L. 'utilisation-du-jms-donne-Également-de-meilleurs-résultats and . Qu, avec le récepteur mais est moins performante que le RBPF. Par conséquent, dans la suite de cette section nous ne comparerons que les RBPF(DPM) par rapport aux positions récepteurs. Le gain de précision est de plus de 7 mètres en 2D et de plus de 10 mètres en 3D. De plus, cet apport de précision rend la position beaucoup plus disponible à 3 mètres, pp.5-5

[. Corporation, NAVSTAR GPS Space Segment/Navigation Interfaces , Interface Specification, IS-GPS-200D (Public Release Version), ARINC Research Corporation, Tech. Rep, 2004.

A. [. Beugin, J. Filip, and . Marais, Simulation approaches to evaluate dependability of satellite-based positioning services in railway transportation applications, 2009.
DOI : 10.1201/9780203859759.ch320

R. [. Bisnath and . Langley, Pseudorange Multipath Mitigation By Means of Multipath Monitoring and De-Weighting, 2001.

J. [. Blackwell and . Macqueen, Ferguson Distributions Via Polya Urn Schemes, The Annals of Statistics, vol.1, issue.2, pp.353-355, 1973.
DOI : 10.1214/aos/1176342372

URL : http://projecteuclid.org/download/pdf_1/euclid.aos/1176342372

J. [. Beugin and . Marais, Application des principes de la s??ret?? de fonctionnement ?? l'??valuation du service de localisation par satellites dans le domaine ferroviaire, Recherche - Transports - S??curit??, vol.28, issue.99, pp.89-103, 2008.
DOI : 10.3166/rts.99.89-103

M. Berbineau, E. Masson, M. Chennaoui, and J. Marais, Satellite channel modelling using a Ray-tracing Tool for train communication, 2006 6th International Conference on ITS Telecommunications, pp.452-456, 2006.
DOI : 10.1109/ITST.2006.288940

]. R. Bro92 and . Brown, A baseline GPS RAIM scheme and a note on the equivalence of three RAIM methods, Journal of The Institute of Navigation, vol.39, issue.3, 1992.

Y. Bar-shalom, X. R. Li, and T. Kirubarajan, Estimation with Applications to Tracking and Navigation, Theory Algorithms and Software, 2001.

B. Bonhoure, I. Vanschoenbeek, M. Boschetti, and J. Legenne, GPS -GALILEO Urban Interoperability Performance With the GPS -GALILEO Time Offset, European Navigation Conference GNSS, 2008.

]. F. Car06 and . Caron, Inférence bayésienne pour la détermination et la sélection de modèles stochastiques, 2006.

A. Davy, E. Doucet, P. Duflos, and . Vanheeghe, Bayesian Inference for Linear Dynamic Models With Dirichlet Process Mixtures, IEEE Transactions on Signal Processing, vol.56, pp.71-84, 2008.
URL : https://hal.archives-ouvertes.fr/inria-00129646

Y. [. Cai, . [. Gao, S. Cappe, E. Godsill, and . Moulines, A Combined GPS/GLONASS Navigation Algorithm for use with Limited Satellite Visibility, Journal of Navigation, vol.16, issue.04, pp.671-685, 2007.
DOI : 10.1017/S0373463309990154

O. [. Douc, E. Cappe, and . Moulines, Comparison of resampling schemes for particle filtering, ISPA 2005. Proceedings of the 4th International Symposium on Image and Signal Processing and Analysis, 2005., pp.64-69, 2005.
DOI : 10.1109/ISPA.2005.195385

URL : https://hal.archives-ouvertes.fr/hal-00005883

]. A. Ddg01, N. Doucet, N. De-freitas, and . Gordon, Sequential Monte Carlo Methods in Practice, 2001.

