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Médianes de mesures de probabilité dans les variétés

riemanniennes et applications à la détection de cibles radar

Résumé

Dans cette thèse, nous étudierons les médianes d’une mesure de probabilité dans
une variété riemannienne. Dans un premier temps, l’existence et l’unicité des
médianes locales seront montrées. Afin de calculer les médianes aux cas pratiques,
nous proposerons aussi un algorithme de sous-gradient et prouverons sa conver-
gence. Ensuite, les médianes de Fréchet seront étudiées. Nous montrerons leur
cohérence statistique et donnerons des estimations quantitatives de leur robustesse
à l’aide de courbures. De plus, nous montrerons que, dans les variétés riemanniennes
compactes, les médianes de Fréchet de données génériques sont toujours uniques.
Des algorithmes stochastiques et déterministes seront proposés pour calculer les p-
moyennes de Fréchet dans les variétés riemanniennes. Un lien entre les médianes
et les problèmes de points fixes sera aussi montré. Finalement, nous appliquerons
les médiane et la géométrie riemannienne des matrices de covariance Toeplitz à la
détection de cible radar.

Mots-clés: statistiques robustes, moyenne, données sphériques, variétés de Rie-
mann, théorème du point fixe, matrices de Toeplitz, analyse de covariance

Medians of probability measures in Riemannian manifolds and

applications to radar target detection

Abstract

In this thesis, we study the medians of a probability measure in a Riemannian man-
ifold. Firstly, the existence and uniqueness of local medians are proved. In order to
compute medians in practical cases, we also propose a subgradient algorithm and
prove its convergence. After that, Fréchet medians are considered. We prove their
statistical consistency and give some quantitative estimations of their robustness
with the aid of curvatures. Moreover, we show that, in compact Riemannian mani-
folds, the Fréchet medians of generic data points are always unique. Some stochastic
and deterministic algorithms are proposed for computing Riemannian p-means. A
connection between medians and fixed point problems are also given. Finally, we
apply the medians and the Riemannian geometry of Toeplitz covariance matrices
to radar target detection.

Key words: median, barycenter, Riemannian manifold, fixed point theorem, Toeplitz
covariance matrices
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énormément de patience, ses encouragements réconfortant et sa sollicitude constante
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thèse.

Je suis très reconnaissant envers Huiling Le et Xavier Pennec pour m’avoir fait
l’honneur d’accepter d’être les rapporteurs de mon travail.
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Chapter 1

Introduction

1.1 A short review of previous work

The history of medians can be traced back to 1629 when P. Fermat initiated
a challenge (see [39]): given three points in the plan, find a fourth one such that
the sum of its distances to the three given points is minimum. The answer to
this question, which was found firstly by E. Torricelli (see [84]) in 1647, is that if
each angle of the triangle is smaller than 2π/3, then the minimum point is such
that the three segments joining it and the vertices of the triangle form three angles
equal to 2π/3; and in the opposite case, the minimum point is the vertex whose
angle is greater than or equal to 2π/3. This point is called the median or the
Fermat-Torricelli point of the triangle. Naturally, the question of finding the triangle
median can be generalized to finding a point that minimizes the sum of its distances
to N given points in the plan and, if necessary, with weighted distances. This was
proposed by J. Steiner in 1838 (see [81]) and was also considered by R. Sturm in 1884
(see [83]). The second author showed that the minimum point must be unique if the
data points are not contained in a single line. This generalized Fermat’s problem was
also used by the economist A. Weber in 1909 (see [89]) as a mathematical model for
the optimal location of a facility in order to serve several clients. From then on, the
generalized Fermat’s problem is also called Steiner’s problem or Weber’s problem or
single facility location problem in economics and in the theory of operation research.

It is often very important to know the value of the median in practical cases.
But in contrast to the barycenter, it is much more difficult to find the median of
given points in the plan. For example, with the aid of Galois theory, C. Bajaj
showed that (see [11]) if the number of generic data points is no less than five,
then the generalized Fermat’s problem cannot be solved by arithmetic operations
and extraction of roots. The first algorithm intended to find medians in Euclidean
spaces was proposed by E. Weiszfeld in 1937 (see [90]), whose original idea is to
construct a sequence of weighted barycenters of data points which converges to the
median. But this algorithm, which is essentially a gradient descent method, has a
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vital flaw that it does not converge if the median coincides with some data point,
which is clearly an event of positive probability. The first completely convergent
algorithm for computing medians was proposed by L. M. Ostresh in 1978 (see [73]),
whose key ingredient is to eliminate the singular term when the algorithm hits
a data point. Since then various algorithms for computing medians in Euclidean
spaces were proposed and improved by many authors.

The notion of median also appears in statistics since a long time ago. In 1774,
when P. S. Laplace tried to find an appropriate notion of the middle point for
a group of observation values, he introduced in [61] “the middle of probability”,
the point that minimizes the sum of its absolute differences to data points, this is
exactly the one dimensional median. In this work he also established that for a
probability distribution on the real line with density f , the median m solves the
equation

∫ m

−∞
f(x)dx =

1

2
,

and the minimization problem

min
y∈R

∫ +∞

−∞
|x− y|f(x)dx.

A sufficiently general notion of median in metric spaces was proposed in 1948 by M.
Fréchet in his famous article [48], where he defined a p-mean of a random variable
X to be a point which minimizes the expectation of its distance at the power p to
X. This flexible definition allows us to define various typical values, among which
there are two important cases: p = 1 and p = 2, corresponding to the notions of
median and mean, respectively.

Apparently, the median and mean are two notions of centrality for data points.
As a result, one may wonder that which one is more advantageous? In fact, this is
a longstanding debate which propelled the development of early statistics. Perhaps
the perspective that the mean is more advantageous than the median is due to the
choice of error laws in the early days. Laplace perceived the obvious advantage of
the mean over the median when he used the normal distribution as the error law.
But for other distributions, the normal distribution is not always an appropriate
error law, as noted by F. Y. Edgeworth (see [37]) who insisted that one would lose
less by taking the median instead of the mean if the error observations are not
normally distributed. Another example, which is given by R. A. Fisher in [44], is
that the empirical mean for a Cauchy distribution has the same accuracy as one
single observation. Consequently, it would be better to use the median instead of
the mean in this situation. Probably the most significant advantage of the median
over the mean is that the former is robust but the latter is not, that is to say, the
median is much less sensitive to outliers than the mean. Roughly speaking (see
[66]), in order to move the median of a group of data points to arbitrarily far, at
least a half of data points should be moved. On the contrary, in order to move
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the mean of a group of data points to arbitrarily far, it suffices to move one data
point. So that medians are in some sense more prudent than means, as argued by
M. Fréchet. The robustness property makes the median an important estimator in
situations when there are lots of noise and disturbing factors.

The first application of the mean to Riemannian geometry is an ingenious artifice
due to E. Cartan (see [30]), who used the uniqueness of means of measures on
complete, simply connected Riemannian manifolds with non-positive curvature to
show that every compact group of isometries of such manifolds has a common fixed
point, which leads to the only known proof of the conjugacy of maximal compact
subgroups of a semisimple Lie group. The first formal definition of means for
probability measures on Riemannian manifolds was made by H. Karcher in [53] in
order to generalize the mollifier smoothing techniques to the settings of Riemannian
manifolds. To introduce Karcher’s result concerning means, consider a Riemannian
manifold M with Riemannian distance d and

B(a, ρ) = {x ∈M : d(x, a) < ρ}

is a geodesic ball in M centered at a with a finite radius ρ. Let ∆ be an upper
bound of sectional curvatures in B̄(a, ρ) and inj be the injectivity radius of B̄(a, ρ).
Under the following condition:

ρ < min
{ π

4
√

∆
,

inj

2

}

, (1.1)

where if ∆ ≤ 0, then π/(4
√

∆) is interpreted as +∞, Karcher showed that, with
the aid of estimations of Jacobi fields, the local energy functional

Fµ : B̄(a, ρ) −→ R+, x 7−→
∫

M
d2(x, p)µ(dp) (1.2)

is strictly convex, thus it has a unique minimizer b(µ), which he called the Rieman-
nian center of mass of the probability measure µ. Moreover, b(µ) is also the unique
solution of the following equation:

∫

M
exp−1

x p µ(dp) = 0x, x ∈ B̄(a, ρ). (1.3)

From then on, local means of probability measures on Riemannian manifolds are
also called Karcher means, meanwhile, global means are often called Fréchet means.
A rather general result concerning the uniqueness of local means was proved by W.
S. Kendall in [55], where the condition (1.1) was replaced by the following much
weaker one:

ρ < min
{ π

2
√

∆
, inj (a)

}

, (1.4)

where inj (a) stands for the injectivity radius of the point a. But one should be aware
that under the assumption (1.4) the ball B(a, ρ) is only weakly convex: every pair
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of points in B(a, ρ) can be joined by one and only one geodesic lying in B(a, ρ). So
that the distance d(x, p) in (1.2) should be understood as the length of the geodesic
joining x and p in B(a, ρ), which is not necessarily the distance induced by the
Riemannian metric of M in general. As a particular case of Kendall’s result, the
condition

ρ <
1

2
min

{ π√
∆
, inj

}

(1.5)

is sufficient to ensure the uniqueness of the Kacher means of µ. Furthermore,
Kendall’s method for proving the uniqueness of Karcher means is also very ingenious
and interesting. His basic observation, which he owed to M. Emery, is a relationship
between Karcher means and the convex functions on B(a, ρ): for every Karcher
mean x of µ, one has

ϕ(x) ≤
∫

M
ϕ(p)µ(dp) for every convex function ϕ on B(a, ρ). (1.6)

In view of this and the evident fact that the product of two Karcher means of
µ is a Karcher mean of the product measure µ ⊗ µ, the proof of the uniqueness
of Karcher means of µ is reduced to the construction of some convex function
on B(a, ρ) × B(a, ρ) which vanishes exactly on the diagonal. An example of such
functions is given by Kendall in [55], detailed discussions on the construction can be
found in [56]. Some generalizations of Karcher mean are given by many authors. For
instance, M. Emery and G. Mokobodzki defined in [38] the exponential barycenters
and convex barycenters for measures on affine manifolds with the aid of (1.3) and
(1.6), respectively. They also showed that a point x is a convex barycenter of a
probability µ if and only if there exists a continuous martingale starting from x
with terminal law µ. The uniqueness of exponential barycenters are generalized by
M. Arnaudon and X. M. Li in [9] to probability measures on convex affine manifolds
with semilocal convex geometry. Moreover, the behavior of exponential barycenters
when measures are pushed by stochastic flows is also considered in [9]. In order to
study harmonic maps between Riemannian manifolds with probabilistic methods,
J. Picard also gave a generalized notion of barycenters in [75]. As we noted before,
Karcher means are only local minimizers of the energy functional fµ in (1.2), but
it is easily seen that fµ can be defined not only on the closed ball B̄(a, ρ) but also
on the whole manifold M as long as the second moment of µ is finite. This leads to
the global minimizers of the second moment function of µ, which is just the original
definition of means made by Fréchet. Global minimizers are more useful in statistics
than local ones, so that it is necessary to know whether or under which conditions
the Karcher mean of µ is in fact the Fréchet mean. For the case when µ is a
discrete measure supported by finitely many points in the closed upper hemisphere,
S. R. Buss and J. P. Fillmore showed in [29] that if the support of µ is not totally
contained in the equator then µ has a unique Karcher mean which lies in the open
hemisphere and equals to the Fréchet mean. Inspired by the methods of Buss and
Fillmore, B. Afsari showed in [1] that if the upper curvature bound ∆ and the
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injectivity radius inj in (1.5) is replaced by the ones of the larger ball B(a, 2ρ),
then all the Fréchet p-means of µ lie inside B(a, ρ). Particularly, the Karcher
means coincide with Fréchet means. The key point of Afsari’s proof is an ingenious
comparison argument in which not only the geodesic triangles in the manifold are
compared with the ones in model spaces but also the whole configurations. This very
beautiful and creative idea also leads to a new geometric proof of Kendall’s result
on the uniqueness of Karcher means. Gradient descent methods for computing
Karcher means of probability measures in Riemannian manifolds are proposed by
many authors. For example, by H. Le in [63] and by X. Pennec in [74]. New
stochastic and deterministic algorithms with explicit stepsizes and error estimates
for computing the Fréchet p-means of probability measures are given in Chapter 4
of this dissertation.

Medians of discrete sample points on the sphere are studied by economists and
operational research experts in the 1970s and 1980s, but they used the name “lo-
cation problems on a sphere”. For data points lying in a spherical disc of radius
smaller than π/4, Drezner and Wesolowsky showed in [35] that the cost function is
unimodal in that disc and the Fréchet median is unique if the data points are not
contained in a single great circle. A. A. Aly and his coauthors showed that (see
[4]) the Fréchet medians are contained in the spherically convex hull of the sample
points. Particularly, if all the sample points are contained in the open upper hemi-
sphere, then all the Fréchet medians also lie in it. In order to show this particular
case, they proposed in [4] an ingenious method using symmetry. More precisely,
they observed that for every point outside the upper hemisphere the value of the
cost function will be diminished if the point is replaced by its reflection with respect
to the equator. This is just the method used by Buss and Fillmore in [29] and by
Afsari in [1] to show the insideness of spherical means and Fréchet p-means. It is
also shown by Z. Drezner in [36] that if all the sample points are contained in a
great circle, then one of the sample points will be a Fréchet median. By the way,
spherical medians also appears in statistical literature since the paper [43] of N. I.
Fisher who proposed spherical analogues of spatial medians for unimodal, bipolar
axial and girdle distributions on the sphere in order to carry out robust estimations
for directional data. Perhaps the first work about Fréchet medians on Riemannian
manifolds is the paper named “Generalized Fermat’s problem” by R. Noda and his
coauthors (see [72]). They proved the uniqueness, characterizations and position es-
timations of Fréchet medians for discrete sample points lying in a Cartan-Hadamard
manifold. By the way, it seems that, probably due to its name which is very similar
to that of the famous Fermat’s last theorem, the article [72] is not known at all for
people who work in the domain of nonlinear statistics, including me before 2011. In
order to do robust statistics for data living in a Riemannian manifold P. T. Fletcher
and his coauthors defined in [47] the local medians for discrete sample points. They
showed the existence and uniqueness of local medians and gave a Riemannian ana-
logue of Weiszfeld algorithm to compute it. But their algorithm is only proven to be
convergent when the manifold is nonnegatively curved. A complete generalization
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of their results to arbitrary probability measures on Riemannian manifolds with-
out curvature constraint is given in Chapter 2 of this dissertation, where results
concerning the existence, uniqueness, characterization and position estimation of
medians are proved under condition (1.1). Moreover, a subgradient algorithm that
always converges to medians without curvature condition is also proposed. It is
shown in [1] that if the upper curvature bound ∆ and the injectivity radius inj in
(1.5) is replaced by the ones of the larger ball B(a, 2ρ), then all the Fréchet medians
of µ are contained in B(a, ρ). A generalization of this result is given in Chapter
3, where positions of Fréchet medians are estimated under the assumption that µ
has more than a half mass lying in B(a, ρ) and verifies some concentration condi-
tion. Moreover, we also show that if one takes data points randomly in a compact
Riemannian manifold, then the Fréchet medians are almost surely unique.

1.2 The work of this dissertation

1.2.1 Motivation: radar target detection

Suggested by J. C. Maxwell’s seminal work on electromagnetism, H. Hertz carried
out an experiment in 1886 which validated that radio waves could be reflected by
metallic objects. This provided C. Hüelsmeyer the theoretical foundation of his
famous patent on “telemobiloscope” in 1904. He showed publicly in Germany and
Netherlands that his device was able to detect remote metallic objects such as ships,
even in dense fog or darkness, so that collisions could be avoided. Hüelsmeyer’s
“telemobiloscope” is recognized as the primogenitor of modern radar even though
it could only detect the direction of an object, neither its distance nor its speed.
This is because the basic idea of radar was already born: send radio waves in a
predetermined direction and then receive the possible echoes reflected by a target.
In order to know the distance and the radial speed of the target, it suffices to send
successively two radio waves. In fact, it is easily seen that the distance d of the
target can be computed by the formula

d =
c∆t

2
,

where c is the speed of light and ∆t is the time interval between every emission and
reception in the direction under test. Moreover, the radial speed v of the target
can be deduced by the Doppler effect which states that the frequency of a wave is
changed for an observer moving relatively to the source of the wave. More precisely,

v =
λ∆ϕ

4π∆t
,

where λ and ∆ϕ are the wavelength and the skewing of the two emitted radio waves,
respectively. As a result, the direction, the distance and the speed of the target can
all be determined.
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For simplicity, from now on we only consider a fixed direction in which a radar
sends radio waves. Since the range of emitted waves are finite, we can divide this
direction into some intervals each of which represents a radar cell under test. The
radar sends each time a rafale of radio waves in this direction and then receive the
returning echoes. For each echo we measure its amplitude r and phase ϕ, so that
it can be represented by a complex number z = reiϕ. As a result, the observation
value of each radar cell is a complex vector Z = (z1, . . . , zN ), where N is the number
of waves emitted in each rafale.

The aim of target detection is to know whether there is a target at the location
of some radar cell in this direction. Intuitively speaking, a target is an object
whose behavior on reflectivity or on speed is very different from its environment.
The classical methods for target detection is to compute the difference between
the discrete Fourier transforms of the radar observation values of the cell under
test and that of its ambient cells. The bigger this difference is, the more likely a
target appears at the location of the cell under test. However, the performance of
these classical methods based on Doppler filtering using discrete Fourier transforms
together with the Constant False Alarm Rate (CFAR) is not very satisfactory due
to their low resolutions issues in perturbed radar environment or with smaller bunch
of pulses.

In order to overcome these drawbacks, a lot of mathematical models for spec-
tra estimation were introduced, among which the method based on autoregressive
models proposed by F. Barbaresco in [13] is proved to be very preferable. We shall
introduce this method in Chapter 6 of this dissertation. The main difference be-
tween this new method and the classical ones is that, instead of using directly the
radar observation value Z of each cell, we regard it as a realization of a centered
stationary Gaussian process and identify it to its covariance matrix R = E[ZZ∗].
Thus the new observation value for each radar cell is a covariance matrix which is
also Toeplitz due to the stationarity of the process. As a result, the principle for
target detection becomes to find the cells where the covariance matrix differs greatly
from the average matrix of its neighborhood. Once such cells are determined we can
conclude that there are targets in these locations. In order to carry out this new
method, there are two important things which should be considered seriously. One
is to define a good distance between two Toeplitz covariance matrices. The other is
to give a reasonable definition of the average of covariance matrices, which should
be robust to outliers so as to be adapted to perturbed radar environment, and
develop an efficient method to compute it in practical cases. These works will be
done in the following by studying the Riemannian geometry of Toeplitz covariance
matrices and the medians of probability measures on Riemannian manifolds.

1.2.2 Main results

In Chapter 2 of this dissertation we define local medians of a probability measure
on a Riemannian manifold, give their characterization and a natural condition to
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ensure their uniqueness. In order to compute medians in practical cases, we also
propose a subgradient algorithm and prove its convergence.

In more detail, let M be a complete Riemannian manifold with Riemannian
metric 〈 · , · 〉 and Riemannian distance d. We fix an open geodesic ball

B(a, ρ) = {x ∈M : d(x, a) < ρ}

in M centered at a with a finite radius ρ. Let δ and ∆ denote respectively a lower
and an upper bound of sectional curvatures K in B̄(a, ρ). The injectivity radius of
B̄(a, ρ) is denoted by inj (B̄(a, ρ)). Furthermore, we assume that the radius of the
ball verifies

ρ < min
{ π

4
√

∆
,

inj (B̄(a, ρ))

2

}

, (2.7)

where if ∆ ≤ 0, then π/(4
√

∆) is interpreted as +∞.
We consider a probability measure µ on M whose support is contained in the

open ball B(a, ρ) and define a function

f : B̄(a, ρ) −→ R+ , x 7−→
∫

M
d(x, p)µ(dp).

This function is 1-Lipschitz, hence continuous on the compact set B̄(a, ρ). The
convexity of the distance function on B̄(a, ρ) yields that f is also convex. Hence we
don’t need to distinguish its local minima from its global ones. Now we can give
the following definition:

Definition 1.1. A minimum point of f is called a median of µ. The set of all the
medians of µ will be denoted by Mµ. The minimal value of f will be denoted by
f∗.

It is easily seen that Mµ is compact and convex. Moreover, by computing the
right derivative of f we can prove the following characterization of Mµ, which is
proved in [58] for a finite number of points in an Euclidean space.

Theorem 1.2. The set Mµ is characterized by

Mµ =
{

x ∈ B̄(a, ρ) : |H(x)| ≤ µ{x}
}

,

where for x ∈ B̄(a, ρ),

H(x) :=

∫

M\{x}

− exp−1
x p

d(x, p)
µ(dp),

is a tangent vector at x satisfying |H(x)| ≤ 1.

Observing that every geodesic triangle in B̄(a, ρ) has at most one obtuse angle,
we can prove the following result which gives a position estimation for the medians
of µ.
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Proposition 1.3. Mµ is contained in the smallest closed convex subset of B(a, ρ)
containing the support of µ.

In Euclidean case, it is well known that if the sample points are not collinear,
then their medians are unique. Hence we get a natural condition of µ to ensure the
uniqueness for medians in Riemannian case:

∗ The support of µ is not totally contained in any geodesic. This means that
for every geodesic γ: [ 0, 1 ] → B̄(a, ρ), we have µ(γ[ 0, 1 ]) < 1.

This condition implies that f is strictly convex along every geodesic in B̄(a, ρ),
so that it has one and only one minimizer, as stated by the theorem below.

Theorem 1.4. If condition ∗ holds, then µ has a unique median.

With further analysis, we can show a stronger quantitative version of Theorem
1.4, which is crucial in the error estimations of the subgradient algorithm as well
as in the convergence proof of the stochastic algorithm for computing medians in
Chapter 4.

Theorem 1.5. If condition ∗ holds, then there exits a constant τ > 0 such that for
every x ∈ B̄(a, ρ) one has

f(x) ≥ f∗ + τd2(x,m),

where m is the unique median of µ.

The main results of approximating medians of µ by subgradient method is sum-
marized in the following theorem. The idea stems from the basic observation that
H(x) is a subgradient of f at x for every x ∈ B̄(a, ρ).

Theorem 1.6. Let (tk)k be a sequence of real numbers such that

tk > 0, lim
k→∞

tk = 0 and

∞
∑

k=0

tk = +∞.

Define a sequence (xk)k by x0 ∈ B̄(a, ρ) and for k ≥ 0,

xk+1 =











xk, if H(xk) = 0;

expxk

(

− tk
H(xk)

|H(xk)|

)

, if H(xk) 6= 0.

Then there exists some constant T > 0 such that if we choose tk ≤ T for every
k ≥ 0, then the sequence (xk)k is contained in B̄(a, ρ) and verifies

lim
k→∞

d(xk,Mµ) = 0 and lim
k→∞

f(xk) = f∗.
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Moreover, if the sequence (tk)k also verifies

∞
∑

k=0

t2k < +∞,

then there exists some m ∈ Mµ such that xk −→ m.

Remark 1.7. We can choose the constant T in Theorem 1.6 to be

T =
ρ− σ

C(ρ, δ)F (ρ,∆) + 1
,

where σ = sup{d(p, a) : p ∈ suppµ},

F (ρ,∆) =

{

1, if ∆ ≥ 0;

cosh(2ρ
√
−∆), if ∆ < 0,

and

C(ρ, δ) =

{

1, if δ ≥ 0;

2ρ
√
−δ coth(2ρ

√
−δ), if δ < 0.

The proposition below gives the error estimation of the algorithm in Theorem
1.6.

Proposition 1.8. Let condition ∗ hold and the stepsizes (tk)k in Theorem 1.6
satisfy

lim
k→∞

tk = 0 and
∞
∑

k=0

tk = +∞.

Then there exists N ∈ N, such that for every k ≥ N ,

d2(xk,m) ≤ bk,

where m is the unique median of µ and the sequence (bk)k≥N is defined by

bN = (ρ+ σ)2 and bk+1 = (1 − 2τtk)bk + C(ρ, δ)t2k , k ≥ N,

which converges to 0 when k → ∞. More explicitly, for every k ≥ N ,

bk+1 = (ρ+ σ)2
k
∏

i=N

(1 − 2τti) +C(ρ, δ)
(

k
∑

j=N+1

t2j−1

k
∏

i=j

(1 − 2τti) + t2k
)

.

Chapter 3 is devoted to some basic results about Fréchet medians, or equiv-
alently, global medians. We prove the consistency of Fréchet medians in proper
metric spaces, give a quantitative estimation for the robustness of Fréchet medians
in Riemannian manifolds and show the almost sure uniqueness of Fréchet sample
medians in compact Riemannian manifolds.
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In section 3.1, we work in a proper metric space (M,d) (recall that a metric
space is proper if and only if every bounded and closed subset is compact). Let
P1(M) denote the set of all the probability measures µ on M verifying

∫

M
d(x0, p)µ(dp) <∞, for some x0 ∈M.

For every µ ∈ P1(M) we can define a function

fµ : M −→ R+ , x 7−→
∫

M
d(x, p)µ(dp).

This function is 1-Lipschitz hence continuous on M . Since M is proper, fµ attains
its minimum (see [76, p. 42]), so we can give the following definition:

Definition 1.9. Let µ be a probability measure in P1(M), then a global minimum
point of fµ is called a Fréchet median of µ. The set of all the Fréchet medians of µ
is denoted by Qµ. Let f∗µ denote the global minimum of fµ.

By the Kantorovich-Rubinstein duality of L1-Wasserstein distance (see [88, p.
107]), we can show that Fréchet medians are characterized by 1-Lipschitz functions.
A corresponding result that Riemannian barycenters are characterized by convex
functions can be found in [55, Lemma 7.2].

Proposition 1.10. Let µ ∈ P1(M) and M be also separable, then

Qµ =

{

x ∈M : ϕ(x) ≤ f∗µ +

∫

M
ϕ(p)µ(dp), for every ϕ ∈ Lip1(M)

}

,

where Lip1(M) denotes the set of all the 1-Lipschitz functions on M .

The following theorem states that the uniform convergence of first moment
functions yields the convergence of Fréchet medians.

Theorem 1.11. Let (µn)n∈N be a sequence in P1(M) and µ be another probability
measure in P1(M). If (fµn)n converges uniformly on M to fµ, then for every ε > 0,
there exists N ∈ N, such that for every n ≥ N we have

Qµn ⊂ B(Qµ, ε) := {x ∈M : d(x,Qµ) < ε}.

As a corollary to Theorem 1.11, Fréchet medians are strongly consistent esti-
mators. The consistency of Fréchet means is proved in [25].

Corollary 1.12. Let (Xn)n∈N be a sequence of i.i.d random variables of law µ ∈
P1(M) and (mn)n∈N be a sequence of random variables such that mn ∈ Qµn with
µn = 1

n

∑n
k=1 δXk

. If µ has a unique Fréchet median m, then mn −→ m a.s.
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The framework of sections 3.2 and 3.3 is a complete Riemannian manifold (M,d)
whose dimension is no less than 2. We fix a closed geodesic ball

B̄(a, ρ) = {x ∈M : d(x, a) ≤ ρ}

in M centered at a with a finite radius ρ > 0 and a probability measure µ ∈ P1(M)
such that

µ(B̄(a, ρ)) = α >
1

2
.

The aim of Section 3.2 is to estimate the positions of the Fréchet medians of
µ, which gives a quantitative estimation for robustness. To this end, the following
type of functions are of fundamental importance for our methods. Let x, z ∈ M ,
define

hx,z : B̄(a, ρ) −→ R, p 7−→ d(x, p) − d(z, p).

Obviously, hx,z is continuous and attains its minimum.
By a simple estimation on the minimum of hx,a we get the following basic result.

Theorem 1.13. The set Qµ of all the Fréchet medians of µ verifies

Qµ ⊂ B̄

(

a,
2αρ

2α− 1

)

:= B∗.

Remark 1.14. It is easily seen that the conclusions of Proposition 3.6 and Theorem
1.13 also hold if M is only a proper metric space.

Remark 1.15. As a direct corollary to Theorem 1.13, if µ is a probability measure
in P1(M) such that for some point m ∈ M one has µ{m} > 1/2, then m is the
unique Fréchet median of µ.

In view of Theorem 1.13, let ∆ be an upper bound of sectional curvatures in B∗
and inj be the injectivity radius of B∗. By computing the minima of some typical
functions hx,z in model spaces S

2, E
2 and H

2, and then comparing with the ones in
M , we get the following main result of section 3.2.

Theorem 1.16. Assume that

2αρ

2α− 1
< r∗ := min{ π√

∆
, inj }, (2.8)

where if ∆ ≤ 0, then π/
√

∆ is interpreted as +∞.

i) If ∆ > 0 and Qµ ⊂ B̄(a, r∗/2), then

Qµ ⊂ B̄

(

a,
1√
∆

arcsin
(α sin(

√
∆ρ)√

2α− 1

)

)

.

Moreover, any of the two conditions below implies Qµ ⊂ B̄(a, r∗/2):
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a)
2αρ

2α− 1
≤ r∗

2
; b)

2αρ

2α− 1
>
r∗
2

and Fα,ρ,∆(
r∗
2

− ρ) ≤ 0,

where Fα,ρ,∆(t) = cot(
√

∆(2α− 1)t) − cot(
√

∆t) − 2 cot(
√

∆ρ), t ∈ (0,
ρ

2α − 1
].

ii) If ∆ = 0, then

Qµ ⊂ B̄

(

a,
αρ√

2α− 1

)

.

iii) If ∆ < 0, then

Qµ ⊂ B̄

(

a,
1√
−∆

arcsinh
(α sinh(

√
−∆ρ)√

2α− 1

)

)

.

Finally any of the above three closed balls is contained in the open ball B(a, r∗/2).

Remark 1.17. Although we have chosen the framework of this section to be a
Riemannian manifold, the essential tool that has been used is the hinge version of
the triangle comparison theorem. Consequently, Theorem 1.16 remains true if M
is a CAT(∆) space (see [26, Chapter 2]) and r∗ is replaced by π/

√
∆.

Remark 1.18. For the case when α = 1, the assumption (2.8) becomes

ρ <
1

2
min{ π√

∆
, inj }.

Observe that in this case, when ∆ > 0, the condition F1,ρ,∆(r∗/2−ρ) ≤ 0 is trivially
true in case of need. Hence Theorem 1.16 yields that Qµ ⊂ B̄(a, ρ), which is exactly
what the Theorem 2.1 in [1] says for medians.

Before introduce the results of section 3.3 we give some notations. For each
point x ∈ M , Sx denotes the unit sphere in TxM . Moreover, for a tangent vector
v ∈ Sx, the distance between x and its cut point along the geodesic starting from
x with velocity v is denoted by τ(v). Certainly, if there is no cut point along this
geodesic, then we define τ(v) = +∞. For every point (x1, . . . , xN ) ∈ MN , where
N ≥ 3 is a fixed natural number, we write

µ(x1, . . . , xN ) =
1

N

N
∑

k=1

δxk
.

The set of all the Fréchet medians of µ(x1, . . . , xN ), is denoted by Q(x1, . . . , xN ).
The following theorem states that in order to get the uniqueness of Fréchet

medians, it suffices to move two data points towards a common median along some
minimizing geodesics for a little distance.
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Theorem 1.19. Let (x1, . . . , xN ) ∈ MN and m ∈ Q(x1, . . . , xN ). Fix two normal
geodesics γ1, γ2 : [0,+∞) →M such that γ1(0) = x1, γ1(d(x1,m)) = m, γ2(0) = x2

and γ2(d(x2,m)) = m. Assume that

x2 /∈
{

γ1[0, τ(γ̇1(0))], if τ(γ̇1(0)) < +∞;

γ1[0,+∞), if τ(γ̇1(0)) = +∞.

Then for every t ∈ (0, d(x1,m)] and s ∈ (0, d(x2,m)] we have

Q(γ1(t), γ2(s), x3, . . . , xN ) = {m}.

Generally speaking, the non uniqueness of Fréchet medians is due to some sym-
metric properties of data points. As a result, generic data points should have a
unique Fréchet median. In mathematical language, this means that the set of all
the particular positions of data points is of Lebesgue measure zero. After eliminate
all these particular cases we obtain the following main result of section 3.3:

Theorem 1.20. Assume that M is compact. Then µ(x1, . . . , xN ) has a unique
Fréchet median for almost every (x1, . . . , xN ) ∈MN .

Remark 1.21. In probability language, Theorem 1.20 is equivalent to say that if
(X1, . . . ,XN ) is an MN -valued random variable with density, then µ(X1, . . . ,XN )
has a unique Fréchet median almost surely. Clearly, the same statement is also true
if X1, . . . ,XN are independent and M -valued random variables with density.

The Chapter 4 of this dissertation is a collaborative work of Marc Arnaudon,
Clément Dombry, Anthony Phan and me. We consider a probability measure µ
supported by a regular geodesic ball in a manifold and, for any p ≥ 1, define a
stochastic algorithm which converges almost surely to the p-mean ep of µ. Assuming
furthermore that the functional to minimize is regular around ep, we prove that a
natural renormalization of the inhomogeneous Markov chain converges in law into
an inhomogeneous diffusion process. We give the explicit expression of this process,
as well as its local characteristic. Finally, we show that the p-mean of µ can also be
computed by the method of gradient descent. The questions concerning the choice
of stepsizes and error estimates of this deterministic method are also considered.

In more detail, let M be a Riemannian manifold whose sectional curvatures
K(σ) verify −β2 ≤ K(σ) ≤ α2, where α, β are positive numbers. Denote by ρ
the Riemannian distance on M . Let B(a, r) be a geodesic ball in M and µ be
a probability measure with support included in a compact convex subset Kµ of
B(a, r). Fix p ∈ [1,∞). We will always make the following assumptions on (r, p, µ):

Assumption 1.22. The support of µ is not reduced to one point. Either p > 1 or
the support of µ is not contained in a line, and the radius r satisfies

r < rα,p with

{

rα,p = 1
2 min

{

inj(M), π2α
}

, if p ∈ [1, 2);
rα,p = 1

2 min
{

inj(M), πα
}

, if p ∈ [2,∞).
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Under Assumption 1.22, it has been proved in [1, Theorem 2.1] that the function

Hp : M −→ R+

x 7−→
∫

M
ρp(x, y)µ(dy)

has a unique minimizer ep in M , the p-mean of µ, and moreover ep ∈ B(a, r). If
p = 1, e1 is the median of µ.

In the following theorem, we define a stochastic gradient algorithm (Xk)k≥0 to
approximate the p-mean ep and prove its convergence. In the sequel, let

K = B̄(a, r − ε) with ε =
ρ(Kµ, B(a, r)c)

2
.

Theorem 1.23. Let (Pk)k≥1 be a sequence of independent B(a, r)-valued random
variables, with law µ. Let (tk)k≥1 be a sequence of positive numbers satisfying

∀k ≥ 1, tk ≤ min

(

1

Cp,µ,K
,
ρ(Kµ, B(a, r)c)

2p(2r)p−1

)

,

∞
∑

k=1

tk = +∞ and

∞
∑

k=1

t2k <∞,

where Cp,µ,K > 0 is a constant.
Letting x0 ∈ K, define inductively the random walk (Xk)k≥0 by

X0 = x0 and for k ≥ 0 Xk+1 = expXk

(

−tk+1 gradXk
Fp(·, Pk+1)

)

where Fp(x, y) = ρp(x, y), with the convention gradx Fp(·, x) = 0.
The random walk (Xk)k≥1 converges in L2 and almost surely to ep.

