N
N

N

HAL

open science

Efficient search-based strategies for polyhedral
compilation: algorithms and experience in a production

compiler

Konrad Trifunovic

» To cite this version:

Konrad Trifunovic. Efficient search-based strategies for polyhedral compilation: algorithms and ex-
perience in a production compiler. Other [cs.OH]. Université Paris Sud - Paris XI, 2011. English.

NNT: 2011PA112096 . tel-00661334

HAL Id: tel-00661334
https://theses.hal.science/tel-00661334

Submitted on 19 Jan 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://theses.hal.science/tel-00661334
https://hal.archives-ouvertes.fr

g PARIS-SUD 11

UNIVERSITE bE PARIS-SUD 11
U.F.R. SCIENTIFIQUED’ORSAY

In Partial Fulfillment of the Requirements for the Degree of
DOCTOR OFPHILOSOPHY
Discipline: Computing science
Konrad T RIFUNOVIC

Subject:
EFFICIENT SEARCHBASED STRATEGIES
FOR POLYHEDRAL COMPILATION:

ALGORITHMS AND EXPERIENCE IN A PRODUCTION
COMPILER

Thesis supervisor: Dr. Albert Cohen

Thesis committee:

M. John Cavazos University of Delaware
M. Philippe Clauss University of Strasbourg
M. Albert Cohen Senior Research Scientist at INRIA

M. Yannis Manoussakis University Paris Sud
M. Ayal Zaks IBM Haifa Research Labs

Contents

Introduction 9
Basic Concepts 15
Background 17
2.1 Mathematical background 17
2.2 Thepolyhedralmodel e 18
221 StaticControlParts
2.3 Polyhedralrepresentation e 20
2.3.1 Polyhedral statements
2.3.2 lterationdomains
2.3.3 Dataaccessfunctions. 22
2.3.4 Schedules e
2.4 Related work and an historical overview oL 23
25 Summary ..o e e
Program Transformations in the Polyhedral Model 25
3.1 Canonical Form of the Scheduling Functions 25
3.1.1 Motivation
3.1.2 Canonical form of the schedulingmatrix. 26
3.2 Capturing semanticalconstraints 28
3.2.1 Datadependences. 29
3.2.2 Memory baseddependences 31
3.2.3 Arraydata-flowanalysis 31
3.3 Transformationsandlegality 33
3.4 Relatedwork 37
3.5 Summary ..o e
The framework 39
Graphite framework 41
4.1 RelatedWork e 41
4.2 Anoverview of the compilationflow, 42
4.2.1 GIMPLE internal representation 44
4.3 Inside GRAPHITE e 44

4.3.1 SCoPoutlining e

19

20
21

22

37

CONTENTS

4.3.2 Mapping three-address intermediate representation into polyhedra. 47

4.4 The data dependence analysis of three-addresscode 53
45 Transformations 57
45.1 Granularityofscheduling 85
45.2 Functionsrepresented asrelations 60
4.5.3 Adding new scheduling dimensions - loop tiing 60
4.6 Conclusionsand futurework e 62
4.6.1 Benefits of direct manipulation of the three-addresscode 62
4.6.2 Futurework L 63
Lazy memory expansion scheme 65
5.1 Stateoftheart. e 66
5.1.1 Ourcontribution 66
5.2 Motivatingexample 66
5.3 Framework e 69
5.3.1 Liveranges i 9 6
5.3.2 Liverangeviolationanalysis e 70
5.3.3 Anexample 71
5.4 Performancebenefits e 72
55 Summary . .. e 73
5.6 Conclusions and perspectives e e e 76
Towards a search strategy 77
Analytical cost model 79
6.1 Motivation e 80
6.1.1 SIMD Vectorization e 80
6.1.2 Motivating Example 81
6.2 Polyhedral Modelling of Vectorization Metrics 83
6.2.1 Modellingthe AccessPatterns, 4 8
6.2.2 Access Pattern Sensitivity to Scheduling 84
6.2.3 CostModelFunction 5 8
6.2.4 \ectorization Profitability Metrics 87
6.3 Evaluation e 87
6.3.1 Drivingthesearchprocessun. 87
6.3.2 Experimentalsetup 89
6.3.3 Qualitative Evaluation 90
6.3.4 Evaluationonabenchmarksuite 2 9
6.4 RelatedWork e a3
6.5 Conclusionsand futurework e 94
6.5.1 Futurework e e e 94
Transformation search strategy 97
7.1 Relatedwork e a7
7.2 Limitations of the currentapproaches aa.. 98
7.3 Motivation e 100
7.4 Problemstatement 100

7.5 Notationanddefinitions 101

CONTENTS 5
7.5.1 Dependence satisfaction L L. 101
7.6 The space of legal affine transformations 102
7.6.1 Multidimensional schedules 510
7.7 Discrete sets of one-dimensional legal solutions 106
7.71 Stateoftheart 107
7.7.2 Narrowing the searchspace 107
7.7.3 Building non-convex sets of one-dimensional legal schedules 108
7.8 Non-convex solution sets e e, 110
7.8.1 Efficient operations on solutionsets 111
7.9 Sets of multi-dimensional legal solutions 114
7.9.1 Representing weak/strong satisfaction 114
7.9.2 Orthogonal completion 511
7.10 Towards search methodology e 118
7.10.1 Findingglobalsolutions 191
7.10.2 Dependence satisfaction strategies120
7.10.3 Distribution/fusionscheme L0 221
7.11 Conclusions e 123
8 Conclusions and perspectives 125
8.1 Perspectives e e e e e 127
A Application of Farkas lemma 129
Personal Bibliography 133

CONTENTS

Notation

Mathematical

R a set of real numbers

Z a set of integer numbers

Q a set of rational numbers
(i1,02,...,0n) " a column vector represented in a row

Polyhedral model

iteration vector

t timestamp vector

S statement set

S a polyhedral statement

(Si) statement instance

DS an iteration domain of stateme@t
| DY) iteration volume

AcAa an array in an array set

s a scheduling function for stateme®t
R a data reference

f(i) access function

£(i) linearized access function
G=(V,E) dependence graph

Pe dependence polyhedron

CONTENTS

Chapter 1

Introduction

The responsibility of @ompileris to translate the programs written in a language suitable for use by
human programmer into the machine language of the target machine. Natueatigntipiler is required
to produce theorrecttranslation to the machine code.

In 1944 John von Neumann has laid the foundation to almost all widely usbitentures today - that
of decoupling the program memory from data memory. This also implied a séajusrecution model,
in which the machine instructions are executed sequentially, changing thal gtake of the memory
through stores and loads.

Besides producing the correct code, compilers were enhanceamiithizations so that the trans-
lated machine code performance could match the performance of the tedtettone. Contributions
in scalar optimizations, interprocedural analysis, instruction schedulidgegister allocation mainly
achieved this goal.

The major driving forces for the sustained computing performance isenare the advancements
in instruction level parallelism (ILP) and ever increasing clock rates gdronessors - according to the
Moore’s law. This obviated the need for advanced compiler optimizationse ¢ire performance boost
could have been obtained by running non-modified sequential codes areth machines. Advanced
compiler optimizations were considered as a domain of specialized, scientifjgputing community,
specializing in the expensive parallel and vector machines programmed nmalfORTRAN.

End of uniprocessor era

The trends have changed in the early 2000s, since it was noticed theasimg the ILP brought
diminishing returns, altogether with physical limitations and power dissipatiorhthat put an end to
the increase in the clock-speeds of uniprocessors. The capacity easecthe number of transistors has
since then been used in another direction: providingtiple coreson the single chip.

The era of multi-core

Multi-core processors are now in widespread use in almost all areas obthputing: in desktop or
laptop machines, accelerators like the Cell Broadband Engine, GPURG$&hd in mobile embedded
devices implemented as MP-SoCs (Multiprocessor System-on-Chip).

In the scientific computing field, where specialized multiprocessors haveusee since 1960's, the
commodity multicore and GPGPUs are entering very rapidly, as main buildingstifdcke computa-
tional clusters.

10 1. INTRODUCTION

Optimizing compilers are again in demand

To harness the power of multiple cores and complex memory hierarchiesedaefor powerful
compiler optimizations is now again in high demand. Compilers are now requirdficiergly map the
semantics of the, mostly imperative, high-level programming languages intdfitierd use of target
architecture resources [82].

Increasing the number of cores on a chip does not improve the perfoenmdrthe legacy, single-
threaded applications. What is more, the sequential programming paradigng the simplicity of the
von Neumann computational model, is still used to program the new applicationse Bpplications do
not benefit from the performance improvements of the new architectures.

In order to utilize the peak performance of the current multi-core archiestthe optimizing com-
piler is responsible for finding the intrinsparallelismwithin the computations of the source program.
Also, the memory hierarchy has to be utilized carefully, in order to narromndbe gap between laten-
cies of the main memory and the computing core -rtfeenory wallroblem.

Semantic gap

There is a notorious semantic gap between the semantics of the currentiynpsedtive program-
ming languages and the target platform execution model. Nevertheless,mdriégethan 200 parallel
programming paradigms and environments have been proposed, fewroathdan a widespread use -
the majority of the applications are still written in imperative sequential langusiggs as C, C++ or
FORTRAN.

Most current applications are written using a single thread of executlmreTis a good reason for
this - writing single-threaded code is intuitive and practical: one has to mamdge single state space,
it is easily analysable, the proof of correctness could be obtained in actingl way, the execution trace
is predictable and reproducible.

On the other hand, writing the parallel programs introduces the probleniis asicommunica-
tion, synchronization and data transfers. Writing hand-crafted paraltéé is costly, error-prone and,
mostly importantly, impossible to debug, since the race conditions in parallefgonogre generally
non-reproducible. Hand-crafted parallel programs rawa-portable since the synchronization mech-
anisms, communication costs, scheduling policies and other issues are highdynplapecific. The
non-portability manifests itself in two ways: platform non-portability greformance non-portability

Automatic program transformations

Very promising solution to the mentioned semantic gap problem is to enakdeitbatic transfor-
mationof sequential code into the form that best fits the target execution arthéec

The task of the compiler is now to understand the semantics of the input $iafjgenrce program
and to perform the transformation, while preserving the semantics, intotimetfiat best fits the target
platform execution model, e.g., parallel threads, vectorized instructiomapmyeaccesses clustered into
blocks. This is a challenging task, since all the responsibility of translatingeh&ntics into perfor-
mance now relies on the compiler.

Loop Transformations

Focusing the program transformations on loop nests is particularly inteyesinte the majority of
compute-intensive applications spend most of their execution time in loopp. tktawsformations have
a long history and they have been used in restructuring compilers folirgnalitomatic parallelization
and vectorization of the scientific FORTRAN codes.

1. INTRODUCTION 11

Loop transformations potentially have a very powerful performance impace they might enable
parallelism, vectorization or memory locality. The major challenge for efficientipleying the loop
transformations is to find the besbmpositionof loop transformations and faredict the performance
impact of those transformations.

The Polyhedral Model

The polyhedral model is a powerful algebraic abstraction for reagatiout loop transformations
expressed aschedulesThe polyhedral model might be viewed asalstract interpretatioframework
for reasoning about dynamic program execution statically - at compile time.fdimdations of the
polyhedral model have their roots in operational research and systiaic@esign.

An execution trace of the sequential program is modelled as an ordeyedrsz® ofstatement in-
stanceslt is assumed that each statement of the input program might be execultguarimes in a
loop, giving rise to statement instances - one instance for each exectitialoop.

Single-Shot Optimization Approach

Traditionally, the program transformation using the polyhedral model ig dloa sequence of three
steps: (1) getting the program into the polyhedral model, (2) computing trexlaling transformation
expressed in the polyhedral model, and (3) generating the transfoodedrom the polyhedral model.

The crucial step is thechedulingstep that provides the actual program transformation. The automatic
scheduling algorithms [67, 34] based on integer linear programming existhay are based on thest
effort heuristics.

The advantage of the best effort scheduling heuristic is that the trametion iscomputedwithin
a single step. Hopefully, the best possible transformation within the spdegaiftransformations is
chosen.

The space of legal (loop) transformations is huge, and selecting thérdesformation within this
space is still an open problem. The best effort heuristics rely on a limitddrpgance predicting cost-
functions, abstracting away the architectural details of the target platfdmmoptimal transformation
might easily be mispredicted.

Iterative Optimization Approach

Due to the intrinsic difficulty of selecting the best program transformation wilsingle stepa
viable alternative approach is titerative feedback-directed compilation. Iterative optimization resorts
to testingthe different program transformations. For each transformation, tieisgenerated. The code
is then executed and the runtime impact of the transformation is evaluated.

A carefully crafted heuristic for generating the multiple program transféoms is the key com-
ponent of this approach. Experimental evidence confirms that itergiw@ach can be much better at
adapting the semantics of the program to the execution platform than the siraglenodel based heuris-
tics. Obviously - by trying more times, there is a better chance of getting the ogitamaformation.

While the iterative approach might give better results in terms of the outpgtgroperformance,
it has one fundamental drawback: the whole process might beimeeyconsuminglt is not uncommon
for the iterative approach to take hours or days to converge to thedletos.

The iterative approach breaks the traditional view of the compilation: the itemigpnow a compo-
nent of the optimizing feedback loop, and not a self-standing tool thatftrams the input source code
to the binary. While the iterative compilation is a good approach to specializgpigmn optimization,
the two characteristics of this approach - that of having an unpredictabiéng time and reliance on

12 1. INTRODUCTION

the actual generated program execution - preclude it from being io@iga into thegeneral purpose
compiler.

Problem Statement and Proposed Solution

Our view is that the single-shot, best effort heuristics for loop optimizati@neot precise enough
to model the complex performance characteristics of the modern archited@mehe other hand, the
iterative compilation approach, due to its unpredictable runtime and relianegpamimental program
evaluation is not directly employable in the general purpose compiler.

Theproblem statementcould be summarized as follows:

We want to keep theffectivenesef the model-based transformation approach, while bridg-
ing the gap between transformation predictmecisionbetween single-shot and iterative
approaches.

In order to achieve this, we proposesalution in the form of a new, search-based transformation
approach, that could be summarized as follows:

A new transformation search approach is based on the controlled ematioeof the trans-
formation candidates, each transformation candidate being evaluated atotpilation
time, according to a precise cost function based on the target machinelmod

We postulate that the new proposed solution brings us closer to solving tbe gtablem. The new
approach takes the benefits of both model-based and iterative appsoadtieeffectivenesis achieved
by having an expressive but limited search space, whose complexity loewdntrolled. The fact that
the cost function is evaluated at compile-time, and not through experimeatabéon, brings there-
dictability of the running time of the transformation search, allowing it to be incorporatedhe general
purpose compiler.

The precisionis achieved by the fact that we use a machine dependent cost functtodirdaly
evaluates the execution cost on a specified machine. This function is muehpneaise than the sim-
plistic linear cost functions, that are used in the current model-basedaxghes. Though, this precision
comes with a price: non-linear cost functions cannot be optimized using [inegramming machinery,
as itis done in the current model-based approaches - our solution ssasch basedtrategy to evaluate
those non-linear cost functions.

Contributions

The main contributions of this thesis are to provide algorithms, methodologiethamdmpilation
framework that enable our new search-based strategy. The retawatnibutions are detailed in the re-
spective chapters.

Our contributions are built on top of the polyhedral model, which servésstheoretical foundation
of the work. The polyhedral model is used to express the data depsgsje¢he cost-model functions and
schedules.

Contrary to the current source-to-source polyhedral framewaskbave investigated the direct poly-
hedral compilation on the low-level three address code. While being a obmfetask, this low-level
of abstraction is the foundation for our precise performance cost-magi¢fiat is out of reach of the
current source-to-source polyhedral compilers.

We take a fresh look at the problem of finding the program transformat@mstrary to the current
linear cost-function based scheduling algorithms, we propesaizh strategthat evaluates the complex
cost-model function on the discrete set of legal transformations repessasdecision diagramsBy

1. INTRODUCTION 13

doing so, we take the benefits of the iterative optimization, while not requir@gémeration of the
transformed programs and measuring their actual runtime.

Thesis overview

The thesis is organized in 3 parts and a conclusion. Contributions andirelatk are provided in
each chapter.

The first part of the thesis gives the background material, starting frerbahkic mathematical defi-
nitions. The polyhedral model is defined, together with the detailed discusktbis abstract represen-
tation. Later, we discuss the topics of representing the program semauutigsedral transformations
and legality of those transformations. The mathematical background is idlchedbat the manuscript is
self-contained - a reader familiar with the topic of linear optimization might dire&ily to the sections
devoted to the polyhedral program model.

The second part of the thesis is a detailed description of our threesadcivde polyhedral compila-
tion framework - GRAPHITE. The crucial design decisions were expthitagether with our contribu-
tions in not so well investigated topics. A novel approach for efficienthydtiag the restrictions imposed
by memory-based dependences is explained as well.

The third part is the core subject of the thesis. It is dedicated to the désergd the search-based
transformation methodology. A detailed explanation of our precise, matdweecost-model is pro-
vided. The final part of the thesis is our proposal for the new searategy, starting with a review of the
most important related work in this field. We show how our search strategylioh an enumeration of
the discrete sets of legal transformations, represented as decisioansagr

Our techniques are implemented in GRAPHITE polyhedral framework, treapest of the widely
used GCC compiler.

14

1. INTRODUCTION

15

Part |

Basic Concepts

17

Chapter 2

Background

The polyhedral model representation is based on linear algebra, linegrapyming and convex
optimization theory.

In this chapter we present the polyhedral model and the mathematical netagamse in the rest of
the dissertation. The basic linear algebra and convex optimization backbi®given as well.

The Section 2.1 gives the necessary mathematical background and ie&exkfo be self-contained.
A complete coverage of the material could be found in [143]. The SectiogiZe2 an introduction to
the polyhedral model and places it in the context of the compilers. The S&c8aoes into the details
of the polyhedral representation and covers the basic components o¢phésentation. An extensive
coverage of the literature and an historical overview is given in Section 2.4

2.1 Mathematical background

We denote byR, Z andQ a field of real, integer and rational numbers respectively. A column vector
wis denoted byv = (wy,...,Wm)".

Given two vectorsa € R" andb € R™ we will denote aconcatenatiorof two vectorsc = (a,b)" €
R™M, A concatenated vectarif formed by takingn components from a vect@ and m components
from a vectoib:

C=(C1,...,Cn,Cns1,---»Cnem) | = (@1,...,a8n,b1,...,bm)T

The vector concatenation notation will be used very often to distinguismadeaats of a vector.

In a similar way, given a matriA € R*" and a matrixB ¢ R**K, we cancomposewo matrices to
get:C = (A|B). A composed matri is obtained by taking columns from the matrif andm columns
form the matrixB:

C=(Ce1...Comin)

whereC, ; denotes-th column of the matrixC. In the same wagy ., denotek-th rows of the matrixC.

Definition 2.1.1 (Affine function) A n-dimensional functiorf : R™ — R" is affine if and only if it can
be expressed as follows:
f(x)=Ax+b

whereb = (by,...,b,)T € R"is a column vector and € R™™ is a matrix withn rows andm columns.

Definition 2.1.2 (Affine relation) A relationF ¢ R™ x R" is affine if and only if:

WeRMVYWeR": (v,w)eF < w=Av+b

18 2. BACKGROUND

whereb = (by,...,b,)T € R"is a column vector and € R™™Mis a matrix withn rows andmcolumns.

Definition 2.1.3 (Affine hyperplane) For each vectoa € R" and scalab € R the setX of all vectors
x € R" such that:

a'x=b

defines an affine hyperplane.

Definition 2.1.4 (Affine half-space) For each vectoa € R" and scalab € R the setX of all vectors
x € R" satisfying the following affine inequality:

a'x>b

defines a topologically closed affine halfspace. If we replad®y > we will get a definition of topolog-
ically open affine halfspace.

Definition 2.1.5(Convex polyhedron) The set? C R" is convex polyhedroif it can be represented as
an intersection of a finite number of affine half-spaceR'af

Each half-space is calledfaceof the polyhedron. The set of all affine inequalities representing faices
the polyhedron can be compactly represented by an magixd a vectob:

P ={xeR"Ax+b >0}
whereA € R™" andb € R™, mbeing the number of affine inequalities.

Definition 2.1.6 (Parametric polyhedron)The set?(g) C R" is parametric polyhedronparametrized
by a vectorg € R¥, if it is a convex polyhedron that can be represented as:

P(g) = {x € R"|Ax+Bg+b >0}

whereA e R™" B € R™ andb € R™. The number of parameters in a parameter vectiraisdm is
the number of affine inequalities.

Definition 2.1.7 (Polytope, bounded polyhedron polyhedron® C R" is called abounded polyhedron
if there exists & € R such that the polyhedraf is contained in a bounding box:

PC{xeR"-A<x<A1<j<n}

For the program analysis problems that we are interested in, we will corsitieinteger solutions,
so we restrict all vectors to contain only integer componentsZ". Also, A € Z™™ andb € Z". For
more details please refer to [143]. An efficient implementation of the prasenteepts is given by [12].

2.2 The polyhedral model

Classical compiler internal representations are based on a syntaxraadtss of imperative pro-
grams: abstract syntax trees, control-flow graph, def-reach ¢l&@#sform, three-address-code, basic-
blocks [3, 114]. Those representations capture a syntax, conttalaa dependences in a program.

In such reduced representations of the dynamic execution trace, tatament of a high-level pro-
gram occurs only once, even if it is executed many times (e.g., when edclithén a loop). Represent-
ing a program this way is not convenient for aggressive loop optimizatititsh operate at the level of
dynamicstatement instances

2.2. THE POLYHEDRAL MODEL 19

Compile-time constraints and lack of adequate algebraic representatiorpaidgsbsemantics pre-
vent traditional compilers from adapting the schedule of statement instahagsogram to best exploit
architecture resources. For example, compilers typically cannot appiytiansformations if data de-
pendences are non-uniform [163] or simply because profitability is tpoeglictable.

A well known alternative approach, facilitating complex loop transformaticmesents programs in
thepolyhedral modelThis model is a flexible and expressive representation for loop neststatibally
predictable control flow. Such loop nests, amenable to algebraic repatiea, are calledtatic control
parts(SCoP) [64, 74].

The polyhedral model captures an exact execution semantics of a staticaligtable control flow
program. We can think of the polyhedral model asaéstract interpretatiorframework [51] in which
we can precisely reason about a dynamic execution of a program at@lation time.

2.2.1 Static Control Parts

Providing a static analysis of a dynamic execution trace of an arbitrarygroig undecidable prob-
lem [67]. In order to apply the polyhedral model to real computing problemeshave to restrict the
scope of the analysis to program parts with statically determinable controlTftage program parts are
contained iraffine loops

20 2. BACKGROUND

Definition 2.2.1(Affine loops) Affine loop nests are nests of perfectly or imperfeéthested loops with
constant strides, having their loop bounds and memory accessessexpessaffine functions of outer
loop induction variables and global parameters.

The scope of the polyhedral program analysis and manipulatioBtatiee Control Partontaining
sequences of affine loop nests and conditionals with boolean expreséiaifine inequalities. This class
of programs includes non-perfectly nested loops, non-rectangulps laed conditionals with boolean
expressions of affine inequalities [67]. Global parameters are symlzolables that are invariant inside
aloop.

We will use an abbreviation SCoP (Static Control Part) to denote the partprogeam amenable
for polyhedral analysis [74]. In Chapter 4 we will show an algorithmicrapph that is used in our tool
to extract SCoP parts from an arbitrary imperative program. An exampleqfrogram part that fits in
SCoP category is shown in Figure 2.1. The global parameters for thie &ffip nest arél andK.

2.3 Polyhedral representation

The polyhedral program representation is based on the concepthamilystatement instances
which is the basic atomic unit of a program execution. The set of those aestammodelled in a linear
algebraic framework, which we are going to present in the subseqagntqgd this section.

We will define a concept of thpolyhedral statemerdnd the three components of the polyhedral
representation:

— lIteration domains - capturing the set of dynamic statement instances

— Data access functions - capturing the memory access patterns ed@gssine functions of loop

induction variables

— Scheduling functions - capturing the relative execution order of thenstateinstances

Building on those primitives, we will show in Section 3.2 how to statically extracsémeantics of the
SCoP programs. Also, we will show how to express the transformations potiieedral representation
in Section 3.3.

2.3.1 Polyhedral statements

The polyhedral model is an abstraction that expresses the prograntiexgrace as an execution of
the dynamigolyhedral statements

This abstraction is built on top of some internal representation used in a cory@fgending on the
level of abstraction, one polyhedral statement could correspond to:

1. syntactic statement - a source-level statement in a source program.
2. basic block of a low-level internal compiler representation
3. three-address code instruction

The polyhedral model is mostly used in the context of source-to-soorogiters [74, 34, 89, 113,
85]. Thus, the first case, where a polyhedral statement directlyspmnels to a source-level statement
in a source program, is the most common. It is also the most natural cancesuoe for presentation
purposes.

In this dissertation, we investigate the application of the polyhedral model to whtelel, three
address code compilation. Thus, in Chapter 4, we will also use an abstrieste where a polyhedral
statement corresponds to a basic block of low-level internal compileeseptation.

1. A perfect loop nesis a set of nested loops if all statements are contained in an innermost lwegieOtherwise a loop
nest is calledmperfect loop nestn this work we consider a general class of imperfectly nested lospanaing that perfectly
nested loops are contained in this class.

2.3. POLYHEDRAL REPRESENTATION 21

In the rest of this dissertation we will implicitly use a term statement to refer to stnaai polyhe-
dral statement of the polyhedral model. Depending on the context, thestatementnight refer to a
polyhedral statement corresponding to the source-level statérarib the basic block in a low-level
internal representation. We will try to make this distinction clear in the followiregpoérs.

for (v = 0; v < N; v++)
for (h = 0; h < N; h++) {
S1: s = 0;

for (i = 0; i <K; i++)

for (] 0; j <K; j++)
S2: s += image[v+i][h+j] = filter[i][]j];
S3: out[v][h] = s >> factor;

Figure 2.1 — Main loop kernel in Convolve

2.3.2 lteration domains

Once we have defined an abstract polyhedral statement, we are irderestealyzing dynamic
statement instanceé\n execution of an abstract sequential program might be seen as a-totidiyed
interleaving of statement instances. Each statement might be executed multiplentariesp.

Definition 2.3.1(Iteration vector) Theiteration vector of a statemen$ consists of values of the induc-
tion variables of all loops surrounding the statement.

Each statemerfis executed once for each possible value of a surrounding loop indweti@bles We
denote a statement I8and a statement instance (i), wherei is an iteration vector of a statement.

If a statemenB belongs to a SCoP then the set of all iteration vedtoesevant forS can be repre-
sented by a parametric polytope:

D3(g)={i€Z"|A-i+B-g+b >0}

which is called theteration domainof S whereg is the vector ofglobal parametersvhose dimension
is ng. Global parameters are invariants inside the SCoP, but their valuestdoeawn at compile time
(parameters representing loop bounds for example).

We will combine matrice€\, B and a column vectdp in one matrixD = (A | B | b). We will also
concatenate vectoiis g to form anhomogeneousolumn vector(i,g,1)T, where last component is a
scalar constant 1. We can then provide a more compact representagigolyhedron:

D%(g) = {i€2"|D-(i,g,1)" >0}
Let us consider a computational kernel given in Figure 2.1. We will namedhgonents of the

iteration vector according to loop induction variables and global parangtens in a source code. The
resulting iteration domain polyhedron for statem@nis then represented as:

2. Mainly used for presentation purposes

22 2. BACKGROUND

1 0]00| 0 ‘é V>0
10 |10/ -1 V<N-1
0 1|00| 0 E 201130
0-1/10]-1]] h<N-1

We can represent the same iteration domain polyhedron in a more concise way
D> ={(vh)T €Z?|0<vh<N-1}

The iteration domains for statemei@sandS; are represented as follows:
D= ={(vhi,j)T €Z*|0<v,h<N—-1A0<i,j<K-1}
D= ={(vh)T €Z?|0<vh<N-1}

2.3.3 Data access functions

Given an affine program, all accesses to memory locations must be segrsough array refer-
ences. We will treat accesses to scalar values as accesses to singlategayg\ 0] .

A data reference to an array4 is denoted byR= (A, f), wheref is asubscript functionTogether,
they describe an array access of the forpi(d)]. A subscript function is a function that maps an iteration
vectori to an array subscripts:

f(l) =F- (iagvl)T
whereF e Z™ (") js a matrix containingn rows - m being the number of array subscriptsandng
being the iteration vector and global parameters vector sizes respectively

In affine programs all subscript functions must be expressed ae &ffictions. A given statemest
can contain multiple data references. A set of write and read data reésreha stateme@is denoted
as WS andR S respectively.

As an example, let us take the statem@nfrom the example in Figure 2.1:

S2: s += image[v+i][h+] * filter[i][j];

The set of write and read references is the following:
W ={(s,1(i)=0)}
RZ = {(s,f(i)=0), (i mage, f1),(filter, fz)}
The access functions that map the iteration vectors to array subscriptthieaiollowing form:

i = (07)

(i) = (|)

An execution trace of a sequential program could be describedatalarder relation on a set of
statement instanceSi) : i € DS}. In order to impose a total execution order on a set of statement
instances, each statement insta(®¢) is assigned é&mestamplenoted by a vectdr

The t vector represent a multidimensional time. In order to impose a temporal aydefriime
vectors, an ordering relation between two time vectors has to be defineds&Ve lexicographic or-
der between two vectors to impose their temporal order. Given two ve&terg&ay, . ..,an)T andb =
(by,...,bn)T, we define a lexicographic order relatiar< b as follows:

2.3.4 Schedules

(ag,...,an)" < (by,....,by)T <= Ji:1<i<na=bAra<bi

2.4. RELATED WORK AND AN HISTORICAL OVERVIEW 23

In other words, there exist an integesuch that all vector components upi @@re equal, while the vector
component at the+ 1 position of the vectob is greater than respective component ofdhector. The
idea of using multidimensional timestamp vectors was proposed by Feautji@an&ter by Kelly and
Pugh [93].

For each polyhedral statemeatve define an affinecheduling functioms a mapping between an
iteration vectoi and a timestamp vector

t=0%i)=0% (i,g,1)7

where@S e ZP*("ne+1) js ascheduling matrikavingp rows, wherepis a dimensionality of a timestamp
vectort.

Once we have defined the scheduling function and the lexicographidraydd the timestamp vec-
tors, we can formally define an execution order of statement instances:

Definition 2.3.2 (Execution order) A given statement instandeS,i) is executed before a statement
instance(S, i) if and only if:
65(i) < 65 (i")

2.4 Related work and an historical overview

The polyhedral model is well-established theoretical foundation fooréag about program seman-
tics and transformations of static-control programs.

The seminal work of Karp, Miller and Winograd [88] on scheduling the cotafions of uniform
recurrence equations can be considered as an origin of the poli/heattal theory. It introduced many
concepts such as dependences, dependence graph, schedudtignitectors.

Later work on automatic systolic array synthesis by Rajopadhye introdbhed¢drms otiming func-
tion, allocation function affine mappings andolyhedral domainsThe PolyLib library for performing
operations on rational polyhedra represented as a system of affinalitees was conceived by Le Verge
and Wilde [160, 108].

Different authors have used different notations to refer to the sanmeptsirelating to polyhedral
compilation. The most recent attempt to unify the notation and introduce thaicahtorm was that of
Girbal [74]. When referring tahe polyhedral modele are referring to the notation introduced in this
chapter, which is mainly based on the notation coming from the work of Givigdl [

A group at INRIA [74] has demonstrated that one can consider the edilghmodel as a fully-
capable internal representation of the compiler. WRaP-IT [73] progeshown an internal representa-
tion based on the polyhedral model incorporated into production quality iEEm@pen64 [44].

As the last note, we remind that the polyhedral analysis is restrictaffib@ programs- programs
that have static control and data access patterns described by the efstifime constraints. There are
works that try to widen the scope of applicability of the polyhedral model tg@ms going beyond
static-control [26, 18]. They mainly rely on the conservative approximataf the program semantics.

2.5 Summary

In this chapter we have given a self-contained mathematical backgroanfbtms a foundation of
the polyhedral model. We have formally defined the affine functions egfffyperplanes, polyhedra and
polytopes. We have shown the place of the polyhedral model in the geoengilation context. We have
defined the class of the affine programs for which the polyhedral medet¢sentation could be obtained.

24 2. BACKGROUND

In Section 2.3 the basic building block of the model are defined : 1) iteratiomaths, 2) data access
functions and 3) schedules.

Given the basic components of the polyhedral model, we define the waptessxthe multidimen-
sional program transformations and to assess their legality by introdu@rdath dependence concepts
in the next chapter.

25

Chapter 3

Program Transformations in the
Polyhedral Model

3.1 Canonical Form of the Scheduling Functions

We have given the definition of the scheduling function in Section 2.3.4,idgfihas as a function
that expresses a mapping from statement iteration vectors to timestamp Watibesthe representation
of the iteration domains and access functions (shown in Sections 2.3.2 arg] fal®ws straightfor-
wardly from their definition, the question of representing the schedulingtions leaves many degrees
of freedom.

One might restrict the scheduling functions to one-dimensional timestampssBteautrier [68]
has shown, one-dimensional timestamps cannot express the schedaolaeotlass of the programs.
Feautrier [68] has also shown that multidimensional schedules are sxpresough to encompass the
full class of affine programs.

Within the class of multidimensional schedules, the following question arisesatamy dimensions
should a timestamp vector contain? Feautrier [68] provides a schedulingtfalgahat minimizes the
necessary number of dimensions of the timestamp vector. Bondhugularf84dlgs a scheduling ap-
proach that requires at leasscheduling dimensions, being the maximal loop depth of the statements
within SCoP.

For the compiler construction purposes, it is desirable to have a candoinabf the scheduling
functions. Girbal et al. [47, 23, 46] have proposed ¢haonical formof the scheduling functions that
unifies the format of the scheduling matrices representing those functions.

We will discuss the motivation for providing the canonical form of the salied matrices, then we
will define the form and discuss some of its properties.

3.1.1 Motivation

Given the scheduling functiofS(i) represented a85(i) = ©5- (i,g,1)", the goal is to provide a
canonical form of the scheduling mat®S.

Even if a matrix@S € 9*(™e+1) has a full rank (requiring > n), a direct mapping from an iteration
vectori to a timestamj is not enough to distinguish instances of two different statements.

Let us take an example in Figure 3.1. Given the two staten®&risdS,, if we simply take a full-rank
identity matrix as a scheduling matrix for both statements, we would get:

6% ((in,i2)") = (i1,i2)"

6%((i1,i5)") = (i1,i4)"

26 3. lROGRAM TRANSFORMATIONS IN THEPOLYHEDRAL MODEL

for (i1=0; i1<N; il++) {
for (i2 = 1; i2 < N; i2++) {
S1: X[i1][i2] = X[i1][i2] — X[i1][i2 —1] = A[i1][i2] / B[il][i2 —1];
S2: B[i1][i2] = B[i1][i2] — A[i1][i2] = A[i1][i2] / B[il][i2 —1];

Figure 3.1 — An excerpt from ADI numerical kernel

There is no way to express that a given instance of statefBertt;,i>)") happens before an instance
(S, (ih,i5)T) for (i1,iz)T = (i},i5)T, since both statement instances are mapped to the same timestamp
vector.

An easy solution to this problem is to extend the timestamp vectors with constaasehat disam-
biguate different static statements in an original program. Those constaiesecorresponds to relative
execution order of statement instances inside a common loop nest. Now &e hav

6% ((i1,i2)") = (i1,i2,0)

0% ((i4,15)7) = (if, 14, 1)
and it is always true thais,i», 0)7 < (i4,i5,1)" for (i1,i2)" = (i},i5)T, since the lexicographic order is
disambiguated at the last component of the timestamp.

Since the polyhedral model allows non-perfectly nested loops, a similatgmnamight occur when
different statements, s& andS, have different loop depths.

Aforementioned problems were limiting factors in early works on polyhedh@nam transforma-
tions [9, 103, 138, 165]. This was mainly due to the limitations of code generatimrithms that re-
quired the scheduling matrices to be unimodular [9] or at least invertible, [I®8 165]. The recent
developments [94, 77, 22, 155] in the polyhedral code generationdimwated those restrictions.

3.1.2 Canonical form of the scheduling matrix

Feautrier [68] and later Kelly and Pugh [93] have proposed a timestangaliexgcfor characterizing
an execution order of statement instances within a non-perfectly nesfesl 1oo

Girbal et al. [47, 23, 46] have defined tlwanonical formof the scheduling matri®S. This encoding
is generalized to handle arbitrary compositions of affine transformatidresca@nonical form encodes a
mapping from iteration vectaor to timestamp vectot, as well as a static statement order within the
common loop. The scheduling mat®é in the canonical form has the following format:

O---01]0---0 [38

Ail' ’ ‘Ain ril' o ring ring+l
0.-0/0--0 :
s s [rs ...rs |rs
5= | AZ1AZn|T21 T3n Tan1 (3.1)

S .. AS IrS....TS S
An.l Ann rn,l I_n,ng r,

0O---0|0---0 >

The scheduling matri®S is composed of three components:
— Component A is an invertible (full rank) matrix capturing the relative drdeof iteration vec-
tors. Changing coefficients of this component corresponds to loop lietege, skewing and other
unimodulartransformations.

3.1. CANONICAL FORM OF THESCHEDULING FUNCTIONS 27

— Columnf reschedules statements statically, at all nesting levels. It expressemotida, loop

fusion and fission.

— Componenf captures loop shifting (pipelining) effects.

