G. Stuart, N. Spruston, B. Sakmann, and M. Häusser, Action potential initiation and backpropagation in neurons of the mammalian CNS, Trends in Neurosciences, vol.20, issue.3, pp.125131-125149, 1997.
DOI : 10.1016/S0166-2236(96)10075-8

P. Laming, H. Kimelberg, S. Robinson, A. Salm, N. Hawrylak et al., Neuronal???glial interactions and behaviour, Neuroscience & Biobehavioral Reviews, vol.24, issue.3, pp.295340-295359, 2000.
DOI : 10.1016/S0149-7634(99)00080-9

A. L. Nicolas, adhésion cellulaire : une sonde de l'environement mécanique dans les tissus. Images de la physique, p.19, 2007.

B. M. Jockusch, Patterns of microfilament organization in animal cells, Molecular and Cellular Endocrinology, vol.29, issue.1, pp.1-20, 1983.
DOI : 10.1016/0303-7207(83)90002-3

T. Mitchison and M. Kirschner, Microtubule assembly nucleated by isolated centrosomes, Nature, vol.72, issue.5991, p.232237, 1921.
DOI : 10.1038/312232a0

S. F. Hamm-alvarez, Molecular motors and their role in membrane trac Advanced drug delivery reviews, p.229242, 1921.

M. D. Ehlers, Secrets of the Secretory Pathway in Dendrite Growth, Neuron, vol.55, issue.5, pp.686689-686711, 2007.
DOI : 10.1016/j.neuron.2007.08.009

J. C. Fiala, J. Spacek, and K. M. Harris, Dendritic spine pathology : cause or consequence of neurological disorders ? Brain research reviews, pp.2954-2976, 2002.

P. W. Baas, J. S. Deitch, M. M. Black, and G. A. Banker, Polarity orientation of microtubules in hippocampal neurons: uniformity in the axon and nonuniformity in the dendrite., Proceedings of the National Academy of Sciences, vol.85, issue.21, pp.858335-858358, 1988.
DOI : 10.1073/pnas.85.21.8335

Z. M. Lasiecka, C. C. Yap, M. Vakulenko, and B. Winckler, Compartmentalizing the neuronal plasma membrane : From axon initial segments to synapses, p.23, 2008.

Y. Ikegaya, Y. Itsukaichi-nishida, M. Ishihara, D. Tanaka, and N. Matsuki, Distance of target search of isolated rat hippocampal neuron is about 150 ??m, Neuroscience, vol.97, issue.2, pp.215217-215242, 2000.
DOI : 10.1016/S0306-4522(00)00098-1

V. Lemmon, S. M. Burden, H. R. Payne, G. J. Elmslie, and M. Hlavin, Neurite growth on dierent substrates : permissive versus instructive inuences and the role of adhesive strength, The Journal of neuroscience, vol.12, issue.3, pp.818-844, 1992.

S. Chang, V. I. Rodionov, G. G. Borisy, and S. V. Popov, Transport and turnover of microtubules in frog neurons depend on the pattern of axonal growth, The Journal of neuroscience, vol.18, issue.3, pp.821-847, 1998.

D. Braun and P. Fromherz, Fluorescence interferometry of neuronal cell adhesion on microstructured silicon. Physical review letters, pp.52415244-52415270, 1998.

C. G. Dotti, C. A. Sullivan, and G. A. Banker, The establishment of polarity by hippocampal neurons in culture, The Journal of neuroscience, vol.8, issue.26, pp.1454-1485, 1988.

N. Arimura and K. Kaibuchi, Neuronal polarity: from extracellular signals to intracellular mechanisms, Nature Reviews Neuroscience, vol.20, issue.3, p.42, 2007.
DOI : 10.1038/nrn2056

L. Dehmelt and S. Halpain, Actin and microtubules in neurite initiation: Are MAPs the missing link?, Journal of Neurobiology, vol.157, issue.1, pp.1833-1860, 2004.
DOI : 10.1002/neu.10284

C. Bouzigues, D. Holcman, and M. Dahan, A Mechanism for the Polarity Formation of Chemoreceptors at the Growth Cone Membrane for Gradient Amplification during Directional Sensing, PLoS ONE, vol.23, issue.2, pp.9243-9270, 2010.
DOI : 10.1371/journal.pone.0009243.s003

