M. F. Bellin, M. Vasile, and S. Morel-precetti, Currently used non-specific extracellular MR contrast media, European Radiology, vol.13, issue.12, pp.2688-2698, 2003.
DOI : 10.1007/s00330-003-1912-x

M. Bellin, MR contrast agents, the old and the new, European Journal of Radiology, vol.60, issue.3, pp.314-323, 2006.
DOI : 10.1016/j.ejrad.2006.06.021

M. Saeed, M. F. Wendland, and C. B. Higgins, Blood pool MR contrast agents for cardiovascular imaging, Journal of Magnetic Resonance Imaging, vol.7, issue.6, pp.890-898, 2000.
DOI : 10.1002/1522-2586(200012)12:6<890::AID-JMRI12>3.0.CO;2-K

M. V. Knopp, H. Von-tengg-kobligk, F. Floemer, and S. O. Schoenberg, Contrast agents for MRA: Future directions, Journal of Magnetic Resonance Imaging, vol.9, issue.3, pp.314-316, 1999.
DOI : 10.1002/(SICI)1522-2586(199909)10:3<314::AID-JMRI13>3.0.CO;2-Y

H. E. Daldrup-link and R. C. Brasch, Macromolecular contrast agents for MR mammography: current status, European Radiology, vol.13, issue.2, pp.354-365, 2003.

A. A. Bogdanov, M. Lewin, and R. Weissleder, Approaches and agents for imaging the vascular system, Advanced Drug Delivery Reviews, vol.37, issue.1-3, pp.279-293, 1999.
DOI : 10.1016/S0169-409X(98)00098-2

Y. Hao and R. A. Miller, Gadolinium(III) texaphyrin: A tumor selective radiation sensitizer that is detectable by MRI, Proc. Natl Acad. Sci. USA, pp.6610-6615, 1996.

D. A. Sipkins, D. A. Cheresh, M. R. Kazemi, L. M. Nevin, M. D. Bednarski et al., Detection of tumor angiogenesis in vivo by ??v??3-targeted magnetic resonance imaging, Nature Medicine, vol.10, issue.5, pp.623-626, 1998.
DOI : 10.1016/0092-8674(94)90007-8

P. M. Winter, S. D. Caruthers, A. Kassner, T. D. Harris, L. K. Chinen et al., Molecular Imaging of angiogenesis in nascent vx-2 rabbit tumors using a novel alpha(v)beta(3)-targeted nanoparticle and 1.5 tesla magnetic resonance imaging, Cancer Res, issue.18, pp.63-5838, 2003.

S. Aime, C. Cabella, S. Colombatto, S. G. Crich, E. Gianolio et al., Insights into the use of paramagnetic Gd(III) complexes in MR-molecular imaging investigations, Journal of Magnetic Resonance Imaging, vol.36, issue.4, pp.394-406, 2002.
DOI : 10.1002/jmri.10180

S. Aime, Improved route for the visualization of stem cells labeled with a Gd-/Eu-chelate as dual (MRI and fluorescence) agent, Magnetic Resonance in Medicine, vol.51, issue.5, pp.938-944, 2004.

D. Aime and S. , Effect of the intracellular localization of a Gd-based imaging probe on the relaxation enhancement of water protons, Magnetic Resonance in Medicine, vol.55, issue.3, pp.491-497, 2006.

H. Wilhelm, J. Debus, and K. Braun, Intracellular visualization of prostate cancer using magnetic resonance imaging, Cancer Res, vol.63, pp.4766-4772, 2003.

J. Platzek, B. Raduchel, and D. Sulzle, Synthesis and physicochemical characterization of a new gadolinium chelate: the liver-specific magnetic resonance imaging contrast agent Gd? EOB?DTPA, Inorg. Chem, vol.38, pp.1134-1144, 1999.

G. Schuhmann-giampieri, H. Schmitt-willich, W. R. Press, C. Negishi, H. J. Weinmann et al., Preclinical evaluation of Gd-EOB-DTPA as a contrast agent in MR imaging of the hepatobiliary system., Radiology, vol.183, issue.1, pp.59-64, 1992.
DOI : 10.1148/radiology.183.1.1549695

P. Reimer, E. J. Rummeny, H. E. Daldrup, T. Balzer, B. Tombach et al., Clinical results with Resovist: a phase 2 clinical trial., Radiology, vol.195, issue.2, pp.489-496, 1995.
DOI : 10.1148/radiology.195.2.7724772

B. Hamm, R. F. Thoeni, R. G. Gould, M. E. Bernardino, M. Luning et al., Focal liver lesions: characterization with nonenhanced and dynamic contrast material-enhanced MR imaging., Radiology, vol.190, issue.2, pp.417-423, 1994.
DOI : 10.1148/radiology.190.2.8284392

B. Misselwitz, J. Platzek, B. Radüchel, J. Oellinger, and H. Weinmann, Gadofluorine 8: initial experience with a new contrast medium for interstitial MR lymphography, Magnetic Resonance Materials in Biology, Physics, and Medicine, vol.8, issue.3, pp.1352-8661, 1999.
DOI : 10.1016/S1352-8661(99)00029-0

A. C. Silva, J. H. Lee, I. Aoki, and A. P. Koretsky, Manganese-enhanced magnetic resonance imaging (MEMRI): methodological and practical considerations, NMR in Biomedicine, vol.21, issue.8, pp.532-543, 2004.
DOI : 10.1002/nbm.945

T. Watanabe, R. Tammer, S. Boretius, J. Frahm, and T. Michaelis, Chromium(VI) as a novel MRI contrast agent for cerebral white matter: Preliminary results in mouse brain in vivo, Magnetic Resonance in Medicine, vol.17, issue.1, pp.1-6, 2006.
DOI : 10.1002/mrm.20930

J. F. Poduslo, T. M. Wengenack, G. L. Curran, T. Wisniewski, E. M. Sigurdsson et al., Molecular Targeting of Alzheimer's Amyloid Plaques for Contrast-Enhanced Magnetic Resonance Imaging, Neurobiology of Disease, vol.11, issue.2, pp.315-329, 2002.
DOI : 10.1006/nbdi.2002.0550

Y. Z. Wadghiri, E. M. Sigurdsson, M. Sadowski, J. I. Elliott, Y. S. Li et al., Detection of Alzheimer's amyloid in transgenic mice using magnetic resonance microimaging, Magnetic Resonance in Medicine, vol.4, issue.2
DOI : 10.1002/mrm.10529

J. M. Silverman, N. Rofsky, K. Burnett, J. Engel, and S. W. Young, A multicenter clinical trial of Gadolite Oral Suspension as a contrast agent for MRI, J. Magn. Reson. Imag, vol.7, pp.865-872, 1997.