We call theA andl” matrix components dynamicschedule components — since those components
are used to reschedule dynamic statement instances, weletor component is calledstaticschedule
component — since it corresponds to a static statement order inside arprogr

The matrix@S e Z(@+Dx(+ne+1) has h+ 1 rows,n being the loop depth of the statemé&Odd
rows correspond to static execution order of statements that are entcics@dmmon loop nest. Each
such a row contains a single integer constant. All the odd rows could be sigathby3 vector having
n-+ 1 components. We call this vectostatic schedulingector, since it represents the constant part of
the timestamp.

Rows at even positions represent an affine mapping from iteration séetwd global parameteggo
their respective timestamp component. Affine mappings enabfestance-wisenultidimensional affine
scheduling [67, 68, 105, 34, 132]. Changing the coefficients of Alanwtrix components enables the
representation of arbitrary affine schedules which encompass claesipatransformationgike loop
interchange, skewing, shifting or unimodular transformations [5, 7, 1%534] and much more.

An example

The scheduling matrix representing the original program schedule hafs mhatrix initialized to
the identity matrix, thd” matrix is all zeros and thB vector encodes relative statement order inside a
program source-code (or other program intermediate representation)

As an example, let us take a non-perfectly nested loop shown in Figur@tizlscheduling matrix
that corresponds to an original execution order of statei@eistgiven as follows:

0 0|0 0|0
1 0/0 0|0
©%=|0 0|0 0|0
0 1/0 0|0
0 0/0 0|0
this canonical scheduling matrix is decomposed into following components:
0
10 00
S S S
S EHESEHESE

The matrix©% represents the scheduling functid ((v,h)") = (0,v,0,h,0)". In the same way, the
scheduling matrix®% is decomposed into the following components (the stater@eist nested within
4 nested loops):

1 000 0 00O 8
0100 0 00O
S — S — S —
A 0010 r 0 00O B é
0 0 01 0 00O 0

that represent the scheduling functi@®(v,h,i, j)™ = (0,v,0,h,1,i,0, j,0)". The scheduling function
for statemenss is: 8%((v,h)T) = (0,v,0,h,2)T.

Note that the timestamp component®dt positions are integer constants, whereas the components
atevenpositions correspond to affine mapping of loop induction variables to trepeive timestamp
components. The fifth components of all time vectors are integer constdngs-0they correspond to
textual order of statemen$, S, andSs respectively.

28 3. lROGRAM TRANSFORMATIONS IN THEPOLYHEDRAL MODEL

Multidimensional time vectors are compared lexicographically. If we take statsiBeandS, with
their respective scheduling functions, we can say that:

0%((vh)") < 8%((V, 1,1, |)T)

i.f.f.
v<VV(v=VAh<Kh)v(v=VAh=hA0<1)

In other words, an instance of statemé&atoccurs before an instance of statem&ntwhen one
of the following conditions is satisfied: < vV, (v=V Ah<K)or (v=V Ah=h A0< 1). The first
two conditions are obvious: if a statement instance is scheduled at an @arh¢ion of the outermost
loop then it happens before. Likewise, if a statement instance is scheatuleel same outermost loop
iteration, but at an earlier innermost loop iteration, then it happens béfbeelast condition states: if
two statement instances are scheduled at the same iteration of their commoloopgera statement
instancgSy, (v,h)T) is going to be executed earlier than a statement insté@ice/, i, i’, j’)T), because
it is statically scheduled to happen earlier at the fifth timestamp componenti)0

3.2 Capturing semantical constraints

We have shown a powerful way to express the program transformatmnshanging the schedule
of the executed statement instances. Obviously, if we want to perfdegahprogram transformation,
the semantics of the transformed program must match the semantics of thel giggram.

There are numerous ways to define the program semantics. But for thespuof the polyhedral
transformations, it is enough to define a semangcalivalencef the transformed program with respect
to an original program. To determine this equivalence it is not necessdgfite the exact semantics of
each computational step.

The classical polyhedral model does not model the actual computatidresehzerformed inside the
polyhedral statementc S. Polyhedral statement is treated dslack boxthat reads from and/or stores
to a memory - thus changing the visible state. A given sequential prograrnecaeen as a sequence
of reads from and writes to a memory, irrelevant of the computations thgteafermed within the
statements [7].

The transformation is legal if the transformed program computes the sames\aduthe original
program. This definition allows the reordering of the statement instancdésngss the transformed
program would provide the equivalent results as the original one.

We use a well defined conceptadita dependencas a semantical constraint that has to be preserved
in order for a transformation to be defined dsgal. [27, 7].

A good survey of data dependence abstractions was given in [16758114]. Naturally, the more
precise the data dependence abstraction is, the more legal transfornzaomeploitable. The most
precise data dependence abstraction is that of Feautrier [66] esgrassdependence polyhedréihe
similar approach was proposed by Pugh [133, 136, 137].

A practical and efficient implementation of instance-wise dependenceséalgs provided by Vasi-
lache [156]. Barthou [18] has extended the scope of the applicatioe pitlyghedral model to non-affine
programs by providing the fuzzy array dataflow analysis - an appribethhandles the non-affine pro-
gram parts in a conservative way.

We will proceed by presenting the data dependence representationalysis Later we will intro-
duce a refinement of dependence analysis that captures only thewatefiendences.

3.2. CAPTURING SEMANTICAL CONSTRAINTS 29

source| target| dependence type other names symbol
write | read| true dependence flow, RAW | &

read| write | anti dependence WAR &t
write | write | output dependence | WAW o°
read| read| (input) no dependence- -

Figure 3.2 — Read-Write classification of the dependences

3.2.1 Data dependences

Two statement instancg§, is) and(Sj,is;) are in adata dependenaelation if they access the same
memory location and at least one of those accessewigamemory access. We designate a statement
instance that happens earlier as sloeirceinstance, and a statement instance that happens later as the
targetinstance. If a source instance is a write and a target instance is a reaith¢héata dependence
is atrue dependencdf a source instance is a read and a target instance is a write then theldape
is aantidependence.astly, if a source instance is a write and a target instance is a write theatte d
dependence is asutput dependencdll the possible types of dependences are summarized in Table 3.2.

It is not practical to compute data dependences between all statementéssiiam program. What
is more, if a loop iteration count depends on a parameter that is unknowe ebipilation time, it is
not even possible to enumerate all the data dependences in a program.

A compact way to summarize all the data dependences between all staterteamtdasn a program
is to use a structure called tReduced Data Dependence GraiDDG) [57].

A RDDG is a directed multi-graplG = (V,E), whose vertex s&t is a set of all program statements,
i.e.,,V =S. There is an edge € E from a vertex§ to a vertexS; if there is a data dependence relation
between an access in some instancg ahd an access in some instanc&oEach edge < E is labelled
by adependence polyhedrah.

The dependence polyhedrdh that labels an edge fro& to S; represents the set of iteration vector
pairs denoting statement instances that are in data dependence relation:

Pe={(is,is) | (§,i5) and(S},is) are data dependeit

In order to compute such dnstancewisaelependence polyhedron, one has to construct an intersection
of the following affine constraints [156]:

Conflict condition both statement instances access the same memory location. This is equivalent to
stating that their subscript functions have all their subscripts eqtidig) = f5 (is,)

Causality condition the instanc€$;,i5) happens before the instan($,is,) in the original program
execution order®S (i) < 6% (ig)
Execution condition both statement instances are actually executed, i.e., both instances bel@ter-to s
ment iteration domainsg € DS Aig € DS
Since all the conditions could be expressed as a system of affine equalitiejualities, the resulting
affine constraint system represents an affine relation that can be masilpulated by an integer linear
programming and linear algebra tools.
The causality condition is a lexicographical comparison of vectors anldl dmurepresented as a
disjunction ofNgs, constraint components, whelg s, is a common loop depth of statemeftsndS;.

An example

As an example, let us take a matrix-vector multiplication kernel shown in Fig@rél&ere is a true
data dependence between an instance of the statéSnantd an instance of the statemé&at denoted

30 3. lROGRAM TRANSFORMATIONS IN THEPOLYHEDRAL MODEL

for (i = 0; i <N; i++) {
S1: b[i] = 0;
for (j = 0; j < N; j++)
S2: b[i] = b[i] + A[I]I[j] = x[jI;
}
Figure 3.3 — Matvect - matrix vector multiplication
name condition affine constraints
execution condition (') € D™ 0<i<N
execution condition (i, i TeD> | 0<i"<NAO<j <N

conflict condition | fS((i)T) =
causality condition| 85 ((i)T) <«

M
A =
6((7, 1)) i<

Table 3.1 — A summary of affine conditions for a dependence &dge S

(S, ()T and(S, (i, j')T) respectively.

As the source of the dependence we consider the stateégpeontaining a write to an array| i |
whose corresponding subscript functiorf (i) = (i). As the target of the dependence we consider the
statemen§, containing a read from an arrayi | whose corresponding subscript functiorf (i, j)T =
(i). We summarize the necessary affine constraints in Table 3.1. Taking aseitten of those affine
constraints, we end up with the following dependence polyhetiron

1-10 (0] 07, i >
~110 0| 0|, i<l
o10/0|o0]|l[i’ >0
. Lol
il g 10 1] -1 ,J\I 20l oN_1
00100l >0
0 0-1|1]-1] P <N-1

A dependence polyhedrah is a relation that describes all pairs of iteration vectoysind(i’, j’) of
statement instances that are in a dependence relation. The pairs of itgeatiors are concatenated in a
single vector(i,i’, j’), so the relation is a subset of Cartesian product space:

Po={(i,i",j') € ZIMS)+AMS) (s, (i’ j')) is dependent ofSy, (i)}

thus a dependence polyhedron could be concisely represented as:

P, ={(i,1",])]i="ANO<I"<N—-1IAO<jJ<N-1}

In our example, the pair is decomposed in the first compofi¢htthat corresponds to the source
iteration, while the second componéiit j’)T corresponds to the target iteration. In other words, if the
value was stored ib[i] in thei-th iteration of the statemel$, it is read by all the iterations of the
statemens; for whichi’ = i. There is no constraint on thj§ since fori = i’, the statement instan& is
always executed after an instance of the stater§ent

A true data dependence betwegrandS; is not the only data dependence that exists in a program
given in Figure 3.3. For example, there exists a write-after-write (outgpddence between statements
S andS, described by the same polyhedron as a true dependence. Thefaaberoutput data depen-
dence is the fact that the write to an artdy] atS; is subsequently overwritten by a write to an array

1. An equalityi =i’ is expressed as two inequalities i’ Ai < i’

3.2. CAPTURING SEMANTICAL CONSTRAINTS 31

S1
o
60
50
S2 5
571

Figure 3.4 — A RDDG for the matvect kernel

source| sink | type
S S | true
S S | output
S S | true
S S | output
S S | antidependence

Table 3.2 — A summary of dependences in matvect kernel

atS,. Figure 3.4 shows a full dependence graphnftrvect kernel in Figure 3.3. The dependences are
summarized in Table 3.2.

3.2.2 Memory based dependences

It is a well known fact [102] that anti and output data dependenaeslezys be removed from the
dependence graph by a technique calledm=ay expansion[110, 37]. The anti and output dependences
are calledmemory based dependencEls37] since they are induced by the fact that the same memory
cell is reused for storing values. One can remove those dependgnedsiltuting a separate memory
cell to each statement instance, so that the same memory cell will not be rearsaday expansion.

On the contrary, the true dependences have to be preserved, sincaptere the relation between
the producer and a consumer of the data. The subset of the true depeadnamedataflowdepen-
dences has to be always preserved - those dependences caramablied from the dependence graph.

In the next subsection we will discuss the technique for computing the dataflow dependences -
an array dataflow analysis. The whole Chapter 5 will be devoted to a teshfoq efficiently handling
memory based dependences.

3.2.3 Array data-flow analysis

Standard data dependence relation gives an information on whetheetsrearaliasingof mem-
ory locations. If a statement instan¢8,ig) writes to a memory location &S (i5)], and a statement
instance(Sj,is;) reads from the same memory location, they are considered to be in a trueedata d
pendence relation, even if there was an intervening write coming from stimee statement instance

This notion captures the fact of the potential memory conflict in the case tieenstat instances are
rescheduled, but it does not provide an information on the flow of vatuesad in the statement instance
(Sj,is;) will only see a value that was stored in statement instance that was schasdtteglatest before
statement instande, is;).

In order to capture the flow of values for each array element, an insté&searray data-flow analysis
based on the polyhedral model was provided by Feautrier [66] and RBJ]. It has also been studied

32 3. lROGRAM TRANSFORMATIONS IN THEPOLYHEDRAL MODEL

by Maydan and Lam [110].

The purpose of array data-flow analysis is to give an exact chaatten of the source statement
instance that definesmluestored in a given array element that is seen by the given read statement in-
stance. array data-flow analysis is also known under the name of vateelarray data dependence
analysis [137], since it captures the data dependences induced bgwhef flalues, and not merely by
thealiasingof memory locations.

We will define a true data-flow dependence between two statement insesectsue data depen-
dence satisfying an additional constraint stating that an element written inreesstatement instance
must not be overwritten by some other statement that is executed betweea and target statement
instances. The additional constraint is callelivaness conditionif we put together all the affine con-
straints together, we will get the following set of affine constraints:

Conflict condition both statement instances access the same memory location. This is equivalent to
stating that they access the same memory array A and their subscript fesnbtea all their
subscripts equalfS (i) = 5 (is))

Causality condition the instanc€S;,i5) happens before the instan($,is,) in the original program
execution order®S (ig) < 65i(ig)

Execution condition both statement instances are actually executed, i.e., both instances bel@e-to s
ment iteration domainsg € DS A is € DS

Liveness condition there is no overwriting statement instance that happens between sodrzegat
statement:

VS € Sin : —Tig, 1 09 (ig) < 8%(ig) < 8% (i) A 3 (i) = F(ig)

Skiil is the set of statements containing array references that might write to dyefarmote that bottg
andS; are included inSi .

While this definition is a denotational description of how to compute value-@s¢a-flow) depen-
dences, it does not express those constraints directly as a set efafiatraints. Indeed, an existential
guantifier and a negation operator might induce a solution that containoarsai-convex polyhedra.
Pugh [137] shows different heuristics that control the complexity of thetion.

An ILP based formulation

Featurier [66] has shown that the previously mentioned liveness conditight be equivalently
expressed as the following problem:

Given a read statement instan(®,is;) containing a read data referenc«{afﬁi(isj)], compute an
unigquestatement and its iteration vectors that form asourcestatement instanc€s, ig) being the
source of the valueead in A/fSi(ig)].

This provides a notion afource function H (A[f5i(is)], (S;,is)) — (S,ig): an argument is a data
reference Afsi(igj)] and its associated statement insta8gis,) while the result of the function is
sourcestatement instand&, i) that produced a value in[A (is,)].

Among the set of possiblgourcestatement instances only the one that is executddeaktestis
the true source of the given value, since all values written by other sgare overwritten by the latest
executed instance.

In order to compute the unique value of the source function for eacibfmdata reference, Feautrier [66]
proposes to use a PIP [65] (Parametric Integer Programming) algorithomioute the lexicographically
largest element of the parametric >

The parametric se®(A[f%i(is)],(Sj,is)) = {(Scis)}, contains the set of all executed statement
instanceqy &, is,) that write to the given array element[i@i(isj)] and that happen before a statement

3.3. TRANSFORMATIONS AND LEGALITY 33

(s.()T) bli] = 0;
(S.(,0)7) b[i] = b[i] + Ai][0] * x[0];
(S)T) bli] = b[i] + Ali][1] * x[1];
(S (N=DT) b[i] =b[i] + ALT[ND * x[N1];

Figure 3.5 — A slice of the execution trace of matvect kernel

instance(Sj,is,) (instances that satisfy conflict, execution and causality condition). Aruersglution
is obtained by solving the following parametric integer programming problem:

max.8(Sis), (Scis) € QUA[f3(is)], (Si,is))

In our approach, we will use an implementation of the array dataflow anagsigroposed by
Feautrier and implemented in an ISL [158] library. An extension of arrég-tlaw analysis to non-affine
programs proposed by Barthou [18] follows the same principle, but itdotes an additional predicate
variables that model the non-affine access functions and non-afiinieotflow in the program.

An Example

As an illustration, let us consider a kernel in Figure 3.3. Figure 3.5 illusteaséise of the sequential
execution trace for some fixed outer loop induction varidbkor a given outer loop induction variable
i one instance of stateme8t is executed{Sy, (i)7). SubsequentliN — 1 instances 0%, are executed:
first an instancéS, (i,0)") is executed, next an instant®, (i,1)") and so on.

By definition, thealias based dependence analysis considers all the pairs of dependehsestb
statementss; and S: (S, ()7) — (S, (1,007), (S, (H)T) = (S,(,D)7), ..., (S, (H)T) — (S, (i,N —
1)T). Those dependences are induced by a vafit§ = 0 in statemeng,; and subsequent reads. =
b[i] in statement instances of statem&nt

The array data-flow analysis will only consider the true value-baseeraEmcdS;, (i)7) — (S, (i,0)7).
There is no value-based dependef8e (i)") — (S, (i,1)T), since the value written in statement in-
stanceg(Sy, (i)T) is overwritten in statement instan¢®, (i,0)T) and thus not visible in instances

(S, (1,17, (S, (i,N=1)T).

3.3 Transformations and legality

A program transformation in the polyhedral model is expressed as aterggy transformation on
statement instances. One expresses a transformation as a set ofinghedtrices. For each statement
S € S one provides a scheduling mat@% that completely describes a multidimensional schedule of
statement instances.

Definition 3.3.1(Dependence satisfactionhA RDDG edgee € E from § to §j, labelled by dependence
polyhedron?,, is satisfiedby schedule§S and6S iff:

V(ig,is)" € Pe: 6% (i5) < 03 (is)) (3.2)

A dependence satisfaction condition for a dependence edgE simply states that for each pair
of dependent statement instances, the source ins{&hég) is scheduled before the target instance
(Sj,is;). This is expressed as a lexicographical comparison of their timestamps areittansformed
through their respective scheduling functi@¥is) and8%i(is,).

34 3. ROGRAM TRANSFORMATIONS IN THEPOLYHEDRAL MODEL

A program transformation is expressed as the set of scheduling matrices:
T={6%,...,6%}

wherep is the number of statements inside the program statemept & say that a transformation
T is legal for a given RDDG G=(V, E) if all the edgesc E are satisfied by their respective statement
schedules.

A priori versus a posteriori legality

Depending on the usage scenario, there are two major approachesringt® legality of transfor-
mations in the polyhedral model:

a posteriori checking the legality of thgiventransformation. A transformation might be given by an
user or obtained semi-automatically [41, 74]. A violation analysis [156] ifopmed to check the
legality of the proposed transformation.

a priori computing the automatic transformations that are guaranteed to be legal. Afinlkeesahedul-
ing approaches fall into this category [67, 68, 76, 34, 107, 106].

A computational procedure for a posteriori legality check is based onaditiegondition given in
Equation 3.2. But in order to express this condition in a way that could beldzhiby the polyhedral
techniques, it has to be rephrased into an equivalent condition:

J(is,is)" € : 6% (i) < 63 (ig)

This set represents those pairs of statement instances that are inelegeeralation, but whose order
is inversed (please note that lexicographical comparison is an inversibie one shown in Equation
3.2). If this set is empty, there are no illegal inversed statement instarmmkshe given dependence
relation is preserver. The same check is performed for each depenedge: € E.

An emptiness check is done by performing a Fourier-Motzkin elimination [tdSficted to in-
teger solutions only [133]. An efficient implementation of the violation check p@posed by Vasi-
lache [156].

In the case there is some pair of dependent statement instances thattedinvisrnot a dead-end:
one might resort t@orrectthe schedule by applying a corrective shifting. This technique was peapo
by Vasilache [157].

An another approach is to automatically build the legal schedules a prioriisTthis approach taken
by all the affine scheduling algorithms [67, 68, 76, 34, 107, 106].

One can build thespace of legal transformationsy putting together the dependence satisfaction
constraints for all the dependence edgesE in RDDG. As a solution, one gets the space of legal
scheduling matrices, expressed as the set of possible matrix coefficetrgs/ehthe legal transformation.

Building and solving such a constraint system is based on affine forrar&aBE lemma [143] (to be
defined in Chapter 7) and Fourier-Motzkin elimination [67]. The relatedblpra that arises is that of
selecting the best schedule among the set of possible legal schedwdéegrditiem is the core of the
Part Ill of this dissertation.

An Example

As an example, consider a matvect kernel in Figure 3.3. The originatistihg matrices®S and
©%= are shown in Figure 3.6. By definition, the original scheduling is alwayal legndeed a RDDG is
computed from the original scheduling matrices.

3.3. TRANSFORMATIONS AND LEGALITY 35

ololo . 0 0 0/0|0 i 0
-l 1lololln)l 1 0/0/0|(": i
o\)T 5 ©%=|0 0/0|1 I{l =1
0 1/0|0 1 i
0 0/0|0 0
Figure 3.6 — Original scheduling matrices
i
dependence
—_—

execution order

' instance of S2

@ instance of S1

Figure 3.7 — Matvect: an original sequential execution order

Let us consider a true data dependence edge 8oim S, whose dependence instances are summa-
rized by the following dependence polyhedron:

Po={(i,i",j')T|0<i<NAOZI'<NAO<Z | <NAi=i}.

An illustration of the original execution order and data dependence iregaoc a dependence edge
S — S is shown in Figure 3.7.

As an instance of a possible reordering transformation, let us changeltbduling matrix of state-
mentS, by interchanging the original scheduling matrix columns. A program tramsftion is repre-
sented by a set of new scheduling matrices: {©@,@>}. The scheduling matrix of stateme®it is
left intact. The scheduling is illustrated in Figure 3.8.

The transformed schedule does not satisfy the dependence éage S; to S, summarized by the
polyhedron®e. This is illustrated in Figure 3.11 showing a new (rescheduled) executitar,dogether
with an instance of dependence pair that is not satisfied. Indeed, aataalépendence froig, to
S requires that an instand&y, (2)7) is executed before an instan(®, (2,0)7), but in a transformed
schedule an instand&, (2,0)") is executed first — a data dependendeversed

On the other hand, Figure 3.9 shows a scheduling transformation that isAsga the previous
example, the scheduling matrix of the staterm@nis left intact. The scheduling matrix of the statement
S is formed by putting an integer constant in the first row and leaving the fés¢ oows intact. In this
way, we have changed tifg(see Section 3.1) component of the scheduling matrix.

36 3. lROGRAM TRANSFORMATIONS IN THEPOLYHEDRAL MODEL

0/0/0 i 0 0.0/0)0 [0
O%=|1]|0|0 N |=|i / 0 1070 i ;
ololo N 0 @%=|0 0|01 N =11
1 0/0]|0 1 [
0 0/{0]|O0 0

Figure 3.8 — lllegal transformation matrices
0/0/0 [0 0 01011 [1
@%=]11/0|0 N | =] / 0 11910 i '
@%=|0 0[0|0 N [=] 0
0/0/0 1 0 1 ololo) j
0 0|00 0

Figure 3.9 — Legal transformation matrices

0 1 —-inversed
: dependence
S1 ® ¢ i
0 1 2

Figure 3.10 — A transformed and legal sequentiaFégure 3.11 — A transformed and illegal sequential
ecution order execution order

3.4. RELATED WORK 37

Figure 3.10 illustrates the new execution order —first, all statement instahttesstatemens,; are
executed, and then all instancesSfare executed. This execution order preserves all dependence pairs
for a true data dependence fr@nto S,.

Please note that in order to prokgality of a transformation, one has to prove that all dependence
pairs are satisfied. On the other hand, in order to prove that a transimnnigillegal it is enough to
demonstrate that there exists at least one dependence pairitivatrged

3.4 Related work

A loop transformation theory based on data dependences was devbelppeskarchers working on
optimizing compilers for high performance computing [13, 98, 6]. The dapemnidence graph was
used as a central concept for ensuring the legality of transformatidresiobp transformations were
performed on ayntaxrepresentation.

The first attempts to model the imperative program loop transformations thimesnr algebraic
representation were those wfimodular transformationg99, 14, 161]. The loop transformations ware
represented by unimodular matrices. A sequence of several loopanaragions is represented in a single
unimodular matrix and transformed source code is generated automaticaligraback of unimodular
transformations is the fact that they are amenable to perfectly nested lolgps o

Some works were trying to circumvent the limitation of unimodular transformationhat they
could be applied to non-perfectly nested loops [103, 166]. But theg hantations in code generation
phase - requiring the transformation matrices to be invertible.

A unifying theory that could handle non-perfectly nested loops wasldesd [134, 67, 68, 105]. It
relies on multidimensional schedules of statement instances. They alsoshdw &utomatically search
for a schedule that optimizes program parallelization or data locality.

Feautrier [64] has demonstrated the feasibility of handling static contrgirgno analysis by us-
ing integer linear programming, and he proposed a Parametrized Integgafming (PIP) algorithm.
Later, Feautrier has shown how to handle the problem of instancewisedataflow analysis [66] and
minimal latency scheduling problem [67] — two seminal works in the history ajrétecal polyhedral
compilation.

Another technique developed by Pugh [133] is based on an extenskeoudkr-Motzkin variable
elimination which led to the development of library for manipulating integer setseatlons repre-
sented as systems of affine constraints called Omega [90]. Pugh halatsd & problem of array
dataflow analysis under the namevalue based array dependence analygi87].

More recent advances in the scalable and general code generatioigtess [21, 22, 155] enabled
the polyhedral model to be integrated into the real production compiler.

3.5 Summary

In this chapter we have summarized the state of the art in program transifovenexpressed in the
polyhedral model. The concepts of data dependences and arrapwaatilysis were introduced. The
notion of transformatiotegality was briefly discussed. Some implementational issues of array dataflow
analysis and transformation legality check were presented.

We will extend the concepts that were presented in this chapter with ourgravibaitions. In Chap-
ter 5 we will show that we can relax the conditions for determining the legalityetrdmsformation.

In Chapter 6 we will show that we can construct a precise cost modeds! lmasthe polyhedral repre-
sentation, provided that we do not treat the polyhedral statement askeblobacChapter 7 provides our
contribution to the schedule construction problem.

38

3. ROGRAM TRANSFORMATIONS IN THEPOLYHEDRAL MODEL

39

Part |l

The framework

41

Chapter 4

Graphite framework

Despite several decades of research into the polyhedral model, ttstiterie general-purpose pro-
duction compiler using the polyhedral model internally. The situation is chgngih the demonstration
of the scalability of polyhedral algorithms and with the widespread disseminaftianlticore processors
and hardware accelerators.

This chapter describes GRAPHITE framework that incorporates the gatghanalyses and trans-
formations into GCG compiler. GCC compiler is one of the most widely used open-source compilers
for a variety of imperative programming languages (C, C++, ADA, Fojteard platforms (x86, ARM,
PowerPC, MIPS).

The original motivation for GRAPHITE project is the study of loop optimizatiomsa low-level
three-address code [3] intermediate representation. Polyhedresegpation is extracted from the GCC
three-address code intermediate representation that is gtatie single assignmegsSA) [52] form.

This is a major difference with traditional source-to-source polyhedraipilers that operate on
high-level abstract syntax level. Operating directly on the three-aslde brings in new challenges
but also new opportunities: we can leverage existing scalar analysesdorttptler and interact directly
with a wealth of optimizations for extracting coarse and fine-grained paratlelig improving memory
locality.

We will first discuss the related work on different approaches to pdidieompilation. A general
overview of the compilation flow in GRAPHITE will be presented. Later, auss@on of the relevant
and interesting design issues follows, together with the conclusion.

4.1 Related Work

There have been many efforts in designing an advanced loop-nedbiraation infrastructure. Most
loop restructuring compilers introduced syntax-based models and intetmeelgesentations. ParaS-
cope [50] and Polaris [31] are dependence-based, sourcestoeguarallelizers for Fortran. KAP [87] is
closely related to these academic tools.

SUIF [81] is a platform for implementing advanced compiler prototypes. F8BISs one of the most
complete loop restructuring compilers, implementing polyhedral analysesaarsfidrmations (including
affine scheduling) and interprocedural analyses (array regitias).aBoth of them use a syntax tree
extended with polyhedral annotations, but not a unified polyhedradseptation.

The MARS compiler [119] unifies classical dependence-based loogftramations with data stor-
age optimizations. However, the MARS intermediate representation only eagtart of the loop in-

1. https:/gcc.gnu.org

42 4. GRAPHITE FRAMEWORK

formation (domains and access functions): it lacks the characterizatieration orderings through
multidimensional affine schedules.

The first thorough application of the polyhedral representation wasetiet®ol [89], based on the
Omega library [94]. It provides space-time mappings for iteration reorgeand it shares our emphasis
on per-statement transformations, but it is intended as a researchrtepiddl kernels only. We also use
a code generation technique that is significantly more robust than the endeatjon in Omega [22].

Semi-automatic polyhedral frameworks have been designed as buildings Htmccompiler con-
struction or (auto-tuned) library generation systems [89, 46, 157,471, They do not define automatic
methods or integrate a model-based heuristic to construct profitable optimigatitegies.

The GRAPHITE project was first announced by Pop et al. in 200&][The design of GRAPHITE
is largely borrowed from the WRaP-IT polyhedral interface to Opemg@iits URUK loop nest optimizer
[74]. The CHILL project from Chen et al. revisited the URUK approddgusing on source-to-source
transformation scripting [41, 147].

Unlike URUK and CHILL, GRAPHITE aims at complete automation, resorting to til@aearch
and cost modeling of the profitability of program transformations. In additimexpected design and
algorithmic issues have been discovered, partly due to the design of GUChitéanostly due to the
integration of the polyhedral representation in a three-address co@Aifdam.

To the best of our knowledge, two proprietary polyhedral compileredas a low-level internal
representation are currently in development: the R-Stream compiler framrRér Labs [113], and
IBM's polyhedral extension of its XL compiler suite [140]. Little work hagbeublished on compilation
issues of three-address code based polyhedral model abstraction.

4.2 An overview of the compilation flow

Traditionally the polyhedral model is used in the source-to-source [i28,translators and may be
viewed in terms of the three step process: (1) extraction of the polyhegiralsentation of the static con-
trol program part, (2) transformation on the polyhedral abstraction@ngdeneration of the equivalent
source code fragment from the abstraction.

On the other hand, GRAPHITE is the polyhedral transformation enginastloaly a small part of
the complete compiler toolchain — it is implemented as an optimization pass of GCC coipiterch,
GRAPHITE operates on a three-address code internal represenfafitate of GRAPHITE inside GCC
compiler is illustrated in Figure 4.1.

GCC compiler is decoupled into three principal components: front-end, métleand back-end,
as shown in Figure 4.1. Front-end is language dependent. It is réslgofts parsing the source lan-
guage? into GENERIC [70] high-level abstract syntax tree. GENERIC repreg®n is lowered into
GIMPLE [70] intermediate three-address code code used in compiler meddle-

Middle-end is language independent optimization stage. Inside this stage muyiiiiphezation passes
are executed. Intraprocedural analyses and optimizations are performed. GIMPieE-tiddress code
is transformed into SSA form. Various optimizations based on SSA form aferpesd, including DCE
(Dead Code Elimination), forward propagation and copy propagatioop based optimizations such as
loop invariant motion, loop unswitching (moving conditional statements out ofoiyg), PRE(Partial
Redundancy Elimination) are also performed.

GRAPHITE is scheduled as a loop optimization pass operating on a transf@tvPLE code in
SSA form. GRAPHITE itself is composed of several steps that will be exgigimthe following section.

2. we will be principally interested in optimizing C, C++ and Fortran codes
3. more than 200 optimization passes in the current GCCimplementation

4.2. AN OVERVIEW OF THE COMPILATION FLOW 43

2RPSS

Front end: parsing to GENERIC
language independent IR

¢ GENERIC —> GIMPLE
2\

Middle—end: general optimizations
[Inter—procedural optimizations]
N
SSA based optimizations
- DCE
P N ~_| forward prop
loop optimizations copy prop
(GRAPHITE)
Y
Y loop invariant motion
(vectorlzatlon) loop unswitching
Y PRE
(parallelization)
. J
- J

Target machine
description and
cost model

¢ GIMPLE —> RTL

Backend: from SSA to machine code
(RTL optimiser

Y
[code generation /

i Machine code

ASM

é

Figure 4.1 — A gcc compilation flow

44 4. GRAPHITE FRAMEWORK

GRAPHITE performs complex loop transformations and produces a eegtenl GIMPLE code that is
further transformed by automatic vectorization and automatic parallelizatieeqas

After middle-end optimization passes, the transformed GIMPLE code is in tueréal into RTL
(Register Transfer Language) [70] which is used in the GCC back®adk-end is target machine
dependent and can produce machine code for different architeqtx86, x86_64, PowerPC, MIPS,
ARM).

Further in this work we will not consider neither front-end neither baudt;since we are operating
on a language and architecture neutral middle-end stage. The only enatdtdependent part of the
GRAPHITE loop transformation search algorithm is the dependence orrgje¢ daichitecture cost model
as shown in Figure 4.1.

4.2.1 GIMPLE internal representation

GRAPHITE is operating on a three-address code internal representat®85A (Single Static As-
signment) form. An internal representation called GIMPLE is composed st Hdocks containing
three-address code statements. Each statement has no more than 8péeaassary temporaries are
introduced to store intermediate values needed to compute complex expse&sich statement could
contain at most one data access to a memory location, either read or writee Aligh level control
structures are expressed as conditional jumps and the lexical scepesmaved [70].

GCC keeps track of control flow between basic blocks in CFG (Contrel Boaph) graph, whose
vertices are the basic blocks and whose directed edges show the dlmwrdloops are strongly con-
nected components of the CFG.

SSA [52] form ensures uniqueness of a variable definition: eachblalimassigned only once. When
transforming into SSA form, each original variable is split imegrsionsif there are multiple definitions
of the same variable. So, for example, if there are two distinct assignmentsyarihblex, it would be
split into two variables; andxs.

GIMPLE in SSA form containg-functions [52] of the formp(x, Xz, . ..,X,), wherexy, Xz, ..., X, are
variable versions and the number of arguments ofgtfignction is the number of distinct control flow
paths that reach the-function. @-functions are inserted at the places where multiple distinct variable
Versionsxy, Xz, . . ., Xn might reach the use, depending on the control flow.

An excerpt of GIMPLE internal representation and the corresporsbogce code is shown in Fig-
ure 4.7.

4.3 Inside GRAPHITE

GRAPHITEis the polyhedral compilation framework that operates on GIEIBade in SSA form.
As such, it has to first extract the polyhedral representation out eéthddress code. Also, since it is a
GCC pass, it has to produce GIMPLE three-address code.

This two tasks are more complicated when operating on three-addresthaodghen operating on
high-level abstract syntax trees. In this section we will discuss an approf mapping three-address
GIMPLE code into the polyhedral model, and mapping the polyhedral mea#linto the three-address
GIMPLE code. Actual polyhedral transformations are the topic of sylesat chapters. GRAPHITE is
itself composed of several sequential stages. Figure 4.2 shows thinsidpsGRAPHITE framework:

— SCoP outlining. The maximal subgraphs of CFG that have static control property and #iatica

analysable affine data access patterns are extracted from the GIMRle=aitidress code.

— Mapping three-address code into the polyhedraFor the outlined SCoPs (static control parts)

the polyhedral representation is reconstructed and mapped to the GIMcEediate represen-
tation.

4.3.

INSIDE GRAPHITE

45

GIMPLE in SSA form

[SCoP outlining }

SCoP regionsi

GRAPHITE pass

code into polyhedra

[mapping GCC three—address

polyhedra

[dependence analys%

DDG

i

transformation

search

transformed polyhedra

Y

[code generation }

3 symbol table

i GIMPLE in SSA form

Figure 4.2 — Inside Graphite

46 4. GRAPHITE FRAMEWORK

— Data dependence analysidata-dependence analysis is performed to construct RDDG. Special
treatment for scalar dependences and reductions is applied.
— Transformation search. A search for a legal loop transformation sequence based on a cost mode
is performed. This is the topic of chapters 6 and 7.
— GIMPLE code generation. Three-address GIMPLE code corresponding to the transformation
expressed in the polyhedral model is generated.
We will discuss the technical details of GRAPHITE steps in the subseqgeetibies. We will not be
covering the actual loop transformations, since the search for efflogmtransformations is extensively
covered in Chapters 6, 5and 7. We will start by briefly discussing an fiwtucariable recognition,
which is an essential building block for the operation of GRAPHITE.

Induction variable recognition

Induction variable analysis is essential part of any loop optimizing compidr (BCC implements
induction variable analysis by constructing TREC(Tree of RECurrgnf26] — a closed form expres-
sions that capture the evolution of induction variable as a function of iterationts:

X () = X(i1,i2,...,in)

TREC expressions are either constgqts c or they are defined recursively gs= {Xa,+, Xb}k, Where
Xa andyp are trees of recurrencesijs an integer constant or variable name, and subskiigpthe loop
dimension along which we are evaluating an induction variable [126]. If evesider an evolution of
induction variable in the loop at levk] x5 is an initial value ang is an increment at each loop iteration.

TREC expressions can represent linear, affine, polynomial anchergial functions as well. We
will not provide details on construction and evaluation of those expresdionthe reference please see
[126].

The use of TREC expressions in GRAPHITE is threefold: (1) detectisitadic control part regions,
(2) construction of the polyhedral information for the given CFG sublgiend (3) code generation.

