F. F. Reuss, Sur un Nouvel Effet de l'Electricité Galvanique, pp.327-337, 1809.

H. A. Pohl and J. S. Crane, Dielectrophoresis of Cells, Biophysical Journal, vol.11, issue.9, pp.711-727, 1971.
DOI : 10.1016/S0006-3495(71)86249-5

L. G. Gouy, Sur la constitution de la charge ??lectrique ?? la surface d'un ??lectrolyte, Journal de Physique Th??orique et Appliqu??e, vol.9, issue.1, pp.457-468, 1910.
DOI : 10.1051/jphystap:019100090045700

O. Stern, Zur Theorie der electrolytischen Doppelschicht, pp.508-516, 1924.

A. Ramos, H. Morgan, N. G. Green, and E. A. Castellanos, Ac electrokinetics: a review of forces in microelectrode structures, Journal of Physics D: Applied Physics, vol.31, issue.18, pp.2338-2353, 1998.
DOI : 10.1088/0022-3727/31/18/021

R. B. Fair, Digital microfluidics: is a true lab-on-a-chip possible?, Microfluidics and Nanofluidics, vol.6, issue.1, pp.245-281, 2007.
DOI : 10.1007/s10404-007-0161-8

M. Smoluchowsky, Contribution à la théorie de l'endosmose électrique et de quelques phénomènes corrélatifs, Bulletin International de l'Académie des Sciences de Cracovie, pp.182-199, 1903.

P. Debye and E. Hückel, Bemerkungen zu einem Satze die kataphoretische Wanderungsgeschwindichkeit suspendierter Teilche, pp.49-52, 1924.

D. C. Henry, The Cataphoresis of Suspended Particles. Part I. The Equation of Cataphoresis, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.133, issue.821, pp.106-129, 1931.
DOI : 10.1098/rspa.1931.0133

A. Tiselius, The moving-boundary method of studying the electrophoresis of proteins, 1930.

L. H. Olesen, H. Bruus, and E. A. Ajdari, ac electrokinetic micropumps: The effect of geometrical confinement, Faradaic current injection, and nonlinear surface capacitance, Physical Review E, vol.73, issue.5, p.56313, 2006.
DOI : 10.1103/PhysRevE.73.056313

D. F. Chen and H. Du, Simulation studies on electrothermal fluid flow induced in a dielectrophoretic microelectrode system, Journal of Micromechanics and Microengineering, vol.16, issue.11, pp.2411-2419, 2006.
DOI : 10.1088/0960-1317/16/11/023

G. E. Moore, Cramming More Components Onto Integrated Circuits, Proceedings of the IEEE, vol.86, issue.1, pp.114-117, 1965.
DOI : 10.1109/JPROC.1998.658762

G. M. Whitesides, The origins and the future of microfluidics, Nature, vol.309, issue.7101, pp.368-373, 2006.
DOI : 10.1038/nature05058

P. Gravesen, J. Branebjerg, and O. S. Jensen, Microfluidics-a review, Journal of Micromechanics and Microengineering, vol.3, issue.4, p.168, 1993.
DOI : 10.1088/0960-1317/3/4/002

J. Pfitzner, Poiseuille and his law, Anaesthesia, vol.1, issue.1, pp.273-275, 1976.
DOI : 10.1122/1.2116329

V. Dolnik, S. Liu, and E. S. Jovanovich, Capillary electrophoresis on microchip, Electrophoresis, vol.8, issue.1, pp.41-54, 2000.
DOI : 10.1002/(SICI)1522-2683(20000101)21:1<41::AID-ELPS41>3.0.CO;2-7

T. G. Morzunova, Capillary electrophoresis in pharmaceutical analysis (A review), Pharmaceutical Chemistry Journal, vol.953, issue.1???2, pp.158-170, 2006.
DOI : 10.1007/s11094-006-0083-x

J. J. Feng, S. Krishnamoorthy, and E. S. Sundaram, Numerical analysis of mixing by electrothermal induced flow in microfluidic systems, Biomicrofluidics, vol.1, issue.2, p.24102, 2007.
DOI : 10.1063/1.2734910

M. Sigurdson, AC electrokinetics for microfluidic immunosensors Proceeding of the American Society of Mechanical Engineers, pp.479-483

M. Sigurdson, D. Wang, and C. D. Meinhart, Electrothermal stirring for heterogeneous immunoassays Use of combined dielectrophoretic/electrohydrodynamic forces for biosensor enhancement, Lab on a Chip Journal of Physics D: Applied Physics, vol.5, issue.36, pp.1366-101, 2003.

