
�>���G �A�/�, �i�2�H�@�y�y�e�8�N�k�k�d

�?�i�i�T�b�,�f�f�i�2�H�X���`�+�?�B�p�2�b�@�Q�m�p�2�`�i�2�b�X�7�`�f�i�2�H�@�y�y�e�8�N�k�k�d

�a�m�#�K�B�i�i�2�/ �Q�M �R�k �C���M �k�y�R�k

�>���G �B�b �� �K�m�H�i�B�@�/�B�b�+�B�T�H�B�M���`�v �Q�T�2�M ���+�+�2�b�b
���`�+�?�B�p�2 �7�Q�` �i�?�2 �/�2�T�Q�b�B�i ���M�/ �/�B�b�b�2�K�B�M���i�B�Q�M �Q�7 �b�+�B�@
�2�M�i�B�}�+ �`�2�b�2���`�+�? �/�Q�+�m�K�2�M�i�b�- �r�?�2�i�?�2�` �i�?�2�v ���`�2 �T�m�#�@
�H�B�b�?�2�/ �Q�` �M�Q�i�X �h�?�2 �/�Q�+�m�K�2�M�i�b �K���v �+�Q�K�2 �7�`�Q�K
�i�2���+�?�B�M�; ���M�/ �`�2�b�2���`�+�? �B�M�b�i�B�i�m�i�B�Q�M�b �B�M �6�`���M�+�2 �Q�`
���#�`�Q���/�- �Q�` �7�`�Q�K �T�m�#�H�B�+ �Q�` �T�`�B�p���i�2 �`�2�b�2���`�+�? �+�2�M�i�2�`�b�X

�G�ö���`�+�?�B�p�2 �Q�m�p�2�`�i�2 �T�H�m�`�B�/�B�b�+�B�T�H�B�M���B�`�2�>���G�- �2�b�i
�/�2�b�i�B�M�û�2 ���m �/�û�T�¬�i �2�i �¨ �H�� �/�B�z�m�b�B�Q�M �/�2 �/�Q�+�m�K�2�M�i�b
�b�+�B�2�M�i�B�}�[�m�2�b �/�2 �M�B�p�2���m �`�2�+�?�2�`�+�?�2�- �T�m�#�H�B�û�b �Q�m �M�Q�M�-
�û�K���M���M�i �/�2�b �û�i���#�H�B�b�b�2�K�2�M�i�b �/�ö�2�M�b�2�B�;�M�2�K�2�M�i �2�i �/�2
�`�2�+�?�2�`�+�?�2 �7�`���M�Ï���B�b �Q�m �û�i�`���M�;�2�`�b�- �/�2�b �H���#�Q�`���i�Q�B�`�2�b
�T�m�#�H�B�+�b �Q�m �T�`�B�p�û�b�X

�.���i���@�B�M�i�2�M�b�B�p�2 �B�M�i�2�`���+�i�B�p�2 �r�Q�`�F�~�Q�r�b �7�Q�` �p�B�b�m���H ���M���H�v�i�B�+�b
�q���2�H �E�?�2�K�B�`�B

�h�Q �+�B�i�2 �i�?�B�b �p�2�`�b�B�Q�M�,

�q���2�H �E�?�2�K�B�`�B�X �.���i���@�B�M�i�2�M�b�B�p�2 �B�M�i�2�`���+�i�B�p�2 �r�Q�`�F�~�Q�r�b �7�Q�` �p�B�b�m���H ���M���H�v�i�B�+�b�X �P�i�?�2�` �(�+�b�X�P�>�)�X �l�M�B�p�2�`�b�B�i�û
�S���`�B�b �a�m�/ �@ �S���`�B�b �s�A�- �k�y�R�R�X �1�M�;�H�B�b�?�X ���L�L�h �, �k�y�R�R�S���R�R�k�j�9�8���X ���i�2�H�@�y�y�e�8�N�k�k�d��

https://tel.archives-ouvertes.fr/tel-00659227
https://hal.archives-ouvertes.fr

Universit�e Paris-Sud 11 �Ecole doctorale d'informatique de Paris-Sud

Data-intensive interactive workows

for visual analytics

(Donn�ees en masse et workows interactifs

pour la visualisation analytique)

TH �ESE

pr�esent�ee et soutenue publiquement le 12 D�ecembre 2011

pour l'obtention du grade de

Docteur de l'Universit�e Paris-Sud 11
(sp�ecialit�e informatique)

par

Wael KHEMIRI

Composition du jury

Rapporteurs : Dominique Laurent Professeur, Universit�e de Cergy Pontoise
Guy Melan�con Professeur, LaBRI, Universit�e Bordeaux I

Examinateurs : Alain Denise Professeur, Universit�e de Paris-Sud 11
Th�er�ese Libourel Professeur, LIRMM, Universit�e Montpellier II

Directeurs : V�eronique Benzaken Professeur, Universit�e de Paris-Sud 11
Jean-Daniel Fekete Directeur de recherche, INRIA SaclaŷIle de France
Ioana Manolescu Directeur de recherche, INRIA SaclaŷIle de France

i

Sans transmission de la pensée,

le langage n'est qu'une terre morte. [Ibn Khaldoun]

ii

iii

Remerciements

Je remercie en premier lieu tous les membres du jury de m'avoir fait l'honneur de

leur participation à ma soutenance de thèse. Je remercie Monsieur Dominique Laurent et

Monsieur Guy Melançon d'avoir accepté de rapporter sur mon travail de thèse. Je vous

remercie pour l'intérêt que vous avez porté à ce travail et pour vos remarques pertinentes.

Je remercie également Monsieur Alain Denise et Madame Thérèse Libourel de m'avoir fait

l'honneur d'être présents à ce jury de thèse.

Je tiens à remercier très chaleureusement mes directeurs de thèse Véronique Benzaken,

Jean-Daniel Fekete et Ioana Manolescu pour leur disponibilité et les moyens qu'ils m'ont

accordés. Je suis également reconnaissant pour la richesse des enseignements scienti�ques

qu'ils m'ont transmis. Je vous remercie pour ces trois années de soutien et de patience pen-

dant lesquelles vous avez guidé mes premiers pas de chercheur. Je retiendrai vos précieux

conseils qui m'ont permis de prendre con�ance en mon travail, de nourrir ma créativité,

d'a�ner mon sens critique et surtout d'a�rmer mon esprit de contradiction.

Je remercie Pierre-Luc Hémery de l'équipe Aviz, pour toute l'aide qu'il m'a fournie

dans l'implémentation des scénarios d'utilisations appliqués à EdiFlow. Merci pour ton

coup de main.

Je remercie tous mes chers collègues des équipes Leo et Aviz que j'ai eu le plaisir de

côtoyer durant ces quelques années. Un grand merci pour les échanges aussi bien culturels

qu'académiques, sans oublier les moments de détente. Je remercie par ailleurs remercier

tous mes amis de Tunis et Paris pour vos encouragements. Je vous remercie pour tous les

moments de bonheur et de délire que j'ai partagé avec vous.

Je remercie également tous les membres de l'équipe Proval qui m'ont ouvert leurs

bureaux pour terminer la rédaction de ma thèse dans de bonnes conditions.

Un grand merci à tous les membres de la famille SASSI et la famille GABSI qui m'ont

considérés comme l'un des leurs. Merci pour tous les moments de bonheur et de délire que

nous avons passé ensemble.

Finalement cette thèse ne serait pas sans le soutien des très proches. Je remercie tout

particulièrement mes parents Houcine et Zohra, mes frères Ahmed et Fakhreddine et ma

soeur Rihab. Votre soutien et votre amour m'ont aidé à dépasser les moments di�ciles de

ma vie. Je vous exprime mon éternelle reconnaissance et mon indéfectible attachement.

J'espère que ce travail réalisé grâce à vous sera à la hauteur de la con�ance et de l'apport

que vous m'avez donné. Un grand merci également à ma chère Nesrine pour sa patience,

son sens de l'écoute et son soutien tout au long de ces dernières années.

À tous, un grand merci, vous m'êtes très chers.

iv

v

À la mémoire de ma grand-mère Fatma

et mes grands-pères, Hamadi et Mohamed.

vi

Résumé

L'expansion du World Wide Web et la multiplication des sources de données (capteurs,

services Web, programmes scienti�ques, outils d'analyse, etc.) ont conduit à la proliféra-

tion de données hétérogènes et complexes. La phase d'extraction de connaissance et de

recherche de corrélation devient ainsi de plus en plus di�cile. Typiquement, une telle

analyse est e�ectuée en utilisant les outils logiciels qui combinent:des techniques de visu-

alisation, permettant aux utilisateurs d'avoir une meilleure compréhension des données, et

des programmes d'analysequi e�ectuent des opérations d'analyses complexes et longues.

La visualisation analytique (visual analytics) vise à combiner la visualisation des don-

nées avec des tâches d'analyse et de fouille. Etant donnée la complexité et la volumétrie

importante des données scienti�ques (par exemple, les données associées à des processus

biologiques ou physiques, données des réseaux sociaux, etc.), la visualisation analytique est

appelée à jouer un rôle important dans la gestion des données scienti�ques.

La plupart des plateformes de visualisation analytique actuelles utilisent des mécan-

ismes en mémoire centrale pour le stockage et le traitement des données, ce qui limite

le volume de données traitées. En outre, l'intégration de nouveaux algorithmes dans le

processus de traitement nécessite du code d'intégration ad-hoc. En�n, les plate-formes de

visualisation actuelles ne permettent pas de dé�nir et de déployer des processus structurés,

où les utilisateurs partagent les données et, éventuellement, les visualisations.

Ce travail, à la con�uence des domaines de la visualisation analytique interactive et

des bases de données, apporte deux contributions. (i) Nous proposons une architecture

générique pour déployer une plate-forme de visualisation analytique au-dessus d'un sys-

tème de gestion de bases de données (SGBD). (ii) Nous montrons comment propager les

changements des données dans le SGBD, au travers des processus et des visualisations

qui en font partie. Notre approche permet à l'application de visualisation analytique de

pro�ter du stockage robuste et du déploiement automatique de processus à partir d'une

spéci�cation déclarative, supportés par le SGBD.

Notre approche a été implantée dans un prototype appelé EdiFlow, et validée à travers

plusieurs applications. Elle pourrait aussi s'intégrer dans une plate-forme de work�ow

scienti�que à usage intensif de données, a�n d'en augmenter les fonctionnalités de visuali-

sation.

Mots-clés: Visualisation analytique, systèmes work�ow, gestion dynamique des données

Abstract

The increasing amounts of electronic data of all forms, produced by humans (e.g., Web

pages, structured content such as Wikipedia or the blogosphere etc.) and/or automatic

tools (loggers, sensors, Web services, scienti�c programs or analysis tools etc.) leads to

a situation of unprecedented potential for extracting new knowledge, �nding new correla-

tions, or simply making sense of the data.

Visual analytics aims at combining interactive data visualization with data analysis

tasks. Given the explosion in volume and complexity of scienti�c data, e.g., associated

to biological or physical processes or social networks, visual analytics is called to play an

important role in scienti�c data management.

Most visual analytics platforms, however, are memory-based, and are therefore limited

in the volume of data handled. Moreover, the integration of each new algorithm (e.g.,

for clustering) requires integrating it by hand into the platform. Finally, they lack the

capability to de�ne and deploy well-structured processes where users with di�erent roles

interact in a coordinated way sharing the same data and possibly the same visualizations.

This work is at the convergence of three research areas: information visualization,

database query processing and optimization, and work�ow modeling. It provides two main

contributions: (i) We propose a generic architecture for deploying a visual analytics plat-

form on top of a database management system (DBMS) (ii) We show how to propagate

data changes to the DBMS and visualizations, through the work�ow process. Our approach

has been implemented in a prototype called EdiFlow, and validated through several appli-

cations. It clearly demonstrates that visual analytics applications can bene�t from robust

storage and automatic process deployment provided by the DBMS while obtaining good

performance and thus it provides scalability.

Conversely, it could also be integrated into a data-intensive scienti�c work�ow platform

in order to increase its visualization features.

Keywords: Visual analytics, scienti�c work�ow systems, dynamic changes

Contents

I Introduction 1

1 Introduction 3

1.1 The thesis in a nutshell . 3

1.2 Contributions . 5

1.2.1 Scienti�c work�ow management 6

1.2.2 Visualizations and interactions 6

1.3 Publications . 7

1.4 Thesis outline . 8

II State of the art 11

2 Work�ow systems and models 13

2.1 Introduction . 14

2.2 Work�ow systems . 14

2.2.1 Work�ow system de�nition . 14

2.2.2 Work�ow patterns . 15

2.2.3 Work�ow description languages 18

2.2.4 Work�ow management systems 20

2.3 Scienti�c work�ow systems . 22

2.3.1 Scienti�c versus business work�ows 22

2.3.2 Main requirements on scienti�c work�ow management systems . 23

2.3.3 Data provenance in scienti�c work�ow systems 23

2.3.4 Overview of scienti�c work�ow systems 25

2.3.4.1 SciRun . 25

2.3.4.2 GPFlow . 25

2.3.4.3 VisTrails . 25

xi

Contents

2.3.4.4 Trident . 26

2.3.4.5 Orchestra . 26

2.3.4.6 Kepler . 26

2.4 Databases and work�ow systems . 27

2.4.1 Database-based work�ow systems 27

2.4.2 Active databases for work�ow execution 27

2.4.3 Transaction support for work�ow management systems 29

2.5 Conclusion . 30

3 Visual analytics survey 31

3.1 Introduction . 32

3.2 Visual analytics de�nition . 32

3.2.1 Goals of visual analytics . 32

3.2.2 Applications of visual analytics 33

3.2.2.1 Economic decision-making 33

3.2.2.2 Thermal state management 33

3.2.2.3 Astrophysics . 34

3.2.3 Visual analytics disciplines . 34

3.3 Visual analytics as a process . 36

3.4 Scalability challenge in visual analytics 37

3.5 Visual analytics systems . 38

3.5.1 Requirements and functionalities of visual analytics systems . . 38

3.5.2 WikiReactive . 38

3.5.3 Vox Civitas . 40

3.5.4 Radio frequency �ngerprinting-based localization system 41

3.6 Conclusion . 42

4 Conclusion of the part 45

4.1 Challenges . 45

4.2 Our contribution: the EdiFlow platform 46

III Contributions 47

5 Interactive changes in work�ow systems 49

5.1 Introduction . 50

5.2 Data model . 50

5.2.1 Logical data model . 50

xii

5.2.2 Physical data model . 52

5.3 Process model . 52

5.3.1 Data part . 53

5.3.2 Computation part . 54

5.3.3 Process part . 55

5.4 Propagating changes on work�ow process 56

5.5 EdiFlow architecture . 58

5.5.1 Bene�ts of using a DBMS . 59

5.5.2 Synchronizing disk-resident and in-memory tables 60

5.5.3 EdiFlow tool implementation . 63

5.6 Isolation management in EdiFlow . 64

5.7 Experimental results . 65

5.7.1 Experimental setup . 65

5.7.2 Datasets . 65

5.7.3 Real-case applications . 67

5.7.3.1 US Election scenario 67

5.7.3.2 INRIA activity report scenario 69

5.7.3.3 WikiReactive scenario 70

5.7.4 Layout procedure handlers . 71

5.7.5 Robustness evaluation . 72

5.8 Conclusion . 74

6 EdiFlow for visual analytics 77

6.1 Introduction . 78

6.2 Scienti�c work�ows and visual analytics 78

6.3 Experiments . 79

6.3.1 Experimental setup . 80

6.3.2 Performance over unit mode . 80

6.3.3 Performance over batch mode 81

6.3.4 Performance over atomic mode 82

6.3.5 Performance over in-memory database systems 83

6.4 Performance analysis . 84

6.4.1 MySQL and Oracle results . 84

6.4.2 Prefuse and IVTK results . 85

6.4.3 Discussion . 86

6.5 Visualization management . 86

6.5.1 Visual table schema . 86

xiii

Contents

6.5.2 An architecture for several views 87

6.6 Interaction management . 89

6.7 Use case: publication database cleaning scenario 91

6.8 Conclusion . 95

IV Conclusion 97

7 Conclusion and perspectives 99

7.1 Summary . 99

7.2 Research directions . 100

7.2.1 Improve the provenance management process 101

7.2.2 Improve the visual table schema 101

7.2.3 Specify collaboration management mechanisms 101

7.2.4 Integration with VisTrails . 102

7.2.5 Management of dynamic work�ows 102

Appendix 103

A Données en masse et work�ows interactifs pour la visualisation ana-

lytique

(Résumé étendu) 103

A.1 Contexte . 103

A.2 Etat de l'art . 104

A.2.1 Systèmes de visualisation analytique 105

A.2.2 Systèmes de work�ow scienti�que 105

A.2.3 Systèmes de work�ow scienti�que basés sur la visualisation . . . 106

A.3 Contributions . 106

A.3.1 Modèle de processus . 107

A.3.2 Architecture du système d'Edi�ow 109

A.3.3 Gestion de la dynamicité . 109

A.3.4 Gestion de la visualisation . 111

A.3.5 Gestion de l'interaction . 112

A.4 Conclusion et perspectives . 113

A.4.1 Perspectives . 114

Bibliography 117

xiv

List of Figures

2.1 Sequence pattern. 15

2.2 Parallel split pattern. 16

2.3 Synchronization pattern. 16

2.4 Exclusive choice pattern. 17

2.5 Simple merge pattern. 17

2.6 Multi-choice pattern. 18

2.7 The work�ow management coalition's reference model. 21

2.8 Principle of an active database. 28

3.1 Visual analytics applications. 33

3.2 The visual analytics disciplines. 34

3.3 The visual analytics process. 36

3.4 Overall scheme of the WikiReactive infrastructure. 39

3.5 Vox Civitas user interface. 40

3.6 User interface of the radio frequency system. 41

5.1 Entity-relationship data model for EdiFlow. 51

5.2 XML schema for the process model. 53

5.3 The high level architecture of EdiFlow. 59

5.4 US Election work�ow . 68

5.5 US Election screen shot. 69

5.6 INRIA activity report work�ow . 69

5.7 Scatter plot of person and the hiring year. 70

5.8 WikiReactive work�ow . 71

5.9 Wikipedia screen shot. 72

5.10 Part of the graph of INRIA co-publications. 73

5.11 Time to perform insert operation. 74

6.1 Experiments for unit mode without triggers for Oracle and MySQL (log-log

scale). 80

xv

List of Figures

6.2 Experiments for unit mode with triggers for Oracle and MySQL (log-log

scale). 81

6.3 Experiments for batch mode without triggers for Oracle and MySQL (log-log

scale). 82

6.4 Experiments for batch mode with triggers for Oracle and MySQL (log-log

scale). 82

6.5 Experiments for atomic mode without triggers for Oracle and MySQL (log-

log scale). 83

6.6 Experiments for atomic mode with triggers for Oracle and MySQL (log-log

scale). 83

6.7 Experiments without triggers for Prefuse and IVTK (log-log scale). 84

6.8 Experiments with triggers for Prefuse and IVTK (log-log scale). 85

6.9 EdiFlow architecture for managing several visualization views. 88

6.10 INRIA co-publications graph on a wall-sized display. 89

6.11 EdiDuplicate work�ow . 92

6.12 EdiDuplicate interface. 93

A.1 Schéma XML du modèle de processus. 107

A.2 Architecture du système EdiFlow. 109

xvi

Part I

Introduction

1

Chapter 1

Introduction

1.1 The thesis in a nutshell

C
urrent scienti�c data management applications involve huge and increasing data

volumes. Data can be numeric, e.g., output of measure instruments, textual,

e.g., corpora studied by social scientists which may consist of news archives

over several years, structured as, in the case of astronomy or physics data, or

highly unstructured as in the case of medical patient �les. Data, in all forms, is increasingly

large in volume, as a result of computers capturing more and more of the work scientists

used to do based on paper, and also as a result of better and more powerful automatic

data gathering tools, e.g., space telescopes, focused crawlers, archived experimental data

(mandatory in some types of government funded research programs) and so on.

The availability of such large data volumes is a gold mine for scientists which may

carry research based on this data. Today's scientists, however, more often than not rely

on proprietary, ad-hoc information systems, consisting perhaps of a directory structure

organized by hand by the scientist, a few specialized data processing applications, possi-

bly a few scripts etc [37]. In addition, the increasing amounts of this data of all forms

leads to a situation of unprecedented potential for extracting new knowledge, �nding new

correlations, or simply making sense of the data. Typically, such analysis is performed by

using software tools which combine:data visualization techniques, to enable users to get a

grasp on the data; anddata analysis programswhich perform potentially complex and/or

time-consuming analysis on the data, enrich it with new dimensions, discover commonali-

ties or clusters etc. The human expert carrying on the visual analytics task must be able

to chose the range of data to be analyzed, trigger analysis or various computations on this

data, and visualize the results. Visualizing results leads to understanding which parts of

the data should be further analyzed, which could be ignored etc.

A sample application would be: Social scientists are currently interested in analyz-

ing online social networks such as Wikipedia, or the World Wide Web Consortium (W3C)

standard-writing community, where new forms of group organization and interaction emerge.

3

Chapter 1. Introduction

In the case of Wikipedia, visualizing the hypertext network that connects articles together

requires accessing the hypertext data, computing some "shape" to visualize the network

and using visualization tools to navigate the representation e�ectively. Using a standard

XML serialization, the French Wikipedia corpus is quite large (4.5 GB in its compressed

format). Therefore, e�cient data support for analysis and computation services is crucial.

Building expressive and e�cient platforms for scienti�c data management raises several

challenges as we explain further. Once such a platform is available, it could be developed

and extended to help scientists in Digiteo, the surrounding scienti�c campus, and in other

labs (e.g., the social sciences laboratories with whom we already interact) advance in

their work and compete with their international colleagues. Meanwhile this would result

in advancing the state of the art in our respective �elds, where service to the scienti�c

communities is perceived as an outstanding priority[37].

Visual analytics is on the border between visualization, HCI (Human Computer Inter-

action), databases, data analysis and data-mining[77]. Its aim is to enable users to closely

interact with vast amounts of data using visual tools. Thanks to these tools, a human may

detect phenomena or trigger detailed analysis which may not have been identi�able by

automated tools alone. Visual analytics tools routinely include some capacity to mine or

analyze the data; however, most applications require speci�c analysis functions.

Though, most current visual analytics tools have some conceptual drawbacks. Indeed,

they rarely rely on persistent databases (with the exception of[36]). Instead, the data is

loaded from �les or databases and is manipulated directly in memory because smooth visual

interaction requires redisplaying the manipulated data 10-25 times per second. Standard

database technologies do not support continuous queries at this rate; at the same time,

ad-hoc in-memory handling of classical database tasks (e.g., querying, sorting) has obvious

limitations. We argue connecting a visual analysis tool to a persistent database manage-

ment system (DBMS) has many bene�ts such as scalability, persistence, distribution and

management capabilities of the data.

The visual analytics process can be modeled as a work�ow process. Work�ow systems

are generally based on database management systems. Thus, the integration of a DBMS in

a visualization platform must take into account the following prevalent aspects in today's

visual analytics applications:

� Convergence of visual analytics and work�ow: current visual analytics tools are not

based on work�ow (process) models. This �ts some applications where datasets and

tasks are always exploratory and di�erent from one session to the next. Several vi-

sual analytics applications however, require a recurring process, well supported by a

work�ow system. The data processing tasks need to be organized in a sequence or in

a loop; users with di�erent roles may need to collaborate in some application before

continuing the analysis. It also may be necessary to log and allow inspecting the

advancement of each execution of the application. (Scienti�c) work�ows platforms

4

1.2. Contributions

allow such automation of data processing tasks. They typically combine database-

style processing (e.g., queries and updates) with the invocation of external functions,

implementing complex domain-dependent computations. Well-known scienti�c work-

�ow platforms include Kepler [57], Taverna [51], or Trident [85]. These systems build

on the experience of the data and work�ow management communities; they could

also bene�t from a principled way of integrating powerful visualization techniques.

� Handling dynamic data and change propagation: an important class of visual an-

alytics applications has to deal with dynamic data, which is continuously updated

(e.g., by receiving new additions) while the analysis process is running; conversely,

processes (or visualization) may update the data. The possible interactions between

all these updates must be carefully thought out, in order to support e�cient and

�exible applications.

However, the use of a database also has several shortcomings for visual analytics appli-

cations:

� No guarantee on response time. For many applications, each microsecond account,

response times is of paramount importance. The persistent databases store data on

disk which can make a bottleneck associated with writing data. This response time

increases with the number of I/O operations on disk.

� Not convenient management of noti�cations. In the current DBMS, databases do

not play the role of noti�er. Indeed, it is important that the user query the database

and it makes him the result. Despite the available mechanisms such as triggers,

noti�cation is not a task ahead of DBMS.

� Incompatible isolation modes with long calculations. The SQL standard de�nes four

levels of transaction isolation to prevent phenomena occur when concurrent transac-

tions: (i) Uncommitted Read, (ii), Committed Read, (iii) Repeatable Read and (iv)

Serializable. These logic levels can overcome various transactional anomalies that can

be induced by the nature of the underlying lock (dirty reads, non-repeatable reads,

phantom reads). However, all these isolation modes are not compatible with long

transactions. Indeed, several scienti�c applications present the challenge of having

very long calculations which must not be interrupted.

1.2 Contributions

We brie�y sum up our contributions. We begin with the contributions related to the

scienti�c work�ow management, and then we give the contributions related to the visual

analytics �eld in order to provide solutions to the points previously mentioned.

5

Chapter 1. Introduction

1.2.1 Scienti�c work�ow management

In this thesis, we propose contributions related to the scienti�c work�ow management �eld.

� Generic architecture for work�ow systems. We present a generic architecture for

integrating a visual analytics tool and a DBMS. The integration is based on a core

data model, providing support for (i) visualizations, (ii) declaratively-speci�ed, au-

tomatically deployed work�ows, and (iii) incremental propagation of data updates

through complex processes, based on a high-level speci�cation.

