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Résumé

Les problemes suivants ont été étudiés et résolus dans nos travaux :

1. Caractérisation des sorties plates des systemes avec deux controles :
D’abord, nous avons trouvé la relation entre la platitude d’un systeme avec deux
controles et la structure de Goursat. Ensuite, nous avons caractérisé completement
toutes les z-sorties plates des systemes avec deux controles qui sont équivalent au
systéme chainée (systeme de contact sur J*(R!,R')) et aussi décrit leur lieux sin-
guliers. Enfin, nous avons appliqué nos résultats au systeme du robot mobile avec des
remorques.

2. Le systéme a n-barres dans R™*! : Un nouveau modele cinématique pour
le systéme & n-barres dans R™! a été présenté, qui généralise le systéme du robot
mobile avec des remorques dans R?. En utilisant ce modele, nous avons donné une
caractérisation complete du systeme a n-barres dans R™*! et aussi de ses lieux sin-
guliers. Ensuite, la propriété de la platitude de ce systeme a été analysée et ses sorties
plates ont été déterminées.

3. Caractérisation de la distribution de Cartan CC"(R? R™) : Nous avons
donné des conditions nécessaires et suffisantes vérifiables pour qu’'une distribution soit
équivalente & la distribution de Cartan CC"(R? R™). Nous avons aussi répondu a la
question : quand une distribution D de rang k + mk (m > 3), sur une variété de
dimension m + k + mk, contient une sous-distribution involutive de corang k£ dans D.

4. Linéarisation par bouclage orbital pour un systeme avec multi-controéles
défini dans R(tD™+1 . Nous avons étudié le systeme de controle sous la forme
Yood = fla)+ 30 gi(@)u, onm > 2,z € X = ROFUMHL ot f(z4) #£ 0 pour
ro € X. Nous avons obtenu des conditions nécessaires et suffisantes pour que ce
systeme soit, localement, linéarisable par bouclage orbital. Toutes ces conditions peu-
vent étre vérifiées directement sur le systeme original et une construction de la fonction
~ qui décrit le changement de temps a été donnée.






Introduction

Le controle des systemes non linéaires constitue un domaine tres actif de recherche en
automatique et mathématique. Un systeme de controle non linéaire est un systeme
d’équations non linéaires, décrivant 1’évolution temporelle des variables du systeme
sous l'action d’'un nombre fini de variables indépendantes appelées controles de ce
systeme. Un systeme de controle non linéaire peut étre écrit généralement sous la
forme :

E: = f(x,u), (0.0.1)

avec x € X, I'état du systeme dans une variété differentielle et u est le controle a
valeur dans U, une variété de dimension m appelée l'espace du contole. Dans cette
these, tous les systemes que nous étudions sont des systemes affines, i.e., des systemes
qui admettent la forme suivante

m

Sap: &= @)+ Y gl = f(2) +g(@)u,

i=1
ou des systemes linéaires par rapport aux controles (f = 0) de la forme suivante

m

Yin: T = Zgz(x)uz = g(z)u.

i=1

Equivalence des systemes par bouclage

Soit Y.¢ un autre systeme de controle défini par

Ser: &= f(8)+ ) 6@ = f(F)+ g3,
i=1
ol 7 € X et & € U. Alors on dit que Y. et iaﬂ‘ sont équivalents par bouclage s’il
existe un difféomorphisme ¢ : X — X et un bouclage u = a(z) + G(x)a, ou () est
une matrice m x m inversible et @ = (@1, ..., Uy) , tels que



Pour les systemes Yy, la relation entre f et f est évidemment absente. La distribution
associée au systeme Y., notée par D, est la distribution engendrée par les champs de
vecteurs f, gy, ..., m, 1.€.,

D = span{f,g1,...,9m} C TX.

Il est important de remarquer que pour les systemes X,, I’équivalence locale par
bouclage coincide avec 1’équivalence des distributions D engendrée par les champs de
vecteurs gi, ..., gm.

La linéarisation par bouclage est un outil tres important dans la recherche des
systemes non linéaires dans le fait qu’on peut ainsi appliquer des propriétés d'un
systeme linéaire a un systéeme non linéaire. Le probleme de la linéarisation par bouclage
d’un systeme avec un controle a été résolu par Brockett [5]. Jakubczyk et Respon-
dek [29], Hunt et Su [22] ont donné des conditions nécessaires et suffisantes de la
linéarisation par bouclage pour un systeme affine avec multi-controles.

Systeme de contact canonique

Le but de cette these est d’étudier la géométrie et la structure des systemes de
controle non linéaires, en particulier les systemes équivalents aux systemes de contact
canonique qui est une classe de systemes non holonomes. Un systeme non holonome
est un systeme soumis aux contraintes non holonomes qui ne sont pas intégrables. On
rencontre ce type de contraintes par exemple dans les phénomenes de roulement sans
glissement apparaissant pour les systemes du type du robot mobile.

Considérons J"(R*¥ R™), I’espace de n-jets des applications de classe O de R*
dans R™ avec les coordonnées canoniques données par

(T1, Tl Y1, Yms PG, L <G <m, 1< o] <n),

ou x;, pour 1 < ¢ < k, représentent les variables indépendantes et y;, pour 1 <
Jj < m, représentent les variables dépendantes; o = (o1,...,0%) est un vecteur de
nombres entiers non-négatifs tel que |o| =07+ -+ -+ o < n et p;, pour 1 < j <m,

lol,, .
correspondent aux derivées partielles %xy] . Notons p? = y;, pour 1 < j < m. Chaque

application lisse 0 = (¢1, . . ., @) de RF A R™ définit une sous-variété dans J"(R¥, R™)
par
o = 9,
J 0z,

pour 1 < j < m, 0 < |o| < n et on l'appelle le n-graphe de ¢. Tous les n-graphes

(1, ..., 21),

sont sous-variétés intégrales, de dimension k, d’une distribution appelée la distribution
de Cartan sur J"(R* R™), notée par CC"(R¥,R™), qui est annulée par les formes
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différentielles suivantes:
k
dpf =Y p7Thdwi =0, 0<j<m, 1<|o|<n—1,
i=1

ono+1; = (0q,...,0i+1,...,0%). Il est clair que la distribution de Cartan est
de rang constant. Nous appelons un systeme linéaire par rapport aux controles un
systéme de contact canonique sur J"(R¥ R™) telle que sa distribution associée est
engendrée par tous les champs de vecteurs de la distribution de Cartan CC™(R* R™).
Les applications des systemes de contact canonique ou des distributions de Cartan
sont de ce fait extrémement nombreuses dans des domaines tres différents tels que
la mécanique, l'automatique, la thermodynamique, et I'électromagnétisme, etc. Par
exemple, quand k = m = 1, le systéme de contact canonique sur J"(R! R') peut
s’écrire sous la forme du systeme de controle suivant

0 = zlug
il = x3ug
-n—1 n
.CL’? = Ui.

On obtient un systeme sous la forme chainée - un systeme non holonome connu qui
est extrémement important en automatique et a été étudié par de nombreux scien-
tifiques tels que Murray et Sastry [46], Samson [65], Sgrdalen [73], etc. La distribution
associée au systéme de contact canonique sur J"(R!, R!) (la distribution de Cartan
CC™ (R, RY)), est appelé aussi la forme normale de Goursat.

Nous étudions les systemes de contact canoniques dans des cas différents afin de
comprendre les différentes notions d’équivalence (par bouclage statique, par bouclage
dynamique, par bouclage orbital, etc.) correspondant aux objets géometriques at-
tachés aux systemes de controles tels que les distributions, les distributions affines, les
distributions caractéristiques, etc.

Platitude

La notion de la platitude différentielle a été introduite dans la théorie du controle
par Fliess, Lévine, Martin et Rouchon [12], [13], [14] (voir aussi [2], [25], [26], [56], [70],
[77]). Un systeme plat est un systéme pour lequel il est possible de trouver un systeme
linéaire équivalent par bouclage endogene.



Considérons le systéme Z, défini par (0.0.1), nous lui associons [-prolongation =

donnée par

xz - f(:c,uo)
0 1

—l u = Uu
ul — ul—l—l’

pour un certain entier [, qui peut étre considéré comme un systeme de controle sur
X x U x R™. Ses variables d’état sont (x,u", u',... u') et ses m controles sont les m
composantes de u'*1. Notons @ = (u®, u!,..., u).

Definition 0.0.1 Le systéme =, défini par (0.0.1), est plat en (zq, @) € X x U x R™,
ot [ est un nombre entier non négatif, s’il existe un voisinage O' de (x,u}) et m
fonctions lisses, définies dans O,

hi = hi(z,u, 0, .. u?), 1<i<m,

et s’il existe un entier s, des fonctions lisses v;, pour 1 < i < n, et des fonctions lisses
0;, pour 1 < i < m, tels que

T, = fyi(h,h,...,h(s)), 1<i<n,
w; = 6i(hh,... b)), 1<i<m,

ott h = (hy,...,hn)" le long de chaque trajectoire x(t) définie par un controle u(t)
tels que (z(t),u(t),w(t),...,uV(t)) € O Le vecteur h = (hy,...,h,) est appelé
sortie plate de ce systeme. Si h; = hi(z,u® ul,... u"), r < I, le systéme est appelé

(x,u,...,u")-plat et, en particulier, x-plat si h; = h;(x).

D’apres la définition, le comportement du systeme plat est completement car-
actérisé par la sortie plate et ses dérivées successives sous forme de relations algébriques.
Ainsi le probleme de la planification de trajectoire pour un systeme plat peut étre
résolu facilement grace a la propriété de platitude. Il est connu qu’un systeme plat est
toujours localement controlable. Notons qu’il est facile de montrer que le systeme
de contact sur J*(R!,R'), i.e., le systeme chainé, est plat avec une sortie plate
h = (hy, hy) = (23, 27) en tous les points tels que ugy # 0.

Rappelons les définitions suivantes :

Le drapeau des systemes dérivés d’une distribution D est défini par la suite de
distributions

DY =D et DY =DO L DD DO pour i>0.
Le drapeau de Lie est défini par une autre suite de distributions

DQ =D et Di+1 = Dz + [DQ, DZ], pour 1 2 0.

6



En parallele, on peut aussi définir le systeme dérivé pour un systeme de Pfaff 7 =
span {wy, . ..,ws}, engendré par s formes différentielles de degré 1 qui sont indépendantes
partout. Son systeme dérivé est défini par

W =spanfw € T: dw Awi A--- Aw, = 0}.
Le drapeau des systemes dérivés de 7 est la suite de systemes de Pfaff
I(O) D_’Z’(l) D) DI(Z) D) cee

qui satisfait les relations ZO) = 7 et Z0+) = (Z0)M " Si toutes les distributions du
systeme dérivé sont de rang constant et D = T+, alors on a DO = (Z))L for i > 0.

Nous allons maintenant présenter chapitre par chapitre les résultats contenus
dans cette these.

Chapitre 1. Ce chapitre est dédié a la caractérisation complete de toutes les
sorties plates pour un systeme avec deux controles qui est équivalent au systeme chainé
(le systeme de contact canonique sur J"(R', R')). Ce probleme vient d'un phénomene
que nous avons observé pour le systéme de la voiture (robot mobile avec une remorque)

x cos (6, — 6) cos by 0
. g | | cos(by —bp)sinb, 0

Hear b | sin(6; — 6p) B
0, 0 1

ou (z,y) sont les coordonnées caractésiennes du milieu de 'axe des roues arrieres, et
notons par y et 01, respectivement, les orientations de 1’axe principal de la voiture et
les roues avant par rapport a x-axe. Rappelons que la platitude du systeme du robot
mobile avec remorques roulant sans glissement a été montrée par Fliess, Lévine, Martin
et Rouchon [13] (voir aussi [26]) et donc le systeme Y, est z-plat. En effet, en chaque
point de l'espace de configuration R? x S! x S!, ce systéme peut étre transformé
au systeme chainé. En conséquence, autour de chaque point dans R? x S x S*,
il existe une x-sortie plate. Par contre, nous observons que chaque x-sortie plate
posséde un lieu singulier ou il faut la remplacer par une autre x-sortie plate. Plus
précisément, pour le systéme X, le couple (hy, hy) = (z,y) est une x-sortie plate
pour les points ou {q = (x,y,01,602) | 6 — Oy # :t%} et donc 0, — 0y = :I:% détermine
le lieu singulier de la z-sortie plate (z,y). Cependant, I’équation 6; — 6y = :t% ne
définit pas les points de singularité pour le systeme ¥.,.. En effet, en ces points ou
0, — 0y = :t%, ce systeme est encore x-plat et la x-sortie plate peut étre donnée par
le couple (hy, he) = (0y, zsinfy — ycosby). Notons que cette deuxieme z-sortie plate
possede aussi un lieu singulier défini par {q = (z,y,01,02)] 01 — 0y =0,7}.

Toutes ces dernieres analyses meénent naturellement aux questions suivantes :
Combien de z-sorties plates possede le systeme? Peut-on les caractériser completement?

7



Plus généralement, peut-on donner une caractérisation de toutes les x-sorties plates
pour un systeme avec deux contrdles qui est équivalent au systeme chainé (systeme de
contact canonique sur J"(R', R'))?

Le probleme de la platitude du systeme avec deux controles a été étudié et résolu
par Martin et Rouchon [40]. Ils ont montré qu'un systeme avec deux controles est plat
si et seulement si sa distribution associée D satisfait, dans un ouvert dense de M, la
condition

rangDV =i +2, 0<i<n. (0.0.2)

Une structure de Goursat est une distribution de rang deux qui vérifie la condition
(0.0.2) en tout point x € M . Il est connu (voir von Weber [78], Cartan [9], Gour-
sat [18]) que sur un ouvert dense de M, la condition (0.0.2) implique que D peut
étre transformée a la forme normal de Goursat (autrement dit, le systeme associé est
localement équivalent au systeme chainé). Kumpera, Ruiz et Giaro [17] ont découvert
I’existence des points singuliers pour le probleme de transformer une distribution de
rang deux a la forme normale de Goursat. Murray [45] a montré qu'un systeme avec
deux controles est équivalent au systeme chainé au point xy, autrement dit, la distri-
bution associée est équivalente a la forme de Goursat, si et seulement si sa distribution
associée satisfait la condition (0.0.2) et aussi la condition de régularité:

dim DY (zy) = dim D;(z), 0<i < n. (0.0.3)

Alors, une question naturelle se pose : est-ce qu'un systeme dont la distribution as-
sociée D est une structure de Goursat est plat en les points ot la condition de régularité
(0.0.3) n’est pas satisfaite?

Theorem 0.0.2 Considérons un systeme ¥ avec deux controles,
Y 1= fl(a:)ul + fQ(I’)Ug,

oux € M, une variété de dimension n+ 2, pour n > 1. Supposons que la distribution
associée D = span {f1, fo} est une structure de Goursat, i.e., rang D = i + 2, pour
0 <1 <n. Alors les conditions suivantes sont équivalentes au point ro € M

(i) X est x-plat en (zg,ul) € M x R2HYD  pour certain | > 0;

(ii) X est z-plat en (2, ug) € M x R

i) dim DY () = dim Dy(wo), pour 0 < i < n et ug & Using(70);

Y est localement, autour du point xg, équivalent au systéme chainé et ug ¢
Using(l"o)-

(iii)
(iv)

1v

Remarque. Théoreme 0.0.2 montre qu’un systeme tel que la distribution associée est
une structure de Goursat est z-plat seulement aux points ot la condition de régularité
est satisfaite, i.e., dim D@ (zy) = dim D;(x), pour 0 < i < n et uy & Using (o) (voir
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chapitre 3 pour la définition de Usyg). Donc notre résultat donne une réponse négative
pour la question posée par Martin et Rouchon [39] (voir aussi [40]) (concernant la z-
platitude). Toute structure de Goursat peut étre transformé a la forme normale de
Kumpera-Ruiz ([33], [42], [52]). Alors notre résultat montre aussi que aucune forme
normale de Kumpera-Ruiz singuliere n’est z-plate.

Théoreme 0.0.2 montre que les seules structures de Goursat x-plates sont celles
qui satisfaitent la condition de régularitée (le systeme associé est équivalent au systeme
chainé). Alors nous allons caractériser toutes les x-sorties plates pour ce type de
systeme avec deux controles.

Theorem 0.0.3 (Caractérisation des sorties plates)(Premieére version)
Considérons un systeme Y avec 2 controles, défini sur M, une variété de dimension
n + 2, tel que sa distribution associée D satisfait rang DY = rangD; = i + 2, pour
0 <1 <n. Fizons un point ro € M et supposons que g, est un champ de vecteurs
arbitraire dans D tel que g1(xg) & Cn—1(xg), ot C,—1 est la distribution caractéristique
de DV et 1,0y sont deux fonctions lisses définies dans un voisinage ouvert M
du point xo. Alors (p1,p2) est une x-sortie plate du systéme X en (xg,ug), ot uy &
Using(z0), si et seulement si les conditions suivantes sont satisfaites :

(i) dp1(mo) Adps(xg) # 0, i.e., dpy et dpy sont indépendantes en xy;

(i) (Lgyp1(x0), Lgyp2(20)) # (0,0);

(ili) Lepr = Lepo = Lc(%) =0, Ve € C,_1, ou les fonctions @1 et o sont
g1

permutées telles que Ly, 1 # 0. C’est toujours possible grace a la condition (ii).
De plus, si (¢1,p2) satisfait (1) partout dans M et est une x-sortie plate en (z,u) pour
chaque point x € M et un certain u = u(x), ou M est un ouwvert dense dans M, alors

Sing(p1, p2) = {x € Mt (Lypr(2), Lypa(w)) = (0,0)}.

Le Théoreme 0.0.3 nous permet de vérifier si une paire de fonctions donnée (1, ¢2)
est une z-sortie plate pour un systeme linéaire par rapport aux controles avec deux
controles. Le théoreme suivant va répondre a la question : y-a-t-il beaucoup de paires
(41, p2) qui satisfont les conditions du Théoreme 0.0.37

Theorem 0.0.4 Considérons un systeme Y avec 2 controles, défini sur M, une variété
de dimension n + 2, tel que sa distribution associée D satisfait rang DY) = rang D; =
1+ 2, pour 0 < ¢ < n. Fixons un point ro € M et soit g, un champ de vecteurs
arbitraire dans D tel que g1(xg) ¢ Ch—1(x0). Alors, etant donné une fonction lisse ¢,
telle que Lepr = 0, Ve € Cyoq, et Ly p1(xg) # 0, il existe toujours une fonction ¢o
telle que (1, @2) forme une x-sortie plate de ¥ en (zg,ug), ot ug € Using(x0). De plus,
si les deuz paires (@1, 2) et (1, Pa) sont des z-sorties plates de 33, alors on a

span {dp1(x), dpa(2)} = span {dis (), dps()},
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pour tous les points x dans un voisinage du point xg.

L’importance du Théoreme 0.0.3 est qu’il nous permet non seulement de vérifier
si une paire de fonctions donnée forme une x-sortie plate, mais aussi, avec Théoreme
0.0.4, d’exprimer explicitement un systeme d’équations aux dérivées partielles du
1" ordre dans le but de calculer toutes les x-sorties plates pour un systeme ¥ avec deux
controles (voir Section 1.3.2 pour les détails). En fin, nous appliquons nos résultats au
systeme du disque roulant et du robot mobile avec remorques afin de montre comment
calculer toutes les x-sorties plates en résolvant des équations aux dérivées partielles
du 1°" ordre.

Chapitre 2. Ce chapitre est consacré a la modélisation, a la caractérisation,
aux singularités et a la propriété de la platitude du systeme a n-barres dans I’espace
R™ L qui généralise le systeme du robot mobile avec n remorques dans R2. Le systeme
du type robot mobile avec contraintes de roulement sans glissement, comme un cas
typique de systeme mécanique non holonome, est tres important en automatique et
a été étudié par de nombreux mathématiciens et automaticiens depuis les dernieres
vingtaine d’années (voir les livres [35] et [36]; les articles [13], [27], [26], [34], [46], [53],
[73]). En 1991, Laumond [34] a présenté un modele cinématique du robot mobile avec
remorques et a montré la controllabilité pour ce modele. En 1994, Tilbury, Murray
et Sastry [75] ont donné une caractérisation complete du systeme du robot mobile
avec n remorques : autour des points réguliers, ce systéme peut étre transformé en un
systeme chainé, autrement dit, il est localement équivalent au systeme de contact sur
J(R',RY). Les points réguliers sont caractérisés par la condition dimD® = dim D;,
pour 0 < i < n, ou D désigne la distribution associée a ce systeme. Respondek et
Pasillas-Lépine [52] ont montré qu’en dehors des points réguliers, le systeme du robot
mobile avec n remorques peut étre transformé a la forme normale de Kumpera et
Ruiz. Une caractérisation complete du lieu singulier du systeme du robot mobile avec
n-remorques a ¢té donnée par Jean [27].

Notre objectif dans ce chapitre est de généraliser le systeme du robot mobile
avec remorques dans l'espace R™T! (le systéme & n-barres), pour m > 1, et de donner
une caractérisation de ce systeme. Récemment, ce systeme, sa géométrie et, notam-
ment, son lieu singulier ont été étudiés par Slayaman et Pelletier ([71], [72]). Notre
résultat est basé sur une nouvelle modélisation cinématique efficace pour ce systeme.
Considérons le systéme & n-barres dans R™*! tel que:

(1) La fin de la barre précédente coincide avec la source de la barre suivante;

(2) La longueur de chaque barre est de 1;

(3) Chaque barre bouge sans glis&)latéralement et la vitesse instantanée du point
P; est parallele au vecteur PP, 1, pour 0 <i <n —1.
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Figure 1: le systéme & n-barres dans R™*!

Supposons que les coordonnées des points P;, pour 0 < ¢ < n, sont données par
Py = (x}, 22, ..., 2™""). Alors I'espace de configuration de ce systeéme peut étre décrit
completement par les (n + 1)(m + 1) coordonnées (z8, ..., o0t ob . 2" o al)

) dans X = RV - Les hypotheses |PPyi| = 1, pour 0 < i <n — 1,
nous donnent les contraintes holonomes suivantes

ot U ={U,, ... 0,}: X =RO++) _, R" est définie par

i) = (o= ) G gt
Wole) = (ah— ol @ a4 eyt 004
Wofa) = (oh—wh P+ (= ek ) T - el

D’aprés ces n contraintes holonomes, le vrai espace de configuration du systeme a
n-barres devient la sous-variété @Q = R™! x (S™)" C X définie par Q = {x € X :
U(z) = 0}.

En effet, le model I" du systeme a n-barres

m

I ¢= Zfz’(Q)Ui, g € R™™ x (S™)",

1=0

peut étre défini par le systeme non holonome sans dérive ¥ dans l'espace X =
R(n-ﬁ-l)(m—i—l)

n+m+1

A: &= Z gi(x)v;,, x€ X, (0.0.5)

i=1
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ol g1, ..., Yntm+1 Sont donnés par

g = @ -t @ -a)d @t a2y
o} Oxg 093%
@ = (- % (= =
0 0 m m
9n = ($ - l)axi + (‘flj2 - l)axi_l + + (xn i € +1)ax;n+1

n

sous les contraintes holonomes W(x) = (Vy(x),..., ¥, (z)) = 0 définies par (0.0.4) (voir
Section 2.2.2 pour plus de détails). Notons que nous n’avons pas donné l'expression
explicite des champs de vecteurs f;, 0 <7 < m, ni celle de la distribution associée Dr.
Toutes ses propriétés seront formulées et analysées en utilisant la distribution associée
E =span{qgi, ..., gnims1} du systeme A et les contraintes holonomes ¥(z) = 0. Ob-
servons aussi que notre modele n’utilise pas de variables d’angle et ce caractere nous
permet de pouvoir étudier les objets géométriques attachés au systeme a n-barres tels
que la distribution, la distribution caractéristique, le systeme de Pfaff, etc. Quand
m = 1, le systeme a n-barres retrouve une modélisation du célebre systeme du robot
mobile avec n — 1 remorques.

Un systeme de controle X ¢ i@ = >, fi(x), défini sur ROFD™HL egt dit sous

la forme m-chainée s’il est representé par

20 .0 — 1 -0 —

Ty = Uy Ty = X7U T, = T,Up
@it o= atue - ant g
Ty = 1w T = Up.

Evidemment, la forme m-chainée coincide justement avec le systeme de contact canon-
ique sur J"(R', R™). D’autre part, des conditions nécessaires et suffisantes vérifiables
pour qu'une distribution soit équivalente & la distribution de Cartan CC"(R!, R™) ont
été présentées par Respondek et Pasillas-Lépine [50] : Une distribution D de rang
m + 1, définie sur une variété M de dimension (n + 1)m + 1, est localement, autour
d’un point p, équivalente a la distribution de Cartan CC"(R', R™) si et seulement si les
conditions suivantes sont satisfaites : (i) D™ = TM, (ii) D™ est de rang constant
nm + 1 et contient une sous-distribution involutive £ dont le corang dans D™ est
constant et égal a 1, (iii) D(p) n’est pas contenue dans £(p). Parmi les trois conditions,
la condition (iii) distingue les points singuliers et réguliers.

La caractérisation du systéme & n-barres dans R™"! peut étre exprimée par le
théoreme suivant :
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Theorem 0.0.5 Le systéme a n-barres I' dans R™ L, pour m > 1, est localement
équivalent au systéme m-chainé en chaque point x € X = ROV gy satisfait
U(x) =0 (c’est a dire x correspond a un point ¢ € Q) et

m+1
(R1) Z(:ﬁf—:ﬂ{_l)( wl, —2))#0, pouwrl<i<n-—1, sim>2,
j=1
(R2) Z(xf —z]_)(xl, —a])#0, pour2<i<n-—1, sim=1.
j=1
Les conditions W(x) = 0 impliquent que x est un point dans @ et les conditions
(R1) e (RQ) décrivent les points réguliers du systeme I' dans (). La condition
Z;”:ll (v] —a]_,)(x],, — x]) # 0 est appelée la condition de régularité pour le systeme

a n—bﬂtfs. Notons 6;, pour 1 < i < n — 1, 'angle orienté entre le vecteur m
et PP, 1. Alors les conditions de régularité sont équivalentes a 6; # ﬂ:%. Notre
théoreme montre que 'angle 6; = ﬂ:% (i.e., la premiere barre est perpendiculaire a
la deuxieme bar) est une singularité pour le cas m > 2 mais pas pour le cas m = 1.
Il est intéressant de remarquer que la propriété de la controlabilité peut étre obtenue
comme un sous-résultat du Théorem 0.0.5 : le systéme a n-barres I' est globalement
controlable dans @ = R™ x (S™).

La propriété de la platitude du systéme a n-barres dans R™*! est aussi analysée
dans ce chapitre. Dans le cas m = 1, la platitude du systeme du robot mobile avec
remorques a été résolue par Fliess, Lévine, Martin et Rouchon [13] (voir aussi [26]).
Dans le cas m > 2, nous donnons le résultat suivant :

Theorem 0.0.6 (Platitude du systéme a n-barre) Pour le systéme a n-barres I’
dans R™ m > 2, nous avons

(i) T est x-plat au point (qo,u’) € Q x R™ qui satisfait
(1) U(z) =0 et Zmﬂ(xf —xl_ )zl —2]) #0, o g € Q est identifié avec
un point x € R(”“)(m“) satisfaisant V(x) = 0;
(2) u® est le controle tel que la vitesse Py du point Py ne s’annule pas (et donc
les vitesses PZ, 0 <i<n-—1 sont non-nulles).

(ii) Py = (x},22,...,20""") est une x-sortie plate minimale de T en tout (qo,u®)
comme ci-dessus.
(iii) Si h = (ho, ..., hy) est une x-sortie plate minimale en (qo,u®), alors localement

autour de qo on a

span{dho, ..., dh,} = span{dxz},da?, ... dzgt}.

Remarque. Il est important de remarquer la différence pour les x-sorties plates entre
deux cas différents: dans le cas m > 2, les coordonnées du point Py = (x4, 22,... zf™)

forment la seule z-sortie plate minimale de I'. Contrairement, au cas m = 1, la z-sortie
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plate minimale n’est pas unique.

Chapitre 3. Le but de ce chapitre est de trouver des conditions nécessaires
et suffisantes vérifiables pour qu’une distribution soit équivalente a la distribution de
Cartan CC™"(R?,R™). En géométrie différentielle, la caractérisation intrinseque de la
distribution de Cartan CC™(R¥,R™) est encore un probléme ouvert méme si des so-
lutions ont été obtenues dans certains cas particuliers. Le casn =1 et m = 1 a été
résolu par Darboux [10] dans son théoreme célebre en généralisant les résulats de Pfaff
[55] et Frobenius [15]; le cas n =2, m = 1 et k = 1 par Engel [11]; lecasn > 2, m =1
et k =1 par E.von Weber, Cartan et Goursat (en point régulier), et par Libermann
[37], Kumpera et Ruiz [33], et Murray [45](en point quelconque); le cas n = 1 par
Bryant [7]; le cas général par Yamaguchi [79]; le cas k = 1 par Gardner et Shadwick
[16], Murray [45], Tilbury et Sastry [76], Aranda-Bricaire et Pomet [3], Mormul [43],
Respondek et Pasillas-Lépine [54].

Avant de présenter nos résultats, nous rappelons les concepts du rang d’Engel
et du rang de Cartan. Le rang d’Engel, en point p, du systeme de Pfaff 7 =
span {wy, ...,ws} est I'entier le plus large p tel qu'il existe une 1-forme différentielle «
dans Z qui satisfait la condition suivante

((da)? ANwy A -+ Aws)(p) # 0.

Le rang de Cartan de T est lentier le plus petit k tel qu'il existe 7, ..., 7% € AY(M)
tels que
A ATEAWEA A W™ £,

et
dwoAT A AT*=0mod Z, Vw e T.

Theorem 0.0.7 Soit m > 3 et D une distribution de rang m(n + 1) + 2 définie sur
une variété M de dimension —7721(71 +1)(n+2)+ 2. Alors D est localement, autour du
point ¢ € M, équivalente a la distribution de Cartan CC"(R?*,R™) si et seulement si
les conditions suivantes sont satisfaites :

(i) Chacune de ses distributions dérivées D, pour 0 < i < n, est de rang constant
H2n+2—i)(i+1)+2.

(i) Chacune de ses distributions dérivées D, pour 0 < i < n — 2, contient la
distribution caractéristique Cipy de DUV dont le corang dans DY est de deux.
De plus, la distribution caractéristique de D est réduite a {0}.

(iii) Le rang d’Engel de (D" ~V)L est constant et égal a deu.

(iv) dim (£ + DW)(q) = dim L(q) + 2, pour 0 < i < n — 2, ou L est une sous-
distribution involutive de corang deux dans D™~ . Lexistence de L est garantie
par la condition (iii).
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Toutes ces conditions (i) — (iv) sont vérifiables directement sur la distribution D.
Premierement, le rang d’Engel peut étre vérifié directement d’apres la définition.
Deuxiemement, si les conditions (i) — (iii) sont satisfaites, la condition (iv) peut étre
vérifiée algébriquement parce que la sous-distribution L, si elle existe, est unique et
caclulable (voir Chapitre 3 pour les détails).

Le theoreme suivant montre une relation entre le rang d’Engel et l'existence
d’'une sous-distribution involutive de corang k et répond a la question : quand une

distribution D contient une sous-distribution involutive £ qui soit de corang k dans
D?

Theorem 0.0.8 Soit m > 3 et D une distribution de rang k + mk, définie sur une
variété M de dimension m + k + mk, telle que DY) = TM. Si la distribution car-
actéristique de D est réduite a {0}, alors les conditions suivantes sont équivalentes:

(i) Le rang de Cartan de D+ est constant et égal a k;

(ii) Le rang d’Engel de D est constant et égal a k;

(iii) 1l existe une sous-distribution F de D de corang k telle que [F,F| C D et il
n’existe aucune autre sous-distribution de D vérifiant cette propriété et de corang
plus petit que k.

(iv) Il existe une sous-distribution involutive L qui est de corang k dans D et il n’existe
aucune autre sous-distribution involutive D de corang plus petit que k.

De plus, la sous-distribution involutive L de D de corang k, si elle existe, est unique
et calculable.

Afin de démontrer Theoreme 0.0.7, nous proposons aussi une forme normale de
Bryant étendue qui généralise la caractérisation de la distribution de Cartan CC'(R¥, R™).

Chapitre 4. Cette derniere partie est consacrée a la linéarisation d’un systeme
avec multi-controles par le bouclage orbital. La linéarisation par bouclage est un outil
tres important dans I’étude des systemes non linéaires dans le fait qu’on peut ainsi ap-
pliquer les propriétés d'un systeme linéaire a un systeme non linéaire. Le probleme de
la linéarisation par bouclage d'un systeme avec un seul controle a été résolu par Brock-
ett [5]. Ensuite Jakubczyk et Respondek [29] ainsi que Hunt et Su [22] ont donné des
conditions nécessaires et suffisantes de la linéarisation par bouclage pour un systeme
affine avec multi-controles. Pour les systemes qui ne peuvent pas étre linéarisés par
bouclage, il est possible qu’ils soient linéarisés par bouclage avec un changement de
temps qui s’appelle linéarisation par bouclage orbital. Ce probléeme a été proposé et
étudié premierement par Sampei et Furuta [67]. Malheureusement leurs conditions
necessitent la resolution d’un systeme d’EDP non linéaire afin d’obtenir la transfor-
mation du changement de temps et donc elles ne peuvent pas étre verifiées pour le
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systeme original. En 1998, Respondek [62] a présenté des contitions nécessaires et
suffisantes pour la linéarisation par bouclage orbital d’'un systéme a un seul controle
et ses conditions sont vérifiables pour le systeme original. Apres son travail, Guay [19]
a donné en 2000 des conditions équivalentes avec une approche basée sur les formes
différentielles et les a développées en 2001 a la linéarisation par bouclage orbital d’un
systeme a multi-controles [20]. Pour vérifier les conditions de Guay, on a besoin de
chercher des générateurs convenables du systeme de Pfaff associés au systeme original.

Considérons le systeme suivant, pour m > 2,
dx =
¥ i f(z)+ Zgi(x)ui, f(zg) # 0, (0.0.6)
i=1
ot # € X = RHDm+1

Dans cette these, le systeme Y est dit linéarisable par bouclage orbital s’il est
localement équivalent au systeme linéaire

=1

At : Lf‘ — 72% + i Z_?Z?_LZ
=1

Il est clair que le systeme A; n’est jamais controllable mais il peut étre accessible (voir
[24], [47] pour la définition) si et seulement si le sous-systeme (A, B) est controllable,
ot B = (by,...,b,). Par la suite nous appelerons les indices de controlabilité et la
forme canonique de Brunovsky de A; comme étant celles du sous-systeme (A, B).