N. Loucaides, A. Ramos, and G. E. Georghiou, Novel systems for configurable AC electroosmotic pumping, Microfluidics and Nanofluidics, vol.1, issue.2, pp.709-714, 2007.
DOI : 10.1007/s10404-007-0168-1

C. Huang, M. Z. Bazant, and E. T. Thorsen, Ultrafast high-pressure AC electro-osmotic pumps for portable biomedical microfluidics, Lab Chip, vol.418, issue.1, p.80, 2010.
DOI : 10.1039/B915979G

M. R. Bown and C. D. Meinhart, AC electroosmotic flow in a DNA concentrator, Microfluidics and Nanofluidics, vol.20, issue.23, pp.513-523, 2006.
DOI : 10.1007/s10404-006-0097-4

L. Tanguy, S. Salomon, and E. L. Nicu, Spectral collocation-based numerical simulations of cylindrical ac-electro-osmotic flows for bioconcentration purposes and experimental validations, Applied Physics Letters, vol.94, issue.3, p.34101, 2009.
DOI : 10.1063/1.3072605

N. Sasaki, T. Kitamori, and E. H. Kim, AC electroosmotic micromixer for chemical processing in a microchannel, Lab on a Chip, vol.74, issue.4, p.550, 2006.
DOI : 10.1039/b515852d

A. Castellanos, A. Ramos, A. Gonzalez, N. G. Green, and E. H. Morgan, Electrohydrodynamics and dielectrophoresis in microsystems: scaling laws, Journal of Physics D: Applied Physics, vol.36, issue.20, p.2584, 2003.
DOI : 10.1088/0022-3727/36/20/023

L. Tanguy, Actionnements électriques de fluides dédiés aux microsystèmes, 2009.

K. Khoshmanesh, S. Nahavandi, S. Baratchi, A. Mitchell, and K. Kalantar-zadeh, Dielectrophoretic platforms for bio-microfluidic systems, Biosensors and Bioelectronics, vol.26, issue.5, 2010.
DOI : 10.1016/j.bios.2010.09.022

T. B. Jones, Electromechanics of particles, 1995.
DOI : 10.1017/CBO9780511574498

S. Raychaudhuri, S. A. Dayeh, D. Wang, and E. T. Yu, Precise Semiconductor Nanowire Placement Through Dielectrophoresis, Nano Letters, vol.9, issue.6, pp.2260-2266, 2009.
DOI : 10.1021/nl900423g

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.459.5186

M. Li, Bottom-up assembly of large-area nanowire resonator arrays, Nature Nanotechnology, vol.69, issue.2, pp.88-92, 2008.
DOI : 10.1038/nnano.2008.26

J. H. Nieuwenhuis, A. Jachimowicz, P. Svasek, and M. J. Vellekoop, High-speed integrated particle sorters based on dielectrophoresis, Proceedings of IEEE Sensors, 2004., pp.64-67, 2004.
DOI : 10.1109/ICSENS.2004.1426100

K. Khoshmanesh, Particle trapping using dielectrophoretically patterned carbon nanotubes, ELECTROPHORESIS, vol.128, issue.8, pp.1366-1375, 2010.
DOI : 10.1007/s10404-009-0558-7

I. Ermolina and H. Morgan, The electrokinetic properties of latex particles: comparison of electrophoresis and dielectrophoresis, Journal of Colloid and Interface Science, vol.285, issue.1, pp.419-428, 2005.
DOI : 10.1016/j.jcis.2004.11.003

Z. Gagnon, J. Mazur, and E. H. Chang, Glutaraldehyde enhanced dielectrophoretic yeast cell separation, Biomicrofluidics, vol.3, issue.4, p.44108, 2009.
DOI : 10.1063/1.3257857

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2835288

N. Mittal, A. Rosenthal, and E. J. Voldman, nDEP microwells for single-cell patterning in physiological media, Lab on a Chip, vol.22, issue.9, p.1146, 2007.
DOI : 10.1039/b706342c

