagged vertical or horizontal edges, which
are perceptually very bad [140, 167] . However, this is gained only at the expense of a
more discontinuous representation of edges or lines in other directions [174] .

4 Morphological and level-set operations

As noted in the previous sections, the hexagonal grid has from the geometrical point
of view several advantages over the square grid:

• Connectivity is easier to define in a way which is consistent with the continuous
case. In contrast to the square case only one structuring element can be used
to determine connectedness, whereas in the square case foreground and back-
ground have to use different structuring elements to be consistent with Jordan
curve’s theorem.
This results in a fundamental impossibility to construct algorithms which oper-
ate in the same manner for an image and its complement. This is not the case
in the hexagonal case and algorithms are largely simplified by using only one
connectivity concept. We can take advantage of this fact to implement improved
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version of the Fast Level Lines Transform [134] , and of several algorithms based
on it, e.g. restoration with the grain filter [123] .

• The symmetry group of the grid is larger, meaning that it is more “isotropic”. Put
another way, a circular structuring element of unit radius is more closely approx-
imated in the hexagonal grid (by a hexagon), than in the square grid (by a square
or a cross).
This means that the discretization of algorithms which are based on the iteration
of circular structuring elements, will have better approximations to the continu-
ous case, if we use a hexagonal grid, than if we use a square grid.

Direct and more elaborate consequences of these simple facts were extensively used in
the literature. In the following sections we give some examples.

4.1 Thinning

In [167] iterative thinning algorithms on square and hexagonal grids were compared.
The hexagonal version was found to better approximate the medial-axis definition of
skeleton, and was found to be less sensitive to noise in the boundary of shapes. In
addition the hexagonal algorithm is simpler and uses a smaller number of hit-miss
templates, which also leads to improved computational efficiency.

4.2 Distance Transforms

A discrete distance measure can be defined [119] as the number of steps in the shortest
path between two points. Then the distance measure depends on the connectivity of
the lattice. For the square grid, using 4-neighbor connectivity leads to the L1-norm,
whereas using 8-neighbor connectivity leads to the L∞-norm.
For the hexagonal grid, the 6-neighbor distance does not correspond exactly to any Lp-
norm, but it more closely approximates the Euclidean distance than either the L1-norm
or the L∞-norm, and it can be computed by a simple formula in the hexagonal grid.

In [38] the construction of distance transforms in the hexagonal grid is discussed. A
distance transform computes the Euclidean distance from each point to the foreground
of a binary image. Distance transforms have been extensively used for a variety of bi-
nary image operations, and more recently for the implementation of level-set methods
for solving PDEs. Efficient (though approximate or pseudo-euclidean) implementation
of a distance transform requires the propagation of global distances from local opera-
tions, as well as integer arithmetic if possible.
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The simplest distance transform is given by the 6-neighbor distance, with a maximum
error of 13.4%, which is still smaller than the error obtained for the 4-neighbor or 8-
neighbor distance. With a larger computational cost, [38] constructs integer distance
transforms with a maximum error of 3.3% and 1.0%, and real distance transforms with
a maximum error of 1.6% and 0.7%.

5 Linear Filtering

Unlike the case of morphological operators, linear operators in the hexagonal grid are
somewhat more difficult to implement. Fundamental problems that arise are related
to the fact that isotropic filters are no longer separable in the classical sense, and to the
impossibility to keep a square periodization.
Despite the higher complexity, however, better linear operators can be obtained in the
hexagonal grid, at a slightly larger computational cost. Here we mean better in the
sense of isotropy and angular resolution.

5.1 Review of Fourier Analysis

In this section we give a short review of the main results of Fourier theory, and we
introduce the notation that we shall use to generalize the discrete Fourier transform
for images that are defined in a hexagonal grid rather than the classical square grid.
The presentation is based primarily on [135] and adapted to present the results of
[68, 128, 157] .

Recall that (in the continuous case, and under certain conditions precised in chap-
ter 1) given a distribution f , its Fourier transform f̂ = F(f), and its inverse Fourier
transform F(f̂) can be defined by the following expressions:

f̂(ξ) = F(f)(ξ) =

∫

R2

f(x)e−ix·ξdx (A.6)

(2π)2f(x) = F(f̂)(x) =

∫

R2

f̂(ξ)eix·ξdξ (A.7)

Sampling. To translate these expressions to the discrete case, we will sample the sig-
nal by means of a Dirac comb, i.e. a set of Dirac delta functions defined on a grid Γ:

∆Γ =
∑

γ∈Γ

δγ (A.8)
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We shall say that a function u is Γ-discrete, if it was obtained by sampling a certain
function or distribution ũ, i.e. if:

u(x) = ∆Γũ(x) =
∑

γ∈Γ

ũ(x)δ(x− γ) (A.9)

To simplify the notation we shall consider the matrix V = [v1v2], having as columns
the two vectors forming a basis of Γ. Then any point γ ∈ Γ in the grid can be written:

γ = V n = n1v1 + n2v2 (A.10)

and the Γ-discrete function u is determined by the values:

u[n] = u[n1, n2] = ũ(V n) = ũ(γ) (A.11)

for γ ∈ Γ.