Définissons les distributions suivantes

g span{gi, ..., 9m}, |
g} = Spal {f7 Gi, adfgi> . '>ad§”_lgia 1< < m}a

pour 1 < j < n+ 1. Supposons que dim Q?H(:c) = (n + 1)m + 1, alors nous avons
dim G%(z) = nm + 1. En conséquence, il existe m formes différentielles wh .o wh e
A(X) définies uniquement par

<w g> = 0, Vgegy}
<uwladlg; > = 0],

pour 1 <1i,j5 < m. Grace aux m formes differentielles, les fonctions suivantes peuvent
étre introduites :

el _
75 = < Wk, [ad’f 1gi,adlfgj] >

= wk([ad}‘_lgi, adlfgj]).
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Le théoreme suivant décrit des conditions nécessaires et suffisantes du probleme de
la linéarisation par bouclage orbital pour le systeme (0.0.6). Toutes ses conditions
peuvent étre vérifiées directement sur le systeme original.

Theorem 0.0.9 Le systéeme non linéaire X2, m > 2, défini par (0.0.6), est locale-
ment équivalent par bouclage orbital au systeme linéaire Ay dont tous les indices de
controlabilité égalent n+1 si et seulement s’il satisfait, autour du point p, les conditions
sutvantes :

(OPL1) dimG{*'(z) = (n+1)m+1

(OPL2) [G},G7] c G;™, 1<j<n,

(OPL3) [G.G7] € G7,

(OPL4) Les fonctions Tf]l satisfont les conditions suivantes:
. Bl 1<k#:<m, 1<j57<m, si l<n-—1
(1) Ti’j_o’pour{lgi%k#jgm G l—m_1

(i) T, =Tt pour 1<l<n—1,1<ijk<mtqj#iksil=n—1,

(i) Quand m = 2, la distribution définie par
B:span{gi,adlfgi—i-bﬁf, i=1,2et1<I<n-—1}
doit étre involutive, ot

bl=Ty=T3, pour 1 <i<2,1<1<n-—2

n—1 __ 1,n—l n—1 __ 2,n—l
bl - T1,2 ’ bZ - T2,1 .

Il est important de remarquer que la fonction v qui décrit le changement de
I’échelle de temps, par % = ~v(x(t)), peut étre construite directement a partir de la

distribution B que I'on a définie dans ce théoreme (voir les détails dans Chapitre 4).

Notre résultat implique aussi une relation intéressante entre la linéarisation par
bouclage orbital du systeme (0.0.6) et la caractérisation de la distribution de Car-
tan CC"(RY,R™). 1l est connu que les systémes de type A, dont tous les indices
de controlabilité sont constants et égaux a n + 1, peuvent étre transformés par un
changement de coordonnées et un bouclage a la t-etendue forme normale de Brunovsky
(t-augmented Brunovsky canonical form)

-0
Ty 1
-0 1 -0 _ 1
Ty Ty T, = I
ABT .
r
n—1 __ n n—1 n
Ty = I Ly = Tn
Y = u Ty, = Uy
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A chaque systeme de controle défini par (0.0.6), il correspond & une distribution affine
A = f+ G qui définit en chaque point © € X un sous-espace affine A(z) = f(x) +
G(z) de Despace tangent T, X. Considérons deux systemes affines X et 3 tels que les
distributions de controle G et G soient de rang constant. Alors ils sont équivalents par

bouclage si et seulement s’il existe un diffeomorphisme ¢ tel que
A = @*Aa

et sont équivalents par bouclage orbital s’il existe un diffeomorphisme ¢ et une fonction

~(+) # 0 tels que i
A= 90*(7“4)’

ou YA = ~vf + G. Soit D est une distribution de rang constant sur X. Pour chaque
distribution affine A C D, ou A = f + G est telle que corang (G C D) = 1 et
f(x) € G(x), nous 'associons au systeme de controle 3 4. Nous avons les deux résultats
suivants qui décrivent la relation entre la linéarisation par bouclage orbital du systeme
(0.0.6) et la caractérisation de la distribution de Cartan CC"(R!, R™).

Proposition 0.0.10 Soit D une distribution de rang constant dans laquelle on choisit
une distribution affine A = f + G C D telle que corang (G C D) =1 et f(x) € G(x).
Si D satisfait les conditions suivantes

(D1) D est localement équivalente a la distribution de Cartan CC"(R,R™);
(D2) ¢(DV) =G,

alors le systeme affine associé Y4 est localement équivalent par bouclage orbital au
systéme APT.

Proposition 0.0.11 Un systeme de contréle ¥, défini par (0.0.6), est localement
équivalent par bouclage orbital au systéeme AP dont tous les indices de contrélabilité
sont constants et égaur a n+ 1 si et seulement si la distribution associée Dy, satisfait
les conditions swivantes:

(C1) Ds est localement équivalente a la distribution de Cartan CC"(R,R™);
(€2) ¢(PY)=g.

Grace aux deux Propositions, nous présentons une version compléte pour Théoreme 0.0.9
dans laquelle nous donnons des conditions équivalentes aux conditions (OPL1) —
(OPL4) (voir Chapitre 4 pour les détails).
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Chapter 1

Flat outputs of driftless two-input
control systems

1.1 Introduction

The notion of flatness has been introduced by Fliess, Lévine, Martin and Rouchon in
[12], [13], [14] in order to describe the class of control systems, whose set of trajectories
can be parameterized by a finite number of functions and their time-derivatives. More
formally, a system with m controls is flat if we can find m functions (of the state
and control variables and their time-derivatives), called flat outputs, such that the
evolution in time of the state and control can be expressed in terms of flat outputs
and their time derivatives (see Section 1.2 for a precise definition and references).

As an introductory example, consider the nonholonomic car or, equivalently, a
unicycle-like robot towing a trailer (see, e.g., [34]). Denote by (z,y) € R? the position
of the mid-point of the rear wheels, and by 6, and 6y, respectively, the angles between
the rear and front wheels and the z-axis. The controls u; and wuy allow to move
(forward and backward) the car and to turn. The car is subject to two nonholonomic
constraints: the wheels are not allowed to slide. This leads to the following model
given by a driftless, i.e., control-linear, system on R? x S x S

& cos(6; — 6p) cos by 0
. y | | cos(6 —6)sinb, 0

Ecar . 90 = sin(91 _ 90> U + 0 Uo.
0, 0 1

It is well known, as proved by Fliess, Lévine, Martin and Rouchon [13] (see also [26])
that the nonholonomic car is flat and that the position of the mid-point of the rear
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Figure 1.1: nonholonomic car

wheels is a flat output. Indeed, the following coordinates change

Ty =
T2 =Y
T3 = tan 6y

x4 = tan(f; — 0p) sec® O
for 6y € (—%, %) and 0; — 0y € <—%, %), followed by the invertible feedback

v; = uy cos(fy — BOy) cos by
vy = uy sec? O sin(6; — Op) (3tan(f; — O) tan Oy — sec?(0; — 0y)) + sz sec? Oy sec?(0; — by),

brings the system X, into the chained form:

T =11
1:2 — I3V
T3 = T401
1:4 = Va.

It is easy to see that the pair of functions h = (hy, hy) = (21, 29) = (,y) are flat out-
2

puts for the chained form. Indeed, we have zy = hy, 9 = hy, x3 = ha Ty = ldi(@)7
. 1 hl t hl
v; = h; and vy = hi(m) The applied transformation, consisting of a change of

1
coordinates and feedback, is invertible which proves that, indeed, h = (x,y) are flat
outputs of the nonholonomic car.

The presented procedure, to express the state and control in terms of A and its
time-derivatives, exhibits three singularities: two in the state space (at 0y = ﬂ:% and
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0, — 0y = i—%) and one in the control space (when u,(t) = vy(t) = 0). Let us analyze
those singularities.

First, the singularity at u;(f) = 0 (at least at u;(t) = 0) seems to be intrinsic:
we cannot see how the angles 0y(t) and 6, (t) evolve if the observed point (x(t),y(t))
does not move.

Secondly, 6, = :I:% is not a singularity of the flat output h = (x,y). Indeed,
around a point such that 6y = :t%, we can choose the following coordinates change:

T =Y

To =T

T3 = cot b

xy = —tan(f; — 6y) csc Oy,

for 0y € (0, 7) including 6y = —% (or Oy € (—m,0), including 6y = —%) and 0, — 6, €
(—%, %), followed by a suitable feedback transformation, which brings the system X,
into the chained form around 6, = j:%. Therefore, the nonholonomic car is flat, with
(z,y) as a flat output, at any ¢ = (z,y, 6y, 0;) where 6; — 0y # i—%. Actually, the
singularities at 6, = i—% are related with the domain of inversion: when calculating
0y in terms of x, vy, & = uy cos(ty — 99) cos By and y = uq cos(0; — Op) sin by, we have to

invert either tanf, = % or cot 6y = %

Thirdly, and most interestingly, the nature of the singularity at 6; — 6y = i—%
is completely different. It is an intrinsic singularity of the flat output h = (x,y), see
Section 1.3.1 for details, nevertheless the nonholonomic car is flat at 6; — 6y = ﬂ:% if
we choose another flat output! To see this, define two functions

hi(x,y,00) = xsin by — y cos by

hao(x,y,00) = x cos Oy + y sin b,
and consider the change of coordinates

Y1 = (?0

Y2 = hl(flf, Y, (90)

Ys = 712(557% (90) B
ys = cot(6y — 0y) — hi(x,y,60)

followed by the invertible feedback

V1 = Uy sin(91 — 90)
vy = uy(csc? (01 — 6p) — ha(2,y,00)) — uz csc?(01 — 6p),

which also brings .., into chained form, but this time around 6, — 6y = i—%,

Y1 =1
Yo = Y31
Ys = Ya1
Ya = V2.
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Thus (hy, hy) = (0, zsin 6y — y cos ) is another flat output of the nonholonomic car,
valid around 6; — 0y = :t%, but singular at ¢; — 6y = 0, £7 (notice that the same
singularity vy (t) = ui(t) = 0, as previously, occurs in the control space).

A series of natural questions arises: are there other flat outputs of the nonholo-
nomic car and, if so, how many and how to describe them? More generally, how to
characterize all flat outputs of any 2-input driftless control system and how to describe
their singular loci and singular controls? The aim of this chapter is to give complete
answers to those questions.

This chapter is organized as follows. In Section 1.2, we define the crucial notion
of flatness and recall a description of flat driftless 2-input systems. In section 1.3,
we give our main results. We characterize all flat outputs of driftless 2-input systems
and give a way of parameterizing them: it turns out that all flat outputs can be
parameterized by an arbitrary function of intrinsically defined three variables. We
also construct a system of 15 order PDE’s whose solutions are flat outputs of a given
system. Still in Section 1.3, we illustrate our results by describing all flat outputs of
some examples: nonholonomic car (1-trailer system) which we have just discussed and
then the n-trailer system. We prove our results in Section 1.4.

1.2 Flatness of driftless two-input control systems

Throughout this chapter, the word smooth will always mean C**°-smooth. Consider a
smooth nonlinear control system

=: &= f(x,u),

where © € X, an n-dimensional manifold and v € U, an m-dimensional manifold.
Given any integer [, we associate to = its [-prolongation Z! given by

0
z - f(a:,u )
W’ = ul
=l
ul _ ul—i—l’
which can be considered as a control system on X! = X x U x R™ whose state
variables are (z,u’ u!,..., u') and whose m controls are the m components of u*!.

0

Denote u' = (u°,ul, ..., ut).

Definition 1.2.1 The system = is called flat at a point (z¢,u}) € X' = X x U x R™,
for some [ > 0, if there exist a neighborhood O' of (xy, i})) and m smooth functions

hi = hy(x,u®ut, .. ul), 1<i<m,
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called flat outputs, defined in O, having the following property: there exist an integer
s and smooth functions v;, 1 <7 < n, and 9;, 1 < i < m, such that we have

T, = ’)/Z(h,, iL, ey h(s))

u; = 5Z(h, ;l, ceey h(s)),

where h = (hy,...,hy,)", along any trajectory x(t) given by a control u(t) that satisfy
(x(t), u(t),a(t), ..., u(t)) € O

The compositions 7;(h, h,..., R)) and &;(h, h,..., h(*)) are, a priori, defined in an open
set O C X = X x U x R™+) | The above definition requires that w(O**) > O,
where 7(x,u°T) = (x,4'), and that for all such (z,u**"), the compositions yield,
respectively, z; and w;.

If hy = hi(z,u®, ut, ... u"), r <1, we will say that the system is (x,u, ..., u")-flat

and, in particular, z-flat if h; = h;(x). In the case h; = h;(z,u°, ut, ..., u"), we will
assume that they are defined on 0" C X" = X x U x R™, where 7~1(O") D O! and
7 stands for the projection w(x,u®, ... u", ..., ul) = (z,u" ... u").

The notion of flatness has been introduced in control theory by Fliess, Lévine,
Martin and Rouchon [12], [13], [14] (see also [2], [25], [26], [56], [70], [77]), and has
attracted a lot of attention because of its extensive applications in constructive con-
trollability and trajectory tracking, compare [38] and references therein. A similar
notion (of underdetermined systems of differential equations that are integrable with-
out integration) has already been studied by Cartan [9] and Hilbert [21].

In this chapter, we deal only with two-input driftless (equivalently, control-linear)
systems of the form
X:od = filz)un + fo(x)us,
on an (n + 2)-dimensional manifold M, where f; and fy are C*-smooth vector fields
independent everywhere on M and u = (up,us)’ € R?. To this system, we associate
the distribution D spanned by the vector fields fi, fo, which will be denoted by D =
span { f1, fo}. Consider another 2-input driftless system

Sio& = fi(@)in + fo@) s,
where f; and fs are C**-smooth vector fields on M. Form the matrices f (x) =
(fi(x), fa(x)) and f(Z) = (fi(Z), f2(Z)). The systems ¥ and X are feedback equiv-

alent if there exist an invertible 2 x 2-matrix 3, whose entries [3;;, 1 < 4,7 < 2, are
C*°-smooth functions on M, and a diffeomorphism ¢ : M — M such that

De(x) - f(x) - Blx) = fe(x)).
It is easily seen that ¥ and ¥ are locally feedback~eq1~1ivalent if and only if the associated
distributions D = span { f1, fo} and D = span { f1, fo} are locally equivalent via ¢, i.e.,

Dy - D(z) = D(p(x)).
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The deriwved flag of a distribution D is the sequence of modules of vector fields
DO c DO C ... defined inductively by

D(O) — D and D(H—l) — D(l) + [D(l)’ D(l)]’ for 1 > 0.

The Lie flag of D is the sequence of modules of vector fields Dy C Dy C --- defined
inductively by

Dy=D and D,y =D;+ [Dy,D;], for i>0.

In general, the derived and Lie flags are different though for any point x, the inclusion
D;(z) € DY (x) holds, for i > 0.

A characteristic vector field of a distribution D is a vector field f that belongs
to D and satisfies [f, D] C D. The characteristic distribution of D, which will be
denoted by C, is the subdistribution spanned by all its characteristic vector fields. It
follows directly from the Jacobi identity that the characteristic distribution is always
involutive but, in general, it need not be of constant rank.

The problem of flatness of driftless 2-input systems has been studied and solved
by Martin and Rouchon [39] (see also [40] and a related work of Cartan [9]). Their
important result proves that a system is flat if and only if its associated distribution
D satisfies, on an open and dense subset M’ of M, the conditions

rankDW =i +2, 0<i<n. (1.2.1)

A distribution D is called a Goursat structure (also a ”systéme en drapeau” in [33]
and a Goursat flag in [42]) if it satisfies the conditions (1.2.1) at any point € M.
It is known since the work of von Weber [78], Cartan [9] and Goursat [18] that the
conditions (1.2.1) imply that on an open and dense subset M” of M, the distribution
D can be brought to the Goursat normal form, or equivalently, the corresponding
control system is feedback equivalent to the chained form:

(

21 = U1
Zo = z3U1
23 = 24U
ZChain : . (122)
Zn+l = Rp2U1
\ 2n+2 — '1.}2.

It is easy to see that Y, is z-flat with z-flat outputs chosen as h = (hq, ha) = (21, 29)
and provided that the control v; # 0 (compare Introduction, where we brought the
nonholonomic car to the chained form for dim M = 4). Giaro, Kumpera and Ruiz [17]
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were the first to observe the existence of singular points in the problem of transforming
a distribution of rank two into the Goursat normal form. Murray [45] proved that the
feedback equivalence of ¥ to the chained form Y, (or, in other words, equivalence
of the associated distribution to the Goursat normal form), around an arbitrary point
x requires, in addition to (1.2.1), the regularity condition (see Theorem 1.2.2 below)

dim DY (z0) = dim D;(z0), 0 <i < n. (1.2.3)

A natural question arises: can X be locally flat at a singular point of D, i.e., at a point
not satisfying the regularity condition (1.2.3)? In other words, can a driftless 2-input
system be flat without being locally equivalent to the chained form? Theorem 1.2.2
answers this question (in what concerns x-flatness).

Let D be any distribution of rank two such that rank D) = 3 and rank D® = 4.
Then there exists a distribution C; C D of corank one which is characteristic for D™,
ie., [C1,DW] € DW. Indeed, the above rank assumptions imply that (after permuting
f1 and fy, if necessary) there exists a smooth function a such that

[fo, [f1, f2)] = alfi, [f1, f2]] mod DW.

It follows that [fy — afi,[f1, f2]] = 0 mod DY) and hence C; = span{f, — afi}. Let
Using () be the 1-dimensional subspace of R? such that for any feedback control
(ur(x),uz(z))" = u(x) € Ugng(), we have fi(x)ui(z) + fo(x)us(z) € Ci(z) (clearly,
Using() is spanned by (a(z),—1)"). Any control u(t) € Ugng(x(t)) will be called
singular and the trajectories of the system governed by a singular control remain
tangent to the characteristic subdistribution C;. We have just given the definition of
Using () for dim M > 4 (since we have used rank D® = 4). If dim M = 3, we define
Using(z) = 0 € R%. Note that if [ = 0, we will denote a fixed control value by ug
(instead of more complicated u).

Theorem 1.2.2 Consider a 2-input driftless control system
Y:od = filz)ur + fo)us,

where x € M, an (n + 2)-dimensional manifold, n > 1. Assume that the distri-
bution D = span{fi, fa} associated to ¥ is a Goursat structure, that is, satisfies
rank DO =i + 2, for 0 < i < n, everywhere on M. Then the following conditions are
equivalent:

(1) ¥ is z-flat at (xg,uh) € M x R* Y for a certain | > 0;

(i) ¥ is z-flat at (zo,ug) € M x R?;

i) dim DO (zg) = dim Dy(wo) for 0 < i < n and ug & Using(20);

Y is locally, around xq, feedback equivalent to the chained form Yepam and ug &
Using(l"o)-

(iii)
(iv)

1v
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We assume that D satisfies rank D® = i 4+ 2, for 0 < i < n, so the characteristic
distribution C; and the set of singular controls Ugy,, are well defined. The above
theorem implies that a driftless 2-input system is never flat at (zg,ug) such that
Uy € Using(zo). Therefore any z-flat outputs (p1, p2) become singular in the control
space (at ug € Ugng) but they may also exhibit singularities in the state space M. To
formalize this, assume that a pair of functions (¢4, ¢2) defined in an open set M C M
are x-flat outputs at a point (xg,uq) € M x R?, that is, there exists a neighborhood
O C M x R? satisfying O C 7=!(M), where 7(z,u) = z, in which the conditions of
Definition 1.2.1 hold. If a pair of functions (¢1, p2), defined in M C M, is an z-flat
output at (x,u) for any 2 € M and certain u = u(z), where M is open and dense in
M., then by the singular locus of (1, p2), denoted by Sing(¢1, ¢2), we will mean the
set of points & € M such that (o1, p2) are not z-flat outputs at (z,u) for any u € R2.

The interest of the above theorem is two-fold. First, together with its proof, it
will allow us to characterize all z-flat outputs of driftless 2-input systems (see Sec-
tion 1.3). Secondly, it shows that a Goursat structure is z-flat at points xy satisfying
dim DY () = dim D;(z), for 0 < i < n, only, that is, at regular points of D. Martin
and Rouchon asked in [39] (see also [40]) whether a Goursat structure D is flat (dy-
namically linearizable) at points that do not satisfy dim D@ (x) = dim D; (). So our
result gives a negative answer to their question (for z-flatness). Any Goursat structure
can be brought to a generalization of the Goursat normal form, called Kumpera-Ruiz
normal form (see [33], [42], [52]). It follows that none of Kumpera-Ruiz normal forms
is z-flat (except for the regular Kumpera-Ruiz normal form, that is, Goursat normal
form). In particular, the system

T = Ts5ug
i’g = I3T5U1
T3 = T4T5uUy
Ty = w

i’g, = U3

\

which is historically the first discovered Kumpera-Ruiz normal form [17], is not z-flat
at any point of its singular locus {z € R® : # = 0}. This answers negatively another
question of [39].

It is known (see [27], [34], [42], [52]) that the model of n-trailer system is a
Goursat structure at any configuration point but is equivalent to the chained form
out of the singular locus only, that is, if all angles 6;,1 — 6; between two consecutive
wheels are not :t% (except for 6 — 6y which is the most far from the top of the train).
Therefore our theorem implies that at any singular configuration 6,,, — 6, = +7%

1 > 1, the n-trailer system is not z-flat.

The proof of Theorem 1.2.2 is given in Section 1.4.2 and is based on normal
forms at singular points (introduced in [33], [42], and [52] and called in the latter
the Kumpera-Ruiz normal forms) and on the following result which is of independent
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interest (as is also proved in Section 1.4.2). It turns out that flat outputs and the
chained form Y., are compatible: in fact, for any given pair of flat outputs (1, ¢2)
of a system feedback equivalent to Y., Wwe can bring the system to the chained form
Yehain for which ¢ and ¢, serve as the two top variables.

Proposition 1.2.3 Consider a driftless 2-input smooth control system X, defined on
a manifold M of dimension n+2, whose associated distribution D satisfies rank D) =
rankD; = i+ 2, for 0 < i < n. Given any pair (p1,92) of flat outputs at (xg,ug) €
M x R?, there emists a feedback transformation (¥, 3) around xy bringing the system
Y into the chained form Ycpan, given by (1.2.2), such that @1 = z1 and @y = 2.

1.3 Characterization of flat outputs

1.3.1 Main Theorems

Recall a useful result due to Cartan [9] whose proof can be found in, e.g., [40] and [51].

Lemma 1.3.1 (E. Cartan) Consider a rank two distribution D defined on a manifold
M of dimension n + 2, for n > 2. If D satisfies rank D@ = i +2, for 0 < i < n,
everywhere on M, then each distribution DY, for 0 < i < n — 2, contains a unique
involutive subdistribution Ciyy that is characteristic for DY and has constant corank
one in DV,

Theorem 1.2.2 implies that the only Goursat structures that are x-flat are those
equivalent to the chained form (equivalently, whose associated distribution D is equiv-
alent to the Goursat normal form). For this reason, we will consider in two theorems
below such distributions only. Moreover, any distribution equivalent to the Goursat
normal form obviously satisfies the assumptions of Lemma 1.3.1 and defines the invo-
lutive distribution C,_; that is characteristic distribution for D™=1 and of corank one
in D2,

Theorem 1.3.2 (Characterization of flat outputs, first version) Consider a
driftless 2-input smooth control system ¥ defined on a manifold M of dimension n+ 2
whose associated distribution D satisfies rank DO = rankD; = i + 2, for 0 <i <mn.
Fix xy € M and let g be an arbitrary vector field in D such that g(xg) ¢ Cp—1(xo) and
1, p2 be two smooth functions defined in a neighborhood M of xo. Then (p1, @) is
an x-flat output of ¥ at (o, uo), o & Using(z0), if and only if the following conditions
hold:

(i) dpi(mo) Adps(xg) # 0, i.e., dpy and dey are independent at xy;

(il) Lewr = Leps = Lc(éggf) = 0, for any ¢ € C,,_1, where the functions @, and
9
@y are ordered such that Lyp1(xg) # 0 which is always possible due to item (iii)
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below;
(ii) (Lgspr(wo), Lgp2(z0)) 7 (0,0);

Moreover, if a pair of functions (1, p2) satisfies (i) everywhere in M and forms an
x-flat output at (x,u) for any v € M and certain u = u(x), where M is open and
dense in M, then

Sing(pr, p2) = {z € M : (Lypi (), Lygal()) = (0,0)}.

Theorem 1.3.3 (Characterization of flat outputs, second version) Consider a
driftless 2-input smooth control system Y defined on a manifold M of dimension n + 2
whose associated distribution D satisfies rank D®) = rankD; = i + 2, for 0 < i < n.
Fix xg € M and let @1, s be two smooth functions defined in a neighborhood M of
xo. Then (¢1,¢2) is an x-flat output of X at (xo,up), uo & Using(%0), if and only if the
following conditions hold:

(i)' dei(x) A dpa(xg) # 0, i.e., dpy and dps are independent at xg;
(i)’ £ = (span {dy;,dp,})* € D" in M;
(iii)" D(xo) is not contained in L(xo).

Moreover, if a pair of functions (1, ) satisfies (1) everywhere in M and forms an
z-flat output at (z,u) for any © € M and certain u = u(x), where M is open and
dense in M, then

Sing(p1, p2) ={z € M:D(x) C L(2)}.

Remark 1. Notice that Theorem 1.3.3 is valid for any n > 1 (i.e., dim M > 3; if
dim M = 3, then (iii)’ is satisfied automatically) while Theorem 1.3.2 is true for n > 2
only (i.e., dim M > 4). In fact, in Theorem 1.3.2 we use the characteristic distribution
C,—1 of D1 but if dim M = 3, such a distribution does not exist and therefore
Theorem 1.3.2 can not applied in that case.

Remark 2. The two items (iii) and (iii)" describing the singular locus of an z-flat
output (¢1, 2) are equivalent (which will be shown in the proofs of the two theorems)
under the condition rank D@ = rankD; =i+ 2, for 0 < i < n, i.e.,

{r € M : (Lyp1(x), Lypa(x)) = (0,0)} ={x € M :D(x) C L(x)}.

Remark 3. The conditions of both theorems are verifiable, i.e., given a pair of func-
tions (1, p2) in a neighborhood of a point g, we can easily verify whether (o1, ¢2)
forms an z-flat output of a control system under considerations and verification in-
volves derivations and algebraic operations only (without solving PDE’s or bringing
the system to a normal form). Moreover, the theorems allow us to find the singular
locus of a given flat output (¢1, ¥2).

A natural question to ask is if there is a lot of pairs (¢1, p2) which satisfy the con-
ditions of Theorem 1.3.2 or 1.3.37 In other words, is there a lot of pairs (¢1, p2) which
are z-flat outputs for a 2-input driftless control system? This question has an elegant
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answer given by the following theorem. Recall that C,_; denotes the characteristic
distribution of D",

Theorem 1.3.4 (Uniqueness of z-flat outputs) Consider a driftless 2-input smooth
control system Y. whose associated distribution D satisfies rank D = rank D; = i + 2,

for 0 < i < n, locally around a point xo € M, an (n + 2) dimensional manifold.

Let g be an arbitrary vector field in D such that g(xg) ¢ Cn_1(xo). Then for a given

arbitrary smooth function ¢y such that L.y = 0, for any ¢ € C,—1, and Lyp1(z9) # 0,

there always ezists a function @y such that (o1, ps) is an z-flat output of 3 at (xo, up),

Uy & Using(0). Moreover, if for a given function @1 as above, the pairs (¢1,p2) and

(p1,P2) are both x-flat outputs of ¥ at (xo,ug), then

span {dp1, dps }H(z) = span {dp;, d@s } (),

for any x in a neighborhood of x.

Remark. Observe that z-flat outputs (A, ..., hy) and (hq, ..., hy) of a system with
m controls such that

span {dhy,...,dh,,} = span {dizl, o dizm}
can be considered as statically equivalent. Indeed, in that case there exist smooth func-
tions H; and H; of m variables such that h; = H;(hy,..., hy) and h; = H;(hy, ..., hy).
It thus follows from Theorem 1.3.4 that for a given arbitrary ¢; (satisfying the assump-

tions of the theorem), the choice of 5 is unique in the sense that all functions ¢ giving
x-flat outputs (1, o) yield, actually, statically equivalent xz-flat outputs.

1.3.2 Finding x-flat outputs

The importance of Theorem 1.3.2 is that it not only allows to check whether a given
pair of functions forms an z-flat output but also, together with Theorem 1.3.4, to
express explicitly a system of 1°* order PDE’s to be solved in order to calculate all
z-flat outputs for a given 2-input driftless system.

To this aim, choose n — 1 vector fields ¢y, ..., c,_1 spanning the characteristic
distribution C,_; of D=V, Recall that C,_; can be easily calculated as (see, e.g., [8])

Coor={f€ D=1 . fodw € (D("_l))l},

where w is any non-zero differential 1-form annihilating D™~ . Fix any vector field ¢
of D, independent at z with the characteristic distribution C,_; of DM, According to
Theorem 1.3.2 and Theorem 1.3.4, in order to find ¢, we have to solve the following
system of 15 order PDE’s

Loy = 0, 1<i<n—1,

Lypi(z0) #
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The above system possesses solutions (since C,_; is involutive) and the space of solu-
tions is that of functions of three variables (since corankC,,_; C T'M) = 3).

Now we will establish a system of equations for 5. According to Theorem 1.3.2,
it is given by
Leps = 0, 1<i<n-—1

L
L( 9‘”) =0, 1<i<n-L
Lg‘Pl

The last n — 1 equations are equivalent to
(Lgp1)Le;Lypa — (Lgpa) Le;Lypr =0, 1 <i<mn—1.

Applying Ly, gt = L, Lyt — Ly L. and taking into account that L., = L., g2 = 0,
we get

(ngpl)L[Cmg]%@ - (L[c@-,g}@l)LgSDZ =0,
which we rewrite as

Lyps=0, 1<i<n-—1,

where the vector fields vy, ..., v,_1 are given by

v = (ngpl)[chg] - (L[cng](pl)ga 1<1<n—-1.

We want to emphasize that the vector fields v; are easily calculable in terms of the
vector fields g, ¢y, ..., c,—1 and the chosen solution ;. So finally, we have to solve the
system L., o = L, oo = 0 which, surprisingly, consists of 2(n — 1) 1% order PDE’s
on an (n + 2)-dimensional manifold. We will show below that this system reduces,
actually, to n equations.

1.3.3 Reducing equations for ¢,

By Cartan’s Lemma 1.3.1 we have C; C Cy C --- C C,,_; and corank(C; C D(i_l)) =1,
for 1 < i < n—1. Thus we can always choose vector fields ¢, ..., ¢,_1 such that

Cn_1 = span{cy, -+ ,c,_1} and ¢,_1(xg) & Ch2(x0), i.e., C_g = span{cy, -+, Cp2}.
Fix a vector field g € D such that g(zo) € C,—1(x0) and clearly we have

D(n_2) = Span {Cla T, Cp—2,Cp—1, g}
We claim that the system

Logs = 0, 1<i<n-—1

» (1.3.1)
Lyps = 0, 1<i<n-—1,
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where v; = (Lgp1)[ci, 9] — (L, g101)9, can be reduced to a system of n equations. Since
C,_o is the characteristic distribution of D=2 we get

lciyg9] = Big mod Chq, 1<i<n-—2 (1.3.2)

where (;, for 1 < i < n — 2, are smooth functions defined in a neighborhood of xg.
The equation (1.3.2) implies that (recall that L.g; = 0, for any ¢ € C,,_1)

Li,,gp1 = Lgigo1 = BiLger. (1.3.3)

Therefore, for 1 <i <n — 2,

vi = (Lgp1)lci, 9] = (Liesg101)9
= (Lgp1)Big — Bi(Lgp1)g mod C,_4
= Omod C,_;.

It follows that the equations L., s = 0, for ¢; € C,—1, imply L,, 02 = 0,1 <@ <n—2,
and therefore the system (1.3.1) is equivalent to the following system of n equations

Logs =0, 1<i<n-—1

(1.3.4)
Lvn,1 Y2 = 07

where v,_1 = (Lg1)[cn-1, 9] — (Lic,_,,g%1)g- Notice that ¢, solves the system (1.3.4).
We are looking for a solution ¢y of (1.3.4), independent with ¢, and by Frobenious
theorem the system (1.3.4) possesses two independent solutions if and only if the dis-
tribution £ = span {cy,...,¢_1, -1} = Cp_1 @ span {v,_1} is involutive.

Below we will show that £ is, indeed, involutive and to this end it is sufficient to
show that [c;, v,_1] € £, for any 1 < i < n — 1. Since D™~ = span{ci,...,cn 1,9},
we have D=1 = D=2 1 [D(=2) D=2] = span{cy,...,cn 1,9, [ca_1,9]}. The fact
that C,_; = span {ci,...,c,_1} is the characteristic distribution of D™~ implies that

[¢i, [en—1, 9]l = &g + Tilen—1, g] mod Cpq, 1<i<n—1, (1.3.5)
where &;, 7; are smooth functions defined in a neighborhood of 2, and thus
L[Ci,[cnﬂ,gﬂgpl = fingol + T,’L[Cn717g](p1, 1<:<n—-1. (136)

Observing that

L[ci,g}gpl - Lcingpl - Lchi<P1 = LciLg<P1

(1.3.7)
L[cz-,[cnfugﬂ%pl = LCZ-L[cnq,g}SOl - L[cnq,g}Lci‘Pl = LCZ-L[cnq,g}SOl
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and applying the relations (1.3.2)-(1.3.6), we have, for 1 <i <n — 2,

[ci,vna] = ei (Lgpr)[en—1, 9] = [€i; (Lieor.g191)9]
= (Lgpr)lei; [en1, 9]l + (Le, Lgpr)[en1, 9] = (Lic,_1,901)[Ci5 9] — (LeiLic,—r g1P1)9
= Ly (&g + milen-1, 9]) + Bi(Lgpr)[cn-1, g]
—(Lie,_1,g01)0i9 — (&(Lgp1)g + Ti(Lie,_1,gp1)g) mod Cny
= (1i+ Bi)vp—1 mod C,_y

which implies that [¢;,v,_1] € £, for 1 <i < mn — 2. Now consider the case i =n — 1,
that is, the Lie bracket [¢,_1,v,—1]. Applying (1.3.5) and (1.3.6) for i =n — 1, we get

[cn1,vn1] = [cn1, (Lgr)[cn1, 9] [Cn (L[Cn 19}901)9]

)] —
= (Lgp1)len-1,[en-1, 91l + (Len 1 Lgtp1)[cn-1, 9]
_( [cn— 19301)[Cn—17 ] (Lcn 1 [Cn717g]901)g
= (Lgp1)len-1,[en-1,9]] = (Len—s Lica_1,9191)9

= gn—l( gS01)9+7'n—1( ggpl)[cn—lag]
_(gn—l(Lg‘Pl)g"‘Tn—l(L[cnq,g])g) mod C,,y

= Tpn—1Un—1 mod Cn—h

which implies that [¢,—1,v,—1] € L. In conclusion, the distribution £ is involutive and
hence the system (1.3.4) is solvable. Together with the analysis of Section 1.3.2, we
get the following theorem.