� E�cient communication protocol. We present a simple yet e�cient protocol for

swiftly propagating changes between the DBMS and the visual analytics applica-

tion. This protocol is crucial for the architecture to be feasible. Indeed, the high

latency of a "vanilla" DBMS connection is why today's visual analytics platforms do

not already use DBMSs.

� Implementing a prototype. We have fully implemented our approach in a barebones

prototype called EdiFlow, and de facto ported the InfoVis visual analytics toolkit [33]

on top of a standard Oracle server.

� A well-speci�ed execution semantic.EdiFlow implements a process model inspired by

the basic Work�ow Management Coalition model. We use a set of variables, constants

and attribute names, a set of atomic values, and a set of atomic data types. The

main innovative ingredient of our model is the treatment of data dynamics, i.e., the

possibility to control which changes in the data are propagated to which part(s) of

which process instances.

� Dynamic changes. A mechanism to manage dynamic data e�ciently, relying on

standard features of persistent DBMS system. The main feature of EdiFlow is to

react to dynamic data changes; reaction management complicates the logic of the

system but also its implementation.

� An isolation system. A "snapshot isolation" semantic built on top of DBMS to allow

modules to run isolated from changes made by other modules or from the external

environment until they are ready to handle them. Applications may require di�erent

levels of sharing (or, conversely, of isolation) among concurrent activities and pro-

cesses. EdiFlow implements various degrees of isolation between concurrent processes

operating on top of the same database: (i) Process and activity-based isolation and

(ii) Timestamp-based isolation.

1.2.2 Visualizations and interactions

Then, we present in the following the contributions which are related to the visual analytics

�eld allowing to take into account the lacks described previously,

6

1.3. Publications

� Uni�cation mechanisms for dynamic data management and interaction management.

Interaction is implemented as data changes. According to the Information Visual-

ization Reference Model, the interaction can impact the view, the visualization, the

data and, in the case of visual analytics, it can also impact any analytical module.

Since all of the modules read their input and parameters from DMBS tables, chang-

ing a parameter boils down to changing a value in a table and the propagation will

be done by EdiFlow.

� Database cache mechanism.The use of a database cache mechanism to achieve the

speed required for visualization and computation. The mechanism used to collect

the updates for EdiFlow has been extended to manage cached tables that are kept

consistent with tables in the DBMS. When a DBMS table is cached in an EdiFlow

module, the in-memory table is kept consistent with the on-disk table in both direc-

tions: changing the in-memory table propagates to the on-disk table and vice-versa:

changes done externally to the DBMS are propagated to the in-memory cache, po-

tentially invalidating entries.

� Polylithic visualization model. The de�nition and implementation of a polylithic

visualization model [12] relying on a persistent table that allows for rendering on

any display (from small screen to wall-sized display) and collaboration. EdiFlow

implements visualizations using a data table that contains graphic information, such

as position (x, y), shape, color, and label.

1.3 Publications

In the context of this PhD work, the following articles were published.

1. Véronique Benzaken and Jean-Daniel Fekete and Pierre-Luc Hémery and Wael

Khemiri and Ioana Manolescu: "EdiFlow: data-intensive work�ows for visual an-

alytics", in ICDE 2011

In this article, we have described the design and implementation of EdiFlow, the �rst

work�ow platform aimed at capturing changes in data sources and launching a repair

mechanism.

2. Jean-Daniel Fekete and Wael Khemiri and Ioana Manolescu and Véronique Benzaken:

"Provenance Management in the EdiFlow VA Work�ow", in Analytic Provenance

workshop, Vancouver, 2011

This article addresses the problem of managing provenance over EdiFlow since the

work�ow manager already maintains rough provenance information from the struc-

ture of the modules. We were interested on improving this information and on the

feedback from the community.

7

Chapter 1. Introduction

3. Véronique Benzaken and Jean-Daniel Fekete and Pierre-Luc Hémery and Wael

Khemiri and Ioana Manolescu: "EdiFlow: data-intensive work�ows for visual an-

alytics", in BDA 2010

In this article, we presented a generic architecture for integrating a visual analytics

tool and a DBMS. The integration is based on a core data model, providing support

for (i) visualizations, (ii) declaratively-speci�ed, automatically-deployed work�ows,

and (iii) incremental propagation of data updates through complex processes, based

on a high-level speci�cation.

4. Ioana Manolescu and Wael Khemiri and Véronique Benzaken and Jean-Daniel Fekete.

"Reactive work�ows for visual analytics", in BDA 2009 (software demonstration)

In this article, we proposed to demonstrate a reactive work�ow platform conceived

and deployed in close connection with a database of application and work�ow-related

data. This platform enables the declarative speci�cation of reactive data-driven work-

�ows, which react in well-speci�ed ways in the event of database updates. We pre-

sented the INRIA clustering application using our platform.

5. Ioana Manolescu and Wael Khemiri and Véronique Benzaken and Jean-Daniel Fekete.

"ReaViz: Reactive work�ows for visual analytics", in Data Management & Visual

Analytics workshop, Berlin, 2009 (position paper)

This article is a position paper aimed at presenting our work to the visual analytics

community and get a feedback on it.

1.4 Thesis outline

This thesis is organized as follow:

I. In the second part, we study the state of art of both work�ows and visual analytics

�elds.

Chapter 2 provides a brief introduction to the key elements of the work�ow �eld.

We limit the description of the work�ow de�nitions to those addressed in our contri-

butions.

Chapter 3 presents the main works in the visual analytics �eld. We start by present-

ing the main features and application domains related to this �eld; then, we present

the various issues related to our work.

II. Part III provides the main contributions of this thesis.

Chapter 4 provides the design and implementation of EdiFlow, the �rst work�ow

8

1.4. Thesis outline

platform aimed at capturing changes in data sources and launching a repair mech-

anism. EdiFlow uni�es the data model used by all of its components: application

data, process structure, process instance information and visualization data. It relies

on a standard DBMS to realize that model in a sound and predictive way.

Chapter 5 addresses the problem of scalability in visual analytics. EdiFlow im-

plements a novel mechanism for managing changes in data sources. Using this mech-

anism, EdiFlow provides a uni�ed model that is both control-driven and data-driven.

III. Part IV concludes this dissertation.

9

Chapter 1. Introduction

10

Part II

State of the art

11

Chapter 2

Work�ow systems and models

Contents

2.1 Introduction . 14

2.2 Work�ow systems . 14

2.2.1 Work�ow system de�nition . 14

2.2.2 Work�ow patterns . 15

2.2.3 Work�ow description languages 18

2.2.4 Work�ow management systems 20

2.3 Scienti�c work�ow systems 22

2.3.1 Scienti�c versus business work�ows 22

2.3.2 Main requirements on scienti�c work�ow management systems 23

2.3.3 Data provenance in scienti�c work�ow systems 23

2.3.4 Overview of scienti�c work�ow systems 25

2.4 Databases and work�ow systems 27

2.4.1 Database-based work�ow systems 27

2.4.2 Active databases for work�ow execution 27

2.4.3 Transaction support for work�ow management systems 29

2.5 Conclusion . 30

13

Chapter 2. Work�ow systems and models

2.1 Introduction

T
his chapter provides the reader with background knowledge about the relevant

technologies to this PhD work. In particular, an overview of work�ow manage-

ment and databases is presented. The remainder of this chapter is structured

as follows. In Section 2.2, we provide an overview to work�ow environment.

In Section 2.3, a special type of work�ow systems is provided: the scienti�c work�ows.

Section 2.4 focuses on the relation between work�ow execution and database management

systems. Section 2.5 concludes this chapter.

2.2 Work�ow systems

2.2.1 Work�ow system de�nition

The term "work�ow" refers to the automation of processes. A process is de�ned as a

coordinated sequence of processing tasks of information, following a certain pattern and

leading to a de�nite result (for example, medical monitoring, reimbursement of expenses

...) During the execution of process, information, forms or documents are shared or are

transmitted from one workstation to another for processing.

The design of a work�ow is based on three interacting models: the organizational model,

the information model and process model:

� The organizational model: structure resources, i.e humans or machines that can

perform a task, roles;

� The information model: describes the structure of forms, documents and data that

are used and produced by a work�ow;

� The process model: de�nes the tasks components, coordination, information and

actors involved in each task.

Informally, a work�ow is a cooperative work involving a limited number of people to

accomplish in a limited time, tasks centered around a procedure de�ned and with an overall

objective. We can then think more speci�cally of the work�ow as an object that can be

described by a descriptive language in a �le which can then be interpreted and executed

by work�ow management system.

The Work�ow Management Coalition (WfMC) as the acknowledged professional asso-

ciation strives to reach standardization and also conducts widespread marketing to spread

the concepts and methodologies linked to work�ow technology.

A work�ow is composed of three main components: Activity, Process and Instance.

� Activity: A description of a piece of work that forms one logical step within a process.

An activity may be a manual activity, which does not support computer automation,

14

2.2. Work�ow systems

or a work�ow (automated) activity. A work�ow activity requires human and/or

machine resources(s) to support process execution; where human resource is required

an activity is allocated to a work�ow participant [5].

� Process: The representation of a business process in a form which supports automated

manipulation, such as modeling, or enactment by a work�ow management system.

The process de�nition consists of a network of activities and their relationships,

criteria to indicate the start and termination of the process, and information about

the individual activities, such as participants, associated IT applications and data,

etc [5].

� Instance: The representation of a single enactment of a process, or activity within

a process, including its associated data. Each instance represents a separate thread

of execution of the process or activity, which may be controlled independently and

will have its own internal state and externally visible identity, which may be used

as a handle, for example, to record or retrieve audit data relating to the individual

enactment [5]. Instances are process instances, which are representations of a single

enactment of a process, or activity instances, which are representations of an activity

within a single enactment of a process (within a process instance). Process instances

are often called cases.

2.2.2 Work�ow patterns

To compare the expressiveness of work�ow languages, a set of 43 work�ow control patterns

has been identi�ed in [69]. These patterns address the behavioral work�ow perspective.

They are classi�ed into basic patterns and advanced patterns. The basic work�ow control

patterns are supported by most work�ow languages. In the following, we present the

patterns that will be used in this thesis:

Sequence pattern Sequence refers to a set of activities in the work�ow process that

are executed in sequential order. An activity in a work�ow process is enabled after the

completion of a preceding activity in the same process.

Figure 2.1: Sequence pattern.

15

Chapter 2. Work�ow systems and models

Parallel split pattern Parallel split refers to a point in the work�ow process where a

single thread of control splits into multiple threads of control, which can be executed in

parallel. The divergence of a branch into two or more parallel branches each of which

execute concurrently.

Figure 2.2: Parallel split pattern.

Synchronization pattern Synchronization refers to a point in the work�ow process

where multiple parallel activities converge into one single thread of control, thus synchro-

nizing multiple threads. The convergence of two or more branches into a single subsequent

branch such that the thread of control is passed to the subsequent branch when all input

branches have been enabled.

Figure 2.3: Synchronization pattern.

16

2.2. Work�ow systems

Exclusive choice pattern Exclusive choice chooses one execution path from several al-

ternatives based on some decision. The divergence of a branch into two or more branches.

When the incoming branch is enabled, the thread of control is immediately passed to pre-

cisely one of the outgoing branches based on the outcome of a logical expression associated

with the branch.

Figure 2.4: Exclusive choice pattern.

Simple merge pattern Simple merge refers to two or more alternative branches that

come together without synchronization. The convergence of two or more branches into a

single subsequent branch. Each enablement of an incoming branch results in the thread of

control being passed to the subsequent branch

Figure 2.5: Simple merge pattern.

17

Chapter 2. Work�ow systems and models

Multi-choice pattern Multi-Choice refers to two or more alternative branches that

come together without synchronization. The divergence of a branch into two or more

branches. When the incoming branch is enabled, the thread of control is passed to one

or more of the outgoing branches based on the outcome of distinct logical expressions

associated with each of the branches.

Figure 2.6: Multi-choice pattern.

In order to be able to describe work�ows, several descriptions can be used. Among

them, we identify three main classes of work�ow languages. We describe below each of

these classes.

2.2.3 Work�ow description languages

There are several work�ow description languages which are used to manage business pro-

cedures, resource coordination and oversight of the progress. In[59], work�ow languages

are classi�ed based on the underlying methodologies into the following four classes. We

describe the main features of each of these languages.

Graph-based languages They are the most traditional and intuitive way for specify-

ing work�ows. They use directed graphs, whereby nodes represent activities and edges

represent the control and/or data �ow.

The structure of the graph allows covering di�erent aspects of the work�ow. They have

a nested structure as each node in the graph can be considered as a graph. In addition,

this model has two types of oriented edges:

� Control-�ow edges: Control �ow edges belong to the behavioral aspect. In particular,

a control �ow edge i ! j speci�es that activity j can start only after activity i has

terminated.

18

2.2. Work�ow systems

� Data-�ow edges: Data �ow edges belong to the informational aspect. They specify

data dependencies between work�ow activities; if activity i generates data which

is required as input to activity j then there is a data �ow edge connecting these

activities.

The main shortcoming of the graph-based languages is the speci�cation of informa-

tional and operational aspects which requires additional speci�cations, like data types of

transferred data objects or information on the execution environment of application pro-

grams.

Petri Net-based languages A Petri Net is one of several mathematical representations

of discrete distributed systems. It is represented by a bipartite graph (composed of two

types of nodes which are not connected to two nodes of the same type) oriented (consist-

ing of arc(s) that makes sense) connecting places and transitions (the nodes)[78]. Two

places cannot be linked together, nor two transitions. Places may contain tokens, typically

available resources. We distinguish several types of Petri Nets. In[13], the authors classify

them in three di�erent levels:

� Level 1: Petri Nets characterized by places that can represent Boolean values; i.e.,

a place is marked by at most one unstructured token. Examples of level 1 nets are

Condition/Event systems and State Machines.

� Level 2: Petri Nets characterized by places that can represent integer values; i.e., a

place is marked by a number of unstructured tokens. Examples of level 2 nets are

Place/Transition Nets.

� Level 3: Petri Nets characterized by places that can represent high-level values; i.e.,

a place is marked by a multiset of structured tokens. Examples of level 3 nets are

Colored Petri Nets.

Script-based languages Work�ow programming (or script) languages are often used

in projects where system development issues play a major role. Work�ow programming

languages are either used directly to specify work�ow models or they are used as an internal

representation with the aim of the controlled execution by a work�ow management system

or to allow the import and export of work�ow models.

Script-based languages are closely related to work�ow management system develop-

ment. Work�ow languages can also have multiple representations. For instance, there may

be a graphical language for the speci�cation of work�ow models, which is translated into

a script language, to be processed by a work�ow management system.

State charts are an extension of �nite state machines[40; 46; 50]. In this model, a

transition moves the work�ow from one state to another. State charts are complemented

by activity charts to describe the events that trigger state transitions.

19

Chapter 2. Work�ow systems and models

2.2.4 Work�ow management systems

Once our work�ow is speci�ed in a given language, the work�ow management system is in

charge of implementing the whole process. A Work�ow Management System is a complete

system that is used to de�ne, manage and execute procedures by implementing programs

whose execution order is de�ned in a pre-representation. In addition, many management

systems also provide the opportunity to measure and analyze the execution of the process

so that continuous improvements can be made. Such improvements may be short-terms

(e.g., reallocation of tasks to better balance the workload at any point in time) or long-term

(e.g., rede�ning portions of the work�ow process to avoid bottlenecks in the future). Most

work�ow systems also integrate other systems such as document management systems,

databases, e-mail, o�ce automation products, Geographic Information Systems, produc-

tion applications, etc. This integration provides structure to a process which employs a

number of otherwise independent systems. It can also provide a method (such as a project

folder) for organizing documents from various sources.

The WfMC provides a Reference Model (cf. Figure 2.7) for designing work�ow manage-

ment systems. This model includes all requirements that must be included in a work�ow

management system and its interfaces.

The core component in the Reference Model is the Work�ow Enactment Service which

is responsible for creation, management and execution of work�ow process instances ac-

cording to process de�nition produced by process de�nition tools. The work�ow enactment

software consists of one or more work�ow engines, which are responsible for managing all,

or part of the execution of individual process instances. It interprets a process de�nition

coming from the de�nition tool and coordinates the execution of work�ow client applica-

tions for human tasks and invoked applications for computerized tasks. This may be set up

as a centralized system with a single work�ow engine responsible for managing all process

execution or as a distributed system in which several engines cooperate, each managing

part of the overall execution.

Process De�nition Tools are used to analyze, model, describe and document a business

process. The outcome of this process modeling and design activity is a process de�nition

which can be interpreted at run time by the work�ow engine(s) within the enactment

service.

Work�ow Client Applications involve the activities which require interaction with the

human resources. In the work�ow model, interaction occurs between the client application

and a particular work�ow engine through a well-de�ned interface embracing the concept of

a worklist - the queue of work items assigned to a particular user by the work�ow engine.

Invoked Applications are the programs invoked by the work�ow management system.

Administration and Monitoring Tools are used to track work�ow process events during

work�ow process execution.

20

2.2. Work�ow systems

Figure 2.7: The work�ow management coalition's reference model.

In order to achieve interoperability among various WFMS implementations, WfMC has

de�ned �ve standard interfaces between the components. These interfaces are designated

as work�ow APIs and interchange formats. These interfaces are:

� Interface 1: Process De�nition Tools Interface. The purpose of this interface is to

integrate process de�nitions generated by di�erent process de�nition tools, or to use

a de�nition generated for a work�ow system in another system.

� Interface 2: Work�ow Client Applications Interface. Users of a work�ow system

utilize several types of client applications such as editors, CAD/CAM tools, and

WWW browsers. This interface provides integration of these applications in order

to participate in a work�ow system.

� Interface 3: Invoked Applications Interface. WFMSs are expected to work�ow with

already existing software components such as legacy systems and DBMS applications.

� Interface 4: Other Work�ow Enactment Services Interface. It may be necessary

for di�erent enactment services to interoperate because a process in one enactment

service may invoke a process in another.

� Interface 5: Administration and Monitoring Tools Interface. An administration and

monitoring tool may be a separately developed system, or it may be necessary to

centrally monitor di�erent work�ow systems.

21

Chapter 2. Work�ow systems and models

2.3 Scienti�c work�ow systems

Among work�ow, a speci�cation is the scienti�c work�ow. Scienti�c work�ows are �exible

tools for accessing scienti�c data, executing complex analysis, simulation and visualization

tasks [18]. Scienti�c work�ows often exhibit particular traits, e.g., they can be data-

intensive, compute-intensive, analysis-intensive, and visualization-intensive, thus covering

a wide range of applications from low-level plumbing work�ows of interest to Grid engi-

neers, to high level knowledge discovery work�ows for scientists[7]. Each work�ow consists

of analytical steps that may involve database access and querying, data analysis and min-

ing, and intensive computations performed on high performance cluster computers. Thus,

scienti�c work�ows systems are a formalization of the ad-hoc process that a scientist may

go through to get from raw data to publishable results.

2.3.1 Scienti�c versus business work�ows

Following [58], we compare features of scienti�c work�ows and business work�ows consid-

ering several aspects. We sum up them in the following:

� Implementation vs Modeling. Scienti�c work�ows are developed with executability in

mind, i.e., work�ow designs can be viewed as executable speci�cations. In contrast,

the primary goal of business process modeling is to develop a common understanding

of the process that involves di�erent persons and various information systems.

� Experimental vs Business-Driven Goals. A scienti�c work�ow can be seen as a com-

putational experiment, whose outcomes may con�rm or invalidate a scienti�c hypoth-

esis, or serve some similar experimental goals. In contrast, the outcome of a business

work�ow is known before the work�ow starts.

� Multiple Work�ow Instances. It is common that business work�ows handle large

numbers of cases and independent work�ow instances at any given time. For example,

each instance of an order work�ow makes sure that the particular customer receives

the ordered goods, and that billing is taken care of. In scienti�c work�ows, truly

independent instances are not as common. Instead, large numbers of related and

interdependent instances may be invoked, e.g., in the context of parameter studies.

� Users and Roles. Business work�ows usually involve numerous people in di�erent

roles. A business work�ow system is responsible for distributing work to the human

actors in the work�ow. In contrast, scienti�c work�ows are largely automated, with

intermediate steps rarely requiring human intervention.

� Data�ow vs Control-Flow Focus. An edge A to B in a business work�ow typically

means B can only start after A has �nished. Data�ow is often implicit or modeled

separately in business work�ows. However, A to B in a scienti�c work�ow typically

represents data�ow, i.e., actor A produces data that B consumes.

22

2.3. Scienti�c work�ow systems

� Data�ow Computations vs Service Invocations. In scienti�c work�ows data is often

streamed through independent processes. These processes run continuously, getting

input and producing output while they run. However, in business work�ows, there

are usually no data streams. An activity gets its input, performs some action, and

produces output. An order arrives, it is checked, and given to the next activity in

the process.

2.3.2 Main requirements on scienti�c work�ow management systems

Following [39], we present the main requirements needed for a scienti�c work�ow manage-

ment systems:

� Usability: Scientists need the same support for services used in traditional work�ows,

i.e., scientists should be able to specify the services to be used in a scienti�c work�ow

themselves, or to delegate the service discovery to the scienti�c work�ow management

system. The need for automation basically includes the deployment of work�ows,

the provisioning of work�ows, services and data, the instantiation and execution of

work�ows, and the service discovery.

� Flexibility: With �exibility, we denote the ability of a system to react to changes

in its environment. Approaches to �exibility of work�ows can be divided into two

groups. First, a work�ow can be modi�ed automatically or manually according to

the changed situation (known as adaptation). Second, a work�ow can be modeled in

a way that avoids its modi�cation even in the presence of a changing environment

(known as avoid change).

� Robustness: The term robustness denotes the ability of being error-resistant. The

needed �exibility mechanisms mentioned above are a way to improve the robustness

of a system. But additional approaches are needed to protect the execution progress

from being lost in case of unforeseeable failures, to reach a consistent system state

even in the presence of failures, and to proceed a simulation/experiment after a

failure.

� Scalability: Scienti�c work�ows should scale with the number of users, number of

utilized services, data or calculation resources, and involved participants. Today,

typical scienti�c work�ows are mostly executed in a central manner on a single ma-

chine. A decentralized work�ow enactment can help to scale via distributed process

execution.

2.3.3 Data provenance in scienti�c work�ow systems

Work�ows can generate very large amounts of data. With these data, there are metadata

that can describe them. The provenance is a type of metadata. It is also called "Genealogy

23

Chapter 2. Work�ow systems and models

Lineage". This type of metadata follows the steps by which the data were derived and can

make an important value to science. The provenance can be described by several di�erent

terms. This depends on the scope. Several de�nitions exist in the literature. In[21],

Buneman et al de�ne the data source in the context of databases. It is a description of the

origin of the data and all processes that have sent this information to the database. Thus,

the provenance is not only associated with the data but also the processes that led to the

generation of such data.

In [38], Greenwood et al extend the de�nition of Lanter and de�ne the source as a

metadata that records the di�erent processes, annotations and notes experiments in work-

�ows. Finally, in [74], Simmhan et al de�ne the source as the information that allows us to

determine the history of a given from its origin. Data can be in di�erent formats: tables,

�les, collections, etc.

Following [74], we sum up why we use the provenance as follows:

� Data Quality: The source can be used to estimate data quality and level of reliability.

This estimate is based on the data source as well as the estimation process. This is

an example of data from temperature sensors. Indeed, these temperature sensors can

provide two totally di�erent at times very close. This can be explained by a hardware

failure or climatic factors. This data will have an accuracy which is the reliability

of the sensor. One can refer to this in a wide range of literature in probabilistic

databases.

� The audit (control): To extract data from databases and applications, analyze and

report various forms, it is necessary to ensure consistency. Otherwise, the scientist

may make choices based on misinformation. This step, which is fundamental, is

not to be taken lightly. The source can be used to trace the audit data, determine

resource usage and detect errors in data generation

� Reproduction of data: The detailed information of the provenance, may allow the

reproduction of data and to help maintain their credibility. This information can be

viewed as a creative recipe from the data.

� Attribution: The provenance may specify the copyright information and their ci-

tation. Indeed, in metadata, may have found, for example what is the person (or

entity) that generated the data and the rights related to such information. For ex-

ample, some data, we have the right to use them but not to sell, etc.

� Querying: The logical using basic of the provenance would to query a metadata

database for discovering new knowledge.

24

2.3. Scienti�c work�ow systems

2.3.4 Overview of scienti�c work�ow systems

The increasing number of scienti�c applications involving complex analysis has motivated

several proposals scienti�c work�ow management systems in the academic community,

including, Kepler, who have a general purpose, while others are intended for a particular

type of application such as ecology, bio-informatics, etc.

One of the �rst integration of scienti�c work�ows with DBMSs was supported by [6].

We present the following the main scienti�c work�ow management systems.

2.3.4.1 SciRun

SciRun [66] is a Problem Solving Environment, for modeling, simulation and visualization

of scienti�c problems. It is designed to allow scientists to interactively control scienti�c

simulations while the computation is running. SCIRun was originally targeted at compu-

tational medicine but has, later, been expanded to support other scienti�c domains. The

SCIRun environment provides a visual interface for data�ow network's construction. As

the system will allow parameters to be changed at runtime, experimentation is a key con-

cept in SCIRun. As soon as a parameter is updated, at runtime, changes will be propagated

through the system and a re-evaluation is launched.

2.3.4.2 GPFlow

GPFlow [70] is a work�ow platform providing an intuitive web based environment for scien-

tists. The work�ow model is inspired by spreadsheets. The work�ow environment ensures

interactivity and isolation between the calculation components and the user interface. This

enables work�ows to be browsed, interacted with, left and returned to, as well as started

and stopped.