P. R. Gascoyne, Dielectrophoresis-based programmable fluidic processors, Lab on a Chip, vol.4, issue.4, p.299, 2004.
DOI : 10.1039/b404130e

J. Voldman, M. Toner, M. L. Gray, and M. A. Schmidt, Design and analysis of extruded quadrupolar dielectrophoretic traps, Journal of Electrostatics, vol.57, issue.1, pp.69-90, 2003.
DOI : 10.1016/S0304-3886(02)00120-1

X. Hu, P. H. Bessette, J. Qian, C. D. Meinhart, P. S. Daugherty et al., Marker-specific sorting of rare cells using dielectrophoresis, Proceedings of the National Academy of Sciences, vol.102, issue.44, pp.44-15757, 2005.
DOI : 10.1073/pnas.0507719102

B. Çetin, Y. Kang, Z. Wu, and E. D. Li, AC-dielectrophoresis using a lab-on-a-chip device with 3-D electrodes, ELECTROPHORESIS, vol.70, issue.5, pp.766-772, 2009.
DOI : 10.1002/elps.200800464

H. Shafiee, J. L. Caldwell, M. B. Sano, and R. V. Davalos, Contactless dielectrophoresis: a new technique for cell manipulation, Biomedical Microdevices, vol.71, issue.5, pp.997-1006, 2009.
DOI : 10.1007/s10544-009-9317-5

E. B. Cummings and A. K. Singh, Dielectrophoresis in Microchips Containing Arrays of Insulating Posts:?? Theoretical and Experimental Results, Analytical Chemistry, vol.75, issue.18, pp.4724-4731, 2003.
DOI : 10.1021/ac0340612

N. Swami, C. Chou, V. Ramamurthy, and E. V. Chaurey, Enhancing DNA hybridization kinetics through constriction-based dielectrophoresis, Lab on a Chip, vol.3, issue.22, pp.22-3212, 2009.
DOI : 10.1039/b910598k

P. R. Gascoyne, J. Noshari, T. J. Anderson, and F. F. Becker, Isolation of rare cells from cell mixtures by dielectrophoresis, ELECTROPHORESIS, vol.69, issue.8, pp.1388-1398, 2009.
DOI : 10.1002/elps.200800373

I. Doh and Y. Cho, A continuous cell separation chip using hydrodynamic dielectrophoresis (DEP) process, Sensors and Actuators A: Physical, vol.121, issue.1, pp.59-65, 2005.
DOI : 10.1016/j.sna.2005.01.030

F. Aldaeus, Y. Lin, G. Amberg, and E. J. Roeraade, Multi-step dielectrophoresis for separation of particles, Journal of Chromatography A, vol.1131, issue.1-2, pp.261-266, 2006.
DOI : 10.1016/j.chroma.2006.07.022

P. Sabounchi, A. M. Morales, P. Ponce, L. P. Lee, B. A. Simmons et al., Sample concentration and impedance detection on a microfluidic polymer chip, Biomedical Microdevices, vol.19, issue.5, pp.661-670, 2008.
DOI : 10.1007/s10544-008-9177-4

J. Kentsch, Microdevices for separation, accumulation, and analysis of biological micro- and nanoparticles, IEE Proceedings - Nanobiotechnology, vol.150, issue.2, 2003.
DOI : 10.1049/ip-nbt:20031127

F. Grom, J. Kentsch, T. Müller, T. Schnelle, and E. M. Stelzle, Accumulation and trapping of hepatitis A virus particles by electrohydrodynamic flow and dielectrophoresis, ELECTROPHORESIS, vol.22, issue.7, pp.1386-1393, 2006.
DOI : 10.1002/elps.200500416

E. Choi, B. Kim, and E. J. Park, High-throughput microparticle separation using gradient traveling wave dielectrophoresis, Journal of Micromechanics and Microengineering, vol.19, issue.12, pp.12-125014, 2009.
DOI : 10.1088/0960-1317/19/12/125014

L. Wang, J. Lu, S. A. Marchenko, E. S. Monuki, L. A. Flanagan et al., Dual frequency dielectrophoresis with interdigitated sidewall electrodes for microfluidic flow-through separation of beads and cells, ELECTROPHORESIS, vol.23, issue.5, pp.782-791, 2009.
DOI : 10.1002/elps.200800637