Periodization. In order to deal with images of finite extent, one usually assumes that
the image is periodic. More precisely, we say that a distribution is Γ-periodic if it is
invariant by translations within the grid, i.e. if

u(x) = u(x+ γ), for all γ ∈ Γ (A.12)

Equivalently u is Γ-periodic if it is the convolution of a certain distribution f with a
Dirac comb, i.e.

u = ∆Γ ∗ f (A.13)

For a Γ-periodic function or distribution u the signal can be reconstructed from its
discrete Fourier coefficients:

û[k] = ck(u) =
1

|D|

∫

D

u(x) e−i(V ∗k)Tx dx (A.14)

u(x) =
∑

(V ∗k)T∈Γ∗

û[k] ei(V ∗k)Tx (A.15)

where the equality holds provided that:

• D ⊆ R2 is a unit cell of the grid Γ, i.e. if (Γ, D) is a tiling of the plane. Put another
way, D must be a tile, such that its translates by γ ∈ Γ form a disjoint union of R2.

• Γ∗ is the dual grid of Γ, i.e. if the columns of V form a basis of Γ, then the columns
of the matrix V ∗ such that V TV ∗ = (2π)2I are a basis of Γ∗.

• k ∈ Z2 and hence the frequencies V ∗k = ω∗ ∈ Γ∗ belong to the dual grid.

Similarly, a unit cell D∗ of the dual grid Γ∗ is called a reciprocal cell.
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Sampling and periodization in the Fourier domain. The results above can be sum-
marized in the following terms:
If a distribution u = ∆Γ∗ũ is Γ-periodic its Fourier transform is Γ∗-discrete. Put another
way, periodization in the spatial domain, implies sampling in the frequency domain:

û = ∆̂Γ · ˆ̃u = ∆Γ∗ · |D∗|ˆ̃u (A.16)

Conversely, when a distribution u = ∆Γ · ũ is Γ-discrete its Fourier transform becomes
Γ∗-periodic. Put another way, sampling in the spatial domain implies periodization in
the Fourier domain:

û = (2π)−2∆̂Γ ∗ ˆ̃u = (2π)−2|D∗|∆Γ∗ ∗ ˆ̃u = ∆Γ∗ ∗
1

|D|
ˆ̃u (A.17)

5.2 Discrete Fourier transform

In practice we shall consider digital images to be Γ-discrete and ΓN -periodic. Here the
Γ grid expresses the disposition of sensors, and ΓN must be a subgrid of Γ, i.e.:

ΓN = {V Nn : n ∈ Z2} (A.18)

where N is a 2 × 2 integer matrix. When Γ is a rectangular grid the common practice
is to use a diagonal matrix N = diag(N1, N2), where N1 and N2 are the horizontal and
vertical dimensions (measured in pixels) of the image. The result is then the usual rect-
angular or “toroidal” periodization.
When the original grid is not rectangular, however, there are other reasonable possibil-
ities that can be considered, as we shall see below.

According to the results in the previous section, if u = ∆ΓN · (∆Γũ) is Γ-discrete and
ΓN -periodic, then it is determined by the values:

u[n] = ũ(V n) = ũ(γ) (A.19)

for γ ∈ Γ ∩ D where D is a unit cell of the ΓN grid. The area of such a cell is |D| =

| detV detN | and it always contains | detN | pixels, regardless of the shape we choose
for D.

In addition, for a Γ-discrete and ΓN -periodic function u, its discrete Fourier trans-
form is Γ∗-periodic and (ΓN)∗-discrete, and is determined by the values:

û[k] = ˆ̃u(2πV −TN−Tk) = ˆ̃u(V ∗N−Tk) = ˆ̃u(ω) (A.20)
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for ω ∈ (ΓN)∗ ∩ D∗ where D∗, is a reciprocal cell, i.e. the unit cell of the Γ∗ grid. The
area of such a cell is |D∗| = | det(V ∗)| = 2π/| det(V )| and it always contains | det(N)|
samples of the (ΓN)∗ grid, regardless of the shape we choose for D∗.

It can be verified that the a discrete and periodic function u and its discrete Fourier
transform û are related by the following equations:

û[k] =
1

| det(N)|
∑

γ=V n∈Γ∩D
u[n]e−i(V ∗N−Tk)TV n

u[n] =
∑

ω=V ∗N−Tk∈(ΓN )∗∩D∗
û[k]ei(V ∗N−Tk)TV n

that can be simplified into:

û[k] =
1

| det(N)|
∑

V n∈Γ∩D
u[n]e−2πikTN−1n (A.21)

u[n] =
∑

2π(V N)−Tk∈(ΓN )∗∩D∗
û[k]e2πikTN−1n (A.22)

Choice of periodization. In the case when Γ is a regular square grid, as said before,
D is usually a rectangle of N1 ×N2 pixels, andN is a diagonal matrix.
When Γ is a hexagonal grid, however, several options have been considered:

Γ-periodization. Results from considering D to be a parallelogram of N1 × N2 pixels.
In this case the most natural choice for the periodization matrix is the diagonal

N =

(
N1 0

0 N2

)
. (A.23)

This is the approach taken in [135] , and it has the advantage that the discrete
Fourier transform (A.21) assumes the same form as in the square case, and no
new algorithm is needed. In addition, for a regular hexagonal grid, the reciprocal
grid, where the Fourier coefficients are defined, is also hexagonal, having the
same geometry as Γ.

