ol B}+ iBQM /2b bvbi K2b KmHIB@ ;2N\
+QKTQ i2K2Mi HBbi2b T " H2 KQvV2M /2b bE
7Q K2HH2K2Mi ;mB/02b
S mMHQa H2K . a H2K / aBHp aBHp

hQ +Bi2 i?Bb p2 " bBQM,

S mMmHQ a H2K . a H2K / aBHp aBHp X o0 B}+ iBQM /2b bvbi K2b KmH
T H2 KQv2M /2b bBKmH iBQMb 7Q K2HH2K2Mi ;mB/02bX Pi?2" (+bXP
IMBp2 bB/ /2/2 a%Q S mHQ U" 0bBHV- kyRRX 1M;HBb?X LLh, kyRRS

> G A/, i2ZH@yye8e3yN
2iiTbh,ffi2HX "+?2Bp2b@Qmp2 i2bX7 fi2H@yye8
am#KBii2/ QM 8 C M kyRKk

> G Bb KmHiB@/Bb+BTHBM v GOT24WB p2 Dmbp2 "i2 THm B/BbBIBTHBN
"+?Bp2 7Q i?72 /2TQbBi M/ /Bbb2KIBEBMBR MNQ@T™+B2® " H /BzmbBQM /2 /
2MiB}+ "2b2 "+?2 /Q+mK2Mib- r?2i?@+B2MMiB}2mM2b#/@ MBp2 m "2+?22 +?22- T
HBb?2/ Q° MQiX h?2 /IQ+mK2Mib MK VW+RK2Z2EF IQKHBbb2K2Mib /62Mb2B;M
i2 +?BM; M/ "2b2 "+? BMbiBimiBQWER BM?8 7M#M2I @b Qm (i~ M;2 b- /2b H
#Q /-Q 7 QK Tm#HB+ Q T ' Bp i2T2HRAB+B @2MT2BIpXib X

UNIVERSITE PARIS-SUD 11

ECOLE DOCTORALE: Informatique

Laboratoire de Recherche en Informatique

DISCIPLINE Informatique

THESE DE DOCTORAT

en co-tutelle avec I'Universidade de Sao Paulo

soutenu le 28/11/2011

par

Paulo SALEM DA SILVA

Veri cation of behaviourist multi-agent systems
by means of formally guided simulations

Co-directrice de these:
Co-directrice de thése:

Composition du jury:

Président du jury:
Rapporteurs:

Examinateurs:

Marie-Claude GAUDEL
Ana Cristina VIEIRA DE MELO

Flavio SOARES CORREA DA SILVA
Augusto SAMPAIO

Jean-Pierre BRIOT

Marcelo FINGER

Professeur émérite (Université Paris-Sud 11)
Professeur (Universidade de Sdo Paulo)

Professeur (Universidade de Sao Paulo)
Professeur (Universidade Federal de Pernambuco)
Directeur de recherche (CNRS)

Professeur (Universidade de Sao Paulo)

Science in the course of the few centuries of its
history has undergone an internal development
which appears to be not yet completed. One
may sum up this development as the passage
from contemplation to manipulation.

{ Bertrand Russell, The Scienti c Outlook

Acknowledgements

My gratitude goes to the people who helped me either in the technal and
intellectual developments themselves or in the surprisingly had work involved
in getting these developments through the academic bureaucracy. As its
usual, | fear | may forget important names and contributions, but an attempt
must be made to give credit to whom credit is due.

This thesis is the result of a cooperation between two universigs, with an
advisor from each one. Both were essential during the whole process,ith+
out them this work would not exist. Thanks to my Brazilian advisor, Ana
Cristina, | got to know many of the central technical notions used in this the-
sis. Moreover, her many advices and comments during the whole timengiched
my work considerably. | am also particularly grateful for her incentive for me
to pursue my interests and to work on my own ideas, with all the advantags
and disadvantages involved. Ana was also very helpful in every bureauatic
challenge, which were numerous. My French advisor, Marie-Claude, pvided
crucial technical feedback and suggestions, which greatly improved ynwork.
Her attention to detail and high standards were fundamental in bringing the
thesis to its current form. | am also thankful for her logistic and bureaucratic
support in France in every respect, often going well beyond her obligadns,
without which | doubt my stay there { previously only an abstract conce pt to
me { could have worked as well as it did.

During the doctorate | also had very fruitful interactions with sev eral friends,
colleagues and professors, many of whom | found along the way. Through tech-
nical remarks, enlightening conversation and friendly support, theg helped
in creating a sound and stimulating environment. | am specially thankul
for my time with Agnes Helena Chiuratto, Alvaro Heiji Miyazawa, Marcelo
Hashimoto, Matthias P. Krieger, Markus (Makarius) Wenzel, Zahia Gues-
soum, Leliane Nunes de Barros, Renata Wassermann, Domingos Soares Neto,
Carlos Cardonha, Mounir Lallali, Abderrahmane (Abdu) Feliachi, Marcio
Moretto Ribeiro, Ricardo Herrmann, Johan Oudinet, Lina Bentakouk, Francois-
Elie Calvier, Domingos Dellamonica Jr, Juliana Barby Simao, Ellen Hideni
Fukuda, Thiago Palmieri, Gordana Manic, Ricardo Andrade and Wendel Scar-
dua. My parents, who put great value on a solid education, were also very

supportive of this enterprise.

This is an unusually long thesis, and | am grateful that the jury members
actually took the time to read it. They provided detailed and useful feedback,
which not only improved the text itself, but also gave me an opportunity to
re ect in new ways about my work.

Finally, | would like to acknowledge the e ective and professional seretarial
support | got from Pinho at USP and Sephanie Druetta at Paris-Sud.

Abstract

Multi-agent systems (MASs) can be used to model phenomena that can be
decomposed into several interacting agents which exist within an ernronment.

In particular, they can be used to model human and animal societies,dr the
purpose of analysing their properties by computational means. This theis
is concerned with the automated analysis of a particular kind of such sdal
models, namely, those based on behaviourist principles, which ctrasts with
the more dominant cognitive approaches found in the MAS literature. The
hallmark of behaviourist theories is the emphasis on the de nition of kehaviour
in terms of the interaction between agents and their environment. Inthis
manner, not merely re exive actions, but also learning, drives, and enotions
can be de ned. More speci cally, in this thesis we introduce a fomal agent
architecture (speci ed with the Z Notation) based on the Behaviour Analysis
theory of B. F. Skinner, and provide a suitable formal notion of environment
(based on the -calculus process algebra) to bring such agents together as an
MAS.

Simulation is often used to analyse MASs. The techniques involved fyically
consist in implementing and then simulating a MAS several times toeither
collect statistics or see what happens through animation. However, simla-
tions can be used in a more veri cation-oriented manner if one considerthat
they are actually explorations of large state-spaces. In this thesis werppose
a novel veri cation technique based on this insight, which consis$ in simu-
lating a MAS in a guided way in order to check whether some hypothesis
about it holds or not. To this end, we leverage the prominent position that
environments have in the MASs of this thesis: the formal speci caton of the
environment of a MAS serves to compute the possible evolutions of the WS
as a transition system, thereby establishing the state-space to bmvestigated.
In this computation, agents are taken into account by being simulated inorder
to determine, at each environmental state, what their actions are. Eachsimu-
lation execution is a sequence of states in this state-space, which computed
on-the-y, as the simulation progresses.

The hypothesis to be investigated, in turn, is given as another trandion sys-
tem, called a simulation purpose, which de nes the desirable and udesirable

simulations (e.g., \every time the agent does X, it will do Y later"). | t is then

possible to check whether the MAS satis es the simulation purpose awording
to a number of precisely de ned notions of satis ability. Algorithmic ally, this

corresponds to building a synchronous product of these two transibns sys-
tems (i.e., the MAS's and the simulation purpose) on-the-y and using it to

operate a simulator. That is to say, the simulation purpose is used to gigde
the simulator, so that only the relevant states are actually simulated. By the

end of such an algorithm, it delivers either a conclusive or an inconclsive
verdict. If conclusive, it becomes known whether the MAS satis & the sim-
ulation purpose with respect to the observations made during simulaibns. If
inconclusive, it is possible to perform some adjustments and try again

In summary, then, in this thesis we provide four novel elements (i) an agent
architecture; (ii) a formal speci cation of the environment of these agents,
so that they can be composed into an MAS; (iii) a structure to descrile the
property of interest, which we nhamed simulation purpose; and (iv) a echnique
to formally analyse the resulting MAS with respect to a simulation purpose.
These elements are implemented in a tool, called Formally Guided iBwlator
(FGS). Case studies executable in FGS are provided to illustratéhe approach.

Keywords: multi-agent systems, behaviourism, environments, formal meth-
ods, formal veri cation, simulation, model-based testing.

An extended version of this abstract is given in Sectiop F]1 foAppendix[F.

Resumo

Sistemas multi-agentes (SMAs) podem ser usados para modelar fendnn
gue podem ser decompostos em diversos agentes que interagem entreesi-d
tro de um ambiente. Em particular, eles podem ser usados para modelar
sociedades humanas e animais, com a nalidade de se analisar as suas pro-
priedades computacionalmente. Esta tese trata da aralise automatizadade um
tipo particular de tais modelos sociais, a saber, aqueles baseados enmppios
behavioristas, o que contrasta com as abordagens cognitivas mais dominante
na literatura de SMAs. A principal caracterstica das teorias behavioristae a
eénfase na de ncao do comportamento em termos da interacao entr agentes

e seu ambiente. Desta forma, nao apenas aees re exivas, mas tambkene d
aprendizado, motivecees, e as emacees podem ser de nidas. Mais espca-
mente, nesta tese apresentamos uma arquitetura de agentes formal pexi -
cada atrawes da Notacao Z) baseada na teoria da Aralise do Comportamento
de B. F. Skinner, e fornecemos uma nccao adequada e formal de ambient
(com base naalgebra de processos-calculus) para colocar tais agentes juntos
em um SMA.

Simulacees sao fregentemente utilizadas para se analisar SMAs. As ec-
nicas envolvidas tipicamente consistem em simular um SMA diversasezes,
seja para coletar estatsticas, seja para observar o que acontece ates/da
animacees. Contudo, simulacees podem ser usadas de forma a pertinia
realizecao de veri cacees automatizadas do SMA caso sejam entendida®mo
exploracees de grandes espacos-de-estados. Nesta tese propomos uptnica
de veri cacao baseada nessa observecao, que consiste em simular BWA de
uma forma guiada, a m de se determinar se uma dada hiptese sobre ele
verdadeira ou nao. Para tal m, tiramos proveito da importAncia que os am
bientes ttm nesta tese: a especi cacao formal do ambiente de uBMA serve
para calcular as evolwees possveis do SMA como um sistema de tranao,
estabelecendo assim 0 espaco-de-estados a ser investigado. Nesteudd, os
agentes sao levados em conta simulando-os, a m de determinar, em cada es
tado do ambiente, quais sao suas aoees. Cada execwao da simalae-uma
seéncia de estados nesse espaco-de-estados, quee calculado emgente
execwcao, conforme a simulecao progride.

A hiptese a ser investigada, por sua vez, e dada como um outro sistem
de transtao, chamado propsito de simulacao, o qual de ne as simulases
desepveis e indeseaveis (e.g.,\sempre que o agente zer X, elah Y depois").
Em seguida,e possvel veri car se 0 SMA satisfaz o prosito de simulecao de
acordo com uma <rie de relacees de satisfatibilidade precisamestde nidas.
Algoritmicamente, isso corresponde a construir um produto sncrom desses
dois sistemas de transcoes (i.e., 0 do SMA e 0 do prosito de simecao) em
tempo de execwao e usa-lo para operar um simulador. Ou seja, 0 progito
de simulacaoe usado para guiar o simulador, de modo que somente os adbs
relevantes sejam efetivamente simulados. Ao terminar, um tal algoritmgode
fornecer um veredito conclusivo ou inconclusivo. Se conclusivo, seobre-se se
0 SMA satisfaz ou nao o propsito de simulacao com relacaoas obsereames
feitas durante as simulacees. Se inconclusivo,e possvel reali alguns ajustes
e tentar novamente.

Em resumo, portanto, nesta tese propomos quatro novos elementos: (i) v
arquitetura de agente, (ii) uma especi cacao formal do ambiente deses agentes,
de modo que possam ser compostos em um SMA, (iii) uma estrutura para
descrever a propriedade de interesse, a qual chamamos de propsite gimu-
lacao, e (iv) uma ecnica para se analisar formalmente o SMA resultate com
relacao a um propsito de simulacao. Esses elementos estao ingshentados
em uma ferramenta, denominada Simulador Formalmente Guiado (FGS, do
inglés Formally Guided Simulator). Estudos de caso executveis no FGS sao
fornecidos para ilustrar a abordagem.

Palavras-chave: sistemas multi-agentes, comportamentalismo, ambientes,
netodos formais, veri cacao formal, simulacao, teste baseado em mdelos.

Uma versao estendida deste resumoe dada na Sefo F.2 dpé&ndice[R.

Résumeé

Les sysemes multi-agents (SMA) peuvent étre utilise pour mockliser les pkenonenes
qui peuvent étre cecomposes en plusieurs agents qui interagignt et qui exis-
tent au sein d'un environnement. En particulier, ils peuvent &re utiliees pour
mocktliser les socees humaines et animales, aux ns de l'analse de leurs
proprees par des moyens de calcul. Cette ttese est consace a l'analyse
automatise d'un type particulier de ces moctles sociaux,a saoir, celles qui
sont foncees sur les principes comportementalistes, qui contrasnt avec les
approches cognitives plus dominante dans la literature des SMAs. Lacarac-
eristique des treories comportementalistes est I'accent missur la d nition
des comportements base sur l'interaction entre les agents et leuenviron-
nement. De cette manere, non seulement des actions e exives mais aussi
d'apprentissage, les motivations, et lesemotions peuvent étre d nies. Plus
peciement, dans cette these, nous introduisons une archiecture formelle
d'agent (speciee avec la Notation Z) base sur la theorie d'analys e com-
portementale de B. F. Skinner, ainsi que une notion appropree et fomelle de
I'environnement (basee sur l'algebre de processus -calculus) pour mettre ces
agents ensemble dans un SMA.

La simulation est souvent utiliee pour analyser les SMAs. Les techmjues
consistent gereralementa simuler le SMA plusieurs fois, sot pour recueillir des
statistiques, soit pour voir ce qui se passea travers l'animation. Dutefois, les
simulations peuvent étre utilies d'une manére plus orieniee vers la \eri cation

si on consicere qu'elles sont en ealie des explorations de grands espaces
detats. Dans cette these nous proposons une technique de \erication nouvelle
bas sur cette idee, qui consistea simuler un SMA de manere guicke, an
de \eri er si quelques hypotheses sur lui sont conrrees ou non. A cette
n, nous tirons prot de la position priviegee que les environne ments sont
dans les SMAs de cette these: la speci cation formelle de I'envionnement
d'un SMA serta calculer lesevolutions possibles du SMA comme unsyseme
de transition, etablissant ainsi I'espace detatsa \erier. D ans ce calcul, les
agents sont pris en compte en les simulant a n de ceterminer,a chagieetat de
I'environnement, quelles sont leurs actions. Chaque execution d la simulation
est une equence detats dans cet espace detats, qui est caldea la voke, au

Vii

fur eta mesure que la simulation progresse.