4.3.1 SCoP outlining

The first step in GRAPHITE is the extraction of the maximal subgraphs of @&Ghave static
control described by the affine loop bounds, affine conditionals dimkadata access patterns. Each
such a subgraph is called SCoP(Static Control Part) in GRAPHITE termiynolog

Since GRAPHITE is operating on a low level three-address code schiteie CFG, high level
syntactical information is lost: loop structure, loop induction variables, laambs, conditionals, data
accesses and reductions. Extraction of maximal SCoP regions proceedssteps:

1. Construct aegion treethat represents the nesting of reducible [38] regions in CFG.
2. Traverse the tree, starting from the topmost root region. For eganrén the traversal order):

(a) Check if all the basic-blocks belonging to the region satisfyaffine progranconditions. If
yes:

i. Mark the region as a SCoP
else
i. Mark the region as nonSCoP. Repeat the procedure for child regions
In order to check whether a basic block satisfies affine program comslgieveral checks are performed:

1. if a basic block is a loop header block:

4.3. INSIDEGRAPHITE 47

(a) iteration count is symbolically determinable (but it might be unknown at cotigmléime if
it depends on the global parameter)

(b) loop bounds are constants or affine expressions of the outer ldaption variables and
global parameters

(c) loop issingle exit loop
2. otherwise, all the statements inside a basic block are checked:

(a) calls to functions with side effects are not allowedre andconst function calls are al-
lowed)

(b) the only memory references that are allowed are accesses thmaghwith affine subscript
functions

(c) the conditional statements are expressed as affine functions of induatiables and global
parameters

If some basic-block does not satisfy affine program conditions, themdfat contains this basic
block is marked as a hon-SCoP. In such a case, the sub-regions (@td im a region tree) are checked
recursively.

The most favorable case is when the outermost region is proved to be R. $6is is obvious,
especially if the outer SCoP contains the outermost loop in a function. In dalemsble case, some
child nodes in the region tree are marked as a SCoP and some as a nant$CleBs favorable, since
inner SCoPs contain inner-loops and also because inner SCoPsgmnefftad. The least favorable case
happens when a SCoP region is composed of a single basic block ontyS&afs are calledegenerate
and they do not contain any loop. Degenerate SCoPs are not optimized.

As an example, a CFG with marked reducible regions is shown in Figure 4giriRethemselves
are either nested within each other or they are ordered in a sequenetatier order and nesting of
regions is represented as a region-tree and it is shown in Figure 4 iénRegntaining whole loops are
marked [1 andL2 respectively). Regions that contain basic blocks numbered 2 andd:gemerate
regions, since they are not part of any loop. The region markéd @scludes a subregioln? and three
subregions executed in sequence. If a redibms a SCoP then it would contain two nested loops, which
is the best

On the other hand, let us consider an example in Figure 4.6. The cordésgaagion tree is shown
in Figure 4.5. An original CFG represents a single nest loop with one bbsik bcheduled before the
loop, and another one scheduled after the loop. The loop header badiq(ibumber 3) contains non-
affine loop bounds, so it is marked as not satisfying affine conditionss,Tthe region that contains the
loop is not marked as a SCoP. The remaining regions form three sep&alRsSSCoP1, SCoP2 and
SCoP3. Those SCoPs are degenerate and are not amenable to loop tiptisiza

4.3.2 Mapping three-address intermediate representatiomito polyhedra

After outlining SCoP regions, each SCoP is processed so to map the tthessss code contained
inside region into the polyhedral representation. Only SCoPs that ataimiog at least one loop are
processed.

As shown in Figure 4.7, the strongly connected components of the CFGagibthat belongs to
the region form the loops. Given any two loops, one of them is either completsted in the other or
they are disjoint. Each basic block is enclosed in at least one loop rediemésting of the loop regions
determines théoop depthof the basic block.

Three components (Section 2.3) of the polyhedral model representatiax@acted from three-
address code IR:

48 4. GRAPHITE FRAMEWORK

SCoP1,

non—-SCoP

SCoP2 = Y- -~ SCoP3 |

Figure 4.5 — Region tree for splitted SCoPs
Figure 4.6 — Breaking SCoP

4.3. INSIDE GRAPHITE 49

1. Iteration domains. For each basic blodR that belongs to a SCoP the iteration dom@is built.
The dimensionality of the iteration space is equal to the number of loops belaogngCoP and
enclosing the basic block.

2. Schedules.The initial scheduling functiorf® for each basic bloclB belonging to a SCoP is
built. The initial scheduling function encodes the execution order of thie back in an original
program — before a transformation is applied.

3. Data references.Each basic block might contain memory data accesses in its statements. In a
region complying with affine program constraints the only memory accessefiraugh array
accesses whose access functions could be expressed as afftr@nfuaf loop induction variables.

For each basic blocB the sets of write and read data reference€ and ® B respectively, are
constructed.

We will discuss the technical details of the polyhedral model representeximaction in the rest of
this subsection. A discussion is based on an example CFG shown in Figumebthihed during the
compilation of a matrix vector multiplication kernel shown in the same figure.

Reconstructing loop domains

SCoP extraction detects the static control region containing two nested tfopsg.1 andL2. Basic
block B4 is the loop header of the lodf® in which the variablg is used to controls the exit condition of
the loop. Since the code is in SSA form, variapleas two versionsj; andj,, corresponding to different
assignments to the originglvariable.

In order to detect the evolution of the variablen the consecutive loop iterations of the lobp, the
TREC construction algorithm is used. TREC expression construction eshuofollowing def-use chains
of the induction variable. In SSA form, def-use chains are explicit, sirmetis an unique definition for
each use.

The variable version; that is used in a loop exit condition is defined in a statensenj; = jo+ 1.
This statement uses a variable versignthat is in turn defined in #-function in the statemert;:
j2=®(j1,0). The statemerfs; uses the variable versiga that is defined in the stateme®t This def-
use chain closes a cycle and a TREC expression of the §0rm, 1}, is deduced. This is illustrated by
dashed arrows inside the basic bldgkin Figure 4.7.

A TREC expression of the fordD, +, 1}, means that the induction variable initial value is the integer
constant 0 and that the induction variable is incremented by the step of dhateation of the loofh.2.

The variable versiorj; is used in the conditional stateme®f j; < N. Combining this (affine)
condition with a TREC an affine constraint on loop induction variable couldeoieiced: 6< j <N —1.
The same induction variable analysis is performed for the Ldop

Affine expressions defining loop domains for all the basic blocks of thePSLe shown in Figure 4.7.

Reconstructing data references

The property of the three-address code used in GCC is that each stateigieincontain at most one
read or write data reference to a memory location. Furthermore the affigegpn constraint mandates
that all the memory accesses could only be performed through arragewhbscript functions are affine
functions.

For each basic block that belongs to the SCoP all the statements are sé¢amesth memory access
statement the subscript functions are reconstructed by evaluating thé@vof induction variables that
are used as array indices.

For the reconstruction aiccess functionthe TREC expressions of the array indices are evaluated.
For the basic blocBg there is one memory access staten®#nb|iz] = 0.0. The basic blocBs belongs

50 4. GRAPHITE FRAMEWORK

for (i = 0; i <N; i++) {
S1: b[i] = 0;
for (j = 0; j < N; j++)
S2: b[i] = b[i] + A[I][J] =* x[j];
}

/i_2=PHI<_1,0>

'S2/ prephi =PHI <D3, 0.0>
1S3 DO = A[i_2][j_2];

'S4l D1 =ix[_2];

D2 5 D1 * DO;

else
goto <bb 6>;
o

. B6 e

| _ DB ={(i)|0<i<N-1}

| 1| bli_2]=D3; 65 (1) = (0,4,2)"

s2|il=i2 el W = (o, 7(0) = i)}

' s3] if (L1 < N) goto <bb 7>; “RBs = () :

| else L T ’
L) goto <bb 8>;

Figure 4.7 — Matvect kernel - source code and internal representation

4.3. INSIDE GRAPHITE 51

to the loopL1 and the evolution of the array index varialjds expressed as a TREQ, +,1};. This
expression is interpreted as an affine access funé{ign=i. The complete set of write references of the
basic blockBg is: W8 = {(b, f(i) =i)}. Symbolb is a symbolic reference to the base address obthe
array.

The basic blockB, belongs to the loojh2 (with iteration vector ii, j)T). Its statemengs: D0 =
Ali2][]2] represents a read memory array access. The TREC of the firstiptilisdO, +,1}1, while
the TREC of the second subscript {8, +,1},. Combining those two expression we get a multidi-
mensional affine access functiorf((i,j)") = (i, j)". The complete set of read referencesBafis:
R = {(AF((,)T) = (1,)T). (. (0,)T) =).

Writes/reads to/from scalar variables are not represented. Writegadsl to temporary scalar vari-
ables are treated as an internal state of the basic block. Since they aredating visible side-effects
they do not have to be captured. We will discuss this further in the sectalimgevith data dependence
analysis. In Figure 4.7 the represented data references are masksthfdments that access the memory
are emphasized).

Construction of the original schedules

The scheduling function8® encoding the original program execution order are constructed ébr ea
basic block belonging to a SCoP region of a CFG.

As it was defined in section 2.3.4, the scheduling ma@¥is decomposed into dynamié @nd
I matrices) and stati3(vector) scheduling components. For the scheduling mat@8esorresponding
to the original execution order, their dynamic scheduling componé&rasdl” matrices, are an identity
matrix and all-zero matrices respectively. The static sched@liegtor for each basic blodkis deduced
from the region tree.

o7

0w

Figure 4.8 — Relative nesting and ordering of loops and basic blocks

Let us assume that our SCoP region includes the whbleop region. The region tree for the CFG
in Figure 4.7 is shown in Figure 4.8. The child nodes of each region are enachbBy following a
path from the SCoP root region down to the given basic block, we canstfyivector that consists of
the numbers labelling the child positions. This idea is described in [22]. Fonpbe, the3 vector for
the basic blockBs is (0,0). The 3 vector for the basic blocBy is (0,1,0). The construction of static
scheduling component§ {vectors) based on a region tree guarantees an uniqueness of thalsche
time-stamps for each basic block instance.

As a side note: the basic blocks that do not contain any computational staseanenot considered
for the polyhedral representation. Empty basic blocks are simply distémia the region tree. In our

52 4. GRAPHITE FRAMEWORK

example, the basic blocks andB; are not considered as a part of the polyhedral representation. Since
the polyhedral model captures all the necessary information to reconteucontrol-flow according to

the new schedule, the basic blocks containing goly statements are ignored, since they are going to
be recreated in the code generation stage of the GRAPHITE.

Mapping IR symbols into the polyhedra

The GIMPLE intermediate representation statements contain symbolic variabbés ndariables are
either scalars or arrays. On the other hand, the polyhedral repaiiearis a mathematical abstraction
representing sets of integer vect®rsThe mapping between symbolic names of the three-address code
and the variables of the polyhedra has to be maintained. For that purpusggpéng, similar to compiler
symbol tableis used. An example of this correspondence is seen in Figure 4.7.

Differences from the source-to-source compilers

The source-to-source compilers [124, 123] directly map the source lewd| statements into the
polyhedral model. For example, the polyhedral representation for theesgode in Figure 4.7 would
contain two domain®$ and D% corresponding to the two syntactical statemeitandS,. Also, the
scheduling functions are provided per source level staterfgn®=.

After the source code is translated into GIMPLE three-address codbjghdevel statements are
broken down into several three-address code statements - temporiabyjlesaare inserted to hold the
intermediate results. Inside GRAPHITE we are storing the polyhedradseptation per each basic block
and not per each GIMPLE statement. Thus, we have three domains,reeaefobasic blockDB:, DB
and?Bs. The same holds true for scheduling functions. We use a superBctipemphasize this fact.

The fact that we store the scheduling functions per basic block ancenttiiee-address code state-
ment contained inside basic block, means that all the statements inside onblbelsishare the same
scheduling function. Statements inside the basic block are not reschettuksettion 4.5.1 we will
discuss the implications of this decision.

In the source code of a typical imperative language (C, fortran), ssigranent statement contains
one write (left hand side) and several reads (right hand side). &éiesforming the source level state-
ment into three-address code the original write and read data referereecattered into several state-
ments. The original data references might be scattered among sewscablogks, or even optimized
out completely.

For example, the original source code shown in Figure 4.7 contains oteedata referenced[i])
in textual statemert; . The corresponding data reference in the three-address coden(shBigure 4.7)
is contained inside basic blodk in the statemen®. The two read data references contained in the
statementS, (A[i][j] andx[j]) have their corresponding references inside the basic Bacn
statement$; and &). On the other hand, the write data referend [) from source-level statement
S appears in the basic blods as statemen$;. The original read from arrap inside source-level
statemen&, does not appear in three-address code at all - it has been optimizaddteplaced by a
scalar access.

4. so called 'latch’ [70] basic blocks that jump back to the loop header

5. If we want to emphasize the different domains of variable definitimasyill usei for the symbol names in IR and the
mathematical notationfor the occurrence of the variable in the polyhedral model.

6. this happens in the PRE (Partial Redundancy Elimination) optimizatiorthpeass scheduled to run before GRAPHITE

4.4. THE DATA DEPENDENCE ANALYSIS OF THREEADDRESS CODE 53

D% = {(()[0<i<N-1}

6%(i)" = (0,i,0)"

WB = {(b, (i) =1i)}

R =0

DB = {(I,[) [0<i <N—1A0<]j<N—1}
WB =0

RB = {(AF((1,1)T) = (1,17 (1D = 1))
984(|7j)T:(07|71’j70)T

DB = {(()[0<i<N—1}

W = {{b,f(i)=1)}

RB =0

Da={(i)|0<i<N-1}

05 (I)T = (0,i,0)T

WS = (b, 1)) = i)}

RE=0

D= ={(i,j)|]0<i<N-1A0<j<N-1}
esz(i’j)T:<0’i71,j7o)T

W= ={(b, (i) =i)}

K.SZ:{<A7f((i7j T):(Ivj)T>a<X>f((i7j)T): J>7<b7f(|):|>}

Figure 4.10 — Polyhedral representation the origianl source code

Putting it all together

The complete polyhedral representation of the three-address cagiaeina contained inside the
SCoP from Figure 4.7 is shown in Table 4.9. Figure 4.7 shows the same itifonnadtached to the
respective basic blocks.

As a comparison, Table 4.10 shows the (hypothetical) polyhedral exgeg®n of the respective
source-level code in Figure 4.7.

4.4 The data dependence analysis of three-address code

The polyhedral model used in the source-to-source compilers [34],0ffly allows memory refer-
ences through array accesses. An access to a scalar value is tecabegicaess to an one-element array:
a=...isrewrittenas[0] =

While this approach is practical for the source-to-source compilersftianing the numerical ker-
nels where array accesses constitute the majority of data referencas pitdhibitive cost if used in the
three-address code compilation context.

The lowering process from the source code down to the three-adarésintroduces (many) tempo-
rary scalar variables. Treating all the scalar temporary variables de-glggnent arrays and taking them
into an account for the dependence analysis might lead to an explosionsiz¢hef data dependence
graph.

This is of particular concern, if we take into an account that the schedalgayithms [34, 67],
based on the polyhedral model, have a complexity that is dependent oartiienof edges of a data

54 4. GRAPHITE FRAMEWORK

dependence graph = (V,E).

In order to efficiently manage the data dependences between scaldnesiiathe three-address
code, the smallest necessary subset of the scalar variables is takeaanssderation for the dependence
analysis.

Internally in GRAPHITE, those scalars whose data dependences magpbsed are marked as if
they were single-element arrays. As a preprocessing step, GRAHRsIM& king those scalars that must
to be processed by the dependence analysis as single-element&cadgss that are not marked are not
taken into the consideration for the dependence analysis.

In order to mark the necessary scalars for the dependence analRASHITE is classifying the
scalar data dependences into four categories:

1. Intra basic block scalar data dependences
2. Cross basic block scalar data dependences
3. Inductions

4. Reductions

Only thecross basic blocland thereductionscalar dependences have to be explicitly represented.
This is done by introducing thehadowsingle-element arrays for those scalars that are involved in de-
pendences. Scalar data dependences that are induced by the committit@induction variables and
scalar data dependences that are contained within a single basic bloukt aepresented explicitly in
the polyhedral data dependence graph.

Given the three-address code in Figure 4.11, the effect of the megsing step that introduces the
shadow arrays is shown.We will provide the brief discussion of the de&éted to handling each kind
of scalar dependences in GRAPHITE. The illustration shown in Figurewill &erve as common base
example for all the discussions.

Intra basic block data dependences

As mentioned in Subsection 4.3.2, the basic block is the basic unit of schedliagtatements
inside a basic block are not rescheduled. The transformation praoessHe source-code to the lower
level three-address code introduces temporary scalar variables ¢otls¢éointermediate computation
results.

Definition 4.4.1 (Intra basic block dependence) scalar data dependence between the scalar value
defined within a basic blocB at iterationi and its subsequent uses within the same iterdtiointhe
same basic blocB are calledntra basic block dependences

Since the relative order of the statements inside a basic block is not chbpgettansformation,
intra basic block dependences are always preserved, regarélis wasic block scheduld®. As a
consequence, intra basic block dependences are not explicitly eepgdsn the polyhedral dependence
graph.

For example, consider scalar variabl¥s D1, D2 defined inB4 - they are defined and used within
the same basic block and within the same iteration. The relative ordering datbenentsss, S, S5 and
S will not be changed in the polyhedral transformation. The flow depereliom statementS; and
S, to statemen§s would always be preserved. Please note that this approach is similar tepiiate
privatization used for dependence removal [7].

4.4. THE DATA DEPENDENCE ANALYSIS OF THREEADDRESS CODE

S1| i2=PHI<i_1,0>
s2 | b[i_2]=0.0;
s3 | phi_out_of_ssal0] = b[i_2];

1

""""""""" I Tcross bb dependence
‘. ~

pre.3 = phi_out_of '<5a[0]; "
DO = Ai_2][j_2]:
D1 = x[j_2]; i
D2 =D1 *DO0; redugtion cycle
D3 =D2 + pre.3; o
cross_bb_dep[0]=D3
Ly=j2+1

if J_1 < N) goto <bb 5>,

else

goto <bb 6>;

gmmmmmmmmm

s bb dependéh‘ce.

cr . B6

I SRR N
. 51| D4 =cro%s_bb_dep|0];

, . 52| b[i_2]=D4;

; . S3| INTERZEEET

| -S4/ if(i_1 <N) goto <bb 7>;

------------- ' else

g goto <bb 8>;

return;

goto <bb 3>;

Figure 4.11 — Matvect kernel - cross bb dependences, inductioneduacdtions

56 4. GRAPHITE FRAMEWORK

Cross basic block data dependences

Since the different basic block instances might be rescheduled indeqténdhe data dependences
that occur between scalar values belonging to two different basic btoaks be captured in order to
restrict the possible rescheduling of the basic block instances.

If some scalar variabl&X is assigned in one instance of the basic block and if it is subsequently
used in another basic block or subsequent iteration of the same basicthltckcalar value will get the
shadow array that exposes the data dependence to the dependagseramhose scalars are treated as
single element arrays, so that dependence analysis could capture ttrend@pendence test.

An example is given in Figure 4.11: there is cross basic block depentetween a scalar write in
B4 in the statemerd. 3 = D. 2 + pre. 3 and its subsequent uselg in the statemerit[i _2] = D. 4.

An explicit single-element arragr ossu_bb_dep[0] is introduced to represent this dependence.

Inductions

Scalar variables representing the loop counters or auxiliary inductioables that could be ex-
pressed as TREC expressions are ignored for dependence anBfsidata dependences induced by
computation of those variables could be ignored, since they could besespee byscheduling invari-
antexpressions of the fornx(i) = x(i1,i2,...,in). Those expressions are reconstructed in the GIMPLE
during the code generation step, after the transformation has been afied the expression could
be correctly reconstructed, regardless of the applied scheduling,itheo need to explicitly keep those
dependences in the dependence graph.

Please note that in the source-to-source compilers, the induction varaelesplicit and their
computation is not taken into an account for the dependence analysisas®¥eolr reasoning on the
same principle, but in our case we have to explicitly discover those indudtisite a three-address
code.

Reductions

Reductions [139] form a special computational pattern used very oftae stientific codes. Indeed,
an effective parallelization of loop kernels relies heavily on an effectatection and parallelization of
reductions. Mostly often it is used to perform a summation over the valugsarfay.

Data dependence theory puts a constraint on the relative scheduliageshent instances. But some
operations, if proved to be associative and commutative algebraic operatiight be scheduled in an
arbitrary order.

If the operator along which the reduction happens can be proved ton@ugtative and associative,
then the dependences that are induced by variables involved in a redaionarked as belonging to
reduction.

As an illustration, the data dependences that foradaction cyclere shown in Figure 4.11. Indeed,
the scalab3 accumulates the values computed in the sd#lan each iteration of the loop. An addition
operator +' is commutative and associative, if performed on integer data type, sodkeiarwhich the
summation is performed does not influence the correctness of the finkisres

Putting it all together

Taking into an account all the dependences that have to be explicitlysmyes, we come up with
the data dependence graph shown in Figure 4.12. Please note thataheestites is composed from
the three-address code statements, but those statements are containdoasithiocks, which is rep-

4.5. TRANSFORMATIONS 57

B3:S2

50

B6:S2
6 -—true
0° - output
o~ —anti

Figure 4.12 — Explicit data dependence graph

S1
4]
5°
5°
S2 5
(5—1

Figure 4.13 — Explicit data dependence graph

resented with the notatioB; : Sj. The dependence edges E are connecting the three-address code
statements which contain the explicit memory accesses to arrays.

As a comparison, the dependence graph that is built by a source-wescompiler is shown in
Figure 4.13. The dependence graph of the three-address codasphtsides true data dependences,
many anti and output data dependences - those are jointly classifieehagry basedependences. These
dependences might significantly constrain the space of legal transfonsdtiter in Chapter 5 we will
show how to efficiently deal with those kind of dependences, such thaipthee of legal polyhedral
transformations on the three-address code is equivalent to the deveteolyhedral compilation.

4.5 Transformations

The loop transformations in the GRAPHITE framework are performed opdhdedral represen-
tation. In order to maintain theomposabilityof loop transformations, we perform all the loop trans-
formations through the scheduling matrix of the polyhedral model. This is itrasinto the tradi-
tional [46, 156, 34] approach to transformations in the polyhedral madhelre some transformations are
expressed through scheduling matrices (affine transformations)ewetoop tiling and strip-mining
transformations require the modification of the iteration domains. We will later $loov we do over-
come this non-homogeneity in expressing the loop transformations.

Once the analysed program is brought into the polyhedral model eeggedon and after the desired
transformations are selected, the output code is generated from tHetnaed schedules. Trautomatic
search for the transformation is conducted according to the cost-madsh dearch approach shown in

58 4. GRAPHITE FRAMEWORK

chapters 7, 5and 6.

The state of the art polyhedral code generator CLo0G [22, 20] gtesethe loops that scan the integer
vectors contained in polyhedra. The integer vectors are scanned inxtbegle@phic order specified
by the scheduling function. The code generator is not responsible fimtaimang the legality of the
transformations - iterations are scanned according to the transformeldicly matrices. Itis the duty of
theviolated dependence analysiiscussed in Chapter 5, to guarantee the legality of the transformations.

The CLooG code generator generates an AST (abstract syntaxapee3enting the newly generated
loop nests, conditionals and affine loop bounds and conditions. Thigwstus traditionally used in the
source-to-source compilers [123, 124] to generate the target soadee In the case of GRAPHITE the
AST is used to generate thmtput CFGthat corresponds to new loops. The symbol table (as shown
in Figure 4.2) that maps the original three-address code into polyheddslmariables is now used to
regenerate the target three-address code.

All the loop transformations, including loop tiling, are expressed seamlesslyghscheduling func-
tionsand it is the duty of CLooG to generate the appropriate loop structuresPEIRAE is interacting
with parallelizer and vectorizer (as shown in Figure 4.1) passes of G@8Qity: if the loop is detected
to be a parallel DOALL loop, it is marked as a such in the code generaticsepidter GRAPHITE,
the marked loop will be processed by the parallelizer to generate the multidoreade. The similar
interaction happens with vectorizer pass.

We will now discuss several design issues related to the transformatidreoda generation in our
framework.

4.5.1 Granularity of scheduling

As we have mentioned in Chapter 2 (subsection2.3.1), the basic building dfidbk polyhedral
representation could be chosen according to the abstraction level omtlhipolyhedral model is to be
built.

In the source-to-source compilers, the basic, and the most natural, atoinaf scheduling is a
source-level statement. In a three-address-code based polybeaziler, such as GRAPHITE, it is not
practical to build a polyhedral representation for each three-addodgsstatement. The most reasonable
choice is to have a basic block of the control flow graph as the basicsamngdnit.

Nevertheless, the choice of having a basic block as the basic unit afideiteis not always optimal
and may be way too restrictive. Let us consider an illustration in Figure #Helsource-level code for
the ADI’ kernel is shown. It contains two syntactic statemeBisand S,. The corresponding three-
address code is shown as well. One can observe that all the thressssidthitements are clustered in one
basic block, the basic blodB,.

Since the design choice is to have a scheduling function per basic blothke diiree-address code
statements contained within the same basic block would get the same scheduteis®bthis is not
desirable, especially in the case when we want to applystatemenaffine scheduling [34]. But hav-
ing one scheduling function per each three-address code statementpsautical, for the scheduling
scalability reasons.

A solution that we have applied is &plit such a basic block intolusters such that each cluster
would contain one write statement (highlighted in Figure 4.14) and all the segetemporary variables
that are produced within the same basic block. This could easily be acliig¥elfowing use-def chains
in the SSA form. After this preprocessing, each cluster becomes a sepasic block that could be
scheduled independently.

7. taken from Polybench benchmark suite

4.5. TRANSFORMATIONS

for (i1=0; i1<N; i1l++) {
for (i2 = 1; i2 < N; i2++) {

S1: X[i1][i2] = X[i1][i2] — X[i1l][i2 —1] = A[i1][i2] [/ B[i1][i2 —1];
S2: Bl[il][i2] = B[il][i2] — A[i1][i2] = A[il][i2] [/ B[il][i2 —1];
}
}
loop:11
R .

| #i2_38 = PHI <i2_22(3), 1(7)>

1 D.5548 5 = X[i1_37][i2_38];

! D.5549 6 =i2_38 + -1;

! D.5550_7 = X[i1_37][D.5549_6];

! D.5551_8 = A[i1_37][i2_38];

‘ D.5552_9 = D.5550_7 * D.5551_8;

| D.5553_11 = B[i1_37][D.5549_6];

| D.5554_12 = D.5552_9/D.5553 11; | ![aq1: %11l = wi1dro] & ri1imo—11 % Arn R

| D oot 13 - D.2eas s D oced 1. 1‘ s1: X[iL][i2] = X[Ill[lZ] - X[iL]li2-1] * AliL]fi2] / BiL]i2-1]; ‘
I | (X[i1_37][i2_38] = D.5555_13;)"
! D.5556_14 = B[i1_37][i2_38];

! D.5557_17 = D.5551_8 * D.5551_8; ‘ !
! D.5558_20 = D.5557_17/D.5553_11, ;\sz: B[i1][i2] = B[il][ié] - A[i1][i2] * Ali1][i2] / B[i1][i2-1]; \
; D.5559 21 = D.5556_14 — D.5558_20; | ;

(B[iL_37][i2_38] = D.5559_21; 7

i2 22=i2 38 +1;

if (i2_22 = 500)
goto <bb 3>;

goto <bb 5>;

I
I
I
:
I
else !
I
I
I
I
I

i1 23=i1 37+1;

if (i1_23 1= 500)
goto <bb 6>;

else

R goto <bb 8>;

:
I
return; !
I
I
|
|

Figure 4.14 — source code and IR representation for ADI kernel

60 4. GRAPHITE FRAMEWORK

4.5.2 Functions represented as relations

The classical definition (Chapter 2, subsection 2.3.3) of the polyhedrdéihtomponents states
that the data accesses and schedules are expressed as dathuactieasand schedulingunctions

f:ieD—seD

B:ieD—teD

The data access function is the one-to-one mapping from an iteration §gad® to adata space
of array subscriptss(e 9). The scheduling function is the one-to-one mapping from an iteratiorespac
(i € D) to atime domairof multidimensional timestamps € D).

In GRAPHITE we extend this definition with a notion a€cess relatiomndscheduling relation

F (i, €eDxD

B:(i,t) e DxD

The mapping from the iteration vector to the subscript function is not anynestdcted to one-to-
one mappings. This enables us to represent thafaltss regions when the data reference information
could not be expressed as a direct affine function. This is the casdyiftlom approximation of the
memory access is available, coming from an interprocedural analysisdorge. The notion of access
regions is a known term used in interprocedural compilation [151]. Tbessaelation is now expressed
by anaccess polyhedron

F ={(i,as) |Fx(i,asg1)T" >0}

An additional component, thaias set numbeta’, captures points-to information (pointer aliasing);
it allows us to extend the notion of array memory access to pointers accpssaded that the precise
aliasing information [122, 10] could be obtained and that the original aduestions (or regions) could
be reconstructed, as shown in Section 4.3.2.

Similarly, the scheduling is represented asheduling relatiorf represented by astheduling poly-
hedron

0= {(t,i)| ©@x (t,i,g,1)T >0}.

Having the schedules expressed as relations, we can expregisghieansformation with a schedul-
ing relation alone, without modifying the statement iteration dondanThis is of particular importance
for the transparent integration of analytical cost-modelling approachugied in Chapter 6 and lazy
memory expansion scheme shown in Chapter 5.

4.5.3 Adding new scheduling dimensions - loop tiling

Loop tiling or loop blocking is an extremely important loop transformation [16228used both for
coarsening the grain of parallelism and data locality improvement [34]. Amele of the tiling applied
to a 2d iteration domain is shown in Figure 4.15. The new iteratosndj | are introduced to express
the tile-space, while the intra-tile iterations are constrained to the boundathesapntaining tile.

In the classical polyhedral framework, this transformation is exprelsstidas an iteration domain
transformation (increasing the loop nest depth) and scheduling traretion(permuting the scheduling
dimensions) [46, 156, 34]. But this formulation breaks the principle ofsfamationcomposability-
the ability to express an arbitrary sequence of loop transformation thsmirggululing function only.

We postulate that it is possible to express the loop tiling transformations by riraglihe scheduling
relationB alone. Given a timestamp varialtléhat corresponds to some scheduling dimension ofl{he
namicscheduling component of the scheduling matrix (Section 3.1.2), we intr@doee time variable
tt, calledsupernode[86] time variable, by extending the scheduling relation with a new dimension and
introducing an inequality:

8. also calledscattering relationgollowing CLooG [22] code generator terminology

4.5. TRANSFORMATIONS 61

Figure 4.15 — Tiling the iteration space

B-tt <t <B-tt+(B—1)

whereB is the compile-timé& knownloop blockingfactor.

The new supernode time varialttedenotes th®&-sized blocks of the original iteration domain, while
the original time variablé is now constrained to scan the iterations within the block denotd¢d by

As an example, we will consider the representation ofstiig-mining which is the basic building
block for implementing tiling - in order to get a loop tiling, the strip-mining has to béopered along
each dimension considered for tiling. Consider a code snippet:

for (i = 0; i < N; i++4)
S1;

The original scheduling matrix in the canonical form could be decompogedha following compo-
nents: A =[1]|Mr*=[0]p2=[0]
The concise representation of the scheduling relation is:

eSl = {(t17t27t37i) ‘ tl == O/\tz = | /\t3 = 0}

The strip-mining of the, time dimension with a factdB = 64 is expressed as follows:

o {(t1,ta, o, t,1) |t = OA Ly = i A BALty < tp < B4ity + 63/t = 0}

stripmined —

The corresponding code generated by CLooG [22] code generaioou:

9. Thus, we do not suppoparametric tilingas [83] do for example.

62 4. GRAPHITE FRAMEWORK

for (tt2=0;tt2<=floord(N,64); tt2++) {
for (t2=max(64«tt2 ,0);t2<=min(64 tt2+63,N);t2++) {
S1(i = t2) ;
}
}

Thef | oor d stands for the floor function of integer division. Please note that we shewyntactic
code, but only for the presentation purposes. Internally in GRAPHIif&loops are generated as basic
blocks within a CFG. Please note that the original iteration dorfiirof the statemers, is not modified
in any way, even though the iteration domain of the generated code is chdngethis change was
expressed solely through scheduling relation.

4.6 Conclusions and future work

In this chapter we have shown a detailed design of the GRAPHITE polyiheargilation frame-
work which is currently a standard component of the general purp@@ ¢71] compiler suite. The
author is a direct contributor to this project.

Two proprietary polyhedral compilers based on a low-level internalesemtation are currently in
development: the R-Stream compiler from Reservoir Labs [113], anddBblyhedral extension of its
XL compiler suite [140]. But little has been published on the specific problemdrade-offs that arise
when introducing the polyhedral model based compilation flow into the realonelevel three-address
code based compiler.

Our work is the first widely published contribution [149, 148, 150] on thecsics of the direct
polyhedral compilation on a three-address code representation.

4.6.1 Benefits of direct manipulation of the three-address ae

The traditional, source-to-source based approach to the polyhexingilation regards theyntac-
tical statements the basic atomic unit of the computation, abstracting away the internal stiwe of
computation and giving relevance to the loads/stores of the statement only.

On the other hand, the intrinsic nature of the three-address code is tiwt esgibility of the state -
the intermediate results of all the computations are visible through intermediatertagnpariables.

This intrinsic property of the three-address code is the source of mdigutli€s in applying the
polyhedral model concept, but it also gives many degrees of fred¢datrcould be exploited. Those
degrees of freedom go along two axes: the granularity of the schedstatgment versus basic-block)
and the granularity of visible state (intra versus inter basic data block depees).

The low-level nature of the three-address code enables us to coasfitecise modelling of the
actual instruction costs - a property that is out of reach of the soursetiace compiler [124, 123]. We
will heavily exploit this property in Chapter 6, where we present the fiist-kind approach to precise
cost modelling of SIMD vectorization that is low-level, machine specific in matur

We will summarize the benefits of providing the direct polyhedral compilatiaih@three-address
code:

Additional degrees of freedom.Since the original high-level syntactic computations are broken
down into the atomic three-address code instructions, there are additegraled of freedom with re-
spect to the scheduling granularity (which statements should be clusteettidggand exposing data
dependences (whether to keep the data dependence internal to thelbasior to externalize it).

Tight interaction with a compiler. This benefit is more of a technical nature: since we are operating
within the pipeline of the compiler optimization passes, all the analysis informatioalliksing, pointer

4.6. CONCLUSIONS AND FUTURE WORK 63

analysis, data alignment, induction variable analysis, interprocedurbisem& available for the use
within the polyhedral transformation framework.

Precise modelling of instruction costsThe three-address code is much closer to the machine code
of the target architecture than an abstract syntax tree of a sourceproglso, the recognition of the
intrinsics (for vectorization) and idioms [127] is readily available at the le¥¢hree-address code. The
actual instruction costs are available from the backend of the compileg, thieg are anyway used in the
instruction scheduling phase. We will heavily rely on this property in Chajpter

Semantical transparency.The three-address code is expressed in SSA [52] form which capghee
essential flow of the scalar data in the program, and could be regardild famctional representation
of the computation [11]. Also, the essential scalar optimizations based orSthéddm are performed
before the GRAPHITE stage is reached.

This leads to a degree of semantical transparency with respect to thefitmminput program : two
semantically equivalent kernels would be represented in the same way ifiocB8Awhen they reach
the polyhedral framework. This is in contrast with source-to-sourcepders, which ardragile with
respect to syntactical details - if the programmer forgot to bring the pmograhe form expected by the
syntactical parser, the program would simply be ignored.

4.6.2 Future work

The aforementioned benefits of having the polyhedral transformationmilia three-address code
compiler bring many new research opportunities.

We have used GRAPHITE framework to conduct a research on thevtessarch and cost modeling
of the profitability of the loop transformations, as explained in subseqirapters of this dissertation.

But many new possible and interesting research opportunities emergee. (Boblems were left
unsolved, since their in-depth investigation was not on the main line of this thgsiill summarize
several of those research problems:

Interplay with other compiler optimizations. The GRAPHITE polyhedral framework is used to
perform the loop transformations expressed as scheduling relatiorntheBaop transformations are just
a part of the bigger picture. GRAPHITE is a part of the complete compilatioalipg consisting of
more than 200 optimization passes - scalar optimizations, instruction selecticelaatlling, register
allocation, loop unrolling and much more. An in-depth study of the possiblesictiens between loop
optimizations and other optimization seems very interesting, though intractableuti gsrfierality .

Some optimizations might conflict with the polyhedral transformations. A notsgaample isoop
unrolling, that might be performed before GRAPHITE. Obviously, unrolling a loefote going into the
polyhedral representation can have a dramatic effect on the scalabitltg gblyhedral optimizations,
and it is better avoided at all.

Data layout transformations. The expressive power of the polyhedral model is used in the context
of data-layout transformations [109] as well. At the same time, those tranafions are studied inde-
pendently, as the components of other optimization stages of the compileEptBhining both might be
beneficial, as the polyhedral model precisely captures the executien witile the internal representa-
tion of the compiler has a low-level details about the data-layout. Also, thteadiedl memory expansion
schemes like [102] are a key missing part for fully enabling the potentialitminaatic parallelization
with GRAPHITE.

