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Mathematical
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Chapter 1

Introduction

The responsibility of acompileris to translate the programs written in a language suitable for use by
human programmer into the machine language of the target machine. Naturally, the compiler is required
to produce thecorrect translation to the machine code.

In 1944 John von Neumann has laid the foundation to almost all widely used architectures today - that
of decoupling the program memory from data memory. This also implied a sequential execution model,
in which the machine instructions are executed sequentially, changing the global state of the memory
through stores and loads.

Besides producing the correct code, compilers were enhanced withoptimizations, so that the trans-
lated machine code performance could match the performance of the hand-crafted one. Contributions
in scalar optimizations, interprocedural analysis, instruction scheduling and register allocation mainly
achieved this goal.

The major driving forces for the sustained computing performance increase were the advancements
in instruction level parallelism (ILP) and ever increasing clock rates of uniprocessors - according to the
Moore’s law. This obviated the need for advanced compiler optimizations, since the performance boost
could have been obtained by running non-modified sequential codes on the new machines. Advanced
compiler optimizations were considered as a domain of specialized, scientific computing community,
specializing in the expensive parallel and vector machines programmed mainlyin FORTRAN.

End of uniprocessor era

The trends have changed in the early 2000s, since it was noticed that increasing the ILP brought
diminishing returns, altogether with physical limitations and power dissipation thathave put an end to
the increase in the clock-speeds of uniprocessors. The capacity to increase the number of transistors has
since then been used in another direction: providingmultiple coreson the single chip.

The era of multi-core

Multi-core processors are now in widespread use in almost all areas of the computing: in desktop or
laptop machines, accelerators like the Cell Broadband Engine, GPUs, GPGPUs and in mobile embedded
devices implemented as MP-SoCs (Multiprocessor System-on-Chip).

In the scientific computing field, where specialized multiprocessors have been used since 1960’s, the
commodity multicore and GPGPUs are entering very rapidly, as main building blocks of the computa-
tional clusters.
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Optimizing compilers are again in demand

To harness the power of multiple cores and complex memory hierarchies, the need for powerful
compiler optimizations is now again in high demand. Compilers are now required to efficiently map the
semantics of the, mostly imperative, high-level programming languages into the efficient use of target
architecture resources [82].

Increasing the number of cores on a chip does not improve the performance of the legacy, single-
threaded applications. What is more, the sequential programming paradigm, due to the simplicity of the
von Neumann computational model, is still used to program the new applications. Those applications do
not benefit from the performance improvements of the new architectures.

In order to utilize the peak performance of the current multi-core architectures, the optimizing com-
piler is responsible for finding the intrinsicparallelismwithin the computations of the source program.
Also, the memory hierarchy has to be utilized carefully, in order to narrow down the gap between laten-
cies of the main memory and the computing core - thememory wallproblem.

Semantic gap

There is a notorious semantic gap between the semantics of the currently usedimperative program-
ming languages and the target platform execution model. Nevertheless, whilemore than 200 parallel
programming paradigms and environments have been proposed, few of them are in a widespread use -
the majority of the applications are still written in imperative sequential languagessuch as C, C++ or
FORTRAN.

Most current applications are written using a single thread of execution. There is a good reason for
this - writing single-threaded code is intuitive and practical: one has to manageonly a single state space,
it is easily analysable, the proof of correctness could be obtained in an inductive way, the execution trace
is predictable and reproducible.

On the other hand, writing the parallel programs introduces the problems such as communica-
tion, synchronization and data transfers. Writing hand-crafted parallelcode is costly, error-prone and,
mostly importantly, impossible to debug, since the race conditions in parallel program are generally
non-reproducible. Hand-crafted parallel programs arenon-portable, since the synchronization mech-
anisms, communication costs, scheduling policies and other issues are highly platform specific. The
non-portability manifests itself in two ways: platform non-portability andperformance non-portability.

Automatic program transformations

Very promising solution to the mentioned semantic gap problem is to enable theautomatic transfor-
mationof sequential code into the form that best fits the target execution architecture.

The task of the compiler is now to understand the semantics of the input sequential source program
and to perform the transformation, while preserving the semantics, into the form that best fits the target
platform execution model, e.g., parallel threads, vectorized instructions, memory accesses clustered into
blocks. This is a challenging task, since all the responsibility of translating thesemantics into perfor-
mance now relies on the compiler.

Loop Transformations

Focusing the program transformations on loop nests is particularly interesting, since the majority of
compute-intensive applications spend most of their execution time in loops. Loop transformations have
a long history and they have been used in restructuring compilers for enabling automatic parallelization
and vectorization of the scientific FORTRAN codes.
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Loop transformations potentially have a very powerful performance impact, since they might enable
parallelism, vectorization or memory locality. The major challenge for efficiently employing the loop
transformations is to find the bestcompositionof loop transformations and topredict the performance
impact of those transformations.

The Polyhedral Model

The polyhedral model is a powerful algebraic abstraction for reasoning about loop transformations
expressed asschedules. The polyhedral model might be viewed as anabstract interpretationframework
for reasoning about dynamic program execution statically - at compile time. The foundations of the
polyhedral model have their roots in operational research and systolic array design.

An execution trace of the sequential program is modelled as an ordered sequence ofstatement in-
stances. It is assumed that each statement of the input program might be executed multiple times in a
loop, giving rise to statement instances - one instance for each execution of the loop.

Single-Shot Optimization Approach

Traditionally, the program transformation using the polyhedral model is done in a sequence of three
steps: (1) getting the program into the polyhedral model, (2) computing the scheduling transformation
expressed in the polyhedral model, and (3) generating the transformed code from the polyhedral model.

The crucial step is theschedulingstep that provides the actual program transformation. The automatic
scheduling algorithms [67, 34] based on integer linear programming exist, and they are based on thebest
effort heuristics.

The advantage of the best effort scheduling heuristic is that the transformation iscomputedwithin
a single step. Hopefully, the best possible transformation within the space oflegal transformations is
chosen.

The space of legal (loop) transformations is huge, and selecting the besttransformation within this
space is still an open problem. The best effort heuristics rely on a limited performance predicting cost-
functions, abstracting away the architectural details of the target platform.The optimal transformation
might easily be mispredicted.

Iterative Optimization Approach

Due to the intrinsic difficulty of selecting the best program transformation withina single step, a
viable alternative approach is theiterative feedback-directed compilation. Iterative optimization resorts
to testingthe different program transformations. For each transformation, the code is generated. The code
is then executed and the runtime impact of the transformation is evaluated.

A carefully crafted heuristic for generating the multiple program transformations is the key com-
ponent of this approach. Experimental evidence confirms that iterative approach can be much better at
adapting the semantics of the program to the execution platform than the single-shot, model based heuris-
tics. Obviously - by trying more times, there is a better chance of getting the optimaltransformation.

While the iterative approach might give better results in terms of the output program performance,
it has one fundamental drawback: the whole process might be verytime consuming. It is not uncommon
for the iterative approach to take hours or days to converge to the best solution.

The iterative approach breaks the traditional view of the compilation: the compiler is now a compo-
nent of the optimizing feedback loop, and not a self-standing tool that transforms the input source code
to the binary. While the iterative compilation is a good approach to specialized program optimization,
the two characteristics of this approach - that of having an unpredictable running time and reliance on
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the actual generated program execution - preclude it from being incorporated into thegeneral purpose
compiler.

Problem Statement and Proposed Solution

Our view is that the single-shot, best effort heuristics for loop optimizationsare not precise enough
to model the complex performance characteristics of the modern architectures. On the other hand, the
iterative compilation approach, due to its unpredictable runtime and reliance onexperimental program
evaluation is not directly employable in the general purpose compiler.
Theproblem statementcould be summarized as follows:

We want to keep theeffectivenessof the model-based transformation approach, while bridg-
ing the gap between transformation predictionprecisionbetween single-shot and iterative
approaches.

In order to achieve this, we propose asolution in the form of a new, search-based transformation
approach, that could be summarized as follows:

A new transformation search approach is based on the controlled enumeration of the trans-
formation candidates, each transformation candidate being evaluated at thecompilation
time, according to a precise cost function based on the target machine model.

We postulate that the new proposed solution brings us closer to solving the stated problem. The new
approach takes the benefits of both model-based and iterative approaches. Theeffectivenessis achieved
by having an expressive but limited search space, whose complexity couldbe controlled. The fact that
the cost function is evaluated at compile-time, and not through experimental evaluation, brings thepre-
dictability of the running time of the transformation search, allowing it to be incorporatedinto the general
purpose compiler.

The precisionis achieved by the fact that we use a machine dependent cost function that directly
evaluates the execution cost on a specified machine. This function is much more precise than the sim-
plistic linear cost functions, that are used in the current model-based approaches. Though, this precision
comes with a price: non-linear cost functions cannot be optimized using linear programming machinery,
as it is done in the current model-based approaches - our solution uses asearch basedstrategy to evaluate
those non-linear cost functions.

Contributions

The main contributions of this thesis are to provide algorithms, methodologies andthe compilation
framework that enable our new search-based strategy. The relevantcontributions are detailed in the re-
spective chapters.

Our contributions are built on top of the polyhedral model, which serves asthe theoretical foundation
of the work. The polyhedral model is used to express the data dependences, the cost-model functions and
schedules.

Contrary to the current source-to-source polyhedral frameworks,we have investigated the direct poly-
hedral compilation on the low-level three address code. While being a challenging task, this low-level
of abstraction is the foundation for our precise performance cost-modelling that is out of reach of the
current source-to-source polyhedral compilers.

We take a fresh look at the problem of finding the program transformations. Contrary to the current
linear cost-function based scheduling algorithms, we propose asearch strategythat evaluates the complex
cost-model function on the discrete set of legal transformations represented asdecision diagrams. By
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doing so, we take the benefits of the iterative optimization, while not requiring the generation of the
transformed programs and measuring their actual runtime.

Thesis overview

The thesis is organized in 3 parts and a conclusion. Contributions and related work are provided in
each chapter.

The first part of the thesis gives the background material, starting from the basic mathematical defi-
nitions. The polyhedral model is defined, together with the detailed discussion of this abstract represen-
tation. Later, we discuss the topics of representing the program semantics,polyhedral transformations
and legality of those transformations. The mathematical background is included so that the manuscript is
self-contained - a reader familiar with the topic of linear optimization might directly skip to the sections
devoted to the polyhedral program model.

The second part of the thesis is a detailed description of our three-address-code polyhedral compila-
tion framework - GRAPHITE. The crucial design decisions were explained, together with our contribu-
tions in not so well investigated topics. A novel approach for efficiently handling the restrictions imposed
by memory-based dependences is explained as well.

The third part is the core subject of the thesis. It is dedicated to the description of the search-based
transformation methodology. A detailed explanation of our precise, machine-level cost-model is pro-
vided. The final part of the thesis is our proposal for the new search strategy, starting with a review of the
most important related work in this field. We show how our search strategy is built on an enumeration of
the discrete sets of legal transformations, represented as decision diagrams.

Our techniques are implemented in GRAPHITE polyhedral framework, that isa part of the widely
used GCC compiler.
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Chapter 2

Background

The polyhedral model representation is based on linear algebra, linear programming and convex
optimization theory.

In this chapter we present the polyhedral model and the mathematical notations we use in the rest of
the dissertation. The basic linear algebra and convex optimization background is given as well.

The Section 2.1 gives the necessary mathematical background and it is expected to be self-contained.
A complete coverage of the material could be found in [143]. The Section 2.2gives an introduction to
the polyhedral model and places it in the context of the compilers. The Section2.3 goes into the details
of the polyhedral representation and covers the basic components of thisrepresentation. An extensive
coverage of the literature and an historical overview is given in Section 2.4.

2.1 Mathematical background

We denote byR, Z andQ a field of real, integer and rational numbers respectively. A column vector
w is denoted byw = (w1, . . . ,wm)

T .
Given two vectorsa∈ Rn andb ∈ Rm we will denote aconcatenationof two vectors:c= (a,b)T ∈

Rn+m. A concatenated vectorc if formed by takingn components from a vectora andm components
from a vectorb:

c= (c1, . . . ,cn,cn+1, . . . ,cn+m)
T = (a1, . . . ,an,b1, . . . ,bm)

T

The vector concatenation notation will be used very often to distinguish several parts of a vector.
In a similar way, given a matrixA∈ Rk×n and a matrixB∈ Rk×k, we cancomposetwo matrices to

get:C= (A|B). A composed matrixC is obtained by takingn columns from the matrixA andmcolumns
form the matrixB:

C= (C•,1 . . .C•,m+n)

whereC•,i denotesi-th column of the matrixC. In the same wayCk,• denotesk-th rows of the matrixC.

Definition 2.1.1 (Affine function). A n-dimensional functionf : Rm→ Rn is affine if and only if it can
be expressed as follows:

f (x) = Ax+b

whereb = (b1, . . . ,bn)
T ∈ Rn is a column vector andA∈ Rn×m is a matrix withn rows andm columns.

Definition 2.1.2(Affine relation). A relationF ⊂ Rm×Rn is affine if and only if:

∀v ∈ Rm,∀w ∈ Rn : (v,w) ∈ F ⇐⇒ w = Av+b
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whereb=(b1, . . . ,bn)
T ∈Rn is a column vector andA∈Rn×m is a matrix withn rows andmcolumns.

Definition 2.1.3 (Affine hyperplane). For each vectora∈ Rn and scalarb∈ R the setX of all vectors
x ∈ Rn such that:

aTx = b

defines an affine hyperplane.

Definition 2.1.4 (Affine half-space). For each vectora ∈ Rn and scalarb ∈ R the setX of all vectors
x ∈ Rn satisfying the following affine inequality:

aTx≥ b

defines a topologically closed affine halfspace. If we replace≥ by> we will get a definition of topolog-
ically open affine halfspace.

Definition 2.1.5(Convex polyhedron). The setP ⊆ Rn is convex polyhedronif it can be represented as
an intersection of a finite number of affine half-spaces ofRn.
Each half-space is called afaceof the polyhedron. The set of all affine inequalities representing facesof
the polyhedron can be compactly represented by an matrixA and a vectorb:

P = {x ∈ Rn|Ax+b≥ 0}

whereA∈ Rm×n andb ∈ Rm, mbeing the number of affine inequalities.

Definition 2.1.6 (Parametric polyhedron). The setP (g) ⊆ Rn is parametric polyhedron, parametrized
by a vectorg∈ Rk, if it is a convex polyhedron that can be represented as:

P (g) = {x ∈ Rn|Ax+Bg+b≥ 0}

whereA∈ Rm×n, B∈ Rm×k andb ∈ Rm. The number of parameters in a parameter vector isk andm is
the number of affine inequalities.

Definition 2.1.7(Polytope, bounded polyhedron). A polyhedronP ⊆Rn is called abounded polyhedron
if there exists aλ ∈ R+ such that the polyhedronP is contained in a bounding box:

P ⊆ {x ∈ Rn|−λ≤ x j ≤ λ,1≤ j ≤ n}

For the program analysis problems that we are interested in, we will consider only integer solutions,
so we restrict all vectors to contain only integer components:x ∈ Zn. Also, A∈ Zn×m andb ∈ Zn. For
more details please refer to [143]. An efficient implementation of the presented concepts is given by [12].

2.2 The polyhedral model

Classical compiler internal representations are based on a syntax and semantics of imperative pro-
grams: abstract syntax trees, control-flow graph, def-reach chains, SSA form, three-address-code, basic-
blocks [3, 114]. Those representations capture a syntax, control and data dependences in a program.

In such reduced representations of the dynamic execution trace, each statement of a high-level pro-
gram occurs only once, even if it is executed many times (e.g., when enclosed within a loop). Represent-
ing a program this way is not convenient for aggressive loop optimizationswhich operate at the level of
dynamicstatement instances.
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Compile-time constraints and lack of adequate algebraic representation of loop nest semantics pre-
vent traditional compilers from adapting the schedule of statement instancesof a program to best exploit
architecture resources. For example, compilers typically cannot apply loop transformations if data de-
pendences are non-uniform [163] or simply because profitability is too unpredictable.

A well known alternative approach, facilitating complex loop transformations, represents programs in
thepolyhedral model. This model is a flexible and expressive representation for loop nests withstatically
predictable control flow. Such loop nests, amenable to algebraic representation, are calledstatic control
parts(SCoP) [64, 74].

The polyhedral model captures an exact execution semantics of a staticallypredictable control flow
program. We can think of the polyhedral model as anabstract interpretationframework [51] in which
we can precisely reason about a dynamic execution of a program at a compilation time.

2.2.1 Static Control Parts

Providing a static analysis of a dynamic execution trace of an arbitrary program is undecidable prob-
lem [67]. In order to apply the polyhedral model to real computing problems, we have to restrict the
scope of the analysis to program parts with statically determinable control flow. Those program parts are
contained inaffine loops.
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Definition 2.2.1(Affine loops). Affine loop nests are nests of perfectly or imperfectly1 nested loops with
constant strides, having their loop bounds and memory accesses expressed as affine functions of outer
loop induction variables and global parameters.

The scope of the polyhedral program analysis and manipulation areStatic Control Partscontaining
sequences of affine loop nests and conditionals with boolean expressions of affine inequalities. This class
of programs includes non-perfectly nested loops, non-rectangular loops and conditionals with boolean
expressions of affine inequalities [67]. Global parameters are symbolic variables that are invariant inside
a loop.

We will use an abbreviation SCoP (Static Control Part) to denote the parts of aprogram amenable
for polyhedral analysis [74]. In Chapter 4 we will show an algorithmic approach that is used in our tool
to extract SCoP parts from an arbitrary imperative program. An example ofthe program part that fits in
SCoP category is shown in Figure 2.1. The global parameters for this affine loop nest areN andK.

2.3 Polyhedral representation

The polyhedral program representation is based on the concept of dynamic statement instances,
which is the basic atomic unit of a program execution. The set of those instances is modelled in a linear
algebraic framework, which we are going to present in the subsequent parts of this section.

We will define a concept of thepolyhedral statementand the three components of the polyhedral
representation:

– Iteration domains - capturing the set of dynamic statement instances
– Data access functions - capturing the memory access patterns expressed as affine functions of loop

induction variables
– Scheduling functions - capturing the relative execution order of the statement instances
Building on those primitives, we will show in Section 3.2 how to statically extract thesemantics of the

SCoP programs. Also, we will show how to express the transformations in thepolyhedral representation
in Section 3.3.

2.3.1 Polyhedral statements

The polyhedral model is an abstraction that expresses the program execution trace as an execution of
the dynamicpolyhedral statements.

This abstraction is built on top of some internal representation used in a compiler. Depending on the
level of abstraction, one polyhedral statement could correspond to:

1. syntactic statement - a source-level statement in a source program.

2. basic block of a low-level internal compiler representation

3. three-address code instruction

The polyhedral model is mostly used in the context of source-to-source compilers [74, 34, 89, 113,
85]. Thus, the first case, where a polyhedral statement directly corresponds to a source-level statement
in a source program, is the most common. It is also the most natural correspondence for presentation
purposes.

In this dissertation, we investigate the application of the polyhedral model to the low-level, three
address code compilation. Thus, in Chapter 4, we will also use an abstraction level where a polyhedral
statement corresponds to a basic block of low-level internal compiler representation.

1. A perfect loop nestis a set of nested loops if all statements are contained in an innermost nested loop. Otherwise a loop
nest is calledimperfect loop nest. In this work we consider a general class of imperfectly nested loops, assuming that perfectly
nested loops are contained in this class.
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In the rest of this dissertation we will implicitly use a term statement to refer to an abstract polyhe-
dral statement of the polyhedral model. Depending on the context, the termstatementmight refer to a
polyhedral statement corresponding to the source-level statement2, or to the basic block in a low-level
internal representation. We will try to make this distinction clear in the following chapters.

f o r ( v = 0 ; v < N; v++)
f o r ( h = 0 ; h < N; h++) {

S1 : s = 0 ;
f o r ( i = 0 ; i < K; i ++)

f o r ( j = 0 ; j < K; j ++)
S2 : s += image [ v+ i ] [ h+ j ] ∗ f i l t e r [ i ] [ j ] ;
S3 : ou t [ v ] [ h ] = s >> f a c t o r ;

}

Figure 2.1 – Main loop kernel in Convolve

2.3.2 Iteration domains

Once we have defined an abstract polyhedral statement, we are interested in analyzing dynamic
statement instances. An execution of an abstract sequential program might be seen as a totally-ordered
interleaving of statement instances. Each statement might be executed multiple timesin a loop.

Definition 2.3.1(Iteration vector). Theiteration vectori of a statementSconsists of values of the induc-
tion variables of all loops surrounding the statement.

Each statementS is executed once for each possible value of a surrounding loop inductionvariables We
denote a statement bySand a statement instance by(S, i), wherei is an iteration vector of a statement.

If a statementSbelongs to a SCoP then the set of all iteration vectorsi relevant forScan be repre-
sented by a parametric polytope:

DS(g) =
{

i ∈ Zn | A· i+B·g+b≥ 0
}

which is called theiteration domainof S, whereg is the vector ofglobal parameterswhose dimension
is ng. Global parameters are invariants inside the SCoP, but their values are not known at compile time
(parameters representing loop bounds for example).

We will combine matricesA, B and a column vectorb in one matrixD = (A | B | b). We will also
concatenate vectorsi, g to form anhomogeneouscolumn vector(i,g,1)T , where last component is a
scalar constant 1. We can then provide a more compact representation ofa polyhedron:

DS(g) =
{

i ∈ Zn | D · (i,g,1)T ≥ 0
}

Let us consider a computational kernel given in Figure 2.1. We will name thecomponents of the
iteration vector according to loop induction variables and global parametersgiven in a source code. The
resulting iteration domain polyhedron for statementS1 is then represented as:

2. Mainly used for presentation purposes
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







1 0 00 0
−1 0 10 −1
0 1 00 0
0 −1 10 −1





















v
h
N
K
1













≥ 0

v≥ 0
v≤ N−1
h≥ 0
h≤ N−1

We can represent the same iteration domain polyhedron in a more concise way:
DS1 =

{

(v,h)T ∈ Z2 | 0≤ v,h≤ N−1
}

The iteration domains for statementsS2 andS3 are represented as follows:
DS2 =

{

(v,h, i, j)T ∈ Z4 | 0≤ v,h≤ N−1∧0≤ i, j ≤ K−1
}

DS3 =
{

(v,h)T ∈ Z2 | 0≤ v,h≤ N−1
}

2.3.3 Data access functions

Given an affine program, all accesses to memory locations must be expressed through array refer-
ences. We will treat accesses to scalar values as accesses to single-element arraysA[0].

A data reference to an array A∈A is denoted byR= 〈A, f 〉, wheref is asubscript function. Together,
they describe an array access of the form A[ f (i)]. A subscript function is a function that maps an iteration
vectori to an array subscripts:

f (i) = F · (i,g,1)T

whereF ∈ Zm×(n+ng) is a matrix containingm rows -m being the number of array subscripts,n andng

being the iteration vector and global parameters vector sizes respectively.
In affine programs all subscript functions must be expressed as affine functions. A given statementS

can contain multiple data references. A set of write and read data references of a statementS is denoted
asW S andR S respectively.

As an example, let us take the statementS2 from the example in Figure 2.1:

S2: s += image[v+i][h+j] * filter[i][j];

The set of write and read references is the following:
W S2 = {〈s, f (i) = 0〉}
R S2 = {〈s, f (i) = 0〉,〈image, f1〉 ,〈filter, f2〉}

The access functions that map the iteration vectors to array subscripts have the following form:

f1((v,h, i, j)T) =

(

v+ i
h+ j

)

f2((v,h, i, j)T) =

(

i
j

)

2.3.4 Schedules

An execution trace of a sequential program could be described as atotal order relation on a set of
statement instances{(S, i) : i ∈ DS}. In order to impose a total execution order on a set of statement
instances, each statement instance(S, i) is assigned atimestampdenoted by a vectort.

The t vector represent a multidimensional time. In order to impose a temporal ordering of time
vectors, an ordering relation between two time vectors has to be defined. Weuse a lexicographic or-
der between two vectors to impose their temporal order. Given two vectorsa = (a1, . . . ,an)

T andb =
(b1, . . . ,bn)

T , we define a lexicographic order relationa≪ b as follows:

(a1, . . . ,an)
T ≪ (b1, . . . ,bn)

T ⇐⇒ ∃i : 1≤ i < n,ai = bi ∧ai+1 < bi+1
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In other words, there exist an integeri such that all vector components up toi are equal, while the vector
component at thei +1 position of the vectorb is greater than respective component of thea vector. The
idea of using multidimensional timestamp vectors was proposed by Feautrier [68] and later by Kelly and
Pugh [93].

For each polyhedral statementS we define an affinescheduling functionas a mapping between an
iteration vectori and a timestamp vectort:

t = θS(i) = ΘS· (i,g,1)T

whereΘS∈Zp×(n+ng+1) is ascheduling matrixhavingp rows, wherep is a dimensionality of a timestamp
vectort.

Once we have defined the scheduling function and the lexicographic ordering of the timestamp vec-
tors, we can formally define an execution order of statement instances:

Definition 2.3.2 (Execution order). A given statement instance(S, i) is executed before a statement
instance(S′, i′) if and only if:

θS(i)≪ θS′(i′)

2.4 Related work and an historical overview

The polyhedral model is well-established theoretical foundation for reasoning about program seman-
tics and transformations of static-control programs.

The seminal work of Karp, Miller and Winograd [88] on scheduling the computations of uniform
recurrence equations can be considered as an origin of the polyhedral model theory. It introduced many
concepts such as dependences, dependence graph, scheduling, iteration vectors.

Later work on automatic systolic array synthesis by Rajopadhye introducedthe terms oftiming func-
tion, allocation function, affine mappings andpolyhedral domains. The PolyLib library for performing
operations on rational polyhedra represented as a system of affine inequalities was conceived by Le Verge
and Wilde [160, 108].

Different authors have used different notations to refer to the same concepts relating to polyhedral
compilation. The most recent attempt to unify the notation and introduce the canonical form was that of
Girbal [74]. When referring tothe polyhedral modelwe are referring to the notation introduced in this
chapter, which is mainly based on the notation coming from the work of Girbal [74].

A group at INRIA [74] has demonstrated that one can consider the polyhedral model as a fully-
capable internal representation of the compiler. WRaP-IT [73] project has shown an internal representa-
tion based on the polyhedral model incorporated into production quality compiler Open64 [44].

As the last note, we remind that the polyhedral analysis is restricted toaffine programs– programs
that have static control and data access patterns described by the systemof affine constraints. There are
works that try to widen the scope of applicability of the polyhedral model to programs going beyond
static-control [26, 18]. They mainly rely on the conservative approximations of the program semantics.

2.5 Summary

In this chapter we have given a self-contained mathematical background that forms a foundation of
the polyhedral model. We have formally defined the affine functions, affine hyperplanes, polyhedra and
polytopes. We have shown the place of the polyhedral model in the general compilation context. We have
defined the class of the affine programs for which the polyhedral model representation could be obtained.
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In Section 2.3 the basic building block of the model are defined : 1) iteration domains, 2) data access
functions and 3) schedules.

Given the basic components of the polyhedral model, we define the way to express the multidimen-
sional program transformations and to assess their legality by introducing the data dependence concepts
in the next chapter.
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Chapter 3

Program Transformations in the
Polyhedral Model

3.1 Canonical Form of the Scheduling Functions

We have given the definition of the scheduling function in Section 2.3.4, defining it as as a function
that expresses a mapping from statement iteration vectors to timestamp vectors.While the representation
of the iteration domains and access functions (shown in Sections 2.3.2 and 2.3.3) follows straightfor-
wardly from their definition, the question of representing the scheduling functions leaves many degrees
of freedom.

One might restrict the scheduling functions to one-dimensional timestamps. Butas Feautrier [68]
has shown, one-dimensional timestamps cannot express the schedule of some class of the programs.
Feautrier [68] has also shown that multidimensional schedules are expressive enough to encompass the
full class of affine programs.

Within the class of multidimensional schedules, the following question arises: how many dimensions
should a timestamp vector contain? Feautrier [68] provides a scheduling algorithm that minimizes the
necessary number of dimensions of the timestamp vector. Bondhugula [34] provides a scheduling ap-
proach that requires at leastd scheduling dimensions,d being the maximal loop depth of the statements
within SCoP.

For the compiler construction purposes, it is desirable to have a canonicalform of the scheduling
functions. Girbal et al. [47, 23, 46] have proposed thecanonical formof the scheduling functions that
unifies the format of the scheduling matrices representing those functions.

We will discuss the motivation for providing the canonical form of the scheduling matrices, then we
will define the form and discuss some of its properties.

3.1.1 Motivation

Given the scheduling functionθS(i) represented asθS(i) = ΘS · (i,g,1)T , the goal is to provide a
canonical form of the scheduling matrixΘS.

Even if a matrixΘS∈Zd×(n+ng+1) has a full rank (requiringd≥ n), a direct mapping from an iteration
vectori to a timestampt is not enough to distinguish instances of two different statements.

Let us take an example in Figure 3.1. Given the two statementsS1 andS2, if we simply take a full-rank
identity matrix as a scheduling matrix for both statements, we would get:

θS1((i1, i2)T) = (i1, i2)T

θS2((i′1, i
′
2)

T) = (i′1, i
′
2)

T
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f o r ( i 1 =0; i1 <N; i 1 ++) {
f o r ( i 2 = 1 ; i 2 < N; i 2 ++) {

S1 : X[ i 1 ] [ i 2 ] = X[ i 1 ] [ i 2 ] − X[ i 1 ] [ i2 −1] ∗ A[ i 1 ] [ i 2 ] / B[ i 1 ] [ i2 −1];
S2 : B[ i 1 ] [ i 2 ] = B[ i 1 ] [ i 2 ] − A[ i 1 ] [ i 2 ] ∗ A[ i 1 ] [ i 2 ] / B[ i 1 ] [ i2 −1];

}
}

Figure 3.1 – An excerpt from ADI numerical kernel

There is no way to express that a given instance of statement(S1,(i1, i2)T) happens before an instance
(S2,(i′1, i

′
2)

T) for (i1, i2)T = (i′1, i
′
2)

T , since both statement instances are mapped to the same timestamp
vector.

An easy solution to this problem is to extend the timestamp vectors with constant entries that disam-
biguate different static statements in an original program. Those constant entries corresponds to relative
execution order of statement instances inside a common loop nest. Now we have:

θS1((i1, i2)T) = (i1, i2,0)T

θS2((i′1, i
′
2)

T) = (i′1, i
′
2,1)

T

and it is always true that(i1, i2,0)T ≪ (i′1, i
′
2,1)

T for (i1, i2)T = (i′1, i
′
2)

T , since the lexicographic order is
disambiguated at the last component of the timestamp.

Since the polyhedral model allows non-perfectly nested loops, a similar problem might occur when
different statements, sayS1 andS2 have different loop depths.

Aforementioned problems were limiting factors in early works on polyhedral program transforma-
tions [9, 103, 138, 165]. This was mainly due to the limitations of code generation algorithms that re-
quired the scheduling matrices to be unimodular [9] or at least invertible [103, 138, 165]. The recent
developments [94, 77, 22, 155] in the polyhedral code generation haveobviated those restrictions.

3.1.2 Canonical form of the scheduling matrix

Feautrier [68] and later Kelly and Pugh [93] have proposed a timestamp encoding for characterizing
an execution order of statement instances within a non-perfectly nested loops.