The fluctuation of the random walk (Xk)k defined in Theorem 1.23 is summa-
rized in the following theorem.

Theorem 1.24. Assume that in Theorem 1.23

tk = min

(

δ

k
,min

(

1

Cp,µ,K
,
ρ(Kµ, B(a, r)c)

2p(2r)p−1

))

, k ≥ 1,

for some δ > 0. We define for n ≥ 1 the Markov chain (Y n
k )k≥0 in TepM by

Y n
k =

k√
n

exp−1
ep
Xk.

Assume that Hp is C2 in a neighborhood of ep and δ > C−1
p,µ,K . Then the sequence

of processes
(

Y n
[nt]

)

t≥0
converges weakly in D((0,∞), TepM) to a diffusion process

given by



16 CHAPTER 1. INTRODUCTION

yδ(t) =
d
∑

i=1

t1−δλi

∫ t

0
sδλi−1〈δσ dBs, ei〉ei, t ≥ 0,

where Bt is the standard Brownian motion in TepM and σ ∈ End(TepM) satisfying

σσ∗ = E

[

gradep
Fp(·, P1) ⊗ gradep

Fp(·, P1)
]

,

(ei)1≤i≤d is an orthonormal basis diagonalizing the symmetric bilinear form ∇dHp(ep)
and (λi)1≤i≤d are the associated eigenvalues.

Gradient descent algorithms for computing ep are given in the following theorem.
In view of Theorem 1.6, it suffices to consider the case when p > 1.

Theorem 1.25. Assume that p > 1. Let x0 ∈ B̄(a, r) and for k ≥ 0 define

xk+1 = expxk
(−tk gradxk

Hp),

where (tk)k is a sequence of real numbers such that

0 < tk ≤
pεp+1

πp2(2r)2p−1β coth(2βr) + pεp
, lim

k→∞
tk = 0 and

∞
∑

k=0

tk = +∞.

Then the sequence (xk)k is contained in B̄(a, ρ) and converges to ep.

The following proposition gives the error estimations of the gradient descent
algorithms in Theorem 1.25.

Proposition 1.26. Assume that tk < C−1
p,µ,K for every k in Theorem 1.25, then the

following error estimations hold:
i) if 1 < p < 2, then for k ≥ 1,

ρ2(xk, ep) ≤ 4r2
k−1
∏

i=0

(1 − Cp,µ,Kti)

+ C(β, r, p)

( k−1
∑

j=1

t2j−1

k−1
∏

i=j

(1 − Cp,µ,Kti) + t2k−1

)

:= bk;

ii) if p ≥ 2, then for k ≥ 1,

Hp(xk) −Hp(ep) ≤ (2r)p
k−1
∏

i=0

(1 −Cp,µ,Kti)

+C(β, r, p)

( k−1
∑

j=1

t2j−1

k−1
∏

i=j

(1 − Cp,µ,Kti) + t2k−1

)

:= ck,
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where the constant

C(β, r, p) =

{

p2(2r)2p−1β coth(2βr), if 1 < p < 2;

p3(2r)3p−4 (2βr coth(2βr) + p− 2) , if p ≥ 2.

Moreover, the sequences (bk)k and (ck)k both tend to zero.

In Chapter 5 of this dissertation we show that, under some conditions, local
medians can be interpreted as solutions to fixed point problems. It is also shown
that the associated iterated sequences converge to the medians. As a result, this
gives rise to another way for computing Riemannian sample medians. The idea
to add the penalty term µ{x}d(y, x) in the definition of hx is to ensure that the
fixed point mapping T diminishes the value of f . The main results of Chapter 5
generalize those of [87], in which all the results are proved only in Euclidean spaces.

The framework of Chapter 5 is the same to that of Chapter 2, so I omit it here.
Besides, we shall make some assumption on the probability measure µ:

1) µ is not a Dirac measure,

2) µ has a unique median m,

3) for every x in the support of µ,

∫

M\{x}

1

d(x, p)
µ(dp) <∞,

4) for every convergent sequence (yn)n in B(a, ρ),

lim
µA→0

lim sup
n→∞

∫

A\{yn}

1

d(yn, p)
µ(dp) = 0,

5) the atoms of µ are isolated.

Remark 1.27. It is easily seen that if N ≥ 3,
∑N

k=1 ωk = 1, ωk > 0 and p1, . . . , pN
are distinct points in B(a, ρ) which are not contained in a single geodesic, then the
probability measure

µ =

N
∑

k=1

ωkδpk
, (2.9)

satisfies all the above conditions.

The following type of functions are important in the sequel. For every x in the
open ball B(a, ρ), we define

hx : B̄(a, ρ) −→ R+, y 7−→ 1

2

∫

M\{x}

d2(y, p)

d(x, p)
µ(dp) + µ{x}d(y, x).
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Observe that hx is continuous, strictly convex. Hence it has a unique minimum
point which is denoted by T (x).

The following theorem says that the medians of µ coincide with the fixed points
of the mapping T .

Theorem 1.28. The medians of µ are characterized by

Mµ = {x ∈ B(a, ρ) : T (x) = x}.

The main result of Chapter 5 is the following theorem:

Theorem 1.29. Let x0 ∈ B(a, ρ), define a sequence (xn)n by

xn+1 = T (xn), n ≥ 0.

Then xn −→ m.

Example 1.30. Assume that M is a Euclidean space. Let N ≥ 3,
∑N

k=1 ωk = 1,
ωk > 0 and p1, . . . , pN are distinct points in M which are not contained in a single
line, then Theorem 1.29 holds for the probability measure

µ =

N
∑

k=1

ωkδpk
.

If the median of µ dose not coincide with any data point pk, then by choosing an
appropriate starting point, we may assume that µ{xn} = 0 for every n ≥ 0. As a
result,

hxn(y) =
1

2

N
∑

k=1

ωk
‖y − pk‖2

‖xn − pk‖
.

It follows that

xn+1 =

N
∑

k=1

ωkpk
‖xn − pk‖

/ N
∑

k=1

ωk
‖xn − pk‖

,

which is exactly the Weiszfeld algorithm.

This dissertation is ended by its Chapter 6, in which we study the Riemannian
geometry of the manifold of Toeplitz covariance matrices of order n. The explicit
expression of the reflection coefficients reparametrization and its inverse are ob-
tained. With the Riemannian metric given by the Hessian of a Kähler potential, we
show that the manifold is in fact a Cartan-Hadamard manifold with lower sectional
curvature bound −4. The geodesics in this manifold are also computed. Finally,
we apply the subgradient algorithm introduced in Chapter 2 and the Riemannian
geometry of Toeplitz covariance matrices to radar target detection.
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In more detail, let Tn be the set of Toeplitz Hermitian positive definite matrices
of order n. It is an open submanifold of R2n−1. Each element Rn ∈ Tn can be
written as

Rn =











r0 r1 . . . rn−1

r1 r0 . . . rn−2
...

. . .
. . .

...
rn−1 . . . r1 r0











.

For every 1 ≤ k ≤ n − 1, the upper left (k + 1)-by-(k + 1) corner of Rn is denoted
by Rk. It is associated to a k-th order autoregressive model whose Yule-Walker
equation is











r0 r1 . . . rk
r1 r0 . . . rk−1
...

. . .
. . .

...
rk . . . r1 r0























1

a
(k)
1
...

a
(k)
k













=











Pk
0
...
0











,

where a
(k)
1 , . . . , a

(k)
k are the optimal prediction coefficients and Pk = detRk+1/detRk

is the mean squared error.

The last optimal prediction coefficient a
(k)
k is called the k-th reflection coefficient

and is denoted by µk. It is easily seen that µ1, . . . , µn−1 are uniquely determined by
the matrix Rn. Moreover, the classical Levinson’s recursion (see e.g. [86]) gives that
|µk| < 1. Hence, by letting P0 = r0, we obtain a map between two submanifolds of
R2n−1:

ϕ : Tn −→ R∗
+ ×Dn−1, Rn 7−→ (P0, µ1, . . . , µn−1),

where D = {z ∈ C : |z| < 1} is the unit disc of the complex plane.

Using the Cramer’s rule and the method of Schur complement (see e.g. [95]) we
get the following proposition.

Proposition 1.31. ϕ is a diffeomorphism, whose explicit expression is

µk = (−1)k
detSk
detRk

, where Sk = Rk+1

(

2, . . . , k + 1

1, . . . , k

)

is the submatrix of Rk+1 obtained by deleting the first row and the last column. On
the other hand, if (P0, µ1, . . . , µn−1) ∈ R∗

+×Dn−1, then its inverse image Rn under
ϕ can be calculated by the following algorithm:

r0 = P0, r1 = −P0µ1,

rk = −µkPk−1 + αTk−1Jk−1R
−1
k−1αk−1, 2 ≤ k ≤ n− 1,
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where

αk−1 =







r1
...

rk−1






, Jk−1 =









0 . . . 0 1
0 . . . 1 0

. . .
1 . . . 0 0









and Pk−1 = P0

k−1
∏

i=1

(1 − |µi|2).

From now on, we regard Tn as a Riemannian manifold whose metric, which
is introduced in [14] by the Hessian of the Kähler potential (see e.g. [12] for the
definition of a Kähler potential)

Φ(Rn) = − ln(detRn) − n ln(πe),

is given by

ds2 = n
dP 2

0

P 2
0

+
n−1
∑

k=1

(n− k)
|dµk|2

(1 − |µk|2)2
, (2.10)

where (P0, µ1, . . . , µn−1) = ϕ(Rn).

The metric (2.10) is a Bergman type metric and it will be shown in the appendix
of Chapter 6 that this metric is not equal to the Fisher information metric of Tn.
But J. Burbea and C. R. Rao have proved in [28, Theorem 2] that the Bergman
metric and the Fisher information metric do coincide for some probability density
functions of particular forms. A similar potential function was used by S. Amari
in [5] to derive the Riemannian metric of multi-variate Gaussian distributions by
means of divergence functions. We refer to [78] for more account on the geometry
of Hessian structures.

With the metric given by (2.10) the space R∗
+ ×Dn−1 is just the product of the

Riemannian manifolds (R∗
+, ds

2
0) and (D, ds2k)1≤k≤n−1, where

ds20 = n
dP 2

0

P 2
0

and ds2k = (n− k)
|dµk|2

(1 − |µk|2)2
.

The latter is just n − k times the classical Poincaré metric of D. Hence (R∗
+ ×

Dn−1, ds2) is a Cartan-Hadamard manifold whose sectional curvatures K verify
−4 ≤ K ≤ 0. The Riemannian distance between two different points x and y in
R∗

+ × Dn−1 is given by

d(x, y) =

(

nσ(P,Q)2 +

n−1
∑

k=1

(n− k)τ(µk, νk)
2

)1/2

,

where x = (P, µ1, . . . , µn−1), y = (Q, ν1, . . . , νn−1),

σ(P,Q) = | ln(
Q

P
)| and τ(µk, νk) =

1

2
ln

1 + | νk−µk

1−µ̄kνk
|

1 − | νk−µk

1−µ̄kνk
|
.
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The geodesic from x to y in Tn parameterized by arc length is given by

γ(s, x, y) = (γ0(
σ(P,Q)

d(x, y)
s), γ1(

τ(µ1, ν1)

d(x, y)
s), . . . , γ1(

τ(µn−1, νn−1)

d(x, y)
s)),

where γ0 is the geodesic in (R∗
+, ds

2
0) from P to Q parameterized by arc length and

for 1 ≤ k ≤ n − 1, γk is the geodesic in (D, ds2k) from µk to νk parameterized by
arc length. More precisely,

γ0(t) = Pet sign(Q−P ),

and for 1 ≤ k ≤ n− 1,

γk(t) =
(µk + eiθk)e2t + (µk − eiθk)

(1 + µ̄keiθk)e2t + (1 − µ̄keiθk)
, where θk = arg

νk − µk
1 − µ̄kνk

.

Particularly,

γ′(0, x, y) = (γ′0(0)
σ(P,Q)

d(x, y)
, γ′1(0)

τ(µ1, ν1)

d(x, y)
, . . . , γ′n−1(0)

τ(µn−1, νn−1)

d(x, y)
).

Let v = (v0, v1, . . . , vn−1) be a tangent vector in Tx(R
∗
+ × Dn−1), then the

geodesic starting from x with velocity v is given by

ζ(t, x, v) = (ζ0(t), ζ1(t), . . . , ζn−1(t)),

where ζ0 is the geodesic in (R∗
+, ds

2
0) starting from P with velocity v0 and for

1 ≤ k ≤ n − 1, ζk is the geodesic in (D, ds2k) starting from µk with velocity vk.
More precisely,

ζ0(t) = Pe
v0
P
t,

and for 1 ≤ k ≤ n− 1,

ζk(t) =
(µk + eiθk)e

2|vk|t
1−|µk |2 + (µk − eiθk)

(1 + µ̄keiθk)e
2|vk|t

1−|µk |2 + (1 − µ̄keiθk)

, where θk = arg vk.

Numerical and radar simulations of the subgradient algorithme and the new de-
tection method which are introduced respectively in Chapter 2 and in the subsection
1.2.1 can be found in section 6.4.





Chapter 2

Riemannian median and its

estimation

Abstract

In this chapter, we define the geometric medians of a probability measure on a
Riemannian manifold, give their characterization and a natural condition to ensure
their uniqueness. In order to compute geometric medians in practical cases, we also
propose a subgradient algorithm and prove its convergence as well as estimating
the error of approximation and the rate of convergence. The convergence property
of this subgradient algorithm, which is a generalization of the classical Weiszfeld al-
gorithm in Euclidean spaces to the context of Riemannian manifolds, also improves
a recent result of P. T. Fletcher et al. [NeuroImage 45 (2009) S143-S152].

2.1 Introduction

Throughout this chapter, M is a complete Riemannian manifold with Riemannian
metric 〈 · , · 〉 and Riemannian distance d. The gradient operator and the hessian
operator on M are denoted by grad and Hess respectively. Moreover, for every
point p in M , let dp denote the distance function to p defined by dp(x) = d(x, p),
x ∈M .

We fix an open geodesic ball

B(a, ρ) = {x ∈M : d(x, a) < ρ}

in M centered at a with a finite radius ρ. Let δ and ∆ denote respectively a lower
and an upper bound of sectional curvatures K in B̄(a, ρ). The injectivity radius of
B̄(a, ρ) is denoted by inj (B̄(a, ρ)). Furthermore, we assume that the radius of the
ball verifies

ρ < min
{ π

4
√

∆
,

inj (B̄(a, ρ))

2

}

, (1.1)
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where if ∆ ≤ 0, then π/(4
√

∆) is interpreted as +∞. Hence B̄(a, ρ) is convex
(see [33, Theorem 5.14]), that is, for every two points x and y in B̄(a, ρ), there
is a unique shortest geodesic from x to y in M , and this geodesic lies in B̄(a, ρ).
Moreover, the geodesics in B̄(a, ρ) vary continuously with their endpoints. As a
consequence, the angle comparison theorem of Alexandrov (see for example [2], [3,
p.3] and [26, Proposition II.4.9]) can be applied in B̄(a, ρ). Similarly, it is easy
to check that the angle comparison theorem of Toponogov (see [33, Theorem 2.2])
can also be applied in B̄(a, ρ). Thus we have to introduce some notations of model
spaces that provide us many geometric information.

Notation 2.1. Let κ be a real number, the model space M2
κ is defined as follows:

1) if κ > 0, then M2
κ is obtained from the sphere S

2 by multiplying the distance
function by 1/

√
κ;

2) if κ = 0, then M2
0 is the Euclidean space E

2;

3) if κ < 0, then M2
κ is obtained from the hyperbolic space H

2 by multiplying
the distance function by 1/

√
−κ.

The diameter of M2
κ will be denoted by Dκ. More precisely,

Dκ =

{

π/
√
κ, if κ > 0;

+∞, if κ ≤ 0.

The distance between two points Ā and B̄ in M2
κ will be written as d̄(Ā, B̄).

Moreover, we write for t ∈ R,

Sκ(t) =











sin(
√
κ t)/

√
κ, if κ > 0;

t, if κ = 0;

sinh(
√−κ t)/√−κ, if κ < 0.

For the necessity of later comparison arguments, we recall some terminology
about triangles (see [26, p.158 and Lemma I.2.14]). A geodesic triangle △ABC in
M is a figure consisting of three distinct points A, B, C of M called the vertices
and a choice of three shortest geodesics AB, BC, CA joining them called the sides.
A comparison triangle in M2

κ of △ABC is a geodesic triangle △ĀB̄C̄ in M2
κ such

that d̄(Ā, B̄) = d(A,B), d̄(B̄, C̄) = d(B,C), d̄(C̄, Ā) = d(C,A). Note that if the
perimeter of △ABC is less than 2Dκ, that is, if d(A,B)+d(B,C)+d(C,A) < 2Dκ,
then its comparison triangle in M2

κ exits, and it is unique up to an isometry. Hence
every geodesic triangle in B̄(a, ρ) has its comparison triangles in M2

δ and M2
∆,

respectively. Note that, by convexity of B̄(a, ρ), every geodesic triangle in it is
uniquely determined by its three vertices.
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The two estimations below are very useful in the following, which are direct
corollaries to the classical Hessian comparison theorems.

Lemma 2.2. Let p ∈ B̄(a, ρ) and γ : [ 0, b ] → B̄(a, ρ) be a geodesic, then

i)

Hess dp(γ̇(t), γ̇(t)) ≥ D(ρ,∆)| γ̇nor
p (t) |2

for every t ∈ [ 0, b ] such that γ(t) 6= p, where D(ρ,∆) = S′
∆(2ρ)/S∆(2ρ) > 0 and

γ̇nor
p (t) is the normal component of γ̇(t) with respect to the geodesic from p to γ(t)

in B̄(a, ρ).

ii)

Hess
1

2
d2
p(γ̇(t), γ̇(t)) ≤ C(ρ, δ)|γ̇|2

for every t ∈ [ 0, b ], where the constant C(ρ, δ) ≥ 1 is defined by

C(ρ, δ) =

{

1, if δ ≥ 0;

2ρ
√
−δ coth(2ρ

√
−δ), if δ < 0.

Proof. Since in B̄(a, ρ) we have δ ≤ K ≤ ∆, by the classical Hessian comparison
theorem (see [77, Lemma IV.2.9]) we get, for γ(t) 6= p,

S′
∆(d(γ(t), p))

S∆(d(γ(t), p))
| γ̇(t)nor |2 ≤ Hess dp(γ̇(t), γ̇(t)) ≤ S′

δ(d(γ(t), p))

Sδ(d(γ(t), p))
| γ̇(t)nor |2.

Since θ 7−→ S′
∆(θ)/S∆(θ) is nonincreasing for θ > 0 if ∆ ≤ 0 and for θ ∈ (0, π) if

∆ > 0, so the left inequality together with d(γ(t), p) ≤ 2ρ proves the first assertion.
To show the second one, let γ̇(t)tan be the tangential component of γ̇(t) with respect
to the geodesic from p to γ(t) then

Hess
1

2
d2
p(γ̇(t), γ̇(t)) = d(γ(t), p)Hess dp(γ̇(t), γ̇(t)) + | γ̇(t)tan |2

≤ d(γ(t), p)
S′
δ(d(γ(t), p))

Sδ(d(γ(t), p))
| γ̇(t)nor |2 + | γ̇(t)tan |2

≤ max

{

d(γ(t), p)
S′
δ(d(γ(t), p))

Sδ(d(γ(t), p))
, 1

}

|γ̇|2.

Observe that θS′
δ(θ)/Sδ(θ) ≤ 1 for θ > 0 if δ = 0 and for θ ∈ [0, π) if δ > 0, thus

for the case when δ ≥ 0 we have

d(γ(t), p)
S′
δ(d(γ(t), p))

Sδ(d(γ(t), p))
≤ 1.
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If δ < 0, then θ 7−→ θS′
δ(θ)/Sδ(θ) ≥ 1 and is nondecreasing for θ ≥ 0, thus we get

d(γ(t), p)
S′
δ(d(γ(t), p))

Sδ(d(γ(t), p))
≤ 2ρ

S′
δ(2ρ)

Sδ(2ρ)
= 2ρ

√
−δ coth(2ρ

√
−δ),

hence the estimation holds for every δ ∈ R. Finally, the case when γ(t) = p is
trivial and the proof is complete.

2.2 Definition of Riemannian medians

As in [53], we consider a probability measure µ on M whose support is contained
in the open ball B(a, ρ) and define a function

f : B̄(a, ρ) −→ R+ , x 7−→
∫

M
d(x, p)µ(dp).

This function is 1-Lipschitz, hence continuous on the compact set B̄(a, ρ). More-
over, by the first estimation in Lemma 2.2, it is also convex. The convexity of f
yields that its local minima coincide with its global ones, so that we don’t need to
distinguish the two. Now we give the following definition.

Definition 2.3. A minimum point of f is called a median of µ. The set of all the
medians of µ will be denoted by Mµ. The minimal value of f will be denoted by
f∗.

It is easily seen that Mµ is compact and convex. In order to give a charac-
terization of Mµ, we need the following proposition, which implies that f is not
differentiable in general.

Proposition 2.4. Let γ : [ 0, b ] → B̄(a, ρ) be a geodesic, then

d

dt
f(γ(t))

∣

∣

t=t0+
= 〈 γ̇(t0), H(γ(t0)) 〉 + µ{γ(t0)}|γ̇|, t0 ∈ [ 0, b ),

d

dt
f(γ(t))

∣

∣

t=t0− = 〈 γ̇(t0), H(γ(t0)) 〉 − µ{γ(t0)}|γ̇|, t0 ∈ (0, b ],

where for x ∈ B̄(a, ρ),

H(x) =

∫

M\{x}

− exp−1
x p

d(x, p)
µ(dp),

is a tangent vector at x satisfying |H(x)| ≤ 1. Particularly, if µ{x} = 0, then
grad f(x) = H(x). Moreover, H is continuous on B̄(a, ρ) \ supp(µ).
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Proof. We only prove the first identity since the proof of the second one is similar.
Let t0 ∈ [ 0, b ) and ε > 0 be sufficiently small, then

f(γ(t0 + ε)) − f(γ(t0))

ε
=

∫

M

d(γ(t0 + ε), p) − d(γ(t0), p)

ε
µ(dp)

=

∫

M\{γ(t0)}

d(γ(t0 + ε), p) − d(γ(t0), p)

ε
µ(dp) + µ{γ(t0)}|γ̇|.

Letting ε→ 0+ and using bounded convergence we get

d

dt
f(γ(t))

∣

∣

t=t0+
=

∫

M\{γ(t0)}

d

dt
d(γ(t), p)

∣

∣

t=t0
µ(dp) + µ{γ(t0)}|γ̇|

=

∫

M\{γ(t0)}
〈 γ̇(t0), grad dp(γ(t0)) 〉µ(dp) + µ{γ(t0)}|γ̇|

= 〈 γ̇(t0), H(γ(t0)) 〉 + µ{γ(t0)}|γ̇|.

Now we give the characterization of Mµ which is proved in [58] for a finite
number of points in an Euclidean space.

Theorem 2.5. Mµ =
{

x ∈ B̄(a, ρ) : |H(x)| ≤ µ{x}
}

.

Proof. (⊂ ) Let x ∈ Mµ. If H(x) = 0, then there is nothing to prove. So we assume
that H(x) 6= 0. Consider the geodesic in B̄(a, ρ):

γ(t) = expx(−t
H(x)

|H(x)| ), t ∈ [ 0, b ].

By Proposition 2.4 and the definition of Mµ we get

|H(x)| = µ{x} − d

dt
f(γ(t))

∣

∣

t=0+
≤ µ{x}.

(⊃ ) Let x ∈ B̄(a, ρ) such that |H(x)| ≤ µ{x}. For every geodesic γ : [0, 1] →
B̄(a, ρ) with γ(0) = x and γ(1) = y, by the convexity of f , Proposition 2.4 and
Cauchy-Schwartz inequality, we get

f(y) − f(x) ≥ d

dt
f(γ(t))

∣

∣

t=0+
≥ |γ̇|(−|H(x)| + µ{x}) ≥ 0,

so that x ∈ Mµ.

In order to describe the location of Mµ, we need the following geometric lemma
which is also useful in the next section.
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Lemma 2.6. Let △ABC be a geodesic triangle in B̄(a, ρ) such that ∠A ≥ π/2,
then ∠B < π/2 and ∠C < π/2.

Proof. We prove this for the case when ∆ > 0. The proof for the cases when ∆ ≤ 0
is similar. It suffices to show that ∠B < π/2. Let d(B,C) = a1, d(C,A) = b1
and d(A,B) = c1. Consider a comparison triangle △ĀB̄C̄ of △ABC in M2

∆. Since
K ≤ ∆ in B̄(a, ρ), Alexandrov’s theorem yields that ∠A ≤ ∠Ā, ∠B ≤ ∠B̄. By the
following identity in M2

∆,

sin(
√

∆a1) cos ∠B̄ = cos(
√

∆b1) sin(
√

∆c1) − sin(
√

∆b1) cos(
√

∆c1) cos ∠Ā,

we get ∠B̄ < π/2 and this completes the proof.

Proposition 2.7. Mµ is contained in the smallest closed convex subset of B(a, ρ)
containing the support of µ.

Proof. Let V be this set. By Theorem 2.5 it suffices to show that if x ∈ B̄(a, ρ) \V
thenH(x) 6= 0. In fact, let y be a point in V such that d(x, y) = inf{d(x, p) : p ∈ V },
then the convexity of V yields ∠xyp ≥ π/2 for every p ∈ V . Hence by Lemma 2.6
we get ∠pxy < π/2 and this gives that

〈H(x), exp−1
x y 〉 =

∫

V

〈− exp−1
x p, exp−1

x y 〉
d(x, p)

µ(dp)

= −d(x, y)
∫

V
cos ∠pxy µ(dp) < 0.

The proof is completed by observing that exp−1
x y 6= 0.

2.3 Uniqueness of Riemannian medians

In Euclidean case, it is well known that if the sample points are not colinear, then
the geometric median is unique. Hence we get a natural condition of µ to ensure
the uniqueness for medians in Riemannian case:

∗ The support of µ is not totally contained in any geodesic. This means that
for every geodesic γ: [ 0, 1 ] → B̄(a, ρ), we have µ(γ[ 0, 1 ]) < 1.

Before giving the uniqueness theorem for medians, we introduce a procedure of
extending geodesics in B̄(a, ρ). Let γ: [ 0, 1 ] → B̄(a, ρ) be a geodesic such that
γ(0) = x and γ(1) = y. By the completeness of M and the fact that the diameter
of B̄(a, ρ) equals 2ρ < inj (B̄(a, ρ)), we can extend γ from its endpoint y, along
the direction of γ̇(1), to the point ŷ where the extended geodesic firstly hits the
boundary of B̄(a, ρ). Similarly, we can also apply this procedure in the opposite
direction: extend γ from its starting point x, along the direction of −γ̇(0), to the
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point x̂ where the extended geodesic firstly hits the boundary of B̄(a, ρ). Then we
write γ̂: [ 0, 1 ] → B̄(a, ρ) the geodesic such that γ̂(0) = x̂ and γ̂(1) = ŷ. Obviously,
γ[ 0, 1 ] ⊂ γ̂[ 0, 1 ]. Furthermore, the strong convexity of B(a, ρ) (see [33, Theorem
5.14]) yields γ̇nor

p (t) 6= 0 for every p ∈ B̄(a, ρ) \ γ̂[ 0, 1 ] and t ∈ [ 0, 1 ].

Theorem 2.8. If condition ∗ holds, then the median of µ is unique.

Proof. We will prove this by showing that f is strictly convex, that is, for every
geodesic γ: [ 0, 1 ] → B̄(a, ρ), the function f ◦ γ is strictly convex. By the first
estimation in Lemma 2.2, for every p ∈ B̄(a, ρ) \ γ̂[ 0, 1 ] the function t 7→ d(γ(t), p)
is strictly convex, and for p ∈ γ̂[ 0, 1 ] it is trivially convex. Since the condition ∗
yields that µ(B̄(a, ρ) \ γ̂[ 0, 1 ]) > 0, by integration we obtain the strict convexity of
f and the proof is completed.

Remark 2.9. For the Riemannian barycenters of µ in B(a, ρ) to be unique, Kendall
showed that (see [55, Theorem 7.3] and [56]) the assumption

ρ < min
{ π

2
√

∆
, inj (a)

}

(3.2)

suffices (certainly, without condition ∗). Naturally, one may wonder that, under
condition ∗, whether the median of µ remains unique if condition (1.1) is replaced
by the weaker one (3.2). Unfortunately, this is not true. A counterexample may
be found in [54], which shows that if three points on the upper hemisphere S

2
+

symmetrically located in a circle which is parallel and close to the equator, then
there are at least three medians.

In the proof of Theorem 2.8, we have seen that f is strictly convex if condition
∗ holds. However, under the same condition, we can show that f is in fact strongly
convex (see [85, Definition 6.1.1]): there exits a constant τ > 0 such that for every
geodesic γ: [ 0, 1 ] → B̄(a, ρ), the following inequalities hold,

f(γ(t)) ≤ (1 − t)f(γ(0)) + tf(γ(1)) − τ |γ̇|2(1 − t)t, t ∈ [ 0, 1 ]. (3.3)

This is equivalent to say that for every geodesic γ: [ 0, 1 ] → B̄(a, ρ), the function
t 7→ f(γ(t)) − τ |γ̇|2t2 is convex on [ 0, 1 ]. To see this, we begin with an equivalent
formulation of condition ∗.

Lemma 2.10. Condition ∗ holds if and only if there exist two constants εµ > 0
and ηµ > 0, such that for every geodesic γ: [ 0, 1 ] → B̄(a, ρ), we have

µ(B(γ, εµ)) ≤ 1 − ηµ,

where for ε > 0, B(γ, ε) = {x ∈ B̄(a, ρ) : d(x, γ[ 0, 1]) < ε}.
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Proof. We only have to show the necessity since the sufficiency is trivial. Assume
that this is not true, then for every ε > 0 and η > 0, there exists a geodesic γ:
[ 0, 1 ] → B̄(a, ρ) such that µ(B(γ, ε)) > 1 − η. Then we obtain a sequence of
geodesics (γn)n≥1: [ 0, 1 ] → B̄(a, ρ) verifying µ(B(γn, 1/n)) > 1 − 1/n. Since the
sequence (γn(0), γ̇n(0))n is contained in the compact set E = {(x, v) ∈ TM : x ∈
B̄(a, ρ), |v| ≤ 2ρ}, there is a subsequence (γnk

(0), γ̇nk
(0))k and a point (x, v) ∈ E,

such that (γnk
(0), γ̇nk

(0)) → (x, v). Let γ be the geodesic starting from x with
velocity v, by the classical theory of ordinary differential equations we know that
γnk

→ γ uniformly on [ 0, 1 ]. Particularly, γ[ 0, 1 ] ⊂ B̄(a, ρ). Then for every j ≥ 1,
B(γnk

, 1/nk) ⊂ B(γ, 1/j) for sufficiently large k, hence µ(B(γ, 1/j)) ≥ 1 − 1/nk.
By letting k → ∞ and then letting j → ∞, we get µ(γ[ 0, 1 ]) = 1. This contradicts
condition ∗.

The lemma below gives a basic angle estimation, which is also useful in the next
section. In the following, we write

σ = sup{d(p, a) : p ∈ suppµ}.

Note that σ < ρ, since the support of µ is contained in the open ball B(a, ρ).

Lemma 2.11. Let △ABC be a geodesic triangle in B̄(a, ρ) such that A = a,
B ∈ B̄(a, σ) and C ∈ B̄(a, ρ) \ B̄(a, σ), then

cos ∠C ≥ S∆(d(C,A) − σ)

S∆(d(C,A) + σ)
.

Proof. We prove this lemma for the case when ∆ > 0. The proof for the cases when
∆ ≤ 0 is similar. Let d(B,C) = a1, d(C,A) = b1 and d(A,B) = c1. Consider a com-
parison triangle △ĀB̄C̄ of △ABC in M2

∆. Since K ≤ ∆ in B̄(a, ρ), Alexandrov’s
Theorem yields that ∠C ≤ ∠C̄. Hence, observing c1 ≤ σ and b1 − σ ≤ a1 ≤ b1 + σ,
we obtain

cos ∠C ≥ cos ∠C̄ =
cos(

√
∆c1) − cos(

√
∆a1) cos(

√
∆b1)

sin(
√

∆a1) sin(
√

∆b1)

≥ cos(
√

∆σ) − cos(
√

∆(b1 − σ)) cos(
√

∆b1)

sin(
√

∆(b1 + σ)) sin(
√

∆b1)

=
sin(

√
∆(b1 − σ))

sin(
√

∆(b1 + σ))
=
S∆(d(C,A) − σ)

S∆(d(C,A) + σ)
.

Lemma 2.12. Let △ABC be a geodesic triangle in B̄(a, ρ) such that ∠A ≥ π/2.
Consider a geodesic triangle △A1B1C1 in M2

δ such that d̄(A1, C1) = d(A,C),
d̄(A1, B1) = d(A,B) and ∠A1 = ∠A. Then sin ∠C ≥ sin ∠C1.
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Proof. We prove this for the case when δ > 0. The proof for the cases when δ ≤ 0
is similar. Firstly, observe that by Lemma 2.6 we have ∠B < π/2 and ∠C < π/2.
Let △A2B2C2 be a comparison triangle of △ABC in M2

δ . Since K ≥ δ in B̄(a, ρ),
Toponogov’s theorem yields that ∠A2 ≤ ∠A = ∠A1 and ∠B2 ≤ ∠B. Assume that
d(B,C) = a2, d(A,C) = b2, d(A,B) = c2 and d̄(B1, C1) = a1. Since ∠A2 ≤ ∠A1,
we have a2 ≤ a1. By the law of cosines in M2

δ we obtain

d

da1
cos ∠C1 =

d

da1

cos(
√
δc2) − cos(

√
δa1) cos(

√
δb2)

sin(
√
δb2) sin(

√
δa1)

=

√
δ(cos(

√
δb2) − cos(

√
δa1) cos(

√
δc2))

sin(
√
δb2) sin2(

√
δa1)

≥
√
δ(cos(

√
δb2) − cos(

√
δa2) cos(

√
δc2))

sin(
√
δb2) sin2(

√
δa1)

=

√
δ sin(

√
δa2) sin(

√
δc2)

sin(
√
δb2) sin2(

√
δa1)

cos ∠B2 > 0.

So that cos∠C1 is nondecreasing with respect to a1 when a1 ≥ a2. Hence cos ∠C1 ≥
cos ∠C2, i.e. ∠C1 ≤ ∠C2. Then observing ∠C2 ≤ ∠C < π/2, we obtain sin ∠C ≥
sin ∠C1. The proof is complete.

The following lemma is important for giving a lower bound of the Hessian of
the distance function. Though the two estimations below are very simple, they are
sufficient for our purposes.