N. [. Doucet, V. Gordon, and . Krishnamurthy, Particle filters for state estimation of jump Markov linear systems, IEEE Transactions on Signal Processing, vol.49, issue.3, pp.613-624, 2001.
DOI : 10.1109/78.905890

]. A. Dlr-+-77, N. Dempster, D. Laird, and . Rubin, Maximum likelihood from incomplete data via the EM algorithm, Journal of the Royal Statistical Society. Series B (Methodological ), vol.39, issue.1, pp.1-38, 1977.

B. [. Doucet, C. Vo, M. Andrieu, and . Davy, Particle filtering for multi-target tracking and sensor management, Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997), 2002.
DOI : 10.1109/ICIF.2002.1021192

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.11.9436

P. [. Ercek, F. De-doncker, and . Grenez, Statistical study of NLOS-Multipath in Urban Canyons, ENC GNSS 2005. ENC GNSS, 2005.

]. T. Fer73 and . Ferguson, A Bayesian analysis of some nonparametric problems, The Annals of Statistics, vol.1, issue.2, pp.209-230, 1973.

]. M. Fla09 and . Flament, Apport du Filtrage Particulaire au recalage altimétrique dans un contexte de navigation hybridée, 2009.

]. D. Fox03 and . Fox, Adapting the Sample Size in Particle Filters Through KLD-Sampling, The International Journal of Robotics Research, vol.22, issue.12, p.985, 2003.
DOI : 10.1177/0278364903022012001

S. [. Fox, W. Thrun, F. Burgard, and . Dellaert, Particle Filters for Mobile Robot Localization, Sequential Monte Carlo Methods in Practice, pp.499-516, 2001.
DOI : 10.1007/978-1-4757-3437-9_19

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.1.9914

N. [. Facon, J. Viandier, and . Marais, Développement d'une base de données de la disponibilité GPS le long de la ligne T1, 2007.

. Ggb-+-02-]-f, F. Gustafsson, N. Gunnarsson, U. Bergman, J. Forssell et al., Particle filters for positioning, navigation, and tracking, IEEE Transactions on Signal Processing, vol.50, issue.2, pp.425-437, 2002.

J. [. Giremus, V. Tourneret, and . Calmettes, A Particle Filtering Approach for Joint Detection/Estimation of Multipath Effects on GPS Measurements, IEEE Transactions on Signal Processing, vol.55, issue.4, pp.1275-1285, 2007.
DOI : 10.1109/TSP.2006.888895

URL : https://hal.archives-ouvertes.fr/hal-00183427

]. G. Hei08 and . Hein, GNSS under development and modernization 2, Second International Summer School on GNSS : A Worldwide Utility, 2008.

]. H. Hop69 and . Hopfield, Two quadratic tropospheric refractivity profile for correction satellite data, Journal of Geophysical research, 1969.

E. [. Hahn and . Powers, A Report on GPS and Galileo Time Offset Coordination Efforts, 2007 IEEE International Frequency Control Symposium Joint with the 21st European Frequency and Time Forum, pp.440-445, 2007.
DOI : 10.1109/FREQ.2007.4319113

[. Juang and Y. F. Tsai, On exact solutions of the multi-constellation GNSS navigation problem, GPS Solutions, vol.23, issue.2, pp.57-64, 2008.
DOI : 10.1007/s10291-008-0099-7

]. R. Kal60 and . Kalman, A New Approach to Linear Filtering and Prediction Problems, ASME Transactions, Series D : Journal of Basic Engineering, vol.82, pp.35-45, 1960.

C. [. Kaplan and . Hegarty, Understanding GPS principles and applications, 2006.

]. G. Kit96 and . Kitagawa, Monte Carlo filter and smoother for non-Gaussian non linear state space models, Journal Of Computational and Graphical Statistics, vol.5, issue.1, pp.1-25, 1996.

