.. Dosage-des-composés-thiolés, 82 C. Extraction des fractions solubles aqueuses foliaires, p.83

.. Préparation-du-réactif-de-méthoxymation-et-du-mélange-d-'alcanes, 89 I. Quantification ciblée de nucléotides et cofacteurs par, p.91

K. Analyses-par-couplage, E. La-bactérie-pst, and .. , 94 XII. Approches physiologiques, p.96

B. G. Forde, Nitrate transporters in plants: structure, function and regulation, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1465, issue.1-2, pp.1465-219, 2000.
DOI : 10.1016/S0005-2736(00)00140-1

B. G. Forde and P. J. Lea, Glutamate in plants: metabolism, regulation, and signalling, Journal of Experimental Botany, vol.58, issue.9, pp.2339-2358, 2007.
DOI : 10.1093/jxb/erm121

K. A. Ford, J. E. Casida, D. Chandran, A. G. Gulevich, R. A. Okrent et al., Neonicotinoid insecticides induce salicylate-associated plant defense responses, Proceedings of the National Academy of Sciences, pp.17527-17532, 2010.
DOI : 10.1073/pnas.1013020107

K. A. Ford and J. E. Casida, Comparative Metabolism and Pharmacokinetics of Seven Neonicotinoid Insecticides in Spinach, Journal of Agricultural and Food Chemistry, vol.56, issue.21, pp.10168-10175, 2008.
DOI : 10.1021/jf8020909

F. Forouhar, J. L. Anderson, C. G. Mowat, S. M. Vorobiev, A. Hussain et al., Molecular insights into substrate recognition and catalysis by tryptophan 2,3-dioxygenase, Proceedings of the National Academy of Sciences of the United States of America, pp.473-478, 2007.
DOI : 10.1073/pnas.0610007104

A. C. Foster, W. C. Zinkand, and R. Schwarcz, Quinolinic Acid Phosphoribosyltransferase in Rat Brain, Journal of Neurochemistry, vol.40, issue.2, pp.446-454, 1985.
DOI : 10.1016/0304-3940(83)90458-5

J. W. Foster and A. G. Moat, Mapping and characterization of the nad genes in Salmonella typhimurium LT?2, Journal of Bacteriology, vol.133, pp.775-779, 1978.

J. W. Foster and A. G. Moat, Nicotinamide adenine dinucleotide biosynthesis and pyridine nucleotide cycle metabolism in microbial systems, Microbiological Reviews, vol.44, pp.83-105, 1980.

C. H. Foyer and G. Noctor, Ascorbate and Glutathione: The Heart of the Redox Hub, PLANT PHYSIOLOGY, vol.155, issue.1, 2011.
DOI : 10.1104/pp.110.167569

C. H. Foyer, G. Noctor, and M. Hodges, Respiration and nitrogen assimilation: targeting mitochondria-associated metabolism as a means to enhance nitrogen use efficiency, Journal of Experimental Botany, vol.62, issue.4, p.1467, 2011.
DOI : 10.1093/jxb/erq453

C. H. Foyer and G. Noctor, Photosynthetic Nitrogen Assimilation and Associated Carbon and Respiratory Metabolism, Photosynthetica, vol.12, pp.41-342, 2003.
DOI : 10.1007/0-306-48138-3

C. H. Foyer and G. Noctor, Redox Homeostasis and Antioxidant Signaling: A Metabolic Interface between Stress Perception and Physiological Responses, THE PLANT CELL ONLINE, vol.17, issue.7, pp.1866-1875, 2005.
DOI : 10.1105/tpc.105.033589

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1167537

C. H. Foyer and G. Noctor, Redox Regulation in Photosynthetic Organisms: Signaling, Acclimation, and Practical Implications, Antioxidants & Redox Signaling, vol.11, issue.4, pp.861-905, 2009.
DOI : 10.1089/ars.2008.2177

C. H. Foyer, A. J. Bloom, G. Queval, and G. Noctor, Photorespiratory Metabolism: Genes, Mutants, Energetics, and Redox Signaling, Annual Review of Plant Biology, vol.60, issue.1, pp.455-484, 2009.
DOI : 10.1146/annurev.arplant.043008.091948

C. Foyer, J. Rowell, and D. Walker, Measurement of the ascorbate content of spinach leaf protoplasts and chloroplasts during illumination, Planta, vol.22, issue.3, pp.239-244, 1983.
DOI : 10.1007/BF00405188

M. Friedkin and A. L. Lehninger, Esterification of inorganic phosphate coupled to electron transport between dihydrodiphosphopyridine nucleotide and oxygen, The Journal of Biological Chemistry, vol.178, pp.611-644, 1949.

G. M. Frost, K. S. Yang, and G. R. Waller, Nicotinamide adenine dinucleotide as a precursor of nicotine in Nicotiana rustica L, The Journal of Biological Chemistry, vol.242, pp.887-888, 1967.

R. Frothingham, W. A. Meeker?o-'connell, E. A. Talbot, J. W. George, and K. N. Kreuzer, Identification, cloning, and expression of the Escherichia coli pyrazinamidase and nicotinamidase gene, pncA, 1426?1431. Références bibliographiques, p.180, 1996.

S. Fukuoka and K. Shibata, Characterization and Functional Expression of the Cdna Encoding Human Brain Quinolinate Phosphoribosyltransferase, Advances in Experimental Medicine and Biology, vol.467, pp.611-614, 1999.
DOI : 10.1007/978-1-4615-4709-9_76

S. I. Fukuoka, C. M. Nyaruhucha, and K. Shibata, Characterization and functional expression of the cDNA encoding human brain quinolinate phosphoribosyltransferase, Biochimica Et Biophysica Acta, p.1395, 1998.

I. Gadjev, J. M. Stone, and T. S. Gechev, Chapter 3: Programmed Cell Death in Plants, International Review of Cell and Molecular Biology, vol.270, pp.87-144, 2008.
DOI : 10.1016/S1937-6448(08)01403-2

S. Gagnot, J. ?. Tamby, M. ?. Martin?magniette, F. Bitton, L. Taconnat et al., CATdb: a public access to Arabidopsis transcriptome data from the URGV-CATMA platform, Nucleic Acids Research, vol.36, issue.Database, pp.986-990, 2008.
DOI : 10.1093/nar/gkm757

URL : https://hal.archives-ouvertes.fr/hal-01203869

B. Gakière, S. Ravanel, M. Droux, R. Douce, and D. Job, Mechanisms to account for maintenance of the soluble methionine pool in transgenic Arabidopsis plants expressing antisense cystathionine gamma?synthase cDNA, Comptes Rendus De l'Académie Des Sciences. Série III, Sciences De La Vie, pp.841-851, 2000.

G. Galili, G. Tang, X. Zhu, and B. Gakiere, Lysine catabolism: a stress and development super-regulated metabolic pathway, Current Opinion in Plant Biology, vol.4, issue.3, 2001.
DOI : 10.1016/S1369-5266(00)00170-9

X. Gansel, S. Muños, P. Tillard, and A. Gojon, Differential regulation of the NO3- and NH4+ transporter genes AtNrt2.1 and AtAmt1.1 in Arabidopsis: relation with long-distance and local controls by N status of the plant, The Plant Journal, vol.17, issue.2, pp.143-155, 2001.
DOI : 10.1046/j.1365-313x.2001.01016.x

D. Gara, L. Locato, V. Dipierro, S. De-pinto, and M. C. , Redox homeostasis in plants. The challenge of living with endogenous oxygen production, Respiratory Physiology & Neurobiology, vol.173, pp.13-19, 2010.
DOI : 10.1016/j.resp.2010.02.007

S. Gazzarrini, L. Lejay, A. Gojon, O. Ninnemann, W. B. Frommer et al., Three Functional Transporters for Constitutive, Diurnally Regulated, and Starvation-Induced Uptake of Ammonium into Arabidopsis Roots, THE PLANT CELL ONLINE, vol.11, issue.5, pp.937-948, 1999.
DOI : 10.1105/tpc.11.5.937

X. Ge, G. ?. Li, S. ?. Wang, H. Zhu, T. Zhu et al., AtNUDT7, a Negative Regulator of Basal Immunity in Arabidopsis, Modulates Two Distinct Defense Response Pathways and Is Involved in Maintaining Redox Homeostasis, PLANT PHYSIOLOGY, vol.145, issue.1, pp.204-215, 2007.
DOI : 10.1104/pp.107.103374

Y. Ge, S. Dudoit, and T. P. Speed, Resampling-based multiple testing for microarray data analysis, Test, vol.82, issue.406, pp.1-77, 2003.
DOI : 10.1007/BF02595811

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

M. Ghislain, E. Talla, and J. M. François, Identification and functional analysis of the Saccharomyces cerevisiae nicotinamidase gene, PNC1, Yeast, vol.19, issue.3, pp.215-224, 2002.
DOI : 10.1002/yea.810.abs