A. Valero, T. Braschler, N. Demierre, and E. P. Renaud, A miniaturized continuous dielectrophoretic cell sorter and its applications, Biomicrofluidics, vol.4, issue.2, p.22807, 2010.
DOI : 10.1063/1.3430542

H. Cui, J. Voldman, X. He, and K. Lim, Separation of particles by pulsed dielectrophoresis, Lab on a Chip, vol.24, issue.18, p.2306, 2009.
DOI : 10.1039/b906202e

M. D. Vahey and J. Voldman, An Equilibrium Method for Continuous-Flow Cell Sorting Using Dielectrophoresis, Analytical Chemistry, vol.80, issue.9, pp.3135-3143, 2008.
DOI : 10.1021/ac7020568

J. Auerswald, V. Linder, and H. F. Knapp, Evaluation of a concept for on-chip biochemical assay based on dielectrophoresis-controlled adhesion of beads, Microelectronic Engineering, vol.73, issue.74, pp.822-829, 2004.
DOI : 10.1016/S0167-9317(04)00228-X

J. Ramón-azcón, Competitive multi-immunosensing of pesticides based on the particle manipulation with negative dielectrophoresis, Biosensors and Bioelectronics, vol.25, issue.8, pp.1928-1933, 2010.
DOI : 10.1016/j.bios.2010.01.006

M. Hoeb, J. O. Rädler, S. Klein, M. Stutzmann, and M. S. Brandt, Light-Induced Dielectrophoretic Manipulation of DNA, Biophysical Journal, vol.93, issue.3, pp.1032-1038, 2007.
DOI : 10.1529/biophysj.106.101188

R. Pethig, Dielectrophoresis: Status of the theory, technology, and applications, Biomicrofluidics, vol.4, issue.2, p.22811, 2010.
DOI : 10.1002/9781118671443

M. P. Hughes, H. Morgan, and M. F. Flynn, The Dielectrophoretic Behavior of Submicron Latex Spheres: Influence of Surface Conductance, Journal of Colloid and Interface Science, vol.220, issue.2, pp.454-457, 1999.
DOI : 10.1006/jcis.1999.6542

L. Dong, Floating-Potential Dielectrophoresis-Controlled Fabrication of Single-Carbon-Nanotube Transistors and Their Electrical Properties, The Journal of Physical Chemistry B, vol.109, issue.27, pp.27-13148, 2005.
DOI : 10.1021/jp051803h

W. Yan, N. Mechau, H. Hahn, and E. R. Krupke, Ultraviolet photodetector arrays assembled by dielectrophoresis of ZnO nanoparticles, Nanotechnology, vol.21, issue.11, p.115501, 2010.
DOI : 10.1088/0957-4484/21/11/115501

H. R. Bibliographie-]-d, D. Reyes, P. Iossifidis, A. Auroux, D. Manz-auroux et al., Manz, « Micro Total Analysis Systems. Latest Advancements and Trends » « Intact fetal cell isolation from maternal blood: improved isolation using a simple whole blood progenitor cell enrichment approach (RosetteSep) « Integrated AC electrokinetic cell separation in a closed-loop device « Separation and concentration of water-borne contaminantsutilizing insulator-based dielectrophoresis, Micro total analysis systems. 1. Introduction, theory, and technology Micro total analysis systems. 2. Analytical standard operations and applications Isolation of rare cells from cell mixtures by dielectrophoresis SANDIA REPORT et M. Stelzle, « Accumulation and trapping of hepatitis A virus particles by electrohydrodynamic flow and dielectrophoresis Lapizco-Encinas et M. Rito-Palomares, « Dielectrophoresis for the manipulation of nanobioparticles, pp.2623-2636, 2002.

H. Moon, « Continuous separation of breast cancer cells from blood samples using multiorifice flow fractionation (MOFF) and dielectrophoresis (DEP) », Lab on a Chip « Microdevices for separation, accumulation, and analysis of biological micro-and nanoparticles », Multistation multiparameter flow cytometry: A critical review and rationale, pp.1118-1125, 1983.