2.3.4.3 VisTrails

VisTrails [8] combines features of both work�ow systems and visualization �elds. Its main

feature is to e�ciently manage exploratory activities. The user interaction in VisTrails

is performed by iteratively re�ning computational tasks and formulating test hypotheses.

VisTrails maintains detailed provenance of the exploration process. Users are able to return

to previous versions of a data�ow and compare their results. However, VisTrails is not

meant to manage dynamic data. In VisTrails, dynamicity is performed by allowing users

to change some attributes in order to compare visualization results. It does not include any

model to handle data changes. Indeed, when the user starts its work�ow process, VisTrails

does not take into account the updated data in activities that have already started: there

is no guarantee that the model for updates is correct.

25

Chapter 2. Work�ow systems and models

2.3.4.4 Trident

Trident [11; 85] is a scienti�c work�ow workbench built on top of a commercial work�ow

system. It is developed by Microsoft Corporation to facilitate scienti�c work�ows manage-

ment. Provenance in Trident is ensured using a publication/subscription mechanism called

the Blackboard. This mechanism allows also for reporting and visualizing intermediate

data resulting from a running work�ow. One of the salient features of Trident is to allow

users to dynamically select where to store results (on SQL Server for example) issued by a

given work�ow. However, it does not support dynamic data sources nor does it integrate

mechanisms to handle such data.

2.3.4.5 Orchestra

Orchestra [2; 53] addresses the challenge of mapping databases which have potentially

di�erent schemas and interfaces. Orchestra is specially focusing on bio-informatics ap-

plications. In this domain, one �nds many databases containing overlapping information

with di�erent levels of quality, accuracy and con�dence. Database owners want to store a

relevant ("alive") version of relevant data. Biologists would like to download and maintain

local "live snapshots" of data to run their experiments. The Orchestra system focuses on

reconciliation across schemas. It is a fully peer-to-peer architecture in which each partici-

pant site speci�es which data it trusts in. The system allows all the sites to be continuously

updated, and on demand, it will propagate these updates across sites. User interaction in

Orchestra is only de�ned at the �rst level using trust conditions. Moreover, the deployed

mechanism is not reactive. Indeed, there are no restorative functions called after each

insert/update operation.

2.3.4.6 Kepler

Kepler is a software application for the analysis and modeling of scienti�c data. Using

Kepler graphical interface and components, scientists with little background in computer

science can create executable scienti�c work�ows, which are �exible tools for accessing

scienti�c data (streaming sensor data, medical and satellite images, simulation output,

observational data, etc.) and executing complex analysis on the retrieved data[41].

Kepler system follows an actor-oriented modeling paradigm individual work�ow com-

ponents such as data base access and querying are abstracted into a set of generic, reusable

tasks [60].

The visual interface of Kepler provides us the possibility to see each work�ow step

as an actor, a processing component that can be dragged and dropped into a work�ow.

Connected actors form a work�ow allowing scientists to inspect and display on the �y as

it is computed, make parameter changes as necessary and re-run and reproduce computer

results. Kepler combines the advantages of all programs (Stella to model systems graphi-

cally, R or Matlab to perform statistical analyses) permitting users to model, analyze and

26

2.4. Databases and work�ow systems

display data in one easy-to-use interface[41].

2.4 Databases and work�ow systems

2.4.1 Database-based work�ow systems

One approach for implementing a work�ow management system is the so-called database-

based approach. The database-based systems store the documents and the process infor-

mation in a database. In [30], Eder et al describe the various advantages of this approach.

We summarize below:

� The execution of a work�ow is a typical task for a client-server application. Thus,

several users can connect to the work�ow server, which can cause malfunctions. The

recovery system of databases ensures that even after a failure state the database

remains consistent and each running process is restored.

� The integrity of data is ensured by having a central storage of all documents. An

explicit versioning system can be handled by the database.

� The transaction mechanism in DBMS permits to increase concurrency in a safe way.

It is possible that di�erent users view a document concurrently, or di�erent users edit

di�erent parts of the same document.

� Several database management systems provide application programming interfaces

(APIs) to various languages and allows access over the network. These features are

necessary, when coupling applications with the work�ow system.

� The presence of all information on the status of processes and activities allows easy

implementation of a monitoring component. This component allows users to inspect

the state of the process, the content of documents, etc. All this operation can be

recovered using SQL queries.

2.4.2 Active databases for work�ow execution

Traditionally, database systems have been passive, storing and retrieving data in direct

response to user requests without initiating any operations on their own. As the scale and

complexity of data management increased, interest has grown in bringing active behavior

into databases. Typically this behavior is described by event-condition-action (ECA) rules

(cf. Figure 2.8).

ECA rules comprise three components: event E, condition C, and action A. The event

describes an external happening to which the rule may be able to respond. The condition

examines the context in which the event has taken place. The action describes the task

27

Chapter 2. Work�ow systems and models

to be carried out by the rule if the relevant event has taken place and the condition has

evaluated to true [67]. In sum, if the speci�ed event E occurs and if the condition C is true

then the speci�ed action A is executed.

Figure 2.8: Principle of an active database.

While there is agreement that all active databases must detect event occurrences, sup-

port rule management, and execute actions[28], there is no consensus on how the events,

conditions and actions are speci�ed. Rule conditions may get arbitrarily complex and rule

conditions may have to be monitored in one of many di�erent ways[68].

Each operation performed over the database (insert, update, delete, select) is considered

as an event, which can trigger the application of a rule. If a rule is triggered, the conditions

of the rule are evaluated. If the conditions are satis�ed, the actions of the rule are applied.

The basic structure of a rule is:

create trigger name on table

after event

when condition

then action

In [30], the authors emphasize that the whole work�ow manager simply consists of all

the rules resulting from the compilation of work�ow speci�cations. All other necessary

features are already provided by the database management system.

28

2.4. Databases and work�ow systems

The rules are automatically generated from the declarative descriptions of the tasks

and �ows by the compiler. Therefore, the active database management system is the

work�ow server and has the functionality described in the process speci�cation. For each

�ow one rule is generated (called �ow-rule), triggering when a task is completed, i.e. after

the satisfaction of the postcondition. This corresponds to the third step of the above

execution model. The following rule speci�es a �ow of a form of type form i from task A

to task B , where the form is sent if the condition �ow-condition is met.

create trigger flow n step3 on form i

after update status

when new.status='finished'

and form.type=form i and form.task = task A and flow-condition

then update new set task = task B;

2.4.3 Transaction support for work�ow management systems

In [30], Eder et al extend the transaction concept to develop work�ow transactions for

consistent execution of work�ows. The main characteristics of work�ow transactions may

be summarized as follows:

� Analogies: In DBMS, a transaction transforms a database from one state to another

while preserving its consistency. Similarly, a work�ow transaction transfers a work-

�ow process from a consistent state A to the next consistent state B. We will refer

to transaction-level databases as traditional transactions and those conducted on the

work�ow process as work�ow transactions.

� Transaction structure: Work�ow transactions should allow a hierarchical structure to

be applicable for complex applications. A work�ow usually consists of several activi-

ties that are themselves composed of (sub-) activities. Each activity is a transaction

work�ow.

� Atomicity: Application dependent (user-de�ned) failure atomicity is required given

that work�ow activities are in general of long duration. Instead to selectively roll

back parts of the work until the most recent consistent state (within the transaction)

is reached. The work�ow transaction manager needs support from a human expert

(e.g., in WAMO [31]) and more advanced recovery concepts[56] have to be provided

to �nd such a consistent state the work�ow transaction manager.

� Consistency: The commit of an activity is taken as a guarantee that the activity has

produced a consistent result. If an activity fails then an inconsistent state may be

the consequence. As for �at transactions, such situations should not occur and must

therefore be removed.

29

Chapter 2. Work�ow systems and models

� Isolation: It is not possible to execute work�ow transactions fully isolated from con-

current transactions. Serializability as correctness criterion for concurrent processing

is too restrictive. There exist several theoretical approaches to overcome this problem

without compromising consistency, as for example semantic serializability[20]. The

goal is to exploit the semantics of the activities by de�ning compatibility speci�ca-

tions between the activities.

� Durability: As soon as a work�ow (sub-)transaction commits, its e�ects are persis-

tent.

2.5 Conclusion

This chapter provides the necessary background knowledge for understanding the work�ow

concept and specially the meet between work�ow systems and database management sys-

tems which is a main feature of our contribution in this thesis. The next chapter focuses on

the visual analytics domain. Indeed, the relationship between scienti�c work�ow systems

and visualization systems becomes increasingly narrow. The visualization task is used to

extract knowledge that cannot be released following only an automated reasoning.

To summarize, all work�ow platforms presented in this chapter share some important

features, which we also base our work on. Work�ows aredeclaratively speci�ed, data-

intensive and (generally) multi-user. They include querying and updatingdata residing in

some form of a database (or in less structured sources). Crucial for their role is the ability

to invoke external procedures, viewed as black boxes from the work�ow engine perspective.

The procedures are implemented in languages such as C, C++, Matlab, Fortran. They

perform important domain-dependent tasks;procedures may take as input and/or produce

as output large collections of data. Finally, current scienti�c work�ow platforms do provide,

or can be coupled with, somevisualization tools, e.g., basic spreadsheet-based graphics,

map tools.

None of these platforms are currently able to propagate data changes to a running

process and launch a repair mechanism.

30

Chapter 3

Visual analytics survey

Contents

3.1 Introduction . 32

3.2 Visual analytics de�nition . 32

3.2.1 Goals of visual analytics . 32

3.2.2 Applications of visual analytics 33

3.2.3 Visual analytics disciplines . 34

3.3 Visual analytics as a process 36

3.4 Scalability challenge in visual analytics 37

3.5 Visual analytics systems . 38

3.5.1 Requirements and functionalities of visual analytics systems . 38

3.5.2 WikiReactive . 38

3.5.3 Vox Civitas . 40

3.5.4 Radio frequency �ngerprinting-based localization system . . . 41

3.6 Conclusion . 42

31

Chapter 3. Visual analytics survey

3.1 Introduction

T
his chapter provides the reader with background knowledge about the visual

analytics �eld. The remainder of this chapter is structured as follows. In

Section 3.2, we introduce the visual analytics �eld and describe its process in

section 3.3. Section 3.4 focuses on the scalability challenge in visual analytics

which is the major concern of our contributions in this �eld. The Section 3.5 enumerates

several visual analytics tools devised into generalized and specialized tools. Section 3.6

concludes this chapter.

3.2 Visual analytics de�nition

According to [77] "Visual analytics is the science of analytical reasoning facilitated by in-

teractive visual interfaces". The standard approach for visualization is to aim at interactive

visual systems that enable people to obtain insight in large data sets. This is also a central

aspect of visual analytics, but here a broader view is taken. If we want to support massive

data sets, other data analysis methodologies, such as statistics and machine learning, have

to be integrated in order to reduce the data set size and to enable an optimal division of

labor between man and machine. In complex, real-world cases the data sets to be analyzed

are often not just plain tables with numbers, but are mixed collections of text, multimedia,

and relational data. The knowledge discovery process is not just about obtaining insight,

but encompasses a series of stages, from data collection via analysis to presentation. Also,

large data analysis problems require teams of people, where each brings in his or her own

expertise. As a result, visual analytics is an ambitious endeavor, requiring a variety of

disciplines, and with many open ends and unanswered questions[79]. Additionally, visual

analytics is the focus of a vibrant and active research community and this with the creation

of an IEEE supported conference in 2006 and a growing number of articles and attendees.

3.2.1 Goals of visual analytics

In [54], authors de�ne four goals that must be achieved by visual analytics. Visual analytics

is the creation of tools and techniques to enable people to:

� Synthesize information and derive insight from massive, dynamic, ambiguous, and

often con�icting data.

� Detect the expected and discover the unexpected.

� Provide timely, defensible, and understandable assessments.

� Communicate these assessments e�ectively for action.

32

3.2. Visual analytics de�nition

3.2.2 Applications of visual analytics

Visual analytics is essential in application areas where large information spaces have to

be processed and analyzed. Major application �elds are physics and astronomy because

they o�er massive volumes of unstructured data from continuous streams of terabytes of

data that can be recorded and analyzed. We describe in the following three applications

of visual analytics in three di�erent areas.

Figure 3.1: Visual analytics applications.

3.2.2.1 Economic decision-making

In [71], Savikhin et al addressed the problem of how visual analytics can improve economic

decision making specially in Winner's and Loser's Curse problems in economics. They

used visual analytics as a tool to consider all the information of the problem and make a

decision that is closer to the optimal.

The article showed that all the information displayed via a visual can be useful for over-

coming bounded rationality issues that arise from the cognitive limitation of considering

all the information at hand [71]. This also suggests that the addition of an interactivity

element is very important to the usefulness of visuals.

3.2.2.2 Thermal state management

In [45], Hao et al present visual analytics techniques for thermal state detection. The

authors embedded the visual analytics capabilities into a mobility-enabled visualization

platform, Data Center Mobile Studio, which is hosted on HP iPAQ 210. This empowers

onsite administrators to visualize current thermal state information. The key technical

33

Chapter 3. Visual analytics survey

work is centered on the ability to perform progressive visual analytics on data either from

a local database cache or a web service. The right of the Figure 3.1 illustrates visual time

series for �nding out of sequence sensors.

3.2.2.3 Astrophysics

In [9], Aragon et al described a case study involving a visual analytics system developed

for astrophysicists collaboratively operating a large telescope for time-critical supernova

observation. The authors showed the e�ectiveness of a simplifying visualization, projecting

three-dimensional data to a rectilinear two-dimensional format, in increasing situation

awareness for users needing to synthesize large amounts of streaming data and make critical

decisions under time pressure. The left of the Figure 3.1 illustrates the Data Taking window

where the observer can follow the targets on The Sky visualization, take notes on the success

or failure of each observation.

3.2.3 Visual analytics disciplines

Figure 3.2: The visual analytics disciplines.

In [54], authors present various disciplines related to the visual analytics �eld. Fig-

ure 3.2 summarizes the visual analytics block. We describe in the following each discipline

and its relation to visual analytics.

34

3.3. Visual analytics as a process

� Visualization. Information visualization has developed methods for the visualization

of abstract data where no explicit spatial references are given. Typical examples

include business data, demographics data, social networks and scienti�c data.

� Data Management. The e�cient management of data of various types and qualities

is a key component of visual analytics, as it typically provides the input of the data,

which is to be analyzed. Generally, a necessary precondition to perform any kind of

data analysis is an integrated and consistent database.

� Data Mining. The discipline of data mining develops computational methods to au-

tomatically Data mining: automatically extract valuable information from raw data

by means of automatic analysis algorithms. In almost all data analysis algorithms,

a variety of parameters needs to be speci�ed: a problem which is usually not trivial

and often needs supervision by a human expert. Interactive visualization can help

with this, and can also be used in presenting the results of the automatic analysis,

so called visual data mining.

� Spatio-temporal Data Analysis. The analysis of data with references both in space

and in time, spatial-temporal data, has added complexities of scale and uncertainty.

For instance, it is often necessary to scale maps to look for patterns over wide and

also localized areas, and similarly for time, we may wish to look for trends that occur

during a day and others that occurs on a yearly basis.

� Perception and Cognition. Perception and cognition represent the more human side

of visual analytics. Visual perception is the means by which people interpret their

surroundings and for that matter, images on a computer display. Cognition is the

ability to understand this visual information, making inferences largely based on prior

learning.

� Infrastructure. Infrastructure is concerned with linking together all the processes,

functions and services required by visual analytic applications so they work in har-

mony, in order to allow the user to undertake their data exploration tasks in an

e�cient and e�ective manner.

� Evaluation. Evaluation is very di�cult given the explorative nature of visual analyt-

ics, the wide range of user experience, the diversity of data sources and the actual

tasks themselves.

To summarize, Visual analytics is considered as a work�ow process. We describe, in

the following, such a process.

35

Chapter 3. Visual analytics survey

Figure 3.3: The visual analytics process.

3.3 Visual analytics as a process

The visual analytics process combines automatic and visual analysis methods with a tight

coupling through human interaction in order to gain knowledge from data [55]. Figure 3.3

shows an overview of the di�erent stages and their transitions in the visual analytics pro-

cess.

After the transformation and the cleaning of data, the analyst may choose between

applying visual or automatic analysis methods.

If the user chooses an automated analysis to be performed �rst, data mining algorithms

are applied to generate models of the original data. Once a model is created the analyst

has to evaluate and re�ne it. This task can best be done by interacting with the data.

Visualizations allow the analysts to interact with the automatic methods by modifying

parameters or selecting other analysis algorithms. Model visualization can then be used

to evaluate the �ndings of the generated models. Alternating between visual and auto-

matic methods is characteristic for the visual analytics process and leads to a continuous

re�nement and veri�cation of preliminary results.

If the user chooses a visual data exploration to be performed �rst, he/she has to con�rm

the generated hypotheses by an automated analysis. User interaction with the visualization

is needed to reveal insightful information, for instance by zooming in on di�erent data areas

or by considering di�erent visual views on the data. Findings in the visualizations can be

used to steer model building in the automatic analysis.

36

3.4. Scalability challenge in visual analytics

Most visual analytics platforms are limited in the volume of data handled. The next

section focuses on the scalability challenge in visual analytics.

3.4 Scalability challenge in visual analytics

In [4], the authors de�ne the scalability as follows: "Scalability, as a property of systems,

is generally di�cult to de�ne [49] and in any particular case it is necessary to de�ne the

speci�c requirements for scalability on those dimensions that are deemed important. It

is a highly signi�cant issue in electronics systems, databases, routers, and networking. A

system, whose performance improves after adding hardware, proportionally to the capacity

added, is said to be a scalable system. An algorithm, design, networking protocol, program,

or other system is said to scale, if it is suitably e�cient and practical when applied to large

situations (e.g., a large input data set or a large number of participating nodes in the case

of a distributed system). If the design fails when the quantity increases, it does not scale".

Current technologies cannot support the scale and complexity of the growing analytical

challenge. New techniques and underlying scienti�c foundations are needed to deal with

the scale of the problems we are facing in threat analysis, emergency management, and

border protection [77].

We present the following �ve scalability issues related to the visual analytics �eld.

� Information Scalability. Information scalability implies the capability to extract rel-

evant information from massive data streams. Methods of information scalability

include methods to �lter and reduce the amount of data, techniques to represent the

data in a multi-resolution manner, and methods to abstract the data sets.

� Visual Scalability. Visual scalability is the capability of visualization representation

and visualization tools to e�ectively display massive data sets, in terms of either the

number or the dimension of individual data elements[32]. Factors a�ecting visual

scalability include the quality of visual displays, the visual metaphors used in the

display of information, the techniques used to interact with the visual representations,

and the perception capabilities of the human cognitive system[77].

� Display Scalability. Most published visualization techniques are designed for one size

display. Applications that support display scalability include a variety of display to

take advantage of whatever capabilities are available to support analysis and collabo-

ration. These applications make e�ective use of everything from a wall-sized display

in an emergency response situation room to a PDA or phone-sized display in the

hands of a �rst responder in the �eld.

� Human Scalability. The number of humans involved in analytical problem-solving,

border protection, and emergency preparedness and response activities scale. Most

published techniques for supporting analysis are targeted for a single user at a time.

37

Chapter 3. Visual analytics survey

Applications that support human scalability scale from a single user to a collaborative

(multi-user) environment.

� Software Scalability. Software scalability is the capability of a software system to

interactively manipulate large data sets. Software scalability includes the generation

of new algorithms that scale to the ever-increasing information sets.

3.5 Visual analytics systems

3.5.1 Requirements and functionalities of visual analytics systems

Following [77], we present a set of diverse analytical tasks that must be enabled by visual

analytics tools:

� Understanding past and present situations quickly, as well as the trends and events

that have produced current conditions;

� Identifying possible alternative futures and their warning signs;

� Monitoring current events for emergence of warning signs as well as unexpected

events;

� Determining indicators of the intent of an action or an individual;

� Supporting the decision maker in times of crisis.

These tasks will be conducted through a combination of individual and collaborative

analysis, often under extreme time pressure. Visual analytics must enable hypothesis-based

and scenario-based analytical techniques, providing support for the analyst to reason based

on the available evidence[77].

We present the following two classes of visual analytics tools. The �rst class describes

the specialized tools. It focuses on the particular area such as astrophysics, genetics, etc.

The second class has a more general aspect and includes visual analysis technique that can

be used in several areas.

3.5.2 WikiReactive

WikiReactive [17] is an open architecture to compute incrementally and maintain several

aggregated measures on the French Wikipedia. These measures, if available and visualized

e�ectively, could spare a lot of monitoring time to Wikipedia users, allowing them to focus

on quality and coverage of articles instead of spending their time navigating heavily to

track vandals and copyright infringements. The WikiReactive infrastructure, shown in

Figure 3.4 was experimented over the French Wikipedia provided as a compressed �le (4.5

GB) from Wikipedia api. This �le is about 10 times larger once uncompressed.

38

3.5. Visual analytics systems

Figure 3.4: Overall scheme of the WikiReactive infrastructure.

The Wikipedia infrastructure uses �ve modules to compute and maintain aggregated

information in multiple tables:

� Module 1. Di� computation: In this step, a minimal set of editing operations (inser-

tions, deletions and moves) is computed at the character level to mimic the edition

process. For each revision, the detailed list of editing operations is stored as well as

the associated article and user in the detailed di� table.

� Module 2. Per-user contribution computation: This step consists of assigning each

user an identi�er and using it to sign each character in the revision. The contribution

table of the latest revision of each article is stored.

� Module 3. Article activity computation: This module consists of computing the sum

of characters touched by the di�erent change operations in the aggregated di� table

for each revision.

� Module 4. User contribution computation: In this module, the aggregated sum of

users operations on individual articles for each user, is kept in the users table.

� Module 5. Character per user computation: The last module updates, for each user,

the number of characters remaining in each article he or she has contributed to.

The computed aggregates are queried through a Web service based on the Google

Visualization Data Source [1] providing a communication protocol and a simpli�ed query

language similar to SQL.

39

Chapter 3. Visual analytics survey

3.5.3 Vox Civitas

Figure 3.5: Vox Civitas user interface.

Vox Civitas [29] is a visual analytics tool designed to help journalists and media pro-

fessionals extract news value from large scale aggregations of social media content around

broadcast events. This tool is based on several text analysis algorithms that support the

journalistic goals and enhance the use of Vox Civitas as a visual analytics tool for journal-

istic inquiry. The text analysis algorithms can be classi�ed into four families:

� Relevance: The relevance of messages is measured by calculating term-vector similar-

ity of messages to the moment in the event during which the messages were posted.

� Uniqueness: The uniqueness of a message is measured in relation to the other mes-

sages sent during the same time interval. It is computed as the di�erence between

the term-vector space representations of the message to the centroid term-vector

representation of all of the messages for that particular minute of the event.

� Sentiment: The sentiment analysis is used to inform an analyst's understanding of

the polarity (i.e. positive versus negative) of the social media reaction to the event.

This analysis is done following two steps. The �rst step, the messages are classi�ed

based on whether they were carrying subjective. The classi�er used for this task is

40

3.5. Visual analytics systems

based on a lexicon of words. The second step, a supervised learning algorithm is

applied trained with 1900 manually tagged messages.

� Keyword extraction: The text analysis algorithms used in this step aim to identify

keywords used in the social media stream that could be useful and interesting for

guiding analysts. For each minute the top 10 keywords are extracted and ranked by

their tf-idf score [61].

As shown in �gure 3.5, the Vox Civitas interface integrates video from an event with

the ability to visually assess the textual social media response to that event. Filtering

messages is done via the module shown in the A part of the �gure. Next to the video

content, the B panel enables viewing the actual Twitter messages posted about the event.

While the C panel shows the video timeline, the D panel presents the topic timeline. The

E, F and G parts of the �gure present three views (volume graph, sentiment timeline and

keywords component) for aggregate response analysis.

3.5.4 Radio frequency �ngerprinting-based localization system

Figure 3.6: User interface of the radio frequency system.

In [44], authors present a visual analytics system enabling developers of Radio frequency

(RF) �ngerprinting-based techniques for localization to visually gain insight on whether

their collected datasets and chosen �ngerprint features have the necessary properties to

enable a reliable RF �ngerprinting-based localization system.

Figure 3.6 shows the user interface of the system. It consists of four main panels:

41

Chapter 3. Visual analytics survey

� Dataset selection: This panel is for selecting the datasets that will be used.

� Feature selection: This panel allows the system's users to select features for �nger-

prints.

� Main map: This panel is used to display area for the geospatial visualization.

� Perspective control: The perspective panel is used to control the viewing perspectives.

Each computation module is related to a perspective. We describe in the following

three modules of calculation used by the system:

� Data variance perspective: It shows the raw data of all the datasets with their cor-

responding feature sets.

� Spatial variance perspective: This perspective shows the spatial variance between

�ngerprints in the high dimensional feature space using the selected features.

� Test classi�cation perspective: It provides a geospatial representation to show the

results of the location classi�cation using the generated �ngerprints.

Discussion

Visual analytics applications are currently built using ad-hoc architectures: no clear ref-

erence model exists to guide application designers[54]. Such applications also tend to use

and extend the software models of the main architect's application domain. Since most

visual analytics systems are built by information visualization practitioners, they usually

follow the information visualization reference model [23; 27] for the visualization as well

as the interaction part; the data analysis part being integrated or performed separately

depending on the level of computation and data management needed.

In addition, visual analytics systems contain two essential parts: (i) a recurring part

for analytical processing and reactive to data and (ii) an exploratory and interactive part

allowing a reactivity to the user actions.

Scienti�c work�ow systems allow the �rst part of treatment (analytical processing),

however, they are not reactive. Similarly, visual analytics systems are exploratory but do

not control the data analysis.

Thus, a director component is missing in visual analytics systems as well as scienti�c

work�ows systems. This component must have the role of management and control of

dynamic change of data and user interactions.