M. H. Werts, Making sense of lanthanide luminescence Sci. Prog, pp.101-131, 2005.

Y. Hasegawa, Y. Wada, and S. Yanagida, Strategies for the design of luminescent lanthanide(III) complexes and their photonic applications, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, vol.5, issue.3, pp.183-202, 2004.
DOI : 10.1016/j.jphotochemrev.2004.10.003

I. Hemmilä and V. Laitala, Progress in Lanthanides as Luminescent Probes, Journal of Fluorescence, vol.62, issue.90, pp.529-542, 2005.
DOI : 10.1007/s10895-005-2826-6

D. Parker, R. S. Dickins, H. Puschmann, C. Crossland, and J. A. Howard, Being Excited by Lanthanide Coordination Complexes: Aqua Species, Chirality, Excited-State Chemistry, and Exchange Dynamics Chem. Rev, vol.102, 1977.
DOI : 10.1021/cr010452+

O. L. Malta and L. D. Carlos, Intensities of 4f-4f Transitions in Glass Materials Quim, pp.889-895, 2003.

M. H. Werts, R. T. Jukes, and J. W. Verhoeven, The emission spectrum and the radiative lifetime of Eu3+ in luminescent lanthanide complexes, Physical Chemistry Chemical Physics, vol.4, issue.9, pp.1542-1548, 2002.
DOI : 10.1039/b107770h

URL : https://hal.archives-ouvertes.fr/hal-01206368

P. Porcher and P. Caro, Influence of J-mixing on the phenomenological interpretation of the Eu3+ ion spectroscopic properties, Journal of Luminescence, vol.21, issue.2, pp.207-216, 1980.
DOI : 10.1016/0022-2313(80)90022-8

L. D. Carlos, A. Videira, and L. L. , Emission Spectra and Local Symmetry of the Eu 3+ Ion in Polymer Electrolytes Phys. Rev, pp.11721-11728, 1994.

L. D. Carlos, O. L. Malta, and R. Q. Albuquerque, A Covalent Fraction Model for, Lanthanide Compounds Chem. Phys. Lett, vol.416, pp.238-242, 2005.

L. D. Carlos, R. A. Ferreira, Z. Bermudez, V. Molina, C. Bueno et al., -based hybrid xerogels, Physical Review B, vol.60, issue.14, pp.10042-10053, 1999.
DOI : 10.1103/PhysRevB.60.10042

URL : https://hal.archives-ouvertes.fr/hal-01147992

K. Licha, Topics in Current Chemistry -Contrast Agents for Optical Imaging, p.222, 2002.

S. Wan, A. J. Parrish, R. R. Anderson, and M. Madden, Transmittance of Nanionizing Radiation in Human Tissues Photoochem Photobiol, pp.679-681, 1981.

T. J. Dougherty, H. Rinneberg, and P. M. Schlag, Protoporphyrin IX occurs naturally in colorectal cancers and their metastases Cancer Res, pp.61-991, 2001.

H. Stepp, R. Sroka, and R. Baumgartner, Fluorescence Endoscopy of Gastrointestinal Diseases: Basic Principles, Techniques, and Clinical Experience, Endoscopy, vol.30, issue.04, pp.379-386, 1998.
DOI : 10.1055/s-2007-1001287

K. Svanberg, I. Wang, S. Colleen, I. Idvall, C. Ingvar et al., Clinical Multi-colour Fluorescence Imaging of Malignant Tumours: Initial Experience Acta Radiol, pp.2-9, 1998.

J. I. Maarek, L. Marcu, M. C. Fishbein, and W. S. Grundfest, Time-resolved fluorescence of human aortic wall: Use for improved identification of atherosclerotic lesions, Lasers in Surgery and Medicine, vol.45, issue.3
DOI : 10.1002/1096-9101(2000)27:3<241::AID-LSM6>3.0.CO;2-0

E. M. Sevick, B. Chance, J. Leigh, S. Nioka, and M. Maris, Quantitation of Time-and Frequencyresolved Optical Spectra for the Determination of Tissue Oxygenation Anal, Biochem, vol.195, pp.330-351, 1991.

E. H. Moriyama, G. Zheng, and B. C. Wilson, Optical Molecular Imaging: From Single Cell to Patient Clin Pharmacol Ther, pp.267-271, 2008.

Y. Yunpeng and C. Xiaoyuan, Integrin Targeting for Tumor Optical Imaging Theranostics, pp.102-126, 2011.

C. H. Contag and B. D. Ross, It's not just about anatomy: In vivo bioluminescence imaging as an eyepiece into biology, Journal of Magnetic Resonance Imaging, vol.5, issue.4, pp.378-387, 2002.
DOI : 10.1002/jmri.10178

K. Shah and R. Weissleder, Molecular optical imaging: Applications leading to the development of present day therapeutics, NeuroRX, vol.2, issue.2, pp.215-225, 2005.
DOI : 10.1602/neurorx.2.2.215

D. W. Townsend, T. Beyer, and T. M. Blodgett, PET/CT scanners: A hardware approach to image fusion, Seminars in Nuclear Medicine, vol.33, issue.3, pp.193-204, 2003.
DOI : 10.1053/snuc.2003.127314

A. Momose, T. Takeda, Y. Itai, and K. Hirano, Phase???contrast X???ray computed tomography for observing biological soft tissues, Nature Medicine, vol.2, issue.4, pp.473-475, 1996.
DOI : 10.1063/1.1140798

M. Shokeen and C. J. Anderson, Molecular Imaging of Cancer with Copper-64

S. M. Ametamey, M. Honer, and P. A. Schubiger, Molecular Imaging with PET, Chemical Reviews, vol.108, issue.5, pp.1501-1516, 2008.
DOI : 10.1021/cr0782426