A. Ghosh and B. Chance, Oscillations of glycolytic intermediates in yeast cells, Biochemical and Biophysical Research Communications, vol.16, issue.2, pp.174-181, 1964.
DOI : 10.1016/0006-291X(64)90357-2

A. D. Glass, D. T. Britto, B. N. Kaiser, J. R. Kinghorn, H. J. Kronzucker et al., The regulation of nitrate and ammonium transport systems in plants, Journal of Experimental Botany, vol.53, issue.370, pp.855-864, 2002.
DOI : 10.1093/jexbot/53.370.855

J. Glazebrook, Genes controlling expression of defense responses in Arabidopsis, Current Opinion in Plant Biology, vol.2, issue.4, pp.280-286, 1999.
DOI : 10.1016/S1369-5266(99)80050-8

J. Glazebrook and F. M. Ausubel, Isolation of phytoalexin-deficient mutants of Arabidopsis thaliana and characterization of their interactions with bacterial pathogens., Proceedings of the National Academy of Sciences of the United States of America, pp.8955-8959, 1994.
DOI : 10.1073/pnas.91.19.8955

J. Glazebrook, W. Chen, B. Estes, H. ?. Chang, C. Nawrath et al., Topology of the network integrating salicylate and jasmonate signal transduction derived from global expression phenotyping, The Plant Journal, vol.13, issue.2, pp.217-228, 2003.
DOI : 10.1104/pp.124.4.1472

G. Lemaire and P. Millard, An ecophysiological approach to modelling resource fluxes in competing plants, Journal of Experimental Botany, vol.50, issue.330, pp.15-28, 1998.
DOI : 10.1093/jxb/50.330.15

I. P. De-león, A. Sanz, M. Hamberg, and C. Castresana, ??-DOX1 fatty acid dioxygenase in protection against oxidative stress and cell death, The Plant Journal, vol.3, issue.1, pp.61-62, 2002.
DOI : 10.1046/j.1365-313x.2002.01195.x

F. Lerner, M. Niere, A. Ludwig, and M. Ziegler, Structural and Functional Characterization of Human NAD Kinase, Biochemical and Biophysical Research Communications, vol.288, issue.1, pp.69-74, 2001.
DOI : 10.1006/bbrc.2001.5735

F. Lerner, M. Niere, A. Ludwig, and M. Ziegler, Structural and Functional Characterization of Human NAD Kinase, Biochemical and Biophysical Research Communications, vol.288, issue.1, pp.69-74, 2001.
DOI : 10.1006/bbrc.2001.5735

A. H. Liepman, R. Wightman, N. Geshi, S. R. Turner, and H. V. Scheller, Arabidopsis - a powerful model system for plant cell wall research, The Plant Journal, vol.133, issue.6, pp.61-1107, 2010.
DOI : 10.1111/j.1365-313X.2010.04161.x

C. Lillo, Light regulation of nitrate reductase in green leaves of higher plants, Physiologia Plantarum, vol.90, issue.3, pp.89-94, 1994.
DOI : 10.1034/j.1399-3054.1994.900325.x

C. Lillo, C. Meyer, and P. Ruoff, The Nitrate Reductase Circadian System. The Central Clock Dogma Contra Multiple Oscillatory Feedback Loops, PLANT PHYSIOLOGY, vol.125, issue.4, pp.1554-1557, 2001.
DOI : 10.1104/pp.125.4.1554

C. Lillo, Signalling cascades integrating light-enhanced nitrate metabolism, Biochemical Journal, vol.415, issue.1, pp.11-19, 2008.
DOI : 10.1042/BJ20081115

C. Lillo, U. S. Lea, M. ?. Leydecker, and C. Meyer, and nitrite accumulation, The Plant Journal, vol.355, issue.5, pp.566-573, 2003.
DOI : 10.1046/j.1365-313X.2003.01828.x

C. Lillo, C. Meyer, U. S. Lea, F. Provan, and S. Oltedal, Mechanism and importance of post-translational regulation of nitrate reductase, Journal of Experimental Botany, vol.55, issue.401, pp.1275-1282, 2004.
DOI : 10.1093/jxb/erh132

P. O. Lim, H. R. Woo, and H. G. Nam, Molecular genetics of leaf senescence in Arabidopsis, Trends in Plant Science, vol.8, issue.6, pp.272-278, 2003.
DOI : 10.1016/S1360-1385(03)00103-1

P. Lindroth and K. Mopper, High performance liquid chromatographic determination of subpicomole amounts of amino acids by precolumn fluorescence derivatization with o-phthaldialdehyde, Analytical Chemistry, vol.51, issue.11, pp.1667-1674, 1979.
DOI : 10.1021/ac50047a019

L. F. Lin and L. M. Henderson, Pyridinium precursors of pyridine nucleotides in perfused rat kidney and in the testis, The Journal of Biological Chemistry, vol.247, pp.8023-8030, 1972.

S. J. Lin, P. A. Defossez, and L. Guarente, Requirement of NAD and SIR2 for Life-Span Extension by Calorie Restriction in Saccharomyces cerevisiae, Science, vol.289, issue.5487, pp.289-2126, 2000.
DOI : 10.1126/science.289.5487.2126

G. Liu, Y. Ji, N. H. Bhuiyan, G. Pilot, G. Selvaraj et al., Amino Acid Homeostasis Modulates Salicylic Acid-Associated Redox Status and Defense Responses in Arabidopsis, THE PLANT CELL ONLINE, vol.22, issue.11, pp.3845-3863, 2010.
DOI : 10.1105/tpc.110.079392

H. Liu, K. Woznica, G. Catton, A. Crawford, N. Botting et al., Structural and Kinetic Characterization of Quinolinate Phosphoribosyltransferase (hQPRTase) from Homo sapiens, Journal of Molecular Biology, vol.373, issue.3, pp.755-763, 2007.
DOI : 10.1016/j.jmb.2007.08.043

K. H. Liu, C. Y. Huang, and Y. F. Tsay, CHL1 is a dual?affinity nitrate transporter of Arabidopsis involved in multiple phases of nitrate uptake. The Plant Cell, pp.865-874, 1999.

L. Liu, Y. Li, Z. Shi, G. Du, and J. Chen, Enhancement of pyruvate productivity in Torulopsis glabrata: Increase of NAD+ availability, Journal of Biotechnology, vol.126, issue.2, pp.173-185, 2006.
DOI : 10.1016/j.jbiotec.2006.04.014

G. Loake and M. Grant, Salicylic acid in plant defence???the players and protagonists, Current Opinion in Plant Biology, vol.10, issue.5, pp.466-472, 2007.
DOI : 10.1016/j.pbi.2007.08.008

D. Loqué, S. Lalonde, L. L. Looger, N. Von-wirén, and W. B. Frommer, A cytosolic trans-activation domain essential for ammonium uptake, Nature, vol.303, issue.7132, p.446, 2007.
DOI : 10.1038/nature05579

D. Loqué, U. Ludewig, L. Yuan, and N. Von-wirén, Tonoplast Intrinsic Proteins AtTIP2;1 and AtTIP2;3 Facilitate NH3 Transport into the Vacuole, PLANT PHYSIOLOGY, vol.137, issue.2, pp.671-680, 2005.
DOI : 10.1104/pp.104.051268

D. Loqué, L. Yuan, S. Kojima, A. Gojon, J. Wirth et al., Additive contribution of AMT1;1 and AMT1;3 to high-affinity ammonium uptake across the plasma membrane of nitrogen-deficient Arabidopsis roots, The Plant Journal, vol.136, issue.4, pp.522-534, 2006.
DOI : 10.1111/j.1365-313X.2006.02887.x

J. Lothier, L. Gaufichon, R. Sormani, T. Lemaître, M. Azzopardi et al., The cytosolic glutamine synthetase GLN1;2 plays a role in the control of plant growth and ammonium homeostasis in Arabidopsis rosettes when nitrate supply is not limiting, Journal of Experimental Botany, vol.62, issue.4, pp.1375-1390, 2011.
DOI : 10.1093/jxb/erq299

URL : https://hal.archives-ouvertes.fr/hal-00999835

A. E. Louw and I. A. Dubery, Plant Defence Responses in Isonicotinamide-Treated Tobacco Cells. Evidence Supporting a Role for Nicotinamide Related Metabolites as Stress Mediators in Plant Defense Metabolism, Journal of Plant Physiology, vol.156, issue.1, pp.60-66, 2000.
DOI : 10.1016/S0176-1617(00)80268-0

U. Ludewig, B. Neuhäuser, and M. Dynowski, Molecular mechanisms of ammonium transport and accumulation in plants, FEBS Letters, vol.68, issue.12, pp.581-2301, 2007.
DOI : 10.1016/j.febslet.2007.03.034

C. Lurin, C. Andrés, S. Aubourg, M. Bellaoui, F. Bitton et al., Genome-Wide Analysis of Arabidopsis Pentatricopeptide Repeat Proteins Reveals Their Essential Role in Organelle Biogenesis, THE PLANT CELL ONLINE, vol.16, issue.8, 2004.
DOI : 10.1105/tpc.104.022236