Lemma 2.13. Let △ABC be a geodesic triangle in B̄(a, ρ).

i) If ∠A = π/2, then

sin ∠C ≥ L1(ρ, δ)d(A,B),

where the constant

L1(ρ, δ) =











2
√
δ/π, if δ > 0;

1/4ρ, if δ = 0;√
−δ/ sinh(4ρ

√
−δ), if δ < 0.

ii) If A ∈ ∂B̄(a, ρ), B ∈ B̄(a, σ) and ∠A ≥ π/2, then

sin ∠C ≥ L(σ, ρ, δ,∆)d(A,B),

where the constant

L(σ, ρ, δ,∆) = L1(ρ, δ)
S∆(ρ− σ)

S∆(ρ+ σ)
.
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Proof. We prove this lemma for the case when δ > 0. The proof for the cases when
δ ≤ 0 is similar. Let △A1B1C1 be as in Lemma 2.12, then sin ∠C ≥ sin ∠C1. Let
d̄(B1, C1) = a1 and d(A,B) = c1, then the law of sines in M2

δ yields

sin ∠C1 =
sin(

√
δc1)

sin(
√
δa1)

sin ∠A ≥ 2
√
δc1
π

sin ∠A,

since sin θ ≥ 2θ/π for θ ∈ [0, π/2]. Hence the first estimation holds if ∠A = π/2.
To show the second one, by the convexity of B̄(a, ρ) we get

∠A ≤ ∠CAa+ ∠aAB <
π

2
+ ∠aAB.

Since ∠A ≥ π/2, by Lemma 2.11,

sin∠A ≥ cos ∠aAB ≥ S∆(ρ− σ)

S∆(ρ+ σ)
.

The second estimation follows immediately and the proof is completed.

We know that f is convex, thus along every geodesic it has a second derivative
in the sense of distribution, the following proposition gives its specific form as well
as the Taylor’s formulae.

Proposition 2.14. Let γ: [ 0, b ] → B̄(a, ρ) be a geodesic, then

for t0 ∈ [ 0, b ) and t ∈ [ t0, b ],

f(γ(t)) = f(γ(t0)) +
d

ds
f(γ(s))

∣

∣

s=t0+
(t− t0) +

∫

(t0,t)
(t− s)ν(ds); (3.4)

for t0 ∈ ( 0, b ] and t ∈ [ 0, t0 ],

f(γ(t)) = f(γ(t0)) +
d

ds
f(γ(s))

∣

∣

s=t0−(t− t0) +

∫

(t,t0)
(s − t)ν(ds),

with ν being the second derivative of f ◦ γ on (0, b) in the sense of distribution,
which is a bounded positive measure given by

ν =

(
∫

M\γ[0,b]
Hess dp(γ̇, γ̇)µ(dp)

)

· λ|(0,b) + 2|γ̇| · (µ ◦ γ)|(0,b),

where λ|(0,b) and (µ ◦ γ)|(0,b) denote the restrictions of Lebesgue measure and the
measure µ ◦ γ on (0, b), respectively.
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Proof. We shall only prove the first identity, since the proof of the second one is
similar. Observe that since γ is a homeomorphism of (0, b) onto its image, µ ◦ γ is
a well defined measure on (0, b). By Taylor’s formula,
∫

M\γ[0,b]
d(γ(t), p)µ(dp)

=

∫

M\γ[0,b]

(

d(γ(t0), p) +
d

ds
d(γ(s), p)

∣

∣

s=t0
(t− t0) +

∫ t

t0

(t− s)
d2

ds2
d(γ(s), p)ds

)

µ(dp)

=

∫

M\γ[0,b]
d(γ(t0), p)µ(dp) + 〈 γ̇(t0),

∫

M\γ[0,b]

− exp−1
γ(t0)

p

d(γ(t0), p)
µ(dp) 〉(t− t0)

+

∫ t

t0

(t− s)ds

∫

M\γ[0,b]
Hess dp(γ̇(s), γ̇(s))µ(dp).

It is easily seen that
∫

M\γ[0,b]
d(γ(t0), p) = f(γ(t0)) −

∫

γ[0,t0)
d(γ(t0), p)µ(dp) −

∫

γ(t0,b]
d(γ(t0), p)µ(dp),

and, by Proposition 2.4, that

〈

γ̇(t0),

∫

M\γ[0,b]

− exp−1
γ(t0) p

d(γ(t0), p)
µ(dp)

〉

= 〈 γ̇(t0),H(γ(t0)) 〉 −
〈

γ̇(t0),

∫

γ[0,t0)∪γ(t0,b]

− exp−1
γ(t0) p

d(γ(t0), p)
µ(dp)

〉

= 〈 γ̇(t0),H(γ(t0)) 〉 − |γ̇|µ(γ[ 0, t0 )) + |γ̇|µ(γ( t0, b ])

=
d

ds
f(γ(s))

∣

∣

s=t0+
− |γ̇|µ(γ[ 0, t0 ]) + |γ̇|µ(γ( t0, b ]).

Since

f(γ(t)) =

∫

M\γ[0,b]
d(γ(t), p)µ(dp) +

∫

γ[0,b]
d(γ(t), p)µ(dp)),

we obtain

f(γ(t)) − f(γ(t0)) −
d

ds
f(γ(s))

∣

∣

s=t0+
(t− t0)

−
∫ t

t0

(t− s)ds

∫

M\γ[0,b]
Hess dp(γ̇(s), γ̇(s))µ(dp)

= −
∫

γ[0,t0)
d(γ(t0), p)µ(dp) −

∫

γ(t0,b]
d(γ(t0), p)µ(dp) − |γ̇|µ(γ[ 0, t0 ])(t− t0)

+ |γ̇|µ(γ( t0, b ])(t − t0) +

∫

γ[0,b]
d(γ(t), p)µ(dp)
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=

(

−
∫

γ[0,t0)
d(γ(t0), p)µ(dp) − |γ̇|µ(γ[ 0, t0))(t− t0) +

∫

γ[0,t0)
d(γ(t), p)µ(dp)

)

+

(

−
∫

γ(t0,b]
d(γ(t0), p)µ(dp) + |γ̇|µ(γ( t0, b ])(t− t0) +

∫

γ(t0,b]
d(γ(t), p)µ(dp)

)

=

(

−
∫

γ[0,t0)
d(γ(t0), p)µ(dp) −

∫

γ[0,t0)
d(γ(t0), γ(t))µ(dp) +

∫

γ[0,t0)
d(γ(t), p)µ(dp)

)

+

(

−
∫

γ(t0,t)
d(γ(t0), p)µ(dp) +

∫

γ(t0,t)
d(γ(t0), γ(t))µ(dp) +

∫

γ(t0,t)
d(γ(t), p)µ(dp)

)

+

(

−
∫

γ[t,b]
d(γ(t0), p)µ(dp) +

∫

γ[t,b]
d(γ(t0), γ(t))µ(dp) +

∫

γ[t,b]
d(γ(t), p)µ(dp)

)

= 2

∫

γ(t0,t)
d(γ(t), p)µ(dp) = 2|γ̇|

∫

(t0,t)
(t− s)(µ ◦ γ)(ds).

Hence (3.4) holds. To show that ν is the second derivative of f ◦ γ on (0, b) in the
sense of distribution, let ϕ ∈ C∞

c ( 0, b) and choose t0 = 0 in (3.4), then Fubini’s
theorem and integration by parts yield
∫

(0,b)
f(γ(t))ϕ′′(t)dt

= f(γ(0))

∫

(0,b)
ϕ′′(t)dt +

d

ds
f(γ(s))

∣

∣

s=0+

∫

(0,b)
tϕ′′(t)dt +

∫

(0,b)
ϕ′′(t)dt

∫

(0,t)
(t− s)ν(ds)

=

∫

(0,b)
ν(ds)

∫

(s,b)
(t− s)ϕ′′(t)dt =

∫

(0,b)
ϕ(s)ν(ds).

The proof is complete.

Now we are ready to show that condition ∗ yields the strong convexity of f .
Certainly, this also gives a proof of the uniqueness of the median.

Theorem 2.15. If condition ∗ holds, then f is strongly convex. More precisely,
(3.3) holds for τ = (1/2) ε2µ ηµD(ρ,∆)L(σ, ρ, δ,∆)2 > 0. Moreover, with this choice
of τ , for every x ∈ B̄(a, ρ),

f(x) ≥ f∗ + τd2(x,m),

where m is the unique median of µ.

Proof. Let γ: [ 0, 1 ] → B̄(a, ρ) be a geodesic, then by the first estimation in Lemma
2.2 we obtain that for every s ∈ [ 0, 1 ],
∫

M\γ[0,1]
Hess dp(γ̇(s), γ̇(s))µ(dp) ≥

∫

B̄(a,σ)\B(γ̂ ,εµ)
D(ρ,∆)|γ̇nor

p (s)|2µ(dp)

=D(ρ,∆)|γ̇|2
∫

B̄(a,σ)\B(γ̂ ,εµ)
sin2

∠(γ̇(s), exp−1
γ(s) p)µ(dp).
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Then for every p ∈ B̄(a, σ) \ B(γ̂, εµ), let q = q(p) be the metric projection of p
onto γ̂[ 0, 1 ]. If q ∈ γ̂(0, 1) and γ(s) 6= q, then the geodesic triangle △pqγ(s) is a
right triangle with ∠pqγ(s) = π/2. Hence the first estimation in Lemma 2.13 yields
that

sin ∠(γ̇(s), exp−1
γ(s) p) ≥ L1(ρ, δ)d(p, q) ≥ L1(ρ, δ)εµ.

If q ∈ {γ̂(0), γ̂(1)} and γ(s) 6= q, then ∠pqγ(s) ≥ π/2. Hence by the second
estimation in Lemma 2.13,

sin ∠(γ̇(s), exp−1
γ(s) p) ≥ L(σ, ρ, δ,∆)d(p, q) ≥ L(σ, ρ, δ,∆)εµ.

Since L(σ, ρ, δ,∆) < L1(ρ, δ), we always have

sin ∠(γ̇(s), exp−1
γ(s) p) ≥ L(σ, ρ, δ,∆)εµ.

Thus by Lemma 2.10 we obtain
∫

M\γ[0,1]
Hess dp(γ̇(s), γ̇(s))µ(dp) ≥ ε2µ ηµD(ρ,∆)L(σ, ρ, δ,∆)2 |γ̇|2 = 2τ |γ̇|2.

Then for every t ∈ [ 0, 1) by Proposition 2.14,

f(γ(1)) = f(γ(t)) +
d

ds
f(γ(s))

∣

∣

s=t+
(1 − t) +

∫

(t,1)
(1 − s)ν(ds)

≥ f(γ(t)) +
d

ds
f(γ(s))

∣

∣

s=t+
(1 − t) + 2 τ |γ̇|2

∫

(t,1)
(1 − s)ds

= f(γ(t)) +
d

ds
f(γ(s))

∣

∣

s=t+
(1 − t) + τ |γ̇|2(1 − t)2. (3.5)

Similarly, for every t ∈ ( 0, 1 ],

f(γ(0)) ≥ f(γ(t)) +
d

ds
f(γ(s))

∣

∣

s=t−(−t) + τ |γ̇|2t2. (3.6)

It follows by (3.5), (3.6) and Proposition 2.4 that for every t ∈ (0, 1),

f(γ(t)) ≤(1 − t)f(γ(0)) + tf(γ(1)) − τ |γ̇|2(1 − t)t

−
(

d

ds
f(γ(s))

∣

∣

s=t+
− d

ds
f(γ(s))

∣

∣

s=t−

)

(1 − t)t

≤(1 − t)f(γ(0)) + tf(γ(1)) − τ |γ̇|2(1 − t)t.

The strong convexity of f is proved. To show the last inequality, let γ: [ 0, 1 ] →
B̄(a, ρ) be the geodesic such that γ(0) = m and γ(1) = x. Then (3.5) yields

f(x) ≥ f(m) +
d

ds
f(γ(s))

∣

∣

s=0+
+ τ |γ̇|2 ≥ f(m) + τ |γ̇|2 = f∗ + τd2(x,m).

The proof is completed.



36 CHAPTER 2. RIEMANNIAN MEDIAN AND ITS ESTIMATION

2.4 A subgradient algorithm

To begin with, we recall the definition of the subgradient of a convex function on
a Riemannian manifold. For our purpose, it suffices to consider this notion in a
convex subset of the manifold.

Definition 2.16. Let U be a convex subset of M and h be a convex function
defined on U . For every x ∈ U , a vector v ∈ TxM is called a subgradient of h at x
if for every geodesic γ: [ 0, b ] → U with γ(0) = x, we have

h(γ(t)) ≥ h(x) + 〈 γ̇(0), v 〉 t, t ∈ [ 0, b ].

Our idea to approximate the median of µ by subgradient method stems from
the following simple observation.

Lemma 2.17. For every x ∈ B̄(a, ρ), H(x) is a subgradient of f at x.

Proof. Let γ: [ 0, b ] → B̄(a, ρ) be a geodesic such that γ(0) = x, then by Proposition
2.4, together with the convexity of f , we get for every t ∈ [ 0, b ],

f(γ(t)) ≥ f(γ(0)) +
d

ds
f(γ(s))

∣

∣

s=0+
t

= f(x) + ( 〈 γ̇(0), H(x) 〉 + µ{x}|γ̇| ) t
≥ f(x) + 〈 γ̇(0), H(x) 〉 t.

We proceed to give some notations which are necessary for introducing the
subgradient algorithm.

Notation 2.18. If x ∈ B̄(a, ρ) and H(x) 6= 0, then we write

γx(t) = expx(−t
H(x)

|H(x)| ) , t ≥ 0.

rx = sup{t ∈ [ 0, 2ρ ] : γx(t) ∈ B̄(a, ρ)}.

Note that for x ∈ B̄(a, ρ) such that H(x) 6= 0, by the convexity of B̄(a, ρ) and
the fact that 2ρ < inj (B̄(a, ρ)), we have γx[ 0, rx ] ⊂ B̄(a, ρ).

The following simple lemma shows that every rx is strictly positive. More im-
portantly, it ensures theoretically the possibility of the choice of stepsizes in the
convergence theorem of the subgradient algorithm.

Lemma 2.19. inf{rx : x ∈ B̄(a, ρ), H(x) 6= 0} > 0.

Proof. Since the support of µ is contained in B(a, ρ), for every x ∈ ∂B̄(a, ρ), H(x) is
transverse to ∂B̄(a, ρ), and hence rx > 0 for every x ∈ B̄(a, ρ) such that H(x) 6= 0.
Moreover, there exists ε > 0 such that supp(µ) ⊂ B(a, ρ − ε). Then for x ∈
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B(a, ρ − ε) such that H(x) 6= 0 we have rx ≥ ρ − d(x, a) > ε. On the other
hand, since H is continuous on B̄(a, ρ) \ B(a, ρ − ε), rx vary continuously with x
on this compact set. Thus there exists a point x0 ∈ B̄(a, ρ) \B(a, ρ− ε) such that
inf{rx : x ∈ B̄(a, ρ) \B(a, ρ− ε)} = rx0. Hence we get inf{rx : x ∈ B̄(a, ρ), H(x) 6=
0} ≥ min{ε, rx0} > 0.

Now we introduce the subgradient algorithm to approximate the medians of the
probability measure µ.

Algorithm 2.20. Subgradient algorithm for Riemannian medians:
Step 1:

Choose a starting point x0 ∈ B̄(a, ρ) and let k = 0.
Step 2:

If H(xk) = 0, then xk ∈ Mµ and stop. If not, then go to step 3.
Step 3:

Choose a stepsize tk ∈ ( 0, rxk
] and let xk+1 = γxk

(tk), then come back to step 2
with k = k + 1.

Remark 2.21. It should be noted that, in the above algorithm, we have already
restricted every stepsize tk to be in the interval ( 0, rxk

]. From now on, we shall
always make this restriction implicitly to ensure that the sequence (xk)k will never
get out of the ball B̄(a, ρ).

Now we turn to the convergence proof of the above algorithm under some further
conditions of the stepsizes. In Euclidean spaces, it is well known that the following
type of inequalities are of fundamental importance to conclude the convergence of
subgradient algorithms (see for example [34, 71]):

||xk+1 − y||2 ≤ ||xk − y||2 + αt2k + β
2tk
||vk||

(f(y) − f(xk)).

For a nonnegatively curved Riemannian manifold, Ferreira and Oliveira obtained
a generalization of the above inequality in [40] by using Toponogov’s comparison
theorem. But their method is not applicable in our case since B̄(a, ρ) is not assumed
to be nonnegatively curved. However, we can still obtain a similar result using a
different method.

Lemma 2.22. Let (xk)k be the sequence generated by Algorithm 6.17. If H(xk) 6= 0,
then for every point y ∈ B̄(a, ρ),

d2(xk+1, y) ≤ d2(xk, y) + C(ρ, δ)t2k +
2tk

|H(xk)|
(f(y) − f(xk)).

Particularly,

d2(xk+1,Mµ) ≤ d2(xk,Mµ) + C(ρ, δ)t2k + 2tk(f∗ − f(xk)). (4.7)
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Proof. By Taylor’s formula and the second estimation in Lemma 2.2, there exists
ξ ∈ (0, tk) such that

1

2
d2(xk+1, y) =

1

2
d2(γxk

(tk), y)

=
1

2
d2(γxk

(0), y) +
d

dt

[

1

2
d2(γxk

(t), y)

]

t=0

tk +
1

2

d2

dt2

[

1

2
d2(γxk

(t), y)

]

t=ξ

t2k

=
1

2
d2(xk, y) + 〈 γ̇xk

(0), grad
1

2
d2
y(xk) 〉 tk +

1

2
Hess

1

2
d2
y(γ̇xk

(ξ), γ̇xk
(ξ)) t2k

≤1

2
d2(xk, y) +

〈H(xk), exp−1
xk
y 〉

|H(xk)|
tk +

C(ρ, δ)

2
t2k.

By Lemma 2.17, H(xk) is a subgradient of f at point xk and hence

〈H(xk), exp−1
xk
y 〉 ≤ f(y) − f(xk).

Consequently,

1

2
d2(xk+1, y) ≤

1

2
d2(xk, y) +

tk
|H(xk)|

(f(y) − f(xk)) +
C(ρ, δ)

2
t2k,

the first inequality holds. The second one follows from f∗ ≤ f(xk) and |H(xk)| ≤
1.

As in the Euclidean case, once the fundamental inequality is established, the
convergence of the subgradient algorithm is soon achieved and the proof is elemen-
tary. Since the fundamental inequality (4.7) in Lemma 2.22 is very similar to the
Euclidean one, the proof of the following convergence theorem is also very similar
to the one in Euclidean case.

Theorem 2.23. If the stepsizes (tk)k verify

lim
k→∞

tk = 0 and

∞
∑

k=0

tk = +∞,

then the sequence (xk)k generated by Algorithm 6.17 satisfies

lim
k→∞

d(xk,Mµ) = 0 and lim
k→∞

f(xk) = f∗.

Moreover, if the stepsizes (tk)k also verify

∞
∑

k=0

t2k < +∞,

then there exists some m ∈ Mµ such that xk → m.
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Proof. Without loss of generality, we may assume that H(xk) 6= 0 for every k ≥ 0.
Our first step is to show that

lim inf
k→∞

f(xk) = f∗

If this is not true, then there exist N1 ∈ N and η > 0 such that for every k ≥ N1

we have f∗ − f(xk) ≤ −η. By Lemma 2.22, we get

d2(xk+1,Mµ) ≤ d2(xk,Mµ) + tk(C(ρ, δ)tk − 2η)

Since limk→∞ tk = 0, we can suppose that C(ρ, δ)tk < η for every k ≥ N1 and hence

d2(xk+1,Mµ) ≤ d2(xk,Mµ) − ηtk

by summing the above inequalities we get

η
k
∑

i=N1

ti ≤ d2(xN1 ,Mµ) − d2(xk+1,Mµ) ≤ d2(xN1 ,Mµ)

which contradicts with
∑∞

k=0 tk = +∞, this proves the assertion.

Now for fixed ε > 0, there exists N2 ∈ N such that C(ρ, δ)tk < 2ε for every
k ≥ N2. We consider the following two cases:
If f(xk) > f∗ + ε, then by Lemma 2.22 we obtain that

d2(xk+1,Mµ) ≤ d2(xk,Mµ) + C(ρ, δ)t2k + 2tk(f∗ − f(xk))

< d2(xk,Mµ) + (C(ρ, δ)tk − 2ε)tk < d2(xk,Mµ)

If f(xk) ≤ f∗ + ε then xk ∈ Lε = {x ∈ B̄(a, ρ) : f(x) ≤ f∗ + ε} and if we write
lε = sup{d( y,Mµ) : y ∈ Lε}, hence in this case we have

d(xk+1,Mµ) ≤ d(xk+1, xk) + d(xk,Mµ) ≤ tk + lε

In conclusion, we always have that for k ≥ N2,

d(xk+1,Mµ) ≤ max{d(xk,Mµ), tk + lε}

By induction we get for every n ≥ k,

d(xn+1,Mµ) ≤ max{d(xk,Mµ),max{tk, tk+1, . . . , tn} + lε}
≤ max{d(xk,Mµ), sup{ti : i ≥ k} + lε}

thus we get

lim sup
n→∞

d(xn,Mµ) ≤ max{d(xk,Mµ), sup{ti : i ≥ k} + lε}



40 CHAPTER 2. RIEMANNIAN MEDIAN AND ITS ESTIMATION

lim infk→∞ f(xk) = f∗ yields that lim infk→∞ d(xk,Mµ) = 0, by taking the inferior
limit on the right hand side we obtain

lim sup
n→∞

d(xn,Mµ) ≤ lε

Now we show that lε → 0 when ε → 0. By monotonicity of lε, it suffices to show
this along some sequence. In fact, observe that Lε is compact, thus for every ε > 0,
there exists yε ∈ Lε such that lε = d(yε,Mµ). Since B̄(a, ρ) is compact, there exist a
sequence εk → 0 and y ∈ B̄(a, ρ) such that yεk

→ y. Since f(yεk
) ≤ f∗+εk, we have

f(y) ≤ f∗ and hence y ∈ Mµ. Consequently lεk
→ 0. Thus we get d(xk,Mµ) → 0

and this yields f(xk) → f∗.

If
∑∞

k=0 t
2
k < +∞, the compactness of B̄(a, ρ) and f(xk) → f∗ imply that the

sequence (xk)k has some cluster point m ∈ Mµ, hence Lemma 2.22 yields

d2(xk+1,m) ≤ d2(xk,m) + C(ρ, δ)t2k

Then for every n ≥ k, by summing the above inequalities we get

d2(xn+1,m) ≤ d2(xk,m) + C(ρ, δ)
n
∑

i=k

t2i

Let n→ ∞ and we get

lim sup
n→∞

d2(xn,m) ≤ d2(xk,m) + C(ρ, δ)

∞
∑

i=k

t2i

the proof will be completed by observing that the right hand side of the above
inequality posseses a subsequence that converges to 0.

Now we consider the problem of the choice of stepsizes. By Lemma 2.19 we can
choose (tk)k that verifies the conditions of the preceding theorem and hence yields
the desired convergence of our algorithm. For example, we may take tk = rxk

/(k+1)
for every k ≥ 0. But the drawback is that we do not know much about rxk

. However,
with further analysis we can obtain an explicit lower bound for it.

Lemma 2.24. For every x ∈ B̄(a, ρ) \ B̄(a, σ),

rx ≥ 2d(x, a)S∆(d(x, a) − σ)

C(ρ, δ)S∆(d(x, a) + σ)
.

Proof. Since x ∈ B̄(a, ρ) \ B̄(a, σ), we have H(x) 6= 0 and hence rx is well defined.
Moreover, the diameter of B̄(a, ρ) is 2ρ < inj (B̄(a, ρ)), thus the definition of rx
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yields that γx(rx) ∈ ∂B̄(a, ρ). By Taylor’s formula and the second estimation in
Lemma 2.2, there exists ξ ∈ (0, rx) such that

1

2
ρ2 =

1

2
d2(γx(rx), a)

=
1

2
d2(x, a) +

d

dt

[

1

2
d2(γx(t), a)

]

t=0

rx +
1

2

d2

dt2

[

1

2
d2(γx(t), a)

]

t=ξ

r2x

=
1

2
d2(x, a) + 〈 γ̇x(0), grad

1

2
d2
a(x) 〉 rx +

1

2
Hess

1

2
d2
a(γ̇x(ξ), γ̇x(ξ)) r

2
x

≤ 1

2
d2(x, a) +

〈H(x), exp−1
x a 〉

|H(x)| rx +
C(ρ, δ)

2
r2x.

Gauss Lemma yields that 〈 exp−1
x p, exp−1

x a 〉 > 0 for p ∈ suppµ, hence

〈H(x), exp−1
x a 〉 = −

∫

suppµ

〈 exp−1
x p, exp−1

x a 〉
d(x, p)

µ(dp) < 0.

Combine this with d(x, a) ≤ ρ, C(ρ, δ) > 0 and rx > 0, we obtain that

rx ≥ 1

C(ρ, δ)

{

− 〈H(x), exp−1
x a 〉

|H(x)| +

√

〈H(x), exp−1
x a 〉2

|H(x)|2 + C(ρ, δ)(ρ2 − d2(x, a))

}

≥ 1

C(ρ, δ)

{

− 〈H(x), exp−1
x a 〉

|H(x)| +
|〈H(x), exp−1

x a 〉|
|H(x)|

}

=
−2

C(ρ, δ)

〈H(x), exp−1
x a 〉

|H(x)| ≥ −2

C(ρ, δ)
〈H(x), exp−1

x a 〉

=
2

C(ρ, δ)

∫

suppµ

〈 exp−1
x p, exp−1

x a 〉
d(x, p)

µ(dp)

=
2d(x, a)

C(ρ, δ)

∫

suppµ
cos ∠ pxa µ(dp).

Now it suffices to use Lemma 2.11 to obtain that for every p ∈ supp(µ),

cos ∠ pxa ≥ S∆(d(x, a) − σ)

S∆(d(x, a) + σ)
.

We are ready to give the desired lower bound.

Lemma 2.25. For every x ∈ B̄(a, ρ) such that H(x) 6= 0 we have

rx ≥ ρ− σ

C(ρ, δ)F (ρ,∆) + 1
,

where the constant F (ρ,∆) ≥ 1 is given by

F (ρ,∆) =

{

1, if ∆ ≥ 0;

cosh(2ρ
√
−∆), if ∆ < 0.
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Proof. We prove this for the case when ∆ > 0. The proof for the cases when ∆ ≤ 0
is similar. For every x ∈ B̄(a, ρ) \ B̄(a, σ), by the preceding lemma we have

rx ≥ 2d(x, a)

C(ρ, δ)

sin(
√

∆(d(x, a) − σ))

sin(
√

∆(d(x, a) + σ))
.

Note that 0 <
√

∆(d(x, a) ± σ) < 2ρ
√

∆ < π/2 and that (sinu/ sin v) ≥ (u/v) for
0 < u ≤ v ≤ π/2, then we obtain

rx ≥ 2d(x, a)

C(ρ, δ)

d(x, a) − σ

d(x, a) + σ
≥ 2d(x, a)

C(ρ, δ)

d(x, a) − σ

2d(x, a)
=
d(x, a) − σ

C(ρ, δ)
.

On the other hand, we always have rx ≥ ρ− d(x, a) and hence

rx ≥ max{ρ− d(x, a),
d(x, a) − σ

C(ρ, δ)
}.

Observe that

min

{

max{ρ− d(x, a),
d(x, a) − σ

C(ρ, δ)
} : σ < d(x, a) ≤ ρ

}

=
ρ− σ

C(ρ, δ) + 1
,

then we obtain

rx ≥ ρ− σ

C(ρ, δ) + 1
.

Moreover, for every x ∈ B̄(a, σ) such that H(x) 6= 0,

rx ≥ ρ− σ >
ρ− σ

C(ρ, δ) + 1
.

The proof is complete.

Thanks to the above estimation, we get a practically useful version of Theorem
2.23.

Theorem 2.26. Let (ak)k be a sequence in (0, 1] such that

lim
k→∞

ak = 0 and

∞
∑

k=0

ak = +∞.

Then we can choose

tk =
(ρ− σ)ak

C(ρ, δ)F (ρ,∆) + 1

in Algorithm 6.17 and, with this choice of stepsizes, the generated sequence (xk)k
satisfies

lim
k→∞

d(xk,Mµ) = 0 and lim
k→∞

f(xk) = f∗.
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Moreover, if (ak)k also verifies that

∞
∑

k=0

a2
k < +∞,

then there exists some m ∈ Mµ such that xk → m.

Proof. This is a simple corollary to Lemma 2.25 and Theorem 2.23.

Now we turn to the questions of error estimates and the rate of convergence of
the subgradient algorithm under condition ∗.

Proposition 2.27. Let condition ∗ hold and the stepsizes (tk)k satisfy

lim
k→∞

tk = 0 and

∞
∑

k=0

tk = +∞.

Then there exists N ∈ N, such that for every k ≥ N ,

d2(xk,m) ≤ bk,

where m is the unique median of µ and the sequence (bk)k≥N is defined by

bN = (ρ+ σ)2 and bk+1 = (1 − 2τtk)bk + C(ρ, δ)t2k , k ≥ N,

which converges to 0 when k → ∞. More explicitly, for every k ≥ N ,

bk+1 = (ρ+ σ)2
k
∏

i=N

(1 − 2τti) +C(ρ, δ)
(

k
∑

j=N+1

t2j−1

k
∏

i=j

(1 − 2τti) + t2k
)

.

Proof. Since tk → 0, there exists N ∈ N such that for every k ≥ N we have
2τtk < 1. By Theorem 2.15,

f(xk) − f∗ ≥ τd2(xk,m).

Combining this and Lemma 2.22 we obtain

d2(xk+1,m) ≤ (1 − 2τtk)d
2(xk,m) + C(ρ, δ)t2k.

By Proposition 2.7, d2(xN ,m) ≤ (ρ+ σ)2 = bN . Then by induction it is easily seen
that d2(xk,m) ≤ bk for every k ≥ N . To prove bk → 0, we first show

lim inf
k→∞

bk = 0.

If this is not true, then there exist N1 ≥ N and η > 0 such that for every k ≥ N1

we have bk > η and C(ρ, δ)tk < τη. Thus

bk+1 = bk + tk(C(ρ, δ)tk − 2τbk) ≤ bk − τηtk.
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By summing the above inequalities we get

τη

k
∑

i=N1

ti ≤ bN1 − bk+1 ≤ bN1 ,

which contradicts
∑∞

k=0 tk = +∞ and the assertion is proved.
For every k ≥ N , we consider the following two cases:

If bk > C(ρ, δ)tk/(2τ), then

bk+1 < bk − 2τtk(C(ρ, δ)tk/(2τ)) + C(ρ, δ)t2k = bk.

If bk ≤ C(ρ, δ)tk/(2τ), then

bk+1 ≤ (1 − 2τtk)C(ρ, δ)tk/(2τ) + C(ρ, δ)t2k = C(ρ, δ)tk/(2τ).

Hence we always have

bk+1 ≤ max{bk, C(ρ, δ)tk/(2τ)},

which yields by induction that for every n ≥ k,

bn+1 ≤ max{bk, (C(ρ, δ)/(2τ))max{tk, tk+1, . . . , tn}}.

Then by taking the superior limit on the left hand side and then the inferior limit
on the right hand side we conclude that bk → 0.

Finally, the explicit expressions of (bk)k are obtained by induction.

We proceed to show that if (tk)k is chosen to be the harmonic series, then the
rate of convergence of our algorithm is sublinear. To do this, we use the following
lemma in [70].

Lemma 2.28. Let (uk)k≥0 be a sequence of nonnegative real numbers such that

uk+1 ≤
(

1 − α

k + 1

)

uk +
ζ

(k + 1)2
,

where α and ζ are positive constants. Then

uk+1 ≤



















































1

(k + 2)α

(

u0 +
2αζ(2 − α)

1 − α

)

, if 0 < α < 1;

ζ(1 + ln(k + 1))

k + 1
, if α = 1;

1

(α− 1)(k + 2)

(

ζ +
(α− 1)u0 − ζ

(k + 2)α−1

)

, if α > 1.
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Proposition 2.29. Let condition ∗ hold and we choose tk = r/(k + 1) for every
k ≥ 0 with some constant r > 0, then

d2(xk+1,m) ≤



















































1

(k + 2)α

(

(ρ+ σ)2 +
2αr2C(ρ, δ)(2 − α)

1 − α

)

, if 0 < α < 1;

r2C(ρ, δ)

k + 1
(1 + ln(k + 1)), if α = 1;

1

(α − 1)(k + 2)

(

r2C(ρ, δ) +
(α− 1)(ρ+ σ)2 − r2C(ρ, δ)

(k + 2)α−1

)

, if α > 1,

where m is the unique median of µ and α = 2τr.

Proof. As in the proof of Proposition 2.27, we have for every k ≥ 0,

d2(xk+1,m) ≤ (1 − 2τr

k + 1
)d2(xk,m) +

r2C(ρ, δ)

(k + 1)2
.

Then it suffices to use the preceding lemma with α = 2τr and ζ = r2C(ρ, δ) by
observing that d(x0,m) ≤ ρ+ σ.





Chapter 3

Some properties of Fréchet

medians in Riemannian

manifolds

Abstract

The consistency of Fréchet medians is proved for probability measures in proper
metric spaces. In the context of Riemannian manifolds, assuming that the proba-
bility measure has more than a half mass concentrated in a convex ball, the positions
of its Fréchet medians are estimated in terms of the upper bound of sectional cur-
vatures and the concentrated mass. It is also shown that, in compact Riemannian
manifolds, the Fréchet sample medians of generic data points are always unique.

3.1 Consistency of Fréchet medians in metric spaces

Let (M,d) be a proper metric space (recall that a metric space is proper if and only
if every bounded and closed subset is compact) and P1(M) denote the set of all the
probability measures µ on M verifying

∫

M
d(x0, p)µ(dp) <∞, for some x0 ∈M.

For every µ ∈ P1(M) we can define a function

fµ : M −→ R+ , x 7−→
∫

M
d(x, p)µ(dp).

This function is 1-Lipschitz hence continuous on M . Since M is proper, fµ attains
its minimum (see [76, p. 42]), so we can give the following definition:

Definition 3.1. Let µ be a probability measure in P1(M), then a global minimum
point of fµ is called a Fréchet median of µ. The set of all the Fréchet medians of µ
is denoted by Qµ. Let f∗µ denote the global minimum of fµ.
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Observe that Qµ is compact, since the triangle inequality implies that d(x, y) ≤
2f∗µ for every x, y ∈ Qµ.

To introduce the next proposition, let us recall that the L1-Wasserstein distance
between two elements µ and ν in P1(M) is defined by

W1(µ, ν) = inf
π∈Π(µ, ν)

∫

M×M
d(x, y)dπ(x, y),

where Π(µ, ν) is the set of all the probability measures on M ×M with margins µ
and ν. As a useful case for us, observe that fµ(x) = W1(δx, µ) for every x ∈ M .
The set of all the 1-Lipschitz functions on M is denoted by Lip1(M).

As is well known that Riemannian barycenters are characterized by convex func-
tions (see [55, Lemma 7.2]), the following proposition shows that Fréchet medians
can be characterized by Lipschitz functions.

Proposition 3.2. Let µ ∈ P1(M) and M be also separable, then

Qµ =

{

x ∈M : ϕ(x) ≤ f∗µ +

∫

M
ϕ(p)µ(dp), for every ϕ ∈ Lip1(M)

}

.

Proof. The separability of M ensures that the duality formula of Kantorovich-
Rubinstein (see [88, p. 107]) can be applied, so that for every x ∈M ,

x ∈ Qµ ⇐⇒ fµ(x) ≤ f∗µ

⇐⇒W1(δx, µ) ≤ f∗µ

⇐⇒ sup
ϕ∈Lip1(M)

∣

∣

∣

∣

ϕ(x) −
∫

M
ϕ(p)µ(dp)

∣

∣

∣

∣

≤ f∗µ

⇐⇒ ϕ(x) ≤ f∗µ +

∫

M
ϕ(p)µ(dp), for every ϕ ∈ Lip1(M),

as desired.