L'hypothese a etudier, a son tour, est donree comme un autre systme de
transition, appek objectif de simulation, qui e nit les simul ations desirables
et incesirables (e.g., \chaque fois que I'agent fait X, il fera Y plus tard"). Il
est alors possible de \eri er si le SMA est conformea I'objectif de simulation
selon un certain nombre de notions de satis abilie tes pecises. Algorith-
migquement, cela corresponda la construction d'un produit syndirone de ces
deux sysemes de transitions (i.e., celui du SMA et I'objectif de simulation)
a la voke eta l'utiliser pour faire fonctionner un simulateur. C'esta-dire,
l'objectif de simulation est utilie pour guider le simulateur, d e sorte que seuls
les etats concerres sont en ealie simues. A la n d'un tel algorithme, il
cklivre un verdict concluant ou non concluant. Si c'est concluant, il est connu
gue le SMA est conforme a I'objectif de simulation par rapport aux obse-
vations qui ontet faites lors des simulations. Si c'est non-conclwant, il est
possible d'e ectuer quelques ajustements et essayera nouee!.

En esune, donc, dans cette these nous fournissons quatre nouveaxeements:

(i) une architecture d'agent; (ii) une speci cation formelle de | 'environnement
de ces agents, an qu'ils puissent &tre composs comme un SMA; (Jiiune
structure pour decrire les proprees d'inerét, que nou s avons nomrmnee objectif
de simulation, et (iv) une technique pour I'analyse formelle du SMAesultant
par rapporta un objectif de simulation. Cesekments sont mis en uvre dans
un outil, appek Simulateur Formellement Guice (FGS, de I'Anglai s Formally
Guided Simulator). Desetudes de cas executables dans FGS sont fournies
pour illustrer I'approche.

Mots-cks: sysemes multi-agents, comportementalisme, environements, reth-
odes formelles, \eri cation formelle, simulation, test bas sur des moctles.

Une versionetendu de ce esune est donre dans la SectiorE.3] de I'Annexe
[El

Contents

__Overview | 1
(1__Introduction | 3
(L.1 Automation of Experiments| 9
(1.2 Notation and other Conventions 11
[L.3 Thesis Organization, 11
[2__Related Work | 13
2.1 Autonomous Agents and Multi-Agent Systems 13
[2.1.1 Agent Models and Architectures 14
[2.1.2 Environments In Multi-Agent Systems 20
[2.1.3 Multi-Agent Based Simulation| 22
2.2 Formal Verication|. 23
[2.2.1 Model Checking 23
[2.2.2 Model-Based Testing 24
2.23 Runtime Verication|. 26
2.2.4 Process Algebrags 27
[2.2.5 Formal Development, 28
23 Otherlnuences 28
[2.3.1 Non-Agent Based Simulation Methods 28
[2.3.2 Software Components 29
2.4 Formal Approaches to Multi-Agent Systems 30
[2.4.1 Formal Speci cation of Agent Architectures| 30
|2.4.2 Formal Speci cation of Environments 30
[2.4.3 Formal Veri cation and MAS Simulation| 31
2.4.4 Model Checkingof MAS 31
[3__Contribution of this Thesis | 33
[3.1 Agent Architecture| L. 33
[3.1.1 Comparison with Other Approaches 36
.2 Environment Model 41
[3.2.1 Comparison with Other Approaches 43
[3.3 Transition Systems and Semantigs 45
[3.3.1 Comparison with Other Approaches 45

3.4 Verication Technique| 46
[3.4.1 Comparison with Other Approaches 49
3.5 Tool Implementation| 51
3.5.1 Comparison with Other Approaches 52
3.6 Conclusiom 55
([T Multi-Agent Systems | 57
|4 Behaviourist Agent Architecture | 59
4.1 Adaptation and Learning 60
4.2 Formal Specication| 62
4.2.1 Preliminary Denitions| 63
422 Stmulationl 65
4.2.3 GeneralResponding 73
4.2.4 OperantBehaviouf 83
|4.2.5 Respondent Behaviodr 92
26 DIVES o 95
427 Emotions 98
4.2.8 Subsystems Integration 102
43 Conclusiom e 104
105
.1 T[he Role of Environments$ 107
5.2 Environment Model, . 108
[2.2.1 Underlying Elementary -Calculus Events 109
6.2.2 Environment Operations 110
0.2.5 Environment Structures 111
[5.3 Convenience Elements and Operatiofs 115
.3.1 Composition Operators 115
.32 CoreOperations 117
33 Setb 119
9.3.4 Predicates and Logical Formulas 120
5.3.5 Quantication| 120
[©.3.6 Complex Operations 121
0.4 Conclusiom 122
[[ITFormal Analysis and Veri cation [125
|6 Transition Systems and Semantics | 127
6.1 Annotated Transition Systems 127
......................... 130
6.2.1 Preliminary Denitions| 130

6.3 Conclusiom 137
[/ Veri cation Technique | 139
[/.1 Making the Env. ATS Suitable for Sim. and Verif.,| 140
............................ 143
7.1.2 Step2 145
[/.2 Simulation Purposes, 147
[/.3 Synchronous Product of an ATSandaSP 148
[/.4 Satis ability Relations|. 151
[/.5 Verication Algorithms | 154
(/.51 Simulator Interface 154
[7/.5.2 Feasibility Verication|. 155
|7.5.3 Refutability Verication |. 162
[/.5.4 Certainty Verication|. 162
[/.5.5 Impossibility Verication| 162
[/.6 Analysis of the Algorithmsg. 162
|7.6.1 Justi cation of Completeness 166
[/.6.2 Justication of Soundness 167
[(.6.3 Justication of Termination|. 176
[.6.4 Justication of Correctness 179
|7.6.5 Justi cation of Worst-Case Complexitie§ 179
[/./ Conclusiom 183
[[VImplementation | 185
|8 Simulator Implementation | 187
8.1 Architecture of FGS 188
[8.1.1 Components, 189
8.12 Scenarids 190
[B.1.3 Experiments 190
[8.2 Simulation Execution and Analysig 190
[8.3 Behaviourist Agent Architecture Componeny 192
[8.4 -Calculus Simulation Library|. 192
[8.4.1 Optimizations. 193
B.5 Conclusiom 197
9 _Case Studies | 199
[9.1 Single Agent Examples L. 200
9.1.1 Pavlovian Dog: Classical Conditioning 200
9.1.2 Worker: Operant Chaining 206
9.2 Multi-Agent Examples| 210

9.2.1 Violent Child: Benhaviour Elimination| 210

IQZ.B_S_QDQ_QILthdLeﬂ_ELQm_C_haQ_S_tQ_QLdﬂr 224
9.2.4 Online Social Networks: Spreading a Message 232
9.3 Conclusiom 237
V_Conclusion | 241
[10 Conclusion | 243
A Rull Agent Speci cation | 247
|A.1 Formal Speci cation of Agent Behaviour|. 247
|A.1.1 Preliminary Denitions | 247
A1?2 Stimulation].o oo 251
|A1.3 General Responding 262
|A.1.4 Operant Behaviour 275
|A.1.5 Respondent Behaviour 284
BI6 DIVES o oo e 287
AL17 Emotiond 289
|A.1.8 Subsystems Integration 295
B Input Files and Tool Output for the Case Studies | 297
B.1 PavilovianDog, 297
B Agentf e 297
BI12 Scenard 300
B.1.3 Experimentl, 301
BIZResull 304
B2 WOrKEr. o o 306
B Agentl 306
B22 Scenarid 308
B.2.3 Experimentl 309
BZZ4 Resull, 311
B3 ViolentChildl. 312
B Agents 312
B32 Scenard 317
B.3.3 Experiment 319
B34 Resulf 324
B.4 Factory] e 327
B.4 Agents e 327
B42 Scenarid e 338
B.4.3 Experimentl 345
BZZ"Resull« 349
BS5 SchoolChildren o 351
B Agents 351

B.5.3 Experiment 362
BEZ Resull 363
B.6 Online Social Network 364
B.6 Agents 364
B6Z Scenard e e 376
B.6.3 Experimentl 379
BG4 Resull i, 381
|C Simulator Input Format and Parameters | 385
[C.1 InputFormat|. 385
|C.1.1 Behaviourist Agent Architecture| 386
[CI12 Scenarids 391
[C.1.3 Experiments 395
[C2 Parameters 398
ID_Z Notation Overview | 399
[0.1 Types, Functions and Predicates 399
D.2 Stateless Denitionso o000 399
[D.3 State Schemas 401
[D.4 Operation Schemas 402
D.5 Schema Calculus o 403
D6 Renementl, 404
[E___-calculus Overview | 407
[=_EXxtended Abstracts | 411
[F.1 Extended Abstract| 411
[E2 Resumo Estendidd 422
[E3 Resume Etendul. 433
445
Acronyms 449
|Bibliography | 449

Index | 467

Part |

Overview

CHAPTER

Introduction

Is there a way to model and analyse human as well as animal societies? iEh
rather general question, either implicitly or explicitly, has been asked since at
least classical antiquity'. Whole scienti ¢ elds, such as economics, psychology
and sociology have been developed to address speci ¢ versions of i &ll of
them, though, the di culties involved are great: not only is it necessary to
somehow make sense of individual organisms, but it is also imperativeot
understand their mutual relations; theories must be simple to be nanageable,
but not so simple as to be meaningless; variety between individualsust be
taken into account, and yet cannot be considered beyond a point in which
there is nothing but confusion; in the face of complexity, analysis m&hods
must at the same time be e ective and e cient.

Modern computing has given scientists a new set of tools to deal witlihese
matters. In particular, as long as a theory can be put in the terms of a com-
puter program, it can also be subject to systematic and automated scrutiy
that would otherwise be too tiresome for human beings to pursue. Simipca-
tions can be made less simple and more accurate because part of the job can
be transferred to a machine. This possibility raises the similar {but funda-
mentally new { question: is there a way to model and analyse human as vile
as animal societiesthrough computing? Such is the motivation, in its most
general aspect, that guides us in this thesis. The problems we addresere,
then, are steps in this direction.

It is not di cult to see why this new computational problem is distinct from
the old one. Imagine, if you will, that a careful economist surveys his ¢wn
and describes, through some complicated set of rules, the idiosynciatper-
sonalities of each townsman, as well as their relations to each other. How

1For instance, in Plato's Republic and Aristotle's Politics .

1. Introduction

is he to go about analysing this descriptive model? Perhaps he can adelss
certain questions, such as determining the most in uential personby looking
at the individual that has more friends. Nonetheless, questions coneging
how his model will evolve over time quickly become di cult, for t he possi-
bilities o ered by a su ciently rich model are staggering. Will the re be an
economic depression or not? The answer depends partly on the behavioof
each individual. If there are many di erent and complicated individ uals that
relate in non-homogeneous ways, it is clear that the possible evolutionsf the
model are many, each possibly leading to di erent conclusions. Thigequires
explicit { and boring { calculations of how the model will actually evol ve.
Without computing machinery, therefore, it is not a practical method. The
traditional, non-computational, solution to such problems is to simplify the
model so that solutions can be calculated more easily. But with computig
one may actually pursue the evolution of complicated models in many dier-
ent circumstances. This brings two new issues: how to describmodels so
that their evolutions can be computed, and how to make sense of the wedit
of computed evolutions.

In computer science, questions such as these have been consideirethe eld
of Multi-Agent Systems Many situations can be described in terms of inde-
pendent agents which interact within some environment in order to achieve
their aims. For example, not only phenomena related to human societig but
also those concerning neural tissue and computer networks, di erenas they
may be, all share this characteristic. A system that can be seen in tis way is
called a multi-agent system (MAS)(Weiss, 1999; Wooldridge, 2009).

As the above examples suggest, agents can be either arti cial entitiese(g.,
computers, software) or natural ones (e.g., humans, animals). Roughly, ithe
former case one is mostly worried about how tamplement an agent so that
it is capable of performing certain tasks, whereas in the latter case t& focus
is on modelling the behaviour found in nature so that it can be investigated
by computational means. It is this latter possibility that concerns us in this
thesis.

To describe an MAS, one needs speci ¢ notions of agents and environments
With respect to agents, much work has been done in trying to undersand
and model so-calledintelligent and cognitive agents. These approaches focus
largely on what constitute rational decisions, specially in the case of agds
with limited computing capabilities (e.g., all of us). The Beliefs-Desires-
Intentions (BDI) architecture (Bratman,| 1987, Cohen and Levesque, 1990;
Rao and George|,|1995) is a well-known example.

Behaviour of organisms, however, is sometimes better described idi erent
terms. A dog does not reason that it will die if it does not eat; rather, it

2Assuming, of course, that dogs cannot foresee their own deaths in the same way that

has a drive to seek food when hungry. If it has learned that whenevehis
master whistles he provides food, the dog will salivate at the soundf the
whistle { without thinking. These observations suggest that a di erent focus
in agent modelling is possible. This thesis provides such a motéased on the
psychology theory known as Behaviour Analysis|(Skinner, 1953), a particar
branch of the behaviourist school of thought. In this theory, the actions of
agents are seen as the result of past stimulation and certain innate paramets
according to behavioural laws. One is not interested in mental quaties such
as the nature of reason, but merely in the prediction and control of behaiour
by means of environmental stimulation. This point of view, though classtal
within psychology, is scarce in the MAS literature. As a contribution in this
sense, this thesis introduces théBehaviourist Agent Architecture

In relation to agents, environments of MASs have received comparativglvery

little attention, as the survey of Weyns et al,| (2005) points out. The environ-

ment model of Ferber and Meller| (1996) is one exception. In this thesis we
propose theEnvironment Model for Multi-Agent Systems (EMMAS) ,

which is designed to work with our agent architecture. Since the psghology

theory from which we draw from puts great emphasis in the relation betveen
agents and their environment, it is clear that this is an important asped of

our MASs. Furthermore, we shall see that our environments have certai

particular mathematical features that help in their analysis.

The purpose of an MAS model is to be studied so that its properties can &
understood. There are, of course, a number of ways in which this cahe ac-
complished, ranging from traditional mathematical approaches (e.g., by usg
equations and calculating their properties) to fully automated and exhaustive
formal veri cation (e.g., by means of Model Checking). The techniqueto be
employed, however, is not arbitrary, for it both imposes restrictions on how
the MAS model can be speci ed and de nes what kinds of properties can b
investigated. In general, the more details are allowed in a model, thdarder it
is to determine its properties. Consider again a model of a societyotnposed
of many di erent agents, each containing its own independent set of pasible
behaviours. We have seen that unless simpli cations can be found, anan-
ual mathematical analysis would be too tedious and error prone to be carrig
out. On the other hand, automated and exhaustive analyses would also face
severe challenges, for the state-spaces involved can easily become targe.
This is known as the state explosion problem and is usually caused by the
combinatorial nature of the possible communications between agents.

Nevertheless, it is usually possible to simulate complicated MASsThat is to
say, given an MAS, one may calculate several sequences of states in order
explore some of its possible behaviours, and thus gain at least some partial

we humans can.