URL : https://hal.archives-ouvertes.fr/hal-00804603

L. A. Lowery and D. Van-vactor, The trip of the tip: understanding the growth cone machinery, Nature Reviews Molecular Cell Biology, vol.14, issue.5, pp.332-360, 2009.
DOI : 10.1038/nrm2679

D. T. Burnette, L. Ji, A. W. Schaefer, N. A. Medeiros, G. Danuser et al., Myosin II Activity Facilitates Microtubule Bundling in the Neuronal Growth Cone Neck, Developmental Cell, vol.15, issue.1, pp.163169-163197, 2008.
DOI : 10.1016/j.devcel.2008.05.016

D. Cojoc, F. Difato, E. Ferrari, R. B. Shahapure, J. Laishram et al., Properties of the Force Exerted by Filopodia and Lamellipodia and the Involvement of Cytoskeletal Components, PLoS ONE, vol.72, issue.10, pp.1072-1100, 2007.
DOI : 10.1371/journal.pone.0001072.s007

C. E. Chan and D. J. Odde, Traction Dynamics of Filopodia on Compliant Substrates, Science, vol.322, issue.5908, pp.1687-1715, 2008.
DOI : 10.1126/science.1163595

T. Betz, D. Koch, Y. B. Lu, K. Franze, and J. A. Käs, Growth cones as soft and weak force generators, Proceedings of the National Academy of Sciences, pp.1342013425-1342013462, 2011.
DOI : 10.1073/pnas.1106145108

D. M. Suter and P. Forscher, An emerging link between cytoskeletal dynamics and cell adhesion molecules in growth cone guidance, Current Opinion in Neurobiology, vol.8, issue.1, pp.106116-106145, 1998.
DOI : 10.1016/S0959-4388(98)80014-7

G. Banker and G. Ruthel, Actin-dependent anterograde movement of growth-cone-like structures along growing hippocampal axons : A novel form of axonal transport ?, Cell Motility and the Cytoskeleton, vol.40, pp.160173-160202, 1998.

K. C. Flynn, C. W. Pak, A. E. Shaw, F. Bradke, and J. R. Bamburg, Growth cone-like waves transport actin and promote axonogenesis and neurite branching, Developmental Neurobiology, vol.3, issue.12, pp.761779-761809, 2009.
DOI : 10.1002/dneu.20734

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2845293

G. Ruthel and G. Banker, Role of moving growth cone-like ?wave? structures in the outgrowth of cultured hippocampal axons and dendrites, Journal of Neurobiology, vol.11, issue.1, pp.97106-97136, 1999.
DOI : 10.1002/(SICI)1097-4695(199904)39:1<97::AID-NEU8>3.0.CO;2-Z

G. Ruthel and P. J. Hollenbeck, Growth cones are not required for initial establishment of polarity or dierential axon branch growth in cultured hippocampal neurons, The Journal of Neuroscience, vol.20, issue.32, pp.2266-2297, 2000.

F. Bradke and C. G. Dotti, Neuronal Polarity: Vectorial Cytoplasmic Flow Precedes Axon Formation, Neuron, vol.19, issue.6, pp.11751186-11751219, 1997.
DOI : 10.1016/S0896-6273(00)80410-9

URL : http://doi.org/10.1016/s0896-6273(00)80410-9

A. Song, D. Wang, G. Chen, Y. Li, J. Luo et al., A selective lter for cytoplasmic transport at the axon initial segment, Cell, vol.136, issue.6, pp.11481160-11481193, 2009.

H. Witte, D. Neukirchen, and F. Bradke, Microtubule stabilization specifies initial neuronal polarization, The Journal of Cell Biology, vol.23, issue.3, pp.619-652, 2008.
DOI : 10.1002/(SICI)1097-0169(1998)41:1<18::AID-CM2>3.0.CO;2-B

N. A. Reed, D. Cai, T. L. Blasius, G. T. Jih, E. Meyhofer et al., Microtubule Acetylation Promotes Kinesin-1 Binding and Transport, Current Biology, vol.16, issue.21, pp.162166-2172, 2006.
DOI : 10.1016/j.cub.2006.09.014

C. Jacobson, B. Schnapp, and G. A. Banker, A change in the selective translocation of the kinesin-1 motor domain marks the initial specication of the axon, Neuron, vol.49, issue.6, pp.797804-797837, 2006.