R. Kerhoas, M. P. Dhariwal, . C. Desmulliez14-]-g, K. Spalding, M. P. Dholakia et al., « Recent advances in microparticle continuous separation « Microfluidic sorting in an optical lattice « Development of a flexible microfluidic system integrating magnetic microactuators for trapping biological species, Deterministic hydrodynamics: Taking blood apart Proceedings of the National Academy of Sciences, pp.421-424, 2003.

]. S. Choi, S. Song, C. Choi, J. F. Chen, H. Du et al., Hydrophoretic Sorting of Micrometer and Submicrometer Particles Using Anisotropic Microfluidic Obstacles « A 3D paired microelectrode array for accumulation and separation of microparticles « Marker-specific sorting of rare cells using dielectrophoresis, Proceedings of the National Academy of Sciences, pp.50-55, 2005.

]. A. Valero, T. Braschler, N. Demierre, and E. P. Renaud, A miniaturized continuous dielectrophoretic cell sorter and its applications, Biomicrofluidics, vol.4, issue.2, p.22807, 2010.
DOI : 10.1063/1.3430542

G. Mernier, N. Piacentini, T. Braschler, N. Demierre, P. Renaud et al., Continuous-flow electrical lysis device with integrated control by dielectrophoretic cell sorting, Continuous separation of cells by balanced dielectrophoretic forces at multiple frequencies Dielectrophoresis in Microchips Containing Arrays of Insulating Posts: Theoretical and Experimental Results, pp.2077-2082, 2003.
DOI : 10.1016/j.snb.2009.11.066

S. K. Srivastava, A. Gencoglu, and A. R. Minerick, DC insulator dielectrophoretic applications in microdevice technology: a review, Analytical and Bioanalytical Chemistry, vol.9, issue.21, pp.301-321, 2010.
DOI : 10.1007/s00216-010-4222-6

]. E. Stern, « Label-free biomarker detection from whole blood, Nat Nano Biocompatibility and biofouling of MEMS drug delivery devices, pp.138-142, 2003.
DOI : 10.1038/nnano.2009.353

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2818341

]. R. Fulcrand, . Etude, ]. J. Développement-d, G. A. Atencia, A. Cooksey et al., une plateforme microfluidique dédiée à des applications biologiques, Magnetic connectors for microfluidic applications Surface conductance and other properties of latex particles measured by electrorotation, pp.246-5093, 1978.

I. Ermolina, H. Morgan-hughes, H. Morgan, and M. F. Flynn, The electrokinetic properties of latex particles: comparison of electrophoresis and dielectrophoresis, The Dielectrophoretic Behavior of Submicron Latex Spheres: Influence of Surface Conductance34] S. Basuray et H.-C. Chang, « Designing a sensitive and quantifiable nanocolloid assay with dielectrophoretic crossover frequencies, pp.419-428, 1999.
DOI : 10.1016/j.jcis.2004.11.003

R. Huang, R. Holzel, X. B. Pethig, and . Wang, Differences in the AC electrodynamics of viable and non-viable yeast cells determined through combined dielectrophoresis and electrorotation studies, Physics in Medicine and Biology, vol.37, issue.7, pp.1499-1517, 1992.
DOI : 10.1088/0031-9155/37/7/003

F. Bibliographie-]-t, P. Trindade, N. L. O-'brien, . D. Pickett3-]-b, Q. Gates et al., Nikoobakht, « Toward industrial-scale fabrication of nanowire-based devices, Nanocrystalline Semiconductors: Synthesis, Properties, and Perspectives New Approaches to Nanofabrication: Molding, Printing, and Other Techniques Growth of nanowire superlattice structures for nanoscale photonics and electronics Lieber, « Nanoelectronics from the bottom up », Nature Materials Carbon nanotubes: nanomechanics, manipulation, and electronic devices Inkjet-Printed Single-Droplet Organic Transistors Based on Semiconductor Nanowires Embedded in Insulating Polymers », Advanced Functional Materials, pp.3843-3858, 1999.

]. Z. Fan, T. Wei, G. Luo, and E. F. Wei, Fabrication and characterization of multi-walled carbon nanotubes-based ink, Journal of Materials Science, vol.364, issue.18, pp.5075-5077, 2005.
DOI : 10.1007/s10853-005-1622-7

J. K. Mbindyo, B. D. Reiss, B. R. Martin, C. D. Keating, M. J. Natan et al., « DNA Assisted Assembly of Multisegmented Nanowires Patillon, « Coupling carbon nanotubes through DNA linker using a biological recognition complex », physica status solidi, Kinetics of Receptor Directed Assembly of Multisegment Nanowires, pp.249-254, 2001.