Y. Karasawa, K. Kimura, and K. Minamisono, Analysis of availability improvement in LMSS by means of satellite diversity based on three-state propagation channel model, Global Positioning System : Theory and Applications, pp.1047-1059, 1996.
DOI : 10.1109/25.653078

B. [. Kvam and . Vidakovic, Nonparametric Statistics with Applications to Science and Engineering, 2007.
DOI : 10.1002/9780470168707

C. [. Lahrech, J. Boucher, J. Choquel, and . Noyer, Fusion multicapteurs pour l'aide à la navigation routière, Majestic 2005, pp.252-259, 2005.

R. [. Liu and . Chen, Sequential Monte Carlo methods for dynamical systems, Journal of the American Statistical Association, vol.83, pp.1032-1044, 1998.

J. [. Lee, G. Lee, and . Jee, GPS Multipath Detection Based on Sequence of Successive-Time Double-Differences, IEEE Signal Processing Letters, vol.11, issue.3, pp.316-319, 2004.
DOI : 10.1109/LSP.2003.821744

E. Mazor, A. Averbuch, Y. Bar-shalom, and J. Dayan, Interacting multiple model methods in target tracking: a survey, IEEE Transactions on Aerospace and Electronic Systems, vol.34, issue.1, pp.103-123, 1998.
DOI : 10.1109/7.640267

]. J. Mar02 and . Marais, Localisation des mobiles terrestres par satellites Mise en oeuvre d'outils permettant l'analyse de l'influence des conditions de propagation et des effets de masques sur la disponibilité de service offert, 2002.

M. [. Mustiere, M. Bolic, and . Bouchard, A Modified Rao-Blackwellised Particle Filter, 2006 IEEE International Conference on Acoustics Speed and Signal Processing Proceedings, 2006.
DOI : 10.1109/ICASSP.2006.1660580

M. Malicorne, M. Bouquet, V. Chalmettes, and C. Marabou, Effects of masking angle and multipath on GALILEO performances in different environments, Proceedings of 8th St Petersburg International Conference on Integrated Navigation systems, 2002.
URL : https://hal.archives-ouvertes.fr/hal-01021701

M. [. Morton, Q. Brenneman, and . Zhou, An ANOVA-Based GPS Multipath Detection Algorithm Using Multi-Channel Software Receivers, Proc. IEEE/ION Position, Location and Navigation Symposium, 2008.

P. [. Misra and . Enge, Global Positioning System : signals, measurements, and performance . 2 nd ed, 2006.

]. J. Mgp-+-07, P. L. Marais, A. Girard, J. L. Prestail, E. Franchineau et al., Galileo availability for urban buses, Proc. 7th International Conference on ITS Telecommunications ITST'07, pp.6-8, 2007.

R. [. Manandhar, P. Shibasaki, and . Normark, GPS signal analysis using LHCP/RHCP antenna and software GPS receiver, ION GNSS, pp.21-24, 2004.
DOI : 10.5081/jgps.5.1.29

]. D. Nah09 and . Nahimana, Impact des multitrajets sur les performances des systèmes de navigation par satellite : Contribution à l'amélioration de la précision de localisation par modélisation bayésienne NAVSTAR GPS User Equipment Introduction, public release version. [NAV08] " GLOBAL POSITIONING SYSTEM STANDARD POSITIONING SERVICE PERFORMANCE STANDARD, " DoD, GPS Navstar, 1996.

[. Petovello and A. Joseph, NIST/SEMATECH e-Handbook of Statistical Methods Measuring GNSS Signal Strength : What is the differnce between SNR and C, Inside GNSS, 2010.

]. J. Pri06 and . Prins, Process or product monitoring and control, Engineering Statistics Handbook, 2006.

M. [. Ray and . Cannon, Code Range and Carrier Phase Multipath Mitigation Using SNR, Range and Phase Measurements in a Multi-Antenna System, ION GPS 1999, 1999.

S. [. Ristic, N. Arulampalam, and . Gordon, Beyond the Kalman Filter, Particle Filters for Tracking Applications, 2004.

]. J. Set94 and . Sethuraman, A constructive definition of Dirichlet priors, Statistica Sinica, vol.4, pp.639-650, 1994.