F. Bradke and C. G. Dotti, The Role of Local Actin Instability in Axon Formation, Science, vol.283, issue.5409, pp.1931-1964, 1999.
DOI : 10.1126/science.283.5409.1931

F. C. De-anda, G. Pollarolo, J. S. Da-silva, P. G. Camoletto, F. Feiguin et al., Centrosome localization determines neuronal polarity, Nature, vol.36, issue.7051, pp.704-738, 2005.
DOI : 10.1083/jcb.101.6.2085

J. F. Zmuda and R. J. Rivas, The Golgi apparatus and the centrosome are localized to the sites of newly emerging axons in cerebellar granule neurons in vitro, Cell Motility and the Cytoskeleton, vol.378, issue.1, pp.1838-1872, 1998.
DOI : 10.1002/(SICI)1097-0169(1998)41:1<18::AID-CM2>3.0.CO;2-B

H. R. Higginbotham and J. G. Gleeson, The centrosome in neuronal development, Trends in Neurosciences, vol.30, issue.6, pp.276283-276318, 2007.
DOI : 10.1016/j.tins.2007.04.001

R. B. Vallee, G. E. Seale, and J. W. Tsai, Emerging roles for myosin II and cytoplasmic dynein in migrating neurons and growth cones, Trends in Cell Biology, vol.19, issue.7, pp.347355-347390, 2009.
DOI : 10.1016/j.tcb.2009.03.009

F. Bradke and C. G. Dotti, Dierentiated neurons retain the capacity to generate axons from dendrites, Current Biology, vol.10, issue.22, pp.14671470-14671505, 2000.

S. Gomis-ruth, C. J. Wierenga, and F. Bradke, Plasticity of Polarization: Changing Dendrites into Axons in Neurons Integrated in Neuronal Circuits, Current Biology, vol.18, issue.13, pp.9921000-9921036, 2008.
DOI : 10.1016/j.cub.2008.06.026

D. Bray, Mechanical tension produced by nerve cells in tissue culture, Journal of cell science, vol.37, issue.1, pp.391-427, 1979.

B. G. Condron and K. Zinn, Regulated neurite tension as a mechanism for determination of neuronal arbor geometries in vivo, Current Biology, vol.7, issue.10, pp.813816-813852, 1997.
DOI : 10.1016/S0960-9822(06)00343-5

T. Dennerll, . Joshi, . Steel, S. Buxbaum, and . Heidemann, Tension and compression in the cytoskeleton of PC-12 neurites. II: Quantitative measurements, The Journal of Cell Biology, vol.107, issue.2, pp.665-705, 1988.
DOI : 10.1083/jcb.107.2.665

P. Lamoureux, G. Ruthel, R. E. Buxbaum, and S. R. Heidemann, Mechanical tension can specify axonal fate in hippocampal neurons, The Journal of Cell Biology, vol.11, issue.3, pp.499-537, 2002.
DOI : 10.1002/cne.903320208

J. N. Fass and D. J. Odde, Tensile force-dependent neurite elicitation via anti-[beta] 1 integrin antibody-coated magnetic beads, Biophysical journal, vol.85, issue.1, pp.623636-623674, 2003.
DOI : 10.1016/s0006-3495(03)74506-8

URL : http://doi.org/10.1016/s0006-3495(03)74506-8

P. W. Baas and F. J. Ahmad, Force generation by cytoskeletal motor proteins as a regulator of axonal elongation and retraction, Trends in Cell Biology, vol.11, issue.6, pp.244249-244288, 2001.
DOI : 10.1016/S0962-8924(01)02005-0

P. W. Grabham, G. E. Seale, M. Bennecib, D. J. Goldberg, and R. B. Vallee, Cytoplasmic Dynein and LIS1 Are Required for Microtubule Advance during Growth Cone Remodeling and Fast Axonal Outgrowth, Journal of Neuroscience, vol.27, issue.21, pp.275823-275861, 2007.
DOI : 10.1523/JNEUROSCI.1135-07.2007

R. Bernal, P. A. Pullarkat, and F. Melo, Mechanical properties of axons. Physical review letters, pp.18301-18342, 2007.

T. J. Dennerll, P. Lamoureux, R. E. Buxbaum, and S. R. Heidemann, The cytomechanics of axonal elongation and retraction, The Journal of Cell Biology, vol.109, issue.6, pp.3073-3114, 1989.
DOI : 10.1083/jcb.109.6.3073

M. O. Toole, P. Lamoureux, and K. E. Miller, A physical model of axonal elongation : force, viscosity, and adhesions govern the mode of outgrowth, Biophysical journal, vol.94, issue.41, pp.26102620-26102660, 2008.