1. Introduction

knowledge about its properties® A technique often employed to this end in-
volves programming the agents and their environment using some generalp-
pose programming language (e.g., Java) and then running the resulting -
gram several times and under di erent circumstances |(Gilbert and Bankers,
2002). Since such programming languages allow any computation to be spec-
i ed, it follows that very detailed models can be built in this way. In such
works, the analysis method of choice is usually the collection or optinaation of
statistics over several simulation runs (e.g., the mean value of a nueric vari-
able over time). Examples of this approach include platforms such as Savm
(Minar et al., |1996), MASON (Luke et all, |2004) and Repast |(Northet al.,
2006).

A simulation performed in this manner is typically constrained only by its
initial state. This is quite reasonable if the objective is merely © \see what
happens" to the system under di erent circumstances of interes However,
as soon as the objective includes a more sophisticated assessmentisthack
of constraints may become a hindrance. Consider, for example, a situign in
which the objective is to study what happens to an agent when it is, sg hun-
gry. The logical strategy in this case would be to simulate only the situatons
in which the agent may indeed become hungry. But since only the inial state
is constrained, the simulation could possibly go constantly through staes in
which this is not the case (e.g., because food is often available).

Though they are not usually found on MAS simulations, such constraints ove
relevant states are common place in formal veri cation. They are usually
speci ed in terms of temporal logic formulas or automata which de ne the
property of interest and, consequently, the relevant portion of the $ate-space.
Unfortunately, as we pointed out above, these techniques su er from iency
problems owing to the large size of state-spaces.

To address these problems, in this thesis we propose a way to comigirthe
strengths of simulation with those of formal veri cation, thus creating a new
technique to model and verify MASs. Our method consists in systeatically
guiding the simulation runs so that only the states relevant for the property of
interest are actually simulated. We call the property being invesigated a sim-
ulation purpose , because it de nes the purpose of the simulation. During
simulations, for reasons we explain in Sectiof 1|1 below, agents and envn-
ment are used in di erent ways. The former is implemented (in acordance
with the Behaviourist Agent Architecture), executed and examined as
a black-box with interfaces, whereas the latter { together with a simulation

3Notice that by \simulation” we do not mean the formal relation am ong two transition
systems, such as what Milnel (1999) employs. As we explain, n this thesis a \simulation"
refers { broadly { to an abstract reproduction of some target system by means of a detailed
and executable model, in the same sense that, for instance| Feber| (1999) uses to describe
multiagent simulations.

6

Figure 1.1: General architecture of FGS, our proposed tool. The simulatotakes two
inputs: (i) an MAS, composed by agent models and an environment speci ation; (ii)
a simulation purpose to be tested. The simulation purpose speci es the property to
be analysed and is used to guide the simulations (i.e., de nes theipurpose). The
simulator then produces traces as outputs. In principle, veri cation can be done at
the simulation runtime level, as well as at the trace level. Howeverthe veri cation
technique developed in this thesis concerns only runtime analysj because this allows
the simulations to be controlled in such a way that only the ones releant to the
speci ed simulation purpose are actually performed. It is worth to note, though, that
trace level analysis can also be pro tably employed for veri cation of MASs, and some
examples found in the literature are given in Sectiorj 2.4]3 of Chaptef|2.

purpose { provides the formal elements that are manipulated in a ne grained
manner by the veri cation algorithms. This method is inspired by th e use of
formal test purposesin TGV (Jard and Eron,|2005), a model-based software
testing approach.

In short, then, in this thesis we provide four novel elements: i) an agent archi-
tecture; (ii) a formal speci cation of the environment of these agents so that
they can be composed into an MAS; (iii) a structure to describe the poperty

7

1. Introduction

of interest, which we namedsimulation purpose ; and (iv) a technique to
formally analyse the resulting MAS with respect to a simulation purpose
These elements are combined in a tool, called Formally Guided Simator
(FGS), as shown in Figure[1.]. In Chapter[3 we shall provide a technil
summary of these artefacts and explain in more detail their contribution with
respect to the current state of the art.

The analysis technique we propose is rather general, and as a consequeian

be applied to many kinds of MASs. Nevertheless, we have opted to delap

them in the context of a particularly suitable class of agents and enviroments

(i.e., behaviourist MASs). As a consequence, the novel contribution of this
thesis is twofold:

New ways to model both agents and environments based on behaviourist
principles;

A technique to perform partial, but automated, formal veri cation in
the MAS thus described.

These are closely related. The technique depends on the possibjliof system-
atically exploring an environment, which thus has to be explicitly separated
from agents. But this only makes sense if the phenomena concerningdhagents
themselves can be expressed in terms of environmental conditionghich is a
strong point of the behaviourist perspective we adopt to design our agds.

It is important to note that despite the fact that the MASs de ned and si mu-
lated in this thesis are based on an underlying psychology theory, we iva not
attempted to forecast the results of actual empirical experiments €.g., using
real animals) with them. Such an endeavour would require the considation
of many other complex issues, such as how to establish an exact match be-
tween real and simulated organisms, and it would also involve validation wadk
concerning the psychology theory itself, which would be out of our scopeThe
approach developed in this thesis aims only at providing an approximain of
actual animal behaviour, so that it can be represented in a computationaform,
though in a qualitative and limited manner. As we shall see throughout the
text, our approach allows the investigation of many fundamental issues, &ch
as the role of environments and agents, the importance of observable event
and the kinds of questions that can be formulated. Hence, this thesissia step
towards a more complete understanding of the computational modellingand
analysis of such behavioural phenomena, and it provides an important basi
for further progress. Nonetheless, as a more immediate practical apphdtion,
the developments presented here can also be used in circumstasacghere only
imitation of real behaviour is relevant, such as in games and other forms of
interactive ction.

8

1.1. Automation of Experiments

1.1 Automation of Experiments

Programs are usually designed in order to accomplish something. That is to
say, they are supposed to obey a speci catich If they indeed do so, they
are deemed correct. Otherwise, they are considered incorrect. ¥ecation,
and formal veri cation in particular (where one has formal speci cations of
the expected behaviour), is thus concerned with determining Wwether or not
programs satisfy speci cations { from which one may infer the correctress of
the program.

However, one may have a slightly di erent point of view on the matter. In our
case, we use programs to model MASs. From our perspective of modellers
the MAS is not necessarily supposed to accomplish something, for it is erely
a representation of a certain state of a airs, which may be outside of our
control. Ininvestigating it, we are thus not necessarily concerned wth whether
it is doing its job correctly. Indeed, we may very well ignore why the MAS
was designed in the way it was. We just want to discoverwhat it can or
cannot do. To this end, we may also employ a speci cation. But it is the
speci cation of a hypothesisto be investigated, and which can be either true
or false. Notice the crucial di erence: when verifying a program, thefact that
the speci cation was violated indicates a problem in the program, and thws
it is always undesirable; however, in our case, the fact that the hypthesis is
violated is not, in principle, an indication of a problem either in the MAS or
in the hypothesis itself. The judgement to be made depends of our okgtives
in each particular circumstance. Are we trying to discover some lawabout
the MAS? In this case, if a hypothesis that represents this law tuns out to
be false, it is the hypothesis that is incorrect, not the MAS. Are we trying
to engineer an MAS that obey some law? In this case we have the opposite,
a falsi ed hypothesis indicates a problem in the MAS. This view is akn to
that found in empirical sciences, in which scientists investiga¢ hypotheses and
make judgements in a similar manner® In this respect, the main di erence
is that the empirical scientist studies the natural world directly, while we are
concerned with models of nature in the form of MASSs.

In an MAS, the description of environments is often much simpler thanthat
of the agents. When this is the case, we can give a formal model for the
environment and treat the agents therein as black-boxes (which obeyartain
interface requirements). As an example, let us consider a model @n online
social network, where several persons exist and can interact with ehcother
through the features of a website® Clearly, the behaviour of each individual

4Even if the speci cation exists only in the mind of the programm er.

®In particular, the scienti c implications of the falsi abilit y of hypotheses have been
deeply investigated by [Popper| (1959), to whom we own part of th e philosophical position
outlined here.

6Actual examples of such networks currently include popular web sites such

9

1. Introduction

person is likely to be very complex, and if a model is given to themit is possi-
ble that it will not be a simple one. But the environment, on the other hand,
can be described by some formalism that merely de ne relations among agen
(e.g., a process algebra such as the-calculus of Milner, |1999), providing a
much more tractable model. The purely formal manipulations, then, canbe
restricted to the environment model.

Notice that this is analogous to an experimental scientist working in hislab-
oratory. The scientist is usually interested in discovering the properties of
some agents, such as animals, chemicals, or elementary particles. He has n
control over the internal mechanism of these agents { that is why expaments
are needed. But he can control everything around them, so that they can
be subject to conditions suitable for their study. These scientic experiments
have some important characteristics:

Inputs should be given to agents under experimentation;
Outputs should be collected from these agents;

Sometimes it is not possible to make some important measurement, and
therefore experiments often yieldincomplete knowledge

The experiment is designed to either con rm some expectation (asuc-
cesy or refute it (a failure);

The experiment should last a nite amount of time , since the life of the
scientist is also nite;

The experiment should be assystematic as possible, though exhaustive-
ness is not required. The important thing is to try as many relevant

situations as possible. In particular, the scientist may control how to

continue the experiment depending on how the agents react;

The experiment should de ne a clear course of action from the start;

The experiment can be a way to nd out how to achieve a certain end,
after trying many things. Therefore, it must be performed in a construc-
tive manner, and not merely by deriving a contradiction;

Absence of a success does not necessarily mean that there is no way to
achieve a desired e ect. Hence, it is convenient to know when sorti@ng
clearly indicates a failure.

as www.facebook.com www.twitter.com , plus.google.com , www.orkut.com and
WwWw.myspace.com

10

1.2. Notation and other Conventions

A simulation purpose is like such a scientist: it controls the direction of the
simulation and determines whether something constitutes a sucas or a fail-
ure by following similar principles. An environment model, in turn, is similar
to the experimental setup, with its several instruments and agens. The sim-
ulation purpose interacts with the environment model in order to acheve its

aims. In this sense, hence, our approach can be seen as the automation of

experiments to investigate the properties of an MAS.

1.2 Notation and other Conventions

Notation and other conventions particular to the subject of a chapter are
introduced in the beginning of the relevant chapter itself. Techmical terms are
introduced by using this special font , and referred to elsewhere by using
this other special font

Our general mathematical notation is mostly standard and therefore does not
require presentation. However, it is worth to de ne the meaning of afew
symbols which do not enjoy such a universal acceptance:

P denotes the setf: p j p2 Pg, whereP is a set of propositions.

P(S) denotes the power set of a sef (i.e., the set of all subsets ofS).

1.3 Thesis Organization

This thesis can be read serially, since chapters are given mostly irhe order
in which their content is needed. Exceptions to this order are clarly marked
in the text with the appropriate references.

Very briey, the content of the chapters are as follows:
Chapter 2 | Describes the relevant related work, thus providing an account of
the current state of the art.

Chapter 3] Provides a technical overview of the main elements introduced ¥
this thesis and compare them to the existing state of the art.

Chapter 4] Contains an in-depth account of the Behaviourist Agent Ar-
chitecture . This architecture is given using the Z Notation, of which a
summary is provided in Appendix D]

Chapter 5| De nes the environment model, EMMAS . The theory devel-

oped here has a close relation to the agents described in Chaptgi 4:

11

this special font

1. Introduction

those agents expect a certain kind of interaction with their environment,
whereas the environment expects a certain kind of agent. Methodologi-
cally, this means that particular kinds of questions (i.e., of behavourist
nature) can be addressed because both agents and environments sub-
scribe to common principles. Technically, this relation impliesin certain
formal requirements on both sides.

Chapter § | Introduces the annotated transition systems (ATSSs) which
are to be subject to veri cation. After introducing such structu res in
their general form, the chapter employs them to provide the semarits of
EMMAS . This allows the reduction of the MASs developed in Chapters
[and[§ into a structure that can be subject to formal analyses. This
semantics is quite general and is not tied to any particular application
(e.g., simulation).

Chapter 7] | Provides a more concrete version of the semantics EMMAS
(to allow its simulation) and presents the veri cation technique. Intro-
ducessimulation purposes , associated satis ability relations, mathe-
matical concepts required to perform veri cation and, nally, the ve ri -
cation algorithms themselves.

Chapter § | Presents FGS, our tool, whose several parts implement our agents,
environments and veri cation algorithms. This chapter is concerned
with design principles and architectural choices, not with detailson how
to run the system, which is covered in Appendix C.

Chapter 9| Provides case studies to illustrate the use of theBehaviourist
Agent Architecture and EMMAS . These are all executed using the
FGS tool. The actual input les to FGS (and the corresponding out-
puts), however, are given only in Appendix@.

Chapter 10 | Concludes the thesis by summarizing what has been achieved
and pointing out to further developments that can be made upon what
we have proposed.

A number of appendixes are also provided in the end of the thesis, vith are
meant to be used as references whenever further details are neddeAppro-
priate pointers to these appendixes are given whenever relevant.

12

CHAPTER

Related Work

Our work draws inspiration and techniques from a number of disciplhes. In
this chapter we present these several in uences, including te current state of
the art. However, their relation with our own work is not treated here { we
postpone this to Chapter[3, in which a technical summary of our approach
shall make it easier to establish this relation, as it depends on a numér of
technicalities.

The relevant works can be broadly collected in four large groups, which cer
respond to the organization of the present chapter. In Sectiof 2]1 we eXpre
the area of Autonomous Agents and Multi-Agent Systems. In Sectiorj 2]2 we
present the pertinent works in the area of Formal Veri cation. These are the
main in uences upon this thesis. Whatever cannot be classi ed in oneof these
areas is dealt with in Section 2.8. Finally, in Sectior] 2.4 we present wdxs that
combine ideas from these di erent domains.

2.1 Autonomous Agents and Multi-Agent Systems

The area of Autonomous Agents and Multi-Agent Systems provided the main
motivation for the problems we pose in this thesis. Thesenulti-agent systems
(Weiss, |1999; Ferber| 1999; Wooldridge, 2009), the objects of our study, are
systems composed by agents that exist and interact within an environmet.
This of course only makes sense in the light of appropriate accounts of both
agents and environments. Thus, in what follows we examine the most per
tinent notions for our purposes. Section[2.1]l presents agents and sumy&
related models. Sectior] 2.1]2, in turn, explore environments. Findy, since
this thesis concerns the simulation of MASs, Sectiof 2.1]3 addressdsis topic.

13

2. Related Work

2.1.1 Agent Models and Architectures

There is no precise and universally accepted de nition of what anagent is.
However, the undisputed characteristics of this concept can be sumarized
as follows: an agent is as an entity that exists in an environment and that
interacts with it and other agents in an autonomous way.

This notion, in spite of its intuitive appeal, is all too abstract and in formal,
and thus cannot by itself provide the basis of a useful theory. For thé reason,
researchers have proposed a nhumber of more precise models in orderde ne
agents of particular classes. Usually, the objective of such models iDtbe
general enough so that many agents of interest can be de ned with them.
Such general models are often calledgent architectures |Wooldridge (2009)
de nes an agent architecture as:

A software architecture for autonomous decision making: speci es
the data structures, control ow, and, usually, the methodology
to be used for constructing an agent for a particular task in a
particular environment.