Extending the scope of the analyzable programsGRAPHITE restricts its scope of analyzable
and transformable programs to the static control programs, much in the saynaswhe traditional
polyhedral compilation approaches. Recent works [26] on extendagphlicability of the polyhedral
model to non-static control programs (loop bounds and conditionals thahdeon the input data) seem
a promising research direction for the GRAPHITE. This is particularly targHe three-address code

64 4. GRAPHITE FRAMEWORK

based compilers, because of their rich semantical analysis that could bmyethp

65

Chapter 5

Lazy memory expansion scheme

A program transformation needs to be safe — the semantics of the originaibitimpgorogram cannot
be changed. In order to preserve the legality, data-dependencti®iSe.2.1) need to be analyzed. There
are essentially two types of data-dependendata-flowdependences amdemory-basedependences -
as discussed in Section 3.2.2. While preserving the data-flow depesdembgays mandatory, spurious
memory-based dependences can be removed, or simply ignored in certditions.

So calledtrue or dataflow[102] dependences are imposing ordering constraints between write and
read operations — they should always be preserved, since thisyagdbe right producer-consumer
ordering, which in turn guarantees the correctness of the computations.

Memory-based dependendesre induced by the reuse of the same memory location to store multi-
ple, temporary values. Spurious scalar dependences not only iathedastal number of dependences in
the RDDG graph, but, most importantly, they reduce the degrees of freadailable to express effective
loop transformations and parallelization.

Memory-based dependences could be removed by introducing new mkecatipns, i.eexpansion
of the data structures [45]. While texpansiorapproaches can remove spurious memory-based depen-
dences, they have to be avoided whenever possible due to their detrimgraat on cache locality and
memory footprint - expanding a scalar value into an array requires extreomgestorage, proportional
to the size of the iteration space.

Designing a polyhedral compilation framework on a three-address ceaedates the problem of
spurious memory dependences even further, sincgithplification® process introduces many tempo-
rary variables in the internal representation.

In this chapter, we show a technique that detects those memory-basedielepes that could be
ignored when checking for a legality of the transformation. If a memonrgdaspendence could not be
ignored - it isviolatedin another words - it can bemovedproposes an expansion or privatization that
would enable a transformation.

Using a proposed technique, we can get rid of many memory-baseddigmes, either those in-
duced by the lowering of a source program into three-address-cdldese introduced by a programmer.
Only if a dependence cannot be ignored, it is removed through scatgriapansion.

1. anti and output dependences [7]
2. gimplificationis a GCC jargon term denoting the lowering of a high-level AST into a low-I8I81PLE internal GCC
representation

66 5. LAZY MEMORY EXPANSION SCHEME

5.1 State of the art

The problem of eliminating the memory-based (anti and output) dependeaségen studied since
a long time in the automatic parallelization community [98, 120]. It is a well knowntfet memory-
based dependences hinder the opportunities for automatic parallelizatiothen loop transformations.
Darte [37] gives a good overview on the removal of the anti and oufgtat dependences.

The simple and most natural solution is to perform a memory expansion - Bgs@yseparate mem-
ory location for each executed iteration [64]. A similar approach is thatrightization- assigning a
private copy to each thread executing in parallel [153].

While the approach of memory expansion or privatization helps the parall@isas,an inherent cost
- an additional memory footprint or additional copy in/copy out operatidhs. cost of those additional
overheads might be prohibitive. What is more - there is no guaranteesthaving the memory-based
dependences will help extract more parallelism.

In order to control the cost of the array expansion footprint, the tweggmpproaches are:

— Perform a maximal expansion [17], apply a transformation, and then doray contraction [56,

4, 58, 72] which minimizes the memory footprint. Approaches like [110, 182 fall into this
category. This approach gives the maximal degree of freedom falig@aation or loop transfor-
mation, but an array contraction phase is not always capable of optimizmgemory footprint.

— Control the memory expansion phase by imposing constraints on the fngged\pproaches

like [45], [146] fall into this category. This category of approachesstti® optimize the mem-
ory footprint, but it might restrict schedules, thus loosing optimization dppdres.

5.1.1 Our contribution

There is a trade-off between parallelization and memory usage: if we éxpaximally, we will get
the maximal degree of freedom for parallelization and loop transformatimnsyith a possibly huge
memory footprint. If we choose not to expand at all, we will save memorypibuparallelization or loop
transformation possibilities would be limited.

Our approach takes the lazy-expansion strategy: we do not expand ynkefore transformation.
When checking for transformation legality, we simply ignore all memory baspdritiences. Only after
applying a given transformation, we perform a violation analysis to chégkhamemory based depen-
dences might have been violated, and we propose to expand memory antgecschedule.

By taking our approach, we are combining the best from the two mentiones ftéghe art ap-
proaches: we do not perform a full expansion before a transformatid we do not restrict the transfor-
mation too early.

The lazy-expansion strategy is not used to compute transformations autipaéis it is done in
techniques using linear programming approach [68, 34], instead, itdsmsmiterative enumeratiowof
possible schedules as it is done in [150].

5.2 Motivating example

Consider a matrix multiplication numerical kernel given in a Figure 5.1. If wadyere this kernel at
the source-code level, we will get the dependence graph shown irefsgurlt contains both dataflcty
and memory-base€ddependences. Those data dependences do not prevent theludisgheansforma-
tion that permutes the *and ’j ' loops.

3. true, a.k.a. read-after-write
4., write-after-write and write-after-read

5.2. MOTIVATING EXAMPLE 67

for (i

= 0; i <N; i++)
for (j =

0; j < Nj; j++)

{

for (i = 0; i < N; i++) S1: t = 0;

for (j = 0; J < N; j++) for (k = 0; k < N; k++)

{
S1: Alil[j] = 0O; S2: t += B[i][k]«C[k][]]1;
for (k = 0; k < N; k++) }

S2: ALT][j] += B[i][k] = C[K][]];S3: ALTITT] =t

Figure 5.1 — matrix multiplication kernel Figure 5.2 — matrix multiplication - after PRE

CUN- X dy . &
(“jllegal exedution
\ \\ \1
: \ order \

(1,1) 12 @13
il >
-~ execution order -~ ™ execution order
= dependences = dependences
Figure 5.3 — Legal execution order Figure 5.4 — lllegal execution order

If the same kernel was written in an optimized way, shown in Figure 5.2, trendemce graph would
now contain new output dependences due to the reuse of the scaldéevarfar storing intermediate
results.

The similar thing would happen if a compiler, such as [71], performs a logexirihe high-level
source code into a three-address code internal representationthfteource code is transformed into
low-level form, the compiler performs many optimization passes. One of thassep is PRE [114]
(Partial Redundancy Elimination) which does the following scalar optimizatiete#u of accumulating
a values into an array, it initializes a scalar value, accumulates values insc#iat and then stores the
scalar into an array element. Conceptually, the idea is the same as if the sisewnitten the code as
shown in Figure 5.2. An equivalent three-address code seen in G@fileois shown in Figure 5.5.

A data dependence graph corresponding to code in Figure 5.5 is shdviguire 5.6. After intro-
ducing a scalar into the loop, a new write-after-write dependence on statSeas been introduced:
évslvﬁv‘él. This dependence stems from the fact that the same temporary scalaisvaraenritten in each
iteration of the containing loop.

This output dependence has to be respected, which forces the saherecution in the original
scheduling order. Figure 5.3 shows that if we execute the code in argejuaanner, according to
the original loop nesting (loop as outermost, loop as innermost), then the dependences would be
preserved. If we try to interchange loapand;j , we would invert a dependence constraint, thus violating
the write-after-write dependence on the scalarhis is shown in Figure 5.4.

But an intuition tells us that it is legal to interchange loo@sd] and still have a correct output code.
An essential observation is that some memory based dependences fteriterie and write-after-read)
could be ignored when performing some transformations. But how do teendiee when it is safe to

68 5. LAZY MEMORY EXPANSION SCHEME

bb 10
i_28 = PHI <0(2), i_14(9)>

bb 4

SO
S1

Ali_28][j_29] = 0.0;
phi_out_of_ssa.6[0] = 0.0;

i_29 = PHI <j_13(3), 0(10)>

bb'S k_30 = PHI <k_12(6), 0(4)>

S2 | D.1979_35 = phi_out_of_ssa.6[0];
prephitmp.3_34 = D.1979_35;
S3 | D.1967_8 = B[i_28][k_30];
s4 | D.1968_9 = C[k_30][j_29];
D.1969_10 =D.1967_8 * D.1968_9;
D.1970_11 = D.1969_10 + prephitmp.3_34;
S5 | Close_Phi.7[0] = D.1970_11;
S6 | phi_out_of_ssa.6[0] = D.1970_11;
k_12=k_30 +1;

if (k_12 <= 999)

SO

T
bb 7

S7| A_l_I_Ism.5_39 = Close_Phi.7[0];
S8| Ali_28][j_29] = A_I_I_Ism.5_39;
j_13=j_29+1;

if (_13 <= 999)

goto <bb 5>

Figure 5.5 — GIMPLE code with CFG Figure 5.7 — Matmult Data Dependence Graph

ignore some dependences?

On the other hand, let us consider an example where an user has writida and=igure 5.2 man-
ually and provided it to the compiler. As an example let us consider the legaligopfdistribution
transformation shown in Figure 5.8. This transformation would not be legdlaa output dependence
on the scalar could not be ignored. Though, an expansion of the st¢atauld be performed, as shown
in Figure 5.9. Expansion removes an output dependence on thetsealdmallows the distribution trans-
formation to be legal. But an expansion introduces an additional cost eftti@nsforming the scaldr
intoan arrayt [N[N]) . This is a situation that should be rather avoided.

In the following section we will show how to formally prove which memory-badegendences,
given a desired transformation, could be ignored (as in the example ofintengchange) and which
must be removed by a memory expansion.

5.3. RAMEWORK 69

for (i = 0; i < N; i++) for (i = 0; i < N; i++)
for (j = 0; J < N; j++) for (j = 0; J < N; j++)
t = 0; tfi]lj] = 0;
for (i = 0; i < N; i++) for (i = 0; i < N; i++)
for (j = 0; j < N; j++) for (j = 0; j < N; j++)
{ {
for (k = 0; k < N; k++) for (k = 0; k < N; k++)
{ {
t += B[i][k] *C[K][]]; t[ilj] += BLiJ[k] =C[Kk][]];
} }
ALTITT] =t ALTITTT = t[iI0i I
} }

Figure 5.8 —illegal - loop distribution without an exigure 5.9 — legal - loop distribution with an expan-
pansion sion

Figure 5.10 — Read/Write instruction interleaving and variable live ranges

~ 1 ~ 1 -~ ... -
=0.=1 | W R . R R .
‘*_‘_\\g:_q“ k=1 k=N-1
B e e
i=0j=0 | w1 |Y| R ”‘.’A‘ R ”‘. MR ”‘.
k=0 k=1 k=N-1
R S2 ~— liverange

****** = execution order
S2

5.3 Framework

We will first define the concept dive rangeand we will show the way of computing the closed form
expression that summarizes the set of live ranges. The core of theaappwill be shown in subsection
5.3.2, where we discuss a computational procedure for checking thetipbtdolation of value live
range instances: if a value live range instance of some memory loddtisviolated, then the memory
based dependence induced by the reuse of the memory location carigobieal. A detailed example
is shown in subsection 5.3.3.

5.3.1 Liveranges

An execution trace of a sequential program can be seen as an integledvead and write instruc-
tions. During an execution of a loop, values are produced and storemértmry locations. Those values
are then read by subsequent instructions. The value stored in a mematighdslive until its last read,

70 5. LAZY MEMORY EXPANSION SCHEME

before it is destroyed by a subsequent write to the same memory location.

We are interested in formally analyzing and modelling vdive rangesinside loops, using the
polyhedral model. Given a code in Figure 5.2 we can represent theitexedrace and instances of
live ranges as shown graphically in Figure 5.10. A similar concept, nartiig span of a valugewas
introduced in [102].

Consider a valu¥ written into a memory celM[b] by an instruction instanog = (Sy,iw). We can
compute a set of instruction instand®s- {(Sg,ir)} such that there is a direct data-flow of valWiérom
instancew to instances in ser.

Each instance of a value live range is a tuple, describing a write and retadcition instances. Let
us consider a set of value live range tuples:

L={<(Sw,iw), (R,ir) >}

We want to have a closed form expression that summarizes all instanceés setthWe can decompose
the sel into a finite number of convex polyhedra, where each polyhedronibesdive range instances
for a pair of statements:

ASUSR = {(iw,ir) | A (iw,ir.g.1)T > 0}

Each convex polyhedron™ % represents instances of statements that form a definition/use pairs.
This polyhedron is constructed by enforcing the following conditions:

conflict condition - write and read statement instances refer to the same memory location:
Fsy (iw) = Fs:(ir)

causality condition - a read instruction is scheduled after a write instruction:
% (iw) < 6% (1))

liveness condition - there is no intervening writei, = (Sw, ikw) happening betweef§,iw) and
(SR,iLR) instruction instances.

Described polyhedra satisfies exactly the same conditions that an atedlp\daanalysis (Section
3.2.3) requires. It is computed by the array dataflow algorithm of Feautiétailed in [66]. Given a
memory locatiorM, all the read accesses and th&urce functiongSection 3.2.3) are combined into
the setL. A practical implementation of this computation is given in [148].

5.3.2 Live range violation analysis

After applying a transformation, the relative execution order of statemstdrines might change.
This change might cause live ranges described in thé,setapped to the same memory location, to
interfere

The classical dependence analysis theory states that a source instingttmce must execute before
a sink instruction instancé, (iw) < 85,(ir). Once dataflow dependences are computed, we use a
simple dependence violation analysis [156] to check this condition on all olatdfipendences.

Since we propose tignorethe memory based dependences, how do we assure that a transformation
would not reschedule some statement instance,(Say,ikw), to overwrite a valug/, produced at
instance(Sy, iw), before it is read by a statement instarc&g,i g >, as it was expected in the original
program?

In other words: we have to check that such a case may not happem #ftesformation. We form
the following system of equations, modelled using a polyhedral model:

5.3. RAMEWORK 71

s [(iwsir) € ASYUS @S (i) < @S (i) < O (ig)A
Vio® SR‘{F§VN<i5v>:FsR<iR> ! -) }

New schedule§’ represent a polyhedral transformation that we check for legality. iblaton set
VioSv—>Sw—==RR is empty, there is no violation after a transformation. We have to perform teiskdior
each dataflow dependence polyhedddn’S and for each possible write statem&iy.

Legality of loop parallelization: Previously mentioned check takes into an account the fact that that
schedule function®’ are describing a sequential execution order. Sequential executientasl a prop-

erty that no two different statement instances could be scheduled atildisze: so eithe (i) < G’Sj ()

or B (j) < 65(i).

If we consider loop parallelization transformation, we need to take into asuatthat some state-
ment instances might be executed simultaneocbis(y) = G’Sj (J). Thus, value live range legality violation
check used for sequential transformations could not be used.

Given a loop at levek that we consider for parallelizatin, we proceed as follows: we check
that there are ntoop carried[7] dataflow dependences at levelThen, we check that no two distinct
statement instanc&™ (i) and®’Si (j) sharing the same prefix up to defth 1 write to the same memory
location (instances associated with the same iteration of the parallel loop fewedifiterations of some
inner loops can still write to the same memory location).

Supporting array/scalar expansion: Our approach is compatible with well known array/scalar ex-
pansion approaches. If a transformation produces at least one ditiVateange (the satio is not empty)

then we can choose to expand the variddlezhose live ranges are violated. A precise characterization
of violated live range instances in a $8b could be used to drive the needed degree of expansion as in
[102]. If we do not want to perform any expansion, we can iteratieblyose a new schedule that does
not violate any live ranges.

Supporting privatization: Privatization is a common concept in the loop parallelization community.
We can use our framework to automatically detect which scalars/arragsmée privatized to enable
loop parallelization transformation. This is actually how GRAPHITE is drivéigopar— a GCC loop
parallelizer.

5.3.3 Anexample

Let us take the GIMPLE code from Figure 5.5 and consider a memory loggtiorout _of ssa.
Figure 5.10 shows an interleaving of writes and reads to this memory locatiditefo§the execution
trace, for a finite number of iterations, is shown. Value live ranges arerslas well. Some value live
range instances contained in albgh out of ssa:

<($,(0,0)),(£,(0,0,0)) >
<(%,(0,0,0)),(%; (0, 71))
<(%,(0,0,1)),(£,(0,0,2)) >
<(S

< (St

< (S5,(0,0,N—2)), (S5, (0,0,N — 1)) >
(,(0,1)),(%,(0,1,0)) >

5. A parallelized loop is a loop whose iterations could be executed by indepethreads, as in a DOALL [7] loops.

72 5. LAZY MEMORY EXPANSION SCHEME

After array dataflow analysis, we come up with two closed form expressioiS and A%,
These two polyhedra summarize value live range instances between stat&ramd S,, and between
S and$S, respectively. They have the following form:

A2 =L (i), (i), K) > 1" =in] =]AK =0A0<i<NAO< j <N}

A& < (KT K) > =i = fAK = k+ 1A
1 0<i<NAO<j<NAO<k<N-1

For the purpose of this example, we would like to check whether interchguhgipsi andj is a
transformation that preserves non-conflicting condition on all live ranggnces. Referring again to
Figure 5.5, we see that we are interested in the schedule of stateBefisand S. Their scheduling
functions in an original program are as follows:

0%:(i,j)" = (0,i,0,},0)7

0%(i,j,k)" = (0,i,0,j,L,k, 1T

0%(i,j,k)T = (0,i,0,j,1,k,8)T
If we perform a loop interchange transformation, we will get the followiag$formed scheduling func-
tions:

e/Sl(iv J)T = (0’ jvoai’O)T

0%(i,j,k)" =(0,j,0,i,1,k,1)T

05(i,j,k)T =(0,j,0,i,1,k,8)T
By applying the sequential version of the violation check, we find that tHation sets are empty:

VigS 7572 =

VioS 7% = @

VioS 7572 = @

Vio$7%7% = @

proving that there are no violations of live range intervals, after an inéerge transformation. The con-
clusion is that the output dependences induced by the scalar vagifableut _of _ssa. 6[0] (shown as
dYAY, anddAL in Figure 5.6), could bsafelyignored when checking the legality of the transforma-
tion.

This check has to be performed for other memory accesses as wellitioadae perform a schedul-
ing violation analysis (Section 3.3) on true dataflow (read-after-writepdéences onlyd> < and
5% 2 to check that relative writes/reads are executed in a correct order.

A classical dependence violation analysis [156], that takes into an aciteufull dependence graph,
would consider this transformation to be illegal, thus precluding (obviougigl iaterchange.

5.4 Performance benefits

The original motivation for coming up with the lazy expansion scheme was thdlffat a three-
address-code internal representation of the compiler that we werdogiege (Chapter 4) inherently
contains many scalar variables.

It is a known fact that memory based write-after-write dependencesalarssariables hamper any
effort on automatic parallelization. Indeed, all the codes that contairuatied operation, like the matrix
matrix multiplication shown in Figure 5.1, are internally transformed into the formreva scalar value
is used to accumulate the values. Also, if an user writes such a code,sstienaersion of the matmult
shown in Figure 5.2 the parallelization is not possible, since there is a loopdtautput dependence [7].

5.5. SUMMARY 73

Classical Lazy
Benchmarks outer | inner | outer| inner
2mm.c 7 0 0 5
3mm.c 10 0 0 7
atax.c 1 2 0 3
bicg.c 1 1 0 2
gemm.c 4 0 0 3
gemver.c 4 1 0 3
gesummv.c 2 0 0 1
gramschmidt.c 3 1 0 4
jacobi-2d-imper.cc 3 0 1 1
ludcmp.c 1 0 0 1
seidel.c 1 0 0 1

Table 5.1 — The number of the parallelized loops for Polybench [84] suite

Our scheme enables tlransparenthandling of all the non-harmful output dependences, also in the
case of loop parallelization. We ran measurements on a suite of computatiotextisiie numerical ker-
nels [84]. We compared the parallelizability of the kernels using both depeedmodels: the classical,
all data-dependences analysis, and our approach of combineddateaflow analysis with live range
analysis.

After integrating the new approach into the GRAPHITE polyhedral frammkwbthe GCC compiler,
we found that the new approach allowed for more loops — and mostly importartthe outer loops —to
get parallelized, as depicted in Table 5.1. This translates naturally into tedigpeobtained by running
those benchmarks on chip multiprocessor 5.11.

The baseline is thev/o dataflowcolumn, standing for a sequential run when the current transfor-
mation violation analysis is used. Thiataflowcolumn represents a sequential run when the new, lazy
live range violation analysis is used. As expected, changing the anabesga’tlinfluence the runtime of
sequential runs, since we perform no sequential code transformatidst) is why these columns show
the same runtimes for all kernels.

Enabling parallelization on top of the current dependence analysis ggsdunly a mild speedup on
jacobi-2d-imper while it does not impact or sometimes even slows down the others. This is mamly d
to the low speedup potential ofner loopparallelization.

When autoparallelization is enabled with the new data-flow and live randgsémave achieve sub-
stantial speedups of up to 3.8x. We experience one degradatataxikernel, which we relate to the
overhead incurred by autopar, unrelated to which data dependenad wmdise, since it happens for
both approaches.

These are only the preliminary results, showing the potential of lazy memaaneion scheme
combined with privatization and automatic parallelization. The integration of th&RBERT E framework
with automatic parallelization phase of the GCC compiler was discussed thdyondthapter 4.

5.5 Summary

We have shown how a value live range analysis can be used to enkdg memory expansion
scheme — memory is expanded only if absolutely necessary for the cesedhthe transformation.

Polyhedral compilation traditionally takes as an input a dependence griéiptavdependences,
constructs a legal transformation and generates code.

74

5. LAZY MEMORY EXPANSION SCHEME

speedup

3.5

2.5 A

O dataflow

W dataflow, with autopar
Ow/o dataflow

Ow/o dataflow, with autopar

s
q,@& ° (o@' %@@

benchmark

Figure 5.11 — Speedups on Power platform.

5.5. SUMMARY 75

polyhedral representatio
| *+GCCIR
,

compute dataflow
dependences

dataflow
dependences

live ranges

select a transformation

) dataflow dep
A violated?

YES
NO ;

live ranges
. b
violated? NO

Expand

Y (cncrate

Figure 5.12 — A flow of polyhedral compilation
based on violation analysis

The other class of so calledolation analysisbased compilation flow [157] takes as an input a
dependence graph with all dependences as well, it constructs a traatim (without legality check),
and only then it checks whether the transformation is legal. If it is, then dg@as with code generation.
If it is not, then it reiterates and proposes a next transformation until i fiégal one.

We take the violation analysis approactstep further: we do not take into the account all the
dependences. We split the dependence graph into those depenthahees trualata-flowdependences
and those that anfmemory basedMe do not check memory-based dependences for scheduling violation
violation.

By not taking the memory-based dependences into an account forudicigedolation analysis we
cannot guarantee that original values written into specific memory locagomoaidestroyed before they
could be read by an appropriate instruction. In order to maintain this gyopex first defindive ranges
for all values generated in an original program. Then we check whattransformation would respect
those value live ranges by performing tlve range violationanalysis. If we prove that all value live
ranges are still respected, then the transformation is legal.

If a transformation destroys value live range set for a memory locationstillipossible to correct
this: we could choose to replicate (memory expand) those memory locatiaadedtis to a controllable
memory expansion scheme - we only expand when there is a need fosexpah complete scheme of
our approach is shown in Figure 5.12.

76 5. LAZY MEMORY EXPANSION SCHEME

5.6 Conclusions and perspectives

We presented an algorithmic framework to maximize the effectiveness of laegfdrmations while
maintaining per-hardware-thread memory usage invariant. Unlike traditéoreal expansion and con-
traction techniques, dependence removal can be implemented with gudrergeery footprint con-
straints. This framework is a promising trade-off between array expaasid the the degrees of freedom
for affine transformation.

In the context of a low-level three-address-code polyhedral compilabtving this problem is even
more urgent, as evidenced in the experimental evaluation section 5.4. iémbeompilation flow that
includes the lazy memory expansion scheme, presented in 5.5, fits well intortiglation flow of
GRAPHITE framework (Chapter 4) and a transformation search methadrsim Chapter 7.

77

Part Il

Towards a search strategy

79

Chapter 6

Analytical cost model

The critical aspect of modern architectures is the need to efficiently ic@bedthe exploitation of
multiple forms of parallelism provided by platforms, while carefully coordinatheyuse of the memory
hierarchy efficiently.

Systematic solutions to harness the interplay of multi-level parallelism and locadignaerging, by
advances in automatic parallelization and loop nest optimization [34, 128}eTrkeéy on the polyhedral
model of compilation to facilitate efficient exploration and application of vempgiex transformation
sequences. However, the analytical cost models employed by those selatenot able to model the
low-level, machine-dependent aspects of the target architectures.

One such an aspect is exploiting short SIMD parallelism by vectorizatib8][Naturally, such a
kind of vectorization has not been represented within the polyhedrallrdodéo its low-level, machine-
dependent nature. As a result, there remains a gap in providing a conitangelvork for exploring
complex loop transformation sequences together with vectorization.

The problem of providing the analytical cost-models for predicting theopexdince is deemed diffi-
cult [129], since it seems infeasible to provide thttic analytical model that could predict the perfor-
mance of the architectures that are ever-growing in their complexity.

An alternative solution, based on an iterative compilation, has demonstrategidgarior performance
over the static compilation [1, 8]. Nevertheless, the major drawback of tlaiviecompilation schemes
is their running time, precluding them from being incorporated into the geparpose, single-pass
compilers such as Intel ICC, IBM XL or GCC [71].

Our goal is to provide a hybrid approach: we provide a precise araingderizable analytical per-
formance cost-predictor and we use it within a transformadigarch loopwithin the polyhedral model
framework.

We present the cost-model function thagensitiveo the the actual loop transformation expressed as
a schedule (Chapter 3). By exploring a finite and restricted space efglds (as explained in Section
6.3.1), the cost-model function is evaluated for different loop transftioms In this chapter we present
a simple scheme for the search space construction, while the much moresdxpreearch space is
presented in Chapter 7.

This search based cost-model function evaluation scheme still incurs s@mead in terms of the
compilation time, since the search space has to be constructed and traBestsaeslwe show, this space
is reduced to a reasonable size, and an evaluation of the cost-modarihoc each point in the search
space is effective.

We achieve this effectiveness by enumeratively evaluating the non-liesafunction for different
loop transformations, without any code generation nor running the resddt, contrary to a feedback
directed iterative search [129]. Only after the best schedule is detatrime code is generataxhly
onceand the final, optimized executable is obtained. This scheme is illustrated in BiGure

80 6. ANALYTICAL COST MODEL

The most recent work of Park et al. [121] is aiming at solving the similarlprobconstructing a
predictive cost-model that drives the selection of the compiler transfomsatithout resorting to the
iterative search during the compilation time. But the fundamental differencepared to our approach,
is that they use the machine learning technique to (still, iterativeyn the optimization sequences for
the selectedsuite of benchmarks, based on the premise that the learned sequenges@ipredictors
for the rest of programs. Our model is not based on learningatal zingthe behavior of the program
in order to predict its performance.

We are not trying to build a cost-model function that models all the possiblecespf the target
architecture. We focus ourselves on the aspe&IbID vectorizationwhich so far has not been consid-
ered in the polyhedral model. Yet this is a low-level and highly target spapfimization that has to be
modelled precisely in order to yield the best results. We will give an overgidhe SIMD vectorization
in Subsection 6.1.1.

In a summary: in this chapter we present a precise analytical, performeadieting cost-model that
captures the low-level details of the target architecture in the polyhedratlimadparticular, we help
bridge the aforementioned gap between analytical and feedback direetedds by incorporating the
low-level (vectorization) considerations into a polyhedral model.

A note to the reader: the teroost-models used to refer to the analytical function used to predict
the total execution cost of a given program with applied transformatioa.tdtmpolyhedral models
used to refer to the complete program analysis framework, as explainadtinh. Fhe actual cost-model
function is implemented within the polyhedral model framework.

6.1 Motivation

Fine-grain data level parallelism is one of the most effective ways to aelsiealable performance
of numerical computations. This effectiveness translates into area amed pavings for processor archi-
tectures, and complexity and performance benefits for applicationse Enesvell known advantages of
SIMD over MIMD architectures and programming models, and are best dbestby the computational
density of graphical processing units (GPUSs). In this chapter we otrate on improving the exploita-
tion of short-SIMD parallelism available in modern instruction sets and vectaressing extensions
(including Altivec, Cell SPU, and SSE). We will hereafter refer to suale-fyrain data parallelism as
subwordparallelism.

6.1.1 SIMD Vectorization

Automatic vectorization for modern short-SIMD instruction sets, such ase<i€ell SPU and SSE,
has been a popular topic, with successful impact on production comgis29, 30, 117]. Exploiting
subword parallelism in modern SIMD architectures, unlike automatic vectionizfor traditional vector
computers [7], however suffers from several limitations and ovehfd®, 116, 115] (involving align-
ment, redundant loads and stores, support for reductions and mioie) eomplicate the optimization
dramatically.

Automatic vectorization was also extended to handle more sophisticated cibmirokstructuring
including if-conversion [145] and outer-loop vectorization [118]. Glaal techniques of loop distribu-
tion and loop interchange [7] can dramatically impact the profitability of vecitidm. To be successful,
it is vital to avoid inapt strategies that incur severe overheads, whiclguate common in complex
memory access patterns.

6.1. MOTIVATION 81

for (v = 0; v < N; v++)
for (h = 0; h < N; h++) {
S1: s = 0;

for (i = 0; i <K; i++4)

for (j 0; | <K; j++4)
S2: s += image[v+i][h+j] = filter[i][]j];
S3: out[v][h] = s >> factor;}

Figure 6.1 — Main loop kernel in Convolve

6.1.2 Motivating Example

Loop vectorization can adversely affect performance, mainly due tordateagement overheads.
The first and foremost goal of a vectorization cost-model is to avoicbpeence degradations while
not missing out on improvement opportunities. In addition, a cost modeldlhso drive the selection
of a vectorization strategy, assuming there exist a profitable one. Théepras particularly acute on
modern subword SIMD architectures and compilers due to the interplay acoomgilation passes, the
interactions among micro-architecture components, and the dependemetohe information (array
alignment, loop trip count).

Given a loop-nest, a compiler needs to choose which loop to vectorizat afch position, employ-
ing one of several strategies (innermost- or outer-loop vectorizatigriaoe or based on innermosting, as
explained below). This in-turn brings to play other loop-transformationst matably loop-interchange
but also loop-peeling and others. Searching among all these alterraiv@sies a non-trivial problem.
This problem is especially apparent in computations featuring loop nesteéh@di) deep, (2) can be vec-
torized in several ways, (3) are amenable to other loop optimizations, aad(4ensitive to underlying
architectural features (e.g. alignment handling mechanisms, sensitivityettodality).

Figure 6.1 introduces th€onvolvekernel — a simple example of a loop nest exhibiting the above
features. Convolveperforms a 2D-convolution on a NxN 16-bit pixel image. Such convolutiors a
vastly used in DSP programs for various applications, from edge-detacsiag 3x3 filters (as in the
UTDSP suite [101]), to 17x17 polyphase filters.

There aral possible vectorization alternatives for a loop-nest of dejpfin our casal = 4), without
involving any other loop-transformation: we can vectorize any ofjtligh or v loops “in-place” — i.e.
in their original position (loop-level). For instance, we can vectorizejtlmop in its innermost position
(as shown in Figure 6.2a), which is the common practice of vectorizing cormpienploying loop-
interchange to permute one loop (inwards or outwards) into a specific pogittbin the loop nest
and vectorizing it there (keeping the other loops intact), increases thehsgaace tal - d possibilities.
Figures 6.2b and 6.2c show examples of vectorizinghthemop after permuting it to the innermost and
next-to-innermost positions, respectively. Using loop-permutation mayeasjvely to reorder the loops
of a nest according to a specific permutation, and then vectorizing onesif, tiesults in a total of
d(d!) combinations. If we also employ loop peeling to align memory accesses, tluh Sgace grows
to d(d!')VF whereVF is the Vectorization Factor (number of elements operated upon in parallel in a
vector). In our case this amounts to 768 alternatives.

The search space becomes quite large even for modest depths andvotigirfsformations (inter-
change and peeling), as shown, and can easily reach much higher gdfuheeper loop nests and/or
more loop-transformations are considered. Also note that programscoftésin many loop-nests, where

1. For this illustration, we use N=128 and K=16, due to current implementeggtrictions.

6. ANALYTICAL COST MODEL

82
for (v = 0; v < N; v++)
for (h = 0; h < N; h++) {
s = 0;

for (i = 0; i <K; i++) {
vs[0:7] = {0,0,...,0};
for (vj = 0; vj < K; vj+=8) {
vs[0:7] +=
image[v+i][h+vj:h+v]+7]
x filter[i][vj:vj+T7];

}
s += sum(vs[0:7]);
}
out[v][h] = s >> factor;

}
(a) j-loop vectorized at level 4

for (v = 0; v < N; v++4)
for (h = 0; h < N; h++)
out[v][h] = O;
for (v = 0; v < N; v++)
for (i = 0; i <K; i++) {
for (j = 0; j <K; j++) {
c = filter[i][j];
vfilter[0:7] = {c,c,...,c};
for (vh = 0; vh < N; vh+=8) {

out[v][vh:vh+7] += vfilter[0:7]
x image[v+i][vh+]j:vh+7+|];

}
}
}

for (v = 0; v < N; v++)
for (h = 0; h < N; h++)

out[v][h] = out[v][h] >> factor;

(b) h-loop vectorized at level 4

for (v = 0; v < N; v++)
for (h = 0; h < N; h++)
out[v][h] = O;
for (v = 0; v < N; v++)
for (i = 0; i <K; i++) {
for (vh = 0; vh < K; vh+=8) {
vs[0:7] = {0,0,...,0};

for (j = 0; j <K; j++) {
c = filter[i]ljl;
vfilter[0:7] = {c,c,...,c};
vs[0:7] += vfilter[0:7]
x image[v+i][vh+j:vh+j+7]
}
out[v][vh:vh+7] += vs[0:7];
}
}
for (v = 0; v < N; v++)
for (h = 0; h < N; h++)
out[v][h] = out[v][h] >> factor;

(c) h-loop vectorized at level 3

Figure 6.2 — Convolve Vectorization Examples

6.2. POLYHEDRAL MODELLING OF VECTORIZATION METRICS 83

each loop-nest should be optimized.

Approaches that generate each alternative and rely on its (possibly &djubxecution or on per-
formance evaluation at a later low-level compilation stage, are competitivenis &@fraccuracy but are
significantly inferior in terms of scalability to analytical approaches thatoreabout costs and benefits
without actually carrying out the different loop transformations befaneh Operating on the polyhe-
dral representation itself, rather than relying on code generation, isftihhera key ingredient. Hybrid
approaches can provide a more practical solution by combining the felettaaed approach with clas-
sical analytical models to narrow the search space. The modest compilestimieements of our purely
analytical approach (about 0.01s to build the model and search for timabpectorization strategy for
Convolve facilitates its integration in a production compiler.

Having potentially very large search-spaces is only one aspect of therization decision-making
problem. A complementary challenge to dealing with the very large searcespa how to evaluate
the costs and benefits associated with each alternative efficiently anditety.uSome trade-offs are
clearly visible in Figure 6.2. For example, variants (b,c) use loop-permutatigich in this case incurs
an overhead of extra memory traffic to/from tbet array. On the other hand variant (a) incurs a re-
duction epilogue overhead (ssemoperation) in each iteration of tidoop. Outer-loop vectorization
(vectorizing a loop other that innermost-loop) is used in (c), implying that mude ¢s vectorized. The
innermostj-loop in this case continues to advance sequentially, operating simultaneousliues from
VF = 8 consecutivén-loop iterations. On the other hand (b) has better temporal locdlitye([i][]] is
invariant in the innermost loop) and the misalignment is fixed (this is explained e detail later).
Overall the speedup factors obtained by transformations a, b, ¢ on”@R@&dative to the original se-
guential version shown in Figure 6.1) are 2.99, 3.94, 3.08 respectalyhe Cell SPU the respective
speedups are 2.59, 1.44, 3.62.

The following sections describe our approach and demonstrate howostimodel computes its
predictions within the analytical polyhedral-based model, consideringreiiffdoop transformations
and metrics. Final cost-model predictions féonvolveand analysis of the speedups are given in Sec-
tion 6.3.3, where we show that the cost model is able to correctly prediciestesbctorization option
for both PPC and SPU.

6.2 Polyhedral Modelling of Vectorization Metrics

Several key costs impact the expected performance of vectorizedinollgling: strides of accesses
to memory, memory access alignment, loop trip counts, reduction operatiarss doop iterations and
more. These factors depend on the modified sched8fnand on the modified iteration domai’S of
each statement.

The underlying assumption of vectorization is that the kernel of a loopllysexecutes faster if
vectorized than if not, but that associated overheads may hinder theizedteersion, diminishing its
speedup compared to the original scalar version, and more so for |aaipisettate a small number of
times. Indeed, if the number N of iterations of a loop is smaller thaveitsorization factor V Fthere is
no potential for speeding it up using vectorization; on the contrary, xiegtg such a loop may only slow
down its execution due to additional preparatory actions and checkbeRmore, even if N is larger than
V F, the number of iterations of the vectorized loop, although positive, mayufiitesto out-weigh the
overheads incurred by vectorization.

84 6. ANALYTICAL COST MODEL

6.2.1 Modelling the Access Patterns

Recall from Section 2.3.3 that in the classical polyhedral framework memmgss functions for
array references are represented as a vector of affine expressio

f(i)=Fx(i,g,1)7

but there is no notion of the data layout of an array.