We proceed to show the main result of this section.

Theorem 3.3. Let (µn)n∈N be a sequence in P1(M) and µ be another probability
measure in P1(M). If (fµn)n converges uniformly on M to fµ, then for every ε > 0,
there exists N ∈ N, such that for every n ≥ N we have

Qµn ⊂ B(Qµ, ε) := {x ∈M : d(x,Qµ) < ε}.

Proof. We prove this by contradiction. Suppose that the assertion is not true, then
without loss of generality, we can assume that there exist some ε > 0 and a sequence
(xn)n∈N such that xn ∈ Qµn and xn /∈ B(Qµ, ε) for every n. If this sequence is
bounded, then by choosing a subsequence we can assume that (xn)n converges to
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a point x∗ /∈ B(Qµ, ε) because M \ B(Qµ, ε) is closed. However, observe that the
uniform convergence of (fµn)n to fµ implies f∗µn

−→ f∗µ, hence one gets

|fµ(x∗) − f∗µ| ≤ |fµ(x∗) − fµn(x∗)| + |fµn(x∗) − fµn(xn)| + |fµn(xn) − f∗µ|
≤ sup

x∈M
|fµn(x) − fµ(x)| + d(x∗, xn) + |f∗µn

− f∗µ| −→ 0.

So that fµ(x∗) = f∗µ, that is to say x∗ ∈ Qµ. This is impossible, hence (xn)n is not
bounded. Now we fix a point x̄ ∈ Qµ, always by choosing a subsequence we can
assume that d(xn, x̄) −→ +∞, then

fµ(xn) =

∫

M
d(xn, p)µ(dp) ≥

∫

M
(d(xn, x̄) − d(x̄, p))µ(dp)

= d(xn, x̄) − f∗µ −→ +∞. (1.1)

On the other hand,

|fµ(xn) − f∗µ| ≤ |fµ(xn) − fµn(xn)| + |fµn(xn) − f∗µ|
≤ sup

x∈M
|fµn(x) − fµ(x)| + |f∗µn

− f∗µ| −→ 0.

This contradicts (1.1), the proof is complete.

Remark 3.4. A sufficient condition to ensure the uniform convergence of (fµn)n
on M to fµ is that W1(µn, µ) −→ 0, since

sup
x∈M

|fµn(x) − fµ(x)| = sup
x∈M

|W1(δx, µn) −W1(δx, µ)| ≤W1(µn, µ).

The consistency of Fréchet means is proved in [25, Theorem 2.3]. The consis-
tency of Fréchet medians given below is a corollary to Theorem 3.3. A similar result
can be found in [76, p. 44].

Corollary 3.5. Let (Xn)n∈N be a sequence of i.i.d random variables of law µ ∈
P1(M) and (mn)n∈N be a sequence of random variables such that mn ∈ Qµn with
µn = 1

n

∑n
k=1 δXk

. If µ has a unique Fréchet median m, then mn −→ m a.s.

Proof. By Theorem 3.3 and Remark 3.4, it suffices to show that µn
W1−−→ µ a.s. This

is equivalent to show that (see [88, p. 108]) for every f ∈ Cb(M),

1

n

n
∑

k=1

f(Xk) −→
∫

M
f(p)µ(dp) a.s.

and for every x ∈M ,

1

n

n
∑

k=1

d(x,Xk) −→
∫

M
d(x, p)µ(dp) a.s.

These two assertions are trivial corollaries to the strong law of large numbers, hence
the result holds.
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3.2 Robustness of Fréchet medians in Riemannian man-

ifolds

Throughout this section, we assume that M is a complete Riemannian manifold
with dimension no less than 2, whose Riemannian distance is denoted by d. We fix
a closed geodesic ball

B̄(a, ρ) = {x ∈M : d(x, a) ≤ ρ}

in M centered at a with a finite radius ρ > 0 and a probability measure µ ∈ P1(M)
such that

µ(B̄(a, ρ)) = α >
1

2
.

The aim of this section is to estimate the positions of the Fréchet medians of
µ, which gives a quantitative estimation for robustness. To this end, the following
type of functions are of fundamental importance for our methods. Let x, z ∈ M ,
define

hx,z : B̄(a, ρ) −→ R, p 7−→ d(x, p) − d(z, p).

Obviously, hx,z is continuous and attains its minimum.

Our method of estimating the position of Qµ is essentially based on the following
simple observation.

Proposition 3.6. Let x ∈ B̄(a, ρ)c and assume that there exists z ∈M such that

min
p∈B̄(a,ρ)

hx,z(p) >
1 − α

α
d(x, z),

then x /∈ Qµ.

Proof. Clearly one has

fµ(x) − fµ(z) =

∫

B̄(a,ρ)
(d(x, p) − d(z, p))µ(dp) +

∫

M\B̄(a,ρ)
(d(x, p) − d(z, p))µ(dp)

≥ α min
p∈B̄(a,ρ)

hx,z(p) − (1 − α)d(x, z) > 0.

The proof is complete.

By choosing the dominating point z = a in Proposition 3.6 we get the following
basic estimation.

Theorem 3.7. The set Qµ of all the Fréchet medians of µ verifies

Qµ ⊂ B̄

(

a,
2αρ

2α− 1

)

.
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Proof. Observe that for every p ∈ B̄(a, ρ),

hx,a(p) = d(x, p) − d(a, p) ≥ d(x, a) − 2d(a, p) ≥ d(x, a) − 2ρ.

Hence Proposition 3.6 yields

Qµ ∩ B̄(a, ρ)c ⊂
{

x ∈M : min
p∈B̄(a,ρ)

hx,a(p) ≤
1 − α

α
d(x, a)

}

⊂
{

x ∈M : d(x, a) − 2ρ ≤ 1 − α

α
d(x, a)

}

=
{

x ∈M : d(x, a) ≤ 2αρ

2α− 1

}

.

The proof is complete.

Remark 3.8. It is easily seen that the conclusions of Proposition 3.6 and Theorem
3.7 also hold if M is only a proper metric space.

Remark 3.9. As a direct corollary to Theorem 3.7, if µ is a probability measure in
P1(M) such that for some point m ∈M one has µ{m} > 1/2, then m is the unique
Fréchet median of µ.

Thanks to Theorem 3.7, from now on we only have to work in the closed geodesic
ball

B∗ = B̄

(

a,
2αρ

2α− 1

)

.

Thus let ∆ be an upper bound of sectional curvatures in B∗ and inj be the injectivity
radius of B∗. Moreover, we shall always assume that the following concentration
condition is fulfilled throughout the rest part of this section:

Assumption 3.10.
2αρ

2α− 1
< r∗ := min{ π√

∆
, inj },

where if ∆ ≤ 0, then π/
√

∆ is interpreted as +∞.

In view of Proposition 3.6 and Theorem 3.7, estimating the position of Qµ can
be achieved by estimating the minimum of the functions hx,z for some x, z ∈ B∗.
The following lemma enables us to use the comparison argument proposed in [1] to
compare the configurations in B∗ with the ones in model spaces in order to obtain
lower bounds of the functions hx,z.

Lemma 3.11. Let x ∈ B∗ \ B̄(a, ρ) and y be the intersection point of the boundary
of B̄(a, ρ) and the minimal geodesic joining x and a. Let z 6= x be another point on
the minimal geodesic joining x and a. Assume that d(a, x) + d(a, z) < r∗, then

argminhx,z ⊂ {p ∈ B̄(a, ρ) : d(x, p) + d(p, z) + d(z, x) < 2r∗}.
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Proof. Let p ∈ B̄(a, ρ) such that d(x, p) + d(p, z) + d(z, x) ≥ 2r∗, then

hx,z(p) ≥ 2r∗ − d(x, z) − 2d(z, p)

> 2(d(a, x) + d(a, z)) − d(x, z) − 2(d(a, z) + ρ)

= d(x, y) − d(a, y) + d(a, z). (2.2)

If d(a, y) > d(a, z), then (2.2) yields hx,z(p) > hx,z(y), thus p cannot be a minimum
point of hx,z. On the other hand, if d(a, y) ≤ d(a, z), then (2.2) gives that hx,z(p) >
d(x, y)+d(y, z) ≥ d(x, z), which is impossible. Hence in either case, every minimum
point p of hx,z must verify d(x, p) + d(p, z) + d(z, x) < 2r∗.

As a preparation for the comparison arguments in the following, let us recall
the definition of model spaces. For a real number κ, the model space M

2
κ is defined

as follows:
1) if κ > 0, then M

2
κ is obtained from the sphere S

2 by multiplying the distance
function by 1/

√
κ;

2) if κ = 0, then M
2
κ is the Euclidean space E

2;
3) if κ < 0, then M

2
κ is obtained from the hyperbolic space H

2 by multiplying the
distance function by 1/

√
−κ.

Moreover, the distance between two points x̄ and ȳ in M
2
κ will be denoted by d̄(x̄, ȳ).

The following proposition says that for the positions of Fréchet medians, if
comparisons can be done, then the model space M

2
∆ is the worst case.

Proposition 3.12. Consider in M
2
∆ the same configuration as that in Lemma

3.11: a closed geodesic ball B̄(ā, ρ) and a point x̄ such that d̄(x̄, ā) = d(x, a). We
denote ȳ the intersection point of the boundary of B̄(ā, ρ) and the minimal geodesic
joining x̄ and ā. Let z̄ be a point in the minimal geodesic joining x̄ and ā such that
d̄(ā, z̄) = d(a, z). Assume that d(a, x) + d(a, z) < r∗, then

min
p∈B̄(a,ρ)

hx,z(p) ≥ min
p̄∈B̄(ā,ρ)

h̄x̄,z̄(p̄),

where h̄x̄,z̄(p̄) := d̄(x̄, p̄) − d̄(z̄, p̄).

Proof. Let p ∈ argminhx,z. Consider a comparison point p̄ ∈ M
2
∆ such that

d̄(z̄, p̄) = d(z, p) and ∠ āz̄p̄ = ∠ azp. Then the assumption d(a, x)+d(a, z) < r∗ and
the hinge version of Alexandrov-Toponogov comparison theorem (see [32, Exercise
IX.1, p. 420]) yield that d̄(ā, p̄) ≤ d(a, p) = ρ, i.e. p̄ ∈ B̄(ā, ρ). Now by hinge
comparison again and Lemma 3.11, we get d̄(p̄, x̄) ≤ d(p, x), which implies that

hx,z(p) ≥ h̄x̄,z̄(p̄) ≥ min
p̄∈B̄(ā,ρ)

h̄x̄,z̄(p̄).

The proof is complete.

According to Proposition 3.12, it suffices to find the minima of the functions
hx,z when M equals S

2, E
2 and H

2, which are of constant curvatures 1, 0 and −1,
respectively.
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Proposition 3.13. Let t, u ≥ 0 such that u < ρ+ t ≤ 2αρ/(2α − 1).

i) If M = S
2, let x = (sin(ρ+ t), 0, cos(ρ+ t)) and z = (sinu, 0, cos u). Assume

that ρ+ t+ u < π, then

min
B̄(a,ρ)

hx,z =



















t− ρ+ u, if cot u ≥ 2 cot ρ− cot(ρ+ t);

arccos

(

cos(ρ+ t− u) +
sin2 ρ sin2(ρ+ t− u)

2 sinu sin(ρ+ t)

)

, if not.

ii) If M = E
2, let a = (0, 0), x = (ρ+ t, 0), z = (u, 0), then

min
B̄(a,ρ)

hx,z =



























t− ρ+ u, if u ≤
(ρ+ t)ρ

ρ+ 2t
;

(ρ+ t− u)

√

1 −
ρ2

u(ρ+ t)
, if not.

iii) If M = H
2, let a = (0, 0, 1), x = (sinh(ρ + t), 0, cosh(ρ + t)) and z =

(sinhu, 0, cosh u), then

min
B̄(a,ρ)

hx,z =



















t− ρ+ u, if coth u ≥ 2 coth ρ− coth(ρ+ t);

arccosh

(

cosh(ρ+ t− u) −
sinh2 ρ sinh2(ρ+ t− u)

2 sinhu sinh(ρ+ t)

)

, if not.

We shall only prove the result for the case when M = S
2, since the proofs for

M = E
2 and M = H

2 are similar and easier. The proof consists of some lemmas,
the first one below says that hx,z is smooth at its minimum points which can only
appear on the boundary of the ball B̄(a, ρ).

Lemma 3.14. Let x′ and z′ be the antipodes of x and z. Then z′ /∈ B̄(a, ρ) and all
the local minimum points of hx,z are contained in ∂B̄(a, ρ) \ {x′}.

Proof. It is easily seen that d(z′, a) = π−u > ρ, so that z′ /∈ B̄(a, ρ). Observe that
x′ is a global maximum point of hx,z which is not locally constant, so that x′ cannot
be a local minimum. Now let p ∈ B(a, ρ) be a local minimum of hx,z, then hx,z is
smooth at p. It follows that gradhx,z(p) = 0, which yields that hx,z(p) = d(x, z),
this is a contradiction. The proof is complete.

The following lemma characterizes the global minimum points of hx,z.
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Lemma 3.15. The set of global minimum points of hx,z verifies

argminhx,z =











{y}, if cot u ≥ 2 cot ρ− cot(ρ+ t);

{ p ∈ ∂B̄(a, ρ) :
sin(ρ+ t)

sin d(x, p)
=

sinu

sin d(z, p)
}, if not,

where y is the intersection point of the boundary of B̄(a, ρ) and the minimal geodesic
joining x and a.

Proof. Thanks to Lemma 3.14, it suffices to find the global minimum points of hx,z
for p = (sin ρ cos θ, sin ρ sin θ, cos ρ) and θ ∈ [0, 2π). In this case,

hx,z(p) = d(x, p) − d(z, p)

= arccos(sin(ρ+ t) sin ρ cos θ + cos(ρ+ t) cos ρ)

− arccos(sinu sin ρ cos θ + cosu cos ρ)

:=h(θ).

Hence let p = (sin ρ cos θ, sin ρ sin θ, cos ρ) be a local minimum point of hx,z, then
Lemma 3.14 yields that h′(θ) exists and equals zero. On the other hand, by ele-
mentary calculation,

h′(θ) = sin ρ sin θ

(

sin(ρ+ t)
√

1 − (sin(ρ+ t) sin ρ cos θ + cos(ρ+ t) cos ρ)2

− sinu
√

1 − (sinu sin ρ cos θ + cos u cos ρ)2

)

= sin ρ sin θ

(

sin(ρ+ t)

sin d(x, p)
− sinu

sin d(z, p)

)

,

where the second equality is because of the spherical law of cosines. Hence we have
necessarily

θ = 0, π or
sin(ρ+ t)

sin d(x, p)
=

sinu

sin d(z, p)
.

Firstly, we observe that w, the corresponding point p when θ = π, cannot be
a minimum point. In fact, let w′ be the antipode of w. If d(x, a) < d(w′, a),
then hx,z(w) = d(x, z). So that w is a maximum point. On the other hand, if
d(x, a) ≥ d(w′, a), then d(w, x)+d(x, z)+d(z,w) ≡ 2π. Hence Lemma 3.11 and the
condition ρ+ t+u < π imply that w is not a minimum point. So that the assertion
holds.

Now assume that p 6= w, y such that

sin(ρ+ t)

sin d(x, p)
=

sinu

sin d(z, p)
. (2.3)
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Let β = ∠ zpa. Then by the spherical law of sines, (2.3) is equivalent to sin(β +
∠ zpx) = sin β, i.e. that ∠ zpx = π − 2β. Applying the spherical law of sines to
△zpx we get

sin ∠x

sin d(z, p)
=

sin 2β

sin(ρ+ t− u)
. (2.4)

By the spherical law of sines in △apx,

sin∠x

sin ρ
=

sinβ

sin(ρ+ t)
. (2.5)

Then (2.4)/(2.5) gives that

sin d(z, p) cos β =
sin ρ sin(ρ+ t− u)

2 sin(ρ+ t)
. (2.6)

By the spherical law of cosines in △azp,

sin d(z, p) cos β =
cos u− cos ρ cos d(z, p)

sin ρ
. (2.7)

Then (2.6) and (2.7) give that

cos d(z, p) =
2 cos u sin(ρ+ t) − sin2 ρ sin(ρ+ t− u)

2 cos ρ sin(ρ+ t)
. (2.8)

Moreover, by (2.8) and spherical law of cosines in △azp,

cos θ =
tan ρ

2
(cot u+ cot(ρ+ t)). (2.9)

The condition 0 < ρ+ t+ u < π and (2.9) give that

cos θ =
tan ρ sin(ρ+ t+ u)

2 sinu sin(ρ+ t)
> 0. (2.10)

Furthermore, considering p 6= y we must have cos θ < 1. By (2.9) this is equivalent
to

cot u < 2 cot ρ− cot(ρ+ t), (2.11)

which is also equivalent to

sin(ρ− u)

sinu
<

sin t

sin(ρ+ t)
. (2.12)

For the case when u ≥ ρ it is easily seen that y is a maximum point of hx,z and
hence p must verify (2.3) and the corresponding θ is determined by (2.9). Hence
in this case, there are exactly two local minimum points of hx,z and obviously they
are also global ones.
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Now let u < ρ, then easy computation gives

h′′(0) = sin ρ

(

sin(ρ+ t)

sin t
− sinu

sin(ρ− u)

)

. (2.13)

Hence if sin(ρ+t)
sin t ≥ sinu

sin(ρ−u) , then (2.12) yields that y is the unique global minimum

of hx,z. In the opposite case, (2.13) implies that y is a local maximum point. Hence
the same argument as in the case when u ≥ ρ completes the proof of lemma.

We need the following technical lemma.

Lemma 3.16. If cot u < 2 cot ρ − cot(ρ + t), then every p ∈ argminhx,z verifies
0 < d(x, p) − d(z, p) < π.

Proof. It suffices to show d(x, p) > d(z, p). For the case when u < ρ, we firstly show
that d(z, p) < π/2. In fact, by (2.8) this is equivalent to show that

(1 + cos2 ρ) cos u sin(ρ+ t) + sin2 ρ sinu cos(ρ+ t) > 0 (2.14)

If ρ + t ≤ π/2, (2.14) is trivially true. Now assume ρ + t > π/2. So that π/2 <
ρ+ t < π − u, which implies sin(ρ + t) > sinu and cos(ρ+ t) > − cos u. Hence we
get

(1 + cos2 ρ) cos u sin(ρ+ t) + sin2 ρ sinu cos(ρ+ t)

>(1 + cos2 ρ) cos u sinu− sin2 ρ sinu cos u

=2cos2 ρ cos u sinu > 0.

So that d(z, p) < π/2 holds. Now if d(x, p) ≥ π/2, then obviously d(x, p) > d(z, p).
So that assume d(x, p) < π/2. Observe that ρ+ t+u < π implies sinu < sin(ρ+ t),
then (2.3) yields d(x, p) > d(z, p).

For the case when u ≥ ρ, it suffices to show that cos d(z, p) > cos d(x, p) for
every p = (sin ρ cos θ, sin ρ sin θ, cos ρ) with θ ∈ [0, π]. Now let

g(θ) = sin ρ cos θ(sinu− sin(ρ+ t)) + cos ρ(cos u− cos(ρ+ t))

= cos d(z, p) − cos d(x, p)

Then g′(θ) = − sin ρ sin θ(sinu−sin(ρ+t)). Observe that ρ+t+u < π and u < ρ+t
imply that sinu < sin(ρ+ t), hence g(θ) ≥ g(0) = cos d(z, y) − cos d(x, y) > 0. The
proof is complete.

Proof of Proposition 3.13. By Lemma 3.15, it suffices to consider the case when
cot u < 2 cot ρ− cot(ρ+ t). Let p ∈ argmin hx,z, then by (2.9) and the spherical law
of cosines in △apx,

cos d(x, p) =
2 cos(ρ+ t) sinu+ sin2 ρ sin(ρ+ t− u)

2 cos ρ sinu
. (2.15)
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Now let u = ρ− v, then ρ+ t− u = t+ v. So that (2.8) and (2.15) become

cos d(z, p) =
2 cos(ρ− v) sin(ρ+ t) − sin2 ρ sin(t+ v)

2 cos ρ sin(ρ+ t)
. (2.16)

cos d(x, p) =
2 cos(ρ+ t) sin(ρ− v) + sin2 ρ sin(t+ v)

2 cos ρ sin(ρ− v)
. (2.17)

It follows that

cos d(z, p) cos d(x, p) = (4 cos(ρ− v) sin(ρ+ t) cos(ρ+ t) sin(ρ− v)

+ 2 sin2 ρ sin2(t+ v) − sin4 ρ sin2(t+ v))

/(4 cos2 ρ sin(ρ+ t) sin(ρ− v)). (2.18)

On the other hand, (2.3) and (2.16) yield that

sin d(z, p) sin d(x, p) = (1 − cos2 d(z, p))
sin(ρ+ t)

sin(ρ− v)

= (4 sin2(ρ+ t)(cos2 ρ− cos2(ρ− v)) − sin4 ρ sin2(t+ v)

+ 4 sin2 ρ sin(t+ v) sin(ρ+ t) cos(ρ− v))

/(4 cos2 ρ sin(ρ+ t) sin(ρ− v)). (2.19)

Then by (2.18) and (2.19) we obtain

4 cos2 ρ sin(ρ+ t) sin(ρ− v)(cos(d(x, p) − d(z, p)) − cos(t+ v))

= 4 cos2 ρ sin(ρ+ t) sin(ρ− v)(cos d(x, p) cos d(z, p) + sin d(x, p) sin d(z, p) − cos(t+ v))

= 4 cos(ρ− v) sin(ρ− v) cos(ρ+ t) sin(ρ+ t) + 2 sin2 ρ cos2 ρ sin2(t+ v)

+ 4 sin2(ρ+ t)(cos2 ρ− cos2(ρ− v)) + 4 sin2 ρ sin(ρ+ t) cos(ρ− v) sin(t+ v))

− 4 cos2 ρ sin(ρ+ t) sin(ρ− v) cos(t+ v)

= (−4 cos4 ρ cos2 v sin2 t− 4 cos4 ρ sin2 t sin2 v + 4cos4 ρ sin2 t)

+ (−8 cos3 ρ cos t cos2 v sin ρ sin t− 8 cos3 ρ cos t sin ρ sin t sin2 v + 8cos3 ρ cos t sin ρ sin t)

+ (−4 cos2 ρ cos2 t cos2 v sin2 ρ− 2 cos2 ρ cos2 t sin2 ρ sin2 v + 4cos2 ρ cos2 t sin2 ρ)

+ 4 cos2 ρ sin2 ρ sin v cos v sin t cos t+ 2cos2 ρ cos2 v sin2 ρ sin2 t

= 2cos2 ρ sin2 ρ cos2 t sin2 v + 4cos2 ρ sin2 ρ sin v cos v sin t cos t+ 2cos2 ρ cos2 v sin2 ρ sin2 t

= 2cos2 ρ sin2 ρ sin2(t+ v).

As a result,

cos(d(x, p) − d(z, p)) = cos(t+ v) +
2 cos2 ρ sin2 ρ sin2(t+ v)

4 cos2 ρ sin(ρ+ t) sin(ρ− v)

= cos(t+ v) +
sin2 ρ sin2(t+ v)

2 sin(ρ+ t) sin(ρ− v)

= cos(ρ+ t− u) +
sin2 ρ sin2(ρ+ t− u)

2 sin u sin(ρ+ t)
.
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Now it suffices to use Lemma 3.16 to finish the proof.

We also need the following lemma.

Lemma 3.17. Let κ be real number and 1/2 < α ≤ 1. For t ∈ (0, ρ/(2α−1)] define

Fα,ρ,κ(t) =











cot(
√
κ(2α− 1)t) − cot(

√
κt) − 2 cot(

√
κρ), if κ > 0;

(1 − α)ρ− (2α − 1)t, if κ = 0;

coth(
√
−κ(2α − 1)t) − coth(

√
−κt) − 2 coth(

√
−κρ), if κ < 0.

Assume that 1/2 < α < 1, then there exists a unique tκ ∈ (0, ρ/(2α − 1)) such that

{

t ∈ (0,
ρ

2α− 1
] : Fα,ρ,κ(t) ≥ 0

}

= (0, tκ].

In this case, when κ ≤ 0, the function Fα,ρ,κ is strictly deceasing.

Proof. We only prove the case when κ = 1, since the proof of the other two cases
are similar and easier. Observe that Fα,ρ,1(0+) = +∞ (since 1/2 < α < 1) and
Fα,ρ,1(ρ/(2α − 1)) < 0 (since 2αρ/(2α − 1) < π), then there exists some t1 ∈
(0, ρ/(2α − 1)) such that Fα,ρ,1(t1) = 0. Moreover,

F ′
α,ρ,1(t) =

1

sin2((2α − 1)t)

(

(sin((2α − 1)t)

sin t

)2 − (2α− 1)

)

.

Observe that the function l(t) = sin((2α−1)t)/ sin t is strictly increasing on (0, π/(2α)],
l2(0+) = (2α − 1)2 < 2α − 1 and l2(π/(2α)) = 1 > 2α − 1. Hence there exists a
unique s ∈ (0, π/(2α)) such that if t < s, then F ′

α,ρ,1(t) < 0; if t = s, then
F ′
α,ρ,1(t) = 0; if t > s, then F ′

α,ρ,1(t) > 0. Hence Fα,ρ,1 is strictly decreasing on (0, s]
and strictly increasing on [s, ρ/(2α− 1)]. Since Fα,ρ,1(ρ/(2α− 1)) < 0, the point t1
must be unique. Moreover, it is easily seen that {Fα,ρ,1 ≥ 0} = (0, t1]. The proof is
complete.

The main theorem of this section is justified by the lemma below.

Lemma 3.18. Assumption 3.10 implies that

αS∆(ρ)√
2α− 1

< S∆(
r∗
2

), where S∆(t) :=











sin(
√

∆ t), if ∆ > 0;

t, if ∆ = 0;

sinh(
√
−∆ t), if ∆ < 0.

Proof. We only prove the case when ∆ > 0, since the proof for the cases when
∆ ≤ 0 are easier. Without loss of generality, we can assume that ∆ = 1. Since

2αρ

2α− 1
< r∗ ⇐⇒ sin ρ < sin

2α− 1

2α
r∗,
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it is sufficient to show that

α√
2α− 1

sin
2α− 1

2α
r∗ < sin

r∗
2
.

To this end, let c = r∗/2 ∈ (0, π/2], we will show that the function

f(α) =
α√

2α − 1
sin

2α− 1

α
c

is strictly increasing for α ∈ (1/2, 1). Easy computation gives that

f ′(α) > 0 ⇐⇒ tan(θc)

θc
<

2 − θ

1 − θ
,

where θ = (2α−1)/α ∈ (0, 1). Observe that the function x 7−→ tanx/x is increasing
on [0, π/2), hence it suffices to show that

tan(θπ/2)

(θπ/2)
<

2 − θ

1 − θ
.

This is true because Becker-Stark inequality (see [22]) yields

tan(θπ/2)

(θπ/2)
<

1

1 − θ2
<

2 − θ

1 − θ
.

The proof is complete.

Now we are ready to give the main result of this section.

Theorem 3.19. The following estimations hold:

i) If ∆ > 0 and Qµ ⊂ B̄(a, r∗/2), then

Qµ ⊂ B̄

(

a,
1√
∆

arcsin
(α sin(

√
∆ρ)√

2α− 1

)

)

.

Moreover, any of the two conditions below implies Qµ ⊂ B̄(a, r∗/2):

a)
2αρ

2α− 1
≤ r∗

2
; b)

2αρ

2α− 1
>
r∗
2

and Fα,ρ,∆(
r∗
2

− ρ) ≤ 0.

ii) If ∆ = 0, then

Qµ ⊂ B̄

(

a,
αρ√

2α− 1

)

.

iii) If ∆ < 0, then

Qµ ⊂ B̄

(

a,
1√
−∆

arcsinh
(α sinh(

√
−∆ρ)√

2α− 1

)

)

.

Finally, Lemma 3.18 ensures that any of the above three closed balls is contained in
the open ball B(a, r∗/2).
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Proof. Firstly, we consider the case when ∆ > 0. Without loss of generality, we
can assume that ∆ = 1. For every x ∈ B∗ \ B̄(a, ρ), let tx = d(a, x) − ρ ∈
(0, ρ/(2α− 1)]. By Propositions 3.6 and 3.12, if there exists some z on the minimal
geodesic joining x and a such that uz = d(a, z) ∈ [0, ρ+ tx) verifies ρ+ tx +uz < r∗
and minB̄(ā,ρ) h̄x̄,z̄ > (1 − α)(ρ+ tx − uz)/α, then x /∈ Qµ. Or equivalently,

Qµ ∩ B̄(a, ρ)c

⊂
{

x ∈ B∗ \ B̄(a, ρ) : tx ∈ (0,
ρ

2α− 1
] has the property that for every uz ∈ [0, ρ+ tx)

such that ρ+ tx + uz < r∗, min h̄x̄,z̄ ≤
1 − α

α
(ρ+ tx − uz)

}

:= A.

Since the restrictive condition of the set A is only on tx, for simplicity and without
ambiguity, by dropping the subscripts of tx and uz we rewrite A in the following
form:

{

t ∈ (0,
ρ

2α− 1
] : for every u ∈ [0, ρ + t) such that ρ+ t+ u < r∗,

min h̄x̄,z̄ ≤
1 − α

α
(ρ+ t− u)

}

=

{

t ∈ (0,
r∗
2

− ρ] : for every u ∈ [0, ρ + t) such that ρ+ t+ u < r∗,

min h̄x̄,z̄ ≤
1 − α

α
(ρ+ t− u)

}

∪
{

t ∈ (
r∗
2

− ρ,
ρ

2α− 1
] : for every u ∈ [0, ρ+ t) such that ρ+ t+ u < r∗,

min h̄x̄,z̄ ≤
1 − α

α
(ρ+ t− u)

}

:= B ∪ C.

Observe that for t ∈ (0, r∗/2− ρ ] and u ∈ [0, ρ+ t), we always have ρ+ t+ u < r∗,
hence by Proposition 3.13 and Lemma 3.16,

B =

{

t ∈ (0,
r∗
2

− ρ] : for every u ∈ [0, ρ + t), min h̄x̄,z̄ ≤
1 − α

α
(ρ+ t− u)

}

=

{

t ∈ (0,
r∗
2

− ρ] : for every u ∈ [0, ρ + t) such that cot u ≥ 2 cot ρ− cot(ρ+ t),

t− ρ+ u ≤ 1 − α

α
(ρ+ t− u)

}

∩
{

t ∈ (0,
r∗
2

− ρ] : for every u ∈ [0, ρ+ t) such that cot u < 2 cot ρ− cot(ρ+ t),

cos(ρ+ t− u) +
sin2 ρ sin2(ρ+ t− u)

2 sinu sin(ρ+ t)
≥ cos

(1 − α

α
(ρ+ t− u)

)

}
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=

{

t ∈ (0,
r∗
2

− ρ] : for every u ∈ [0, ρ + t) such that cot u ≥ 2 cot ρ− cot(ρ+ t),

u ≤ ρ− (2α− 1)t

}

∩
{

t ∈ (0,
r∗
2

− ρ] : for every u ∈ [0, ρ + t) such that cot u < 2 cot ρ− cot(ρ+ t),

sin(ρ+ t) ≤ sin2 ρ

4 sin u

sin(ρ+ t− u)

sin
ρ+ t− u

2α

sin(ρ+ t− u)

sin
(2α− 1

2α
(ρ+ t− u)

)

}

=

{

t ∈ (0,
r∗
2

− ρ] : cot(ρ− (2α− 1)t) ≤ 2 cot ρ− cot(ρ+ t)

}

∩
{

t ∈ (0,
r∗
2

− ρ] : for every u ∈ [0, ρ + t) such that cot u < 2 cot ρ− cot(ρ+ t),

sin(ρ+ t) ≤ sin2 ρ

4 sin u

sin(ρ+ t− u)

sin
ρ+ t− u

2α

sin(ρ+ t− u)

sin
(2α− 1

2α
(ρ+ t− u)

)

}

⊂
{

t ∈ (0,
r∗
2

− ρ] : for every u ∈ (ρ− (2α− 1)t, ρ+ t),

sin(ρ+ t) ≤ sin2 ρ

4 sinu

sin(ρ+ t− u)

sin
ρ+ t− u

2α

sin(ρ+ t− u)

sin
(2α− 1

2α
(ρ+ t− u)

)

}

⊂
{

t ∈ (0,
r∗
2

− ρ] : sin(ρ+ t) ≤ sin2 ρ

4 sin(ρ+ t)
· 2α · 2α

2α− 1

}

=

{

t ∈ (0,
r∗
2

− ρ] : ρ+ t ≤ arcsin
( α sin ρ√

2α− 1

)

}

. (2.20)

Hence if Qµ ⊂ B̄(a, r∗/2), then C = φ and (2.20) says that

Qµ ⊂ B̄

(

a, arcsin
( α sin ρ√

2α− 1

)

)

,

this completes the proof of the first assertion of i). To show the second one, observe
that if a) holds, then Theorem 3.7 implies the desired result. Hence assume that b)
holds. By Proposition 3.13 one has

C ⊂
{

t ∈ (
r∗
2

− ρ,
ρ

2α− 1
] : for every u ∈ [0, r∗ − (ρ+ t)) such that

cot u ≥ 2 cot ρ− cot(ρ+ t),

t− ρ+ u ≤ 1 − α

α
(ρ+ t− u)

}
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=

{

t ∈ (
r∗
2

− ρ,
ρ

2α− 1
] : cot(ρ− (2α − 1)t) ≤ 2 cot ρ− cot(ρ+ t)

}

.

Observe that for t ∈ (r∗/2 − ρ, ρ/(2α − 1)) we have

cot(ρ− (2α− 1)t) ≤ 2 cot ρ− cot(ρ+ t)

⇐⇒ cot(ρ− (2α− 1)t) − cot ρ ≤ cot ρ− cot(ρ+ t)

⇐⇒ sin(ρ− (2α − 1)t)

sin((2α − 1)t)
≥ sin(ρ+ t)

sin t

⇐⇒ cot((2α − 1)t) − cot ρ ≥ cot ρ+ cot t

⇐⇒Fα,ρ,1(t) ≥ 0.

Hence

C ⊂
{

t ∈ (
r∗
2

− ρ,
ρ

2α− 1
] : Fα,ρ,1(t) ≥ 0

}

:= D.

If α = 1, clearly D = φ. Now let 1/2 < α < 1, then Lemma 3.17 yields that

D = (
r∗
2

− ρ,
ρ

2α− 1
] ∩ (0, t1] = φ.