Theorem 1.3.5 Assume that a control system ¥ is x-flat at (o, uo), uo & Using(Z0),
that is, the associated distribution D is, locally at xo, equivalent to the Goursat normal
form on an (n + 2)-dimensional manifold M. Let C,_1 = span{ci,...,c,_1} be the
characteristic distribution of D"~V such that ¢, 1(x0) & Cn_2(70) and g any vector
field in D such that g(xo) & Cp—1(x0). Then

(i) For any smooth function v such that

Logir = 0, 1<i<n-—1,
Flat 1 ’
FRED L) # 0
the distribution £ = span{ci, ..., c,_1,v} is involutive, where

v = (Lgp1)[cn-1,9] = (Lie,_1,9101)9-

(ii) A pair of functions (1, p2) forms an x-flat output of ¥ at (x¢, up), o & Using(%0),
if and only if after a permutation (if necessary) p1 satisfies (Flat 1), dpi(xg) A
dgo(zo) # 0, and s satisfies

Lops = 0, 1<i<n-—1,

Flat 2
( . ) LUSO2 = 0.
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Remark. In (ii) only one implication may need permuting ¢; and ¢,. Indeed, if
(1, p2) satisfies (Flat 1) and (Flat 2), then it is an a-flat output (and no permutation
is needed). If (¢1,p2) is an z-flat output, then at least one p;, 1 < i < 2, satisfies
Lypi(xo) # 0 and we choose ¢q such that L,p;(zg) # 0.

Example 1.3.6 To illustrate the above-presented procedure of finding flat outputs,
we will consider the case of 2-input system

T = fl(x)ul + fQ(LU)UQ

on a 4-dimensional manifold M. Assume that the system is z-flat, that is, the associ-
ated distributions D = span { fi, f2} satisfies the conditions of Theorem 1.3.5. Choose
a vector field ¢ € C; characteristic for DY) and g € D such that g(zg) A c(zg) # 0.

According to above procedure we take as 1 an arbitrary solution of

Lcﬁpl = 0
Lypi(xo) # 0

and, in order to find ¢y, we have to solve

LCSO2
LvS02 -

where v = (Lgp1)[c, 9] — (L, g¢1)g- Notice that the above system of three 1% order
PDE’s contains a fourth one; indeed we have

Lyp1 = (LgQOl)L[C,ng - (L[ag]‘Pl)Lg‘Pl = 0.

The system
Lep; =Lyp; =0, 1<1<2, (1.3.8)

admits two independent functions ¢; and ¢, as solutions if and only if the distribution
span {c, v} is integrable. A direct calculation shows that this is the case. All becomes
clear: the involutive distribution span {c, v} is just the distribution £ of Theorem 1.3.3
while ¢, and s, satisfying (1.3.8) are z-flat outputs since their differentials span £+.
We also see that £ is not unique: different choices of ; lead to different vector fields
v which, in turn, give different distributions £ = span {c, v}, although all of them are
involutive and thus define (via span {dp;,dps} = L£+) non equivalent flat outputs.
This is in a perfect accordance with Theorem 1.3.4.

Example 1.3.7 (Vertical rolling disk) Consider a vertical disk of radius R rolling
without slipping on a horizontal plane. Denote by (x,y) the position of the contact
point in the zy-plane, and by 6 and ¢, respectively, the rotation angle of the disk and
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B \Vx
(z,y)

Figure 1.2: the rolling disk

the orientation of the disk. The controls u; and us allow the disk to rotate and turn.
This leads to the following model given by a driftless system on Q = R? x St x S!:

T Rcos ¢ 0
] Rsin 0

Ydisk ?; i ¢ uy + 0 s = frug + faus.
b 0 1

A direct computation shows that rank D® = rankD; = i + 2, for 0 < i < 2, and
C; = span{fi}. Therefore by Theorem 1.2.2, the model Yy is z-flat at any point of
its configuration space (). Moreover, it satisfies the hypothesis of Theorem 1.3.2, 1.3.3
and 1.3.4 and Ugyg is given by Usng = {u = (uy,u2)" : ug = 0}. Thus the singular
control corresponds to rolling the disk along a straight line. Now let us calculate all
its x-flat outputs by using the procedure given in the Section 1.3.2. We choose

0

0 0
c=f1 = Rcosgb% —I—Rsingba—y—l— 50’

and take g = fo = ((% Then as a first flat output we can take any function ¢,
satisfying the following system of equations
0 0 0
L.py = Rcosqb%jLRsin(bai;jL%EO
Lypi(q0) # 0.

Solving this system of equations, we get that ¢; is any function of the form

¢1 = 1(¢, v — R cos ¢,y — RO sin ¢)

satisfying %%(qo) # 0. Choose one such ¢; and then @5 is any function independent
with ¢, that satisfies L.po = L,p2 = 0, where the vector field v is given by

v = (Lgp1)lc, 9] — (Lie,gp1)9-

34



To illustrate this, choose the function ¢; = x — Rf cos ¢ around a point gy such that
Lyp1(qo0) = ROsin ¢ # 0 and then
0 0 0
v = R%*0sin? gb% — R?#sin ¢ cos qba—y — Rsin ¢a—¢.
Solving the system of equations L.ps = L,ps = 0, we get
Yo = po(x — RO cos ¢,y — ROsin ¢)

satisfying (dp1Adps)(qo) # 0. All such functions satisfy span {de1, dps} = span {d¢1, d@s}
and we can take, for instance, @, = y — Rfsin ¢. Moreover, the singular locus of the
a-flat output (x — RO cos ¢, y — ROsin ¢) is given by
Sing(pr,¢2) = {q€ @ (Lypr(q), Lgpa(q)) = (0,0)}
= {qeQ:0=0}
To see that sin ¢ = 0 is, indeed, not a singularity, we just permute ¢; and s.

To consider another possibility, we choose ¢; = ¢ and then we have
0 0
v = Rsin p— — R cos p—.
¢8x ¢8y
Solving the system of equations L.ps = L,ps = 0, we get

o = pa(¢p, RO — x cos ¢ — ysin @),

satisfying (dp1Adgs)(qo) # 0. We can take, for instance, s = RfO—x cos ¢p—y sin ¢ and
a simple calculation shows that there does not exist singular point of the z-flat output
(¢, RO—x cos p—ysin ¢) in the state space ). In other words, (¢, R —x cos ¢p—1ysin ¢)
is an z-flat output at any point (¢,u) € Q x R? provided that u & Ugng(q).

For various choices of functions, our result allows to eliminate them as candidates

for z-flat outputs. For example, we can conclude that if (1, p2) is an z-flat output,
= 0. fori—  Reosod - Resinod + 0 i

then L.p; =0, for ¢ = 1,2, where ¢ = R cos ¢8:c + Rsin (bay T g s a characteristic

vector field of DM, It follows that independently of the choice of ¢y, neither (z,s),
nor (y, ps), nor (0, ps) can serve as an x-flat output.

1.3.4 A complete description of z-flat outputs for the non-
holonomic car system

Come back to the example of the nonholonomic car ¥.,, that we analyzed in Section 1.1.

x cos(0y — 6y) cos by 0
. y | | cos(6y —by)sinby 0

Hear b | sin(6; — 6p) I ’
6 0 1
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We choose as a characteristic vector field ¢ = 0% and take
1

0

+ Sm(91 — 90)09 .
0

g = cos(f; — by) cos 90% + cos(6y — 6p) sin Hoaay

As a first x-flat output we can take any function ¢, satisfying L.p; = gggl =0 and

Lypi(q) # 0, that is any function ¢ = ¢1(x,y,6p) such that Lyp1(q) # 0. Let us
choose one such ¢ then @, satisfies L.y = L,y = 0, where the vector field v is given
by

v = (Lgpr)le, gl = (Licger)g

“ 96, “50 T e, 0y T ar

i1

osty + — dy

sin fy) —

00y

Therefore o can be taken as any functions s (1, y, 0y) satisfying L,po = 0 and (dg; A
des)(q) # 0. Given ¢; as above, the space of solutions for ¢ is thus parameterized by
one function of two variables but any two solutions s and @9 give statically equivalent
flat outputs, that is span {dy;,dps} = span {dp1,dPs}. On the other hand, different
choices of p; will lead to nonequivalent pairs (1, p2) of z-flat outputs.

To illustrate this, take ¢; = x, then v = cos@ogieo and L.ps = Lyps = 0

imply that ¢ is any function of the form yo(x,y) satisfying %%(q) # 0 (because of
(dp1 A dgs)(q) # 0). All such functions satisfy span {dx,dps} = span {dz,d@,} and
we can take, for instance, @5 = y. This gives the well-known z-flat output (z,y).

To see another choice, take ¢ = 6y, then v = — cos HO% — sin HO% and the

general solution of L.ps = Lyps = 018 pa = @o(by, xsin by — ycosby), which gives
as an z-flat output (0p, zsinfy — ycosby). Notice that the singular loci of the two
choices of z-flat outputs are different. In fact, Sing(z,y) = {61 — 6y = ﬂ:%} and
Sing(6y, xsin by — ycosby) = {01 — 0y = 0, £7}.

Now take ¢; = = + 6y around cosfy # 0, then v = —cos 908% — sinﬁo(% +

cos 908%0- Thus the general solution of L.ps = L,ps = 018 g = @o(x + Oy, y —
In|cosbyl)). We can take, for instance, o = y — In|cosfy| which gives a third z-flat
output (z + 0y, y — In| cosby|) of e, and its singular locus is defined by

Sing(x + 0o,y — In|cosby|) = {cosy = 0} U {cos(0; — 0y) cos by + sin(6; — 6y) = 0}.
1.3.5 A complete description of z-flat outputs for the non-
holonomic n-trailer system

Consider the kinematic model for a unicycle-like mobile robot towing n trailers such
that the towing hook of each trailer is located at the center of its unique axle (with the
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assumption that the distances between any two consecutive trailers are equal). The
n-trailer system is subject to nonholonomic constraints: it is assumed that the wheels
of each individual trailer are aligned with the body and are not allowed to slip [34] .
This model and its control properties have attracted a lot of attention (see the books
[35] and [36]; and the papers [13], [27], [46], [52], [73]). We use here the following
description introduced in [52].

Consider the n-trailer system X% defined on R? x (SH)"* for n > 0,
St 4= flQu + fal@uz, g€ R x (81",

where the vector fields f; and fy are given by

n—1
. . 0
J1 = mo cos 90% =+ TSI 90% + ZE:O Tir18in(0; 11 — 61)8—92
_ 0
12 = 90,
with m; = []}_;,, cos(¢j — ;1) and 7, = 1. The configuration of this system is

described by ¢ = (2,9,6¢,...,0,) € R* x (S1)""! where (z,y) denotes the position
of the last trailer while 6y, ..., #, represent the angles between each trailer’s axle and
the z-axis. According to Theorem 1.2.2, the n-trailer system is locally z-flat at any
(qo, uo) such that dim DY (gy) = dim D;(qo), 0 < i < n (equivalently D is equivalent
to the Goursat normal form at qo) and ug & Using(qo). The former condition yields
cos(0;0 — 0;—10) # 0 and the latter means that ug = (u10, ug) satisfies u1g # 0. In
other words, the n-trailer is z-flat along a trajectory ¢(t) besides those time instances
to at which the angle between two consecutive trailers becomes :I:% (besides the angle
between the last trailer and one before the last which can be any) or those instance at
which the velocity ¢(tp) becomes tangent to aien, that is, the whole n-trailer movement
stops.

Let D be the distribution associated to the n-trailer system i, that is D =
span { f1, fo}. It is easy to check that rank D = i+ 2, for 0 < i < n + 1 and that,
see e.g., Lemma 4.10 in [52], the characteristic distribution C; of D@ for 1 < i < n, is
given by

0 0
Ci =span{cy,...,c;} = span{aen,...,aen_iﬂ}.
Taking
) i )
g = fl = Ty COS 90% + o Siﬂ@oa—y + iz:;ﬂ'i_;_l sin(@i“ — Hl)a—el,
we have clearly D% = span{c,...,ci11,9}, for 1 < i < n — 1, around any point

qo such that cos(#; o — 0;—10) # 0. According to the analysis performed in Section

1.3.2, and summarized in Theorem 1.3.5, as a first flat output around a given point

g € R?* x (SH)"! we can take any function ¢ satisfying L., = %Sgl = 0, for
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< i < n, and Lypi(q) # 0, that is any function ¢ = ¢1(z,y,0) such that

1
Lyp1(qo) # 0. Let us choose one such ¢; and then ¢, has to satisfy

Lcigp2 = 0, 1<i<n

1.3.
Lvnﬁp2 = 07 ( 3 9>

where v, = (Lg1)[cn, 9] = (Lie,.g%1)g (notice that the dimension of the state space is
n + 3). The conditions L., ps = 0, 1 < i < n, imply that ¢y = po(z,y, 6) and now we
consider the equation L, ¢o = 0. We have

n—1

g=ng+ Y _ mirsin(@i1 —0;)cnita,
i=1

where i = [[7-, cos(f; 11 — 6;) and

0

g = cos(0; — by) cos 902 + cos(6y — 6p) sin 902 0
0

O 8y + Sm(@l — 90)

Recall that around gy under consideration ;19— 0,0 # :|:72T So 1 # 0 and by a direct
calculation we check that L, s = 0 if and only if L; s = 0, where

Un = (Lgp1)len, 9] = (Lica,gi1)d

dpy 0 0Oy 0 01 opr . 0

———costp— — ——sinfy— + (— cos Oy + 2L Gin 6 )
0 0 Oz 0T oy )90,

Given any @1 = ¢1(x,y, 6p) such that Lyp;(qo) # 0, the space of solution of Lg, w2 =0
is clearly parameterized by one function of two variables. Moreover any two solutions
@y and @y give equivalent z-flat outputs span {dp;,dps} = span {dp;,dps} = L+,
where £ = span{ci,...,c,, v} = span{cy,...,c,, 0} (as we have already discussed
in Section 1.3.3). This equivalence is very easy to proved and so we omit it here.
Therefore o can be taken as any functions ¢y = o(z,y, 6p) satisfying Ls, @2 = 0 and
(dp1 A dgg) () # 0. The space of solutions is thus defined on {gq : n*(q) # 0}, i.e.,

{q 20 —0; # i%}
Take ¢y = x, then v, = cos@oﬁieo and L. ps = L, p2 = 0, for 1 < i < n,

imply that s is any function of the form ¢(x,y) satisfying % (qo) # 0 (because of

(dp1 A dps)(qo) # 0). All such functions satisfy span {dx, dps} = span {dz,dp-} and
we can take, for instance, o = .

To see the other choice, take ¢, = 6y, then

Uy, = —(:08903 — sin fyp— 0

ox dy

and the general solution of L., o = Lj, po = 018 w3 = pa(by, x sin by — y cos ).
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It is interesting to notice that the family of all z-flat outputs of the n-trailer
system coincides with the family of all z-flat outputs of the nonholonomic car, more
precisely of the car defined as the tail consisting of the last and one-before-the-last
trailers (those indexed , respectively, by ¢ = 0 and i = 1) controlled by towing (forward
and backward) and rotating the one-before-the-last trailer. Indeed, the family of z-flat
outputs coincide because they are given by any ¢, = ¢1(z,y, 6p) and any oz, y, b))
satisfying Lg, o = 0 (for the n-trailer) and L,, 2 = 0 (for the car) but, clearly, these
two equations are equivalent (compare Section 1.3.4).

1.4 Proof of main theorems

1.4.1 Useful results

In this section we give a series of results that we will use in the subsequent sections
when proving our theorems. We start with a weaker version of Proposition 1.2.3
proving that the statement of the latter holds on open and dense subset.

Lemma 1.4.1 Consider a driftless 2-input smooth control system ¥ defined on a man-
ifold M of dimension n+ 2. Let @1, @3 be two functions defined on M. If (o1, p2) is
an x-flat output at (xo,uo) then there exists an open nezghborhood M of xg and an
open and dense subset M such that around any point ¢ € M there ezist coordinates
(21, .-+, Zna2) in which X is locally feedback equivalent to the chained form Yepam, given
by (1.2.2) such that v1 = 21 and ps = 2.

Proof:  Let (p1,p2) be an z-flat output of ¥ at (zg,up). There exists an open
neighborhood M of zy such that (@1, p2) is an z-flat output at (x,u) for any x € M
and u = u(x). It is known (see, e.g., [14], [26], [56]) that the differentials of flat output
are independent at xy and thus we put x; = @1, 95 = @, and complete them to a
coordinate system £ = (21, Za, ..., Tp4a). Consider the (2 x 2)-matrix D = (D;;) given
by Dij = Lgpi, 1 < 4,5 < 2. It is immediate to see that rankD(q) < 1, for any
q € M. Indeed, if the rank were two then by a suitable invertible feedback u = ((z)v
we would get

Y1 = L1, T =10

P2 = T2, Tg = Vg
which contradicts the flatness assumption because <p§j ) = vz-(j _1), for 1 < i < 2, and
any ] > 1, and thus the coordinates z3, ..., x,12 cannot be represented as functions

of <pZ , J > 0. Therefore on an open and dense subset M’ of M, rank D(q) = 1, for
q € M. After applying around any ¢ € M a suitable invertible feedback u = ((z)v,
the system becomes

T = g1(z)v1 + g2()ve,
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where the flat outputs and their derivatives are
Y1 = 21, Ty =0
P2 =1Ta, Tz =1P(T)0y
with ¢ (z) being a smooth function. Consider the vector fields

n+2
0

g1 = 32—1+¢32—2+ Zglz(iﬂ)a—xz

n+2

g2 = 2922 03:, .

We claim that for any ¢ in an open and dense subset M” of M’ there exists p such
that

Lg, Lt 4 = 0, for 0< u<p—2,

Ly, L () # 0,
and, moreover, that p = n for any ¢ € M”. In other words, p = n is the relative
degree of the single-input system & = f + vg, where f = g1,9 = g2 and v = vs.

To prove our claim, first, observe that p exists on an open and dense subset M”
of M'. If not, on an open set in M’, we would have Ly, Lt ¢ = 0 for any pu > 0,
which contradicts the flatness of ¥ since vy could not be expressed in terms of <p§j ),
1 =1,2, 5 > 0. Thus p exists and is locally constant on an open and dense subset
M" of M” with a priori different constant values on different connected components
of M". We claim that on each connected component the constant value of p is n.
On one hand, we have p < n since Lg,p1 = Lg,¢0o = 0. On the other hand, if p < n,

then we put 0y = (Lg, L0~ "p)vy + (LA ¢)vy which is an invertible feedback, because

of the definition of p. Now knowing ¢; and 5, we can obtain vy = ¢q,9 = %, by
differentiation p — 1 functions Lf 1 = W 1 < < p—1, and finally the control o,.
This gives 2 controls and p + 2 < n + 2 functions, so one function among x3, ..., T, o
is missing. This contradicts the flatness assumption. We thus have proved that on an

open and dense subset M" of M’ the relative degree p is well defined and equals n.

Fix an arbitrary ¢ € M", we can assume that ¥(q) = ¢1;(q¢) = 0, for 3 < i < n+2
(if not, we replace x; by x;—k;xq, for 2 < i < n+2, where ks = 1(q) and k; = g1,(q), for
3 <i < n+2). We claim that the differentials of the functions @1, x5, v, L1, . . ., Ljﬁ‘lw
are independent at ¢ € M". To this end, we will use the following result (see, e.g.,
Isidori [24]): if two vector fields f and ¢g and a function ¢ satisfy

Lgp = LyLsp = = LygLi ¢ =0, LyLi'¢ =\,
where A is function, then for any 1 < j7 <k —1,
k— k—i—
Ladjtg(é = Lad;g(quﬁ) == Lad] (L E 2¢) = 07 Ladjtg(Lf ! 1¢) = _)\
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We apply this result to f = g1,9 = g2,¢ = ¥ and k = n so, in particular, A(q) # 0.
Since, Lg,¢o1 = 0 and Ly, ¢ = 1, it follows that

Ladglgz‘Pl = Lig1,091 = Lg Lgyp1 — Ly, Lg 01 =0

and by induction we prove easily that L 4 g1 = 0. Moreover, 1 = L, o implies
1
that
Lad9192(p2 == Lad3;192(p2 =0
Lady g202(q) = (—1)" Ly, Ly pa(q) = (=1)" Ly, Ly " 90(q) # 0

Putting Ladgl g P2 = A and evaluating the differential forms d;, dLé W, 0<7<n—1
on the vector fields gz, ady, ga, . .., ady, g2, 91 we get (notice that Ly, o = )

d
o 0 0 0 1
Y2 -
dab 0 0 A
aL, o | (02adng, . ad; 00 01) = e oo
. 0 (=)™ A
n:_ (—=1)"\ * *
dLgl !
The determinant of the above matrix is nonzero since A(q) # 0, and therefore the
functions 1, w2, ¥, Ly, 0, ..., L2f1¢ are independent. It follows that
21 = ¥
22 = ¥2
<3 = 9
24 = Lglw
fnt2 = ngl—l

is a valid local change of coordinates in a neighborhood of any ¢ € M = M", in which
the system after applying feedback 0y = vy, 0y = (L}, 1))v1 4 (Lg, L7~ "1p)v (invertible
since (Lg, Ly~ ') (q) # 0) takes the chained form Yepaim (1.2.2). O

Although the above lemma was proved at generic points only, it implies the
following result in a whole neighborhood of the point zy, under consideration. Recall
that for any Goursat structure D we denote by C,,_; the characteristic distribution of

D=1 (see Lemma 1.3.1).

Corollary 1.4.2 Consider a Goursat structure D on M of dimension n + 2, that is,
rank DY = i+ 2, for 0 < i < n, hold everywhere on M. If the associated control
system X is x-flat at (xg,ug) € M X R?, ug & Using, then for any x-flat output (o1, 02)
at (g, ug), there exists an open neighborhood M of xqy in which we have L.p; = 0, for
1=1,2 and any c € C,,_1.
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Proof: Let (¢1,¢2) be an a-flat output of ¥ at (xg,u). By Lemma 1.4.1, there
exists an open neighborhood M of zy and an open and dense subset M of M such
that around any g € ./\/l the system ¥ is feedback equivalent to the chalned form X cpain,
given by (1.2.2), with ¢ = 2z; and ¢y = z5. We have C,,_; = span{az TS +2}

and hence Lep; = 0, for i = 1,2 and any ¢ € C,_; on M and hence on M (since M
is dense and the functions ¢; as well as the distribution C,,_; are well defined on the
whole M). O

1.4.2 Proof of Theorem 1.2.2

We will show the implications (iii) = (iv) = (ii) = (i) = (iii).

(iii) = (iv): It is a well known result (proved by Murray in [45]) that dim D (x4) =
dim D; (), 0 < i < n, are necessary and sufficient for local feedback equivalent to the
chained form.

(iv) = (ii): It is obvious for a system the chained form Y. given by (1.2.2),
that o1 = 21 and py = 25 yield flatness for v; # 0 and the latter means that we can
take in (ii) any ug & Using(0)-

(ii) = (i): Obvious.

(i) = (iii): This is the only difficult implication. Its proof will be based on
Corollary 1.4.2 and on the result that assures that any Goursat structure can be
brought to the following polynomial normal form, called Kumpera-Ruiz normal, as
proved by Pasillas-Lépine and Respondek [52] (see also Mormul [42]):

Theorem 1.4.3 (Kumpera-Ruiz normal form) Assume that n > 2. Any Goursat
structure defined on a manifold M of dimension n+2 is locally equivalent, at any point
xo in M, to a distribution spanned in a small neighborhood of zero by a pair of vector
fields that has the following form:

Z(H%)(Z ) +C)ax8+ +8x?+1>’ f2:8ix? (1.4.1)

=0 j=0

where the coordinates x;, for0 < i< m+1and 1 < j < k;, are centered at xg
(that means that x(xo) = 0); the integer m is such that 0 < m < n — 2; and k;, for
0<i<m-—1, satisfyko >1, ..., km1 >1, k>3, kppyr =1 and2m+1k-:n+2.
The constants cé-, for1 <5 <k;—1, are real constants.

Remark. In the above normal form, the integer m gives the number of singularities
of the Kumpera-Ruiz normal form. When m = 0, the Kumpera-Ruiz normal form
coincides with the Goursat normal form (since in this case all constant cé- can be
eliminated).
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In order to prove (i) = (iii), assume that ¥ is z-flat at (g, u}), for a certain [ > 0,
and that there exists an integer 2 < i < n such that dim D@ (x) # dim D;(x). Since
D is a Goursat structure and dim D (x4) # dim D;(xg), for certain 2 < i < n, by The-
orem 1.4.3, there exists a new coordinate system (zf,...,29 ... 27, ... & 2"
in which D takes, in a small neighborhood of zero, the Kumpera-Ruiz normal form
withm > 1and > " ks =n+1,ie., D =span{fi, fo} where f; and f, are given by
(1.4.1). A direct calculation shows that

0

]+

D()—span{ i, 1<5<ky—1,
1

oz 0af

and C; = span{—ag —ag} 1 <j < ky— 1. Observing that

ory’ T ox
5 m i-1 ; ki—1 ) 0
5 io’fl} :;(]lek) ;(x e i)
and
8 8 ko—1 a
a—ﬁ—fl :cgo[a go,fl} ;(m +C)8x2+1

we then get

Do) —  plko—1) + ['D(ko—l)’ 'D(ko—l)]

m i—1 ki—1
= span{%,...,%,%ag(Hxi)(z(x +C)8x?+1 8fz+1>}

0
1 ko i=1 j=1 J=1
and Cy, = span {% ey &rg }. In the same way, we obtain that
1 0
Cri+i = Ci, @ span{ ?H s },
J

for 0 <i<m,1<j <k and k,, +j < n— 1. Therefore, finally, the characteristic
distribution C,_; of D™~ is given by

0 0 0 0

Coq =span{—,...,——, ..., ——,...,——— b = (span {dz!* _,,dz/" , da 1)+

n—1 p {ax? al,g 8x§n 8:62” _2} ( P { km—1 km 1 })

0 m

For simplicity, we denote the coordinates xy’ _,xj n,x{““ by 1, y2, y3, respectively,

and denote the remaining n — 1 coordinates x% by xq,...,2,_1, that is,
J
(Z’,y):(l'l,.. y Lp— 1ay1ay2>y3) (zga"'axgow"ax?lna-'-ale ! xk,L>$m+l)
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In (z,y)-coordinates, the control system ¥ associated to the Kumpera-Ruiz normal
form (1.4.1), reads as

7y = ux

Ty = Yalr,y)us
VKR Tpo1 = Yao1(T,y)us

(7 = x.01(7,y)us

Yo = x0T, y)us

ys = 203, y)us

\
where 3, (2, B3 and v;, for 2 < j < n — 1, are smooth functions defined in a neigh-
borhood of 0 € R"™2, 1 <r < n — 1 is an integer, and the characteristic distribution
C,,_1 is given by

0

cey a[L’n_l

0
Cn—1 = span {01' - } = (span {dyy, dys, dys})™*.
1

By our assumption, Ykg is a-flat at (0,u)) € R™2 x R2+1 and let (p1,¢3) be an
x-flat output defined in a neighborhood O of 0 € R"*2. Being a Goursat structure,
Ykr satisfies dim D@ (2) = dimD;(z), 0 < i < n, for any z = (z,y) in an open and
dense subset O" of O and by Corollary 1.4.2 and the form of C,,_;, we conclude that

dp1 B D2

ox;  Ox;
holds in O" and since O’ is dense in O, also in O. It follows that ¢; = @;(y1, Y2, y3)
for i = 1,2. Moreover, the fact that (1, ¢2) is an z-flat output at (0, @) implies that
©1, P2, 1, P2 must be independent at (0,ug) € R"2 x R?, where uy = (u19, ua0), (see,
e.g.,[14] and [56]). Calculating the derivatives ¢;, for ¢ = 1,2, we get

=0,1<:1<n—-1,

3
. a : )
i = ZxrﬁjUZ a;j - E(x7yla 92>?/3>U2)a 1= 1, 2.

j=1 !
Then ) ,
— OF; OF; OF;
dy; = dF, = ' . — o dy; + — - duy, i=1,2
v ;azj x]+;0yj y]_l—@uQ 2
and at (0, ug),
OF;

d(pZ(O, UO) = dE(O, UO) =

e (0,up) - dz, i =1,2,

which implies that
(d(pl A d(pg A ngl A dQOQ)(O, Ugo) = 0,

independently of the value of ug, which gives a contradiction. Therefore if a sys-
tem associated to a Goursat structure is z-flat at (z,u}), for some 1}, then we have
dim D (z4) = dim Dy(x), 0 < i < n.
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1.4.3 Proof of Theorem 1.3.2

Proof: Sufficiency: Take any 2-input system whose associated distribution satisfies
dim D (z) = dim D;(z) = i + 2 everywhere in a neighborhood of zy and choose two
functions fulfilling (i) — (iii). We can bring ¥ to the chained form Y., given by
(1.2.2), in coordinates (z1, . .., z,12), transforming zy into 0 € R™"*2 and its associated
distribution is given by D = span {g1, g»}, where

_ 0 o ... 0
91_371+23372+ +Z"+2m
g

2= aZn—|—2 ’
The characteristic distribution C,_; is given by

0

LB ) -~
8Zn—l—2

)

0
C,_1 = span {8—z’ .
4

and the condition L.p; = 0, for any ¢ € C,,_1, of item (ii) implies that ¢; = p;(21, 22, 23),
for i = 1,2. Item (iii) implies that there exists ¢; (say 1, if not we permute) such
that Ly, ¢1(0) = g—fll(O) # 0. Due to (i) we can complete ¢; and ¢y by a function

©3(z1, 22, z3) such that (dp; A dps A des3)(0) # 0 to introduce new coordinates z; =
wilz1, 22, 23), 1 <1 < 3, followed by Z; = z;, 4 <i < n. We have

Zi == wi(zh 22723724)1,[,1, 1 S i S 37

where ¢; = Ly, ;. Since 11(0) = Ly, ¢1(0) # 0, we apply invertible feedback @, = ¢y uy
to get

;

Z1 =
Z = oty
¥ Z3 = sug
z = z«m%, for 4<i<n+1
] 1
Zn+2 = Ua.

\

Notice that the characteristic distribution C,_; = span{a%, ce a%} (since z; =
4 n+2

Yi(21, 22, 23), for 1 < i < 3). It thus follows from L. <£91£i> =0, c € C,_1, that
g1

~2 — wQ(Zlu 29, 23, Z4)
wl(zlu 22,23, Z4) 5

rank D™ = rank D,, = n + 2 implies that O (0) # 0 and a direct calculation shows

is actually a function of z;, Z5, Z3 only. Moreover, the condition

~ 824 ~
that Lg, Lk 1y = 0 for 0 < pp <n—2 and Ly, L2 "45(0) # 0, where
e R e B e R Yo M- 12~ S
0=z T Von T es TUen T T B
- _ 0
B2 = g2,y
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Therefore the function 1, satisfies the condition of ¢ from the proof of Lemma 1.4.1,
and following that proof we can thus bring the system to the chained form (1.2.2),
with (1, 2) = (21, Z2) which proves that (@1, ) is indeed an z-flat output at (zg, ug),
uy ¢ Using(ib’o)-

Necessity: Assume that 3 is az-flat at (2, ug), wo & Using(z0), and let (p1, p2)
be its z-flat output defined in a neighborhood M of xy. It is well known (see [14],
[26], [56]) that des (o) A dpa(xg) # 0. By Lemma 1.4.1, we can bring ¥, around any
point ¢ € M (open and dense in M), into the chained form ., given by (1.2.2),
with ¢, = 21, s = 25, and xg is transformed into zy = 0 € R"*2. We have C,_; =
span {%, e 828 }. By a direct calculation we get that Lyp;(0) # 0 for any g € D

such that ¢(0) & C,_1(0), and that L.p; = L.py = Lc(éggf) =0, for any ¢ € C,,_;
g

and ¢ as above, which gives the item (ii) on M. Now observe that the flat outputs
1, o are well defined in M and so is the characteristic distribution C,_; (since the
distribution D associated to ¥ satisfies rank D®) = i4+2, 0 < i < n everywhere in M).
It follows by continuity that L.o1 = Leps = (Lgp1)(LeLgpa) — (Lyw2)(LeLyp1) = 0
holds also on M thus implying (ii) on M.

It remains to prove (iii). Bring ¥, locally around zy € M, into the chained form
Y chain, given by (1.2.2) (which is always possible by the assumption of theorem). Then
item (ii), which we have just proved on M, implies that ¢; = ¢;(z1, 29, 23), for 1 <7 <2
and g = % + zg% + 24% mod C,,_;. If for ¢ = 1 or 2, we have Lg<p2-(a) # 0, then
(iii) holds. So assume that L,p1(0) = Lyp2(0) = 0 implying B_( ) = 6%2(0) = 0.

We have 9 5 9
(,bl - ( Spl +Z ()01 +Z4 S01)U1 = (CL+bZ4)U1

0z " 0z 0z3
@2 — (gf2 + 23 %f2 + 4%§02)U1 = (C+dZ4)U1

and thus ¢;(0,ug) = ¢2(0,u9) = 0, where g stands for the value of the nominal
control. Defin M = {z € M : (Lypi(2) = Lypa(2) = (0,0)}. On M we, clearly,
have z; = (1, 02, ¢1,92), 1 < i < 3. We claim that around 0 there must exist
smooth functions ~;, for 1 < i < 3, such that z; = v; (1, 2, 1, $2) that coincide
with 4; on M. Indeed, from the definition of flatness it follows that z; = v;(@5, @3),
for some s > 0. But if s > 1, then there exists nontrivial relations 7; = 4; on M
contradicting differential independence of ¢; and ¢ (see [14], [26], [56]). We have
1 = v1(21, 22, 23), P2 = @a(z1, 29, 23) and since %%1(0) = 3%2(0) = 0, it follows
that z1 = (@1, Y2, 91, P2), where v; depends explicitly on ¢;, but the composition
(@1, P2, 91, P2)(21, 22, 23, 24, u1) depends actually on zi, 29, z3 only. Notice that ¢y
and ¢, are linear with respect to u; and affine with respect to z, which implies that

(ad — bc) = 0 (in order that it does not depend on z4), and that 7 is a function of
a+ bzy a+ bzy Hor c+dzy
c+dzy c+dzy a+ bzy

(in order that it does not depend on u1). However neither
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is smooth at 0. Therefore L,p;(0) # 0 for at least one 1 < i < 2 and the item (iii)
holds as well. The above analysis also shows that at any point z € M that satisfies
Lypi(z) = Lypa(x) = 0, the pair (o1, ¢2) fails to be an z-flat output. In other words,

Sing(p1, p2) = {x € M1 (Lypr(2), Lypa(w)) = (0,0)}.