Rectangular or quasi-square periodization. Results from considering D to be a rect-
angle of N1 × N2 pixels. In this case if we assume the basis of Γ to be composed
of the following vectors:

v1 =

(
d1

0

)
(A.24)

v2 =

(
d1/2

d2

)
(A.25)
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the most natural choice for the periodization matrix is

N =

(
N1 −N2/2

0 N2

)
(A.26)

In fact, for this choice ofN the periodization grid ΓN has as basisV N = diag(N1d1, N2d2),
and is therefore a rectangular grid. The dual grid (ΓN)∗ where the Fourier coef-
ficients are defined, having basis (2π)−2V N−T is also rectangular. In particular,
both the periodization and the dual grids will become square if:

d1

d2

=
N2

N1

(A.27)

In addition, the original grid Γ will be a regular hexagonal grid, only if

d1

d2

=
2√
3
. (A.28)

From equations (A.28) and (A.27) it becomes clear that we cannot have exactly
square periodization on a regular hexagonal grid. However, for images consist-
ing of a large number of pixels, we can obtain a close rational approximation for
the irrational number 2√

3
.

This approach was considered in [68] , where it was important to use in the
hexagonal grid, the same periodization as was used in a rectangular grid. We
shall return to this point in section 5.4.
It should be noted that sinceN is not diagonal, in this approach, a new algorithm
has to be developed to compute the discrete Fourier transform in equation (A.21).
This restricts significantly the possibility to choose an arbitrarily close approxi-
mation to the square grid, because a new algorithm is needed for each different
ratio N2/N1. In practice N2/N1 = 8/7 is used most often, since it approximates
2/
√

3 to an accuracy of 1% and a fast algorithm exists for the DFT in this case.

Hexagonal periodization. Results from consideringD to be an irregular hexagon with
the two horizontal sides of length N1 pixels, and the four oblique sides of length
N2 pixels. In this case the periodization matrix becomes:

N =

(
N1 +N2 N2

N2 2N2

)
(A.29)

The resulting periodization grid ΓN is neither hexagonal nor square or rectan-
gular, and the matrix is not diagonal, so a new algorithm is needed for the DFT.
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Despite these disadvantages, this periodization has been widely used in the liter-
ature [138, 157] since it was first introduced by the pioneering work of Mersereau
[128]. The reason was probably the fact that a 25% more efficient algorithm is
known for the FFT using this periodization, than for the square FFT [128, 129] .
This algorithm is usually referred to as HFFT for Hexagonal Fast Fourier Trans-
form.

5.3 Separable Filtering

A filter f(x1, x2) is defined to be separable, if it can be expressed as a tensor product of
two functions of one-variable

f(x1, x2) = f1(x1)f2(x2) (A.30)

Such a tensor product can also be considered as a convolution of two 1-D functions:

f(x1, x2) = (f1(x1)δ(x2)) ∗ (δ(x1)f2(x2)) (A.31)

This shows the fundamental advantage of a separable filter, namely that the 2-D con-
volution of a signal g with f can be expressed as two 1-D convolutions.
For discrete signals this means an important saving in terms of computational cost. In
fact if the image g is a square of n× n pixels and the filter has a square support of size
m×m pixels, then the 2-D convolution requires m2n2 flops (additions and multiplica-
tions), whereas the corresponding complexity of the separable convolution (two 1-D
convolutions) is only 2mn2 flops. For filters having a large support the difference can
be significant.

The importance of separable filters in the case of square grids, is based on the fact
that one can implement rotationally symmetric (or at least approximate rotationally
symmetric) filters in this manner. For example the rotationally invariant Gaussian and
sinc filters are separable. Other separable filters which are not rotationally invariant
are also widely used such as the box filter for instance.

Separable filters are not as attractive in the hexagonal grid, because they are not as
symmetric as in the square grid. They have a certain bias towards a certain direction,
which depends on the chosen basis vectors.
Nevertheless, in the hexagonal grid we can consider 3-separable filters which can be
defined in the following manner.