One may combine this access function with the data layout of the array. Eloragiay reference,
one may form dinearized memory access functibncapturing the stream of memory access addresses
as a function of the iteration vector:

0(i)) =b+ (L'|LYw) x (i,9,1) =b+Li+ L%+ w (6.1)

whereb is the base addre$f the array andL'|L9|w) is the row vector of coefficients that encodes
the layout information (assuming row-major data layout). This vector is coatpokthree parts: 'Lis
scheduling-dependent?ldepends on global parameters, anid the constant offset part.

Assuming that matriMis defined adr4|[r2]...[rm], we can construct the vector R encoding the
strides along each subscript:

m-1 m-1 m-1
R= rlriarlria"'a ri,rm,]_,l
i= i= i:D—l

Then the following equation holds: _
(L'L9Yw) =RxF (6.2)

where the matrix F defines the access functiorFor example, taking the kernel in Figure 6.1 and
assuming arraymage is defined as mage[144[144, the linearized access for the arrayage in the
statemens, of Figure 6.1 can be represented as:

(1441) x [é 2 é jg 88 } = (144,1,144,1,0,0,0)
meaning that linearized access function is:
v hi,j)=b+144+h+144 +j.
The linearized access function is crucial for computing the cost of vieetbdata load/store instruc-
tions, which constitutes the majority of the vectorizer overhead.
6.2.2 Access Pattern Sensitivity to Scheduling

Based on the canonical scheduling matrix representation defined in S8ctidhe rescheduled
timestamp vector is expressed as follows (for modelling purposes we can ig@pre

t= (AN x(i,g) = Ai+Tg (6.3)

thus the original iteration vector is= A~(t — 'g) which together with Equation (6.1) gives us the new,
transformed linearized access function:

) =b+L'A %+ (LI-L'ANg+w (6.4)

2. bis typically not known at compilation time; nevertheless, we are only intetéstiés alignment modulo the VF, which
is generally available.

6.2. POLYHEDRAL MODELLING OF VECTORIZATION METRICS 85

with a new vector of coefficients:
L' = (L'A7YLYI— LA~ w).

Taking as example the kernel in Figure 6.1, the linearized access funfbioasraysi mage and
filter are as follows:

limge(i)=b+[144 1 144 1\0 o\oo] (i g,)
bitter (i) =b+[0 0 144 1|0 0| w]x(i,g,1)T

After applying loop interchange, by swapping the columns 3 and 4, we dhigitollowing transforma-
tion matrix (only A part is shown):

A= =

O OO
[cNeN Nel
= O OO
OoOrr OO

the new access functions become as follows:

limge(t = (W1,],i)) = b+ 144+ h+ i+ 144]

Umge(t) =b+ (144 1 1 144\0 o\ |g,)
€f|lter() b+(0 01 144‘ ‘ 97)

Notice that the memory access strides with respect to the new scheduling idingehave changed.
This has a dramatic impact on the performance of the vectorized codedinfle/e chose to vectorize
the innermost level, the vectorized code will suffer from a very costly mgraocess operations: the
stride is 144, so the elements are not consecutive and a vector carlnatlbd within one vector-load
instruction.

This shows that linearized access functions, on which the total vectorizaigi depends, is trans-
formed automatically with the scheduling transformations. Thus, we do nok teegenerate code in
order to compute the vectorization cost after applying a set of loop tranafimns — the vectorization
cost is the direct function of scheduling matrix. For the rest of presentat®focus on Lpart of the
linearized access function coefficient vector.

6.2.3 Cost Model Function

Our cost model is based on modelling the total execution time of all statementdestaiven the
modified iteration domairD’S and the modified schedu® of each statemer We compute the cost
function for statemerfsas follows:

| @/S

C(@/S, G/S) = Z Cvect_insty) +
2 (
VF

| @/S

VF(

(Cat =
me (k)

Cvect_storet fm)) +

(Cat
me(RKs)

Cvect_loadt Cs+ fm))

86 6. ANALYTICAL COST MODEL

where|D’S| denotes the integer cardinality of the iteration space (total number of dynastémaes of
S) and VF is the vectorization factor.

We currently support the simplest case, when loop bounds form a gedsarpolyhedral iteration
space{DS| = |‘|id:'"1‘(s) (UB; —LB;). In a more general case, algorithms to computing the number of integer
points inside polyhedra could be used [19, 43, 135].

Given the desired scheduling dimensihrwe can compute a finite differengg of the linear mem-
ory address with respect to the time dimension:

Ag = L(in,....ig+1,... igs) — L(i1,...,id,...,igs) = L}

Ay is a memory access stride w.r.t. a schedule dimension; we will simply dié istride It can be
determined directly from linearized access vectoby looking at itsd-th component.

Factorcs considers the penalty of lo&dnstructions accessing memory addresses wathideacross
the loop being vectorized. Accesses to hon-unit strided addresseeradditional data unpack or pack
operations, following and/or preceding vector load or store instructiespgctively [116].

For example, VF scalar accesses to memory addresses with/sjieross the loop being vectorized
may requirey, vector loads (each with cost), followed byAq, — 1 vector extract odd or extract even
instructions (each with cosb), to produce one vector holding the desired VF elements. On the other
hand, if several accesses to the same address are vectorized tdgetilg; = 0), a vector “splat”
instruction is often required to propagate the loaded value across all ¢keafenvector (with costp).
Factorfs is computed as a function of the stridg, :

Ay, =0: Co
Cs=1{ Ag,=1: 0 (6.5)
Adv>li AdV'C1+(AdV—1)'C2

Factor f; considers thalignmentof loads and stores. Typically, accesses to memory addresses that
are aligned on VF-element-boundaries are supported very efficiedyeas other accesses may require
loading two aligned vectors from which the desired unaligned VF elemenéxaeeted (for loading) or
inserted (for storing). This alignment overhead may be reduced coablygef the strideA of memory
addresses accessed across loop ledels 1..dS is a multiple of VF, since the misalignment remains
constant inside the vectorized loop. If this is the case there is the oppottininityse loaded vectors and
use invariant extraction masks. By having the transformed linearizegsfigection:

()" =b+Lyin+... +Lyia + -+ Liimg)idims + L9+ 0

it is easy to check if misalignment inside the vectorized loop remains constantcedfficients from
LgVH to Lidim(s) (corresponding to strides of all inner loops of the vectorized loop) tabe a multiple
of VF.

If the misalignment is constant inside the vectorized loop we also check if deedmdress which
is accessed on each first iteration of the vectorized labpié known to be aligned on VF-element-
boundary; if so then there is no need for re-aligning any data: 0. This is done by considering strides
across outer-loops (enclosing the vectorized loop, if exist), and initialrmkgnt properties such as array
alignment. In order to check the alignment in outer loops, we need to cheokffigients from L'l to

4,1 are multiple of VF.
By putting together all considerations for alignment, cost can be modelled as:

aligned ; 0
¢ _] var misalign. |DS|(c1 + €3+ Ca) 6.6)
87) fixed misalign. : |D, ,l(c1+C3)+ '
|DS| (€1 + Ca)

3. Vector store operations with strided access is not yet implemented in GCC

6.3. BVALUATION 87

wherecs represents the cost of building a mask based on the misalignment ampigigpresenting the
cost of extraction or insertion and is the vector load costﬂ)fdvfly denotes the number of iterations
around the vectorizer loop level.

The vectorization factor VF of a loop is determined according to the size ainilerlying vector
registers and the smallest data-type size operated on inside the loop. &amusd vector register will
thus hold VF values of this small size. However, if there are variables in tfpedblarger size, storing VF
copies of them will require multiple vector registers, which in turn implies that¢ee@ated instructions
need to be replicated. Facty records the extra overhead that is associated with this replication. Addi-
tional factors that depend on the specific machine resources availablalsoaypact the performance
of vectorization, such as the size of register files, available ILP, and leanagctor instructions.

By applying different loop interchange transformations and choosifgrdift loops to vectorize, the
performance of the resulting vectorization varies considerably. Our Imgaieable to predict the best
possible combination of loop interchange and outer/inner vectorizationggtrate

6.2.4 Vectorization Profitability Metrics

To summarize, the above vectorization profitability metrics can be classified afoltbwing three
classes:

Scheduling invariant metrics are not affected by changing the execution order of the statement in
stances. Thus, they are invariant with respectgot@dulindunction8S. Vector to scalar reduction
cost and multiple type support costs fall into this category.

Scheduling sensitivemetrics are affected by changing the execution order of the statementciestan
Those metrics have the greatest impact on the resulting cost, since theyitvattye change of the
scheduling order and thus are affected by loop transformations susteeshange. Changing of
the scheduling functiof® directly affects the cost of strided memory accesses, non-aligned vector
loads and spatial locality.

Code generation dependentmetrics depend on the actual code-generation strategy implemented in a
compiler*. These metrics go against the design of our cost model, as they neecereraig
the compiler’s internal structures from the modified polyhedral reptaten. Yet no significant
performance factor falls into this category. There is a practical difficudtydver: idiom recogni-
tion (e.qg., saturated arithmetic, absolute differences) are typically a souseheduling-sensitive
metrics, as the identification of algorithmic idioms can be performed on the aatayldw [139].
Yet vectorizers currently rely on syntactically fragile pattern-matchingriegles and do depend
on the code generation.

6.3 Evaluation

We present a systematic method to evaluate the cost function, within a selacsfdtmation search
space. Later, we will show the experimental evaluation of the predictediaps, compared to the actual
execution on two different architectures for a selected benchmarketti@gwith a detailed discussion.

6.3.1 Driving the search process

To select an optimal vectorization strategy one needs to construct aedsgabhe relevant search
space. We want to do so without generating different syntactic verefdhge code and then vectorizing
each of them, which is inefficient and sometimes infeasible. Our propossiamsanalytical cost model,

4. in our case itis GCC compiler

88

6. ANALYTICAL COST MODEL

Front—-end
)
1
()
Middle End V GIMPLE-SSA
. Loop nest optimization
Vectorized Graphite pass] and loop—nest-level model
loop C ! , | 1 Analytical model
selection i \ Analytical modeling
Vv . Vectorization API
ectorization pass and instruction—level model
Y
C :)
Y
Back—end RTL

Figure 6.3 — compilation flow

and constructs thénite search space of chosen loop transformations expressed in terms ofemhodifi
affine schedule8% and modified iteration domair®’S of Statements. For each point in the search space
we compute an associated cost using a cost fungtirh

We model the scheduling of each individual Statement independently.d@auin the search space
corresponds to a vector= [8%,... 8% DS . D'S] of modified schedules and domains for each
of the n Statements of the SCoP. The total cost for a given poimtthe space is the sum of costs of
executing dynamic instances of all SCoP Statements according to a newlgchied domain:

P(x) = (6.7)

ic(@s,es).

The parameters for the cost function for the single State®exre its iteration domait’S (number
of dynamic instances of a Statement depends on its iteration domain) and itsilsui@'S (cost of
accessing memory by a Statement instance depends on execution orither dfistances). Section 6.2.3
describes this cost function in detail.

The optimization goal is to search for a vector of transformatiggsthat minimizes the cost func-
tion @(x):

Xmin = Q'Q(P(X) (6.8)
Vectorxmin represents an optimal program version in the polyhedral model.

After extracting the SCoPs and building the polyhedral representatidistdi@ments by the GRAPHITE
framework, we perform the optimization of each SCoP according to Algorithfinst we compute the
base cost for the unmodified (input program) representation, by corgghincost of executing all dy-
namic instances of all statemer@sin the original scheduling order. The current optimal cost is stored
in costyn and is updated incrementally by applying different transformations (sldppier infeasible
ones) on the polyhedral model (stored in veafoand computing the new costs using cost functpox).
Besides the schedule transformation, performed by permutiegBTE) the columns of the compo-

6.3. BVALUATION 89

nent A of the schedule, each possible lew& strip-mined, which is the way to model the vectorization
at levelv. At the end of this process the optimal scheduling representation is availablg.

Note that Algorithm 1 shows only one possible way of constructing a sesgrabe. We chose to
consider all combinations of loop interchanges due to their impact on veatioriz This small (yet
expressive) search space makes it compatible with the constraints afiecpom compiler. Much more
expressive search space will be explained in Chapter 7.

Algorithm 1 Driver for search space exploration
d < level of a deepest Statement S in a SCoP
n <— number of Statements in a SCoP
Xmin < [6%,...,0% DS D] > Start with the original schedules and iteration domains
COShin <= @(Xmin)
for all o € (set of d-element permutationsp
fori=1tondo
0'S « PERMUTE(0,6%)
dS « level of loop nesting for Statement S
for v=1todS do
D'S < STRIPMINE(V, D)
X< [0%,..., 05 DS D)
if @(X) < coskinthen
COStnin <— @(X); Xmin <— X
end if
end for
end for
end for

6.3.2 Experimental setup

Ny N2 N3 Ng | Ar LY A3 ivA

interp_fp | 512 16 1,2 1,0,2

interp 512 16 1,2 1,0,2

bkfir 512 32 1,0 1,1

dct 8,8 8,8 8,8 8,0 0,1 1,8

convolve | 128 128 16 | 16 | 128, | 1, 128, | 1,
0, 0, 16, 1,
128 | 1 0 0

H264 12,7 12,7 1 1

dissolve | 128 128 1 128

alvinn 512,32 | 32,32 1,1 512,512

MMM 16 16 16 16,0 | 0,1 1,16

MMM T 16 16 16 16,0 | 0,1 1,16

Table 6.1 — Benchmarks

We evaluate our approach by introducing our model into the polyhedmaldwork of GCC produc-
tion compiler and comparing its performance estimates for different loop h@eges and vectorization
alternatives against actual execution runs of a set of benchmaiile. @4 summarizes the main rele-
vant features of the kernels used in our experiments: a rate 2 interpdeatierp), block finite impulse
response filtertgkfir), an 8x 8 discrete cosine transforrdgt[101]), 2D-convolution ¢onvolve, a kernel
from H.264 H264), video image dissolval{ssolve, weight-update for neural-nets trainirg)\(inn) and
a 16x 16 matrix-matrix multiply MMM) (including a transposed versidgaiMM").

90 6. ANALYTICAL COST MODEL

SPU: Cost-model Evaluation
@ scalar minner Oinnermaosting O outer = outer-opt

\ll \ll I

maodel

[R S e =]

exp

alvinn MMM_trans dissolve H264

interp_fp interp

Figure 6.4 — Cost model evaluation: comparison of predicted and actuattmipeectorization alterna-
tives on the Cell SPU

PPC970: Cost-model Evaluation
| Escalar Einner Oinnermosting O outer = outer-opt

]

§]
N N [N [N TR

il

exp | madel

alvinn MWK _trans dissolve

Figure 6.5 — Cost model evaluation: comparison of predicted and actuattimipgectorization alterna-
tives on PPC970

The first four columns of Table 6.1 show the number of iteratignsf loops nested within the main
loop-nest of each benchmark, starting withfor the outermost loop and moving inwards. Loop nests
with less that 4 nested loops have empty entries (8xgefers to the innermost loop in the doubly-nested
bkfir). For examplegconvolvehas a 4-nest loop wherebkfir has only a doubly-nested loop and thvs
refers to its inner-most loop. Multiple values in an entry represent multiple distiap nests.

Similarly, the next four columns of Table 6.1 show the stridesf the memory references across
each of the nested loops, with multiple values in an entry representing thesaifiddferent memory
references. For example, strides of 8, 512 and 16 are found in therinseloops ofdct, alvinnand
MMM respectively, where columns of 2D arrays are scanned resulting iesatdhe length of the rows.
Lastly, zero strides imply that duplication of a single value across a vectequsred.

We first evaluate the cost-model qualitatively, demonstrating that the stooesputes are consistent
using one detailed example (subsection 6.3.3). The following subsectiose(dion 6.3.4) evaluates the
model relative to actual experiments on a set of kernels, analyzing theeglisioons and showing that
overall the relative performance ordering of the variants is largelyepved.

6.3.3 Qualitative Evaluation

We use theonvolvekernel qualitatively (see Figure 6.1, Section 6.1.2). We study only a snieésu
of the search space described in Chapter 7, restricting our attentiondoctieombinations of moving
each loop inwards/outwards and vectorizing it there, plus the option tonzmctach of thel loops
without any interchange. Note however that our technique opens upfalarger transformation space,
as shown in the search methodology described in Chapter 7.

6.3. BVALUATION 91

loop-level | 1(v) | 2(h) | 3() | 4()
1 0.26| 4.00| 0.24 | 4.00
2 0.26| 4.06| 0.24 | 4.21
3 0.26| 4.34| 0.23 | 4.56
4 0.27| 3.76| 0.24 | 3.72

Table 6.2 — Convolve: SPU estimated speedup factors

loop-level | 1(v) | 2(h) | 3() | 4()

1 0.21]3.21]| 0.19] 3.21
2 0.21] 3.21| 0.19| 3.38
3 0.21| 3.18| 0.19| 3.70
4 0.21| 3.37| 0.20| 2.99

Table 6.3 — Convolve: PPC estimated speedup factors

The results of running our model against the d = 16 combinations, estimating the performance
of each combination for a Cell/SPU and a PowerPC system are shown in6T2laled Table 6.3 respec-
tively. The loops are numbered in the tables from 1 (outer-most) to 4 (imost). Entry(i, j) shows
the estimated speedup over the sequential version, obtained by moving togpositioni followed
by vectorizing loopj at new position. Thus entries along the diagonal refer to vectorization with no
interchange. Entries (4,4), (4,2), (3,2) (in bold) correspond to théorieation alternatives shown in
Figures 6.2a, 6.2b, 6.2c respectively.

While the estimated speedups for these versions are a little too optimistic compaeddabmea-
sured speedups (see Section 6.1.2), the relative ordering of theupsdedboth platforms is accurate
and the cost model is able to identify the best choice among the three.

The convolve entry in Table 6.1 reveals the key factor for the performdaegeadations predicted
for loopsyv, i (columns 1 and 3) — there are very large strides along these |dgpa{ = 128). The
overhead involved in vectorizing these loops and strides is describectiini®é.2.3. The remaining
candidate loops for vectorization are therefore loops 2 ardeéid j). The best speedup is predicted for
entry (3, 4) which corresponds to using outer-loop vectorization to xigetthej-loop after moving it
to level 3. The original-nest is a perfect nest (there are no operations outside the innermpstithin
that nest) and so there are no overheads incurred by this interchesmgeosed to interchanging an
imperfect-nest like thé-loop, e.g. as in cases (4,2),(3,2)/Figures 6.2b,6.2¢, which involve sogdan-
sion and loop-distribution costs). In addition, outer-loop vectorizationdaveduction-epilogue costs
and also increases the portion of the code that is being vectorized calriparectorizing thg-loop in
its original innermost location. Note that this choice is different from theiticagal approach: compil-
ers usually either apply inner-most loop vectorization (efdryt) in the tables) or apply innermosting
(entries(4, x)).

Partial experimental evaluation obnvolveconfirms these predictions. In Figure 6.6 we show the
obtained speedups relatively to the cost model estimations (deexyedodelrespectively) for PPC970
and Cell SPU for entrie€3,2), (4,2), (3,4) and(4,4) in the tables.

5. The low 1.59x measured speedup for alternative 6.2b on the GdlissRie to an aliasing bug in GCC that results in bad
scheduling. The out-of-order wide-issue (5 slots) PowerPC970 iséasstive to this, but on the in-order 2-width-issue SPU
performance drastically suffers as a result. The cost model oblyioasnot (and should not) predict compiler bugs, however
it can, as in this case, help reveal them.

92 6. ANALYTICAL COST MODEL

Convolve Speedups: Model vs. Experimental

E(3.4) loop j vectorized at pos. 3 (outer-loop vectorization)

W (4.2) loop h vectorized at pos. 4 (innermost-loop vectorization)

0(3,2) loop h vectorized at pos. 3 (outer-loop vectorization)

O (4 ,4) loop j vectorized at pos. 4 (innermost-loop vectorization)
6 ==
5]
4 —
31 |
2 4 |
1 4]
0

model exp model exp
PPC SPU

Figure 6.6 — Cost model evaluation: comparison of predicted and actuattrigpaconvolve kernel on
PPC970 and Cell SPU

6.3.4 Evaluation on a benchmark suite

We now validate quantitatively the estimates produced by the cost model. ¢lobeachmark we
report two sets of results: one showing the experimentally observedgpeeand the other showing
estimated speedups computed by the cost model (deeamdodelrespectively in Figures 6.4, 6.5).
When a given vectorization technique cannot be applied due to limitations ofiment implementation
of vectorization in the GCC compiler, the scalar performance is reportéslh@ppens in some cases of
strided accesses that are not yet fully supported (and that wouldntgdegrade performance).

We evaluate the relative speedup of four different vectorization alieesa innermost-loop vec-
torization {nner), interchange followed by innermost-loop vectorizatiamérmosting, and in-place
outer-loop vectorization, with and without optimized realignment using unro{bagerandouter-op).

The experiments were generated automatically using an enhanced ver$kCo Speedup are
measured over the sequential version of the benchmark, compiled with rtree ggatimization flags.
Interchange, when used, was applied manually. Time is measured usiygj thisage routine on pow-
erpc970, and the decrementer utility on the SPU. Experiments were pedanmthe IBM PowerPC
PPC970 processor with Altivec, and an SPU of the Cell Broadband EnBuith architectures have 128
bit wide vector registers, and similar explicit alignment constraints.

The first set of kernels (interp, bkfir, dct and MMM) is expected to gaost from in-place outer-
loop vectorization with realignment optimization, as they consist of imperfeptimsts (and therefore
get penalized for interchange), and exhibit high data-reuse opjitigtiacross the (vectorized) inner-
loop that can be exploited by the unrolling optimization. They also have inogrdeductions (which
are generally done more efficiently using outer-loop vectorization), an@fthe benchmarks in this set
(dct and MMM) also have large strides in the innermost loop (as the ascegkimn-wise). Alvinn has
a perfect nest and no reuse opportunities, and therefore in-pléeeloap vectorization should not gain
over traditional interchange, but innermost loop vectorization should/tieed due to the large stride.
The last group of benchmarks (MMM dissolve and H264) have consecutive access in the innermost

6.4. RELATED WORK 93

loop, but strided access in the outer-loop, and so for these we expectloop vectorization to be the
best technique.

This behavior can be clearly observed in the SPU speedups in Figureittede overall theexp
andmodelgraphs are largely consistent, with the preservation of the relativerpeafae ordering of
the variants. Exceptions are due to low-level target-specific factorotitanodel does not take into
account. Most notable is the misprediction in the first set of benchmarleselvkfir anddctare the only
benchmarks for which outer-loop vectorization is inferior to innermost l@gporization due to an SPU
specific issue (unhinted branch).

Target-specific issues come to play also on the PPC970 (Figure 6.5). Bhisigrificant one appears
in the fixed-point bkfir and interp where inner-loop vectorization emploggexialized Altivec instruc-
tion to compute a dot-product pattern. We have not yet incorporated idiaomthmcost-model and so it
does not anticipate this behavior. The model also does not try to estimaterggessure, and therefore
does not predict the degradation in performance incurred by the umgroltitimization on interp due to
register spilling (this problem does not occur for SPU having 128 veetgisters, compared to the 32
Altivec registers of PowerPC970). Inaccurate modelling of spatial lodalibyir current implementation
is the reason why the cost model misses the improved data cache locality wérehamging loops in
alvinn (this problem does not occur on the Cell SPU as it doesn’t haeelzey. Lastly, in some cases
interchange can be done with smarter scalar-expansion (hoisting)eaghtre model estimates the as-
sociated overhead of a naive scheme. This sometimes pessimizes the gragiadup of interchanged
versions both on PPC and the SPU.

6.4 Related Work

Vectorization Cost-Model Related Work. Leading optimizing compilers recognize the importance
of devising a cost model for vectorization, but have so far providdy partial solutions. Wu et al.
conclude [164] regarding the XL compiler tHlany further issues need to be investigated before we
can enjoy the performance benefit of simdization ... The more importantdeaamong them are ... the
ability to decide when simdization is profitable. Equally important is a better nstaieding of the inter-
action between simdization and other optimizations in a compiler framewdrikKewise, Bik stresses
the importance of user hints in the ICC vectorizer’s profitability estimation 2%void vectorization
slowdowns due tdthe performance penalties of data rearrangement instructions, misatignemory
references, failure of store-to-load forwarding, or additional overth@d run-time optimizations to en-
able vectorization; on the other hand opportunities may be missed due to overly consenvatiristits.

These state-of-the-art vectorizing compilers incorporate a cost modetide whether vectorization
is expected to be profitable. These models however typically apply to a simgletdasic-block, and
do not consider alternatives combined with other transformations at thenkesigevel. This work is the
first to incorporate a polyhedral model to consider the overall cosiffefent vectorization alternatives
in a loop-nest, as well as the interplay with other loop transformations.

Loop-nest auto-vectorization in conjunction with loop-interchange hag ledressed in prior art
[6, 7, 163]. This however was typically in the context of traditional veatachines (such as Cray), and
interchange was employed as a preprocessing enabling transformateyhe@ds related to short-SIMD
architectures (such as alignment and fine-grained reuse) weremnsitieted.

Costs of specific aspects of short-SIMD vectorization were addrésseare recent works. Realign-
ment and data-reuse were considered together with loop-unrolling, [kd#éin the context of straight-
line code vectorization, and not for the purpose of driving loop vedatdn. A cost model for vec-
torization of strided-accesses was proposed in [116], but it doesamstider other overheads or loop
transformations.

94 6. ANALYTICAL COST MODEL

Polyhedral-Model Related Work. Bondhugula et al. [34] integrate inner-loop vectorization as a
post-pass of their tiling heuristic, and leverage the interchangeability of lnops to select one that
is vectorizable. Their method does not take into consideration the respeetitorization overheads,
nor does it model reductions. Nevertheless, their tiling hyperplane aiohfalgorithm can serve as a
complementary first pass for our technique, favoring the extraction athegeable inner loops.

Pouchet et al. demonstrate how one can systematically study the interplaypdafdmsformations
with backend optimizations (including vectorization) and complex microarchitestoy constructing
huge search spaces of unique, valid transformation sequences Tt28f search spaces are tractable
using carefully crafted heuristics that exploit the structure of affinedgles. An analytical performance
model capable of characterizing the effect of such complex transfomsafiieyond loop interchange,
and accommodating for large-scale locality effects) does not currensy. &nown analytical cache
models for loop transformations are quite mature in some domains, loop tiling inytart[86], yet
remain sensitive to syntactic patterns and miss key semantical featuressdocip dusion effects [39,
69].

6.5 Conclusions and future work

This contribution narrows the gap between analytical cost-model basedcstapilation techniques
[39] and fully iterative search based compilation flow [1, 129, 128], wétilemaintaining the running
time of the compilation acceptable. We have focused on the single aspectrofittiine specific cost
modelling - that of automatic vectorization on SIMD architectures.
We have presented the first-of-a-kind approach to low-level maclpeeit analytical cost model,
used for prediction of the performance of vectorization within the polydietiodel framework. Our
contributions of this work are the following:
— Polyhedral modelling of subword parallelism.We demonstrate how to leverage the polyhedral
compilation framework naturally and efficiently to assess opportunities fowasrd parallelism
in combination with complex loop transformation sequences. Our integratedaabprelies on
abstract matrix manipulations instead of code generation, thereby shgrtaeievaluation time
of the cost model dramatically, compared to iterative optimization approadt&sy [
— Evaluation in a production compiler. Our model is fully automated and implemented based on
GCC [71] 4.5 compiler.

— Studying the interplay between loop transformations We provide a thorough empirical investi-
gation of the interplay between loop interchange with array expansion apdkst vectorization
of both inner and outer loops on modern short-SIMD architectures.

6.5.1 Future work

The experimental results are promising, and the running time of the seaach sgploration is
acceptable for incorporation into the general purpose compiler like GE@@ertheless, the cost model is
somewhat simplistic and does not incorporate the modelling of cache localigsig&8], interplay with
thread-level parallelism nor the incorporation of memory traffic optimizing lwapsformations [34]
like loop interchange. We see the future directions that could fully explopdbential of this approach:

Interplay with other transformations. The method could easily be extended and employed in the
future, to consider the effects of additional transformations within the alsdi framework. The search
space that is proposed in Chapter 7, which is in turn based on [34], beuldsed to combine the
search for thread-level parallelism, memory locality optimization and optimal Neation strategy in
one, combined manner.

6.5. CONCLUSIONS AND FUTURE WORK 95

Precise data locality modelOur cost model includes a very rough estimation of the data locality -
that of computing the data access strides. While it can capturgptiteal localityof the given memory
access pattern, it cannot precisely modeltdraporal locality The model could be extended with cache
miss equations, an approach proposed by Fraguela [69]. The pre§nmitegration efforts are ongoing,
at the time of writing this dissertation.

Machine learning of target specific factors.The analytical cost function shown in subsection 6.2.3
relies on themachine specifiatomic instruction costs. While we have obtained those costs for the archi-
tectures that we were interested in, mainly through microbenchmarking amdddge of the instruction
latencies, obtaining those coefficients for the new architectures might bedér to facilitate the porting
of the cost-model to the new architectures, we would like to investigate thibpibgsf employing ma-
chine learning, like in [40], to obtain the coefficients automatically for the mewitectures. Please note
that this does not change our approaclkearning phasds done only once, to obtain the coefficients.
Later, the ready cost-maodel function is used in a single-pass compiletigisgthout any extra penalty.

96

6. ANALYTICAL COST MODEL

97

Chapter 7

Transformation search strategy

In the previous chapters we have discussed the basic components ire¢lde polyhedral model
based optimization compiler such as static analysis, data dependence anastsisodel, and code gen-
eration. But the core part of each polyhedral model based compilatiwnslan algorithm for obtaining
the actual transformation. The aim of this chapter is to provide our contribtdithis key part of the
compilation flow.

While numerous works on program transformations - and polyhedraftranations in particular -
have been published, there is no general consensus on whetheralpegicical and efficient for use in a
general purpose optimizing compilers. In this chapter we propose adraratfon search methodology,
instead of proposing a single specialized transformation algorithm.

The chapter starts with introducing the related work in Section 7.1. A nagasstation, based on
the state of the art approaches, is introduced in Section 7.5. The core afdthod is explained in
Sections 7.6 through 7.10.

7.1 Related work

Optimizing for various architectural features requires complex progransfiormations to exploit
thread-level parallelism, vectorization opportunities and memory hierarchgambined manner.

Pioneering works [6, 99, 15, 16, 161] on loop transformations lookitierbest transformation
according to some ad-hoc criteria. Furthermore, they are restricted iy éinsded subset of program
loops.

Loop optimizations expressed in the polyhedral model subsume all prewiatks on loop trans-
formations. Optimizations in the polyhedral model are expressed as diclgedoblems. There are as
many scheduling algorithms as there are different optimization criteria, byathehare the common
property: the computed schedule has to provitegal transformation.

The state of the art polyhedral transformation frameworks generallinfadio categories:

— best effort cost model based scheduling approaches

— iterativesearch based approaches

The works of Feautrier [67, 68], Lim and Lam [107, 106], Griebl J[add Bondhugula [34] fall
into the first category, while the works of Pouchet [129, 128] and \elsda[157] fall into the second
category.

The basic principle underlying the best effort scheduling approaishasvell defined cost model
function. The problem is cast as a linear programming problem where thelédpendences provide the
set of constraints, and an objective is to find a solution that minimizes the gogtrmodel function,
while preserving the legality of the problem.

98 7. TRANSFORMATION SEARCH STRATEGY

Obviously, different cost functions provide different solutions. Ajeative function in the approach
of Feautrier is théatency The goal of the scheduling is to provide minimum latency schedules. Lim and
Lam provide an objective function that minimizes the order of requiredsymizations and maximize
the number of parallel loop dimensions.

The state of the art cost model based approach of Bondhugula [84idps a cost function that
minimizes thedependence distanck turns out that this simple cost function is very powerful, since it
maximizes the parallelism in the outermost loop levels and minimizes the volume of meomonyuni-
cation.

While the best effort scheduling approaches provide only one solutios best solution according
to the cost function - the other class of the scheduling approaches i$ thasieeiterative search.

Iterative search based scheduling approaches do not providela sahgtion. Indeed, they provide
a space of the legal and distinct schedules. Each distinct schedusmands to one program transfor-
mation. The transformations within a space are assessed according tatiadity’ - mostly often the
speedup provided.

Iterative approach in the polyhedral model was pioneered by Po{it?@f 128]. Pouchet shows
the systematic way to generate the space of legal and distinct schedutessexpin the polyhedral
model and the way to traverse those schedules. For each distinct kchethde is generated and the
transformed program is run on the target hardware. The scheduésponding to program version with
the best runtime is selected.

Since the search space of all legal schedules might be huge, Pormbetes to use machine learning
techniques to speedup the search [128].

7.2 Limitations of the current approaches

The best effort cost model based techniques are limited in their ability to fnloest transformation
adapted to a particular architecture.

The approach of Feautrier [67, 68] finds the minimal latency schedutéhBiwcost model is based on
an imaginary machine model where synchronization costs and memory localiég iaee ignored. The
algorithm is optimal on an idealized PRAM machine, but it is unlikely to be optimalnyrreal-world
multiprocessor machine. This fact was empirically proven by Bondhugéla [3

The approach of Lim and Lam [107, 106] has a similar limitation. While it takesantaccount the
cost of synchronization, it does not model the memory traffic costs. ptimization process is based
on basic linear algebra rather than on linear programming. This has an impigatiothe quality of
obtained solution, since the method can reducedtdgreeof synchronization and maximize the degree
of parallelism, but it can miss an exact optimal solution.

The state of the art approach of Bondhugula [34] has a simple, butpgeverful cost model that
matches the key performance factors relevant to modern architectutaeke$ into an account both
parallelism and memory traffic optimization.

While being well adapted to extracting parallelism and optimizing for memory locatibytih loop
tiling, the approach Bondhugula [34] does not take into account some leves architectural features,
such as SIMD vectorization and possible cache interferences.

As evidenced in [131], the mentioned problem of Bondhugula’s approaald be alleviated if
combined with iterative search strategy. The method shown in [131] dde=alty into any of the
categories discussed so far, since it is a combination of both.

The iterative search methods try to overcome the lack of the precision obthenodel based ap-
proaches but with an extra cost - that of generating multiple version®gfgm transformations.

The iterative search method of Pouchet [129, 128] builds a searcle sppall legal and distinct

7.2. LIMITATIONS OF THE CURRENT APPROACHES 99

program transformations expressed as one-dimensional [129] or rméndional [129, 128] affine
schedules.

The main problem of iterative search methods is the problem of bounding@#nehsspace of legal
program versions. In their full generality, the space of affine sdieeds unbounded. One has to bound
the possible values of the scheduling coefficients to some restricted ramgkeirto obtain the finite-size
search space.

Pouchet [129] proposes some practical solutions to the problem of mmutite search spaces to
make the iterative search methods practical. We might add a note that the amtbased approaches
do not face the problem of bounding the coefficient values, since tlabses are computed directly from
the analytical cost model.

The feedback directed iterative search methods based on empiricedipregaluation are obviously
not suitable for integration into the general purpose optimizing compiler Beaafutheir unpredictable
running time - even for simple program kernels, a millions of legal transformstimight be evalu-
ated [129].

Since the search space explored by the iterative search method has daruked upfront, some
possible solutions might be missed, even if an exhaustive search ismedor

Obviously, neither class of the methods is better than the other. While thefluett ®@st model
based approaches provide the desired solution in the single step, theynoightecisely model the
target architecture and they might provide suboptimal results. On the ahdr the feedback directed,
iterative search based methods might provide the optimal transformationsedriggost model based
approaches - but at the cost of an exhaustive search of the tnawagion space.

The common limitation of all the methods discussed so far is the lack of contnottveomplexity
of the generated code. To the best of our knowledge, there are ke addressing the problem of finding
the good program schedule that also generates the least complex cadg Barte [54] has pointed out
this problem. This problem is very relevant for enabling the integration a¢heduling algorithm in a
general purpose compiler. We will elaborate on this problem Section 7.3.

All the mentioned methods rely on the representation of the data dependapbeand satisfaction
of all the data dependences. As we have shown in Chapter 5, some aftéhdeppendence constraints
could be relaxed and some dependence constraints could be completeledewith an extra cost of
memory expansions. Removing the dependence constraints enables timareabipn choices.

While the techniques for removing data dependence constrains havexieasively studied [64,
152, 37, 17, 97], they were treated separately from the schedulitdepndtself. The only work that
addresses those two problems in a combined manner is [45]. The relatddnpsowere discussed
extensively in Chapter 5.

We summarize the limitations of the current best effort, cost model basedaahes:

— Provide only a rough, linear analytical model based on an imaginaryt &xgeution platform

— Focus on a particular performance issue, while not taking into an actimimolistic effect of
multiple program transformations
The optimization process takesgreedyoptimization approach that can stick to local minimum
and miss a global optimal solution
No control over the complexity of the generated code
No way to integrate the relaxation of the scheduling constraints througindepce removal
The limitations of the iterative search based approaches are summarized:

— Exhaustively searching the space of all transformations is expendizens of time

— The complete search space is unbounded and a bounding solution egertwided

— Even if an exhaustive search is performed, the optimal solution might beaniss

— Does not help in understanding the program transformations
No control over the complexity of the generated code

100 7. TRANSFORMATION SEARCH STRATEGY

7.3 Motivation

Having on mind the limitations of the current scheduling approaches, olisgogropose the trans-
formation search methodology that could provide the best trade-off batagst model based scheduling
methods and search based techniques.