Let us rephrase this and call attention to other relevant points so that we may
have a de nition to use in this thesis. In this thesis, an agent archtecture
is an abstract, structured and integrated description of a class of agentslt
provides the necessary elements to build particular agents of suca class.

In this section we present several such models and architecturegrouped
according to the main idea or underlying theory that they employ.

2.1.1.1 Rational Agents

In Arti cial Intelligence the notion of intelligent or rational agents plays a
large role (Russell and Norvig, 2002). It was McCarthy (1953) who rst pro-
posed that programs could be endowed with common sense, establishinget
basis for much of the future research on the topic. To McCarthy, logic coid
be used to describe the knowledge of an agent, and then it would be just
matter of automatically performing deduction in order to produce suchintelli-
gent actions. There are, however, two problems with this approach. Tk rst
is that theorem proving turns out to be very expensive computationaly. The
second problem is that not all agents one might be interested in follow sth
deduction principles to guide their actions. Each of these problemsin turn,
motivated further research.

14

2.1. Autonomous Agents and Multi-Agent Systems

2.1.1.2 Practical Reasoning

While, ideally, an intelligent agent should perform perfect logical daluctions,

in reality no such perfect being exists. Men and animals alike havdimited
resources and must make decisions which are often not optimal. This in-
sight motivated the work on bounded rationality, which aims at determin-
ing how to compute the best answers given a limited amount of resource
Russell and Subramanian |(1995), for instance, show how optimality can be
treated under such limits. Another well-known model built along these lines
can be found in the Beliefs-Desires-Intentions (BDI) approach, originated by
Bratman| (1987). In this work, Bratman introduces the notion of practical
rationality and proposes a theoretical explanation to the decision process em-
ployed by limited rational beings such as humans. In particular, he gos on to
show how one can use planning in order to take decisions, and that inteions
play an important role in this process. Further theoretical and compuational
development of this approach can be found on Cohen and Levesdue (1990) and
Rao and George| (199%). There are a number of implementations of the BDI
model, among which we can cite the PRS|(Ingrancet al., [1992) and dMARS
(d'Inverno et all 1997). |Kakaset al. (2008) show a model inspired by BDI,
aiming mainly at solving certain di culties involved in the implem entation
and formal veri cation of BDI theories.

Agent-oriented programming is an area closely related to these architeares.

It was rst proposed by Shoham (1993) as a means of describing general pro-
grams in terms of mentalistic notions. Indeed, the BDI approach o ers a siit-
able set of such mentalistic de nitions, and as a consequence the langges in
this area largely adopted the BDI approach as their underlying agency modl.
AgentSpeak(L) (Raog, |1996) is one such language, and Jason (Bordieit al.,
2007) is one of its modern implementations.

2.1.1.3 Cognitive Psychology

The concept of practical reasoning does not solve the problem that agentseed
more than such general logical constraints in order to produce behaviourin
fact, much of what many real agents do depend on mechanisms much moeael
hoc to their nature. For example, human memory is not just a mathematical
set in which one can put knowledge. Rather, it has a detailed structuve,
which makes knowledge retention and retrieval a complex task. The irpact of
such idiosyncrasies can be seen by considering an agent that believassome
proposition, but fails to use it in its reasoning because of problems irthe
retrieval of the relevant memory. These discoveries, which came ainly from
Cognitive Psychology (Neisser, 1967), led researchers to try to endow #ir
agents with the same properties. Thiscognitive approach produced a number

15

2. Related Work

of results. |Simon (1996) is one of the pioneers on this area and provided many
insights on the computational properties of the human mind. More recentwork
includes the SOAR architecture (Laird et al.,|1987), which provides a platform
for the development of arti cial cognitive agents, and ACT-R (Anderson et al.,
2004), which, in particular, employs functional Magnetic Resonance Imagig
(fMRI) to validate its proposed models.

2.1.1.4 Behaviourism

The approaches we have reviewed so far have in common the fact that they
place great importance on internal, mental, states of agents. Behaviourism
provides a contrasting point of view, by focusing on their external observable,
behaviour.

To understand what is special about a behaviourist point of view, we nust rst
examine the history of psychology. By the end of the XIXth century, psychol-
ogy was still a new discipline. Many of its rst proponents saw introspection
and other forms of inner knowledge to be paramount to the understandingpf
the human mind. However, such an inner knowledge is often unreliakl, for
it lacks the objectivity of precise measurement. And it was becausef this
fundamental limitation that some psychologists started to go against these
initial ideas in the search of an objective science. Thus, thesbehaviourists
as they became known, maintained that psychology should derive its tharies
only from the observable and measurable behaviour. A celebrated defea of
these fundamental principles was given by Watson|(1913).

The behaviourist tradition produced several important thinkers, from which
Burrhus Frederic Skinner was, perhaps, the most notorious one. Betaen
the decades of 1930 and 1950 he developed his own kind of behaviourism,
called Behaviour Analysis. The classical exposition of this theory was gen
by |Skinner| (1953), whereas a more modern reference to the area can be fiou
in Catania (1998). In Behaviour Analysis, an organism is an entity which
receivesstimuli from its environment, and producesbehavioural responseshat
a ect this same environment. It is assumed that these behavioural reponses
are a function of the stimulation history of the organism, governed by cetain
innate mechanisms. Therefore, the central aim of the theory is to estblish
how such relations work. That is to say, to discover the laws whichallow one
to either control behaviour by means of stimulation or predict behaviour by
considering the organism's stimulation history.

Organisms are assumed to be constantly seeking pleasure and avoidingip.
That is to say, their fundamental purpose is the maximization of pleasuwe and
the minimization of pain during their existence. This search is the basis for
most of the organism's behavioural responses. And while at rst it might

16

2.1. Autonomous Agents and Multi-Agent Systems

seem a rather simple motivation, it turns out that it can be used in order to
describe a number of interesting phenomena.

A distinctive feature of the behaviourist tradition is its insist ence on the ir-
relevancy of how organisms are really implemented. It maintains that itdoes
not matter how the mind, the brain or any other organ works, as long as one
can provide abstract laws with predictive power. In this respet, then, it dif-
fers from other psychology schools, which often describe behavioun iterms
of the internal components of organisms. In behaviourism, any such refence
to internal structures must be seen merely as a technical devi¢evhich could
be completely substituted if an alternative o ering superior predictive capa-
bilities could be found. This does not imply that behaviourism deries the
existence of internal structures responsible for behaviour (e.gin the brain).
Rather, it merely takes the point of view of an external observer to thelimit
by elaborating abstract concepts and laws that relate stimulation to obseved
behaviour.

Behaviour Analysis, in particular, o ers a rich set of such abstract corcepts,
relations and laws. We shall examine them in detail as we formalize thenn
Chapter [4, but for the moment we may provide the following summary:

Stimulus (or classical) conditioning. Organisms may learn that a stim-
ulus is followed by another. For example, a dog may be taught that a
whistle is always followed by the provision of food. Hence, the dog ay
react to the whistle as if it was the food itself. By such associatios, an
organism can build a useful model of its environment.

Classes of behaviour. Behavioural responses are produced according to laws.
Such laws, in turn, can be grouped in di erent classes of behaviourBe-
haviour Analysis de nes the classes ofespondent behaviourand operant
behaviour.

Respondent behaviour Also known asre exive behaviour, this class
accounts for re exes, which are innate automatic responses to stim-
uli. Re exes, then, are integral parts of an organism, and cannot
be neither learned nor unlearned.

Operant behaviour Operant behaviour, on othe other hand, allows
an organism to learn what actions are appropriate to achieve cer-
tain ends. An operant is a learning structure that records which
action may lead to a stimulus, and how this takes place. Byrein-
forcing (i.e., rewarding) or punishing an organism's actions, it may
be taught new operants. With such operants, the organism may
then choose the action that best suits its interests.

Drives. These are innate needs for certain stimuli. The organism may then
be either satiated or deprived with respect to its drives. For example,

17

2. Related Work

thirst is a drive which is satiated by the provision of water. If no water
is provided, the organism becomes increasingly interested in water

Emotions. These account for other temporary changes in the organism's be-
haviour. Each emotion has its own e ect, but all of them are fully
characterized by behavioural changes. This is a particularly intersting
feature of Behaviour Analysis, for it contrasts with accounts of emotion
which depend on internal factors (e.g., the reduction of some neurotras:
mitter in the brain). Depression for instance, can be characterized by
a generalized reduction of behavioural responses with respect to s@m
normal level of response.

These elements interact in several ways in order to generate behmwur. For
example, when choosing an appropriate action, the organism will not only us
the laws of some behavioural class, but also the model that he has buitif the
environment using stimulus conditioning.

Notice that agents thus de ned are di erent from what is usually called re-
ex agents (e.g., by |Russell and Norvig, 2002) or reactive agents (e.g., by
Wooldridge|,|2009), whose actions are elicited by stimulation according to ery
direct relationships. As we have just seen, Behaviour Analysis daede ne
re exes as a behavioural class, but it goes far beyond them, and its vakilies
precisely on the richness that is achieved by the several behavical structures
that it establishes.

Despite the importance of behaviourism within psychology, computatonal
models of agency based on Behaviour Analysis are scarce in the literaturdo
the best of our knowledge, the approach of Touretzky and Saksida (1997) is
the most pertinent one. They propose agents callegkinnerbots which are
endowed with learning capabilities based on classical and operant cortain-
ing. Their model is particularly interesting because the learnirg that results
is capable of synthesizing more complex behavioural phenomena, notabip-
erant chaining (i.e., a sequence of learned actions in which the egation of
an action sets the appropriate conditions for the execution of the next ong
and has also been implemented in robots. However, the proposed mode i
more like a particular algorithm for calculating some aspects of classical ah
operant conditioning than a general framework for a behavioural agent. The
main formal structure de ned is a kind of rule (i.e., A B [p]), in which
the rst term (i.e., A, a stimulus consequence) is contingent upon the second
one (i.e., B, a conjunction of stimuli and actions) with a probability p. The
approach reduces to developing ways to learn these rules and chaimgjrthem.
Despite its qualities, then, this approach is limited to a very particular aspect
of agent behaviour, and it is also unclear how it could be extended or chaged,
since no provision is explicit made for this.

18

2.1. Autonomous Agents and Multi-Agent Systems

Such an extensibility is specially important because, as McDowel{2004) re-
marks, there is no universally accepted mathematical model that prdicts

guantitatively the exact way in which animals compute behavioural responses,
despite the fact that some relations between the overall rate of reirdrcement
and the corresponding behaviour are known| McDowell|(2004) then prodes
its own computational model for this problem and argues that it generates
empirically plausible results. The main characteristic of the mehod proposed
is that it makes no reference to an utility function being maximized by the

agent. Rather, a genetic algorithm is employed to generate possible opamts

a priori, which are then emitted. It is the environment then that selects cor-

rect responses by reinforcing them, and this is used to generate oth similar

operants. This work is further extended by|McDowell et al. (2006), where it
is shown how this local training can be used to compose operant chains.

There exists a program calledSni y, the virtual rat which aims at providing an
interactive simulation of a rat for the purpose of teaching classical and oprant
conditioning (Alloway, 2005). However, neither the underlying compuational
model nor the actual source code are provided, so one cannot understand
precisely how the simulation works. It seems, though, that much of itis hard-
coded for very speci c tasks, since, for example, possible actions drstimuli
are all xed, as are also the experiments that can be conducted. Therefe,
despite being a program,Sniy does not provide an actual computational
account of behavioural phenomena, but merely a tool for teaching known
concepts in an interactive manner (Jakubow/ 2007).

Gaudiano and Phone (1997) propose a particular version of operant condi-
tioning using neural networks intended speci cally to allow robots to avoid
obstacles. Naturally, though, this is too speci ¢ to constitute a geneal model
for operant conditioning. [Hutchison| (2010), on the other hand, claims to have
used neural networks to create a general adaptive autonomous agent that fol-
lows principles of Behaviour Analysis and is capable, in particular, ofverbal
behaviour. However, it is not clear exactly what has been accomplisheth
this work, since neither technical details nor concrete examples arprovided.

Though the Behaviour Analysis perspective to agent modelling is unemmon,
some speci ¢ ideas concerning learning by reinforcement, originateon this
behaviourist literature, have been widely employed in Artici al Intelligence
(Russell and Norvig,|2002). In particular, Q-learning theory (Watkins| 1989)
seeks to abstract the notion that an action's value may change over time ac-
cording to experience, similarly to the operants of Behaviour Analyss. How-
ever, Q-learning formulation assumes a particular calculation strategywhen
seeking the optimal action, which is not necessarily employed by agés (e.g.,
for e ciency reasons, or other idiosyncrasies, agents might not perform he
kind of optimization postulated by Q-learning). Furthermore, it is not di-
rected towards obtaining some particular stimulus (i.e., utility is calculated

19

2. Related Work

over states, not over stimuli).

2.1.1.5 Behaviour-Based Robotics

As some of the previous examples suggested, robotics often employs |eizn

by reinforcement techniques, and indeed one of its branches is call behaviour-

based robotics(Matarc,|1998). This name is misleading in the context of our

work. Behaviour-based robotics' emphasis is not on behaviourist psymwlogical

approaches, but on a parallel and decentralized architecture. In suckan ar-

chitecture, independent and parallel\behaviours" account for particular goals

and tasks, with the objective of providing real-time decision makirg necessary
for robots. It originated specially on the subsumption architecture of |[Brooks

(2986,(1991). Some elements familiar to behaviourists (e.g., re exes) caneb
found in such an approach, though they do not constitute its essence.

Behaviour-based robotics is a biologically inspired approach, but vengeneral,
and therefore bears no direct relationship with the particular behaviourist
theories found on psychology. To make matters worse, agents of this kind
are sometimes referred to avehavioural agents(e.g.,|Wooldridge, 2009). The
reader should thus be careful to distinguish what concerns this mdtod from
what pertains to behaviourist psychology properly, where the adjecive be-
havioural is also widely employed. In this thesis, unless noted otherwiseur
use shall be of the latter kind.

2.1.2 Environments in Multi-Agent Systems

The term\environment"is not used consistently in the MAS literatu re (Weyns et al.,
2005). Sometimes, it is used to mean the conceptual entity in which thegents

and other objects exist and that allows them to interact; sometimes, i is used

to mean the computational infrastructure that supports the MAS (e.g., a sim-
ulator). We use the term in the former sense in this thesis. In Chagper 5| we
shall give a precise formal notion of our particular kind of environment, tut

for the moment this intuitive notion su ces.

In this sense, then, environments are conceptually as important as th agents
themselves. Despite this crucial role, the survey of Weyngt al.| (2005) also
points out that not much attention has been given to environments, whic
often do not receive detailed technical treatment. For instance, alhough
Russell and Norvig (2002) present the notion of environments explicitlyand
analyse some of their possible properties, they do not develop any soysti-
cated environment model in the same depth and detail that agent modelsare
developed. Nonetheless, there exist works that take environments ahrelated
notions as rst-class entities and which are particularly relevant to this thesis.

20

2.1. Autonomous Agents and Multi-Agent Systems

Ferber and Muller| (1996) presents a synchronous model for environment con-
struction. In it, the environment acts as a coordinator which receivesin u-
ences from the agents and that generatesreactions towards them. In this
manner, rst agents act, and then their actions are taken into account by the
environment, thus allowing simultaneous actions to be speci ed.