T. J. Wadas, E. H. Wong, G. R. Weisman, and C. J. Anderson, Coordinating Radiometals of Copper, Gallium, Indium, Yttrium, and Zirconium for PET and SPECT Imaging of Disease, Chemical Reviews, vol.110, issue.5, pp.2858-2902, 2010.
DOI : 10.1021/cr900325h

R. Zhang, C. Xiong, M. Huang, M. Zhou, Q. Huang et al., Peptide-conjugated polymeric micellar nanoparticles for Dual SPECT and optical imaging of EphB4 receptors in prostate cancer xenografts, Biomaterials, vol.32, issue.25, pp.32-5872, 2011.
DOI : 10.1016/j.biomaterials.2011.04.070

V. Ntziachristos and D. Razansky, Molecular Imaging by Means of Multispectral Optoacoustic Tomography (MSOT), Chemical Reviews, vol.110, issue.5, pp.2783-2794, 2010.
DOI : 10.1021/cr9002566

P. Caravan, J. J. Ellison, T. J. Mcmurry, and R. B. Lauffer, Gadolinium(III) Chelates as MRI Contrast Agents:?? Structure, Dynamics, and Applications, Chemical Reviews, vol.99, issue.9, pp.2293-2352, 1999.
DOI : 10.1021/cr980440x

J. W. Bulte, The chemistry of contrast agents in medical magnetic resonance imaging. edited by A. E. Merbach and E. Toth. Wiley, Chichester, 2001,??135, NMR in Biomedicine, vol.17, issue.4, pp.210-210, 2004.
DOI : 10.1002/nbm.865

E. Terreno, D. D. Castelli, A. Viale, and S. Aime, Challenges for Molecular Magnetic Resonance Imaging, Chemical Reviews, vol.110, issue.5, pp.3019-3042, 2010.
DOI : 10.1021/cr100025t

K. Chen, S. M. Wolahan, H. Wang, C. Hsu, H. Chang et al., A small MRI contrast agent library of gadolinium(III)-encapsulated supramolecular nanoparticles for improved relaxivity and sensitivity, Biomaterials, vol.32, issue.8, pp.32-2160, 2011.
DOI : 10.1016/j.biomaterials.2010.11.043

L. E. Jennings and N. J. Long, ???Two is better than one??????probes for dual-modality molecular imaging, Chemical Communications, vol.128, issue.24, pp.3511-3524, 2009.
DOI : 10.1039/b821903f

A. Y. Louie, Multimodality Imaging Probes: Design and Challenges, Chemical Reviews, vol.110, issue.5, pp.3146-3195, 2010.
DOI : 10.1021/cr9003538

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2878382

M. Modo, D. Cash, K. Mellodew, S. C. Williams, S. E. Fraser et al., Tracking Transplanted Stem Cell Migration Using Bifunctional, Contrast Agent-Enhanced, Magnetic Resonance Imaging, NeuroImage, vol.17, issue.2, pp.803-811, 2002.
DOI : 10.1006/nimg.2002.1194

A. Mishra, J. Pfeuffer, R. Mishra, J. Engelmann, A. K. Mishra et al., A New Class of Gd-Based DO3A-Ethylamine-Derived Targeted Contrast Agents for MR and Optical Imaging, Bioconjugate Chemistry, vol.17, issue.3, pp.773-780, 2006.
DOI : 10.1021/bc050295b

C. Bernhard, C. Goze, Y. Rousselin, and F. Denat, First bodipy???DOTA derivatives as probes for bimodal imaging, Chemical Communications, vol.10, issue.4, pp.46-8267, 2010.
DOI : 10.1039/c0cc02749a

I. Lukes, Cyclodextrin-Based Bimodal Fluorescence/MRI Contrast Agents: An Efficient Approach to Cellular Imaging, Chemistry-a European Journal, vol.16, issue.33, pp.10094-10102, 2010.

R. Pagliarin, pH-dependent modulation of relaxivity and luminescence in macrocyclic gadolinium and europium complexes based on reversible intramolecular sulfonamide ligation, Journal of the American Chemical Society, vol.123, issue.31, pp.7601-7609, 2001.

S. Aime, Improved route for the visualization of stem cells labeled with a Gd-/Eu-chelate as dual (MRI and fluorescence) agent, Magnetic Resonance in Medicine, vol.51, issue.5, pp.938-944, 2004.

I. Nasso, C. Galaup, F. Havas, P. Tisnes, C. Picard et al., Bimodal System (Luminophore and Paramagnetic Contrastophore) Derived from Ln(III) Complexes Based on a Bipyridine-Containing Macrocyclic Ligand, Inorganic Chemistry, vol.44, issue.23, pp.44-8293, 2005.
DOI : 10.1021/ic0507722

A. Nonat, C. Gateau, P. H. Fries, and M. Mazzanti, Lanthanide Complexes of a Picolinate Ligand Derived from 1,4,7-Triazacyclononane with Potential Application in Magnetic Resonance Imaging and Time-Resolved Luminescence Imaging, Chemistry - A European Journal, vol.42, issue.186, pp.12-7133, 2006.
DOI : 10.1002/chem.200501390

C. Picard, N. Geum, I. Nasso, B. Mestre, P. Tisnes et al., A dual lanthanide probe suitable for optical (Tb3+ luminescence) and magnetic resonance imaging (Gd3+ relaxometry), Bioorganic & Medicinal Chemistry Letters, vol.16, issue.20, pp.16-5309, 2006.
DOI : 10.1016/j.bmcl.2006.07.091

S. Laurent, L. V. Elst, M. Wautier, C. Galaup, R. N. Muller et al., In vitro characterization of the Gd complex of [2,6-pyridinediylbis(methylene nitrilo)] tetraacetic acid (PMN-tetraacetic acid) and of its Eu analogue, suitable bimodal contrast agents for MRI and optical imaging, Bioorganic & Medicinal Chemistry Letters, vol.17, issue.22, pp.17-6230, 2007.
DOI : 10.1016/j.bmcl.2007.09.027

E. Toth, Pyridine-based lanthanide complexes: towards bimodal agents operating as near infrared luminescent and MRI reporters, Chemical Communications, issue.48, pp.6591-6593, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00518202

G. Tallec, D. Imbert, P. H. Fries, and M. Mazzanti, Highly stable and soluble bis-aqua Gd, Nd, Yb complexes as potential bimodal MRI/NIR imaging agents, Dalton Transactions, vol.114, issue.40, pp.39-9490, 2010.
DOI : 10.1039/c0dt00994f

G. Tallec, D. Imbert, P. H. Fries, and M. Mazzanti, Highly stable and soluble bis-aqua Gd, Nd, Yb complexes as potential bimodal MRI/NIR imaging agents, Dalton Transactions, vol.114, issue.40, pp.39-9490, 2010.
DOI : 10.1039/c0dt00994f

C. D. Donega, K. Nicolay, and A. W. Griffioen, Quantum dots with a paramagnetic coating as a bimodal molecular imaging probe, Nano Letters, vol.6, issue.1, pp.1-6, 2006.