Girbal et al. [47, 23, 46] have defined thecanonical formof the scheduling matrixΘS. This encoding
is generalized to handle arbitrary compositions of affine transformations. The canonical form encodes a
mapping from iteration vectori to timestamp vectort, as well as a static statement order within the
common loop. The scheduling matrixΘS in the canonical form has the following format:

ΘS=

























0 · · · 0 0 · · · 0 βS
0

AS
1,1· · ·A

S
1,n ΓS

1,1· · ·Γ
S
1,ng

ΓS
1,ng+1

0 · · · 0 0 · · · 0 βS
1

AS
2,1· · ·A

S
2,n ΓS

2,1· · ·Γ
S
2,ng

ΓS
2,ng+1

...
. . .

...
...

. . .
...

...
AS

n,1· · ·A
S
n,n ΓS

n,1· · ·Γ
S
n,ng

ΓS
n,ng+1

0 · · · 0 0 · · · 0 βS
n

























(3.1)

The scheduling matrixΘS is composed of three components:
– Component A is an invertible (full rank) matrix capturing the relative ordering of iteration vec-

tors. Changing coefficients of this component corresponds to loop interchange, skewing and other
unimodulartransformations.
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– Columnβ reschedules statements statically, at all nesting levels. It expresses codemotion, loop
fusion and fission.

– ComponentΓ captures loop shifting (pipelining) effects.
We call theA andΓ matrix components adynamicschedule components – since those components

are used to reschedule dynamic statement instances, whileβ vector component is called astaticschedule
component – since it corresponds to a static statement order inside a program.

The matrixΘS∈ Z(2n+1)×(n+ng+1) has 2n+1 rows,n being the loop depth of the statementS. Odd
rows correspond to static execution order of statements that are enclosedin a common loop nest. Each
such a row contains a single integer constant. All the odd rows could be summarized byβ vector having
n+1 components. We call this vector astatic schedulingvector, since it represents the constant part of
the timestamp.

Rows at even positions represent an affine mapping from iteration vectors i and global parametersg to
their respective timestamp component. Affine mappings enable aninstance-wisemultidimensional affine
scheduling [67, 68, 105, 34, 132]. Changing the coefficients of A andΓ matrix components enables the
representation of arbitrary affine schedules which encompass classical loop transformationslike loop
interchange, skewing, shifting or unimodular transformations [5, 7, 163,15, 54] and much more.

An example

The scheduling matrix representing the original program schedule has theA matrix initialized to
the identity matrix, theΓ matrix is all zeros and theβ vector encodes relative statement order inside a
program source-code (or other program intermediate representation).

As an example, let us take a non-perfectly nested loop shown in Figure 2.1.The scheduling matrix
that corresponds to an original execution order of statementS1 is given as follows:

ΘS1 =













0 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 1 0 0 0
0 0 0 0 0













this canonical scheduling matrix is decomposed into following components:

AS1 =

[

1 0
0 1

]

ΓS1 =

[

0 0
0 0

]

βS1 =





0
0
0





The matrixΘS1 represents the scheduling function:θS1((v,h)T) = (0,v,0,h,0)T . In the same way, the
scheduling matrixΘS2 is decomposed into the following components (the statementS2 is nested within
4 nested loops):

AS2 =









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









ΓS2 =









0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0









βS2 =













0
0
1
0
0













that represent the scheduling function:θS2(v,h, i, j)T = (0,v,0,h,1, i,0, j,0)T . The scheduling function
for statementS3 is: θS3((v,h)T) = (0,v,0,h,2)T .

Note that the timestamp components atoddpositions are integer constants, whereas the components
at evenpositions correspond to affine mapping of loop induction variables to their respective timestamp
components. The fifth components of all time vectors are integer constants 0,1,2 – they correspond to
textual order of statementsS1, S2 andS3 respectively.
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Multidimensional time vectors are compared lexicographically. If we take statementsS1 andS2 with
their respective scheduling functions, we can say that:

θS1((v,h)T)≪ θS2((v′,h′, i′, j ′)T)

i.f.f.

v< v′∨ (v= v′∧h< h′)∨ (v= v′∧h= h′∧0< 1)

In other words, an instance of statementS1 occurs before an instance of statementS2 when one
of the following conditions is satisfied:v < v′, (v = v′ ∧h < h′) or (v = v′ ∧h = h′ ∧0 < 1). The first
two conditions are obvious: if a statement instance is scheduled at an earlieriteration of the outermost
loop then it happens before. Likewise, if a statement instance is scheduledat the same outermost loop
iteration, but at an earlier innermost loop iteration, then it happens before. The last condition states: if
two statement instances are scheduled at the same iteration of their common outerloops, a statement
instance(S1,(v,h)T) is going to be executed earlier than a statement instance(S1,(v′,h′, i′, j ′)T), because
it is statically scheduled to happen earlier at the fifth timestamp component (0< 1).

3.2 Capturing semantical constraints

We have shown a powerful way to express the program transformations- by changing the schedule
of the executed statement instances. Obviously, if we want to perform alegal program transformation,
the semantics of the transformed program must match the semantics of the original program.

There are numerous ways to define the program semantics. But for the purpose of the polyhedral
transformations, it is enough to define a semanticalequivalenceof the transformed program with respect
to an original program. To determine this equivalence it is not necessary todefine the exact semantics of
each computational step.

The classical polyhedral model does not model the actual computations that are performed inside the
polyhedral statementsS∈ S . Polyhedral statement is treated as ablack boxthat reads from and/or stores
to a memory - thus changing the visible state. A given sequential program canbe seen as a sequence
of reads from and writes to a memory, irrelevant of the computations that areperformed within the
statements [7].

The transformation is legal if the transformed program computes the same values as the original
program. This definition allows the reordering of the statement instances, aslong as the transformed
program would provide the equivalent results as the original one.

We use a well defined concept ofdata dependenceas a semantical constraint that has to be preserved
in order for a transformation to be defined as alegal. [27, 7].

A good survey of data dependence abstractions was given in [167, 61, 159, 14]. Naturally, the more
precise the data dependence abstraction is, the more legal transformationsare exploitable. The most
precise data dependence abstraction is that of Feautrier [66] expressed as adependence polyhedra. The
similar approach was proposed by Pugh [133, 136, 137].

A practical and efficient implementation of instance-wise dependence analysis was provided by Vasi-
lache [156]. Barthou [18] has extended the scope of the application of the polyhedral model to non-affine
programs by providing the fuzzy array dataflow analysis - an approachthat handles the non-affine pro-
gram parts in a conservative way.

We will proceed by presenting the data dependence representation and analysis. Later we will intro-
duce a refinement of dependence analysis that captures only the dataflow dependences.
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source target dependence type other names symbol
write read true dependence flow, RAW δ
read write anti dependence WAR δ−1

write write output dependence WAW δo

read read (input) no dependence- -

Figure 3.2 – Read-Write classification of the dependences

3.2.1 Data dependences

Two statement instances(Si , iSi ) and(Sj , iSj ) are in adata dependencerelation if they access the same
memory location and at least one of those accesses is awrite memory access. We designate a statement
instance that happens earlier as thesourceinstance, and a statement instance that happens later as the
target instance. If a source instance is a write and a target instance is a read thenthe data dependence
is a true dependence. If a source instance is a read and a target instance is a write then the dependence
is aantidependence. Lastly, if a source instance is a write and a target instance is a write then the data
dependence is anoutput dependence. All the possible types of dependences are summarized in Table 3.2.

It is not practical to compute data dependences between all statement instances in a program. What
is more, if a loop iteration count depends on a parameter that is unknown at the compilation time, it is
not even possible to enumerate all the data dependences in a program.

A compact way to summarize all the data dependences between all statement instances in a program
is to use a structure called theReduced Data Dependence Graph(RDDG) [57].

A RDDG is a directed multi-graph,G= (V,E), whose vertex setV is a set of all program statements,
i.e.,V = S . There is an edgee∈ E from a vertexSi to a vertexSj if there is a data dependence relation
between an access in some instance ofSi and an access in some instance ofSj . Each edgee∈E is labelled
by adependence polyhedronPe.

The dependence polyhedronPe that labels an edge fromSi to Sj represents the set of iteration vector
pairs denoting statement instances that are in data dependence relation:

Pe = {(iSi , iSj ) | (Si , iSi ) and(Sj , iSj ) are data dependent}

In order to compute such aninstancewisedependence polyhedron, one has to construct an intersection
of the following affine constraints [156]:

Conflict condition both statement instances access the same memory location. This is equivalent to
stating that their subscript functions have all their subscripts equal:f Si (iSi ) = f Sj (iSj )

Causality condition the instance(Si , iSi ) happens before the instance(Sj , iSj ) in the original program
execution order:θSi (iSi )≪ θSj (iSj )

Execution condition both statement instances are actually executed, i.e., both instances belong to state-
ment iteration domains:iSi ∈D

Si ∧ iSj ∈D
Sj

Since all the conditions could be expressed as a system of affine equalitiesor inequalities, the resulting
affine constraint system represents an affine relation that can be easilymanipulated by an integer linear
programming and linear algebra tools.

The causality condition is a lexicographical comparison of vectors and could be represented as a
disjunction ofNSiSj constraint components, whereNSiSj is a common loop depth of statementsSi andSj .

An example

As an example, let us take a matrix-vector multiplication kernel shown in Figure 3.3. There is a true
data dependence between an instance of the statementS1 and an instance of the statementS2, denoted
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f o r ( i = 0 ; i < N; i ++) {
S1 : b [ i ] = 0 ;

f o r ( j = 0 ; j < N; j ++)
S2 : b [ i ] = b [ i ] + A[ i ] [ j ] ∗ x [ j ] ;

}

Figure 3.3 – Matvect - matrix vector multiplication

name condition affine constraints
execution condition (i)T ∈DS1 0≤ i < N
execution condition (i′, j ′)T ∈DS2 0≤ i′ < N∧0≤ j ′ < N
conflict condition f S1((i)T) = f S2((i′, j ′)T) i = i′

causality condition θS1((i)T)≪ θS2((i′, j ′)T) i ≤ i′

Table 3.1 – A summary of affine conditions for a dependence edgeS1→ S2

(S1,(i)T) and(S2,(i′, j ′)T) respectively.
As the source of the dependence we consider the statementS1 containing a write to an arrayb[i]

whose corresponding subscript function isf S1(i)T = (i). As the target of the dependence we consider the
statementS2 containing a read from an arrayb[i] whose corresponding subscript function isf S2(i, j)T =
(i). We summarize the necessary affine constraints in Table 3.1. Taking an intersection of those affine
constraints, we end up with the following dependence polyhedron1 :

Pe :
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i′ ≥ 0
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j ′ ≥ 0
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A dependence polyhedronPe is a relation that describes all pairs of iteration vectors(i) and(i′, j ′) of
statement instances that are in a dependence relation. The pairs of iterationvectors are concatenated in a
single vector(i, i′, j ′), so the relation is a subset of Cartesian product space:

Pe = {(i, i
′, j ′) ∈ Zdim(S1)+dim(S2)|(S2,(i

′, j ′)) is dependent on(S1,(i))}

thus a dependence polyhedron could be concisely represented as:
Pe1 = {(i, i

′, j ′)|i = i′∧0≤ i′ ≤ N−1∧0≤ j ′ ≤ N−1}
In our example, the pair is decomposed in the first component(i)T that corresponds to the source

iteration, while the second component(i′, j ′)T corresponds to the target iteration. In other words, if the
value was stored inb[i] in the i-th iteration of the statementS1, it is read by all the iterations of the
statementS2 for which i′ = i. There is no constraint on thej ′, since fori = i′, the statement instanceS2 is
always executed after an instance of the statementS1.

A true data dependence betweenS1 andS2 is not the only data dependence that exists in a program
given in Figure 3.3. For example, there exists a write-after-write (output) dependence between statements
S1 andS2, described by the same polyhedron as a true dependence. The reasonfor the output data depen-
dence is the fact that the write to an arrayb[i] at S1 is subsequently overwritten by a write to an array

1. An equalityi = i′ is expressed as two inequalitiesi ≥ i′∧ i ≤ i′
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S1

S2

δ

δo

δ

δ−1

δo

Figure 3.4 – A RDDG for the matvect kernel

source sink type
S1 S2 true
S1 S2 output
S2 S2 true
S2 S2 output
S2 S2 antidependence

Table 3.2 – A summary of dependences in matvect kernel

at S2. Figure 3.4 shows a full dependence graph formatvect kernel in Figure 3.3. The dependences are
summarized in Table 3.2.

3.2.2 Memory based dependences

It is a well known fact [102] that anti and output data dependences can always be removed from the
dependence graph by a technique called anarray expansion[110, 37]. The anti and output dependences
are calledmemory based dependences[137] since they are induced by the fact that the same memory
cell is reused for storing values. One can remove those dependences by attributing a separate memory
cell to each statement instance, so that the same memory cell will not be reused- an array expansion.

On the contrary, the true dependences have to be preserved, since they capture the relation between
the producer and a consumer of the data. The subset of the true dependences, nameddataflowdepen-
dences has to be always preserved - those dependences cannot beremoved from the dependence graph.

In the next subsection we will discuss the technique for computing the set ofdataflow dependences -
an array dataflow analysis. The whole Chapter 5 will be devoted to a technique for efficiently handling
memory based dependences.

3.2.3 Array data-flow analysis

Standard data dependence relation gives an information on whether thereexists analiasingof mem-
ory locations. If a statement instance(Si , iSi ) writes to a memory location A[ f Si (iSi )], and a statement
instance(Sj , iSj ) reads from the same memory location, they are considered to be in a true data de-
pendence relation, even if there was an intervening write coming from some other statement instance
(Sk, iSk).

This notion captures the fact of the potential memory conflict in the case the statement instances are
rescheduled, but it does not provide an information on the flow of values: a read in the statement instance
(Sj , iSj ) will only see a value that was stored in statement instance that was scheduledas the latest before
statement instance(Sj , iSj ).

In order to capture the flow of values for each array element, an instancewise array data-flow analysis
based on the polyhedral model was provided by Feautrier [66] and Pugh [137]. It has also been studied
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by Maydan and Lam [110].
The purpose of array data-flow analysis is to give an exact characterization of the source statement

instance that definesvaluestored in a given array element that is seen by the given read statement in-
stance. array data-flow analysis is also known under the name of value-based array data dependence
analysis [137], since it captures the data dependences induced by the flow of values, and not merely by
thealiasingof memory locations.

We will define a true data-flow dependence between two statement instancesas a true data depen-
dence satisfying an additional constraint stating that an element written in a source statement instance
must not be overwritten by some other statement that is executed between source and target statement
instances. The additional constraint is called aliveness condition. If we put together all the affine con-
straints together, we will get the following set of affine constraints:

Conflict condition both statement instances access the same memory location. This is equivalent to
stating that they access the same memory array A and their subscript functions have all their
subscripts equal:f Si (iSi ) = f Sj (iSj )

Causality condition the instance(Si , iSi ) happens before the instance(Sj , iSj ) in the original program
execution order:θSi (iSi )≪ θSj (iSj )

Execution condition both statement instances are actually executed, i.e., both instances belong to state-
ment iteration domains:iSi ∈D

Si ∧ iSj ∈D
Sj

Liveness condition there is no overwriting statement instance that happens between source and target
statement:

∀Sk ∈ Skill : ¬∃iSk : θSi (iSi )≪ θSk(iSk)≪ θSj (iSj )∧ f Si (iSi ) = f Sk(iSk)

Skill is the set of statements containing array references that might write to the array A. Note that bothSi

andSj are included inSkill .
While this definition is a denotational description of how to compute value-based(data-flow) depen-

dences, it does not express those constraints directly as a set of affine constraints. Indeed, an existential
quantifier and a negation operator might induce a solution that contains a setof non-convex polyhedra.
Pugh [137] shows different heuristics that control the complexity of the solution.

An ILP based formulation

Featurier [66] has shown that the previously mentioned liveness conditionmight be equivalently
expressed as the following problem:

Given a read statement instance(Sj , iSj ) containing a read data reference A[ f Sj (iSj )], compute an
uniquestatementSi and its iteration vectoriSi that form asourcestatement instance(Si , iSi ) being the
source of the valueread in A[ f Sj (iSj )].

This provides a notion ofsource function H: 〈A[ f Sj (iSj )],(Sj , iSj )〉 → (Si , iSi ): an argument is a data
reference A[ f Sj (iSj )] and its associated statement instance(Sj , iSj ) while the result of the function is
sourcestatement instance(Si , iSi ) that produced a value in A[ f Sj (iSj )].

Among the set of possiblesourcestatement instances only the one that is executed asthe latestis
the true source of the given value, since all values written by other sources are overwritten by the latest
executed instance.

In order to compute the unique value of the source function for each possible data reference, Feautrier [66]
proposes to use a PIP [65] (Parametric Integer Programming) algorithm to compute the lexicographically
largest element of the parametric setQ.

The parametric setQ〈A[ f Sj (iSj )],(Sj , iSj )〉 = {(Sk, iSk)}, contains the set of all executed statement
instances(Sk, iSk) that write to the given array element A[ f Sj (iSj )] and that happen before a statement
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(S1,(i)T) b[i] = 0;
(S2,(i,0)T) b[i] = b[i] + A[i][0] * x[0];
(S2,(i,1)T) b[i] = b[i] + A[i][1] * x[1];

. . . . . .
(S2,(i,N−1)T) b[i] = b[i] + A[i][N-1] * x[N-1];

Figure 3.5 – A slice of the execution trace of matvect kernel

instance(Sj , iSj ) (instances that satisfy conflict, execution and causality condition). An unique solution
is obtained by solving the following parametric integer programming problem:

max≪θ(Sk, iSk),(Sk, iSk) ∈Q〈A[ f Sj (iSj )],(Sj , iSj )〉

In our approach, we will use an implementation of the array dataflow analysisas proposed by
Feautrier and implemented in an ISL [158] library. An extension of array data-flow analysis to non-affine
programs proposed by Barthou [18] follows the same principle, but it introduces an additional predicate
variables that model the non-affine access functions and non-affine control flow in the program.

An Example

As an illustration, let us consider a kernel in Figure 3.3. Figure 3.5 illustratesa slice of the sequential
execution trace for some fixed outer loop induction variablei. For a given outer loop induction variable
i one instance of statementS1 is executed:(S1,(i)T). SubsequentlyN−1 instances ofS2 are executed:
first an instance(S2,(i,0)T) is executed, next an instance(S2,(i,1)T) and so on.

By definition, thealias based dependence analysis considers all the pairs of dependences between
statementsS1 and S2: (S1,(i)T)→ (S2,(i,0)T), (S1,(i)T)→ (S2,(i,1)T), . . . , (S1,(i)T)→ (S2,(i,N−
1)T). Those dependences are induced by a writeb[i] = 0 in statementS1 and subsequent reads... =
b[i] in statement instances of statementS2.

The array data-flow analysis will only consider the true value-based dependence(S1,(i)T)→ (S2,(i,0)T).
There is no value-based dependence(S1,(i)T)→ (S2,(i,1)T), since the value written in statement in-
stance(S1,(i)T) is overwritten in statement instance(S2,(i,0)T) and thus not visible in instances
(S2,(i,1)T), . . . ,(S2,(i,N−1)T).

3.3 Transformations and legality

A program transformation in the polyhedral model is expressed as an reordering transformation on
statement instances. One expresses a transformation as a set of scheduling matrices. For each statement
Si ∈ S one provides a scheduling matrixθSi that completely describes a multidimensional schedule of
statement instances.

Definition 3.3.1(Dependence satisfaction). A RDDG edgee∈ E from Si to Sj , labelled by dependence
polyhedronPe, is satisfiedby schedulesθSi andθSi iff:

∀(iSi , iSj )
T ∈ Pe : θSi (iSi )≪ θSj (iSj ) (3.2)

A dependence satisfaction condition for a dependence edgee∈ E simply states that for each pair
of dependent statement instances, the source instance(Si , iSi ) is scheduled before the target instance
(Sj , iSj ). This is expressed as a lexicographical comparison of their timestamps whichare transformed
through their respective scheduling functionsθSi (iSi ) andθSj (iSj ).
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A program transformation is expressed as the set of scheduling matrices:

T = {θS1, . . . ,θSp}

wherep is the number of statements inside the program statement setS . We say that a transformation
T is legal for a given RDDG G=(V, E) if all the edgese∈ E are satisfied by their respective statement
schedules.

A priori versus a posteriori legality

Depending on the usage scenario, there are two major approaches to assuring the legality of transfor-
mations in the polyhedral model:

a posteriori checking the legality of thegiventransformation. A transformation might be given by an
user or obtained semi-automatically [41, 74]. A violation analysis [156] is performed to check the
legality of the proposed transformation.

a priori computing the automatic transformations that are guaranteed to be legal. All the affine schedul-
ing approaches fall into this category [67, 68, 76, 34, 107, 106].

A computational procedure for a posteriori legality check is based on a legality condition given in
Equation 3.2. But in order to express this condition in a way that could be handled by the polyhedral
techniques, it has to be rephrased into an equivalent condition:

∃(iSi , iSj )
T ∈ Pe : θSj (iSj )≪ θSi (iSi )

This set represents those pairs of statement instances that are in dependence relation, but whose order
is inversed (please note that lexicographical comparison is an inversion of the one shown in Equation
3.2). If this set is empty, there are no illegal inversed statement instances, and the given dependence
relation is preserver. The same check is performed for each dependence edgee∈ E.

An emptiness check is done by performing a Fourier-Motzkin elimination [143]restricted to in-
teger solutions only [133]. An efficient implementation of the violation check was proposed by Vasi-
lache [156].

In the case there is some pair of dependent statement instances that is inverted it is not a dead-end:
one might resort tocorrect the schedule by applying a corrective shifting. This technique was proposed
by Vasilache [157].

An another approach is to automatically build the legal schedules a priori. Thisis the approach taken
by all the affine scheduling algorithms [67, 68, 76, 34, 107, 106].

One can build thespace of legal transformationsby putting together the dependence satisfaction
constraints for all the dependence edgese∈ E in RDDG. As a solution, one gets the space of legal
scheduling matrices, expressed as the set of possible matrix coefficients that give the legal transformation.

Building and solving such a constraint system is based on affine form of Farkas lemma [143] (to be
defined in Chapter 7) and Fourier-Motzkin elimination [67]. The related problem that arises is that of
selecting the best schedule among the set of possible legal schedules. That problem is the core of the
Part III of this dissertation.

An Example

As an example, consider a matvect kernel in Figure 3.3. The original scheduling matricesΘS1 and
ΘS2 are shown in Figure 3.6. By definition, the original scheduling is always legal – indeed a RDDG is
computed from the original scheduling matrices.



3.3. TRANSFORMATIONS AND LEGALITY 35

ΘS1 =





0 0 0
1 0 0
0 0 0









i
N
1



=





0
i
0





ΘS2 =













0 0 0 0
1 0 0 0
0 0 0 1
0 1 0 0
0 0 0 0





















i
j

N
1









=













0
i
1
j
0













Figure 3.6 – Original scheduling matrices
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Figure 3.7 – Matvect: an original sequential execution order

Let us consider a true data dependence edge fromS1 to S2, whose dependence instances are summa-
rized by the following dependence polyhedron:

Pe = {(i, i′, j ′)T | 0≤ i < N∧0≤ i′ < N∧0≤ j ′ < N∧ i = i′}.
An illustration of the original execution order and data dependence instances for a dependence edge
S1→ S2 is shown in Figure 3.7.

As an instance of a possible reordering transformation, let us change thescheduling matrix of state-
mentS2 by interchanging the original scheduling matrix columns. A program transformation is repre-
sented by a set of new scheduling matrices:T = {Θ′S1,Θ′S2}. The scheduling matrix of statementS1 is
left intact. The scheduling is illustrated in Figure 3.8.

The transformed schedule does not satisfy the dependence edgee from S1 to S2 summarized by the
polyhedronPe. This is illustrated in Figure 3.11 showing a new (rescheduled) execution order, together
with an instance of dependence pair that is not satisfied. Indeed, a true data dependence fromS1 to
S2 requires that an instance(S1,(2)T) is executed before an instance(S2,(2,0)T), but in a transformed
schedule an instance(S2,(2,0)T) is executed first – a data dependence isinversed.

On the other hand, Figure 3.9 shows a scheduling transformation that is legal. As in the previous
example, the scheduling matrix of the statementS1 is left intact. The scheduling matrix of the statement
S2 is formed by putting an integer constant in the first row and leaving the rest of the rows intact. In this
way, we have changed theβ (see Section 3.1) component of the scheduling matrix.
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Figure 3.8 – Illegal transformation matrices
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Figure 3.9 – Legal transformation matrices
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Figure 3.10 illustrates the new execution order – first, all statement instancesof the statementS1 are
executed, and then all instances ofS2 are executed. This execution order preserves all dependence pairs
for a true data dependence fromS1 to S2.

Please note that in order to provelegality of a transformation, one has to prove that all dependence
pairs are satisfied. On the other hand, in order to prove that a transformation is illegal it is enough to
demonstrate that there exists at least one dependence pair that isinversed.

3.4 Related work

A loop transformation theory based on data dependences was developedby researchers working on
optimizing compilers for high performance computing [13, 98, 6]. The data dependence graph was
used as a central concept for ensuring the legality of transformations. The loop transformations were
performed on asyntaxrepresentation.

The first attempts to model the imperative program loop transformations through linear algebraic
representation were those ofunimodular transformations[99, 14, 161]. The loop transformations ware
represented by unimodular matrices. A sequence of several loop transformations is represented in a single
unimodular matrix and transformed source code is generated automatically. The drawback of unimodular
transformations is the fact that they are amenable to perfectly nested loops only.

Some works were trying to circumvent the limitation of unimodular transformations so that they
could be applied to non-perfectly nested loops [103, 166]. But they have limitations in code generation
phase - requiring the transformation matrices to be invertible.

A unifying theory that could handle non-perfectly nested loops was developed [134, 67, 68, 105]. It
relies on multidimensional schedules of statement instances. They also show how to automatically search
for a schedule that optimizes program parallelization or data locality.

Feautrier [64] has demonstrated the feasibility of handling static control program analysis by us-
ing integer linear programming, and he proposed a Parametrized Integer Programming (PIP) algorithm.
Later, Feautrier has shown how to handle the problem of instancewise array dataflow analysis [66] and
minimal latency scheduling problem [67] – two seminal works in the history of theoretical polyhedral
compilation.

Another technique developed by Pugh [133] is based on an extension ofFourier-Motzkin variable
elimination which led to the development of library for manipulating integer sets andrelations repre-
sented as systems of affine constraints called Omega [90]. Pugh has also solved a problem of array
dataflow analysis under the name ofvalue based array dependence analysis[137].

More recent advances in the scalable and general code generation techniques [21, 22, 155] enabled
the polyhedral model to be integrated into the real production compiler.

3.5 Summary

In this chapter we have summarized the state of the art in program transformations expressed in the
polyhedral model. The concepts of data dependences and array dataflow analysis were introduced. The
notion of transformationlegality was briefly discussed. Some implementational issues of array dataflow
analysis and transformation legality check were presented.

We will extend the concepts that were presented in this chapter with our new contributions. In Chap-
ter 5 we will show that we can relax the conditions for determining the legality of the transformation.
In Chapter 6 we will show that we can construct a precise cost models based on the polyhedral repre-
sentation, provided that we do not treat the polyhedral statement as a black box. Chapter 7 provides our
contribution to the schedule construction problem.
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Part II

The framework
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Chapter 4

Graphite framework

Despite several decades of research into the polyhedral model, there isstill no general-purpose pro-
duction compiler using the polyhedral model internally. The situation is changing with the demonstration
of the scalability of polyhedral algorithms and with the widespread disseminationof multicore processors
and hardware accelerators.

This chapter describes GRAPHITE framework that incorporates the polyhedral analyses and trans-
formations into GCC1 compiler. GCC compiler is one of the most widely used open-source compilers
for a variety of imperative programming languages (C, C++, ADA, Fortran) and platforms (x86, ARM,
PowerPC, MIPS).

The original motivation for GRAPHITE project is the study of loop optimizationson a low-level
three-address code [3] intermediate representation. Polyhedral representation is extracted from the GCC
three-address code intermediate representation that is in thestatic single assignment(SSA) [52] form.

This is a major difference with traditional source-to-source polyhedral compilers that operate on
high-level abstract syntax level. Operating directly on the three-address code brings in new challenges
but also new opportunities: we can leverage existing scalar analyses in thecompiler and interact directly
with a wealth of optimizations for extracting coarse and fine-grained parallelism and improving memory
locality.

We will first discuss the related work on different approaches to polyhedral compilation. A general
overview of the compilation flow in GRAPHITE will be presented. Later, a discussion of the relevant
and interesting design issues follows, together with the conclusion.

4.1 Related Work

There have been many efforts in designing an advanced loop-nest transformation infrastructure. Most
loop restructuring compilers introduced syntax-based models and intermediate representations. ParaS-
cope [50] and Polaris [31] are dependence-based, source-to-source parallelizers for Fortran. KAP [87] is
closely related to these academic tools.

SUIF [81] is a platform for implementing advanced compiler prototypes. PIPS[85] is one of the most
complete loop restructuring compilers, implementing polyhedral analyses and transformations (including
affine scheduling) and interprocedural analyses (array regions, alias). Both of them use a syntax tree
extended with polyhedral annotations, but not a unified polyhedral representation.

The MARS compiler [119] unifies classical dependence-based loop transformations with data stor-
age optimizations. However, the MARS intermediate representation only captures part of the loop in-

1. https:/gcc.gnu.org
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formation (domains and access functions): it lacks the characterization ofiteration orderings through
multidimensional affine schedules.

The first thorough application of the polyhedral representation was the Petit tool [89], based on the
Omega library [94]. It provides space-time mappings for iteration reordering, and it shares our emphasis
on per-statement transformations, but it is intended as a research tool for small kernels only. We also use
a code generation technique that is significantly more robust than the code generation in Omega [22].

Semi-automatic polyhedral frameworks have been designed as building blocks for compiler con-
struction or (auto-tuned) library generation systems [89, 46, 157, 41, 147]. They do not define automatic
methods or integrate a model-based heuristic to construct profitable optimizationstrategies.

The GRAPHITE project was first announced by Pop et al. in 2006, [125]. The design of GRAPHITE
is largely borrowed from the WRaP-IT polyhedral interface to Open64 and its URUK loop nest optimizer
[74]. The CHiLL project from Chen et al. revisited the URUK approach,focusing on source-to-source
transformation scripting [41, 147].

Unlike URUK and CHiLL, GRAPHITE aims at complete automation, resorting to iterative search
and cost modeling of the profitability of program transformations. In addition, unexpected design and
algorithmic issues have been discovered, partly due to the design of GCC itself, but mostly due to the
integration of the polyhedral representation in a three-address code in SSA form.

To the best of our knowledge, two proprietary polyhedral compilers based on a low-level internal
representation are currently in development: the R-Stream compiler from Reservoir Labs [113], and
IBM’s polyhedral extension of its XL compiler suite [140]. Little work has been published on compilation
issues of three-address code based polyhedral model abstraction.

4.2 An overview of the compilation flow

Traditionally the polyhedral model is used in the source-to-source [123,124] translators and may be
viewed in terms of the three step process: (1) extraction of the polyhedralrepresentation of the static con-
trol program part, (2) transformation on the polyhedral abstraction and(3) generation of the equivalent
source code fragment from the abstraction.

On the other hand, GRAPHITE is the polyhedral transformation engine thatis only a small part of
the complete compiler toolchain – it is implemented as an optimization pass of GCC compiler. As such,
GRAPHITE operates on a three-address code internal representation. A place of GRAPHITE inside GCC
compiler is illustrated in Figure 4.1.

GCC compiler is decoupled into three principal components: front-end, middle-end and back-end,
as shown in Figure 4.1. Front-end is language dependent. It is responsible for parsing the source lan-
guage2 into GENERIC [70] high-level abstract syntax tree. GENERIC representation is lowered into
GIMPLE [70] intermediate three-address code code used in compiler middle-end.