H. T. Park, J. Wu, and Y. Rao, Molecular control of neuronal migration. BioEssays : news and reviews in molecular, cellular and developmental biology, pp.821-863, 2002.

T. Esch, V. Lemmon, and G. Banker, Local presentation of substrate molecules directs axon specication by cultured hippocampal neurons, The Journal of neuroscience, vol.19, issue.15, pp.6417-6460, 1999.

S. K. Dertinger, X. Jiang, Z. Li, V. N. Murthy, and G. M. Whitesides, Gradients of substratebound laminin orient axonal specication of neurons, Proceedings of the National Academy of Sciences, pp.9912542-9912585, 2002.

A. Ehrlicher, T. Betz, B. Stuhrmann, M. Gogler, D. Koch et al., Optical Neuronal Guidance, p.44, 2007.
DOI : 10.1016/S0091-679X(07)83021-4

C. D. Mccaig, A. M. Rajnicek, B. Song, and M. Zhao, Controlling Cell Behavior Electrically: Current Views and Future Potential, Physiological Reviews, vol.85, issue.3, pp.943-988, 2005.
DOI : 10.1152/physrev.00020.2004

S. Kim, W. S. Im, L. Kang, S. T. Lee, K. Chu et al., The application of magnets directs the orientation of neurite outgrowth in cultured human neuronal cells, Journal of Neuroscience Methods, vol.174, issue.1, pp.9196-9240, 2008.
DOI : 10.1016/j.jneumeth.2008.07.005

I. Chapitre, M. Matériel, and I. Sommaire, 1 Nos substrats, p.51

.. Culture-de-neurones-et-techniques-biologiques, 55 II.2.1 Culture de neurones d'hippocampe de souris, p.55

]. A. Bibliographie1, C. D. Oliva, C. E. James, H. G. Kingman, G. A. Craighead et al., Patterning axonal guidance molecules using a novel strategy for microcontact printing, Neurochemical research, issue.11, pp.2816391648-97, 2003.

S. Roth, Réseaux de neurones modèles : Contrôle de la diérenciation axonale par micropatterns, p.111, 2009.

M. J. Katz, How straight do axons grow ? The Journal of neuroscience, pp.589-108, 1985.

M. Théry, V. Racine, A. Pépin, M. Piel, Y. Chen et al., The extracellular matrix guides the orientation of the cell division axis, Nature Cell Biology, vol.124, issue.10, pp.947-953, 2005.
DOI : 10.1007/s00249-003-0282-2

H. Witte and F. Bradke, The role of the cytoskeleton during neuronal polarization, Current Opinion in Neurobiology, vol.18, issue.5, pp.479487-102, 2008.
DOI : 10.1016/j.conb.2008.09.019

P. Lamoureux, G. Ruthel, R. E. Buxbaum, and S. R. Heidemann, Mechanical tension can specify axonal fate in hippocampal neurons, The Journal of Cell Biology, vol.11, issue.3, pp.499-136, 2002.
DOI : 10.1002/cne.903320208

M. O. Toole, P. Lamoureux, and K. E. Miller, A physical model of axonal elongation : force, viscosity, and adhesions govern the mode of outgrowth, Biophysical journal, vol.94, issue.7 103, p.26102620, 2008.

D. Bray, Mechanical tension produced by nerve cells in tissue culture, Journal of cell science, vol.37, issue.1 103, p.391, 1979.

J. Zheng, P. Lamoureux, V. Santiago, T. Dennerll, R. E. Buxbaum et al., Tensile regulation of axonal elongation and initiation, The Journal of neuroscience, vol.11, issue.4, pp.1117-109, 1991.