T. Jin, Y. Yoshioka, F. Fujii, Y. Komai, J. Seki et al., Gd(3+)-functionalized near-infrared quantum dots for in vivo dual modal (fluorescence/magnetic resonance) imaging, Chemical Communications, issue.44, pp.5764-5766, 2008.

W. J. Rieter, J. S. Kim, K. M. Taylor, H. An, W. Lin et al., Hybrid silica nanoparticles for multimodal Imaging, Angewandte Chemie-International Edition, issue.20, pp.46-3680, 2007.

K. Hu, F. Jhang, C. Su, and C. Yeh, Fabrication of Gd2O(CO3)2??H2O/silica/gold hybrid particles as a bifunctional agent for MR imaging and photothermal destruction of cancer cells, Journal of Materials Chemistry, vol.4, issue.15, pp.2147-2153, 2009.
DOI : 10.1039/b815087g

C. P. Reutelingsperger, Z. A. Fayad, W. J. Mulder, and K. Nicolay, Annexin A5- Functionalized Bimodal Nanoparticles for MRI and Fluorescence Imaging of Atherosclerotic Plaques, Bioconjugate Chemistry, vol.21, issue.10, pp.1794-1803, 2010.

E. S. Choo, X. Tang, Y. Sheng, B. Shuter, and J. Xue, -weighted MRI contrast agents, J. Mater. Chem., vol.293, issue.7, pp.2310-2319, 2011.
DOI : 10.1039/C0JM03232H

URL : https://hal.archives-ouvertes.fr/hal-00996552

J. Ke, J. Lin, J. R. Carey, J. Chen, C. Chen et al., A specific tumortargeting magnetofluorescent nanoprobe for dual-modality molecular imaging, Biomaterials, issue.7, pp.31-1707, 2010.

M. Bottrill, L. K. Nicholas, and N. J. Long, Lanthanides in magnetic resonance imaging, Chemical Society Reviews, vol.4, issue.Suppl. 1, pp.557-571, 2006.
DOI : 10.1039/b516376p

P. G. Sammes and G. Yahioglu, Modern bioassays using metal chelates as luminescent probes, Natural Product Reports, vol.13, issue.1, pp.1-28, 1996.
DOI : 10.1039/np9961300001

H. B. Na, I. C. Song, and T. Hyeon, Inorganic Nanoparticles for MRI Contrast Agents, Advanced Materials, vol.56, issue.21, pp.2133-2148, 2009.
DOI : 10.1002/adma.200802366

K. M. Taylor, J. S. Kim, W. J. Rieter, H. An, W. Lin et al., Mesoporous Silica Nanospheres as Highly Efficient MRI Contrast Agents, Journal of the American Chemical Society, vol.130, issue.7, pp.130-2154, 2008.
DOI : 10.1021/ja710193c

C. Mou, High-contrast paramagnetic fluorescent mesoporous silica nanorods as a multifunctional cell-imaging probe, Small, vol.4, issue.2, pp.186-191, 2008.

J. Hsiao, C. Tsai, T. Chung, Y. Hung, M. Yao et al., Mesoporous Silica Nanoparticles as a Delivery System of Gadolinium for Effective Human Stem Cell Tracking, Small, vol.8, issue.9, pp.1445-1452, 2008.
DOI : 10.1002/smll.200701316

F. Carniato, L. Tei, M. Cossi, L. Marchese, and M. Botta, A Chemical Strategy for the Relaxivity Enhancement of Gd(III) Chelates Anchored on Mesoporous Silica Nanoparticles, Chemistry-a European Journal, issue.35, pp.16-10727, 2010.

F. Carniato, L. Tei, W. Dastru, L. Marchese, and M. Botta, Relaxivity modulation in Gdfunctionalised mesoporous silicas, Chemical Communications, issue.10, pp.1246-1248, 2009.

A. Mossman, B. T. Landry, and C. C. , Gd-Labeled Microparticles in MRI: In vivo Imaging of Microparticles After Intraperitoneal Injection, Small, vol.6, issue.23, pp.2678-2682, 2010.

M. Mericle and R. A. , Synthesis and characterization of fluorescent, radio-opaque, and paramagnetic silica nanoparticles for multimodal bioimaging applications, Advanced Materials, vol.17, issue.18, pp.2165-2169, 2005.

C. Wu, J. Hong, X. Guo, C. Huang, J. Lai et al., Fluorescent core-shell silica nanoparticles as tunable precursors: towards encoding and multifunctional nano-probes, Chemical Communications, issue.6, pp.750-752, 2008.

W. Stöber, A. Fink, and E. Bohn, Controlled growth of monodisperse silica spheres in the micron size range, Journal of Colloid and Interface Science, vol.26, issue.1, pp.62-69, 1968.
DOI : 10.1016/0021-9797(68)90272-5

E. N. Rizkalla, G. R. Choppin, and W. Cacheris, Thermodynamics NMR, and Fluorescence Studies for the Complexation of Trivalent Lantanides, Ca 2+ , Cu 2+ , and Zn 2+ by Diethylenetriaminepentaacetic Acid bis(methlamide) Inorganic Chemistry, pp.582-586, 1993.