Thus C = φ still holds, that is, Qµ ⊂ B̄(a, r∗/2). The proof of i) is complete.
Now let us turn to the proof of ii) and iii). In fact, the proof for these two

cases are essentially the same as that of i) except to note that we no longer need
to assume that Qµ ⊂ B̄(a, r∗/2), because this is implied by Assumption 3.10. To
see this, if 4αρ ≤ (2α − 1)r∗, then it suffices to use Theorem 3.7. So that let us
assume 4αρ > (2α − 1)r∗ and show that Fα,ρ,∆(r∗/2 − ρ) ≤ 0 for ∆ ∈ {−1, 0}.
This is trivial if ∆ = 0 or α = 1, hence let ∆ = −1 and α ∈ (1/2, 1). Since
r∗/2−ρ > (1−α)ρ/(2α−1) and Fα,ρ,−1 is strictly decreasing, it suffices to show that
Fα,ρ,−1((1−α)ρ/(2α−1)) ≤ 0. To this end, define f(α) = Fα,ρ,−1((1−α)ρ/(2α−1)),
easy computation gives that

f ′(α) =
ρ

sinh2((1 − α)ρ)
− ρ

(2α − 1)2 sinh2( 1−α
2α−1ρ)

> 0,

because the function x 7−→ sinhx/x is strictly increasing. Hence f(α) < f(1−) =
2(ρ−1 − coth ρ) < 0. The proof is complete.

Remark 3.20. When ∆ > 0, Assumption 3.10 does not imply the condition b) in
i). In fact, in the case when M = S

2, we have r∗ = π and ∆ = 1. Then let α = 0.51
and ρ = 0.99π(1 − (2α)−1), then 2αρ/(2α − 1) ∈ (π/2 + 1.5393, π − 0.0314), but
Fα,ρ,1(π/2 − ρ) ≈ 0.2907 > 0.

Remark 3.21. It is easily seen that if we replace r∗ by any r ∈ (0, r∗] in Assumption
3.10, then Lemma 3.18 still holds when r∗ is replaced by r. This observation can be
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used to reinforce the conclusions of Theorem 3.19. For example, in the case when
∆ > 0,

2αρ

2α− 1
≤ r∗

2
implies that Qµ ⊂ B̄

(

a,
1√
∆

arcsin
(α sin(

√
∆ρ)√

2α− 1

)

)

⊂ B

(

a,
r∗
4

)

.

Remark 3.22. Although we have chosen the framework of this section to be a
Riemannian manifold, the essential tool that has been used is the hinge version
of the triangle comparison theorem. Consequently, all the results in this section
remain true if M is a CAT(∆) space (see [26, Chapter 2]) and r∗ is replaced by
π/

√
∆ in Assumption 3.10.

Remark 3.23. For the case when α = 1, Assumption 3.10 becomes

ρ <
1

2
min{ π√

∆
, inj }.

Observe that in this case, when ∆ > 0, the condition F1,ρ,∆(r∗/2−ρ) ≤ 0 is trivially
true in case of need. Hence Theorem 3.19 yields that Qµ ⊂ B̄(a, ρ), which is exactly
what the Theorem 2.1 in [1] says for medians.

3.3 Uniqueness of Fréchet sample medians in compact

Riemannian manifolds

In this section, we shall always assume that M is a complete Riemannian manifold
of dimension l ≥ 2. The Riemannian metric and the Riemannian distance are
denoted by 〈 · , · 〉 and d, respectively. For each point x ∈ M , Sx denotes the unit
sphere in TxM . Moreover, for a tangent vector v ∈ Sx, the distance between x and
its cut point along the geodesic starting from x with velocity v is denoted by τ(v).
Certainly, if there is no cut point along this geodesic, then we define τ(v) = +∞.

For every point (x1, . . . , xN ) ∈MN , where N ≥ 3 is a fixed natural number, we
write

µ(x1, . . . , xN ) =
1

N

N
∑

k=1

δxk
.

The set of all the Fréchet medians of µ(x1, . . . , xN ) is denoted by Q(x1, . . . , xN ).

We begin with the basic observation that if one data point is moved towards
a median along some minimizing geodesic for a little distance, then the median
remains unchanged.

Proposition 3.24. Let (x1, . . . , xN ) ∈MN and m ∈ Q(x1, . . . , xN ). Fix a normal
geodesic γ : [0,+∞) → M such that γ(0) = x1, γ(d(x1,m)) = m. Then for every
t ∈ [0, d(x1,m)] we have

Q(γ(t), x2, . . . , xN ) =

{

Q(x1, . . . , xN ) ∩ γ[t, τ(γ̇(0))], if τ(γ̇(0)) < +∞;

Q(x1, . . . , xN ) ∩ γ1[t,+∞), if τ(γ̇(0)) = +∞.
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Particularly, m ∈ Q(γ(t), x2, . . . , xN ).

Proof. For simplicity, let µ = µ(x1, . . . , xN ) and µt = µ(γ(t), x2, . . . , xN ). Then for
every x ∈M ,

fµt(x) − fµt(m) =

(

fµ(x) −
1

N
d(x, x1) +

1

N
d(x, γ(t))

)

−
(

fµ(m) − 1

N
d(m,x1) +

1

N
d(m,γ(t))

)

=

(

fµ(x) − fµ(m)

)

+

(

d(x, γ(t)) + t− d(x, x1)

)

≥ 0.

So that m ∈ Qµt . Combine this with the fact that m is a median of µ, it is easily
seen from the above proof that

Qµt = Qµ ∩ {x ∈M : d(x, γ(t)) + t = d(x, x1)}.

Now the conclusion follows from the definition of τ(γ̇(0)).

The following theorem states that in order to get the uniqueness of Fréchet
medians, it suffices to move two data points towards a common median along some
minimizing geodesics for a little distance.

Theorem 3.25. Let (x1, . . . , xN ) ∈ MN and m ∈ Q(x1, . . . , xN ). Fix two normal
geodesics γ1, γ2 : [0,+∞) →M such that γ1(0) = x1, γ1(d(x1,m)) = m, γ2(0) = x2

and γ2(d(x2,m)) = m. Assume that

x2 /∈
{

γ1[0, τ(γ̇1(0))], if τ(γ̇1(0)) < +∞;

γ1[0,+∞), if τ(γ̇1(0)) = +∞.

Then for every t ∈ (0, d(x1,m)] and s ∈ (0, d(x2,m)] we have

Q(γ1(t), γ2(s), x3, . . . , xN ) = {m}.

Proof. Without loss of generality, we may assume that both τ(γ̇1(0)) and τ(γ̇2(0))
are finite. Applying Proposition 3.24 two times we get

Q(γ1(t), γ2(s), x3, . . . , xN ) ⊂ Q(x1, . . . , xN ) ∩ γ1[t, τ(γ̇1(0))] ∩ γ2[s, τ(γ̇2(0))].

Since x2 /∈ γ1[0, τ(γ̇1(0))], the definition of cut point yields γ1[t, τ(γ̇1(0))]∩γ2[s, τ(γ̇2(0))] =
{m}. The proof is complete.

We need the following necessary conditions of Fréchet medians.
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Proposition 3.26. Let (x1, . . . , xN ) ∈ MN and m ∈ Q(x1, . . . , xN ). For every
k = 1, . . . , N let γk : [0, d(m,xk)] → M be a normal geodesic such that γk(0) = m
and γk(d(m,xk)) = xk.
i) If m does not coincide with any xk, then

N
∑

k=1

γ̇k(0) = 0. (3.21)

In this case, the minimizing geodesics γ1, . . . , γN are uniquely determined.
ii) If m coincides with some xk0 , then

∣

∣

∣

∣

∑

xk 6=xk0

γ̇k(0)

∣

∣

∣

∣

≤
∑

xk=xk0

1. (3.22)

Proof. For sufficiently small ε > 0, Proposition 3.24 yields that m is a median of
µ(γ1(ε), . . . , γN (ε)). Hence [91, Theorem 2.2] gives (3.21) and (3.22). Now assume
thatm does not coincide with any xk and, without loss of generality, there is another
normal geodesic ζ1 : [0, d(m,x1)] →M such that ζ1(0) = m and ζ1(d(m,x1)) = x1.
Then (3.21) yields ζ̇1(0) +

∑N
k=2 γ̇k(0) = 0. So that ζ̇1(0) = γ̇1(0), that is to say,

ζ1 = γ1. The proof is complete.

From now on, we will only consider the case when M is a compact Riemannian
manifold. As a result, let the following assumption hold in the rest part of this
section:

Assumption 3.27. M is a compact Riemannian manifold with diameter L.

In what follows, all the measure-theoretic statements should be understood to
be with respect to the canonical Lebesgue measure of the underlying manifold. Let
λM denote the canonical Lebesgue measure of M .

The following lemma gives a simple observation on dimension.

Lemma 3.28. The manifold

V =

{

(x, n1, . . . , nN ) : x ∈M, (nk)1≤k≤N ⊂ Sx,

N
∑

k=1

nk = 0 and there exist

k1 6= k2 such that nk1 and nk2 are linearly independent

}

is of dimension N(l − 1).

Proof. Consider the manifold

W =

{

(x, n1, . . . , nN ) : x ∈M, (nk)1≤k≤N ⊂ Sx and there exist k1 6= k2

such that nk1 and nk2 are linearly independent

}

,
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then the smooth map

f : W −→ TM, (x, n1, . . . , nN ) 7−→
N
∑

k=1

nk

has full rank l everywhere on W . Now the constant rank level set theorem (see [64,
Theorem 8.8]) yields the desired result.

Our method of studying the uniqueness of Fréchet medians is based on the
regularity properties of the following function:

ϕ : V × RN −→MN ,

(x, n1, . . . , nN , r1, . . . , rN ) 7−→ (expx(r1n1), . . . , expx(rNnN )).

For a closed interval [a, b] ⊂ R, the restriction of ϕ to V × [a, b]N will be denoted
by ϕa,b. The canonical projection of V × RN onto M and RN will be denoted by
σ and ζ, respectively.

Generally speaking, the non uniqueness of Fréchet medians is due to some sym-
metric properties of data points. As a result, generic data points should have a
unique Fréchet median. In mathematical language, this means that the set of all
the particular positions of data points is of measure zero. Now our aim is to find
all these particular cases. Firstly, in view of the uniqueness result of Riemannian
medians (see [91, Theorem 3.1]), the first null set that should be eliminated is

C1 =

{

(x1, . . . , xN ) ∈MN : x1, . . . , xN are contained in a single geodesic

}

.

Observe that C1 is a closed subset of MN . The second null set coming into our
sight is the following one:

C2 =

{

(x1, . . . , xN ) ∈MN : (x1, . . . , xN ) is a critical value of ϕ0,L

}

.

Since ϕ is smooth, Sard’s theorem implies that C2 is of measure zero. Moreover, it
is easily seen that (MN \ C1) ∩ C2 is closed in MN \ C1.

The following proposition says that apart form C1 ∪ C2 one can only have a
finite number of Fréchet medians.

Proposition 3.29. Q(x1, . . . , xN ) is a finite set for every (x1, . . . , xN ) ∈ MN \
(C1 ∪ C2).

Proof. Let (x1, . . . , xN ) ∈ MN \ (C1 ∪ C2) and A ⊂ Q(x1, . . . , xN ) be the set of
medians that do not coincide with any xk. If A = φ, then there is nothing to
prove. Now assume that A 6= φ, then Proposition 3.26 implies that A ⊂ σ ◦
ϕ−1

0,L(x1, . . . , xN ). Moreover, Lemma 3.28 and the constant rank level set theorem

imply that ϕ−1
0,L(x1, . . . , xN ) is a zero dimensional regular submanifold of V ×[0, L]N ,

that is, some isolated points. Since (x1, . . . , xN ) /∈ C1, ϕ
−1
0,L(x1, . . . , xN ) is also

compact, hence it is a finite set. So that A is also finite, as desired.
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The following two lemmas enable us to avoid the problem of cut locus.

Lemma 3.30. Let U be a bounded open subset of V ×RN such that ϕ : U 7−→ ϕ(U)
is a diffeomorphism, then

λ⊗NM

{

(x1, . . . , xN ) ∈ ϕ(U) : σ ◦ ϕ−1(x1, . . . , xN ) ∈
N
⋃

k=1

Cut(xk)

}

= 0.

Proof. Without loss of generality, we will show that λ⊗NM {(x1, . . . , xN ) ∈ MN : σ ◦
ϕ−1(x1, . . . , xN ) ∈ Cut(xN )} = 0. In fact, letting (x1, . . . , xN ) = ϕ(x, n1, . . . nN , r1, . . . , rN ),
n = (n1, . . . nN ) and det(Dϕ) ≤ c on U for some c > 0, then the change of variable
formula and Fubini’s theorem yield that

λ⊗NM {(x1, . . . , xN ) ∈ ϕ(U) : σ ◦ ϕ−1(x1, . . . , xN ) ∈ Cut(xN )}
=λ⊗NM {(x1, . . . , xN ) ∈ ϕ(U) : xN ∈ Cut(σ ◦ ϕ−1(x1, . . . , xN ))}

=

∫

ϕ(U)
1{xN∈Cut(σ◦ϕ−1(x1,...,xN ))}dx1 . . . dxN

=

∫

U
1{expx(rNnN )∈Cut(x)} det(Dϕ)dx dn dr1 . . . drN

≤ c

∫

V×RN

1{expx(rNnN )∈Cut(x)}dx dn dr1 . . . drN

= c

∫

V×RN−1

dx dn dr1 . . . drN−1

∫

R

1{expx(rNnN )∈Cut(x)}drN

= 0.

The proof is complete.

In order to tackle the cut locus, it is easily seen that the following null set should
be eliminated:

C3 =

{

(x1, . . . , xN ) ∈MN : xi ∈ {xj} ∪ Cut(xj), for some i 6= j

}

.

Observe that C3 is also closed because the set {(x, y) ∈M2 : x ∈ Cut(y)} is closed.

Lemma 3.31. For every (x1, . . . , xN ) ∈ MN \ (C1 ∪ C2 ∪ C3), there exists δ > 0
such that

λ⊗NM

{

(y1, . . . , yN ) ∈ B(x1, δ)×· · ·×B(xN , δ) : Q(y1, . . . , yN )∩
N
⋃

k=1

Cut(yk) 6= φ

}

= 0.

Proof. If Q(x1, . . . , xN ) ⊂ {x1, . . . , xN}, then the assertion is trivial by Theorem
3.3. Now assume that Q(x1, . . . , xN ) \ {x1, . . . , xN} 6= φ, then the proof of Propo-
sition 3.29 yields that ϕ−1

0,L(x1, . . . , xN ) is finite. Hence we can choose ε, η > 0
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and O a relatively compact open subset of V such that ε < min{ injM/2,min{rk :
(r1, . . . , rN ) ∈ ζ ◦ ϕ−1

0,L(x1, . . . , xN ), k = 1, . . . , N}}, B(xi, 2ε) ∩ Cut(B(xj, 2ε)) = φ

and ϕ−1
ε,L+η (x1, . . . , xN ) ⊂ O × (ε, L + η)N . Then by the stack of records theo-

rem (see [50, Exercise 7, Chapter 1, Section 4]), there exists δ ∈ (0, ε) such that
U = B(x1, δ) × · · · × B(xN , δ) verifies ϕ−1

ε,L+η(U) = V1 ∪ · · · ∪ Vh, Vi ∩ Vj = φ for
i 6= j and ϕε,L+η : Vi → U is a diffeomorphism for every i. Lemma 3.30 yields that
there exists a null set A ⊂ U , such that for every (y1, . . . , yN ) ∈ U \A and for every
(y, n1, . . . , nN , r1, . . . , rN ) ∈ ϕ−1

ε,L+η(y1, . . . , yN ) one always has y /∈
⋃N
k=1 Cut(yk).

Particularly, for m ∈ Q(y1, . . . , yN ) such that d(m, yk) ≥ ε for every k, we have
m /∈ ⋃Nk=1 Cut(yk). Now let m ∈ Q(y1, . . . , yN ) such that d(m, yk0) < ε for some

k0, then d(m,xk0) ≤ d(m, yk0) + d(yk0 , xk0) < 2ε. So that m /∈ ⋃N
k=1 Cut(yk) since

yk ∈ B(xk, 2ε). This completes the proof.

Now the cut locus can be eliminated without difficulty.

Proposition 3.32. The set

C4 =

{

(x1, . . . , xN ) ∈MN : Q(x1, . . . , xN ) ∩
N
⋃

k=1

Cut(xk) 6= φ

}

is of measure zero and is closed.

Proof. It suffices to show that C4 is of measure zero. This is a direct consequence
of Lemma 3.31 and the fact that M \ (C1 ∪ C2 ∪ C3) is second countable.

Let x, y ∈ M such that y /∈ {x} ∪ Cut(x), we denote γxy : [0, d(x, y)] → M the
unique minimizing geodesic such that γxy(0) = x and γxy(d(x, y)) = y. For every
u ∈ TxM and v ∈ TyM , let J(v, u)(·) be the unique Jacobi field along γxy with
boundary condition J(u, v)(0) = u and J(u, v)(d(x, y)) = v.

Lemma 3.33. Let x, y ∈M such that y /∈ {x} ∪Cut(x). Then for every v ∈ TyM ,
we have

∇v
exp−1

x (·)
d(x, ·) = J̇(0x, v

nor)(0),

where vnor is the normal component of v with respect to γ̇xy(d(x, y)).

Proof. By [9, p. 1517],

∇v
exp−1

x (·)
d(x, ·) =

∇v exp−1
x (·)

d(x, y)
− exp−1

x y∇vd(x, ·)
d(x, y)2

=
∇v exp−1

x (·)
d(x, y)

−
〈

v,
− exp−1

y x

d(x, y)

〉

exp−1
x y

d(x, y)2

=J̇(0x, v)(0) − J̇(0x, v
tan)(0)

=J̇(0x, v
nor)(0),

where vtan is the tangent component of u with respect to γ̇xy(d(x, y)).
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With the this differential formula, another particular case can be eliminated
now.

Proposition 3.34. The set

C5 =

{

(x1, . . . xN ) ∈MN \ (C1 ∪ C3) :

∣

∣

∣

∣

∑

k 6=k0

exp−1
xk0

xk

d(xk0 , xk)

∣

∣

∣

∣

= 1 for some k0

}

is of measure zero and is closed in MN \ (C1 ∪ C3).

Proof. Without loss of generality, let us show that

C ′
5 =

{

(x1, . . . , xN ) ∈MN \ (C1 ∪C3) : h(x1, . . . , xN ) = 1

}

is of measure zero, where

h(x1, . . . , xN ) =

∣

∣

∣

∣

N−1
∑

k=1

exp−1
xN
xk

d(xN , xk)

∣

∣

∣

∣

2

.

By the constant rank level set theorem, it suffices to show that gradh is nowhere
vanishing on MN \ (C1 ∪ C3). To this end, let (x1, . . . , xN ) ∈ MN \ (C1 ∪ C3) and
u =

∑N−1
k=1 exp−1

xN
xk/d(xN , xk). Since N ≥ 3, without loss of generality, we can

assume that u and exp−1
xN
x1 are not parallel. Then for each v ∈ Tx1M , by lemma

3.33 we have

∇vh(·, x2, . . . , xN ) =

〈

∇v
exp−1

xN
x1

d(xN , x1)
, u

〉

= 2〈J̇(0xN
, vnor)(0), u〉 = 2〈ψ(v), u〉,

where the linear map ψ is defined by

ψ : Tx1M −→ TxN
M, v 7−→ J̇(0xN

, vnor)(0),

vnor is the normal component of v with respect to exp−1
x1
xN . Hence we have

gradx1
h(·, x2, . . . , xN ) = ψ∗(u), where ψ∗ is the adjoint of ψ. Since the range space

of ψ is the orthogonal complement of exp−1
xN
x1, one has necessarily ψ∗(u) 6= 0, this

completes the proof.

The reason why the set C5 should be eliminated is given by the following simple
lemma.

Lemma 3.35. Let (x1, . . . , xN ), (xi1, . . . , x
i
N ) ∈ MN \ C3 for every i ∈ N and

(xi1, . . . , x
i
N ) −→ (x1, . . . , xN ), when i −→ ∞. Assume that mi ∈ Q(xi1, . . . , x

i
N ) \

{xi1, . . . , xiN} and mi −→ xk0, then

∣

∣

∣

∣

∑

k 6=k0

exp−1
xk0

xk

d(xk0 , xk)

∣

∣

∣

∣

= 1.
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Proof. It suffices to note that for i sufficiently large, Proposition 3.26 gives

∣

∣

∣

∣

∑

k 6=k0

exp−1
mi
xik

d(mi, xik)

∣

∣

∣

∣

=

∣

∣

∣

∣

exp−1
mi
xik0

d(mi, xik0)

∣

∣

∣

∣

= 1.

Then letting i→ ∞ gives the result.

As a corollary to Proposition 3.34, the following proposition tells us that for
generic data points, there cannot exist two data points which are both Fréchet
medians.

Proposition 3.36. The set

C6 =

{

(x1, . . . , xN ) ∈MN \ (C1 ∪ C3 ∪ C5) :

there exist i 6= j such that fµ(xi) = fµ(xj), where µ = µ(x1 . . . , xN )

}

is of measure zero and is closed in MN \ (C1 ∪ C3 ∪ C5).

Proof. For every (x1, . . . , xN ) ∈MN \ (C1 ∪C3 ∪C5), let f(x1, . . . , xN ) = fµ(xN−1)
and g(x1, . . . , xN ) = fµ(xN ), where µ = µ(x1 . . . , xN ). Without loss of general-
ity, we will show that {(x1, . . . , xN ) ∈ MN \ (C1 ∪ C3 ∪ C5) : f(x1, . . . , xN ) =
g(x1, . . . , xN )} is of measure zero. Always by the constant rank level set theorem,
it suffices to show that grad f and grad g are nowhere identical onMN\(C1∪C3∪C5).
In fact,

gradxN
f(x1, . . . , xN ) =

− exp−1
xN
xN−1

d(xN , xN−1)

6=
N−1
∑

k=1

− exp−1
xN
xk

d(xN , xk)
= gradxN

g(x1, . . . , xN ),

because C5 is eliminated, as desired.

As needed in the following proofs, the restriction of ϕ on the set

E =

{

(x, n1, . . . , nN , r1, . . . , rN ) ∈ V ×RN : 0 < rk < τ(nk) for every k

}

is denoted by let ϕ̂. Clearly, ϕ̂ is smooth.
The lemma below is a final preparation for the main result of this section.

Lemma 3.37. Let U be an open subset of MN \ ⋃6
k=1Ck. Assume that U1 ∪

U2 ⊂ ϕ̂−1(U) such that for i = 1, 2, ϕ̂i = ϕ̂|Ui
: Ui → U is a diffeomorphism

and σ(U1) ∩ σ(U2) = φ. For simplicity, when (x1, . . . , xN ) ∈ U , we write x =
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σ ◦ ϕ̂−1
1 (x1, . . . , xN ), y = σ ◦ ϕ̂−1

2 (x1, . . . , xN ) and µ = µ(x1, . . . , xN ). Then the
following two sets are of measure zero:

{

(x1, . . . , xN ) ∈ U : fµ(x) = fµ(y)

}

and

{

(x1, . . . , xN ) ∈ U : there exists k0 such that fµ(x) = fµ(xk0)

}

.

Proof. We only show the first set is null, since the proof for the second one is similar.
Let f1(x1, . . . , xN ) = fµ(x), f2(x1, . . . , xN ) = fµ(y) and wk ∈ Txk

M . Then the first
variational formula of arc length (see [33, p. 5]) yields that

d

dt

∣

∣

∣

∣

t=0

f1(expx(t)(tw1), . . . expx(t)(twN ))

=

N
∑

k=1

(〈− exp−1
xk
x

d(xk, x)
, wk

〉

−
〈

ẋ(0),
exp−1

x xk
d(x, xk)

〉)

=

N
∑

k=1

〈− exp−1
xk
x

d(xk, x)
, wk

〉

−
〈

ẋ(0),

N
∑

k=1

exp−1
x xk

d(x, xk)

〉

=
N
∑

k=1

〈− exp−1
xk
x

d(xk, x)
, wk

〉

.

Hence

grad f1(x1, . . . , xN ) =

(− exp−1
x1
x

d(x1, x)
, . . . ,

− exp−1
xN
x

d(xN , x)

)

.

Observe that (x1, . . . , xN ) /∈ C1, N ≥ 3 and x 6= y, we have grad f1 6= grad f2 on
U . Then the constant rank level set theorem yields that {f1 = f2} is a regular
submanifold of U of codimension 1, hence it is of measure zero. The proof is
complete.

The following theorem is the main result of this section.

Theorem 3.38. µ(x1, . . . , xN ) has a unique Fréchet median for almost every
(x1, . . . , xN ) ∈MN .

Proof. Since MN \⋃6
k=1Ck is second countable, it suffices to show that for every

(x1, . . . , xN ) ∈ MN \ ⋃6
k=1Ck, there exists δ > 0 such that µ(y1, . . . , yN ) has a

unique Fréchet median for almost every (y1, . . . , yN ) ∈ B(x1, δ) × · · · × B(xN , δ) .
In fact, let (x1, . . . , xN ) ∈MN \⋃6

k=1Ck, without loss of generality, we can assume
that Q(x1, . . . , xN ) = {y, z, xN}, where y, z /∈ {x1, . . . , xN}. Assume that Y =
(y, n1, . . . , nN , r1, . . . , rN ) and Z = (z, v1, . . . , vN , t1, . . . , tN ) ∈ ϕ̂−1(x1, . . . , xN ).
Since (x1, . . . , xN ) is a regular value of ϕ̂, we can choose a δ > 0 such that there
exist neighborhoods U1 of Y and U2 of Z such that for i = 1, 2, ϕ̂i = ϕ̂|Ui

: Ui →
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U is diffeomorphism, σ(U1) ∩ σ(U2) = φ and B(xN , δ) ∩ (σ(U1) ∪ σ(U2)) = φ,
where U = B(x1, δ) × · · · × B(xN , δ). Furthermore, by Theorem 3.3 and Lemma
3.35, we can also assume that for every (y1, . . . , yN ) ∈ B(x1, δ) × · · · × B(xN , δ),
Q(y1, . . . , yN ) ⊂ B(xN , δ) ∪ σ(U1) ∪ σ(U2) and Q(y1, . . . , yN ) ∩ B(xN , δ) ⊂ {yN}.
Now it suffices to use Lemma 3.37 to complete the proof.

Remark 3.39. In probability language, Theorem 3.38 is equivalent to say that if
(X1, . . . ,XN ) is an MN -valued random variable with density, then µ(X1, . . . ,XN )
has a unique Fréchet median almost surely. Clearly, the same statement is also true
if X1, . . . ,XN are independent and M -valued random variables with desity.

3.4 Appendix

In this appendix, under the framework of section 3.2, we give another estimation
for the position of Qµ using a different method.

Lemma 3.40. Let r < r∗/2 and △ABC be a geodesic triangle in B̄(a, r) such that
A = a, B ∈ B̄(a, ρ) and C ∈ B̄(a, r) \ B̄(a, ρ). Then

cos ∠C ≥ sin(
√

∆(d(C,A) − ρ))

sin(
√

∆(d(C,A) + ρ))
.

Proof. The proof of this lemma will be the same as that of Lemma 2.11 as long as
the existence of a comparison triangle of △ABC in model space M2

∆ is verified. To
this end, d(A,B) + d(B,C) + d(C,A) ≤ ρ+ (ρ+ r) + r < 4r < 2π/

√
∆. The proof

is complete.

Now we give an estimation of Qµ.

Proposition 3.41. Assume that

2αρ

2α− 1
<
r∗
2
,

then

Qµ ⊂ B̄

(

a,
ρ

2α− 1

)

.

Proof. Let η = (2α − 1)−1, then B̄(a, ρ) ⊂ B̄(a, ηρ) ⊂ B(a, r) since α > 1/2. Fix
a point x ∈ B̄(a, r) \ B̄(a, ηρ) and let γ : [0, b] → B̄(a, r) the minimal geodesic
parametrized by arc length such that γ(0) = a et γ(b) = x. Then there exists
t0 ∈ (0, b) such that y = γ(t0) ∈ ∂B̄(a, ηρ). For every p ∈ B̄(a, ρ), by intermediate
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value theorem, there exists ξ ∈ (t0, b) such that

d(x, p) − d(y, p) =
d

dt
d(γ(t), p)

∣

∣

∣

∣

t=ξ

(b− t0) = 〈 γ̇(ξ),
− exp−1

γ(ξ) p

d(γ(ξ), p)
〉(b− t0)

= 〈
− exp−1

γ(ξ)
y

d(γ(ξ), y)
,
− exp−1

γ(ξ)
p

d(γ(ξ), p)
〉d(x, y)

= d(x, y) cos ∠yγ(ξ)p = d(x, y) cos ∠aγ(ξ)p.

By Lemma 3.40,

cos ∠aγ(ξ)p ≥ sin(
√

∆(d(γ(ξ), a) − ρ))

sin(
√

∆(d(γ(ξ), a) + ρ))
>

sin(
√

∆(ηρ− ρ))

sin(
√

∆(ηρ+ ρ))
≥ η − 1

η + 1
=

1 − α

α
,

since for u0 ∈ (0, π/2), the function u 7→ sin(u−u0)/ sin(u+u0) is strictly increasing
on (0, π/2). Moreover, the inequality sinu/ sin v ≥ u/v if 0 ≤ u < v ≤ π/2 can also
be applied because 0 <

√
∆(ηρ+ ρ) = r

√
∆ < π/2.

By the preceding argument we get for every p ∈ B̄(a, ρ),

d(x, p) − d(y, p) >
1 − α

α
d(x, y).

Hence

fµ(x) − fµ(y) =

∫

B̄(a,ρ)
(d(x, p) − d(y, p))µ(dp) +

∫

M\B̄(a,ρ)
(d(x, p) − d(y, p))µ(dp)

>

∫

B̄(a,ρ)

1 − α

α
d(x, y)µ(dp) −

∫

M\B̄(a,ρ)
d(x, y)µ(dp)

= 0.

Particularly, we obtain Qµ ⊂ B̄(a, ηρ).





Chapter 4

Stochastic and deterministic

algorithms for computing means

of probability measures

Abstract

This chapter is a collaborative work of Marc Arnaudon, Clément Dombry, Anthony
Phan and me. We consider a probability measure µ supported by a regular geodesic
ball in a manifold and, for any p ≥ 1, define a stochastic algorithm which converges
almost surely to the p-mean ep of µ. Assuming furthermore that the functional to
minimize is regular around ep, we prove that a natural renormalization of the inho-
mogeneous Markov chain converges in law into an inhomogeneous diffusion process.
We give the explicit expression of this process, as well as its local characteristic.
After that, the performance of the stochastic algorithms are illustrated by simula-
tions. Finally, we show that the p-mean of µ can also be computed by the method
of gradient descent. The questions concerning the choice of stepsizes and error
estimates of this deterministic method are also considered.

4.1 p-means in regular geodesic balls

Let M be a Riemannian manifold with pinched sectional curvatures. Let α, β > 0
such that α2 is a positive upper bound for sectional curvatures on M , and −β2 is a
negative lower bound for sectional curvatures on M . Denote by ρ the Riemannian
distance on M .

In M consider a geodesic ball B(a, r) with a ∈ M . Let µ be a probability
measure with support included in a compact convex subset Kµ of B(a, r). Fix
p ∈ [1,∞). We will always make the following assumptions on (r, p, µ):
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Assumption 4.1. The support of µ is not reduced to one point. Either p > 1 or
the support of µ is not contained in a line, and the radius r satisfies

r < rα,p with

{

rα,p = 1
2 min

{

inj(M), π2α
}

if p ∈ [1, 2)
rα,p = 1

2 min
{

inj(M), πα
}

if p ∈ [2,∞)
(1.1)

Note that B(a, r) is convex if r < 1
2 min

{

inj(M), πα
}

.
Under assumption 4.1, it has been proved in [1, Theorem 2.1] that the function

Hp : M −→ R+

x 7−→
∫

M
ρp(x, y)µ(dy)

(1.2)

has a unique minimizer ep in M , the p-mean of µ, and moreover ep ∈ B(a, r). If
p = 1, e1 is the median of µ.

It is easily checked that if p ∈ [1, 2), then Hp is strictly convex on B(a, r). On
the other hand, if p ≥ 2 then Hp is of class C2 on B(a, r).

4.2 Stochastic algorithms for computing p-means

The following proposition gives the fundamental estimations for the convergence of
our stochastic algorithms.

Proposition 4.2. Let K be a convex subset of B(a, r) containing the support of µ.
Then there exists Cp,µ,K > 0 such that for all x ∈ K,

Hp(x) −Hp(ep) ≥
Cp,µ,K

2
ρ(x, ep)

2. (2.1)

Moreover if p ≥ 2 then we can choose Cp,µ,K so that for all x ∈ K,

‖ gradxHp‖2 ≥ Cp,µ,K (Hp(x) −Hp(ep)) . (2.2)

Proof. For simplicity, let us write shortly e = ep in the proofs. For p = 1 this is a
direct consequence of [91, Theorem 3.7]

Next we consider the case p ∈ (1, 2).
Let K ⊂ B(a, r) be a compact convex set containing the support of µ. Let

x ∈ K\{e}, t = ρ(e, x), u ∈ TeM the unit vector such that expe(ρ(e, x)u) = x,
and γu the geodesic with initial speed u : γ̇u(0) = u. For y ∈ K, letting hy(s) =
ρ(γu(s), y)

p, s ∈ [0, t], we have since p > 1

hy(t) = hy(0) + th′y(0) +

∫ t

0
(t− s)h′′y(s) ds

with the convention h′′y(s) = 0 when γu(s) = y. Indeed, if y 6∈ γ([0, t]) then hy is
smooth, and if y ∈ γ([0, t]), say y = γ(s0) then hy(s) = |s − s0|p and the formula
can easily be checked.
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By standard calculation,

h′′y(s)

≥ pρ(γu(s), y)
p−2

×
(

(p− 1)‖γ̇u(s)T (y)‖2 + ‖γ̇u(s)N(y)‖2αρ(γu(s), y) cot (αρ(γu(s), y))
)

(2.3)

with γ̇u(s)
T (y) (resp. γ̇u(s)

N(y)) the tangential (resp. the normal) part of γ̇u(s) with

respect to n(γu(s), y) =
1

ρ(γu(s), y)
exp−1

γu(s)(y):

γ̇u(s)
T (y) = 〈γ̇u(s), n(γu(s), y)〉n(γu(s), y), γ̇u(s)

N(y) = γ̇u(s) − γ̇u(s)
T (y).

From this we get

h′′y(s) ≥ pρ(γu(s), y)
p−2 (min (p− 1, 2αr cot (2αr))). (2.4)

Now

Hp(γu(t
′))

=

∫

B(a,r)
hy(γu(t

′))µ(dy)

=

∫

B(a,r)
hy(0)µ(dy) + t′

∫

B(a,r)
h′y(0)µ(dy) +

∫ t′

0
(t′ − s)

(

∫

B(a,r)
hy(s)

′′ µ(dy)

)

ds

and Hp(γu(t
′)) attains its minimum at t′ = 0, so

∫

B(a,r)
h′y(0)µ(dy) = 0 and we

have

Hp(x) = Hp(γu(t)) = Hp(e) +

∫ t

0
(t− s)

(

∫

B(a,r)
hy(s)

′′ µ(dy)

)

ds.

Using Equation (2.4) we get

Hp(x) ≥ Hp(e)

+

∫ t

0

(

(t− s)

∫

B(a,r)
pρ(γu(s), y)

p−2 (min (p− 1, 2αr cot (2αr))) µ(dy)

)

ds.
(2.5)

Since p ≤ 2 we have ρ(γu(s), y)
p−2 ≥ (2r)p−2 and

Hp(x) ≥ Hp(e) +
t2

2
p(2r)p−2 (min (p− 1, 2αr cot (2αr))) . (2.6)

So letting
Cp,µ,K = p(2r)p−2 (min (p− 1, 2αr cot (2αr)))
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we obtain

Hp(x) ≥ Hp(e) +
Cp,µ,Kρ(e, x)

2

2
. (2.7)

To finish let us consider the case p ≥ 2.
In the proof of [1, Theorem 2.1], it is shown that e is the only zero of the

maps x 7→ gradxHp and x 7→ Hp(x)−Hp(e), and that ∇dHp(e) is strictly positive.
This implies that (2.1) and (2.2) hold on some neighbourhood B(e, ε) of e. By
compactness and the fact that Hp−Hp(e) and gradHp do not vanish on K\B(e, ε)
and Hp−Hp(e) is bounded, possibly modifying the constant Cp,µ,K, (2.1) and (2.2)
also holds on K\B(e, ε).