Middle-end is language independent optimization stage. Inside this stage multipleoptimization passes
are executed3. Intraprocedural analyses and optimizations are performed. GIMPLE three-address code
is transformed into SSA form. Various optimizations based on SSA form are performed, including DCE
(Dead Code Elimination), forward propagation and copy propagation. Loop based optimizations such as
loop invariant motion, loop unswitching (moving conditional statements out of theloop), PRE(Partial
Redundancy Elimination) are also performed.

GRAPHITE is scheduled as a loop optimization pass operating on a transformed GIMPLE code in
SSA form. GRAPHITE itself is composed of several steps that will be explained in the following section.

2. we will be principally interested in optimizing C, C++ and Fortran codes
3. more than 200 optimization passes in the current GCCimplementation



4.2. AN OVERVIEW OF THE COMPILATION FLOW 43

...

GRAPHITE

parallelization

vectorization

code generation

RTL optimiser

C C++ AdaF95Java

language independent IR

Inter−procedural optimizations

SSA based optimizations
....

loop optimizations

Middle−end: general optimizations

....

GENERIC −> GIMPLE

GIMPLE −> RTL

....

....

ASM

x86 PPC ARM
...

Front−end: parsing  to  GENERIC

Machine code

Target machine
description
cost model

 and

Backend: from SSA to machine code

DCE
forward prop
copy prop

loop invariant motion

...

loop unswitching

...
PRE

Figure 4.1 – A gcc compilation flow
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GRAPHITE performs complex loop transformations and produces a regenerated GIMPLE code that is
further transformed by automatic vectorization and automatic parallelization passes.

After middle-end optimization passes, the transformed GIMPLE code is in turn lowered into RTL
(Register Transfer Language) [70] which is used in the GCC back-end. Back-end is target machine
dependent and can produce machine code for different architectures (x86, x86_64, PowerPC, MIPS,
ARM).

Further in this work we will not consider neither front-end neither back-end, since we are operating
on a language and architecture neutral middle-end stage. The only architecture dependent part of the
GRAPHITE loop transformation search algorithm is the dependence on the target architecture cost model
as shown in Figure 4.1.

4.2.1 GIMPLE internal representation

GRAPHITE is operating on a three-address code internal representation in SSA (Single Static As-
signment) form. An internal representation called GIMPLE is composed of basic blocks containing
three-address code statements. Each statement has no more than 3 operands. Necessary temporaries are
introduced to store intermediate values needed to compute complex expressions. Each statement could
contain at most one data access to a memory location, either read or write. All the high level control
structures are expressed as conditional jumps and the lexical scopes are removed [70].

GCC keeps track of control flow between basic blocks in CFG (Control Flow Graph) graph, whose
vertices are the basic blocks and whose directed edges show the control-flow. Loops are strongly con-
nected components of the CFG.

SSA [52] form ensures uniqueness of a variable definition: each variable is assigned only once. When
transforming into SSA form, each original variable is split intoversionsif there are multiple definitions
of the same variable. So, for example, if there are two distinct assignments to the variablex, it would be
split into two variablesx1 andx2.

GIMPLE in SSA form containsφ-functions [52] of the formφ(x1,x2, . . . ,xn), wherex1,x2, . . . ,xn are
variable versions and the number of arguments of theφ-function is the number of distinct control flow
paths that reach theφ-function. φ-functions are inserted at the places where multiple distinct variable
versionsx1,x2, . . . ,xn might reach the use, depending on the control flow.

An excerpt of GIMPLE internal representation and the correspondingsource code is shown in Fig-
ure 4.7.

4.3 Inside GRAPHITE

GRAPHITEis the polyhedral compilation framework that operates on GIMPLE code in SSA form.
As such, it has to first extract the polyhedral representation out of three-address code. Also, since it is a
GCC pass, it has to produce GIMPLE three-address code.

This two tasks are more complicated when operating on three-address codethan when operating on
high-level abstract syntax trees. In this section we will discuss an approach of mapping three-address
GIMPLE code into the polyhedral model, and mapping the polyhedral model back into the three-address
GIMPLE code. Actual polyhedral transformations are the topic of subsequent chapters. GRAPHITE is
itself composed of several sequential stages. Figure 4.2 shows the stepsinside GRAPHITE framework:

– SCoP outlining. The maximal subgraphs of CFG that have static control property and statically
analysable affine data access patterns are extracted from the GIMPLE three-address code.

– Mapping three-address code into the polyhedra.For the outlined SCoPs (static control parts)
the polyhedral representation is reconstructed and mapped to the GIMPLEintermediate represen-
tation.
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– Data dependence analysis.Data-dependence analysis is performed to construct RDDG. Special
treatment for scalar dependences and reductions is applied.

– Transformation search.A search for a legal loop transformation sequence based on a cost model
is performed. This is the topic of chapters 6 and 7.

– GIMPLE code generation. Three-address GIMPLE code corresponding to the transformation
expressed in the polyhedral model is generated.

We will discuss the technical details of GRAPHITE steps in the subsequent sections. We will not be
covering the actual loop transformations, since the search for efficientloop transformations is extensively
covered in Chapters 6, 5 and 7. We will start by briefly discussing an induction variable recognition,
which is an essential building block for the operation of GRAPHITE.

Induction variable recognition

Induction variable analysis is essential part of any loop optimizing compiler [63]. GCC implements
induction variable analysis by constructing TREC(Tree of RECurrences) [126] – a closed form expres-
sions that capture the evolution of induction variable as a function of iterationcounts:

χ(i) = χ(i1, i2, . . . , in)

TREC expressions are either constantsχ = c or they are defined recursively asχ = {χa,+,χb}k, where
χa andχb are trees of recurrences,c is an integer constant or variable name, and subscriptk is the loop
dimension along which we are evaluating an induction variable [126]. If we consider an evolution of
induction variable in the loop at levelk, χa is an initial value andχb is an increment at each loop iteration.

TREC expressions can represent linear, affine, polynomial and exponential functions as well. We
will not provide details on construction and evaluation of those expressions, for the reference please see
[126].

The use of TREC expressions in GRAPHITE is threefold: (1) detection ofstatic control part regions,
(2) construction of the polyhedral information for the given CFG subgraph and (3) code generation.

4.3.1 SCoP outlining

The first step in GRAPHITE is the extraction of the maximal subgraphs of CFGthat have static
control described by the affine loop bounds, affine conditionals and affine data access patterns. Each
such a subgraph is called SCoP(Static Control Part) in GRAPHITE terminology.

Since GRAPHITE is operating on a low level three-address code scattered in a CFG, high level
syntactical information is lost: loop structure, loop induction variables, loop bounds, conditionals, data
accesses and reductions. Extraction of maximal SCoP regions proceedsin two steps:

1. Construct aregion treethat represents the nesting of reducible [38] regions in CFG.

2. Traverse the tree, starting from the topmost root region. For each region (in the traversal order):

(a) Check if all the basic-blocks belonging to the region satisfy theaffine programconditions. If
yes:

i. Mark the region as a SCoP

else

i. Mark the region as nonSCoP. Repeat the procedure for child regions.

In order to check whether a basic block satisfies affine program conditions several checks are performed:

1. if a basic block is a loop header block:
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(a) iteration count is symbolically determinable (but it might be unknown at compilation time if
it depends on the global parameter)

(b) loop bounds are constants or affine expressions of the outer loop induction variables and
global parameters

(c) loop issingle exit loop

2. otherwise, all the statements inside a basic block are checked:

(a) calls to functions with side effects are not allowed (pure andconst function calls are al-
lowed)

(b) the only memory references that are allowed are accesses through arrays with affine subscript
functions

(c) the conditional statements are expressed as affine functions of induction variables and global
parameters

If some basic-block does not satisfy affine program conditions, the region that contains this basic
block is marked as a non-SCoP. In such a case, the sub-regions (child nodes in a region tree) are checked
recursively.

The most favorable case is when the outermost region is proved to be a SCoP. This is obvious,
especially if the outer SCoP contains the outermost loop in a function. In a lessfavorable case, some
child nodes in the region tree are marked as a SCoP and some as a non-SCoP. It is less favorable, since
inner SCoPs contain inner-loops and also because inner SCoPs are fragmented. The least favorable case
happens when a SCoP region is composed of a single basic block only - such SCoPs are calleddegenerate
and they do not contain any loop. Degenerate SCoPs are not optimized.

As an example, a CFG with marked reducible regions is shown in Figure 4.3. Regions themselves
are either nested within each other or they are ordered in a sequence. A relative order and nesting of
regions is represented as a region-tree and it is shown in Figure 4.4. Regions containing whole loops are
marked (L1 andL2 respectively). Regions that contain basic blocks numbered 2 and 8 aredegenerate
regions, since they are not part of any loop. The region marked asL1 includes a subregionL2 and three
subregions executed in sequence. If a regionL1 is a SCoP then it would contain two nested loops, which
is the best

On the other hand, let us consider an example in Figure 4.6. The corresponding region tree is shown
in Figure 4.5. An original CFG represents a single nest loop with one basic block scheduled before the
loop, and another one scheduled after the loop. The loop header basic block (number 3) contains non-
affine loop bounds, so it is marked as not satisfying affine conditions. Thus, the region that contains the
loop is not marked as a SCoP. The remaining regions form three separate SCoPs: SCoP1, SCoP2 and
SCoP3. Those SCoPs are degenerate and are not amenable to loop optimizations.

4.3.2 Mapping three-address intermediate representation into polyhedra

After outlining SCoP regions, each SCoP is processed so to map the three-address code contained
inside region into the polyhedral representation. Only SCoPs that are containing at least one loop are
processed.

As shown in Figure 4.7, the strongly connected components of the CFG subgraph that belongs to
the region form the loops. Given any two loops, one of them is either completely nested in the other or
they are disjoint. Each basic block is enclosed in at least one loop region. The nesting of the loop regions
determines theloop depthof the basic block.

Three components (Section 2.3) of the polyhedral model representation are extracted from three-
address code IR:
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1. Iteration domains. For each basic blockB that belongs to a SCoP the iteration domainDB is built.
The dimensionality of the iteration space is equal to the number of loops belongingto a SCoP and
enclosing the basic block.

2. Schedules.The initial scheduling functionθB for each basic blockB belonging to a SCoP is
built. The initial scheduling function encodes the execution order of the basic block in an original
program – before a transformation is applied.

3. Data references.Each basic block might contain memory data accesses in its statements. In a
region complying with affine program constraints the only memory accesses are through array
accesses whose access functions could be expressed as affine functions of loop induction variables.
For each basic blockB the sets of write and read data references,W B andR B respectively, are
constructed.

We will discuss the technical details of the polyhedral model representationextraction in the rest of
this subsection. A discussion is based on an example CFG shown in Figure 4.7, obtained during the
compilation of a matrix vector multiplication kernel shown in the same figure.

Reconstructing loop domains

SCoP extraction detects the static control region containing two nested loop regions:L1 andL2. Basic
blockB4 is the loop header of the loopL2 in which the variablej is used to controls the exit condition of
the loop. Since the code is in SSA form, variablej has two versions:j1 and j2, corresponding to different
assignments to the originalj variable.

In order to detect the evolution of the variablej in the consecutive loop iterations of the loopL2, the
TREC construction algorithm is used. TREC expression construction is done by following def-use chains
of the induction variable. In SSA form, def-use chains are explicit, since there is an unique definition for
each use.

The variable versionj1 that is used in a loop exit condition is defined in a statementS7: j1 = j2+1.
This statement uses a variable versionj2 that is in turn defined in aφ-function in the statementS1:
j2 = φ( j1,0). The statementS1 uses the variable versionj1 that is defined in the statementS7. This def-
use chain closes a cycle and a TREC expression of the form{0,+,1}2 is deduced. This is illustrated by
dashed arrows inside the basic blockB4 in Figure 4.7.

A TREC expression of the form{0,+,1}2 means that the induction variable initial value is the integer
constant 0 and that the induction variable is incremented by the step of 1 at each iteration of the loopL2.

The variable versionj1 is used in the conditional statementS8: j1 < N. Combining this (affine)
condition with a TREC an affine constraint on loop induction variable could bededuced: 0≤ j ≤ N−1.
The same induction variable analysis is performed for the loopL1.

Affine expressions defining loop domains for all the basic blocks of the SCoP are shown in Figure 4.7.

Reconstructing data references

The property of the three-address code used in GCC is that each statement might contain at most one
read or write data reference to a memory location. Furthermore the affine program constraint mandates
that all the memory accesses could only be performed through arrays whose subscript functions are affine
functions.

For each basic block that belongs to the SCoP all the statements are scanned. For each memory access
statement the subscript functions are reconstructed by evaluating the evolution of induction variables that
are used as array indices.

For the reconstruction ofaccess functionsthe TREC expressions of the array indices are evaluated.
For the basic blockB3 there is one memory access statementS2: b[i2] = 0.0. The basic blockB3 belongs
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f o r ( i = 0 ; i < N; i ++) {
S1 : b [ i ] = 0 ;

f o r ( j = 0 ; j < N; j ++)
S2 : b [ i ] = b [ i ] + A[ i ] [ j ] ∗ x [ j ] ;

}
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if (j_1 < N) goto <bb 5>;
else
goto <bb 6>;

j_1 = j_2 + 1;

j_2 = PHI <j_1, 0>S1
S2
S3
S4
S5
S6
S7
S8

S1
S2

S3
S2
S1

B3

B4

B5 B6

goto <bb 4>

loop L2

i_2 = PHI <i_1, 0>
b[i_2] = 0.0;

D0 = A[i_2][j_2];
D1 = x[j_2];
D2 = D1 * D0;

prephi = PHI <D3, 0.0>

D3 = D2 + prephi;

return;

B8

loop L1

if (i_1 < N) goto <bb 7>;
else
goto <bb 8>;

i_1 = i_2 + 1;
b[i_2] =D3;

goto <bb 3>;

B7

DB4 = {(i, j) | 0 ≤ i ≤ N − 1 ∧ 0 ≤ j ≤ N − 1}
θB4(i, j)T = (0, i, 1, j, 0)T

WB4 = ∅
RB4 = {〈A, f((i, j)T ) = (i, j)T 〉, 〈x, f((i, j)T ) = j〉}

RB3 = ∅
WB3 = {〈b, f(i) = i〉}
θB3(i)T = (0, i, 0)T
DB3 = {(i) | 0 ≤ i ≤ N − 1}

DB6 = {(i) | 0 ≤ i ≤ N − 1}
θB6(i)T = (0, i, 2)T

WB6 = {〈b, f(i) = i〉}
RB6 = ∅

Figure 4.7 – Matvect kernel - source code and internal representation
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to the loopL1 and the evolution of the array index variablei1 is expressed as a TREC{0,+,1}1. This
expression is interpreted as an affine access functionf (i) = i. The complete set of write references of the
basic blockB3 is: W B3 = {〈b, f (i) = i〉}. Symbolb is a symbolic reference to the base address of theb
array.

The basic blockB4 belongs to the loopL2 (with iteration vector is(i, j)T). Its statementS3: D0 =
A[i2][ j2] represents a read memory array access. The TREC of the first subscript is {0,+,1}1, while
the TREC of the second subscript is{0,+,1}2. Combining those two expression we get a multidi-
mensional affine access function :f ((i, j)T) = (i, j)T . The complete set of read references ofB4 is:
R B4 = {〈A, f ((i, j)T) = (i, j)T〉,〈x, f ((i, j)T) = j〉}.

Writes/reads to/from scalar variables are not represented. Writes and reads to temporary scalar vari-
ables are treated as an internal state of the basic block. Since they are notproducing visible side-effects
they do not have to be captured. We will discuss this further in the section dealing with data dependence
analysis. In Figure 4.7 the represented data references are marked (the statements that access the memory
are emphasized).

Construction of the original schedules

The scheduling functionsθB encoding the original program execution order are constructed for each
basic block belonging to a SCoP region of a CFG.

As it was defined in section 2.3.4, the scheduling matrixΘB is decomposed into dynamic (A and
Γ matrices) and static (β vector) scheduling components. For the scheduling matricesΘB corresponding
to the original execution order, their dynamic scheduling components,A andΓ matrices, are an identity
matrix and all-zero matrices respectively. The static schedulingβ vector for each basic blockB is deduced
from the region tree.

3 6 74

5

L1

L2

1 2 30

1
0

0

0

Figure 4.8 – Relative nesting and ordering of loops and basic blocks

Let us assume that our SCoP region includes the wholeL1 loop region. The region tree for the CFG
in Figure 4.7 is shown in Figure 4.8. The child nodes of each region are numbered. By following a
path from the SCoP root region down to the given basic block, we construct aβ vector that consists of
the numbers labelling the child positions. This idea is described in [22]. For example, theβ vector for
the basic blockB3 is (0,0). The β vector for the basic blockB4 is (0,1,0). The construction of static
scheduling components (β vectors) based on a region tree guarantees an uniqueness of the scheduling
time-stamps for each basic block instance.

As a side note: the basic blocks that do not contain any computational statements are not considered
for the polyhedral representation. Empty basic blocks are simply discarded from the region tree. In our
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example, the basic blocks4 B5 andB7 are not considered as a part of the polyhedral representation. Since
the polyhedral model captures all the necessary information to reconstruct the control-flow according to
the new schedule, the basic blocks containing onlygoto statements are ignored, since they are going to
be recreated in the code generation stage of the GRAPHITE.

Mapping IR symbols into the polyhedra

The GIMPLE intermediate representation statements contain symbolic variable names. Variables are
either scalars or arrays. On the other hand, the polyhedral representation is a mathematical abstraction
representing sets of integer vectors5 . The mapping between symbolic names of the three-address code
and the variables of the polyhedra has to be maintained. For that purpose amapping, similar to compiler
symbol table, is used. An example of this correspondence is seen in Figure 4.7.

Differences from the source-to-source compilers

The source-to-source compilers [124, 123] directly map the source code level statements into the
polyhedral model. For example, the polyhedral representation for the source code in Figure 4.7 would
contain two domainsDS1 andDS2 corresponding to the two syntactical statementsS1 andS2. Also, the
scheduling functions are provided per source level statement:θS1, θS2.

After the source code is translated into GIMPLE three-address code, thehigh-level statements are
broken down into several three-address code statements - temporary variables are inserted to hold the
intermediate results. Inside GRAPHITE we are storing the polyhedral representation per each basic block
and not per each GIMPLE statement. Thus, we have three domains, one for each basic block:DB1, DB2

andDB3. The same holds true for scheduling functions. We use a superscriptBi to emphasize this fact.

The fact that we store the scheduling functions per basic block and not per three-address code state-
ment contained inside basic block, means that all the statements inside one basicblock share the same
scheduling function. Statements inside the basic block are not rescheduled. In section 4.5.1 we will
discuss the implications of this decision.

In the source code of a typical imperative language (C, fortran), one assignment statement contains
one write (left hand side) and several reads (right hand side). Aftertransforming the source level state-
ment into three-address code the original write and read data references are scattered into several state-
ments. The original data references might be scattered among several basic blocks, or even optimized
out completely.

For example, the original source code shown in Figure 4.7 contains one write data reference (b[i])
in textual statementS1. The corresponding data reference in the three-address code (shown in Figure 4.7)
is contained inside basic blockB3 in the statementS2. The two read data references contained in the
statementS2 (A[i][j] and x[j]) have their corresponding references inside the basic blockB4 (in
statementsS3 andS4). On the other hand, the write data reference (b[i]) from source-level statement
S2 appears in the basic blockB6 as statementS1. The original read from arrayb inside source-level
statementS2 does not appear in three-address code at all - it has been optimized outand replaced by a
scalar access6 .

4. so called ’latch’ [70] basic blocks that jump back to the loop header
5. If we want to emphasize the different domains of variable definitions,we will usei for the symbol names in IR and the

mathematical notationi for the occurrence of the variable in the polyhedral model.
6. this happens in the PRE (Partial Redundancy Elimination) optimization passthat is scheduled to run before GRAPHITE
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DB3 =
{

(i) | 0≤ i ≤ N−1
}

θB3(i)T = (0, i,0)T

W B3 = {〈b, f (i) = i〉}
R B3 = /0
DB4 =

{

(i, j) | 0≤ i ≤ N−1∧0≤ j ≤ N−1
}

W B4 = /0
R B4 = {〈A, f ((i, j)T) = (i, j)T〉,〈x, f ((i, j)T) = j〉}
θB4(i, j)T = (0, i,1, j,0)T

DB6 =
{

(i) | 0≤ i ≤ N−1
}

W B6 = {〈b, f (i) = i〉}
R B6 = /0
θB6(i)T = (0, i,2)T

Figure 4.9 – Polyhedral representation of three-address code

DS1 =
{

(i) | 0≤ i ≤ N−1
}

θS1(i)T = (0, i,0)T

W S1 = {〈b, f (i) = i〉}
R S1 = /0
DS2 =

{

(i, j) | 0≤ i ≤ N−1∧0≤ j ≤ N−1
}

θS2(i, j)T = (0, i,1, j,0)T

W S2 = {〈b, f (i) = i〉}
R S2 = {〈A, f ((i, j)T) = (i, j)T〉,〈x, f ((i, j)T) = j〉,〈b, f (i) = i〉}

Figure 4.10 – Polyhedral representation the origianl source code

Putting it all together

The complete polyhedral representation of the three-address code fragment contained inside the
SCoP from Figure 4.7 is shown in Table 4.9. Figure 4.7 shows the same information attached to the
respective basic blocks.

As a comparison, Table 4.10 shows the (hypothetical) polyhedral representation of the respective
source-level code in Figure 4.7.

4.4 The data dependence analysis of three-address code

The polyhedral model used in the source-to-source compilers [34], [67] only allows memory refer-
ences through array accesses. An access to a scalar value is treated as an access to an one-element array:
a = ... is rewritten asa[0] = ....

While this approach is practical for the source-to-source compilers, transforming the numerical ker-
nels where array accesses constitute the majority of data references, it has prohibitive cost if used in the
three-address code compilation context.

The lowering process from the source code down to the three-addresscode introduces (many) tempo-
rary scalar variables. Treating all the scalar temporary variables as single-element arrays and taking them
into an account for the dependence analysis might lead to an explosion in thesize of data dependence
graph.

This is of particular concern, if we take into an account that the schedulingalgorithms [34, 67],
based on the polyhedral model, have a complexity that is dependent on the number of edges of a data
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dependence graphG= (V,E).
In order to efficiently manage the data dependences between scalar variables in the three-address

code, the smallest necessary subset of the scalar variables is taken into aconsideration for the dependence
analysis.

Internally in GRAPHITE, those scalars whose data dependences must beexposed are marked as if
they were single-element arrays. As a preprocessing step, GRAPHITEis marking those scalars that must
to be processed by the dependence analysis as single-element arrays.Scalars that are not marked are not
taken into the consideration for the dependence analysis.

In order to mark the necessary scalars for the dependence analysis, GRAPHITE is classifying the
scalar data dependences into four categories:

1. Intra basic block scalar data dependences

2. Cross basic block scalar data dependences

3. Inductions

4. Reductions

Only thecross basic blockand thereductionscalar dependences have to be explicitly represented.
This is done by introducing theshadowsingle-element arrays for those scalars that are involved in de-
pendences. Scalar data dependences that are induced by the computation of the induction variables and
scalar data dependences that are contained within a single basic block arenot represented explicitly in
the polyhedral data dependence graph.

Given the three-address code in Figure 4.11, the effect of the preprocessing step that introduces the
shadow arrays is shown.We will provide the brief discussion of the details related to handling each kind
of scalar dependences in GRAPHITE. The illustration shown in Figure 4.11will serve as common base
example for all the discussions.

Intra basic block data dependences

As mentioned in Subsection 4.3.2, the basic block is the basic unit of scheduling. The statements
inside a basic block are not rescheduled. The transformation process from the source-code to the lower
level three-address code introduces temporary scalar variables to store the intermediate computation
results.

Definition 4.4.1 (Intra basic block dependence). A scalar data dependence between the scalar valueX
defined within a basic blockB at iterationi and its subsequent uses within the same iterationi of the
same basic blockB are calledintra basic block dependences

Since the relative order of the statements inside a basic block is not changedby a transformation,
intra basic block dependences are always preserved, regardless of the basic block schedulesθB. As a
consequence, intra basic block dependences are not explicitly represented in the polyhedral dependence
graph.

For example, consider scalar variablesD0, D1, D2 defined inB4 - they are defined and used within
the same basic block and within the same iteration. The relative ordering of the statementsS3, S4, S5 and
S6 will not be changed in the polyhedral transformation. The flow dependence from statementsS3 and
S4 to statementS5 would always be preserved. Please note that this approach is similar to the explicit
privatization used for dependence removal [7].
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return; goto <bb 3>;

S8
S7
S6
S5
S4

goto <bb 4>

cross bb dependence

cross bb dependence

else
goto <bb 6>;

reduction cycle

S1
S2
S3

else
goto <bb 8>;

S9
S10

S1
S2
S3
S4

S1
S2
S3

B3

B7
B8

B5

B4

L2loop:

L1loop:

B6

i_2 = PHI <i_1, 0>
b[i_2] = 0.0;
phi_out_of_ssa[0] = b[i_2];

j_1 = j_2 + 1;
if (j_1 < N) goto <bb 5>;

pre.3 = phi_out_of_ssa[0];
j_2 = PHI <j_1, 0>

if (i_1 < N) goto <bb 7>;
i_1 = i_2 + 1;

D0 = A[i_2][j_2];
D1 = x[j_2];
D2 = D1  * D0;
D3 = D2 + pre.3;
phi_out_of_ssa[0] = D3;
cross_bb_dep[0]=D3

D4 = cross_bb_dep[0];
b[i_2] =D4;

Figure 4.11 – Matvect kernel - cross bb dependences, inductions andreductions
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Cross basic block data dependences

Since the different basic block instances might be rescheduled independently, the data dependences
that occur between scalar values belonging to two different basic blocksmust be captured in order to
restrict the possible rescheduling of the basic block instances.

If some scalar variableX is assigned in one instance of the basic block and if it is subsequently
used in another basic block or subsequent iteration of the same basic block, that scalar value will get the
shadow array that exposes the data dependence to the dependence analyser. Those scalars are treated as
single element arrays, so that dependence analysis could capture them inthe dependence test.

An example is given in Figure 4.11: there is cross basic block dependencebetween a scalar write in
B4 in the statementD.3 = D.2 + pre.3 and its subsequent use inB6 in the statementb[i_2] = D.4.
An explicit single-element arraycrossu_bb_dep[0] is introduced to represent this dependence.

Inductions

Scalar variables representing the loop counters or auxiliary induction variables that could be ex-
pressed as TREC expressions are ignored for dependence analysis. The data dependences induced by
computation of those variables could be ignored, since they could be represented byscheduling invari-
ant expressions of the form:χ(i) = χ(i1, i2, . . . , in). Those expressions are reconstructed in the GIMPLE
during the code generation step, after the transformation has been applied. Since the expression could
be correctly reconstructed, regardless of the applied scheduling, there is no need to explicitly keep those
dependences in the dependence graph.

Please note that in the source-to-source compilers, the induction variablesare implicit and their
computation is not taken into an account for the dependence analysis. We base our reasoning on the
same principle, but in our case we have to explicitly discover those inductionsinside a three-address
code.

Reductions

Reductions [139] form a special computational pattern used very often inthe scientific codes. Indeed,
an effective parallelization of loop kernels relies heavily on an effectivedetection and parallelization of
reductions. Mostly often it is used to perform a summation over the values of an array.

Data dependence theory puts a constraint on the relative scheduling of statement instances. But some
operations, if proved to be associative and commutative algebraic operations, might be scheduled in an
arbitrary order.

If the operator along which the reduction happens can be proved to be commutative and associative,
then the dependences that are induced by variables involved in a reduction are marked as belonging to
reduction.

As an illustration, the data dependences that form areduction cycleare shown in Figure 4.11. Indeed,
the scalarD3 accumulates the values computed in the scalarD2 in each iteration of the loop. An addition
operator ’+’ is commutative and associative, if performed on integer data type, so the order in which the
summation is performed does not influence the correctness of the final results.

Putting it all together

Taking into an account all the dependences that have to be explicitly represented, we come up with
the data dependence graph shown in Figure 4.12. Please note that the setof vertices is composed from
the three-address code statements, but those statements are contained withinbasic blocks, which is rep-
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Figure 4.12 – Explicit data dependence graph
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Figure 4.13 – Explicit data dependence graph

resented with the notationBi : Sj . The dependence edgese∈ E are connecting the three-address code
statements which contain the explicit memory accesses to arrays.

As a comparison, the dependence graph that is built by a source-to-source compiler is shown in
Figure 4.13. The dependence graph of the three-address code contains, besides true data dependences,
many anti and output data dependences - those are jointly classified asmemory baseddependences. These
dependences might significantly constrain the space of legal transformations. Later in Chapter 5 we will
show how to efficiently deal with those kind of dependences, such that thespace of legal polyhedral
transformations on the three-address code is equivalent to the source-level polyhedral compilation.

4.5 Transformations

The loop transformations in the GRAPHITE framework are performed on thepolyhedral represen-
tation. In order to maintain thecomposabilityof loop transformations, we perform all the loop trans-
formations through the scheduling matrix of the polyhedral model. This is in contrast to the tradi-
tional [46, 156, 34] approach to transformations in the polyhedral model,where some transformations are
expressed through scheduling matrices (affine transformations), where the loop tiling and strip-mining
transformations require the modification of the iteration domains. We will later show how we do over-
come this non-homogeneity in expressing the loop transformations.

Once the analysed program is brought into the polyhedral model representation and after the desired
transformations are selected, the output code is generated from the transformed schedules. Theautomatic
search for the transformation is conducted according to the cost-model driven search approach shown in
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chapters 7, 5 and 6.
The state of the art polyhedral code generator CLooG [22, 20] generates the loops that scan the integer

vectors contained in polyhedra. The integer vectors are scanned in the lexicographic order specified
by the scheduling function. The code generator is not responsible for maintaining the legality of the
transformations - iterations are scanned according to the transformed scheduling matrices. It is the duty of
theviolated dependence analysis, discussed in Chapter 5, to guarantee the legality of the transformations.

The CLooG code generator generates an AST (abstract syntax tree) representing the newly generated
loop nests, conditionals and affine loop bounds and conditions. This structure is traditionally used in the
source-to-source compilers [123, 124] to generate the target sourcecode. In the case of GRAPHITE the
AST is used to generate theoutput CFGthat corresponds to new loops. The symbol table (as shown
in Figure 4.2) that maps the original three-address code into polyhedral model variables is now used to
regenerate the target three-address code.

All the loop transformations, including loop tiling, are expressed seamlessly throughscheduling func-
tionsand it is the duty of CLooG to generate the appropriate loop structures. GRAPHITE is interacting
with parallelizer and vectorizer (as shown in Figure 4.1) passes of GCC compiler: if the loop is detected
to be a parallel DOALL loop, it is marked as a such in the code generation phase. After GRAPHITE,
the marked loop will be processed by the parallelizer to generate the multithreaded code. The similar
interaction happens with vectorizer pass.

We will now discuss several design issues related to the transformations and code generation in our
framework.

4.5.1 Granularity of scheduling

As we have mentioned in Chapter 2 (subsection2.3.1), the basic building blockof the polyhedral
representation could be chosen according to the abstraction level on which the polyhedral model is to be
built.

In the source-to-source compilers, the basic, and the most natural, atomic unit of scheduling is a
source-level statement. In a three-address-code based polyhedralcompiler, such as GRAPHITE, it is not
practical to build a polyhedral representation for each three-addresscode statement. The most reasonable
choice is to have a basic block of the control flow graph as the basic scheduling unit.