G. Zhang, DNA Sensing by Silicon Nanowire: Charge Layer Distance Dependence, Nano Letters, vol.8, issue.4, pp.1066-1070, 2008.
DOI : 10.1021/nl072991l

F. S. Ou, M. M. Shaijumon, and P. M. Ajayan, Controlled Manipulation of Giant Hybrid Inorganic Nanowire Assemblies, Controlled Manipulation of Giant Hybrid Inorganic Nanowire Assemblies, pp.1853-1857, 2008.
DOI : 10.1021/nl080407i

]. K. Heo, Large-Scale Assembly of Silicon Nanowire Network-Based Devices Using Conventional Microfabrication Facilities, Nano Letters, vol.8, issue.12, pp.4523-4527, 2008.
DOI : 10.1021/nl802570m

]. E. Valentin, High-density selective placement methods for carbon nanotubes, Microelectronic Engineering One?Step Patterning of Aligned Nanowire Arrays by Programmed Dip Coating, pp.61-62, 2002.
DOI : 10.1016/S0167-9317(02)00580-4

]. Y. Huang, X. Duan, Q. Wei, and C. M. Lieber, Directed Assembly of One-Dimensional Nanostructures into Functional Networks, Directed Assembly of One-Dimensional Nanostructures into Functional Networks, pp.630-633, 2001.
DOI : 10.1126/science.291.5504.630

C. M. Hangarter and N. V. Myung, Magnetic Alignment of Nanowires, Magnetic Alignment of Nanowires, pp.1320-1324, 2005.
DOI : 10.1021/cm047955r

C. M. Hangarter, Y. Rheem, B. Yoo, E. Yang, and N. V. Myung, Hierarchical magnetic assembly of nanowires, Hierarchical magnetic assembly of nanowires, p.205305, 2007.
DOI : 10.1088/0957-4484/18/20/205305

]. M. Liu, Self-assembled magnetic nanowire arrays, Applied Physics Letters, vol.90, issue.10, p.103105, 2007.
DOI : 10.1063/1.2711522

M. Li, Bottom-up assembly of large-area nanowire resonator arrays, Nature Nanotechnology, vol.69, issue.2, pp.88-92, 2008.
DOI : 10.1038/nnano.2008.26

]. R. Krupke, F. Hennrich, H. B. Weber, M. M. Kappes, H. V. Löhneysen31-]-b et al., Simultaneous Deposition of Metallic Bundles of Single-walled Carbon Nanotubes Using Ac-dielectrophoresis « Semiconducting Enriched Carbon Nanotube Aligned Arrays of Tunable Density and Their Electrical Transport Properties « Jet-printed and dielectrophoretically aligned nanowires for large area electronics « Ordered arrays of single DNA molecules by a combination of capillary assembly, molecular combing and soft-lithography, Electronic Materials Conference Combing a carbon nanotube on a flat metalinsulator-metal nanojunction », EPL (Europhysics Letters) Microelectronic Engineering Assemblage dirigé d'objets à partir de solutions colloïdales », Institut National des Sciences Appliquées de Toulouse Controlled Particle Placement through Convective and Capillary Assembly, pp.1019-1023, 1999.

W. Microfluidics and . Andrew, Guggenheim, « The Principle of Corresponding States [39] T. Pinedo Rivera, « Assemblage convectif de colloïdes par forces de capillarité en milieu confiné: applications en plasmonique, Study of Nanowire Growth Mechanisms: VLS and Si Assisted One-Dimensional Nanostructures Precise Semiconductor Nanowire Placement Through Dielectrophoresis », Nano Letters, pp.253-254, 1945.

R. J. Hamers, Electrically directed assembly and detection of nanowire bridges in aqueous media, Dielectrophoretic Assembly of Nanowires, pp.280-14098, 2006.
DOI : 10.1088/0957-4484/17/11/S09

M. Miki-yoshida, L. Rendón, and J. G. Santiesteban, Catalytic growth of carbon microtubules with fullerene structure, Applied Physics Letters, vol.62, issue.6, p.657, 1993.