3.6 Conclusion

In this chapter, we presented the necessary background on the visual analytics �eld to

understand the rest of the dissertation. This background describes the di�erent tools and

approaches that will be used in the next part.

42

3.6. Conclusion

Most of existing interactive platforms for data visualization [35; 48] focus on the inter-

action between the human expert and a data set consisting of a completely known set of

values. They do not ease the inclusion of data analysis programs on the data. Moreover, as

previously explained, most of them do not support the de�nition of structured processes,

nor (by absence of an underlying DBMS) do they support persistence and sharing. An

exception is [36] which is a visualization tool combining database technology. However,

there is no repair mechanism and the change propagation is not supported.

43

Chapter 3. Visual analytics survey

44

Chapter 4

Conclusion of the part

This chapter can help readers position themselves in relation to the state of the art and

identify the contributions of our work.

It appears at the end of this state of the art that the �elds of work�ows systems

and visual analytics are very active and continue to attract interest from many research

communities (Database, Statistics, Software Engineering, etc.).

In this state of the art, we have described and analyzed various features and challenges

related to these two areas. We present brie�y in the following each of these challenges and

the solutions we provide to solve them.

4.1 Challenges

Handling dynamic data The management of dynamic data is a common challenge

between scienti�c work�ows and visual analytics communities. Indeed, start from the

assumption that a scientist starts a work�ow process with long-term activities (ie, clustering

program with images of the solar system). During the execution of this process, new data

enter the system. Today, the only option available to the scientist to take into account

the new data in the process is to stop the current process and restart it again. What is

inconceivable when you have long-term activities.

As well as, an important class of visual analytics applications has to deal with dynamic

data, which is continuously updated (e.g., by receiving new additions) while the analysis

process is running; conversely, processes (or visualization) may update the data. The

possible interactions between all these updates must be carefully thought out, in order to

support e�cient and �exible applications.

Scalability and interaction challenges Most visual analytics platforms are memory-

based and are therefore limited in the volume of data handled. Moreover, the integration of

each new algorithm (e.g., for clustering) requires integrating it by hand into the platform.

Finally, they lack the capability to de�ne and deploy well-structured processes where users

45

Chapter 4. Conclusion of the part

with di�erent roles interact in a coordinated way sharing the same data and possibly the

same visualizations.

Most current visual analytics tools rarely rely on persistent databases (with the excep-

tion of [36]). Instead, the data is loaded from �les or databases and is manipulated directly

in memory because smooth visual interaction requires redisplaying the manipulated data

10-25 times per second. Standard database technologies do not support continuous queries

at this rate; at the same time, ad-hoc in-memory handling of classical database tasks (e.g.,

querying, sorting) has obvious limitations.

4.2 Our contribution: the EdiFlow platform

We have designed a generic architecture called EdiFlow for integrating a visual analyt-

ics tool and a DBMS. EdiFlow is a work�ow platform for visual analytics applications.

EdiFlow uses a simple structured process model and is backed by a persistent database,

storing both process information and process instance data.

The main EdiFlow contributions are:

� generic architecture for deploying a VA platform on top of a DBMS. The integration is

based on a core data model, providing support for (i) visualizations, (ii) declaratively-

speci�ed and automatically-deployed work�ows based on a high-level speci�cation.

� a mechanism to manage dynamic data e�ciently, relying on standard features of per-

sistent DBMS systems and incremental propagation of data updates through complex

processes.

� isolation semantic built on top of DBMS to allow modules to run isolated from

changes made by other modules or from the external environment until they are

ready to handle them.

� an architecture that respects the Reference Model in visualization by allowing several

views of visualization.

� the use of a database cache mechanism to achieve the speed required for visualization

and computation.

The di�erent advantages of EdiFlow for managing scienti�c work�ows are presented

in Chapter 5, while the advantages related to the visual analytics �elds are described in

Chapter 6.

46

Part III

Contributions

47

Chapter 5

Interactive changes in work�ow

systems

Contents

5.1 Introduction . 50

5.2 Data model . 50

5.2.1 Logical data model . 50

5.2.2 Physical data model . 52

5.3 Process model . 52

5.3.1 Data part . 53

5.3.2 Computation part . 54

5.3.3 Process part . 55

5.4 Propagating changes on work�ow process 56

5.5 EdiFlow architecture . 58

5.5.1 Bene�ts of using a DBMS . 59

5.5.2 Synchronizing disk-resident and in-memory tables 60

5.5.3 EdiFlow tool implementation 63

5.6 Isolation management in EdiFlow 64

5.7 Experimental results . 65

5.7.1 Experimental setup . 65

5.7.2 Datasets . 65

5.7.3 Real-case applications . 67

5.7.4 Layout procedure handlers . 71

5.7.5 Robustness evaluation . 72

5.8 Conclusion . 74

49

Chapter 5. Interactive changes in work�ow systems

5.1 Introduction

T
his chapter presents the EdiFlow platform which is developed to address the

questions raised by the integration of a DBMS in a visual analytics platform.

The main EdiFlow contribution is a generic architecture for deploying a VA

platform on top of a DBMS. The integration is based on a core data model,

providing support for (i) visualizations, (ii) declaratively-speci�ed, automatically-deployed

work�ows, and (iii) incremental propagation of data updates through complex processes,

based on a high-level speci�cation. This model draws from the existing experience in

managing data-intensive work�ows [6; 19; 24; 72]. Thanks to this design, our architecture

can be adapted with modest e�ort to existing scienti�c work�ow platforms [7; 22; 72], to

endow them with the powerful interactive data analysis tools and de facto transform them

into visual analytics platforms.

This chapter is organized as follows. Section 5.2 presents our proposed data model,

while the process model is described in Section 5.3. Section 5.4 describes the di�erent

alternatives proposed by EdiFlow to manage dynamic change of data. We describe our

integration architecture in Section 5.5, discuss some aspects of its implementation in our

EdiFlow platform. Section 5.6 focuses on the isolation management in EdiFlow. Section 5.7

describes several applications encountered in di�erent contexts, illustrating the problems

addressed in this work. We then conclude in Section 5.8.

5.2 Data model

We illustrate in this section the data model of our system in two ways: a logical (conceptual)

data model, in section 5.2.1, describing entities that appear in EdiFlow and a physical data

model, 5.2.2, describing the concrete environment used to model EdiFlow.

5.2.1 Logical data model

The conceptual data model of visual analytics application is depicted in Figure 5.1. For

the sake of readability, entities and relationships are organized in several groups.

The �rst group contains a set of entities capturing process de�nitions. A process consists

of some activities. An activity must be performed by a di�erent group of users (one can

also see a group as a role to be played within the process). Process control �ow is not

expressed by the data model, rather, it is described in the process model (see Section 5.3).

An activity instance has a start date and an end date, as well as astatus �ag ranging in

the following set of values: {not_started , running, completed}. The �ag not_started states

that the activity instance is created by a user who assigns it to another for completion,

but the activity's task has not started yet. The running �ag indicates that the activity

instance has started and has not yet �nished. Finally, the �ag completedmeans that the

activity instance has terminated. Process instances will also take similar values.

50

5.2. Data model

Entities in the second group allow recordingprocess execution. Individual users may

belong to one or several groups. A user may perform some activity instances, and thus

be involved in speci�c process instances. AConnectedUserrecords the host and port from

which a user connects at a given time. This information is needed to propagate updates,

received while the process is running, to a potentially remote visualization component

running on the remote user's desktop. This point will be further discussed in Section 5.5.3.

Figure 5.1: Entity-relationship data model for EdiFlow.

The gray area can be seen as a meta-model, which has to be instantiated for any con-

crete application with one or several entities and relationships modeling it. For instance,

in the Wikipedia application, one would use the entities Article , User, and Version, with

relationships stating that each version of an article is produced by one user's article update.

Black-box functions, such as Wikipedia user clustering functions, must also be captured by

this application-dependent part of the data model. Tracking work�ow results requires at

a simple level that for each data instance, one may identify which activity instance which

created it, updated it etc. To that purpose, speci�c customized relationships of the form

createdBy, validatedBy may be de�ned in the conceptual model. They are represented in

Figure 5.1 by the gray background relationship between,ApplicationEntity and ActivityIn-

51

Chapter 5. Interactive changes in work�ow systems

stance. Of course, many more complex data provenance models can be devised e.g.,[8;

75]. This aspect is orthogonal to our work.

The third group of entities is used to model visualization. A Visualization consists of

one or moreVisualisationComponents. Each component o�ers an individual perspective

over a set of entity instances. For example, in Figure 5.9, three visualization components

are shown in the bar at the left of the article, making up a given visualization associated

with the article's edit history. Components of a same visualization correspond to di�erent

ways of rendering the same objects. In each visualization component, a speci�c set of

VisualAttributes speci�es how each object should be rendered. Common visual attributes

include (x; y) coordinates, width, height, color, label (a string), whether the data instance

is currently selectedby a given visualization component (which typically triggers the re-

computation of the other components to re�ect the selection).

Finally, the Noti�cation entity is used to speedily propagate updates to the application

entities in various places within a running process. A noti�cation is associated with one

or more instances of a particular application entity. It refers to an update performed at a

speci�c moment indicated by the seq_no timestamp, and indicates the kind of the update

(insert/delete/modify). Its usage is detailed in Section 5.5.3.

5.2.2 Physical data model

We assume a simplerelational enactment of this conceptual model. We have considered

XML but settled for relations since performant visualization algorithms are already based

on a tabular model [33]. Thus, a relation is created for each entity endowed with a primary

key. Relationships are captured by means of association tables with the usual foreign

key mechanism. By issuing a query to the database, one can determine "which are the

completed activity instances in processP", or "which is the R tuple currently selected by

the user from the visualization componentV C1".

We distinguish two kinds of relations. DBMS-hosted relations are by de�nition per-

sistent inside a database server and their content is still available after the completion

of all processes. Such relations can be used in di�erent instances, possibly of di�erent

processes. In contrast, temporary relations are memory-resident, local to a given process

instance (their data are not visible and cannot be shared across process instances) and

their lifespan is restricted to that of the process instance which uses them. If temporary

relation data are to persist, they can be explicitly copied into persistent DBMS tables, as

we shortly explain below.

5.3 Process model

We consider a process model inspired by the Work�ow Management Coalition model[84].

Figure 5.2 outlines (in a regular expression notation) the syntax of our processes. We use

52

5.3. Process model

a set of variables, constants and attribute namesN , a set of atomic valuesV , and a set of

atomic data types T; terminal symbols used in the process structure are shown in boldface.

The main innovative ingredient here is the treatment of data dynamics, i.e., the possibility

to control which changes in the data are propagated to which part(s) of which process

instances. To facilitate the understanding of the process model, we divide our model into

three parts:

� Data part: This part includes elements related to data and queries.

� Computation part: This part focuses on computational elements related to managing

dynamic changes on work�ow process.

� Process part: This part includes elements related to the work�ow components and

patterns.

We now describe each part in detail.

Process ::= Con�guration Constant* Variable+ Relation+

Function* StructProcess

Con�guration ::= DBdriver DBuri DBuser DBpassword

Constant ::= name value name2 N , value 2 V

Variable ::= name type name2 N , type 2 T

Relation ::= name primaryKey RelType

RelationType ::= (attName attType)*, attName 2 N , attType 2 T

Function := name classPath

StructuredProcess := Activity j Sequencej AndSplitJoin j OrSplitJoin

j ConditionalProcess

Sequence ::= Activity , StructuredProcess

AndSplitJoin ::= AND-split (StructuredProcess)+ AND-join

OrSplitJoin ::= OR-split (StructuredProcess)+ OR-join

ConditionalProcess::= IF Condition StructuredProcess

Activity ::= activityName Expression

Expression ::= askUserj callFunction j runQuery

Figure 5.2: XML schema for the process model.

5.3.1 Data part

Relations and queries A process is built on top of a set of relations implementing

the data model. Relations are denoted by capital letters such asR; S; T, possibly with

subscripts. A query is a relational algebraic expression over the relations. We consider as

operators: selection, projection, and Cartesian product. Queries are typically designated

by the letter Q possibly with subscripts.

53

Chapter 5. Interactive changes in work�ow systems

Variables A variable is a pair composed of a name, and of an (atomic) value. Variables

come in handy for modeling useful constants, such as, for example, a numerical threshold

for a clustering algorithm. Variables will be denoted by lower-case letters such asv; x; y.

Constants The constants are similar to variables. They are described by (name, value)

pairs. However the values of Constants cannot be changed during the execution process.

The constants are useful to de�ne long strings. To reuse these strings, we must only call

them by indicating their names.

5.3.2 Computation part

Procedures A procedure is a computation unit implemented by some external, black-

box software. A typical example is the code computing values of the visual attributes to

be used in a visualization component. Other examples include, e.g., clustering algorithms,

statistical analysis tools.

A procedure takes as input l relations R1; R2; : : : ; Rl which are read but not changed

and m relations Tw
1 ; Tw

2 ; : : : ; Tw
m which the procedure may readand change, and outputs

data in n relations:

p : R1; R2; : : : ; Rl ; Tw
1 ; Tw

2 ; : : : ; Tw
m ! S1; S2; : : : ; Sn

We considerp as a black box, corresponding to software developed outside the database

engine, and outside of EdiFlow, by means of some program expressed, e.g., in C++, Java,

MatLab. Functions are processes with no side e�ects (m = 0).

Input procedure A special case of procedure is the genericdata input procedurepin (Rw),

which does not return any result. This procedure is implemented by some user interface

mechanism, and it allows the user to provide values for new tuple which is added toR.

Delta handlers Associated to a procedure may beprocedure delta handlers. Given

some update (or delta) to a procedure input relation, the delta handler associated to

the procedure may be invoked to propagate the update to a process. Two cases can be

envisioned:

1. Update propagation is needed while the procedure is being executed. Such is the

case for instance of procedures which compute point coordinates on a screen, and

must update the display to re�ect the new data.

2. Updates must be propagated after the procedure has �nished executing. This is the

case for instance when the procedure performs some quantitative analysis of which

only the �nal result matters, and such that it can be adjusted subsequently to take

into account the deltas.

54

5.3. Process model

The designer can specify one or both of these handlers. Formally, each handler is a

procedure in itself, with a table signature identical to the main procedure. The convention

is that if there are deltas only for some ofp's inputs, the handler will be invoked providing

empty relations for the other inputs. With respect to notations, ph;r is the handler of p

to be used whilep is running, and ph;f is the handler to be used afterp finished. Just

like other procedures, the implementation of handlers is opaque to the process execution

framework. This framework, however, allows one to recuperate the result of a handler

invocation and inject it further into the process, as we shall see.

Distributive procedures An interesting family of procedures are those which distribute

over union in all their inputs. More formally, let X be one of theRi inputs of p, and let

� X be the set of tuples added toX . If p is distributive then:

p(R1; : : : ; X [� X; : : : ; T w
m) = p(R1; : : : ; X; : : : ; T w

m) [p(R1; : : : ; � X; : : : ; T w
m)

There is no need to specify delta handlers for procedures which distribute over the

union, since the procedure itself can serve as handler.

Expressions We use a simple language for expressions, based on queries and procedures.

More formally:

e ::= Q j p(e1; e2; : : : ; en ; Tw
1 ; Tw

2 ; : : : ; Tw
p):t j ; 1 � j � m

The simplest expressions are queries. More complex expressions can be obtained by

calling a procedurep, and retaining only its j -th output table. If p changes some of its input

table, evaluating the expression may have side e�ects. If the side e�ects are not desired,

p can be invoked by giving it some new empty tables, which can be memory-resident, and

will be silently discarded at the end of the process. Observe that the �rst n invocation

parameters are expressions themselves. This allows nesting complex expressions.

5.3.3 Process part

Activities We are now ready to explain the building blocks of our processes, namely

activities.

a ::= v � j upd(R) j (S1; S2; : : : ; Sn) p(e1; e2; : : : ; en ; Tw
1 ; Tw

2 ; : : : ; Tw
n)

Among the simplest activities are variable assignmentsof the form v � . Another

simple activity is a declarative update of a tableR, denotedupd(R). Unlike the table mod-

i�cations that an opaque procedure may apply, these updates are speci�ed by a declarative

55

Chapter 5. Interactive changes in work�ow systems

SQL statement. Finally, an activity may consist of invoking a procedure p by providing

appropriate input parameters, and retaining the outputs in a set of tables.

Visualization activities must be modeled as procedures, given that their code cannot

be expressed by queries.

Processes A process description can be modeled by the following grammar:

P ::= � j a; P j PkP j P _ P j e?P

In the above, a stands for an activity. A process is either the empty process (�), or

a sequenceof an activity followed by a process (;), or a parallel (and) split-join of two

processes (k), or an or split-join of two processes (with the semantics that once a branch is

triggered, the other is invalidated and can no longer be triggered). Finally, a process can

consist of aconditional block where an expressione (details below) is evaluated and if this

yields true, the corresponding process is executed.

Reactive processes A reactive processcan now be de�ned as a 5-tuple consisting of

a set of relations, a set of variables, a set of procedures, a process and a set ofupdate

propagations. More formally:

RP ::= R� ; v� ; p� ; P; UP�

5.4 Propagating changes on work�ow process

An update propagationUP speci�es what should be done when a set of tuples, denoted

� R, are added to an application-dependent relationR, say, at t � R . Several options are

possible. We discuss them in turn, and illustrate with examples:

1. Ignore � R for the execution of all processes which had started executing beforet � R .

The data will be added to R, but will only be visible for process instances having

started after t � R . This recalls locking at process instance granularity, where each

process operates on exactly the data which was available when the process started.

We consider this to be the default behavior for all updates to the relations part of

the application data model.

Concrete example: an application instance would be to compute statistics over

the current state of the database. The user has to launch its scienti�c work�ow in an

isolated environment (snapshot of the database). The updates must not be included

in the computation process.

Another example would be a social scientist who applies a sequence of semi-automated

partitioning and clustering steps to a set of Wikipedia pages. Then, the scientist vi-

sualizes the outcome. In this case, propagating new items to the visualization would

56

5.4. Propagating changes on work�ow process

be disruptive to the user, which would have to interrupt her current work to help

apply the previous steps to the new data.

2. Ignore � R for the execution of all activities which had started executing (whether

they are �nished or not) before t � R . However, for a process already started, instances

of a speci�c activity which starts after t � R may also use this data.

The data visible to a given activity instance may depend on its starting time. To

achieve this, we use the activity instance table that stores all information about

activities such as their status, starting time and ending time. All activities that are

already started beforet � R will not include the updated data. Updates will be only

propagated for coming activities.

Concrete example: the social scientist working on a Wikipedia fragment �rst has

to con�rm personal information, give some search criteria for the pages to be used in

this process. Then, she must interact with a visualization of the chosen pages. For

this activity, it is desirable to provide the user with the freshest possible snapshot,

therefore additions between the beginning of the process instance, and the moment

when the user starts the last activity, should be propagated.

3. As a macro over the previous option and the process structure, one could wish for

� R to be propagated to instances of all activities that are yet to be started in a

running process.

Intuitively, data should not "disappear" during the execution of a process instance

(unless explicitly deleted). In the previous use case, if we add an extra activity at

the end of the process, that activity would typically expect to see the whole result of

the previous one.

4. Propagate the update� R to all the terminated instances of a given activity. We can

moreover specialize the behavior on whether we consider only activity instances whose

process instances have terminated, only activity instances whoseprocess instances are

stil l running , or both.

Concrete example: we consider a process whose �rst activities are automatic pro-

cessing steps, e.g., computingdi� s between the old and the new version of a Wikipedia

page, updating a user's contribution, the page history etc. The last activity is a vi-

sualization activity where the scientist should be shown fresh data. Typically, the

visualization activity will last for a while, and it may refresh itself at intervals, to

re�ect the new data. In this case, it makes sense to apply the automated processing

activities to the new pages received while running the process instance, even after

the respective activities have �nished.

5. Propagate the update � R to all the running instances of a given activity, whether

they had started before t � R or not.

57

Chapter 5. Interactive changes in work�ow systems

This may be used to propagate newly arrived tuples to all running instances of a

visualization activity, to keep them up-to-date.

Formally then, an update propagation action can be described as:

UP ::= R; a; (('ta' ; ('rp' j'tp')) j 'ra' j ('fa' ; 'rp'))

where R is a relation and a is an activity. An update propagation action describes a set

of instances of activity a, to which the update � R must be propagated. The possible

combinations of terminal symbols designate:

ta rp: terminated activity instances part of running processes;

ta tp: terminated activity instances part of terminated processes;

ra: running activity instances (obviously, part of running processes);

fa rp: future activity instances part of running processes.

It is possible to specify more than one compensation action for a givenR and a given

activity a. For instance, one may write: (R; a, 'ra'), (R; a, 'fa', 'rp').

For simplicity, the syntax above does not model the macro possibility numbered 3 in

our list of options. One can easily imagine a syntax which will then be compiled intoUP's

as above, based on the structure ofP.

5.5 EdiFlow architecture

Our proposed architecture is depicted in Figure 5.3. This architecture is divided into 3

layers:

� The DBMS: The work�ow management logic runs on top of the DBMS. The database

ensures the relation between the layers. It contains all information about the process

execution and data tables of several entities.

� The EdiFlow process: It corresponds to the XML speci�cation of the process. Pro-

cesses are speci�ed in a high-level syntax following the structure described in Sec-

tion 5.3.

� The modules: This is a set of procedures and functions invoked by the user through

the process �le. These modules may correspond to visualization softwares.

The enactment of a process thus speci�ed consists of adding the necessary tuples to the

Process and Activity relations. During process executions, the necessary data manipulation

statements are issued to (i) record in the database the advancement of process and activity

instances, (ii) evaluate on the database queries and updates, allow external procedures to

read and update the application-driven entities and (iii) record the connections between

users and application instances, and application data.

58

5.5. EdiFlow architecture

Figure 5.3: The high level architecture of EdiFlow.

5.5.1 Bene�ts of using a DBMS

Most current visual analytics tools have some conceptual drawbacks. Indeed, they rarely

rely on persistent databases (with the exception of[36]). Instead, the data is loaded

from �les or databases and is manipulated directly in memory because smooth visual

interaction requires redisplaying the manipulated data 10-25 times per second. Standard

database technologies do not support continuous queries at this rate; at the same time,

ad-hoc in-memory handling of classical database tasks (e.g., querying, sorting) has obvious

limitations. Based on the architecture of several visualization tools[3; 33; 48], we argue

connecting a visual analysis tool to a persistent database management system (DBMS) has

many bene�ts:

� Scalability: larger data volumes can be handled based on a persistent DBMS.

� Persistence and distribution: several users (possibly on remote sites) can interact

with a persistent database, whereas this is not easily achieved with memory-resident

data structures. Observe that users may need to share not only raw data, but also

visualizations built on top of this data. A visualization can be seen as an assignment

of visual attributes (e.g., X and Y coordinates, color, size) to a given set of data items.

Computing the value of the visual attributes may be expensive, and/or the choice

59

Chapter 5. Interactive changes in work�ow systems

of the visualized items may encapsulate human expertise. Therefore, visualizations

have high added valueand it must be easy to store and share them, e.g., allowing one

user to modify a visualization that another user has produced.

� Data management capabilities provided by the database: complex data processing

tasks can be coded in SQL and/or some imperative scripting language. Observe

that such data processing tasks can also include user-de�ned functions (UDFs) for

computations implemented outside the database server. These functions are not

stored procedures managed by the database (e.g., Java Stored Procedure). These are

executable programs external to the database.

We now discuss the implementation of the update propagation actions. EdiFlow com-

piles the UP (update propagation) statements into statement-level triggers which it installs

in the underlying DBMS. The trigger calls EdiFlow routines implementing the desired be-

havior, depending on the type of the activity (Section 5.3), as follows. Variable assignments

are una�ected by updates. Propagating an update� Ri to relation Ri to a query expression

leads to incrementally updating the query, using well-known incremental view maintenance

algorithms [42]. Propagating an update to an activity involving a procedure call requires

�rst, updating the input expressions, and then, calling the corresponding delta handler.

5.5.2 Synchronizing disk-resident and in-memory tables

Tracking dynamic changes in DBMS tables is an essential mechanism of EdiFlow for two

purposes: internally, to manage the details to thedelta handlers and, externally, to im-

plement data caches in modules. We describe here the low-level implementation of the

mechanism.

The main feature of EdiFlow is to react to dynamic data changes; reaction manage-

ment complicates the logic of the system but also its implementation. To implementdelta

handlers, EdiFlow needs to keep track of changes occurring in the DBMS since the last

time a module has been invoked because thedelta handlers are invoked with the list of

changed tuples.

The mechanism used to collect the updates for EdiFlow has been extended to manage

cached tables that are kept consistent with tables in the DBMS. When a DBMS table is

cached in an EdiFlow module, the in-memory table is kept consistent with the on-disk

table in both directions: changing the in-memory table propagates to the on-disk table

and vice-versa: changes done externally to the DBMS are propagated to the in-memory

cache, potentially invalidating entries.

EdiFlow implements a protocol to e�ciently propagate updates made to a disk-resident

table, call it RD , to its possibly partial memory image, call it RM . Conversely, when the

module modi�es RM , these changes must be propagated back toRD . Observe that RM

exists on the client side and therefore may be on a di�erent host thanRD .

60

5.5. EdiFlow architecture

To that end, we install CREATE, UPDATE and DELETE triggers monitoring changes

to the persistent table RD . Whenever one such change happens, the corresponding trigger

adds to the Noti�cation table stored in the database (recall the data model in Figure 5.1)

one tuple of the form (seq_ no; ts; tn; op), where seq_ no is a sequential number, ts is

the update timestamp, tn is the table name andop is the operation performed. Then, a

noti�cation is sent to RM that "there is an update". Smooth interaction with a visualization

component requires that noti�cations be processed very fast, therefore we keep them very

compact and transmit no more information than the above. A noti�cation is sent via a

socket connected to the process instance holdingRM . Information about the host and

port where this process runs can be found in the Client table (Figure 5.1). When the

visualization software decides to process the updates, it reads them from the Noti�cation

table, starting from its last read seq_ no value.