The core idea is to combine the enumeration search method with an evaluatienspfetialized
analytical cost model function. In this way, we combine the best of botldaatheprecisionof iterative
enumeration andffectivenesef the cost model based approaches.

The specialized cost function is tailored to the specific architecture andlsnbéeselected perfor-
mance phenomena. Such a cost model function was shown in Chapter 6.

Previous cost model based approaches could not handle the complire®r objective functions.
The reason is simple: they use (integer) linear programming techniquesitiiatam operate on linear
functions.

We cannot use the techniques proposed by Feautrier and Bondhuguéduate and choose the best
transformation according to the non-linear cost function. Instead, saetrt® enumerative evaluation of
the non-linear cost function, in a similar way as the iterative approach.

Feedback directed iterative optimization [129, 128] relies on the feedlf@ckach generated pro-
gram version, obtained from measuring the performance of the tramstbprogram. But instead of
relying on the empirical feedback, we plug in the non-linear objective fomsttion to provide the as-
sessment of each transformation version.

Provided that we have a precise cost function tailored to a target attciné@mnd that we can construct
a bounded but expressive search space, we can perforemanerative searcbf the cost function
evaluations and pick the best point in the search space.

The success of our approach relies on providing the following keyeptigs:

1. construction of an expressive search space of affine trangfonsa
2. ability to control the size of the search space
3. ability to efficiently evaluate the cost function for each point in the sespalse

Based on our new search methodology, we want to address the probktmeetke not addressed in
an integrated manner in the previous approaches. Mostly importantly, wet girovéding the transfor-
mation engine that could be integrated as an optimization pass of a geng@d@geompiler.

Two properties of our method enable its easy integration into the genepgmicompiler: 1) em-
bedding of the precise cost model tailored to a given architecture 2¢lyatg on the empirical feedback
as the current iterative optimization approaches [129, 128]

An enumeration based nature of our approach enables us to controintipdexity of the generated
code by ignoring some transformations (loop skewing for example) that mégterate the transformed
code that is too costly [54].

Also, an enumerative approach for the schedule construction goesdentawith a lazy memory
expansion scheme discussed in Chapter 5. There is a trade-off beheamst of the memory expansion
and the expressiveness of the transformation. To the best of outdagsy there is no work that shows
how to capture this trade-off in a purely best effort based methods1{#8,34]. An enumerative based
approach can capture this trade-off in its search space.

7.4 Problem statement

The goal of the transformation search strategy is the enumeration of ttud Speace of a class of
legal multidimensional schedules. The space of the legal solutioissobtained. Each legal solution
T € L have the form:

7.5. NOTATION AND DEFINITIONS 101

T={6%,...,6%}

Each legal solution describes the complete scheduling matrices for all stasesneq(S,,...,Sy}.
For each scheduling dimension of the legal solution a setlbé&duling propertie§parallel, sequential,
permutable) is determined.

7.5 Notation and definitions

Here we give the necessary definitions and notations used througkaestiof the chapter.

Given a scheduling matri®S for a statemen®, we will denote theék-th row of the scheduling matrix
oS as@f. This row represents aaffine scheduling hyperpla@. The similar notation is used in works
relating to program transformations and scheduling in the polyhedral muehaing different names or
meanings - schedules, mappings or partitions. [34, 67, 92, 105].

Recalling the defined canonical form of the scheduling matrix in section 2t&4cheduling matrix
©S could be split in three components;: I andp. Thus, &-th row of the matrix that represents an affine
function has the following form:

O = agyi1+aoia+ ...+ 8nint Vo101 + -+ Vin Oy + Be
For the purpose of this chapter, we will ignore the@art and consider it to be set to all zerb3aking
this into an account, we can represent a single row of the matrix as:

B = ay i1 +ayia+ ... +agnin+ By (7.1)

Definition 7.5.1(Affine form of Farkas Lemma)Given a nonempty polyhedraA = {x € R"|Ax+b >
0} then an affine formf : R" — R is non-negative at each point in a polyhedBriff it is a positive
affine combination of the polyhedron faces:

m
f(X) =Ao+ Z)\k(Ak,-X+bk)7)\077\1,--~,)\mZ0 (7.2)
k=1

7.5.1 Dependence satisfaction

We will briefly recall the definition given in Section 3.3. Given a dependagraphG = (V,E), a
valid schedule has to satisfy all the dependence edgds. Each dependence edge E is labelled by
a dependence polyhedrdi. A given dependence edgdrom S to S is satisfied iff:

V(i,j)" e Ps: 05 (i) < 8% (j) (7.3)

where< is the lexicographical comparison operator. Since we are assuming multidimairschedules,
a given dependence edgéas to besatisfiedat somdevel We formally define this condition:

Definition 7.5.2(Dependence satisfaction at leve) dependence edgefrom statemen§ to statement
S, labelled by a dependence polyhedr8y is satisfiedat levell if it is the first level to satisfy the
following:

V(i.J) € Po: {Vacer s (67() ~ 63 (1) =0) A7 (1)~ 07 () > 1}

1. Thel part corresponds fearametric shiftallowing a scheduling function to be dependent on global parametaral({y
the problem size).

102 7. TRANSFORMATION SEARCH STRATEGY

We say that the given dependencsti®nglysatisfied at levdl, if the conditionelSj (4)— eﬁ (i) > 1 holds

for all statement instance pairs that are in dependence. If only the 11\/emti>(éition6|Sj (4)— Gf‘ (i)>0
is satisfied, we say that a given dependencedaklysatisfied at a given level. Both definitions assume
that the dependence is at least weakly satisfied at all previous leveksl.

Definition 7.5.3(Outer parallelism enabling hyperplane§iven the set of statemenss= {S;,..., Sy}

we say that the set of hyperplan@?, . .,Bf"} enable parallelism at the outermost leMek(1) if the
following condition is satisfied:

V(i,j) € B <efj(j)—9f(i):0>,Vee E

In other words, for all dependence edgése E and for all pairs of statement iterations in a de-
pendence relatior?s, the source and the sink of the dependence are mapped to the samdisghedu
hyperplane. If we treat the scheduling hyperplane jparétion, as in [107], it means that all the depen-
dent iterations are executed within the same partition, while the partitions thesiselvd be executed
in parallel. This kind of parallel execution is known as the DOALL or syodiration free parallelism.

Definition 7.5.4(Permutable scheduling bandjhe set of scheduling hyperplang®™, ..., 8%} at lev-
elsl,I+1,...,1 +s—1 form a permutable scheduling band iff:

Vee B, WK(I <k <l+s—1):(i,j) € 2,67 (j) — 65 (i) > 0

whereE; is the set of dependence edges not satisfied up to levdl. The loops that correspond to
scheduling hyperplanes within the permutable scheduling band couldmeteelfreely, without violat-
ing any dependence. The similar definition is used in several works GD0@&6], where the goal is to
find the maximal bands of fully permutable loops.

We have given the basic definitions that form the building blocks of ouckeaethodology. Please
note that some definitions alecal — they apply for one dependence edgat the time. In our trans-
formation search method we will combine those constraints, step by step, ingtotiad solution that
satisfies the full dependence graph- (V,E).

7.6 The space of legal affine transformations

As stated before, the goal of any program transformation based oroljteegral model is to find
the coefficients of the scheduling matric@s= {6%,...,6%}.

Taking the full dependence gragh= (V,E), each dependence edge E is described by a depen-
dence polyhedro. A dependence edgdrom § to S; mandates that a condition shown in Equation 7.3
must bestronglysatisfied. If we now consider the setafie-dimensionaschedules, this condition be-
comes:

V(i,j)" € P:0%(j)—05() > 1 (7.4)

But the scheduling matrices that encode the scheduling funcB®rand6S have unknown coef-
ficients. If we use the representation of the single row of the matrix as are diffnction, as shown in
Equation 7.1, we will get the following form of the constraint:

V(i,))T € Bezadyjit...+al jnt) — (@i +... +ad jint+ o) >1

But this constraint is nonlin7ear, since both loop induction variables anfficests are unknown.
This obstacle can be avoided by linearizing the constraints by using thasHemma. All the affine
scheduling algorithm&rely on the Farkas lemma [67, 68, 128, 104, 132, 91] to perform the iaiam.

2. An alternative approach is to use an equival@ntex methoas in [80, 159]

7.6. THE SPACE OF LEGAL AFFINE TRANSFORMATIONS 103

To perform the linearization, one has to represent the dependendesgoiy?. as an intersection
of affine inequalities? = {x € R"|Ax+ b > 0}. By applying Equation 7.2 and substituting the depen-
dence satisfaction constraint on the left side of the equation and the edfinieination of the faces of
the dependence polyhedrafa on the right side, one will get thearkas multipliers- the unknowns
Ao,A1,...,Am > 0. Afterwards, one can project out those multipliers and obtain the systexfiiroe
inequalities describing the set of transformation coefficients that providgah schedule w.r.t. the de-
pendence polyhedrak - this set itself is a polyhedron,.

As an example, let us take the code shown in Figure 7.4. In this case wetlsg\ane statement and
one dependence edgeS; — S;. The dependence is the true (read-after-write) dependence dskbyib
the polyhedron:

Pe={(,J,I",]N'=1+41N]=]J+1IAN0<i<N-2A0< j<N-2}

Our goal is to find the unknown coefficienil%l,af’}z,oofl of the one-dimensional affine scheduling
function Gfl satisfying the dependence constraints:

V(i J,1', ') € Boragyi’ +agh] +wit — (ayi+alj + o) > 1 (7.5)

In the case of uniform dependences, application of the Farkas lemma lwewdinplified3 The
distance between source and sink iteration is constént i + 1 andj’ = j + 1. If those equalities are
put into the previous constraint system, the loop induction variables aceleainout. After simplifying
we get the constraingy, + a3, > 1.

This inequality defines an unbounded polyhedrgn containing the possible values for scheduling
coefficients. This set is an unbounded set — there is no upper nor tmued on the coefficient values.
Please note that coefficiemfl is completely unconstrained. The legal solution polyhedron is described
as follows:

Ly, = {(ailbailz?w?)‘a%ﬁ‘a%z >1} (7.6)

Figure 7.1 shows an iteration domain, and uniform dependences foratpeapr in Figure 7.4. One of
the possible choices for the coefficientsif§ = 1,a%, = 1,w}* = 0, which gives the skewed scheduling

hyperplane@fl =i+ j shown in Figure 7.1. The skewed scheduling hyperplanes are exesrqadn-
tially, while the iterations that belong to the same hyperplane might be executedatep But the
simplersolution is to takea’; = 1,a, = 0,w* = 0, which gives an orthogonal scheduling hyperplane
- the one that corresponds to the ofiginal loop iterator

The goal of all the affine scheduling algorithms [67, 68, 128, 104, QBPis to choosé¢he besto-
efficient values among those contained inside the legal solution polyhégrofihe best coefficients are
chosen according to some well defined criteria - maximal parallelism [67n88imal synchronization
[104] or minimal memory traffic [34] for an instance.

Another approach is to exhaustively search for all the possible skdgdiiven some bounds on
the coefficient values. That is the approach fterative compilationtakes [130, 128]. Pouchet shows
that it is feasible to exhaustively search the space of all the legal andctlistinedules, provided that
the scheduling coefficients are bounded. As shown empirically by Poumhending the coefficients to
integer values in the interv@l1, 1] gives the schedules that are usually expressive enough [130].

In the example we have shown, there is only one dependence edgeeferaldnce edge gives one
set of the constraints on the coefficients expressed as a polyhégroBut in the general case, the
dependence graph contains several dependence edges. To abg@livbdd solution, one has to take the

3. For a full example of applying a Farkas lemma, a reader is couldtaefi 30].

104 7. TRANSFORMATION SEARCH STRATEGY

st st

N N N N
N N N N
r e e e e 1o e e
N N N N | | |
| N | N | N | N 11 12 13 4
T N T N T N T > % % | >
N]
1 N2 « 3 S 4 [N X , | i
N \ N N 1
N N N —
— N = _

Figure 7.1 — Uniform dependences and skewed#gure 7.2 — Uniform dependences and orthogonal
perplane hyperplane

, N ~ 2N
s Y /o ’
N ’ N \
1 ¢ , L, N . , N
4+ < > e e
Nl ’ / , 2 .
N , L, , , , 4
7 ’ ’ 4 , ’
4 , e ’ . .
,
, , ’ 4 2 ,
’ e ’ ,
, , , , ’
, s 2 -
’ e 4 ,
/ , sN
, ’ 4 ,
g ’ , N
— s 4 7 s
3 > 2 ’ ’ ,
’ e ,
N , / 2 , 2
’ .
N , , , , ’
, , e ’ , ,
, , 4 ’ , ,
’ . , ,
, 4 ,
, . ’ , 2
L, , ’ s , ,
, , - ’ , . N
7
, , , , 2 ,
2 4+ N P 4 . , , , N
W, 4 ’ , 2 , 2
, . G , 7 , 7
N ,
’ , , , ,
4 , , , , ,
- ’ , , , ,
e ’ , 2 , 2
, . , , , ,
, ’ , ’ , ’ ,
, , , , , P
4 ’ , , , , , N
1 -1 N s N ’ N 4 N 4
N4 N % N4 N4
N N/ N7 N

Figure 7.3 — Uniform dependences and outermost
parallel hyperplane

for (i = 1; i < N; i++)
for (j = 1; j < N; j++)
Si: A[i][j] = A[i —1][j —-1] + X;

Figure 7.4 — Simple uniform dependence

7.6. THE SPACE OF LEGAL AFFINE TRANSFORMATIONS 105

for (i = 1; i < N; i++)
for (j = 1, j < N; j++)
Si: A[i][j] = A[II[] —1] + A[T =1][j];

Figure 7.5 — Two uniform dependences

intersection of all the coefficient constraints, for all the dependengeseaf the graps = (V,E):

L= La (7.7)

VecE

7.6.1 Multidimensional schedules

One-dimensional schedules are not always obtainable. In practice,afemany codes for which
the set of legal coefficients for the one-dimensional schedules is emgpshdwn by Feautrier [68], one
needs to extend the notion of one-dimensional schedules with the multidimdrsibealules. It has
been proven [68] that there exists a multidimensional schedule for epeimdience graph induced by
the loop nests coming from imperative programs. Indeed, the multidimensidred@e corresponding
to the original loop nest is always legal, and it is one of the possible solutions

Having the one-dimensional schedule, it is always mandatory to strorntigfysal the dependences
at the first (and only) dimension. Having the multidimensional schedule, ilhareombinatorial choice
of the depth of the dimension that strongly satisfies the dependence.

Feautrier decouples the problem of selecting the dependence satisfdegitnfrom forming the
set of feasible schedule coefficient values. By introducing thel Qariablexg € {0,1}, one can model
whether the given dependence e@geE is satisfied weaklyx{ = 0) or strongly & = 1):

W(i.0) € Pe: 6 (1)~ B3 () > ¢

Each dependence edge& E has to be satisfied strongly at some ddpthet us consider the set of
scheduling hyperplan@, ey efp at different dimensiongk € 1..m. If the dependence edgés satisfied
strongly &’ = 1) at deptH, this edge could be removed from the system of constraints when cdngider
deeper level& > |. Putting it more formally, for a given edge: § — S, the following is a sufficient
condition for the legality of the multidimensional schedule w.r.t. the dependelysee

J<I<mx=1
AVK<I,x=0 (7.8)
AVK < 1LY(L,]) € a6 () — B3 () > ¢

This reasoning comes from the simple fact on lexicopositivity of the diflezesf the timestamp
vectors [68]4

The fact that there is a combinatorial choice of the weak/strong satisfdotieach edge € E and
for each scheduling leveld k < mhas led to the heuristics that try to structuralize this decision problem.
Feautrier [68] has proposed to maximize the number of strongly satisfieshdepces at each level:

maxEExE
ec

4. when comparing the two vectoesand b lexicographically, it is sufficient to find the first positidnwhereag =
bo,...,a_1=Db_1,a < by, while the ordering of the remaining positions is irrelevant.

106 7. TRANSFORMATION SEARCH STRATEGY

. This is the greedy approach that tries to satisfy as much dependenqeessdde in the outer scheduling
dimensions, and to expose the parallelism in the inner loops. Also, it aims at muhisional schedules
that have the minimal dimensionality.

Bondhugula [34, 32] aims at different objective: that of exposing thterdoop parallelism. Thus,
the strong dependence satisfaction is moved to the higher dimensions (iops), land the parallelism
and tiling opportunities are exposed in the outermost loop levels.

As an example of the impact of the choice of dependence satisfactiongsteak), let us again
take an example in Figure 7.4. If we consider the first dimension of the multidioredschedule, after
applying the Farkas lemma and simplifying, the constraint is:

a11+a12 > X7, X € {0,1}

There is a choice between satisfying the dependence strafetyl or weaklyx] = 0. According
to Feautrier’s heuristic, one maximizes the number of the strongly satisfieshdepces at each level,
thusx¢ = 1. This leads to the constraiaf’; + a5%, > 1, which resolves the schedule within the first
dimension. This enables the innermost Io7op pafallelism, since the secomdikechelimensions is com-
pletely unconstrained (after strong satisfaction at the first dimension efendence edge is removed
from consideration at deeper levels).

Figure 7.2 shows the minimum latency orthogonal hyperplﬂﬁes i providing the first scheduling
dimension. The iterations belonging to the same scheduling hyperplane eoet@tuted in any order -
in parallel in particular.

With Bondhugula’s approach [34] the goal is to minimize tiependence distanstarting from the
outermost scheduling dimensions. This translates to the heuristic whichiptefeeakly satisfy the
dependence at the outer levels and to strongly satisfy the dependénednater levels. This leads to the
constrain'[all + a12 > 0. In particular, it is preferable to obtain the outer parallel enabling sdimed

hyperplaneal 1+ a12 = 0. Since the first scheduling dimension is not strongly satisfying the edge, th
satisfaction has to occur at deeper dimension. This forces the choice sfrting satisfaction at the
second scheduling Ieveifj1 + a272 > 1.

By assigning the values to the scheduling coefficients for the first levelgets a possible parallel
enabling scheduling hyperplaﬁ§L =i—] (a1 =1 a1 , = —1). For the second dimension, the schedul-

ing hyperplane i3 = (a21 1 a22 = 0). This multidimensional schedule enables th#ermost
parallelism- the outermost Ioop is a DOALL loop. This is depicted in Figure 7.3.

Depending on the underlying architecture, either the inner parallelismr@=ig@) or outer paral-
lelism (Figure 7.3) might be more beneficial.

All the mentioned approaches stick to the one scheme of selecting the dimetisom@se to be
strongly satisfied. A new approach of Pouchet et al. [132] tries toesspthe convex space of all the
possible choices for thg’ variables and to enumerate those choices. While this seems a promising
approach, the amount of the possible solutions is prohibitively huge.

In the later sections of this chapter we will show the approach of enumethgnupssible decisions
in a specially designed binary decision tree. This enables us to enumerdifigrent decisions, while
still maintaining the reasonable problem sizes.

7.7 Discrete sets of one-dimensional legal solutions

While the previously mentioned affine scheduling algorithms consider a xprgssive search space
of all legal affine transformations, it is not always necessary noiratde to consider the full space
of affine transformations. What is more, Feautrier’s affine sched@lér 8] or Bondhugula’'s [34]

7.7. DISCRETE SETS OF ONEDIMENSIONAL LEGAL SOLUTIONS 107

Transformation name Matrices involved
Interchange, skewing (unimodular), reversah

Strip-mining, tiling D, 6
Pipelining (multidimensional) B
Parametric pipelining (multidimensional) | I
Reversal (unimodular) AT
Motion, fusion, fission (distribution) B

Table 7.1 — Classical loop transformations and their polyhedral matrixsepiation

combined parallelism and memory locality heuristic lagst effortheuristics - they provide one and only
one solution chosen by some cost function.

As evidenced by Pouchet [131], the best effort heuristics are aitadapted to different architec-
tural features - the optimal solution according to heuristics might be optimalrferarchitecture and
suboptimal for other architecture. The other problem is

7.7.1 State of the art

We take the idea of Darte [54] stating that arbitrary affine transformatieneat always desirable.
Narrowing down the scope of affine transformations might result in therlgtterol over the generated
code.

Our goal is to enable the exhaustive search of the possible affinedraradfons while still narrowing
down the search space to the reasonable size. We have already st®watiam 7.6 that the space of all
the legal coefficients for affine transformation might be unbounded.

Bounding the coefficients to the-1, 1] interval was proposed by Pouchet [129, 128] in his work on
iterative compilation within the polyhedral model.

Pouchet also shows [129] that some coefficients of the affine tranafmm are less critical than oth-
ers. This fact was investigated empirically by assessing the impact ofadfiffieansformation coefficients
on the performance of the transformed output program. That fact tiés teedecoupledcheuristic [129]

- first the coefficients corresponding to the loop induction variablescared, and later the rest of the
coefficients are completed.

Girbal has shown [74] that the different parts of the canonical sdivegdmatrix format correspond
to differentclassicalloop optimizations [7]. This is summarized in Table 7.1.

7.7.2 Narrowing the search space

If one wants to enumerate all the possible transformations within an affirefdramation space, one
has to bound the values of the transformation coefficients.

Instead of bounding the values of the coefficients of affine transformatgdone by Pouchet [129],
we restrict the possible space of transformations right away at the liegiahour search. We restrict
our search space to the following transformations:

— loop permutation

— non-parametric shift

— motion, fusion, distribution

Strip-mining and tiling transformations are treated specially and they are atessvards. Re-
stricting the search space to loop permutations only, we do not look forfditiadular transformation
space (skewing, loop reversal). This enables us to restrict the sg@ch considerably, but the resulting
search space is non-convex.

108 7. TRANSFORMATION SEARCH STRATEGY

for (i = 1; i < N; i++)
for (j = 0; j < N; j++)

Si: Alil[j] = B[i —=1][j];

S2: B[i][j] = A[i =1][j];

Figure 7.6 — Two statements, uniform dependences

The motivation would be clear after following the subsequent sectiong beomutation defines
only theorthogonalhyperplanes. While this decision might restrict some possible transformdlikens
loop skewing for extracting fine grained parallelism) it is powerful enofagithe purpose of finding
outer and inner loop parallelism in many cases. The problem is similar to Kg¢sngg] loop selection
problembut it is expressed in the much more general framework of the polyheshaé|: we support the
non-perfectly loop nests, non-uniform dependences, shifting fosfiobamation correction and integrate
this into the loop distribution/fusion decisions.

7.7.3 Building non-convex sets of one-dimensional legal sttules

We have to take into an account the restrictions on the possible schedule® thave imposed up-
front when considering the affine scheduling functions. Consideriad\tpart of the scheduling matrix
for each statemer§, for each rowk we constrain the scheduling coefficients to the following form:

iaﬁsz 1, aﬁs €{0,1} (7.9)

In other words, each row is composed of all zeros except one posgays- that contains an integer
constant 1. This corresponds to selecting the ©¢p] at the scheduling leve.

Let us consider an example in Figure 7.4. The general form of the affimeduling function for the
statemeng, is:

A respective affine scheduling legality constraint (shown in Section 7.&§}lisr ailz > 1. Taking
into an account the constraints we have imposed in Equation 7.9, we getlltveirfig table of the
possible solutions:

: St S Sy
solution no.| ar’; | ar, | Wy
1. 0 1 unconstrained
2 1 0 unconstrained

The solution is trivial: there are only two possible loop interchanges and #iem are legal. The
shifting factore;® is unconstrainedl The solution set is non-convex. The actual solution set is the enu-
meration of legal loop permutations alongside with legal shifting factors fo ealection of loop per-
mutations.

Let us take a more complex example, containing two statemg&ntnd S, and two dependence
edges; : S — S ande; 1 S — S The dependence polyhedra describing those two dependence edges
are the following:

Pe, ={(i,,i",] =1+1AN]=]AL<Ii<N-2A0<j<N-1}
P, ={(i, j,i",][=1+1IAN]=]AL<Ii<N-2A0<j<N-1}

5. The shifting transformation expresses the relative shift of two statsmie makes sense only if we have more than one
statement. In the case of a single statement we will assu?‘ne 0.

7.7. DISCRETE SETS OF ONEDIMENSIONAL LEGAL SOLUTIONS 109

ary | ayh, | ary | arp | convex part
1 [0 |1 [0 |wP-—w>0
0 |1 |0 |1 |wP-wr>1

Table 7.2 — Solution set®

ary | ayy, | ary | arp | convex part
1 [0 |1 |0 |wt-w2>0
0 |1 |0 |1 |ot-w2>1

Table 7.3 — Solution set®

The prototype schedules from both statements are:

O = apyi+arhj + wp (7.10)
OF = ayi+a | +wp (7.11)

The legality condition is expressed as:

OR2(", ') — 82:(i,}) > 1

Since we have the uniform dependences, we can substitate+ 1 andj’ = j + 1 in the legality
condition expression. After simplification we get:

(agy —aPy)i+ (a%, —arh,) | + Wy — Wi +apy > 0

After applying Farkas lemma (the details could be found in Appendix A), wehgdollowing system
of constraints on the scheduling coefficients:

S St
aj,—a;, >0

W — W7+ 2834 —ath —1>0

By enumerating the possible values of the coefficients that in addition satestyghation 7.9, we
get the set of solutions shown in Figure 7.2.

The solution set is now split into the non-convex part and convex paet.nbh-convex part corre-
sponds to the enumeration of the legal loop selections - encoded within Afiaet scheduling matrix.
For each legal assignment of th%k coefficients, the remaining constraints on #fting partoo‘:4 are
expressed in the convex polyhedron form.

The similar solution set is obtained for the dependence eglg& — S;. The solution set is shown
in Table 7.3.

While the solution sets represent the space of legal coefficients for siegendence edges, the aim
is to obtain the global solution, as in Equation 7.7. For that purpose, thedotiens of the solution sets
has to be provided. After combining the solution s€tsand %2, we obtain the global solutiors shown
in Table 7.4.

S S| 52
a’y | ay | a4 | ai% | convex part

1 [0 [1 [0 |- +1>0Aw-—wP+1>0
0 |1 |0 |1 |w?-w!>0Aw)—w?>0

Table 7.4 — Solution sef = L& L%

110 7. TRANSFORMATION SEARCH STRATEGY

AZ | convex part
1 |1 [w?-w>0
2 |2 |op-wr>1

Table 7.5 — Compressed encoding of theS®t

AT, | A, | convex part
1 |1 [w?-w?>0
2 (2 |or-w?>1

Table 7.6 — Compressed encoding of the 58t

Representing convex rational and integer solution sets is a well studielépran convex optimiza-
tion theory [42, 143].

Omega [133] library uses Fourier-Motzkin elimination extended to integerrlipggyramming and
integer set operations. Several efficient implementations basddaimepresentation[143] have been
proposed. The most popular one was implemented in Polylib, the work of tge\énd Wilde [160]. It
is based on Chernikova’s algorithm for transforming between constegpinésentation (the set of affine
constraints) and generator representation(set generated by avegiads, rays and lines) [42, 100].

The most recent developments are PPL [12] and ISL [158] librarieméanipulating the convex sets
of rational and integer solutions respectively.

7.8 Non-convex solution sets

As we have shown in the previous section, we split the solution set into theorex and convex
part. For representing convex sets, we use techniques that areyairelhdeveloped.

While the representation of the convex sets has sound mathematical anithalgobackground,
the representation of the non-convex sets poses more complexity proBleohsnon-convex problem is
particular and thus requires dedicated techniques with heuristics wetead@agthe problem.

Following is the work that describes our approach to representing theorex set of all the legal
loop selections for a single dimension. In a Section 7.9 we will extend this to multidiovead solutions.

Representing non-convex solutions

We propose to usdecision tree®s a representation of non-convex solution sets. We have imposed
a constraint on the possible set of coefficient values for the@ﬁwf A part of the scheduling matrix
of statemensin Equation 7.9. A row is composed of all zeros except single integer aurist some
positions. Instead of representing the full row, we can only represent the positib< s < dim(S) of
the integer constant 1 in a row.

Taking the solution set shown in Table 7.2, we encode the legal solutios sbban in Table 7.5.
The same is done for the solution 96, as shown in Table 7.6.

After encoding the full matrix row as single integer value, we constructéieesbn tree representing
the solution sets. Figures 7.7 and 7.8 show the respective n-ary decesan tr

Even though one might use a simple representation of the sets, such aslitkent arrays, we
propose to use the n-ary decision trees for that purpose. The risaberfact that we will require the set
operations to be performed efficiently. A tree structure enables us tovadhis goal.

The leaf nodel represents a 'no solution’ - a given selection of the decision variables gh illegal
schedule. The rest of the leaf nodes represent a legal solutionsendrthlabelled by the polyhedron

7.8. NON-CONVEX SOLUTION SETS 111

S
Al,o
/ \
S S
Al,o Al,o
2
ll \ " \Lz
WP — Wt >0 i WP — Wit > 1

Figure 7.7 — n-ary decision tree representing the solutior %et

AL,
/ \
S S
Al,o Al,o
1J{ \ lz
1
W — w2 >0 L W~ > 1

Figure 7.8 — n-ary decision tree representing the solutior%et

representing the legal shifting factors - a convex part of the solution set.

At each depttk of the tree, we consider the nodes of the fakfﬂ that represent the decision variables
that encode the possible rows of the A part of the scheduling matrix forgatemeng. A given node
Aff, might have up talim(S;) legal child nodes. The legal child node is the node that does not lead to
the L terminating node.

Initially, we represent the sets for the pairs of statements only, so eactvdardd have a depth of
two. When combining the trees into the global solution, we will obtain a tree thattdexs the global
schedule with a depth, wherep is the number of the statements whose schedules we are constructing.
We will now show how to perform the basic set operations on n-ary decisgesthat we construct.

7.8.1 Efficient operations on solution sets

Once the solution sets are represented as n-ary decision trees, thereeid & provide the basic
operators on those solution sets. The basic operators that we aretédéneare:

1. EMBED(L,X)
INTERSECT(L/, L")

3. PROJECT(L,X)

4. ORTHOGONAL(E’, £,k)

We will discuss the first three of them in this subsection. The last oper@arHOGONAL- will be
discussed in Section 7.9.

N

Embed operator

Each decision tree have a set of decision variap¥sk . .., Xn}. For example, the decision diagram
in Figure 7.7 has two decision variabletsfl, and A‘I’_Z,. In order to perform an intersection operation

112 7. TRANSFORMATION SEARCH STRATEGY

S
Al,o
1| |2
S
Al,o
/ \

S S
Al,o Al7o
1 2 2

1
mfszflzo 1 w%—w%gl

Figure 7.9 — The result of the operatomBeD (L%, {AT,})

on two sets represented as n-ary decision trees it is mandatory that tleetheasame sets of decision
variables.
Given a decision tree with a set of variableél, ..., Xn}, an embed operationNBBED extends this
set with one decision variable, sy, 1, while not changing the elements contained in the original set.
As an example, let us take the original set in Figure 7.7. Figure 7.9 showsguk of the embed
operation on the set® with a (hypothetical) decision variabnef?.. Now the decision tree is extended

with one more decision variableA?,. The set of the solutions remains the same - the value oAfije
variable does not impact the set of valid results represented in a set. 7

The ordering of the decision variables has an impact on the size of theoteitese. Embedding the
variable at the deeper levels increases the number of the nodes, siegeities the replication of that
decision node.

Intersection operator

The intersection operator performs the set intersection. The result isténgdation of two solution
sets, say.’ and L”, so that the resulting sét = £' N £” contains the solutions that are both legakin
andin.”.

The operator requires that both arguments contain the same set of deeisabies and that their
ordering is the same. If this is not the case, then thsiED is used to introduce the common decision
variables in both sets.

The intersection operatiod’ N £” = INTERSECT L', L") proceeds by recursively following the de-
cision variable nodes from top to bottom for both arguments and finding tled semmon terminating
nodes. For those terminating nodes that have legal solutions, the intansefatimnvex sets is found.

An example is shown in Figure 7.12 which is the result of applying the interseoperator on
trees shown in Figures 7.10 and 7.11. A common set of legal terminating fordests £’ and L” is
the terminating node faX; = 2, X, = 2. Subsequently, the common terminating node is labelled by the
intersection of convex setg and®s.

Projection operator

The projection operatorBOJECT L, X) takes the decision treg containing the decision variable
X and removes that decision variable from the representation while keemgrgettof legal solutions

7.8. NON-CONVEX SOLUTION SETS 113

/\ /\ /\
i\/l i\/l \/

P3NP

Figure 7.10 — set’ Figure 7.11 — set” Figure 7.12 —NTERSECT L', L")

/\
i\ /f /\L L/ \Tz

Figure 7.13 — seL

Figure 7.14 — Split tree after removing node

selected by remaining decision varialies

While removing the decision variable nodes corresponding to the vadatblat is projected out, the
decision tree is split into several subsets. To obtain the final solution, the ahthose subsets is taken
and represented with the remaining decision variables.

As an example, let us take the set in Figure 7.13. The goal is to projecteo¥ thariable. After re-
moving the node corresponding to decision variaflehe tree is split in two parts shown in Figure 7.14.
Those two parts are combined into the final solution by taking their union.

6. This operation is the 'non-convex’ counterpart of the projectiomatjmn performed on convex sets.

/ \\2
‘P P

Figure 7.15 — The final result of/JECT L, X;)

114 7. TRANSFORMATION SEARCH STRATEGY

Procedure COMBINEINITIAL SOLUTIONS
INPUT: E
OUTPUT: L

E - a subset of the edges required to be satisfied either weakly or strarsgligeduling level one

1. L<0

2. forallec E
— computeL®
— L < INTERSECT(L/, L")

Figure 7.16 — Combining the solutions

A note on complexity

By splitting the solution set representation into the non-convex part repexs by n-ary decision
treesand convex part, operated on by using the regular convex optimizhéory, we have a better
control over the complexity of operations on those sets.

Initially we build |E| decision trees representing the sétsve € E. Each such a decision tree repre-
sents the legal solutions w.r.t to one dependence edge. Those tredbédndepth of two - one level for
each statement. Given an edgre§ — S, the tree that represents the legal solutions for this dependence
might have at mostim(S) - dim(S;) nodes. Each node might be labelled by one convex polyhedron. The
worst case is rarely attainable, even in the case of simple uniform depmsle

Having the full dependence graph, one needs to hHildlecision trees. Lad be the maximal depth
of the statement in a program. The worst case complexity of building the aortstfor all the depen-
dence edges B(|E| - d?).

In order to build the global solution, one needs to combine all those pairwisgraints into the
global system. This is achieved by performing the sequence of intefgecitmns, which in turn might
require an embedding operation. This simple scheme is shown in the forraud@sode in Figure 7.16.

The complexity of the operations is sensitive to the order in which the intersempierations are
performed. The most desirable is to intersect two sets,/Say”, that have exactly the same set of
decision variables - no embedding operation is needed in this case. Thiegitynpf such an intersection
is O(n1ny), wheren; andn, are the number of tree nodes.

7.9 Sets of multi-dimensional legal solutions

So far we have discussed the representation of one-dimensional sskisokiVhile the one-dimensional
solution sets are the starting point for the exploration of transformationsitihete goal is to provide
the set of legal multidimensional solutions, since one-dimensional scheatelemt possible for some
class of the programs.

7.9.1 Representing weak/strong satisfaction

When we were considering the sets of one-dimensional schedules anlgtrtmg satisfaction is
required in the first dimension - all the dependences have to be satisfied thiHirst and only dimen-
sion. If we extend the set of solutions to multidimensional schedules, the carabai problem becomes
more complex. There is a combinatorial choice of whether to strongly orlweatisfy the dependence
edges € E at each scheduling level.

7.9. ETS OF MULTI-DIMENSIONAL LEGAL SOLUTIONS 115

AT,
/ \
S S
Al,o Al,o
2
| \ / |
X3 1 X
/ \Ll O\L \
Wl —wp <1 Wt —w? <1 W — w2 <0 Wt —w? <0

Figure 7.17 — the solution s&f with decision variableg!

We have shown in Subsection 7.6.1 the different heuristics consideringtiilem. Those heuristics
try to find the best weak/strong satisfaction choice for each scheduliabdkbance. We want to take the
different approach: we implicitly enumerate all those decisions in the dedigerf legal solutions.

For that purpose we introduce a decision varia§lor each dependence edge E at each schedul-
ing leveld. The meaning of the decision variable is the same as used in Feautrier's mulscman
scheduling [68]: the decision is made whether a given edge#kly satisfie(k] = 0) or strongly satis-
fiedxg =1)

Taking those definitions into an account, we build a decision tree for theséingtduling dimension
in the same way as we did in 7.8 while adding a decision varigptbat selects the convex part of the
solution to correspond to strict weak/strong satisfaction.

The original decision tree that unconditionally enforces strong satisfestidthe edge; was shown
in Figure 7.7. If we now split the dependence satisfaction decision into &edkstrong satisfaction
(variablexﬁl), we get the decision tree as shown in Figure 7.17. The leaf nodes atkethby convex
sets of the legal shifting factors giving the desired edge satisfactioritmm(veak/strong). The same
splitting is done for edge,, as shown in Figure 7.18.

Combining solutions

In order to obtain the global solution for the first scheduling dimensionhasdo intersect the two
solution sets for edgesy ande,. But the decision trees for those two sets have two different decision
variables:xﬁ1 andxﬁ1 respectively. Thus, the result of the intersection operation combinesobttlem
(using embedding operator) into the final solution shown in Figure 7.19.

The global solution sef; is the exhaustive enumeration of all the possible one-dimensional sched-
ules within the space defined in Subsection 7.7.2. The decision varigblasdx;? partition the space
of convex sets of legal shifting factors giving different edge satigfacSome interesting properties of
the solutions contained in this set are summarized in Table 7.7.