Let Γ be a regular hexagonal grid with basis {e1, e2}, and let {ẽ1, ẽ2, ẽ3} be the
corresponding Her basis (see section 7.3). The corresponding Her coordinates of a
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point x = x1e1 +x2e2 are (x̃1, x̃2, x̃3) such that x̃1 + x̃2 + x̃3 = 0. Similarly, we can define
the Her coordinates for the dual grid Γ∗.
Then a filter f is said to be 3-separable, if its Fourier transform f̂ can be expressed in
Her coordinates as a tensor product of three 1-D functions:

f̂(ω̃1, ω̃2, ω̃3) = f̂1(ω̃1)f̂2(ω̃2)f̂3(ω̃3) (A.32)

Unlike the classical separability, this condition does not imply that f itself is a product
of three 1-D functions. However, it can still be expressed as a convolution of three 1-D
functions, or alternatively as a tensor product in two directions plus a convolution in
the third direction:

f(x̃1, x̃2, x̃3) = f1(x̃1) ∗ f2(x̃2) ∗ f3(x̃3) (A.33)

= (f1(x̃1)f2(x̃2)) ∗ f3(x̃3) (A.34)

Observe that if each fi has length m pixels, then according to the last equality, the
support of f is 3m2. Thus, convolutions with 3-separable filters can be computed
with 3mn2 operations instead of the 3m2n2 operations that would be needed for non-
separable 2-D convolution, i.e. 1.5 times more than the operations needed to compute
a 2-separable filter of the same size.

Some interesting examples of 3-separable filters are the circular Gaussian, and the
inverse Fourier transform of the indicator function ID∗ of D∗, where D∗ is a hexagon
centered in the origin (this example will be of special interest in the next section). Let us
note, however, that the hexagonal box filter itself ID is not 3-separable. Nevertheless,
there is a low-pass filter, which is as computationally inexpensive as the box filter, and
is 3-separable and continuous, namely:

f(x̃1, x̃2, x̃3) = IA(x̃1) ∗ IA(x̃2) ∗ IA(x̃3) (A.35)

(A.36)

where A = {x ∈ R : |x| ≤ a}, and IA is the indicator function of the set A. After some
calculations we can see that this is a pyramid with vertex at the origin, and hexagonal
basis (see figure A.9). As we shall see in section 6.2, this filter was used by Meyer and
Jaffard to construct an orthonormal wavelet basis on the hexagonal grid.

5.4 Conversion between Square and Hexagonal

Despite the theoretical advantages offered by hexagonal grids, most available images
have been digitized on a square grid. In order to take advantage of hexagonal algo-
rithms a means for converting to a hexagonal grid is necessary.
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Figure A.9: An example of a 3-separable filter in the spatial domain.

Conversely, if our sensor directly digitizes in the hexagonal grid, a conversion to square
grid will most often be necessary for display purposes.

Nearest neighbor interpolation. In the case when the square to hexagonal conver-
sion is used to apply morphological filters, Serra and Laÿ propose in [158] to use near-
est neighbor interpolation as a way to preserve the level sets of the original. They also
study the resolution levels that are needed to preserve the homotopy of the original, as
well as other less demanding properties.

Spline interpolation. Starting from a rather empirical point of view, Her and Yuan
[96] analyze the performance of different interpolation methods (Nearest Neighbor,
Linear, Cubic and B-Spline) in terms of the visual appearance of the converted images.

Sinc interpolation. When the MTF of the acquisition system is known in detail, or
when linear filtering is going to be applied after the conversion, it is more advisable to
perform some kind of sinc interpolation which according to Shannon’s theorem allows
to reconstruct the original image exactly, by means of equation (A.4).

Let Γsq be the original square grid with basis {u1,u2} and Γhex be the target hexag-
onal grid with basis {e1, e2}. Let also D∗sq be the square reciprocal cell of Γsq and D∗hex

be the hexagonal reciprocal cell of Γhex. Assuming that the square image was correctly
sampled (i.e. D∗sq ⊇ S) the dimensions of the hexagonal grid have to be chosen in such
a way that D∗hex ⊇ D∗sq (if S is known precisely we can reduce the number of required
samples by choosing D∗hex ⊇ S). Finally, in order to simplify the computations the
orientation of the grid is chosen in such a way that e1 = λu1. Finally, the values of f
on the new grid Γhex can be computed by means of equation (A.4), which in this case
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consists of two 1-D convolutions with sinc functions.

It should be observed that in the previous conversion procedure it was assumed
that the image f is Γsq

N -periodic, where the diagonal matrixN gives the size (in pixels)
of the square image. If we now want to filter the image in the hexagonal grid, or even
convert it back to a square grid, we will need a periodic extension of it. This periodic
extension can be performed in a way which is consistent with the initial periodicity
assumption only if Γsq

N is a subgrid of Γhex. Recalling the discussion in section 5.2, we
observe that this is not possible, as long as both Γsq and Γhex are regular square and
hexagonal grids respectively.