We now state our main result: we define a stochastic gradient algorithm (Xk)k≥0

to approximate the p-mean ep and prove its convergence. In the sequel, we fix

K = B̄(a, r − ε) with ε =
ρ(Kµ, B(a, r)c)

2
. (2.8)

Theorem 4.3. Let (Pk)k≥1 be a sequence of independent B(a, r)-valued random
variables, with law µ. Let (tk)k≥1 be a sequence of positive numbers satisfying

∀k ≥ 1, tk ≤ min

(

1

Cp,µ,K
,
ρ(Kµ, B(a, r)c)

2p(2r)p−1

)

, (2.9)

∞
∑

k=1

tk = +∞ and
∞
∑

k=1

t2k <∞. (2.10)

Letting x0 ∈ K, define inductively the random walk (Xk)k≥0 by

X0 = x0 and for k ≥ 0 Xk+1 = expXk

(

−tk+1 gradXk
Fp(·, Pk+1)

)

(2.11)

where Fp(x, y) = ρp(x, y), with the convention gradx Fp(·, x) = 0.
The random walk (Xk)k≥1 converges in L2 and almost surely to ep.

Proof. Note that, for x 6= y,

gradx F (·, y) = pρp−1(x, y)
− exp−1

x (y)

ρ(x, y)
= −pρp−1(x, y)n(x, y),

whith n(x, y) :=
exp−1

x (y)

ρ(x, y)
a unit vector. So, with the condition (2.9) on tk, the

random walk (Xk)k≥0 cannot exit K: if Xk ∈ K then there are two possibilities for
Xk+1:

• either Xk+1 is in the geodesic between Xk and Pk+1 and belongs to K by
convexity of K;
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• or Xk+1 is after Pk+1, but since

‖tk+1 gradXk
Fp(·, Pk+1)‖ = tk+1pρ

p−1(Xk, Pk+1)

≤ ρ(Kµ, B(a, r)c)

2p(2r)p−1
pρp−1(Xk, Pk+1)

≤ ρ(Kµ, B(a, r)c)

2
,

we have in this case

ρ(Pk+1,Xk+1) ≤
ρ(Kµ, B(a, r)c)

2

which implies that Xk+1 ∈ K.

First consider the case p ∈ [1, 2).
For k ≥ 0 let

t 7→ E(t) :=
1

2
ρ2 (e, γ(t)) ,

γ(t)t∈[0,tk+1] the geodesic satisfying γ̇(0) = − gradXk
Fp(·, Pk+1). We have for all

t ∈ [0, tk+1]
E′′(t) ≤ C(β, r, p) := p2(2r)2p−1β coth(2βr) (2.12)

(see e.g. [91]). By Taylor formula,

ρ(Xk+1, e)
2

= 2E(tk+1)

= 2E(0) + 2tk+1E
′(0) + t2k+1E

′′(t) for some t ∈ [0, tk+1]

≤ ρ(Xk, e)
2 + 2tk+1〈gradXk

Fp(·, Pk+1), exp−1
Xk

(e)〉 + t2k+1C(β, r, p).

Now from the convexity of x 7→ Fp(x, y) we have for all x, y ∈ B(a, r)

Fp(e, y) − Fp(x, y) ≥
〈

gradx Fp(·, y), exp−1
x (e)

〉

. (2.13)

This applied with x = Xk, y = Pk+1 yields

ρ(Xk+1, e)
2 ≤ ρ(Xk, e)

2 − 2tk+1 (Fp(Xk, Pk+1) − Fp(e, Pk+1)) +C(β, r, p)t2k+1.
(2.14)

Letting for k ≥ 0 Fk = σ(Xℓ, 0 ≤ ℓ ≤ k), we get

E
[

ρ(Xk+1, e)
2|Fk

]

≤ ρ(Xk, e)
2 − 2tk+1

∫

B(a,r)
(Fp(Xk, y) − Fp(e, y)) µ(dy) + C(β, r, p)t2k+1

= ρ(Xk, e)
2 − 2tk+1 (Hp(Xk) −Hp(e)) +C(β, r, p)t2k+1

≤ ρ(Xk, e)
2 + C(β, r, p)t2k+1
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so that the process (Yk)k≥0 defined by

Y0 = ρ(X0, e)
2 and for k ≥ 1 Yk = ρ(Xk, e)

2 − C(β, r, p)

k
∑

j=1

t2j (2.15)

is a bounded supermartingale. So it converges in L1 and almost surely. Conse-
quently ρ(Xk, e)

2 also converges in L1 and almost surely.

Let

a = lim
k→∞

E
[

ρ(Xk, e)
2
]

. (2.16)

We want to prove that a = 0. We already proved that

E
[

ρ(Xk+1, e)
2|Fk

]

≤ ρ(Xk, e)
2 − 2tk+1 (Hp(Xk) −Hp(e)) + C(β, r, p)t2k+1. (2.17)

Taking the expectation and using Proposition 4.2, we obtain

E
[

ρ(Xk+1, e)
2
]

≤ E
[

ρ(Xk, e)
2
]

− tk+1Cp,µ,KE
[

ρ(Xk, e)
2
]

+ C(β, r, p)t2k+1. (2.18)

An easy induction proves that for ℓ ≥ 1,

E
[

ρ(Xk+ℓ, e)
2
]

≤
ℓ
∏

j=1

(1 −Cp,µ,Ktk+j)E
[

ρ(Xk, e)
2
]

+ C(β, r, p)

ℓ
∑

j=1

t2k+j. (2.19)

Letting ℓ→ ∞ and using the fact that
∑∞

j=1 tk+j = ∞ which implies

∞
∏

j=1

(1 − Cp,µ,Ktk+j) = 0,

we get

a ≤ C(β, r, p)

∞
∑

j=1

t2k+j. (2.20)

Finally using
∑∞

j=1 t
2
j < ∞ we obtain that limk→∞

∑∞
j=1 t

2
k+j = 0, so a = 0. This

proves L2 and almost sure convergence.

Next assume that p ≥ 2.

For k ≥ 0 let

t 7→ Ep(t) := Hp(γ(t)),

γ(t)t∈[0,tk+1] the geodesic satisfying γ̇(0) = − gradXk
Fp(·, Pk+1). With a calculation

similar to (2.12) we get for all t ∈ [0, tk+1]

E′′
p (t) ≤ 2C(β, r, p) := p3(2r)3p−4 (2βr coth(2βr) + p− 2) . (2.21)
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(see e.g. [91]). By Taylor formula,

Hp(Xk+1) = Ep(tk+1)

= Ep(0) + tk+1E
′
p(0) +

t2k+1

2
E′′
p (t) for some t ∈ [0, tk+1]

≤ Hp(Xk) + tk+1〈dXk
Hp, gradXk

Fp(·, Pk+1)〉 + t2k+1C(β, r, p).

We get

E [Hp(Xk+1)|Fk]

≤ Hp(Xk) − tk+1

〈

dXk
Hp,

∫

B(a,r)
gradXk

Fp(·, y)µ(dy)

〉

+C(β, r, p)t2k+1

= Hp(Xk) − tk+1

〈

dXk
Hp, gradXk

Hp(·)
〉

+ C(β, r, p)t2k+1

= Hp(Xk) − tk+1

∥

∥gradXk
Hp(·)

∥

∥

2
+ C(β, r, p)t2k+1

≤ Hp(Xk) − Cp,µ,Ktk+1 (Hp(Xk) −Hp(e)) + C(β, r, p)t2k+1

(by Proposition 4.2) so that the process (Yk)k≥0 defined by

Y0 = Hp(X0) −Hp(e) and for k ≥ 1 Yk = Hp(Xk) −Hp(e) − C(β, r, p)
k
∑

j=1

t2j

(2.22)
is a bounded supermartingale. So it converges in L1 and almost surely. Conse-
quently Hp(Xk) −Hp(e) also converges in L1 and almost surely.

Let
a = lim

k→∞
E [Hp(Xk) −Hp(e)] . (2.23)

We want to prove that a = 0. We already proved that

E [Hp(Xk+1) −Hp(e)|Fk ]

≤ Hp(Xk) −Hp(e) − Cp,µ,Ktk+1 (Hp(Xk) −Hp(e)) + C(β, r, p)t2k+1.
(2.24)

Taking the expectation we obtain

E [Hp(Xk+1) −Hp(e)] ≤ (1−tk+1Cp,µ,K)E [Hp(Xk) −Hp(e)]+C(β, r, p)t2k+1 (2.25)

so that proving that a = 0 is similar to the previous case.
Finally (2.1) proves that ρ(Xk, e)

2 converges in L1 and almost surely to 0.

In the following example, we focus on the case M = R
d and p = 2 where drastic

simplifications occur.
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Example 4.4. In the case when M = R
d and µ is a compactly supported proba-

bility measure on R
d, the stochastic gradient algorithm (2.11) simplifies into

X0 = x0 and for k ≥ 0 Xk+1 = Xk − tk+1 gradXk
Fp(·, Pk+1).

If furthermore p = 2, clearly e2 = E[P1] and gradx Fp(·, y) = 2(x − y), so that the
linear relation

Xk+1 = (1 − 2tk+1)Xk + 2tk+1Pk+1, k ≥ 0

holds true and an easy induction proves that

Xk = x0

k−1
∏

j=0

(1 − 2tk−j) + 2

k−1
∑

j=0

Pk−jtk−j

j−1
∏

ℓ=0

(1 − 2tk−ℓ), k ≥ 1. (2.26)

Now, taking tk =
1

2k
, we have

k−1
∏

j=0

(1 − 2tk−j) = 0 and

j−1
∏

ℓ=0

(1 − 2tk−ℓ) =
k − j

k

so that

Xk =

k−1
∑

j=0

Pk−j
1

k
=

1

k

k
∑

j=1

Pj .

The stochastic gradient algorithm estimating the mean e2 of µ is given by the em-
pirical mean of a growing sample of independent random variables with distribution
µ. In this simple case, the result of Theorem 4.3 is nothing but the strong law of
large numbers. Moreover, fluctuations around the mean are given by the central
limit theorem and Donsker’s theorem.

4.3 Fluctuations of the stochastic gradient algorithm

The notations are the same as in the beginning of section 4.1. We still make
assumption 4.1. Let us define K and ε as in (2.8) and let

δ1 = min

(

1

Cp,µ,K
,
ρ(Kµ, B(a, r)c)

2p(2r)p−1

)

. (3.1)

We consider the time inhomogeneous M -valued Markov chain (2.11) in the par-
ticular case when

tk = min

(

δ

k
, δ1

)

, k ≥ 1 (3.2)

for some δ > 0. The particular sequence (tk)k≥1 defined by (3.2) satisfies (2.9) and
(2.10), so Theorem 4.3 holds true and the stochastic gradient algorithm (Xk)k≥0

converges a.s. and in L2 to the p-mean ep.
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In order to study the fluctuations around the p-mean ep, we define for n ≥ 1
the rescaled TepM -valued Markov chain (Y n

k )k≥0 by

Y n
k =

k√
n

exp−1
ep
Xk. (3.3)

We will prove convergence of the sequence of process (Y n
[nt])t≥0 to a non-homogeneous

diffusion process. The limit process is defined in the following proposition:

Proposition 4.5. Assume that Hp is C2 in a neighborhood of ep, and that δ >
C−1
p,µ,K . Define

Γ = E

[

gradep
Fp(·, P1) ⊗ gradep

Fp(·, P1)
]

and Gδ(t) the generator

Gδ(t)f(y) := 〈dyf, t−1(y − δ∇dHp(y, ·)♯)〉 +
δ2

2
Hessyf (Γ) (3.4)

where ∇dHp(y, ·)♯ denotes the dual vector of the linear form ∇dHp(y, ·).
There exists a unique inhomogeneous diffusion process (yδ(t))t>0 on TepM with

generator Gδ(t) and converging in probability to 0 as t→ 0+.
The process yδ is continuous, converges a.s. to 0 as t→ 0+ and has the following

integral representation:

yδ(t) =
d
∑

i=1

t1−δλi

∫ t

0
sδλi−1〈δσ dBs, ei〉ei, t ≥ 0, (3.5)

where Bt is a standard Brownian motion on TepM , σ ∈ End(TepM) satisfies
σσ∗ = Γ, (ei)1≤i≤d is an orthonormal basis diagonalizing the symmetric bilinear
form ∇dHp(ep) and (λi)1≤i≤d are the associated eigenvalues.

Note that the integral representation (3.5) implies that yδ is the centered Gaus-
sian process with covariance

E

[

yiδ(t1)y
j
δ(t2)

]

=
δ2Γ(e∗i ⊗ e∗j )

δ(λi + λj) − 1
t1−δλi
1 t

1−δλj

2 (t1 ∧ t2)δ(λi+λj)−1, (3.6)

where yiδ(t) = 〈yδ(t), ei〉, 1 ≤ i, j ≤ d and t1, t2 ≥ 0.

Proof. Fix ε > 0. Any diffusion process on [ε,∞) with generator Gδ(t) is solution
of a sde of the type

dyt =
1

t
Lδ(yt) dt + δσ dBt (3.7)

where Lδ(y) = y − δ∇dHp(y, ·)♯ and Bt and σ are as in Proposition 4.5. This sde
can be solved explicitely on [ε,∞). The symmetric endomorphism y 7→ ∇dHp(y, ·)♯
is diagonalisable in the orthonormal basis (ei)1≤i≤d with eigenvalues (λi)1≤i≤d. The
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endomorphism Lδ = id−δ∇dHp(e)(id, ·)♯ is also diagonalisable in this basis with

eigenvalues (1−δλi)1≤i≤d. The solution yt =

d
∑

i=1

yitei of (3.7) started at yε =

d
∑

i=1

yiεei

is given by

yt =

d
∑

i=1

(

yiεε
δλi−1 +

∫ t

ε
sδλi−1〈δσ dBs, ei〉

)

t1−δλiei, t ≥ ε. (3.8)

Now by definition of Cp,µ,K we clearly have

Cp,µ,K ≤ min
1≤i≤d

λi. (3.9)

So the condition δCp,µ,K > 1 implies that for all i, δλi − 1 > 0, and as ε→ 0,

∫ t

ε
sδλi−1〈δσ dBs, ei〉 →

∫ t

0
sδλi−1〈δσ dBs, ei〉 in probability. (3.10)

Assume that a continuous solution yt converging in probability to 0 as t → 0+

exists. Since yiεε
δλi−1 → 0 in probability as ε→ 0, we necessarily have using (3.10)

yt =
d
∑

i=1

t1−δλi

∫ t

0
sδλi−1〈δσ dBs, ei〉ei, t ≥ 0. (3.11)

Note yiδ is Gaussian with variance
tδ2Γ(e∗i ⊗ e∗i )

2δλi − 1
, so it converges in L2 to 0 as t→ 0.

Conversely, it is easy to check that equation (3.11) defines a solution to (3.7).
To prove the a.s. convergence to 0 we use the representation

∫ t

0
sδλi−1〈δσ dBs, ei〉 = Bi

ϕi(t)

where Bi
s is a Brownian motion and ϕi(t) =

δ2Γ(e∗i ⊗ e∗i )
2δλi − 1

t2δλi−1. Then by the law

of iterated logarithm

lim sup
t↓0

t1−δλiBi
ϕi(t)

≤ lim sup
t↓0

t1−δλi

√

2ϕi(t) ln ln
(

ϕ−1
i (t)

)

But for t small we have
√

2ϕi(t) ln ln
(

ϕ−1
i (t)

)

≤ tδλi−3/4

so
lim sup
t↓0

t1−δλiBi
ϕi(t)

≤ lim
t↓0

t1/4 = 0.

This proves a.s. convergence to 0. Continuity is easily checked using the integral
representation (3.11).
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Our main result on the fluctuations of the stochastic gradient algorithm is the
following:

Theorem 4.6. Assume that either ep does not belong to the support of µ or p ≥ 2.

Assume furthermore that δ > C−1
p,µ,K. The sequence of processes

(

Y n
[nt]

)

t≥0
weakly

converges in D((0,∞), TepM) to yδ.

Remark 4.7. The assumption on ep implies that Hp is of class C2 in a neigh-
bourhood of ep. In the case p > 1, in the “generic” situation for applications, µ
is a discrete measure and ep does not belong to its support. For p = 1 one has to
be more careful since if µ is equidistributed in a random set of points, then with
positive probability e1 belongs to the support of µ.

Remark 4.8. From section 4.1 we know that, when p ∈ (1, 2], the constant

Cp,µ,K = p(2r)p−2 (min (p− 1, 2αr cot (2αr)))

is explicit. The constraint δ > C−1
p,µ,K can easily be checked in this case.

Remark 4.9. In the case M = R
d, Y nk = k√

n
(Xk−ep) and the tangent space TepM

is identified to R
d. Theorem 4.6 holds and, in particular, when t = 1, we obtain a

central limit Theorem:
√
n(Xn − ep) converges as n → ∞ to a centered Gaussian

d-variate distribution (with covariance structure given by (3.6) with t1 = t2 = 1).
This is a central limit theorem: the fluctuations of the stochastic gradient algorithm
are of scale n−1/2 and asymptotically Gaussian.

Now let us introduce some notations needed in the proof of Theorem 4.6. Con-
sider the time homogeneous Markov chain (Znk )k≥0 with state space [0,∞) × TeM
defined by

Znk =

(

k

n
, Y n

k

)

. (3.12)

The first component has a deterministic evolution and will be denoted by tnk ; it
satisfies

tnk+1 = tnk +
1

n
, k ≥ 0. (3.13)

Let k0 be such that
δ

k0
< δ1. (3.14)

Using equations (2.11), (3.3) and (3.2), we have for k ≥ k0,

Y n
k+1 =

ntnk + 1√
n

exp−1
e

(

expexpe
1√
ntn

k
Y n

k

(

− δ

ntnk + 1
grad 1√

ntn
k
Y n

k
Fp(·, Pk+1)

))

.

(3.15)
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Consider the transition kernel Pn(z, dz′) on (0,∞)× TeM defined for z = (t, y)
by

Pn(z,A) =

P

[(

t+
1

n
,
nt+ 1√

n
exp−1

e

(

expexpe
1√
nt
y

(

− δ

nt+ 1
gradexpe

1√
nt
y Fp(·, P1)

)))

∈ A
]

(3.16)

where A ∈ B((0,∞) × TeM). Clearly this transition kernel drives the evolution of
the Markov chain (Znk )k≥k0 .

For the sake of clarity, we divide the proof of Theorem 4.6 into four lemmas.

Lemma 4.10. Assume that either p ≥ 2 or e does not belong to the support supp(µ)
of µ (note this implies that for all x ∈ supp(µ) the function Fp(·, x) is of class C2 in
a neighbourhood of e). Fix δ > 0. Let B be a bounded set in TeM and let 0 < ε < T .
We have for all C2 function f on TeM

n

(

f

(

nt+ 1√
n

exp−1
e

(

expexpe
1√
nt
y

(

− δ

nt+ 1
gradexpe

1√
nt
y Fp(·, x)

)))

− f(y)

)

=
〈

dyf,
y

t

〉

−
√
n〈dyf, δ grade Fp(·, x)〉 − δ∇dFp(·, x)

(

grady f,
y

t

)

+
δ2

2
Hessyf (grade Fp(·, x) ⊗ grade Fp(·, x)) +O

(

1√
n

)

(3.17)

uniformly in y ∈ B, x ∈ supp(µ), t ∈ [ε, T ].

Proof. Let x ∈ supp(µ), y ∈ TeM , u, v ∈ R sufficiently close to 0, and q =

expe

(uy

t

)

. For s ∈ [0, 1] denote by a 7→ c(a, s, u, v) the geodesic with endpoints

c(0, s, u, v) = e and

c(1, s, u, v) = expexpe(
uy
t )

(

−vs gradexpe(
uy
t ) Fp(·, x)

)

:

c(a, s, u, v) = expe

{

a exp−1
e

[

expexpe(
uy
t )

(

−sv gradexpe(
uy
t ) Fp(·, x)

)]}

.

This is a C2 function of (a, s, u, v) ∈ [0, 1]2 × (−η, η)2, η sufficiently small. It also

depends in a C2 way of x and y. Letting c(a, s) = c

(

a, s,
1√
n
,

δ

nt+ 1

)

, we have

exp−1
e

(

expexpe
1√
nt
y

(

− δ

nt+ 1
gradexpe

1√
nt
y Fp(·, x)

))

= ∂ac(0, 1).

So we need a Taylor expansion up to order n−1 of
nt+ 1√

n
∂ac(0, 1).
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We have c(a, s, 0, 1) = expe (−as grade Fp(·, x)) and this implies

∂2
s∂ac(0, s, 0, 1) = 0, so ∂2

s∂ac(0, s, u, 1) = O(u).

On the other hand the identities c(a, s, u, v) = c(a, sv, u, 1) yields ∂2
s∂ac(a, s, u, v) =

v2∂2
s∂ac(a, s, u, 1), so we obtain

∂2
s∂ac(0, s, u, v) = O(uv2)

and this yields
∂2
s∂ac(0, s) = O(n−5/2),

uniformly in s, x, y, t. But since

‖∂ac(0, 1) − ∂ac(0, 0) − ∂s∂ac(0, 0)‖ ≤ 1

2
sup
s∈[0,1]

‖∂2
s∂ac(0, s)‖

we only need to estimate ∂ac(0, 0) and ∂s∂ac(0, 0).
Denoting by J(a) the Jacobi field ∂sc(a, 0) we have

nt+ 1√
n

∂ac(0, 1) =
nt+ 1√

n
∂ac(0, 0) +

nt+ 1√
n

J̇(0) +O

(

1

n2

)

.

On the other hand

nt+ 1√
n

∂ac(0, 0) =
nt+ 1√

n

y√
nt

= y +
y

nt

so it remains to estimate J̇(0).
The Jacobi field a 7→ J(a, u, v) with endpoints J(0, u, v) = 0e and

J(1, u, v) = −v gradexpe(
uy
t ) Fp(·, x)

satisfies

∇2
aJ(a, u, v) = −R(J(a, u, v), ∂ac(a, 0, u, v))∂ac(a, 0, u, v) = O(u2v).

This implies that
∇2
aJ(a) = O(n−2).

Consequently, denoting by Px1,x2 : Tx1M → Tx2M the parallel transport along the
minimal geodesic from x1 to x2 (whenever it is unique) we have

Pc(1,0),eJ(1) = J(0) + J̇(0) +O(n−2) = J̇(0) +O(n−2). (3.18)

But we also have

Pc(1,0,u,v),eJ(1, u, v) = Pc(1,0,u,v),e

(

−v gradc(1,0,u,v) Fp(·, x)
)

= −v grade Fp(·, x) − v∇∂ac(0,0,u,v) grad· Fp(·, x) +O(vu2)

= −v grade Fp(·, x) − v∇dFp(·, x)
(uy

t
, ·
)♯

+O(vu2)
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where we used ∂ac(0, 0, u, v) = uy
t and for vector fields A,B on TM and a C2

function f1 on M

〈∇Ae grad f1, Be〉 = Ae〈grad f1, Be〉 − 〈grad f1,∇AeB〉
= Ae〈df1, Be〉 − 〈df1,∇AeB〉
= ∇df1(Ae, Be)

which implies

∇Ae grad f1 = ∇df1(Ae, ·)♯.

We obtain

Pc(1,0),eJ(1) = − δ

nt+ 1
grade Fp(·, x) −

δ√
n(nt+ 1)

∇dFp(·, x)
(y

t
, ·
)♯

+O(n−2).

Combining with (3.18) this gives

J̇(0) = − δ

nt+ 1
grade Fp(·, x) −

δ

nt+ 1
∇dFp(·, x)

(

y√
nt
, ·
)♯

+O

(

1

n2

)

.

So finally

nt+ 1√
n

∂ac(0, 1) = y +
y

nt
− δ√

n
grade Fp(·, x) − δ∇dFp(·, x)

( y

nt
, ·
)♯

+O
(

n−3/2
)

.

(3.19)
To get the final result we are left to make a Taylor expansion of f up to order 2.

Define the following quantities:

bn(z) = n

∫

{|z′−z|≤1}
(z′ − z)Pn(z, dz′) (3.20)

and

an(z) = n

∫

{|z′−z|≤1}
(z′ − z) ⊗ (z′ − z)Pn(z, dz′). (3.21)

The following property holds:

Lemma 4.11. Assume that either p ≥ 2 or e does not belong to the support supp(µ)

(1) For all R > 0 and ε > 0, there exists n0 such that for all n ≥ n0 and
z ∈ [ε, T ] ×B(0e, R), where B(0e, R) is the open ball in TeM centered at the
origin with radius R,

∫

1{|z′−z|>1} P
n(z, dz′) = 0. (3.22)
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(2) For all R > 0 and ε > 0,

lim
n→∞

sup
z∈[ε,T ]×B(0e,R)

|bn(z) − b(z)| = 0 (3.23)

with

b(z) =

(

1,
1

t
Lδ(y)

)

and Lδ(y) = y − δ∇dH(y, ·)♯. (3.24)

(3) For all R > 0 and ε > 0,

lim
n→∞

sup
z∈[ε,T ]×B(0e,R)

|an(z) − a(z)| = 0 (3.25)

with

a(z) = δ2diag(0,Γ) and Γ = E [grade Fp(·, P1) ⊗ grade Fp(·, P1)] . (3.26)

Proof. (1) We use the notation z = (t, y) and z′ = (t′, y′). We have

∫

1{|z′−z|>1} P
n(z, dz′)

=

∫

1{max(|t′−t|,|y′−y|)>1}P
n(z, dz′)

=

∫

1{max( 1
n
,|y′−y|)>1}P

n(z, dz′)

= P

[∣

∣

∣

∣

nt+ 1√
n

exp−1
e

(

expexpe
1√
nt
y

(

− δ

nt+ 1
gradexpe

1√
nt
y Fp(·, P1)

))

− y

∣

∣

∣

∣

> 1

]

.

On the other hand, since Fp(·, x) is of class C2 in a neighbourhood of e, we
have by (3.19)

∣

∣

∣

∣

nt+ 1√
n

exp−1
e

(

expexpe
1√
nt
y

(

− δ

nt+ 1
gradexpe

1√
nt
y Fp(·, P1)

))

− y

∣

∣

∣

∣

≤ Cδ√
nε

(3.27)
for some constant C > 0.

(2) Equation (3.22) implies that for n ≥ n0

bn(z)

= n

∫

(z′ − z)Pn(z, dz′)

= n

(

1

n
,E

[

nt+ 1√
n

exp−1
e

(

expexpe
y√
nt

(

− δ

nt+ 1
gradexpe

y√
nt
Fp(·, P1)

))]

− y

)

.
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We have by lemma 4.10

n

(

nt+ 1√
n

exp−1
e

(

expexpe
1√
nt
y

(

− δ

nt+ 1
gradexpe

1√
nt
y Fp(·, P1)

))

− y

)

=
1

t
y − δ

√
n grade Fp(·, P1) − δ∇dFp(·, P1)

(

1

t
y, ·
)♯

+O

(

1

n1/2

)

a.s. uniformly in n, and since

E
[

δ
√
n grade Fp(·, P1)

]

= 0,

this implies that

n

(

E

[

nt+ 1√
n

exp−1
e

(

expexpe
1√
nt
y

(

− δ

nt+ 1
gradexpe

1√
nt
y Fp(·, P1)

))]

− y

)

converges to

1

t
y − E

[

δ∇dFp(·, P1)

(

1

t
y, ·
)♯
]

=
1

t
y − δ∇dHp

(

1

t
y, ·
)♯

. (3.28)

Moreover the convergence is uniform in z ∈ [ε, T ]×B(0e, R), so this yields (3.23).

(3) In the same way, using lemma 4.10,

n

∫

(y′ − y) ⊗ (y′ − y)Pn(z, dz′)

=
1

n
E
[(

−
√
nδ grade Fp(·, P1)

)

⊗
(

−
√
nδ grade Fp(·, P1)

)]

+ o(1)

= δ2E [grade Fp(·, P1) ⊗ grade Fp(·, P1)] + o(1)

uniformly in z ∈ [ε, T ] ×B(0e, R), so this yields (3.25).

Lemma 4.12. Suppose that tn =
δ

n
for some δ > 0. For all δ > C−1

p,µ,K,

sup
n≥1

nE
[

ρ2(e,Xn)
]

<∞. (3.29)

Proof. First consider the case p ∈ [1, 2).

We know by (2.18) that there exists some constant C(β, r, p) such that

E
[

ρ2(e,Xk+1)
]

≤ E
[

ρ2(e,Xk)
]

exp (−Cp,µ,Ktk+1) + C(β, r, p)t2k+1. (3.30)
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From this (3.29) is a consequence of Lemma 0.0.1 (case α > 1) in [70]. We give the
proof for completeness. We deduce easily by induction that for all k ≥ k0,

E
[

ρ2(e,Xk)
]

≤ E
[

ρ2(e,Xk0)
]

exp



−Cp,µ,K
k
∑

j=k0+1

tj



+C(β, r, p)

k
∑

i=k0+1

t2i exp



−Cp,µ,K
k
∑

j=i+1

tj



 ,

(3.31)

where the convention
∑k

j=k+1 tj = 0 is used. With tn = δ
n , the following inequality

holds for all i ≥ k0 and k ≥ i:

k
∑

j=i+1

tj = δ

k
∑

j=i+1

1

j
≥ δ

∫ k+1

i+1

dt

t
≥ δ ln

k + 1

i+ 1
. (3.32)

Hence,

E
[

ρ2(e,Xk)
]

≤ E
[

ρ2(e,Xk0)
]

(

k0 + 1

k + 1

)δCp,µ,K

+
δ2C(β, r, p)

(k + 1)δCp,µ,K

k
∑

i=k0+1

(i+ 1)δCp,µ,K

i2
.

(3.33)

For δCp,µ,K > 1 we have as k → ∞

δ2C(β, r, p)

(k + 1)δCp,µ,K

k
∑

i=k0+1

(i+ 1)δCp,µ,K

i2
∼ δ2C(β, r, p)

(k + 1)δCp,µ,K

kδCp,µ,K−1

δCp,µ,K − 1
∼ δ2C(β, r, p)

δCp,µ,K − 1
k−1

(3.34)
and

E
[

ρ2(e,Xk0)
]

(

k0 + 1

k + 1

)δCp,µ,K

= o(k−1).

This implies that the sequence kE
[

ρ2(e,Xk)
]

is bounded.

Next consider the case p ≥ 2.

Now we have by (2.25) that

E [Hp(Xk+1) −Hp(e)] ≤ E [Hp(Xk) −Hp(e)] exp (−Cp,µ,Ktk+1) + C(β, r, p)t2k+1.
(3.35)

From this, arguing similarly, we obtain that the sequence kE [Hp(Xk) −Hp(e)] is
bounded. We conclude with (2.1).

Lemma 4.13. Assume δ > C−1
p,µ,K and that Hp is C2 in a neighbourhood of e. For

all 0 < ε < T , the sequence of processes
(

Y n
[nt]

)

ε≤t≤T
is tight in D([ε, T ],Rd).
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Proof. Denote by

(

Ỹ n
ε =

(

Y n[nt]

)

ε≤t≤T

)

n≥1

, the sequence of processes. We prove

that from any subsequence
(

Ỹ φ(n)
ε

)

n≥1
, we can extract a further subsequence

(

Ỹ ψ(n)
ε

)

n≥1
that weakly converges in D([ε, 1],Rd).

Let us first prove that
(

Ỹ φ(n)
ε (ε)

)

n≥1
is bounded in L2.

∥

∥

∥
Ỹ φ(n)
ε (ε)

∥

∥

∥

2

2
=

[φ(n)ε]2

φ(n)
E
[

ρ2(e,X[φ(n)ε])
]

≤ ε sup
n≥1

(

nE
[

ρ2(e,Xn)
])

and the last term is bounded by lemma 4.12.

Consequently
(

Ỹ φ(n)
ε (ε)

)

n≥1
is tight. So there is a subsequence

(

Ỹ ψ(n)
ε (ε)

)

n≥1
that weakly converges in TeM to the distribution νε. Thanks to Skorohod theorem
which allows to realize it as an a.s. convergence and to lemma 4.11 we can apply

Theorem 11.2.3 of [82], and we obtain that the sequence of processes
(

Ỹ ψ(n)
ε

)

n≥1

weakly converges to a diffusion (yt)ε≤t≤T with generator Gδ(t) given by (3.4) and
such that yε has law νε. This achieves the proof of lemma 4.13.

Proof of Theorem 4.6. Let Ỹ n =
(

Y n
[nt]

)

0≤t≤T
. It is sufficient to prove that

any subsequence of
(

Ỹ n
)

n≥1
has a further subsequence which converges in law to

(yδ(t))0≤t≤T . So let
(

Ỹ φ(n)
)

n≥1
a subsequence. By lemma 4.13 with ε = 1/m

there exists a subsequence which converges in law on [1/m, T ]. Then we extract a
sequence indexed by m of subsequence and take the diagonal subsequence Ỹ η(n).
This subsequence converges in D((0, T ],Rd) to (y′(t))t∈(0,T ]. On the other hand, as
in the proof of lemma 4.13, we have

‖Ỹ η(n)(t)‖2
2 ≤ Ct

for some C > 0. So ‖Ỹ η(n)(t)‖2
2 → 0 as t → 0, which in turn implies ‖y′(t)‖2

2 → 0
as t → 0. The unicity statement in Proposition 4.5 implies that (y′(t))t∈(0,T ] and
(yδ(t))t∈(0,T ] are equal in law. This achieves the proof. �

4.4 Simulations of the stochastic algorithms

4.4.1 A non uniform measure on the unit square in the plane

Here M is the Euclidean plane R
2 and µ is the renormalized restriction to the square

[0, 4] × [0, 4] of an exponential law on [0,∞) × [0,∞). The red path represents one
trajectory of the inhomogeneous Markov chain (Xk)k≥0 corresponding to p = 1,
with linear interpolation between the different steps. The red point is e1. Black
circles represent the values of (Pk)k≥1.
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4.4.2 A non uniform measure on the sphere S2
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Here M is the embedded sphere S2 and µ is a non uniform law. Again the red path
represents one trajectory of the inhomogeneous Markov chain (Xk)k≥0 correspond-
ing to p = 1, with linear interpolation between the different steps. The red point is
e1. Black circles represent the values of (Pk)k≥1. One can observe that even if the
convexity assumptions are not fulfilled, convergence still holds.

4.4.3 Another non uniform measure on the unit square in the plane
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Here µ is given by the density in the top figure. In the figure at the bottom, the
red path represents one trajectory of the inhomogeneous Markov chain (Xk)k≥0

corresponding to p = 1, with linear interpolation between the different steps. The
red point is e1. Black circles represent the values of (Pk)k≥1.

4.4.4 Medians in the Poincaré disc
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In the above two figures, M is the Poincaré disc, the blue points are data points and
the red path represents one trajectory of the inhomogeneous Markov chain (Xk)k≥0

corresponding to p = 1, with linear interpolation between the different steps. The
green points are medians computed by the subgradient method developed in Chap-
ter 2.