7.9.2 Orthogonal completion

As shown in Table 7.7, some one-dimensional solution sets do not satisfg difendence edges at
the first scheduling dimensions. What is more, in order to propi&enutable loop bandve would like
to enforce the satisfaction of all edges at deeper levels, regardlegeettier they have been satisfied at
earlier levels or not.

116 7. TRANSFORMATION SEARCH STRATEGY

AL,
/ \\
AT AL,
ll \ / iz
1
X 1 X
/ ll O\L \
W — w2 > —1 W — o > —1 W — w2 >0 W — 0 >0

Figure 7.18 — the solution sé&f2 with decision variable}?

S
/ b \
S S
Al . Al,o
1 \ / 2
€1 €1
X1 X1
/
1 0
X X X \!
/ l \)
1 0 0

1< —wp <l Sl<op P <l —l<of-oP <l 1<) -wP<l o -wP=0 L

Figure 7.19 — The global solution s&t with decision variableg? andx;

x¢t | X% | non-convex convex part comment
=0[=0]A} =(01) A7, = (01) | W' —wP¥ =0 Both edges strictly weakly satisfied. Enables

outermost DOALL loop.
>0[>0/ A} =(10)AZ = (10) | -1 < wP—w;* < 1| Both edges strongly satisfied at level 1. En-
’ ables innermost DOALL loop. Does not r
quire further scheduling dimension.

=0|>0| A} =(100A% =(10) | ' —wp2 =1 Edge e; strictly weakly satisfied, edge,
' ’ strongly satisfied. Schedule is not complete at
level 1, requires completion at second leve.
=> | =0| A} =(10) A7, = (10) | wZ - =1 Edge e, strictly weakly satisfied, edge;
’ strongly satisfied. Schedule is not complete at
level 1, requires completion at second leve|.

D
]

Table 7.7 — Summary of the set of one-dimensional schedules

7.9. ETS OF MULTI-DIMENSIONAL LEGAL SOLUTIONS 117

0 1 01
S S _
=-[1 6] #-[o 1]
Figure 7.20 — Full ranked A matrix Figure 7.21 — Non-full ranked A matrix
0 1 01
S S _
=-[7 6] =-[1 3]
W —w?=0
ic Wy —wy <1

Figure 7.22 — Complete solution obtained

In order to get the complete solution, one needs to complete the scheduwbsdtlgng dimensions
1< k< dim(S). The complete schedule has the full-ranked A part of the scheduling maimierder to
get the complete, full-ranked scheduling for each statei§estich statement needs to be provided with
a full rankedAS matrix, with the dimensionality ofim(S) x dim(S).

Bondhugula [34] is using the concept of orthogonal sub-spacesasdht solutions found at the
following rows of the scheduling matrix are linearly independent w.r.t. roves ktiave already been
found. This guarantees the full-ranked matrix.

In our search space, the problem of finding the independent solutieasiisr. We restrict the rows
of A matrix to satisfy Equation 7.9. If we have selected the posgiofithe integer constant 1 at the first
row of the scheduling matrix, then this position could not be used in substemyes.

In general, if we have selected independent positigns., s for levels 1< | <k, those positions
cannot be used when completing the subsequentkewmis< | < dim(S). This is equivalent with stating
that the A represents a loop permutation matrix. An example of the full randgedytation matrix is
shown in Figure 7.20. Obviously, the solution shown in Figure 7.21 is ndt-eafitked multidimensional
schedule.

Given the complete solution set for the first scheduling dimension refiegsas a decision tree, each
valid leaf node could be completed with the next scheduling level that gieemdlependent solution.
While it is possible to provide a completion for each leaf node of the decisienttris procedure might
lead to combinatorial explosion, since each subsequent level is a alss®ddree. In Section 7.10 we
will discuss the systematic search methodology that enables us to controhntipdexity of completing
the schedule at deeper scheduling levels.

If we want to complete the second scheduling dimension, we have to findtaoadet that satisfies
some subset of the dependence edgfes E, while providing a rov%? for each statemer§, that is

linearly independent from a rowf. We will denote this operation asRIHOGONAL(E', L, k), where
E’ is the subset of the edges that have to be satisfied at a new scheduliigdade is the solution set
of the solutions found at levels<d | < k- 1.

Let us take a decision tree shown in Figure 7.19 that represents the sdatian. We want to
complete the scheduling matrices by providing the second scheduling dimehstons take one of
the solutions in the sef; and provide an orthogonal completion for it. Figure 7.23 shows one nhose
solution from the first dimension (emphasized with double arrows) and thegonal completion in the
second dimension. After orthogonal completion in the second dimensiorawe)he complete solution:

If we now assign some concrete values for shifting facta®:= 0,w? = 0,wy = 0,wS* = 0, the
complete solution is:

oy =j, 03 =i

7. This is also necessary for correct code generation from the phighmodel

118 7. TRANSFORMATION SEARCH STRATEGY

AT,
/ \
S S
Al.o Al7'
\ /
1 2
1
X3 1 Xg
=0
>0 =0
€ € €
Xq Xq X1
i 0
>0 >0 =0
S| S _ S S| S St _ S._ S _
wr—wr=1 < —w <1 wr—wr =1 W —w=0
ORTHOGONAL(E={ey,e},L1,k=2)

—1<w§2—w§’1<1

Figure 7.23 — The global solution sét with decision variableg?* andxj?

67 =, 07 =i

This particular solution enables the outermost loop level parallelism (DOAbp)loThis is only one
of the possible solutions. The search method presented in the next Sewthiasthe exploration of the
full search space of multidimensional schedules.

7.10 Towards search methodology

In this section we will propose a search methodology based on decisiosetregpresentation. The
goal is to exhaustively explore the space of multidimensional affine tranafens within the constraints
defined in Subsection 7.7.2.

For that purpose, we will define some more operators on the decisioratrddsen we will propose
the recursive procedure for building the sets of complete multidimensionediates.

We will also explore the possibility of splitting the dependence gi@ph (V, E) into strongly con-
nected components and performing the search independently. This direcgtrictly connected with
loop fusion/distribution [96, 141, 53, 59].

7.10. TOWARDS SEARCH METHODOLOGY 119

7.10.1 Finding global solutions

In previous sections we have discussed the way to build the pairwisedpendence edg® solu-
tions sets, the way to combine then in the global solution for one scheduling deka technique to
complete the scheduling with independent solutions at further dimensiors.wdshave shown how to
encode the decision on whether to strictly/weakly satisfy a given depeadelye.

On top of those operators and data structures, we build a tunable seaiddolegy that enumer-
ates the possible multidimensional schedules. It might be exhaustive - it witherate all the possible
schedules and edge satisfaction conditions, or it miglotdae driven- it will filter out only those sched-
ules that have a certain property (to be defined later), giving an emptyososet if there is no such a
schedule.

In addition to enumerating the multidimensional schedules, the method reporiffiéhendproper-
tiesfor each multidimensional schedule. For our purposes, the properies ar

1. A given dimension (loop) level could be executed in parallel
2. A given dimension (loop) must be executed sequentially
3. A given band of dimensions forms a permutable loop band

Some notation

Some extra notation is introduced for the sake of the search algorithm:

The solution set of legal transformations is denotedcbylhe solution set satisfying dependence
edgee; is denoted by.®. The solution set satisfying the set of dependence eBgsslenoted by.E.
Each single solutio € £ of the solution sefL consists of part that encodes the A part of the réws
and satisfaction decision variablgs®. We denote those the A part of the solutiorTds

If a particularT# solution is selected in a solution tree, the remaining Pagncodes the strong/weak
satisfaction of the edgesc E. Each assignment of the decision varia:kﬂ%E that leads to a non-empty
solution selects some subg&t e E of the edges that could be strongly satisfied. Indeed, the full decision
tree of the decision variableseE determines thé&amily X of the possible strong satisfy subsEfse x.

As an example of the solution set, let us take a solutior.Seshown in Figure 7.19. Here an edge
setisE = {e1,}. One particular solution & = {A?, = 1, A7, = 1,x¢* = 0,x{? = 0}. The A part of the
solution isTA = {AZ, = 1,AZ, = 1}. If the A partT# of the tree is selected, one gets the the sub-tree
of decision variables. In this example, if one seléths= {Af’}_ =1 Aiz. = 1} one will obtain the tree

rooted ai{* that represents the family of possible edge satisfaction s&3 In this example, the family
is equivalent to the powersef df all edges.

Recursive procedure

Here we show a complete recursive procedure for computing the multidinmahsichedules. For
simplicity, we only show the procedure for obtaining one solution, but it cheldeasily adapted to
explore the space of more complete schedules - it is a matter of changingrtheatigsn condition of
the main loop and implementing a way of controlling the desired number of candiolatéons at each
scheduling depth.

The overall recursive procedure for enumerating the multidimensiohaldsdes is shown in Fig-
ure 7.24. An initial set of solutions for the first scheduling dimension is obdaine

L < COMBINEINITIAL SOLUTIONS(E)

The procedure for computing the initial solution set was shown in Figure THe&recursive procedure
is called with the following arguments:

120 7. TRANSFORMATION SEARCH STRATEGY

COMPLETESCHEDULE (£, E,d=1)

The initial solution set i<, the full set of the dependence ed@ets to be satisfied, and the building
process is starting with the first scheduling dimenslea 1.

In the case the procedure is invoked with= dimmax(.5), dimmax(.S) being the maximum domain
dimensionality of the statemenfspne complete multidimensional schedule is obtained. This is the ter-
minating condition for the recursion. At step (1.1) the schedule properggzravided and the complete
schedule is saved at step (1.2). By returning Trueat the step (1.3)ighaled to the calling procedure
that the complete schedule is obtained.

A loop starting at step (3) is executed until at least one solution is obtainesheftioned earlier,
this loop could be changed so that more than one solution is obtained if desired

At each iteration of the loop the next solution is selected at step (3.1) and #stAsgstored a3 .
At step (3.2) an orthogonal subspace for the transformatfois obtained.

A given transformatiom* determines an orthogonal subspace at the deeper levels. The davé par
the search algorithm is to determine the solution/Sdor the next scheduling level such that £’ # 0.

If no such a set could be obtained, then the given transform@fiat the leved could not be completed
with independent solutions at deeper levels.

There is a combinatorial number of ways to provide the/getndeed the set’ = LE — ES. There
is a combinatorial number of ways to select the strong satisfaction ed§®.deta special case when
ES=0,thes’ = LF = £. This is the case when we can have a permutable loop band.

In order to avoid useless backtracking steps, a quick test is perforntedeilonine whether a given
TA could have a non-empty completion at deeper levels. First, a set of EBj&that must be removed at
the current levetl is determined at step (3.3). We will show the way to perform this check inestibs
7.10.2. Later, at steps (3.4) and (3.5), it is determined whether this skt loewstrongly satisfied by
a selected transformatiof®. If it cannot be strongly satisfied, then the 3¢t is not taken into the
consideration anymore.

At step (3.6) the family of strong satisfaction sets is restricted to fafiilyhat contains only the
satisfaction setE S that are supersets of those edges that must be satBfiedE™!St This steps narrows
down the search space of strong edge satisfactions that is travefaetiat steps.

The loop at step (3.9) performs the traversal of the strong satisfactisi$eA naive approach is
to traverse all th€&€S € X/, in any order. The order in which those sets are traversed has an iopact
the convergence of the method. We will show the different strategies afehersal order. A predicate
EXHAUSTED controls the number of the solutions that one wants to investigate. In anystasegy< N,
whereN = X',

Once a given strong satisfaction &tis selected, the remaining $et of those edges that must be
satisfied at deeper levels is obtained at step (3.9.2). A check is made &.&&) whether removing
those edges gives a soluti@¥ that could be completed at deepkr 1. If this is not the case, the next
satisfaction se is checked according to some new strategy (a strategy counter is irkyeagerwise,

a current solutio” is completed with a recursive call to the schedule completion proceduredped
levels made at the step (3.9.5).

7.10.2 Dependence satisfaction strategies

As mentioned in Subsection 7.6.1, the problem of selecting the dependeges tedbe strongly
satisfied at a given loop depthhas so far been solved by proposing heuristics [68, 34, 32]. Date [5
has formally shown that this problem is NP-complete. Given a dependeagk@ = (V,E) having|E|
edges, there are®2 possible subsets of the edges to be strongly satisfied.

8. For the implementation convenience, the schedule matrices of thoseestédevhose depth is less thaimmay(.S) are
padded with zeros

7.10. TOWARDS SEARCH METHODOLOGY 121

Procedure COMPLETESCHEDULE
INPUT: L, E, d

L -asolution set found so far (for levels<ll < d), satisfying the set of edgés
E - a subset of edges satisfied at the given or deeper levels
d - a scheduling dimension to be completed

(1) IFd = dimnax(S)
{ A complete multidimensional solution is obtained }
(1.1) provide schedule properties
(1.2) savethe complete solution’
(1.3) RETURN True
(2) found« False
(3) WHILE (—found)
(3.1) IF empty (T < next solution fromz)
BREAK
{compute orthogonal subspace of transformation }
(3.2) H <~ ORTHOGONAL(T#A)

{Compute the set of edges that must be strongly satisfied in order
to give the non-empty solutiotd N £’ # 0}

(3.3) EMUSts— MUSTSATISFY(H)

{ Select the familyX of possible edge satisfaction s&S e x for transformatiorT }
(3.4) X < SELECT(L,TA)

{If the setEMYStdoes not belong t& then break early }
(3.5) IFEMustg x

CONTINUE

{Select the familyX’ c X such thatX’ = {ES € X : ES > EMUs}} }
(3.6) X’ + SELECT(X,EMUsY
(3.7) N+ |X/|
(3.8) strategy« 0

(3.9) WHILE (—foundA EXHAUSTED(strategyN))
(3.9.1) ES < SELECTSATSET(X/, strategy
(3.9.2)E'+ E—ES
(3.9.3) IFHNLE =0
strategy«— strategy+ 1
CONTINUE
(3.9.5) found<« foundv COMPLETESCHEDULE(LF E’,d+1)

(4) RETURN found

Figure 7.24 — Schedule completion strategy

122 7. TRANSFORMATION SEARCH STRATEGY

One can exhaustively try all the possible subsets - a naive enumeratioadn@th rather propose
to rank those subsets according to some preferable properties. Ttls, svamed SLECTSAT SET, is
called from the enumerative search algorithm shown in Figure 7.24.

The first and most preferable strategy is the case viifea 0. This choice forces the next scheduling
leveld + 1 to satisfy all the dependence ed@esatisfied at previous level. If this is possible, we will
obtain a permutable loop band..d+1 as in [34].

If this is not a feasible solution, then at least one edgeE has to be strongly satisfied. The joint
work of Pouchet and Bondhugula [132] shows the simple heuristic tl@deeto satisfy the maximal
number of edges at a given depth if & can not be empty. We also believe that following this scheme
mostly likely increases the chance of getting the non-empty completion of thdudetst the next level.
Thus, the next preferable strategy is the one that se{&is X : maxES|}

As Kennedy has shown in his approach to loop selection problem [7]yé&®elg heuristic of select-
ing the solution that covers the maximal number of the edges at once might faé itase when this
maximal subset does not cover those edges that prevent obtainindutierso

We improve the heuristic of Pouchet and Bondhugula by a shortcuttingistpwse determine up-
front the set of those edges tmatstbe satisfiedE™ St This set is not determinable in the case of general
affine schedules. But in our case we have a restricted search sphegalso have an enumeration of
the possible solutions built upfront.

The goal is to obtaitd N L' # 0

The goal of the procedure WsTSATISFY(H) called at step (3.3) of the algorithm in Figure 7.24 is
to obtain the seE™Ust — ES of those edges that must be satisfied in ordet to LE-E° £ 0. Obviously
if L8 NH = 0then the dependence edgédas to belong to the s&MUst

Although the pruning step we have shown can cut down the searchafgaessible satisfaction sets,
it only gives the necessary condition, but not the sufficient conditiorifo LE-F® # 0.

7.10.3 Distribution/fusion scheme

The search method discussed so far does find a complete solution in teromsméte A part of the
scheduling matrices. But it does not represent the loop distribution(fusahemes since tlpart of
the scheduling matrices is not constructed. Indeed, the scheme presapiiedly assumes that all the
statements are fusefl part of all the schedule matrices being the zero vector).

Forcing all the statements to be fused within one loop might prevent obtainintegal solution.
Indeed, if an original program contains non-perfectly nested logpse statements do not belong to the
same loop - they are distributed. It is not always legal to transform spobgiam to a completely fused
version.

A classical literature on loop fusion and distribution [95, 111, 53, 54shihne benefits of both:
distribution enables more transformations, including parallelism, while looprfusibeneficial for op-
timizing the memory access locality by reducing the distance between procht@oasumer pairs.
Darte [53] has shown that the problem of determining the optimal loop fusiootgre is NP-complete.

The polyhedral model naturally incorporates the loop fusion/distributicisms, througlf8 part of
the scheduling matrix. A systematic way to approach the fusion/distributiorigonain the polyhedral
model was shown in [33, 131]. While expressing the set of legal fusiriftltion structures in the
polyhedral model is not difficult problem [131], selecting the desiradcstire out of the combinatorial
space is hard problem.

We do not incorporate the search for fusion/distribution structures irs@ach space. The reason
is that we want to decouple this particular search problem from the prodflessarching the complete
multidimensional schedules.

7.11. GONCLUSIONS 123

Our original combinatorial problem is the problem of searching for setsdges to be satisfied
strongly at particular scheduling depth . This problem is modelled as a detis®that represents the
possible subsets of the edges that could be satisfied strongly at the same time.

The combinatorial problem of enumerating the fusion structures is the pnaiflenumerating the
legal partitions of the set of statemeris= {S;,...,Sp}. If p is the number of statements, the total
number of partitions is the Bell numbBgp, which gives the worst case complexity of the traversal.

We perform the maximal distribution of the statement sets, according to thglstamnected com-
ponents of the dependence graph- (V,E). This corresponds to one of the heuristics used by Bond-
hugula [35] in his scheduling approach.

The reason for choosing the maximal distribution strategy is the followingcanalways maximally
distribute the statements into partitions according to the SCCs of a dependepbelg addition, this
choice gives the most freedom in choosing the subsequent multidimensabrealules. This guarantees
us that we will get the most expressive space of legal multidimensionatisigsewithin our search
space. Once the full space of fully distributed multidimensional schedulésdmed, one might use one
of the fusion strategies already developed in [33, 131] to get the ddaBiuh structure, if it is possible
to merge the solution sets into tighter constraints given by fusion.

In order to incorporate the max distribution strategy into the search prozede slightly modify the
search procedure. At each depth of the search procedure shdwgune 7.24, after selecting the set of
the edge€S to be removed at the next scheduling level, reform the dependende@rap(V,E — ES)
and compute the set of SCCs for this new gr&kt G. Topologically sort SCCs, and form an ordered
sequencgSCG, ...,SCGy). For each statemef € SCG assign its static scheduling paft§art) to j,
wherej is the position of the SCCin a topological order. After this step, recursahthe procedure
CoMPLETESCHEDULE for each SCCindependently.

7.11 Conclusions

We have presented the general search strategy used for traversitegah transformation search
space. The current approaches to automatic transformation in the pa/hemtiel are based either on
linear programming (one-shot, best-effort heuristics of Feautrier 46d] Bondhugula [34]) or on the
exhaustive search of the space of legal affine transformations {feecatimpilation of Pouchet [129]).

We propose to represent the set of legal solutions as a discrete staiéd and legal loop permuta-
tions, together with enablinghiftingfactors that are represented as the convex sets. We use the decision
diagram data structure to represent those solution sets. Our seacehispasubset of the full space of
affine transformations.

Contrary to the iterative approach of Pouchet, which traverses thepadiesof legal and distinct
affine transformations, our search space is restricted, but this etlablesntrol over the complexity of
the solution. On one side, the solution set is restricted taibeete sevf legal loop permutations, but
on the other side, each legal loop permutation is augmented with a convekstefting factors that
decides whether this permutation satisfies the dependtimrelyor weakly

The fact that we have an explicit control over the weak/strong satisfaectithe dependence edges,
enables us to traverse the spacenofitidimensionakchedules in an exhaustive way (if needed). This is
not possible in the current multidimensional affine schedule space tahegqsroach of Pouchet [128].
Pouchet employs a greedy heuristic that forcesutiique choicef dependence edge satisfaction at each
scheduling level, to keep the search space tractab@ur contribution achieves a degree of flexibility
and controllability of the search space that is not possible with the curreativeeapproach.

9. Though the latest contribution [132] shows (only) a theoretical wagh@ese this flexibility

124 7. TRANSFORMATION SEARCH STRATEGY

Nevertheless, our search space is not as exhaustive as the onecbEPd@ecause we restrict the
scheduling coefficients of the dynamic scheduling component (Sectiontd3thg loop permutation
only, we might miss some important transformations such as loop skewing deesal or loop slowing.
But this is a necessary price to pay if we cannot accept the running time ektaustive iterative search
used in the feedback-directed iterative compilation [128].

The future work

The search strategy might be improved in several directions. First, thiéthfgi@ improvements are
necessary in order to avoid the overhead of recomputing the same soktsottusing the construction
of multidimensional schedules. This could be achieveddghingthe already computed sets to avoid
the redundant recomputations.

The representation of the convex part of the solution relies on the opesatiothe polyhedral sets,
that in turn require the Chernikova’'s algorithm [42, 100]. But it coulcbbserved that our convex sets
have a special form, that of the two-variable per constraint [49]. @lse$s are the subsets of general
polyhedra, and they could be operated on with less costly techniques thgerbral techniques used
for polyhedral sets [154].

Our search strategy enables the branch-and-bound metaheuristio. @der to make it effective,
we have to provide a systematic waymtiningthe search space, cutting the non-profitable branches of
the search tree. This could be achieved by havipgréally evaluatedcost functions that could provide
the estimate of the cost, even without having a completed schedule. Ountazost function (Chapter
6) does not have this property.

125

Chapter 8

Conclusions and perspectives

In this thesis we have presented the theory, design and implementation oétble based program
transformation strategy based on top of the three-address code pailyteupiler. We have shown that
in order to obtain the precise execution cost-model function, it is negessartegrate the polyhedral
model framework directly into the three-address code compiler. This is itmasarwith the traditional
approach for polyhedral compilation based on source-to-sourceilersp

Integrating the polyhedral compilation framework directly into the threeesfitode compiler posed
several challenges that were not investigated in the known literature aWegrovided some efficient
solutions for those problems, concerning the efficient representatittmeagcalar and memory-based
dependences. We have also presented an unifying approach fieseating all the transformations, in-
cluding tiling purely through the scheduling functions.

We have shown a precise execution cost-model function that precig#lyrea the low-level details,
such as SIMD vectorization, of the target architecture. Contrary to simgirstiar cost-model functions,
our function is a complex, non-linear characterization. The evaluationfithction requires a search
based strategy, contrary to the approaches that use linear programndiingctty optimize the simple
linear cost-functions. Our cost-model function is evaluated for each pbiine constructed search space.

Providing an efficient search strategy requires the construction ofxiressive, but size-limited
search space of legal program transformations. We took a novelagprcontrary to the current iterative
optimizers that explore the huge space of affine schedules, we buildch sgmce otliscrete sebf
transformations. Our search space is a subset of the full affinésigaace. For an efficient representation
of the sets we propose to use the decision diagrams and we provide thefmsitors on those sets.

For assessing the feasibility of the approach, we have provided thécpfamplementation of the
techniques in GRAPHITE polyhedral framework that is a part of the yortidn quality compiler GCC.
We will summarize the detailed contributions of this thesis:

Three-address code polyhedral compilation framework

Traditional polyhedral program transformation frameworks are implerdexg¢he source-to-source
program translators. This design is hatural and practical for rdsdartit is somewhat simplistic when it
comes to precise modelling of the target machine execution model. We providesiga and implemen-
tation of the sophisticated polyhedral transformation framework operatiagtly on the three-address
code in SSA form. We have provided an in-depth investigation of the isgleted to the direct poly-
hedral compilation of the three-address code. To the best of our kdgeyl& is one of the first widely
available and published polyhedral compiler that operates on the thdeesaccode.

Lazy approach for relaxing scheduling constraints

The problem of effectively handling memory-based data dependeneasliknown. This problem
is particularly exposed in the three-address code polyhedral compileg e low-level code con-
tains many temporary variables for storing intermediate results. Those tempari@bles induce many

126 8. CONCLUSIONS AND PERSPECTIVES

memory-based dependences. The traditional approach to eliminating mbas&g-dependences is the
memory expansion expanding scalars into arrays, or arrays into higher-dimensioreysarmhis ap-
proach eliminates all memory-based dependences, but it might haveibitpretcost. We propose the
lazyapproach for handling memory expansion. The memory-based datadégypes are firstly ignored,
and the live rangeiolation analysids used to compute the minimal set of dependences that have been
violated. Only the violated memory-based dependences are removedhtexpansion. This approach
works well with search based strategy, since the cost of the memory @gpanight be evaluated for
multiple transformation candidates.

Semantical transparency

The traditional source-to-source compilers seasitiveto syntactical details of the input program.
The same computational kernel that is written in a slightly different style (bypduoizing the scalar
temporaries for example) might be ignored by an optimizer, simply becausest mmt conform to
the syntactical constraints of the source-to-source compiler. This limitationeisobthe most impor-
tant reasons why the current polyhedral compilers are not able tqp#aeardly compildegacy codes
or industry-standard benchmarks such as SPECint or SPECfp. iPigptte polyhedral framework that
is part of the production quality compiler, such as GCC, and operating olowhtevel intermediate
representation provides tlsemantical transparendpr the end user - an user might still write the pro-
grams in the sequential style, while the compiler is responsible for extractinigttiresic semantics
of the written program. This form of the semantical transparency is poseil@&APHITE due to the
fact that the polyhedral framework operates at the stage where tleeictdnsformed into SSA form
on which the essential scalar optimizations are performed. A code in suchmaéptures the essential
semantics of the input program and is much less sensitive to the peculiarities syntactic form of
the program. In addition, the lazy approach to memory-expansion caparamsly remove thepurious
data dependenceblat might be inadvertently introduced by the programmer.

Precise performance predicting cost-model

The one-shot, best-effort scheduling heuristics are based on usiagegy) linear programming to
optimize simple linear objective cost functions. The linear cost-models aesl lmasan abstract com-
putational metrics, and they are not adequate for modelling the complex, Vehakgpects of the target
machine execution models. One such an aspect is SIMD vectorization, istiighly target specific.
We propose a novel approach to this problem by proposing tonashine specifiaccurate cost-model
functions. We demonstrate the feasibility of the approach, by construcengrétise cost-model func-
tion for SIMD architectures. Those precise machine-specific cost-modei®ot be expressed as linear
functions and they could not be handled by linear programming machimexteadd, they have to be
evaluated at each point of the search space. The critical aspecefefféiativeness of our cost function
evaluation is the construction of the feasible search space. This reliag oexi contribution, which is
a construction of effective transformation search space.

Efficient transformation search space

We propose the novel method for constructing the search space optdghédral transformations.
Our method is based on providing tHiscrete set®f legal transformations. Those sets are represented
as decision diagrams and they are subset of the full search spadmefansformations. Discrete sets
limit the possible affine transformations, but they enable us to control thelegritymf the search space.
This is crucial contribution in enabling the search-based methodology tleffigent In the case of
multidimensional scheduling, we provide more flexibility: we enable the enumeratithedependence
satisfactionstrategies. The current iterative transformation approaches thdtwcirtee space of multi-
dimensional schedules take the greedy heuristic for selecting the datadéepe satisfaction at different
scheduling levels, to keep the search spaces tractable. They could mispsmts in the search space
that our enumeration strategy enumerates. We show that we can affoleviHisf flexibility, since we
restrict the legal solution sets early in the search process.

8.1. FERSPECTIVES 127

8.1 Perspectives

We have provided a novel approach for the polyhedral programsftyamations based on the search
strategies that optimize the complex, machine dependent cost-model fun8tidinthere are numerous
possible improvements and future directions that are worth investigating.iNgvwe brief ideas for the
possible improvements and directions for the prospective research:topics

Even more precise cost-model

The precise cost model function that we have proposed includes aowggl estimation of the data
locality. While it can capture thgpatial localityof the given memory access pattern, it cannot precisely
model thetemporal locality The model could be extended with cache miss equations [69] that fit very
well with the current model. The architectural interplay between SIMD ljgdisan and thread-level
coarse grained parallelism [62] could be modelled in the cost function las we

Parametric cost function

The cost-function that we have presented works on a premise that thétdoation domains are
known at the compile time. This is necessary because the total cost depetlis exact number of
iterations of each loop. This also simplifies the comparison of the costs, sima®sks are expressed
as simple integer numbers. But the polyhedral model allowg&nametricloop bounds - bounds that
are expressed as symbolic constants that are not known at compile timeoW like to investigate
the technique of computing the number of iterations [43] for parametric iterdtiorains. This would
require representing the costs as symbolic expressions, rather thaar cegtants. This could however
fundamentally change the approach: the best solution will depend onrtmgi@r values, and it could
not be obtained automatically. Some assistance from the user, who undsista domain of the problem
and can estimate the problem size, would be required.

Machine learning assisted portability of the cost-model

The analytical cost-model function that we have presented relies andbkine specifimstruction
costs. We have obtained those costs for several architectures, ihmaagbenchmarking and knowl-
edge of the exact instruction latencies. Obtaining the instruction costs farethearchitectures is a
time-consuming process which hinders thartability of the cost-model based approach. In order to
facilitate the porting of the cost-model to the new architectures, it interestingestigate the possibil-
ity of employing machine learning, like in [40], to automatically obtain the instructmsiscand other
platform-specific coefficients that are used in the cost-function.

Scalability

We propose the search space construction method that can contrgbtbsi@x of the transformation
search space by limiting the numberrain-convessolutions. Still, we leave some parametric part (the
shifting factor) that is represented as convex polyhedra. This partiierily operated on by the standard
polyhedral techniques. But the special form of this parametric part isiabhe to representation as the
two-variable per constraint system [49], which could be operated onl@gthcostly techniques than the
general techniques used for polyhedral sets [154]. An interestggareh direction is the investigation
of thesub-polyhedratiomains. Sub-polyhedral domains are less powerful than the traditiolyhilgaral
techniques, but the complexity of operations on those sets is guarantezgddtybomial or linear.

Extending the scope of the analyzable programs

The traditional polyhedral model representation is restricted to static ¢@nograms (SCoP). This
is the fundamental restriction of the polyhedral model. Programs with irregaidrol, non-affine mem-
ory accesses and loop bounds are not amenable to analysis within thegralyimodel. The methods
[26, 18, 78] to overcome those limitations have been proposed, but theyilhnot widely used, due to
the complications in code generation for non-affine programs. An integegiiaction is to investigate
the static polyhedral techniques, coupled with dynamic techniques [122fdrlprogram paralleliza-
tion.

128 8. CONCLUSIONS AND PERSPECTIVES

Just In Time Compilation

We have provided the polyhedral framework for the direct compilation efttihee-address codes.
Our technigue was investigated in the context of the static compiler, translatiisgtince code to binary
machine code.

The fact that the polyhedral technique is implemented directly on the thdressdcode represen-
tation could be extended and used in the JIT compilers that directly operdke diytecode. Indeed,
Polly project, based on LLVM compiler framework [79] goes in this directibime crucial problem to
be solved though is the scalability of the polyhedral techniques, especialisatisformation part.

Going beyond the affine transformations

The affine transformations expressed in the polyhedral model covieleerange of the classical loop
transformations and enable coarse-grained parallelization technigeresrtiheless, there are programs
that could be expressed in the polyhedral model, but for which theegmesned parallelism could not
be expressed through affine transformations [25]. There are sditiab go beyond the affine trans-
formations, and they are based on computing the transitive closure [P8f affine relations. Even
though the dependence relations are affine, their transitive closure beghbn-affine [28]. Unfortu-
nately, the problem of code generation for non-linear forms is particutexgt and not-so-well studied
problem [78] for which solutions are still awaiting.

129

Appendix A

Application of Farkas lemma

Pe, ={(i, ,i",][=1+2IAN]=]AL<Ii<N-2A0<j<N-1}
The faces of the dependence polyhedron are:
i—1>0
j>0
N—-2—-i>0
N-1-j>0

(aizl_aill)i +(af_22—ai12)j + W _w?+a%1_12 0
Combining them with Farkas multipliers gives:

Ao+A1(i—1)+A2(j) +FA3(N—2—i)+As(N—-1—])

Ao >0,A1 > 0,A2 >0,A3>0,A3 >0
Reorganizing the terms so that the induction variables and parameters eagddted to the legality
constraint:
i(A1—A3) + J(A2—Aa) +N(Az+Ag) +Ao—A1—2A3— A4

After equating the left hand and right hand sides of the Farkas lemma taiesib

affl—affl = ()\1—)\3)

affz - aflz = (A2—Ma)

0= ()\3—}—)\4)
wfz—w?l—l-a%l—l:)\o—)\l—Z)\g—)m
Ao>0,A1>0,A2>0,A3>0,A4 >0

One can immediately noticdz =0AA; =0

Ao>0,A1>0,A2 >0,A3>0,A4 >0
alézz_al.zzo
W —wfl+2aff1—aill—120

130 A. APPLICATION OF FARKAS LEMMA

131

List of Figures

21

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
411
412
4.13
4.14
4.15

51
5.2
5.3
54
5.5
5.6
5.7
5.8

Main loop kernelinConvolve 21
An excerpt from ADI numerical kernel o L. 26
Read-Write classification of the dependences e A® |
Matvect - matrix vector multiplication oL 03
A RDDG forthe matvectkernel 31
A slice of the execution trace of matvectkernel 33
Original scheduling matrices 35
Matvect: an original sequential executionorder 35
Illegal transformation matrices e e 36
Legal transformation matrices 36

A transformed and legal sequential executionorder 36
A transformed and illegal sequential executionorder 36
Agcccompilationflow e 34
Inside Graphite e e 45
CFG graphwithregionnesting 48
Regionnestingtree 48
Region tree for splitted SCoPs 48
Breaking SCoOP 48
Matvect kernel - source code and internal representation ceee e e oo 50
Relative nesting and ordering of loops and basicblocks b1
Polyhedral representation of three-addresscode B3
Polyhedral representation the origianl source code . v b3
Matvect kernel - cross bb dependences, inductions and I’GOBJC'[.IO 55
Explicit data dependencegraph L e e 57
Explicit data dependencegraph oo 57
source code and IR representation for ADI kernel b9
Tiling the iteration space e e e 61
matrix multiplication kernel e 67
matrix multiplication - after PRE 67
Legal executionorder e 67
Illegal executionorder e e 67
GIMPLE code withCFG e 68
Data Dependence Graph e 68
Matmult Data Dependence Graph, 68
illegal - loop distribution without an expansion 69

132

LIST OF FIGURES

5.9

5.10
5.11
5.12

6.1
6.2
6.3
6.4

6.5

6.6

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13
7.14
7.15
7.16
7.17
7.18
7.19
7.20
7.21
7.22
7.23
7.24

legal - loop distribution with an expansion 69
Read/Write instruction interleaving and variable liveranges 69
Speedups on Power platform. e e 74

A flow of polyhedral compilation based on violation analysis 75
Main loop kernelinConvolve 81
Convolve Vectorization Examples o e 82
compilationflow 88
Cost model evaluation: comparison of predicted and actual impacttfrization alter-
nativesonthe CellSPU e 90
Cost model evaluation: comparison of predicted and actual impacttfrization alter-
nativeson PPCO70 e 90
Cost model evaluation: comparison of predicted and actual impacbfeplve kernel

on PPC970and CellSPU e 92
Uniform dependences and skewed hyperplane 104
Uniform dependences and orthogonal hyperplane 104
Uniform dependences and outermost parallel hyperplane 104
Simple uniform dependence 104
Two uniform dependences 105
Two statements, uniform dependences 108
n-ary decision tree representing the solution/&et. 111
n-ary decision tree representing the solution/et. 111
The result of the operatoMBED (L&, {Af”.}) 112
SEUL . i, 113
SetL . 113
INTERSECT L, L") . . o 113
SEWL . . 113
Splittree afterremovingi node e 113
Thefinal result of ROJECT(L, X1) o o o o o 113
Combiningthe solutions 114
the solution sef® with decision variableG 115
the solution sef® with decision variable? 116
The global solution set; with decision variableg* andx? 116
Fullranked Amatrix e 117
Non-fullranked Amatrix 117
Complete solutionobtained o 117
The global solution set; with decision variableg;* andx 118
Schedule completionstrategy e e 121

133

Personal Bibliography

— Konrad Trifunovic, Albert Cohen, Razya Ladelsky and Feng Li. Elimamof Memory-Based
Dependences for Loop-Nest Optimization and Parallelization: EvaluatianR#vised Violated
Dependence Analysis Method on a Three-Address Code Polyheaatrgi@r. In3rd International
Workshop on GCC Research Opportuniti€samonix, France, April 2011.

— Konrad Trifunovic, Albert Cohen, David Edelsohn, Feng Li, Tobia®sSer, Harsha Jagasia,
Razya Ladelsky, Sebastian Pop, Jan Sjodin and Ramakrishna Upa@&ARHITE Two Years
After: First Lessons Learned From Real-World Polyhedral Compilatiom2nd International
Workshop on GCC Research Opportunitiegsa, Italy, February 2010.