The table has a unique constraint on TABLE_Name and ROW_ID; so if two triggers

are �red for the same row, only one entry remains. The operation kept in the table is

computed as follows:

� CREATE + CREATE = CREATE (should not happen)

� CREATE + UPDATE = CREATE

� CREATE + DELETE = DELETE

� UPDATE + CREATE = CREATE (should not happen)

� UPDATE + UPDATE = UPDATE

� UPDATE + DELETE = DELETE

� DELETE + CREATE = UPDATE (weird)

� DELETE + UPDATE = DELETE (should not happen)

� DELETE + DELETE = DELETE (should not happen)

After the trigger has �lled the NOTIFICATION table, it writes to a socket connected to

the RM process to notify it. This is done through a CLIENT table managing information

for each DB client. The synchronization protocol betweenRM and RD can be summarized

as:

1. A memory object is created in the memory of the Java process (RM).

2. It asks the connection manager to create a connection with the database.

3. The connection manager creates a network port on the local machine and associates

locally a quadruplet to RM : (db; RD ; ip; port).

61

Chapter 5. Interactive changes in work�ow systems

4. The quadruplet is sent to the DBMS to create an entry in the ConnectedUser table.

5. The DBMS connects back to the client using at theip : port address, and expects a

hello message to check that it is the right protocol.

6. The connection manager accepts the connection, sends thehello message and ex-

pects a reply message to check that it is the expected protocol too.

7. When the RD is modi�ed, the DBMS trigger sends a notify message with the table

name as parameter to client atip:port, which holds RM .

8. The visualization software may decide what are the appropriate moments to refresh

the display. When it decides to do so, it connects to the DBMS and queries the

created/updated/deleted list of rows, and propagates the changes toRM .

9. When RM is modi�ed, it propagates its changes to theRD and processes the triggered

noti�cations in a smart way to avoid redundant work.

10. When RM is deleted, it sends a disconnect message to the database that closes the

socket connection and removes the entry in the ConnectedUser table.

11. The Noti�cation table can be purged of entries having seq_ no lower than the lowest

value in the Client table.

Note that some DBMS already provide an in-memory extension (e.g. Oracle In-Memory

Database Cache). We do not rely on these systems for two reasons: 1) they are usually

available for speci�c DBMS and we want EdiFlow to be able to work on any SQL DBMS

and, 2) we encapsulate our in-memory data objects with a thin wrapper that can adapt

to new implementations so nothing prevents an EdiFlow application from using a speci�c

in-memory extension instead of the generic one.

At �rst glance, this mechanism may look similar to updates over views (a.k.a. material-

ized views). However, our architecture has two main di�erences compared to materialized

views:

� Propagation process. The propagation process for materialized views is relatively

simple. Indeed, when changes occur on relations, the corresponding relevant views

are updated. The di�culty is to know "when" and "how" the view should be up-

dated. Moreover, updates are generally limited to insert operations. However, in our

architecture, a change that occurs on a relation may invoke many di�erent update

operations which generally correspond to external program's invocations. This is

what we call repair mechanism.

� Two-way propagation. In the framework of materialized views, updates are usually

done in one way (relation towards view). However, our architecture allows to manage

62

5.5. EdiFlow architecture

changes that occur on the database while the analysis process is running. Moreover,

it allows to update the database when users perform visual interaction.

5.5.3 EdiFlow tool implementation

EdiFlow relies on a standard persistent DBMS for managing the work�ow-related data

and the application data. EdiFlow reads the speci�cation of a reactive work�ow from an

XML �le. It is then compiled into the corresponding Process and Activity tuples and the

work�ow is started. Users may control the EdiFlow process step by step or let it run

automatically.

The execution is control-driven from the speci�cation and also data driven in the sense

that it reacts in a well-speci�ed way to database updates.

To implement the data-driven behavior, with the collection of tuples constituting the

delta, EdiFlow installs database triggers, automatically derived from the process speci�-

cation. Each trigger invokes EdiFlow through a fast network-based noti�cation protocol

which performs the necessary actions.

EdiFlow procedures are implemented as Java modules using the Equinox implementa-

tion of the OSGi Service Platform [65]. A procedure instance is a concrete class implement-

ing the EdiFlowProcess interface. This interface requires four methods: initialize() ,

run(ProcessEnv env) , update(ProcessEnv env) and String getName() . The class

ProcessEnv represents a procedure environment, including all the useful information about

the environment in which the processes are executed. An instance ofProcessEnv is passed

as a parameter to a newly created instance of a procedure. Integrating a new processing

algorithm into the platform requires only implementing one class, and serving the calls to

the methods. All the dependencies in term of libraries (JAR �les) are managed by the

OSGi Platform.

The implementation is very robust, well documented, e�cient in term of memory foot-

print and lightweight for programming modules and for deploying them, which is important

for our goal of sharing modules.

The use of a DBMS providesscalability, persistenceand distribution . Several users and

applications, possibly on remote sites, can interact with a DBMS.

Applications may require di�erent levels of sharing (or, conversely, of isolation) among

concurrent activities and processes. EdiFlow implements various degrees of isolation be-

tween concurrent processes operating on top of the same database: (i)Process- and activity-

based isolation and (ii) Timestamp-based isolation.

EdiFlow saves traces of process executions. These saved traces include all processes and

activities speci�cations and states (started, running, �nished). This information allows us

to know who is working on what to perform the operation change propagation to the rest

of the users and activities.

63

Chapter 5. Interactive changes in work�ow systems

EdiFlow enforces user rights management: for the e�ective management of users, the

EdiFlow's data model provides two tables (a connected users table and a table for managing

groups). Individual users may belong to one or several groups. A user may perform some

activity instances, and thus be involved in speci�c process instances. The ConnectedUser's

table records the host and port from which a user connects at a given time. This information

is needed to propagate updates, received while the process is running, to a potentially

remote visualization component running on the remote user's desktop.

All these mechanisms are already useful to implement some visual analytics applications

but the management of visualizations and interactions is left to the modules. Since relying

on a remote DBMS connection does not provide the required speed for visualization and

continuous interaction, each module would have to implement some mechanisms to load

data in memory and keep it updated with the database.

5.6 Isolation management in EdiFlow

Applications may require di�erent levels of sharing (or, conversely, of isolation) among

concurrent activities and processes.

Process- and activity-based isolationLet a1 be an instance of activity a, such that a1

is part of a process instancep1. By default, queries evaluated during the execution ofp

carry over the whole relations implementing the application-speci�c data model. LetR be

such a relation.

It may be the case that a1 should only see theR tuples created as part of executing

p1. For instance, when uploading an experimental data set, a scientist only sees the data

concerned by that upload, not the data previously uploaded by her and others. Such

isolation is easily enforced using relationships between the application relations and the

ActivityInstance table (recall Figure 5.1 in Section 5.2). A query fetching data from R

for a1 should select only theR tuples created by p1, the process to whicha1 belongs, etc.

These mechanisms are fairly standard.

Time-based isolation As discussed in Section 5.3, the data visible to a given activity

or process instance may depend on the starting time of that instance. To enable such

comparisons, we associate to each application tableR a creation timestamp, which is the

moment when eachR tuple entered the database (due to some process or external update).

R tuples can then be �ltered by their creation date.

Isolating process instances from tuple deletions requires a di�erent solution. If the

process instancep3 erases some tuples fromR, one may want to prevent the deleted tuples

from suddenly disappearing from the view of another running process instance, sayp4. To

prevent this, tuples are not actually deleted from R until the end of p3's execution. We

denote that moment by p3:end. Rather, the tuples are added to adeletion tableR� . This

table holds tuples of the form (tid; t del; pid; ?), where tid is the deletedR tuple identi�er,

64

5.7. Experimental results

tdel the deletion timestamp, pid the identi�er of the process deleting the tuple. The fourth

attribute will take the value p3:end at the end of p3. To allow p3 to run as if the deletion

occurs, EdiFlow rewrites queries of the formselect * from R implementing activities of p3

with:

select * from R where tid not in

(select tid from R� where pid=p3)

When p3 terminates, if no other running process instance uses tableR1, then we delete

from R and R� the tuples � pid= p3 (R�). Otherwise, R and R� are left unchanged, waiting

for the other R users to �nish. However, a process instance started aftert0 > p 3:end

should not see tuples inR� deleted by p3, nor by any other process whose end timestamp

is smaller than t0. In such a recently-started process, a query of the formselect * from Ris

rewritten by EdiFlow as:

select * from R where tid not in

(select tid from R� where processend< t 0)

We still have to ensure that deleted tuples are indeed eventually deleted. After the

check performed at the end ofp3, EdiFlow knows that some deletions are waiting, inR� ,

for the end of a process instances started beforep3:end. We denote these process instances

by wait R;p3 . After p3:end, whenever a process inwait R;p3 terminates, we eliminate it from

wait R;p3 . When the set is empty, the tuples � pid= p3 (R�) are deleted fromR and R� .

5.7 Experimental results

In this section, we report on the performance of the EdiFlow platform in real applications.

5.7.1 Experimental setup

Our measures used a client PC with Intel 2.66GHz Dual Core CPUs and 4GB memory

running. Java heap size was set to 850MB. The Oracle database is mounted on a worksta-

tion with 8 CPUs equipped with 8GB RAM. The PC is connected to the database through

the local area network.

The experiments are divided into two classes. While the �rst family of experiments has

been developed to validate the use of EdiFlow in several real use cases, the second family of

experiments has been involved to study the performance of EdiFlow for processing updates.

5.7.2 Datasets

We present in what follows a description of the datasets used in experiments.

1The de�nition of a process explicitly lists the tables it uses, and from the process, one may retrieve the

process instances and check their status (Figure 5.1).

65

Chapter 5. Interactive changes in work�ow systems

US Election dataset The US.Election dataset presents all the voting results for the U.S.

elections of 2000, focusing on the scores for the Democratic and Republican parties. This

data set was obtained from data sets provided in the platform IVTK. Table 5.1 presents a

sample of this dataset that provides information on the votes of each region of the United

States but said the votes of the years 1992, 1996 to study the trends of each region.

Party in 1996 Party in 1992 Electoral Votes Bush Votes Gore Votes Population

Republican Republican 515096 203053 1722850 Rockies Utah

Democrat Democrat 1061949 981720 4877185 Central Tennessee

Democrat Democrat 878502 1616487 6016425 North East Massachusetts

Republican Republican 190700 118804 696004 Far Midwest South Dakota

Table 5.1: Sample of the US.Election dataset

INRIA activity report dataset We used a dataset of co-publications between IN-

RIA researchers. The data are collected from Raweb (INRIA's legacy collection of ac-

tivity reports available at http://ralyx.inria.fr). These data include information about

INRIA teams, scientists, publications and research centers. Our goal was to build a self-

maintained application which, once deployed, would automatically and incrementally re-

compute statistics, as needed. To that end, we �rst created a database out of all the reports

for the years 2005 to 2008. Simple statistics were then computed by means of SQL queries:

age, team, research center distribution of INRIA's employees, etc. The dataset includes

several tables such as persons, institutions, a�liations, etc. Table 5.2 illustrates a sample

from the person's table.

�rstame lastname a�liation categoryPro research-centre moreinfo hdr

Serge Abiteboul INRIA Chercheur Saclay Senior Researcher oui

Frédéric Cazals INRIA Chercheur Sophia Team leader, DR2 Inria oui

Wael Khemiri CNRS PhD Saclay Allocataire MENRT, Paris 11 non

Nathalie Pernelle UnivFr Enseignant Saclay Associate Professor

Table 5.2: Sample of the person table in INRIA activity reports dataset

Wikipedia dataset The third dataset presents the french version of Wikipedia. This

version contains about 1 million articles. We store the current-meta-page dump containing

only the metadata of the last revision of each article. The French Wikipedia compressed

�le of December 2010 is about 4 GB in size. After storing the dump, the next steps consist

in getting the revision history of the articles from this large dump �le and calculating the

relevant aggregated information. The database contains 6 tables:

� aggregated_article: includes statistics information about the article;

66

5.7. Experimental results

� aggregated_di�: includes statistics information about the di�s between the new

revisions of articles;

� aggregated_user: includes statistics information about the user;

� detailed_di�: includes the di�s between the new revisions of articles;

� user: includes information about the wikipedias' writers;

� wikipedia_state: includes the title and the last revision of the articles.

The table 5.3 illustrates a sample from the aggregated_di� table.

pageid revid revdatetime userid charadd chardel charmov pagelength

3 5 2002-09-08 20:49:46 1 1960 0 0 1960

3 10031 2002-10-31 10:11:31 2 0 0 0 1960

3 79617 2003-06-10 09:53:02 1 6 6 0 2023

3 10031 2002-10-31 10:11:31 2 0 0 5409354 1960

5409351 64159522 2011-04-09 07:46:58 2756176 3481 0 0 3481

Table 5.3: Sample of the aggregated_di� table in Wikipedia dataset

5.7.3 Real-case applications

In this section we study various scenarios in which we have integrated the EdiFlow's archi-

tecture. We specify for each use case, the overall context and the advantage of integrating

EdiFlow. The choice of these scenarios is not arbitrary. Indeed, this choice is guided by

the features of each application. The �rst use case is the US.Election scenario represent-

ing a simple work�ow for monitoring the results of the American presidential elections as

the results arrive. The second use case is Wikireactive involving complex analysis proce-

dures using EdiFlow. The third scenario is the INRIA activity reports scenario seeking to

compute a global view of INRIA researchers by analyzing some statistics.

5.7.3.1 US Election scenario

This application aims at providing a dynamic visualization of elections outcome, varying as

new election results become available. The database contains, for each state, information

such as the party which won the State during the last three elections, the number of voters

for the two candidates, the total population of the state. On the voting day, the database

gradually �lls with new data. This very simple example uses a process of two activities:

computing some aggregates over the votes, and visualizing the results. Upon starting, a

TreeMap visualization is computed over the database (distinguishing the areas where not

enough data is available yet), as shown in Figure 5.5. The user can choose a party, then the

67

Chapter 5. Interactive changes in work�ow systems

51 states are shown with varying color shades. The more the states vote for the respective

party, the darker the color. When new vote results arrive, the corresponding aggregated

values are recomputed, and the visualization is automatically updated.

This use case presents a simple work�ow for monitoring the results of the American

presidential elections as the results arrive. The results are presented using a Treemap

visualization managed by a visualization module. It visualizes a data table computed by a

data aggregation module that reads the detailed table of the election results and aggregates

it into the tree structure. The election results can be updated by humans or be read by a

robot from an o�cial web-site.

As shown in the work�ow presented in Figure 5.4, the application de�nes 3 tasks. Each

task calls an external function:

� Vote reporting: This function allows retrieving the results of votes from an o�cial

site and updating the database as they arrive. The database contains the score of

each candidate in county subdivision. Additional information is available such as

the winning party during the last three elections, the number of voters for the two

candidates and the total population of the county subdivision.

� Aggregate calculation: Following the updating of the counts in the database, the

sum of votes of the party in the corresponding state is computed and stored in an

aggregated table.

� Update views: The visualization and view are dynamically changed to re�ect the

results of the votes. Still, the user can change the con�guration of the Treemap

visualization, map one party or the other to the size of the Treemap or to the color

and change the layout. The updates are still reported.

Figure 5.4: US Election work�ow

This very simple example uses a process of two activities: computing some aggregates

over the votes, and visualizing the results. Initially, a Treemap visualization is computed

over the database, highlighting areas where data is still missing, as shown in Figure 5.5.

The user can select to color by scores of a speci�c party; the 51 states are then shown with

varying intensities of colors. When new vote results arrive, the corresponding aggregated

68

5.7. Experimental results

Figure 5.5: US Election screen shot.

values are automatically recomputed by EdiFlow and the visualization is automatically

updated.

5.7.3.2 INRIA activity report scenario

We have been involved in the development of an application seeking to compute a global

view of INRIA researchers by analyzing some statistics. The data are collected from

Raweb (INRIA's legacy collection of activity reports available at http://ralyx.inria.fr). These

data include information about INRIA teams, scientists, publications and research centers.

Currently, the report of each team from each year is a separate XML �le; new �les are added

as teams produce new annual reports. Our goal was to build a self-maintained application

which, once deployed, would automatically and incrementally re-compute statistics, as

needed. To that end, we �rst created a database out of all the reports for the years 2005 to

2008. Simple statistics were then computed by means of SQL queries: age, team, research

center distribution of INRIA's employees. Other aggregates were computed relying on

external code such as the similarity between two people referenced in the reports in order

to determine whether an employee is already present in the database or needs to be added.

Figure 5.6: INRIA activity report work�ow

69

Chapter 5. Interactive changes in work�ow systems

Figure 5.7: Scatter plot of person and the hiring year.

5.7.3.3 WikiReactive scenario

This use case is the re-implementation of the WikiReactive system[17] in which updating

a table triggers a series of complex operations performed in cascade. The goal of the

application is to provide to Wikipedia readers and contributors several measures related

to the quality of an article: how many contributors participated to the article? How did

the page evolve over time? How trustworthy are the contributors who wrote it? This last

metric corresponding to a ratio: if i is the sum of the numbers of characters inserted by a

user in every of her/his contribution and r is the number of characters she/he entered that

remain in the latest version of Wikipedia, then the trustworthiness is r=i . The challenge is

then to compute, store and maintain these metrics for the whole Wikipedia database. Once

it is computed, it can be displayed to users with simple visualization as in the WikipediaViz

system [26] or explored more thoroughly with the HistoryFlow system [80].

The metrics should be updated as Wikipedia is updated and, since computing all these

metrics from scratch takes days, the system should maintain data structures to allow an

incremental update.

WikiReactive can be designed, according to Figure 5.8, in �ve elementary tasks:

� For each article, compute and maintain the di�erences (di�s) between successive

revisions;

� For each user, maintain the total number of characters added, deleted, and moved;

� For the last revision of each article, compute and maintain the contribution table that

stores at each character index the identi�er of the user who entered the character;

� For each article, compute the number of distinct contributors;

70

5.7. Experimental results

� For each user, maintain the total number of characters remaining in all the contri-

bution tables.

Figure 5.8: WikiReactive work�ow

All these applications feature data- and computation-centric processes which must react

to data changes while they are running and need visual data exploration. The Wikipedia

application is the most challenging, by the size of the database, the complexity of its

metrics, and the high frequency of updates requiring re-computations.

5.7.4 Layout procedure handlers

Our �rst goal was to validate the interest of procedure handlers in the context of data

visualization. In our INRIA co-publication scenario, the procedure of interest is the one

computing the positions of nodes in a network, commonly known aslayout. We use the

Edge LinLog algorithm of Noack [63] which is among the very best for social networks,

and provides good results. What makes EdgeLinLog even more interesting in our context

is that it allows for e�ective delta handlers (introduced as part of our process model in

Section 5.3).

In our implementation, the initial computation assigns a random position to each node

and runs the algorithm iteratively until it converges to a minimum energy and stabi-

lizes. This computation can take several minutes to converge but, since the positions are

computed continuously, we can store the positions in the database at any rate until the

algorithm stops. Saving the positions every second or at every iteration if it takes more

than one second allows the system to appear reactive instead of waiting for minutes before

showing anything.

If the network database changes, for example when new publications are added to/re-

moved from the database, the handler proceeds in a slightly di�erent manner. First, it

updates the in-memory co-publication graph, discards the nodes that have been removed

and adds new nodes. To each new node it assigns a position that is close to their neigh-

bors that have already been laid-out. This is to improve the time and quality of the �nal

layout. If disconnected nodes are added, they are assigned a random position. Then, the

71

Chapter 5. Interactive changes in work�ow systems

Figure 5.9: Wikipedia screen shot.

algorithm is run iteratively like for the initial computation, but it terminates much faster

since most of the nodes will only move slightly: the convergence of the iterations will be

much faster. Like before, we store in the DBMS the results of some of the iterations to

allow the visualization views to show them.

Using this strategy, we have obtained an incremental layout computation, remarkably

stable and fast.

5.7.5 Robustness evaluation

Our second experimental goal was to study how the EdiFlow event processing chain scales

when confronted with changes in the data. For this experiment, the DBMS is connected

via a 100 MHz Ethernet connection to two EdiFlow instances running on two machines.

The �rst EdiFlow machine computes visual attributes (runs the layout procedure), while

the second extracts nodes from VisualAttributes table and displays the graph. This second

EdiFlow machine is a laptop.

We study the robustness of our architecture when adding increasing numbers of tuples

to the database. Inserting tuples requires performing the sequence of steps below, out of

72

5.7. Experimental results

Figure 5.10: Part of the graph of INRIA co-publications.

which steps 1, 2 are performed on the �rst EdiFlow machine, while steps 3, 4 and 5 are

performed on all machines displaying the graph.

1. Parsing the message involved after insertion in nodes table. It refers to step 7 in the

protocol described in section 5.5.2.

2. Inserting the resulting tuples in the VisualAttributes table managed by EdiFlow in

the DBMS.

3. Parsing the message involved after insertion in VisualAttributes table. After inserting

tuples, in VisualAttributes, a message is sent to all machines displaying the graph.

The message is parsed to extract the new tuple information. It refers to step 9 in the

protocol described in section 5.5.2.

4. Extracting the visual attributes of the new nodes, from the VisualAttributes table,

in order to know how to display them at the client.

5. Inserting new nodes into the display screen of the second machine.

The times we measured for these �ve steps are shown in Figure 5.11 for di�erent

numbers of inserted data tuples. Figure demonstrates that the times are compatible with

the requirements of interaction, and grow linearly with the size of the inserted data. The

dominating time is required to write in the VisualAttributes table. This is the price to pay

73

Chapter 5. Interactive changes in work�ow systems

Figure 5.11: Time to perform insert operation.

for having these attributes stored in a place from where one can share them or distribute

them across several displays.

5.8 Conclusion

In this chapter, we have described the design and implementation of EdiFlow, the �rst

work�ow platform aimed at capturing changes in data sources and launching a repair

mechanism. EdiFlow uni�es the data model used by all of its components: application

data, process structure, process instance information and visualization data. It relies on

a standard DBMS to realize that model in a sound and predictive way. EdiFlow sup-

ports standard data manipulations through procedures and introduces the management of

changes in the data throughupdate propagation. Each work�ow process can express its

behavior w.r.t data change in one of its input relations. Several options are o�ered to react

to such a change in a �exible way.

EdiFlow reactivity to changes is necessary when a human is in the loop and needs to

be informed of changes in the data in a timely fashion. Furthermore, when connected to

an interactive application such as a monitoring visualization, the human can interactively

74

5.8. Conclusion

perform a command that will change the database and trigger an update propagation in

the work�ow, thus realizing an interactively driven work�ow.

75

Chapter 5. Interactive changes in work�ow systems

76

Chapter 6

EdiFlow for visual analytics

Contents

6.1 Introduction . 78

6.2 Scienti�c work�ows and visual analytics 78

6.3 Experiments . 79

6.3.1 Experimental setup . 80

6.3.2 Performance over unit mode 80

6.3.3 Performance over batch mode 81

6.3.4 Performance over atomic mode 82

6.3.5 Performance over in-memory database systems 83

6.4 Performance analysis . 84

6.4.1 MySQL and Oracle results . 84

6.4.2 Prefuse and IVTK results . 85

6.4.3 Discussion . 86

6.5 Visualization management . 86

6.5.1 Visual table schema . 86

6.5.2 An architecture for several views 87

6.6 Interaction management . 89

6.7 Use case: publication database cleaning scenario 91

6.8 Conclusion . 95

77

Chapter 6. EdiFlow for visual analytics

6.1 Introduction

S
calability is a major concern in visual analytics. Processing large amounts of data

requires complex systems that are costly to design, implement and maintain. In

contrast, managing large amounts of data is common in the domain ofscienti�c

work�ows. A scienti�c work�ow is de�ned in [25] as follow: "A scienti�c work�ow

is a formal speci�cation of a scienti�c process, which represents, streamlines, and automates

the analytical and computational steps that a scientist needs to go through from dataset

selection and integration, computation and analysis, to �nal data product presentation and

visualization."

Scienti�c Work�ows systems share many characteristics of visual analytics systems:

they combine storage management, complex and distributed analysis capable of handling

very large datasets. However, Scienti�c Work�ows are designed to carry automated ana-

lytical processes to completion, but not to meet the goals of visual analytics applications.

They o�er little or no visualization at any step except sometimes to monitor their activity,

nor do they o�er interaction to steer the computations or interact with the results or the

process (with one notable exception[22]). Finally, they do not manage dynamic data.

In the previous chapter, we have described how EdiFlow implements the �rst two layers

of the EdiFlow architecture. For the third layer, leaving the implementation of visualization

and interaction to modules raises two questions: 1) is the DBMS architecture fast enough to

support interactive visualization, and 2) are there data structures and operations that every

visualization module will have to re-implement and that could be factorized by EdiFlow?

The chapter is organized as follows: the next section describes the relation between

scienti�c work�ows and visual analytics. The third section summarizes the di�erent ex-

periments made on in-memory and persistent databases. The fourth and the �fth sections

describe the design of EdiFlow support for visualization and interaction in details. We

then report on application we have built using EdiFlow before concluding.

6.2 Scienti�c work�ows and visual analytics

The reason for integrating Scienti�c Work�ows with visual analytics is to scale the Informa-

tion Visualization Reference Model [23; 27] beyond the standard program-in-one-process

model. This is required because some visual analytics systems need to run continuously to

process large amounts of dynamic data in a distributed environment using the best avail-

able resources in term of data management, computing power, graphics and interaction.

While there are several challenges to address for achieving an infrastructure that meets

all the visual analytics goals [54], EdiFlow is a �rst attempt at implementing a software

model of a run-time architecture that is able to perform continuous automatic processing

of data as well as interactive visualization, and which can scale and manage dynamic data

e�ciently.