In view of this problem several authors [129, 162] proposed to use a pseudo-
hexagonal grid, where the vertical axis is shrinked by approximately 1% with respect
to the regular hexagonal grid. With this construction, the periodicity grid is also con-
tained in the pseudo-hexagonal grid, as long as the image size is a multiple of (7, 8).
The actual procedure described in [162] consists of resampling the image vertically by
a factor of 7/4 using sinc interpolation, and then multiplying by f(i, j) = 1 + (−1)i+j .
The square grid is obtained by interpolating the zero-valued pixels (the centers of the
“hexagons”), and then resampling vertically by a factor of 4/7.

In this appendix, based on the ideas proposed in [150] we performed the con-
version by one-dimensional convolutions as explained in appendix A by assuming a
periodization along the same directions as the sampling grid. This allows to preserve
the regular square and hexagonal geometry in both grids. The main disadvantage of
such an approach is that the converted image is not periodic with respect to a subgrid
of the target grid, so once we performed the conversion, the image cannot be peri-
odically extended in a convenient way, and we can no longer apply the FFT (which
assumes periodicity with respect to a subgrid). There are two possible solutions to this
problem:

1. Do all filtering in the spatial domain, and anticipate a periodical extension of the
image, before conversion, which is large enough for all subsequent linear filtering
operations.

2. Before conversion, multiply the image by a smooth (Hanning, Hamming or spline)
window, which is equal to 1 inside the image domain, except near its borders
where it smoothly tends to 0. Then we can zero-extend the image and change the
periodization grid without significantly affecting the interpolation error.



234 APPENDIX A. REVIEW OF HEXAGONAL SAMPLING 1

6 Wavelets

6.1 Classical construction

The usual method to generalize wavelet bases to 2-D, is based on tensor products. In
fact, if ϕ and ψ are respectively the scaling function and mother wavelet from a 1-
D multirresolution analysis, then the corresponding 2-D multirresolution analysis will
have a single scaling function ϕ(x)ϕ(y) and three wavelets {ψ(x)ϕ(y), ϕ(x)ψ(y), ψ(x)ψ(y)}
which generate the space of details W1.

The main problem with wavelet bases obtained from such a tensor product con-
struction is the ambiguity that results between the two orthogonal diagonal orienta-
tions. Whereas it is possible to distinguish vertical from horizontal frequencies from
the wavelet coefficients, it is not possible to tell one diagonal orientation from the other.

As a way to avoid this problem Kovacevic, Vetterli, Karlson and Andrews [21, 22,
113] proposed to use a quincunx grid, where each subsampling step involves a rotation
of 45 degrees of the square grid.

6.2 Orthogonal wavelet bases with hexagonal symmetry

Meyer and Jaffard [97, 130] propose a multirresolution analysis for constructing or-
thonormal wavelet bases of L2(Rn) which can be defined on affine grids Γ ⊂ Rn. In the
particular case of hexagonal grids they show hexagonal symmetry. The construction
starts from a function g such that {g(x− γ)}γ∈Γ} is a Riesz basis of a space V0 from the
multiresolution analysis. Then they show that the scaling function ϕ having Fourier
transform:

ϕ̂(ω) =
ĝ(ω)√∑

γ∗∈Γ∗ |ĝ(ω + γ∗)|2
(A.37)

yields an orthonormal basis {ϕ(x−γ)}γ∈Γ of V0, and consequently {2nj/2ϕ(2jx−γ)}γ∈Γ

is a basis of
⋃
Vj

whose closure is L2(Rn).
Now if we call m0 the corresponding low-pass filter such that:

ϕ̂(2ω) = m̂0(ω)ϕ̂(ω) (A.38)

then an orthonormal wavelet basis {2nj/2ψr(2jx− γ)}r=1,...,2
γ∈Γ,j∈Z of L2(Rn) is obtained for

ψ̂r(2ω) = mr(ω)ϕ̂(ω) (A.39)

under certain conditions for the high-pass filters mr. For the particular case of the two-
dimensional (n = 2) regular hexagonal grid, Meyer and Jaffard show that these filters
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can be obtained by modulation of the low-pass filter as follows:

m1(ω) = ei<w,e1>m0(w +
1

2
e∗1) (A.40)

m2(ω) = ei<w,e2>m0(w +
1

2
e∗2) (A.41)

m3(ω) = ei<w,e3>m0(w +
1

2
e∗3) (A.42)

(A.43)

where {e1, e2} is the basis of the grid Γ, e3 = e2−e1, and {e∗1, e∗2, e∗3} is 2π times {e1, e2, e3}
rotated by π

6
. If we assume that the low-pass filter has essentially hexagonal support,

then this multiresolution analysis can be illustrated in the Fourier domain by a diagram
like figure A.10.

As an example of this construction, Meyer and Jaffard consider the space V0 consist-
ing of piecewise affine functions on the hexagonal grid, which admits spline functions
as a Riesz basis. Then, to obtain an orthogonal wavelet basis with an arbitrary degree
of regularity, they propose to do the same construction with G = g ∗ · · · ∗ g ∗ g instead
of g.