4.5 Computing p-means by gradient descent

In chapter 2, a subgradient algorithm has been given to compute medians, so that
assume p > 1 in this section. We begin with some notations.

Notation 4.14. Let x ∈ B̄(a, r), we write

γx,p(t) = expx(−t gradxHp), t ≥ 0;

and
tx,p = sup{t ∈ [0, 2r] : γx,p(t) ∈ B̄(a, r)}.

The main result of this section is the following theorem.

Theorem 4.15. Let x0 ∈ B̄(a, r) and for k ≥ 0 define

xk+1 = expxk
(−tk gradxk

Hp),

where tk ∈ (0, txk ,p] such that

lim
k→∞

tk = 0 and
∞
∑

k=0

tk = +∞.

Then xk −→ ep, when k −→ ∞.

Remark 4.16. One should be aware that since tk ∈ (0, txk ,p], the sequence (xk)k
are always contained in the convex ball B̄(a, ρ).

Remark 4.17. The stepsizes (tk)k in the theorem always exist because inf{tx,p :
x ∈ B̄(a, r)} > 0 for fixed p > 1. To see this, it suffices to note that tx,p is continuous
in x and tx,p > 0 for x ∈ ∂B̄(a, r).

Proof. We firstly consider the case when 1 < p < 2. Observe that for x ∈ B̄(a, ρ)
and t ∈ [0, 2r],

‖γ̇x,p(t)‖ = ‖ gradxHp‖ =

∥

∥

∥

∥

∫

M
−pρp−1(x, y)n(x, y)µ(dy)

∥

∥

∥

∥

≤ p(2r)p−1.

It follows that, as in the proof of Theorem 4.3,

d2

dt2

[

1

2
ρ2(γx,p(t), ep)

]

≤ p2(2r)2p−1β coth(2βr) := C(β, r, p).
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Hence by Taylor’s formula,

1

2
ρ2(xk+1, ep)

=
1

2
ρ2(γxk,p(0), ep) +

d

dt

[

1

2
ρ2(γxk,p(t), ep)

]

t=0

tk +
1

2

d2

dt2

[

1

2
ρ2(γxk,p(t), ep)

]

t=ξ

t2k

≤1

2
ρ2(xk, ep) +

〈

γ̇xk,p(0) , gradxk

1

2
ρ2(· , ep)

〉

tk +
C(β, r, p)

2
t2k

≤1

2
ρ2(xk, ep) + 〈 gradxk

Hp , exp−1
xk
ep 〉tk +

C(β, r, p)

2
t2k.

By the convexity of Hp(x) and Proposition 4.2,

〈 gradxk
Hp , exp−1

xk
ep 〉 ≤ Hp(ep) −Hp(xk) ≤ −Cp,µ,K

2
ρ2(xk, ep).

Hence we get

ρ2(xk+1, ep) ≤ (1 − Cp,µ,Ktk)ρ
2(xk, ep) + C(β, r, p)t2k. (5.36)

Now it suffices to use the method in the proof of Proposition 2.27 to get ρ2(xk, ep) −→
0.

For the case when p ≥ 2, similarly we have

d2

dt2
Hp(γx,p(t)) ≤ p3(2r)3p−4(2βr coth(2βr) + p− 2) =: 2C(β, r, p).

Then by Taylor’s formula and Proposition 4.2,

Hp(xk+1) =Hp(γxk ,p(tk))

=Hp(γxk ,p(0)) +
d

dt

∣

∣

∣

∣

t=0

Hp(γxk,p(t))tk +
1

2

d2

dt2

∣

∣

∣

∣

t=ξ

Hp(γxk ,p(t))t
2
k

≤Hp(xk) + 〈 γ̇xk,p(0) , gradxk
Hp 〉tk + C(β, r, p)t2k

=Hp(xk) − ‖ gradxk
Hp‖2tk + C(β, r, p)t2k

=Hp(xk) − Cp,µ,K(Hp(xk) −Hp(ep))tk.+C(β, r, p)t2k.

Hence we get

Hp(xk+1) −Hp(ep) ≤ (1 − Cp,µ,Ktk)(Hp(xk) −Hp(ep)) + C(β, r, p)t2k. (5.37)

As in the case when 1 < p < 2, the method of proving Proposition 2.27 yields
Hp(xk) −→ Hp(ep). This completes the proof of the theorem.

The question of the choice of stepsizes in Theorem 4.15 is answered by the
following proposition.
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Proposition 4.18. For every x ∈ B̄(a, r) the following estimation holds:

tx,p ≥
pεp+1

πC(β, r, p) + pεp
,

where C(β, r, p) = p2(2r)2p−1β coth(2βr).

Proof. Let ε < π/(2α) in (2.8) and x ∈ B̄(a, r) \ B̄(a, r − ε). Observe that Lemma
2.11 still holds even if p > 2, hence the same method as that in the proof of Lemma
2.24 and the inequalities: sinx ≤ x for x ≥ 0, sinx ≥ 2x/π for x ∈ [0, π/2] and
ρ(x, a) ≥ r − ε, yield

tx,p ≥
pεpρ(x, a)

C(β, r, p)

sin(α(ρ(x, a) − (r − ε)))

sin(α(ρ(x, a) + (r − ε)))
≥ pεp

πC(β, r, p)
(ρ(x, a) − (r − ε)).

On the other hand, tx,p ≥ r − ρ(x, a), it follows that

tx,p ≥ max

{

r − ρ(x, a),
pεp

πC(β, r, p)
(ρ(x, a) − (r − ε))

}

.

Then the method in the proof of Lemma 2.25 yields the desired result.

Now we get a practically useful version of Theorem 4.15:

Theorem 4.19. Let (ak)k be a sequence in (0, 1] such that

lim
k→∞

ak = 0 and

∞
∑

k=0

ak = +∞.

Then we can choose

tk =
pεp+1ak

πp2(2r)2p−1β coth(2βr) + pεp

in Theorem 4.15 and the corresponding sequence (xk)k converges to ep.

The following proposition gives error estimations of the gradient descent algo-
rithms.

Proposition 4.20. Assume that tk < C−1
p,µ,K for every k in Theorem 4.15, then the

following error estimations hold:
i) if 1 < p < 2, then for k ≥ 1,

ρ2(xk, ep) ≤ 4r2
k−1
∏

i=0

(1 − Cp,µ,Kti)

+ C(β, r, p)

( k−1
∑

j=1

t2j−1

k−1
∏

i=j

(1 − Cp,µ,Kti) + t2k−1

)

:= bk;
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ii) if p ≥ 2, then for k ≥ 1,

Hp(xk) −Hp(ep) ≤ (2r)p
k−1
∏

i=0

(1 −Cp,µ,Kti)

+C(β, r, p)

( k−1
∑

j=1

t2j−1

k−1
∏

i=j

(1 − Cp,µ,Kti) + t2k−1

)

:= ck,

where the constant

C(β, r, p) =

{

p2(2r)2p−1β coth(2βr), if 1 < p < 2;

p3(2r)3p−4 (2βr coth(2βr) + p− 2) , if p ≥ 2.

Moreover, the sequences (bk)k and (ck)k both tend to zero.

Proof. It suffices to use (5.36), (5.37) and the method in the proof of Proposition
2.27.

We end this chapter by showing that if (tk)k is chosen to be the harmonic series,
then the rate of convergence of the gradient descent algorithms are sublinear.

Proposition 4.21. If we choose tk = t/(k+1) with some constant t > 0 in Theorem
4.15, then the following estimations hold:
i) if 1 < p < 2, then for k ≥ 1,

ρ2(xk, ep) ≤



















































1

(k + 1)θ

(

4r2 +
2θ(2 − θ)C(β, r, p)t2

1 − θ

)

, if 0 < θ < 1,

1 + ln k

k
C(β, r, p)t2, if θ = 1,

1

(θ − 1)(k + 1)

(

C(β, r, p)t2 +
4r2(θ − 1) − C(β, r, p)t2

(k + 1)θ−1

)

, if θ > 1,

ii) if p ≥ 2, then for k ≥ 1,

Hp(xk)−Hp(ep) ≤



















































1

(k + 1)θ

(

(2r)p +
2θ(2 − θ)C(β, r, p)t2

1 − θ

)

, if 0 < θ < 1,

1 + ln k

k
C(β, r, p)t2, if θ = 1,

1

(θ − 1)(k + 1)

(

C(β, r, p)t2 +
(2r)p(θ − 1) − C(β, r, p)t2

(k + 1)θ−1

)

, if θ > 1,

where θ = Cp,µ,Kt.

Proof. It suffices to use (5.36), (5.37) and Lemma 2.28.





Chapter 5

Riemannian medians as

solutions to fixed point

problems

Abstract

We show that, under some conditions, Riemannian medians can be interpreted as
solutions to fixed point problems. It is also shown that the associated iterated
sequences converge to the medians. The main results of this chapter generalize
those of [87], in which all the results are proved in Euclidean spaces.

5.1 Introduction

The framework of this chapter is almost the same as that of Chapter 2, except that
we do not need lower bounds of sectional curvatures to obtain the main results. For
the reasons of integrality and convenience, we recall this framework in the paragraph
below.

Let M be a complete Riemannian manifold with Riemannian metric 〈 , 〉 and
Riemannian distance d. We fix an open geodesic ball

B(a, ρ) = {x ∈M : d(x, a) < ρ}

in M centered at a with a finite radius ρ. Let ∆ be an upper bound of sectional
curvaturesK in B̄(a, ρ). The injectivity radius of B̄(a, ρ) is denoted by inj (B̄(a, ρ)).
Furthermore, we assume that the radius of the ball verifies

ρ < min
{ π

4
√

∆
,

inj (B̄(a, ρ))

2

}

, (1.1)

where if ∆ ≤ 0, then π/(4
√

∆) is interpreted as +∞. Hence B̄(a, ρ) is convex.
Moreover, the geodesics in B̄(a, ρ) vary smoothly with their endpoints.
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In view of the importance of some properties of Jacobi fields in the following,
we give them here.

Let I ⊂ R be an interval, γ : I −→ B̄(a, ρ) be a geodesic and p ∈ B̄(a, ρ).
Consider a family of geodesics:

cp(s, t) = expp(s exp−1
p γ(t)), (s, t) ∈ [0, 1] × I

The two partial derivatives of cp(s, t) are denoted by

c′p(s, t) =
d

ds
cp(s, t) and ċp(s, t) =

d

dt
cp(s, t).

Observe that for t ∈ I fixed, the vector field s 7−→ c′p(s, t) is the speed of the geodesic

s 7−→ cp(s, t) from p to γ(t), with c′p(1, t) = − exp−1
γ(t) p and that Jp(s) = ċp(s, t) is

a Jacobi field along the same geodesic with Jp(0) = 0, Jp(1) = γ̇(t). Moreover, it is
well known that

d

dt

(

1

2
d2(γ(t), p)

)

= 〈 γ̇(t), − exp−1
γ(t) p 〉,

d2

dt2

(

1

2
d2(γ(t), p)

)

= 〈Jp(1), J ′
p(1) 〉.

If γ(t) 6= p, then we also have

d

dt
d(γ(t), p) =

〈 γ̇(t), − exp−1
γ(t) p 〉

d(γ(t), p)
,

d2

dt2
d(γ(t), p) =

〈Jnor
p (1), J ′

p
nor(1) 〉

d(γ(t), p)
,

where Jnor
p (1) and J ′

p
nor(1) are the normal components of Jp(1) and J ′

p(1) with
respect to the geodesic s −→ cp(s, t) at s = 1.

With the above notations, we have the following estimations, which can be found
in [53]. Remember that, as in Chapter 2, for t, κ ∈ R,

Sκ(t) =











sin(
√
κ t)/

√
κ, if κ > 0;

t, if κ = 0;

sinh(
√
−κ t)/

√
−κ, if κ < 0.

Proposition 5.1. The following estimations hold:

〈Jp(1), J ′
p(1) 〉 ≥ C(ρ,∆)|Jp(1)|2,

〈Jnor
p (1), J ′

p
nor(1) 〉 ≥ C(ρ,∆)|Jnor

p (1)|2,

where the constant

C(ρ,∆) = min

(

1, 2ρ
S′

∆(2ρ)

S∆(2ρ)

)

> 0.
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5.2 Riemannian medians as fixed points

As in Chapter 2, let µ be a probability measure whose support is contained in the
open ball B(a, ρ). Define

f : B̄(a, ρ) −→ R+ , x 7−→
∫

M
d(x, p)µ(dp).

The set of all the medians of µ, or equivalently, the set of all the minimum points
of f , is denoted by Mµ. Proposition 2.7 yields that Mµ is contained in the open
ball B(a, ρ). Moreover, for every x ∈ B(a, ρ), we write

H(x) =

∫

M\{x}

− exp−1
x p

d(x, p)
µ(dp).

In what follows, we shall always assume that the following assumption is satisfied.

Assumption 5.2. The probability measure µ verifies that for every x in the support
of µ,

∫

M\{x}

1

d(x, p)
µ(dp) <∞. (2.2)

Note that, if x is not in the support of µ, then (2.2) is trivially true.
The following type of functions are important in the sequel. For every x in the

open ball B(a, ρ), we define

hx : B̄(a, ρ) −→ R+, y 7−→ 1

2

∫

M\{x}

d2(y, p)

d(x, p)
µ(dp) + µ{x}d(y, x).

Observe that hx is continuous, strictly convex and for y 6= x,

gradhx(y) =

∫

M\{x}

− exp−1
y p

d(x, p)
µ(dp) + µ{x}

− exp−1
y x

d(y, x)
.

Proposition 5.3. For every x ∈ B(a, ρ), hx has a unique minimum point, which
is denoted by T (x).

Proof. Let T (x) be a minimum point of hx. If T (x) = x, then one trivially has
T (x) ∈ B(a, ρ). If T (x) 6= x, then gradhx(y) is pointing outside of the ball B(a, ρ)
for y ∈ ∂B(a, ρ), hence we have necessarily T (x) ∈ B(a, ρ). Uniqueness is trivial
since hx is strictly convex.

The following lemma gives the right derivatives of hx along geodesics.

Lemma 5.4. Let x ∈ B(a, ρ) and γ : [0, 1] → B(a, ρ) a geodesic such that γ(0) = x,
then we have

d

dt
hx(γ(t))

∣

∣

∣

∣

t=0+

= 〈 γ̇(0), H(x) 〉 + µ{x}|γ̇|.
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Proof. It suffices to note that,

grady

(

1

2

∫

M\{x}

d2(y, p)

d(x, p)
µ(dp)

)∣

∣

∣

∣

y=x

= H(x).

The following theorem is the main result of this section, which says that the
medians of µ coincide with the fixed points of the mapping T . This generalizes a
similar result in [87] from Euclidean spaces to Riemannian manifolds.

Theorem 5.5. The medians of µ are characterized by

Mµ = {x ∈ B(a, ρ) : T (x) = x}.

Proof. (⊂) Let x ∈ Mµ, y ∈ B̄(a, ρ) and γ(t) : [0, 1] → B̄(a, ρ) be a geodesic such
that γ(0) = x and γ(1) = y. Then by Theorem 2.5, Lemma 5.4 and Cauchy-
Schwartz inequality,

d

dt
hx(γ(t))

∣

∣

∣

∣

t=0+

= 〈 γ̇(0), H(x) 〉 + µ{x}|γ̇| ≥ |γ̇|(−|H(x)| + µ{x}) ≥ 0.

Since hx ◦ γ is convex, we have

hx(y) − hx(x) ≥
d

dt
hx(γ(t))

∣

∣

∣

∣

t=0+

≥ 0,

this means that x = T (x).
(⊃) IfH(x) = 0, then Theorem 2.5 yields that x ∈ Mµ. Now assume that H(x) 6= 0.
Choose a geodesic

γ(t) = expx

(

− t
H(x)

|H(x)|

)

, t ∈ [0, ε].

By the definition of T (x), t = 0 is the minimum point of hx ◦ γ, hence

d

dt
hx(γ(t))

∣

∣

∣

∣

t=0+

≥ 0.

On the other hand, by Lemma 5.4,

d

dt
hx(γ(t))

∣

∣

∣

∣

t=0+

=

〈

− H(x)

|H(x)| , H(x)

〉

+ µ{x} = −|H(x)| + µ{x}.

Hence we get |H(x)| ≤ µ{x}, that is to say, x ∈ Mµ.
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5.3 Approximating Riemannian medians by iteration

The following proposition says that T diminishes the value of f . This is the reason
why we add the penalty term µ{x}d(y, x) in the definition of hx.

Proposition 5.6. Let x ∈ B(a, ρ), then

hx(T (x)) ≥ f(T (x)) − 1

2
f(x).

Particularly, if T (x) 6= x, then

f(T (x)) < f(x).

Proof. To show the first inequality,

hx(y) =
1

2

∫

M\{x}

d2(y, p)

d(x, p)
µ(dp) + µ{x}d(y, x)

=
1

2

∫

M\{x}

(d(y, p) − d(x, p) + d(x, p))2

d(x, p)
µ(dp) + µ{x}d(y, x)

=
1

2

∫

M\{x}

(d(y, p) − d(x, p))2

d(x, p)
µ(dp) + f(y) − f(x) +

1

2
f(x)

=
1

2

∫

M\{x}

(d(y, p) − d(x, p))2

d(x, p)
µ(dp) + f(y) − 1

2
f(x)

≥ f(y) − 1

2
f(x).

Taking y = T (x), we get the first inequality. Now assume that x 6= T (x). To show
the second one, it suffices to note that Proposition 5.3 yields hx(T (x)) < hx(x) =
1
2f(x). The proof is complete.

Here is a useful observation: if T (x) 6= x, then

gradhx(T (x)) =

∫

M\{x}

− exp−1
T (x) p

d(x, p)
µ(dp) + µ{x}

− exp−1
T (x) x

d(T (x), x)
= 0

We need the following estimation on d(y, T (x)) for x and y in B(a, ρ).

Proposition 5.7. Let x, y ∈ B(a, ρ) with T (x), y 6= x. Then the following estima-
tion holds:

d(y, T (x)) ≤ 1

C(ρ,∆)

| grad hx(y)|
∫

M\{x}
1

d(x,p)µ(dp)
.



106 CHAPTER 5. RIEMANNIAN MEDIANS AND FIXED POINTS

Proof. Let γ : [0, 1] → B(a, ρ) be a geodesic such thatγ(0) = T (x) and γ(1) = y. If
x /∈ Imγ, consider gradhx along γ:

V (t) =

∫

M\{x}

− exp−1
γ(t) p

d(x, p)
µ(dp) + µ{x}

− exp−1
γ(t) x

d(γ(t), x)
.

Since V (0) = gradhx(T (x)) = 0,

〈V (1), γ̇(1) 〉 =

∫ 1

0

d

dt
〈V (t), γ̇(t) 〉dt.

By Proposition 5.1,

∫ 1

0

d

dt
〈V (t), γ̇(t) 〉dt =

∫ 1

0

〈

DV

dt
, γ̇(t)

〉

dt

=

∫

M\{x}

〈J ′
p(1), Jp(1) 〉
d(x, p)

µ(dp) + µ{x}〈J
′nor
x (1), Jnor

x (1) 〉
d(γ(t), x)

≥ C(ρ,∆)d2(y, T (x))

∫

M\{x}

1

d(x, p)
µ(dp).

Note that V (1) = gradhx(y), then

〈V (1), γ̇(1) 〉 ≤ |V (1)| |γ̇(1)| = |gradhx(y)|d(y, T (x)).

These two inequalities give the result.

If x ∈ Imγ, assume that x = γ(t0) with t0 ∈ (0, 1), consider the following two
vector fields:

V1(t) =

∫

M\{x}

− exp−1
γ(t) p

d(x, p)
µ(dp) − µ{x} γ̇(t)

d(y, T (x))
t ∈ [0, t0],

V2(t) =

∫

M\{x}

− exp−1
γ(t) p

d(x, p)
µ(dp) + µ{x} γ̇(t)

d(y, T (x))
t ∈ [t0, 1].

Since V1(0) = gradhx(T (x)) = 0,

〈V1(t0), γ̇(t0) 〉 =

∫ t0

0

d

dt
〈V1(t), γ̇(t) 〉dt

=

∫ t0

0

〈

DV1

dt
, γ̇(t)

〉

dt

=

∫ t0

0
dt

∫

M\{x}

〈J ′
p(1), Jp(1) 〉
d(x, p)

µ(dp).
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Moreover, one also has

〈V2(1), γ̇(1) 〉 = 〈V2(t0), γ̇(t0) 〉 +

∫ 1

t0

d

dt
〈V2(t), γ̇(t) 〉dt

= 〈V2(t0), γ̇(t0) 〉 +

∫ 1

t0

dt

∫

M\{x}

〈J ′
p(1), Jp(1) 〉
d(x, p)

µ(dp).

Summing up the above two identities we get

〈V2(1), γ̇(1) 〉 = 2µ{x}d(y, T (x)) +

∫ 1

0
dt

∫

M\{x}

〈J ′
p(1), Jp(1) 〉
d(x, p)

µ(dp).

By Cauchy-Schwartz inequality and Proposition 5.1,

〈V2(1), γ̇(1) 〉 = 〈 gradhx(y), γ̇(1) 〉 ≤ |gradhx(y)|d(y, T (x)),
∫

M\{x}

〈J ′
p(1), Jp(1) 〉
d(x, p)

µ(dp) ≥ C(ρ,∆)d2(y, T (x))

∫

M\{x}

1

d(x, p)
µ(dp).

Since 2µ{x}d(y, T (x)) ≥ 0, the proof is complete.

We also need the following estimation.

Proposition 5.8. Let x ∈ B(a, ρ), then

1

2
d2(x, T (x)) ≤ 1

C(ρ,∆)

f(x) − f(T (x))
∫

M\{x}
1

d(x,p)µ(dp)
.

Proof. Let γ : [0, 1] → M be a geodesic such that γ(0) = x and γ(1) = T (x), then
one has

hx(γ(t)) =
1

2

∫

M\{x}

d2(γ(t), p)

d(x, p)
µ(dp) + µ{x}d(x, T (x))t.

By Proposition 5.1,

d2

dt2
hx(γ(t)) =

∫

M\{x}

〈Jp(1), J ′
p(1) 〉

d(x, p)
µ(dp)

≥ C(ρ,∆)d2(x, T (x))

∫

M\{x}

1

d(x, p)
µ(dp).

On the other hand, since T (x) is the minimum point of hx, the second order Taylor’s
formula gives

hx(γ(0)) = hx(γ(1)) +
1

2

d2

dt2
hx(γ(t))

∣

∣

t=ξ
, ξ ∈ (0, 1).
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Hence

1

2
f(x) − hx(T (x)) =

1

2

d2

dt2
hx(γ(t))

∣

∣

t=ξ

≥ 1

2
C(ρ,∆)d2(x, T (x))

∫

M\{x}

1

d(x, p)
µ(dp).

Now it suffices to use Proposition 5.6 to get

1

2
f(x) − hx(T (x)) ≤ f(x) − f(T (x)).

The proof is complete.

In what follows, we assume further that the following assumption is fulfilled.

Assumption 5.9. The probability measure µ verifies:

1) µ is not a Dirac measure;

2) µ has a unique median m;

3) for every convergent sequence (yn)n in B(a, ρ),

lim
µA→0

lim sup
n→∞

∫

A\{yn}

1

d(yn, p)
µ(dp) = 0;

4) the atoms of µ are isolated.

Remark 5.10. It is easily seen that if N ≥ 3,
∑N

k=1 ωk = 1, ωk > 0 and p1, . . . , pN
are distinct points in B(a, ρ) which are not contained in a single geodesic, then the
probability measure

µ =

N
∑

k=1

ωkδpk
,

satisfies Assumption 5.2 and Assumption 5.9.

We fix a point x0 ∈ B(a, ρ) and define a sequence (xn)n by xn+1 = T (xn), n ≥ 0.
By Lemma 5.3, this sequence is contained in B(a, ρ), thus bounded. We also assume
that xn 6= m for every n. Then by Theorem 5.5 and Proposition 5.6, (xn)n are
distinct since (f(xn))n is strictly decreasing. Observe that for x ∈ B(a, ρ),

∫

M\{x}

1

d(x, p)
µ(dp) ≥ L,

where L = (1 − sup{µ{y} : y ∈ B(a, ρ)})/(2ρ) > 0.
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Lemma 5.11. For every subsequence (xnk
)k of (xn)n, one has

d(xnk
, T (xnk

)) −→ 0, when k −→ ∞.

Particularly, if xnk
−→ x∗, then T (xnk

) −→ x∗.

Proof. By Proposition 5.8,

d2(xnk
, T (xnk

)) ≤ 2(f(xnk
) − f(T (xnk

)))

LC(ρ,∆)
=

2(f(xnk
) − f(xnk+1)

LC(ρ,∆)
−→ 0.

The following property of the sequence (xn)n is of fundamental importance.

Proposition 5.12. Let (xnk
)k be a subsequence of (xn)n such that xnk

−→ x∗,
then one has

lim
k→∞

d(T (xnk
), x∗)

d(xnk
, x∗)

µ{x∗} = |H(x∗)|.

Proof. Firstly, since f(xn) is strictly decreasing, xnk
6= x∗ for every k. Hence the

expression on the left is well defined. Note that, by Lemma 5.11, T (xnk
) −→ x∗.

Since T (xnk
) 6= xnk

, we get

gradhxnk
(T (xnk

)) =

∫

M\{xnk
}

− exp−1
T (xnk

) p

d(xnk
, p)

µ(dp) + µ{xnk
}
− exp−1

T (xnk
) xnk

d(T (xnk
), xnk

)
= 0,

hence

exp−1
T (xnk

) x∗

d(xnk
, x∗)

µ{x∗} =

∫

M\{xnk
,x∗}

− exp−1
T (xnk

) p

d(xnk
, p)

µ(dp) + µ{xnk
}
− exp−1

T (xnk
) xnk

d(T (xnk
), xnk

)
.

Taking the norm, one gets

d(T (xnk
), x∗)

d(xnk
, x∗)

µ{x∗} =

∣

∣

∣

∣

∫

M\{xnk
,x∗}

− exp−1
T (xnk

) p

d(xnk
, p)

µ(dp) + µ{xnk
}
− exp−1

T (xnk
) xnk

d(T (xnk
), xnk

)

∣

∣

∣

∣

.

We shall show that

∣

∣

∣

∣

∫

M\{xnk
,x∗}

− exp−1
T (xnk

) p

d(xnk
, p)

µ(dp) + µ{xnk
}
− exp−1

T (xnk
) xnk

d(T (xnk
), xnk

)

∣

∣

∣

∣

−→ |H(x∗)|.

Note that
∣

∣

∣

∣

µ{xnk
}
− exp−1

T (xnk
)
xnk

d(T (xnk
), xnk

)

∣

∣

∣

∣

= µ{xnk
} −→ 0,
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since the (xnk
)k are distinct and the series

∑

k µ{xnk
} converges. Thus it suffices

to show that
∣

∣

∣

∣

∫

M\{xnk
,x∗}

− exp−1
T (xnk

) p

d(xnk
, p)

µ(dp)

∣

∣

∣

∣

−→ |H(x∗)|

To this end, we will show that the limit can be taken into the integral of
∫

M\{xnk
,x∗}

d(T (xnk
), p)

d(xnk
, p)

µ(dp).

Then it suffices to show that the sequence of functions
(

p 7−→ d(T (xnk
), p)

d(xnk
, p)

1{p 6=xnk
}

)

k

is uniformly integrable. In fact, by Proposition 5.7

d(T (xnk
), p) ≤

∣

∣gradhxnk
(p)
∣

∣

C(ρ,∆)
∫

M\{xnk
}

1
d(xnk

,p)µ(dp)
.

However,

|gradhxnk
(p)| =

∣

∣

∣

∣

∫

M\{xnk
}

− exp−1
p q

d(xnk
, q)

µ(dq) + µ{xnk
}
− exp−1

p xnk

d(xnk
, p)

∣

∣

∣

∣

≤
∫

M\{xnk
}

d(p, q)

d(xnk
, q)

µ(dq) + µ{xnk
}

≤
∫

M\{xnk
}

d(p, xnk
) + d(xnk

, q)

d(xnk
, q)

µ(dq) + µ{xnk
}

= d(xnk
, p)

∫

M\{xnk
}

1

d(xnk
, q)

µ(dq) + 1

Thus for p 6= xnk
,

d(T (xnk
), p)

d(xnk
, p)

≤ 1

C(ρ,∆)

(

1

d(xnk
, p)

/
∫

M\{xnk
}

1

d(xnk
, p)

µ(dp) + 1

)

.

It follows that
∫

M\{xnk
}

d(T (xnk
), p)

d(xnk
, p)

µ(dp) ≤ 2

C(ρ,∆)
.

Hence the sequence is bounded in L1(µ). On the other hand,

d(T (xnk
), p)

d(xnk
, p)

1{p 6=xnk
} ≤

1

C(ρ,∆)

(

L−1

d(xnk
, p)

1{p 6=xnk
} + 1

)

.

The condition 3) in Assumption 5.9 implies that the right hand side has equi-
absolutely continuous integrals, hence the same holds for the left hand side. The
uniform integrability is proved and this completes the proof.
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The lemma below is a final preparation for the main result of this section.

Lemma 5.13. Let x∗ be an accumulating point of (xn)n such that µ{x∗} > 0. Then
it is the unique accumulating point of (xn)n. As a result, xn −→ x∗, when n −→ ∞.

Proof. By Proposition 5.12 and Theorem 2.5, the accumulating points of (xn)n are
contained in the set {m} ∪ {x ∈ B(a, r) : µ{x} > 0}. Since the atoms of µ are
isolated, there exists δ > 0 such that x∗ is the unique accumulating point of (xn)n
in B(x∗, δ). If x∗ is not the unique accumulating point of (xn)n, we can choose
a subsequence (xnk

)k of (xn)n such that d(xnk
, x∗) < δ and d(T (xnk

), x∗) > δ.
Since x∗ is the unique accumulating point of (xn)n in B(x∗, δ), one has necessarily
xnk

→ x∗. It follows that

lim
k→∞

d(T (xnk
), x∗)

d(xnk
, x∗)

≥ lim
k→∞

δ

d(xnk
, x∗)

= ∞.

This contradicts Proposition 5.12, the proof is complete.

Now we are ready to give the main result of this section, which generalizes the
convergence result of [87] from Euclidean spaces to Riemannian manifolds. Note
that for a bounded sequence (an)n of positive numbers, one always has

lim inf
n→∞

an+1

an
≤ 1.

Theorem 5.14. Let x0 ∈ B(a, ρ), define a sequence (xn)n by

xn+1 = T (xn), n ≥ 0.

Then xn −→ m.

Proof. If there exists some N such that xN = m, then Theorem 5.5 yields that
xn = m for every n ≥ N , hence the assertion is true. Now assume that xn 6= m for
all n. Let x∗ be an accumulating point of (xn)n, then there exists a subsequence
(xnk

)k of (xn)n which converges to x∗. If µ{x∗} = 0, by Proposition 5.12, x∗ =
m. If µ{x∗} > 0, then by Lemma 5.13, the sequence (xn)n converges to x∗. By
Proposition 5.12,

|H(x∗)|
µ{x∗}

= lim
n→∞

d(xn+1, x∗)
d(xn, x∗)

≤ 1.

Then Theorem 2.5 yields that x∗ = m. Now we have proved that (xn)n has a unique
accumulating point m, since it is also bounded, it must converges to m. The proof
is complete.

Remark 5.15. Let N ≥ 3,
∑N

k=1 ωk = 1, ωk > 0 and p1, . . . , pN are distinct points
in B(a, ρ) which are not contained in a single geodesic, then Theorem 5.14 holds
for the probability measure

µ =

N
∑

k=1

ωkδpk
.
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Moreover, we can choose the initial point x0 such that (xn)n is in fact a sequence
of barycenters. To this end, firstly determine i such that f(pi) = min{f(pk) : k =
1, . . . , N} and then compare |H(pi)| and ωi. If |H(pi)| ≤ ωi, then we know that
pi is the median. In the opposite case, one has necessarily |H(pi)| > ωi. Choose a
geodesic

γ(t) = exppi

(

− t
H(pi)

|H(pi)|

)

, t ≥ 0,

then by Lemma 2.4,

d

dt
f(γ(t))

∣

∣

∣

∣

t=0+

= −|H(pi)| + ωi < 0,

hence there exists ε > 0 such that f(γ(ε)) < f(pi), then let x0 = γ(ε). Since
(f(xn))n is strictly decreasing, we have µ{xn} = 0 for all n. As a result,

hxn(y) =
1

2

N
∑

k=1

ωk
d2(y, pk)

d(xn, pk)
,

thus T (xn) is the barycenter of the measure

µn =

N
∑

k=1

ωk
d(xn, pk)

δpk
.

For the particular case when M is a Euclidean space, the barycenter of weighted
sample points can be expressed explicitly, so that

xn+1 =

N
∑

k=1

ωkpk
‖xn − pk‖

/ N
∑

k=1

ωk
‖xn − pk‖

,

which is exactly the Weiszfeld algorithm.

5.4 Appendix

In this appendix, we give some supplementary estimates. Let δ be a lower bound
of sectional curvatures K in B̄(a, ρ). Firstly, by [53] one has following estimations:

Proposition 5.16.

|J ′
p(1)| ≤ D(ρ, δ,∆)|Jp(1)|,

〈Jp(1), J ′
p(1) 〉 ≤ D(ρ, δ,∆)|Jp(1)|2,

where the constant

D(ρ, δ,∆) = max

(

1, 2ρ
(S′

δ(2ρ)

Sδ(2ρ)
− S′

∆(2ρ)

S∆(2ρ)

)

)

≥ 1.
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We give some estimations of d(x, T (x)).

Proposition 5.17. Let x ∈ B(a, ρ) and T (x) 6= x, then the following estimations
hold:

d(x, T (x)) ≤ 1

C(ρ,∆)

|H(x)| − µ{x}
∫

M\{x}
1

d(x,p)µ(dp)
,

d(x, T (x)) ≥ 1

D(ρ, δ,∆)

|H(x)| − µ{x}
∫

M\{x}
1

d(x,p)µ(dp)
.

Proof. Let γ : [0, 1] → B(a, ρ) be a geodesic such that γ(0) = T (x) and γ(1) = x.
Consider the following vector field along γ:

V (t) =

∫

M\{x}

− exp−1
γ(t) p

d(x, p)
µ(dp) − µ{x} γ̇(t)

d(x, T (x))
,

then V (0) = gradhx(T (x)) = 0, as a result,

〈V (1), γ̇(1) 〉 = 〈V (0), γ̇(0) 〉 +

∫ 1

0

d

dt
〈V (t), γ̇(t) 〉dt =

∫ 1

0

d

dt
〈V (t), γ̇(t) 〉.

On the one had, Cauchy-Schwartz inequality gives

〈V (1), γ̇(1) 〉 = 〈H(x), γ̇(1) 〉 − µ{x}d(x, T (x))

≤ |H(x)||γ̇(1)| − µ{x}d(x, T (x))

= d(x, T (x))(|H(x)| − µ{x}).

On the other hand, by Proposition 5.1,

∫ 1

0

d

dt
〈V (t), γ̇(t) 〉dt =

∫ 1

0

〈

DV

dt
, γ̇(t)

〉

dt

=

∫ 1

0

〈
∫

M\{x}

J ′
p(1)

d(x, p)
µ(dp), γ̇(t)

〉

dt

=

∫ 1

0
dt

∫

M\{x}

〈J ′
p(1), Jp(1) 〉
d(x, p)

µ(dp)

≥ C(ρ,∆)d2(x, T (x))

∫

M\{x}

1

d(x, p)
µ(dp).