Okuyama et al[(2005) de nes the Environment Description Language for Multi-
Agent Simulation (ELMS). It allows the speci cation, in XML, of agent's
potential actions and perceptions, as well as other resources preseint the en-
vironment. Such speci cations may carry certain logical preconditions which
must be satis ed, thus constraining their execution. The language als sup-
ports the de nition of the structure of the environment as a grid, which can
be used in calculating preconditions or assigning e ects (e.g., an aatin's e ect
might be to change the agent's position from one grid cell to another). The
simulation itself is performed by combining an environment specication with
agent implementations.

Part of the purpose of an environment is to allow agents to interact. A way

to deal with such interaction is through protocols, which de ne how messages
must be exchanged between agents. A number of initiatives exists ithis
sense. The COOrdination Language (COOL) (Barbuceanu and Fox, 1995) is
an early example of such an approach. In COOL, a protocol is a conversation
represented by a nite state machine (FSM), in which transitions represent
message exchanges based on speech act theory. Each agent must instantiate
such an FSM, which regulates the agent's individual state in the convesation.

To choose a transition, agents must comply with certain rules, whichare part

of the coordination protocol.

A more recent and well-known approach to describing agent interactioris the
AUML sequence diagram (FIPA|, 2003), an extension of UML sequence dia-
gram for MASs. However, like UML itself, this is largely an abstract graphical
notation, and lacks both a formal and programming model. The IOM/T lan-
guage (Doiet al., |2005) is a Java-like language designed to allow the actual
programming of such AUML interactions. |Quenum et al.[| (2006) proposes a
similar framework, but designed to emphasize the separation betweeagents
and their role in protocols, thereby making the protocols generic. Ths requires
the addition of features, such as the di erentiation between agent actons and
messages, to those provided by AUML and variants. Moreover, contrary to
imperative approaches such as IOM/T, Quenumet al. (2006) argue in favour
of a declarative speci cation language.

The notion of an organization (Ferber, |1999) can be related with environ-
ments. An organization, in this sense, is divided in two parts: the abgact
organizational structure and the concrete organizations. The organizational
structure de nes the roles that agents might occupy, independerily of the

21

2. Related Work

actual agents that will eventually full the roles. Roles de ne powers and
responsibilities, and are related to other roles too. A concrete organation,
in turn, is an actual MAS that ful Is the constraints imposed by an organi-
zational structure. The relation to environments can be establishedat this
concrete level, since the MAS environment, if represented exjalitly, may as
well be subject to organizational constraints. If the environment is rot repre-
sented explicitly, the mechanism that allow the agents to interactaccording to
the organizational structure can be seen as a kind of environment, although
possibly quite an abstract one. MOISE (Hannounet al., |2000) is an example
of such an organization model.

Finally, it is worth to mention the work done in reasoning involving depen-
dency networks (Sichmanet al., [1998). By modelling the capabilities of other
agents and the dependencies among them, an agent can build a network of
dependencies that comprises the whole MAS, thereby creating a medi of its
environment in so far as such dependencies are concerned. Whileighis not
an environment in itself, this kind of social reasoning can be used toperate

in an environment rationally. Social networks such as these in fact preent a
general way of modelling and reasoning about societies, which has als@dn
studied in the sociology area of Social Network Analysis| (Wassermaet al.,
1994).

2.1.3 Multi-Agent Based Simulation

In the context of a scienti ¢ inquiry, a model is an abstract representation of
a target system the entity one wishes to study (Frigg and Hartmann, |2009).
Accordingly, in this thesis we are concerned withsimulation models A simu-
lation, in turn, is the execution of such a model by asimulator, which produces
a sequence of simulator states.

Multi-Agent Systems can be used to develop models of interestingtsiations in
order to analyse their properties. Simulation is often used to perfom such an
analysis, and a number of tools are available to this end (Gilbert and Bakers,
2002). These tools usually provide both a programming framework in which
to de ne agents and a simulation tool to actually perform simulations. This
general architecture was introduced by the SWARM platform (Minar et al.,
1996). More recent examples can be found on the RePast (Northkt al., [2006)
and MASON (Luke et al., [2004) platforms. | Tobias and Hofmann (2004) sur-
vey a number of such platforms and compare them.

Simulation platforms often require the user to program. This, of course pre-
vents many potential users from employing them. To mitigate this problem,
some tools, such as NetLogg (Wilensky, 1999) and SeSAm (Klugl and Puppe,
1998), have easy of use as an explicit goal

22

2.2. Formal Veri cation

Multi-Agent models have been used, in particular, to simulate so@l phenom-
ena. Notably, |[Epistein and Axtell|(1996) explored phenomena such as trade,
war and disease transmission using the Sugarscape platform they develeqh.
Their objective was to show that these phenomena can be explained byding
the right simulation rules that generate them.

Many similar studies through simulation have been devised, addregsg many

di erent matters, such as: natural resources management (Briotet al., |2010),
epidemiology (Alam et al., 2009;| Bearmanet al., 2004; Eubanket al., 2004,

Mysore V. et al,,2005), terrorism (Tsvetovat and Latek, 2009), climate (Downing et al.,
2001 Balbi et al.,2010), crowd behaviour (Henein and White| 2005; Bansaét al.,

2008), opinion formation (Stocker et al.,|2001), archaeology|(Doran and Palmer,

1995; Deanet al.,|2000), economics/ (McCarthyet al.,|2008), crime (Bosse and Gerritsen,
2008), stem cells|(d'Inverno and Saunders, 2005) and computer networks (Bingavan et al.,
2002).

2.2 Formal Veri cation

The idea of analysing the properties of MASs automatically came mostly from
the broad eld of Formal Veri cation, to which we now turn our attention.
Section[2.2.] concerns Model Checking, from which we took the idea of stem-
atically exploring state-spaces. Sectiof 2.2]2 addresses Model-Bas@esting,
an area that combines formal speci cations with actual program execution.
Section[2.2.3 presents Runtime Veri cation, an approach that veri es exe-
cutions of programs, not their speci cations. Finally, Section[2.2.4 presents
process algebras, among which we found semantic models useful for ivea-
tion.

2.2.1 Model Checking

In modal logics, amodel M for a formula is a graph with labelled states
that provides the semantics of . Model Checking is a veri cation method
rst proposed by Clarke and Emersor (1981) and| Queille and Sifakis| (1982)
in which the properties of interest are evaluated directly on the malel for a
system, instead of the speci cation's syntax. That is to say, instead of trying
to produce a proof, one merely scans a model searching for violations tfe
desired formula . We denote that some states of the model M satis es

by writing:

M;sE

In Model Checking, M typically represents some computational system of in-
terest (e.g., a set of computers that communicate through some protocolland

23

2. Related Work

some property concerning such a system (e.g., that no deadlock oa®). M
can be obtained automatically from higher-level descriptions that speify the
behaviour of the system (i.e., from a program), and can be given explicitly
in terms of temporal logics (a kind of modal logic) such as the Computation
Tree Logic (CTL) or the Linear Temporal Logic (LTL). For instance, in LTL
one can formalize the assertion

\It will always be the case that when process p requests regoe r, it will
eventually receive it."

by writing something like

G(p_requestsr) F(p_receivesr))

where G (\ Globally”) and F (in the Future') are temporal modalities.

Model Checking has seen considerable progress since its inceptioBymbolic

Model Checking (Burch et al., [1990) has made the treatment of large state-
spaces possible by using special data structures (i.e., Binary Résion Dia-

grams) to encode them succinctly. More recently, Bounded Model 8ecking

(Biere et al, 11999, 2003; Clarkeet al., 2001) has pro ted from the develop-
ments in SAT solvers. This is done by limiting the length of the courterexam-

ples one is searching for, which allows an e cient translation of the resulting

problem to an instance of SAT.

Clarke et al[(1999) and Baier and Katoen (2008) provide long and self-contained
texts covering much of the developments in Model Checking. Findy, Clarke
(2008) gives a historical account of this development.

2.2.2 Model-Based Testing

Software Testing is a form of veri cation in which a system under test(SUT)
is systematically executed according tatest casesin order to identify defects
Model-Based Testing (MBT) (e.g., |Gaudel, |1995;| Brinksma and Tretman$
2001), in turn, is a formal approach to testing which employs mathematical
models of the SUT to generate test cases. This brings two main advantages:

test cases can be generated automatically from the model;

test cases can be chosen in such a way that some coverage guarantee can
be given. For instance, if the system is modelled as a control- ow grabp,
one can aim at covering all possible execution paths of such a graph.

24

2.2. Formal Veri cation

A well-known example of such an approach was proposed by Tretmans (2008).
There, the SUT is speci ed as a labelled transition system, which an be used
to generate test cases. By this method, it is possible to systematally test
whether the SUT conforms to its speci cation with respect to the so-called
ioco relation.

In order to produce test cases directed for some particular end, oneao em-
ploy test purposes Such test purposes can, in particular, be represented for-
mally. This approach is used on the TGV tool (Jard and Jron, 2005), where
both test purposes and SUTs are modelled as input-output transition sg-
tems (IOTSs). By performing a special synchronized product beteen them,
along with other transformations, one gets another smaller automaton from
which test cases can be extracted in order to assess whether the SUJ ibco-
conformant to the speci cation. By this method, only relevant tests are ex-
ecuted. TGV itself is based on a more general approach to on-the-y veri
cation, which can also be used to perform Model Checking and to detemine
bisimulations (Fernandezet al., (1992).

Often, the state-space relevant for testing is very large. For this eason, tech-
niques to partially explore the state-space have been devised. Iparticular,
the use of statistical methods allows the performance ofandom testing As
the name implies, random testing is concerned with generating testases in a
random way. Randomness can be introduced in a variety of manners, suds
providing random inputs, or performing a random walk on a control graph.
The latter approach is of particular interest because it allows the exjoration

of the state-space according to desired statistical criteria. Moreosr, formal
approaches often assume the existence of a graph model of the SUT, which
make such random walks a natural choice for their testing.

There are a number of ways in which one can perform a random walk. First,
one can proceed using an uninformed random walk, which simply chooses
randomly between the successors states of the current executionate. This
method, however, produces biased coverages of the graph. To corretttis,
Deniseet al.|(2004) proposed a method in which each possible execution trace
has the same probability of been chosen (i.e., a uniform distributionover
traces). Later improvements of this method allow the uniform seletion of
traces in a concurrent system, in which each program has its own, smai,
control graph (Denise et al., 2008). This allows the uniform analysis of much
larger state spaces.

At last, we consider the area ofpassive testing(Lee et al., |1997). In passive
testing, checks are performeda posteriori. That is to say, the SUT is not
exercised by test cases; rather, checks are performed on the ex&on traces
of the SUT's normal behaviour, and thus have a passive role. Usually, an
automaton represents the property to be tested. It is then just a mater of

25

2. Related Work

performing language recognition on the traces. This approach, though from a
di erent community, resembles Runtime Veri cation in that one has not much
(or none at all) control over the concerned system, and checks are perfared
merely by observing its normal behaviour. Passive testing, howeve make
such observations after the system has been executed (by examinitige logged
traces), whereas Runtime Veri cation, which we shall now turn our attention
to, focus onruntime observations.

2.2.3 Runtime Veri cation

Formal Veri cation techniques are designed to be applied to speci @tions of
systems so that it can be guaranteed that it conforms to some property of
interest. This, however, is often unfeasible, owing to the largemodels that
need to be analysed. Runtime Verication (RV) is an alternative to such
usual methods. In RV, instead of proving that the speci cation of a sydem
conforms to a property, one merely checks whether the execution ohe system
is conformant. Thus, while it cannot guarantee that the system is confornant,
it can at least provide a way to detect and respond to deviations from the
desired behaviour.

Typically, this is achieved using amonitor, which is an extra component that

is added to the system in order to perform the veri cation. The predse nature

of such monitors vary according to the kind of property to be analysed. It
turns out that linear-time properties are more suitable such an archiecture,

and thus most approaches employ some variation of a linear-time logics, shc
as Linear Temporal Logic (LTL).

However, the traditional semantics for LTL assumes an in nite execuion trace.
Thus, it is unable to cope with cases in which only nite traces are awailable.
For example, a liveness property such assFp (i.e., \in the future, p will
always happen again”) cannot be veri ed because one cannot know whether
p will happen again after a trace terminates. To solve this problem, one mga
rede ne the semantics of LTL to account for the case in which traces arenite
entities. This approach is followed by| Finkbeiner and Sipma |(2004), wire an
upper-bound (i.e., the trace length) is introduced in the semanics and it is
shown how to build monitors for it. A similar approach is taken by Geilen
(2001), where the technique presented is capable of ensuring certakinds of
LTL properties.

Another way of solving the problem of nite traces is to modify LTL more
extensively. This is achieved, for instance, by Baueet al. (2007), where the
Runtime Veri cation Linear-Temporal Logic (RV-LTL) { a four-valued versi on
of LTL { is de ned, alongside an appropriate monitor. This work is itself
built upon two other modi cations of LTL for nite traces, namely, FLT L

26

2.2. Formal Veri cation

(Lichtenstein et al., |1985) and LTL3 (Bauer et al., |2006).

An even more sophisticated approach can be found on Eagle (Barringest al.,
20044a; Goldberg and Havelund, 2005), which is a general logic framework
which can be specialized to a number of particular logics. It is desiged to
allow the creation of monitors and is implemented as a Java library. An LTL
specialization for Eagle is given by Barringeret al.| (2004b).

The RV community also emphasizes practical implementations, and thee-
fore a number of software architectures have been designed in ordeo tsup-
port the veri cation techniques. Monitoring-Oriented Programming (MOP)
(Chen and Rasu, |2007), for instance, is an e ort to build a whole paradigm
using monitoring ideas. Using MOP, one can employ a number of di ereh
formalisms to express properties, and the generated monitors can be ikten
in a number of di erent programming languages. Java-MOP (Chen and Rosy
2005) is the version for the Java platform. The MaC architecture (Kim et al.,
2001) follows a similar platform-independence principle, but is tig to its own
particular speci cation language. Java-MaC is the version for Java of this
general architecture.

2.2.4 Process Algebras

Concurrent systems are notably di cult to design correctly. This h as led to
the development of formal approaches to their speci cation and veri cation,
among which process algebras have been particularly fruitful. In sch a for-
malism, processesare algebraic expressions that model, in an abstract manner,
the communication capabilities of individual systems. By putting such pro-
cesses in parallel, it is possible to assess their combined behawr, which is
the main source of complications arising in concurrent systems. Exanips of
process algebras include ACP| (Bergstra and Klop, 1984), CSF (Hoare, 1985),
CCS and -calculus (Milner, [1999) (see Appendix E for an overview), and
Ambient Calculus (Cardelli and Gordon, (1998).

Besides serving as formalisms for speci cations, some of these presealge-
bras have been actually implemented in some form, so that speci catins can
actually be executed as programs. Pict|(Pierce and Turner, 1997) is an exam-
ple of programming language based on the -calculus. [Peschanski and Hyrn
(2006) develops the cube-calculus, based on the-calculus, which is actually
a language designed to run in an interpreter called the CubeVM. JCSP| (La,
1999) provides a Java framework for the implementation of CSP, so that it
is possible to create Java programs whose communication structures fol a
CSP speci cation. Applications of JCSP include the works of| Oliveirg (2005)
and |Freitas and Cavalcant| (2006).