A. D. Sherry, W. P. Cacheris, and K. T. Kuan, Stability constants for Gd3+ binding to model DTPA-conjugates and DTPA-proteins: Implications for their use as magnetic resonance contrast agents, Magnetic Resonance in Medicine, vol.8, issue.2, pp.180-190, 1988.
DOI : 10.1002/mrm.1910080208

S. Mornet, E. Thiaudiere, J. Franconi, L. Raison, C. Labrugere et al., Use of lanthanide-grafted inorganic nanoparticles as effective contrast agents for cellular uptake imaging, Bioconjugate Chemistry, vol.18, issue.4, pp.1053-1063, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00164384

R. Kumar, I. Roy, T. Y. Ohulchanskky, L. A. Vathy, E. J. Bergey et al., Biodistribution and Clearance Studies Using Multimodal Organically Modified Silica Nanoparticles, Vivo Biodistribution and Clearance Studies Using Multimodal Organically Modified Silica Nanoparticles, pp.699-708, 2010.
DOI : 10.1021/nn901146y

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2827663

Y. Lu, Y. D. Yin, B. T. Mayers, and Y. N. Xia, Modifying the Surface Properties of Superparamagnetic Iron Oxide Nanoparticles through A Sol???Gel Approach, Nano Letters, vol.2, issue.3, pp.183-186, 2002.
DOI : 10.1021/nl015681q

M. H. Delville, Smart control of monodisperse Sotber silica particles: Effect of reactant addition rate on growth process, Langmuir, vol.21, issue.4, pp.1516-1523, 2005.

J. W. Dehaan, H. M. Vandenbogaert, J. J. Ponjee, and L. J. Vandeven, Characterization of modified silica powders by fourier transform infrared spectroscopy and cross-polarization magic angle spinning NMR, Journal of Colloid and Interface Science, vol.110, issue.2, pp.591-600, 1986.
DOI : 10.1016/0021-9797(86)90411-X

A. Sakthivel, J. Zhao, and F. E. Kuhn, Grafting of the eta(5)-CPMo(CO)(3) moiety on pure and surface modified SBA-15 molecular sieves, Microporous and Mesoporous Materials, vol.86, pp.1-3, 2005.

R. Harder and S. Chaberek, The interaction of rare earth ions with diethylenetriaminepentaacetic acid, Journal of Inorganic and Nuclear Chemistry, vol.11, issue.3, pp.197-209, 1959.
DOI : 10.1016/0022-1902(59)80246-3

R. B. Lauffer, Paramagnetic metal complexes as water proton relaxation agents for NMR imaging: theory and design, Chemical Reviews, vol.87, issue.5, pp.901-927, 1987.
DOI : 10.1021/cr00081a003

L. D. Carlos, M. M. Silva, M. J. Smith, D. Ostrovskii, and J. Rocha, Structure and photoluminescent features of di-amide cross-linked alkylene siloxane hybrids, Journal, p.62

H. Schulz, S. E. Pratsinis, H. Ruegger, J. Zimmermann, S. Klapdohr et al., Surface functionalization of radiopaque Ta2O5/SiO2. Colloids and Surfaces a- Physicochemical and Engineering Aspects, pp.1-3, 2008.

E. Plueddemann, Interfaces in polymer matrix composites In: Brautman LJ, Krock RH editors, Composite Materials, 1974.

F. J. Boerio, L. H. Schoenlein, and J. E. Greivenkamp, Adsorption of ??-aminopropyltriethoxysilane onto bulk iron from aqueous solutions, Journal of Applied Polymer Science, vol.22, issue.1, pp.203-213, 1978.
DOI : 10.1002/app.1978.070220114

H. R. Anderson, F. M. Fowkes, and F. H. Hielscher, Electron donor???acceptor properties of thin polymer films on silicon. II. Tetrafluoroethylene polymerized by RF glow discharge techniques, Journal of Polymer Science: Polymer Physics Edition, vol.14, issue.5, pp.879-895, 1976.
DOI : 10.1002/pol.1976.180140510

P. R. Moses, L. M. Wier, J. C. Lennox, H. O. Finklea, J. R. Lenhard et al., X-ray photoelectron spectroscopy of alkylaminesilanes bound to metal oxide electrodes, Analytical Chemistry, vol.50, issue.4, pp.576-585, 1978.
DOI : 10.1021/ac50026a010

H. Ishida, C. H. Chiang, and J. L. Koenig, The structure of aminofunctional silane coupling agents: 1. ??-Aminopropyltriethoxysilane and its analogues, Polymer, vol.23, issue.2, pp.251-257, 1982.
DOI : 10.1016/0032-3861(82)90310-X

A. M. Jakob and T. A. Schmedake, A Novel Approach to Monodisperse, Luminescent Silica Spheres, Chemistry of Materials, vol.18, issue.14, pp.3173-3175, 2006.
DOI : 10.1021/cm060664t

L. Wang, M. C. Estevez, M. O-'donoghue, and W. Tan, Fluorophore-Free Luminescent Organosilica Nanoparticles, Langmuir, vol.24, issue.5, pp.1635-1639, 2008.
DOI : 10.1021/la703392m

V. D. Bermudez, O. L. Malta, and L. D. Carlos, Energy transfer and emission quantum yields of organic-inorganic hybrids lacking metal activator centers, Journal of Physical Chemistry C, issue.8, pp.111-3275, 2007.

M. Assuncao and L. Alcacer, A novel class of luminescent polymers obtained by the sol-gel approach, Journal of Alloys and Compounds, vol.275, pp.21-26, 1998.

O. L. Malta, A theoretical interpretation of the abnormal D-5(0)-> F-7(4) intensity based on the Eu 3+ local coordination in the Na-9 EuW10O36 center dot 14H(2)O polyoxometalate, J Lumin, vol.121, issue.2, pp.561-567, 2006.