D. Mackey, B. F. Holt, A. Wiig, and J. L. Dangl, RIN4 Interacts with Pseudomonas syringae Type III Effector Molecules and Is Required for RPM1-Mediated Resistance in Arabidopsis, Cell, vol.108, issue.6, pp.743-754, 2002.
DOI : 10.1016/S0092-8674(02)00661-X

C. Mackintosh and S. E. Meek, Regulation of plant NR activity by reversible phosphorylation, 14-3-3 proteins and proteolysis, Cellular and Molecular Life Sciences, vol.58, issue.2, pp.205-214, 2001.
DOI : 10.1007/PL00000848

G. Magni, A. Amici, M. Emanuelli, G. Orsomando, N. Raffaelli et al., Structure and Function of Nicotinamide Mononucleotide Adenylyltransferase, Current Medicinal Chemistry, vol.11, issue.7, pp.873-885, 2004.
DOI : 10.2174/0929867043455666

G. Magni, A. Amici, M. Emanuelli, N. Raffaelli, and S. Ruggieri, Enzymology of Nad+ Synthesis, Advances in Enzymology and Related Areas of Molecular Biology, vol.73, pp.135-182, 1999.
DOI : 10.1002/9780470123195.ch5

R. Mahalingam, N. Jambunathan, and A. Penaganti, Pyridine Nucleotide Homeostasis inPlant Development and Stress, International Journal of Plant Developmental Biology, vol.1, 2007.

S. E. Mainguet, B. Gakière, A. Majira, S. Pelletier, F. Bringel et al., Uracil salvage is necessary for early Arabidopsis development, The Plant Journal, vol.57, issue.2, pp.280-291, 2009.
DOI : 10.1111/j.1365-313X.2009.03963.x

URL : https://hal.archives-ouvertes.fr/hal-00435132

J. Malamy, J. P. Carr, D. F. Klessig, and I. Raskin, Salicylic Acid: A Likely Endogenous Signal in the Resistance Response of Tobacco to Viral Infection, Science, vol.250, issue.4983, pp.250-1002, 1990.
DOI : 10.1126/science.250.4983.1002

D. F. Mann and R. U. Byerrum, Quinolinic acid phosphoribosyltransferase from castor bean endosperm. I. Purification and characterization, The Journal of Biological Chemistry, vol.249, pp.6817-6823, 1974.

A. M. Marini, S. Vissers, A. Urrestarazu, and B. André, Cloning and expression of the MEP1 gene encoding an ammonium transporter in Saccharomyces cerevisiae, The EMBO Journal, vol.13, pp.3456-3463, 1994.

D. Martino, C. Pallotta, and M. L. , Mitochondria-localized NAD biosynthesis by nicotinamide mononucleotide adenylyltransferase in Jerusalem artichoke (Helianthus tuberosus L.) heterotrophic tissues, Planta, vol.102, issue.4, 2011.
DOI : 10.1007/s00425-011-1428-6

T. Remans, P. Nacry, M. Pervent, S. Filleur, E. Diatloff et al., The Arabidopsis NRT1.1 transporter participates in the signaling pathway triggering root colonization of nitrate-rich patches, Proceedings of the National Academy of Sciences of the United States of America, 2006.
DOI : 10.1073/pnas.0605275103

URL : https://hal.archives-ouvertes.fr/hal-00124948

J. R. Revollo, A. A. Grimm, S. Imai, and . ?ichiro, The NAD Biosynthesis Pathway Mediated by Nicotinamide Phosphoribosyltransferase Regulates Sir2 Activity in Mammalian Cells, Journal of Biological Chemistry, vol.279, issue.49, pp.50754-50763, 2004.
DOI : 10.1074/jbc.M408388200

D. M. Roberts and A. C. Harmon, Calcium-Modulated Proteins: Targets of Intracellular Calcium Signals in Higher Plants, Annual Review of Plant Physiology and Plant Molecular Biology, vol.43, issue.1, pp.375-414, 1992.
DOI : 10.1146/annurev.pp.43.060192.002111

D. Robyr, Y. Suka, I. Xenarios, S. K. Kurdistani, A. Wang et al., Microarray Deacetylation Maps Determine Genome-Wide Functions for Yeast Histone Deacetylases, Cell, vol.109, issue.4, pp.437-446, 2002.
DOI : 10.1016/S0092-8674(02)00746-8

URL : http://doi.org/10.1016/s0092-8674(02)00746-8

C. Rochat, J. Boutin, and . ?p, L.), Journal of Experimental Botany, vol.42, issue.2, pp.207-214, 1991.
DOI : 10.1093/jxb/42.2.207

URL : https://hal.archives-ouvertes.fr/tel-00518070

A. Rongvaux, F. Andris, F. Van-gool, and O. Leo, Reconstructing eukaryotic NAD metabolism, BioEssays, vol.25, issue.7, pp.683-690, 2003.
DOI : 10.1002/bies.10297

A. Rongvaux, R. J. Shea, M. H. Mulks, D. Gigot, J. Urbain et al., Pre-B-cell colony-enhancing factor, whose expression is up-regulated in activated lymphocytes, is a nicotinamide phosphoribosyltransferase, a cytosolic enzyme involved in NAD biosynthesis, European Journal of Immunology, vol.32, issue.11, pp.3225-3234, 2002.
DOI : 10.1002/1521-4141(200211)32:11<3225::AID-IMMU3225>3.0.CO;2-L

N. Rouhier, C. Vieira-dos-santos, L. Tarrago, and P. Rey, Plant methionine sulfoxide reductase A and B multigenic families, Photosynthesis Research, vol.136, issue.235, pp.247-262, 2006.
DOI : 10.1007/s11120-006-9097-1

C. Rousset, Etude Structurale et Fonctionnelle de la Quinolinate Synthase: une protéine fer?soufre cible d'agents antibactériens, 2009.

C. Rousset, M. Fontecave, and S. Ollagnier-de-choudens, : Investigation of cluster ligands, FEBS Letters, vol.96, issue.19, pp.2937-2944, 2008.
DOI : 10.1016/j.febslet.2008.07.032

A. Rozenberg and J. K. Lee, Theoretical Studies of the Quinolinic Acid to Nicotinic Acid Mononucleotide Transformation, The Journal of Organic Chemistry, vol.73, issue.23, pp.9314-9319, 2008.
DOI : 10.1021/jo8012379

I. J. Ryrie and K. J. Scott, Metabolic Regulation in Diseased Leaves II. Changes in Nicotinamide Nucleotide Coenzymes in Barley Leaves Infected With Powdery Mildew, PLANT PHYSIOLOGY, vol.43, issue.5, pp.687-692, 1968.
DOI : 10.1104/pp.43.5.687

H. Sakakibara, K. Takei, and N. Hirose, Interactions between nitrogen and cytokinin in the regulation of metabolism and development, Trends in Plant Science, vol.11, issue.9, pp.440-448, 2006.
DOI : 10.1016/j.tplants.2006.07.004

H. Sakuraba, H. Tsuge, K. Yoneda, N. Katunuma, and T. Ohshima, Crystal Structure of the NAD Biosynthetic Enzyme Quinolinate Synthase, Journal of Biological Chemistry, vol.280, issue.29, pp.26645-26648, 2005.
DOI : 10.1074/jbc.C500192200

J. Sanchez and H. W. Heldt, On The Regulation of Spinach Nitrate Reductase, PLANT PHYSIOLOGY, vol.92, issue.3, pp.92-684, 1990.
DOI : 10.1104/pp.92.3.684

J. W. Saunders and L. P. Bush, Nicotine Biosynthetic Enzyme Activities in Nicotiana tabacum L. Genotypes with Different Alkaloid Levels, PLANT PHYSIOLOGY, vol.64, issue.2, pp.236-240, 1979.
DOI : 10.1104/pp.64.2.236

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC440341

A. A. Sauve, NAD+ and Vitamin B3: From Metabolism to Therapies, Journal of Pharmacology and Experimental Therapeutics, vol.324, issue.3, pp.883-893, 2008.
DOI : 10.1124/jpet.107.120758

F. Q. Schafer and G. R. Buettner, Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple, Free Radical Biology and Medicine, vol.30, issue.11, pp.1191-1212, 2001.
DOI : 10.1016/S0891-5849(01)00480-4

P. Schär, G. Herrmann, G. Daly, and T. Lindahl, A newly identified DNA ligase of Saccharomyces cerevisiae involved in RAD52-independent repair of DNA double-strand??breaks, Genes & Development, vol.11, issue.15, 1997.
DOI : 10.1101/gad.11.15.1912

W. R. Scheible, A. Gonzalez?fontes, M. Lauerer, B. Muller?rober, M. Caboche et al., Nitrate Acts as a Signal to Induce Organic Acid Metabolism and Repress Starch Metabolism in Tobacco, THE PLANT CELL ONLINE, vol.9, issue.5, pp.783-798, 1997.
DOI : 10.1105/tpc.9.5.783