A. [. Seynat, K. Kealy, and . Zhang, A Performance Analysis of Future Global Navigation Satellite Systems, Journal of Global Positioning Systems, vol.3, issue.1&2, 2004.
DOI : 10.5081/jgps.3.1.232

N. [. Schubert, G. Mattern, and . Wanielik, An evaluation of nonlinear filtering algorithms for integrating GNSS and inertial measurements, 2008 IEEE/ION Position, Location and Navigation Symposium, pp.25-29, 2008.
DOI : 10.1109/PLANS.2008.4569966

]. M. Spa09 and . Spangenberg, Safe Navigation For Vehicles, 2009.

B. [. Skvortsov, C. Ristic, and . Woodruff, Predicting an epidemic based on syndromic surveillance, 2010 13th International Conference on Information Fusion, 2010.
DOI : 10.1109/ICIF.2010.5711847

]. N. Vmpd08a, J. Viandier, A. Marais, E. Prestail, and . Verdalle, GNSS Accuracy Analysis along an Urban Bus Line for ADAS Application, ENC GNSS 2008, 2008.

]. J. Vtgt-+-06, L. Ventura-traverset, F. Gauthier, P. Toran, G. Michel et al., The European EGNOS Project : Mission, Programme and System, EGNOS The European Geostationary Navigation Overlay System -A cornerstone of Galileo. ESA Publications Division, 2006.

Y. [. Wang and . Gao, High-Sensitivity GPS Data Classification Based on Signal Degradation Conditions, IEEE Transactions on Vehicular Technology, vol.56, issue.2, pp.566-574, 2007.
DOI : 10.1109/TVT.2007.891492

A. Wieser, M. Gaggl, and H. Hartinger, Improved Positioning Accuracy with High Sensitivity GNSS Receivers and SNR Aided Integrity Monitoring of Pseudo-Range Observations, ION GNSS 2005, I. O. Navigation 18th, ION. Long beach : ION, 2005.

Y. Yun, H. Yun, D. Kim, and C. Kee, A Gaussian Sum Filter Approach for DGNSS Integrity Monitoring, Journal of Navigation, vol.100, issue.04, pp.687-703, 2008.
DOI : 10.1109/TAC.1972.1100034

. J. Zzgd, K. Zhang, R. Zhang, R. Grenfell, and . Deakin, Short Note : On the Relativistic Doppler Effect for Precise Velocity Determination using GPS, Journal of Geodesy

C. Les-figures, 8 et C.9 représentent l'évolution des résidus de pseudodistances pour les satellites 17, 22 et 28 mesurés par le récepteur SafeDrive 1 au cours du trajet 2. Les valeurs maximales de ces résidus sont de 40 mètres pour le satellite 18, 30 mètres pour le satellite 22 et 24 mètres pour le satellite 28. Encore une fois, ces résidus montrent des zones de perturbations communes, 2000.

C. La-figure, 10 représente l'évolution du nombre de satellites visibles durant le trajet 2 par le récepteur PolaRx2 Par rapport au trajet 1 (figure C.2), le nombre de satellites visibles moyen est plus élevé mais est encore régulièrement inférieur à quatre. Par rapport aux récepteurs SafeDrive, durant le trajet 2, le PolaRx2 franchit plus régulièrement la limite de positionnement. La figure C.11 représente l'évolution du PDOP au cours de l'acquisition

C. Les-figures, 13 et C.14 représentent l'évolution des résidus de pseudodistance mesurés par le récepteur PolaRx2 pour les satellites 18, 22 et 28 durant le trajet 2 Comparés au trajet 1 (figure C.4), les résidus montrent des valeurs plus élevées et une plus forte variation de leur évolution. Les valeurs maximales pour ces trois satellites sont comprises entre 20 et 30 mètres