Nevertheless, the choice of having a basic block as the basic unit of scheduling is not always optimal
and may be way too restrictive. Let us consider an illustration in Figure 4.14.The source-level code for
the ADI7 kernel is shown. It contains two syntactic statements:S1 andS2. The corresponding three-
address code is shown as well. One can observe that all the three-address statements are clustered in one
basic block, the basic blockB4.

Since the design choice is to have a scheduling function per basic block, allthe three-address code
statements contained within the same basic block would get the same schedule. Obviously, this is not
desirable, especially in the case when we want to applyper statementaffine scheduling [34]. But hav-
ing one scheduling function per each three-address code statement is non-practical, for the scheduling
scalability reasons.

A solution that we have applied is tosplit such a basic block intoclusters, such that each cluster
would contain one write statement (highlighted in Figure 4.14) and all the necessary temporary variables
that are produced within the same basic block. This could easily be achievedby following use-def chains
in the SSA form. After this preprocessing, each cluster becomes a separate basic block that could be
scheduled independently.

7. taken from Polybench benchmark suite
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f o r ( i 1 =0; i1 <N; i 1 ++) {
f o r ( i 2 = 1 ; i 2 < N; i 2 ++) {

S1 : X[ i 1 ] [ i 2 ] = X[ i 1 ] [ i 2 ] − X[ i 1 ] [ i2 −1] ∗ A[ i 1 ] [ i 2 ] / B[ i 1 ] [ i2 −1];
S2 : B[ i 1 ] [ i 2 ] = B[ i 1 ] [ i 2 ] − A[ i 1 ] [ i 2 ] ∗ A[ i 1 ] [ i 2 ] / B[ i 1 ] [ i2 −1];

}
}

goto <bb 4>

return;

loop:l1

l2loop:

  # i2_38 = PHI <i2_22(3), 1(7)>
  D.5548_5 = X[i1_37][i2_38];
  D.5549_6 = i2_38 + −1;
  D.5550_7 = X[i1_37][D.5549_6];
  D.5551_8 = A[i1_37][i2_38];
  D.5552_9 = D.5550_7 * D.5551_8;
  D.5553_11 = B[i1_37][D.5549_6];
  D.5554_12 = D.5552_9 / D.5553_11;
  D.5555_13 = D.5548_5 − D.5554_12;
  X[i1_37][i2_38] = D.5555_13;
  D.5556_14 = B[i1_37][i2_38];
  D.5557_17 = D.5551_8 * D.5551_8;
  D.5558_20 = D.5557_17 / D.5553_11;
  D.5559_21 = D.5556_14 − D.5558_20;
  B[i1_37][i2_38] = D.5559_21;
  i2_22 = i2_38 + 1;
  if (i2_22 != 500)
    goto <bb 3>;
  else
    goto <bb 5>;

  # i1_37 = PHI <0(2), i1_23(6)>

  i1_23 = i1_37 + 1;
  if (i1_23 != 500)
    goto <bb 6>;
  else
    goto <bb 8>;

goto <bb 7>;

S1: X[i1][i2] = X[i1][i2] − X[i1][i2−1] * A[i1][i2] / B[i1][i2−1];

B[i1][i2] = B[i1][i2] − A[i1][i2] * A[i1][i2] / B[i1][i2−1];S2:

B7

B4

B3 B5

B8
B6

Figure 4.14 – source code and IR representation for ADI kernel
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4.5.2 Functions represented as relations

The classical definition (Chapter 2, subsection 2.3.3) of the polyhedral model components states
that the data accesses and schedules are expressed as data accessfunctionsand schedulingfunctions:

f : i ∈D→ s∈D
θ : i ∈D→ t ∈D
The data access function is the one-to-one mapping from an iteration space(i ∈ D) to adata space

of array subscripts (s∈ D). The scheduling function is the one-to-one mapping from an iteration space
(i ∈D) to atime domainof multidimensional timestamps (t ∈D).
In GRAPHITE we extend this definition with a notion ofaccess relationandscheduling relation:

F : (i,s) ∈D×D
θ : (i, t) ∈D×D
The mapping from the iteration vector to the subscript function is not anymorerestricted to one-to-

one mappings. This enables us to represent the fullaccess regions– when the data reference information
could not be expressed as a direct affine function. This is the case if only the approximation of the
memory access is available, coming from an interprocedural analysis for example. The notion of access
regions is a known term used in interprocedural compilation [151]. The access relation is now expressed
by anaccess polyhedron:

F =
{

(i,a,s) | F× (i,a,s,g,1)T ≥ 0
}

An additional component, thealias set number’a’, captures points-to information (pointer aliasing);
it allows us to extend the notion of array memory access to pointers accesses, provided that the precise
aliasing information [122, 10] could be obtained and that the original access functions (or regions) could
be reconstructed, as shown in Section 4.3.2.

Similarly, the scheduling is represented as ascheduling relation. 8 represented by anscheduling poly-
hedron:

θ =
{

(t, i) | Θ× (t, i,g,1)T ≥ 0
}

.
Having the schedules expressed as relations, we can express thetiling transformation with a schedul-

ing relation alone, without modifying the statement iteration domainDS. This is of particular importance
for the transparent integration of analytical cost-modelling approach discussed in Chapter 6 and lazy
memory expansion scheme shown in Chapter 5.

4.5.3 Adding new scheduling dimensions - loop tiling

Loop tiling or loop blocking is an extremely important loop transformation [162, 86, 2] used both for
coarsening the grain of parallelism and data locality improvement [34]. An example of the tiling applied
to a 2d iteration domain is shown in Figure 4.15. The new iteratorsii andjj are introduced to express
the tile-space, while the intra-tile iterations are constrained to the boundaries of the containing tile.

In the classical polyhedral framework, this transformation is expressedboth as an iteration domain
transformation (increasing the loop nest depth) and scheduling transformation(permuting the scheduling
dimensions) [46, 156, 34]. But this formulation breaks the principle of transformationcomposability-
the ability to express an arbitrary sequence of loop transformation throughscheduling function only.

We postulate that it is possible to express the loop tiling transformations by modifying the scheduling
relationθ alone. Given a timestamp variablet that corresponds to some scheduling dimension of thedy-
namicscheduling component of the scheduling matrix (Section 3.1.2), we introducea new time variable
tt, calledsupernode[86] time variable, by extending the scheduling relation with a new dimension and
introducing an inequality:

8. also calledscattering relationsfollowing CLooG [22] code generator terminology
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Figure 4.15 – Tiling the iteration space

B· tt ≤ t ≤ B· tt +(B−1)

whereB is the compile-time9 known loop blockingfactor.

The new supernode time variablett denotes theB-sized blocks of the original iteration domain, while
the original time variablet is now constrained to scan the iterations within the block denoted bytt.

As an example, we will consider the representation of thestrip-mining, which is the basic building
block for implementing tiling - in order to get a loop tiling, the strip-mining has to be performed along
each dimension considered for tiling. Consider a code snippet:

f o r ( i = 0 ; i < N; i ++)
S1 ;

The original scheduling matrix in the canonical form could be decomposed into the following compo-
nents: AS1 =

[

1
]

ΓS1 =
[

0
]

βS1 =
[

0
]

The concise representation of the scheduling relation is:

θS1 =
{

(t1, t2, t3, i) | t1 = 0∧ t2 = i∧ t3 = 0
}

The strip-mining of thet2 time dimension with a factorB= 64 is expressed as follows:

θS1
stripmined=

{

(t1, tt2, t2, t3, i) | t1 = 0∧ t2 = i∧64tt2≤ t2≤ 64tt2+63∧ t3 = 0
}

The corresponding code generated by CLooG [22] code generator isshown:

9. Thus, we do not supportparametric tilingas [83] do for example.
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f o r ( t t 2 =0; t t 2 <= f l o o r d (N, 6 4 ) ; t t 2 ++) {
f o r ( t 2 =max(64∗ t t 2 , 0 ) ; t2 <=min (64∗ t t 2 +63 ,N ) ; t 2 ++) {

S1 ( i = t 2 ) ;
}

}

Thefloord stands for the floor function of integer division. Please note that we showthe syntactic
code, but only for the presentation purposes. Internally in GRAPHITE,the loops are generated as basic
blocks within a CFG. Please note that the original iteration domainDS1 of the statementS1 is not modified
in any way, even though the iteration domain of the generated code is changed, but this change was
expressed solely through scheduling relation.

4.6 Conclusions and future work

In this chapter we have shown a detailed design of the GRAPHITE polyhedral compilation frame-
work which is currently a standard component of the general purpose GCC [71] compiler suite. The
author is a direct contributor to this project.

Two proprietary polyhedral compilers based on a low-level internal representation are currently in
development: the R-Stream compiler from Reservoir Labs [113], and IBM’s polyhedral extension of its
XL compiler suite [140]. But little has been published on the specific problems and trade-offs that arise
when introducing the polyhedral model based compilation flow into the realm oflow-level three-address
code based compiler.

Our work is the first widely published contribution [149, 148, 150] on the specifics of the direct
polyhedral compilation on a three-address code representation.

4.6.1 Benefits of direct manipulation of the three-address code

The traditional, source-to-source based approach to the polyhedral compilation regards thesyntac-
tical statementas the basic atomic unit of the computation, abstracting away the internal state ofthe
computation and giving relevance to the loads/stores of the statement only.

On the other hand, the intrinsic nature of the three-address code is the explicit visibility of the state -
the intermediate results of all the computations are visible through intermediate temporary variables.

This intrinsic property of the three-address code is the source of many difficulties in applying the
polyhedral model concept, but it also gives many degrees of freedomthat could be exploited. Those
degrees of freedom go along two axes: the granularity of the scheduling(statement versus basic-block)
and the granularity of visible state (intra versus inter basic data block dependences).

The low-level nature of the three-address code enables us to considera precise modelling of the
actual instruction costs - a property that is out of reach of the source-to-source compiler [124, 123]. We
will heavily exploit this property in Chapter 6, where we present the first-of-a-kind approach to precise
cost modelling of SIMD vectorization that is low-level, machine specific in nature.

We will summarize the benefits of providing the direct polyhedral compilation ofthe three-address
code:

Additional degrees of freedom.Since the original high-level syntactic computations are broken
down into the atomic three-address code instructions, there are additional degrees of freedom with re-
spect to the scheduling granularity (which statements should be clustered together) and exposing data
dependences (whether to keep the data dependence internal to the basicblock, or to externalize it).

Tight interaction with a compiler. This benefit is more of a technical nature: since we are operating
within the pipeline of the compiler optimization passes, all the analysis information likealiasing, pointer
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analysis, data alignment, induction variable analysis, interprocedural analysis is available for the use
within the polyhedral transformation framework.

Precise modelling of instruction costs.The three-address code is much closer to the machine code
of the target architecture than an abstract syntax tree of a source program. Also, the recognition of the
intrinsics (for vectorization) and idioms [127] is readily available at the levelof three-address code. The
actual instruction costs are available from the backend of the compiler, since they are anyway used in the
instruction scheduling phase. We will heavily rely on this property in Chapter6.

Semantical transparency.The three-address code is expressed in SSA [52] form which captures the
essential flow of the scalar data in the program, and could be regarded asthe functional representation
of the computation [11]. Also, the essential scalar optimizations based on the SSA form are performed
before the GRAPHITE stage is reached.

This leads to a degree of semantical transparency with respect to the formof the input program : two
semantically equivalent kernels would be represented in the same way in SSAform, when they reach
the polyhedral framework. This is in contrast with source-to-source compilers, which arefragile with
respect to syntactical details - if the programmer forgot to bring the program in the form expected by the
syntactical parser, the program would simply be ignored.

4.6.2 Future work

The aforementioned benefits of having the polyhedral transformations within the three-address code
compiler bring many new research opportunities.

We have used GRAPHITE framework to conduct a research on the iterative search and cost modeling
of the profitability of the loop transformations, as explained in subsequent chapters of this dissertation.

But many new possible and interesting research opportunities emerged. Some problems were left
unsolved, since their in-depth investigation was not on the main line of this thesis. We will summarize
several of those research problems:

Interplay with other compiler optimizations . The GRAPHITE polyhedral framework is used to
perform the loop transformations expressed as scheduling relations. But the loop transformations are just
a part of the bigger picture. GRAPHITE is a part of the complete compilation pipeline consisting of
more than 200 optimization passes - scalar optimizations, instruction selection andscheduling, register
allocation, loop unrolling and much more. An in-depth study of the possible interactions between loop
optimizations and other optimization seems very interesting, though intractable in its full generality .

Some optimizations might conflict with the polyhedral transformations. A notorious example isloop
unrolling, that might be performed before GRAPHITE. Obviously, unrolling a loop before going into the
polyhedral representation can have a dramatic effect on the scalability ofthe polyhedral optimizations,
and it is better avoided at all.

Data layout transformations. The expressive power of the polyhedral model is used in the context
of data-layout transformations [109] as well. At the same time, those transformations are studied inde-
pendently, as the components of other optimization stages of the compiler [75].Combining both might be
beneficial, as the polyhedral model precisely captures the execution order, while the internal representa-
tion of the compiler has a low-level details about the data-layout. Also, the controlled memory expansion
schemes like [102] are a key missing part for fully enabling the potential of automatic parallelization
with GRAPHITE.

Extending the scope of the analyzable programs. GRAPHITE restricts its scope of analyzable
and transformable programs to the static control programs, much in the same way as the traditional
polyhedral compilation approaches. Recent works [26] on extending the applicability of the polyhedral
model to non-static control programs (loop bounds and conditionals that depend on the input data) seem
a promising research direction for the GRAPHITE. This is particularly true for the three-address code
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based compilers, because of their rich semantical analysis that could be employed.
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Chapter 5

Lazy memory expansion scheme

A program transformation needs to be safe – the semantics of the original imperative program cannot
be changed. In order to preserve the legality, data-dependences (Section 3.2.1) need to be analyzed. There
are essentially two types of data-dependences:data-flowdependences andmemory-baseddependences -
as discussed in Section 3.2.2. While preserving the data-flow dependences is always mandatory, spurious
memory-based dependences can be removed, or simply ignored in certain conditions.

So calledtrue or dataflow[102] dependences are imposing ordering constraints between write and
read operations – they should always be preserved, since this preserves the right producer-consumer
ordering, which in turn guarantees the correctness of the computations.

Memory-based dependences1 are induced by the reuse of the same memory location to store multi-
ple, temporary values. Spurious scalar dependences not only increase the total number of dependences in
the RDDG graph, but, most importantly, they reduce the degrees of freedom available to express effective
loop transformations and parallelization.

Memory-based dependences could be removed by introducing new memorylocations, i.e.expansion
of the data structures [45]. While theexpansionapproaches can remove spurious memory-based depen-
dences, they have to be avoided whenever possible due to their detrimentalimpact on cache locality and
memory footprint - expanding a scalar value into an array requires extra memory storage, proportional
to the size of the iteration space.

Designing a polyhedral compilation framework on a three-address code exacerbates the problem of
spurious memory dependences even further, since thegimplification2 process introduces many tempo-
rary variables in the internal representation.

In this chapter, we show a technique that detects those memory-based dependences that could be
ignored when checking for a legality of the transformation. If a memory-based dependence could not be
ignored - it isviolated in another words - it can beremovedproposes an expansion or privatization that
would enable a transformation.

Using a proposed technique, we can get rid of many memory-based dependences, either those in-
duced by the lowering of a source program into three-address-code or those introduced by a programmer.
Only if a dependence cannot be ignored, it is removed through scalar/array expansion.

1. anti and output dependences [7]
2. gimplificationis a GCC jargon term denoting the lowering of a high-level AST into a low-levelGIMPLE internal GCC

representation
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5.1 State of the art

The problem of eliminating the memory-based (anti and output) dependenceshas been studied since
a long time in the automatic parallelization community [98, 120]. It is a well known fact that memory-
based dependences hinder the opportunities for automatic parallelization and other loop transformations.
Darte [37] gives a good overview on the removal of the anti and output data dependences.

The simple and most natural solution is to perform a memory expansion - assigning a separate mem-
ory location for each executed iteration [64]. A similar approach is that ofprivatization- assigning a
private copy to each thread executing in parallel [153].

While the approach of memory expansion or privatization helps the parallelism,it has an inherent cost
- an additional memory footprint or additional copy in/copy out operations.The cost of those additional
overheads might be prohibitive. What is more - there is no guarantee that removing the memory-based
dependences will help extract more parallelism.

In order to control the cost of the array expansion footprint, the two general approaches are:
– Perform a maximal expansion [17], apply a transformation, and then do an array contraction [56,

4, 58, 72] which minimizes the memory footprint. Approaches like [110, 102, 48] fall into this
category. This approach gives the maximal degree of freedom for parallelization or loop transfor-
mation, but an array contraction phase is not always capable of optimizing the memory footprint.

– Control the memory expansion phase by imposing constraints on the scheduling. Approaches
like [45], [146] fall into this category. This category of approaches tries to optimize the mem-
ory footprint, but it might restrict schedules, thus loosing optimization opportunities.

5.1.1 Our contribution

There is a trade-off between parallelization and memory usage: if we expand maximally, we will get
the maximal degree of freedom for parallelization and loop transformations,but with a possibly huge
memory footprint. If we choose not to expand at all, we will save memory, butour parallelization or loop
transformation possibilities would be limited.

Our approach takes the lazy-expansion strategy: we do not expand memory before transformation.
When checking for transformation legality, we simply ignore all memory based dependences. Only after
applying a given transformation, we perform a violation analysis to check which memory based depen-
dences might have been violated, and we propose to expand memory or to change a schedule.

By taking our approach, we are combining the best from the two mentioned state of the art ap-
proaches: we do not perform a full expansion before a transformation and we do not restrict the transfor-
mation too early.

The lazy-expansion strategy is not used to compute transformations automatically, as it is done in
techniques using linear programming approach [68, 34], instead, it is used in aniterative enumerationof
possible schedules as it is done in [150].

5.2 Motivating example

Consider a matrix multiplication numerical kernel given in a Figure 5.1. If we analyze this kernel at
the source-code level, we will get the dependence graph shown in Figure 5.7. It contains both dataflow3,
and memory-based4 dependences. Those data dependences do not prevent the rescheduling transforma-
tion that permutes the ’i’ and ’j’ loops.

3. true, a.k.a. read-after-write
4. write-after-write and write-after-read
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f o r ( i = 0 ; i < N; i ++)
f o r ( j = 0 ; j < N; j ++)

{
S1 : A[ i ] [ j ] = 0 ;

f o r ( k = 0 ; k < N; k++)
S2 : A[ i ] [ j ] += B[ i ] [ k ] ∗ C[ k ] [ j ] ;

}

Figure 5.1 – matrix multiplication kernel

f o r ( i = 0 ; i < N; i ++)
f o r ( j = 0 ; j < N; j ++)

{
S1 : t = 0 ;

f o r ( k = 0 ; k < N; k++)
{

S2 : t += B[ i ] [ k ] ∗C[ k ] [ j ] ;
}

S3 : A[ i ] [ j ] = t ;
}

Figure 5.2 – matrix multiplication - after PRE
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Figure 5.3 – Legal execution order
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Figure 5.4 – Illegal execution order

If the same kernel was written in an optimized way, shown in Figure 5.2, the dependence graph would
now contain new output dependences due to the reuse of the scalar variable t for storing intermediate
results.

The similar thing would happen if a compiler, such as [71], performs a lowering of the high-level
source code into a three-address code internal representation. Afterthe source code is transformed into
low-level form, the compiler performs many optimization passes. One of those passes is PRE [114]
(Partial Redundancy Elimination) which does the following scalar optimization: instead of accumulating
a values into an array, it initializes a scalar value, accumulates values into thatscalar and then stores the
scalar into an array element. Conceptually, the idea is the same as if the user has rewritten the code as
shown in Figure 5.2. An equivalent three-address code seen in GCC compiler is shown in Figure 5.5.

A data dependence graph corresponding to code in Figure 5.5 is shown inFigure 5.6. After intro-
ducing a scalar into the loop, a new write-after-write dependence on statement S1 has been introduced:
δWAW

S1→S1
. This dependence stems from the fact that the same temporary scalar valueis overwritten in each

iteration of the containing loop.
This output dependence has to be respected, which forces the sequential execution in the original

scheduling order. Figure 5.3 shows that if we execute the code in a sequential manner, according to
the original loop nesting (loopi as outermost, loopj as innermost), then the dependences would be
preserved. If we try to interchange loopsi andj, we would invert a dependence constraint, thus violating
the write-after-write dependence on the scalart. This is shown in Figure 5.4.

But an intuition tells us that it is legal to interchange loopsi andj and still have a correct output code.
An essential observation is that some memory based dependences (write-after-write and write-after-read)
could be ignored when performing some transformations. But how do we determine when it is safe to
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i_14 = i_28 + 1;

if (i_14 <= 999)

bb 8

j_29 = PHI <j_13(3), 0(10)>

k_30 = PHI <k_12(6), 0(4)>

prephitmp.3_34 = D.1979_35;

D.1969_10 = D.1967_8 * D.1968_9;
D.1970_11 = D.1969_10 + prephitmp.3_34;

k_12 = k_30 + 1;

bb 4

bb 6

goto <bb 5>

bb 7

if (k_12 <= 999)

T F

j_13 = j_29 + 1;

if (j_13 <= 999)

bb 10

T F

T
F

i_28 = PHI <0(2), i_14(9)>

phi_out_of_ssa.6[0] = 0.0;
A[i_28][j_29] = 0.0;S0

S1

bb 5

S2

S3

S4

S5
S6

D.1979_35 = phi_out_of_ssa.6[0];

D.1967_8 = B[i_28][k_30];
D.1968_9 = C[k_30][j_29];

Close_Phi.7[0] = D.1970_11;
phi_out_of_ssa.6[0] = D.1970_11;

A_I_I_lsm.5_39 = Close_Phi.7[0];
A[i_28][j_29] = A_I_I_lsm.5_39;

S7
S8

Figure 5.5 – GIMPLE code with CFG
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Figure 5.6 – Data Dependence Graph
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Figure 5.7 – Matmult Data Dependence Graph

ignore some dependences?

On the other hand, let us consider an example where an user has written a code in Figure 5.2 man-
ually and provided it to the compiler. As an example let us consider the legality ofloop distribution
transformation shown in Figure 5.8. This transformation would not be legal, and an output dependence
on the scalart could not be ignored. Though, an expansion of the scalart could be performed, as shown
in Figure 5.9. Expansion removes an output dependence on the scalart and allows the distribution trans-
formation to be legal. But an expansion introduces an additional cost - thatof transforming the scalart
into an arrayt[N][N]). This is a situation that should be rather avoided.

In the following section we will show how to formally prove which memory-baseddependences,
given a desired transformation, could be ignored (as in the example of loopinterchange ) and which
must be removed by a memory expansion.
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f o r ( i = 0 ; i < N; i ++)
f o r ( j = 0 ; j < N; j ++)

t = 0 ;
f o r ( i = 0 ; i < N; i ++)

f o r ( j = 0 ; j < N; j ++)
{

f o r ( k = 0 ; k < N; k++)
{

t += B[ i ] [ k ] ∗C[ k ] [ j ] ;
}
A[ i ] [ j ] = t ;

}

Figure 5.8 – illegal - loop distribution without an ex-
pansion

f o r ( i = 0 ; i < N; i ++)
f o r ( j = 0 ; j < N; j ++)

t [ i ] [ j ] = 0 ;
f o r ( i = 0 ; i < N; i ++)

f o r ( j = 0 ; j < N; j ++)
{

f o r ( k = 0 ; k < N; k++)
{

t [ i ] [ j ] += B[ i ] [ k ] ∗C[ k ] [ j ] ;
}
A[ i ] [ j ] = t [ i ] [ j ] ;

}

Figure 5.9 – legal - loop distribution with an expan-
sion

Figure 5.10 – Read/Write instruction interleaving and variable live ranges
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5.3 Framework

We will first define the concept oflive rangeand we will show the way of computing the closed form
expression that summarizes the set of live ranges. The core of the approach will be shown in subsection
5.3.2, where we discuss a computational procedure for checking the potential violation of value live
range instances: if a value live range instance of some memory locationM is violated, then the memory
based dependence induced by the reuse of the memory location cannot beignored. A detailed example
is shown in subsection 5.3.3.

5.3.1 Live ranges

An execution trace of a sequential program can be seen as an interleaving of read and write instruc-
tions. During an execution of a loop, values are produced and stored intomemory locations. Those values
are then read by subsequent instructions. The value stored in a memory location islive until its last read,
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before it is destroyed by a subsequent write to the same memory location.
We are interested in formally analyzing and modelling valuelive rangesinside loops, using the

polyhedral model. Given a code in Figure 5.2 we can represent the execution trace and instances of
live ranges as shown graphically in Figure 5.10. A similar concept, namedutility span of a value, was
introduced in [102].

Consider a valueV written into a memory cellM[b] by an instruction instancew= (SW, iW). We can
compute a set of instruction instancesR= {(SR, iR)} such that there is a direct data-flow of valueV from
instancew to instances in setR.

Each instance of a value live range is a tuple, describing a write and read instruction instances. Let
us consider a set of value live range tuples:

L = {< (SW, iW),(SR, iR)>}

We want to have a closed form expression that summarizes all instances in this set. We can decompose
the setL into a finite number of convex polyhedra, where each polyhedron describes live range instances
for a pair of statements:

λSW→SR = {(iW , iR) | Λ× (iW , iR,g,1)T ≥ 0}

Each convex polyhedronλSW→SR represents instances of statements that form a definition/use pairs.
This polyhedron is constructed by enforcing the following conditions:

conflict condition - write and read statement instances refer to the same memory location:

FSW(iW) = FSR(iR)

causality condition - a read instruction is scheduled after a write instruction:

θSw(iW)≺ θSr (i))

liveness condition - there is no intervening writewk = (SKW, iKW ) happening between(SLW, iLW ) and
(SR, iLR ) instruction instances.

Described polyhedra satisfies exactly the same conditions that an array dataflow analysis (Section
3.2.3) requires. It is computed by the array dataflow algorithm of Feautrier, detailed in [66]. Given a
memory locationM, all the read accesses and theirsource functions(Section 3.2.3) are combined into
the setL. A practical implementation of this computation is given in [148].

5.3.2 Live range violation analysis

After applying a transformation, the relative execution order of statement instances might change.
This change might cause live ranges described in the setL, mapped to the same memory location, to
interfere.

The classical dependence analysis theory states that a source instruction instance must execute before
a sink instruction instance:θ′SW

(iW) ≺ θ′SR
(iR). Once dataflow dependences are computed, we use a

simple dependence violation analysis [156] to check this condition on all dataflow dependences.
Since we propose toignorethe memory based dependences, how do we assure that a transformation

would not reschedule some statement instance, say(SKW, iKW ), to overwrite a valueV, produced at
instance(SW, iW), before it is read by a statement instance< SR, iLR >, as it was expected in the original
program?

In other words: we have to check that such a case may not happen aftera transformation. We form
the following system of equations, modelled using a polyhedral model:
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VioSW→SKW→SR =

{

(iW , iR) ∈ λSW→SR : θ′SW(iW)≺ θ′SKW(iKW )≺ θ′SR(iR)∧
FSW(iW) = FSR(iR)

}

New schedulesθ′ represent a polyhedral transformation that we check for legality. If a violation set
VioSW→SKW→SR is empty, there is no violation after a transformation. We have to perform this check for
each dataflow dependence polyhedronδSj→Si and for each possible write statementSKW.

Legality of loop parallelization: Previously mentioned check takes into an account the fact that that
schedule functionsθ′ are describing a sequential execution order. Sequential execution order has a prop-
erty that no two different statement instances could be scheduled at the same time: so eitherθ′Si

(i)≺ θ′Sj
(j)

or θ′Sj
(j)≺ θ′Si

(i).
If we consider loop parallelization transformation, we need to take into an account that some state-

ment instances might be executed simultaneouslyθ′Si
(i) = θ′Sj

(j). Thus, value live range legality violation
check used for sequential transformations could not be used.

Given a loop at levelk that we consider for parallelization5 , we proceed as follows: we check
that there are noloop carried [7] dataflow dependences at levelk. Then, we check that no two distinct
statement instancesθ′Si (i) andθ′Sj (j) sharing the same prefix up to depthk−1 write to the same memory
location (instances associated with the same iteration of the parallel loop but different iterations of some
inner loops can still write to the same memory location).

Supporting array/scalar expansion: Our approach is compatible with well known array/scalar ex-
pansion approaches. If a transformation produces at least one violated live range (the setVio is not empty)
then we can choose to expand the variableM whose live ranges are violated. A precise characterization
of violated live range instances in a setVio could be used to drive the needed degree of expansion as in
[102]. If we do not want to perform any expansion, we can iterativelychoose a new schedule that does
not violate any live ranges.

Supporting privatization: Privatization is a common concept in the loop parallelization community.
We can use our framework to automatically detect which scalars/arrays need to be privatized to enable
loop parallelization transformation. This is actually how GRAPHITE is drivingautopar– a GCC loop
parallelizer.

5.3.3 An example

Let us take the GIMPLE code from Figure 5.5 and consider a memory locationphi_out_of_ssa.
Figure 5.10 shows an interleaving of writes and reads to this memory location. A slice of the execution
trace, for a finite number of iterations, is shown. Value live ranges are shown as well. Some value live
range instances contained in a setLphi_out_of_ssa:

< (S1,(0,0)),(S2,(0,0,0))>
< (S6,(0,0,0)),(S2,(0,0,1))>
< (S6,(0,0,1)),(S2,(0,0,2))>
.. .
< (S6,(0,0,N−2)),(S2,(0,0,N−1))>
< (S1,(0,1)),(S2,(0,1,0))>
.. .

5. A parallelized loop is a loop whose iterations could be executed by independent threads, as in a DOALL [7] loops.
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After array dataflow analysis, we come up with two closed form expressions: λS1→S2 andλS6→S2.
These two polyhedra summarize value live range instances between statements S1 andS2, and between
S6 andS2 respectively. They have the following form:

λS1→S2 = {< (i, j),(i′, j ′,k′)>: i′ = i∧ j ′ = j ∧k′ = 0∧0≤ i < N∧0≤ j < N}

λS6→S2 =

{

< (i, j,k),(i′, j ′,k′)>: i′ = i∧ j ′ = j ∧k′ = k+1∧
0≤ i < N∧0≤ j < N∧0≤ k< N−1

}

For the purpose of this example, we would like to check whether interchanging loopsi andj is a
transformation that preserves non-conflicting condition on all live rangeinstances. Referring again to
Figure 5.5, we see that we are interested in the schedule of statementsS1, S2 andS6. Their scheduling
functions in an original program are as follows:

θS1(i, j)T = (0, i,0, j,0)T

θS2(i, j,k)T = (0, i,0, j,1,k,1)T

θS6(i, j,k)T = (0, i,0, j,1,k,8)T

If we perform a loop interchange transformation, we will get the following transformed scheduling func-
tions:

θ′S1(i, j)T = (0, j,0, i,0)T

θ′S2(i, j,k)T = (0, j,0, i,1,k,1)T

θ′S6(i, j,k)T = (0, j,0, i,1,k,8)T

By applying the sequential version of the violation check, we find that the violation sets are empty:
VioS1→S1→S2 = /0
VioS1→S6→S2 = /0
VioS6→S1→S2 = /0
VioS6→S6→S2 = /0

proving that there are no violations of live range intervals, after an interchange transformation. The con-
clusion is that the output dependences induced by the scalar variablephi_out_of_ssa.6[0] (shown as
δWAW

S1→S1
andδWAW

S6→S6
in Figure 5.6), could besafelyignored when checking the legality of the transforma-

tion.
This check has to be performed for other memory accesses as well. In addition, we perform a schedul-

ing violation analysis (Section 3.3) on true dataflow (read-after-write) dependences only:δS1→S2 and
δS6→S2, to check that relative writes/reads are executed in a correct order.