O

Now we will show how Proposition 1.2.3 follows from Theorem 1.3.2.
Proof: (of Proposition 1.2.3) Let (¢1,p2) be a pair of z-flat outputs at (zg, ug),
Uy & Using(0). Then (1, o) satisfy the items (i) — (iii) of Theorem 1.3.2 and we can
follow the procedure described in the sufficiency part of that theorem in order to bring
Y} into the chained form Y .;, such that ¢; = 21 and g = 25. O

1.4.4 Proof of Theorem 1.3.3

Proof: Sufficiency: We will prove separately the cases dimM = 3 and dimM > 4.

Case (I): dim M =3
Let @1, ¢s be any functions satisfying (i) and (ii)’. Introduce coordinates z; = ¢,
Ty = 3 and complete them to a coordinate system (1, zo,x3), centered at 0 € R3.
Choose two vector fields g1, go such that D = span{gi, g2}, £ = span{g2}. We have
G1(0) & L£(0) and thus there exits a function ¢;, for i = 1,2, such that Lg ¢;(x) # 0,
say Lg ¢1(zo) # 0. Define
1 i
51 P1

The associated control system & = u1g1(x) + usgo(z) is

91:L

Lt‘l = Uy
Lt‘g = w(x)ul
Lt'g = T](ZL’)UQ

where 1 and 7 are smooth functions. We have 7(0) # 0 and we can suppose that
¥(0) = 0 (if not, replace x5 by x5 — ¢(0)z;). The condition dim DW(0) = 3 implies
that g1, go and [g1, g2] are independent at 0 € R* and hence %(O) # 0. Replacing 3
by 1 and applying feedback to normalize 1&, we get

i’l = Uy
Ty = T3uy
i’g = U2

for which (1, ¢2) = (21, 75) is an z-flat output at (0,ug), where uy = (ug, usg)"
such that u1g # 0. To see that u;g = 0 is not a singular control, introduce the new
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coordinate To = x9 — x123 to get

jfl = U
Ty = —T1Us
T3 = U

for which (@1, @2) = (%2, 23) is an x-flat output at (0, ug) such that usg # 0. If follows
that the singular control is Ugye = {(0,0)} only.

Case (II): dim M > 4
Take any 2-input system whose associated distribution satisfies dim D@ (z) = dim D;(z) =
i+2 everywhere in a neighborhood of x and choose two functions fulfilling (i)’ — (iii) .

We can bring 3 to the chained form (1.2.2) in coordinates (z1,. .., z,12), transforming
7o into 0 € R™™2, and its associated distribution is D = span {gi, go}, where
g1 = %‘FZZS%_'_"'_'_Z”_’_Q%H
__0
92 an—i-Z )
The characteristic distribution C,_; is given by
0 0
Cph_1=span{—1,...,—}.
! P {82’4 aZn+2 }

Item (ii)" implies that C,_; C £ = (span {dp,dp,})*. Indeed, if there was a vector
field f € C,_, such that f ¢ £, then D"~V = £ + span{f} and hence

D = D= L (DD DD = £ 4 span{f} + [f, £] = £ + span{f} = D"~V

which contradicts the condition rank D™ = n +2 . Therefore C,,_; C £ holds indeed.
Consequently we have L.p; = 0, for ¢ = 1,2 and any ¢ € C,_;, which implies that
@i = @i(21, 22, 23) for i = 1,2. Moreover observing that g, € C,_1 C L, by item (iii)’ we
conclude, ¢g; ¢ £, which implies that there exist ¢;, 1 <14 < 2, such that L, ;(0) # 0,

says ¢ = 1. In other words, we have L, ¢;(0) = g—fll(O) # 0. By (i)’ we can complete

1 and 9 by a function @3(z1, 22, 23) such that (dp; A dps A dps)(0) # 0 to introduce
new coordinates Z; = ¢;(z1, 22,23), 1 < i < 3, followed by Z; = 2;, 4 < i < n. The
remaining part of the proof follows the same line as that of Theorem 1.3.2.

Necessity: Assume that ¥ is z-flat at (2o, ug), uo € Using(%0), and (¢1, o) is an
x-flat output at (xg,up), defined in a neighborhood M of zy. It is well known (see
[14], [26], [56]) that dep; (7o) A dga(zg) # 0. Now we will prove the item (ii)". Clearly,
Lemma 1.4.1 applies and thus there exists an open and dense subset M C M with the
properties claimed by the lemma. Around any x € M, there exists a local coordinate
system (z1,..., Z,40) such that z; = @1, 25 = ¢y in which ¥ takes the chained form
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Yehain (1.2.2) and x is transformed into 0 € R™2. Then by a simple computation we
get

0 0 o 0 0
D = — T ey Ty —}
Span{82n+2, 8zn+1’ ' 823’ 821 * 2385132
Hence
L = (span {dpy,dps})* = (span {dz;,dz})* = span{i 9 i} c pY
1 2 1 2 azn+2, azn+1 gov ey 023 .

Now consider a point € M \ M. The distributions £ = (span {dy;,dg,})* and
D=1 are of constant rank and they are well defined at any point of M. Assume
that £(z) = (span {de;(z),dps(x)})* ¢ D™V (x), then, because of constant ranks
of £ and D"V the inclusion does not hold at any # in an open neighborhood O
of z. Clearly, M N O # () which gives a contradiction. In conclusion, we have
L(z) = span{dg(z),dps(x)}*+ ¢ D"V (z) for any point x in M. Observe that
D(xo) ¢ L(xo) holds if and only if there exists a vector field g; € D such that

(Lgip1(x0), Ly, pa(x0)) # (0,0),

which is just the item (iii) of Theorem 1.3.2. This shows the equivalence of the two
singular loci defined in Theorem 1.3.2 and Theorem 1.3.3 and proves, due to Theo-
rem 1.3.2, the necessity of (iii)’. O

1.4.5 Proof of Theorem 1.3.4

Proof: The results of Section 1.3.2 and Section 1.3.3 show that for a given arbitrary
smooth function ¢, such that L.p; = 0, for any ¢ € C,_1, and L,p1(x) # 0, there
always exists a function s, independent with ¢y, such that (1, o) is an z-flat output
of ¥ at (xg, up), up & Using(z0). By Proposition 1.2.3, we can introduce new coordinates
by z1 = ¢1, 20 = @9 and complete them to a coordinate system (zy, ..., z,12) in which
our original system X takes, via a feedback transformation, the chained form

p

21 = U
Zé = 230U
Z3 = 24U
2v:hain :
Zn+l = Rnt2 U1
\ “nt+2 = U2

Suppose that there exists another function @, such that (@1, 92) = (21, P2) is an a-flat
output of ¥ at (zo, up), ugp € Using(%0). Clearly, (¢1,@2) is also an a-flat output of

Ychain at (0,70), Vo & Using(0). Take g = 3%1 + 235% + -4 Z”“@%ﬂ and let C,_;

be the characteristic distribution of DY, where D is the associated distribution of
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Ychain- By the result of Section 1.3.2 and Section 1.3.3, the function ¢o must satisfy

the equations
Lc@2 - 07 Vee Cn—lu
Lv(ﬁg - 0

where v = (Lgp1)[cn-1,9] = (Ljc,_1,g%1)9 and c,—1 = 8iz4' Solving the above system

of equations, we get Po = {Pa(21, 22) : %%(O) # 0}. Thus

span {dp1,dps}(2) = span{dz,dz}(2)

0 0
= span{dz, —afz (z)dz; + —8(,52 (z)dz2}(2)
1 2

= span{dy1, dp2}(2),

for any z in a neighborhood of 0. Correspondingly, for the original system ¥, the
above equality is true for any point in a neighborhood of xg. OJ

Let Flat(¢1) be the codistribution spanned by the differentials of all z-flat out-
puts determined by function 1, i.e., Flat(¢1) = span{dp,dps}, where ¢y is any
function such that (pq, p9) is an z-flat output. Clearly, Flat(y,) is well defined be-
cause of Theorem 1.3.4.

Corollary 1.4.4 If Flat(p,) = span{dg;,dgps}, then

Flat(p1) = Flat(ps)

This corollary is easy to prove and here we omit its proof.
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Chapter 2

The geometry and flatness
property of the n-bar system

2.1 Introduction

The well known n-trailer system was proposed by [34] to model a unicycle-like robot
towing trailers. This nonholonomic model has attracted a lot of attention and has been
a source of inspiration to study its various properties: controllability ([34]), structure
([27], [42], [52], [73]), flatness ([13], [26]), motion planning and tracking ([35], [46],
[53]), optimal control ([35]), etc. In this chapter we propose its generalization, which
we call the n-bar system, consisting of a “train” of n rigid bars subject to nonholonomic
constraints (see a detailed description in Section 2.2.2 below). We study the geometry
of the model of the n-bar system and prove that around any regular configuration
(that is, none of the angles between two consecutive bars is :t%), the control system
associated to the n-bar system is feedback equivalent to the m-chained form. This
implies that the n-bar system is flat around any regular configuration and we show
that the cartesian position of the source point of the last (from the top) bar is a
flat output. We show also that all other minimal flat outputs are equivalent to that
one. This is in contrast with the n-trailer system for which the position of the last
trailer is also a flat output but there is a whole family of not equivalent flat outputs
(parameterized by one function of three variables, see Chapter 1). As a by-product of
our consideration we deduce the global controllability of the n-bar system since it is
accessible at any (regular or not) configurations. We send the reader to [71] and [72]
for another, although similar, model for the n-bar system (called there an articulated
arm) and for a detailed analysis of singular configurations.

This chapter is organized as follows. We define our model of the n-bar system in
Section 2.2. We provide geometric notions and recall a characterization of Cartan dis-
tributions CC" (R, R™) (m-chained forms) and given our first main result, equivalence
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of the n-bar system in R™"! to the m-chained form, in Section 2.3 and its proofs in
Section 2.4. The flatness property of the n-bar system is analyzed in Section 2.5. In
Section 2.6, we give a proof of technical Lemma 2.4.1 which is used in Section 2.4.

2.2 n-bar system in R”*!

In this section, a model of the n-bar system will be proposed with which we will work
throughout this chapter. In order to do that, we analyze first the model of a rigid bar
moving in R? and then we will extend it to the general case of n-bar system moving
in R™+1,

2.2.1 Model of a rigid bar moving in R?

Consider a rigid bar moving in R?* which is described by a vector ]ﬁ , where P; =
(z}, 22, 23) for i = 0,1. Tt it assumed that the endpoint P; of the bar can rotate freely
when the source point P, remains fixed and that the bar moves in such a way that
the direction of the instantaneous velocity of P, is parallel to the direction of the bar

PyP;. For simplicity, the length of the bar is assumed to be one.

Figure 2.1: the rigid bar in R?

No matter how the bar moves, its position can always be determined uniquely
by the source point Py and the endpoint P;. Therefore the configuration of the bar
system can be described completely by x = (x}, 23, 23, x1, 23, 23) € R®. At the same
time, the assumption of |PyP;| = 1 implies that these six variables must satisfy the
following holonomic constraint

Y(r) = (21 — 20)* + (2] — 2g)” + (27 — 2p)* —1 =0 (2.2.1)

which is the equation of the unit sphere S? in R3 centered at F. The holonomic
constraint (2.2.1) reduces the dimension of the configuration space of the bar system
to five. In fact, if we consider only the rotation of the endpoint P, with respect to the
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source point Py, the former belongs always to the sphere S? with center Py and radius
1. Hence the configuration of the bar can be described completely by the position of
the point Py € R? together with the position of the point P, in a unite sphere S2. In
other words, the true configuration space is the cartesian product Q = R? x S?, which
is a submanifold of R® given by

Q= {z cR®:y(zx) =0}

Notice that the equation (2.2.1) implies that there exists an index j, for 1 < j <
3, such that $]1 — xé # 0, say j = 1. Then the assumption tlﬂ)the direction of
the instantaneous velocity (i, 42, 43) of Py is always parallel to PyP; introduces two
nonholonomic constraints:

3

{ (27 — @)y — (2] — 25)3F =
(1'? - 550)1"(1) — (21 — fo)jf

which geometrically means that the velocity (i}, 42,43, 1,42, 49)7 is always annihi-

lated by the two following differential 1-forms:
(2% — 2§)dwg — (21 — xg)dag

(27 — xg)dag — (z1 — xg)dag.
The distribution £ on RS, annihilated by the above two differential forms, is given by

&= span {917 e ag4}a

where
g1= (ot = ) gor + (0 — ) gl + (o = ) s

0 _ 0
g2 ax 9 g3 - 01%7 g4 a ?
and it defines the control-linear (driftless, in other words) system on RS

4

Ayt = Zgi(x)vi, z € RS,

i=1

where w1, us, usz, us are four arbitrary functions of time can be interpreted as controls
(and will do so throughout). In order to obtain a kinematic model of the rigid bar
we have to constrain the system Ay, to its true configuration space (). The crucial
observation that the intersection T'Q) N £ defines a distribution D of constant rank
equal to 3 on @ and thus gives rise to the kinematic model of the rigid bar moving
in R3,

Do 4(t) € D(q(t)), ge€R® xS
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Locally, we can choose three independent vector fields fi, f, f3 on () such that D =
span { f1, f2, f3} which yields a local representation of the bar system

Char 4= fi(@Q)us + fo(q@)ua + f3(q)us, g€ R x S2

To summarize, the model of the rigid bar system I',,, is defined by the system Ay,;,,
together with the holonomic constraint

(x) = (2t —ab)? + (@2 — 222+ (23 —23)? —1=0.

Notice that we do not express the distribution D explicitly, however, all its properties
can be deduced by means of the distribution £ and the holonomic constraint (2.2.1).

The configuration space R? x S? of the rigid bar system I}, can also be inter-
preted in a natural way through the classical rigid body theory. To analyze the motion
of a rigid body, we choose an inertial reference frame (O, x,y, z) and a body reference
frame (O, 2',y’, ') that is fixed to move with the body (thus the point O’ coincides
with the source point P, of the rigid bar system). Then the position of the body is
specified by the vector r = % € R?, along with the orientation of the orthogonal
frame {z/,y, 2’} relative to {z,y,z}, which is determined by a (3 x 3) orthogonal
matrix R belonging to the group of special orthogonal matrices

SOB3,R)={ReGIB3,R)|RR" =1, detR=1}.

Now consider the rigid bam)oving in R3 and let the origin O be the source point
Py. Notice that the bar FPyP, can be looked at as such a Lhin rigid body that its
rot@)ns arﬂ)educed to the rotations of the unit vector Oz’ of the z'-axis, which
is PpP, = O'2/. The configuration space is thus the quotient SO(3)/S0O(2) = 52
with SO(2) corresponding to the rotations preserving the plane 'O’y’. We find again
that the configuration of the bar system is described by the position of the point
O’ = P, € R? together with the position of a point of a unit sphere S?, that is, the
configuration space is R? x S2.

2.2.2 Model of the n-bar system moving in R™*!

In this section we will consider the n-bar system moving in R™*!, as shown on Fig-
ure 2.2, and derive a kinematic model for it. It is assumed that all n components of the
n-bar system are attached in such a way that P, is the source point of the (i+1)-th bar
and simultaneously the endpoint of the i—t_hl?ar and that the instantaneous velocity
of the point P; is parallel to the vector PP, 4, for 0 < ¢ < n — 1. Furthermore, each
rigid bar is assumed to have length one. The coordinates of P; in R™*! are given by

Py=(xl,22,--- 2™, 0<i<n.

R a2
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Figure 2.2: the n-bar system in R™*!

Clearly, the configuration of the n-bar system can be described completely by
the (n 4+ 1)(m + 1) coordinates

1 m+1 1 m+1 1 m+1 o n+1)(m—+1
(:L'O’...’xo ’xl’...’xl ’...’l’n’...’xn )EX_R( )( )

Due to the assumption |P; P 1| = 1, for 0 < i < n—1, we have the following holonomic

constraints
U(x) =0,

where U = {W,--- U, }: X = ROHDH) _ R™ i given by

Ui(a) = (oh— )+ (= )+ b (gt - 1
Un(r) = (25—} (23— ad)? 4o 4 (g — a2 - 1 22
ola) = (o —wh P (2 — a2 (= a2 - L

Under these n holonomic constraints, the true configuration space of the n-bar system
becomes the regular embedded submanifold @ = R™™! x (§™)" C X defined by

Q={reX:U) =0

Moreover, the equation W(x) = 0 implies that for any 1 < i < n, there always exists
1 <o(i) <m+ 1, such that ' '
27— 57 20,

Now th%lmption that the instantaneous velocity of the point P; is parallel to the
vector PPy, for 0 <4 < n — 1, imposes the following nonholonomic constraints on
the n-bar system: the velocity of the system along any trajectory is annihilated by the
following differential 1-forms

Qf = (if — $i_1)d$7£21) - (xf(i) - x;‘—(il))dxg—lj
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for1 <i<mn,1<j<m+1andj+# o(i). The distribution £ annihilated by all
forms Q7 is given by

&= ﬂkeng =span{gi, ..., Gnrms1},

ij
where
g = )l b T =)
g = g @ - O
(2.2.3)
o= )G e )
T 6‘%2’ 1<i<m+1,
which defines the control-linear system on X = R®+D(m+1)
ntm+1
A: &= Z gi(z)v;, xeX. (2.2.4)

i=1

To obtain a kinematic model of the n-bar system we have to constrain the system A
to the regular submanifold () C X. Consider the embedding ® : () — X such that
®(q) = q, for any ¢ € Q. Let J be the codistribution spanned by all differential forms
Qf , 1.e.,

J=span{Q, 1<i<n, 1<j<m+1,j#o(i)} (2.2.5)
Clearly J = &' and the pull back ®* maps J into a codistribution Z on @,

T=3"7 =span{w!, 1<i<n, 1<j<m+1,j#0c()}, (2.2.6)

where w/ = ®*Q/. Define a distribution D by D = Z*. Notice that D is just the
intersection 7Q) N € and is of constant rank equal to m + 1 (see Section 2.4.2 for
details) and thus gives rise to a control-linear system

m

' ¢= Zfz’(Q)Ui, g € R™x (5™)", (2.2.7)

=0

where locally D = span{fy,..., fi}, which describes completely the n-bar system
moving in R™*!. To summarize, the model I describing the n-bar moving in R+,
for m > 1, is defined by the control-linear system A, given by (2.2.3)-(2.2.4), together
with the following holonomic constraint

where ¥;, 1 < i < n, are defined by (2.2.2). Notice that, like in the case of R? described
in Section 2.2.1, we give explicit expression neither for the distribution D nor for the
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vector fields f;, for 0 < i < m. All their properties will be formulated and analyzed in
terms of the distribution £ and the holonomic constraint ¥(z) = 0.

Another, although similar model for the n-bar system (called articulated arm)
has been very recently introduced and studied in [71], and [72]; in the former a detailed
analysis of the singular locus (see also section 2.3.2) has been performed.

The presented model of the n-bar system in R™*! is a natural generalization of
the well known n-trailer system on R2. The latter is a model for a unicycle-like mobile
robot towing n-trailers such that the tow hook of each trailer is located at the center of
its unique axle (with the assumption that the distances between any two consecutive
trailers are equal). The n-trailer system is subject to nonholonomic constraints: it is
assumed that the wheels of each individual trailer are aligned with the body and are
not allowed to slip [34]. This model and its control properties have attracted a lot of
attention (see the books [35] and [36]; and the papers [13], [27], [46], [52], [73]).

Clearly the nonholonomic constraint that the wheel cannot slip on the plane
R? can be equivalently rephrased that the instantaneous VelociM) the middle point
of the i-th trailer axle, say point P;, is parallel to the vector PP, joining the two
consecutive axles. These are exactly our nonholonomic constl%int)s imposed for the
n-bar system, the only difference being to allow the vectors PP, to move in R™*!
and not on the plane R

2.3 Equivalence of the n-bar system to the m-chained
form

2.3.1 Characterization of Cartan distribution CC"(R,R™)

Consider an arbitrary distribution D. The derived flag of D is the sequence of modules
of vector fields D ¢ DU ¢ ... defined inductively by

DO =D and DY =DO 4 DD DO for i > 0.

The Lie flag of D is the sequence of modules of vector fields Dy C Dy C --- defined
inductively by
D(] =D and Di+1 = DZ + [DQ,Di], for ¢ Z 0.

In general, the derived and Lie flags are different; though for any point p in the
underlying manifold the inclusion D;(p) C DW(p) holds, for i > 0.

Two distributions D and D defined on two manifolds M and M, respectively,
are equivalent if there exists a smooth diffeomorphism ¢ between M and M such that

(p<D)(p) = D(p), for each point p in M.
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An alternative description of the above definitions can also be given using the
dual language of differential forms. A codistribution Z of rank s on a smooth manifold
M (or a Pfaffian system) is a map that assigns smoothly to each point p in M a linear
subspace Z(p) C T, M of dimension s. Such a field of cotangent s-planes is spanned
locally by s pointwise linearly independent smooth differential 1-forms wy,...,w, on
M, which will be denoted by Z = span {wy, . ..,w,}. In the case of constant rank we can
(locally) identity codistribution and Pfaffian system which we will do throughout this
chapter. Two codistributions (Pfaffian systems) Z and Z defined on two manifolds M
and M , respectively, are equivalent if there exists a smooth diffeomorphism ¢ between
M and M such that Z(p) = (¢*Z)(p) for each point p in M.

For a codistribution Z, its derived flag T > I > ... can be defined by
7O =7 and 7Y = {w e IO : dw = 0 mod TV}, for i > 0,

provided that each element Z®) of this sequence has constant rank. In this case, it is
immediate to see that the derived flag of the distribution D = Z+ coincides with the
sequence of distributions that annihilate the elements of the derived flag of Z, that is

DY = (TW)L] for i > 0.

Consider J"(R,R™), the space of n-jets of smooth maps from R into R™ and
denote its canonical coordinates by

0 ,.0 0 1 1 n n
Loy Ly oo s Ly Ly e oo s Loy oo e s Ty oo v s Loy

where 938 represents the independent variable and :E? for 1 < i < m, represent the

dependent variables, and ati ,for 1 <7 <mand 1 < j <n, correspond to the ordinary
3.0
derivatives dc(lxxozj 7. Any smooth map ¢ from R into R™ defines a submanifold in
0 .
JV(R,R™) = RFUMHL By the relation 2] = <p§”(x8), for1<i<mand0<j<n,
where (/)

(x)) denotes the j-th derivative with respect to ) of the i-th component ¢;
of ¢. This submanifold is called the n-graph of .

The Cartan distribution on J"(R,R™), denote by CC"(R,R™), is the completely
nonholonomic distribution spanned by the following family of vector fields

n—1 m

0 0
826‘0—’_22:6?4_18 37 8x"7 ey M

7=0 =1

or, equivalently, annihilated by the following family of differential forms:

do! —2/™dal, 0<j<n—1, 1<i<m.

7

It turns out that all n -graphs are integral submanifolds of dimension 1, that is integral
curves, of the Cartan distribution CC" (R, R™).

58



The problem of characterizing distributions that are locally equivalent to the
Cartan distribution CC"(R, R™) has been studied and solved in the following way by
Pasillas-Lépine and Respondek [54] (see also [42], [51], [79]). Recall that the Engel
rank, at a point p, of a codistribution Z = span {wy, - -+ ,ws} is the largest integer p
such that there exists a 1-form « in Z for which ((da)? Awy A -+ Aws)(p) # 0.

Theorem 2.3.1 A distribution D of rank m + 1, with m > 2, on a manifold M of
dimension (n + 1)m + 1 is equivalent, in a small enough neighborhood of a point p
in M, to the Cartan distribution CC™(R,R™) if and only if the following conditions
hold:

(i) D™ (p) = 1,M;

(ii) D"=Y is of constant rank nm+1 and contains an involutive subdistribution L,
that has constant corank one in D"V

(iii) D(p) is not contained in L,—1(p).

Moreover, if m >3, L,_1 exists if and only if the Engel rank of (D™ )+ equals one
and rank (D™~ V) = (n — 1)m and is given as

Loa=Fi+-+Fn,

where F; = {f € D™V ¢ fodw; € (D)LY and wi’s are any differential 1-forms
such that
7Y = (D)L = span{wy, ..., wm}.

Remarks 1. The involutive subdistribution £,,_;, whose existence is claimed by (ii),
is unique (if it exists) and it will be called the canonical involutive subdistribution in
D™=, The uniqueness and involutivity of £,,_; follow from a result of Bryant [7] and
have been shown in [54].

Remarks 2. Item (i) and (ii) describe the essential geometric property of distri-
butions equivalent to the Cartan distribution CC"(R,R™) while the condition (iii)
distinguishes regular points p at which D(p) ¢ L£,_1(p) form singular points, where
this last condition is violated.

The case m = 1 is excluded from Theorem 2.3.1 because if an involutive subdis-
tribution of corank one £,,_; C D"V exists it cannot be unique and therefore there
is no a canonical one. However, a ”non-canonical” version of Theorem 2.3.1 holds for
m = 1 as well, as proved in [54]: a rank-two distribution is equivalent to the Cartan
distribution CC"(R, R), called also a chained normal form or Goursat normal form if
and only if there exists a distribution £,_; satisfying the conditions (i), (ii) and (iii)
of Theorem 2.3.1.

Let a distribution D of rank m + 1, with m > 1, satisfy the items (i) and (ii)
of Theorem 2.3.1. The regular locus of D, denoted by Reg(D), is the subset of M
consisting of points at which D is equivalent to the Cartan distribution CC"(R, R™) at
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0 € R0+ It can be proved that Reg(D) is an open and dense subset of M; its
complement, called the singular locus of D, will be denoted by Sing(D). In the case
m > 2, since L,_1 is unique we clearly have

Reg(D)={pe M :D(p) £ L,,—1(p)}

and
Sing(D) ={pe M :D(p) C L,_1(p)}.

2.3.2 Main result: equivalence of the n-bar system to the
m~chained form

Consider two driftless systems

=0
and .
S k=) fi@)i = f(F)u, ieM,
i=0
where u = (ug,...,un)" € R™ 4 = (4g,...,10,)" € R™ and the rows f =

(fos---s fm) and f = (fo,..., fm) are formed by C*°-smooth vector fields f; and f;,
0<i<m,onMand M, respectively. We say that X and 3 are feedback equivalent
if there exists a diffeomorphism ¢ : M — M, & = (), and a feedback transformation
u = fB(x)u where [(z) is an invertible C*°-smooth (m+ 1) x (m + 1)-matrix such that

Dip(x) - f(2)8(x) = f(p(x)).
Definition 2.3.2 An (m + 1)-input driftless control system X : & = Y " u,fi(x),
defined on R™*TV™+1 is said to be in the m-chained form if it is represented by

-0 0

— ; — 1 ; — 1
Ty = Uy Ty = TyUp T, = x,,Up
@t o= atue - ET = alug

! = Ty = Unp.

A system in the m-chained form is also called the canonical contact system on
J"(R,R™). In fact, the vector fields fy,..., f, of the m-chained form coincide with
those generating the Cartan distribution CC" (R, R™) given in Section 2.3.1.

To any control-linear system Y, we associate the distribution spanned by all
its vector fields Dy = span{f,..., fin}. The (local) feedback equivalence of ¥ and
¥ coincides with the (local) equivalence of the associated distributions Dy, and Ds.
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Therefore the statement that a control system 3 is locally feedback equivalent to
the m-chained form (equivalently, to the canonical contact system on J"(R,R™)) will
always mean that the associated distribution Dy is locally equivalent to the Cartan
distribution CC" (R, R™).

In this section we will formulate our first main result. See [71] and [72] for
another approach to the problem of equivalence of the n-bar system (called there
the articulated arm system) to the Cartan distribution (and, more generally, to the
multi-flag system).

Theorem 2.3.3 The n-bar system I’ moving in R™ for m > 1, defined by (2.2.7),
is locally feedback equivalent to the m-chained form at any point v € X = RC+1(m+1)
satisfying W(x) = 0 (that is, at x corresponding to a point ¢ € Q) such that
m—+1
(R1) Z(mf —a] Nl —x))#£0,for 1<i<n—1,ifm>2;

=1
m—+1

(R2) Z(mf —zl_ )@l —x])#£0,for2<i<n—1,ifm=1.
j=1
Moreover, at any point q € Q (equivalently, at any point x € X = ROFVMHD sqpisfy.
ing ¥(x) =0), the n-bar system satisfies the condition (i) and (ii) of Theorem 2.5.1.

Remark 1. Let Dr be the distribution associated to the n-bar system I'. Define the
regular locus Reg(I') of I" as Reg(I') = Reg(Dr). Then Theorem 2.3.3 implies that
the regular locus of I' is given by

m+1

Reg(I) e ={z € X : ¥(z) =0, Zx—x Y@l —2])#£0, 1<i<n-1}

m+1

Reg(I) o1 ={z € X : ¥(x) =0, Zx—x wl,—xl)#£0, 2<i<n-—1}.

The condition ¥(z) = 0 implies that x is a point of () while the conditions (R1) and
(R2) identify the regular points of I' in Q. It is obvious that Reg(I") is open and dense
in the configuration space ) for both m > 2 and m = 1.

Remark 2. The regularity condition Zmﬂ(:cg — 2] )(xl,, —x]) # 0 has a clear
interpretation for the n-bar system. Let 91, for 1 <i <n—1, denote the angles Lthe>
(1 + %bar with respect to the ¢-th bar, i.e., the angles between the vectors P;_F;
and P;P; 1 on the plane spanned by them. Then clearly the regularity conditions mean
that 0; are different from :t%, in other words, the i-th bar is not perpendicular to the

(7 + 1)-th one. Using the angles 6;, the regular locus can be rewritten as
Reg(F)ngz{qEQ:Qi%ﬂ:g, 1<i<n—1}

Reg(F)mzlz{qEQ:Qi%ﬂ:g, 2<i<n-—1}
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It is interesting to observe the difference between the planar (m = 1) and all other
cases (m > 2). Namely, the angle :I:% between the last two bars (the two most far
from the controlled one) is a singularity for m > 2 but is not for the planar case.
The latter implies, in particular, that the 2-bar system in R? is transformable into
the chained form even if the bars are perpendicular. This is not true any longer if we
consider the 2-bar system in the space R™ m > 2 (in R3, for instance). Of course,
the 2-bar system in R? is just the 1-trailer system (a unicycle-like mobile robot towing
one trailer or, equivalently, a nonholonomic car) and it is well known that the system
can be brought into the chained form even if the axles are perpendicular. In other
words, the rank 2 distributions on 4-dimensional manifolds with the growth vector
(2,3,4) have no singularities, a result that goes back to [11].

Remark 3. The property of controllability of the n-bar system can also be obtained
from Theorem 2.3.3. Indeed, we have the following corollary.

Corollary 2.3.4 The n-bar system T is globally controllable on Q = R™ ! x (S™)".

2.4 Proof of Theorem 2.3.3

It is well known that (see, e.g., [27], [46], [52], [73] and Chapter 1 of this thesis) that
the n-trailer system (that is, the n-bar system on R™*! for m = 1) is locally feedback
equivalent to the chained form (that is, its associated distribution is equivalent to
the Cartan distribution CC"(R,R)) if and only if the angles between the consecutive
trailers are not +7/2, except E} the ar&) between the last two ones (equivalently,
except for the angle between PyP; and P P,). Therefore, we will prove only the case
m > 2 here. The proof of Theorem 2.3.3, for m > 2, will use Theorem 2.3.1. First,
the conditions (i) and (ii) of Theorem 2.3.1 will be verified for the n-bar system I
Secondly, we will prove that the regular locus Reg(I'),,>2 is just the set of the points
which satisfy the condition (R1) of Theorem 2.3.3. For simplicity, we denote the
associated distribution Dr by D and clearly we have D+ = Z where 7 is defined by
(2.2.6).

2.4.1 Notations

For convenience, we express J, the codistribution given by (2.2.5), in the following
form

j:Span{an 1 Slgnal S] Sm—}—]_aj7&0-(2.)}:Span{Q1>Q2>"'aQn}>

where Q; = (Q,..., Qq(i)_l, Qq(i)ﬂ, S, for 1< < n. Similarly, the codistri-

K3 K3

bution Z, given by (1.6), is expressed as

I:Span{wzja 1 SZS?’L,]. S] §m+17]7£0(l)} :Span{w1>w2>"'>wn}>
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where w; = (w!, ..., w7 IO WY for 1< < n.

7 [ 7 7

The following symbols will be used in this chapter:

(1) dX; = (dz},...,dz"th)

(2) AdX; = dz}A---Ada

3) AdXTY = dzl A Ad? DT A IO A da !
(4) A = QLA AQIITEA QIR AL A Q!
(5) Aw; = WA AT AT A A it

2.4.2 Condition (i): D™ =TQ

Let A*(Q) denote the space of smooth differential k-forms on @ and put A(Q) =
®AR(Q). An ideal of A(Q) is a subspace V of A*(Q) such that if a € V, then
aAp eV forany 5 € AQ).

Lemma 2.4.1 Consider the codistribution T defined by (2.2.6) and let (®*dX;) be the
ideal in A(Q) generated by ®*dx!, ..., ®*dz™™, then we have:

(a) dwf/\wi/\wiH:O, for1<i<n—1,1<j<m+1, and j # o(i),

() Aw; = (=1)"(27D = 27 Dym=2(Ad*d X7W) mod (9*dX;), for 1 <i<n—1;

(c) dwf/\wi/\---/\wl#o, for1<i<n,1<j<m+1andj+#o0o(i).

The proof of Lemma 2.4.1 is quite tedious and is given in Section 2.6. Below we will
show how Lemma 2.4.1 implies the condition D™ = T'Q.

If i = n, the condition (c) shows that dw) Aw; A~ Aw, #0,for 1 <j<m+1
and j # o(n), which imply that all differential forms wy, ws,...,w, are independent.
Recall that each w; consists of m differential 1-forms. Therefore 7 is of constant rank
nm and thus

rankD = dim @ —rankZ = (n+1)m+1—nm=m + 1.
Observe that
dw! = @*d
o*dzd A D da?" — 20z’ | A D*da?") — & da™ A Dl

It is obvious that the differential forms dw!, ..., dwl™ ™", dwq™™ ..., dw™*! are lin-

early independent on (). Consequently, all the differential formes

dwﬁ;/\wn/\---/\wl,
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for 1 <j <m+1and j# og(n), are also linearly independent on ). From condition
(a), we get easily that

dw Nwy A+ Awp, =0, 1<i<n—1,1<j<m+1, and j#o(i). (24.1)
Recall that the derived codistribution ZU! is given by
TW ={weZ:dw=0modT}.