6.3 Hexagonal subband coding

Simoncelli [161, 162] , uses a similar construction to produce a perfect reconstruction
subband coding scheme with hexagonally symmetric filters of small support. How-
ever, instead of starting from a Riesz basis, he constructs directly a low pass filter m0

and the corresponding high pass filters, according to equation (A.40), with the only
condition that:

3∑

k=0

|m0(w +
1

2
e∗k)|2 = 4 (A.44)

Actually the construction is done by fixing the size of the filter, imposing the hexagonal
symmetry constraints, and then computing the coefficients of m̂0 by minimizing the
“perceptual aliasing error”:

E = max
w

1

|w|

∣∣∣∣∣4−
3∑

k=0

|m0(w +
1

2
e∗k)|2

∣∣∣∣∣

With respect to the previous construction, this one raises the following questions:

• Does the construction lead to orthogonal wavelet bases of V0 and L2(R2)? In this
respect A. Cohen [48, 49] gives certain necessary and sufficient conditions that
can be used to verify this.



236 APPENDIX A. REVIEW OF HEXAGONAL SAMPLING 1

Figure A.10: Idealized representation of the multiscale analysis resulting from the hexagonal QMFs
proposed in [162] . Reproduced from [162, page 175, figure 416] .
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• Are the filters 3-separable? The filters are designed to have a small support, and
exploit hexagonal symmetry, so that a small number of multiplication (but a large
number of additions) is needed for the convolution. 3-separable convolution
would be of interest to reduce both the number of multiplications and additions
for filters with larger support.

Later Schuler and Laine [114, 157] used Simoncelli’s construction (originally de-
signed for image coding) for feature detection in mammograms.

Finally, the vision group at NASA [172] proposed a hexagonal image pyramid
where successive scales are related by a factor of

√
7. They also noted the similarity of

the 7 basis functions of their image pyramid with the receptive fields in the primary
visual cortex. However, the fact that each scale change produces a slight rotation of the
axes may make this construction quite impractical.

6.4 Biorthogonal hexagonal wavelets

Albert Cohen [49] , on the other hand, stresses that it is difficult to obtain orthogonal
wavelet bases with compact support, without the help of the tensor product.
The problem attributed to the construction of Meyer and Jaffard is that it has no com-
pact support.

Based on these arguments he moves to the biorthogonal case, and derives a set of
conditions for constructing biorthogonal wavelet bases, where both the analysis and
reconstruction filters are compactly supported and show hexagonal symmetry. Much
in the same way as Meyer, he exemplifies with the spline case, and shows how to
obtain arbitrarily regular biorthogonal wavelets from these.

Finally he shows how such hexagonally symmetric bases can be used to resolve the
orientation ambiguities that result from the wavelet packets obtained from the clas-
sical tensor product construction. In fact, he shows that, unlike the square grid case,
by iterating the multiscale decomposition also in the high pass regions, the resulting
wavelet-packets actually increase the angular resolution.

6.5 Wavelets on irregular grids

Finally Kovacevic, Vetterli and Daubechies [56, 112] , propose a biorthogonal wavelet
basis construction for irregular grids based on the “lifting scheme”, as well as a spe-
cialization of such wavelets for the particular hexagonal case.
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Figure A.11: Angular resolution that can be obtained by iterating the hexagonal multiscale decom-
position also in high-pass regions. The shaded region indicates the frequency region where

one of the subbands is concentrated. (Reproduced from [162, page 176, figure 4.17] ; a

similar sketch appeared in [49] ).
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7 Miscellaneous Operations and Applications

7.1 Computer Graphics primitives

In [174] the author extends classical algorithms for discretizing (by means of the near-
est neighbor criterion) graphics primitives such as lines, circles and general curves, so
that they also work on a hexagonal grid. He shows that the resulting algorithm has the
same complexity as its square-grid counterpart, and that the resulting digitized curves
more closely reflect the continuity of the original curves.

7.2 Pattern recognition

Several authors found hexagonal algorithms to be useful for several pattern recogni-
tion tasks. Here we cite some examples.

In [44, 46] the authors compare edge detection and relaxation methods for hexag-
onal and square grids. They concluded that the hexagonal procedure is usually more
effective and less dependent on the threshold.

In [74] a hexagonal FFT is used to collect features for a later classification of finger-
print images, whereas in [114] hexagonal QMFs are used as an input step for a neural
network classifier of handwritten characters. In both cases, the higher orientation se-
lectivity of the hexagonal grid are crucial to obtain a more effective method than in the
square case.

7.3 Operating on Hexagonal Grids

The fact that the basis of the hexagonal grid does not consist of orthogonal vectors
make some geometric operations more difficult to formulate. In order to simplify the
expression of geometric transformations in the hexagonal grid, it has been proposed to
use complex arithmetic [28, 166] or a constrained three-dimensional coordinate system
[49, 95] , that better exploits the axes of symmetry of the hexagonal grid. Another
possibility is to use homogeneous coordinates for a special projective basis of the plane,
which also exploits these symmetries.