A classical dependence violation analysis [156], that takes into an account the full dependence graph,
would consider this transformation to be illegal, thus precluding (obviously) legal interchange.

5.4 Performance benefits

The original motivation for coming up with the lazy expansion scheme was the fact that a three-
address-code internal representation of the compiler that we were developing (Chapter 4) inherently
contains many scalar variables.

It is a known fact that memory based write-after-write dependences on scalar variables hamper any
effort on automatic parallelization. Indeed, all the codes that contain a reduction operation, like the matrix
matrix multiplication shown in Figure 5.1, are internally transformed into the form where a scalar value
is used to accumulate the values. Also, if an user writes such a code, such as the version of the matmult
shown in Figure 5.2 the parallelization is not possible, since there is a loop carried output dependence [7].
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Classical Lazy
Benchmarks outer inner outer inner
2mm.c 7 0 0 5
3mm.c 10 0 0 7
atax.c 1 2 0 3
bicg.c 1 1 0 2
gemm.c 4 0 0 3
gemver.c 4 1 0 3
gesummv.c 2 0 0 1
gramschmidt.c 3 1 0 4
jacobi-2d-imper.c 3 0 1 1
ludcmp.c 1 0 0 1
seidel.c 1 0 0 1

Table 5.1 – The number of the parallelized loops for Polybench [84] suite

Our scheme enables thetransparenthandling of all the non-harmful output dependences, also in the
case of loop parallelization. We ran measurements on a suite of computationally intensive numerical ker-
nels [84]. We compared the parallelizability of the kernels using both dependence models: the classical,
all data-dependences analysis, and our approach of combined arraydata-flow analysis with live range
analysis.

After integrating the new approach into the GRAPHITE polyhedral framework of the GCC compiler,
we found that the new approach allowed for more loops – and mostly importantly, more outer loops – to
get parallelized, as depicted in Table 5.1. This translates naturally into the speedups obtained by running
those benchmarks on chip multiprocessor 5.11.

The baseline is thew/o dataflowcolumn, standing for a sequential run when the current transfor-
mation violation analysis is used. Thedataflowcolumn represents a sequential run when the new, lazy
live range violation analysis is used. As expected, changing the analysis doesn’t influence the runtime of
sequential runs, since we perform no sequential code transformation,which is why these columns show
the same runtimes for all kernels.

Enabling parallelization on top of the current dependence analysis produces only a mild speedup on
jacobi-2d-imper, while it does not impact or sometimes even slows down the others. This is mainly due
to the low speedup potential ofinner loopparallelization.

When autoparallelization is enabled with the new data-flow and live range analysis, we achieve sub-
stantial speedups of up to 3.8x. We experience one degradation inatax kernel, which we relate to the
overhead incurred by autopar, unrelated to which data dependence model we use, since it happens for
both approaches.

These are only the preliminary results, showing the potential of lazy memory expansion scheme
combined with privatization and automatic parallelization. The integration of the GRAPHITE framework
with automatic parallelization phase of the GCC compiler was discussed thoroughly in Chapter 4.

5.5 Summary

We have shown how a value live range analysis can be used to enable alazy memory expansion
scheme – memory is expanded only if absolutely necessary for the correctness of the transformation.

Polyhedral compilation traditionally takes as an input a dependence graph with all dependences,
constructs a legal transformation and generates code.
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Figure 5.11 – Speedups on Power platform.
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compute dataflow
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dataflow dep
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Figure 5.12 – A flow of polyhedral compilation
based on violation analysis

The other class of so calledviolation analysisbased compilation flow [157] takes as an input a
dependence graph with all dependences as well, it constructs a transformation (without legality check),
and only then it checks whether the transformation is legal. If it is, then it proceeds with code generation.
If it is not, then it reiterates and proposes a next transformation until it finds a legal one.

We take the violation analysis approach astep further: we do not take into the account all the
dependences. We split the dependence graph into those dependencesthat are truedata-flowdependences
and those that arememory based. We do not check memory-based dependences for scheduling violation
violation.

By not taking the memory-based dependences into an account for scheduling violation analysis we
cannot guarantee that original values written into specific memory location are not destroyed before they
could be read by an appropriate instruction. In order to maintain this property, we first definelive ranges
for all values generated in an original program. Then we check whethera transformation would respect
those value live ranges by performing thelive range violationanalysis. If we prove that all value live
ranges are still respected, then the transformation is legal.

If a transformation destroys value live range set for a memory location, it isstill possible to correct
this: we could choose to replicate (memory expand) those memory locations. This leads to a controllable
memory expansion scheme - we only expand when there is a need for expansion. A complete scheme of
our approach is shown in Figure 5.12.
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5.6 Conclusions and perspectives

We presented an algorithmic framework to maximize the effectiveness of loop transformations while
maintaining per-hardware-thread memory usage invariant. Unlike traditionalarray expansion and con-
traction techniques, dependence removal can be implemented with guaranteed memory footprint con-
straints. This framework is a promising trade-off between array expansion and the the degrees of freedom
for affine transformation.

In the context of a low-level three-address-code polyhedral compilation solving this problem is even
more urgent, as evidenced in the experimental evaluation section 5.4. The general compilation flow that
includes the lazy memory expansion scheme, presented in 5.5, fits well into the compilation flow of
GRAPHITE framework (Chapter 4) and a transformation search method shown in Chapter 7.
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Part III

Towards a search strategy
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Chapter 6

Analytical cost model

The critical aspect of modern architectures is the need to efficiently coordinate the exploitation of
multiple forms of parallelism provided by platforms, while carefully coordinatingthe use of the memory
hierarchy efficiently.

Systematic solutions to harness the interplay of multi-level parallelism and locality are emerging, by
advances in automatic parallelization and loop nest optimization [34, 128]. These rely on the polyhedral
model of compilation to facilitate efficient exploration and application of very complex transformation
sequences. However, the analytical cost models employed by those solutions are not able to model the
low-level, machine-dependent aspects of the target architectures.

One such an aspect is exploiting short SIMD parallelism by vectorization [118]. Naturally, such a
kind of vectorization has not been represented within the polyhedral model due to its low-level, machine-
dependent nature. As a result, there remains a gap in providing a combinedframework for exploring
complex loop transformation sequences together with vectorization.

The problem of providing the analytical cost-models for predicting the performance is deemed diffi-
cult [129], since it seems infeasible to provide thatstaticanalytical model that could predict the perfor-
mance of the architectures that are ever-growing in their complexity.

An alternative solution, based on an iterative compilation, has demonstrated the superior performance
over the static compilation [1, 8]. Nevertheless, the major drawback of the iterative compilation schemes
is their running time, precluding them from being incorporated into the general-purpose, single-pass
compilers such as Intel ICC, IBM XL or GCC [71].

Our goal is to provide a hybrid approach: we provide a precise and parameterizable analytical per-
formance cost-predictor and we use it within a transformationsearch loopwithin the polyhedral model
framework.

We present the cost-model function that issensitiveto the the actual loop transformation expressed as
a schedule (Chapter 3). By exploring a finite and restricted space of schedules (as explained in Section
6.3.1), the cost-model function is evaluated for different loop transformations. In this chapter we present
a simple scheme for the search space construction, while the much more expressive search space is
presented in Chapter 7.

This search based cost-model function evaluation scheme still incurs some overhead in terms of the
compilation time, since the search space has to be constructed and traversed. But as we show, this space
is reduced to a reasonable size, and an evaluation of the cost-model function for each point in the search
space is effective.

We achieve this effectiveness by enumeratively evaluating the non-linearcost function for different
loop transformations, without any code generation nor running the resultcode, contrary to a feedback
directed iterative search [129]. Only after the best schedule is determined, the code is generatedonly
onceand the final, optimized executable is obtained. This scheme is illustrated in Figure6.3.
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The most recent work of Park et al. [121] is aiming at solving the similar problem: constructing a
predictive cost-model that drives the selection of the compiler transformations without resorting to the
iterative search during the compilation time. But the fundamental difference,compared to our approach,
is that they use the machine learning technique to (still, iteratively)learn the optimization sequences for
the selectedsuite of benchmarks, based on the premise that the learned sequences are good predictors
for the rest of programs. Our model is not based on learning, butanalyzingthe behavior of the program
in order to predict its performance.

We are not trying to build a cost-model function that models all the possible aspects of the target
architecture. We focus ourselves on the aspect ofSIMD vectorization, which so far has not been consid-
ered in the polyhedral model. Yet this is a low-level and highly target specific optimization that has to be
modelled precisely in order to yield the best results. We will give an overviewof the SIMD vectorization
in Subsection 6.1.1.

In a summary: in this chapter we present a precise analytical, performancepredicting cost-model that
captures the low-level details of the target architecture in the polyhedral model. In particular, we help
bridge the aforementioned gap between analytical and feedback directedmethods by incorporating the
low-level (vectorization) considerations into a polyhedral model.

A note to the reader: the termcost-modelis used to refer to the analytical function used to predict
the total execution cost of a given program with applied transformation. The termpolyhedral modelis
used to refer to the complete program analysis framework, as explained in Part I. The actual cost-model
function is implemented within the polyhedral model framework.

6.1 Motivation

Fine-grain data level parallelism is one of the most effective ways to achieve scalable performance
of numerical computations. This effectiveness translates into area and power savings for processor archi-
tectures, and complexity and performance benefits for applications. These are well known advantages of
SIMD over MIMD architectures and programming models, and are best illustrated by the computational
density of graphical processing units (GPUs). In this chapter we concentrate on improving the exploita-
tion of short-SIMD parallelism available in modern instruction sets and vector-processing extensions
(including Altivec, Cell SPU, and SSE). We will hereafter refer to such fine-grain data parallelism as
subwordparallelism.

6.1.1 SIMD Vectorization

Automatic vectorization for modern short-SIMD instruction sets, such as Altivec, Cell SPU and SSE,
has been a popular topic, with successful impact on production compilers [164, 29, 30, 117]. Exploiting
subword parallelism in modern SIMD architectures, unlike automatic vectorization for traditional vector
computers [7], however suffers from several limitations and overheads [118, 116, 115] (involving align-
ment, redundant loads and stores, support for reductions and more) which complicate the optimization
dramatically.

Automatic vectorization was also extended to handle more sophisticated control-flow restructuring
including if-conversion [145] and outer-loop vectorization [118]. Classical techniques of loop distribu-
tion and loop interchange [7] can dramatically impact the profitability of vectorization. To be successful,
it is vital to avoid inapt strategies that incur severe overheads, which arequite common in complex
memory access patterns.
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f o r ( v = 0 ; v < N; v++)
f o r ( h = 0 ; h < N; h++) {

S1 : s = 0 ;
f o r ( i = 0 ; i < K; i ++)

f o r ( j = 0 ; j < K; j ++)
S2 : s += image [ v+ i ] [ h+ j ] ∗ f i l t e r [ i ] [ j ] ;
S3 : ou t [ v ] [ h ] = s >> f a c t o r ; }

Figure 6.1 – Main loop kernel in Convolve

6.1.2 Motivating Example

Loop vectorization can adversely affect performance, mainly due to datamanagement overheads.
The first and foremost goal of a vectorization cost-model is to avoid performance degradations while
not missing out on improvement opportunities. In addition, a cost model should also drive the selection
of a vectorization strategy, assuming there exist a profitable one. The problem is particularly acute on
modern subword SIMD architectures and compilers due to the interplay amongcompilation passes, the
interactions among micro-architecture components, and the dependence ofrun-time information (array
alignment, loop trip count).

Given a loop-nest, a compiler needs to choose which loop to vectorize, andat which position, employ-
ing one of several strategies (innermost- or outer-loop vectorization, in-place or based on innermosting, as
explained below). This in-turn brings to play other loop-transformations, most notably loop-interchange
but also loop-peeling and others. Searching among all these alternativesbecomes a non-trivial problem.
This problem is especially apparent in computations featuring loop nests thatare (1) deep, (2) can be vec-
torized in several ways, (3) are amenable to other loop optimizations, and (4) are sensitive to underlying
architectural features (e.g. alignment handling mechanisms, sensitivity to data locality).

Figure 6.1 introduces theConvolvekernel – a simple example of a loop nest exhibiting the above
features. Convolveperforms a 2D-convolution on a NxN 16-bit pixel image. Such convolutions are
vastly used in DSP programs for various applications, from edge-detection using 3x3 filters (as in the
UTDSP suite [101]), to 17x17 polyphase filters.1

There ared possible vectorization alternatives for a loop-nest of depthd (in our cased = 4), without
involving any other loop-transformation: we can vectorize any of thej, i,h or v loops “in-place” – i.e.
in their original position (loop-level). For instance, we can vectorize thej-loop in its innermost position
(as shown in Figure 6.2a), which is the common practice of vectorizing compilers. Employing loop-
interchange to permute one loop (inwards or outwards) into a specific position within the loop nest
and vectorizing it there (keeping the other loops intact), increases the search-space tod ·d possibilities.
Figures 6.2b and 6.2c show examples of vectorizing theh-loop after permuting it to the innermost and
next-to-innermost positions, respectively. Using loop-permutation more aggressively to reorder the loops
of a nest according to a specific permutation, and then vectorizing one of them, results in a total of
d(d!) combinations. If we also employ loop peeling to align memory accesses, the search space grows
to d(d!)VF whereVF is the Vectorization Factor (number of elements operated upon in parallel in a
vector). In our case this amounts to 768 alternatives.

The search space becomes quite large even for modest depths and only few transformations (inter-
change and peeling), as shown, and can easily reach much higher volumes if deeper loop nests and/or
more loop-transformations are considered. Also note that programs oftencontain many loop-nests, where

1. For this illustration, we use N=128 and K=16, due to current implementation restrictions.
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f o r ( v = 0 ; v < N; v++)
f o r ( h = 0 ; h < N; h++) {

s = 0 ;
f o r ( i = 0 ; i < K; i ++) {

vs [ 0 : 7 ] = { 0 , 0 , . . . , 0 } ;
f o r ( v j = 0 ; v j < K; v j +=8) {

vs [ 0 : 7 ] +=
image [ v+ i ] [ h+ v j : h+ v j +7]
∗ f i l t e r [ i ] [ v j : v j + 7 ] ;

}
s += sum ( vs [ 0 : 7 ] ) ;

}
ou t [ v ] [ h ] = s >> f a c t o r ;

}

(a) j-loop vectorized at level 4

f o r ( v = 0 ; v < N; v++)
f o r ( h = 0 ; h < N; h++)

ou t [ v ] [ h ] = 0 ;
f o r ( v = 0 ; v < N; v++)

f o r ( i = 0 ; i < K; i ++) {
f o r ( j = 0 ; j < K; j ++) {

c = f i l t e r [ i ] [ j ] ;
v f i l t e r [ 0 : 7 ] = {c , c , . . . , c } ;
f o r ( vh = 0 ; vh < N; vh +=8) {

ou t [ v ] [ vh : vh +7] += v f i l t e r [ 0 : 7 ]
∗ image [ v+ i ] [ vh+ j : vh+7+ j ] ;

}
}

}
f o r ( v = 0 ; v < N; v++)

f o r ( h = 0 ; h < N; h++)
ou t [ v ] [ h ] = ou t [ v ] [ h ] >> f a c t o r ;

(b) h-loop vectorized at level 4

f o r ( v = 0 ; v < N; v++)
f o r ( h = 0 ; h < N; h++)

ou t [ v ] [ h ] = 0 ;
f o r ( v = 0 ; v < N; v++)

f o r ( i = 0 ; i < K; i ++) {
f o r ( vh = 0 ; vh < K; vh +=8) {

vs [ 0 : 7 ] = { 0 , 0 , . . . , 0 } ;
f o r ( j = 0 ; j < K; j ++) {

c = f i l t e r [ i ] [ j ] ;
v f i l t e r [ 0 : 7 ] = {c , c , . . . , c } ;
vs [ 0 : 7 ] += v f i l t e r [ 0 : 7 ]
∗ image [ v+ i ] [ vh+ j : vh+ j +7]

}
ou t [ v ] [ vh : vh +7] += vs [ 0 : 7 ] ;

}
}

f o r ( v = 0 ; v < N; v++)
f o r ( h = 0 ; h < N; h++)

ou t [ v ] [ h ] = ou t [ v ] [ h ] >> f a c t o r ;

(c) h-loop vectorized at level 3

Figure 6.2 – Convolve Vectorization Examples
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each loop-nest should be optimized.

Approaches that generate each alternative and rely on its (possibly simulated) execution or on per-
formance evaluation at a later low-level compilation stage, are competitive in terms of accuracy but are
significantly inferior in terms of scalability to analytical approaches that reason about costs and benefits
without actually carrying out the different loop transformations beforehand. Operating on the polyhe-
dral representation itself, rather than relying on code generation, is therefore a key ingredient. Hybrid
approaches can provide a more practical solution by combining the feedback-based approach with clas-
sical analytical models to narrow the search space. The modest compile-time requirements of our purely
analytical approach (about 0.01s to build the model and search for the optimal vectorization strategy for
Convolve) facilitates its integration in a production compiler.

Having potentially very large search-spaces is only one aspect of the vectorization decision-making
problem. A complementary challenge to dealing with the very large search-spaces, is how to evaluate
the costs and benefits associated with each alternative efficiently and accurately. Some trade-offs are
clearly visible in Figure 6.2. For example, variants (b,c) use loop-permutation, which in this case incurs
an overhead of extra memory traffic to/from theout array. On the other hand variant (a) incurs a re-
duction epilogue overhead (seesumoperation) in each iteration of thei-loop. Outer-loop vectorization
(vectorizing a loop other that innermost-loop) is used in (c), implying that more code is vectorized. The
innermostj-loop in this case continues to advance sequentially, operating simultaneously on values from
VF = 8 consecutiveh-loop iterations. On the other hand (b) has better temporal locality (f ilter[i][ j] is
invariant in the innermost loop) and the misalignment is fixed (this is explained in more detail later).
Overall the speedup factors obtained by transformations a, b, c on PPC970 (relative to the original se-
quential version shown in Figure 6.1) are 2.99, 3.94, 3.08 respectively.On the Cell SPU the respective
speedups are 2.59, 1.44, 3.62.

The following sections describe our approach and demonstrate how our cost model computes its
predictions within the analytical polyhedral-based model, considering different loop transformations
and metrics. Final cost-model predictions forConvolveand analysis of the speedups are given in Sec-
tion 6.3.3, where we show that the cost model is able to correctly predict the best vectorization option
for both PPC and SPU.

6.2 Polyhedral Modelling of Vectorization Metrics

Several key costs impact the expected performance of vectorized code, including: strides of accesses
to memory, memory access alignment, loop trip counts, reduction operations across loop iterations and
more. These factors depend on the modified schedulingθS′ and on the modified iteration domainD ′S of
each statement.

The underlying assumption of vectorization is that the kernel of a loop usually executes faster if
vectorized than if not, but that associated overheads may hinder the vectorized version, diminishing its
speedup compared to the original scalar version, and more so for loops that iterate a small number of
times. Indeed, if the number N of iterations of a loop is smaller than itsvectorization factor VF, there is
no potential for speeding it up using vectorization; on the contrary, vectorizing such a loop may only slow
down its execution due to additional preparatory actions and checks. Furthermore, even if N is larger than
VF, the number of iterations of the vectorized loop, although positive, may not suffice to out-weigh the
overheads incurred by vectorization.
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6.2.1 Modelling the Access Patterns

Recall from Section 2.3.3 that in the classical polyhedral framework memoryaccess functions for
array references are represented as a vector of affine expressions:

f (i) = F× (i,g,1)T

but there is no notion of the data layout of an array.
One may combine this access function with the data layout of the array. For each array reference,

one may form alinearized memory access functionℓ, capturing the stream of memory access addresses
as a function of the iteration vector:

ℓ(i) = b+(L i |Lg|ω)× (i,g,1) = b+L i i+Lgg+ω (6.1)

whereb is the base address2 of the array and(L i |Lg|ω) is the row vector of coefficients that encodes
the layout information (assuming row-major data layout). This vector is composed of three parts: Li is
scheduling-dependent, Lg depends on global parameters, andω is the constant offset part.

Assuming that matrixM is defined asM[r1][r2] . . . [rm], we can construct the vector R encoding the
strides along each subscript:

R=

(

m−1

∏
i=1

r i ,
m−1

∏
i=2

r i , . . . ,
m−1

∏
i=m−1

r i , rm−1,1

)

Then the following equation holds:
(L i |Lg|ω) = R×F (6.2)

where the matrix F defines the access functionf . For example, taking the kernel in Figure 6.1 and
assuming arrayimage is defined asimage[144][144], the linearized access for the arrayimage in the
statementS2 of Figure 6.1 can be represented as:

(144,1)×

[

1 0 1 00 00
0 1 0 10 00

]

= (144,1,144,1,0,0,0)

meaning that linearized access function is:

ℓ(v,h, i, j) = b+144v+h+144i+ j.

The linearized access function is crucial for computing the cost of vectorized data load/store instruc-
tions, which constitutes the majority of the vectorizer overhead.

6.2.2 Access Pattern Sensitivity to Scheduling

Based on the canonical scheduling matrix representation defined in Section3.1 the rescheduled
timestamp vectort is expressed as follows (for modelling purposes we can ignoreβ):

t = (A|Γ)× (i,g) = Ai+Γg (6.3)

thus the original iteration vector isi = A−1(t−Γg) which together with Equation (6.1) gives us the new,
transformed linearized access function:

ℓ′(t) = b+L iA−1t+(Lg−L iA−1Γ)g+ω. (6.4)

2. b is typically not known at compilation time; nevertheless, we are only interested in its alignment modulo the VF, which
is generally available.
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with a new vector of coefficients:

L′ = (L iA−1|Lg−L iA−1Γ|ω).

Taking as example the kernel in Figure 6.1, the linearized access functionsfor arraysimage and
filter are as follows:

ℓimage(i) = b+[ 144 1 144 1 0 0 ω ]× (i,g,1)T

ℓfilter(i) = b+[ 0 0 144 1 0 0 ω ]× (i,g,1)T

After applying loop interchange, by swapping the columns 3 and 4, we obtainthe following transforma-
tion matrix (only A part is shown):

A′S2 =









1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0









the new access functions become as follows:

ℓimage(t = (v,h, j, i)) = b+144v+h+ i+144j

ℓ′image(t) = b+( 144 1 1 144 0 0 ω )× (i,g,1)T

ℓ′filter(t) = b+( 0 0 1 144 0 0 ω )× (i,g,1)T

Notice that the memory access strides with respect to the new scheduling dimensions have changed.
This has a dramatic impact on the performance of the vectorized code. Indeed, if we chose to vectorize
the innermost level, the vectorized code will suffer from a very costly memory access operations: the
stride is 144, so the elements are not consecutive and a vector cannot beloaded within one vector-load
instruction.

This shows that linearized access functions, on which the total vectorization cost depends, is trans-
formed automatically with the scheduling transformations. Thus, we do not need to generate code in
order to compute the vectorization cost after applying a set of loop transformations – the vectorization
cost is the direct function of scheduling matrix. For the rest of presentation we focus on Li part of the
linearized access function coefficient vector.

6.2.3 Cost Model Function

Our cost model is based on modelling the total execution time of all statement instances, given the
modified iteration domainD ′S and the modified scheduleθS′ of each statementS. We compute the cost
function for statementSas follows:

c(D ′S,θ′S) =
|D ′S|

VF
(∑cvect_instr)+

∑
m∈(WS)

(ca+
|D ′S|

VF
(cvect_store+ fm))+

∑
m∈(RS)

(ca+
|D ′S|

VF
(cvect_load+cs+ fm))
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where|D ′S| denotes the integer cardinality of the iteration space (total number of dynamic instances of
S) and VF is the vectorization factor.

We currently support the simplest case, when loop bounds form a rectangular polyhedral iteration
space:|DS|=∏dim(S)

i=1 (UBi−LB i). In a more general case, algorithms to computing the number of integer
points inside polyhedra could be used [19, 43, 135].

Given the desired scheduling dimensiond, we can compute a finite difference∆d of the linear mem-
ory address with respect to the time dimension:

∆d = ℓ(i1, . . . , id +1, . . . , idS)− ℓ(i1, . . . , id, . . . , idS) = L i
d

∆d is a memory access stride w.r.t. a schedule dimension; we will simply call itthe stride. It can be
determined directly from linearized access vector Li by looking at itsd-th component.

Factorcs considers the penalty of load3 instructions accessing memory addresses with astrideacross
the loop being vectorized. Accesses to non-unit strided addresses require additional data unpack or pack
operations, following and/or preceding vector load or store instructions,respectively [116].

For example, VF scalar accesses to memory addresses with stride∆dv across the loop being vectorized
may require∆dv vector loads (each with costc1), followed by∆dv −1 vector extract odd or extract even
instructions (each with costc2), to produce one vector holding the desired VF elements. On the other
hand, if several accesses to the same address are vectorized together(i.e. ∆dv = 0), a vector “splat”
instruction is often required to propagate the loaded value across all elements of a vector (with costc0).
Factor fs is computed as a function of the stride∆dv :

cs =







∆dv = 0 : c0

∆dv = 1 : 0
∆dv > 1 : ∆dv ·c1+(∆dv−1) ·c2







(6.5)

Factor fa considers thealignmentof loads and stores. Typically, accesses to memory addresses that
are aligned on VF-element-boundaries are supported very efficiently, whereas other accesses may require
loading two aligned vectors from which the desired unaligned VF elements areextracted (for loading) or
inserted (for storing). This alignment overhead may be reduced considerably if the stride∆ of memory
addresses accessed across loop levelsdv + 1..dS is a multiple of VF, since the misalignment remains
constant inside the vectorized loop. If this is the case there is the opportunityto reuse loaded vectors and
use invariant extraction masks. By having the transformed linearized access function:

ℓ(i)T = b+L i
1i1+ . . .+L i

dv
idv + · · ·+L i

dim(S)idim(S)+Lgg+ω

it is easy to check if misalignment inside the vectorized loop remains constant – the coefficients from
L i

dv+1 to Li
dim(S) (corresponding to strides of all inner loops of the vectorized loop) haveto be a multiple

of VF.
If the misalignment is constant inside the vectorized loop we also check if the base address which

is accessed on each first iteration of the vectorized loop (dv) is known to be aligned on VF-element-
boundary; if so then there is no need for re-aligning any data:fa = 0. This is done by considering strides
across outer-loops (enclosing the vectorized loop, if exist), and initial alignment properties such as array
alignment. In order to check the alignment in outer loops, we need to check if coefficients from Li1 to
L i

dv−1 are multiple of VF.
By putting together all considerations for alignment, cost can be modelled as:

fa =















aligned : 0
var. misalign. : |DS|(c1+c3+c4)
fixed misalign. : |DS

1..dv−1|(c1+c3)+

|DS|(c1+c4)















(6.6)

3. Vector store operations with strided access is not yet implemented in GCC.
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wherec3 represents the cost of building a mask based on the misalignment amount,c4 is representing the
cost of extraction or insertion andc1 is the vector load cost.|DS

1..dv−1| denotes the number of iterations
around the vectorizer loop level.

The vectorization factor VF of a loop is determined according to the size of theunderlying vector
registers and the smallest data-type size operated on inside the loop. Each individual vector register will
thus hold VF values of this small size. However, if there are variables in the loop of larger size, storing VF
copies of them will require multiple vector registers, which in turn implies that the associated instructions
need to be replicated. Factorfm records the extra overhead that is associated with this replication. Addi-
tional factors that depend on the specific machine resources available mayalso impact the performance
of vectorization, such as the size of register files, available ILP, and complex vector instructions.

By applying different loop interchange transformations and choosing different loops to vectorize, the
performance of the resulting vectorization varies considerably. Our model was able to predict the best
possible combination of loop interchange and outer/inner vectorization strategy.

6.2.4 Vectorization Profitability Metrics

To summarize, the above vectorization profitability metrics can be classified into the following three
classes:

Scheduling invariant metrics are not affected by changing the execution order of the statement in-
stances. Thus, they are invariant with respect to aschedulingfunctionθS. Vector to scalar reduction
cost and multiple type support costs fall into this category.

Scheduling sensitivemetrics are affected by changing the execution order of the statement instances.
Those metrics have the greatest impact on the resulting cost, since they varywith the change of the
scheduling order and thus are affected by loop transformations such asinterchange. Changing of
the scheduling functionθS directly affects the cost of strided memory accesses, non-aligned vector
loads and spatial locality.

Code generation dependentmetrics depend on the actual code-generation strategy implemented in a
compiler4. These metrics go against the design of our cost model, as they need to regenerate
the compiler’s internal structures from the modified polyhedral representation. Yet no significant
performance factor falls into this category. There is a practical difficulty however: idiom recogni-
tion (e.g., saturated arithmetic, absolute differences) are typically a sourcefor scheduling-sensitive
metrics, as the identification of algorithmic idioms can be performed on the array data flow [139].
Yet vectorizers currently rely on syntactically fragile pattern-matching techniques and do depend
on the code generation.

6.3 Evaluation

We present a systematic method to evaluate the cost function, within a selected transformation search
space. Later, we will show the experimental evaluation of the predicted speedups, compared to the actual
execution on two different architectures for a selected benchmark, altogether with a detailed discussion.

6.3.1 Driving the search process

To select an optimal vectorization strategy one needs to construct and traverse the relevant search
space. We want to do so without generating different syntactic versionsof the code and then vectorizing
each of them, which is inefficient and sometimes infeasible. Our proposal uses an analytical cost model,

4. in our case it is GCC compiler
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Figure 6.3 – compilation flow

and constructs thefinite search space of chosen loop transformations expressed in terms of modified
affine schedulesθS′ and modified iteration domainsD ′S of Statements. For each point in the search space
we compute an associated cost using a cost functionφ(x).

We model the scheduling of each individual Statement independently. Eachpoint in the search space
corresponds to a vectorx = [θ′S1, . . . ,θ′Sn,D ′S1, . . . ,D ′Sn] of modified schedules and domains for each
of the n Statements of the SCoP. The total cost for a given pointx in the space is the sum of costs of
executing dynamic instances of all SCoP Statements according to a new schedule and domain:

φ(x) =
n

∑
i=1

c(DSi ,θSi ). (6.7)

The parameters for the cost function for the single StatementSi are its iteration domainD ′Si (number
of dynamic instances of a Statement depends on its iteration domain) and its scheduling θ′Si (cost of
accessing memory by a Statement instance depends on execution order of other instances). Section 6.2.3
describes this cost function in detail.

The optimization goal is to search for a vector of transformationsxmin that minimizes the cost func-
tion φ(x):

xmin = min
x∈X

φ(x) (6.8)

Vectorxmin represents an optimal program version in the polyhedral model.
After extracting the SCoPs and building the polyhedral representation of all statements by the GRAPHITE

framework, we perform the optimization of each SCoP according to Algorithm 1: first we compute the
base cost for the unmodified (input program) representation, by computing the cost of executing all dy-
namic instances of all statementsSi in the original scheduling order. The current optimal cost is stored
in costmin and is updated incrementally by applying different transformations (skipping over infeasible
ones) on the polyhedral model (stored in vectorx) and computing the new costs using cost functionφ(x).
Besides the schedule transformation, performed by permuting (PERMUTE) the columns of the compo-
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nent A of the schedule, each possible levelv is strip-mined, which is the way to model the vectorization
at levelv. At the end of this process the optimal scheduling representation is availablein xmin.

Note that Algorithm 1 shows only one possible way of constructing a searchspace. We chose to
consider all combinations of loop interchanges due to their impact on vectorization. This small (yet
expressive) search space makes it compatible with the constraints of a production compiler. Much more
expressive search space will be explained in Chapter 7.