For any w € Z, we have
n m—+1

where o € C*°(Q). Applying (2.4.1), we deduce

n m+1
doAwi A" Aw, = d Z Z a;-wg Awi A+ Awp
i=1 j=1,j£0()
m+1
= Z oz?-dwfl/\wl/w-#\wn.
j=1,j#o(n)

The differential forms dw) A w, A -+ Awy, for 1 < j < m+ 1 and j # o(n), are
linearly independent and thus dw A wy A -+ A w, = 0 implies that all coefficients o
must vanish, i.e., af =0, for 1 < j <m+1, and j # o(n). This shows that, indeed,
any w € (W can be always expressed by a linear combination of the differential forms

Wi, Ws, ..., wWy_1. In other words, we have
W = span{w;,wa,...,Wn 1}

In the same way, it can be shown that

7 = span{wi,wy,...,wWp o}
Im=Y = span{w}
™ = 0.

The expressions of the derived flag Z® > - .- D Z" show immediately that rank ) =
(n —i)m, and hence rank D® = (i + 1)m + 1. In particular, rank D™ = (n+ 1)m + 1
which implies that D™ = T'Q.

2.4.3 Condition (ii) : D(=1) contains a corank one involutive
subdistribution £, ; ¢ D"~V

Define a distribution IC on X = R+HDm+1) hy
0 0 0

T AT —
Ox] Oox} Oxm

K:span{ﬁil,..., yCTX.
1
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Let £ be the distribution on @ defined by £+ = &*(K1) | i.e.,
C— (IC)J‘ Ig LY —
Lemma 2.4.2 The distribution L is involutive and contained in D"

Proof: Since K is involutive and ®* (K1) = L+, the involutivity of £ is evident. Let
Jn—1 be the codistribution defined on X = R™+D+1) 1y

Tno1=span{Ql, 1<j<m+1, j#£o(1)}

where
j j ] o(l o(l o(l ]
O = (2] — 2d)daf"V — (27" — 2§V da].

Since K+ = span {da},...,da{"t!}, it is obvious that J, ; C K*. Recall that we
showed in Section 2.4.2

I =span{w!, 1<j<m+1, j#0o(1)} =T, 1.

Then clearly we have ®*(7, ;) C ®*(K*) and therefore Z("~1) C £+ which implies
that £ C DY, O

Lemma 2.4.3 L is of constant corank one in D™=,
Proof: Observe that
L+ = &*(K*) = span {®*dxy, ..., ¢ day ).
Since ®*dazj A -+ A ®*daf! # 0, we have rank £ = m + 1 and thus
rank £ = dim Q —rank £+ = (n+ D)m + 1 — (m + 1) = nm.
In Subsection 2.4.2, we proved rank D1 = nm + 1 which yields
corank (£ ¢ D™7V) = 1.

Define £,,_1 = L, then the condition (ii) of Theorem 2.3.1 holds. O

2.4.4 The regular locus of the n-bar system in R"*!

Proposition 2.4.4 The reqular locus of the n-bar system I' in R™*L, for m > 2, is

given by
Reg(D)mzs ={z € X : U(z) =0, > (v} —al )(al,, —a]) #0, 1<i<n—1}.
j=1
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For simplicity of exposition, we assume throughout this section that o (i) = m+1,
for 1 <i<n,i.e.,
gttt 40, 1<i<n.

7

We can always achieve this by a suitable choice of coordinates. Under this assumption,
the codistribution J = £+ on ROV is 7 = span {Q, 1 <i<n, 1 < j < m},
where

O = (2 —ah) dal_y — (2] —a]_y) dat

In Section 2.4.3, the subdistribution £,_; satisfying the conditions (i) and (ii) of
Theorem 2.3.1 was constructed. Since m > 2, £,,_1 is unique (see [50]). Therefore the
singular locus of the system I is defined by

Sing(l') ={q € Q :D(q) C Lr-1(q)}-

From the relation (£,_;)* = ®*K+ (defining £,_, = L, see Section 2.4.3) and 7 =
Dt = &*EL = d*J (see Section 2.2.2), we conclude that the singular locus of the
n-bar system I' can be expressed as

Sing(I') = {qe€Q:D(q) C Ln1(q)}
= {¢€Q:(Ln1)"(q) CI(q)}
= {geQ: DK (q) C 2 T(q)}.

Notice that ®*K+ = span {®*dz},. .., ®*dz™}, and
O*J =span {®*Q, 1<i<n, 1<j<m},

where ®*Q) = (z" ™ — 2™ N ®*da)_ | — (2] —2)_)®*da™!. Since £,_; and Z are both

of constant rank, we have immediately that the relation ®*Kt(q) C ®*J(q) holds if
and only if
O*dzg A APz A DO A A DR, = 0. (2.4.2)

By a straightforward calculation, it is easy to see that (2.4.2) is equivalent to
O dzg A APz APy A A DFQ, = 0.
Denoting & = ®*dad A -+ A &*dzg™ A O*Qy A - A D*Q,,, we thus have
Sing(T) = {q € Q : 6(¢) = 0}.
Lemma 2.4.5 Define the differential form ©y by
O = ®*dz; A - A O T A By,
then we have
O = (—1)™(ap ) — 2™ Ay - (APTAXTY A, A A BT da
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for 0 <k <mn—2, where /\(ID*d)u(;”Jrl = ®*dry A - A O*dx and

xk . —xh ot —al
_amtl ometl k+1 k 1 1 k+1 k - -
Aeir = (T — 20 ) + — mt1 (T2 = Tpgr) + + —nr1 — mt1 (Thto — Tha)-
L1 — Lg L1 — Lg

Proof: Differentiating the relation

Vi1 = ($11c+1 - xllc)z + (xiﬂ - xi)z + -+ (:L’Z"fll — :L'Z"“rl)2 —1=0

we obtain
1 1 m m
Tpq — T o, —x
m+1 __ m+1 k+1 k 1 1 k+1 k m m
dap™ = daoilly + o (Ao — dag) + -+ g (dag?yy — day?).
k1 — Tk Tht1 — Tg
Therefore, on the configuration space (), we have
.fL’l - .fL’l xm o xm
1 1 k41 k 1 1 k+1 k
O*daytt = o e+ (®*day, — P day)+ A —t (®*da , —P*da}).

k+1
+ m+1 l,m-l—l m+1 l,m-l—l

k-+1 k Lt k
Recall that
J o _ (,m+l _ m+l I m+1
Qk+2 = (xk+2 Lry )dka (xk+2 xk+1)dxk+1 )

for 1 < j < m, and substituting the latter into Oy, we get

O = ®*dzp A AT A DYy

1 1
Ti, — T
o * 1 * m * m—+1 k+1 k * 1
= (I)dl’k/\/\q) dl’k /\((I) dxk-ﬁ-l +mq) d$k+1+"'
L1 — Ty
ot —al
k+1 k * m *1 *(Yym
F gt DTAE ) AT A A DT
Lhy1 k

= (e —arthm s (AXTTY A Ot A D)y A A e,
1 1

x —x 9
m+1 m+1ym—1/.1 1 k+1 k m+1
—($k+2 = Tkt ) ($k+2 - $k+1)—m+1 —mtl (AXT)
Lpy1 — Tg
* 1 * m—+1 * 2 * m
AP dry NP dka AN @ dryp g A AN DTy,
a2, —al
m+1 m+1\m—1/_2 2 k+1 k vm—+1
_(xk+2 — Lkt ) (Thyo — xk+1)—m+1 — mtl (AdX)
L1 — Tg
* 2 * 1 * m+1 * 3 * m—1 * m
A dwy A P g, Az A PTday, y A - DN A @
ot —
m-+1 m+1\m—1/_.m m k+1 k v m+1
- (Ik+2 — Tpy ) ($k+2 - xk+1)—m+1 il (AX"T)
k+1 — Lk
* m * 1 * m—1 F % m—+1
AP*dzyl AP dap A AN D dka o dka
_ m(,.m+1 m+1\ym—1 * 1 vm+1 * 1 * 1 - m+1
where
1 1 m m
x —x T —x
_ m+1 m+1 k+1 k 1 1 k+1 k m m
Mot = (2 — o) + ST _ et L (Thro =)+ g (2 — 2
k+1 k Lt k
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Proof of Proposition 2.4.4: Applying lemma 2.4.5, we obtain

S = P'dzg A APz AP A A D,
— O AP QA - A D,
= (=)™ (aH — gl (AR AXETY A BFdal A - A DR A DR
AD Qs A -+ A D,
= (=)™ — LA (AP AXTTY A O A DA - A DHQ,

2
_ (_1)2m (H(xﬁ-—il_l o x;n-i—l)m—l) . ()\1 . )\2) . (/\(I)*dXSn-l-l) A (b*d)z'{n-‘rl
i=1
AD*day A - A O da) A O*dal T A DA - A DFQ,

2
= (=1)*™ (H(x?f{l — x;nﬂ)m—l) S Ag) - (ADFAXIHY) A FAX
i=1

ANOy A Qs A - - AN P*QY,

n—1 n—1
= (i (H@ml - m)m) - (H Ak) (ARt

i=1
Ao ADFAXTHEA Bl A BT

Notice that the differential forms ®*d X", ... &*dX™ 4 d*da! ..., &*da™ ! are

n—1
n—1

always independent on @ and H(m?fjl — "™ £ 0, so it can be concluded that

i=1
S(q) = 0 if and only if there exists 1 < k < n — 1 such that Ay, = 0. The latter holds
if and only if
Z(l'?c - x?ﬁ—l)(x?f-i-l — 1) =0

J=1

which, in fact, is equivalent to the orthogonality Py_1 P, L PyPy.1. Therefore Sing(") =
{q € Q: &(q) = 0} are equivalent to

m+1
Singl)={zxr e X :¥(zr)=0,31<i<n-1 st Z(xi —a_ )zl —x]) =0},
j=1
and
Reg(T) = {z € X : W(z) =0, S (@] — 2 )(wly, —a}) £0, 1<i<n—1}
j=1

68



2.5 Flatness of the n-bar system in R”*!

Consider a smooth nonlinear control system
= i=f(x,u)

where © € X, an n-dimensional manifold and v € U, an m-dimensional manifold.
Given any integer [, we associate to = its [-prolongation Z! given by

. 0
o= flz,u’)
=t
ul — ul—i—l
which can be considered as a control system on X! = X x U x R™, whose state
variables are (z,u% u!,..., u!) and whose m controls are the m components of u*!.

0

Denote @' = (u® ul,... u').

Definition 2.5.1 The system = is called flat at a point (z¢,u}) € X' = X x U x R™,
for some [ > 0, if there exist a neighborhood O' of (g, i})) and m smooth functions

hi = hy(x,u®,ut,. . u), 1<i<m,

called flat outputs, defined in O, having the following property: there exist an integer
s and smooth functions ;, 1 <7 < n, and 9;, 1 < i < m, such that we have

wp = 6(hh, ... A, 1<i<m,

where h = (hy, ..., h,,) ", along any trajectory x(t) given by a control u(t) that satisfy
(x(t), u(t),a(t), ..., uD(t)) € O

The compositions 7;(h, h,..., h(*)) and 6;(h, h,..., h(®)) are, a priori, defined in an
open set O** C X*t = X x U x R™+)_ The above definition requires that 7(O**!) >
O!, where 7(x,u*™") = (x,4'), and that for all such (x,u**!), the compositions yield,
respectively, z; and w;.

If hy = hi(x,u® b, ... u”), r <1, we will say that the system is (z,u, ..., u")-flat

and, in particular, x-flat if h; = hy(z). In the case h; = hy(z,u’ u', ... u"), we will
assume that they are defined on O" C X" = X x U x R™, where 77}(O") D O! and
7 stands for the projection 7(x,u’, ... ,u", ... u') = (x,u" ... u").

Let hq, ..., hy, be flat outputs of a system =. It has been observed in [57] that
there exist integers k1, ..., k,, such that

span {dxy, ... ,dx,,duy, ..., du,} C span{dhgj), 1<i<m, 0<j <k},
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and if at the same time
span {dxy,...,dz,,dus,...,du,} C span {dhgj),l <i1<m, 0<j <},
then k; < p;, for 1 < i < m. The m-tuple (ki,...,k,) will be called the differential

m-weight of h = (hy,..., hy,) and k = Z k; will be called the differential weight of h.

i=1

Definition 2.5.2 Flat outputs of = at (o, @})) are called minimal if their differential

weight is the lowest among all flat outputs of = at (zg, @)).

Let Using(x) be the m-dimensional subspace of R™*! such that for any feedback
control (ug(x), ..., um(z))" = u(x) € Usng(x) we have > 1" fi(z)u;(z) € C1(x), where
C1 C D =span{fo,..., fm} is the characteristic subdistribution of D). Any control
u(t) € Using(x(t)) will be called singular and the trajectories of the system governed
by a singular control remain tangent to the characteristic distribution C;.

The following theorem, given in [57], characterizes the minimal flat outputs for
systems that are feedback equivalent to the m-chained form (i.e., the canonical contact
system on J"(R,R™)), with m > 2.

Theorem 2.5.3 Consider the driftless control-linear system

Y &= Zfi(:)s)ui,

i=0
defined on a manifold X and let D = span{ fo, ..., fm} be the distribution associated to
Y. If X is locally feedback equivalent, at xo € X, to the m-chained form, with m > 2,

then the following conditions are equivalent:
(i) (Ln_1)* = span{dhq,...,dh,} around xq, where L,_, denotes the subdistribu-

tion that is involutive and of corank one in D"~ ;

(i1) ho, ..., hm are minimal flat outputs of ¥ at (xg, u"), where u® & Ugng(0).

Recall that the n-bar system, as defined in Section 2.2.2, evolves on its con-
figuration manifold Q@ = R™™! x (§™)" whose points ¢ € @ correspond to those
r € RN that satisfy W(z) = (¥y(x),..., ¥, (x)) = 0, where U;, for 1 <i < n,
are given by (2.2.2). The following theorem describes the flatness property of the n-bar
system I.

Theorem 2.5.4 (Flatness of the n-bar system) For the n-bar system I moving in

R™*L where m > 2, we have
(i) T is z-flat at any (qo,u") € Q x R™* satisfying
D) U(z) =0 and 7 N — 2l (2l — 27) # 0, where qo € Q is identified
j=1 7 i—1 i+1 i

with a point x € ROV satisfying W(x) = 0;
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(2) u® is such that the instantaneous velocity Py of the point Py is nonzero (and
thus the instantaneous velocities P;, 0 <1 < n — 1, are nonzero).

(ii) The coordinates of the source point of the last bar Py = (b, 22,..., 20" are
minimal x-flat outputs of T at any (g, u®) as above.
(iii) If ho, ..., hy, are any minimal x-flat outputs at (qo,u), then locally around qq

we have

span{dhy, . ..,dh,} = span{dzg,dad, ... daf "}

The item (iii) is in contrast with the planar case m = 1, where minimal flat
outputs are not unique and their totality is actually parameterized by an arbitrary
function of three variables (See a detailed analysis in Chapter 1). Another difference
between the planar case (m = 1) and higher-dimensional case (m > 2) is that in
the latter all angles ﬂ:% between two consecutive bars form singularities while in the

former the angle :t% between the last and one before the last bars (trailers) Py P; and
P P, is not a singularity.

Proof: The items (i), (ii) and (iii) are natural consequences of Theorem 2.3.3 and
Theorem 2.5.3. Theorem 2.3.3 assures that for m > 2, the n-bar system I is locally
feedback equivalent to the m-chained form at any point ¢y that corresponds to x €
R0+ satisfying W(z) = 0 and Y77 (af —a/_)) (2l —a)) #0,for 1 < i <n—1.
Moreover, it was proved in Section 2.4.3 that around ¢g, the subdistribution £,,_1,

which is involutive and of corank one in D"~V is given by

(L,1)" = span{®*dx},..., ®*dzp ™'}
= span {d®*z),...,dd* ).

Notice that on the configuration space (), we have always that @*xé = xé, forl1 <j <
m + 1. Thus according to Theorem 2.5.3, the coordinates of Py = (x§, 22, ..., zg"™")
are minimal z-flat outputs of I' around ¢y which implies immediately that I" is z-flat
at (go,u’) for some control u°. Before we characterize the control u", notice that
Theorem 2.5.3 implies that for control systems that are feedback equivalent to the
m-chained form, for n > 2,m > 2, the minimal flat outputs are equivalent in the
sense that for any two families of minimal flat outputs (ho, ..., hy,) and (fzo, . ﬁm),
we have span {dhq, ..., dhn,} = span {dhg, ..., dh,,}. In view of this and the item (ii)
of Theorem 2.5.4, any minimal flat outputs (hy,...,h,,) of the n-bar system satisfy
span {dhg, ..., dh,,} = span{dz},dz?,...,dzl""} in R™*! for n > 2,m > 2. This

proves (iii).

Now we are going to characterize the control u". According to the definition of the
flat output, the entire state and all the controls should be functions of the coordinates
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xg, w2, ... 2l and their derivatives. Recall the system A given be (2.2.3) and (2.2.4)

-] _ J J
o) = vz — )
A i : _ i , 1 <7< m+1,
; — J
xn—l - Un(xn xn—l)
7, = Un4j

and consider the system of equation for the z-variables

;

iy = vz — )
iy = (et —aj)
: (2.5.1)
gt =y (2 — gt
@) = S -1
A direct computation shows that
or = (@)% 4+ (@5)2)7 = m(Po, o), (2.5.2)

for some function 7;. Substituting (2.5.2) into (2.5.1), we get

o= whti = el(R R
2 2, 2 :
= aptn = ¢i(Ph)
m+1 m+1 gt m+1 :
for some functions o, for 1 <i < m+ 1. Put ¢; = (¢}, ..., "), we thus have
P1 = (I%,...,l{n—l—l)
= (SO%(POaPO)a"'>Q0T+1(P0aPO))
= »i(F, ).

In the same way, we obtain that, for 2 <1 < n,
v; = n;i(Pi-1, Pi—l) = 7i(Fo, PO, Po(z)> SR Po(i))

and '
Pi = SOi(Rl—lu Pi—l) = @i(P(]u P07 P(](2)7 .. ’7P0(Z)>7

for some functions 7; and ;. Finally, the controls v, ;, for 1 < j < m 4+ 1, can be
expressed by
'Un+j = flfj

n
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d . . .
_ E( I (Py, By, P2, ..., PMY)

— Tj(P(),P(),PO(2),...,P(](n+1)),

for some functions 7;. In this way, the entire state and all controls v;, for 1 < i <
n+m+ 1, are expressed as functions of the coordinates of Py = (z3,22,...,2f"") and
their derivatives up to order n + 1. The n-bar system I' has m + 1 controls while the
system A has n + m + 1 controls. So there must be n relations between controls of
A when restricted to Q = {z € X : U(zx) = 0}. We will see this below and at the
same time we will clarify the problem of singularities. Clearly, in order that the above
computations hold, all the controls v;, for 1 < i < n, cannot vanish. It is sufficient,
however, to assume that the control v; is nonzero since around any point = satisfying
U(x) = 0 and the regularity condition E;”:ll (v — 2l ) (2., — x]) # 0, the condition
vy # 0 implies that v; # 0, for 2 < i < n. In fact, differentiating the constraint

Ui(@) = (21 — 2)* + (2] —25)" + -+ (@7 —2p™)? =1 =0,

we get
1

2 (o] — )3 — (21 — x)ixp) = 0.
1

m

_l’_

J

Substituting &) = vy (x] — x)) and @] = vy(a, — ), for 1 < j < m + 1, into the above
equation, by a simple calculation we get

m+1
U1 = U2 Z(fc{ — zp) (3 — 7).
j=1
Recall that around any regular point gy, we have always that Z;’Zrll(x{ —a))(xh —a) #
0. Therefore, the condition v; # 0 implies that vy # 0 and similarly, it can be shown

that
m+1

Vi = Vit1 Z(:L’f - xg—l)(xg-i-l - SUZ),
j=1

for1 <i<n-—1and
m+1

Up = Z(xgz - xi—l)vnﬂ'-
j=1

The above equations show, first, that v; # 0 is equivalent to v; # 0, 1 < 7 < n.
Secondly, they show that there exist n relations between the controls v;, 1 <i < n +
m—+1, of A implying that the n-bar system possesses, indeed, m+1 controls. Moreover,
the condition v; # 0 (which yields v; # 0, 1 < i < n) implies that the instantaneous
velocity P, of the point Py is nonzero (and, consequently, the instantaneous velocities
P; of the points P;, 0 < i < n — 1, are nonzero). Therefore the condition (2) holds. [J

73



2.6 Proof of Lemma 2.4.1
(a). dw! Aw; Awiyr =0, for 1 <i<n—1,1<j<m+1,and j # a(i).

Proof: For simplicity, we assume that J < 0( ). The case of j > o(i) can be proved

in the same way. Since € = (27 — 27_)da7") — (279 — 27 )da?_,, we have

A = da? Adz?® — 2da? | Ada?® — a7 A dad .
Therefore
AU AQ = A AQIA - A QP
(-7 (@ — 27 9)™(AdX; 1) A dad
(=17 (2] - 95?—1)(95?(“ — xf_(il))m_l(/\dXi_l) A d:vf(i)
— (51 —|— 52,

where

5 = (=17 (27D — 27N (AdX, 1) Adad

)

1
G = +(=1)7 O (] )T = f ) (X ) A el

Suppose that o(i) < o(i + 1), a direct computation shows that

O A Qipr = (=170 (7@ — g Z Oy (] | — ad) (@l — 27Tyt
(NX; ) Az Azt A AT AT AT AL
x;r(z—i—l) /\x;r(i-l-l)—i-l A _._/\xm—l-l
m+o(i)+o(i+1)— o(i ot j j o(i+1 o(i+1)\m—
= (=)@t 7O Oy ] | — ) (@l — 27y
(AdX;—1) A dX;,
and
Go ANy = (=170 (e —ad (@7 — 27 (@l — o))
o1 1 crz 1 o7 7
(af i — D yme <,£1—a:>>

(AdX, 1) A dx"(” Adzt A A dz]DT A 2l A daf O

Ao AdaZFDTE A qoliFDFL L gt
:<—W”“”W“Wd—#1Nf”—xWN”%%H—¢>

(

g0 @ ym=1 00 _ 7Oy (Ad X, 1) A dX;.

i i+1

Differentiating the constraint

U= (@) — ol ) (22— P @ a1 =,



we get

(ah b )ddst = ke bt @ —a e - o —aP el =,

which implies that ®*dX;_; and ®*dX; are dependent on the configuration space Q).
Then

dwg A w; N\ Wit1 = (I)*(sz N Qz AN Qi—i—l)
O*(6) A Qg1 + 02 AQigy)

R (G R I [ A LN C )

i+1 i it1 T Ly
vl — )@l = ) (APt ) A 27X,

(2

(
(xU(H-l) xo(i-i-l))m—l(xo(i) U(i)> _ (xo(i) Cf_@)m
(

The case of o(i) > o(i+ 1) can be treated in a similar way. O

(b).  Aw; = (1)Y= 27 m=2(Ad*d X)) mod (P*dX,),

K3 7

for 1 <i <n—1, where (®*dX;) denotes the ideal generated by ®*dx}, ..., ®*dz" '

(2

Proof: Consider the case i = 1 and denote o(1) = k, then
O = (¢] — ag)dag — (a7 — 2g)dxp,
for 1 <j <m+1 and j # k. Differentiating the constraint

Uy = (a7 —ap)? + (2 —2g)* + -+ (" —ag ™) 1 =0,

we obtain
m+1 xj . xj
deg=— > S—2da] mod (dX),
J=1j#k
and hence

wi o= (%)

ige Com g
_ _(Mﬂﬂ_%))@*dx{) - Y BT p)etde) mod (X)),
1

17 % =17k, 1T O

Since ®*dz}, ..., ®*dzkEt &*dak !, .. ®*dz” ! are independent on @, comparing the
0 0 0 0 g
coefficients of ®*dx} it is easy to see that
Awp = wWiA-—WFPAWFTIA AW
1
= (=1)"——— - JA| P dal A - D daE A DA A A PF e
( ) (x]f . l’lg)m | ‘ 0 0 0 0

75



where | A| is given by, in fact, a special case of the following determinant J,,,

2 2
ai +ap aaz - A0k a1Qg+1 0 A1Qmyd
2 2
g - Ap—1G1  Qp_1G2 -+ Qp_q T 0 Gp_1Qks1 - Qp_10mi1
m = 2 2
Af+101  Qg41Q2 = Qgp1Qk—1  Qpyq T A - Qpp1Gmyd
2 2
Am+101 Q4102 - Qpi10p—1  Qm1Qk1 0 Qg + Qg
m+1
with a; = 2z} — 2}, where a;, # 0 and E a; = 1. By a straightforward calculation, we
i=1
obtain that
_ 2m—1 2 2 _ 2(m-1)

and thus
A] = (ah — k)2,

Therefore, we have
Awp = (=)™ —2f)™ 2 (AD*dXE) mod (®*dX))
= (=1)™@fW = 2ZWym2 (Ae*dXJM) mod (®*dX,).
Similarly, it can be proved, for 1 <i <n — 1, that

A = (=)™ (@7 — 270ym=2 (A*d X)) mod  (9*dX;).

(¢). dw/ AwiA-Aw #0, 1<j<m+1,j#0(i)
Proof: We give here the proof for © = n and the other cases can be shown in the

same way. For simplicity, we assume that j < o(n). A direct computation shows that

AV AQ, = (=1)mrom=t(ge) _ pothymqei A dX,

(1) (2 — gY@ — 7)™ A dX,

Moreover, differentiating the constraint

Uy = (2, — 2 )"+ (2 — 2 )+ (@ =2 ) = 1=0

we get
m+1 2l gl
dag =— 3 U(’;)—";(ln)dxln mod (dX, ;).
I=Li#o(n) Tn~ — Tn-1
Therefore

dw? Aw, = ®*(dY AQ,)
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= (=1 (@™ — 7N ot + (2], — o)A@ — 2l brda,

m+1
+ > @ = @ — ) (@, — ) B A TdX,
1=2,l#0(n),l#j
= (=)™t d*dad A D*dX,
m+1
H(=1mreTt N g @tdal, A TdX g,
1=2,l#0(n),l#j
where '
o= (@n™ =) (- )@ - )
m = (xg(n) - xZ—nf)m ?(], — xi—l)('xiz — T,

Since ®*dzl, ..., d*dal™M 7 drdag™MT L ®*dz™ ! are independent on @, all dif-
ferential forms ®*dz!, A ®*dX, 1 Aw, 1 A---Awy, for 1 <i<m+1andi# o(n),
are also independent. Therefore, it is enough to prove

n; - O*da! AP AX, 1 Awp g A Awp # 0, (2.6.1)
to conclude that

dw? Awp A~ Awp = (=)™ &*dad A D dX, 1 Awp 1 A Aw
m+1
_l_(_l)m—i-a(n)—l Z m- (I)*dl'ln N CD*an_l VAN Wn—1 VASEERWA w1 7é 0.
1=2,l#0(n),j

Notice that 1; = (20 — 27"y + (a7 — 27 _)2(25"™ — 22"))m=2 £ 0 is obvious since

25™ — 27" £ 0. Hence in order to prove (2.6.1), it is sufficient to show that

O*dzd A O dX,_ 1 Awp_1 Ao Awp # 0.
Differentiating the constraint
Uy = (Tnoy = Tpn)” + (0 — 2 o))"+ 4 (g — a2 ) = 1=0
implies the following relation
27" = d2?" Y mod  (daf_,da_,, 1<j<m+1, j#o(n—1)).
Recall the condition (b) of Lemma 2.4.1,
Aw; = (=1)™(27? — z70ym=2 (AG*dX7Y) mod (®*dX;),
and a straightforward calculation shows that

®*dzd A D*dX, | Awp
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= (=)™ — 22y el A X, A B dX"(" Y
= (=1)2 (D gt yme2 el A 9 A XU A BFdX, s,

By a similar computation as above, we get

O da? AP AX, 1 AWy g A Awp =
n—1

1)nm+1)= H o0 _ g ym=2 grded A e*d X7 AL 0 dXTW A B*d Xy #£ 0

since z7 — 27% £ 0, for 1 <i <n—1, and ®*da?, &*dX7"Y . & d XV drd X,
are independent on the configuration space (). Therefore, (2.6.1) is true and item (c)
holds. 0J
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Chapter 3

Cartan distribution for surfaces

3.1 Introduction

Consider J"(R* R™) = R¥ for a suitable N, the space of n-jets of smooth maps from
R* into R™ and denote its canonical coordinates by

(T1, T Y1, Yme PG, 1< G <m, 1< o] <n),

where z;, for 1 < i < k, represent independent variables and y;, for 1 < j < m,
represent dependent variables; the vector of non-negative integers o = (071, ...,0y) is a
multi-index such that [o| = 01 +---+03, < nand pf, for 1 < j < m, correspond to the

loly, .

partial derivatives ang, where 0z? stands for 07z - - - 07*x,. Denote p? = y;, for

1 < j <m. Any smooth map ¢ = (1, ..., ) from R* into R™ defines a submanifold
in J"(R*, R™) by the relation

. 8'”'@-
p] — axo_](xl,,xk),

for 1 < j <m and 0 < |o| < n. This submanifold is called the n-graph of ¢. It turns
out that all n-graphs are integral submanifolds, of dimension k, of a distribution called

the Cartan distribution on J"(R* R™) and denoted by CC"(R*F R™). The Pfaffian
system that annihilates CC"(R*, R™), which is called the canonical contact Pfaffian
system on J"(R¥ R™), is given in the canonical coordinates of J"(IR*, R™) by

k
dp}-’—Zp}’“"’dwi =0, for 1<j<m, and 0<|o| <n-—1,
i=1

where 0+ 1; = (01,...,0,+ 1,...,0%).

A natural problem is to characterize those distributions which are (locally) equiv-
alent to a Cartan distribution. This problem was posed by Pfaff [55] in 1814 and is
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still open in its full generality although many important particular solutions have been
obtained.

In the case of n = m = 1 and an arbitrary k, the solution has been obtained
by Darboux [10] in his famous theorem generalizing earlier results of Pfaff [55] and
Frobenius [15]. The case n =2, m = 1 and k = 1 was solved by Engel in [11]. The case
n>2,m=1and k = 1 was solved by E. von Weber [78], Cartan [9] and Goursat [18]
(at generic points) and by Libermann [37], Kumpera and Ruiz [33], and Murray [45]
(at an arbitrary point). The case n = 1 with k and m arbitrary has bee studied by
Gardner and solved by Bryant [7], [8]. The case k = 1, with n and m arbitrary (that
is, characterization of Cartan distributions for curves) has been studied by Gardner
et Shadwick [16], Murray [45], Tilbury et Sastry [76], Aranda-Bricaire and Pomet [3],
Mormul [43], Respondek and Pasillas-Lépine [51], [54]. The general case of arbitrary
n,m, and k has been studied by Yamaguchi [79].

This chapter is devoted to the problem of when a given distribution is locally
equivalent to the Cartan distribution in the case k = 2, that is, Cartan distributions for
surfaces, and is organized as follows. In Section 3.2, we define the Cartan distribution
for surfaces. In Section 3.3, we give our main results. In Section 3.4, we recall the
Bryant theorem (describing the case n = 1, with k& and m arbitrary) and propose its
extension that will be useful in the proof of our main result. Finally, we prove our
results in Section 3.5.

3.2 Cartan distributions for surfaces

A distribution D on a C*°-smooth manifold M is a map that assigns smoothly to each
point ¢ € M a linear subspace D(q) C T, M. Given a distribution D, we will denote
by I'(D) the submodule of the module V*°(M) of C*°-smooth vector fields consisting
of C"*°-smooth sections of T'M with values in D, i.e.,

L(D)={feV>M): f(qg) € D(9)},

for any ¢ € M. We will say that a distribution D is C*°-smooth if D(q) = I'(D)(q) for
any ¢ € M. D will be called nonsingular if dimD(q) is constant and in this case we
will say that D is of rank k, where dim D(q) = k for any g € M.

The derived flag of a distribution D is the sequence of modules of vector fields
DO ¢ DM ¢ ... defined inductively by

DO =7(D) and DY =1(DD) + (DY), (DY), for i > 0.

The Lie flag is the sequence of modules of vector fields Dy C D; C --- defined
inductively by

Dy=I(D) and D;y =1(D;)+ [I'(Dy),I'(D;)], for i>0.
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In general, the derived and Lie flags are different; though for any point ¢ in the
underlying manifold the inclusion D;(q) € D (gq) holds, for i > 0.

A Pfaffian system on a smooth manifold M is a differential system w! = - =
w™ = 0, where w' are differential 1-forms on M. We associate to it the codistribution
Z by putting

Z(q) = vectg {w'(q),...,w™(q)} C T M.

Conversely, let Z be a smooth codistribution that assigns smoothly to each point ¢ in
M a linear subspace Z(q) C T M of dimension m. Such a field of cotangent m-planes
is spanned locally by m pointwise linearly independent smooth differential 1-forms
wl ..., w™on M, which will be denoted by Z = span {w',...,w™}. So in the case of
constant rank we can (locally) identity codistributions and Pfaffian systems which we
will do throughout this paper.

For a Pfaffian system Z, we can define its derived flag T > I > ... by
7O =7 and IY ={weZ®:dw=0 mod ZW}, for i>0,

provided that each element Z®) of this sequence has constant rank. In this case, it is
immediate to see that the derived flag of the distribution D = I+ coincides with the
sequence of distributions that annihilate the elements of the derived flag of Z, that is
D) — (TO)L, for i > 0,

Remark: If D is a smooth nonsingular distribution, then with no confusion we
can identify D and I'(D) and will do it throughout this chapter. If, however, D is
singular or non-smooth, then the distinction between D and I'(D) is essential. Notice
that if D is C"*°-smooth, then the function ¢ — dimD(q) is lower semi-continuous (in
other words, it can drop at a point but not jump up) because if vector fields belonging
to D are independent at a point so they are in a neighborhood. In the paper, however,
we will have to deal with non-smooth distributions D for which ¢ — dim D(g) jumps up
at a point (and thus is not lower semi-continuous). This will be the case if Z is a smooth
codistribution of a non-constant rank and thus D = Z+, defined as D(q) = (Z(q))*
is non-smooth for which ¢ — dimD(q) is actually upper semi-continuous. Indeed,
dimD(q) = n—dimZ(q), where ¢ — dim Z(q) is lower semi-continuous because Z was
assumed to be smooth.

Given a distribution D of constant rank £ on a n-dimensional manifold M, choose
locally m = n — k differential 1-forms w', ..., w™ such that

T =D" =span{w',...,w™}.
We define the characteristic distribution C(D) of D pointwise by
C(D)(q) = {v € D(q) : vadw(q) € Z(q), Vw € I}.