27

2. Related Work

2.2.5 Formal Development

In a formal development approach, one starts with a formal speci cation of he
system to be created and, through some technique that guarantees corrmeess,
transforms this speci cation in either another speci cation or actual software.
Typically, the formal speci cation de nes the high-level require ments of the
system, without considering implementation details, and is thus nore focused
on the abstract properties of the problem to be solved. Another advantage of
proceeding in this manner is that one may, at each formal speci cation ével,
verify whether certain properties hold or not (e.g., by means of logical poofs
or Model Checking), which may be more dicult or even impossible in an
implementation.

The Z Notation (|SO/IEC, |2002; Woodcock and Davies, |1996; Jacky, 1996)
is a well-known formalism for writing such speci cations, based on st the-
ory and rst-order logic (see Appendix [D] for an overview of Z). Z is de-
signed for the speci cation of systems composed of states and transitions
among states, although stateless de nitions are also possible. A calcufallows
the composition of more complex speci cations out of simpler ones. Circsl
(Woodcock and Cavalcant|, 2001) is a related method, which integrates Zvith
CSP in order to allow the communication aspects of the system to be more
properly speci ed. Given such a speci cation, the question of howto transform

it in correct software arises. A solution is to proceed with formal re nements,
which are transformations that allow one to go from abstract speci cations to
less abstract ones, until an implementation is reached. Sampaiet al. (2002)
provides an example of such a re nement technique for Circus. Th& Method
(Abrial, 1996) is another approach, based largely on Z notions, but with a fo-
cus on facilitating re nement to executable code.

2.3 Other In uences

2.3.1 Non-Agent Based Simulation Methods

Schruben (2010) points out the simulation modelling and analysis are often
seen as two entirely di erent activities, and argues that it would be more
productive to design models considering how they are supposed tme analysed.

The Discrete Event System Speci cation (DEVS) (Zeigler et al., 2000) family
of simulation formalisms provides conceptual frameworks to put simudtion
under rigorous de nitions. In particular, DEVS de nes the notion of experi-
mental frame as an entity which provides inputs to a simulation model and
judges its outputs. For the sake of uniformity, experimental frames @an be ex-
pressed with the same formalism used to specify the simulation maa itself.

28

2.3. Other In uences

Experiments run in this fashion, though, have no control over the sinulation
once it is started, and can only evaluate its nal result. This is suci ent to
devise certain optimization techniques, by which several input prameters are
tested in order to nd the ones that generate the best output accordingto
some optimization criteria (Halim and Seck,|2011).

Even though a DEVS model is meant for simulation, it can sometimes be
subject to formal veri cation through model checking, provided that the model
can be reduced to a particular subset of DEVS such as FD-DEVS (Hwang,
2005). Model-based testing can also be applied (Let al., 2011).

2.3.2 Software Components

Software componentsare used in the implementation of our tool, so let us
examine what they are. The fundamental ideas concerning components e
given by |Mcllroy|(1968), in which it was envisioned that software should ke
built using reusable parts, much like electronics are built usiy reusable inte-
grated circuits. To this end, the task of developing software would hae to be
divided into two branches. One that would take care of building comporents
useful in many di erent situations, and another that would develop the nal
software using these reusable components. This way, developers wdwsave
time by not having to rewrite software parts.

These ideas have developed through the years, and today we have a Coonent-
Based Software Engineering eld. Following the contemporary treatmet of

the subject found by |Szyperski (1999), a software component is charactized

as follows:

It is an independent unit of deployment. That is, it can be packaged and
transmitted independently of anything else;

It is a unity of third-party composition. Components are designed to be
reused in unknown applications, built by di erent people;

It has no externally observable state. This is just a technical detail
to make sure that the same components will always perform the same
functions;

It has contractually speci ed interfaces and explicit conext dependencies
only. In other words, one can know what the component requires from
and provides to an application;

It targets a particular component platform. Components frequently as-
sume the existence of a platform that provides useful services.

29

2. Related Work

To be used, software components must provideomponent instances(i.e., ob-
jects that do have an observable staté and are, thus, useful in particular
applications) and such instances must becomposed

2.4 Formal Approaches to Multi-Agent Systems

Benerecetti et al.| (1998) remarks that, in 1998, there were few approaches
to the formal veri cation of MASs. Since then, however, there has bea an
increasing interest in applying formal methods to MASSs, including formal
veri cation techniques. In this section we present the approacheswhich are
most signi cant for our own attempt in bringing these areas together.

2.4.1 Formal Speci cation of Agent Architectures

Some researchers are particularly interested in establishing poise basis in
which to de ne agents. The SMART framework (d'Inverno and Luck| 2003),
for instance, employs the Z Notation in order to formalize a general theory
of agency. Its aim is to allow any other agency theory to be specied in its
terms, provided that a few minimal obligations are met. One such extasion
can be found in|da Silva (2005), where a theory of business management is
formalized as a multi-agent system.

Another example is the dMARS system we saw in Sectiof 2.1.7].2, which was
formalized by d'Inverno et al| (1997).

2.4.2 Formal Speci cation of Environments

Since process algebras (see Sectipn 2]2.4) are designed to model andfyer
communications in concurrent systems, it would be natural to employthem
in the speci cation of MAS environments. Yet, this is seldom done in the
context of MAS simulation. One exception is the work of| Wang and Wysk
(2008), which uses a modi ed -calculus to express a certain class of agents
and their environments. Another example is the IOM/T language (Doi et al.,
2005), which is used to specify interaction protocols, and whose semant can
be given using the -calculus. IOM/T is actually designed to be a textual
representation of AUML sequence diagrams| (FIPA| 2003), and the -calculus
semantics is used to formally demonstrate their equivalence.

As we saw in Sectior| 2.1]2 above, Ferber and Mler|(1996) develop a model
to the speci cation of environments of multi-agent systems. This nodel can

LEven if, owing to information hiding, only partly or indirectly ob servable.

30

2.4. Formal Approaches to Multi-Agent Systems

be formalized to some extent by the Block-like Representation of Iteractive
Components (BRIC) developed by|Ferber (1999). A BRIC speci cation is
de ned by blocks which possess their own behaviour (speci ed as Petri nets)
and can be connected to each other. In this way, agents and their environent,
as well as the mechanisms of synchronization and message passing that relat
them, can be speci ed as individual but interconnected blocks.

Although not actually part of the computer science community, it is worth to
note that in the sociology area of Social Network Analysis|(Wassermaret al.,
1994), social networks are precisely de ned (as graphs), along with propdes
of interest (such as the centrality of an individual in a network). All this
is provided using formal de nitions, and indeed software that, givena social
network (e.g., as an adjacency matrix), can calculate these propertiesExam-
ples of such software include Pajek| (Batagelj and Mrvar| 1998) and UCINet
(Borgatti et al., [2002).

2.4.3 Formal Veri cation and MAS Simulation

Most approaches to MAS simulation do not employ any form of automated
formal analysis. There are, however, a few notable exceptions. Let ugview
them.

Bosseet al.| (2009) presents the Temporal Trace Language (TTL), which has
an associated tool, designed to de ne simulation models (in a sublangge
called LEADSTO), as well as linear-time properties about such models.The

approach is to execute the simulation model and check whether the seilting

traces obey the speci ed linear-time properties. An example of thismethod

is given by|Bosse and Gerritsen (2008), where criminal behaviour is mailed,

simulated and analysed. A similar method was given by Mysore Vet al.

(2005), who developed a multi-agent model of food poisoning using the Rast

(North et al., [2006) simulation platform and analysed it by checking the re-
sulting simulation traces with respect to LTL formulas.

Despite the clear possibility, Runtime Veri cation (see Section) is not
usually applied to simulations. An exception is the network simulator Verisim
(Bhargavan et al., [2002). This tool runs the simulation normally, but checks
linear-time properties as it proceeds using runtimemonitors. Indeed, the MaC
architecture (Kim et al., |2001) is employed to implement such monitors.

2.4.4 Model Checking of MAS
While MAS simulation is usually treated in an informal manner, there are a
number of approaches to formally specify and verify MASs (not necessiy

meant for simulation). These, in essence, are merely the applicatioof usual

31

2. Related Work

model checking techniques to particular kinds of formal speci catons (i.e.,
speci cations of MAS), as we shall see below. Furthermore,

van der Hoek and Wooldridge (2003) note that there is a di culty in relating

an agent'sprogram to its formal speci cation. Indeed, though the pioneer work
ofRao and George| (1993) shows how to model check a BDI-based modal logic
speci cation, the problem of how to implement such a speci cation remains.
This is an important gap, since the ultimate objective is to understard the
properties of an actual agent, which must exist as an implementation too.

Benerecetti et al| (199€) attempted to solve this problem by demanding that
one codi es agents in an extension of the input language PROMELA of the
SPIN model checker (Holzmann, 2003). In a more high-level manner, thissue
has also been addressed by devising special purpose programming language
which are then translated to the input of a model checker. For exampg,
MABLE (Wooldridge et al., |2006) is a programming language which, in addi-
tion to usual imperative constructs, adds the possibility of speciying mental
states in accordance to the BDI theory we saw previously (e.g., by specify-
ing an agent's beliefs). The veri cation of a MABLE program is achieved by
translating it in PROMELA and using the SPIN model checker. Hence, the
approach reduces to devising a translation scheme to the input acceégd by a
traditional model checker.

Similarly, Bordini et al|(2003) have shown that AgentSpeak(F), a (nite state)
subset of the AgentSpeak(L) language to specify BDI agents, is reducible
PROMELA. Moreover, Bordini et al|(2004) have shown how to reduce these
same agents to Java, in which case veri cation can be done using the JPF2
model checker |(Visseret al., [2003).

MCMAS (Lomuscio et al/ [2009) follows a similar approach, but instead of
reducing an MAS program to another formalism, it provides a model checkr

that operates directly on the program provided. This is done by increnent-

ing existing BDD-based algorithms with procedures for the new eptemic

modalities introduced by the approach (e.g.,knowledgg. This approach has
been particularly relevant to the analysis of communication protocols anong

agents, whose properties can often be expressed more elegantly usiing tpro-

vided epistemic modalities.

32

CHAPTER

Contribution of this Thesis

In previous chapters we have seen the motivation and general aspects of ou
approach, as well as the works related to it. Let us now turn to its techncal
characteristics and show how it compares with the state of the art. In vhat
follows we present an overview of the main elements introduced bthis thesis
and explain how they relate to existing methods, thereby providng both a
detailed account of our scienti ¢ contribution and a summary of its technical
content.

This presentation is done by, in each section: (i) summarizing the ontents of
a particular chapter, which is speci ed in the beginning of the setion; and
then (ii) comparing our contribution with existing approaches. Chapters that
are not mentioned are of course original as well, but they play a support ra
with respect to the ones which are dealt with here (e.g., Chaptef]9, Wich
provides examples of uses of our approach, and thus supports the theory)
Notice that in the present chapter the technical terms areemphasized but
used informally. Their precise de nitions are left for their respective chapters.
This is done to avoid introducing unnecessary complications and miatiae at
this point. The interested reader may refer directly to the de nition in the
appropriate chapter.

3.1 Agent Architecture

The complete contribution is presented in Chaptef }.

33

3. Contribution of this Thesis

It is clear that owing to its focus on the organism as a whole (i.e., not on
isolated details of particular internal structures), as seen in Sedon [2.1.1.4,
Behaviour Analysis incidentally provides a useful basis for a compiational
agent architecture. That is to say, a framework with which to de ne agents
capable of receiving stimuli and performing actions in a rather generamanner.

In this thesis we introduce a new agent architecture based on the cerelements
of Behaviour Analysis', which we call the Behaviourist Agent Architec-

ture 2. Besides the overall perspective of agent behaviour that it is capae of
providing, this behaviourist theory is valuable to us also for the folowing rea-
sons: (i) it places great importance on de ning and analysing behaviour fom
an external point of view, which in the light of the methodology suggested
in Section is clearly important; (ii) it is based on an empirical scence,
and therefore is capable of modelling many realistic animal phenomenauch
as learning; and (iii) the underlying psychological theory is su ciently well
de ned in order to allow the possibility of a formalization, which is necessary
for a computational implementation. Moreover, its practical usefulness can
arise in the following situations:

if the agents are to be studied and manipulated using similar techniges
to those allowed by Behaviour Analysis;

if the agents are actually models of real organisms. In such a case, the
agents can be simulated in order to infer results about the organisms
they model;

if one believes that copying these natural mechanisms provides more
e cient ways to solve problems.

The architecture gives a computational account of the Behaviour Analytic
elements we presented in Sectioh 2.1.1.4, namely: (i) stimulus coitibning;
(ii) respondent behaviour (i.e., re exes); (iii) operant behaviour; (iv) drives;
and (v) emotions. Agent behaviour arises from the interaction of these seeral
parts among themselves as well as with the surrounding environment.

While a direct implementation of such an architecture would in fact be a
formalization (i.e., because the program's text is written in a formal language),
we chose to write anabstract formalization rst to serve as the speci cation of
the implementation. In this way we were able to separate the theorytself from

Lpart of which we published in (da Silva and de Melo, 2007).

2We reallize that the word \behaviour” and its variants are quite broa d and have many
intuitive meanings. Nevertheless, we have chosen to keep then as technical terms here in
order to remain faithful to the naming conventions usually employ ed in the behaviourist
literature we draw from. Thus, all of our references to the \behaviour" o f agents should be
seen from this perspective, unless explicitly noted otherwise.

34

3.1. Agent Architecture

implementation details. This formal speci cation is written in the Z Notation
(ISO/IEC,| 2002] Woodcock and Davies,| 1996; Jacky| 1996) and constitutes
the subject of Chapter[4. Its implementation, which we use in the sinulations,
is done in Java in a rather straightforward manner. More details about the
implementation are given in Chapter[§, and a reference of the requiredhput
format is provided in Appendix]

The agent architecture de nes an agent as anorganism which is capable of
receiving stimuli and providing behavioural responses These responses can
constitute instances either of re exive behaviour, or operant behaviour The
former accounts for actions which are directly elicited by stimulation, whereas
the latter accounts for actions that are emitted autonomously because of pre
vious learning. Operant behaviour is formed and maintained byreinforcing
actions through pleasant stimuli.

The purpose of an organism is to nd pleasant stimuli and avoid unpleasant
ones. This task is complicated by the fact that theutility of stimuli can change

over time, as the organism may learn new relations among them. For example
a neutral stimulus may become pleasant if the organisms nds out that the

rst is always followed by the latter in its environment.

Drives and emotions can regulate behaviour by modifying either the behaviour
emission itself or stimulus utility. Drives formalize the notion t hat some stimuli
becomes increasingly important to organism while it is deprived of then (e.g.,
thirst is a drive in animals). Emotions specify other behavioural madi cations
suitable in particular circumstances (e.g., afrustrated organism becomes more
likely to emit actions carelessly).