L. D. Carlos, R. A. Ferreira, V. D. Bermudez, and S. J. Ribeiro, Lanthanide-Containing Light-Emitting Organic-Inorganic Hybrids: A Bet on the Future, Advanced Materials, vol.309, issue.5, pp.509-534, 2009.
DOI : 10.1002/adma.200801635

C. C. Bryden and C. N. Reilley, Europium luminescence lifetimes and spectra for evaluation of 11 europium complexes as aqueous shift reagents for nuclear magnetic resonance spectrometry, Analytical Chemistry, vol.54, issue.4, pp.610-615, 1982.
DOI : 10.1021/ac00241a003

O. L. Malta, M. A. Santos, L. C. Thompson, and N. K. Ito, Intensity parameters of 4f???4f transitions in the Eu(dipivaloylmethanate)3 1, 10-phenanthroline complex, Journal of Luminescence, vol.69, issue.2, pp.77-84, 1996.
DOI : 10.1016/0022-2313(96)00084-1

L. D. Carlos, Y. Messaddeq, H. F. Brito, R. A. Ferreira, V. D. Bermudez et al., Full-color phosphors from europium(III)-based organosilicates, Advanced Materials, issue.8, pp.12-594, 2000.

D. Malta and O. L. , Spectroscopic study of a UV-photostable organic-inorganic hybrids incorporating an Eu(3+) beta-diketonate complex, Chemphyschem, vol.7, issue.3, pp.735-746, 2006.

W. Carnall and H. Crosswhite, In energy level structure and transition probabilities of the trivalent lanthanides in LaF 3 . Argonne Natl Lab, 1977.

M. Norek and J. A. Peters, MRI contrast agents based on dysprosium or holmium, Progress in Nuclear Magnetic Resonance Spectroscopy, vol.59, issue.1, pp.64-82, 2011.
DOI : 10.1016/j.pnmrs.2010.08.002

P. Gillis, F. Moiny, and R. A. Brooks, OnT2-shortening by strongly magnetized spheres: A partial refocusing model, Magnetic Resonance in Medicine, vol.33, issue.2, pp.257-263, 2002.
DOI : 10.1002/mrm.10059

V. A. Runge, B. R. Carollo, C. R. Wolf, and K. L. Nelson, Gd DTPA: a review of clinical indications in central nervous system magnetic resonance imaging., RadioGraphics, vol.9, issue.5, pp.929-95812, 1989.
DOI : 10.1148/radiographics.9.5.2678298

P. D. Stevens, J. Fan, H. M. Gardimalla, M. Yen, and Y. Gao, Superparamagnetic Nanoparticle-Supported Catalysis of Suzuki Cross-Coupling Reactions Org, 2005.

S. Sieben, C. Bergemann, A. Lübe, B. Brockmann, and D. Rescheleit, Comparison of different particles and methods for magnetic isolation of circulating tumor cells, Journal of Magnetism and Magnetic Materials, vol.225, issue.1-2
DOI : 10.1016/S0304-8853(00)01248-8

A. L. Paul, G. R. Chandra, and L. W. Terstappen, Optimization of Ferrofluids and Protocols for the Enrichment of, Breast Tumor Cells in Blood J. Magn. Magn. Mater, vol.225, pp.301-307, 2001.

M. M. Miller, G. A. Prinz, S. F. Cheng, and S. Bounnak, Detection of a micron-sized magnetic sphere using a ring-shaped anisotropic magnetoresistance-based sensor: A model for a magnetoresistance-based biosensor, Applied Physics Letters, vol.81, issue.12, pp.2211-2213, 2002.
DOI : 10.1063/1.1507832

M. Zhao, L. Josephson, Y. Tang, and R. Weissleder, Magnetic Sensors for Protease Assays, Angewandte Chemie International Edition, vol.42, issue.12, pp.1375-1378, 2003.
DOI : 10.1002/anie.200390352

Y. Okuhata, Delivery of diagnostic agents for magnetic resonance imaging, Advanced Drug Delivery Reviews, vol.37, issue.1-3, pp.121-137, 1999.
DOI : 10.1016/S0169-409X(98)00103-3

P. Wunderbaldinger and L. Josephson, Weissleder R. Tat Peptide Directs Enhanced Clearance and Hepatic Permeability of Magnetic Nanoparticles Bioconj, Chem, vol.13, pp.264-268, 2002.

J. Halavaara, P. Tervahartiala, H. Isoniemi, and K. Höckerstedt, Efficacy of Sequential Use of Superparamagnetic Iron Oxide and Gadolinium in Liver MR Imaging Acta Radiol, pp.180-185, 2002.

S. Boutry, S. Laurent, L. Vander-elst, and R. N. Muller, Specific E-Selectin Targeting with a Superparamagnetic MRI Contrast Agent Contrast Med, Mol. Imaging, vol.1, pp.15-22, 2006.

L. Babes, B. Denizot, G. Tanguy, J. J. Le-jeune, and P. J. Jallet, Synthesis of Iron Oxide Nanoparticles Used as MRI Contrast Agents: A Parametric Study Colloid Interface Sci, pp.474-482, 1999.

F. Sonvico, C. Dubernet, P. Colombo, and P. Couvreur, Metallic Based Nanotechnology, Applications in Diagnosis and Therapeutics Curr, Pharm. Des, vol.11, pp.2091-2105, 2005.

C. Corot, P. Robert, J. M. Idee, and M. Port, Recent advances in iron oxide nanocrystal technology for medical imaging???, Advanced Drug Delivery Reviews, vol.58, issue.14, pp.1471-1504, 2006.
DOI : 10.1016/j.addr.2006.09.013

J. P. Benoit, Anti-Cancer Drug Diffusion Within Living Rat Brain Tissue: An Experimental Study Using [3H](6)-5-Fluorouracil-Loaded PLGA Microspheres Eur, J. Pharm

A. S. Lübbe, C. C. Alexiou, and C. Bergemann, Clinical Applications of Magnetic Drug Targeting, Journal of Surgical Research, vol.95, issue.2, pp.200-206, 2001.
DOI : 10.1006/jsre.2000.6030

T. K. Jain, M. A. Morales, S. K. Sahoo, D. L. Leslie-pelecky, and V. Labhasetwar, Iron Oxide Nanoparticles for Sustained Delivery of Anticancer Agents, Molecular Pharmaceutics, vol.2, issue.3, pp.194-205, 2005.
DOI : 10.1021/mp0500014

S. Jonathan, M. Souce, H. Marchais, and P. Dubois, Molecular Composition of Iron Oxide Nanoparticles, Precursors for Magnetic Drug Targeting, as Characterized by Confocal Raman Microspectroscopy Analyst, pp.1395-1403, 2005.