Notice that, in general, C(D) may not be a smooth distribution and dim C(D)(q) may
jump up at a point. If C(D) is nonsingular (in other words, of constant rank), then it
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can be equivalently defined as the module of its sections:
I'(C(D))={9€'(D): g, /e (D), V[fel(D)}

Denote by (z1,3) coordinates on R* and by (y1,...,¥,) coordinates on R™.
According to Introduction, we denote by

(#1,22,p7, 1<j<m, 0< o] <n),

the canonical coordinates on J"(R?* R™), where o = (01, 02) such that oy, 05 > 0 and
lo| = 01+ 02 < n and (by definition) p§ = y;, for 1 < j < m. As we already explained
in the Introduction, the surface {y; = ¢;(z1,22)}, 1 < j < m, defined by any smooth
map ¢ from R? into R™, can be lifted to the surface

ool
{p? = &Efj (551,552)} )

in J"(R?,R™), called the n-graph of the surface {y; = ¢;(x1,72)}. As we pointed out
in the Introduction, we can endow J"(R? R™) with a (nonintegrable) distribution.
Namely, a surface in J"(R? R™), that projects to R?, is the lift of a surface in R™ if
and only if it is an integral submanifold of the Cartan distribution CC"(R? R™) on
J"(R% R™), called also the Cartan distribution for surfaces, spanned by the following
vector fields

a n—1 m a a n—1 m a a
- 4 pq+11 —, = + pq—l—lz—o_, Ao 1 S] S m, |U| =n.

The annihilator of CC™"(R?* R™) is the Pfaffian system, called the canonical contact
Pfaffian system for surfaces, spanned by

dp] —p?“ldxl —p}’HdeQ, 1<j<m, 0<|o| <n-—1.
We have dim J*(R?, R™) = %(n +1)(n+2) +2; the Cartan distribution CC"(R? R™)
and its annihilator are, respectively, of rank m(n 4+ 1) + 2 and %n(n +1).

The aim of this chapter is to identify all distributions D of rank m(n + 1) + 2
on RY where N = —7721(71 + 1)(n + 2) + 2, that are locally equivalent to the Cartan
distribution CC™(R? R™), that is, for which there exists a local diffeomorphism ¢ :
RN — J*(R?,R™) such that

0. D = CC"(R2,R™).

3.3 Characterization of Cartan distributions for surfaces

3.3.1 Main result

The crucial notion will be that of the Engel rank.
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Definition 3.3.1 The Engel rank, at a point ¢, of a Pfaffian system Z = span {w?, ..., w™},
denoted by rankgZ(q), is the largest integer k such that there exists a 1-form « in Z
for which

((da)* Aw A+ Aw™)(q) # 0.

In Section 3.3.2, we will describe relations of the Engel rank with Cartan rank
and, in particular, with the existence of involutive subdistributions of corank £ in
D=1

Theorem 3.3.2 Assume that m > 3. A distribution D of rank m(n + 1) +2 on a
manifold M of dimension %(n—i— 1)(n+2)+2 is locally, around a point q of M, equiv-
alent to the Cartan distribution for surfaces CC™"(R*, R™) if and only if the following
conditions hold:

(i) Each element DO, for 0 <i < n, has constant rank equal %(2n+2—i)(i+1)+2.

(ii) Fach element D(i), for 0 <1 < n — 2, contains the characteristic distribution
Cir1 of DY that is of constant corank two in DY . Moreover, the characteristic
distribution of D is empty.

(iii) The Engel rank of (D™~ V)t is constant equal two.

(iv) dim (L,—1 + DD)(q) = dim L,_1(q) + 2, for 0 < i < n — 2, where L,_, is an
involutive subdistribution of corank two in D"V that exists due to (iii).

Remark 1: The condition (iii) is the essential condition identifying Cartan distribu-
tion for surfaces. We want to underline two of its features. First, it is easily verifiable
in terms of a given distribution D (see the definition of the Engel rank). Secondly,
it has an elegant geometric interpretation: it is equivalent to the existence of an in-
volutive subdistribution, which we denote by £,_1, of corank two in D"~ Y. We will
discuss the geometric interpretation of the condition (iii) in Section 3.3.2

Remark 2: The condition (ii) implies that each DO 0 <i<n-—2, also contains an
involutive subdistribution £; of corank two in D®. Checking the existence of such an
involutive distribution does not require, however, calculating the Engel rank of D
because the condition (ii) assures that, indeed, £; = C;i.y = C(DU+Y). In view of this,
the particularity of £,,_; is seen: in fact, £,_; is not a characteristic distribution of
D) = T M and therefore its existence has to be verified by calculating the Engel rank
of D=1,

Remark 3: The condition (iv) is a sort of regularity condition. If the conditions
(i) — (iii) are satisfied everywhere on M, then (iv) holds in an open and dense subset
M of M. In this sense, (i) — (iii) are structural conditions that guarantee equivalence
to a Cartan distribution for surfaces at generic points and (iv) distinguishes regular
points from singular ones. Given a distribution and a fixed point ¢ € M, the condition
(iv) can be checked algebraically because the involutive subdistribution £,,_; is unique
(if it exists) and can be calculated; we will discuss that in Section 3.3.2 below.
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The proof of the above theorem will be given in Section 3.5. It is based on the
Bryant normal form, which we will discuss in Section 3.4.

3.3.2 Involutive subdistributions of corank k&

The condition (iii) of Theorem 3.3.2, saying that the Engel rank of D™~ equals two,
is essential for identifying Cartan distributions for surfaces. In this section, we will
relate that condition to that expressed via the Cartan rank and to other geometric
properties, in particular, to the existence of an involutive subdistribution of corank
two.

Definition 3.3.3 The Cartan rank of a Pfaffian system Z = span {w?,...,w™} at q €
M, denoted by rankcZ(q), is the smallest integer k& for which there exist 7!, ... 7% €
AY(M) such that

A ATEAWE A AW () # 0,

and
dw ATt A+~ A% =0mod Z, for any w € Z.

The following theorem answers the question: when does a given distribution D
of constant rank k 4+ mk, for m > 3, contain an involutive subdistribution £ C D that
has constant corank k in D?

Theorem 3.3.4 Assume that m > 3. Let D be a distribution of constant rank k+mk
defined on a manifold M of dimension m + k + mk such that DY = TM. If the
characteristic distribution of D satisfies C(D) = 0, then the following conditions are
equivalent:

(i) The Cartan rank of D* is constant and equals k;

(ii) The Engel rank of D+ is constant and equals k;

(ili) There exists a subdistribution F of D of corank k such that [F,F] C D and there
does not exist any subdistribution of D with that property of a corank smaller
than k;

(iv) There exists an involutive subdistribution L that is of corank k in D and there
does not exist any involutive subdistribution of D of a corank smaller than k.

Moreover, if any of the equivalent conditions (1)-(iv) is satisfied, then the involutive
subdistribution L of corank k in D is unique and can be calculated as

L=Fit Fu

where F; = span {f€D: fadv' € DY} and W' are any differential 1-forms such that
D+ =span{w!,...,w™}; in fact, it is enough to take in the above sum defining L only
two terms corresponding to any 1 <1i # 7 < m.
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Notice that, in general, rankcZ(q) # rankgZ(q) even if both ranks are constant
(see [8] for examples). The equality of both ranks is a consequences of the assumptions
DW = TM and C(D) = 0 and was proved by Bryant [7]. The proof of the above
theorem is given in Section 3.5.3.

3.4 Extended Bryant normal form

The Bryant normal form is the canonical form of the Cartan distribution CC*'(R*, R™)
(that is, for 1-jets). Our proof of Theorem 3.3.2 is based on an extension of the
Bryant normal form. In this section we will recall the Bryant normal form (and for
completeness we will provide its alternative proof), then we will give its extension and,
finally, provide a dual version of that extension which we will use directly in the proof
of our main result, Theorem 3.3.2.

3.4.1 Bryant normal form

The question of which Pfaffian systems are locally equivalent to the canonical contact
Pfaffian system on J!(R¥,R™) (equivalently, the problem to characterize the Cartan
distributions CC'(R* R™)) has been studied by Gardner since 1972 and Bryant. In
this subsection, we will recall the solution to this problem given by Bryant [7] in 1979.

If for a constant rank Pfaffian system Z, the characteristic distribution C(D) of
the distribution D = Z% is of constant rank, then its annihilator (C(D))* is a Pfaffian
system, called the retracting codistribution of 7 and denoted by R(Z), in other words,
R(Z) = (C(D))*. The following result (see, e.g., [8]) interprets the rank of R(Z) in
terms of the minimal number of coordinate variables needed to express 7.

Lemma 3.4.1 Let 7 be a Pfaffian system on M such that the rank of I and of its
retracting codistribution R(Z) are constant. Ifrank R(Z) = s, then around any q € M
there are coordinates (z',..., 2", y1,...,ys), where r+s = n such that T is generated by
1-forms that are expressed via the coordinatesyy, . . ., ys only. Moreover, s = rank R(Z)
15 the minimal integer with that property.

This Lemma shows that given a Pfaffian system, the rank of its retracting system
equals, indeed, the minimal number of variables needed to describe the system (see [8]).

The following characterization of the canonical contact Pfaffian system on J*(R*, R™)
was proved by Bryant in [7] (see also [8]).
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Theorem 3.4.2 (Bryant normal form) Assume that m # 2. A Pfaffian system
T =span {w', ..., w™}

of constant rank m, defined on a manifold of dimension m + k + mk and such that
IW =0, is locally equivalent to the canonical contact Pfaffian system on J'(RF R™),
called also the Bryant normal form,

dp) —pidz;— -+ —pldey =0
: (3.4.1)
dpl —pldey— -+ —pfdr, =0
if and only if its Engel rank is constant and equals k, and the rank of its retracting
codistribution R(I) is constant and equals m + k + mk.

Above, the variables p;'-, where 1 < 7 < k and 1 < j < m, stand for pjl-i, where
1, =(0,...,1,...,0), with the i-th component being equal to one.

For completeness, we will give an alternative proof of Theorem 3.4.2 (Bryant
normal form for m > 3) based on Theorem 3.3.4, and on Lemma 3.5.3.

Proof: Let D be the distribution defined by D = Z+. Obviously, the condition that
the rank of the retracting system R(Z) equals m + k + mk, implies that C(D) = 0.
Since m > 3 and the Engel rank of Dt equals k, it follows by Theorem 3.3.4 that
D contains an involutive subdistribution £ that has corank k in D. Therefore, there
exists a coordinate system (z1, ... ,[Ek,pé-), for 0 <i<kand 1< j <m, such that

D=L&span{f,..., fx},

where
1 <j<m},

and

0 0
fi= Ftangg T ding g for1<i <k,
P

ox; op;
for some functions a;;. We can assume that all functions a;; satisty a;;(qo) = 0 replac-
ing, if necessary, p} by p} — S ai(qo) .

m

The condition C(D) = 0 implies that D satisfies the assumptions of Lemma 3.5.3
(see the next section), with » = km and [ = k. Therefore

a — (a ,...,a,m,a,g,...,akm) an(l
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p o= (Pl P D)
It follows that the map defined by

p; = P} 1<i<k,

0
oL = span{—, 1<i<k, 1<j<m} and

8]5;’
0 - 0
oufi = 9%, +ij@ mod L.
Jj=1 J

It follows that (we skip the tildes)

0
~07 017

<i<k 1<j<m}

0D aN

thus proving that ¢, D is the Cartan distribution CC'(R*, R™) expressed in z = (Z, p)-
coordinates. O

3.4.2 Extended Bryant normal form

We give in this section, a generalization of Bryant’s Theorem 3.4.2 and then provide
a dual version of that generalization.

Theorem 3.4.3 (Extended Bryant normal form, first version) Assume that
m # 2. Let T = span{w!,...,w™} be a Pfaffian system defined on a manifold M of
dimension m + k + mk + 1 such that T = 0. If T satisfies, in a neighborhood of a
point ¢ € M, the following conditions:

(i) The Engel rank of T is constant and equals k;
(ii) The rank of the retracting codistribution R(I) is constant and equals m—+k-+mk,

then there exist local coordinates (z,y) = (z,p,y) = (zi,p§,y1, o), for 0 <i <k,
1 < j < m, around q such that T takes in (z,y) = (x,p,y)-coordinates the Bryant
normal form (3.4.1).

Proof: Recall that the characteristic distribution is always involutive. Since rank R(Z)
equals m + k + mk, there exists, by Lemma 3.4.1, a local coordinate system (z,y) =
(21, -+ s Zmsksmi, Y1s - - -» Y1), centered at (0,0) € R™EFD+F x R such that

m-+k+mk
w' = Z wi(2)dz;, 1<i<m.

=1
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m

Therefore w', ..., w™ can be considered locally as differential 1-forms on R™TF+mk

the latter equipped with z-coordinates. Define the codistribution (Pfaffian system)
7 spanned by them locally around 0 € R™ T +mk  Agsume for a moment that Z
satisfies the conditions of Theorem 3.4.2, then there exists a local change of coordinates
z = 1(Z) such that the codistribution ¢*T is locally given, in Z = (x, p)-coordinates,
by the Bryant normal form (3.4.1). Define the local coordinates change

R P

and we have immediately that the pull-back WU* takes 7 into the canonical form (3.4.1)
in (2,9) = (x,p,y)-coordinates. So in order to prove Theorem 3.4.3, it remains to
verify that 7 satisfies the conditions of Theorem 3.4.2, that is, (1): Z(!) = 0, (2):
rankp Z = k and (3): rank R(Z) = m + k + mk.

(1). For any a € Z, we have
a= Zai(z)wi S
i=1

which gives (since Z(V) = 0)
daAwr A -w™ =0,

thus implying that Z(\) = 0.
(2). The condition ranky Z = k holds if and only if

(1) (da)* P AwrA---Aw™ =0, for any a € Z;
(2) There exists o € Z such that (da)* Aw' A+ Aw™ £ 0.

On one hand, since rankpZ = k, for any Q = >, n;(z, y)w’ € Z, we have
AP AW A w™ =0,
which implies that for any a = 3.7 a,(2)w’ € Z, we have (da)*' Aw! A ---w™ = 0.
On the other hand, the condition rankgpZ = k implies that there exists a 1-form
Q=>"ni(z,y)w’ € T such that
(A AW A---w™(0,0) # 0

(recall that the coordinates are centered at zero). Define a differential 1-form Q € Z
by



where the constant coefficients ¢; are given by ¢; = (0,0). We have dQ = S cdw!
and thus

(AP AW A~ w™0) = (dQF Awh A---w™(0,0) #0

which implies that rankg Z = k.

(3). If in a neighborhood of 0 € R™k+U+k there exists a point ¢ such that
rank R(Z)(§) = m + k + mk — s where s > 0, it follows that rank C(Z+)(§) = s > 0
implying that there exists 0 # @ € Z(q) such that odw(q) € Z(§) for any w € Z. Tt
follows that v = (0, 0), where 0 stands for the y-components of v, satisfies v € Z+(q)
and v € C(Z1)(q) at any ¢ = (g,q) for any ¢ corresponding to the y-components,
in particular at ¢ = (¢,0). This contradicts the assumption rankC(Z+)(¢) = 0 in a

neighborhood of gy = 0. Therefore we have rank R(Z) = m + k + mk. O

In the dual language of vector fields and distributions, in particular, using D
instead of Z, as well as C(D) instead of R(Z), and calculating vector fields annihilated
by the differential forms of (3.4.1), we obtain the following result:

Theorem 3.4.4 (Extended Byrant normal form, dual version) Assume that
m # 2. Let D be a distribution of constant rank k + mk + [ defined on a manifold M
of dimension m + k + mk + | such that DY) = TM . If D satisfies, in a neighborhood
of a point g € M, the following conditions:

(i) the Engel rank of D+ is constant and equals k,
(ii) the rank of the characteristic distribution C(D) of D is constant and equals [,

then there exist local coordinates (z,y) = (z,p,y) = (1, ..., 28, 0%, ..., 05,09, ..., 05,
P PRy ) around q such that

D=DaC,

where D is the Cartan distribution CC'(R* R™) expressed in z = (x,p)-coordinates,
that is,

. ) D 0
D= v — 1<i<k 1<1<
Span{ax,-Jr;psapg’ o <i<k, 1<j<m}

and

0

9, 0
C=C(D) = span{a—y} = span{a—yl, Ce 3—?/1}

is the characteristic distribution of D.
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3.5 Proofs

3.5.1 Useful results

In this section we give a series of results that we will use in the subsequent sections
when proving our theorems.

Lemma 3.5.1 Let D be a constant rank distribution on a manifold M. Assume that
both D and its derived distribution D) are of constant rank and let Cy and C; denote,

respectively, their characteristic distributions. Then Cy C C;.

Proof: In order to prove this lemma, it is sufficient to show that for any g € Cy, we
have also ¢ € C;. Assume that f is an arbitrary vector field of D). Since

fepV =D+ [D, D],

we have either f € D or f € [D,D]. If f € D, then [g, f] € D € DY because g € Cj.
If f € [D, D], then there exist fi, fo € D such that f = [fi, fa]. Therefore

9, 1= g, [f1, oll = [lg, Ful, ol + [, g, fo]]-

The condition g € Cy implies that [g, f1] € D and [g, fo] € D. Thus we have
[[gv fl]v f2] S [Dv D] - D(l)

[flu [gu f2]] < [D,D] - D(l)u
which implies that [g, f] € DW. O

Lemma 3.5.2 Let £ and F be two involutive distributions on a manifold M. If they
satisfy the following conditions

(i) F has constant corank ro;
(ii) &€ has constant corank 1 + r9;

(iii) € C F,
then there exist local coordinates (1, ..., Tp—ri—ry,Pls-. - D1 D5, .., D5), in a neigh-
borhood of any point in M, such that

Ft= {dp%, o, dp?}
Et = {dp}, .. .,dp’f,dp%, o, dps? )

The proof of this lemma (simultaneous rectification of involutive distributions) can be
found, e.g., in [29]. For completeness we give below another proof.
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Proof: Since F is involutive and has constant rank n — ro, there exist, by Frobenius
theorem, local coordinates (21, ..., Tp_ry_ry, Ply- -, P15 Pas - - -, P32), in a neighborhood
O of ¢ € M, such that

F+ =span{dps,...,dp5*}.

Moreover, the condition that £ is involutive and has constant corank r; + ro implies
that there exist r 4+ 79 smooth functions ¢, ..., @y 4, in O such that

gJ_ = Span {d@l, s adgom-i-?“z}a

The relation £ C F yields immediately that F* C £+, i.e.,

span {dpy, ..., dpy?} C span {depy, ..., dg, m}-

which implies that there exist r; functions among the ¢;’s (say ¢1,..., ¢, after a
reordering) such that

span {dyy, ... ,dg,,,dps, ..., dpy*} = span {dp1, ..., d@, i}

Introduce new coordinates by replacing pi by ;, for 1 < i < ry, and in new coordinates
we have clearly

Ft= {dp%, oo dpit}
Et = {dp}, .. .,dp’f,dp%, o, dpy? )

O

Recall that we have defined the characteristic distribution C(&) of a distribution
& pointwise as

C(€)(q) ={ve&lq) :vadw(q) € Z(q), Vwe I},
where 7 = £+.

Lemma 3.5.3 Let € be a distribution of rank r + 1 defined on a smooth manifold M
of dimension r + s, for | < s. Suppose that at any point ¢ € M, the characteristic
distribution C(E) of € satisfies C(E)(q) = 0. Assume that in a local coordinate system
(P1y- s Py Y1y - -+, Ys) in a neighborhood O(qo) of a point qo € M, the distribution & is

spanned by
0

a—prvflu"'vfl}v

Ezspan{aipl,...,

where 5 5 5
— 1 2 s
ho= hg, thg, T+ g,
: (3.5.1)
_ a0 2_0 s 0
foo= figytihig, t+ha,;
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for1<i<mand1<j<s. Then

rank (5 7)(4) =7

for any q € O(qo), where p = (py,...,p,) and the map f: O(qy) — R is formed by

fF=0h T

Proof:  Assume that at a point ¢ € O(qy), we have rank(%)(q) =1’ < r and,
of

without loss of generality, that the first ' columns of (a—p)(q) are independent. For

any ' + 1 <i < r, we have

Of .~ ,Of
aMW)—E:dggm%

j=1
for some constants ¢/ € R. Define the vector fields

0 .0
i = - CZ—7
g Ip; apj

r+1<i<r.
j=1

We have, [g;, fi](q) =0, for ' +1 <i <rand any f;, 1 <t <1, which implies that for
any w; € Z = £+, we have (g;0dw;)(q) = 0 and hence g;(q) € C(E)(q), for’+1 <i <r,
thus contradicting the assumption C(€)(q) = 0. Therefore, rank(%)(q) = r for any
q € O(qo). O

3.5.2 Proof of Theorem 3.3.2

Proof: For simplicity, we will write p?-?2 instead of p(®»?2) and p° instead of p(®0).
If D is equivalent to the Cartan distribution for surfaces CC"(R?* R™), then by a direct
calculation, we can easily check that the conditions (i) — (iv) are satisfied.

Consider now a distribution that satisfies, at a point ¢ € M, the conditions
(i) — (iv). To start with, observe that the distribution D™~Y (of rank —”21(71 +1)(n+
2) —m + 2, by (ii)) satisfies the conditions of Theorem (3.4.4) with £ = 2 and | =
—7721(71 +1)(n +2) — 3m. Indeed, (iii) implies that the Engel rank of (D™~ Y)* equals
two and by (ii) its characteristic distribution C,_; is of constant rank given by

rank C,_; = rank D""? — 2 = %(n +1)(n+2) —3m = ¢,y

(we used rank D=2 = %(n + 1)(n + 2) — 3m + 2 following from (i)). Therefore,
by Theorem 3.4.4, DY is the direct sum of its characteristic distribution C,_; and
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a distribution locally equivalent to the Cartan distribution CC*(R?,R™). It follows
that there exists a local coordinate system, in a neighborhood O(q) of ¢, denoted by
(z1, 29, p7), for 1 < j <m, 0 < |o| < n, such that

0 0

D" = span —— "y
107 5 0,1
2§|J|§n’ 8])] ’8])]- ) )

"o 1< <mj,

0

where the vector fields f"~! and ¢"~! are given by

Moreover, the characteristic distribution C,_; is given by

0
Cn1 :Span{ﬁ—po_, 1<j<m, 2<|o] <n}.

J
Observe that the coordinates y;, 1 <@ <1 = ¢, of Theorem 3.4.4 correspond to pf,
for 1 <j <m, 2 < |o| <n (notice that the number of p?’s is, indeed, Cn-1)-

Clearly, the involutive subdistribution £,_; of corank two in D"~! is given by

En_lzspan{ 1<) <m, 1§\a|§n}.

opg
For a notational convenience we put C, = £,,_1. We have
C1 C ~-~CCn_1 Canﬁn_l,

(see Lemma 3.5.1) and thus the coordinates p7 can be chosen, due to a successive
application of Lemma 3.5.2, such that we have, for 1 < j < m,

0
Ci:span{—g, 1<j<m, n—i+1<|o| Sn}.
opg
Now the proof follows from Lemma 3.5.4 given below. Notice that the hypothesis
of Lemma 3.5.4 holds for & = 1. Therefore a successive applying the lemma (n — 1)-
times (for & from 1 up to n — 1) yields local coordinates (z1, o, p7), for 1 < j < m,

0 < |o| < n, in which
D= DO = ¢, ® span {f°, 4"},

where

0
C, = span{ﬁ—po_, 1<j<m, |o]=n},
J
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and

81’1 * Z Z 0+11

jo|=0 j=1

o 20
ax2+zz +1a_(;7

lo|=0 j=1

which shows that D is locally equivalent to the Cartan distribution for surfaces CC" (R?, R™).
O

Lemma 3.5.4 Let a distribution D satisfy the conditions (i)-(iv) of Theorem 3.3.2.
Assume that for a certain 1 < k < n, there exist coordinates (v1,12,p7), for 1 < j <
m, 0 < |o| <n, centered at 0 € RY, where N = 15 (n +1)(n +2) + 2, such that

Loy = span{zdr, 1<j<m, 1<o|<n)
J

c. = span{%, 1<j<m, n—i+1<lo|<n}
J

for1<i<n-—1 and D" F = Cr_pr1 D span { f*7F g"=k} where

f axl + Z Z o+11 ap

|o|=0 j=1

g ax2 + Z Z J+12

lo|=0 j=1

(Recall that for a notational convenience we put, for k = 1, C_pr1 = Cp = Ly1).
Then we can modify the coordinates in such a way that in new coordinates (T, T2, D7),
for 1 <j<m,0<|o| <n, centered at 0 € RN, we have

L,1 = span{%, 1<j<m, 1<lo|<n}
i

C;, = span{%, 1<j<m, n—i+1§\a|§n}
j

for1<i<n—1and D"+ =C,_; ®span {7+ g" "+ 1} where

fn k—1 __ axl + Z Z ~o+1la

IO’I 0j=1

~o’+12

8"'

81’2

lo|=0 j=1
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Proof: (of Lemma 3.5.4) To explain the idea of the proof, we will show the lemma
for k = 1 and then, following similar arguments, for an arbitrary 1 < k < n.

Suppose that the assumptions of the lemma hold for £ = 1. The condition (ii)
of Theorem 3.3.2 implies that corank (C,_; C D(”‘2)) = 2 and thus there exist two
vector fields f"~2 and ¢" 2 such that locally

D(n—2) — Cn—l @ SpaIl {fn_2> gn_2}

0 , _ _
= Cn_g@span{g—pa, 1<j<m, |0 :Q}EBspan{fn 2 gn2),
J

We have

0
DOV = @span {55 1<j<m. Jo] =1} @span (70"} (352)
J

then the relation "2, ¢g"=2 € D=2 c D"V implies immediately that

P2 = g gt —I—Z(Al' — 4+ A’—=) mod C,_;
j=1 ]8])]-’ japj’
0 0

(B} + B?—=) mod C,_;

J 8])]1-70 J ap?,l

NE

gn—2 _ tlfn—l + t2gn—1 +

1

<.
Il

where sy, 89,1, 9, A}, Bj, for 1 < i < 2,1 < j < m, are smooth functions defined
in a neighborhood O of 0 € RY. The condition (iv) of Theorem 3.3.2, applied for
i = n — 2, implies that f"~2 and ¢" 2 are independent at 0 € RY, modulo £,_;.
Hence (sita — sot1)(0) # 0 and thus by a suitable choice of f"2 and ¢g"2 (and by
renaming A;'- and B; as well as taking a smaller O, if necessary), we can assume that

. 0 0
n—2 n—1 1 2
= S A A2
[ ; 10 T A5
N O 9
9 2:9 1"‘2(3310 1,0+B]2W)-
j=1 J J

We will now analyze the functions A;'- and B;, for1<i<2and1<j<m. First, we
replace p;° by p;* — A}(0)zy — BH0)xz and p)* by p! — A2(0)zy — B?(0)z, in order
to obtain Aj(0) = A%(0) = B;(0) = B2(0) = 0. This change of coordinates preserves
L, and C;, for 1 < i < n — 1. Secondly, the characteristic distribution of D"~? is
Choo = span{%, 1<j7<m, 3<|o| < n} It follows that, for any 1 < j < m

and 3 < |o| <,

0 L 0 L
) " = o) " - 0
o ) = L™
and hence
A; = A;—([L’l,[lj'Q,pU), sz = B;—([L’l,[lj'Q,pU), 0 S |U| S 2> (353)
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fori = 1,2 and 1 < j < m, where p? = (p,...,p7,). Thirdly, a direct calculation
gives
0 9 0

+--- 4+ (A2 -~ B)=—— mod L,_;.

9 e 0
726" = (A3~ Bl + (43— B} xl

1)8—1)? ( 2)8—1)8
Since "%, ¢" %] € DY it is easy to conclude that B} = A2, for 1 < j < m. Now
consider the distribution

= 0 0
gn—2 — span{ +Z<;OW+A;8])10+A3801>

=1

0 a 01 0 9 9 0 ' =
EE+§Q90 +Bigm gw)’%ﬁlggm|wﬂ}

J

<

around 0 € R%"*2 equipped with coordinates (z1,29,p7), for 1 < j < m and 0 <
lo| < 2. It is well defined (because of (3.5.3)) and it satisfies the assumptions of
Lemma 3.5.3 with r = 3m, [ = 2 and s = 3m + 2. Indeed C(E" %) = 0 because
C(D"?) = C,_, and, moreover, the coordinates (p;) for 1 < i < r, correspond to
(p7), for 1 < j < m and |o| = 2, and the coordinates y;, 1 < i < s, to (71, 72,p7),
1<j<mand0<|o| <1. It follows by Lemma 3.5.3 that the map given by

T, = @ 1=1,2

;= P, 1<j<m, |o]#2
5’ = Al 1<j<m

Pyt = A2 B}, 1<j<m
Pt = B, 1<j<m

is a local diffeomorphism, denoted by ¢, in a neighborhood of 0 € R% ("D +2)+2 Tt
is easy to see that ¢ preserves the nested sequence of distributions

Clc~-~CCn_1CCn:£n_1,

that is,

0.C; = span{ 1<j5<m, n—i+1§|a\§n},

op;’

for 1 < i < n, and that the vector fields f*~2 and ¢" 2 become, respectively,

- 0 0
n—2 _ 2.0 1,1
QO*f — A< + Z (pj 8~0 + p] a~1 .0 +py aﬁ0,1>
j=1 J
- 0 0
~01 ~1,1 ~02
9" 8x2+;< ~0+pj a~107L j a~01>
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To prove the general case, which follows the same line, assume that in a coordi-
nate system (r1,12,p7), 1 <j <m, 0 <o <n, centered at 0 € RY we have

DR = C,_pi1 @ span {f*7F, g"F)

and
0 , :
Ci=span{—, 1<j<m, n—i+1<]o|<n},
op;

for 1 <14 < n (recall that we denoted L,_; = C,), where

P k=1 m P

fn—k = 1 Z Zp(;-i-ll_a
o, o o op;

k—1 m
0 0
n—k __ o+12

+ AR Sy

! ez 2—:o ;p] g

By the condition (ii), we have corank (C,_, C D" "*~Y) = 2 which implies that there
exist two vector fields f?~*=1 ¢" %=1 such that

D(n—k—l) _ Cn L D Span{fn—k—l’gn—k—l}
Crnp1® span{—‘l - 1} ¢ span {f"‘k—l’gn—k—l}.
Since frk=1 gnk=1 ¢ D=k=1) D=k they can be expressed as

- 9,

et =g R s Z j o T T AkH 0, —%) mod Cpy
=1 8]) ' ’ 8])]
n 0
n—k—1 _ k+1
g =t f" +t2g ; jap Jak 11+' +B 0p2k) mod  Crr,

where sy, 59,11, 15, A}, B}, for 1 <i < k41 and 1 < j < m, are smooth functions
defined in a neighborhood O of 0 € RY. The condition (iv), applied for i =n —k — 1,
implies that f" %=1 and ¢g" *~! are independent at 0 € R"™, modulo £,_;. Hence
(51t — 59t1)(0) # 0 and thus by a suitable choice of f*~*~! and ¢" %=1, we can assume
that

“ 0 0 0
fn—k—lzfn—k Z(Al k —|—A2 k + - +Ak+1 )
o )a ,0 Ja 1,1 ap
n—k— n— - 8 a k 8
g F 1:9 k‘l‘;(Bgla kO—I—Bfa k= 11+"'+Bj+18p2,k)-

We will now analyze the functions AZ BZ forl <i<k+land1l <j < m. First,
for0<i<kand1l<j<m, wewil replace Pt by ptRt— ATH(0)2y — BIF(0),
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in order to obtain A;»H(O) = B;H(O) = 0. This change of coordinates preserves £,
and C;, for 1 < i < n — 1. Secondly, the characteristic distribution of Dn—k=1) ig

Cot1 = span{ggq, 1<j<m k+2< o < n} It follows that, for any
j

1<j<mand k+2<|o| <mn,

O nk-y 19 ke
) " = o) " :0
e P Wi

J

and hence

Al = Al(zy,29,p%), Bl = Bi(x1,29,p°), 0< o] <k+1, (3.5.4)

J J J

for 1 <i<k+1,1<j<m, where p” = (p],...,p%). Thirdly, a direct calculation
shows that

n—k— n—k— S 0 0
[P = Z[(Ag_Bb&pk_Lo_'_(A?_BJZ)W—F”'
j=1 J J
0
+(A§?+1 B]’f) 0 mod  Cp_jpi1
j

On the other hand, [f" %=1 ¢g" k1] € D% =C,_ 1,1 ®span {f**1 ¢g"*1} which
implies that B; = Aéﬂ, for 1 <i<kand1l<j<m. Now consider the distribution

m k—1
grkml = span{ijLZ(quHlijLAl» 0 + A? 0 e AR 0 ),

J o J k,0 J k—1,1 J 0,k
O, j=1 " |o|=0 Op§ Ip; Ip; Ip;
m k—1
B S R R D
—+Z< P + B ko+BJﬁ+'“+3j+W>v
Oz SN Op§ Ipy’ Ip; Ip;
0
. 1<j<m, |o—\:k+1}
op;

around 0 € Rz *+2*+3)+2 " oquipped with the coordinates (z1,29,p7), for 1 <j <m
and 0 < |o| < k + 1. The distribution £"*~1 is well defined (because of (3.5.4)) and,
moreover, it satisfies the assumption of Lemma 3.5.3 with r = (k + 2)m, [ = 2 and
s = Bk +1)(k +2) +2. Indeed, C(E" ") = 0 because C(D"=+1) = C,_, and,
moreover, the coordinates p;, 1 < i < r, correspond to p7, 1 < j < m, |o| =k + 1,
(notice that g{o : |o| = k+ 1} = k + 2), and the coordinates y;, 1 < 7 < s, to
(z1,29,p7), 1 < j <mand 0 < |o] < k. Tt follows by Lemma 3.5.3 that the map ¢
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given by

b ks
pj

i=1,2

1<j<m,

I<j<m
I<j<m

I<j<m
1<j<m,

lo| #k+1

is a local diffeomorphism, denoted by ¢, in a neighborhood of 0 € R (+D(n+2)+2

It is easy to see that the local diffeomorphism ¢ preserves the nested sequence of
distributions

C1 C ~-~CCn_1 Canﬁn_l,
that is,

0C; = 1<) <m, n—i+1§|a\§n},

span{a U,

for 1 <4 < n, and that the vector fields f*~*~! and ¢"*~! become, respectively,

fn k—1 __ &El + Z Z ~cr+11

IIOJ1

~O’—|—12

8"'

90*9
8x2 lo|=0 j=1

3.5.3 Proof of Theorem 3.3.4

Proof: Let Z be a codistribution defined by Z = D+ and locally spanned by differ-
ential 1-forms w!, ... w™, that is, Z = span{w!, ..., w™}.