As an example of what this architecture can represent, let us considea be-
haviour analytic description of a typical laboratory experiment that one could
perform on, say, a pigeon. The pigeon is put on a cage, where both a button
and a light bulb are present. Before giving food to the pigeon, and only hen,
the experimenter tuns the light on. After some time, the pigeon learrs that
light is followed by food. So every time the light is on, the pigeon acs as if the
food has arrived. This is an example ofclassical conditioning Moreover, the
pigeon initially does only random actions, because it does not know howts
environment works. But eventually it discovers that by pushing a button, the
light is turned on. This is an example of operant conditioning. By combining
these two conditionings, the pigeon then becomes likely temit the behaviour
of pushing the button when it wants to eat. Its hunger, in turn, is given by a
drive, which changes the utility of stimuli according to how much the pigeon
has already eaten. Finally, the experimenter might decide that no fed shall
be given in association with the light. In this case, the pigeon will begradually
unconditioned, and the behaviour of pushing the button will be extinct. This
causesfrustration on the pigeon.

35

3. Contribution of this Thesis

The precise meaning of the emphasized terms will be given in Chaptél] but
for the moment it su ces to note that they provide a relevant vocabul ary to
describe the experiment. Remarkably, it is a vocabulary whose exgssions are
ultimately de ned in terms of externally observable behavioural responses and
stimulation. Take hunger, for instance. It is a drive, which means that it is
de ned by the existence of two operations, namelysatiation and deprivation,
with respect to a particular kind of stimulus, in this case food. By depriving
the organism of food, it becomes more likely to emit behaviours that lad
to food. By satiating it, the contrary happens. This is the de niti on found
on the psychology theory. To make it computational, we add the notion of
stimulus utility, which provides a minimal explanation for the phenomenon:
drives a ect the utility of stimuli, which in turn a ect behaviou r emission.

Since behaviourist principles were largely developed using aniabs, examples
like the one we gave above abound on the related literaturé. Nevertheless,
the underlying principles that arise from such experiments are aplicable to
humans as well. Consider, for example, any interactive website. Inhis case,
one may well be interested in how often, and under which conditionssome
users will perform some actions. For instance, how often they click orertain
links, use certain features, or which kind of advertisement is moree ective.

Because of the abstract nature of such a model, it can be put in behaviaist

terms much like the experiments with, say, pigeons. To the extat that the

user is interacting in this well-de ned and abstract space, he can b seen
just as the pigeon in its experimental chamber. We shall see other exaptes
involving people in Chapter[9.

3.1.1 Comparison with Other Approaches

We avoid introducing constructs which we do not nd necessary for he com-
putational formalization of the original de nitions of Behaviour Analysis, t hus
upholding its values as much as possible. In particular, though agents ths
de ned have state, which is necessary for computation, we do not asdre usual
mental qualities to them, such as will, belief, intention, knowledge, memory,
and reasoning. This is so because Behaviour Analysis rejects theseuas ex-
planations of behaviour, and puts in their place a di erent set of concets,
focused on the properties of externally observable events { that isd say,
behavioural responses and stimulation.

In this way, we di erentiate our architecture from a number of others. Many
of the fundamental ideas of Arti cial Intelligence are related to the view that
human intellect can be understood as an information processing desg, much
like a computer (e.g.,| Simon,| 1996). This view nds considerable suppar

SFor a curious one, see| Skinner |(194B), where it is shown experimatally that some
superstitions can be explained in behaviourist terms.

36

3.1. Agent Architecture

on approaches to psychology that seek to identify and analyse these inteal
information processing mechanisms. This excludes Behaviour Ana$ys, but
includes both folk psychology (e.g., as pointed out by Bratman, 1987), as
well as academic branches such as Cognitive Psychology (Neisser, 1967). It
is only natural, then, that many well-known agent architectures, sud as the
examples we cited in Sectior] 2.1]1, should be based on similar princgs,
that for convenience we shall callmentalistic. These are appropriate in many
cases, but behaviour of humans and other animals alike is often determéu
by mechanisms which cannot be e ectively presented using such entalistic
descriptions alone.

Though not incompatible, mentalistic and behaviourist theories are vey dif-
ferent. In particular, cognitive approaches treat agents as information po-
cessing units endowed with certain mental mechanisms, such as mery and
planning capabilities, and try to analyse the properties of such mechnisms
experimentally (e.g., the capacity of working memory as shown by Miler,
1956). Behaviourism, in contrast, seeks mathematical relations betweestim-
ulation and behavioural responses without assuming any intermediary rantal
mechanism (e.g., the rate of behavioural responses in relation to theate of
reinforcement as studied by| Herrnstein, 1970). Hence, the two perspéves
can be seen as complementary, but with distinct focuses and theorse

To see this more clearly, we may return to the example of the pigeon ira
cage given previously. How could one use mentalistic notions to descbthe
experiment with the pigeon? Let us examine some possibilities. If kowledge
is represented explicitly and the agent relies only on reasoning, it wuld be
necessary to add knowledge concerning the several phenomena invadly which
would state that it is right to make such conditioning, and specify how they
are to be de ned, maintained and eventually dissolved. Knowledge forthe
regulation of hunger over time, and of the emotional e ects of frustration,
would also have to be provided. But then one would be using mental tens
to describe not the knowledge of the agent, but unconscious mechanisnhat
regulate its behaviour. And in this case it would be better to descrbe such
mechanisms directly, instead of relying on an agent's rational machiner to
deduce their consequences. Conversely, if instead of explicinkwledge one
employed intricate internal cognitive or neural mechanisms, it woul possibly
add more complexity than it is required for the description of the obseved
phenomenon. For instance, if one knows a mathematical formula capable of
describing how classical conditioning takes place, there is no nddo provide
a detailed neural explanation in so far as the simulation of the behaviouris
concerned. In summary, it seems that certain classes of behaviour afeetter
understood without reference to mental entities, but merely ewvironmental
ones.

It is clear that the modelling of organisms can be done at many points in a

37

3. Contribution of this Thesis

continuum of abstraction: from the use of disembodied reason (very abshct)
down to the mimicking the physical properties of actual organisms and heir
brains (very concrete). Owing to its emphasis in the interface baveen or-
ganisms and their environments, a behaviour analytic approach provide an
interesting alternative, a middle ground between these two extemes. It is
not, of course, the only possible alternative, but it is one with an estatished,
distinct and coherent psychological theory, which was created with ceain
particular problems in mind, and therefore merits attention. Nonetheless, it
must be be emphasized that our objective is not to dismiss or substitte any
of the existing agency models, mentalistic or otherwise. Rather, ouapproach
complements existing ideas and allows the study of agent behaviour dm a
di erent point of view, suitable for di erent purposes.

Computational models for Behaviour Analysis are scarce in the literatue, and
none of the existing ones gives a uni ed account of its main elements, kich we
group as follows: (i) stimulus conditioning; (ii) respondent behaviur (i.e., re-
exes); (iii) operant behaviour; (iv) drives; and (v) emotions. Th e approaches
that do exist, such as the work of Touretzky and Saksida|(1997), focus mostl
on algorithmic aspects of operant conditioning, a form of learning by rein-
forcement. Important as this may be, it is not su cient as an architect ural
basis, which requires a more extensive and structural specicatin of what
constitutes an agent. It must be extensive because there is great depdency
among the several behavioural phenomena, and to represent one it is ofte
necessary to represent another. In particular, operant conditioningitself de-
pends on other aspects of the agent, such as drives and emotions. It must
also be structural because it serves as a fundamental basis for both irfgmen-
tation and further theoretical development. Therefore, its elemerts must be
organized in such a way that they can be easily identi ed, analysed, riated,
changed and extended { that is to say, highly structured.

Concerning the work of| Touretzky and Saksida |(199/7) speci cally, despi its
merits, it is limited in ways our approach is not. No account is given of dives
and emotional behaviour, nor is stimulus utility represented expicitly. Re-
exes are also not represented. Moreover, the treatment of operant beaviour
itself, though interesting, is limited in some important ways. For instance,
it assumes that reinforcement must be provided in the instant folowing the
action to be reinforced, whereas it could be a longer delay. It is alsonclear
how the model could be extended or changed, since no other structes are
presented. Our approach, in contrast, provides a general framework foagent
modelling which de nes several aspects of agent behaviour, showsoWw they
relate to each other and can also be extended and changed modularly. This
implies, in particular, that di erent calculations for operant condit ioning can
be speci ed within our architecture.

Extensibility is an important design goal for us. While we provide abstract

38

3.1. Agent Architecture

de nitions and corresponding re nements, it should be possible todevise al-
ternative re nements. This is possible by the use of the Z Notion, andcan
be useful in order to specialize or change the architecture in a sysinatic
manner. For example, if one wishes to consider a di erent way of learimg
in operant behaviour, it is possible to de ne it and integrate in the architec-
ture. This exibility contrasts, for instance, with Q-learning t heory (Watkins|
1989), in which a certain learning mechanism is de ned and is not supposk
to be changed. Our approach to operant modelling, on the other hand, aims
at being exible enough so that a wide range of utility calculation strategies
can be de ned, and it is designed to model the usual operant contingenc
as a triple of antecedent stimuli, action and consequent stimulus. Mreover,
our approach is closely linked to other agent's aspects, such as its stin
processing facilities and its emotional state.

It is also worth to note that McCarthy (2008) has argued that some innate
notions and mechanisms can be useful in complementing an agent's leangj
process. Our approach can be seen under this light, since we prodd number
of supporting mechanisms that the agent uses to guide and structure & learn-
ing. However, instead of relying on theorem proving, as McCarthy suggest
we de ne specialized structures for the several mechanisms. Wehas avoid
the e ciency complications that might arise from automatic theorem prov ing.

A number of other speci c comparisons can be made. The following points
are particularly relevant:

The conditioning mechanisms we de ne, namely, stimulus and operant
conditioning, provide a learning framework suitable for understandng
and acting upon an environment. By structuring the relations between
the observed environment elements, these mechanisms allow the anjé¢o
reuse these experiences in future situations in order to eithemanipulate
or react properly to the environment. In contrast, rationality-inspi red
architectures, such as BDI (Bratman, |1987; Rao and George | 1995),
do not de ne the learning mechanisms involved, but merely assumehtat
learning is performed and its results transformed into beliefs. m other
words, we assumea priori features of the agent's environment (e.g.,
events that happened together may happen together again in the fu-
ture), and prot from them by de ning associate learning mechanisms.
But this also reduces the generality of our approach. In particular,
it is not clear if we could develop a useful agent-oriented programming
(Shoham, 1993) language based on our architecture, although this might
be attempted. To this end, one would have to isolate tasks that a pro-
grammer may wish to accomplish and that nd a good representation
using behaviourist notions. Currently, though, our architecture seems
more appropriate for modelling actual organisms, including whatever

39

3. Contribution of this Thesis

40

idiosyncrasies they might have.

Historically, Behaviour Analysis has developed a distinct perspedve
and theory on organism behaviour, di erent from approaches based on
mental mechanisms such as Cognitive Psychology. Th8ehaviourist
Agent Architecture helps in bringing these di erences to computa-
tional agent architectures, in which cognitive approaches, such as SOAR
(Laird et al., |1987) and ACT-R (Anderson et al., 2004), predominate.

Because our agent architecture is geared towards representing actual an
imal behaviour, it is more suitable for modelling such behaviour than
approaches that lack similar empirical basis. This feature might be use
ful, for instance, in modelling and forecasting social behaviour. Tis kind

of study has already been done using much simpler models of agency.
Epistein and Axtell|(1996), for example, employ a kind of cellular au-
tomaton to this end. It would be interesting to undertake similar studies
using behaviourist models instead.

The structures used to represent conditioning, such as the stimius
graph, are themselves objects to be studied. Questions might be aske
about how exactly organisms search over these structures, and theiak
the architecture can be re ned to re ect actual behaviour more closdy.
These structures can be seen as a type of semantic network (Sawa, 1987)
specialized for behaviourist phenomena.

The several parts of our architecture work with each other in order to
provide the nal organism behaviour. For instance, the operant utility
is calculated considering the stimulus utility, which in turn might be
changed by an emotion or a drive. Naturally, this deep relationships are
missing in many approaches that seek to capture only speci c parts of
organisms, such as it is usually done in the reinforcement learning age
(Russell and Norvid, 2002), and even in the treatment given to operant
conditioning in the skinnerbots of [Touretzky and Saksida (1997). While
there are bene ts in such an isolation, it is clear that there is also sore
loss if the objective is to model a whole organism, whose behaviour is a
consequence of several interacting mechanisms.

Moreover, learning by reinforcement techniques, though inspird by be-
haviourism, often restrict themselves to the notions ofreinforcement and
punishment without further analysis. Our formalization, however, pro-
vides ner structures to model learning. For instance, we have sen that
both reinforcement and punishment can be subdivided intopositive and
negative And each might have particular characteristics. Negative pun-
ishment, for example, triggers the emotion of depression. Furthermag,
extensions of our architecture may prot from this ner structure i n
order to add other characteristics in an equally ne manner.

3.2. Environment Model

We have shown that drives and emotions can be de ned in behaviourist
terms and are relevant to model actual organism behaviour. However,
they are not usually considered by other agent architectures. Even th
few approaches based on behaviourism that we are aware of ignore this.

Our characteristic employment of an utility function di erentiat es our
approach from that of McDowell et al. (2006), which explicitly avoids
any similar scheme. Hence, it is not clear whether it is possible to
express drives and emotions in their framework. In any case, they do
not show how to do such a thing.

Operant utility calculation can be seen as a form of automated planning
(Nau et al., [2004), because it involves the composition of a sequence of
operants in order to achieve a goal (i.e., the best stimulus available)
As such, our architecture could benet from the research done in this
area. This need for planning is also at the heart of BDI approaches and
related agent-oriented programming languages, such as AgentSpeak(L)
(Rao, |1996).

Though [d'Inverno and Luck| (2003) provides an extensible agent theory
based on the Z Notation, we de ne our own model from scratch. The
reason is that we are interested in specifying very basic mechanisn
such as the notion of behaviour itself, and in this case the foundation
provided by the SMART framework would not be suitable. Moreover,
in SMART the bound between agents is the goals they share, whereas in
our approach agents can only be related by mutual stimulation, not some
abstract goal. Nevertheless, its use of Z clearly in uenced our choice of
a formal notation for agent modelling.

3.2 Environment Model

The complete contribution is presented in Chaptef b.

As we remarked in Sectior{ 1.1, the environment of an MAS can be used as a
crucial element in its automated analysis. Because the greater compléy of
interest is often within the agents, which are thus simulated as blak-boxes,
simpler and merely coordinating functions can be attributed to their envi-
ronment. These functions, in turn, lend themselves to simple ad explicit
formal representations, which is attractive from a formal veri cation stand-
point. It was with this in mind that we designed the Environment Model

for Multi-Agent Systems (EMMAS) 4,

4Part of which we published in (da Silva and de Melo, 2011a).

41

3. Contribution of this Thesis

EMMAS provides both a suitable coordination mechanism for our behaviourist
agents and a way to specify several possible experimentation scenasiin a suc-
cinct manner. This latter point is particularly distinctive, as it provides the
basis upon which we can perform formal veri cation.

To achieve this, we employ ideas from process algebra by realisindnat our
agents can be seen as communicating processes. Inde&MMAS itself is
de ned on top of the -calculus process algebra (Milner, 1999). Among other
qualities, -calculus has a simple operational semantics (i.e., the meaning of
expressions is given by considering a transition system). This nans that it is
possible to transform an environment speci cation into a transition system, in
which runs (i.e., sequences of states and events) denote the pdssi evolutions
of the environment.