Algorithm 1 Driver for search space exploration
d← level of a deepest Statement S in a SCoP
n← number of Statements in a SCoP
xmin← [θS1, . . . ,θSn,DS1, . . . ,DSn] ⊲ Start with the original schedules and iteration domains
costmin← φ(xmin)
for all σ ∈ (set of d-element permutations)do

for i = 1 ton do
θ′Si ← PERMUTE(σ,θSi )
dSi ← level of loop nesting for Statement Si

for v= 1 todSi do
D ′Si ← STRIPMINE(v,DSi )
x← [θ′S1, . . . ,θ′Sn,D ′S1, . . . ,D ′Sn]
if φ(x)< costmin then

costmin← φ(x); xmin← x
end if

end for
end for

end for

6.3.2 Experimental setup

N1 N2 N3 N4 ∆1 ∆2 ∆3 ∆4

interp_fp 512 16 1,2 1,0,2
interp 512 16 1,2 1,0,2
bkfir 512 32 1,0 1,1
dct 8,8 8,8 8,8 8,0 0,1 1,8
convolve 128 128 16 16 128, 1, 128, 1,

0, 0, 16, 1,
128 1 0 0

H264 12,7 12,7 1 1
dissolve 128 128 1 128
alvinn 512,32 32,32 1,1 512,512
MMM 16 16 16 16,0 0,1 1,16
MMM T 16 16 16 16,0 0,1 1,16

Table 6.1 – Benchmarks

We evaluate our approach by introducing our model into the polyhedral framework of GCC produc-
tion compiler and comparing its performance estimates for different loop interchanges and vectorization
alternatives against actual execution runs of a set of benchmarks. Table 6.1 summarizes the main rele-
vant features of the kernels used in our experiments: a rate 2 interpolation(interp), block finite impulse
response filter (bkfir), an 8×8 discrete cosine transform (dct [101]), 2D-convolution (convolve), a kernel
from H.264 (H264), video image dissolve (dissolve), weight-update for neural-nets training (alvinn) and
a 16×16 matrix-matrix multiply (MMM) (including a transposed versionMMMT).
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Figure 6.4 – Cost model evaluation: comparison of predicted and actual impact of vectorization alterna-
tives on the Cell SPU

Figure 6.5 – Cost model evaluation: comparison of predicted and actual impact of vectorization alterna-
tives on PPC970

The first four columns of Table 6.1 show the number of iterationsNi of loops nested within the main
loop-nest of each benchmark, starting withN1 for the outermost loop and moving inwards. Loop nests
with less that 4 nested loops have empty entries (e.g.,N2 refers to the innermost loop in the doubly-nested
bkfir). For example,convolvehas a 4-nest loop whereasbkfir has only a doubly-nested loop and thusN2

refers to its inner-most loop. Multiple values in an entry represent multiple distinct loop nests.
Similarly, the next four columns of Table 6.1 show the strides∆i of the memory references across

each of the nested loops, with multiple values in an entry representing the strides of different memory
references. For example, strides of 8, 512 and 16 are found in the innermost loops ofdct, alvinnand
MMM respectively, where columns of 2D arrays are scanned resulting in strides at the length of the rows.
Lastly, zero strides imply that duplication of a single value across a vector is required.

We first evaluate the cost-model qualitatively, demonstrating that the scoresit computes are consistent
using one detailed example (subsection 6.3.3). The following subsection (subsection 6.3.4) evaluates the
model relative to actual experiments on a set of kernels, analyzing the mispredictions and showing that
overall the relative performance ordering of the variants is largely preserved.

6.3.3 Qualitative Evaluation

We use theconvolvekernel qualitatively (see Figure 6.1, Section 6.1.2). We study only a small subset
of the search space described in Chapter 7, restricting our attention to thed×d combinations of moving
each loop inwards/outwards and vectorizing it there, plus the option to vectorize each of thed loops
without any interchange. Note however that our technique opens up a much larger transformation space,
as shown in the search methodology described in Chapter 7.
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loop-level 1(v) 2(h) 3(i) 4(j)
1 0.26 4.00 0.24 4.00
2 0.26 4.06 0.24 4.21
3 0.26 4.34 0.23 4.56
4 0.27 3.76 0.24 3.72

Table 6.2 – Convolve: SPU estimated speedup factors
loop-level 1(v) 2(h) 3(i) 4(j)
1 0.21 3.21 0.19 3.21
2 0.21 3.21 0.19 3.38
3 0.21 3.18 0.19 3.70
4 0.21 3.37 0.20 2.99

Table 6.3 – Convolve: PPC estimated speedup factors

The results of running our model against thed×d = 16 combinations, estimating the performance
of each combination for a Cell/SPU and a PowerPC system are shown in Table6.2 and Table 6.3 respec-
tively. The loops are numbered in the tables from 1 (outer-most) to 4 (inner-most). Entry(i, j) shows
the estimated speedup over the sequential version, obtained by moving loopj to position i followed
by vectorizing loopj at new positioni. Thus entries along the diagonal refer to vectorization with no
interchange. Entries (4,4), (4,2), (3,2) (in bold) correspond to the vectorization alternatives shown in
Figures 6.2a, 6.2b, 6.2c respectively.

While the estimated speedups for these versions are a little too optimistic compared toactual mea-
sured speedups (see Section 6.1.2), the relative ordering of the speedups for both platforms is accurate5

and the cost model is able to identify the best choice among the three.

The convolve entry in Table 6.1 reveals the key factor for the performancedegradations predicted
for loopsv, i (columns 1 and 3) — there are very large strides along these loops (∆1, ∆3 = 128). The
overhead involved in vectorizing these loops and strides is described in Section 6.2.3. The remaining
candidate loops for vectorization are therefore loops 2 and 4 (h and j). The best speedup is predicted for
entry (3, 4) which corresponds to using outer-loop vectorization to vectorize thej-loop after moving it
to level 3. The originali-nest is a perfect nest (there are no operations outside the innermost loop within
that nest) and so there are no overheads incurred by this interchange (as opposed to interchanging an
imperfect-nest like theh-loop, e.g. as in cases (4,2),(3,2)/Figures 6.2b,6.2c, which involve scalarexpan-
sion and loop-distribution costs). In addition, outer-loop vectorization avoids reduction-epilogue costs
and also increases the portion of the code that is being vectorized compared to vectorizing thej-loop in
its original innermost location. Note that this choice is different from the traditional approach: compil-
ers usually either apply inner-most loop vectorization (entry(4,4) in the tables) or apply innermosting
(entries(4,∗)).

Partial experimental evaluation ofconvolveconfirms these predictions. In Figure 6.6 we show the
obtained speedups relatively to the cost model estimations (denotedexp,modelrespectively) for PPC970
and Cell SPU for entries(3,2), (4,2), (3,4) and(4,4) in the tables.

5. The low 1.59x measured speedup for alternative 6.2b on the Cell SPU is due to an aliasing bug in GCC that results in bad
scheduling. The out-of-order wide-issue (5 slots) PowerPC970 is lesssensitive to this, but on the in-order 2-width-issue SPU
performance drastically suffers as a result. The cost model obviously cannot (and should not) predict compiler bugs, however
it can, as in this case, help reveal them.
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Figure 6.6 – Cost model evaluation: comparison of predicted and actual impact for convolve kernel on
PPC970 and Cell SPU

6.3.4 Evaluation on a benchmark suite

We now validate quantitatively the estimates produced by the cost model. For each benchmark we
report two sets of results: one showing the experimentally observed speedups, and the other showing
estimated speedups computed by the cost model (denotedexp,modelrespectively in Figures 6.4, 6.5).
When a given vectorization technique cannot be applied due to limitations of our current implementation
of vectorization in the GCC compiler, the scalar performance is reported. This happens in some cases of
strided accesses that are not yet fully supported (and that would certainly degrade performance).

We evaluate the relative speedup of four different vectorization alternatives: innermost-loop vec-
torization (inner), interchange followed by innermost-loop vectorization (innermosting), and in-place
outer-loop vectorization, with and without optimized realignment using unrolling(outerandouter-opt).

The experiments were generated automatically using an enhanced version of GCC. Speedup are
measured over the sequential version of the benchmark, compiled with the same optimization flags.
Interchange, when used, was applied manually. Time is measured using thegetrusage routine on pow-
erpc970, and the decrementer utility on the SPU. Experiments were performed on the IBM PowerPC
PPC970 processor with Altivec, and an SPU of the Cell Broadband Engine. Both architectures have 128
bit wide vector registers, and similar explicit alignment constraints.

The first set of kernels (interp, bkfir, dct and MMM) is expected to gainmost from in-place outer-
loop vectorization with realignment optimization, as they consist of imperfect loop-nests (and therefore
get penalized for interchange), and exhibit high data-reuse opportunities across the (vectorized) inner-
loop that can be exploited by the unrolling optimization. They also have inner-loop reductions (which
are generally done more efficiently using outer-loop vectorization), and two of the benchmarks in this set
(dct and MMM) also have large strides in the innermost loop (as the accessis column-wise). Alvinn has
a perfect nest and no reuse opportunities, and therefore in-place outer-loop vectorization should not gain
over traditional interchange, but innermost loop vectorization should be avoided due to the large stride.
The last group of benchmarks (MMMT , dissolve and H264) have consecutive access in the innermost
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loop, but strided access in the outer-loop, and so for these we expect inner-loop vectorization to be the
best technique.

This behavior can be clearly observed in the SPU speedups in Figure 6.4,where overall theexp
andmodelgraphs are largely consistent, with the preservation of the relative performance ordering of
the variants. Exceptions are due to low-level target-specific factors thatour model does not take into
account. Most notable is the misprediction in the first set of benchmarks, wherebkfir anddctare the only
benchmarks for which outer-loop vectorization is inferior to innermost loopvectorization due to an SPU
specific issue (unhinted branch).

Target-specific issues come to play also on the PPC970 (Figure 6.5). The most significant one appears
in the fixed-point bkfir and interp where inner-loop vectorization employs aspecialized Altivec instruc-
tion to compute a dot-product pattern. We have not yet incorporated idioms into the cost-model and so it
does not anticipate this behavior. The model also does not try to estimate register pressure, and therefore
does not predict the degradation in performance incurred by the unrolling optimization on interp due to
register spilling (this problem does not occur for SPU having 128 vector registers, compared to the 32
Altivec registers of PowerPC970). Inaccurate modelling of spatial localityin our current implementation
is the reason why the cost model misses the improved data cache locality when interchanging loops in
alvinn (this problem does not occur on the Cell SPU as it doesn’t have a cache). Lastly, in some cases
interchange can be done with smarter scalar-expansion (hoisting), whereas the model estimates the as-
sociated overhead of a naive scheme. This sometimes pessimizes the predicted speedup of interchanged
versions both on PPC and the SPU.

6.4 Related Work

Vectorization Cost-Model Related Work.Leading optimizing compilers recognize the importance
of devising a cost model for vectorization, but have so far provided only partial solutions. Wu et al.
conclude [164] regarding the XL compiler that“Many further issues need to be investigated before we
can enjoy the performance benefit of simdization ... The more important features among them are ... the
ability to decide when simdization is profitable. Equally important is a better understanding of the inter-
action between simdization and other optimizations in a compiler framework”. Likewise, Bik stresses
the importance of user hints in the ICC vectorizer’s profitability estimation [29],to avoid vectorization
slowdowns due to“the performance penalties of data rearrangement instructions, misaligned memory
references, failure of store-to-load forwarding, or additional overhead of run-time optimizations to en-
able vectorization.”; on the other hand opportunities may be missed due to overly conservative heuristics.

These state-of-the-art vectorizing compilers incorporate a cost model todecide whether vectorization
is expected to be profitable. These models however typically apply to a single loop or basic-block, and
do not consider alternatives combined with other transformations at the loop-nest level. This work is the
first to incorporate a polyhedral model to consider the overall cost of different vectorization alternatives
in a loop-nest, as well as the interplay with other loop transformations.

Loop-nest auto-vectorization in conjunction with loop-interchange has been addressed in prior art
[6, 7, 163]. This however was typically in the context of traditional vectormachines (such as Cray), and
interchange was employed as a preprocessing enabling transformation. Overheads related to short-SIMD
architectures (such as alignment and fine-grained reuse) were not considered.

Costs of specific aspects of short-SIMD vectorization were addressedin more recent works. Realign-
ment and data-reuse were considered together with loop-unrolling [144], but in the context of straight-
line code vectorization, and not for the purpose of driving loop vectorization. A cost model for vec-
torization of strided-accesses was proposed in [116], but it does notconsider other overheads or loop
transformations.
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Polyhedral-Model Related Work. Bondhugula et al. [34] integrate inner-loop vectorization as a
post-pass of their tiling heuristic, and leverage the interchangeability of inner loops to select one that
is vectorizable. Their method does not take into consideration the respective vectorization overheads,
nor does it model reductions. Nevertheless, their tiling hyperplane and fusion algorithm can serve as a
complementary first pass for our technique, favoring the extraction of interchangeable inner loops.

Pouchet et al. demonstrate how one can systematically study the interplay of loop transformations
with backend optimizations (including vectorization) and complex microarchitectures by constructing
huge search spaces of unique, valid transformation sequences [128]. These search spaces are tractable
using carefully crafted heuristics that exploit the structure of affine schedules. An analytical performance
model capable of characterizing the effect of such complex transformations (beyond loop interchange,
and accommodating for large-scale locality effects) does not currently exist. Known analytical cache
models for loop transformations are quite mature in some domains, loop tiling in particular [36], yet
remain sensitive to syntactic patterns and miss key semantical features such as loop fusion effects [39,
69].

6.5 Conclusions and future work

This contribution narrows the gap between analytical cost-model based static compilation techniques
[39] and fully iterative search based compilation flow [1, 129, 128], whilestill maintaining the running
time of the compilation acceptable. We have focused on the single aspect of themachine specific cost
modelling - that of automatic vectorization on SIMD architectures.

We have presented the first-of-a-kind approach to low-level machine-specific analytical cost model,
used for prediction of the performance of vectorization within the polyhedral model framework. Our
contributions of this work are the following:

– Polyhedral modelling of subword parallelism.We demonstrate how to leverage the polyhedral
compilation framework naturally and efficiently to assess opportunities for subword parallelism
in combination with complex loop transformation sequences. Our integrated approach relies on
abstract matrix manipulations instead of code generation, thereby shortening the evaluation time
of the cost model dramatically, compared to iterative optimization approaches [129]

– Evaluation in a production compiler. Our model is fully automated and implemented based on
GCC [71] 4.5 compiler.

– Studying the interplay between loop transformations.We provide a thorough empirical investi-
gation of the interplay between loop interchange with array expansion and loop nest vectorization
of both inner and outer loops on modern short-SIMD architectures.

6.5.1 Future work

The experimental results are promising, and the running time of the search space exploration is
acceptable for incorporation into the general purpose compiler like GCC. Nevertheless, the cost model is
somewhat simplistic and does not incorporate the modelling of cache locality issues [69], interplay with
thread-level parallelism nor the incorporation of memory traffic optimizing looptransformations [34]
like loop interchange. We see the future directions that could fully exploit thepotential of this approach:

Interplay with other transformations. The method could easily be extended and employed in the
future, to consider the effects of additional transformations within the polyhedral framework. The search
space that is proposed in Chapter 7, which is in turn based on [34], couldbe used to combine the
search for thread-level parallelism, memory locality optimization and optimal vectorization strategy in
one, combined manner.
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Precise data locality model.Our cost model includes a very rough estimation of the data locality -
that of computing the data access strides. While it can capture thespatial localityof the given memory
access pattern, it cannot precisely model thetemporal locality. The model could be extended with cache
miss equations, an approach proposed by Fraguela [69]. The preliminary integration efforts are ongoing,
at the time of writing this dissertation.

Machine learning of target specific factors.The analytical cost function shown in subsection 6.2.3
relies on themachine specificatomic instruction costs. While we have obtained those costs for the archi-
tectures that we were interested in, mainly through microbenchmarking and knowledge of the instruction
latencies, obtaining those coefficients for the new architectures might be. In order to facilitate the porting
of the cost-model to the new architectures, we would like to investigate the possibility of employing ma-
chine learning, like in [40], to obtain the coefficients automatically for the new architectures. Please note
that this does not change our approach: alearning phaseis done only once, to obtain the coefficients.
Later, the ready cost-model function is used in a single-pass compiler directly, without any extra penalty.
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Chapter 7

Transformation search strategy

In the previous chapters we have discussed the basic components needed in the polyhedral model
based optimization compiler such as static analysis, data dependence analysis, cost model, and code gen-
eration. But the core part of each polyhedral model based compilation flow is an algorithm for obtaining
the actual transformation. The aim of this chapter is to provide our contribution to this key part of the
compilation flow.

While numerous works on program transformations - and polyhedral transformations in particular -
have been published, there is no general consensus on whether they are practical and efficient for use in a
general purpose optimizing compilers. In this chapter we propose a transformation search methodology,
instead of proposing a single specialized transformation algorithm.

The chapter starts with introducing the related work in Section 7.1. A necessary notation, based on
the state of the art approaches, is introduced in Section 7.5. The core of the method is explained in
Sections 7.6 through 7.10.

7.1 Related work

Optimizing for various architectural features requires complex program transformations to exploit
thread-level parallelism, vectorization opportunities and memory hierarchy ina combined manner.

Pioneering works [6, 99, 15, 16, 161] on loop transformations look forthe best transformation
according to some ad-hoc criteria. Furthermore, they are restricted to a very limited subset of program
loops.

Loop optimizations expressed in the polyhedral model subsume all previousworks on loop trans-
formations. Optimizations in the polyhedral model are expressed as scheduling problems. There are as
many scheduling algorithms as there are different optimization criteria, but they all share the common
property: the computed schedule has to provide alegal transformation.
The state of the art polyhedral transformation frameworks generally fallin two categories:

– best effort, cost model based scheduling approaches
– iterativesearch based approaches
The works of Feautrier [67, 68], Lim and Lam [107, 106], Griebl [76] and Bondhugula [34] fall

into the first category, while the works of Pouchet [129, 128] and Vasilache [157] fall into the second
category.

The basic principle underlying the best effort scheduling approachesis a well defined cost model
function. The problem is cast as a linear programming problem where the data dependences provide the
set of constraints, and an objective is to find a solution that minimizes the givencost model function,
while preserving the legality of the problem.
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Obviously, different cost functions provide different solutions. An objective function in the approach
of Feautrier is thelatency. The goal of the scheduling is to provide minimum latency schedules. Lim and
Lam provide an objective function that minimizes the order of required synchronizations and maximize
the number of parallel loop dimensions.

The state of the art cost model based approach of Bondhugula [34] provides a cost function that
minimizes thedependence distance. It turns out that this simple cost function is very powerful, since it
maximizes the parallelism in the outermost loop levels and minimizes the volume of memory communi-
cation.

While the best effort scheduling approaches provide only one solution -the best solution according
to the cost function - the other class of the scheduling approaches is based on theiterativesearch.

Iterative search based scheduling approaches do not provide a single solution. Indeed, they provide
a space of the legal and distinct schedules. Each distinct schedule corresponds to one program transfor-
mation. The transformations within a space are assessed according to their ’quality’ - mostly often the
speedup provided.

Iterative approach in the polyhedral model was pioneered by Pouchet[129, 128]. Pouchet shows
the systematic way to generate the space of legal and distinct schedules expressed in the polyhedral
model and the way to traverse those schedules. For each distinct schedule a code is generated and the
transformed program is run on the target hardware. The schedule corresponding to program version with
the best runtime is selected.

Since the search space of all legal schedules might be huge, Pouchet proposes to use machine learning
techniques to speedup the search [128].

7.2 Limitations of the current approaches

The best effort cost model based techniques are limited in their ability to find the best transformation
adapted to a particular architecture.

The approach of Feautrier [67, 68] finds the minimal latency schedule. But this cost model is based on
an imaginary machine model where synchronization costs and memory locality issues are ignored. The
algorithm is optimal on an idealized PRAM machine, but it is unlikely to be optimal on any real-world
multiprocessor machine. This fact was empirically proven by Bondhugula [35].

The approach of Lim and Lam [107, 106] has a similar limitation. While it takes intoan account the
cost of synchronization, it does not model the memory traffic costs. The optimization process is based
on basic linear algebra rather than on linear programming. This has an implications on the quality of
obtained solution, since the method can reduce thedegreeof synchronization and maximize the degree
of parallelism, but it can miss an exact optimal solution.

The state of the art approach of Bondhugula [34] has a simple, but verypowerful cost model that
matches the key performance factors relevant to modern architectures. It takes into an account both
parallelism and memory traffic optimization.

While being well adapted to extracting parallelism and optimizing for memory locality through loop
tiling, the approach Bondhugula [34] does not take into account some lower level architectural features,
such as SIMD vectorization and possible cache interferences.

As evidenced in [131], the mentioned problem of Bondhugula’s approach could be alleviated if
combined with iterative search strategy. The method shown in [131] does not really into any of the
categories discussed so far, since it is a combination of both.

The iterative search methods try to overcome the lack of the precision of the cost model based ap-
proaches but with an extra cost - that of generating multiple versions of program transformations.

The iterative search method of Pouchet [129, 128] builds a search space of all legal and distinct
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program transformations expressed as one-dimensional [129] or multi-dimensional [129, 128] affine
schedules.

The main problem of iterative search methods is the problem of bounding the search space of legal
program versions. In their full generality, the space of affine schedules is unbounded. One has to bound
the possible values of the scheduling coefficients to some restricted range inorder to obtain the finite-size
search space.

Pouchet [129] proposes some practical solutions to the problem of bounding the search spaces to
make the iterative search methods practical. We might add a note that the cost model based approaches
do not face the problem of bounding the coefficient values, since thosevalues are computed directly from
the analytical cost model.

The feedback directed iterative search methods based on empirical program evaluation are obviously
not suitable for integration into the general purpose optimizing compiler because of their unpredictable
running time - even for simple program kernels, a millions of legal transformations might be evalu-
ated [129].

Since the search space explored by the iterative search method has to be bounded upfront, some
possible solutions might be missed, even if an exhaustive search is performed.

Obviously, neither class of the methods is better than the other. While the best effort, cost model
based approaches provide the desired solution in the single step, they mightnot precisely model the
target architecture and they might provide suboptimal results. On the other hand, the feedback directed,
iterative search based methods might provide the optimal transformations - missed by cost model based
approaches - but at the cost of an exhaustive search of the transformation space.

The common limitation of all the methods discussed so far is the lack of control over the complexity
of the generated code. To the best of our knowledge, there are no works addressing the problem of finding
the good program schedule that also generates the least complex code, though Darte [54] has pointed out
this problem. This problem is very relevant for enabling the integration of thescheduling algorithm in a
general purpose compiler. We will elaborate on this problem Section 7.3.

All the mentioned methods rely on the representation of the data dependence graph and satisfaction
of all the data dependences. As we have shown in Chapter 5, some of the data dependence constraints
could be relaxed and some dependence constraints could be completely removed with an extra cost of
memory expansions. Removing the dependence constraints enables more optimization choices.

While the techniques for removing data dependence constrains have beenextensively studied [64,
152, 37, 17, 97], they were treated separately from the scheduling problem itself. The only work that
addresses those two problems in a combined manner is [45]. The related problems were discussed
extensively in Chapter 5.
We summarize the limitations of the current best effort, cost model based approaches:

– Provide only a rough, linear analytical model based on an imaginary target execution platform
– Focus on a particular performance issue, while not taking into an account the holistic effect of

multiple program transformations
– The optimization process takes agreedyoptimization approach that can stick to local minimum

and miss a global optimal solution
– No control over the complexity of the generated code
– No way to integrate the relaxation of the scheduling constraints through dependence removal

The limitations of the iterative search based approaches are summarized:
– Exhaustively searching the space of all transformations is expensivein terms of time
– The complete search space is unbounded and a bounding solution has to be provided
– Even if an exhaustive search is performed, the optimal solution might be missed
– Does not help in understanding the program transformations
– No control over the complexity of the generated code
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7.3 Motivation

Having on mind the limitations of the current scheduling approaches, our goal is to propose the trans-
formation search methodology that could provide the best trade-off between cost model based scheduling
methods and search based techniques.

The core idea is to combine the enumeration search method with an evaluation of the specialized
analytical cost model function. In this way, we combine the best of both worlds: theprecisionof iterative
enumeration andeffectivenessof the cost model based approaches.

The specialized cost function is tailored to the specific architecture and models the selected perfor-
mance phenomena. Such a cost model function was shown in Chapter 6.

Previous cost model based approaches could not handle the complex non-linear objective functions.
The reason is simple: they use (integer) linear programming techniques that only can operate on linear
functions.

We cannot use the techniques proposed by Feautrier and Bondhugula toevaluate and choose the best
transformation according to the non-linear cost function. Instead, we resort to enumerative evaluation of
the non-linear cost function, in a similar way as the iterative approach.

Feedback directed iterative optimization [129, 128] relies on the feedback, for each generated pro-
gram version, obtained from measuring the performance of the transformed program. But instead of
relying on the empirical feedback, we plug in the non-linear objective costfunction to provide the as-
sessment of each transformation version.

Provided that we have a precise cost function tailored to a target architecture and that we can construct
a bounded but expressive search space, we can perform anenumerative searchof the cost function
evaluations and pick the best point in the search space.

The success of our approach relies on providing the following key properties:

1. construction of an expressive search space of affine transformations

2. ability to control the size of the search space

3. ability to efficiently evaluate the cost function for each point in the searchspace

Based on our new search methodology, we want to address the problems that were not addressed in
an integrated manner in the previous approaches. Mostly importantly, we aim at providing the transfor-
mation engine that could be integrated as an optimization pass of a general purpose compiler.

Two properties of our method enable its easy integration into the general purpose compiler: 1) em-
bedding of the precise cost model tailored to a given architecture 2) not relying on the empirical feedback
as the current iterative optimization approaches [129, 128]

An enumeration based nature of our approach enables us to control the complexity of the generated
code by ignoring some transformations (loop skewing for example) that mightgenerate the transformed
code that is too costly [54].

Also, an enumerative approach for the schedule construction goes in tandem with a lazy memory
expansion scheme discussed in Chapter 5. There is a trade-off betweenthe cost of the memory expansion
and the expressiveness of the transformation. To the best of our knowledge, there is no work that shows
how to capture this trade-off in a purely best effort based methods [68,106, 34]. An enumerative based
approach can capture this trade-off in its search space.

7.4 Problem statement

The goal of the transformation search strategy is the enumeration of the search space of a class of
legal multidimensional schedules. The space of the legal solutionsL is obtained. Each legal solution
T ∈ L have the form:
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T = {θS1, . . . ,θSp}

Each legal solution describes the complete scheduling matrices for all statements S = {S1, . . . ,Sp}.
For each scheduling dimension of the legal solution a set ofscheduling properties(parallel, sequential,
permutable) is determined.

7.5 Notation and definitions

Here we give the necessary definitions and notations used throughout the rest of the chapter.
Given a scheduling matrixΘS for a statementS, we will denote thek-th row of the scheduling matrix

ΘS asΘS
k. This row represents anaffine scheduling hyperplaneθS

k. The similar notation is used in works
relating to program transformations and scheduling in the polyhedral model,bearing different names or
meanings - schedules, mappings or partitions. [34, 67, 92, 105].

Recalling the defined canonical form of the scheduling matrix in section 2.3.4,the scheduling matrix
ΘS could be split in three components:A, Γ andβ. Thus, ak-th row of the matrix that represents an affine
function has the following form:

θSi
k = aSi

k,1i1+aSi
k,2i2+ . . .+aSi

k,nin+ γSi
k,1g1+ . . .+ γSi

k,ng
gng +βSi

k

For the purpose of this chapter, we will ignore theΓ part and consider it to be set to all zeros.1 Taking
this into an account, we can represent a single row of the matrix as:

θSi
k = aSi

k,1i1+aSi
k,2i2+ . . .+aSi

k,nin+βSi
k (7.1)

Definition 7.5.1(Affine form of Farkas Lemma). Given a nonempty polyhedronP = {x ∈Rn|Ax+b≥
0} then an affine formf : Rn→ R is non-negative at each point in a polyhedronP iff it is a positive
affine combination of the polyhedron faces:

f (x) = λ0+
m

∑
k=1

λk(Ak,•x+bk),λ0,λ1, . . . ,λm≥ 0 (7.2)

7.5.1 Dependence satisfaction

We will briefly recall the definition given in Section 3.3. Given a dependence graphG = (V,E), a
valid schedule has to satisfy all the dependence edgese∈ E. Each dependence edgee∈ E is labelled by
a dependence polyhedronPe. A given dependence edgee from Si to Sj is satisfied iff:

∀(i, j)T ∈ Pe : θSi (i)≪ θSj (j) (7.3)

where≪ is the lexicographical comparison operator. Since we are assuming multidimensional schedules,
a given dependence edgeehas to besatisfiedat somelevel. We formally define this condition:

Definition 7.5.2(Dependence satisfaction at level). A dependence edgee from statementSi to statement
Sj , labelled by a dependence polyhedronPe, is satisfiedat level l if it is the first level to satisfy the
following:

∀(i, j) ∈ Pe :
{

∀1≤k<l :
(

θSj

k (j)−θSi
k (i) = 0

)

∧θSj

l (j)−θSi
l (i)≥ 1

}

1. TheΓ part corresponds toparametric shift, allowing a scheduling function to be dependent on global parameters (usually
the problem size).
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We say that the given dependence isstronglysatisfied at levell , if the conditionθSj

l (j)−θSi
l (i)≥ 1 holds

for all statement instance pairs that are in dependence. If only the weaker conditionθSj

l (j)− θSi
l (i) ≥ 0

is satisfied, we say that a given dependence isweaklysatisfied at a given level. Both definitions assume
that the dependence is at least weakly satisfied at all previous levels 1≤ k< l .

Definition 7.5.3(Outer parallelism enabling hyperplanes). Given the set of statementsS = {S1, . . . ,Sp}

we say that the set of hyperplanes{θS1
1 , . . . ,θSp

1 } enable parallelism at the outermost level (l = 1) if the
following condition is satisfied:

∀(i, j) ∈ Pe :
(

θSj

1 (j)−θSi
1 (i) = 0

)

,∀e∈ E

In other words, for all dependence edges∀e∈ E and for all pairs of statement iterations in a de-
pendence relationPe, the source and the sink of the dependence are mapped to the same scheduling
hyperplane. If we treat the scheduling hyperplane as apartition, as in [107], it means that all the depen-
dent iterations are executed within the same partition, while the partitions themselves could be executed
in parallel. This kind of parallel execution is known as the DOALL or synchronization free parallelism.

Definition 7.5.4(Permutable scheduling band). The set of scheduling hyperplanes{θS1, . . . ,θSp} at lev-
els l , l +1, . . . , l +s−1 form a permutable scheduling band iff:

∀e∈ El ,∀k(l ≤ k≤ l +s−1) : ∀(i, j) ∈ Pe,θ
Sj

k (j)−θSi
k (i)≥ 0

whereEl is the set of dependence edges not satisfied up to levell − 1. The loops that correspond to
scheduling hyperplanes within the permutable scheduling band could be permuted freely, without violat-
ing any dependence. The similar definition is used in several works [106,60, 86], where the goal is to
find the maximal bands of fully permutable loops.

We have given the basic definitions that form the building blocks of our search methodology. Please
note that some definitions arelocal – they apply for one dependence edgee at the time. In our trans-
formation search method we will combine those constraints, step by step, into theglobal solution that
satisfies the full dependence graphG= (V,E).

7.6 The space of legal affine transformations

As stated before, the goal of any program transformation based on the polyhedral model is to find
the coefficients of the scheduling matrices:T = {θS1, . . . ,θSp}.