C. Jacobson, B. Schnapp, and G. A. Banker, A change in the selective translocation of the kinesin-1 motor domain marks the initial specication of the axon, Neuron, vol.49, issue.6, pp.797804-121, 2006.

L. Dehmelt and S. Halpain, Actin and microtubules in neurite initiation: Are MAPs the missing link?, Journal of Neurobiology, vol.157, issue.1, pp.1833-138, 2004.
DOI : 10.1002/neu.10284

O. M. Rossier, N. Gauthier, N. Biais, W. Vonnegut, M. A. Fardin et al., Force generated by actomyosin contraction builds bridges between adhesive contacts, The EMBO Journal, vol.151, issue.6, pp.291055-138, 2010.
DOI : 10.1038/emboj.2010.2

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2845274

J. Brugués, B. Maugis, J. Casademunt, P. Nassoy, F. Amblard et al., Dynamical organization of the cytoskeletal cortex probed by micropipette aspiration, Proceedings of the National Academy of Sciences, pp.15415-138, 2010.
DOI : 10.1073/pnas.0913669107

K. Franze, J. Gerdelmann, M. Weick, T. Betz, S. Pawlizak et al., Neurite Branch Retraction Is Caused by a Threshold-Dependent Mechanical Impact, Biophysical Journal, vol.97, issue.7, pp.9718831890-142, 2009.
DOI : 10.1016/j.bpj.2009.07.033

V. Introduction and .. , 151 V.1.1 Pourquoi des neurones sur Silicium rugueux ?, p.151

. Bibliographie1, . Fan, . Cui, . Sp-hou, . Xu et al., Culture of neural cells on silicon wafers with nano-scale surface topograph, Journal of neuroscience methods, vol.120, issue.1, pp.1723-151, 2002.

K. J. Jang, M. S. Kim, D. Feltrin, N. L. Jeon, K. Y. Suh et al., Two Distinct Filopodia Populations at the Growth Cone Allow to Sense Nanotopographical Extracellular Matrix Cues to Guide Neurite Outgrowth, PLoS ONE, vol.105, issue.Pt 1, pp.15966-151, 2010.
DOI : 10.1371/journal.pone.0015966.s009

S. Ghassemi, N. Biais, K. Maniura, . Sj-wind, J. Sheetz et al., Fabrication of elastomer pillar arrays with modulated stiness for cellular force measurements, Journal of Vacuum Science & Technology B : Microelectronics and Nanometer Structures, vol.26, issue.6, pp.25492553-151, 2008.

J. P. Spatz and B. Geiger, Molecular Engineering of Cellular Environments: Cell Adhesion to Nano???Digital Surfaces, Methods in cell biology, vol.83, pp.89111-151, 2007.
DOI : 10.1016/S0091-679X(07)83005-6

Y. Ikegaya, Y. Itsukaichi-nishida, M. Ishihara, D. Tanaka, and N. Matsuki, Distance of target search of isolated rat hippocampal neuron is about 150 ??m, Neuroscience, vol.97, issue.2, pp.215217-153, 2000.
DOI : 10.1016/S0306-4522(00)00098-1

P. J. Lein, G. A. Banker, and D. Higgins, Laminin selectively enhances axonal growth and accelerates the development of polarity by hippocampal neurons in culture, Developmental Brain Research, vol.69, issue.2, pp.191197-155, 1992.
DOI : 10.1016/0165-3806(92)90159-T

D. Braeken, D. Jans, D. Rand, B. Van-meerbergen, R. Huys et al., Micronail-structured micro electrode arrays for selective local stimulation of excitable cells, Proceedings of the 6th International Meeting of Substrate Integrated Micro Electrode Arrays, pp.255258-158, 2008.

T. Esch, V. Lemmon, and G. Banker, Local presentation of substrate molecules directs axon specication by cultured hippocampal neurons, The Journal of neuroscience, vol.19, issue.172, pp.6417-178, 1999.

N. Li and A. Folch, Integration of topographical and biochemical cues by axons during growth on microfabricated 3-d substrates. Experimental cell research, pp.307316-161, 2005.