78

6.3. Experiments

Translating the Reference Model at the distributed system level requires solving several

problems: managing a distributed store, managing a distributed execution architecture

and implementing a distributed interaction and visualization architecture. Our inspiring

model for managing a distributed store is described by Boncz et al[15]: using a distributed

database with several levels of smart caches. For managing a distributed system, we rely

on a work�ow architecture. For the interaction and visualization, this chapter describes a

novel model based on the distributed store instead of adding another ad-hoc mechanism

for communication.

On top of this reactive work�ow system, EdiFlow also provides specialized mechanisms

to implement visualizations and interactions. In this regard, its contributions are:

� the uni�cation of mechanisms for dynamic data management and interaction man-

agement: interaction is implemented as data changes,

� the use of a database cache mechanism to achieve the speed required for visualization

and computation,

� the de�nition and implementation of a polylithic visualization model [12] relying on

a persistent table that allows for rendering on any display (from small screen to

wall-sized display) and collaboration.

EdiFlow is designed to help modules implement the Information Visualization Reference

Model. All the implementations of the reference model rely on an in-memory database to

hold data structures and sometimes visual structures too (e.g., Prefuse[48]). EdiFlow being

database oriented, we want the data structures and visual structures of a visualization

module to be consistent with the rest of the EdiFlow architecture. Therefore, we measured

the performance of database systems to assess how far DBMS are, compared to in-memory

databases.

Interaction and visualization are modeled asdata changesin EdiFlow. We detail how

data changes are managed, then how EdiFlow modules use it to implement interaction and

visualization.

We note that the visualization modules are directly related to an in-memory database.

Such structure allow a quick refresh of the visualization and facilitates the establishment

of a collaborative environment. We detail the purpose of the in-memory databases in

section 6.6.

6.3 Experiments

We present the following a set of experiments performed to estimate the cost of using

triggers in the dynamic data management protocol in EdiFlow.

79

Chapter 6. EdiFlow for visual analytics

6.3.1 Experimental setup

We used a client PC with an Intel 2.66GHz Dual Core processor and 4GB memory running

Java on Windows7. The Java heap size was set to 850MB. The DBMS systems we tested

are Oracle 11g and MySQL 5. The in-memory database systems we tested are Prefuse[48]

and IVTK [33].

We measured the performance of persistent database systems and in-memory database

systems.

The goal of the experiment was to measure the response time needed for each system

to insert, update and delete data. These operations were performed in three modes: unit,

batch and atomic modes (described below). Since the implementations of the Information

Visualization Reference Model rely on noti�cations to manage dynamic data and that the

standard way of implementing noti�cations in persistent database is through triggers, we

also measure the operations with and without the call of triggers.

All experiments were carried out on a table containing initially 2 million tuples.

6.3.2 Performance over unit mode

Unit mode: In the so-called unit mode, the three operations (insert, update, and delete) are

processed tuple by tuple. Conventional database checks such as functional dependencies,

reference integrity and locking are done after each operation. If an operation in invalidated

for one tuple during one of the checks, it does not interfere with the operations done before

or after. Triggers are invoked in order, once after each operation.

Figure 6.1: Experiments for unit mode without triggers for Oracle and MySQL (log-log

scale).

80

6.3. Experiments

Figure 6.2: Experiments for unit mode with triggers for Oracle and MySQL (log-log scale).

6.3.3 Performance over batch mode

Batch mode: In the so-called batch mode, batched operations are done asynchronously,

which improves the performance since the connection between the database server and

the database client relies on a communication channel that is more e�cient when it sends

substantial chunks of data rather small amounts of data that one operation would require.

Triggers are also invoked in order, just like in the Unit mode, but only at the end of the

batch. The semantic is the same as for the unit mode, the only di�erence is the delay

between the operation performed and the trigger invocation.

81

Chapter 6. EdiFlow for visual analytics

Figure 6.3: Experiments for batch mode without triggers for Oracle and MySQL (log-log

scale).

Figure 6.4: Experiments for batch mode with triggers for Oracle and MySQL (log-log

scale).

6.3.4 Performance over atomic mode

Atomic mode: In the so-called atomic mode, every operation in the atomic group succeeds

or none of them do. All the database checks are done at the end of the transaction and, if

the transaction succeeds, triggers are called once for all the tuples concerning one operation

(all the inserts, all the updates, all the deletes).

82

6.3. Experiments

Figure 6.5: Experiments for atomic mode without triggers for Oracle and MySQL (log-log

scale).

Figure 6.6: Experiments for atomic mode with triggers for Oracle and MySQL (log-log

scale).

6.3.5 Performance over in-memory database systems

All of the existing popular toolkits for Information Visualization such as Prefuse [48], the

InfoVis toolkit (IVTK) [33], Tulip [10] or Improvise [82], use an in-memory database to

manage their data structures to o�er the required speed for visualization and interaction.

Keeping all the data in memory is out of question in VA applications. However, redisplay

and continuous interaction require keeping some data in memory, not all: VA applications

83

Chapter 6. EdiFlow for visual analytics

do not visualize all the attributes of all the data structures all the time; therefore some

part could be kept out of memory. This can be left to the virtual memory manager: when

the data to load is larger than the amount of RAM on a machine, it moves the unused

data to disk. However, to be managed by the virtual memory manager, data has to be

loaded in memory �rst, which can take time, partly uselessly when only portions of the

data are needed. Furthermore, the memory organization of the data has to be compatible

with the strategy of the virtual memory manager. Column-oriented in-memory databases

are better suited to the current strategies according to[33].

We present in the following the results of Prefuse and IVTK only for the unit mode.

Indeed, the batch and atomic mode are not supported by these systems.

Figure 6.7: Experiments without triggers for Prefuse and IVTK (log-log scale).

6.4 Performance analysis

6.4.1 MySQL and Oracle results

According to the results of unit, batch and atomic modes, MySQL is 2-3 times faster than

Oracle, while the general trends are the same for both systems. This can be explained by

the additional security mechanisms implemented by Oracle (e.g., ACL) that are checked

after each operation on the database. In the unit mode, the Oracle performances are much

slower than MySQL, this is because the checks are applied after each operation. However,

in batch and atomic modes, performances of Oracle and MySQL are close enough, probably

because the checks are only applied once at the transactions end.

84

6.4. Performance analysis

Figure 6.8: Experiments with triggers for Prefuse and IVTK (log-log scale).

To assess the trigger's cost, we performed the same experiments without calling a

trigger procedure. The time for insert, update and delete operations increases by about

10% regardless of the DBMS.

Access time is much faster than modi�cation time for both DBMS but Oracle has a

constant delay of about 0.5s before it starts returning data from a select statement. MySQL

is much faster, serving 100,000 items in 183ms, about 2 microseconds per item. Oracle

takes about 5 times more, 10 microseconds per item. These results seem to be compatible

with continuous redisplay but these times are averaged and can vary greatly from one call

to another.

6.4.2 Prefuse and IVTK results

From the results shown in Figures 6.7 and 6.8, Prefuse and IVTK exhibit similar perfor-

mance for the �delete� operation, with a slight advantage to Prefuse for the �Insert� and

�Update� operations. The gap observed between the results of the two systems is due to

the use of di�erent memory allocations constants.

Prefuse and IVTK are 10 times faster than Oracle and MySQL for modi�cation oper-

ations. This speed is due to several factors such as lack of controls on data integrity, the

data are stored in a cache structure, and no security mechanism is triggered after each

insert operation. Nevertheless, Prefuse and IVTK use table updates to manage dynamic

queries and selection in interactive time when it would be completely impractical with a

DBMS.

Access time for Prefuse and IVTK are about 1ms for 100,000 items, 100 times faster

than MySQL.

85

Chapter 6. EdiFlow for visual analytics

6.4.3 Discussion

According to Nielsen [62], there are three important orders of magnitude to the perception

of response times for a human interacting with a computer:

� 0.1 second: when data is updated on screen below this limit, the user perceives the

changes as instantaneous or continuous. This is required for display updates during

animation or continuous interaction.

� 1.0 second: limit for users feeling that they are freely navigating the command space

without having to unduly wait for the computer.

� 10 seconds: limit for users keeping their focus on the task.

According to the results above, the exclusive use of a persistent database gives a re-

sponse time not acceptable for continuous interaction but acceptable for the feedback of

commands. So, we are faced with a problem: we want to rely on a persistent database

for its bene�ts (scalability, data management, user management, con�ict management,

ACID properties, and maturity) but we need to use an in-memory database for continuous

interaction and visualization.

Therefore, EdiFlow implements a caching mechanism to have the best of both worlds:

visualization and interaction will be done on the in-memory database with the required

speed. Our model of distributed data store based on a DBMS works, although with some

additional complexity.

6.5 Visualization management

EdiFlow implements visualizations using a data table that contains graphic information,

such as position (x, y), shape, color, and label. Each module could implement one data

table to suit its needs but it is more e�cient to share a common table and, furthermore,

it o�ers several interesting bene�ts.

We describe in the following details about the visual table management in the EdiFlow

platform and its visualization architecture allowing several views for the same visualization.

6.5.1 Visual table schema

A visualization module reads data tables, computes graphic attributes associated to these

input data tables and populate the visual table of EdiFlow. The module can also display

the visualization on a screen or delegate the display to another module or an external

application that will read speci�c items from the database visualization table. Using the

EdiFlow caching mechanism, visualization modules are invoked when the input data tables

they manage are modi�ed. They can then update the visual table by either recomputing

all the attributes or only the ones that have been changed. For example, a graph drawing

86

6.5. Visualization management

module would probably recompute a layout, taking into account all the items in the input

tables while a scatter-plot visualization module would only recompute the positions of

changed items.

Conceptually and in the implementation, EdiFlow visualization modules are very simi-

lar to Prefuse visualizations: they read from data tables and write to data tables that can

be rendered.

The concrete schema of the visualization table is:

Name VisID X Y ObjectID Shape Label SrcTable

Type String Real Real String String String String

� The VisID is a string that identi�es the visualization that has set this entry (all the

visualizations store their results in the shared visualization table). Visualizations are

free to choose any identi�er they like.

� X and Y are the 2D position of the item.

� ObjectID is a unique identi�er to the visualized object in the source table and is used

for picking and updating.

� Shapeis the speci�cation of a geometry; currently, it contains the Java Shape object

serialized.

� Label is the label of the object or null.

� SrcTable is, as its name implies, the name of the table from where this graphic item

has been computed. This schema is very simple on purpose and should be enriched

when EdiFlow evolves.

6.5.2 An architecture for several views

EdiFlow allows several views to display the same visualization. As shown in Figure 6.9,

the visual attributes can be shared by several views and by several users who may choose

to visualize some or all of the data; for example on a smart phone showing only 10% of

the items, on a laptop showing 30% and on a large display showing 100%.

EdiFlow can maintain several visualization views for one visualization. As shown in

Figure 6.9, the visual attributes can be shared by several visualization views and by several

users that may choose to visualize some or all of the data (e.g., on an iPhone showing 10%

of the data, on a laptop showing 30% and on our WILD Wall-Sized display[83]) showing

all of the data.

Moreover, in applications such as the INRIA co-publications example outlined in Sec-

tion 5.7.3, a user may want to visualize a scatter plot displaying the number of publications

per year on one machine and displaying the number of publication by author on another

machine. The two are obtained from the same data but using two di�erent views. To

87

Chapter 6. EdiFlow for visual analytics

Figure 6.9: EdiFlow architecture for managing several visualization views.

this purpose, the visualization component computes and �lls the visual attributes only

once regardless of the number of generated views. For each view, a display component is

activated to show the data on the associated machine using a visualization toolkit such as

Prefuse[48] or the InfoVis Toolkit [33]. This architecture o�ers several advantages:

� It allows sharing visual attributes by di�erent views and maintaining consistency

between data and views.

� The computation of visual attributes is done only once. If an update occurs, the

VisualAttributes table is updated and all associated views will be automatically up-

dated.

� Such architecture can satisfy the principle of visualization: a visualization may have

several views.

In practice, to display the co-publications graph on the WILD, we used a workstation

running the visualization module and a cluster of 16 machines to display the graph over

the 32 screens of the WILD (cf. Figure 6.10). Each machine controls two screens and

runs an EdiFlow instance to launch visualization view modules. When the data is up-

dated, the DBMS noti�es the visualization module to compute new visual attributes and

to insert them into the in-memory table to refresh the visualization. The VisualAttributes

table is then synchronized with the in-memory table. The database noti�es the running

visualization view modules that they need to refresh all displays.

88

6.6. Interaction management

Figure 6.10: INRIA co-publications graph on a wall-sized display.

6.6 Interaction management

In an interactive system, interaction is managed in one or two phases. Commands are

operations performed by the user using an interaction device such as a keyboard or a

mouse (e.g., clicking on a button widget). They require an explicit validation and some

feedback (e.g., pushing then releasing a physical mouse button with some highlight of the

widget button on screen). When the command is executed, the state of the system is

modi�ed.

Commands are discrete actions and perceived as discrete by the user. There are also

continuous actions that are important for dynamic queries and smooth interaction. For

example, a graph visualization system can allow nodes to be moved interactively on screen

using a mouse. Moving nodes should be perceived as continuous by users, even if the actual

implementation uses discrete events. Depending on the semantic of the operation and on

the performance of the system, continuous interactions can be implemented as multiple

discrete commands or as a �chunk� where the command is actually executed at the end of

the chunk, even if the system provides a continuous feedback.

For example, Window Explorer allows �les to be dragged and dropped from one window

to another or on top of an application to launch the application with the �le as parameter,

even to the trash can to discard the �le. When a �le is dragged, the icon is continuously

moved with the mouse pointer but the actual command is only triggered when the mouse

button is released. This is an example of continuous feedback that does not change the

system's state until the end of the chunk.

On the contrary, a graph-drawing visualization can consider that when nodes are moved

using a mouse-drag, the positions associated with the nodes are updated at each mouse

89

Chapter 6. EdiFlow for visual analytics

movement and the system's state is changed each time. In that case, it is a design choice

since, in the end, the user will not see much di�erence between a deferred commands and

a continuous action. At best, for a deferred action, only �ghost� nodes will be dragged

interactively while the real nodes stay in place before the action is ended[34].

Using EdiFlow, modules have no choice for continuous interaction: they have to defer

the command to the end of the interaction chunk and perform a local continuous feedback.

Selecting 100 nodes and moving them interactively by directly changing the visualization

table would send a number of updates to the DBMS, incompatible with the continuous

interaction speed. We believe that this is a small price to pay to bene�t from the whole

EdiFlow environment.

According to the Information Visualization Reference Model, the interaction can im-

pact the view, the visualization, the data and, in the case of visual analytics, it can also

impact any analytical module. Since all of the modules read their input and parameters

from DBMS tables, changing a parameter boils down to changing a value in a table and

the propagation will be done by EdiFlow. If several parameters need to be changed at

the same time, say a visualization module will use another algorithm and a set of new

parameters related to this algorithm, then an atomic transaction should be used to set

all the parameters at the same time to avoid the visualization module being reactivated

several times.

If EdiFlow modules want to provide continuous interaction on large visualizations, the

only solution is integration or sampling. Integration means that, for example, a visualiza-

tion module will also implement a view so that changing interactively a color-mapping or

a layout can result in a smooth animation being performed inside the module, even if only

the �nal result is propagated to the DBMS. Sampling means that the rate at which the

changes will be sent to the DBMS should be adapted to the speed of the feedback received.

This strategy, while theoretically possible with EdiFlow, needs to be further experimented.

So far, we have only implemented simple strategies.

There are several in-memory database systems (Protovis[16], Jung [64], IVTK [33],

etc.). We used Prefuse and IVTK through EdiFlow. Include such components in the

architecture of EdiFlow allows us to bene�t from the power and functionalities of the

persistent databases, but also get even faster response times. By bringing data closer to

the application and processing queries in an in-memory database, applications are able to

access and update data with much shorter response times.

Thus, during each refresh operation, the in-memory database is updated to achieve a

response time of one second. A synchronization phase is still scheduled with the persistent

database so other users can be informed when some objects are being updated.

One consequence of the uni�cation of interaction with data updates is the possibility of

collaboration between multiple users since objects stored in the DBMS, in particular the

visual table, can be shared. We report on some experiments regarding collaboration and

con�ict avoidance in the example section 6.7.

90

6.7. Use case: publication database cleaning scenario

While EdiFlow does not currently implement any high-level service for collaboration,

we plan on designing one in the near future since sharing information across the network

comes for free.

To avoid con�icts in the collaboration environment, we use the noti�cation process that

follows the same principle of dynamic management of data.

Take for example the co-publications graph as application. If a user is manipulating

a set of objects, information regarding the handling is stored in a collaboration table. If

other users are currently viewing all or part of objects viewed by the �rst user, all users

will be noti�ed that these objects are being manipulated and to avoid con�ict they have

to wait until the user release the corresponding objects.

The level of noti�cation depends on the level of interaction. The noti�cation informa-

tion is sent in real time to all users (concerned by manipulated objects). This information

can be modeled as a cloud encircling all objects manipulated in visualizations of other

users.

Updating the views of the other users depends on the performance of the system since

this update is related to updating the VisualAttributes table. Here are two possible sce-

narios:

� Updating the VisualAttributes table after that the user releases the objects;

� Updating the VisualAttributes table after each update on the in-memory table.

6.7 Use case: publication database cleaning scenario

Application context. In an international context of the dissemination and exploitation

of research results, were born of new models of direct scienti�c communication between

researchers such as open archives (OA).

Their goal is to provide free access to scienti�c publications for researchers around the

world and to build interoperable reservoirs of knowledge and information. The valuation of

publications and preprints is provided by a better visibility, durability and ease of access.

HAL-INRIA, INRIA Open Archive was launched April 27, 2005. It relies on software

HAL (Hyper Article on Line) developed by the Center for Direct Scienti�c Communication

(CCSD) of CNRS. It o�ers scientists an environment of deposition and consulting in the

areas of STIC (Sciences and Technologies of Information and Communication). HAL-

INRIA is one component of the multidisciplinary international archive HAL, set up by the

CCSD (Centre for Direct Scienti�c Communication) of the CNRS. The multi-disciplinary

open archive HAL, is for the �ling and dissemination of scienti�c research level, whether

published or not, and theses, from educational institutions and research French or foreign,

public or private laboratories.

Publications submitted via HAL-INRIA Open Archive feed National HAL, which allows

to deposit and to publish scienti�c papers in all disciplines.

91

Chapter 6. EdiFlow for visual analytics

The HAL-INRIA archive was created to:

� Maximize the visibility of the scienti�c and institutional laboratories;

� Ensure the sustainability of data stored in the archive;

For each deposit, a basic check of the contents of the metadata is performed. For a

deposit with text, the audit also seeks to control if the �les are readable and do not violate

the rules set by publishers in open archives.

The current database of HAL-INRIA contains a signi�cant amount of duplication.

These duplicates can be of di�erent types:

� Authors: one of the recurring causes the duplicates is given in writing name and

surname of the author by using abbreviations. For example: F. Aster and Fred

Aster.

� Publications: the same publication can be entered twice by two co-authors of the

article.

� Institutions: the authors of the same team and the same institutions can enter infor-

mations di�erently. Here is an example of entries that can be found in the institu-

tions' table institutions in the HAL database: INRIA, INRIA Saclay, Aviz/INRIA,

Leo/INRIA, etc.

Duplicates are currently treated with a manually by browsing through the list of au-

thors and publications. This task is cumbersome given the large number of authors and

publications stored in the database.

It is in this context that the SAS team of INRIA asks us to develop an application that

automates this task by helping as much as possible the end user to detect duplicates.

EdiDuplicate is an application designed to detect and help remove duplicated author

entries in a large database of publications called HAL-INRIA [43]. Except for trivial cases,

deciding it two similar author names refer to the same person requires a human decision.

Figure 6.11: EdiDuplicate work�ow

New data is collected from the HAL-INRIA database server every night. Figure 6.11

shows the work�ow corresponding to this application. It consists of the following tasks:

92

6.7. Use case: publication database cleaning scenario

Figure 6.12: EdiDuplicate interface.

� Input: Data is imported in XML format, parsed and stored in the EdiFlow DBMS

using multiple tables such as author and publication.

� Similarity computation: for each new author name inserted in the author table, we

compute its similarities with all the other authors already in the table. We use

several similarity metrics to capture many possible misspellings. The user can de�ne

a threshold below which two authors are considered di�erent. All authors who have

a higher rating are kept to be displayed to a user for decision.

� Visualization module: Figure 6.12 shows the interface from which users can decide

whether two author names refer to the same person. This interface consists of �ve

elements:

1. the A pane contains a table with one row per candidate name. The columns

contain the names to compare and the multiple similarities values between the

names. The table is sorted by one of the similarity scores. The similarity

columns are colored from green to red depending on the similarity score.

2. the B pane allows to change visual attributes of the graphs that appear on

the C panel. In this version of the application, we allow the change of the

visualization layout. However, it is possible to integrate other features. This

panel also contains two important buttons. A button that allows to assign the

93

Chapter 6. EdiFlow for visual analytics

same alias to the authors for whom the end user decides that they are identical.

The second button allows to assign di�erent aliases.

3. the C pane is used when the user selects a row; a co-publication network is

then visualized in a way similar to [14]. This network helps the user decides it

two names refer to the same author: if the neighborhood of authors is similar,

sharing one or two co-authors, then the chance is high that the names refer to

the same person. If the neighborhoods intersection is empty, then there is less

support to merge the names unless the user can recognize a standard misspelling.

4. the D pane is used to re�ne the search at the table in panel A. This panel is

especially useful when the number of entries in the table is very important.

5. the E panel is used to get more information on authors, such as email addresses,

the institutions to which they belong, etc. This information is very useful to the

end user of the application to decide whether two authors are identical or not.

� Decision-making module: this module allows the user to decide whether two authors

are identical or not. To avoid forgetting decisions and to allow correcting errors later,

the EdiDuplicate never removes authors from the table; it only updates an �alias�

�eld in this table that points to the canonical author entry. If two authors have the

same alias, they are considered to refer to the same person.

EdiDuplicate is meant to be connected to the HAL-INRIA database eventually. The

input module would not be required any more but several other modules would be added

to compute publication statistics from the data. De-duplicating authors would require

a re-computation of the statistic, a typical visual analytics scenario when an interaction

triggers more computations to update complex measures.

Furthermore, we have designed the visualization and decision-making modules to be

able to work in isolation from the work�ow, just in connection with the database. Using

this module in standalone mode, many users can connect to HAL-INRIA and clean the

data in parallel. The decision made by one user is immediately visible to the other users

thanks to the cached tables. To better support collaboration, we have added feedback of

other users watching speci�c authors so that all the users are aware that they share some

common items in their visualizations. The implementation consists in managing a shared

table containing the list of visual items displayed by users. The visualizations can add

some feedback (e.g., a halo around the items). This feedback helps when users collaborate

on cleaning the authors of a speci�c research group for example. It also prevents users from

seeing their visualizations change unexpectedly if another user is cleaning it concurrently;

at least, the user is warned.

EdiDuplicate features data-, computation- and user-centric processes that must react

to changes while the work�ow is running. Visual data exploration helps users make deci-

94

6.8. Conclusion

sions that will be fed back into the work�ow. The EdiDuplicate application is the most

challenging, by the size of the database, the complexity of its metrics, and consideration

of the user interaction in the application.

6.8 Conclusion

In this chapter, we have described the EdiFlow reactive work�ow system designed to ad-

dress the problem of scalability in visual analytics. EdiFlow implements a novel mechanism

for managing changes in data sources. Based on this mechanism, EdiFlow provides a uni�ed

model that is both control-driven and data-driven. The control is de�ned by the work-

�ow speci�cation �le and triggers a standard run of the speci�cation, as other Scienti�c

work�ows systems do. Contrary to the other work�ow systems, when data changes in the

DBMS, the dependencies are run again in a special mode to re-process the data: EdiFlow

is reactive. Interactions are modeled as data changes. EdiFlow relies on a standard DBMS

to realize its semantic model in a sound and predictive way. EdiFlow supports standard

data manipulations through procedures and introduces the management of changes in the

data through update propagation. Each work�ow process can express its behavior w.r.t

data change in one of its input relations. Several options are o�ered to react to such a

change in a �exible way to optimize the reaction according to the semantic of the process.

We also presented in this chapter a real-life use case. This use case has several challenges

such as complex analysis tasks and user interaction.

We strongly believe that formally specifying the services required for visual analytics

in term of user requirements, data management and processing, and providing a robust

implementation is the right path to develop the �elds of visual analytics and scienti�c

work�ows together.

95

Chapter 6. EdiFlow for visual analytics

96

Part IV

Conclusion

97

Chapter 7

Conclusion and perspectives

W
e have studied in this dissertation the design and implementation of a

platform aimed at capturing changes in data sources and launching a

repair mechanism.

7.1 Summary

Visual analytics aims at combining interactive data visualization with data analysis tasks.

Given the explosion in volume and complexity of scienti�c data, e.g., associated to biological

or physical processes or social networks, visual analytics is called to play an important role

in scienti�c data management.

Most visual analytics platforms, however, are memory-based, and are therefore limited

in the volume of data handled. Moreover, the integration of each new algorithm (e.g.,

for clustering) requires integrating it by hand into the platform. Finally, they lack the

capability to de�ne and deploy well-structured processes where users with di�erent roles

interact in a coordinated way sharing the same data and possibly the same visualizations.

We have designed and implementedEdiFlow, a work�ow platform for visual analytics

applications. EdiFlow uses a simple structured process model, and is backed by a per-

sistent database, storing both process information and process instance data. EdiFlow

processes provide the usual process features (roles, structured control) and may integrate

visual analytics tasks as activities. We presented its architecture, deployment on a sample

application, and main technical challenges involved.

We present in the following a list of contributions related to our work.