Taking the full dependence graphG= (V,E), each dependence edgee∈ E is described by a depen-
dence polyhedronPe. A dependence edgee from Si to Sj mandates that a condition shown in Equation 7.3
must bestronglysatisfied. If we now consider the set ofone-dimensionalschedules, this condition be-
comes:

∀(i, j)T ∈ Pe : θSj (j)−θSi (i)> 1 (7.4)

But the scheduling matrices that encode the scheduling functionsθSi andθSj have unknown coef-
ficients. If we use the representation of the single row of the matrix as an affine function, as shown in
Equation 7.1, we will get the following form of the constraint:
∀(i, j)T ∈ Pe : a

Sj

1,1 j1+ . . .+a
Sj

1,n jn+ωSj

1 − (aSi
1,1i1+ . . .+aSi

1,nin+ωSi
1 )> 1

But this constraint is nonlinear, since both loop induction variables and coefficients are unknown.
This obstacle can be avoided by linearizing the constraints by using the Farkas lemma. All the affine
scheduling algorithms2 rely on the Farkas lemma [67, 68, 128, 104, 132, 91] to perform the linearization.

2. An alternative approach is to use an equivalentvertex methodas in [80, 159]
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To perform the linearization, one has to represent the dependence polyhedronPe as an intersection
of affine inequalities:P = {x ∈ Rn|Ax+b ≥ 0}. By applying Equation 7.2 and substituting the depen-
dence satisfaction constraint on the left side of the equation and the affinecombination of the faces of
the dependence polyhedronPe on the right side, one will get theFarkas multipliers- the unknowns
λ0,λ1, . . . ,λm ≥ 0. Afterwards, one can project out those multipliers and obtain the system of affine
inequalities describing the set of transformation coefficients that provide alegal schedule w.r.t. the de-
pendence polyhedronPe - this set itself is a polyhedronLPe.

As an example, let us take the code shown in Figure 7.4. In this case we haveonly one statement and
one dependence edgee : S1→ S1. The dependence is the true (read-after-write) dependence described by
the polyhedron:

Pe = {(i, j, i′, j ′)|i′ = i+1∧ j ′ = j +1∧0≤ i ≤ N−2∧0≤ j ≤ N−2}
Our goal is to find the unknown coefficientsaS1

1,1,a
S1
1,2,ω

S1
1 of the one-dimensional affine scheduling

functionθS1
1 satisfying the dependence constraints:

∀(i, j, i′, j ′) ∈ Pe : aS1
1,1i′+aS1

1,2 j ′+ωS1
1 − (aS1

1,1i+aS1
1,2 j +ωS1

1 )> 1 (7.5)

In the case of uniform dependences, application of the Farkas lemma couldbe simplified.3 The
distance between source and sink iteration is constant -i′ = i +1 and j ′ = j +1. If those equalities are
put into the previous constraint system, the loop induction variables are canceled out. After simplifying
we get the constraint:aS1

1,1+aS1
1,2≥ 1.

This inequality defines an unbounded polyhedronLPe containing the possible values for scheduling
coefficients. This set is an unbounded set – there is no upper nor lowerbound on the coefficient values.
Please note that coefficientωS1

1 is completely unconstrained. The legal solution polyhedron is described
as follows:

LPe = {(a
S1
1,1,a

S1
1,2,ω

S1
1 )|aS1

1,1+aS1
1,2≥ 1} (7.6)

Figure 7.1 shows an iteration domain, and uniform dependences for the program in Figure 7.4. One of
the possible choices for the coefficients isaS1

1,1 = 1,aS1
1,2 = 1,ωS1

1 = 0, which gives the skewed scheduling

hyperplaneθS1
1 = i + j shown in Figure 7.1. The skewed scheduling hyperplanes are executedsequen-

tially, while the iterations that belong to the same hyperplane might be executed in parallel. But the
simplersolution is to takeaS1

1,1 = 1,aS1
1,2 = 0,ωS1

1 = 0, which gives an orthogonal scheduling hyperplane
- the one that corresponds to the original loop iteratori.

The goal of all the affine scheduling algorithms [67, 68, 128, 104, 132,91] is to choosethe bestco-
efficient values among those contained inside the legal solution polyhedronLPe. The best coefficients are
chosen according to some well defined criteria - maximal parallelism [67, 68], minimal synchronization
[104] or minimal memory traffic [34] for an instance.

Another approach is to exhaustively search for all the possible schedules, given some bounds on
the coefficient values. That is the approach thatiterative compilationtakes [130, 128]. Pouchet shows
that it is feasible to exhaustively search the space of all the legal and distinct schedules, provided that
the scheduling coefficients are bounded. As shown empirically by Pouchet, bounding the coefficients to
integer values in the interval[−1,1] gives the schedules that are usually expressive enough [130].

In the example we have shown, there is only one dependence edge. One dependence edge gives one
set of the constraints on the coefficients expressed as a polyhedronLPe. But in the general case, the
dependence graph contains several dependence edges. To obtain the global solution, one has to take the

3. For a full example of applying a Farkas lemma, a reader is could refer to [130].
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Figure 7.1 – Uniform dependences and skewed hy-
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Figure 7.3 – Uniform dependences and outermost
parallel hyperplane

f o r ( i = 1 ; i < N; i ++)
f o r ( j = 1 ; j < N; j ++)

S1 : A[ i ] [ j ] = A[ i −1][ j −1] + X;

Figure 7.4 – Simple uniform dependence
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f o r ( i = 1 ; i < N; i ++)
f o r ( j = 1 ; j < N; j ++)

S1 : A[ i ] [ j ] = A[ i ] [ j −1] + A[ i −1][ j ] ;

Figure 7.5 – Two uniform dependences

intersection of all the coefficient constraints, for all the dependence edges of the graphG= (V,E):

L =
⋂

∀e∈E

LPe (7.7)

7.6.1 Multidimensional schedules

One-dimensional schedules are not always obtainable. In practice, there are many codes for which
the set of legal coefficients for the one-dimensional schedules is empty. As shown by Feautrier [68], one
needs to extend the notion of one-dimensional schedules with the multidimensional schedules. It has
been proven [68] that there exists a multidimensional schedule for each dependence graph induced by
the loop nests coming from imperative programs. Indeed, the multidimensional schedule corresponding
to the original loop nest is always legal, and it is one of the possible solutions.

Having the one-dimensional schedule, it is always mandatory to strongly satisfy all the dependences
at the first (and only) dimension. Having the multidimensional schedule, thereis a combinatorial choice
of the depth of the dimension that strongly satisfies the dependence.

Feautrier decouples the problem of selecting the dependence satisfactiondepth from forming the
set of feasible schedule coefficient values. By introducing the 0−1 variablexe

k ∈ {0,1}, one can model
whether the given dependence edgee∈ E is satisfied weakly (xe

k = 0) or strongly (xe
k = 1):

∀(i, j) ∈ Pe : θSj

k (j)−θSi
k (i)≥ xe

k

Each dependence edgee∈ E has to be satisfied strongly at some depthl . Let us consider the set of
scheduling hyperplanesθS1

k , . . . ,θSp

k at different dimensions,k∈ 1..m. If the dependence edgee is satisfied
strongly (xe

l = 1) at depthl , this edge could be removed from the system of constraints when considering
deeper levelsk > l . Putting it more formally, for a given edgee : Si → Sj , the following is a sufficient
condition for the legality of the multidimensional schedule w.r.t. the dependence edgee:

∃1≤ l ≤m,xe
l = 1

∧∀k< l ,xe
k = 0

∧∀k≤ l ,∀(i, j) ∈ Pe,θ
Sj

k (j)−θSi
k (i)≥ xe

k

(7.8)

This reasoning comes from the simple fact on lexicopositivity of the difference of the timestamp
vectors [68].4

The fact that there is a combinatorial choice of the weak/strong satisfactionfor each edgee∈ E and
for each scheduling level 1≤ k≤mhas led to the heuristics that try to structuralize this decision problem.
Feautrier [68] has proposed to maximize the number of strongly satisfied dependences at each level:

max∑
e∈E

xe
k

4. when comparing the two vectorsa and b lexicographically, it is sufficient to find the first positionl where a0 =
b0, . . . ,al−1 = bl−1,al < bl , while the ordering of the remaining positions is irrelevant.
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. This is the greedy approach that tries to satisfy as much dependences aspossible in the outer scheduling
dimensions, and to expose the parallelism in the inner loops. Also, it aims at multidimensional schedules
that have the minimal dimensionality.

Bondhugula [34, 32] aims at different objective: that of exposing the outer loop parallelism. Thus,
the strong dependence satisfaction is moved to the higher dimensions (inner loops), and the parallelism
and tiling opportunities are exposed in the outermost loop levels.

As an example of the impact of the choice of dependence satisfaction (strong/weak), let us again
take an example in Figure 7.4. If we consider the first dimension of the multidimensional schedule, after
applying the Farkas lemma and simplifying, the constraint is:

aS1
1,1+aS1

1,2≥ xe
1,x

e
1 ∈ {0,1}

There is a choice between satisfying the dependence stronglyxe
1 = 1 or weaklyxe

1 = 0. According
to Feautrier’s heuristic, one maximizes the number of the strongly satisfied dependences at each level,
thus xe

1 = 1. This leads to the constraintaS1
1,1 + aS1

1,2 ≥ 1, which resolves the schedule within the first
dimension. This enables the innermost loop parallelism, since the second scheduling dimensions is com-
pletely unconstrained (after strong satisfaction at the first dimension, the dependence edge is removed
from consideration at deeper levels).

Figure 7.2 shows the minimum latency orthogonal hyperplanesθS1
1 = i providing the first scheduling

dimension. The iterations belonging to the same scheduling hyperplane could be executed in any order -
in parallel in particular.

With Bondhugula’s approach [34] the goal is to minimize thedependence distancestarting from the
outermost scheduling dimensions. This translates to the heuristic which prefers to weakly satisfy the
dependence at the outer levels and to strongly satisfy the dependence atthe inner levels. This leads to the
constraintaS1

1,1+aS1
1,2 ≥ 0. In particular, it is preferable to obtain the outer parallel enabling scheduling

hyperplane:aS1
1,1+aS1

1,2 = 0. Since the first scheduling dimension is not strongly satisfying the edge, the
satisfaction has to occur at deeper dimension. This forces the choice of the strong satisfaction at the
second scheduling levelaS1

2,1+aS1
2,2≥ 1.

By assigning the values to the scheduling coefficients for the first level, one gets a possible parallel
enabling scheduling hyperplaneθS1

1 = i− j (aS1
1,1 = 1,aS1

1,2 =−1). For the second dimension, the schedul-

ing hyperplane isθS1
2 = i (aS1

2,1 = 1,aS1
2,2 = 0). This multidimensional schedule enables theoutermost

parallelism- the outermost loop is a DOALL loop. This is depicted in Figure 7.3.
Depending on the underlying architecture, either the inner parallelism (Figure 7.2) or outer paral-

lelism (Figure 7.3) might be more beneficial.
All the mentioned approaches stick to the one scheme of selecting the dimensionsthat are to be

strongly satisfied. A new approach of Pouchet et al. [132] tries to express the convex space of all the
possible choices for thexe

k variables and to enumerate those choices. While this seems a promising
approach, the amount of the possible solutions is prohibitively huge.

In the later sections of this chapter we will show the approach of enumeratingthe possible decisions
in a specially designed binary decision tree. This enables us to enumerate thedifferent decisions, while
still maintaining the reasonable problem sizes.

7.7 Discrete sets of one-dimensional legal solutions

While the previously mentioned affine scheduling algorithms consider a very expressive search space
of all legal affine transformations, it is not always necessary nor desirable to consider the full space
of affine transformations. What is more, Feautrier’s affine scheduler [67, 68] or Bondhugula’s [34]
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Transformation name Matrices involved
Interchange, skewing (unimodular), reversalA
Strip-mining, tiling D, θ
Pipelining (multidimensional) β
Parametric pipelining (multidimensional) Γ
Reversal (unimodular) A, Γ
Motion, fusion, fission (distribution) β

Table 7.1 – Classical loop transformations and their polyhedral matrix representation

combined parallelism and memory locality heuristic arebest effortheuristics - they provide one and only
one solution chosen by some cost function.

As evidenced by Pouchet [131], the best effort heuristics are not well adapted to different architec-
tural features - the optimal solution according to heuristics might be optimal forone architecture and
suboptimal for other architecture. The other problem is

7.7.1 State of the art

We take the idea of Darte [54] stating that arbitrary affine transformations are not always desirable.
Narrowing down the scope of affine transformations might result in the better control over the generated
code.

Our goal is to enable the exhaustive search of the possible affine transformations while still narrowing
down the search space to the reasonable size. We have already shown inSection 7.6 that the space of all
the legal coefficients for affine transformation might be unbounded.

Bounding the coefficients to the[−1,1] interval was proposed by Pouchet [129, 128] in his work on
iterative compilation within the polyhedral model.

Pouchet also shows [129] that some coefficients of the affine transformation are less critical than oth-
ers. This fact was investigated empirically by assessing the impact of different transformation coefficients
on the performance of the transformed output program. That fact has led to thedecoupledheuristic [129]
- first the coefficients corresponding to the loop induction variables are found, and later the rest of the
coefficients are completed.

Girbal has shown [74] that the different parts of the canonical scheduling matrix format correspond
to differentclassicalloop optimizations [7]. This is summarized in Table 7.1.

7.7.2 Narrowing the search space

If one wants to enumerate all the possible transformations within an affine transformation space, one
has to bound the values of the transformation coefficients.

Instead of bounding the values of the coefficients of affine transformation, as done by Pouchet [129],
we restrict the possible space of transformations right away at the beginning of our search. We restrict
our search space to the following transformations:

– loop permutation
– non-parametric shift
– motion, fusion, distribution
Strip-mining and tiling transformations are treated specially and they are appliedafterwards. Re-

stricting the search space to loop permutations only, we do not look for full unimodular transformation
space (skewing, loop reversal). This enables us to restrict the searchspace considerably, but the resulting
search space is non-convex.
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f o r ( i = 1 ; i < N; i ++)
f o r ( j = 0 ; j < N; j ++)

S1 : A[ i ] [ j ] = B[ i −1][ j ] ;
S2 : B[ i ] [ j ] = A[ i −1][ j ] ;

Figure 7.6 – Two statements, uniform dependences

The motivation would be clear after following the subsequent sections. Loop permutation defines
only theorthogonalhyperplanes. While this decision might restrict some possible transformations(like
loop skewing for extracting fine grained parallelism) it is powerful enoughfor the purpose of finding
outer and inner loop parallelism in many cases. The problem is similar to Kennedy’s [5] loop selection
problembut it is expressed in the much more general framework of the polyhedralmodel: we support the
non-perfectly loop nests, non-uniform dependences, shifting for transformation correction and integrate
this into the loop distribution/fusion decisions.

7.7.3 Building non-convex sets of one-dimensional legal schedules

We have to take into an account the restrictions on the possible schedules that we have imposed up-
front when considering the affine scheduling functions. Considering the A part of the scheduling matrix
for each statementSi , for each rowk we constrain the scheduling coefficients to the following form:

m

∑
s=1

aSi
k,s = 1,aSi

k,s∈ {0,1} (7.9)

In other words, each row is composed of all zeros except one position -says - that contains an integer
constant 1. This corresponds to selecting the loops [5] at the scheduling levelk.

Let us consider an example in Figure 7.4. The general form of the affinescheduling function for the
statementS1 is:

θS1
1 = aS1

1,1i+aS1
1,2 j +ωS1

1

A respective affine scheduling legality constraint (shown in Section 7.6 ) isaS1
1,1+aS1

1,2 ≥ 1. Taking
into an account the constraints we have imposed in Equation 7.9, we get the following table of the
possible solutions:

solution no. aS1
1,1 aS1

1,2 ωS1
1

1. 0 1 unconstrained
2. 1 0 unconstrained

The solution is trivial: there are only two possible loop interchanges and all of them are legal. The
shifting factorωS1

1 is unconstrained5. The solution set is non-convex. The actual solution set is the enu-
meration of legal loop permutations alongside with legal shifting factors for each selection of loop per-
mutations.

Let us take a more complex example, containing two statements,S1 andS2, and two dependence
edgese1 : S1→ S2 ande2 : S2→ S1. The dependence polyhedra describing those two dependence edges
are the following:

Pe1 = {(i, j, i′, j ′)|i′ = i+1∧ j ′ = j ∧1≤ i ≤ N−2∧0≤ j ≤ N−1}
Pe2 = {(i, j, i′, j ′)|i′ = i+1∧ j ′ = j ∧1≤ i ≤ N−2∧0≤ j ≤ N−1}

5. The shifting transformation expresses the relative shift of two statements. It makes sense only if we have more than one
statement. In the case of a single statement we will assumeωS1

1 = 0.
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aS1
1,1 aS1

1,2 aS2
1,1 aS2

1,2 convex part

1 0 1 0 ωS2
1 −ωS1

1 ≥ 0
0 1 0 1 ωS2

1 −ωS1
1 ≥ 1

Table 7.2 – Solution setLe1

aS1
1,1 aS1

1,2 aS2
1,1 aS2

1,2 convex part

1 0 1 0 ωS1
1 −ωS2

1 ≥ 0
0 1 0 1 ωS1

1 −ωS2
1 ≥ 1

Table 7.3 – Solution setLe2

The prototype schedules from both statements are:

θS1
1 = aS1

1,1i+aS1
1,2 j +ωS1

1 (7.10)

θS2
1 = aS2

1,1i+aS2
1,2 j +ωS2

1 (7.11)

The legality condition is expressed as:
θS2

1 (i′, j ′)−θS1
1 (i, j)≥ 1

Since we have the uniform dependences, we can substitutei′ = i +1 and j ′ = j +1 in the legality
condition expression. After simplification we get:

(aS2
1,1−aS1

1,1)i+(aS2
1,2−aS1

1,2) j +ωS2
1 −ωS1

1 +aS2
1,1≥ 0

After applying Farkas lemma (the details could be found in Appendix A), we get the following system
of constraints on the scheduling coefficients:











aS2
1,1−aS1

1,1≥ 0
aS2

1,2−aS1
1,2≥ 0

ωS2
1 −ωS1

1 +2aS2
1,1−aS1

1,1−1≥ 0

By enumerating the possible values of the coefficients that in addition satisfy the Equation 7.9, we
get the set of solutions shown in Figure 7.2.

The solution set is now split into the non-convex part and convex part. The non-convex part corre-
sponds to the enumeration of the legal loop selections - encoded within A partof the scheduling matrix.
For each legal assignment of theaSi

1,k coefficients, the remaining constraints on theshiftingpartωSi
1 are

expressed in the convex polyhedron form.
The similar solution set is obtained for the dependence edgee2 : S2→ S1. The solution set is shown

in Table 7.3.
While the solution sets represent the space of legal coefficients for singledependence edges, the aim

is to obtain the global solution, as in Equation 7.7. For that purpose, the intersection of the solution sets
has to be provided. After combining the solution setsLe1 andLe2, we obtain the global solutionL shown
in Table 7.4.

aS1
1,1 aS1

1,2 aS2
1,1 aS2

1,2 convex part

1 0 1 0 ωS2
1 −ωS1

1 +1≥ 0∧ωS1
1 −ωS2

1 +1≥ 0
0 1 0 1 ωS2

1 −ωS1
1 ≥ 0∧ωS1

1 −ωS2
1 ≥ 0

Table 7.4 – Solution setL = Le1
⋂
Le2
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AS1
1,• AS2

1,• convex part

1 1 ωS2
1 −ωS1

1 ≥ 0
2 2 ωS2

1 −ωS1
1 ≥ 1

Table 7.5 – Compressed encoding of the setLe1

AS1
1,• AS2

1,• convex part

1 1 ωS2
1 −ωS1

1 ≥ 0
2 2 ωS1

1 −ωS2
1 ≥ 1

Table 7.6 – Compressed encoding of the setLe2

Representing convex rational and integer solution sets is a well studied problem in convex optimiza-
tion theory [42, 143].

Omega [133] library uses Fourier-Motzkin elimination extended to integer linear programming and
integer set operations. Several efficient implementations based ondual representation[143] have been
proposed. The most popular one was implemented in Polylib, the work of Le Verge and Wilde [160]. It
is based on Chernikova’s algorithm for transforming between constraintrepresentation (the set of affine
constraints) and generator representation(set generated by a set ofvertices, rays and lines) [42, 100].

The most recent developments are PPL [12] and ISL [158] libraries formanipulating the convex sets
of rational and integer solutions respectively.

7.8 Non-convex solution sets

As we have shown in the previous section, we split the solution set into the non-convex and convex
part. For representing convex sets, we use techniques that are already well developed.

While the representation of the convex sets has sound mathematical and algorithmic background,
the representation of the non-convex sets poses more complexity problems.Each non-convex problem is
particular and thus requires dedicated techniques with heuristics well adapted to the problem.

Following is the work that describes our approach to representing the non-convex set of all the legal
loop selections for a single dimension. In a Section 7.9 we will extend this to multidimensional solutions.

Representing non-convex solutions

We propose to usedecision treesas a representation of non-convex solution sets. We have imposed
a constraint on the possible set of coefficient values for the rowΘS

k of A part of the scheduling matrix
of statementS in Equation 7.9. A row is composed of all zeros except single integer constant 1 at some
positions. Instead of representing the full row, we can only represent the position s, 1≤ s≤ dim(S) of
the integer constant 1 in a row.

Taking the solution set shown in Table 7.2, we encode the legal solution set as shown in Table 7.5.
The same is done for the solution setLe2, as shown in Table 7.6.

After encoding the full matrix row as single integer value, we construct the decision tree representing
the solution sets. Figures 7.7 and 7.8 show the respective n-ary decision trees.

Even though one might use a simple representation of the sets, such as linkedlists or arrays, we
propose to use the n-ary decision trees for that purpose. The reasonis the fact that we will require the set
operations to be performed efficiently. A tree structure enables us to achieve this goal.

The leaf node⊥ represents a ’no solution’ - a given selection of the decision variables gives an illegal
schedule. The rest of the leaf nodes represent a legal solutions and they are labelled by the polyhedron
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Figure 7.7 – n-ary decision tree representing the solution setLe1
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Figure 7.8 – n-ary decision tree representing the solution setLe2

representing the legal shifting factors - a convex part of the solution set.
At each depthk of the tree, we consider the nodes of the formASk

1,• that represent the decision variables
that encode the possible rows of the A part of the scheduling matrix for each statementSk. A given node
ASk

1,• might have up todim(Sk) legal child nodes. The legal child node is the node that does not lead to
the⊥ terminating node.

Initially, we represent the sets for the pairs of statements only, so each treewould have a depth of
two. When combining the trees into the global solution, we will obtain a tree that encodes the global
schedule with a depthp, wherep is the number of the statements whose schedules we are constructing.
We will now show how to perform the basic set operations on n-ary decision treesthat we construct.

7.8.1 Efficient operations on solution sets

Once the solution sets are represented as n-ary decision trees, there is aneed to provide the basic
operators on those solution sets. The basic operators that we are interested in are:

1. EMBED(L ,X)

2. INTERSECT(L ′,L ′′)

3. PROJECT(L ,X)

4. ORTHOGONAL(E′,L ,k)

We will discuss the first three of them in this subsection. The last operator -ORTHOGONAL- will be
discussed in Section 7.9.

Embed operator

Each decision tree have a set of decision variables{X1, . . . ,Xn}. For example, the decision diagram
in Figure 7.7 has two decision variables:AS1

1,• andAS2
1,•. In order to perform an intersection operation
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Figure 7.9 – The result of the operator EMBED(Le1,{AS0
1,•})

on two sets represented as n-ary decision trees it is mandatory that they have the same sets of decision
variables.

Given a decision tree with a set of variables{X1, . . . ,Xn}, an embed operation EMBED extends this
set with one decision variable, sayXn+1, while not changing the elements contained in the original set.

As an example, let us take the original set in Figure 7.7. Figure 7.9 shows theresult of the embed
operation on the setLe1 with a (hypothetical) decision variableAS0

1,•. Now the decision tree is extended

with one more decision variable -AS0
1,•. The set of the solutions remains the same - the value of theAS0

1,•
variable does not impact the set of valid results represented in a set.

The ordering of the decision variables has an impact on the size of the decision tree. Embedding the
variable at the deeper levels increases the number of the nodes, since it requires the replication of that
decision node.

Intersection operator

The intersection operator performs the set intersection. The result is the intersection of two solution
sets, sayL ′ andL ′′, so that the resulting setL = L ′∩L ′′ contains the solutions that are both legal inL ′

and inL ′′.
The operator requires that both arguments contain the same set of decisionvariables and that their

ordering is the same. If this is not the case, then the EMBED is used to introduce the common decision
variables in both sets.

The intersection operationL ′∩L ′′ = INTERSECT(L ′,L ′′) proceeds by recursively following the de-
cision variable nodes from top to bottom for both arguments and finding the set of common terminating
nodes. For those terminating nodes that have legal solutions, the intersection of convex sets is found.

An example is shown in Figure 7.12 which is the result of applying the intersection operator on
trees shown in Figures 7.10 and 7.11. A common set of legal terminating nodesfor setsL ′ andL ′′ is
the terminating node forX1 = 2,X2 = 2. Subsequently, the common terminating node is labelled by the
intersection of convex setsP1 andP3.

Projection operator

The projection operator PROJECT(L ,X) takes the decision treeL containing the decision variable
X and removes that decision variable from the representation while keeping the set of legal solutions