A. Elaissari, M. Rodrigue, F. Meunier, and C. Herve, Hydrophilic magnetic latex for nucleic acid extraction, purification and concentration, Journal of Magnetism and Magnetic Materials, vol.225, issue.1-2, pp.127-133, 2001.
DOI : 10.1016/S0304-8853(00)01240-3

A. K. Gupta and M. Gupta, Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications, Biomaterials, vol.26, issue.18, pp.3995-4021, 2005.
DOI : 10.1016/j.biomaterials.2004.10.012

R. M. Cornell and U. Schwertmann, The Iron Oxides: Structures, Properties, Reactions, Occurences and Uses, 2003.
DOI : 10.1002/3527602097

Y. K. Sun, M. Ma, Y. Zhang, and N. Gu, Synthesis and Characterization of Biocompatible Fe3O4 Nanoparticles Colloids Surf, pp.15-19, 2004.

C. C. Berry and A. S. Curtis, Functionalisation of magnetic nanoparticles for applications in biomedicine, Journal of Physics D: Applied Physics, vol.36, issue.13, pp.198-206, 2003.
DOI : 10.1088/0022-3727/36/13/203

D. C. Chan, D. B. Kirpotin, P. A. Bunn, and . Jr, Synthesis and evaluation of colloidal magnetic iron oxides for the site-specific radiofrequency-induced hyperthermia of cancer, Journal of Magnetism and Magnetic Materials, vol.122, issue.1-3, pp.374-378, 1993.
DOI : 10.1016/0304-8853(93)91113-L

N. R. Jana and X. Peng, Single-Phase and Gram-Scale Routes toward Nearly
DOI : 10.1021/ja038219b

C. B. Murray, D. J. Norris, and M. G. Bawendi, Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites, Journal of the American Chemical Society, vol.115, issue.19, pp.8706-8715, 1993.
DOI : 10.1021/ja00072a025

N. R. Jana, Y. Chen, and X. Peng, Size-and Shape-Controlled Magnetic, ) Oxide Nanocrystals via a Simple and General Approach Chem. Mater, pp.3931-3935, 2004.

W. Wu, Q. He, and C. Jiang, Magnetic Iron Oxide Nanoparticles: Synthesis and Surface Functionalization Strategies, Nanoscale Research Letters, vol.108, issue.259, pp.397-415, 2008.
DOI : 10.1007/s11671-008-9174-9

URL : http://doi.org/10.1007/s11671-008-9174-9

J. Radler, G. Natile, and W. Parak, Hydrophobic Nanocrystals Coated with an Amphiphilic Polymer Shell: A General Route to Water Soluble Nanocrystals Nano Lett, pp.703-707, 2004.

M. Kim, Y. Chen, Y. Liu, and X. Peng, Super-stable, High-quality Fe 3 O 4 Dendron- Nanocrystals Dispersible in Both Organic and Aqueous Solutions Adv, Mater, vol.17, pp.1429-1436, 2005.

S. W. Kim, S. Kim, J. B. Tracy, A. Jasanoff, and M. G. Bawendi, Phosphine Oxide Polymer for Water-Soluble Nanoparticles, Journal of the American Chemical Society, vol.127, issue.13, pp.4556-4557, 2005.
DOI : 10.1021/ja043577f

A. Schroedter and W. Weller, Ligand Design and Bioconjugation of Colloidal Gold Nanoparticles, Angewandte Chemie International Edition, vol.11, issue.17, pp.3218-3221, 2002.
DOI : 10.1002/1521-3773(20020902)41:17<3218::AID-ANIE3218>3.0.CO;2-P

D. C. Lee, F. V. Mikulec, J. M. Pelaez, B. Koo, and B. A. Korgel, Synthesis and Magnetic Properties of, Colloidal MnPt Nanocrystals J. Phys. Chem. B, vol.110, pp.11160-11166, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00528110

R. Ellenbogen, R. Sze, A. Hallahan, and J. Olson, An Optical and MRI Multifunctional Nanoprobe for Targeting Gliomas Nano Lett, pp.1003-1008, 2005.

X. Liu, J. Xing, Y. Guan, G. Shan, and H. Liu, Synthesis of Amino-Silane Modified Superparamagnetic Silica Supports and Their Use for Protein Immobilization Colloids Surf, pp.127-131, 2004.

A. Schroedter, W. Weller, R. Eritja, W. E. Ford, and J. M. Wessels, Biofunctionalization of Silica-Coated CdTe and Gold Nanocrystals Nano Lett, pp.1363-1367, 2002.

D. Gerion, F. Pinaud, S. C. Williams, W. J. Parak, D. Zanchet et al., Synthesis and Properties of Biocompatible Water-Soluble Silica-Coated CdSe, ZnS Semiconductor Quantum Dots J. Phys. Chem. B, vol.105, pp.8861-8871, 2001.

M. Darbandi, R. Thomann, and T. Nann, Single Quantum Dots in Silica Spheres by Microemulsion Synthesis Chem, Mater, vol.17, pp.5720-5725, 2005.

M. H. Sousa, J. C. Rubim, P. G. Sobrinho, and F. A. Tourinho, Biocompatible magnetic fluid precursors based on aspartic and glutamic acid modified maghemite nanostructures, Journal of Magnetism and Magnetic Materials, vol.225, issue.1-2, pp.67-72, 2001.
DOI : 10.1016/S0304-8853(00)01229-4

J. Xie and C. H. Wang, Self-Assembled Biodegradable Nanoparticles Developed by Direct Dialysis for the Delivery of Paclitaxel, Pharmaceutical Research, vol.68, issue.4, pp.2079-2090, 2005.
DOI : 10.1007/s11095-005-7782-y

L. X. Tiefenauer, G. Kuhne, and R. Y. Andres, Antibody-magnetite nanoparticles: In vitro characterization of a potential tumor-specific contrast agent for magnetic resonance imaging, Bioconjugate Chemistry, vol.4, issue.5, pp.347-352, 1993.
DOI : 10.1021/bc00023a007

J. M. Nam, S. I. Stoeva, and C. A. Mirkin, Bio-Bar-Code-Based DNA Detection with PCR-like Sensitivity, Journal of the American Chemical Society, vol.126, issue.19, pp.5932-5933, 2004.
DOI : 10.1021/ja049384+

M. Lewin, N. Carlesso, C. Tung, X. Tang, D. Cory et al., Tat Peptide-Derivatized Magnetic Nanoparticles Allow In Vivo Tracking and Recovery of Progenitor Cells Nat, Biotechnol, vol.18, pp.410-414, 2000.