(i) = (iv): Since rankcZ = k, there exist 7!, ..., 7% € AY(M) such that

TN ATEAWEA AT £ 0,
and

dwAm' A AT"=0 mod T (3.5.5)

for all w € Z. The relation (3.5.5) can be rewritten, for the w®’s that span Z, as

k
dw'’ = Zn; Am mod T.

i=1

(3.5.6)
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The condition C(D) = 0 implies that the differential forms w*, 77,7} are independent
everywhere. To see this, assume that there exists a point ¢ € M such that the
differential forms w’, 7/, 7%, for 1 <4 < m and 1 < j < k are dependent at ¢. Since
dim M = m + k + mk, there exists a vector 0 # v € T, M such that < né(q),v >=<
7(q),v >=< w"(q),v >= 0. It follows that v € Z*(q) = D(¢) and that dw’(v,w) =
0, for any w € D(q), thus implying that 0 # v € C(D)(q) and contradicting the
assumption C(D)(¢q) = 0 for any g € M.

Now taking the exterior derivative of both sides of (3.5.6), we get

k
ZU;Adﬁj =0 mod (I,?Tl,...,ﬂ'k)

J=1

which implies for any 1 < j <k,
dr? =0 mod (Z,n',.... 7% 0t ... ), (3.5.7)

where () stands for the ideal in the exterior algebra. Notice that the above system is
formed by m relations, obtained for 1 <7 < m by the corresponding differential forms
wl, ..., w™. Let F be a distribution defined by

F = (span{u)l,...,u)m,wl,...,ﬁk})L
= span{f€D:7m(f)=0, 1<j <k}

Obviously, F satisfies corank (F C D) = k and now we will show that F is involutive.

Define the distributions F;, for 1 <7 < m, as

F = (span{cul,...,u)m,ﬁl,...,7rk,7]i,...,mi})L
= span{f €D:a(f) =0, n(f) =0, 1<j<k}

The relation (3.5.6) implies that for any 1 < s < m,
k m
dw® = AT+ A AW (3.5.8)
j=1 i=1
On one hand, for any f,g € F; and 1 < s < m,
dw®(f,g) = Zn]/\ﬂjfg ZAS/\w (f,g) =0,

on the other hand,
dw(f,g) = Lyw*(g) — Lyw*(f) — w*([f, 9]) = —w*([f. 9])-
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Therefore w*([f,g]) = 0 for 1 < s < m and any f,g € F;. Moreover, since dr/ =
0 mod (Z,7',..., 7% ni ... ni), by an analogous argument as above, we obtain that
dn?(f,g9) = —7([f,g]) = 0, for 1 < j < k. Therefore it can be concluded that for any
f,g € F;, we always have [f, g] € F which implies that

We claim that F = > F;. The relation Y " F; C F is obvious. Recall that

1

the differential forms w?, ..., w™, 7!, ...,wk,n;, for 1 <i<mand 1l < j <k, are

independent everywhere so they generate A'(M) over C°(M). Choose vector fields
flo o fh f o fi such that f7, for 1 <@ <mand 1 < j <k, satisfy

1 i=1,j=s
0 otherwise.

i) ={

and, moreover,
F=span{fl, ... ft ... f" ... ")
Then the subdistributions F;, for 1 < ¢ < m, are given by

Fi=span{fl, ... f, o A T A T )

Clearly, for any fi € F, where 1 <i < m and 1 < j < k, we have f; € F, for any
s#iand 1 < s <m. This implies that F C Z:’il F; and thus we get

F=Fi+ -+ Fn

Moreover, it is easy to see that it is enough to take in the above sum only two terms
corresponding to any 1 < i # j < m.

In order to prove involutivity of F, consider any two vector fields f]l-, frin F =
Yo Fi. Since m > 3, there always exists F; such that ¢ # [ and ¢ # r and thus
Jl-, fr € Fi. Recall that [F;, F;] C F and thus we get

[f5, [l e F,

proving that [F,F] C F, i.e., F is involutive. Put £ = F, then L is involutive and
has corank k in D.

Now we will prove the uniqueness of £. Suppose that there exists another invo-
lutive subdistribution £ in D of corank k and £ # L£. Observe that rank (£ N £)
is locally constant on an open and dense submanifold M of M and constant on
each connected component of M. Choose one such component. Clearly, we have
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mk — k < rank (LN L) < mk — 1. If rank (£ N £) = mk — k, then there exist vector
fields hy, ..., hok—ks f1, -5 f> 91, - - -, gk such that

L = Span{hla--'>hmk—k>.fl>"'>fk}
L = Span{h’la"->hmk—k>gl>"'agk}‘
On one hand,

LUL =span{hi, ... hos—ios f1: s fir g1 it C D.
On the other hand, we have
rank (£ U £) = rank £ + rank £ — rank (£ N £) = k + mk = rank D.

This implies that D = span{hy, ..., hpmk—k, f1,- -+ fx, 91, - - -, g} and, moreover, h; for
1 <1 < mk — k, are characteristic vector fields of D which contradicts the condition
C(D)=0.

Assume now that rank (£ N £) = mk — r where 1 < r < k. Then there exist
vector fields hy, ..., hpk—rs f1,---s frs 01, - -+, gr such that

L = span{hy, ..., hpg—r, f1,- -5 fr}

L = span{hy, ..., hpk—rsG1,---, s}

The involutivity of £ implies that, without loss of generality, we can choose the h;’s
and f;’s that commute. Therefore there exist local coordinates (z,y) = (21, ..., Ty,
Y1y -+ Ymak), in a neighborhood of any point ¢ € M, such that for 1 < i < mk —r
and 1 <j <,

o 0 £ = 0
" axi7 T 8xrrLk—r—l—j,
k+m
; + mod L
95 = 8% Z g] . y a Y1
l=r+1
(the form of ¢,...,g, follows from their independence). Since L is involutive, it
dgl
J

is easy to see that 9 = 0, for 1 <7 <mk—-—r,1 <7 < randr+1 <
I < k 4+ m which implies that gé» = g;-(xmk_rﬂ,...,xmk,y). Clearly, LU L =
span{hy, ..., hpk—rs f1, -5 Jrs g1, - - -, g} C D, and thus there exist k — r vector fields
Jri1, - - -, gr such that

D = Span{h’b"'ahmk—mfb"'>.f7“>gl>'"agragr+1>"'>gk}
0 0

825‘1 a8xmk>gl>'"agragr+1a--'>gk}

= span{—
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k+m
0
with g; = B— + lzk;rlgj x,y) o r+1<j <k Since C(D) = 0, clearly D satisfies
the assumption of Lemma 3.5.3, with r = mk, [ = k and s = m+ k. Therefore, at any

g € M, we must have rank (%%) (q) = mk, where

T m T m m m T
G (g1+17"'7g]f+ 7"'7g7’+17"'7g7{€+ 7951_11’.,,795_?__17,,,’g]]:+1’,,,7gllj+ ) .
A direct computation gives
8gr+1 agr—l—l
0 0 O%pp— r+1 o 0Tk
agk-i-m agk-i-m
oC B 2 2 ijk r+1 ax]gv,k B ( 0 Gy )
= 1 1 1 = .
Ox 99,4 . 99,41 dgyti . 99,41 G Ga
825'1 8xmk r a:(:mk r—+1 a:(:mk
agk—i-m - agk—i-m agk—i-m o agk-i-m
a:L’l azmk r axmk r+1 axmk

Since m > 3, we have rank (%%) < rank Gy +rank G1o < m(k —r) +r < mk, which
contradicts rank (%%) (q) = mk. Therefore £ and £ coincide on M, which is open

and dense, and hence (being of constant rank) coincide everywhere on M.
(iv) = (iii) is obvious.

(iii) = (i): Choose, locally, m differential 1-forms w!,... w™ and k differential
1-forms 7', ..., 7% such that 7' A--- ATF AW A -~ Aw™ #£ 0, and

Ft = span{r',... 7" W' ... W™}

D+ = span{w',..., 0™}

Since dim M = k + m + mk, locally there exist mk differential 1-forms n!, ..., n™*
such that 7', ..., 7% w!', ... w™ n', ..., n™* are independent everywhere. Then we

can choose m + k + mk vector fields g1,...,gx, b1, B, f1s- -+, fum, satisfying
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such that D = span{g1,..., 9k, f1,- .-, fem} and F =span{fi,..., fem}. For simplic-

ity, we denote
Q' ..oy = (xRt W)

Then, for any 1 < i < m, the 2-form dw® can be expressed as

k+m
do’ =D ALAY + > Bl A (3.5.9)
j=1 I<s,

for some differential 1-forms A} and some functions Bj,. On one hand, for any vector
fields f;, fs € F, 1 <l < s < km, we have

dwi(.fb fS) = Blzs
On the other hand,

dw'(fi, f) = Lpw'(fs) — Lpw'(f) — W ([fi f5])
= W([fi, f5))
= 0.

Therefore we get Bl, = 0 and thus

k+m m k
do' =) AN =D al AW+ BT
j=1 j=1 s=1

for some differential 1-forms o and /3, which gives immediately that
do AT A ATFAWEA AW =

for any w € Z = D*. By the definition of the Cartan rank, it can be conclude that
rankcD = k.
(ii) < (i) has been proved by Bryant in [7].

In order to prove £ = Fy + --- + F, it is enough to show that F; = F;, for
1 < i < m, where F; have been defined when proving the implication (i) < (iv).
Recall the equations (3.5.8)

k k
do' = miAaal +) Al Aw
j=1 s=1
According to the definition of the distribution F;, for any f € F;, we have
W'(f)=0, 7 (f)=0, ni(f)=0

for 1 <i<mand 1l < j <k. Therefore

k m

fado' = > (mi(f) -7 =7 (f)ml) + Y (ALS) - wt —wi(f) - AL)

j=1 s=1
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A

(f)'wiGI:Dl>

I
NE

s=1

which implies that f € F; and thus F; C F;. On the other hand, for any f € F; C D,
we have clearly w*(f) =0, for 1 < s <m and

]~

fado' = > (ni(f) 7 =7 (f)ml) + Y (ALS) - wt — wi(f) - AL)

1

<.
Il

AL(S) .

[
Mw
NE

(s (f) -7/ =2 (f)-n}) +

1 s=1

<.
Il

The above expression belongs to D* (since fudw’ € D+) and therefore 7(f) = 0 and
7 (f) = 0 because the differential forms 7}, 7/, and w*® are independent. This implies
that f € F; and thus F; C F; implying that F; = F;. O
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Chapter 4

Orbital feedback linearization for
multi-input control systems

4.1 Introduction

Feedback linearization is a powerful tool for nonlinear control systems and has at-
tracted a lot of research in recent years. Following the work of Brockett [5] who solved
the state feedback linearization for single-input systems under a restricted feedback,
Jakubczyk and Respondek [29] and Hunt and Su [22] gave geometric necessary and
sufficient conditions for linearizing multi-input affine control systems under change of
coordinates and general feedback which modifies both the drift and the control vector
fields.

In the theory of dynamical systems two natural equivalence relations are con-
sidered: equivalence under diffeomorphisms and orbital equivalence. In the former
case, the diffeomorphism establishing the equivalence maps trajectories into trajecto-
ries, understood as parameterized curves. In the latter case, equivalent systems have
also the same trajectories but considered as non-parameterized curves (that is, the
same trajectories up to a diffeomorphism and a time re-scaling). Observe that any
two feedback equivalent systems have the same families of trajectories, up to a diffeo-
morphism, although their parametrization with respect to controls is different. It is
then natural to ask when two control systems have the same families of trajectories,
up to a reparametrization with respect to controls and a time re-scaling (that is, when
they are orbital feedback equivalent). The linearization of a control system under
feedback and time re-scaling was studied for the first time by Sampei and Furuta [67].
In their approach, solving a system of PDE’s is necessary in order to verify feedback
linearizability conditions and to find the time re-scaling function. Respondek devel-
oped in [62], for the orbital feedback linearization of a single-input system, necessary
and sufficient conditions, which can be conveniently verified upon the original system.
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Independently, Guay adapted an approach using exterior differential systems to derive
necessary and sufficient conditions for the orbital feedback linearization of single-input
systems [19] and then of multi-input systems [20]. Verifying Guay’s conditions requires
the search of suitable generators for the associated Pfaffian system.

This chapter considers the orbital feedback linearization for specific multi-input
affine control systems. Both necessary and sufficient conditions are established so that
they can be verified in terms of the original system. In addition, the time re-scaling
function can be constructed using those conditions.

The chapter is organized as follows. The definitions and notations are given in
Section 4.2. The main result is presented in Section 4.3. In Section 4.4, a complete
version of the main theorem is derived due to an analysis of the distributions associated
to any control-affine system. Two illustrating examples are proposed in Section 4.5.
All proofs are given in Section 4.6.

4.2 Orbital feedback equivalence

Consider a control-affine system, with m controls, of the following form
50 Y@+ Y ) (12.1)
. - = X L) U; /R
dt e

where x € X, a C*-manifold of dimension d, and f and g;, for 1 < ¢ < m, are
C*>-vector fields on X. Throughout this chapter, smooth means C'*°-smooth.

Define a new time scale 7 such that
dt
_ t
= = 5w (1),

where 7 is a smooth R-valued function on X satisfying v(-) # 0. Then in the new
time scale 7, the system X can be rewritten as

= L =@ @) + Y@ eu = 1)) + Y gl

where v; = y(z)u;, 1 < i < m, are feedback modified controls. A time re-scaling
allows, as we have just seen, to multiply the drift f by an arbitrary nonvanishing
function while its action on control vector fields g; can be compensated by a suitable
feedback transformation w;(t) — y(z(t))u;(t) = vi(t).

Consider another control system of the same form evolving on a manifold X

E i—f = f(@) + ;gz-(:i)ai.
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The two systems ¥ and X are said to be orbital feedback equivalent if there exists
a diffeomorphism ¢ : X — X, an R™-valued smooth function o = (0, .. ), &
smooth matrix 8 = (3/), 1 < 14,5 < m, invertible everywhere, and a smooth function
7, satisfying v(-) # 0, such that

f=e.0f + ) ig) (4.2.2)
=1
and for 1 <7 <m,
5 =o.>_ Blgy), (4.2.3)
j=1

where ¢, denotes the tangent map of ¢, i.e.,
(0e)(&) = D¢~ (2)) - f(¢™'(E))-

The system Y defined by (4.2.1) is said to be orbital feedback linearizable if it is
orbital feedback equivalent to a linear system of the form

A B=AF+) bi+c. (4.2.4)
i=1

There are two reasons to add the extra constant vector field ¢ to the dynamics of the
linear control system

m

i=1
The first is to consider it around a non-equilibrium point z5. Then in coordinates
T = x — xg, the system becomes

P=AF+) buitec
i=1

where ¢ = Axq (of course ¢ can be incorporated into Az if the system is controllable
and is considered globally on R, but this may become impossible if we work locally
only). The second reason occurs when dealing with linear time-varying systems of the
form

i = A(t)r + zmj i ().

Add time as a new variable 2° = ¢, that is, #° = 1. If all controllability indices are
time-invariant then, as it is well known ([6], [31], [44], [68]), we can bring the system,

via a linear change of coordinates and feedback (both time-varying) to the form
0 =1

=1
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which in the augmented state space T = (2°,7) is of the form (4.2.4) with ¢ =
(1,0,...,0)". We will call the system A; time-augmented linear system. Throughout
this chapter, whenever we speak about orbital feedback linearization, we will always
mean orbital feedback equivalence to the time-augmented linear control system A;. Of
course, the system A, is never controllable but it can be accessible [24], [47] (the latter
if and only if the linear subsystem (A, B) is controllable where B is the matrix whose
columns are (by,...,b,)). We will speak about controllability indices and Brunovsky
canonical form of A, meaning the respective objects of (A, B).

Notice that we have defined time re-scaling using any non vanishing function
v. Of course in many problems, it would be more natural to use exclusively positive
functions « which preserve not only unparameterized system’s trajectories but also the
direction of the time arrow along the trajectories. It is actually easy to observe that if
Y] is orbital feedback equivalent to a time-augmented linear system A; via a negative
time re-scaling function, it is so via a positive time re-scaling one. To see it, assume
that X is orbital feedback equivalent to a time-augmented form (4.2.5) via a feedback
transformation and a time re-scaling function given by v < 0. Then the same feedback
transformation completed by the time re-scaling function defined by —v > 0 brings X
into

2P0 = —1

m
i=1

and it is enough to apply the linear isomorphism replacing 2° by —a°. Notice that, in
general, the pairs (A, B) and (—A, —B) are not conjugated via a linear isomorphism
but are feedback equivalent and can be brought to the same t-augmented Brunovsky
canonical form AP" (see the definition at the beginning of Section 4.4). More precisely,
we have

Proposition 4.2.1 The following are equivalent, locally around xo € X :

(i) X is orbital feedback equivalent to a t-augmented linear system;

(ii) X is orbital feedback equivalent, with v < 0, to the t-augmented Brunovsky canon-
ical form APT;

(iii) X is orbital feedback equivalent, with ~y > 0, to the t-augmented Brunovsky canon-
ical form APT;

The aim of this chapter is to find checkable geometric conditions for the problem:
when is the multi-input, i.e., m > 2, system

2 S =@+ Y a@, fr) £0 (4.2.6)

where © € X, locally orbital feedback equivalent to a time-augmented linear system
A; with equal controllability indices? The statement of the problem requires that
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f(xg) # 0, where zg is a given point around which we work, and that dim X = (n +
1)m + 1, where all controllability indices (which coincide, by assumption) equal n + 1.
We will assume those two conditions throughout.

4.3 Main result

Put ad?cgi = ¢; and inductively adgflgi = [f, adjcgi], for 1 <i<mandj >0 We
define the following distributions

G = span{gi,...,gn}, .
g} = Span{fvgi7adfgi7”'7ad§"_1gi7 1§Z§m}7

for 1 <j<n+1.

If we suppose dim Q"H( ) = (n+ 1)m + 1 in a neighborhood of zy (which we
will, indeed, assume below), then we have dim Q}(:c) =jm+1,for 0 < j <mn It
follows that m differential 1-forms w!, ... w™ € A(X) are defined uniquely by

w/(h) = 0, foranyhe Gy,
. - 4.3.1
Sadyg) = 6 3

for 1 <i4,7 < m. Using those differential forms, we introduce the following R-valued
functions:
Ty = W (fad} " gi, adyg;)) (4.3.2)

forany 0 <! <n—1and any 1 <4, 7,k < m such that ¢ # j in the case [ = n —1. Of
course the functions Tﬁ’i"_l can also be defined (actually, they vanish), but we exclude
them to simplify formulations of results. We have obviously

TP = —Thr (4.3.3)
for any 1 <14, j,k < m. Our main result on orbital feedback linearization is as follows:

Theorem 4.3.1 The multi-input control-affine system ¥, defined by (4.2.6) form > 2,
is locally orbital feedback equivalent to a time-augmented linear system Ay, with all con-
trollability indices equal to n+1, if and only if it satisfies, in a neighborhood of x,

(OPLI) dim g““( )=(n+1)m+1;
(OPL2) [gf>gf] C ng Jor1 <7 <mn;
(OPL3) [G,6G7] C gf7
(OPL4) The functions T ; satisfy the following conditions:
() T =0, t {1§k7éz'§m, 1<j<m, if l<n-—1
1<i#k#j<m, if l=n-1,
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(i) 9, =T

pyofor 1 <l<n—11<4jk<mstj#ikifl=n—1

(iii) when m = 2, then additionally, the distribution defined by
B:span{gi,adlfgmeéf, i=12and 1 <[ <n-—1}

must be involutive, where

B=T =T5 for 1<i<21<1<n-—2

n—1 _ l,TL—l n—1 __ 2,TL—l
by =Ty by =T5p .

Theorem 4.3.1 is actually the implication (i) < (ii) of the more general Theorem 4.4.6
(where other characterizations of orbital feedback linearization are given) and therefore
the proof of Theorem 4.3.1 follows form the proof of Theorem 4.4.6 given in Section 4.6.
Remark 1. The following generalization of (OFL3) is necessary for orbital feedback
linearization (see Lemma 4.6.1 in Section 4.6.1)

(OFL3) [G.G}]C G}, 2<j<n+1

But it can be proved that (OFL2) and (OFL3) imply (OFL3)’ for any 5 > 3.

Remark 2. We would like to emphasize two important features of Theorem 4.3.1.
First, all its conditions are easily checkable in terms of the original system. Secondly,
if the conditions (OFL1) — (OFL4) hold for ¥, the time re-scaling function vy can be
constructed as follows:

(1). Put B = span{g;, adlfgi +blf:1<i<m,1<1<n-—1}, where the functions b
are given by
kel
bé = Tk,i>

where 1 < k£ < m is any integer such that & # ¢ when [ = n — 1 (actually, Tiﬁ

is the same function for any k because of (OFL4)(ii)). We will prove below (see
Lemma 4.6.3 and Proposition 4.6.4) that for m > 3, B is an involutive subdistribution
of G} of corank one and, for m = 2, we assume that in (OFL4)(iii).

(2). Choose m + 1 smooth functions ¢q, ¢1, ..., ¢, such that

span {d¢g, d¢y, ..., do,} = B,

where the codistribution B+ denotes the annihilator of B.

(3). The construction of B implies immediately that f(xy) & B(x¢). Thus there exists
a function ¢;, for a certain 0 <14 < m, such that L¢¢;(x¢) # 0 where L;¢; denotes the
Lie derivative of ¢; along the vector field f.

(4). The time re-scaling function is given by v = Lngb

Note that the time re-scaling is not unique. Indeed, take any smooth function ¢ such
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that dg € B+ and LfQ;(x()) # 0. Then 7 = ngz; defines a time re-scaling function that
f
renders the system @ = f(z) + Z gi(x)i;, with f = 7 f, feedback linearizable and,
i=1

conversely, any 7 achieving that goal is of the form 4 = LLQE’ where ¢ is as above.

Remark 3. Obviously, a control system that is feedback linearizable is always orbital
feedback linearizable. To see how it is reflected in conditions (OFL1) — (OFL4), put
G; = span{g;,adsg;,. ..,adi}_lgi,l < i < m} and observe that 3, defined on X of
dimension (n+ 1)m + 1, is locally feedback equivalent to a t-augmented linear system
A, if and only if it satisfies the following conditions

(FL1) dim G, 11 () = (n+ 1)m;
(FL2) dim G,,1o(z) = (n+ 1)m;
(FL3) [g;.6;] c G;, 1 <j<n

Indeed, the condition (FL1) implies that 3 decomposes into 1-dimensional system
1% = 1 followed by a (n+ 1)m-dimensional subsystem that is feedback linearizable due
to the standard linearizability conditions (FL2) and (FL3) (for the latter see [24],
[29],[47]). Now it is immediate to see that (FL3) implies (OFL2), (OFL3) and (OFL4)
(with all T}/ = 0), while (FL1) and (FL2) are related with (OFL1) via f(zo) & G} (x0),
which reflects the time-augmented form of A;.

4.4 From distributions to control-affine systems and
back

In the previous section we characterized control-affine systems that are orbital feedback
equivalent to a time-augmented linear system A;, with all controllability indices equal.
Any such system A; (with the common value of the controllability indices being n+1)
can be transformed, via a linear change of coordinates and linear feedback, to the
t-augmented Brunovsky canonical form

-0 _
i =1
-0 _ 1 -0 _ 1
Ty = I Loy, = Iy
AB’!‘,
PR
n—1 n n—1 n
Ty = I Ty Lo
s _ n _
& o= uy e I = Up,.

The drift and the control vector fields of the above form are, respectively,

n—1 m
cc  __ 0 Jj+1 9
f - a.0 + Z xT; PN E)
O =0 i=1 Ou; (4.4.1)
cc _ a . cCc __ a
g = —8m?7 y Im = —8IZL,
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and define on R+DUm+1 o distribution of rank m + 1
CC"(R,R™) = span {f“, g{°, ..., gm},

called the Cartan distribution. Formal similarity of the t-augmented Brunovsky canon-
ical form AP" and of the vector fields spanning CC"(R, R™) rise a natural question:
what are relations between control systems that are orbital feedback equivalent to AP
and distributions equivalent to CC" (R, R™). This section is devoted to various aspects
of that question.

Consider an arbitrary distribution D. The derived flag of D is the sequence of
modules of vector fields D ¢ DM ¢ .. defined inductively by

D(O) =D and D(i+1) = D(l) —+ [D(l), D(Z)], fOI' ) 2 0.

The Lie flag of D is the sequence of modules of vector fields Dy C Dy C --- defined
inductively by

DO =D and Di+1 = DZ + [Do,DZ‘], for 1 Z 0.

In general, the derived and Lie flags are different, though for any point x in the
underlying manifold the inclusion D;(z) € D®(z) holds, for i > 0.

A characteristic vector field of a distribution D is a vector field f that belongs to
D and satisfies [f, D] C D. The characteristic distribution of D, which will be denoted
by C(D), is the module spanned by all its characteristic vector fields. It follows directly
from the Jacobi identity that the characteristic distribution is always involutive but,
in general, it need not be of constant rank. Let £ be a subdistribution contained in D,
we denote by corank (£ C D) the corank of £ in D, that is the value of rank D—rank L.

The following theorem, given by Pasillas-Lépine and Respondek [51], [54], char-
acterizes distributions which are equivalent to the Cartan distribution CC" (R, R™).

Theorem 4.4.1 A rank m+1 distribution D, with m > 2, on a manifold X of dimen-
sion (n+1)m+1 is locally, at zo € X, equivalent to the Cartan distribution CC" (R, R™)
if and only if the following conditions hold around xq, for 0 < j < n.

(B1) Each distribution DY) is of rank (j + 1)m + 1 and contains an involutive sub-
distribution L; such that corank (£; C DY) = 1;
(B2) rank DY) = rank D;.

Remark. One can prove that, for 0 < j < n — 2, we have £; = C(DU*V), the
characteristic distribution of DU+, Tt follows (see [54] for details) that the condition
(B1) can be weaken to

114



(B1) D" = TX;
(B1)" rank D™ Y = nm + 1 and there exists an involutive subdistribution £,_; of
D™=Y guch that corank (£, ; € DY) = 1.

4.4.1 From distributions to control-affine systems

Recall that G = span{gi,...,gn} denotes the control distribution spanned by the
control vector fields. Observe that the set of all admissible velocities of the control-
affine system ¥ at z € X is the affine subspace A(x) = f(2)+G(z) of the tangent space
T,.X. Therefore to any control affine system there corresponds an affine distribution
A = f + G which assigns to any = € X the affine subspace A(x) of T, X. Feedback
equivalence can be rephrased, using the notion of affine distributions, in an invariant
way that does not depend on particular control parameterizations of ¥. Indeed, two
control-affine systems ¥ and X are feedback equivalent if and only if there exists a
diffeomorphism ¢ such that
A=A

provided that the control distributions G and G are of constant rank. Similarly, they are
orbital feedback equivalent if there exists a diffecomorphism ¢ and a function () # 0
such that

A= p.(7A).
Here A means that all vector fields of A are multiplied by 7, i.e.,
YA=~f+G.

Consider an arbitrary constant rank distribution D on X. To any affine distri-
bution A C D, where A = f + G such that corank (G C D) =1 and f(x) &€ G(x), we
attach the control system X 4, given up to orbital feedback.

Proposition 4.4.2 Consider a constant rank distribution D in which we choose an

affine distribution A = f +G C D such that corank(G C D) =1 and f(z) & G(x). If
the distribution D satisfies

(D1) D is locally equivalent to the Cartan distribution CC™(R,R™);
(D2) ¢(DV) =,

then the associated control-affine system X 4 is locally orbital feedback equivalent to the
t-augmented Brunovsky canonical form AP

Remark. It seems that the assertion of that theorem may a priori depend on the
choice of f but actually it does not. Indeed, if for one vector field f, the corresponding
system X4 is orbital feedback linearizable it is so for any f such that span {f}+6=
span {f} +G = D, where D is equivalent to the Cartan distribution CC"(R, R™). The
proof of this result follows immediately form that of Proposition 4.4.5, given in the
next subsection.
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4.4.2 From control-affine systems to distributions

To any control-affine system ¥ we will attach a distribution spanned by all vector
fields corresponding to all controls:

Definition 4.4.3 Consider a given control-affine system ¥ defined by (4.2.6). The
distribution Ds, associated with ¥ is defined as

Dy, = span{f, g1, -, gm}-

Let Dy and f)i be the distributions associated to ¥ and %, respectively, i.e.,
Dy, = span {f}+Gys and 152 = span { f -+ -C;i- Clearly the orbital feedback equivalence
of ¥ and ¥ implies the equivalence of the distributions Dy, and f)i But the former is
apparently stronger because it also implies the equivalence of the control distributions

Gs, and Gs.

The pairs (D, G) and (D, G) of distributions on X and X, respectively, are called
equivalent if there exists a diffeomorphism ¢ : X — X such that

D = D and 0. G = G.
We have the following characterization of orbital feedback equivalence.

Proposition 4.4.4 Assume that for control-affine systems ¥ and 3, the control dis-
tributions Gy, and G, are of constant rank and f(z) ¢ Gs(x), for any x € X and

f(&) & Gs(7), for any & € X. Then ¥ and ¥ are orbital feedback equivalent if and
only if the pairs (Ds, Gs) and (Dy,Gs,) are equivalent.

Proof: As we have already observed, necessity is obvious. To prove sufficiency,
denote by ¢ a diffeomorphism that establish the equivalence of (Ds, Gs) and (DZ, Gs).
The assumption ¢, Gy = (]E implies, because of the constant rank of Gy, and QZ, the
existence of functions # such that (4.2.3) holds.

Choose any vector fields f € A and f € A such that f(z) € Gs(z) and f(&) &
Gs(%). Tt follows that ¢, (span{f}) = span {f} mod Gs, and thus there exists a
nonvanishing function ~ such that <p*(7 f) = f mod Gs. Hence (4.2.2) holds which
proves feedback equivalence of ¥ and . O

This leads to a new, with respect to Theorem 4.3.1, characterization of orbital
feedback linearizable systems.

Proposition 4.4.5 Consider a control-affine system ¥ = (f,Gs) and let Dx. be its
associated distribution. Then X is locally orbital feedback equivalent to the t-augmented
Brunovsky canonical form AP, with all controllability indices equal n + 1, if and only
if Dy, satisfies the following conditions:
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(C1) Dy is locally equivalent to the Cartan distribution CC™(R,R™);
(C2) C(DY)) =Gs.

Proof: Necessity. Without loss of generality, we can assume that

m

Siod=fa)+ ) g0

i=1

is locally orbital feedback equivalent to the t-augmented Brunovsky canonical form
= fR) + )o@,
i=1

where the vector fields f° and ¢¢¢, for 1 < i < m, are given by (4.4.1). This proves
that the distribution Dy is locally equivalent to CC" (R, R™).

Sufficiency. Since Dy is locally equivalent to CC"(R,R™) = D, there exists a
local diffeomorphism ¢ : X — X such that

0Dy, =D = span{f“, g, ..., g}
In other words, there exists an everywhere invertible matrix-valued smooth function
M = (ul), 0 <i,j < m, such that
o(uQf +> phg) = f
j=1

e (WO +> plg) = g
j=1

From the structure of CC"(R,R™) = D = span {f, ¢, ..., g}, it is easy to see
that G = span {¢¢°, ..., ¢} is the characteristic distribution of D). Therefore the
characteristic distribution of D(El )is

C(DY) =span {pdf + ) plg;, 1<i<m}.
j=1
The condition (C2) gives C(Dg)) = Gy, = span{gi,. .., gm} which implies
/’L?:..:MS'L:O

Define a smooth matrix 3 = (ﬁf ) by ﬁij = ,ug , for 1 < i,5 < m. Clearly the function
pd cannot be zero at xp and [ is invertible because the matrix M(x) is invertible
everywhere.
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Put v = uf and o = i, for 1 < j < m, then we get
(VD azg) = f
j=1
<P*(Z 39;) = 9%
j=1

which implies that ¥ is orbital feedback equivalent to the t-augmented Brunovsky
canonical form with time re-scaling function v = pf. OJ

All considerations presented in this section, together with Theorem 4.3.1 lead to
the following complete characterization of the orbital feedback linearizability of the
control-affine system ::

Theorem 4.4.6 Consider the control-affine system ¥, defined by (4.2.6). Let Dy, be
the distribution associated to ¥ and Gy, = span{ gy, ..., gm} be the control distribution
spanned by the control vectors. Then the following conditions are equivalent, locally
around an arbitrary point xo € X :

(i) X is orbital feedback equivalent to a t-augmented linear system A, with all con-
trollability indices equal to n + 1.
(ii) ¥ satisfies the conditions (OFL1) — (OFL4) of Theorem 4.3.1.
(iii) The distribution Dy, associated to ¥ satisfies the conditions (C1)—(C2) of Propo-
sition 4.4.5.
(iv) The distribution Dy, associated to Y. satisfies the following conditions:
(1) D =TX;
C2) rank DU = nm + 1 and there ezists an involutive subdistribution
5
L,._1 of D(E"_l) such that corank (L, C D(En_l)) =1;
(C3)" G, D)) < DY
(04), Dg(l‘o) §Z En—l(x0>-
(v) The distribution Ds; satisfies the following conditions, for 0 < j < n,

(C1)" rank D(Ej) = (j+1)m+1 and each element D(z]) contains an involutive
subdistribution L; such that corank (£; C D(EJ)) =1;

(C2)" rank (Dy); = (j + 1)m + 1, where (Dy); stands for the j-th element
of the Lie flag of Ds;

(C3)" [Gs, D] < DY,

The equivalence (i) < (ii) is just Theorem 4.3.1 whereas (i) < (iii) is just
Proposition 4.4.5. The conditions (OFL1) — (OFL4) are expressed directly in terms
of the control system Y. On the other hand, the conditions of (iii), (iv) and (v)
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are given in terms of the distribution Dy associated to . Equivalence of Dy to the
Cartan distribution CC"(R, R™) can be tested using either the conditions (B1) — (B2)
of Theorem 4.4.1 or the conditions (B1)’, (B1)"” and (B2) of Remark following it. The
latter lead to the conditions (C1)" — (C4)" and the former to (C1)” — (C3)".

4.5 Examples

In this section we will illustrate our results on orbital feedback linearizability by two
examples.