A generic data model. We investigated the choice of a generic data model, yet

amenable to e�cient computations. The designed data model comprises three kinds of

entities. Application-dependent entities model, Work�ow-related entities and visualization-

related entities.

99

Chapter 7. Conclusion and perspectives

A process model. An appropriate process model dialect has been identi�ed, modeling

user dataset interactions in scienti�c applications. The model allows for the usual process

composition primitives (in the style of the Work�ow Coalition Model) but extended to

allow the user to inspect, interrupt, resume, and guide the process evolution for all or part

of the active instances, with little e�ort, at any point. This interactivity is crucial for

the success of real-life data processing applications. Therefore, the design of the process

model strives to capture, to the extent possible, the various interactions that rich data

manipulations interfaces allow.

EdiFlow processes are speci�ed in a simple XML syntax, closely resembling the XML

WfMC syntax XPDL [86]. The main innovative ingredient of the process model is the

treatment of data dynamics, i.e. the possibility to control which changes in the data are

propagated to which part(s) of which process instances.

Design and implementation of the architecture. We have designed an architecture

and implemented its parts to validate it by running some of the scenarios. The designed

architecture is composed of three layers: the DBMS, the EdiFlow process and the mod-

ules. The work�ow management logic runs on top of the DBMS; visualization software is

integrated under the form of modules. During process executions, the necessary data ma-

nipulation statements are issued to record the connections between users and application

instances, and application data.

Validation of the architecture on real applications. We validated our architecture

over three real applications. These scenarios start from data, transform them into clean

tables, apply some work�ow operators to them for analysis or transformation and allow

navigation and visualization at interactive rate. We started from the cleanest data sets

and problems and advanced towards more complex and demanding datasets and scenarios.

The implementation of these applications could not be achieved without the use of

persistent database. Indeed, e�ective management of large data volumes such as HAL-

INRIA or Wikipedia could not be done simply by using memory-based mechanism.

Identi�cation of gaps in persistent databases In this dissertation, we have found

several shortcomings related to the databases management systems for visualization sys-

tems (response time, noti�cation management, etc.). Identifying these gaps can help for

designing a new generation of DBMS with appropriate properties and features for visual

analytics applications.

7.2 Research directions

Many roads go in a star of our work and each arouses our interest, some of these paths

will be presented in the following.

100

7.2. Research directions

7.2.1 Improve the provenance management process

Since EdiFlow keeps track of the dependencies between tables and modules, it maintains

a rough level of provenance: each output table is the result of processes taking a set of

input tables. However, at the EdiFlow level, nothing more precise can be known. Since our

modules need to implement an abstract data type to be run by EdiFlow, we are considering

improving this interface to support exporting mode accurate Provenance data. However,

full provenance information can become very large and it is important to study what level

of provenance is really required for real visual analytics applications.

One solution consists on using the Oracle Total Recall system. It is a multi-versioning

mechanism that ensures read consistency while maintaining a high degree of concurrency.

When DML (Data manipulation Language) operations such as INSERT, UPDATE, or

DELETE are executed, Oracle writes data to an undo tablespace that is used for transac-

tion rollbacks and for guaranteeing read consistency.

Total Recall contains a Flashback Data Archive component which creates an internal

history table for every tracked table. The internal history table is initially a replica of the

source table with additional metadata columns. When one or more columns in the tracked

table are updated, a new row is inserted into the history table that is the before-image of

the row before the transaction.

7.2.2 Improve the visual table schema

Currently, the visual table schema is minimal and we have to extend it to manage real

visualizations. It is possible to extend the functionalities for the "Shape" �eld. Indeed, this

�eld currently contains a string describing the shape of the object. An extension is to use

the libraries used in geographic information systems. These libraries have the advantage

of including di�erent methods to perform complex geometrical operations between shapes

such as the intersection between two objects. An example of these libraries is JTS (Java

Topology Suite).

The JTS Topology Suite is a Java API that implements a core set of spatial data oper-

ations using an explicit precision model and robust geometric algorithms. JTS is intended

to be used in the development of applications that support the validation, cleaning, inte-

gration and querying of spatial datasets. This document is the design speci�cation for the

classes, methods and algorithms implemented in the JTS Topology Suite.

7.2.3 Specify collaboration management mechanisms

A fundamental aspect of successful collaboration is an e�ective division of labor among

participants. This involves both the segmentation of e�ort into proper units of work and the

allocation of individuals to tasks in a manner that best matches their skills and disposition.

Primary concerns are how to split work among multiple participants and meaningfully

aggregate the results[47].

101

Chapter 7. Conclusion and perspectives

EdiFlow is distributed by design. We started to play with some collaboration mecha-

nisms but we need to experiment more to provide guidance to programmers and a standard

behavior for modules.

7.2.4 Integration with VisTrails

Exploration of work�ows con�gurations, provenance and history management are three

very important features we want to integrate with EdiFlow and that are very well supported

by VisTrails. Conversely, VisTrails does not manage dynamic data and does not try to

unify communication mechanisms between modules as EdiFlow does. We are interested in

incorporating the mechanisms of EdiFlow into VisTrails. It would also allow us to bene�t

from the large set of modules VisTrails already has.

VisTrails is written in Python and uses Qt as its GUI toolkit (through PyQt Python

bindings). EdiFlow is written in JAVA. It is therefore necessary to establish a Jython

wrapper in order to call di�erent visualizations and features used in the source code of

VisTrails.

7.2.5 Management of dynamic work�ows

Dynamic work�ows need to evolve over time as execution data become available. To

manage dynamic work�ows, EdiFlow must capture provenance information and store the

di�erent versions of the work�ows. By tracking detailed provenance information, we can

ensure reproducibility and allow scientists to easily navigate through the di�erent versions

of the work�ow and parameter settings used in a given exploration task. Unlike VisTrails,

the current version of EdiFlow does not allow the management of dynamic work�ows.

Thus, to facilitate integration with VisTrails, it is important to develop this feature in

EdiFlow.

102

Appendix A

Données en masse et work�ows

interactifs pour la visualisation

analytique

(Résumé étendu)

A.1 Contexte

La quantité des données électroniques de toute forme, produites par des utilisateurs (pages

Web, blogs, des contenus structurés tels que Wikipedia) et des outils automatiques (cap-

teurs, services Web, programmes scienti�ques ou des outils d'analyse) conduisent à une

prolifération sans précédent des données, ce qui complique l'extraction de nouvelles con-

naissances, des nouvelles corrélations, et l'interprétation des données.

La visualisation analytique est une nouvelle branche de la visualisation de l'information

et de l'interaction homme-machine [77]. Son objectif est de permettre aux utilisateurs

d'interagir étroitement avec de grandes quantités de données à l'aide des outils de visual-

isation. Grâce à ces outils, un utilisateur peut détecter des phénomènes ou de déclencher

une analyse détaillée qui peut ne pas avoir été identi�ée par les outils automatiques.

La plupart des outils de visualisation analytique ont quelques inconvénients conceptuels.

En e�et, ils sont rarement liés à des bases de données persistantes (à l'exception de[36]).

Dans ces systèmes, les données sont chargées à partir de �chiers ou bases de données et

sont manipulées directement dans la mémoire centrale car la �uidité de l'interaction vi-

suelle nécessite une fréquence de réa�chage de 10 à 25 fois par seconde. Les bases de

données standards ne supportent pas les requêtes continues à ce rythme. Cependant, mal-

gré ces inconvénients, la connexion entre une base de données et un système de visualisation

analytique présente plusieurs avantages :

103

Appendix A. Données en masse et work�ows interactifs pour la visualisation analytique(Résumé étendu)

� Passage à l'échelle : de gros volumes de données peuvent être traitées grâce aux bases

de données persistantes.

� Persistance et distribution: plusieurs utilisateurs (éventuellement à partir de sites

distants) peuvent interagir avec une base de données, alors que ce n'est pas facile à

réaliser avec des structures de données résidants en mémoire centrale.

� Gestion des données : des tâches complexes de traitement de données peuvent être

exprimées en SQL et/ou un langage de script impératif. Ces tâches peuvent également

inclure des fonctions dé�nis par l'utilisateur (UDF) pour les calculs mis en oeuvre

en dehors du serveur de bases de données. Ces fonctions ne sont pas des procédures

stockées gérées par le SGBD. Ce sont des programmes exécutables externes au serveur

de base de données.

L'intégration d'un Système de Gestion de Base de Données (SGBD) dans une plate-

forme de visualisation doit prendre en considération les aspects suivants répandus dans les

applications de visualisation analytique :

� Convergence des visualisations analytiques et des work�ows : les outils actuels de

visualisation analytique ne sont pas basés sur les modèles de processus work�ow.

Cependant, plusieurs applications de visualisation analytique nécessitent toutefois

un processus récurrent, bien soutenu par un système de work�ow. Les tâches de

traitement de données doivent être organisées en séquence ou en boucle. Les utilisa-

teurs ayant des rôles di�érents peuvent collaborer dans certaines applications avant

de continuer l'analyse. Il peut aussi être nécessaire de se connecter et de permettre

l'inspection de l'exécution de chaque tâche. Les plates-formes de work�ow (scien-

ti�ques) permettent l'automatisation de ces traitements par la combinaison des outils

de bases de données avec l'invocation de fonctions externes.

� Gestion des données dynamiques et propagation du changement : une classe im-

portante d'applications de visualisation analytique doit faire face aux données dy-

namiques, qui sont actualisées en permanence tandis que le processus d'analyse est

encours d'exécution. Les interactions possibles entre toutes ces mises à jour doivent

être soigneusement étudiées, a�n de supporter des applications e�caces et �exibles.

Notre travail porte sur l'intégration d'un SGBD dans une plate-forme de visualisation

analytique.

A.2 Etat de l'art

Les applications de visualisation analytique sont actuellement conÃŸues à l'aide d'une

architecture ad-hoc. In n'existe pas de modèle clair qui guiderait les designers à con-

104

A.2. Etat de l'art

cevoir ce type d'applications. Comme la plupart des systèmes de visualisation ana-

lytique sont construites par des praticiens de la visualisation de l'information, ils se

basent, généralement, sur le modèle de référence de la visualisation de l'information[23;

27] pour la partie visualisation ainsi que pour la partie interaction. La partie analyse des

données est intégrée ou gérée séparément selon le niveau de calcul.

Nous proposons dans ce qui suit un liste non exhaustives des principaux systèmes

de visualisation analytiques basés sur le modèle référence de visualisation ainsi que les

principaux systèmes de work�ow scienti�que. Nous évoquons leurs forces et faiblesses

pour les outils de visualisation analytique.

A.2.1 Systèmes de visualisation analytique

Toutes les outils de visualisation de l'information tels que Prefuse[48], InfoVis (IVTK) [33]

ou improvise [82], sont basés sur un système de mémoire centrale pour gérer leurs struc-

tures de données et o�rir la vitesse requise pour la visualisation et l'interaction. Il est

inenvisageable de garder toutes les données en mémoire centrale dans les applications de

visualisation analytique. Toutefois, le réa�chage et les interactions continues nécessitent

de garder certaines données en mémoire. Néanmoins, les applications de visualisation an-

alytique ne visualisent pas tous les attributs de toutes les structures de données, donc une

partie pourrait être gardée en dehors de la mémoire centrale. C'est ce que le gestionnaire de

mémoire virtuelle doit e�ectuer lorsque la quantité de données est plus importante que la

quantité de RAM sur une machine. Toutefois, pour qu'elles soient gérées par le gestionnaire

de mémoire virtuelle, les données doivent être chargées en mémoire d'abord. Ce processus

peut prendre du temps, en partie inutilement lorsque seules des portions de données sont

nécessaires. En outre, l'organisation de la mémoire des données doit être compatible avec

la stratégie du gestionnaire de mémoire virtuelle. Les bases de données orientées colonnes

sont mieux adaptées aux stratégies actuelles[33].

A.2.2 Systèmes de work�ow scienti�que

A scienti�c work�ow is a formal speci�cation of a scienti�c process, which represents,

streamlines, and automates the analytical and computational steps that a scientist needs to

go through from dataset selection and integration, computation and analysis, to �nal data

product presentation and visualization[25].

Nous présentons dans ce qui suit une liste des principaux systèmes de work�ow scien-

ti�que :

Parmi les projets les plus récents et bien développé de work�ow scienti�que, Kepler[7]

est conÃŸu pour aider les scienti�ques, les analystes et les programmeurs informatiques à

créer et exécuter les work�ows à travers un large éventail de disciplines scienti�ques. Kepler

fournit une interface graphique qui permet aux utilisateurs de sélectionner, puis connecter

les composants d'analyse aux sources de données pour créer un work�ow scienti�que.

105

Appendix A. Données en masse et work�ows interactifs pour la visualisation analytique(Résumé étendu)

Triana [76] est un système de work�ow construit à l'origine pour fournir un outil

d'analyse rapide de de données d'ondes gravitationnelles. À ses débuts, les procédures

ont été modélisées et exécutées localement ou à distance. Plus récemment, Triana a été

étendu à incorporer des composants distribués, orientés grille ou service Web.

Ces systèmes de work�ow scienti�que peuvent traiter de grandes quantités de données

mais ils fournissent très peu visualisation et pas d'interaction: ils sont destinés à fonctionner

dans des processus bien spéci�ques, et non pas à des tâches exploratoires. Certains de

ces systèmes o�rent des mécanismes pour lancer des visualisations implémentées comme

une application externe. Par ailleurs, même si la plupart de ces work�ows scienti�ques

permettent des connexions aux bases de données pour charger et stocker des données, ils

considèrent que ces données sont immuables pendant l'exécution du processus work�ow.

Ils ne peuvent pas réagir à tout changement sur les sources de données une fois le work�ow

démarré.

Tous ces systèmes de work�ow scienti�que ne sont donc pas adaptés pour la visualisation

analytique : ils fournissent peu de visualisation, aucune interaction ni aucune gestion des

données dynamiques.

A.2.3 Systèmes de work�ow scienti�que basés sur la visualisation

VisTrails [22; 73] est un système de work�ow scienti�que basé sur un système de visual-

isation qui permet de gérer e�cacement les activités exploratoires. Il o�re une interface

graphique pour créer le processus work�ow, exécuter et visualiser les résultats. La visu-

alisation est implémentée en utilisant la librairie VTK [52; 81]. Ainsi, les scienti�ques

n'ont pas besoin d'utiliser des programmes externes pour visualiser les résultats de leurs

expériences.

VisTrails o�re plusieurs caractéristiques, telles que l'analyse exploratoire et la gestion

e�cace de la provenance. Toutefois, il n'o�re aucun mécanisme permettant de réagir aux

changements dans les sources de données.

A.3 Contributions

Nous avons conçu une architecture générique pour intégrer les outils de visualisation analy-

tique avec les SGBDs. Il s'agit d'EdiFlow, une plateforme de work�ow pour les applications

de visualisation analytique. EdiFlow utilise un modèle de processus structuré et est soutenu

par une base de données persistante permettant de stocker les informations relatives aux

données et au contrôle des instances de processus. Nous présentons dans ce qui suit, les

di�érents ingrédients d'EdiFlow, à savoir, son modèle de processus, son architecture et sa

gestion de la dynamicité, de la visualisation et de l'interaction.

106

A.3. Contributions

Process :== Con�guration Constant* Variable+ Relation+
Function* StructuredProcess

Con�guration ::= DBdriver DBuri DBuser
Constant ::= name value name2 N , value 2 V
Variable ::= name type name 2 N , type 2 T
Relation ::= name primaryKey RelType
RelationType ::= (attName attType)*, attName 2 N , attType 2 T
Function := name classPath
StructuredProcess := Activity j Sequencej AndSplitJoin j OrSplitJoin

j ConditionalProcess
Sequence ::= Activity , StructuredProcess
AndSplitJoin ::= AND-split (StructuredProcess)+ AND-join
OrSplitJoin ::= OR-split (StructuredProcess)+ OR-join
ConditionalProcess ::= IF Condition StructuredProcess
Activity ::= activityName Expression
Expression ::= askUserj callFunction j runQuery

Figure A.1: Schéma XML du modèle de processus.

A.3.1 Modèle de processus

EdiFlow implémente un modèle de processus inspiré du Work�ow Management Coalition

model [84]. La Figure 5.2 décrit la syntaxe des processus. Nous utilisons un ensemble de

variables, de constantes, de noms d'attributN , de valeurs atomiquesV , et un ensemble de

types de données atomiquesT. Le principal ingrédient innovant ici est le traitement des

données dynamiques: la possibilité de contrôler les changements. Nous décrivons dans ce

qui suit les principaux ingrédients de ce modèle.

� Un processus est construit sur un ensemble derelations (de manière informelle ap-

pelées tables) implémentant le modèle de données. Les relations sont désignées par

des lettres capitales tels queR; S; T.

� Une requêteest une expression algébrique sur les relations. Les requêtes sont générale-

ment désignées par la lettreQ.

� Une variable est un couple composé d'un nom et d'une valeur. Les variables sont

utilisées pour la modélisation des constantes, comme par exemple, un seuil numérique

pour un algorithme de clustering. Les variables seront dénotées par des lettres mi-

nuscules tels quev; x; y.

� Une procédure est une unité de calcul implémentée par des logiciels externes. Un

exemple typique est le code de calcul d'un clustering. Une procédure prend en entrée

l relations R1; R2; : : : ; Rl et envoie les données en sortie versn relations :

107

Appendix A. Données en masse et work�ows interactifs pour la visualisation analytique(Résumé étendu)

Nous considérons une procédurep comme une boîte noire, correspondant à un pro-

gramme développé à l'extérieur du moteur de bases de données et à l'extérieur du

système EdiFlow, au moyen de certains programmes exprimés, par exemple, en C++,

Java, Matlab. Les fonctions sont considérées comme des processus sans e�ets sec-

ondaires.

Une procédure peut être associée auxgestionnaires de mise à jour. Un gestion-

naire de mise à jour est invoqué avec une liste de tuples qui ont été modi�és via la

procédure précédente. Cette liste de tuples est appeléedelta. EdiFlow implémente

deux types de mises à jour: immédiate et di�érée. Les mises à jour immédiates

sont propagées immédiatement même si la procédure est en cours d'exécution. Par

exemple, quand un graph est en cours de construction et que de nouveaux noeuds

arrivent, la disposition devrait tenir compte de la mise à jour dans le calcul. Les

mises à jour di�érées sont propagées après que la procédure ait terminée son exécu-

tion. Par exemple, lorsque la procédure e�ectue une analyse quantitative dont seul

le résultat �nal compte, elle peut être ajusté par la suite pour prendre en compte les

deltas. Les gestionnaires de changements sont des mécanismes uniques à EdiFlow,

ils sont censés gérer e�cacement les données dynamiques.

� Les activités sont les blocs de nos processus. Les activités les plus simples sont les

a�ectations de variables de la formev � . Un autre type d'activité serait une mise à

jour d'une table R, notée upd(R). Contrairement aux modi�cations de table faites à

partir d'une procédure opaque, ces mises à jour sont spéci�ées par un instruction SQL

déclarative. En�n, une activité peut invoquer une procédure dep en fournissant les

paramètres d'entrée appropriés, et de retenir les sorties dans un ensemble de tables.

Les activités de visualisation doivent être modélisées comme des procédures, étant

donné que leur code ne peut être exprimé par des requêtes.

� Un processusest soit "vide", soit une séquenced'activités suivie d'un processus, soit

un parallel (and) split-join de deux processus, soit un(or) split-join de deux processus

(avec la sémantique qu'une fois une branche est déclenchée, l'autre est invalidé et ne

peut plus être déclenchée). En�n, un processus peut être considéré comme unbloc

conditionnel où une expression est évaluée. Si le résultat est "vrai" le processus est

exécuté.

� Un processus réactifest dé�ni par un ensemble de relations, un ensemble de variables,

un ensemble de procédures, un processus et un ensemble depropagations de mise à

jour . Une propagation de mise à jourspéci�e ce que doit être fait quand un ensemble

de tuples sont ajoutés à une relation. Plusieurs options sont possibles pour gérer,

propager, ou ignorer les modi�cations.

108

A.3. Contributions

A.3.2 Architecture du système d'Edi�ow

Figure A.2: Architecture du système EdiFlow.

L'architecture du système EdiFlow est décrite dans la Figure A.2; elle est divisée en

trois couches :

� La couche SGBD gère les données utilisées à la fois pour le work�ow et pour les

modules. Pour le work�ow, le SGBD conserve toutes les informations relatives à

l'état des activités, des processus, etc. Concernons les modules, le SGBD mémorise

toutes les informations internes sur l'état du modules, l'ordre de leur exécution, les

dépendances entre les tables et les modules, etc. EdiFlow peut être considéré comme

un système d'exploitation distribué dont le SGBD contient sa mémoire.

� La couche EdiFlow est en charge de l'exécution du processus dans un ordre déterminé

par la spéci�cation XML du work�ow et également de la réaction aux changements

dans les tables.

� La couche des modules est constituée de l'ensemble des modules (boîtes noires). Ils

peuvent invoquer des visualisations et des interactions.

A.3.3 Gestion de la dynamicité

La capture des changements dynamiques dans les tables des SGBDs est un mécanisme

essentiel d'EdiFlow pour deux raisons : en interne, pour traiter les détails du gestionnaire

de changement et, en externe, à mettre en oeuvre les caches de données dans les modules.

Nous décrivons ici l'implémentation bas niveau du mécanisme.

109

Appendix A. Données en masse et work�ows interactifs pour la visualisation analytique(Résumé étendu)

La principale caractéristique d'EdiFlow est de réagir à la dynamique des changements

de données. La gestion de la réactivité complique la logique du système, mais aussi sa mise

en oeuvre. Pour mettre en placeles gestionnaires de changement, EdiFlow a besoin de

garder une trace des changements intervenus dans le SGBD depuis la dernière invocation

du module.

Le mécanisme utilisé pour recueillir les mises à jour pour EdiFlow a été étendu pour

gérer les tables en cache qui sont conservés conformément aux tables dans le SGBD. Quand

une table du SGBD est mise à jour dans un module EdiFlow, la table en mémoire est

maintenue cohérente avec le table sur disque : l'évolution de la table en mémoire se propage

à celle sur disque et vice-versa.

EdiFlow implémente un protocole visant à propager e�cacement les mises à jour ef-

fectuées sur une table du disque, appeléeRD à son image de la mémoire, appeléeRM .

Inversement, lorsque le module modi�eRM , ces changements doivent être propagées vers

RD . RM existe dans la partie client et peut donc être sur un autre hôte queRD .

EdiFlow met en place un système pour créer, met à jour et supprime les triggers qui

surveillent les changements dans la table persistanteRD . Chaque fois qu'un changement

arrive, le trigger correspondant ajoute à la table de noti�cation un tuple de la forme

(seq_ no; ts; tn; op), où seq_ no est un numéro séquentiel,ts est l'instant de la mise à

jour, tn est le nom de la table etop est l'opération e�ectuée (insertion, modi�cation ou

suppression). Ensuite, une noti�cation est envoyée àRM . L'interaction �uide exige que la

noti�cation doit être transmise très rapidement. Une noti�cation est envoyée via un socket

connecté à l'instance de processus tenantRM . Les informations relatives à l'adresse hôte

et le port sont mémorisées dans la table Client. Lorsque le module décide de traiter les

mises à jour a�n de synchroniser les tables en mémoire centrale, il lit les noti�cations de

la table à partir de son dernier numéro de séquenceseq_ no.

Le protocole de synchronisation entreRM et RD peut être résumé comme suit :

1. Un objet de mémoire(RM) est créé dans le processus Java.

2. Il demande au gestionnaire de connexionde créer une connexion avec la base de

données.

3. Le gestionnaire de connexion ouvre un port sur la machine locale et associe localement

un quadruplet à RM : (db; RD ; ip; port).

4. Le quadruplet est envoyée au SGBD pour créer une entrée dans la table Connecte-

dUser.

5. Le SGBD se connecte au client en utilisant l'adresseip : port, et s'attend à recevoir

un messagehello pour véri�er qu'il s'agit du bon protocole.

6. Le gestionnaire de connexion accepte la connexion, envoie lehello et s'attend à un

messagereply pour véri�er qu'il s'agit du protocole attendu.

110

A.3. Contributions

7. Quand RD est modi�ée, le trigger du SGBD envoie au client (ip : port) qui détient

RM , un message denotification avec le nom de la table comme paramètre.

8. Le logiciel de table en mémoire peut décider quelle est le moment approprié pour

rafraîchir son contenu et peut-être invoquer une noti�cation qui mettra à jour une

visualisation. Quand il décide de le faire, il se connecte au SGBD et extrait la liste

des tuples créés/modi�és/supprimés, et propage les modi�cations apportées àRM .

9. Lorsque RM est modi�ée, elle propage ses changements à la tableRD et traite les

noti�cations déclenchées de manière intelligente a�n d'éviter le travail redondant.

10. Lorsque RM est supprimée, un message de déconnexion est envoyé à la base de

données qui ferme la socket et supprime le tuple correspondant dans la table Con-

nectedUser.

11. La table des noti�cations peut être purgée de tuples ayant unseq_ no inférieure à la

valeur la plus basse dans la table Client.

Notons que certains SGBD o�rent déjà une extension mémoire (par exemple Oracle In-

Memory Database Cache). Nous n'avons pas connecté EdiFlow à ces systèmes pour deux

raisons: 1) ils sont habituellement disponibles pour des SGBD spéci�ques et nous voulons

qu'EdiFlow soit agnostique par rapport aux SGBDs, 2) nous encapsulons nos objets en

mémoire avec une �ne surcouche qui peut s'adapter aux nouvelles implémentations donc

rien n'empêche qu'EdiFlow puisse utiliser une extension mémoire.

A.3.4 Gestion de la visualisation

EdiFlow implémente les visualisations en utilisant une table contenant un ensemble

d'informations graphiques, telles que la position (x, y), la forme, la couleur, l'étiquette,

etc. Chaque module peut mettre en place une table pour répondre à ses besoins mais il

est plus e�cace de partager une table commune.