Y. Weizmann, F. Patolsky, and O. Lioubashevski, Magneto-Mechanical Detection of Nucleic Acids and Telomerase Activity in Cancer Cells, Journal of the American Chemical Society, vol.126, issue.4, pp.1073-1080, 2004.
DOI : 10.1021/ja038257v

A. Lascialfari, Water-Soluble Rhamnose-Coated Fe 3 O 4, Nanoparticles Org. Lett, vol.11, pp.2992-2995, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00403246

P. Ashtari, X. X. He, K. M. Wang, and P. Gong, An efficient method for recovery of target ssDNA based on amino-modified silica-coated magnetic nanoparticles, Talanta, vol.67, issue.3, pp.548-554, 2005.
DOI : 10.1016/j.talanta.2005.06.043

E. Allemann, R. Gurny, and E. Doelker, Drug-loaded Nanoparticles -Preparation Methods and Drug Targeting Issues, European Journal of Pharmaceutics and Biopharmaceutics, vol.39, issue.5, pp.173-191, 1993.

R. Massart, Preparation of Aqueous Ferrofluids without using Surfactant -Behavior as a Function of the pH and the Counterions, Comptes Rendus Hebdomadaires Des Seances De L Academie Des Sciences Serie C, vol.291, issue.1, pp.1-3, 1980.

W. Stöber, A. Fink, and E. Bohn, Controlled growth of monodisperse silica spheres in the micron size range, Journal of Colloid and Interface Science, vol.26, issue.1, pp.62-69, 1968.
DOI : 10.1016/0021-9797(68)90272-5

M. H. Delville, Smart control of monodisperse Sotber silica particles: Effect of reactant addition rate on growth process, Langmuir, vol.21, issue.4, pp.1516-1523, 2005.

S. Chen, P. Dong, G. Yang, and J. Yang, Characteristic Aspects of Formation of New Particles during the Growth of Monosize Silica Seeds, Journal of Colloid and Interface Science, vol.180, issue.1, pp.237-241, 1996.
DOI : 10.1006/jcis.1996.0295

Y. Lu, Y. D. Yin, B. T. Mayers, and Y. N. Xia, Modifying the Surface Properties of Superparamagnetic Iron Oxide Nanoparticles through A Sol???Gel Approach, Nano Letters, vol.2, issue.3, pp.183-186, 2002.
DOI : 10.1021/nl015681q

S. Mornet, C. Elissalde, V. Hornebecq, O. Bidault, E. Duguet et al., Controlled growth of silica shell on Ba0.6Sr0.4TiO3 nanoparticles used as precursors of ferroelectric composites, Chemistry of Materials, issue.17, pp.17-4530, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00095754

R. N. Muller, A. Roch, J. Colet, A. Ouakssim, and P. Gillis, The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging, pp.417-435, 2001.

S. Laurent, D. Forge, M. Port, A. Roch, C. Robic et al., Magnetic Iron Oxide Nanoparticles: Synthesis, Stabilization, Vectorization, Physicochemical Characterizations, and Biological Applications, Chemical Reviews, vol.108, issue.6, pp.2064-2110, 2008.
DOI : 10.1021/cr068445e

M. Gueron, Nuclear relaxation in macromolecules by paramagnetic ions: a novel mechanism, Journal of Magnetic Resonance (1969), vol.19, issue.1, pp.58-66, 1975.
DOI : 10.1016/0022-2364(75)90029-3

A. Roch and R. N. Muller, Longitudinal relaxation of water protons in colloidal suspensions of superparamagnetic crystalsProc. 11th Annu, Meet. Soc. Magn. Reson. Med, issue.11, 1447.

A. Roch, R. N. Muller, and P. Gillis, Theory of proton relaxation induced by superparamagnetic particles, The Journal of Chemical Physics, vol.110, issue.11, pp.5403-5411, 1999.
DOI : 10.1063/1.478435

P. Gillis, F. Moiny, and R. A. Brooks, OnT2-shortening by strongly magnetized spheres: A partial refocusing model, Magnetic Resonance in Medicine, vol.33, issue.2, pp.257-263, 2002.
DOI : 10.1002/mrm.10059

L. E. Laconte, N. Nitin, O. Kurkiya, D. Caruntu, C. J. O-'connor et al., Coating thickness of magnetic iron oxide nanoparticles affects

S. L. Pinho, G. A. Pereira, P. Voisin, J. Kassem, V. Bouchaud et al., Nanoparticles by Tweaking the Silica Coating Thickness, Fine Tuning of the Relaxometry of gamma-Fe(2)O(3)@SiO(2) Nanoparticles by Tweaking the Silica Coating Thickness, pp.5339-5349, 2010.
DOI : 10.1021/nn101129r

URL : https://hal.archives-ouvertes.fr/hal-00530395

J. H. Freed, processes, The Journal of Chemical Physics, vol.68, issue.9, pp.4034-4037, 1978.
DOI : 10.1063/1.436302

URL : https://hal.archives-ouvertes.fr/in2p3-00017963

Y. Ayant, E. Belorizky, J. Alizon, and J. Gallice, Calculation of spectral densities for relaxation resulting from random translational modulation of magnetic dipolar coupling in liquids, Journal De Physique, issue.10, pp.36-991, 1975.

P. Roose, J. Vancraen, R. Finsy, and H. Eisendrath, Field-Cycling Proton Nuclear Magnetic Relaxation-Dispersion Study of Aqueous Colloidal Silica Sols, Journal of Magnetic Resonance, Series A, vol.115, issue.1, pp.20-25, 1995.
DOI : 10.1006/jmra.1995.1143

S. Mornet, E. Thiaudiere, J. Franconi, L. Raison, C. Labrugere et al., Use of lanthanide-grafted inorganic nanoparticles as effective contrast agents for cellular uptake imaging, Bioconjugate Chemistry, vol.18, issue.4, pp.1053-1063, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00164384