Example 4.5.1 Consider a control system described on R7, equipped with the coor-
dinates (x, y1, Yo, 21, 22, W1, Wa) by

(

=1
Y1 =21+ wy
Y2 = 22 + Yrws
DI lewl
Z::QZUJQ
wy = uy
L ’LiJQZUQ

where (u,us)" € R? is the control. This system is not feedback linearizable because it
does not satisfy the conditions (FL1) — (FL3) given in Section 4.3 (see the calculation
below). We will show that it fulfils however the conditions of Theorem 4.3.1 almost
everywhere and thus it is locally orbital feedback linearizable on an open and dense
subset of R”. We have

_ 0 0 0 0 o)
f= ozt (z1 +w1)3—y1 + (22 +y1w2)a—y2 +w18—zl +w28—z2’

_ 0 _ 0
91_8—w1’ 92_8—1112'

A direct calculation gives

_ _90 _ 0
adsgr = dy1 0z
adrgy = _yla% - 3%

2 _ 0
adpgr = gyt 2y,
ad?cgg = (]. — 21 — ’LUl)B%

Then it is easily seen that the distribution G, = span {g1, g2, adfg1,adsg2} is not invo-
lutive and hence X is not feedback linearizable. On the other hand, the distributions

g = Span {91792}7
g} = span {f7 g1,92, ..., ad§_lg1, ad§_192},
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for 1 < j < 3, satisfy the conditions (OFL1) — (OFL3) of Theorem 4.3.1 around any
point in R such that 1 — z; — w; # 0. Now we examine the condition (OFL4) of
Theorem 4.3.1. Define the differential forms wy,ws by

Wwi(h) = 0, for any h e g3,
wj(ad?”gi) = 657

for 1 < 1,5 < 2. Solving the above equations, we obtain

W = —zldx + dyl - le

Wo = Z1Wo — Zg)di(] — wgdy1 -+ dy2 + wgdzl — yleQ).

Taking into account that [ad;gq, adrgs] = (%2, we get
Ty, = wi([adygr, ad;gs]) = 0,
b 1
T%é = wy([ad g1, adsgs]) = T—2 —w;,

Notice that for the system ¥, the conditions (i) and (ii) of (OFL4) are trivially satisfied
and thus it remains to verify the condition (iii) of (OFL4). That is, the distribution

B = span {g1, g2, ad g1 + biﬁ adrgs + b%f}

should be involutive, where the functions b! and b} are given, respectively, by

2,1 2,1 1
bi - T2,1 - —T1,2 = Ztw —1
by =Ty; = 0.

Substituting bl and b} into B, we get

B = span{gi, g2 adsg + b1 f, adygs + by f}
= Span {917927 f + (zl + w1 — 1>a‘dfg17 adfg2}
= Sspan {gla92> h’1> h'2}?

where

hi = f+ (21 + w1 — Vadsgr = % + aiyl + (22 +w2y1)8iy2 +(1— Zl)aizl +wag -

_ _ 0 0
ho = add-fg2 = =W dys Oz
Computing the Lie brackets
[91792] = 07 [917 hl] = 07 [glv h2] = 07
(92, h1] = —ha, [92, ha] = 0, [y, ko] = 0,
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we conclude that the distribution B is indeed involutive and therefore the system X is
orbital feedback linearizable. The time re-scaling function ~ is constructible. To this
end, choose three functions ¢ = & — y1, P2 = Y120 — Yo, ¢3 = €*(21 — 1) so that they
satisfy

B* = span {d¢y, dpy, dps}.

Since Lypr = (1 — 21 —wy) # 0 out of the set {z; +w; = 1}, a time re-scaling function

~ can be taken as
1

T 1— 21 — W ’

By a direct calculation we can verify that the system ¥ with respect to the new time
scale dt = ~dr, i.e., the system 31, which is ¥ with f replaced by + f, satisfies the feed-
back linearizability conditions (FL1) — (FL3) (see Remark 3 following Theorem 4.3.1).

Notice that we can also choose v = ﬁ, in {1 -2 —w # 0}N{z # 0} or

Y3 = ﬁ, in {1 — 2z —w; # 0} and the corresponding control systems Yo, with f
replaced by . f, as well as Y3, with f replaced by v3f, become feedback linearizable.
This illustrates an interesting phenomenon that the linearizing time re-scaling function
is not unique and may lead to different control systems (in fact, ¥, 3 and X3 are
not mutually locally equivalent via a diffeomorphism ¢ in the state space) which are,
of course, feedback equivalent to each other.

Example 4.5.2 (Rigid bar moving in R?)

Consider a rigid bar moving in R? such that the instantaneous velocity of the bar is
parallel to its direction. Let (z,y, z) € R3 denotes the coordinate position of the source
point of the bar, ¢ denotes the angle between the bar axis and the plane XOY and 0
denotes the angle between the x-axis and the projection of the bar on the X OY -plane.
We assume that we control both angular velocities and that the bar moves forward
only with a velocity of norm one.

( .
T = cos @ cos
1 = cos wsin 6

Yhar Z =sing
Qzul
| $ =

where 6 € S' and —% << % Note that this model is not defined at the point

¢ = £3. Therefore the state is (v,y,2,¢,0) € X =R? x (=5, 5) x S* and the drift

and the control vector fields are, respectively,
_ 0 0 0
f = cospcos 9% + cosgpsm@w + sin o=,

9126%7 9228%
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A direct computation gives

adrgr = cosgosin@%—cosgocos@%

adfgo = singpcos 98% + sin p sin (9(% — CoS go%.
It is easy to find that the distribution G, = span {g1, g2, adrg1, ad g2} is not involutive
and thus X,, is not feedback linearizable because it does not satisfy the conditions
(FL1) — (FL3) given in Section 4.3. However it is locally orbital feedback linearizable.
Clearly, the distributions

g - Span{g17g2}7
gj{ = span{f,q1,92, .., adjp_lgl, ad§_192}>

for 1 < j < 2, satisfy the conditions (OFL1) — (OFL3) of Theorem 4.3.1 around
any point in X. Moreover the condition (OPL4) is trivially satisfied because all the
functions Tf]l vanish identically. Indeed, recall that m = 2 and n = 1 so [ = 0 since
[l <n —1. Then we have,

Tf; = wk([ad}‘_lgi, ad}‘_lgj])
w*([gi, 951)
=0

for 1 < 4,75,k < 2, since [g1, go] = [3%’ 5%] = 0. Consequently, the involutive distri-

bution B coincides with the distribution G = span {g1, g2}. In order to find a suitable
time re-scaling function, we choose ¢ = x, ¢ = y, ¢3 = z such that

B+ = span {d¢1, dgs, dos}.

If 0 # +7 then L;¢, = Lz = cos pcosf > 0. Therefore a time re-scaling function is
2 ! !
given by

B 1
cos pcosf’
L : : 1 ‘ _ _ tano
Multiplying the right hand side of ¥, by oS p oSO and putting v = tanf, w = oSl

we obtain finally the linear system by a suitable feedback

;

r=1
y=uwv
Z=w
1‘):121
L w = Us.

In the case 6 = :I:%, the orbital feedback linearization can be realized in a similar way
with the time re-scaling function given by

1
7= cos psinf’
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since Ly = Ljy = cospsinf # 0. As we have explained in Remark 2 following
Theorem 4.3.1, the choice of the time re-scaling function ~ is not unique. In fact, we

can choose any ¢ such that dp € B*, that is any ¢ = ¢(z,v, ), such that L;p(xg) # 0
1

and re-scale the time via v = Iy

4.6 Proof of Theorem 4.4.6

Clearly, both Theorem 4.3.1 and Proposition 4.4.5 are contained in Theorem 4.4.6
which gives a complete characterization of the orbital feedback linearization of the
system Y defined by (4.2.6). So it is enough to prove Theorem 4.4.6 which we will do
in this section. The proof will be based on some lemmata given in Subsection 4.6.1.

4.6.1 Useful results

Lemma 4.6.1 If the system X satisfies the conditions (OFL1) — (OFL3) of Theo-
rem 4.3.1, then we have

G.G4] C Gl 3<j<n+1
Proof: We proceed by induction. If j = 3 we have
(]J?i = span {f, g;, adfgi,adfcgi, 1 <i<m}.
Given an arbitrary g € G, in order to show that [g, gj:] € gjz, it is enough to prove
[g,adffgi] € Q?, 1<i<m.
Computing that Lie bracket, we have, by the Jacobi identity,

lg,ad7gi] = [g,[f,adsgil]
= [[gaf]?adfgi] + [f> [g>adfgi]]
= _[adfgv adfgi] + [fv [gv adfgi”‘

The condition [G,G7] C G; implies that [g,adsg;] € G7. Moreover, since the vector
fields adsg, ad;g; and f belong to (]]%, it follows from the condition (OFL2) that

ladyg,adsg;] € G}, [f,[9,ad;sgil] € G5,

and thus [g,ad}g;] € G}.

Assume now that the statement is true for j = k, i.e., [G, (]}“] C g’; . Consider
Gi*' = Gf @span{adjg;, 1<i<m}
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= Span{f?.giaadfgia'"aad];'_lgiaadl;gia 1 S Z S m}
For any g € G, by the Jacobi identity we have, for 1 <i < m,
lg,adfgi] = [g,[f,ad} " gi]]

Hga .ﬂ> ad]}_lgi] + [f> [ga adlﬁ_lgi]]
= —[adyg, ad} ' g;] + [f, [g,ad} "gi]].

The induction assumption |G, (]}“] C g’; implies that [g, adlji_lgi] € g’;, for 1 < i <m.
Moreover, since adyg, ad’}_l g; and f belong to g’; , the condition (OFL2) implies that
[adpg,ad} 'gi] € Gf™, [f,[g,ad} gil] € GF

Thus g, ad’}gi] € QJI?H, for 1 < i < m, which yields [g,gjﬁ“] C Q'JfH and the lemma
follows by an induction argument. O

Recall that in Section 4.3 we have defined, under (OFL1), the differential forms
w', ..., w™ and with their help, the functions Tfjl were also well defined for any 0 <
I <n—1and any 1 <14,7, k < m such that i # j in the case [ =n — 1.

Lemma 4.6.2 [f the control-affine system 3, defined by (4.2.6) satisfies the conditions
(OFL1) — (OFL3) of Theorem 4.3.1 and, moreover, there exists a subdistribution B of
G% such that corank (B C G}) =1 and [B,B] C G}, then

B=G®H,
where G = span{gi, ..., Gm} andH:span{adﬁ}gmegf, 1<i<m,1<j<n-1}

for some suitable C*°-functions b{ defined on X.

Proof: To begin with, we will show that G = span{g,...,gm} C B locally around
xo. Assume that there exist g € G such that g(zo) & B(xy), since B is of constant rank,
we have g(z) € B(z), for any « in a neighborhood O of (xy). Then the the condition
corank (B C G}) = 1 implies that G} = B @ span {g} in O. Moreover, Lemma 4.6.1
shows that g is a characteristic vector field of G} and therefore, locally around z,

7,97 = [B,B] + [B,g] C 67,
which implies that G} is involutive. This gives a contradiction and thus G C B.
Since rank B = rank G} — 1 = nm , there exists a rank (n — 1)m distribution
H =span{h!,....,h" ' 1<i<m}CB

such that B = G @ H. Forming the following row-vectors whose elements are vector
fields,

H=(h,... b . Wt Y,

Y m?
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A:(adfgia--wad?_lgiafa lﬁzﬁm),
and taking into account the structure of G, we obtain that
H=A-B,

where B is a matrix-valued function of rank (n — 1)m with (n — 1)m + 1 rows and
(n — 1)m columns. Let By be the matrix formed by the first (n — 1)m rows,

B:(T).

Assume for a moment rank B; = (n — 1)m and then putting

on-(4)

we have ImB = Im B. Now, define a new row vector
H=AB
— (adfgi,...,ad?_lgi,f) ( Ij )
= (adjgi+ b f,...,ad} g+ 0] f, 1<i<m),

where (b1, ... bL ... b27Y b1 coincides with the ((n — 1)m + 1)-th row of B.

’Ymo

Let ‘H be the distribution spanned by all the vector fields of H. Then the relation
Im B = Im B implies that
H = H = span {ad}gi +bf ad;ﬁ_lg,- + b 1 <i<m},

and hence the statement of Lemma 4.6.2 follows. In order to finish the proof, it re-
mains to show that rank B; can not be less than (n — 1)m.

Suppose that rank By (zg) < (n — 1)m, then clearly we have rank By(zo) = (n —
1)m —1. We can assume, for simplicity, that the matrix By obtained by neglecting the
first row of B is invertible, i.e.,

B= ( i ), rank Bo = (n — 1)m.
2
Let B be the matrix defined by

B:BB;:(;)’
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and clearly we have ImB = ImB. Let h},... Al h2, ... h"" ' hy, for 1 <i < m, be
the vector fields given by

(71%, 71,1 71,2 ...,H?_l,ilo) = (adfgi,...,ad?_lgi,

) m? 79 f)B
n—1 *
= (adygi,...,ad} gi,f)<1d).
A straightforward calculation shows that

hl =ad}g; + b -adpgr,  (i,4) # (1,1)
ho = f + by - adygn,

where (bS, ... b b2 ... b2, ... b7 .. b7t by) coincides with the first row of B.

rrm? v mo ’Ym )

Now we discuss the value of the function by at point xq. If by(z) # 0, notice that by is
just the element that lies in the first row and (n — 1)m-th column of the matrix B and
then, clearly, the first (n — 1)m rows of B are linearly independent. In other words,

rank B1B, ' = (n — 1)m,

which contradicts the assumption that rank B; = (n — 1)m — 1. If by(z) = 0, let us
consider the vector fields hy and i_z?_l, for 1 <4 < m. On one hand, since hg C H C B
and }_L:-L_l C 'H C B, we have, for 1 <i<m

h(zg) = [EO, i_z?_l](:)so) C [B,B](zg) C g?(:co). (4.6.1)
On the other hand, calculating the Lie bracket of hq and ﬁ?‘l, 1 <17 < m, we have

h(zo) = [ho, hi™](x0)
= [f+bo-adsg, ad;ﬁ_lg,- + 07 - ad;yg1)(20)
= adjgi(wo) + 0}~ (wo) - adjgi (wo) + (Lsbi ™) (20) - ad 1 (wo)
+bo(wo)[ad g1, ad} ™ gi] (o) — (LadyflgiEO)(xo) ~ad g1 (o)
+(00(Lad g, 07 ") = b (Lad g1 00)) (w0) - adpg1 (o)
= ad}g;(zo) + b Hag) - adfcgl(xo) + (o) - adpgr (o),
where n = LfB:-L_l — Lad}zflgil_)() + l_)o(Ladfgll_)?_l) — B?_I(Ladfglgo). By the condition
(OFL1), the vectors adygi (zo), ad;gi (o) and ad}g; (o) are linearly independent. Then

the fact adg; ¢ G implies that h(zg) € GF(wo) which contradicts the relation (4.6.1).
Therefore rank By = (n — 1)m and Lemma 4.6.2 holds. O

The following version of a result of Bryant [7] was given by Pasillas-Lépine and
Respondek in [51], [54] in order to study the Cartan distribution CC" (R, R™).
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Lemma 4.6.3 Let D be a distribution such that D and DY have constant rank d
and dy, respectively. Put ro = dy — dy and assume that D contains a subdistribution
B C D that has constant corank one in D and satisfies [B,B] C D.

(i) Ifrg > 2, then B is unique.
(ii) If ro > 3, then B is involutive.

In the case of D = G} the existence of B as above is described by the following

Lemma 4.6.4 If the control-affine system ¥, defined by (4.2.6), for m > 2, satisfies
the conditions (OFL1) — (OFL3) of Theorem 4.3.1, then the following conditions are
equivalent:

(i) There exists a subdistm’bution B of G} such that corank (B C G}) = 1 and [B, B] C G};
(i) The functions T™!, defined by (4.3.2), satisfy the following conditions:
1<k#:i<m, 1<j7<m, if I<n-1
1<i#k#j<m, if l=n-1 ’
(OFL4)"W Tt =T for 1<1<n—1,1<djk<mstij k#jifl=n—1

2]7

(OFL4)Y T =0, for {

Remark. The condition (OFL1) assumes that the distributions Q"H and G} are of
constant rank and rank (]"H —rank Gy = m. Then it m > 3, by Lemma 4.6.3, the sub-
distribution B C G} given in item (i) of Lemma 4.6.4 is involutive and unique. There-
fore Lemma 4.6.4 implies that if X, for m > 3, satisfies the conditions (OFL1)—(OFL3)
of Theorem 4.3.1, then the condition (OFL4) holds if and only if there exists an invo-
lutive subdistribution B of G} which satisfies corank (B C G}) = 1.

Proof: (i) = (ii): Applying Lemma 4.6.2 we have

B = GoH
= span{gl,...,gm}GBSpan{hf, 1<i<m,1<j<n-1}

with h! = ad?gi +0b! f where b/ are C*°-functions defined on X. Compute the following
Lie brackets, for any 1 <i,7 <mand 1 <1 <n—1,

[hp~' R = [ad} g + 07 f, adhg; + B f]
= [ad}lg;, adyg;] — 0} - adfg; + (Logp1,,b5) - f
+b7 71 - adi gy — (Lag g 0771 - f+(b" 'Lt = ViLyp-1) f
— [ad;ﬁ 1gz,adfg]] bl ad $9i + b~ ! adlfﬂg]%—n f

(4.6.2)

where 1 = Lad?flgi b — Ladggj byt + b Lgbl — bg»Lle. On one hand, the definition
(4.3.1) of the differential forms w',... w™ implies that

(R R =0, 1<k<m, 1<1<n—1,
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since [hf ™', hL] € [B,B] C G%. On the other hand, we have

(1) = (g, adbgg]) — B - oF(adfr)
M ad ) + W)
= T = by - o (adjg) + 47" - (adyg,).
It follows that
i =0 - wF(adfgs) — b7 - wF(adfg,). (4.6.3)

We will consider separately the case [ <n—1and [ =n — 1.

If | < n—1, then obviously adlngj € G and so wk(adlfﬂgj) = 0, for any

1 <k <m. Ifk#i by the definition of w*, we have w*(ad}g;) = 0. Thus the
equation (4.6.3) gives

ki _
i7j - O.

R =T
If k =i, since w"(ad’g;) = w¥(ad}gr) = 1, then the equation (4.6.3) gives

() = TR~ 8 =0,

J

and thus

77

kJd gl
Ty =1

for any 1 < k£ < m and hence we conclude that

TG =t =Ty, for any 1<rjk<m. (4.6.4)

In the case [ = n — 1, if i # k # j then clearly w*(ad’g;) = w¥(ad}g;) = 0 and
from the equation (4.6.3) we get
TRl =
2,] ‘

If k =i and i # j, then clearly w*(ad}g;) = w¥(adjgr) = 1 and w*(ad}g;) = 0.
Therefore it follows from the equation (4.6.3) that

kn—1 kn—1 n—
T =T =0 (4.6.5)
Since the equation (4.6.5) does not depend on k, we get
T =0 =TT 1< j#rnjEk<m (4.6.6)

If k=4 and i # j, then Ti’;‘_l = Tf”k"_l = —TZ:?_l and the result follows by (4.6.5).
The relations (4.6.4) and (4.6.6) show that we always have
il ki
Ty =Ty

128



forany 1 <[ <mn—1andany 1 <1,j,k <m such that 7 # 7 and j # k in the case
l=n-—1.

(ii) = (i): Assume that a system X satisfies (OFL1) — (OFL3) and that the
functions Tfj, 1 <id,j,k <m, 1 <1 <mn-—1, satisfy the conditions (OFL4)(i) —
(OFL4)(ii). For any 1 <i<m and 1 <1 <n — 1, define the functions

b =T}, (4.6.7)

where we take any 1 < k < mifl < n—1and any k # i if [ = n — 1 (actually
(OFL4)(ii) implies that the functions Tii, do not depend on k). Define a distribution
B by

B = span{gi,adlfgi—i—bﬁf, 1<i<m, 1<i<n-1}

We claim that B satisfies item (i) of Lemma 4.6.4. The relations B C G} and
corank(B C G}) = 1 are obvious. Therefore it remains to prove that [B,B] C G}.
Denote hl = adlfgi + 0l f. Lemma 4.6.1 says that G is contained in the characteristic
distribution of G} and thus any g € G C B and any hé», 1<j7<m, 1<l <n-1,
satisfy

9. h3) € G7.
So we need only to prove that for any vector fields A] and hg, for 1 < 4,7 < m,
1 <l,r<n-—1, we have

1y, h] € G, (4.6.8)
which is equivalent to

wk([hf,hg]) =0, 1<k<m.

Notice that in the case r < n —1 and [ < n — 1, the relation (4.6.8) is obvious since
hi e Q?‘l, h e Q?‘l and then the condition (OFL2) yields directly

[hy, B € (G771, 677 € G
Now consider the case 7 = n — 1. Following the same calculation as in (4.6.2), we get
wWh ([, 1)) = wH ([P, B))
= w*([ad} ™ gi, adygy]) — b - w'(adfg) + b7 - wh(ady T gy) + - W ()

= Tf]l — bé» : wk(ad}‘gi) + ot wk(adlfﬂgj).

We will consider separately the case [ <n —1and [ =n—1. If [ <n — 1, notice that
adlf+lgj € G} and thus we have wk(adlfﬂgj) =0, for any 1 < k < m. If k # 1, the
definition of w* gives that w* (ad%g;) = 0 and moreover, by the condition Tf]l =0, we
get

(R RG] = 0.
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If k = 4, the definition of w* gives that w"(ad}g;) = w¥(adjgr) = 1. Then the
relation (4.6.7) implies that

([hn 1 hl]) kl_bl _

Now assume that [ =n — 1. If k # 4, j, from the definition of w* and the assumption
(OFL4)(ii), we find w*(ad}g;) = 0, w*(ad}g;) = 0 and Ti’f_l = 0 which imply

(R R = TR = b wh (adgs) 4+ b wh(adfgy) =

J

If k=i and i # j, we have w¥(ad}g;) = w¥(ad}gr) = 1 and w¥(ad}g;) = 0. Taking
into account the equality T],z;‘ = =0 1 we get

(T ) = (T ) = T T - 0 =0,

The case k = j and i # j follows from the previous one by permuting ¢ and j. Therefore
the relation (4.6.8) holds for r =n — 1, any 1 <i,7 < mand any 1 <[ <n — 1.
Finally the case [ = n — 1 follows from that for » = n — 1 just by permuting [ and 7.
Therefore the relation (4.6.8) is always true and implies [B, B] C GF. O

4.6.2 Proof of Theorem 4.4.6

The equivalence (i) <= (iii) <= (iv) <= (v) is a direct consequence of Proposition
4.4.5 and the results given by Pasillas-Lépine and Respondek in [54] (summarized in
Theorem 4.4.1 and Remarks following it). To prove Theorem 4.4.6, it is enough to
show that (v) = (ii) == (iv). For simplicity, we will denote the distribution Dy,
associated to X by D.

Proof: (v) = (ii) Note that (C1)” and (C2)"” imply that D® = D; for i > 0. We
start by proving, by induction, that g’“ D;, for 1 <1 < n. Obviously, we have

gf :’DO = span{f,gl,...,gm}.
Assume that
g;; =span{f,g;,adsgj, ..., adic_lgj, 1<j<m}="D;;.

The condition (C3)” implies that [G,D;] C Dy, for 1 < i < m. Indeed, (C3)" gives
[G, Dy] C Dy from which we conclude easily (via Jacobi identity) that [G, D®] C D@,
but D@ = D,. We have

Di—i—l D; + [D0> ] [f D] [D0> Di]>
which implies

H‘l gH—Z = Spall {fagﬁadfgja"'aad?_lgja 1 S] < m}
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We then have Gi*! = D; = D@ and, by definition, D% = D=1 4 [D=1) D]
which yields [G},G7] € G;*'. This proves the conditions (OFL1) and (OFL2). The
condition (OFL3) coincides with (C3)"” while (OFL4) follows from Lemma 4.6.4, where
we take B = L,,_1.

(ii) = (iv) The condition (OFL1) implies that rank (]}H = (i 4+ 1)m+ 1, for
1 < i < n, in a neighborhood of zy. We will show D = Q}H by induction. The
relations D) = G} is obvious. Assume that

g]i = span{f, gj,adsg;, ..., ad’j}_lgj, 1<j<m}= pi-b,
then
DO — pl-1 [D(i—l)’ D(i—l)]

G; + 165,97l
= g;’fl + span{[adlfgj,ad;gk], 0<l,s<i—1,1<jk<m}.
Now (OFL2) implies that for 0 <[, s <i—1, 1 < j k <m,
i+1

[adlfgj,adjcgk] €gi,

and thus D C G{*'. The inclusion Gt € DY is obvious and thus by an inductive
argument, g}“ C DY for any i > 0. Therefore the conditions (C1)" and (C4)" hold
and rank D"~V = nm + 1. Moreover, the condition (C2)" follows from Lemma 4.6.4.
Finally, the condition (C3)" can be verified directly due to the structure of £,_; given
in the proof of Lemma 4.6.4. In fact, by Lemma 4.6.3, the involutive subdistribution
L, _1 is unique and therefore it is given by

L,_1 =B =span{g;, ad}gj + bjl-f, e ad?_lgj + b?_lf, 1 <j<m}.
It is immediate to see that

DO = Span {f7 g1, ... agm} ¢ ‘Cn—1>

and hence the condition (C3)" holds. O
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Conclusions

Nous avons étudié dans ce mémoire la géométrie et la structure des systemes de controle
non linéaires qui sont équivalents aux systemes de contact - une classe de systemes
non holonomes. Nous résumons dans cette partie nos résultats principaux .

Dans le premier chapitre, nous avons étudié la propriété de la platitude des
systemes avec deux controles. Premierement, nous avons montré qu’une structure de
Goursat est z-plate en (o, up), uo & Using(Z0), si et seulement si les conditions de
régularité dim D (zy) = dim D;(z¢), pour 0 < i < n, sont satisfaites. Ceci répond &
la question posée par Martin et Rouchon [39] (voir aussi [40]) pour la a-platitude. En-
suite, nous avons donné des conditions nécessaires et suffisantes vérifiables (Theoréme
1.3.2 et 1.3.3) pour qu'une paire de fonctions données (¢, p2) forme une z-sortie plate
du systeme ¥ avec deux controles qui est équivalent au systéme chainé (systeme de
contact canonique sur J"(R' R')). Nous avons aussi décrit le lieu singulier de cette
z-sorties plate. Notons C,_; la distribution caractéristique de D™~ et g un champ
de vecteurs dans D tel que g(zo) & Cp—1(x). Nous avons montré qu’étant donné une
fonction lisse ¢y telle que Loy =0, Ve € Cyoq, et Lypr(xg) # 0, il existe toujours une
fonction ¢y telle que (¢1, p2) frome une z-sortie plate de ¥ en (zg,ug). De plus, ¢
est unique au sens de span {dp;(z),dps(x)} = span {dy;(z),d@s(x)}, pour tous les
points & dans un voisinage du point xg, ou ¢y est une autre fonction telle que (@1, ¢2)
est aussi une x-sortie plate. Ces derniers résultats nous permettent de calculer toutes
les x-sorties plates pour un systeme qui est équivalent au systeme chainé en résolvant
un systeme d’équations aux dérivées partielles du 1° ordre. En fin, nous avons ap-
pliqué nos résultats au systeme du robot mobile avec remorques pour décrire toutes
ses x-sorties plates.

Dans le deuxieme chapitre, nous avons étudié le systeme a n-barres dans ’espace
R™*! qui généralise le systéme du robot mobile avec remorques sur le plan. Nous
avons introduit un modele cinématique de ce systeme sans utiliser les variables d’angle.
Les résultats principaux sont les suivants: (1) Le systeme a n-barres dans R™! est
localement équivalent au systéeme m-chainé (i.e., systeme de contact canonique sur
J"(RY, R™)) en tous les points réguliers que nous avons caractérisés. Nous avons aussi
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montré que les lieux singuliers sont essentiellement différents entre les deux cas m =1
et m > 2. De plus, le systeme a n-barres est controllable globalement dans ’espace
de configuration @ = R™ x (S™)". (2) Le systeme a n-barres R™"! pour m > 2,
est z-plat en tous les points réguliers. De plus, les coordonnées cartésiennes du point
source Py = (x},22,---, 20" de la premiere barre RyP; forment la seule a-sortie
plate minimale. Contrairement au cas m = 1, ou la sortie plate minimale n’est pas

unique.

Dans le troisieme chapitre, nous avons donné des conditions nécessaires et suff-
isantes pour qu’une distribution D soit équivalente & la distribution de Cartan CC™(R?, R™).
Toutes ces conditions sont vérifiables sur la distribution D. Pour montrer notre
théoreme, nous avons proposé une forme normale de Bryant étendue qui généralise
la caractérisation de la distribution de Cartan CC*(R*,R™). Nous avons aussi étudié
le probleme suivant : quand une distribution D contient une sous-distribution invo-
lutive qui est de corang k& dans D. Nous avons obtenu le résultat suivant : si D est
une distribution de rang k + mk définie sur une variété M de dimension m + k + mk,
pour m > 3, telle que DY = TM et C(D) = 0, alors D contient une sous-distribution
involutive de corang k dans D si et seulement si le rang d’Engel de D+ est constant
et égal a k.

Dans le quatrieme chapitre, nous avons étudié le systeme de controle sous la
forme ¥ : & = f(z)+ >0, gi(z)u;, ot v € X = RM+HU™FLen supposant que f(zg) # 0
ou x( est le point autour duquel nous travaillons. Nous avons obtenu des conditions
nécessaires et suffisantes vérifiables pour que le systeme . soit linéarisable par bouclage
orbital. Toutes ces conditions peuvent étre vérifiées directement sur le systeme orig-
inal. De plus, nous avons aussi donné une construction de la fonction v qui décrit le
changement de temps, i.e., la transformation orbitale. Il est aussi important de remar-
quer que notre résultat implique une relation intéressante entre la linéarisation orbitale
par bouclage du systeme X et la caractérisation du systéme de contact sur J*(R!, R™).

Perspectives

A Tissue de cette these, certains problemes liés a nos études demeurent encore
non-résolus et indiquent de possibles directions de recherche pour 'avenir :

(1). Dans le premier chapitre, nous avons montré qu'une structure de Gour-
sat est x-plate en (xg,ug), Uo, & Using(Z0), si et seulement si les conditions de regu-
larité dim D% () = dim D;(wg), pour 0 < i < n, sont satisfaites. Deux problemes
intéressants se posent : (i) Est-ce que I'hypotheése que la distribution associée D soit
une structure de Goursat est nécessaire? Autrement dit, si un systeme avec deux
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controles est z-plat au point g, est-ce qu’il est toujours équivalent au systeme chainé
en xy? (ii) Est-ce que ce résultat est aussi vrai si on remplace la z-platitude par la
platitude? Autrement dit, est-ce quune structure de Goursat est plate en (zg, @f) si
et seulement si les conditions de regularité sont satisfaites en z(?

(2). Dans le chapitre 3, nous avons donné des conditions nécessaires et suffisantes
pour qu'une distribution soit équivalente & la distribution de Cartan CC"(R?* R™).
Deux problémes intéressants relatifs aux chapitre 2 et 3 sont : (i) Le premier probleme
consiste & considérer un systeme a n-plans qui bouge dans I'espace R™*! et de voir
comment construire un modele cinématique pour ce systeme? Est-ce qu’il est locale-
ment équivalent au systeme de contact canonique sur J"(R? R™)? Est-ce que nous
pouvons le montrer en utilisant nos résultats dans chapitre 3, caractériser son lieu
singulier, étudier la propriété de la platitude et determiner ses z-sorties plates? (ii)
Le deuxieme probleme semble plus difficile a étudier mais il est aussi naturel : com-
ment caractériser la distribution de Cartan dans le cas general? Autrement dit, nous
voulons trouver des conditions nécessaires et suffisantes vérifiables pour qu'une distri-
bution soit equivalente a la distribution de Cartan CC"(R*, R™), pour k > 2.

(3). Considérons le systeme de controle sous la forme ¥ : & = f(z)+>_1", gi(z)u,,
otz € X = RY, pour un certain entier N et xy est un point de X. Les problemes liés
au chapitre 4 sont les suivants : (i) Si f(zo) # 0, quand X est localement equivalent
par bouclage orbital a la forme de Goursat généralisée (Extended Goursat normal
form [63]), avec des indices de controlabilité differents? (ii) Si f(zo) = 0, i.e., au
point d’équilibre, quand > est localement linéarisable par bouclage orbital? Il serait
souhaitable que toutes conditions puissent étre vérifiables directement sur le systeme
original.
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GEOMETRIE ET CLASSIFICATION DES SYSTEMES DE CONTACT:
APPLICATIONS AU CONTROLE DES SYSTEMES MECANIQUES NON
HOLONOMES

RESUME: Dans la premiere partie de cette thése, nous caractérisons completement toutes
les sorties plates et leurs lieux singuliers pour un systeme avec deux controles qui est
équivalent au systeme chainé. Nous appliquons aussi ce résultat au systeme du robot mobile
avec des remorques pour calculer toutes ses sorties plates. Dans la deuxieme partie, nous
présentons un nouveau modele pour le systeme a n-barres dans I'espace de dimension m + 1.
Nous montrons que ce systéme est localement équivalent au systéme m-chainé (systéme de
contact sur J"(R,R™)) et caractérisons aussi ses lieux singuliers. Ensuite, nous analysons sa
propriété de platitude et donnons ses sorties plates minimales. Dans la troisieme partie, nous
donnons des conditions nécessaires et suffisantes pour qu’une distribution soit équivalente
a la distribution de Cartan pour des surfaces. Finalement, dans la quatrieéme partie, nous
donnons des conditions nécessaires et suffisantes vérifiables pour qu’un systéme multi-entrées
soit linéarisable par bouclage orbital.

Mots-clés: Systéme de controle, systeme nonholonome, platitude, sortie plate, systéme de
contact, distributon de Cartan, systéme a n-barres, linearisation par bouclage orbital

GEOMETRY AND CLASSIFICATION OF CONTACT SYSTEMS:
APPLICATIONS TO CONTROL OF NONHOLONOMIC MECHANICAL
SYSTEMS

ABSTRACT: In the first part of this Ph.D. thesis, we characterize all flat outputs and their
singular loci of any 2-input driftless control system which is equivalent to the chained form.
Then we apply that result to the n-trailer system in order to calculate all its flat outputs. In
the second part, we establish a new model of the n-bar system in (m + 1)-dimensional space.
With the help of this model, we show that the system is locally equivalent to the m-chained
form (canonical contact system on J"(R,R™)) and also describe its singular locus. Further-
more, we analyze its flatness property and determine its minimal flat outputs. In the third
part, we give necessary and sufficient conditions for a distribution to be locally equivalent
to the Cartan distribution for surfaces. Finally, in the fourth part, we give necessary and
sufficient verifiable conditions for a multi-input affine control system to be orbital feedback
linearizable.

Key-words: Control system, nonholonomic system, flatness, flat output, contact system,
Cartan distributon, n-bar system, orbital feedback linearization