These two inequalities give the first estimation.

In order to prove the second one, note that for t 6= 0, one has V (t) 6= 0, hence

d

dt
|V (t)| ≤

∣

∣

∣

∣

DV

dt

∣

∣

∣

∣

for t ∈ (0, 1].
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By Proposition 5.16,

|V (1)| =

∫ 1

0

d

dt
|V (t)|dt ≤

∫ 1

0

∣

∣

∣

∣

DV

dt

∣

∣

∣

∣

dt

=

∫ 1

0

∣

∣

∣

∣

∫

M\{x}

J ′
p(1)

d(x, p)
µ(dp)

∣

∣

∣

∣

dt

≤
∫ 1

0
dt

∫

M\{x}

|J ′
p(1)|

d(x, p)
µ(dp)

≤
∫ 1

0
dt

∫

M\{x}

D(ρ, δ,∆)|Jp(1)|
d(x, p)

µ(dp)

= D(ρ, δ,∆)

∫

M\{x}

1

d(x, p)
µ(dp).

However,

|V (1)| =

∣

∣

∣

∣

H(x) + µ{x}exp−1
x T (x)

d(x, T (x))

∣

∣

∣

∣

≥ |H(x)| − µ{x}.

These two inequalities complete the proof.

As a complement to Proposition 5.7 we also have:

Proposition 5.18. Let x, y ∈ B(a, ρ) with T (x), y 6= x. Then the following esti-
mation holds:

d(y, T (x)) ≥ | grad hx(y)|
D(ρ, δ,∆)

∫

M\{x}
1

d(x,p)µ(dp) + (1 +D(ρ, δ,∆)) µ{x}d(y,x)

.

Proof. Let γ : [0, 1] → B(a, ρ) be a geodesic such thatγ(0) = T (x) and γ(1) = y.
Consider the following vector field along the geodesic γ:

V (t) =

∫

M\{x}

− exp−1
γ(t) p

d(x, p)
µ(dp) + µ{x}

− exp−1
γ(t) x

d(y, x)
.

Observe that the function

G(z) =
1

2

∫

M\{x}

d2(z, p)

d(x, p)
µ(dp) +

1

2
µ{x}d

2(z, x)

d(y, x)

is strictly convex, there exists a unique point z0 ∈ B(a, ρ) such that gradG(z0) = 0.
Note that V (t) = gradG(γ(t)), then one gets

d

dt
|V (t)| ≤

∣

∣

∣

∣

DV

dt

∣

∣

∣

∣

for a.e. t ∈ [0, 1].
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Hence by Proposition 5.16,

∫ 1

0

d

dt
|V (t)|dt ≤

∫ 1

0

∣

∣

∣

∣

DV

dt

∣

∣

∣

∣

dt =

∫ 1

0

∣

∣

∣

∣

∫

M\{x}

J ′
p(1)

d(x, p)
µ(dp) + µ{x} J

′
x(1)

d(y, x)

∣

∣

∣

∣

dt

≤
∫ 1

0

(
∫

M\{x}

|J ′
p(1)|

d(x, p)
µ(dp) + µ{x}|J

′
x(1)|

d(y, x)

)

dt

≤ D(ρ, δ,∆)d(y, T (x))

(
∫

M\{x}

1

d(x, p)
µ(dp) +

µ{x}
d(y, x)

)

.

On the other hand, since gradhx(T (x)) = 0, one has

|V (0)| =

∣

∣

∣

∣

∫

M\{x}

− exp−1
T (x) p

d(x, p)
µ(dp) + µ{x}

− exp−1
T (x) x

d(y, x)

∣

∣

∣

∣

=

∣

∣

∣

∣

µ{x}
exp−1

T (x) x

d(T (x), x)
+ µ{x}

− exp−1
T (x) x

d(y, x)

∣

∣

∣

∣

≤ µ{x}d(x, T (x))

∣

∣

∣

∣

1

d(T (x), x)
− 1

d(y, x)

∣

∣

∣

∣

≤ d(y, T (x))
µ{x}
d(y, x)

.

The proof will be finished by noting that

|gradhx(y)| = |V (1)| = |V (0)| +
∫ 1

0

d

dt
|V (t)|dt.





Chapter 6

Riemannian geometry of

Toeplitz covariance matrices

and applications to radar target

detection

Abstract

In this chapter, we consider the manifold of Toeplitz covariance matrices of order
n parameterized by the reflection coefficients which are derived from Levinson’s
recursion of autoregressive models. The explicit expression of the reparametrization
and its inverse are obtained. With the Riemannian metric given by the Hessian of a
Kähler potential, we show that the manifold is in fact a Cartan-Hadamard manifold
with lower sectional curvature bound −4. After that, we compute the geodesics
and use the subgradient algorithm introduced in Chapter 2 to find the median of
Toeplitz covariance matrices. Finally, we give some simulated examples to illustrate
the application of the median method to radar target detection.

6.1 Reflection coefficients parametrization

Let n ≥ 1 be a fixed integer and Tn be the set of Toeplitz Hermitan positive definite
matrices of order n, then Tn is an open submanifold of R2n−1. We fix an element
Rn ∈ Tn which can be written as

Rn =











r0 r1 . . . rn−1

r1 r0 . . . rn−2
...

. . .
. . .

...
rn−1 . . . r1 r0











,
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then there exists a complex valued second order stationary process X indexed by
Z+ such that for every 0 ≤ k ≤ n − 1 we have rk = E[X0X̄k ]. An estimate of Xl

(l ≥ k) by linear combination of k most recent pasts is given by

X̂l = −
k
∑

j=1

a
(k)
j Xl−j .

The mean squared error of this estimate is denoted by

Pk = E|Xl − X̂l|2.

The optimal X̂l is the one that minimizes Pk. In this case the optimal coefficients

a
(k)
1 , . . . , a

(k)
k and the mean squared error Pk verify the following normal equation











r0 r1 . . . rk
r1 r0 . . . rk−1
...

. . .
. . .

...
rk . . . r1 r0























1

a
(k)
1
...

a
(k)
k













=











Pk
0
...
0











.

It is well known that the mean squared error is given by

Pk =
detRk+1

detRk
.

where

Rk =











r0 r1 . . . rk
r1 r0 . . . rk−1
...

. . .
. . .

...
rk . . . r1 r0











.

The positive definiteness of Rn yields that detRk > 0 and thus the expression
of Pk is well defined and Pk > 0. We recall the following definition of reflection
coefficients.

Definition 6.1. For every 1 ≤ k ≤ n− 1, the last optimal coefficient a
(k)
k is called

the k-th reflection coefficient and is denoted by µk.

By the normal equation and the expression of the mean squared error we know
that µ1, . . . , µn−1 are uniquely determined by the matrix Rn. Moreover, the classical
Levinson’s recursion gives that

P0 = r0, Pk = (1 − |µn|2)Pk−1, 1 ≤ k ≤ n− 1. (1.1)

Hence

|µk| < 1, 1 ≤ k ≤ n− 1.
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Now we obtain a map between two open submanifolds of R2n−1:

ϕ : Tn −→ R∗
+ ×Dn−1, Rn 7−→ (P0, µ1, . . . , µn−1),

where D = {z ∈ C : |z| < 1} is the unit disc of the complex plane.
The map ϕ is of fundamental importance in the following since it gives us another

coordinate on Tn which simplifies lots of calculations. It is necessary to give the
explicit expression of it.

Proposition 6.2. The reflection coefficients are given by

µk = (−1)k
detSk
detRk

, k = 1, . . . , n− 1

where

Sk = Rk+1

(

2, . . . , k + 1

1, . . . , k

)

.

Proof. By Cramer’s rule and the definition of µk, we obtain that

µk = (−1)k
Pk detSk
detRk+1

= (−1)k
detRk+1

detRk

detSk
detRk+1

= (−1)k
detSk
detRk

.

Hence it is clear that ϕ is differentiable. To see that ϕ is surjective, it suffices to
note that r0 = P0 and that for every 1 ≤ k ≤ n−1, if we already know r0, . . . , rk−1,
then the above identity is in fact a linear equation with respect to rk, hence rk can
be calculated explicitly and the surjectivity holds by induction. The same method
also yields the injectivity of ϕ.

The expression of ϕ−1 has also to be calculated for future use.

Proposition 6.3. Let (P0, µ1, . . . , µn−1) ∈ R∗
+ ×Dn−1, then its inverse image Rn

under ϕ can be calculated by the following algorithm:

r0 = P0, r1 = −P0µ1,

rk = −µkPk−1 + αTk−1Jk−1R
−1
k−1αk−1, 2 ≤ k ≤ n− 1

where

αk−1 =







r1
...

rk−1






, Jk−1 =









0 . . . 0 1
0 . . . 1 0

. . .
1 . . . 0 0









,

Pk−1 = P0

k−1
∏

i=1

(1 − |µi|2).
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Proof. The first two identities follow from direct calculation and for 2 ≤ k ≤ n− 1,
it is easy to see that

Sk =

[

αk−1 Rk−1

rk αTk−1Jk−1

]

.

Using the method of Schur complement (see [95]) we get

detSk = det

[

αk−1 Rk−1

rk − αTk−1Jk−1R
−1
k−1αk−1 0

]

= (−1)k−1 det

[

Rk−1 αk−1

0 rk − αTk−1Jk−1R
−1
k−1αk−1

]

= (−1)k−1 detRk−1(rk − αTk−1Jk−1R
−1
k−1αk−1).

hence we obtain that

rk = (−1)k−1 detSk
detRk−1

+ αTk−1Jk−1R
−1
k−1αk−1

= (−1)k−1 detSk
detRk

detRk
detRk−1

+ αTk−1Jk−1R
−1
k−1αk−1

= −µkPk−1 + αTk−1Jk−1R
−1
k−1αk−1.

Corollary 6.4. ϕ is a diffeomorphism.

Proof. By Proposition 6.2, ϕ is injective. Hence it suffices to show that ϕ and ϕ−1

are differentiable, which are direct corollaries to the previous two propositions.

6.2 Riemannian geometry of Tn
From now on, we regard Tn as a Riemannian manifold whose metric, which is
introduced in [14] by the Hessian of the Kähler potential (see e.g. [12] for the
definition of a Kähler potential)

Φ(Rn) = − ln(detRn) − n ln(πe),

is given by

ds2 = n
dP 2

0

P 2
0

+

n−1
∑

k=1

(n− k)
|dµk|2

(1 − |µk|2)2
, (2.2)

where (P0, µ1, . . . , µn−1) = ϕ(Rn).
The metric (2.2) is a Bergman type metric and it will be shown in the appendix

of Chapter 6 that this metric is not equal to the Fisher information metric of Tn.
But J. Burbea and C. R. Rao have proved in [28, Theorem 2] that the Bergman
metric and the Fisher information metric do coincide for some probability density
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functions of particular forms. A similar potential function was used by S. Amari
in [5] to derive the Riemannian metric of multi-variate Gaussian distributions by
means of divergence functions. We refer to [78] for more account on the geometry
of hessian structures.

With the metric given by (2.2) the space R∗
+ ×Dn−1 is just the product of the

Riemannian manifolds (R∗
+, ds

2
0) and (D, ds2k)1≤k≤n−1, where

ds20 = n
dP 2

0

P 2
0

and ds2k = (n− k)
|dµk|2

(1 − |µk|2)2
.

Also observe that (R∗
+, ds

2
0) has zero sectional curvature and that (D, ds2k) has

constant sectional curvature −4/(n − k).

We proceed to show a simple geometric lemma which is needed to obtain the
lower sectional curvature bound of the product space.

Lemma 6.5. Let M,N be two Riemannian manifolds such that the sectional cur-
vatures verify

−C ≤ KM ,KN ≤ 0,

where C ≥ 0 is a constant. Then the sectional curvatures of the product M × N
also verify

−C ≤ KM×N ≤ 0.

Proof. Let (x, y) ∈M×N and u, v be independent tangent vectors in T(x,y)M×N .
Assume that u = (u1, u2), v = (v1, v2) with u1, v1 ∈ TxM , u2, v2 ∈ TyN , then we
have

KM×N =
RM×N (u, v, u, v)

|u|2|v|2 − 〈u, v〉2 =
RM (u1, v1, u1, v1) +RN (u2, v2, u2, v2)

|u|2|v|2 − 〈u, v〉2

=
KM ( |u1|2M |v1|2M − 〈u1, v1〉2M ) +KN ( |u2|2N |v2|2N − 〈u2, v2〉2N )

|u|2|v|2 − 〈u, v〉2
≤ 0.

To prove the lower bound, if ui and vi are linearly dependent for i = 1, 2, then we
have trivially KM×N = 0, thus without loss of generality, we may assume that u1

and v1 are linearly independent. In this case, we have

KM×N =
KM ( |u1|2M |v1|2M − 〈u1, v1〉2M ) +KN ( |u2|2N |v2|2N − 〈u2, v2〉2N )

(|u1|2M + |u2|2N )(|v1|2M + |v2|2N ) − (〈u1, v1〉M + 〈u2, v2〉N )2

≥ KM ( |u1|2M |v1|2M − 〈u1, v1〉2M ) +KN ( |u2|2N |v2|2N − 〈u2, v2〉2N )

( |u1|2M |v1|2M − 〈u1, v1〉2M ) + ( |u2|2N |v2|2N − 〈u2, v2〉2N )

≥ −C.
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Proposition 6.6. (R∗
+ × Dn−1, ds2) is a Cartan-Hadamard manifold whose sec-

tional curvatures K verify −4 ≤ K ≤ 0.

Proof. Since the product of finitely many Cartan-Hadamard manifolds is again
Cartan-Hadamard, the first assertion follows. To show the curvature bounds, it
suffices to use the preceding lemma by noting that every manifold in the product
has sectional curvatures in [−4, 0].

6.3 Geodesics in R∗
+ × Dn−1

In practice, the geodesics in R∗
+ × Dn−1 are necessary to calculate the median of

covariance matrices by using a subgradient algorithm and now we take the task of
calculating these geodesics.

6.3.1 Geodesics in the Poincaré disc

Let D = {z ∈ C : |z| < 1} be the Poicaré disc with its Riemannian metric

ds2 =
|dz|2

(1 − |z|2)2 .

The Riemannian distance between z1, z2 ∈ D is given by

σ(z1, z2) =
1

2
ln

1 + | z2−z11−z̄1z2 |
1 − | z2−z11−z̄1z2 |

.

Lemma 6.7. Let 0 < |z| < 1, the geodesic from 0 to z parameterized by arc length
is given by

γ(s, 0, z) = eiθ
e2s − 1

e2s + 1
, s ∈ [0, ln

1 + |z|
1 − |z| ],

where θ = arg z.

Proof. The image of this geodesic is

γ(t, 0, z) = tz, t ∈ [0, 1].

Then it suffices to reparametrize it by arc length

s = s(t) = σ(0, γ(t, 0, z)) =
1

2
ln

1 + |z|t
1 − |z|t ∈ [0, ln

1 + |z|
1 − |z| ],

thus we obtain

t =
1

|z|
e2s − 1

e2s + 1
,

then

γ(s, 0, z) =
z

|z|
e2s − 1

e2s + 1
= eiθ

e2s − 1

e2s + 1
.
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Proposition 6.8. Let z1, z2 ∈ D, z1 6= z2. The geodesic from z1 to z2 parameterized
by arc length is given by

γ(s, z1, z2) =
(z1 + eiθ)e2s + (z1 − eiθ)

(1 + z̄1eiθ)e2s + (1 − z̄1eiθ)
, s ∈ [0,

1

2
ln

1 + |φz1(z2)|
1 − |φz1(z2)|

],

where

θ = arg φz1(z2), φz1(z) =
z − z1
1 + z̄1z

.

Proof. Observe that

γ(s, 0, φz1(z2)) = γ(s, φz1(z1), φz1(z2)),

since φz1 is an isometry of D, we get

γ(s, z1, z2) = φ−1
z1 ◦ γ(s, 0, φz1(z2)).

Then the preceding lemma gives

γ(s, z1, z2) =
eiθ e

2s−1
e2s+1

+ z1

1 + z̄1eiθ
e2s−1
e2s+1

=
(z1 + eiθ)e2s + (z1 − eiθ)

(1 + z̄1eiθ)e2s + (1 − z̄1eiθ)
.

with

s ∈ [0,
1

2
ln

1 + |φz1(z2)|
1 − |φz1(z2)|

].

Corollary 6.9.

γ′(s, z1, z2) =
4eiθ(1 − |z1|2)e2s

((1 + z̄1eiθ)e2s + (1 − z̄1eiθ))2
.

Particularly,

γ′(0, z1, z2) = eiθ(1 − |z1|2).

Proof. Direct calculation.

Proposition 6.10. Let z1 ∈ D and v ∈ Tz1D, then the geodesic starting from z1
with velocity v is given by

ζ(t, z1, v) =
(z1 + eiθ)e2||v||t + (z1 − eiθ)

(1 + z̄1eiθ)e2||v||t + (1 − z̄1eiθ)
, t ∈ R

where

θ = arg v, ||v|| =
|v|

1 − |z1|2
.
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Proof. Let z2 6= z1 be another point in the geodesic, then

γ′(0, z1, z2) =
v

||v|| .

By the last corollary,

eiθ(1 − |z1|2) =
v

||v|| ,

hence θ = arg v and

ζ(t, z1, v) = ζ(||v||t, z1,
v

||v|| ) = γ(||v||t, z1, z2).

it remains to use proposition 6.8.

6.3.2 Geodesics in R∗
+

Let R∗
+ be with the Riemannian metric

ds2 =
dP 2

P 2
.

By [31], the Riemannian distance between P,Q ∈ R∗
+ is given by

τ(P,Q) = | ln(
Q

P
)|.

Proposition 6.11. Let P,Q ∈ R∗
+ and P 6= Q. Then the geodesic from P to Q

parameterized by arc length is given by

γ(s, P,Q) = Pe(sign(Q−P ))s, s ∈ [ 0, | ln(
Q

P
)| ].

Proof. By [31], the geodesic from P to Q is given by

γ(t, P,Q) = P (
Q

P
)t, t ∈ [0, 1]

it suffices to reparametrize it by letting t = | ln(Q/P )|/s.

Corollary 6.12.

γ′(s, P,Q) = (sign(Q− P ))Pe(sign(Q−P ))s.

Particularly,
γ′(0, P,Q) = (sign(Q− P ))P.

Proof. Direct calculation.



6.3. GEODESICS IN R∗
+ × DN−1 125

Proposition 6.13. Let P > 0 and v ∈ TPR∗
+, the geodesic starting from P with

velocity v is given by

ζ(t, P, v) = Pe
v
P
t, t ∈ R.

Proof. Let Q 6= P be another point in this geodesic, by the preceding corollary we
have

γ′(0, P,Q) = (sign(Q− P ))P =
v

||v|| .

with ||v|| = |v|/P and hence

sign(Q− P ) =
v

||v||P .

Then Proposition 6.11 yields that

ζ(s, P,
v

||v|| ) = Pe
vs

||v||P ,

thus we get

ζ(t, P, v) = ζ(t||v||, P, v

||v|| ) = Pe
v
P
t.

6.3.3 Geodesics in R∗
+ ×Dn−1

As is shown in [31], the Riemannian distance between two points x and y in R∗
+ ×

Dn−1 is given by

d(x, y) =

(

nσ(P,Q)2 +

n−1
∑

k=1

(n− k)τ(µk, νk)
2

)1/2

,

where x = (P, µ1, . . . , µn−1) and y = (Q, ν1, . . . , νn−1).

Proposition 6.14. Let x = (P, µ1, . . . , µn−1) and y = (Q, ν1, . . . , νn−1) be two
different points in R∗

+ ×Dn−1. Then the geodesic from x to y parameterized by arc
length is given by

γ(s, x, y) =

(

γ0(
σ(P,Q)

d(x, y)
s), γ1(

τ(µ1, ν1)

d(x, y)
s), . . . , γ1(

τ(µn−1, νn−1)

d(x, y)
s)

)

.

where γ0 is the geodesic in (R∗
+, ds

2
0) from P to Q parameterized by arc length and

for 1 ≤ k ≤ n− 1, γk is the geodesic in (D, ds2k) from µk to νk parameterized by arc
length. More precisely,

γ0(
σ(P,Q)

d(x, y)
s) = Pe

(sign(Q−P ))σ(P,Q)
d(x,y)

s
,
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and for 1 ≤ k ≤ n− 1,

γk(
τ(µk, νk)

d(x, y)
s) =

(µk + eiθk)e
2τ(µk,νk)

d(x,y)
s
+ (µk − eiθk)

(1 + µ̄keiθk)e
2τ(µk,νk)

d(x,y)
s
+ (1 − µ̄keiθk)

,

with

θk = arg
νk − µk
1 − µ̄kνk

.

Particularly,

γ′(0, x, y) =

(

γ′0(0)
σ(P,Q)

d(x, y)
, γ′1(0)

τ(µ1, ν1)

d(x, y)
, . . . , γ′n−1(0)

τ(µn−1, νn−1)

d(x, y)

)

.

Proof. It suffices to note that [31] the geodesic in R∗
+ ×Dn−1 is the product of the

geodesics in each manifold in the product and then use Proposition 6.8 as well as
Proposition 6.11. The last identity follows from direct calculation.

Proposition 6.15. Let x = (P, µ1, . . . , µn−1) ∈ R∗
+ × Dn−1 and a tangent vector

v = (v0, v1, . . . , vn−1) ∈ Tx(R
∗
+ × Dn−1), then the geodesic starting from x with

velocity v is given by

ζ(t, x, v) = (ζ0(t), ζ1(t), . . . , ζn−1(t)),

where ζ0 is the geodesic in (R∗
+, ds

2
0) starting from P with velocity v0 and for 1 ≤

k ≤ n − 1, ζk is the geodesic in (D, ds2k) starting from µk with velocity vk. More
precisely,

ζ0(t) = Pe
v0
P
t,

and for 1 ≤ k ≤ n− 1,

ζk(t) =
(µk + eiθk)e

2|vk |t
1−|µk|2 + (µk − eiθk)

(1 + µ̄keiθk)e
2|vk |t

1−|µk|2 + (1 − µ̄keiθk)

,

with

θk = arg
νk − µk
1 − µ̄kνk

.

Proof. The same method as the preceding proof but using Proposition 6.10 and
Proposition 6.13.

6.4 Simulations

With all of the above preparative calculations, now we use the subgradient algorithm
introduced in [91] to calculate the median of covariant matrices. By the change
of coordinates ϕ, it suffices to do this in the product space (R∗

+ × Dn−1, ds2).
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By Proposition 6.6, the upper and lower curvature bounds are given by 0 and
−4 respectively, hence the algorithm here is simpler and more explicit than the
general one. Let p1, . . . , pN be different points contained in an open ball B(a, ρ) of
R∗

+ × Dn−1 and assume that they are not totally contained in any geodesic. Then
[91] the median m of p1, . . . , pN , or equivalently, the minimum point of the function

f : B̄(a, ρ) −→ R+ , x 7−→ 1

N

N
∑

i=1

d(x, pi).

exists and is unique. In order to introduce the subgradient algorithm, we need the
following notations.

Notation 6.16. For x ∈ B̄(a, ρ), let

H(x) =
1

N

∑

1≤i≤N
pi 6=x

− exp−1
x pi

d(x, pi)
.

If H(x) 6= 0, then let

γx(t) = expx(−t
H(x)

|H(x)| ) , t ≥ 0.

Moreover,

β =
ρ− σ

4ρ coth(4ρ) + 1
, σ = max

1≤i≤N
d(pi, a).

Now we specialize the subgradient algorithm in [91] to the space of reflection
coefficients.

Algorithm 6.17. Subgradient algorithm in (R∗
+ × Dn−1, ds2):

Step 1:

Choose a point x1 ∈ B̄(a, ρ) and let k = 1.
Step 2:

If H(xk) = 0, then stop and let m = xk.
If not, go to step 3.
Step 3:

Let xk+1 = γxk
(β/

√
k) and go back to step 2 with k = k + 1.

6.4.1 A Numerical example

Firstly, in order to illustrate the above method, we calculate the geometric median
of 4 elements in T4, whose first lines are given by

[ 1.0000, −0.5000 + 0.3000i, 0.4240 − 0.7620i, −0.0903 + 0.4528i ]

[ 2.5000, −1.5000 − 1.0000i, 0.3800 + 1.4400i, −0.2088 − 1.3544i ]
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[ 3.7000, −0.7400 − 0.7400i, −2.3828 + 0.6364i, 2.0608 − 0.6855i ]

[ 0.3000, −0.0300 + 0.2400i, −0.2625 − 0.1005i, 0.0861 − 0.2123i ]

Then Lemma 6.2 gives their reflection coefficients parametrization:

[ 1, 0.5 + 0.3i, −0.4 − 0.7i, 0.5 − 0.5i ]

[ 2.5, 0.6 − 0.4i, 0.1 + 0.2i, 0.6 − 0.2i ]

[ 3.7, 0.2 − 0.2i, 0.7 + 0.1i, −0.4 − 0.6i ]

[ 0.3, 0.1 + 0.8i, 0.7 − 0.5i, 0.5 + 0.5i ].

By using the subgradient algorithm, Proposition 6.14 and Proposition 6.15, we
get the median in terms of reflection coefficients:

[ 1.6611, 0.3543 − 0.0379i, 0.1663 − 0.1495i, 0.2749 − 0.2371i ]

Then Lemma 6.3 gives the first line of the corresponding Toeplitz Hermitan positive
definite matrix:

[ 1.6611, −0.5885 − 0.0630i, −0.0350 − 0.1722i, −0.2901 − 0.1531i ]

6.4.2 Radar simulations

Next we give some simulating examples of the median method applied to radar tar-
get detection. I would like to thank Guillaume Bouyt and Nicolas Charon for their
generosity of providing basic simulation programs and many helpful discussions.

Since the autoregressive spectra are closely related to the speed of targets, we
shall first investigate the spectral performance of the median method. In order
to illustrate the basic idea, we only consider the detection of one fixed direction.
The range along this direction is subdivided into 200 lattices in which we add
two targets, the echo of each lattice is modeled by an autoregressive process. The
following Figure 6.1 obtained in [27] gives the initial spectra of the simulation,
where x axis represents the lattices and y axis represents frequencies. Every lattice
is identified with a 1×8 vector of reflection coefficients which is calculated by using
the regularized Burg algorithm [17] to the original simulating data. The spectra
are represented by different colors whose corresponding values are indicated in the
colorimetric on the right.
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Figure 6.1: Initial spectra with two added targets

For every lattice, by using the subgradient algorithm, we calculate the median
of the window centered on it and consisting of 15 lattices and then we get the
spectra of medians shown in Figure 6.2. Furthermore, by comparing it with Figure
6.3 which are spectra of barycenters, we see that in the middle of the barycenter
spectra, this is just the place where the second target appears, there is an obvious
distortion. This explains that median is much more robust than barycenter when
outliers come.

The principle of target detection is that a target appears in a lattice if the
distance between this lattice and the median of the window around it is much
bigger than that of the ambient lattices. The following Figure 6.4 shows that the
two added targets are well detected by the median method, where x axis represents
lattice and y axis represents the distance in T8 between each lattice and the median
of the window around it.
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Figure 6.2: Median spectra
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Figure 6.3: Barycenter spectra
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Figure 6.4: Detection by median

We conclude our discussion by showing the performance of the median method
in real target detection. As above, we give the images of autoregressive spectra and
the figure of target detection obtained by using real data which are records of a
radar located on a coast. These records consist of about 5000 lattices of a range of
about 10km-140km as well as 109 azimuth values corresponding to approximately
30 scanning degrees of the radar. For simplicity we consider the data of all the
lattices but in a fixed direction, hence each lattice corresponds to a 1 × 8 vector of
reflection coefficients computed by applying the regularized Burg algorithm to the
original real data. Figure 6.5 gives the initial autoregressive spectra whose values
are represented by different color according to the colorimetric on the right. For
each lattice, by using the subgradient algorithm, we calculate the median of the
window centered on it and consisting of 17 lattices and then we get the spectra of
medians shown in Figure 6.6.

In order to know in which lattice target appears, we compare the distance be-
tween each lattice and the median of the window around it. The following Figure
6.7 shows that the four targets are well detected by our method, where x axis rep-
resents distance and y axis represents the distance in T8 between each lattice and
the median of the window around it.
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Figure 6.5: Initial spectra of real radar data
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Figure 6.6: Median spectra of real radar data
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Figure 6.7: Real detection by median

6.5 Appendix

In this appendix, we firstly show that the metric given by (2.2) is not equal to
the Fisher information metric of Toeplitz covariance matrices. To this end, we
shall compute the elements g00 and g01 of the Fisher information metric in terms
of reflection coefficients. We will see that the term g00 is equal to that of the
metric (2.2), but g10 6= 0, hence the Fisher information metric is not diagonal under
reflection coefficients parametrization. As a result, these two metrics are not equal.

Let Rn ∈ Tn, then the probability density function of the centered complex
normal random variable of covariance matrix Rn is given by

p(Z|Rn) = π−n(detRn)
−1 exp(−Z∗R−1

n Z).

Hence we get,

− ln p(Z|Rn) = ln detRn + Z∗R−1
n Z + n lnπ

= n lnP0 +
n−1
∑

k=1

(n− k) ln(1 − |µk|2) + Z∗R−1
n Z + n lnπ.

Let us compute the first coordinate of the Fisher information metric:

g00 = −E[
∂2 ln p(Z|Rn)

∂2P0
].
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Observe that

−∂
2 ln p(Z|Rn)
∂2P0

= − n

P 2
0

+ Z∗∂
2R−1

n

∂2P0
Z.

For simplicity, we will show that Rn is linear on P0, that is,

∂Rn
∂P0

=
Rn
P0
. (5.3)

To this end, it suffices to show that

∂rk
∂P0

=
rk
P0
, k = 0, . . . n− 1.

This is trivial for k = 0, 1. Now assume that this is true for 0, . . . k − 1, then for k
one has, by Proposition 6.3,

∂rk
∂P0

= − µk
∂Pk−1

∂P0
+
∂αTk−1

∂P0
Jk−1R

−1
k−1αk−1 + αTk−1Jk−1

∂R−1
k−1

∂P0
αk−1 + αTk−1Jk−1R

−1
k−1

∂αk−1

∂P0

= − µk
Pk−1

P0
+
αTk−1

P0
Jk−1R

−1
k−1αk−1 + αTk−1Jk−1(−R−1

k−1

Rk−1

P0
R−1
k−1)αk−1

+ αTk−1Jk−1R
−1
k−1

αk−1

P0

=
1

P0
(−µkPk−1 + αTk−1Jk−1R

−1
k−1αk−1) =

rk
P0
.

Thus we have

∂R−1
n

∂P0
= −R−1

n

∂Rn
∂P0

R−1
n = −R−1

n

Rn
P0
R−1
n = −R

−1
n

P0
.

∂2R−1
n

∂2P0
= −

P0
∂R−1

n

∂P0
−R−1

n

P 2
0

=
2R−1

n

P 2
0

.

It follows that

E[Z∗∂
2R−1

n

∂2P0
Z] = tr[

∂2R−1
n

∂2P0
Rn] = tr[

2R−1
n

P 2
0

Rn] = 2
n

P 2
0

.

So that
g00 = − n

P 2
0

+ 2
n

P 2
0

=
n

P 2
0

That is to say, the first coordinates of the two metrics coincide. But generally
speaking, this is not true for the other coordinates. For example, we can show that
g10 6= 0 for the Fisher information metric. In fact, by (5.3) we have

g10 =E[−∂
2 ln p(Z|Rn)
∂µ1∂P0

] = E[Z∗ ∂
2R−1

n

∂µ1∂P0
Z] = tr[Rn

∂2R−1
n

∂µ1∂P0
] = tr[Rn

∂

∂µ1

∂R−1
n

∂P0
]

= tr[Rn
∂

∂µ1

−R−1
n

P0
] = − 1

P0
tr[Rn

∂R−1
n

∂µ1
] =

1

P0
tr[
∂Rn
∂µ1

R−1
n ].
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This does not necessarily vanish. For instance, for the case when n = 2,

R2 =

[

P0 −P0µ̄1

−P0µ1 P0

]

= P0

[

1 −µ̄1

−µ1 1

]

.

It follows that

∂R2

∂µ1
= P0

[

0 0
−1 0

]

, R−1
2 =

1

P0(1 − |µ1|2)

[

1 µ̄1

µ1 1

]

.

Hence we get

g10 =
1

P0
tr[
∂R2

∂µ1
R−1

2 ] =
−µ̄1

P0(1 − |µ1|2)
6= 0.

The second aim of this appendix is to give a direct algebraic proof of the identity
Pk = (1 − |µk|2)Pk−1 in (1.1). This proof is independent of the classical Levinson’s
recursion.

Proposition 6.18. Let P0 = r0 and for 1 ≤ k ≤ n− 1, we define

µk = (−1)k
detSk
detRk

, Pk =
detRk+1

detRk
,

then
Pk = (1 − |µk|2)Pk−1.

Proof. According to Sylvester’s identity,

detRk+1 detRk−1 = detRk detRk−detRk+1

(

2, . . . , k + 1

1, . . . , k

)

detRk+1

(

1, . . . , k

2, . . . , k + 1

)

.

Since Rk+1 is hermitian, we get

detRk+1

(

1, . . . , k

2, . . . , k + 1

)

= detRk+1

(

2, . . . , k + 1

1, . . . , k

)

.

So that

Pk =
detRk+1

detRk
=

(

1 −
∣

∣

∣

∣

detRk+1

(2,...,k+1
1,...,k

)

detRk

∣

∣

∣

∣

2) detRk
detRk−1

=

(

1 −
∣

∣

∣

∣

detSk
detRk

∣

∣

∣

∣

2)

Pk−1

= (1 − |µk|2)Pk−1.

The proof is complete.

We finish this appendix by showing some supplementary detection results of
the median method (OS-HDR-CFAR) applied to real radar data of land clutter
with synthetic targets injected. It can be seen that our new method has a better
performance than the classical ones. I would like to thank Alexis Decurninge for
his generosity of providing me his simulation results and helpful discussions.
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Figure 6.8: COR curves (sample with 160 azimuths), α = 0.25, SNRmoy = 17dB

Figure 6.9: COR curves (SNR fixed), α = 0.25, SNR=26dB
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Figure 6.10: Robustness when many targets appear: OS-HDR-CFAR

Figure 6.11: Robustness when many targets appear: CA/OS-CFAR
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Figure 6.12: Robustness when many targets appear: Capon spectra

Figure 6.13: Comparison of median and mean: α = 10, SNRmoy=17dB
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[62] H. Le, Locating Fréchet means with application to shape spaces, Advances in
Applied Proability, Vol. 33, No. 2 (Jun., 2001), pp. 324-338.

[63] H. Le, Estimation of Riemannian barycentres, LMS J. Comput. Math., 7
(2004), 193-200.

[64] J. M. Lee, Introduction to smooth manifolds, 2003 Springer Science+Business
Media, Inc.

[65] L. Ljung, Analysis of recursive stochastic algorithms, IEEE Transactions on
Automatic Control, Vol. AC-22, no. 4, August 1977.
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Probab. Statist, 30 (1994), no. 4, 647-702.

[76] A. Sahib, Espérance d’une variable aléatoire à valeur dans un espace métrique,
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