Par conséquent, un module de visualisation lit le contenu des tables, calcule les attributs

graphiques associés à ces tables d'entrée et remplit la table de visualisation dans Edi-

Flow. Le module permet également d'a�cher la visualisation sur un écran ou de déléguer

l'a�chage à un autre module ou à une application externe qui va lire les éléments spéci-

�ques de la base de données. En utiliser le mécanisme de cache dans EdiFlow, les modules

de visualisation sont invoqués lorsque les tables de données d'entrée ont été modi�ées. Ils

peuvent ensuite mettre à jour la table des attributs visuels soit en recalculant tous les

attributs ou seulement ceux qui ont été changés.

Conceptuellement et dans notre implémentation, le module de visualisation d'EdiFlow

est très similaire à celui de Prefuse Le schéma concret de la table des attributs visuels est

le suivant :

111

Appendix A. Données en masse et work�ows interactifs pour la visualisation analytique(Résumé étendu)

Nom VsID X Y ObjectID Forme Etiquette SrcTable

Type String Real Real String String String String

� VisID est une chaîne de caractère qui identi�e la visualisation qui a été à l'origine

de cet élément (toutes les visualisations stockent leurs résultats dans la table des

attributs visuels).

� X et Y sont la position de l'élément 2D.

� ObjecID est un identi�cateur unique de l'objet visualisé dans la table source et est

utilisé pour la sélection et la mise à jour

� Forme est la spéci�cation d'une géométrie; actuellement, on maintient un objet java

sérialisé.

� Etiquette permet d'attribuer un alias à un objet.

� SrcTable est, comme son nom l'indique, le nom de la table à partir de laquelle cet

élément graphique a été calculé.

Ce schéma est très simple et doit être enrichi quand EdiFlow évolue.

EdiFlow permet de gérer plusieurs vues pour une même visualisation. Les attributs

visuels peuvent être partagés par plusieurs vues et par plusieurs utilisateurs qui peuvent

choisir de visualiser tout ou une partie des données. Par exemple sur un téléphone, nous

montrons que 10% des éléments, sur un ordinateur portable, nous montrons 30% et sur un

grand écran nous montrons 100% des éléments.

A.3.5 Gestion de l'interaction

Dans un système interactif, l'interaction est gérée dans une ou deux phases. Les commandes

sont des opérations e�ectuées par l'utilisateur en utilisant un appareil d'interaction tel

qu'un clavier ou une souris (par exemple en cliquant sur un bouton). Lorsque la commande

est exécutée, l'état du système est modi�é. Les commandes sont des actions discrètes et

perÃŸues comme discrètes par l'utilisateur. Il y a aussi des actions continues qui sont

importantes pour les requêtes dynamiques et les interactions �uides.

Dans EdiFlow, les modules n'ont pas le choix d'une interaction continue. Ils doivent

reporter la commande à la �n du morceau d'interaction et e�ectuer une rétroaction continue

locale. Sélectionner 100 noeuds et les déplacer d'une manière interactive en changeant

directement la table des attributs visuels génère un nombre de mises à jour à la base de

données, incompatible avec la vitesse de l'interaction. Nous croyons que ceci est un petit

prix à payer pour béné�cier de l'ensemble des fonctionnalités de l'environnement EdiFlow.

Il existe plusieurs systèmes basés sur une mémoire centrale (Protovis[16], Jung [64],

IVTK [33], etc.). Nous avons utilisé Prefuse et IVTK. Inclure les bases de données basées

112

A.4. Conclusion et perspectives

sur la mémoire centrale dans l'architecture d'EdiFlow, permet de béné�cier des fonction-

nalités des bases de données persistantes, mais aussi obtenir des temps de réponses temps

de réponse intéressants grâce aux bases de données mémoires.

Ainsi, lors de chaque opération d'actualisation, la base de données en mémoire est mise

à jour a�n d'atteindre un temps de réponse d'une seconde. Une phase de synchronisation

est toujours prévue avec la base de données persistante pour que les autres utilisateurs

puissent être informés lorsque certains objets sont mis à jour.

A.4 Conclusion et perspectives

Nous avons étudié dans cette thèse la conception et la mise en place d'une plateforme visant

à capturer les changements dans les sources de données ainsi qu'à lancer un mécanisme de

calcul et de réparation.

La visualisation analytique vise à combiner la visualisation interactive des données avec

des tâches d'analyse et de fouille. Compte tenu de l'explosion du volume et la complexité

des données scienti�ques (données associées à des processus biologiques ou physiques ou

de réseaux sociaux), la visualisation analytique est appelée à jouer un rôle important dans

la gestion des données scienti�ques.

La plupart des plates-formes de visualisation analytique, cependant, sont basées sur des

structures mémoire, et sont donc limités dans le volume des données traitées. Par ailleurs,

l'intégration de chaque nouvel algorithme (par exemple pour le clustering) nécessite de

l'intégrer à la main dans la plate-forme. En�n, il leur manque la capacité à dé�nir et

déployer des processus bien structurés où les utilisateurs interagissent avec di�érents rôles

d'une manière coordonnée en partageant les mêmes données et éventuellement les mêmes

visualisations.

Nous avons conÃŸu et mis en place EdiFlow, une plateforme de work�ow pour les

applications de visualisation analytique. EdiFlow utilise un modèle structuré de processus,

et est connecté à une base de données persistante. Un processus dans EdiFlow peut intégrer

des tâches de visualisation analytique dans ses activités. Nous avons présenté l'architecture,

le déploiement sur un ensemble d'application, ainsi que les principaux dé�s techniques

rencontrés.

Nous présentons dans ce qui suit une liste de contributions liées à notre travail.

Un modèle générique de données. Nous avons étudié le choix d'un modèle de don-

nées générique. Le modèle conÃŸu comprend trois types d'entités. Les entités liées aux

applications et aux tables de données, les entités liées aux contrôles du processus work�ows

et les entités liées aux visualisations.

Un modèle de processus. Nous avons mis en place un modèle de processus faisant

intervenir les données des utilisateurs, ainsi que la modélisation des interactions dans les

113

Appendix A. Données en masse et work�ows interactifs pour la visualisation analytique(Résumé étendu)

applications scienti�ques. Le modèle permet les opérations standards (dans le style de la

Coalition work�ow Model), mais aussi, étendu pour permettre à l'utilisateur d'inspecter,

d'interrompre, reprendre et guider l'évolution du processus à tout moment. Cette interac-

tivité est essentielle pour la gestion des applications faisant appel à une masse importante

de données.

Conception et implémentation de l'architecture. Nous avons spéci�é et mis en

place un architecture permettant de faire face aux di�érents dé�s, à savoir, la gestion de

la dynamicité, le passage à l'échelle et l'interaction. L'architecture conÃŸue est composé

de trois couches: le SGBD, le processus EdiFlow ainsi que les modules.

Validation de l'architecture sur des applications réelles. Nous avons validé notre

architecture par trois applications réelles. Ces applications commencent par transformer

et nettoyer les données, appliquer certains opérateurs work�ow pour des �ns d'analyse ou

de transformation et permettre l'exploration visuelle du résultat.

Identi�cation des lacunes des bases de données persistantes. Dans cette thèse,

nous avons relevé plusieurs inconvénients liés à l'utilisation des bases de données persis-

tantes pour la visualisation analytique (temps de réponse, gestion de la noti�cation, etc.).

Identi�er ces lacunes peut aider à la conception d'une nouvelle génération de SGBD avec

des propriétés et fonctionnalités adéquates aux applications de visualisation analytique.

A.4.1 Perspectives

Nous présentons dans ce qui suit l'ensemble des perspectives liées aux contributions décrites

dans ce manuscrit.

Amélioration du processus de gestion de la provenance. EdiFlow garde une trace

des dépendances entre les tables et les modules en maintenant un niveau approximatif

de provenance : chaque table de sortie est le résultat de processus faisant appel à un

ensemble de tables d'entrées. Nous envisageons d'améliorer cette interface pour améliorer

le niveau de précision de la provenance au niveau d'EdiFlow. Toutefois, les informations

de provenance peuvent devenir très volumineuses et il est ainsi important d'étudier quel

est le niveau de la provenance nécessaire pour les applications de visualisation analytique.

Amélioration de la structure de la table des attributs visuels. Actuellement,

le schéma de la table des attributs visuels visuelle est minime et nous devons l'étendre

a�n de gérer plusieurs types de visualisations. Il est possible, par exemple, d'étendre les

caractéristiques du champ "Forme". En e�et, ce champ contient actuellement une chaîne

de caractère décrivant la forme de l'objet. Une extension est d'utiliser les bibliothèques des

systèmes d'information géographique. Ces bibliothèques ont l'avantage d'inclure di�érentes

114

A.4. Conclusion et perspectives

méthodes pour e�ectuer des opérations géométriques complexes entre les formes telles que

l'intersection entre deux objets.

Mise en place d'un mécanisme de gestion de collaboration. Un aspect fondamen-

tal de la collaboration réussie est une véritable division du travail entre les participants.

Cela implique à la fois de la segmentation des e�orts dans des unités appropriées de travail

et la répartition des individus à des tâches d'une manière qui correspond le mieux à leurs

compétences et leur aliénation.

EdiFlow est distribué par son design. Nous avons commencé à implémenter certains

mécanismes de collaboration, mais plus d'expérimentations sont nécessaires a�n que ce

mécanisme soit au point.

Intégration avec VisTrails. L'exploration des work�ows, la provenance et la gestion

de l'historique sont trois éléments essentiels que nous voulons intégrer dans EdiFlow et qui

sont déjà pris en charge par VisTrails. Cependant, VisTrails ne gère pas la dynamicité

des données et ne possède pas un mécanisme d'uni�cation entre ses di�érents modules.

Il est ainsi intéressant d'intégrer le mécanisme de gestion des données dynamiques dans

VisTrails.

Gestion des work�ows dynamiques. Les work�ows dynamiques ont besoin d'évoluer

au �l du temps que les données d'exécution sont disponibles. Pour gérer les work�ows

dynamiques, EdiFlow doit capturer les informations de provenance et mémoriser les dif-

férentes versions du work�ow.

115

Appendix A. Données en masse et work�ows interactifs pour la visualisation analytique(Résumé étendu)

116

Bibliography

[1] Google Visualization Data Source. http://code.google.com/p/google-visualization-

java/.

[2] Orchestra: Managing the collaborative sharing of evolving data.

http://www.cis.upenn.edu/�zives/orchestra/.

[3] Protovis. http://vis.stanford.edu/protovis/.

[4] Scalability. http://en.wikipedia.org/wiki/Scalability.

[5] The work�ow management coalition speci�cation. Work�ow Management Coalition

Terminology & Glossary, February 1999.

[6] A. Ailamaki, Y. E. Ioannidis, and M. Livny. Scienti�c work�ow management by

database management. InSSDBM, pages 190�199, 1998.

[7] I. Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludäscher, and S. Mock. Kepler: an

extensible system for design and execution of scienti�c work�ows. Proceedings 16th

International Conference on Scienti�c and Statistical Database Management 2004,

pages 423�424, 2004.

[8] E. Anderson, S. Callahan, D. Koop, E. Santos, C. Scheidegger, H. Vo, J. Freire, and

C. Silva. VisTrails: Using Provenance to Streamline Data Exploration. In Poster

Proceedings of the International Workshop on Data Integration in the Life Sciences

(DILS) 2007, 2007. Poster presentation.

[9] C. R. Aragon, S. S. Poon, G. S. Aldering, R. C. Thomas, and R. Quimby. Using

Visual Analytics to Maintain Situation Awareness in Astrophysics. Nature, 9:27�34,

2008.

[10] D. Auber, Y. Chiricota, M. Delest, J.-P. Domenger, P. Mary, and G. Melançon.

Visualisation de graphes avec Tulip : exploration interactive de grandes masses de

données en appui à la fouille de données et à l'extraction de connaissances. In

M. Noirhomme-Fraiture and G. Venturini, editors, EGC, Revue des Nouvelles Tech-

nologies de l'Information, pages 147�156. Cépaduès-Éditions, 2007.

117

Bibliography

[11] R. S. Barga, J. Jackson, N. Araujo, D. Guo, N. Gautam, K. Grochow, and E. La-

zowska. Trident: Scienti�c Work�ow Workbench for Oceanography. 2008 IEEE

Congress on Services, pages 465�466, 2008.

[12] B. B. Bederson, J. Grosjean, and J. Meyer. Toolkit design for interactive structured

graphics. IEEE Transactions on Software Engineering, 30(8):535�546, 2004.

[13] L. Bernardinello and F. De Cindio. A Survey of Basic Net Models and Modular Net

Classes.Advances in Petri Nets 1992, pages 304�351, 1992.

[14] M. Bilgic, L. Licamele, L. Getoor, and B. Shneiderman. D-Dupe: An Interactive Tool

for Entity Resolution in Social Networks. 2006 IEEE Symposium On Visual Analytics

And Technology, 3843:43�50, 2006.

[15] P. A. Boncz, M. L. Kersten, and S. Manegold. Breaking the memory wall in MonetDB.

Communications of the ACM, 51(12):77�85, 2008.

[16] M. Bostock and J. Heer. Protovis : A Graphical Toolkit for Visualization. Computer,

15(6):1121�1128, 2009.

[17] N. Boukhelifa, F. Chevalier, and J.-D. Fekete. Real-time Aggregation of Wikipedia

Data for Visual Analytics. In Proceedings of Visual Analytics Science and Technology

2010, Los Alamitos, CA, USA, 2010. IEEE Computer Society. to appear.

[18] S. Bowers and B. Ludäscher. Actor-Oriented Design of Scienti�c Work�ows. In Proc.

of the International Conference on Conceptual Modeling (ER), pages 369�384, 2005.

[19] M. Brambilla, S. Ceri, P. Fraternali, and I. Manolescu. Process modeling in web

applications. ACM Trans. Softw. Eng. Methodol., pages 360�409, 2006.

[20] Y. Breitbart, A. Deacon, H. J. Schek, A. Sheth, and G. Weikum. Merging Application-

centric and Data-centric Approaches to Support Transaction-oriented Multi-system

Work�ows. SIGMOD Records, 22(3):23�30, 1993.

[21] P. Buneman, S. Khanna, and W.-c. Tan. Why and Where: A Characterization of

Data Provenance, volume 1973, pages 316�330. Springer, 2001.

[22] S. P. Callahan, J. Freire, E. Santos, C. E. Scheidegger, C. T. Silva, and H. T. Vo.

VisTrails: visualization meets data management, volume 1, pages 745�747. ACM,

2006.

[23] S. K. Card, J. D. Mackinlay, and B. Shneiderman. Readings in Information Visual-

ization: Using Vision to Think . Morgan Kaufmann, 1999.

[24] S. Ceri, P. Fraternali, A. Bongio, M. Brambilla, S. Comai, and M. Matera. Designing

Data-Intensive Web Applications. Morgan Kau�mann, 2003.

118

[25] A. Chebotko, X. Fei, C. Lin, S. Lu, and F. Fotouhi. Storing and Querying Scien-

ti�c Work�ow Provenance Metadata Using an RDBMS. Third IEEE International

Conference on eScience and Grid Computing eScience 2007, pages 611�618, 2007.

[26] F. Chevalier, S. Huot, and J.-D. Fekete. WikipediaViz: Conveying Article Quality for

Casual Wikipedia Readers. Paci�c Visualization Symposium Paci�cVis 2010 IEEE ,

pages 49�56, 2010.

[27] E. H.-H. Chi and J. Riedl. An operator interaction framework for visualization sys-

tems. In Proceedings of the 1998 IEEE Symposium on Information Visualization,

pages 63�70, Washington, DC, USA, 1998. IEEE Computer Society.

[28] C. A.-N. Consortium. The active database management system manifesto: a rulebase

of ADBMS features. Sigmod Record, 25(3):40�49, 1996.

[29] N. Diakopoulos, M. Naaman, and F. Kivran-swaine. Diamonds in the Rough : Social

Media Visual Analytics for Journalistic Inquiry. Interfaces, pages 115�122, 2009.

[30] J. Eder, H. Groiss, and W. Liebhart. Work�ow Management and Databases. In 2ème

Forum Int dInformatique Appliquée Tunis , 1996.

[31] J. Eder and W. Liebhart. The Work�ow Activity Model WAMO , pages 87�98. 1995.

[32] S. G. Eick and A. F. Karr. Visual Scalability. Journal Of Computational And Graphical

Statistics, 11(1):22�43, 2002.

[33] J. D. Fekete. The InfoVis Toolkit. IEEE Symposium on Information Visualization ,

pages 167�174, 2004.

[34] J.-D. Fekete and M. Beaudouin-Lafon. Using the multi-layer model for building inter-

active graphical applications. Proceedings of the 9th annual ACM symposium on User

interface software and technology UIST 96, pages 109�118, 1996.

[35] J. D. Fekete and C. Plaisant. Interactive information visualization of a million items.

IEEE Symposium on Information Visualization 2002, 2002:117�124.

[36] J. Gerth and P. Hanrahan. Maintaining interactivity while exploring massive time

series. 2008 IEEE Symposium on Visual Analytics Science and Technology, pages

59�66, 2008.

[37] J. Gray, D. T. Liu, M. Nieto-Santisteban, A. S. Szalay, D. DeWitt, and G. Heber.

Scienti�c data management in the coming decade.ACM SIGMOD Record, 34(4):34�

41, 2005.

[38] M. Greenwood, C. Goble, R. Stevens, J. Zhao, M. Addis, D. Marvin, L. Moreau, and

T. Oinn. Provenance of e-Science Experiments - experience from Bioinformatics.OST

eScience Second All Hands Meeting 2003 AHM03, 4:223�226, 2003.

119

Bibliography

[39] K. Görlach, M. Sonntag, D. Karastoyanova, F. Leymann, and M. Reiter. Conventional

Work�ow Technology for Scienti�c Simulation. Guide to eScience, pages 0�31, 2011.

[40] R. Grønmo and I. Solheim. Towards modeling web service composition in uml, pages

72�86. Citeseer, 2004.

[41] A. Gupta, B. Ludäscher, and L. Raschid. Report on the 2nd International Workshop

on Data Integration in the Life Sciences: (DILS'05). SIGMOD Record, 35(2):56�58,

2006.

[42] A. Gupta, I. S. Mumick, and V. S. Subrahmanian. Maintaining Views Incrementally ,

volume 22, pages 157�166. ACM, 1993.

[43] The HAL INRIA publication server. http://hal.inria.fr.

[44] Y. Han, E. P. Stuntebeck, J. T. Stasko, and G. D. Abowd. A visual analytics system

for radio frequency �ngerprinting-based localization. 2009 IEEE Symposium on Visual

Analytics Science and Technology, pages 35�42, 2009.

[45] M. C. Hao, R. K. Sharma, D. A. Keim, U. Dayal, C. Patel, and R. Vennelakanti.

Application of Visual Analytics for Thermal State Management in Large Data Centres.

Computer Graphics Forum, 29(6):1895�1904, 2010.

[46] D. Harel. Statecharts: A visual formalism for complex systems.Science of Computer

Programming, 8(3):231�274, 1987.

[47] J. Heer and M. Agrawala. Design considerations for collaborative visual analytics.

Information Visualization , 7(1):49�62, 2008.

[48] J. Heer, S. K. Card, and J. A. Landay. Prefuse: a toolkit for interactive information

visualization, volume 05pp, pages 421�430. ACM, 2005.

[49] M. D. Hill. What is scalability? ACM SIGARCH Computer Architecture News,

18(4):18�21, 1990.

[50] C. A. R. Hoare. Communicating sequential processes.Communications of the ACM,

21(8):666�677, 1978.

[51] D. Hull, K. Wolstencroft, R. Stevens, C. Goble, M. R. Pocock, P. Li, and T. Oinn.

Taverna: a tool for building and running work�ows of services. Nucleic Acids Research,

34(Web Server issue):W729�W732, 2006.

[52] L. Ibanez, W. Schroeder, L. Ng, and J. Cates.The ITK Software Guide. Kitware, Inc.

ISBN 1-930934-15-7, http://www.itk.org/ItkSoftwareGuide.pdf, second edition, 2005.

120

[53] Z. G. Ives, T. J. Green, G. Karvounarakis, N. E. Taylor, V. Tannen, P. P. Talukdar,

M. Jacob, and F. Pereira. The ORCHESTRA Collaborative Data Sharing System.

Sigmod Record, 37(3):26�32, 2008.

[54] D. A. Keim, J. Kohlhammer, G. Ellis, and F. Mansmann, editors. Mastering The

Information Age - Solving Problems with Visual Analytics. Eurographics, November

2010.

[55] D. A. Keim, F. Mansmann, A. Sto�el, and H. Ziegler. Visual analytics. In L. Liu and

M. T. Özsu, editors, Encyclopedia of Database Systems, pages 3341�3346. Springer

US, 2009.

[56] F. Leymann. Supporting Business Transactions Via Partial Backward Recovery In

Work�ow Management Systems, pages 51�70. Springer-Verlag, 1995.

[57] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones, E. A. Lee,

J. Tao, and Y. Zhao. Scienti�c work�ow management and the kepler system. Con-

currency and Computation Practice and Experience, 18(10):1039�1065, 2006.

[58] B. Ludäscher, M. Weske, T. M. McPhillips, and S. Bowers. Scienti�c Work�ows:

Business as Usual?BPM, 5701:31�47, 2009.

[59] G. V. M. Weske. Handbook on Architectures of Information Systems. (International

Handbooks on Information Systems), chapter Work�ow Languages, pages 359�379.

Springer, 1998.

[60] N. Mandal, E. Deelman, G. Mehta, M.-h. Su, K. Vahi, and M. D. Rey. Integrating

Existing Scienti�c Work�ow Systems : The Kepler / Pegasus Example. Information

Sciences, pages 21�28, 2007.

[61] C. D. Manning, P. Raghavan, and H. Schütze.Introduction to Information Retrieval ,

volume 1. Cambridge University Press, 2008.

[62] J. Nielsen. Usability Engineering, volume 44. Morgan Kaufmann, 1993.

[63] A. Noack. An Energy Model for Visual Graph Clustering, volume 2912, pages 425�436.

Springer, 2004.

[64] J. O'Madadhain, D. Fisher, S. White, and Y. Boey. The JUNG (Java Universal

Network/Graph) Framework. University of California Irvine , (UCI-ICS 03-17):3�17,

2003.

[65] OSGi service platform, core speci�cation, release 4, version 4.2.

http://www.osgi.org/Release4/Download, 2009.

121

Bibliography

[66] S. G. Parker and C. R. Johnson. SCIRun: A Scienti�c Programming Environment

for Computational Steering, volume 2, page 52. IEEE Press, 1995.

[67] N. W. Paton and O. Díaz. Active database systems. ACM Computing Surveys,

31(1):63�103, 1999.

[68] T. Risch and M. Sköld. Monitoring Complex Rule Conditions. In Active Rules in

Database Systems, pages 81�102. Springer, New York, 1999.

[69] N. Russell, A. H. M. Ter Hofstede, W. M. P. V. D. Aalst, and N. Mulyar. Work�ow

Control-Flow Patterns: A Revised View. Business, 2:06�22, 2006.

[70] A. Rygg, P. Roe, and O. Wong. GPFlow: An Intuitive Environment for Web Based

Scienti�c Work�ow. 2006 Fifth International Conference on Grid and Cooperative

Computing Workshops, pages 204�211, 2006.

[71] A. Savikhin, R. Maciejewski, and D. S. Ebert. Applied visual analytics for economic

decision-making.2008 IEEE Symposium on Visual Analytics Science and Technology,

pages 107�114, 2008.

[72] S. Shankar, A. Kini, D. J. DeWitt, and J. Naughton. Integrating databases and

work�ow systems. ACM SIGMOD Record, 34(3):5, 2005.

[73] C. T. Silva, E. Anderson, E. Santos, and J. Freire. Using VisTrails and Provenance

for Teaching Scienti�c Visualization. Most, 30(1):75�84, 2010.

[74] Y. L. Simmhan, B. Plale, and D. Gannon. A survey of data provenance in e-science.

ACM SIGMOD Record, 34(3):31�36, 2005.

[75] V. Tannen. Provenance for database transformations.Proceedings of the 13th Inter-

national Conference on Extending Database Technology EDBT 10, page 1, 2010.

[76] I. Taylor, I. Wang, M. Shields, and S. Majithia. Distributed computing with Triana on

the Grid. Concurrency and Computation Practice and Experience, 17(9):1197�1214,

2005.

[77] J. J. Thomas and K. A. Cook. Il luminating the path: The research and development

agenda for visual analytics, volume 54. IEEE, 2005.

[78] W. M. P. van der Aalst. The Application of Petri Nets to Work�ow Management.

Journal of Circuits, Systems, and Computers, 8(1):21�66, 1998.

[79] J. J. van Wijk. Guest Editor's Introduction: Special Section on the IEEE Symposium

on Visual Analytics Science and Technology (VAST). IEEE Trans. Vis. Comput.

Graph., 17(5):555�556, 2011.

122

[80] F. B. Viégas, M. Wattenberg, and K. Dave. Studying cooperation and con�ict between

authors with history �ow visualizations, volume 6, pages 575�582. ACM Press, 2004.

[81] The visualisation toolkit. http://www.vtk.org/.

[82] C. Weaver. Building Highly-Coordinated Visualizations in Improvise. IEEE Sympo-

sium on Information Visualization , pages 159�166, 2004.

[83] WILD: Wall-sized interaction with large datasets. http://insitu.lri.fr/Projects/WILD.

[84] The work�ow management coalition reference model.

http://www.wfmc.org/reference-model.html.

[85] Project Trident: A scienti�c work�ow workbench. http://research.microsoft.com/en-

us/collaboration/tools/trident.aspx.

[86] XML Process De�nition Language. http://www.wfmc.org/xpdl.html.

123

	Cover
	Dédicace