Among the different possibilities mentioned above, the most practical seems to
be the constrained three-dimensional coordinate system proposed by Her. Let Γ be
a hexagonal grid with basis {e1, e2}. Then a point x ∈ R2 can be expressed in the grid
coordinates as:

x = x1e1 + x2e2 (A.45)
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Now let us introduce a second set of vectors {ẽ1, ẽ2, ẽ3}, which we shall call the Her
basis, and must satisfy the following conditions:

‖ẽ1‖ = ‖ẽ2‖ = ‖ẽ3‖ (A.46)

ẽi · ẽ(imod 3)+1 = cte (A.47)

As a consequence all 3 vectors form an angle of 120 degrees and consequently ẽ1 + ẽ2 +

ẽ3 = 0.
Since Γ is a regular hexagonal grid, we can assume without loss of generality that

e1 and e2 form an angle of 60 degrees. In such a case we can choose the Her basis such
that:

ẽi · ej = (1− δij) for i, j ∈ {1, 2} (A.48)

With these definitions, the Her coordinates of a point are defined by

x̃i =< x, ẽi > for i ∈ 1, 2, 3. (A.49)

and according to the previous relations they are related to the regular coordinates by:

x̃1 = x2 (A.50)

x̃2 = x1 (A.51)

x̃3 = −x1 − x2. (A.52)

Similarly, for Γ∗ we can define a Her coordinate system {ẽ∗1, ẽ∗2, ẽ∗3}, which will
satisfy the same conditions:

‖ẽ∗1‖ = ‖ẽ∗2‖ = ‖ẽ∗3‖ (A.53)

ẽ∗i · ẽ∗(imod 3)+1 = cte (A.54)

However the vectors forming the basis of Γ∗ will form an angle of 120 degrees, and the
additional condition we can impose to determine the Her basis is:

ẽ∗i · e∗j = (−1)i(1− δij) for i, j ∈ {1, 2} (A.55)

With these definitions, the Her coordinates of a point ω = ω1ẽ
∗
1 + ω2ẽ

∗
2 are defined

by
ω̃i =< x, ẽ∗i > for i ∈ 1, 2, 3. (A.56)

and according to the previous relations they are related to the regular coordinates by:

ω̃1 = −ω2 (A.57)

ω̃2 = ω1 (A.58)

ω̃3 = ω2 − ω1 (A.59)
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7.4 Hardware support for parallel hexagonal image processing

Most parallel processing architectures (most notably hypercubes) are well suited for ef-
ficiently performing operations which follow the connectivity pattern of square grids,
where each pixel has either 4 or 8 neighbors.

Since Golay [82] , however, different hardware architectures have been proposed
for efficiently parallelizing algorithms involving operators on 6-neighborhoods. The
recent paper by Staunton [168] gives an extensive review of the different possibilities
that have been explored.

8 Summary and Discussion

In this appendix we reviewed all the possible ways to sample the image plane, and
singled out the square and hexagonal grids as the only reasonable choices. In addition
the hexagonal grid was shown to posses several advantages over the more traditional
square grid. These advantages were shown first from a theoretical point of view, con-
cluding that the hexagonal grid is the most compact and efficient disposition of the
image samples, that it can handle much more elegantly the concept of connectivity,
which presents several problems in the square grid.
Secondly, we presented several algorithms and applications from different domains of
image processing which show the superiority of the hexagonal grid in certain situa-
tions.
Unfortunately, however, two facts have long prevented the extensive use of hexagonal
grids and algorithms, namely: the fact that display, acquisition and processing hard-
ware is most often better suited for square grids; and the increased complexity of the
algorithms under certain circumstances.
With respect to the second point, it may have become apparent from this review that
the increased complexity is only apparent, and that in certain situations hexagonal al-
gorithms are actually not only more simple, but also more effective and efficient.
With respect to the first point we implemented a novel efficient and exact algorithm to
convert images between hexagonal and square grids. The proposed algorithm differs
from widely used previous approaches in the fact that it preserves the geometry of
both regular square and hexagonal grids. Hence, the method could be used to change
(without loosing information) from one representation to the other, whenever needed
to apply an algorithm in its most convenient representation.
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Appendix

A Algorithm for separable conversion between Square

and Hexagonal Grids

In section 5.4 we briefly described the procedure for resampling on a hexagonal grid
Γhex an image f sq that was sampled on a square grid Γsq. Recall that the square grid Γsq

has basis {u1,u2} and the target hexagonal grid Γhex is generated by the basis {e1, e2},
which we choose in such a way that e1 = λu1 the first components of the basis are
parallel, with proportionality constant λ. In practice:

u1 = T

(
1

0

)
e1 = λT

(
1

0

)
(A.60)

u2 = T

(
0

1

)
e2 = λT

(
1/2√
3/2

)
(A.61)

and the propoortionality constant λ = 4
3+
√

3
follows from a trigonometric calculation

from the constraint that the hexagon D∗hex be the smallest one containing the square
D∗sq. This way Shannon’s reconstruction formula will still be valid for the resampled
image Γhex. 2