W. ?. Scheible, M. Lauerer, E. ?. Schulze, M. Caboche, and M. Stitt, Accumulation of nitrate in the shoot acts as a signal to regulate shoot-root allocation in tobacco+, The Plant Journal, vol.11, issue.4, pp.671-691, 1997.
DOI : 10.1046/j.1365-313X.1997.11040671.x

W. ?. Scheible, R. Morcuende, T. Czechowski, C. Fritz, D. Osuna et al., Genome-Wide Reprogramming of Primary and Secondary Metabolism, Protein Synthesis, Cellular Growth Processes, and the Regulatory Infrastructure of Arabidopsis in Response to Nitrogen, PLANT PHYSIOLOGY, vol.136, issue.1, pp.2483-2499, 2004.
DOI : 10.1104/pp.104.047019

M. Schena, D. Shalon, R. W. Davis, and P. O. Brown, Quantitative Monitoring of Gene Expression Patterns with a Complementary DNA Microarray, Science, vol.270, issue.5235, pp.467-470, 1995.
DOI : 10.1126/science.270.5235.467

J. H. Schippers, A. Nunes?nesi, R. Apetrei, J. Hille, A. R. Fernie et al., The Arabidopsis onset of leaf death5 Mutation of Quinolinate Synthase Affects Nicotinamide Adenine Dinucleotide Biosynthesis and Causes Early Ageing. The Plant Cell Online, pp.2909-2925, 2008.

M. Schneider, P. Schweizer, P. Meuwly, and J. Metraux, Systemic Acquired Resistance in Plants, International Review of Cytology, vol.168, pp.303-340, 1996.
DOI : 10.1016/S0074-7696(08)60887-6

E. Schrödinger, Qu'est?ce que la vie ? : de la physique à la biologie, 1986.

M. Schweiger, K. Hennig, F. Lerner, M. Niere, M. Hirsch?kauffmann et al., Characterization of recombinant human nicotinamide mononucleotide adenylyl transferase (NMNAT), a nuclear enzyme essential for NAD synthesis, FEBS Letters, vol.173, issue.1-2, pp.95-100, 2001.
DOI : 10.1016/S0014-5793(01)02180-9

G. Sclep, J. Allemeersch, R. Liechti, B. De-meyer, J. Beynon et al., CATMA, a comprehensive genome-scale resource for silencing and transcript profiling of Arabidopsis genes, BMC Bioinformatics, vol.8, issue.1, p.400, 2007.
DOI : 10.1186/1471-2105-8-400

A. W. Segal, The function of the NADPH oxidase of phagocytes and its relationship to other NOXs in plants, invertebrates, and mammals, The International Journal of Biochemistry & Cell Biology, vol.40, issue.4, pp.604-618, 2008.
DOI : 10.1016/j.biocel.2007.10.003

S. Sestini, G. Jacomelli, M. Pescaglini, V. Micheli, and G. Pompucci, Enzyme Activities Leading to NAD Synthesis in Human Lymphocytes, Archives of Biochemistry and Biophysics, vol.379, issue.2, pp.277-282, 2000.
DOI : 10.1006/abbi.2000.1888

J. Shah, P. Kachroo, and D. F. Klessig, The Arabidopsis ssi1 mutation restores pathogenesis?related gene expression in npr1 plants and renders defensin gene expression salicylic acid dependent. The Plant Cell, 1999.

J. Shah, The salicylic acid loop in plant defense, Current Opinion in Plant Biology, vol.6, issue.4, pp.365-371, 2003.
DOI : 10.1016/S1369-5266(03)00058-X

V. Sharma, C. Grubmeyer, and J. C. Sacchettini, Crystal structure of quinolinic acid phosphoribosyltransferase from Mycobacterium tuberculosis: a potential TB drug target, Structure, vol.6, issue.12, pp.1587-1599, 1993.
DOI : 10.1016/S0969-2126(98)00156-7

K. Shibata, T. Hayakawa, and K. Iwai, Tissue distribution of the enzymes concerned with the biosynthesis of NAD in rats, Agricultural and Biological Chemistry, vol.50, pp.3037-3041, 1986.

K. Shibata, T. Hayakawa, H. Taguchi, and K. Iwai, Regulation of Pyridine Nucleotide Coenzyme Metabolism, Advances in Experimental Medicine and Biology, vol.294, 1991.
DOI : 10.1007/978-1-4684-5952-4_19

Y. Shirano, P. Kachroo, J. Shah, and D. F. Klessig, A Gain-of-Function Mutation in an Arabidopsis Toll Interleukin1 Receptor-Nucleotide Binding Site-Leucine-Rich Repeat Type R Gene Triggers Defense Responses and Results in Enhanced Disease Resistance, THE PLANT CELL ONLINE, vol.14, issue.12, pp.3149-3162, 2002.
DOI : 10.1105/tpc.005348

C. Simon, M. Langlois?meurinne, F. Bellvert, M. Garmier, L. Didierlaurent et al., The differential spatial distribution of secondary metabolites in Arabidopsis leaves reacting hypersensitively to Pseudomonas syringae pv. tomato is dependent on the oxidative burst, Journal of Experimental Botany, vol.61, issue.12, pp.61-3355, 2010.
DOI : 10.1093/jxb/erq157

URL : https://hal.archives-ouvertes.fr/hal-00508594

C. Simon, M. Langlois?meurinne, F. Bellvert, M. Garmier, L. Didierlaurent et al., The differential spatial distribution of secondary metabolites in Arabidopsis leaves reacting hypersensitively to Pseudomonas syringae pv. tomato is dependent on the oxidative burst, Journal of Experimental Botany, vol.61, issue.12, pp.61-3355, 2010.
DOI : 10.1093/jxb/erq157

URL : https://hal.archives-ouvertes.fr/hal-00508594

P. Simon, P. Dieter, M. Bonzon, H. Greppin, and D. Marm, Calmodulin-dependent and independent NAD kinase activities from cytoplasmic and chloroplastic fractions of spinach (Spinacia oleracea L.), Plant Cell Reports, vol.19, issue.3, pp.119-122, 1982.
DOI : 10.1007/BF00272368

S. J. Sinclair, K. J. Murphy, C. D. Birch, and J. D. Hamill, Molecular characterization of quinolinate phosphoribosyltransferase (QPRtase) in Nicotiana, Plant Molecular Biology, vol.44, issue.5, pp.603-617, 2000.
DOI : 10.1023/A:1026590521318

R. Slocum, Genes, enzymes and regulation of arginine biosynthesis in plants, Plant Physiology and Biochemistry, vol.43, issue.8, pp.729-745, 2005.
DOI : 10.1016/j.plaphy.2005.06.007

S. S. Sonoli, S. Shivprasad, C. V. Prasad, A. B. Patil, P. B. Desai et al., Visfatin??a review, European Review for Medical and Pharmacological Sciences, vol.15, pp.9-14, 2011.

R. L. Spencer and J. Preiss, Biosynthesis of diphosphopyridine nucleotide. The purification and the properties of diphospyridine nucleotide synthetase from Escherichia coli b, The Journal of Biological Chemistry, vol.242, pp.385-392, 1967.

H. S. Srivastava and N. Shankar, Molecular biology and biotechnology of higher plant nitrate reductases, Current Science Current Science, vol.71, issue.9, pp.702-709, 1996.

C. Stephan, M. Renard, and F. Montrichard, Evidence for the existence of two soluble NAD+ kinase isoenzymes in Euglena gracilis Z, The International Journal of Biochemistry & Cell Biology, vol.32, issue.8, pp.855-863, 2000.
DOI : 10.1016/S1357-2725(00)00032-7

M. Stitt and A. Krapp, The interaction between elevated carbon dioxide and nitrogen nutrition: the physiological and molecular background, Plant, Cell and Environment, vol.23, issue.6, pp.583-621, 1999.
DOI : 10.1126/science.279.5349.407

Y. Suda, H. Tachikawa, A. Yokota, H. Nakanishi, N. Yamashita et al., Saccharomyces cerevisiae QNS1 codes for NAD+ synthetase that is functionally conserved in mammals, Yeast, vol.75, issue.11, pp.995-1005, 2003.
DOI : 10.1002/yea.1008

M. Sugiyama, E. C. Yeung, Y. Shoji, and A. Komamine, Possible involvement of DNA-repair events in the transdifferentiation of mesophyll cells ofZinnia elegans into tracheary elements, Journal of Plant Research, vol.135, issue.3, pp.351-361, 1995.
DOI : 10.1007/BF02344360

A. Suzuki and D. B. Knaff, Glutamate synthase: structural, mechanistic and regulatory properties, and role in the amino acid metabolism, Photosynthesis Research, vol.41, issue.2, 2005.
DOI : 10.1007/s11120-004-3478-0