— Konrad Trifunovic, Dorit Nuzman, Albert Cohen, Ayal Zaks and Rasen. Polyhedral-Model
Guided Loop-Nest Auto-Vectorization International Conference on Parallel Architectures and
Compilation Technique®aleigh, North Carolina, September 2009. IEEE Computer Society.

— H. Munk, E. Ayguadé, C. Bastoul, P. Carpenter, Z. Chamski, A. @dkle Cornero, M. Duranton,
M. Fellahi, R. Ferrer, R. Ladelsky, M. Lindwer, X. Martorell, C. Mirand. Nuzman, A. Orn-
stein, A. Pop, S. Pop, L.-N. Pouchet, A. Ramirez, D. Rédenas, E.lRbhRosen, U. Shvadron,
K. Trifunovic and A. Zaks. ACOTES Project: Advanced Compiler Tedbgies for Embedded
Streaming. Innternational Journal of Parallel Programmin@010. Springer Verlag.

— Wilodzimierz Bielecki, Konrad Trifunovic, Tomasz Klimek. Calculating Exarisitive Closure
for a Normalized Affine Integer Tuple Relation. Hlectronic Notes in Discrete Mathematjcs
2009. Elsevier.

Other publications:

— Piotr Dziurzanski, Wlodzimierz Bielecki, Konrad Trifunovic and Michal 82ezonek. A System
for Transforming an ANSI C Code with OpenMP Directives into a SystemCciy@son. In
Proceedings of the 9th IEEE Workshop on Design & Diagnostics of El@ctfdircuits & Systems
(DDECS 2006)Prague, Czech Republic, April 2006. IEEE Computer Society.

134 PERSONAL BIBLIOGRAPHY

135

Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

F. Agakov, E. Bonilla, J. Cavazos, B. Franke, G. Fursin, M. @/, J. Thomson, M. Toussaint,
and C. Williams. Using machine learning to focus iterative optimization.Pidoceedings of
the International Symposium on Code Generation and OptimizaB@&0 '06, pages 295305,
Washington, DC, USA, 2006. IEEE Computer Society.

N. Ahmed, N. Mateev, and K. Pingali. Tiling imperfectly-nested loop ndst®roceedings of the
2000 ACM/IEEE conference on Supercomputing (CDROBMipercomputing 00, Washington,
DC, USA, 2000. IEEE Computer Society.

A. V. Aho, R. Sethi, and J. D. UllmanCompilers: principles, techniques, and tool&ddison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1986.

C. Alias, F. Baray, and A. Darte. Bee+cl@k: an implementation of lattesed array contraction
in the source-to-source translator roSéGPLAN Not.42:73-82, June 2007.

J. R. Allen and K. Kennedy. Automatic loop interchange Piloceedings of the 1984 SIGPLAN
symposium on Compiler constructi@GPLAN '84, pages 233—-246, New York, NY, USA, 1984.
ACM.

R. Allen and K. Kennedy. Automatic translation of fortran programs tctmeform. ACM Trans.
Program. Lang. Syst9:491-542, October 1987.

R. Allen and K. KennedyOptimizing Compilers for Modern Architecturddorgan and Kaufman,
2002.

L. Almagor, K. D. Cooper, A. Grosul, T. J. Harvey, S. W. Reeves Subramanian, L. Torczon,
and T. Waterman. Finding effective compilation sequencesPrtiteedings of the 2004 ACM
SIGPLAN/SIGBED conference on Languages, compilers, and toolsfuedded systemsCTES
'04, pages 231-239, New York, NY, USA, 2004. ACM.

C. Ancourt and F. Irigoin. Scanning polyhedra with do loops.Ploceedings of the third ACM
SIGPLAN symposium on Principles and practice of parallel programpBROPP '91, pages
39-50, New York, NY, USA, 1991. ACM.

L. O. Andersen. Program analysis and specialization for the granoming language. Technical
report, DIKU, 1994.

A. W. Appel. Ssa is functional programmin§IGPLAN Not.33:17-20, April 1998.

R. Bagnara, P. M. Hill, and E. Zaffanella. The parma polyhedrafiprToward a complete set
of numerical abstractions for the analysis and verification of hardwadeaftware systemssci.
Comput. Program.72:3-21, June 2008.

U. Banerjee. Data dependence in ordinary programs. MastesssttDept. of Computer Science,
University of lllinois at Urbana-Champaign, Nov. 1976.

U. Banerjee Dependence Analysis for Supercomputiktuwer Academic, 1988.

136 BIBLIOGRAPHY

[15] U. Banerjee. Unimodular transformations of double loopsAdivances in Languages and Com-
pilers for Parallel Processingpages 192-219, Irvine, Aug. 1990.

[16] U. BanerjeeLoop Transformations for Restructuring Compilekduwer Academic, 1993.

[17] D. Barthou, A. Cohen, and J.-F. Collard. Maximal static expansion. J. Parallel Program,
28:213-243, June 2000.

[18] D. Barthou, J.-F. Collard, and P. Feautrier. Fuzzy array datadlioalysis. J. Parallel Distrib.
Comput, 40:210-226, February 1997.

[19] A. Barvinok. A polynomial time algorithm for counting integral points in pgodgra when the
dimension is fixedMathematics of Operations Researd®(4):769—-779, november 1994.

[20] C. Bastoul. Cloog: The chunky loop generatart p: / / www. ¢l 00g. or g.

[21] C. Bastoul. Efficient code generation for automatic parallelizationoguidnization. InProceed-
ings of the Second international conference on Parallel and distributegpating ISPDC’03,
pages 23-30, Washington, DC, USA, 2003. IEEE Computer Society.

[22] C. Bastoul. Code generation in the polyhedral model is easier thathyidk. In Proceedings of
the 13th International Conference on Parallel Architectures and CompitatechniquesPACT
'04, pages 7-16, Washington, DC, USA, 2004. IEEE Computer Society.

[23] C. Bastoul, A. Cohen, S. Girbal, S. Sharma, and O. Temam. Puttingpguigl transformations
to work. INLCPC’16 Intl. Workshop on Languages and Compilers for Parallel Qating, LNCS
2958 pages 209-225, College Station, october 2003.

[24] A.Beletska, D. Barthou, W. Bielecki, and A. Cohen. Computing thesiitave closure of a union of
affine integer tuple relations. Proceedings of the 3rd International Conference on Combinatorial
Optimization and ApplicationgCOCOA '09, pages 98-109, Berlin, Heidelberg, 2009. Springer-
Verlag.

[25] A. Beletska, W. Bielecki, A. Cohen, M. Palkowski, and K. SiedlecKioarse-grained loop par-
allelization: Iteration space slicing vs affine transformationsPioceedings of the 2009 Eighth
International Symposium on Parallel and Distributed Computl&gDC '09, pages 73—-80, Wash-
ington, DC, USA, 2009. IEEE Computer Society.

[26] M.-W. Benabderrahmane, L.-N. Pouchet, A. Cohen, and C. Bhastbhe polyhedral model is
more widely applicable than you think. In R. Gupta, edi®g, volume 6011 of ecture Notes in
Computer Scienggages 283—-303. Springer, 2010.

[27] A. Bernstein. Analysis of programs for parallel processinBEE Transactions on Electronic
Computers15(5):757-763, october 1966.

[28] W. Bielecki, T. Klimek, and K. Trifunovic. Calculating exact transitielsure for a normalized
affine integer tuple relatiorklectronic Notes in Discrete Mathematj&3:7—-14, 2009.

[29] A. J. C. Bik. The Software Vectorization Handbook. Applying Multimedia Extensions far-Ma
mum Performancelntel Press, 2004.

[30] A. J. C. Bik, M. Girkar, P. M. Grey, and X. Tian. Automatic intra-igtgr vectorization for the
Intel architecturelJPP, 30(2):65-98, 2002.

[31] W. Blume, R. Eigenmann, K. Faigin, J. Grout, J. Hoeflinger, D. Ba8uPetersen, W. Pottenger,
L. Rauchwerger, P. Tu, and S. Weatherford. Parallel programmingRuitiris. IEEE Computer
29(12):78-82, Dec. 1996.

[32] U.Bondhugula, M. Baskaran, S. Krishnamoorthy, J. RamanujaRofintev, and P. Sadayappan.
Automatic transformations for communication-minimized parallelization and locality ogimiz
tion in the polyhedral model. IRroceedings of the Joint European Conferences on Theory and

BIBLIOGRAPHY 137

Practice of Software 17th international conference on Compiler constmd@i€ 08/ETAPS’08,
pages 132-146, Berlin, Heidelberg, 2008. Springer-Verlag.

[33] U.Bondhugula, O. Gunluk, S. Dash, and L. Renganarayahamodel for fusion and code motion
in an automatic parallelizing compiler. Froceedings of the 19th international conference on
Parallel architectures and compilation techniqud®CT '10, pages 343-352, New York, NY,
USA, 2010. ACM.

[34] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappprachical automatic polyhedral
parallelizer and locality optimizer. IRroceedings of the 2008 ACM SIGPLAN conference on
Programming language design and implementatiehDI '08, pages 101-113, New York, NY,
USA, 2008. ACM.

[35] U. K. R. Bondhugula. Effective automatic parallelization and locality optimization using the
polyhedral model PhD thesis, Columbus, OH, USA, 2008. Adviser-Sadayappan, P.

[36] P. Boulet, A. Darte, T. Risset, and Y. Robert. (Pen)-ultimate tiling?IEIBE Scalable High-
Performance Computing ConMay 1994.

[37] P.-Y. Calland, A. Darte, Y. Robert, and F. Vivien. On the removalrdi- and output-dependences.
Int. J. Parallel Program, 26:285-312, June 1998.

[38] L. Carter, J. Ferrante, and C. Thomborson. Folklore confirmeslicible flow graphs are expo-
nentially larger. InProceedings of the 30th ACM SIGPLAN-SIGACT symposium on Prinaiples
programming language®OPL '03, pages 106—114, New York, NY, USA, 2003. ACM.

[39] C. Cascaval, L. Derose, D. A. Padua, and D. A. Reed. Compiledased performance prediction.
In LCPC, 1999.

[40] J. Cavazos, C. Dubach, F. Agakov, E. Bonilla, M. F. P. O'Bo@eFursin, and O. Temam. Auto-
matic performance model construction for the fast software exploratioewthardware designs.
In Proceedings of the 2006 international conference on Compilers, acthiteand synthesis for
embedded systemBSASES '06, pages 24-34, New York, NY, USA, 2006. ACM.

[41] C. Chen, J. Chame, and M. Hall. CHIiLL: A framework for composimghHevel loop transfor-
mations. Technical Report 08-897, U. of Southern California, 2008.

[42] N. Chernikova. Algorithm for finding a general formula for the reggative solutions of a system
of linear inequalitieslUSSR Computational Mathematics and Mathematical Phy$865.

[43] P. Clauss. Counting solutions to linear and nonlinear constraintsghr&irhart polynomials:
applications to analyze and transform scientific programmtinConf. on Supercomputingages
278-285, Philadelphia, may 1996.

[44] C. Coarfa, F. Zhao, N. Tallent, J. Mellor-Crummey, and Y. DotgenlOpen-source compiler
technology for source-to-source optimization.

[45] A. Cohen. Parallelization via constrained storage mapping optimizatioRrdceedings of the
Second International Symposium on High Performance Comput8tgPC '99, pages 83-94,
London, UK, 1999. Springer-Verlag.

[46] A. Cohen, S. Girbal, D. Parello, M. Sigler, O. Temam, and N. VaséadFacilitating the search
for compositions of program transformations. livil. Conf. on Supercomputing (ICS'Q%)ages
151-160, Boston, Massachusetts, June 2005.

[47] A. Cohen, S. Girbal, and O. Temam. A polyhedral approach to th@seomposition of program
transformations. In M. Danelutto, M. Vanneschi, and D. Laforenzioes] Euro-Par, volume
3149 ofLecture Notes in Computer Scienpages 292—-303. Springer, 2004.

138 BIBLIOGRAPHY

[48] A.Cohenand V. Lefebvre. Storage mapping optimization for panattegrams. IrProceedings of
the 5th International Euro-Par Conference on Parallel Processkgyo-Par '99, pages 375-382,
London, UK, UK, 1999. Springer-Verlag.

[49] E. Cohen and N. Megiddo. Improved algorithms for linear inequalitigh two variables per
inequality. SIAM J. Comput.23:1313-1350, December 1994.

[50] K. D. Cooper, M. W. Hall, R. T. Hood, K. Kennedy, K. S. McKinley. M. Mellor-Crummey,
L. Torczon, and S. K. Warren. The ParaScope parallel programmirigpement.Proceedings of
the IEEE 81(2):244—-263, 1993.

[51] P. Cousot and N. Halbwachs. Automatic discovery of linear resgraimong variables of a pro-
gram. InFifth ACM Symposium on Principles of Programming Languagages 84—97, Tucson,
Jan. 1978.

[52] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. Kle¢k. An efficient method of
computing static single assignment form. Proceedings of the 16th ACM SIGPLAN-SIGACT
symposium on Principles of programming languade®PL '89, pages 25-35, New York, NY,
USA, 1989. ACM.

[53] A. Darte. On the complexity of loop fusion. Proceedings of the 1999 International Conference
on Parallel Architectures and Compilation TechniquBACT 99, pages 149—, Washington, DC,
USA, 1999. IEEE Computer Society.

[54] A. Darte and G. Huard. Loop shifting for loop compacti¢mt. J. Parallel Program, 28:499-534,
October 2000.

[55] A. Darte and G. Huard. Complexity of multi-dimensional loop alignmentPioceedings of the
19th Annual Symposium on Theoretical Aspects of Computer Sc®TRES '02, pages 179-191,
London, UK, UK, 2002. Springer-Verlag.

[56] A. Darte and G. Huard. New complexity results on array contractimhralated problemsJ.
VLSI Signal Process. Sys40:35-55, May 2005.

[57] A. Darte, Y. Robert, and F. VivierScheduling and Automatic ParallelizatioBirkhauser, 2000.

[58] A. Darte, R. Schreiber, and G. Villard. Lattice-based memory allocatiBRE Trans. Compuit.
54:1242-1257, October 2005.

[59] A. Darte and G.-A. Silber. Temporary arrays for distribution of Iseyth control dependences.
In Proceedings from the 6th International Euro-Par Conference on Pdraligcessing Euro-Par
'00, pages 357367, London, UK, 2000. Springer-Verlag.

[60] A. Darte, G.-A. Silber, and F. Vivien. Combining retiming and schedutiechniques for loop
parallelization and loop tilingParallel Processing Letters(4):379-392, 1997.

[61] A. Darte and F. Vivien. On the optimality of allen and kennedy’s alganifbr parallel extraction
in nested loops. IProceedings of the Second International Euro-Par Conference oallPh
Processing - Volume Euro-Par '96, pages 379—-388, London, UK, 1996. Springelayge

[62] P. K. Dubey, G. B. Adams, Ill, and M. J. Flynn. Evaluating pemi@ance tradeoffs between fine-
grained and coarse-grained alternativéEEE Trans. Parallel Distrib. Syst6:17-27, January
1995.

[63] R. v. Engelen. Efficient symbolic analysis for optimizing compilersPtoceedings of the 10th
International Conference on Compiler Constructi@C '01, pages 118-132, London, UK, 2001.
Springer-Verlag.

[64] P. Feautrier. Array expansion. Rroceedings of the 2nd international conference on Supercom-
puting ICS '88, pages 429-441, New York, NY, USA, 1988. ACM.

BIBLIOGRAPHY 139

[65] P. Feautrier. Parametric integer programmiRéIRO Recherche Opérationnel2(3):243—-268,
1988.

[66] P. Feautrier. Dataflow analysis of scalar and array referern#isJournal of Parallel Program-
ming, 20(1):23-53, february 1991.

[67] P. Feautrier. Some efficient solutions to the affine scheduling prolgart I: one dimensional
time. Intl. Journal of Parallel Programming21(5):313-348, october 1992.

[68] P. Feautrier. Some efficient solutions to the affine scheduling prolpart I1: multidimensional
time. Intl. Journal of Parallel Programming21(6):389—420, december 1992.

[69] B. B. Fraguela, R. Doallo, and E. L. Zapata. Probabilistic miss equatiBvaluating memory
hierarchy performancdEEE Trans. Comput52(3):321-336, 2003.

[70] FSF. GNU Compiler Collection (GCC) Internals Manyal 2010.
http://gcc.gnu.org/onlinedocs/gccint.

[71] FSF. Gnu compiler collection (gcc), 2011. http://gcc.gnu.org.

[72] G.R. Gao, R. Olsen, V. Sarkar, and R. Thekkath. Collective fasfn for array contraction. In
Proceedings of the 5th International Workshop on Languages andp@@shfor Parallel Com-
puting, pages 281-295, London, UK, 1993. Springer-Verlag.

[73] S. Girbal.Optimisation d’applications - Composition de transformations de progranmuetele
et outils PhD thesis, University Paris-Sud 11, 2005.

[74] S. Girbal, N. Vasilache, C. Bastoul, A. Cohen, D. Parello, M. Sjgded O. Temam. Semi-
automatic composition of loop transformations for deep parallelism and memoaydtiees.Int.
J. Parallel Program, 34:261-317, June 2006.

[75] O. Golovanevsky, A. Dayan, A. Zaks, and D. Edelsohn. Haased data layout optimizations
for multi-core processors. In Y. Patt, P. Foglia, E. Duesterwald, Rleschi, and X. Martorell,
editors,High Performance Embedded Architectures and Compilersime 5952 ot ecture Notes
in Computer Scien¢gages 81-95. Springer Berlin / Heidelberg, 2010.

[76] M. Griebl. Automatic parallelization of loop programs for distributed memory architexsuka-
bilitation thesis. Facultat flir Mathematik und Informatik, Universitat Pas$zhD thesis, Facultat
fir Mathematik und Informatik, Universitat Passau, 2004.

[77] M. Griebl, C. Lengauer, and S. Wetzel. Code generation in the gudytoodel. InProceedings of
the 1998 International Conference on Parallel Architectures and CortipiialechniquesPACT
'98, pages 106—, Washington, DC, USA, 1998. IEEE Computer Society.

[78] A. Groesslinger. The Challenges of Non-linear Parameters and Variables in Automatic Loop
Parallelisation Lulu Enterprises, UK Ltd, 2010.

[79] T. Grosser, H. Zheng, R. Aloor, A. Simburger, A. Groesslinged L.-N. Pouchet. Polly - poly-
hedral optimization in llvm. IMMPACT 2011 First International Workshop on Polyhedral Com-
pilation TechniquesChamonix, France, 2011.

[80] G. Gupta, D. Kim, and S. V. Rajopadhye. Scheduling in the z-polsdiedodel. InNIPDPS pages
1-10, 2007.

[81] M. Hall et al. Maximizing multiprocessor performance with the SUIF compliEEE Computer
29(12):84-89, Dec. 1996.

[82] M. Hall, D. Padua, and K. Pingali. Compiler research: the next 30sy€ommun. ACM52:60—
67, February 2009.

140 BIBLIOGRAPHY

[83] A.Hartono, M. M. Baskaran, C. Bastoul, A. Cohen, S. Krishnarttty, B. Norris, J. Ramanujam,
and P. Sadayappan. Parametric multi-level tiling of imperfectly nested loofroteedings of
the 23rd international conference on Supercomputi@$ '09, pages 147-157, New York, NY,
USA, 2009. ACM.

[84] INRIA and The Ohio State University. Polybench, the polyhedeaidhhmark suite.http://
WM rocq. i nria. fr/~pouchet/software/ pol ybench.

[85] F. Irigoin, P. Jouvelot, and R. Triolet. Semantical interprocedpasdllelization: An overview of
the pips project. Irntl. Conf. on Supercomputing (ICS’9-ologne, Germany, June 1991.

[86] F. Irigoin and R. Triolet. Supernode partitioning. Pmoceedings of the 15th ACM SIGPLAN-
SIGACT symposium on Principles of programming languaB&°L '88, pages 319-329, New
York, NY, USA, 1988. ACM.

[87] KAP C/OpenMP for Tru64 UNIX and KAP DEC Fortran for Digital UXI

[88] R. Karp, R. Miller, and S. Winograd. The organization of computatifor uniform recurrence
equations.J. ACM 14(3):563-590, july 1967.

[89] W. Kelly. Optimization within a unified transformation framework. TechhiRaport CS-TR-
3725, Department of Computer Science, University of Maryland at CeRagk, 1996.

[90] W. Kelly, V. Maslov, W. Pugh, E. Rosser, T. Shpeisman, and Dniiéeott. The omega library
interface guide. Technical report, University of Maryland at CollegekPCollege Park, MD,
USA, 1995.

[91] W. Kelly and W. Pugh. Finding legal reordering transformationsgisi@ppings. IrProceedings
of the 7th International Workshop on Languages and Compilers forlledu@omputing LCPC
'94, pages 107-124, London, UK, 1995. Springer-Verlag.

[92] W. Kelly and W. Pugh. Minimizing communication while preserving parallelisirechnical
report, College Park, MD, USA, 1995.

[93] W. Kelly and W. Pugh. A unifying framework for iteration reorderimgnsformations. Technical
report, University of Maryland at College Park, College Park, MD, $205.

[94] W. Kelly, W. Pugh, and E. Rosser. Code generation for multiple maggspimProceedings of the
Fifth Symposium on the Frontiers of Massively Parallel Computation (Frasifié), FRONTIERS
'95, pages 332—, Washington, DC, USA, 1995. IEEE Computer Society.

[95] K. Kennedy and K. McKinley. Maximizing loop parallelism and improviratal locality via loop
fusion and distribution. Inanguages and Compilers for Parallel Computimmpges 301-320,
Portland, 1993.

[96] K. Kennedy and K. S. McKinley. Loop distribution with arbitrary casitflow. In Proceedings
of the 1990 ACM/IEEE conference on Supercomputugpercomputing '90, pages 407-416, Los
Alamitos, CA, USA, 1990. IEEE Computer Society Press.

[97] K. Knobe and V. Sarkar. Array ssa form and its use in parallelinatio Proceedings of the 25th
ACM SIGPLAN-SIGACT symposium on Principles of programming lagegi2OPL '98, pages
107-120, New York, NY, USA, 1998. ACM.

[98] D.J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Woldependence graphs and compiler
optimizations. InProceedings of the 8th ACM SIGPLAN-SIGACT symposium on Principles o
programming language$ OPL '81, pages 207-218, New York, NY, USA, 1981. ACM.

[99] L. Lamport. The parallel execution of do loogdommunications of the ACM7:83-93, February
1974.

[100] H. Le Verge. A note on Chernikova’s algorithm. Technical Rep86, IRISA, 1992.

BIBLIOGRAPHY 141

[101] C. G. Lee. Utdsp benchmarks. http://www.eecg.toronto.edu/ cdbx@Rinfra-
structure/UTDSP.html, 1998.

[102] V. Lefebvre and P. Feautrier. Automatic storage managementafadl@l programs. Parallel
Comput, 24:649-671, May 1998.

[103] W. Liand K. Pingali. A singular loop transformation framework lshea non-singular matrices.
In U. Banerjee, D. Gelernter, A. Nicolau, and D. A. Padua, editde$)C, volume 757 olecture
Notes in Computer Sciengeages 391-405. Springer, 1992.

[104] A. Lim. Improving Parallelism and Data Locality with Affine Partitionin@hD thesis, Stanford
University, 2001.

[105] A. Lim and M. S. Lam. Communication-free parallelization via affine ¢farmations. InPro-
ceedings of the 7th International Workshop on Languages and ComfilelParallel Computing
LCPC '94, pages 92-106, London, UK, 1995. Springer-Verlag.

[106] A. W. Lim, G. |. Cheong, and M. S. Lam. An affine partitioning algamitiio maximize par-
allelism and minimize communication. Froceedings of the 13th international conference on
SupercomputingCS '99, pages 228-237, New York, NY, USA, 1999. ACM.

[107] A. W. Lim and M. S. Lam. Maximizing parallelism and minimizing synchrotimawith affine
transforms. InProceedings of the 24th ACM SIGPLAN-SIGACT symposium on Prinaples
programming language$OPL '97, pages 201-214, New York, NY, USA, 1997. ACM.

[108] V. Loechner and D. K. Wilde. Parameterized polyhedra and tlegtices. Int. J. Parallel Pro-
gram, 25:525-549, December 1997.

[109] Q. Lu, C. Alias, U. Bondhugula, T. Henretty, S. KrishnamoorthyRamanujam, A. Rountev,
P. Sadayappan, Y. Chen, H. Lin, and T.-f. Ngai. Data layout tramsftion for enhancing data
locality on nuca chip multiprocessors. Rioceedings of the 2009 18th International Conference
on Parallel Architectures and Compilation Technigupages 348-357, Washington, DC, USA,
2009. IEEE Computer Society.

[110] D. E. Maydan, S. P. Amarasinghe, and M. S. Lam. Array-data &8oalysis and its use in array
privatization. InProceedings of the 20th ACM SIGPLAN-SIGACT symposium on Prin@ples
programming language®OPL '93, pages 2-15, New York, NY, USA, 1993. ACM.

[111] N. Megiddo and V. Sarkar. Optimal weighted loop fusion for pakaltegrams. InProceedings
of the ninth annual ACM symposium on Parallel algorithms and architest@BAA '97, pages
282-291, New York, NY, USA, 1997. ACM.

[112] M. Mehrara, J. Hao, P.-C. Hsu, and S. Mahlke. Parallelizingesetigl applications on commodity
hardware using a low-cost software transactional memoryPrbteedings of the 2009 ACM
SIGPLAN conference on Programming language design and implementBti@®I '09, pages
166-176, New York, NY, USA, 2009. ACM.

[113] B. Meister, A. Leung, N. Vasilache, D. Wohlford, C. Bastouldd®. Lethin. Productivity via
automatic code generation for pgas platforms with the r-stream compildRPGAS’'09 Workshop
on Asynchrony in the PGAS Programming Mod@rktown Heights, New York, June 2009.

[114] S. Muchnick. Advanced Compiler Design and Implementatidiorgan Kaufmann Publishers
Inc., 1997.

[115] D. Naishlos. Autovectorization in gcc. the GCC Developer's summpages 105-118, June
2004.

[116] D. Nuzman, I. Rosen, and A. Zaks. Auto-vectorization of intedeladata for simd. IPLDI,
2006.

142 BIBLIOGRAPHY

[117] D. Nuzman and A. Zaks. Autovectorization in GCC — two years latethé GCC Developer’s
summif June 2006.

[118] D. Nuzman and A. Zaks. Outer-loop vectorization - revisited farsBIMD architectures. In
PACT, October 2008.

[119] M. O’'Boyle. MARS: a distributed memory approach to shared memamypilation. InProc. Lan-
guage, Compilers and Runtime Systems for Scalable CompRittgpurgh, May 1998. Springer-
Verlag.

[120] D. A. Padua and M. J. Wolfe. Advanced compiler optimizations f@escomputersCommun.
ACM, 29:1184-1201, December 1986.

[121] E. Park, L.-N. Pouchet, J. Cavazos, A. Cohen, and P. $agda. Predictive Modeling in a Poly-
hedral Optimization Space. lmternational Symposium on Code Generation and Optimization
(CGO’11), Chamonix France, 2011.

[122] D. J. Pearce, P. H. Kelly, and C. Hankin. Efficient field-sewsipointer analysis of CACM
Trans. Program. Lang. Sys80(1):4, 2007.

[123] PLUTO: A polyhedral automatic parallelizer and locality optimizer for moltas. http://pluto-
compiler.sourceforge.net.

[124] PoCC: the Polyhedral Compiler Collection. http://www-rocq.inria.fdgleet/software/pocc/.

[125] S. Pop, A. Cohen, C. Bastoul, S. Girbal, P. Jouvelot, G.-A. Sibyed N. Vasilache. Graphite:
Loop optimizations based on the polyhedral model for GC@rtrt. of the 4p GCC Developper’'s
Summit Ottawa, Canada, June 2006. To appear.

[126] S. Pop, A. Cohen, and G.-A. Silber. Induction variable analysils delayed abstractions. In
T. M. Conte, N. Navarro, W. mei W. Hwu, M. Valero, and T. Ungerditas, HIPEAC, volume
3793 ofLecture Notes in Computer Scienpages 218-232. Springer, 2005.

[127] B. Pottenger and R. Eigenmann. Idiom recognition in the polaridlpizang compiler. InPro-
ceedings of the 9th international conference on Supercomput@®)'95, pages 444-448, New
York, NY, USA, 1995. ACM.

[128] L.-N. Pouchet, C. Bastoul, A. Cohen, and J. Cavazos. Iteratptimization in the polyhedral
model: part ii, multidimensional time. IRroceedings of the 2008 ACM SIGPLAN conference
on Programming language design and implementatRirDI 08, pages 90-100, New York, NY,
USA, 2008. ACM.

[129] L.-N. Pouchet, C. Bastoul, A. Cohen, and N. Vasilache. ltezatjptimization in the polyhedral
model: Part i, one-dimensional time. Rroceedings of the International Symposium on Code
Generation and OptimizatignCGO '07, pages 144-156, Washington, DC, USA, 2007. IEEE
Computer Society.

[130] L.-N. Pouchet, C. Bastoul, A. Cohen, and N. Vasilache. ltezatptimization in the polyhedral
model: Part |, one-dimensional time. IBEE/ACM Intl. Conf. on Code Generation and Optimiza-
tion (CGO’07) pages 144-156, San Jose, California, Mar. 2007.

[131] L.-N. Pouchet, U. Bondhugula, C. Bastoul, A. Cohen, J. Rafjaamuand P. Sadayappan. Com-
bined iterative and model-driven optimization in an automatic parallelization frankewn Pro-
ceedings of the 2010 ACM/IEEE International Conference for High Perémce Computing, Net-
working, Storage and AnalysiSC '10, pages 1-11, Washington, DC, USA, 2010. IEEE Computer
Society.

[132] L.-N. Pouchet, U. Bondhugula, C. Bastoul, A. Cohen, J. RafjaamP. Sadayappan, and N. Vasi-
lache. Loop transformations: convexity, pruning and optimizationPrwceedings of the 38th

BIBLIOGRAPHY 143

annual ACM SIGPLAN-SIGACT symposium on Principles of progragtaimguagesPOPL 11,
pages 549-562, New York, NY, USA, 2011. ACM.

[133] W. Pugh. The omega test: a fast and practical integer programngogthm for dependence
analysis. InProceedings of the 1991 ACM/IEEE conference on Supercomp&ingrcomputing
‘91, pages 4-13, New York, NY, USA, 1991. ACM.

[134] W. Pugh. Uniform techniques for loop optimization. Pmoceedings of the 5th international
conference on Supercomputjn@s '91, pages 341-352, New York, NY, USA, 1991. ACM.

[135] W. Pugh. Counting solutions to presburger formulas: how and whiroceedings of the ACM
SIGPLAN 1994 conference on Programming language design and ireptation PLDI '94,
pages 121-134, New York, NY, USA, 1994. ACM.

[136] W. Pugh and D. Wonnacott. Eliminating false data dependencestusiognega test. IRroceed-
ings of the ACM SIGPLAN 1992 conference on Programming languagjgrdand implementa-
tion, PLDI '92, pages 140-151, New York, NY, USA, 1992. ACM.

[137] W. Pugh and D. Wonnacott. An exact method for analysis of veased array data dependences.
In Proceedings of the 6th International Workshop on Languages angsfor Parallel Com-
puting pages 546-566, London, UK, 1994. Springer-Verlag.

[138] J. Ramanujam. Beyond unimodular transformatiorise Journal of Supercomputing(4):365—
389, 1995.

[139] X. Redon and P. Feautrier. Scheduling reduction®roteedings of the 8th international confer-
ence on SupercomputinkgCS '94, pages 117-125, New York, NY, USA, 1994. ACM.

[140] L. Renganarayana, U. Bondhugula, S. Derisavi, A. E. Eiobhager, and K. O'Brien. Compact
multi-dimensional kernel extraction for register tiling. Pnoceedings of the Conference on High
Performance Computing Networking, Storage and Anal{&s'09, pages 45:1-45:12, New York,
NY, USA, 2009. ACM.

[141] G. Roth and K. Kennedy. Loop fusion in high performance fortta Proceedings of the 12th in-
ternational conference on Supercomputif@S '98, pages 125-132, New York, NY, USA, 1998.
ACM.

[142] S. Rus, M. Pennings, and L. Rauchwerger. Sensitivity andlgsigautomatic parallelization on
multi-cores. InProceedings of the 21st annual international conference on Supgrating ICS
'07, pages 263-273, New York, NY, USA, 2007. ACM.

[143] A. Schrijver. Theory of linear and integer programmingohn Wiley & Sons, 1986.

[144] J. Shin, J. Chame, and M. W. Hall. Compiler-controlled caching iresuprd register files for
multimedia extension architectures. RACT, September 2002.

[145] J. Shin, M. Hall, and J. Chame. Superword-level parallelism in thegmce of control flow. In
CGO, March 2005.

[146] W. Thies, F. Vivien, J. Sheldon, and S. Amarasinghe. A unifrachéwork for schedule and
storage optimization. IfProceedings of the ACM SIGPLAN 2001 conference on Programming
language design and implementatid?LDI '01, pages 232—-242, New York, NY, USA, 2001.
ACM.

[147] A. Tiwari, C. Chen, J. Chame, M. Hall, and J. K. Hollingsworth. Alable autotuning framework
for computer optimization. IWlPDPS’09 Rome, May 2009.

[148] K. Trifunovic and A. Cohen. Enabling more optimizations in graphitapiing memory based
dependences. IBCC SummijtOttawa, Canada, October 2010.

144 BIBLIOGRAPHY

[149] K. Trifunovic, A. Cohen, D. Edelsohn, F. Li, T. Grosser, ldgasia, R. Ladelsky, S. Pop, J. Sjodin,
and R. Upadrasta. Graphite two years after: First lessons learnedréal-world polyhedral
compilation. In2nd International Workshop on GCC Research Opportunitietober 2010.

[150] K. Trifunovic, D. Nuzman, A. Cohen, A. Zaks, and |. RoseplyBedral-model guided loop-nest
auto-vectorization. IfPACT’09) Raleigh, North Carolina, Sept. 2009.

[151] R. Triolet, F. Irigoin, and P. Feautrier. Direct parallelization df seatements. IfProceedings of
the 1986 SIGPLAN symposium on Compiler construct®BIGPLAN '86, pages 176-185, New
York, NY, USA, 1986. ACM.

[152] P. Tu and D. Padua. Array privatization for shared and didgdbmemory machines (extended
abstract) SIGPLAN Not.28:64-67, January 1993.

[153] P. Tu and D. A. Padua. Automatic array privatization. Phoceedings of the 6th International
Workshop on Languages and Compilers for Parallel Computrages 500-521, London, UK,
1994. Springer-Verlag.

[154] R. Upadrasta and A. Cohen. Potential and challenges of twabledper-inequality sub-
polyhedral compilation. INMPACT 2011 First International Workshop on Polyhedral Compi-
lation TechniqguesChamonix, France, 2011.

[155] N. Vasilache, C. Bastoul, and A. Cohen. Polyhedral codergéina in the real world. In A. My-
croft and A. Zeller, editorsCC, volume 3923 ofecture Notes in Computer Scienpages 185—
201. Springer, 2006.

[156] N. Vasilache, C. Bastoul, A. Cohen, and S. Girbal. Violated ddeece analysis. IRroceedings
of the 20th annual international conference on Supercomputi®g '06, pages 335-344, New
York, NY, USA, 2006. ACM.

[157] N. Vasilache, A. Cohen, and L.-N. Pouchet. Automatic correctiolo@p transformations. In
Proceedings of the 16th International Conference on Parallel Architeaad Compilation Tech-
niques PACT '07, pages 292-304, Washington, DC, USA, 2007. IEEE Cden@ociety.

[158] S. Verdoolaege. isl: An integer set library for the polyhedral ehodn K. Fukuda, J. Hoeven,
M. Joswig, and N. Takayama, editoiathematical Software - ICMS 20,1%olume 6327 ot.ec-
ture Notes in Computer Sciengeges 299-302. Springer Berlin / Heidelberg, 2010.

[159] F. Vivien. On the optimality of feautrier's scheduling algorithm. Rroceedings of the 8th In-
ternational Euro-Par Conference on Parallel Processiggiro-Par ‘02, pages 299-308, London,
UK, 2002. Springer-Verlag.

[160] D. K. Wilde. A library for doing polyhedral operations. TechniB&eport 785, IRISA, Rennes,
France, 1993.

[161] M. E. Wolf and M. S. Lam. A loop transformation theory and an algarito maximize paral-
lelism. IEEE Trans. Parallel Distrib. Syst2:452—-471, October 1991.

[162] M. Wolfe. Iteration space tiling for memory hierarchies3hd SIAM Conf. on Parallel Processing
for Scientific Computingpages 357—361, december 1987.

[163] M. Wolfe. High performance compilers for parallel computingddison-Wesley, 1996.

[164] P. Wu, A. E. Eichenberger, A. Wang, and P. Zhao. An integr&iendization framework using
virtual vectors. InNCS, 2005.

[165] J. Xue. Automating non-unimodular loop transformations for magsvallelism.Parallel Com-
put, 20:711-728, May 1994.

[166] J. Xue. Unimodular transformations of non-perfectly nested lo&psallel Comput,. 22:1621—
1645, February 1997.

BIBLIOGRAPHY 145

[167] Y.-Q. Yang, C. Ancourt, and F. Irigoin. Minimal data dependeabstractions for loop trans-
formations. InProceedings of the 7th International Workshop on Languages and s for
Parallel ComputingLCPC '94, pages 201-216, London, UK, 1995. Springer-Verlag.