7.8. NON-CONVEX SOLUTION SETS 113

X1

1

~~}}
}}

}}
}

2

  
AA

AA
AA

A

X2

1
��

2

  
AA

AA
AA

AA
X2

2
��

1
~~}}

}}
}}

}}

P1 ⊥ P2

Figure 7.10 – setL ′

X1

1

~~}}
}}

}}
}

2

  
AA

AA
AA

A

X2

1
��

2

  
@@

@@
@@

@@
X2

2
��

1
~~~~

~~
~~

~~

⊥ ⊥ P3

Figure 7.11 – setL ′′

X1

1

~~}}
}}

}}
}

2

##G
GGGGGGGG

X2

1
��

2

  
@@

@@
@@

@@
X2

2
��

1
{{ww

ww
ww

ww
ww

⊥ ⊥ P3∩P2

Figure 7.12 – INTERSECT(L ′,L ′′)

X1

1

~~}}
}}

}}
}

2

  
AA

AA
AA

A

X2

1
��

2

  
AA

AA
AA

AA
X2

2
��

1
~~}}

}}
}}

}}

P1 ⊥ P2

Figure 7.13 – setL

X2

1

~~}}
}}

}}
}

2

��
@@

@@
@@

@@
X2

2

  
AA

AA
AA

A
1

��~~
~~

~~
~~

P1 ⊥ ⊥ P2

Figure 7.14 – Split tree after removingX1 node

selected by remaining decision variables6.

While removing the decision variable nodes corresponding to the variableX that is projected out, the
decision tree is split into several subsets. To obtain the final solution, the union of those subsets is taken
and represented with the remaining decision variables.

As an example, let us take the set in Figure 7.13. The goal is to project out the X1 variable. After re-
moving the node corresponding to decision variableX1, the tree is split in two parts shown in Figure 7.14.
Those two parts are combined into the final solution by taking their union.

6. This operation is the ’non-convex’ counterpart of the projection operation performed on convex sets.

X2

1

~~}}
}}

}}
}

2

  
AA

AA
AA

A

P1 P2

Figure 7.15 – The final result of PROJECT(L ,X1)
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ProcedureCOMBINEINITIAL SOLUTIONS

INPUT: E
OUTPUT:L

E - a subset of the edges required to be satisfied either weakly or strongly at scheduling level one

1. L ← /0
2. for all e∈ E

– computeLe

– L ← INTERSECT(L ′,L ′′)

Figure 7.16 – Combining the solutions

A note on complexity

By splitting the solution set representation into the non-convex part represented by n-ary decision
treesand convex part, operated on by using the regular convex optimization theory, we have a better
control over the complexity of operations on those sets.

Initially we build |E| decision trees representing the setsLe,∀e∈ E. Each such a decision tree repre-
sents the legal solutions w.r.t to one dependence edge. Those trees havethe depth of two - one level for
each statement. Given an edgee : Si→ Sj , the tree that represents the legal solutions for this dependence
might have at mostdim(Si) ·dim(Sj) nodes. Each node might be labelled by one convex polyhedron. The
worst case is rarely attainable, even in the case of simple uniform dependences.

Having the full dependence graph, one needs to build|E| decision trees. Letd be the maximal depth
of the statement in a program. The worst case complexity of building the constraints for all the depen-
dence edges isO(|E| ·d2).

In order to build the global solution, one needs to combine all those pairwise constraints into the
global system. This is achieved by performing the sequence of intersect operations, which in turn might
require an embedding operation. This simple scheme is shown in the form of pseudo-code in Figure 7.16.

The complexity of the operations is sensitive to the order in which the intersection operations are
performed. The most desirable is to intersect two sets, sayL ′,L ′′, that have exactly the same set of
decision variables - no embedding operation is needed in this case. The complexity of such an intersection
is O(n1n2), wheren1 andn2 are the number of tree nodes.

7.9 Sets of multi-dimensional legal solutions

So far we have discussed the representation of one-dimensional solutionsets. While the one-dimensional
solution sets are the starting point for the exploration of transformations, theultimate goal is to provide
the set of legal multidimensional solutions, since one-dimensional schedulesare not possible for some
class of the programs.

7.9.1 Representing weak/strong satisfaction

When we were considering the sets of one-dimensional schedules only, the strong satisfaction is
required in the first dimension - all the dependences have to be satisfied within the first and only dimen-
sion. If we extend the set of solutions to multidimensional schedules, the combinatorial problem becomes
more complex. There is a combinatorial choice of whether to strongly or weakly satisfy the dependence
edgese∈ E at each scheduling level.
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Figure 7.17 – the solution setLe1 with decision variablexe1
1

We have shown in Subsection 7.6.1 the different heuristics considering thisproblem. Those heuristics
try to find the best weak/strong satisfaction choice for each scheduling level at once. We want to take the
different approach: we implicitly enumerate all those decisions in the decisiontree of legal solutions.

For that purpose we introduce a decision variablexe
d for each dependence edgee∈E at each schedul-

ing level d. The meaning of the decision variable is the same as used in Feautrier’s multidimensional
scheduling [68]: the decision is made whether a given edge isweakly satisfied(xe

d = 0) or strongly satis-
fied(xe

d = 1)
Taking those definitions into an account, we build a decision tree for the firstscheduling dimension

in the same way as we did in 7.8 while adding a decision variablexe
d that selects the convex part of the

solution to correspond to strict weak/strong satisfaction.
The original decision tree that unconditionally enforces strong satisfaction on the edgee1 was shown

in Figure 7.7. If we now split the dependence satisfaction decision into weakand strong satisfaction
(variablexe1

k ), we get the decision tree as shown in Figure 7.17. The leaf nodes are labelled by convex
sets of the legal shifting factors giving the desired edge satisfaction condition (weak/strong). The same
splitting is done for edgee2, as shown in Figure 7.18.

Combining solutions

In order to obtain the global solution for the first scheduling dimension, onehas to intersect the two
solution sets for edgese1 ande2. But the decision trees for those two sets have two different decision
variables:xe1

k andxe1
k respectively. Thus, the result of the intersection operation combines bothof them

(using embedding operator) into the final solution shown in Figure 7.19.
The global solution setL1 is the exhaustive enumeration of all the possible one-dimensional sched-

ules within the space defined in Subsection 7.7.2. The decision variablesxe1
1 andxe2

1 partition the space
of convex sets of legal shifting factors giving different edge satisfaction. Some interesting properties of
the solutions contained in this set are summarized in Table 7.7.

7.9.2 Orthogonal completion

As shown in Table 7.7, some one-dimensional solution sets do not satisfy all the dependence edges at
the first scheduling dimensions. What is more, in order to providepermutable loop bandwe would like
to enforce the satisfaction of all edges at deeper levels, regardless ofwhether they have been satisfied at
earlier levels or not.
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1

xe1
1 xe2

1 non-convex convex part comment
= 0 = 0 AS1

1,• = (01) AS2
1,• = (01) ωS1

1 −ωS2
1 = 0 Both edges strictly weakly satisfied. Enables

outermost DOALL loop.
> 0 > 0 AS1

1,• = (10) AS2
1,• = (10) −1< ωS2

1 −ωS1
1 < 1 Both edges strongly satisfied at level 1. En-

ables innermost DOALL loop. Does not re-
quire further scheduling dimension.

= 0 > 0 AS1
1,• = (10) AS2

1,• = (10) ωS1
1 −ωS2

1 = 1 Edge e1 strictly weakly satisfied, edgee2

strongly satisfied. Schedule is not complete at
level 1, requires completion at second level.

=> = 0 AS1
1,• = (10) AS2

1,• = (10) ωS2
1 −ωS1

1 = 1 Edge e2 strictly weakly satisfied, edgee1

strongly satisfied. Schedule is not complete at
level 1, requires completion at second level.

Table 7.7 – Summary of the set of one-dimensional schedules
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Figure 7.20 – Full ranked A matrix

AS1 =

[

0 1
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Figure 7.21 – Non-full ranked A matrix
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]

AS2 =
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]
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−1< ωS2
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Figure 7.22 – Complete solution obtained

In order to get the complete solution, one needs to complete the schedules at scheduling dimensions
1< k≤ dim(Si). The complete schedule has the full-ranked A part of the scheduling matrix7. In order to
get the complete, full-ranked scheduling for each statementSi , each statement needs to be provided with
a full rankedASi matrix, with the dimensionality ofdim(Si)×dim(Si).

Bondhugula [34] is using the concept of orthogonal sub-spaces so that the solutions found at the
following rows of the scheduling matrix are linearly independent w.r.t. rows that have already been
found. This guarantees the full-ranked matrix.

In our search space, the problem of finding the independent solutions iseasier. We restrict the rows
of A matrix to satisfy Equation 7.9. If we have selected the positionsof the integer constant 1 at the first
row of the scheduling matrix, then this position could not be used in subsequent rows.

In general, if we have selected independent positionss1, . . . ,sk for levels 1≤ l ≤ k, those positions
cannot be used when completing the subsequent rowsk+1≤ l ≤ dim(Si). This is equivalent with stating
that the A represents a loop permutation matrix. An example of the full ranked permutation matrix is
shown in Figure 7.20. Obviously, the solution shown in Figure 7.21 is not a full-ranked multidimensional
schedule.

Given the complete solution set for the first scheduling dimension represented as a decision tree, each
valid leaf node could be completed with the next scheduling level that gives the independent solution.
While it is possible to provide a completion for each leaf node of the decision tree, this procedure might
lead to combinatorial explosion, since each subsequent level is a also a decision tree. In Section 7.10 we
will discuss the systematic search methodology that enables us to control the complexity of completing
the schedule at deeper scheduling levels.

If we want to complete the second scheduling dimension, we have to find a solution set that satisfies
some subset of the dependence edgesE′ ⊂ E, while providing a rowASi

2,•, for each statementSi , that is

linearly independent from a rowASi
1,•. We will denote this operation as ORTHOGONAL(E′,L ,k), where

E′ is the subset of the edges that have to be satisfied at a new scheduling level k andL is the solution set
of the solutions found at levels 1≤ l ≤ k−1.

Let us take a decision tree shown in Figure 7.19 that represents the solutionsetL1. We want to
complete the scheduling matrices by providing the second scheduling dimension. Let us take one of
the solutions in the setL1 and provide an orthogonal completion for it. Figure 7.23 shows one chosen
solution from the first dimension (emphasized with double arrows) and the orthogonal completion in the
second dimension. After orthogonal completion in the second dimension, we have one complete solution:

If we now assign some concrete values for shifting factors:ωS1
1 = 0,ωS2

1 = 0,ωS2
2 = 0,ωS1

2 = 0, the
complete solution is:

θS1
1 = j, θS1

2 = i

7. This is also necessary for correct code generation from the polyhedral model
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Figure 7.23 – The global solution setL1 with decision variablesxe1
1 andxe2

1

θS2
1 = j, θS2

2 = i
This particular solution enables the outermost loop level parallelism (DOALL loop). This is only one

of the possible solutions. The search method presented in the next Section enables the exploration of the
full search space of multidimensional schedules.

7.10 Towards search methodology

In this section we will propose a search methodology based on decision treeset representation. The
goal is to exhaustively explore the space of multidimensional affine transformations within the constraints
defined in Subsection 7.7.2.

For that purpose, we will define some more operators on the decision treesand then we will propose
the recursive procedure for building the sets of complete multidimensional schedules.

We will also explore the possibility of splitting the dependence graphG= (V,E) into strongly con-
nected components and performing the search independently. This direction is strictly connected with
loop fusion/distribution [96, 141, 53, 59].
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7.10.1 Finding global solutions

In previous sections we have discussed the way to build the pairwise (per dependence edgee) solu-
tions sets, the way to combine then in the global solution for one scheduling level, and a technique to
complete the scheduling with independent solutions at further dimensions. Also, we have shown how to
encode the decision on whether to strictly/weakly satisfy a given dependence edge.

On top of those operators and data structures, we build a tunable search methodology that enumer-
ates the possible multidimensional schedules. It might be exhaustive - it will enumerate all the possible
schedules and edge satisfaction conditions, or it might begoal driven- it will filter out only those sched-
ules that have a certain property (to be defined later), giving an empty solution set if there is no such a
schedule.

In addition to enumerating the multidimensional schedules, the method reports the different proper-
tiesfor each multidimensional schedule. For our purposes, the properties are:

1. A given dimension (loop) level could be executed in parallel

2. A given dimension (loop) must be executed sequentially

3. A given band of dimensions forms a permutable loop band

Some notation

Some extra notation is introduced for the sake of the search algorithm:
The solution set of legal transformations is denoted byL . The solution set satisfying dependence

edgee1 is denoted byLe1. The solution set satisfying the set of dependence edgesE is denoted byLE.
Each single solutionT ∈ L of the solution setL consists of part that encodes the A part of the rowsAk

and satisfaction decision variablesxe∈E
k . We denote those the A part of the solution asTA.

If a particularTA solution is selected in a solution tree, the remaining partTX encodes the strong/weak
satisfaction of the edgese∈ E. Each assignment of the decision variablexe∈E

k that leads to a non-empty
solution selects some subsetES∈E of the edges that could be strongly satisfied. Indeed, the full decision
tree of the decision variablesxe∈E

k determines thefamilyX of the possible strong satisfy subsetsES∈ X .
As an example of the solution set, let us take a solution setLE shown in Figure 7.19. Here an edge

set isE = {e1,e2}. One particular solution isT = {AS1
1,• = 1,AS2

1,• = 1,xe1
1 = 0,xe2

1 = 0}. The A part of the

solution isTA = {AS1
1,• = 1,AS2

1,• = 1}. If the A partTA of the tree is selected, one gets the the sub-tree

of decision variables. In this example, if one selectsTA = {AS1
1,• = 1,AS2

1,• = 1} one will obtain the tree
rooted atxe1

1 that represents the familyX of possible edge satisfaction setsES. In this example, the family
is equivalent to the powerset 2E of all edges.

Recursive procedure

Here we show a complete recursive procedure for computing the multidimensional schedules. For
simplicity, we only show the procedure for obtaining one solution, but it couldbe easily adapted to
explore the space of more complete schedules - it is a matter of changing the termination condition of
the main loop and implementing a way of controlling the desired number of candidatesolutions at each
scheduling depth.

The overall recursive procedure for enumerating the multidimensional schedules is shown in Fig-
ure 7.24. An initial set of solutions for the first scheduling dimension is obtained:

L ← COMBINEINITIAL SOLUTIONS(E)

The procedure for computing the initial solution set was shown in Figure 7.16. The recursive procedure
is called with the following arguments:
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COMPLETESCHEDULE (L , E, d = 1)
The initial solution set isL , the full set of the dependence edgesE is to be satisfied, and the building

process is starting with the first scheduling dimensiond = 1.
In the case the procedure is invoked withd = dimmax(S), dimmax(S) being the maximum domain

dimensionality of the statements,8 one complete multidimensional schedule is obtained. This is the ter-
minating condition for the recursion. At step (1.1) the schedule properties are provided and the complete
schedule is saved at step (1.2). By returning Trueat the step (1.3), it is signalled to the calling procedure
that the complete schedule is obtained.

A loop starting at step (3) is executed until at least one solution is obtained. Asmentioned earlier,
this loop could be changed so that more than one solution is obtained if desired.

At each iteration of the loop the next solution is selected at step (3.1) and its A part is stored asTA.
At step (3.2) an orthogonal subspace for the transformationTA is obtained.

A given transformationTA determines an orthogonal subspace at the deeper levels. The core part of
the search algorithm is to determine the solution setL ′ for the next scheduling level such thatH∩L ′ 6= /0.
If no such a set could be obtained, then the given transformationTA at the leveld could not be completed
with independent solutions at deeper levels.

There is a combinatorial number of ways to provide the setL ′. Indeed the setL ′ = LE−ES. There
is a combinatorial number of ways to select the strong satisfaction edge setES. In a special case when
ES= /0, theL ′ = LE = L . This is the case when we can have a permutable loop band.

In order to avoid useless backtracking steps, a quick test is performed todetermine whether a given
TA could have a non-empty completion at deeper levels. First, a set of edgesEmust that must be removed at
the current leveld is determined at step (3.3). We will show the way to perform this check in Subsection
7.10.2. Later, at steps (3.4) and (3.5), it is determined whether this set could be strongly satisfied by
a selected transformationTA. If it cannot be strongly satisfied, then the setTA is not taken into the
consideration anymore.

At step (3.6) the family of strong satisfaction sets is restricted to familyX ′ that contains only the
satisfaction setsES that are supersets of those edges that must be satisfied:ES⊃Emust. This steps narrows
down the search space of strong edge satisfactions that is traversed atfurther steps.

The loop at step (3.9) performs the traversal of the strong satisfaction sets ES. A naive approach is
to traverse all theES∈ X ′, in any order. The order in which those sets are traversed has an impacton
the convergence of the method. We will show the different strategies of thetraversal order. A predicate
EXHAUSTED controls the number of the solutions that one wants to investigate. In any case, strategy<N,
whereN = X ′.

Once a given strong satisfaction setES is selected, the remaining setE′ of those edges that must be
satisfied at deeper levels is obtained at step (3.9.2). A check is made at step(3.9.3) whether removing
those edges gives a solutionLE′ that could be completed at deeperd+1. If this is not the case, the next
satisfaction setE is checked according to some new strategy ( a strategy counter is increased). Otherwise,
a current solutionTA is completed with a recursive call to the schedule completion procedure for deeper
levels made at the step (3.9.5).

7.10.2 Dependence satisfaction strategies

As mentioned in Subsection 7.6.1, the problem of selecting the dependence edges to be strongly
satisfied at a given loop depthd has so far been solved by proposing heuristics [68, 34, 32]. Darte [55]
has formally shown that this problem is NP-complete. Given a dependence graphG= (V,E) having|E|
edges, there are 2|E| possible subsets of the edges to be strongly satisfied.

8. For the implementation convenience, the schedule matrices of those statements whose depth is less thandimmax(S) are
padded with zeros
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ProcedureCOMPLETESCHEDULE

INPUT:L , E, d

L - a solution set found so far (for levels 1≤ l < d), satisfying the set of edgesE

E - a subset of edges satisfied at the given or deeper levels

d - a scheduling dimension to be completed

(1) IF d = dimmax(S)

{ A complete multidimensional solution is obtained }

(1.1) provide schedule properties

(1.2) savethe complete solutionL ′

(1.3) RETURN True

(2) f ound← False

(3) WHILE (¬ f ound)

(3.1) IF empty (TA← next solution fromL)

BREAK

{compute orthogonal subspace of transformation }

(3.2) H← ORTHOGONAL(TA)

{Compute the set of edges that must be strongly satisfied in order
to give the non-empty solution:H ∩L ′ 6= /0}

(3.3) Emust←MUSTSATISFY(H)

{ Select the familyX of possible edge satisfaction setsES∈ X for transformationTA }

(3.4) X ← SELECT(L ,TA)

{If the setEmust does not belong toX then break early }

(3.5) IFEmust /∈ X

CONTINUE

{Select the familyX ′ ⊂ X such thatX ′ = {ES∈ X : ES⊃ Emust} }

(3.6) X ′← SELECT(X ,Emust)

(3.7) N← |X ′|

(3.8) strategy← 0

(3.9) WHILE (¬ f ound∧EXHAUSTED(strategy,N))
(3.9.1) ES← SELECTSATSET(X ′,strategy)
(3.9.2) E′← E−ES

(3.9.3) IFH ∩LE′ = /0
strategy← strategy+1

CONTINUE

(3.9.5) f ound← f ound∨COMPLETESCHEDULE(LE′ ,E′,d+1)

(4) RETURN f ound

Figure 7.24 – Schedule completion strategy
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One can exhaustively try all the possible subsets - a naive enumeration method. We rather propose
to rank those subsets according to some preferable properties. This oracle, named SELECTSATSET, is
called from the enumerative search algorithm shown in Figure 7.24.

The first and most preferable strategy is the case whenES= /0. This choice forces the next scheduling
level d+1 to satisfy all the dependence edgesE satisfied at previous leveld. If this is possible, we will
obtain a permutable loop bandd . . .d+1 as in [34].

If this is not a feasible solution, then at least one edgee∈ E has to be strongly satisfied. The joint
work of Pouchet and Bondhugula [132] shows the simple heuristic that decides to satisfy the maximal
number of edges at a given depth if theES can not be empty. We also believe that following this scheme
mostly likely increases the chance of getting the non-empty completion of the schedule at the next level.
Thus, the next preferable strategy is the one that selects{ES∈ X : max|ES|}

As Kennedy has shown in his approach to loop selection problem [7], the greedy heuristic of select-
ing the solution that covers the maximal number of the edges at once might fail inthe case when this
maximal subset does not cover those edges that prevent obtaining the solution.

We improve the heuristic of Pouchet and Bondhugula by a shortcutting step since we determine up-
front the set of those edges thatmustbe satisfiedEmust. This set is not determinable in the case of general
affine schedules. But in our case we have a restricted search space and we also have an enumeration of
the possible solutions built upfront.

The goal is to obtainH ∩L ′ 6= /0
The goal of the procedure MUSTSATISFY(H) called at step (3.3) of the algorithm in Figure 7.24 is

to obtain the setEmust⊂ ES of those edges that must be satisfied in order toH ∩LE−ES
6= /0. Obviously

if Lei ∩H = /0 then the dependence edgeei has to belong to the setEmust.
Although the pruning step we have shown can cut down the search spaceof possible satisfaction sets,

it only gives the necessary condition, but not the sufficient condition for H ∩LE−ES
6= /0.

7.10.3 Distribution/fusion scheme

The search method discussed so far does find a complete solution in terms of complete A part of the
scheduling matrices. But it does not represent the loop distribution(fusion) schemes since theβ part of
the scheduling matrices is not constructed. Indeed, the scheme presentedimplicitly assumes that all the
statements are fused (β part of all the schedule matrices being the zero vector).

Forcing all the statements to be fused within one loop might prevent obtaining any legal solution.
Indeed, if an original program contains non-perfectly nested loops, some statements do not belong to the
same loop - they are distributed. It is not always legal to transform such aprogram to a completely fused
version.

A classical literature on loop fusion and distribution [95, 111, 53, 54] shows the benefits of both:
distribution enables more transformations, including parallelism, while loop fusion is beneficial for op-
timizing the memory access locality by reducing the distance between producer and consumer pairs.
Darte [53] has shown that the problem of determining the optimal loop fusion structure is NP-complete.

The polyhedral model naturally incorporates the loop fusion/distribution decisions, throughβ part of
the scheduling matrix. A systematic way to approach the fusion/distribution problem in the polyhedral
model was shown in [33, 131]. While expressing the set of legal fusion/distribution structures in the
polyhedral model is not difficult problem [131], selecting the desired structure out of the combinatorial
space is hard problem.

We do not incorporate the search for fusion/distribution structures in oursearch space. The reason
is that we want to decouple this particular search problem from the problemof searching the complete
multidimensional schedules.
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Our original combinatorial problem is the problem of searching for sets ofedges to be satisfied
strongly at particular scheduling depth . This problem is modelled as a decision tree that represents the
possible subsets of the edges that could be satisfied strongly at the same time.

The combinatorial problem of enumerating the fusion structures is the problem of enumerating the
legal partitions of the set of statementsS = {S1, . . . ,Sp}. If p is the number of statements, the total
number of partitions is the Bell numberBp, which gives the worst case complexity of the traversal.

We perform the maximal distribution of the statement sets, according to the strongly connected com-
ponents of the dependence graphG = (V,E). This corresponds to one of the heuristics used by Bond-
hugula [35] in his scheduling approach.

The reason for choosing the maximal distribution strategy is the following: onecan always maximally
distribute the statements into partitions according to the SCCs of a dependence graph. In addition, this
choice gives the most freedom in choosing the subsequent multidimensionalschedules. This guarantees
us that we will get the most expressive space of legal multidimensional schedules within our search
space. Once the full space of fully distributed multidimensional schedules is obtained, one might use one
of the fusion strategies already developed in [33, 131] to get the desiredfusion structure, if it is possible
to merge the solution sets into tighter constraints given by fusion.

In order to incorporate the max distribution strategy into the search procedure, we slightly modify the
search procedure. At each depth of the search procedure shown inFigure 7.24, after selecting the set of
the edgesES to be removed at the next scheduling level, reform the dependence graph G′ = (V,E−ES)
and compute the set of SCCs for this new graphG′ ⊂G. Topologically sort SCCs, and form an ordered
sequence(SCC1, . . . ,SCCm). For each statementSi ∈ SCCj assign its static scheduling part (β part) to j,
where j is the position of the SCCin a topological order. After this step, recursivelycall the procedure
COMPLETESCHEDULE for each SCCindependently.

7.11 Conclusions

We have presented the general search strategy used for traversing the legal transformation search
space. The current approaches to automatic transformation in the polyhedral model are based either on
linear programming (one-shot, best-effort heuristics of Feautrier [67]and Bondhugula [34]) or on the
exhaustive search of the space of legal affine transformations (iterative compilation of Pouchet [129]).

We propose to represent the set of legal solutions as a discrete set of selected and legal loop permuta-
tions, together with enablingshifting factors that are represented as the convex sets. We use the decision
diagram data structure to represent those solution sets. Our search space is a subset of the full space of
affine transformations.

Contrary to the iterative approach of Pouchet, which traverses the full space of legal and distinct
affine transformations, our search space is restricted, but this enablesthe control over the complexity of
the solution. On one side, the solution set is restricted to thediscrete setof legal loop permutations, but
on the other side, each legal loop permutation is augmented with a convex set of shifting factors that
decides whether this permutation satisfies the dependencestronglyor weakly.

The fact that we have an explicit control over the weak/strong satisfaction of the dependence edges,
enables us to traverse the space ofmultidimensionalschedules in an exhaustive way (if needed). This is
not possible in the current multidimensional affine schedule space traversal approach of Pouchet [128].
Pouchet employs a greedy heuristic that forces theunique choiceof dependence edge satisfaction at each
scheduling level, to keep the search space tractable9 . Our contribution achieves a degree of flexibility
and controllability of the search space that is not possible with the current iterative approach.

9. Though the latest contribution [132] shows (only) a theoretical way to achieve this flexibility



124 7. TRANSFORMATION SEARCH STRATEGY

Nevertheless, our search space is not as exhaustive as the one of Pouchet. Because we restrict the
scheduling coefficients of the dynamic scheduling component ( Section 3.1)to the loop permutation
only, we might miss some important transformations such as loop skewing, loop reversal or loop slowing.
But this is a necessary price to pay if we cannot accept the running time of the exhaustive iterative search
used in the feedback-directed iterative compilation [128].

The future work

The search strategy might be improved in several directions. First, the algorithmic improvements are
necessary in order to avoid the overhead of recomputing the same solution sets during the construction
of multidimensional schedules. This could be achieved bycachingthe already computed sets to avoid
the redundant recomputations.

The representation of the convex part of the solution relies on the operations on the polyhedral sets,
that in turn require the Chernikova’s algorithm [42, 100]. But it could beobserved that our convex sets
have a special form, that of the two-variable per constraint [49]. Those sets are the subsets of general
polyhedra, and they could be operated on with less costly techniques than the general techniques used
for polyhedral sets [154].

Our search strategy enables the branch-and-bound metaheuristic. Butin order to make it effective,
we have to provide a systematic way ofpruning the search space, cutting the non-profitable branches of
the search tree. This could be achieved by having apartially evaluatedcost functions that could provide
the estimate of the cost, even without having a completed schedule. Our current cost function (Chapter
6) does not have this property.
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Chapter 8

Conclusions and perspectives

In this thesis we have presented the theory, design and implementation of the search based program
transformation strategy based on top of the three-address code polyhedral compiler. We have shown that
in order to obtain the precise execution cost-model function, it is necessary to integrate the polyhedral
model framework directly into the three-address code compiler. This is in contrast with the traditional
approach for polyhedral compilation based on source-to-source compilers.

Integrating the polyhedral compilation framework directly into the three-address code compiler posed
several challenges that were not investigated in the known literature. We have provided some efficient
solutions for those problems, concerning the efficient representation ofthe scalar and memory-based
dependences. We have also presented an unifying approach for representing all the transformations, in-
cluding tiling purely through the scheduling functions.

We have shown a precise execution cost-model function that precisely captures the low-level details,
such as SIMD vectorization, of the target architecture. Contrary to simplisticlinear cost-model functions,
our function is a complex, non-linear characterization. The evaluation of this function requires a search
based strategy, contrary to the approaches that use linear programming todirectly optimize the simple
linear cost-functions. Our cost-model function is evaluated for each point of the constructed search space.

Providing an efficient search strategy requires the construction of the expressive, but size-limited
search space of legal program transformations. We took a novel approach: contrary to the current iterative
optimizers that explore the huge space of affine schedules, we build a search space ofdiscrete setof
transformations. Our search space is a subset of the full affine search space. For an efficient representation
of the sets we propose to use the decision diagrams and we provide the basicoperators on those sets.

For assessing the feasibility of the approach, we have provided the practical implementation of the
techniques in GRAPHITE polyhedral framework that is a part of the production quality compiler GCC.
We will summarize the detailed contributions of this thesis:

Three-address code polyhedral compilation framework
Traditional polyhedral program transformation frameworks are implemented as the source-to-source

program translators. This design is natural and practical for research, but it is somewhat simplistic when it
comes to precise modelling of the target machine execution model. We provide thedesign and implemen-
tation of the sophisticated polyhedral transformation framework operating directly on the three-address
code in SSA form. We have provided an in-depth investigation of the issues related to the direct poly-
hedral compilation of the three-address code. To the best of our knowledge, it is one of the first widely
available and published polyhedral compiler that operates on the three-address code.

Lazy approach for relaxing scheduling constraints
The problem of effectively handling memory-based data dependences iswell-known. This problem

is particularly exposed in the three-address code polyhedral compiler, since the low-level code con-
tains many temporary variables for storing intermediate results. Those temporary variables induce many
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memory-based dependences. The traditional approach to eliminating memory-based dependences is the
memory expansion- expanding scalars into arrays, or arrays into higher-dimensional arrays. This ap-
proach eliminates all memory-based dependences, but it might have a prohibitive cost. We propose the
lazyapproach for handling memory expansion. The memory-based data dependences are firstly ignored,
and the live rangeviolation analysisis used to compute the minimal set of dependences that have been
violated. Only the violated memory-based dependences are removed through expansion. This approach
works well with search based strategy, since the cost of the memory expansion might be evaluated for
multiple transformation candidates.

Semantical transparency
The traditional source-to-source compilers aresensitiveto syntactical details of the input program.

The same computational kernel that is written in a slightly different style (by introducing the scalar
temporaries for example) might be ignored by an optimizer, simply because it does not conform to
the syntactical constraints of the source-to-source compiler. This limitation is one of the most impor-
tant reasons why the current polyhedral compilers are not able to transparently compilelegacy codes
or industry-standard benchmarks such as SPECint or SPECfp. Providing the polyhedral framework that
is part of the production quality compiler, such as GCC, and operating on thelow-level intermediate
representation provides thesemantical transparencyfor the end user - an user might still write the pro-
grams in the sequential style, while the compiler is responsible for extracting theintrinsic semantics
of the written program. This form of the semantical transparency is possiblein GRAPHITE due to the
fact that the polyhedral framework operates at the stage where the code is transformed into SSA form
on which the essential scalar optimizations are performed. A code in such a form captures the essential
semantics of the input program and is much less sensitive to the peculiarities ofthe syntactic form of
the program. In addition, the lazy approach to memory-expansion can transparently remove thespurious
data dependencesthat might be inadvertently introduced by the programmer.

Precise performance predicting cost-model
The one-shot, best-effort scheduling heuristics are based on using (integer) linear programming to

optimize simple linear objective cost functions. The linear cost-models are based on an abstract com-
putational metrics, and they are not adequate for modelling the complex, low-level aspects of the target
machine execution models. One such an aspect is SIMD vectorization, whichis highly target specific.
We propose a novel approach to this problem by proposing to usemachine specificaccurate cost-model
functions. We demonstrate the feasibility of the approach, by constructing the precise cost-model func-
tion for SIMD architectures. Those precise machine-specific cost-modelscannot be expressed as linear
functions and they could not be handled by linear programming machinery. Instead, they have to be
evaluated at each point of the search space. The critical aspect for the effectiveness of our cost function
evaluation is the construction of the feasible search space. This relies on our next contribution, which is
a construction of effective transformation search space.

Efficient transformation search space
We propose the novel method for constructing the search space of legalpolyhedral transformations.

Our method is based on providing thediscrete setsof legal transformations. Those sets are represented
as decision diagrams and they are subset of the full search space of affine transformations. Discrete sets
limit the possible affine transformations, but they enable us to control the complexity of the search space.
This is crucial contribution in enabling the search-based methodology that isefficient. In the case of
multidimensional scheduling, we provide more flexibility: we enable the enumeration of thedependence
satisfactionstrategies. The current iterative transformation approaches that construct the space of multi-
dimensional schedules take the greedy heuristic for selecting the data dependence satisfaction at different
scheduling levels, to keep the search spaces tractable. They could miss some points in the search space
that our enumeration strategy enumerates. We show that we can afford thislevel of flexibility, since we
restrict the legal solution sets early in the search process.
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8.1 Perspectives

We have provided a novel approach for the polyhedral program transformations based on the search
strategies that optimize the complex, machine dependent cost-model functions. Still, there are numerous
possible improvements and future directions that are worth investigating. We will give brief ideas for the
possible improvements and directions for the prospective research topics:

Even more precise cost-model
The precise cost model function that we have proposed includes a veryrough estimation of the data

locality. While it can capture thespatial localityof the given memory access pattern, it cannot precisely
model thetemporal locality. The model could be extended with cache miss equations [69] that fit very
well with the current model. The architectural interplay between SIMD parallelism and thread-level
coarse grained parallelism [62] could be modelled in the cost function as well.

Parametric cost function
The cost-function that we have presented works on a premise that the loopiteration domains are

known at the compile time. This is necessary because the total cost dependson the exact number of
iterations of each loop. This also simplifies the comparison of the costs, since the costs are expressed
as simple integer numbers. But the polyhedral model allows theparametricloop bounds - bounds that
are expressed as symbolic constants that are not known at compile time. We would like to investigate
the technique of computing the number of iterations [43] for parametric iterationdomains. This would
require representing the costs as symbolic expressions, rather than integer constants. This could however
fundamentally change the approach: the best solution will depend on the parameter values, and it could
not be obtained automatically. Some assistance from the user, who understands the domain of the problem
and can estimate the problem size, would be required.

Machine learning assisted portability of the cost-model
The analytical cost-model function that we have presented relies on themachine specificinstruction

costs. We have obtained those costs for several architectures, through microbenchmarking and knowl-
edge of the exact instruction latencies. Obtaining the instruction costs for thenew architectures is a
time-consuming process which hinders theportability of the cost-model based approach. In order to
facilitate the porting of the cost-model to the new architectures, it interesting to investigate the possibil-
ity of employing machine learning, like in [40], to automatically obtain the instruction costs and other
platform-specific coefficients that are used in the cost-function.

Scalability
We propose the search space construction method that can control the explosion of the transformation

search space by limiting the number ofnon-convexsolutions. Still, we leave some parametric part (the
shifting factor) that is represented as convex polyhedra. This part is currently operated on by the standard
polyhedral techniques. But the special form of this parametric part is amenable to representation as the
two-variable per constraint system [49], which could be operated on withless costly techniques than the
general techniques used for polyhedral sets [154]. An interesting research direction is the investigation
of thesub-polyhedraldomains. Sub-polyhedral domains are less powerful than the traditional polyhedral
techniques, but the complexity of operations on those sets is guaranteed to be polynomial or linear.

Extending the scope of the analyzable programs
The traditional polyhedral model representation is restricted to static control programs (SCoP). This

is the fundamental restriction of the polyhedral model. Programs with irregular control, non-affine mem-
ory accesses and loop bounds are not amenable to analysis within the polyhedral model. The methods
[26, 18, 78] to overcome those limitations have been proposed, but they are still not widely used, due to
the complications in code generation for non-affine programs. An interesting direction is to investigate
the static polyhedral techniques, coupled with dynamic techniques [142, 112] for program paralleliza-
tion.
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Just In Time Compilation
We have provided the polyhedral framework for the direct compilation of the three-address codes.

Our technique was investigated in the context of the static compiler, translating the source code to binary
machine code.

The fact that the polyhedral technique is implemented directly on the three-address-code represen-
tation could be extended and used in the JIT compilers that directly operate onthe bytecode. Indeed,
Polly project, based on LLVM compiler framework [79] goes in this direction.The crucial problem to
be solved though is the scalability of the polyhedral techniques, especially the transformation part.

Going beyond the affine transformations
The affine transformations expressed in the polyhedral model cover a wide range of the classical loop

transformations and enable coarse-grained parallelization techniques. Nevertheless, there are programs
that could be expressed in the polyhedral model, but for which the coarse-grained parallelism could not
be expressed through affine transformations [25]. There are solutions that go beyond the affine trans-
formations, and they are based on computing the transitive closure [28, 24] of affine relations. Even
though the dependence relations are affine, their transitive closure mightbe non-affine [28]. Unfortu-
nately, the problem of code generation for non-linear forms is particularlyhard and not-so-well studied
problem [78] for which solutions are still awaiting.
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Appendix A

Application of Farkas lemma

Pe1 = {(i, j, i′, j ′)|i′ = i+1∧ j ′ = j ∧1≤ i ≤ N−2∧0≤ j ≤ N−1}
The faces of the dependence polyhedron are:
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Combining them with Farkas multipliers gives:

λ0+λ1(i−1)+λ2( j)+λ3(N−2− i)+λ4(N−1− j)

λ0≥ 0,λ1≥ 0,λ2≥ 0,λ3≥ 0,λ4≥ 0
Reorganizing the terms so that the induction variables and parameters could be equated to the legality

constraint:
i(λ1−λ3)+ j(λ2−λ4)+N(λ3+λ4)+λ0−λ1−2λ3−λ4

After equating the left hand and right hand sides of the Farkas lemma one obtains:
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One can immediately notice:λ3 = 0∧λ4 = 0
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