S. Vanderauwera, D. Block, M. Van-de-steene, N. Van-de-cotte, B. Metzlaff et al., Silencing of poly(ADP-ribose) polymerase in plants alters abiotic stress signal transduction, Proceedings of the National Academy of Sciences, pp.15150-15155, 2007.
DOI : 10.1073/pnas.0706668104

M. A. Vanoni and B. Curti, Structure???function studies of glutamate synthases: A class of self-regulated iron-sulfur flavoenzymes essential for nitrogen assimilation, IUBMB Life, vol.436, issue.5, pp.287-300, 2008.
DOI : 10.1002/iub.52

S. D. Veljovic?jovanovic, C. Pignocchi, G. Noctor, and C. H. Foyer, Low Ascorbic Acid in the vtc-1 Mutant of Arabidopsis Is Associated with Decreased Growth and Intracellular Redistribution of the Antioxidant System, PLANT PHYSIOLOGY, vol.127, issue.2, pp.426-435, 2001.
DOI : 10.1104/pp.010141

J. J. Vidmar, D. Zhuo, M. Y. Siddiqi, J. K. Schjoerring, B. Touraine et al., Regulation of High-Affinity Nitrate Transporter Genes and High-Affinity Nitrate Influx by Nitrogen Pools in Roots of Barley, Plant Physiology, vol.123, issue.1, pp.307-318, 2000.
DOI : 10.1104/pp.123.1.307

M. Vincentz and M. Caboche, Constitutive expression of nitrate reductase allows normal growth and development of Nicotiana plumbaginifolia plants, The EMBO Journal, vol.10, pp.1027-1035, 1991.

M. Vincentz, T. Moureaux, M. T. Leydecker, H. Vaucheret, and M. Caboche, Regulation of nitrate and nitrite reductase expression in Nicotiana plumbaginifolia leaves by nitrogen and carbon metabolites, The Plant Journal, vol.3, issue.2, pp.315-324, 1993.
DOI : 10.1111/j.1365-313X.1993.tb00183.x

A. C. Vlot, D. A. Dempsey, and D. F. Klessig, Salicylic Acid, a Multifaceted Hormone to Combat Disease, Annual Review of Phytopathology, vol.47, issue.1, pp.177-206, 2009.
DOI : 10.1146/annurev.phyto.050908.135202

R. Wagner and K. G. Wagner, The pyridine-nucleotide cycle in tobacco Enzyme activities for the de-novo synthesis of NAD, Planta, vol.123, issue.4, pp.165-532, 1985.
DOI : 10.1007/BF00398100

R. Wagner, F. Feth, and K. G. Wagner, Regulation in tobacco callus of enzyme activities of the nicotine pathway, Planta, vol.73, issue.3, pp.408-413, 1986.
DOI : 10.1007/BF00392369

R. Wagner, F. Feth, and K. G. Wagner, The pyridine-nucleotide cycle in tobacco, Planta, vol.108, issue.2, pp.226-232, 1986.
DOI : 10.1007/BF00391419

R. Wagner and K. G. Wagner, Determination of quinolinic acid phosphoribosyl-transferase in tobacco, Phytochemistry, vol.23, issue.9, pp.1881-1883, 1984.
DOI : 10.1016/S0031-9422(00)84934-1

G. R. Waller, K. S. Yang, R. K. Gholson, L. A. Hadwiger, and S. Chaykin, The pyridine nucleotide cycle and its role in the biosynthesis of ricinine by Ricinus communis L, The Journal of Biological Chemistry, vol.241, pp.4411-4418, 1966.

G. Wang and E. Pichersky, Nicotinamidase participates in the salvage pathway of NAD biosynthesis in Arabidopsis, The Plant Journal, vol.56, issue.6, pp.1020-1029, 2007.
DOI : 10.1111/j.1365-313X.2006.03013.x

K. Wang, K. Conn, and G. Lazarovits, Involvement of Quinolinate Phosphoribosyl Transferase in Promotion of Potato Growth by a Burkholderia Strain, Applied and Environmental Microbiology, vol.72, issue.1, pp.760-768, 2006.
DOI : 10.1128/AEM.72.1.760-768.2006

R. Wang and N. M. Crawford, Genetic identification of a gene involved in constitutive, high-affinity nitrate transport in higher plants., Proceedings of the National Academy of Sciences of the United States of America, pp.9297-9301, 1996.
DOI : 10.1073/pnas.93.17.9297

R. Wang, K. Guegler, S. T. Labrie, and N. M. Crawford, Genomic analysis of a nutrient response in Arabidopsis reveals diverse expression patterns and novel metabolic and potential regulatory genes induced by nitrate. The Plant Cell, pp.1491-1509, 2000.

R. Wang, D. Liu, and N. M. Crawford, The Arabidopsis CHL1 protein plays a major role in high-affinity nitrate uptake, Proceedings of the National Academy of Sciences of the United States of America, pp.15134-15139, 1998.
DOI : 10.1073/pnas.95.25.15134

R. Wang, M. Okamoto, X. Xing, and N. M. Crawford, Microarray Analysis of the Nitrate Response in Arabidopsis Roots and Shoots Reveals over 1,000 Rapidly Responding Genes and New Linkages to Glucose, Trehalose-6-Phosphate, Iron, and Sulfate Metabolism, PLANT PHYSIOLOGY, vol.132, issue.2, p.556, 2003.
DOI : 10.1104/pp.103.021253

X. Wang, J. A. Lopez?valenzuela, B. C. Gibbon, B. Gakiere, G. Galili et al., Characterization of monofunctional aspartate kinase genes in maize and their relationship with free amino acid content in the endosperm, Journal of Experimental Botany, vol.58, issue.10, pp.2653-2660, 2007.
DOI : 10.1093/jxb/erm100

O. Warburg and W. Christian, Pyridin, the hydrogen?transferring component of the fermentation enzymes (pyridine nucleotide), Biochemische Zeitschrift, vol.287, p.291, 1936.

U. Wäspi, P. Schweizer, and R. Dudler, Syringolin reprograms wheat to undergo hypersensitive cell death in a compatible interaction with powdery mildew. The Plant Cell, pp.153-161, 2001.

C. Wasternack and E. Kombrink, Jasmonates: Structural Requirements for Lipid-Derived Signals Active in Plant Stress Responses and Development, ACS Chemical Biology, vol.5, issue.1, pp.63-77, 2010.
DOI : 10.1021/cb900269u

D. Weigel and J. Glazebrook, Arabidopsis: A Laboratory Manual, 2002.

R. R. Weigel, Interaction of NIMIN1 with NPR1 Modulates PR Gene Expression in Arabidopsis. The Plant Cell Online, pp.1279-1291, 2005.

C. H. Westphal, M. A. Dipp, and L. Guarente, A therapeutic role for sirtuins in diseases of aging?, Trends in Biochemical Sciences, vol.32, issue.12, pp.555-560, 2007.
DOI : 10.1016/j.tibs.2007.09.008

B. Wigge, S. Kromer, and P. Gardestrom, The redox levels and subcellular distribution of pyridine nucleotides in illuminated barley leaf protoplasts studied by rapid fractionation, Physiologia Plantarum, vol.87, issue.1, pp.10-18, 1993.
DOI : 10.1007/BF00401173

M. C. Wildermuth, J. Dewdney, G. Wu, and F. M. Ausubel, Isochorismate synthase is required to synthesize salicylic acid for plant defence, Nature, pp.414-562, 2001.

J. Q. Wilkinson and N. M. Crawford, Identification of the Arabidopsis CHL3 Gene as the Nitrate Reductase Structural Gene NIA2, THE PLANT CELL ONLINE, vol.3, issue.5, pp.461-471, 1991.
DOI : 10.1105/tpc.3.5.461

G. T. Williams, K. M. Lau, J. M. Coote, and A. P. Johnstone, NAD metabolism and mitogen stimulation of human lymphocytes, Experimental Cell Research, vol.160, issue.2, pp.419-426, 1985.
DOI : 10.1016/0014-4827(85)90189-2

D. Winter, B. Vinegar, H. Nahal, R. Ammar, G. V. Wilson et al., An ???Electronic Fluorescent Pictograph??? Browser for Exploring and Analyzing Large-Scale Biological Data Sets, PLoS ONE, vol.39, issue.8, p.718, 2007.
DOI : 10.1371/journal.pone.0000718.g009

M. Wogulis, E. R. Chew, P. D. Donohoue, and D. K. Wilson, Identification of formyl kynurenine formamidase and kynurenine aminotransferase from Saccharomyces cerevisiae using crystallographic, bioinformatic and biochemical evidence, Biochemistry, pp.47-1608, 2008.