M. J. Katz, How straight do axons grow ? The Journal of neuroscience, pp.589-167, 1985.

C. E. Chan and D. J. Odde, Traction Dynamics of Filopodia on Compliant Substrates, Science, vol.322, issue.5908, pp.1687-168, 2008.
DOI : 10.1126/science.1163595

A. J. Engler, S. Sen, H. L. Sweeney, and D. E. Discher, Matrix elasticity directs stem cell lineage specication, Cell, vol.126, issue.4, pp.677689-168, 2006.
DOI : 10.1016/j.cell.2006.06.044

URL : http://doi.org/10.1016/j.cell.2006.06.044

R. K. Willits and S. L. Skornia, Eect of collagen gel stiness on neurite extension, Journal of Biomaterials Science Polymer Edition, vol.15, issue.12, pp.15211531-168, 2004.

L. Landau and E. Lifshitz, Elasticity theory, p.169, 1975.

G. Ruthel and G. Banker, Role of moving growth cone-like ?wave? structures in the outgrowth of cultured hippocampal axons and dendrites, Journal of Neurobiology, vol.11, issue.1, pp.97106-171, 1999.
DOI : 10.1002/(SICI)1097-4695(199904)39:1<97::AID-NEU8>3.0.CO;2-Z

A. Lochter and M. Schachner, Tenascin and extracellular matrix glycoproteins : from promotion to polarization of neurite growth in vitro, The Journal of neuroscience, vol.13, issue.9, pp.3986-171, 1993.

V. Chapitre, Adhésion, croissance et morphologie de neurones fakir in vitro

A. Ferrari, M. Cecchini, M. Serresi, P. Faraci, D. Pisignano et al., Neuronal polarity selection by topography-induced focal adhesion control, Biomaterials, vol.31, issue.17, pp.3146824694-172, 2010.
DOI : 10.1016/j.biomaterials.2010.02.032

F. Lafont, M. Rouget, A. Triller, A. Prochiantz, and A. Rousselet, In vitro control of neuronal polarity by glycosaminoglycans, Development, vol.114, issue.1, pp.17-172, 1992.

C. G. Dotti, C. A. Sullivan, and G. A. Banker, The establishment of polarity by hippocampal neurons in culture, The Journal of neuroscience, vol.8, issue.4, pp.1454-175, 1988.

L. Dehmelt and S. Halpain, Actin and microtubules in neurite initiation: Are MAPs the missing link?, Journal of Neurobiology, vol.157, issue.1, pp.1833-176, 2004.
DOI : 10.1002/neu.10284

S. Gomis-ruth, C. J. Wierenga, and F. Bradke, Plasticity of Polarization: Changing Dendrites into Axons in Neurons Integrated in Neuronal Circuits, Current Biology, vol.18, issue.13, pp.9921000-176, 2008.
DOI : 10.1016/j.cub.2008.06.026

H. Witte, D. Neukirchen, and F. Bradke, Microtubule stabilization specifies initial neuronal polarization, The Journal of Cell Biology, vol.23, issue.3, pp.619-178, 2008.
DOI : 10.1002/(SICI)1097-0169(1998)41:1<18::AID-CM2>3.0.CO;2-B

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2234250

F. C. De-anda, G. Pollarolo, J. S. Da-silva, P. G. Camoletto, F. Feiguin et al., Centrosome localization determines neuronal polarity, Nature, vol.36, issue.7051, pp.704-179, 2005.
DOI : 10.1083/jcb.101.6.2085

T. Mitchison and M. Kirschner, Cytoskeletal dynamics and nerve growth, Neuron, vol.1, issue.9, pp.761-772, 1988.
DOI : 10.1016/0896-6273(88)90124-9

A. W. Schaefer, V. T. Schoonderwoert, L. Ji, N. Mederios, G. Danuser et al., Coordination of actin lament and microtubule dynamics during neurite outgrowth, Developmental cell, vol.15, issue.1, pp.146162-180, 2008.

M. E. Spira, D. Kamber, A. Dormann, A. Cohen, C. Bartic et al., Improved Neuronal Adhesion to the Surface of Electronic Device by Engulfment of Protruding Micro-Nails Fabricated on the Chip Surface, TRANSDUCERS 2007, 2007 International Solid-State Sensors, Actuators and Microsystems Conference, pp.12471250-181, 2007.
DOI : 10.1109/SENSOR.2007.4300363

S. G. Turney and P. C. Bridgman, Laminin stimulates and guides axonal outgrowth via growth cone myosin II activity, Nature Neuroscience, vol.71, issue.6, pp.717719-181, 2005.
DOI : 10.1242/jcs.00335

M. Merz and P. Fromherz, Silicon chip interfaced with a geometrically dened net of snail neurons, Advanced Functional Materials, vol.15, issue.188, pp.739744-190, 2005.