The square to hexagonal conversion procedure consists of two steps:
First, we consider an intermediate grid Γ1 generated by the basis vectors {u1, λ1u2}.
This is just an oversampling in the vertical direction (parallel to u2), so that Γ1 is rect-
angular. The factor λ1 = 1

‖u2‖

〈
e2,

u2

‖u2‖

〉
ensures that the oversampling rate is exactly

the one needed for the horizontal lines of Γ1 to coincide with those of Γhex. Since we
are only changing one of the vectors of the basis, the resampling

f1 = Γ1 · (
1

|D∗sq|
F( Ï D∗sq) ∗ f sq) (A.62)

reduces to a one-dimensional convolution along each column of f sq = Γsq · f . Further-
more, since we are just oversampling (λ1 < 1), f can still be reconstructed from f1 by
convolution with the same sinc filter.

In the second step we resample f1 at the target hexagonal grid

fhex = Γhex · ( 1

|D∗sq|
F( Ï D∗sq) ∗ f1). (A.63)

2 From the arguments in chapter 1, we could slightly relax this condition (and oversample by a factor
closer to 1) by imposing thatD∗sq be a tile for the dual of Γhex, and still obtain perfect reconstruction with
Shannon’s interpolation formula. However, if the hexagonal image is later directly visualized without
taking into account the real spectral contents of f , the corners ofD∗sq may visually produce some aliasing.
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which consists once again only of 1-D convolutions along each of the horizontal lines
of Γ1. In even lines the resampling is just a zoom, whereas in odd lines the resampling
is a zoom plus a translation of half a pixel.

The above procedure is well known. We just rewrote it with our notation, because
a similar (possibly less known) procedure can be used to convert to a hexagonal grid
Γhex, an image fhex that was sampled on a square grid Γsq. As before, the orginal
hexagonal grid Γhex has basis {e1, e2} and the target square grid Γsq is generated by
the basis {u1,u2}. which we choose in such a way that u1 = λe1 the first components
of the basis are parallel, with proportionality constant λ. In practice:

u1 = λT

(
1

0

)
e1 = T

(
1

0

)
(A.64)

u2 = λT

(
0

1

)
e2 = T

(
1/2√
3/2

)
(A.65)

and the propoortionality constant λ = 3
4

follows from a trigonometric calculation from
the constraint that the square Voronoi cell D∗sq of the dual of Γsq be the smallest one
containing the hexagonal Voronoi cell D∗hex of the dual of Γhex. This way Shannon’s
reconstruction formula will still be valid for the resampled image Γsq.

Since, in the hexagonal case, sinc-convolution is 3-separable, in addition to the three
basis vectors, it will be convenient to consider a third vector e3 = e2 − e1.

The hexagonal to square conversion procedure consists of three steps:
First, we consider an intermediate grid Γ1 generated by the basis vectors {e3, λ1e2}.
This can be seen as an oversampling along the direction e2 by a factor λ1 = ‖u2‖/

〈
e2,

u2

‖u2‖

〉
=

√
3

2
. This choice of λ1 will become clear in the second step. Then we compute the re-

sampling

f1 = Γ1 · (
1

|D∗hex|
F( Ï D∗hex

) ∗ fhex) (A.66)

which only involves a one-dimensional convolution along each line of f hex = Γhex · f
parallel to e2. Furthermore, since we are just oversampling (λ1 < 1), f can still be
reconstructed from f1 by convolution with the same sinc filter.

For the second step we consider an intermediate grid Γ2 generated by the basis
vectors {λ1e3, λ1e2}. This can be seen as an oversampling along the direction e3 by a
factor λ1. The combination of the first and second steps transformed Γhex into Γ2 =

λ1Γhex, i.e. the horizontal lines of the grid became closer together by a factor λ1. The
choice of λ1 ensures that these horizontal lines of Γ2 coincide with those of the target
grid Γsq. Then, as usual, we compute the resampling

f2 = Γ2 · (
1

|D∗hex|
F( Ï D∗hex

) ∗ f1) (A.67)
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which only involves a one-dimensional convolution along each line of f1 parallel to e3.
Furthermore, since we are just oversampling (λ1 < 1), f can still be reconstructed from
f2 by convolution with the same sinc filter.

In the third step we resample on the grid Γsq

f sq = Γsq · ( 1

|D∗hex|
F( Ï D∗hex

) ∗ f2) (A.68)

using one-dimensional convolutions along the direction e1. Even lines only require a
zoom by a factor λ3 =

√
3

2
, whereas odd lines require this zoom plus a half-integer shift.
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Filtres récursifs, déocclusion, interpolation morphologique. Comparaison de
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variationelle et aplications. PhD thesis, Université de Paris IX – Dauphine, 1999.
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Option: Mathématiques appliquées, May 1997.
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∗A preliminary version of this annex was submitted as a technical report to CNES, jointly with Syl-
vain Durand and Jean-Michel Morel [16] .
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