M. Wojcik, H. F. Seidle, P. Bieganowski, and C. Brenner, Glutamine-dependent NAD+ Synthetase: HOW A TWO-DOMAIN, THREE-SUBSTRATE ENZYME AVOIDS WASTE, Journal of Biological Chemistry, vol.281, issue.44, pp.33395-33402, 2006.
DOI : 10.1074/jbc.M607111200

M. Woo, R. Hakem, M. S. Soengas, G. S. Duncan, A. Shahinian et al., Essential contribution of caspase 3/CPP32 to apoptosis and its associated nuclear??changes, Genes & Development, vol.12, issue.6, pp.806-819, 1998.
DOI : 10.1101/gad.12.6.806

L. Xiong, K. S. Schumaker, J. Zhu, and . ?k, Cell signaling during cold, drought, and salt stress. The Plant Cell, pp.165-183, 2002.

. Abbreviations:-adohcys, ADP-glucose; Glut, glutathion; Me-THF, methyl-tetrahydrofolate; NaMN, nicotinate-D-ribonucleotide

D. Naad and . Nmr, nuclear magnetic resonance; RuBP, ribulose-1,5- bisphosphate; SAM, S-adenosyl methionine; THF, tetrahydrofolate; TOF, time-offlight mass spectrometry; UDPG, UDP-glucose; WUE, water-use efficiency. * Corresponding author

R. L. Last, A. D. Jones, and Y. , Shachar-Hill, Towards the plant metabolome and beyond, Plant Physiology and Biochemistry Nat. Rev. Mol. Cell Biol, vol.8, pp.167-174, 2007.

J. Boccard, E. Grata, A. Thiocone, J. Y. Gauvrit, P. Lantéri et al., Multivariate data analysis of rapid LC-TOF/MS experiments from Arabidopsis thaliana stressed by wounding, Chemometrics and Intelligent Laboratory Systems, vol.86, issue.2, pp.189-197, 2007.
DOI : 10.1016/j.chemolab.2006.06.004

S. Moco, R. J. Bino, O. Vorst, H. A. Verhoeven, J. De-groot et al., A Liquid Chromatography-Mass Spectrometry-Based Metabolome Database for Tomato, PLANT PHYSIOLOGY, vol.141, issue.4, 2006.
DOI : 10.1104/pp.106.078428

R. C. De-vos, S. Moco, A. Lommen, J. J. Keurentjes, R. J. Bino et al., Untargeted large-scale plant metabolomics using liquid chromatography coupled to mass spectrometry, Nature Protocols, vol.73, issue.4, pp.778-791, 2007.
DOI : 10.1038/nprot.2007.95

G. Piperopoulos, R. Lotz, A. Wixforth, T. Schmierer, and K. P. Zeller, Determination of naphthodianthrones in plant extracts from Hypericum perforatum L. by liquid chromatography???electrospray mass spectrometry, Journal of Chromatography B: Biomedical Sciences and Applications, vol.695, issue.2, pp.309-316, 1997.
DOI : 10.1016/S0378-4347(97)00188-6

J. V. Sancho, O. J. Pozo, T. Zamora, S. Grimalt, and F. Hernandez, Direct determination of paclobutrazol residues in pear samples by liquid

F. Guérard, Liquid chromatography/time-of-flight mass spectrometry for the analysis of plant samples: A method for simultaneous screening of common cofactors or nucleotides and application to an engineered plant line, Please cite this article in press as, pp.51-4202, 2003.
DOI : 10.1016/j.plaphy.2011.06.003

M. B. Arnao and J. Hernandez-ruiz, Chemical stress by different agents affects the melatonin content of barley roots, Journal of Pineal Research, vol.2, issue.3, pp.295-299, 2009.
DOI : 10.1111/j.1600-079X.2008.00660.x

C. Crews, M. Driffield, F. Berthiller, and R. Krska, ) as Measured by LC-TOF-MS, Journal of Agricultural and Food Chemistry, vol.57, issue.9, 2009.
DOI : 10.1021/jf900226c

L. Gu, A. D. Jones, and R. L. Last, Broad connections in the Arabidopsis seed metabolic network revealed by metabolite profiling of an amino acid catabolism mutant, The Plant Journal, vol.126, issue.4, pp.61-579, 2010.
DOI : 10.1111/j.1365-313X.2009.04083.x

S. D. Chiwocha, S. R. Abrams, S. J. Ambrose, A. J. Cutler, M. Loewen et al., L.) seeds, The Plant Journal, vol.39, issue.3, pp.405-417, 2003.
DOI : 10.1046/j.1365-313X.2003.01800.x

O. Novak, P. Tarkowski, D. Tarkowska, K. Dolezal, R. Lenobel et al., Quantitative analysis of cytokinins in plants by liquid chromatography???single-quadrupole mass spectrometry, Analytica Chimica Acta, vol.480, issue.2, 2003.
DOI : 10.1016/S0003-2670(03)00025-4

S. Ek, H. Kartimo, S. Mattila, and A. Tolonen, ), Journal of Agricultural and Food Chemistry, vol.54, issue.26, pp.9834-9842, 2006.
DOI : 10.1021/jf0623687

V. V. Tolstikov, A. Lommen, K. Nakanishi, N. Tanaka, and O. Fiehn, Monolithic silicabased capillary reversed phase liquid chromatography/electron spray mass spectrometry for plant metabolomics, Anal. Chem, pp.75-6737, 2003.

A. Katoh, K. Uenohara, M. Akita, and T. Hashimoto, Early Steps in the Biosynthesis of NAD in Arabidopsis Start with Aspartate and Occur in the Plastid, PLANT PHYSIOLOGY, vol.141, issue.3, pp.141-851, 2006.
DOI : 10.1104/pp.106.081091

G. Noctor, G. Quéval, and B. Gakière, NAD(P) synthesis and pyridine nucleotide cycling in plants and their potential importance in stress conditions, Journal of Experimental Botany, vol.57, issue.8, pp.1603-1620, 2006.
DOI : 10.1093/jxb/erj202

P. Pétriacq, J. Hager, L. Didierlaurent, C. Mauve, F. Guérard et al., Inducible NAD overproduction in Arabidopsis leads to metabolic and transcriptional alterations and increased salicylic acid mediated resistance to pathogens, Plant J

S. Aubert, E. Gout, R. Bligny, and R. Douce, Multiple effects of glycerol on plant metabolism, J. Biol. Chem, pp.269-21420, 1994.

R. Bligny, P. Gardeström, C. Roby, and R. , Douce, 31 P-NMR studies of spinach leaves and their chloroplasts, J. Biol. Chem, pp.265-1319, 1990.

S. E. Stein, An integrated method for spectrum extraction and compound identification from gas chromatography/mass spectrometry data, Journal of the American Society for Mass Spectrometry, vol.10, issue.3, pp.10-770, 1999.
DOI : 10.1016/S1044-0305(99)00047-1

P. Catz, W. Shinn, I. M. Kapetanovic, H. Kim, M. Kim et al., Simultaneous determination of myristyl nicotinate, nicotinic acid, and nicotinamide in rabbit plasma by liquid chromatography???tandem mass spectrometry using methyl ethyl ketone as a deproteinization solvent, Journal of Chromatography B, vol.829, issue.1-2, pp.123-135, 2005.
DOI : 10.1016/j.jchromb.2005.10.003

D. Bullinger, R. Fux, G. Nicholson, S. Plontke, C. Belka et al., Identification of Urinary Modified Nucleosides and Ribosylated Metabolites in Humans Via Combined ESI-FTICR MS and ESI-IT MS Analysis, Journal of the American Society for Mass Spectrometry, vol.19, issue.10, pp.1500-1513, 2008.
DOI : 10.1016/j.jasms.2008.06.015

B. Gambonet, S. Jabrin, S. Ravanel, M. Karan, R. Douce et al., Folate distribution during higher plant development, Journal of the Science of Food and Agriculture, vol.262, issue.9, pp.81-835, 2001.
DOI : 10.1002/jsfa.870

M. Stitt, R. M. Lilley, and H. W. Heldt, Adenine Nucleotide Levels in the Cytosol, Chloroplasts, and Mitochondria of Wheat Leaf Protoplasts, PLANT PHYSIOLOGY, vol.70, issue.4, pp.971-977, 1982.
DOI : 10.1104/pp.70.4.971

E. M. Thurman, I. Ferrer, A. Fernandez-alba, and L. I. , basic principles and technical aspects of LC-MS for pesticide analysis, Compr. Anal. Chem, pp.53-339, 2005.

R. Zhang, C. S. Sioma, R. A. Thompson, L. Xiong, and F. E. Regnier, Controlling Deuterium Isotope Effects in Comparative Proteomics, Analytical Chemistry, vol.74, issue.15, pp.74-3662, 2002.
DOI : 10.1021/ac025614w

G. E. Dunn, G. K. Lee, and H. Thimm, Kinetics and mechanism of decarboxylation of some pyridinecarboxylic acids in aqueous solution, Can. J. Chem, pp.50-3017, 1972.

K. D. Moudgil and B. Sadasivudu, Metabolism of proteins and non-protein nitrogenous compounds, Biochemistry and Human Biology. PHI Learning, pp.409-411, 2004.