C. Wyart, C. Ybert, L. Bourdieu, C. Herr, C. Prinz et al., Constrained synaptic connectivity in functional mammalian neuronal networks grown on patterned surfaces, Journal of Neuroscience Methods, vol.117, issue.2, pp.123131-187, 2002.
DOI : 10.1016/S0165-0270(02)00077-8

URL : https://hal.archives-ouvertes.fr/hal-00145442

L. Lauer, C. Klein, and A. Oenhäusser, Spot compliant neuronal networks by structure optimized micro-contact printing, Biomaterials, vol.22, issue.13, pp.19251932-187, 2001.
DOI : 10.1016/S0142-9612(00)00379-3

URL : http://hdl.handle.net/11858/00-001M-0000-000F-68FB-5

M. Scholl, C. Sprossler, M. Denyer, M. Krause, K. Nakajima et al., Ordered networks of rat hippocampal neurons attached to silicon oxide surfaces, Journal of Neuroscience Methods, vol.104, issue.1, pp.6575-187, 2000.
DOI : 10.1016/S0165-0270(00)00325-3

Y. Nam, D. W. Branch, and B. C. Wheeler, Epoxy-silane linking of biomolecules is simple and eective for patterning neuronal cultures, Biosensors and Bioelectronics, vol.22, issue.5, pp.589597-187, 2006.

Z. Zhang, R. Yoo, M. Wells, and T. P. Beebe, Neurite outgrowth on well-characterized surfaces: preparation and characterization of chemically and spatially controlled fibronectin and RGD substrates with good bioactivity, Biomaterials, vol.26, issue.1, pp.4761-187, 2005.
DOI : 10.1016/j.biomaterials.2004.02.004

J. Erickson, A. Tooker, Y. C. Tai, and J. Pine, Caged neuron MEA: A system for long-term investigation of cultured neural network connectivity, Journal of Neuroscience Methods, vol.175, issue.1, pp.116-189, 2008.
DOI : 10.1016/j.jneumeth.2008.07.023

A. K. Vogt, L. Lauer, W. Knoll, and A. Oenhäusser, Micropatterned substrates for the growth of functional neuronal networks of dened geometry, Biotechnology progress, vol.19, issue.5, pp.15621568-188, 2003.

A. K. Vogt, G. Wrobel, W. Meyer, W. Knoll, and A. Oenhäusser, Synaptic plasticity in micropatterned neuronal networks, Biomaterials, vol.26, issue.15, pp.2625492557-189, 2005.
DOI : 10.1016/j.biomaterials.2004.07.031

P. Fromherz, Nanoelectronics and information technology, p.189, 2005.

F. Patolsky, B. P. Timko, G. Yu, Y. Fang, A. B. Greytak et al., Detection, Stimulation, and Inhibition of Neuronal Signals with High-Density Nanowire Transistor Arrays, Science, vol.313, issue.5790, p.3131100, 0190.
DOI : 10.1126/science.1128640

. Lieber, Nanowire transistor arrays for mapping neural circuits in acute brain slices, Proceedings of the National Academy of Sciences, pp.1882-189, 2010.

O. Feinerman, A. Rotem, and E. Moses, Reliable neuronal logic devices from patterned hippocampal cultures, Nature Physics, vol.19, issue.12, p.967973, 2008.
DOI : 10.1126/science.7973651

F. Dumas-bouchiat, M. Lf-zanini, . Kustov, R. Dempsey, K. Grechishkin et al., Thermomagnetically patterned micromagnets, Applied Physics Letters, vol.96, issue.10, p.102511, 0201.
DOI : 10.1063/1.3341190

URL : https://hal.archives-ouvertes.fr/hal-00569295

M. Mclean, . Holcomb, J. D. Aw-wamil, and . Pickett, Blockade of sensory neuron action potentials by a static magnetic eld in the 10 mt range, Bioelectromagnetics, vol.16, issue.1, pp.2032-207, 1995.