A. Rozenberg and J. K. Lee, Theoretical Studies of the Quinolinic Acid to Nicotinic Acid Mononucleotide Transformation, The Journal of Organic Chemistry, vol.73, issue.23, pp.73-9314, 2008.
DOI : 10.1021/jo8012379

I. J. Ryrie and K. J. Scott, Nicotinate, quinolinate and nicotinamide as precursors in the biosynthesis of nicotinamide???adenine dinucleotide in barley, Biochemical Journal, vol.115, issue.4, pp.115-679, 1969.
DOI : 10.1042/bj1150679

C. Dutilleul, M. Garmier, G. Noctor, C. Mathieu, P. Chétrit et al., Leaf Mitochondria Modulate Whole Cell Redox Homeostasis, Set Antioxidant Capacity, and Determine Stress Resistance through Altered Signaling and Diurnal Regulation, THE PLANT CELL ONLINE, vol.15, issue.5, pp.1212-1226, 2003.
DOI : 10.1105/tpc.009464

P. Priault, G. Tcherkez, G. Cornic, R. De-paepe, R. Naik et al., The lack of mitochondrial complex I in a CMSII mutant of Nicotiana sylvestris increases photorespiration through an increased internal resistance to CO2 diffusion, Journal of Experimental Botany, vol.57, issue.12, pp.3195-3207, 2006.
DOI : 10.1093/jxb/erl083

A. D. Hegeman, Plant metabolomics--meeting the analytical challenges of comprehensive metabolite analysis, Briefings in Functional Genomics, vol.9, issue.2, pp.139-148, 2010.
DOI : 10.1093/bfgp/elp053

O. Atkin and D. Macherel, The crucial role of plant mitochondria in orchestrating drought tolerance, Annals of Botany, vol.103, issue.4, pp.581-597, 2009.
DOI : 10.1093/aob/mcn094

N. Barnett and A. Naylor, Amino Acid and Protein Metabolism in Bermuda Grass During Water Stress, PLANT PHYSIOLOGY, vol.41, issue.7, pp.1222-1230, 1966.
DOI : 10.1104/pp.41.7.1222

T. Brodribb, N. Holbrook, M. Zwieniecki, and B. Palma, Leaf hydraulic capacity in ferns, conifers and angiosperms: impacts on photosynthetic maxima, New Phytologist, vol.25, issue.3, pp.839-846, 2005.
DOI : 10.1111/j.1469-8137.2004.01259.x

A. Charlton, J. Donarski, M. Harrison, S. Jones, J. Godward et al., Responses of the pea (Pisum sativum L.) leaf metabolome to drought stress assessed by nuclear magnetic resonance spectroscopy, Metabolomics, vol.56, issue.4, pp.312-327, 2008.
DOI : 10.1007/s11306-008-0128-0

H. Cochard, H. Nardini, and L. Coll, Hydraulic architecture of leaf blades: where is the main resistance?, Plant, Cell and Environment, vol.45, issue.10, pp.1257-1267, 2004.
DOI : 10.1046/j.1365-3040.2002.00922.x

URL : https://hal.archives-ouvertes.fr/hal-01190918

H. Cochard, J. Venisse, T. Barigah, N. Brunel, S. Herbette et al., Putative Role of Aquaporins in Variable Hydraulic Conductance of Leaves in Response to Light, PLANT PHYSIOLOGY, vol.143, issue.1, pp.122-133, 2007.
DOI : 10.1104/pp.106.090092

URL : https://hal.archives-ouvertes.fr/hal-01189217

G. Cornic and J. Briantais, Partitioning of photosynthetic electron flow between CO 2 and O 2 reduction in a C 3 leaf (Phaseolus vulgaris L.) at different CO 2 concentrations and during drought stress, Planta, vol.183, pp.178-184, 1991.

D. Block, M. Verduyn, C. , D. Brouwer, D. Cornelissen et al., Poly(ADP-ribose) polymerase in plants affects energy homeostasis, cell death and stress tolerance, The Plant Journal, vol.4, issue.Suppl, pp.95-106, 2005.
DOI : 10.1111/j.1365-313X.2004.02277.x

R. Desikan, M. Cheung, J. Bright, D. Henson, J. Hancock et al., ABA, hydrogen peroxide and nitric oxide signalling in stomatal guard cells, Journal of Experimental Botany, vol.55, issue.395, pp.205-212, 2004.
DOI : 10.1093/jxb/erh033

C. Dutilleul, S. Driscoll, G. Cornic, D. Paepe, R. Foyer et al., Tobacco leaves require functional mitochondrial complex I for optimal photosynthetic performance in photorespiratory conditions and during transients, Plant Physiol, vol.313, pp.264-275, 2003.

C. Dutilleul, M. Garmier, G. Noctor, C. Mathieu, P. Chétrit et al., Leaf Mitochondria Modulate Whole Cell Redox Homeostasis, Set Antioxidant Capacity, and Determine Stress Resistance through Altered Signaling and Diurnal Regulation, THE PLANT CELL ONLINE, vol.15, issue.5, pp.1212-1226, 2003.
DOI : 10.1105/tpc.009464

C. Dutilleul, C. Lelarge, J. Prioul, D. Paepe, R. Foyer et al., Mitochondria-Driven Changes in Leaf NAD Status Exert a Crucial Influence on the Control of Nitrate Assimilation and the Integration of Carbon and Nitrogen Metabolism, PLANT PHYSIOLOGY, vol.139, issue.1, pp.64-78, 2005.
DOI : 10.1104/pp.105.066399

K. Falk, R. Behal, C. Xiang, and D. Oliver, Metabolic Bypass of the Tricarboxylic Acid Cycle during Lipid Mobilization in Germinating Oilseeds, Plant Physiology, vol.117, issue.2, pp.473-481, 1998.
DOI : 10.1104/pp.117.2.473

A. Gallé, I. Florez-sarasa, A. Thameur, D. Paepe, R. Flexas et al., Effects of drought stress and subsequent rewatering on photosynthetic and respiratory pathways in Nicotiana sylvestris wild type and the mitochondrial complex I-deficient CMSII mutant, Journal of Experimental Botany, vol.61, issue.3, pp.765-775, 2010.
DOI : 10.1093/jxb/erp344

A. Garg, J. Kim, T. Owens, A. Ranwala, Y. Choi et al., Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses, Proceedings of the National Academy of Sciences, vol.99, issue.25, pp.15898-15903, 2002.
DOI : 10.1073/pnas.252637799

A. Good and S. Zaplachinski, The effects of drought stress on free amino acid accumulation and protein synthesis in Brassica napus, Physiologia Plantarum, vol.96, issue.1, pp.9-14, 1994.
DOI : 10.1007/BF00391862

F. Guo, J. Young, and N. Crawford, The Nitrate Transporter AtNRT1.1 (CHL1) Functions in Stomatal Opening and Contributes to Drought Susceptibility in Arabidopsis, THE PLANT CELL ONLINE, vol.15, issue.1, pp.107-117, 2003.
DOI : 10.1105/tpc.006312

S. Gutierres, M. Sabar, C. Lelandais, P. Chétrit, P. Diolez et al., Lack of mitochondrial and nuclear-encoded subunits of complex I and alteration of the respiratory chain in Nicotiana sylvestris mitochondrial deletion mutants, Proceedings of the National Academy of Sciences, vol.94, issue.7, pp.3436-3441, 1997.
DOI : 10.1073/pnas.94.7.3436

J. Hager, T. Pellny, C. Mauve, C. Lelarge-trouverie, D. Paepe et al., Conditional modulation of NAD levels and metabolite profiles in Nicotiana sylvestris by mitochondrial electron transport and carbon/nitrogen supply, Planta, vol.57, issue.5, pp.1145-1157, 2010.
DOI : 10.1007/s00425-010-1117-x

I. Hanning and H. Heldt, On the Function of Mitochondrial Metabolism during Photosynthesis in Spinach (Spinacia oleracea L.) Leaves (Partitioning between Respiration and Export of Redox Equivalents and Precursors for Nitrate Assimilation Products), Plant Physiology, vol.103, issue.4, pp.1147-1154, 1993.
DOI : 10.1104/pp.103.4.1147

P. Hare, W. Cress, and J. Van-staden, Dissecting the roles of osmolyte accumulation during stress, Plant, Cell and Environment, vol.98, issue.6, pp.535-553, 1998.
DOI : 10.1016/S0168-9452(97)00174-X

S. Hashida, T. Itami, H. Takahashi, K. Takahara, M. Nagano et al., Nicotinate/nicotinamide mononucleotide adenyltransferase-mediated regulation of NAD biosynthesis protects guard cells from reactive oxygen species in ABA-mediated stomatal movement in Arabidopsis, Journal of Experimental Botany, vol.61, issue.13, pp.3813-3825, 2010.
DOI : 10.1093/jxb/erq190

I. Hummel, F. Pantin, R. Sulpice, M. Piques, R. G. Dauzat et al., Arabidopsis Plants Acclimate to Water Deficit at Low Cost through Changes of Carbon Usage: An Integrated Perspective Using Growth, Metabolite, Enzyme, and Gene Expression Analysis, Plant Physiology, vol.154, issue.1, pp.357-372, 2010.
DOI : 10.1104/pp.110.157008

B. Karakas, P. Ozias-akins, C. Stushnoff, M. Suefferheld, and M. Rieger, Salinity and drought tolerance of mannitol-accumulating transgenic tobacco, Plant, Cell and Environment, vol.20, issue.5, pp.609-616, 1997.
DOI : 10.1111/j.1365-3040.1997.00132.x

Y. Kim and M. Steudle, Gating of aquaporins by light and reactive oxygen species in leaf parenchyma cells of the midrib of Zea mays, Journal of Experimental Botany, vol.60, issue.2, pp.547-556, 2009.
DOI : 10.1093/jxb/ern299

J. Kwak, V. Nguyen, and J. Schroeder, The Role of Reactive Oxygen Species in Hormonal Responses, PLANT PHYSIOLOGY, vol.141, issue.2, pp.323-329, 2006.
DOI : 10.1104/pp.106.079004

X. Li, P. Chétrit, C. Mathieu, F. Vedel, D. Paepe et al., Regeneration of cytoplasmic male sterile protoclones of Nicotiana sylvestris with mitochondrial variations, Current Genetics, vol.297, issue.3, pp.261-266, 1988.
DOI : 10.1007/BF00387773

Y. Lu, C. Li, and F. Zhang, Transpiration, Potassium Uptake and Flow in Tobacco as Affected by Nitrogen Forms and Nutrient Levels, Annals of Botany, vol.95, issue.6, 2005.
DOI : 10.1093/aob/mci104

C. Magné and F. Larher, High sugar content of extracts interferes with colorimetric determination of amino acids and free proline, Analytical Biochemistry, vol.200, issue.1, pp.115-118, 1992.
DOI : 10.1016/0003-2697(92)90285-F

E. Meyer, T. Tomaz, A. Carroll, G. Estavillo, E. Delannoy et al., Remodeled Respiration in ndufs4 with Low Phosphorylation Efficiency Suppresses Arabidopsis Germination and Growth and Alters Control of Metabolism at Night, PLANT PHYSIOLOGY, vol.151, issue.2, pp.603-619, 2009.
DOI : 10.1104/pp.109.141770

I. Møller, : Electron Transport, NADPH Turnover, and Metabolism of Reactive Oxygen Species, Annual Review of Plant Physiology and Plant Molecular Biology, vol.52, issue.1, pp.561-591, 2001.
DOI : 10.1146/annurev.arplant.52.1.561

A. Nardini, E. Gortan, M. Ramani, and S. Salleo, Heterogeneity of gas exchange rates over the leaf surface in tobacco: an effect of hydraulic architecture?, Plant, Cell & Environment, vol.26, issue.6, pp.804-812, 2008.
DOI : 10.1111/j.1365-3040.2007.001681.x

G. Noctor, D. Paepe, R. Foyer, and C. , Mitochondrial redox biology and homeostasis in plants, Trends in Plant Science, vol.12, issue.3, pp.125-134, 2007.
DOI : 10.1016/j.tplants.2007.01.005

G. Noctor, G. Quéval, and B. Gakière, NAD(P) synthesis and pyridine nucleotide cycling in plants and their potential importance in stress conditions, Journal of Experimental Botany, vol.57, issue.8, pp.1603-1620, 2007.
DOI : 10.1093/jxb/erj202

A. Nunes-nesi, F. Carrari, Y. Gibon, R. Sulpice, A. Lytovchenko et al., Deficiency of mitochondrial fumarase activity in tomato plants impairs photosynthesis via an effect on stomatal function, The Plant Journal, vol.14, issue.6, pp.1093-1106, 2007.
DOI : 10.1111/j.1365-313X.2007.03115.x

A. Nunes-nesi, W. Araújo, and A. Fernie, Targeting Mitochondrial Metabolism and Machinery as a Means to Enhance Photosynthesis, PLANT PHYSIOLOGY, vol.155, issue.1, pp.101-107, 2011.
DOI : 10.1104/pp.110.163816

T. Pellny, O. Van-aken, C. Dutilleul, T. Wolff, K. Groten et al., Mitochondrial respiratory pathways modulate nitrate sensing and nitrogen-dependent regulation of plant architecture in Nicotiana sylvestris, The Plant Journal, vol.10, issue.6, pp.976-992, 2008.
DOI : 10.1111/j.1365-3040.2007.01638.x

P. Priault, C. Fresneau, G. Noctor, D. Paepe, R. Cornic et al., The mitochondrial CMSII mutation of Nicotiana sylvestris impairs adjustment of photosynthetic carbon assimilation to higher growth irradiance, Journal of Experimental Botany, vol.57, issue.9, pp.2075-2085, 2006.
DOI : 10.1093/jxb/erj161

P. Priault, G. Tcherkez, G. Cornic, D. Paepe, R. Naik et al., The lack of mitochondrial complex I in a CMSII mutant of Nicotiana sylvestris increases photorespiration through an increased internal resistance to CO2 diffusion, Journal of Experimental Botany, vol.57, issue.12, pp.3195-3207, 2006.
DOI : 10.1093/jxb/erl083

P. Priault, G. Vidal, D. Paepe, R. Ribas-carbo, and M. , Leaf age-related changes in respiratory pathways are dependent on complex I activity in Nicotiana sylvestris, Physiologia Plantarum, vol.103, issue.1, pp.152-162, 2007.
DOI : 10.1111/j.1399-3054.1994.tb02204.x

G. Queval and G. Noctor, A plate reader method for the measurement of NAD, NADP, glutathione, and ascorbate in tissue extracts: Application to redox profiling during Arabidopsis rosette development, Analytical Biochemistry, vol.363, issue.1, pp.58-69, 2007.
DOI : 10.1016/j.ab.2007.01.005

M. Seki, T. Umezawa, K. Urano, and K. Shinozaki, Regulatory metabolic networks in drought stress responses, Current Opinion in Plant Biology, vol.10, issue.3, pp.296-302, 2007.
DOI : 10.1016/j.pbi.2007.04.014

L. Szabados and A. Savouré, Proline: a multifunctional amino acid, Trends in Plant Science, vol.15, issue.2, pp.89-97, 2009.
DOI : 10.1016/j.tplants.2009.11.009

B. Szal, Z. Dabrowska, G. Malmberg, P. Gardeström, and A. Rychter, Changes in energy status of leaf cells as a consequence of mitochondrial genome rearrangement, Planta, vol.88, issue.3, pp.697-706, 2008.
DOI : 10.1007/s00425-007-0652-6

N. Taylor, J. Heazlewood, D. Day, and A. Millar, Differential Impact of Environmental Stresses on the Pea Mitochondrial Proteome, Molecular & Cellular Proteomics, vol.4, issue.8, pp.1122-1133, 2005.
DOI : 10.1074/mcp.M400210-MCP200

J. Trouverie, S. Chateau-joubert, C. Thevenot, M. Jacquemot, and J. Prioul, Regulation of vacuolar invertase by abscisic acid or glucose in leaves and roots from maize plantlets, Planta, vol.219, issue.5, pp.894-905, 2004.
DOI : 10.1007/s00425-004-1289-3

R. Valentini, D. Epron, D. Angelis, P. Matteucci, G. Dreyer et al., In situ estimation of net CO2 assimilation, photosynthetic electron flow and photorespiration in Turkey oak (Q. cerris L.) leaves: diurnal cycles under different levels of water supply, Plant, Cell and Environment, vol.42, issue.6, pp.631-640, 1995.
DOI : 10.1016/0005-2728(87)90190-3

S. Vanderauwera, D. Block, M. Van-de-steene, N. Van-de-cotte, B. Metzlaff et al., Silencing of poly(ADP-ribose) polymerase in plants alters abiotic stress signal transduction, Proceedings of the National Academy of Sciences, vol.104, issue.38, pp.15150-15155, 2007.
DOI : 10.1073/pnas.0706668104

P. Verslues and E. Bray, Role of abscisic acid (ABA) and Arabidopsis thaliana ABA-insensitive loci in low water potential-induced ABA and proline accumulation, Journal of Experimental Botany, vol.57, issue.1, pp.201-212, 2006.
DOI : 10.1093/jxb/erj026

G. Vidal, M. Ribas-carbo, M. Garmier, G. Dubertret, A. Rasmusson et al., Lack of Respiratory Chain Complex I Impairs Alternative Oxidase Engagement and Modulates Redox Signaling during Elicitor-Induced Cell Death in Tobacco, THE PLANT CELL ONLINE, vol.19, issue.2, pp.640-655, 2007.
DOI : 10.1105/tpc.106.044461

S. Wilkinson and W. Davies, ABA-based chemical signalling: the co-ordination of responses to stress in plants, Plant, Cell and Environment, vol.25, issue.2, pp.195-210, 2002.
DOI : 10.1093/jexbot/49.suppl_1.433