An EMMAS speci cation de nes three aspects of an environment:

Which agents are present. The agents are seen as black-boxes, and only
a minimal interface is explicit in the speci cation (i.e., what st imuli each
can receive, and actions each can emit).

How these agents relate to each other. These relations are given by
de ning how the action of an agent is transformed into a stimulus for
another. The environment structure, then, is a social network (in the
sense of Wassermaret al., 1994).

A number of behaviours of the environment itself, which are specied as
operations .

All of these elements are put in parallel composition in the speci catbn so
that they can interact.

It is mostly through environment behaviours that experimental situ ations can

be specied in EMMAS . For example, suppose that one wishes to test two
di erent ways to manipulate a group of agents. One can de ne an operation
Op; to account for the rst, and another operation Op, for the second. Then,

to specify that the two are to be experimented with, one requestsa non-

deterministic choice in the form of the following composed operation:

Op: + Opy

During simulation, this means that there are two distinct possible courses of
actions { one employing Op; and another employing Op,. During veri ca-
tion, both of these simulation paths might be examined to ensure that some
property holds in both cases. The mechanism by which such choices aneade
can vary, but in this thesis they are de ned by the veri cation algorit hms we
provide and which we present later.

42

3.2. Environment Model

Owing to its process algebraic foundation, there are a number of suchompo-
sition operators, which can be used in a structurally recursive wayto de ne
intricate operations. Moreover, EMMAS also provides primitive operations
which must be used when building more complex ones. These priniite op-
erations include, for instance, the stimulation of agents and the creatin of
new relations between agents. As a further example, consider the follving
operation:

((Stimulate(s;; ag) + Stimulate(s;; ag));
(Stimulate(ss; ag) + Stimulate(ss; ag))) k
Stimulate(ss; ag)

It de nes: (i) that an agent ag be stimulated rst by either s; or sp, and then
by either s3 or s4; but also (ii) that at any moment ag might be stimulated
by ss. As in the previous example, though not as obviously, there exists
a transition system that represents all of the possibilities contaired in this
operation.

3.2.1 Comparison with Other Approaches

The ELMS (Okuyama et all, 2005) approach we saw in Sectiof 2.1.2 also
employs the idea of combining environment speci cations with agentimple-
mentations to perform simulations. However, there are a number of imprtant

di erences. Most crucially, ELMS does not seem designed with formaler-

i cation goals in mind. Thus, dierently from our method, no underly ing
semantics amenable to formal analyses (e.g., transition systems) is gvided
in ELMS. In particular, it is not possible to specify multiple situ ations via
non-deterministic operators, which hinders its applicability to the speci ca-
tion of experimental situations. Furthermore, ELMS's agents are assume
to be implemented using AgentSpeak(L)(Rao, 1996), whereas our approach
assumes a di erent agent architecture, as explained previously.

Ferber and Melller| (1996) develops an execution scheme similar to ours for
de ning environments, which is formalized by |Ferber (1999). Howevey the
formalism itself is entirely di erent, as it is based on Petri nets and not on
process algebras. Other important di erences are:

Although Petri nets are used, the environment reactions to agent ac-
tions are actually not given in the Petri net formalism. Rather, any
description language can be used to do so. This presents a di culty
to formally analyse these reactions. In contrast, ourEMMAS is en-
tirely formal, and therefore poses no such di culty. This restric ts what
can be expressed (since it is not an arbitrary description language), ku

43

3. Contribution of this Thesis

allows entirely formal investigations with respect to the environment's
structure and behaviour.

The focus of| Ferber's (1999) environments is on the synchronization of
agent in uences and environment reactions, as required by the theory
developed by| Ferber and Muiller| (1996). No provision is made for the
concise de nition of multiple experiments and situations, which is a main
concern inEMMAS . This arises, in part, from the previous point, since
if the behaviour of environments (beyond synchronization) is not give
explicitly by Ferber's (1999) formalism, then it is not possible to explore
them systematically.

Ferber's (1999) agents are supposed to signal when they are done with
their actions, so that one can determine which group of actions can be
considered simultaneous. EMMAS requires no such thing from the
agents. Rather, all possibilities of simultaneous actions are automati-
cally considered at the semantic level. This arises from our focus on
veri cation.

Ferber's (1999) environment aims at being domain independent, while
EMMAS has no such ambition, and addresses only a class of MASs.

It is also enlightening that Ferber| (1999, p. 211) shares one of our main
concerns:

Unfortunately, very little work has been done on modelling envi-
ronments, and details relating to environments are usually lost in
explanations of systems which have implemented them, or indeed
completely buried in the code for their implementation.

Both our contribution and Ferber’s (1999) aim at this problem.

We employ a process algebra to provide the semantics dEMMAS and,
as seen in the previous section, use the Z Notation to specify the agents
Thus, there are similarities with the Circus (Woodcock and Cavaktanti, 2001)
method, in which the process algebra CSP and Z are combined in a umifm
framework. However, here we use the -calculus instead of CSP. Moreover,
although the agents are specied in Z, this speci cation is used mostlyas a
guide for implementing them, so that during veri cation and simulat ion the
algorithms do not manipulate its internal structures. That is to say, veri ca-
tion is achieved by manipulating the structures of the environment, and agents
are considered mostly as black-boxes with interfaces.

44

3.3. Transition Systems and Semantics

3.3 Transition Systems and Semantics

The complete contribution is presented in Chaptef B.

We saw in the previous section thatEMMAS environments can be put in
terms of transition systems. In this thesis we develop a particularkind of
such structures, which we callannotated transition system (ATS) . Thus,
a crucial step to formally analyse an MAS in our approach is to translate an
EMMAS speci cation into an ATS . We do this in two di erent ways.

The rst is by giving a general semantics of EMMAS in terms of an ATS .
This is achieved by considering the operational semantics of-calculus, which
provides a transition system, and then removing certain undesiable runs. The
resulting ATS provides a rigorous semantics, but is does not include imple-
mentation details that are needed for particular applications { it is an abstract
semantic model, and shows thatEMMAS is not limited to simulation appli-
cations.

However, since the technique developed in this thesis is based time possibility
of simulating an EMMAS speci cation, it is necessary to provide a more
concrete translation from such a speci cation to anATS . This second way of
performing a translation is tied to the simulator and the associated vei cation
technique, and therefore is considered in Section 3.4.

3.3.1 Comparison with Other Approaches

Transition systems are classical mathematical entities to represdrsemantics of
concurrent systems. For example, they are used by Milner (1999) to pnide
the semantics of both CCS and -calculus process algebras. Model check-
ing techniques (Baier and Katoen, 2008) employ transition systems as viieto
represent the systems to be analysed. Therefore, with respecbttransition
systems, our contribution, if any, is merely the de nition of a parti cular kind
of transition system (the ATSs) that groups a number of well-known features
useful in our work, in particular: input and output events, internal events,
labelled transitions and labelled states.

Our signi cant contribution, though, is the provision of a semantics for our

EMMAS in terms of such transition systems. To our knowledge, it is the only
MAS environment to have such a semantics. The practical importance ofthis

is that, as we shall see in the next section, such a semantics is fuathental

for the veri cation technique we develop.

45

3. Contribution of this Thesis

3.4 Veri cation Technique

The complete contribution is presented in Chaptef J7.

To apply the veri cation technique developed here, we rst need asuitable
ATS to represent the MAS, which can be derived from anEMMAS spec-
i cation. As explained previously, the general semantics to be devalped in
Chapter[g does not contemplate the particular needs of the simulator rquired
for the application of the technique. The problem, essentially, is hat there
must be a way to explicitly request, during simulation, that agents change
their current actions and acknowledge changes in environmental stimiation
(i.e., the agents must be updated). This is an implementation issugand there-
fore we have not included in the generaEMMAS semantics. Nevertheless, a
more concrete semantics is given by introducing a new event, callecommit,
which works as a signal to make such a request. This produces &TS whose
runs can be directly interpreted by the simulator. In particular, whenever the
simulator nds a commit event in a run of the ATS , it enforces the update of
the agents. Moreover, thisATS is mathematically well-de ned in its entirety,
but its actual construction is done during simulations, as each particlar state
becomes relevant - that is, on-the-y.

One models an MAS in order to study its properties. In this thesis,we propose
a way to do so by formulating hypotheses about the MAS and automatically
checking whether they hold or not (e.g., \every time the agent does X, wll it do
Y later?"). ® If a hypothesis does not hold, it means that either the hypothesis
is false or the MAS has not been correctly speci ed. The judgement to b
made depends on our objectives in each particular circumstance. Are we
trying to discover some law about the MAS? In this case, if a hypotheis that
represents this law turns out to be false, it is the hypothesis that is incorrect,
not the MAS. Are we trying to engineer an MAS that obey some law? In this
case we have the opposite, a falsi ed hypothesis indicates a problernm the
MAS. This view is akin to that found in empirical sciences, in which scientists
investigate hypotheses and make judgements in a similar manner. In s
respect, the main di erence is that the empirical scientist studies the natural
world directly, while we are concerned withmaodels of nature in the form of
MASS.

In this thesis, such a hypothesis is de ned by specifying asimulation pur-

pose and a satis ability relation. If the MAS satis es the specied simu-
lation purpose with respect to the desired satis ability relation, then the
hypothesis is corroborated. Otherwise, it is falsied. Formally, a simula-

SWe have published part of this technique in (da Silva and de Mel d|, [20118).

46

3.4. Veri cation Technigue

Figure 3.1: Verication and simulation elements interaction. Notice, in particular,
the important role that the environment has in relating veri cation and simulation.
It acts as a coordinator which, on the one hand, formally de nes what can be dne,
while on the other hand requests actual simulator operations. The envibnment's
implementation is provided mainly by a -calculus simulation library, as explained in
Section[3.3 below.

tion purpose is an ATS subject to further restrictions. In particular, it has
nitely many states and de nes two special states, Successand Failure. All
runs that lead to Successdenote desirable simulations, whereas all that lead
to Failure denote undesirable ones. Moreover, di erently from theATS that
is automatically and progressively derived from anEMMAS speci cation,
these simulation purposes must be speci ed explicitly and a priori .

Simulation purposes not only give criteria for correctness but are also em-

ployed to guide the simulation, so that states irrelevant for the property are

not explored. The veri cation is achieved by building { on-the-y { a special

kind of synchronous product (written SP M) between anATS M rep- synchronous prod-
resenting the MAS of interest and asimulation purpose SP denoting the uct

property of interest. This synchronous product s itself an ATS , in which

states are of the form @;s), where q is a state of SP and s is a state of M .

47

Feasibility

Refutability

Certainty

Impossibility

3. Contribution of this Thesis

A feasible run in this product is a run whose last state (@;s) is such that
g = Success

This formal construction depends on and in uences the behaviour of agds,
which are simulated as black-boxes (but have a known interface). & example,
a transition that states that a certain agent has performed a certain actioncan
only take place if the agent in question really performed that action (i.e, if the
simulator, after being queried, informs that the agent did so in the smulation).
Conversely, if a transition that speci es that a certain agent receives a certain
stimulus takes place, then it is necessary that the agent really redees the
stimulus (i.e., by requesting the simulator to stimulate it). T his interaction
with the simulator is formalized by the provision of an abstract simulator
interface, which can be incorporated in formal de nitions and implemented by
the actual simulator. Hence, there is an interplay between the formaknalyses
and the simulation. The formal structures provide order to the simulation in
the form of an abstract representation, but they would be pointless witiout
an actual simulation to put in order in the rst place. This close relati onship
between these two aspects is a distinguishing feature of the workedeloped in

this thesis (see Figurd 3.]1).

This synchronous product can be used in various ways to de ne whetheSP
satis es M . In this thesis we de ne the following such satis ability relati ons:

Feasibility : SP is feasible with respect to M if there is at least one
run in SP M which terminates in a state (g; s) such that q = Success
There are weak and strong variants of this.

Refutability : SP isrefutable with respectto M if there is at least one
run in SP M which terminates in a state (q; s) such that g = Failure.
There are weak and strong variants of this.

Certainty : SP is certain with respect to M if all runs in SP M
terminate in a state (q;s) such that g = Success

Impossibility : SP is impossible with respect to M if all runs in
SP M terminate in a state (q;s) such that g = Failure.

Each satis ability relation is veried by a dierent, but similar, algorithm.
They all share the following main characteristics:

They perform a depth- rst search on the synchronous product of SP
and M ;

The search has a maximum depthdepthyax;

48

3.4. Veri cation Technigue

SP M is computed on-the-y (i.e., it is not computed a priori ; rather,
at each state, the algorithm calculates the next states necessary to con-
tinue), becauseM itself is obtained on-the-y from the -calculus ex-
pressions present in each of its states. Visited states il are not marked
as such.

A simulator interface is assumed to exist. This is used to control tte
simulation execution, including the possibility of storing simulator states
and backtracking to them later.

The algorithm is guaranteed to terminate, and the result is a conclusie
or inconclusive verdict. If conclusive, it becomes known whethethe
MAS satis es the simulation purpose with respect to the observations
made during simulations. If inconclusive, it is possible to perfom some
adjustments and try again.

Regarding the complexities of the algorithms, this means that they mus be
given mainly in terms of depthyax and the maximum branching factor (i.e., the
maximum number of possible successors of any state), instead of the nirar
of states and transitions in the complete transition system. Moreovey since
states in M are actually computed from an EMMAS environment speci-
cation, the complexities of these computations must be taken into acount
as well. These characteristics lead to many parameters to be accountefdr
in the statement of the complexities. The complete development igjiven in
Chapter[7. In a few words, the complexity in space is polynomial with respect
to the size of theenvironment and other parameters, and the complexity in
time is exponential with respect to depthnax -

What is important in this technique is that, once given a simulation pur-
pose, it chooses which simulations to execute automatically and in a systm-
atic manner, instead of depending on a user to guide and inspect thersulation
manually, thereby exploring the possible simulations more e ciently, even if
inconclusively. Moreover, the algorithms are carefully shown to becorrect
according to precise notions of soundness and completeness.

3.4.1 Comparison with Other Approaches

Our approach is largely inspired by TGV (Jard and Eron, 2005), which we
saw in Sectior[2.2.2. But we di erentiate ourselves fundamentally beause our
objective is not the generation of test cases, and in particular we are notiéd
to the ioco conformance relation. Indeed, oursimulation purpose s itself
the structure that shall determine success or failure of a veri caion procedure
(i.e., not somea posteriori test cases). As a consequence, di erent criteria of
success or failure can be given, and then computed on-the-y. As we sain

49

3. Contribution of this Thesis

Section[I.], a number of particular methodological considerations are at the
heart of these de nitions. Moreover, there are also other technical derences,
such as the fact that we use labelled states (and not only transitions), ad
that simulation purposes need not be input complete.

Although uncommon, there are works on the veri cation of simulation traces,
as we have seen in Sectioh 2.4.3, such as that of Bosseal| (2009). Our
method, however, distinguishes itself mainly by actually guiding the simula-
tion, and not only checking properties over tracesa posteriori.

Though quite di erent, our technique has nevertheless common charaeristics
with Model Checking, presented in Section 2.2]1. Most importantly, oth
assume the existence of an explicit set of states and transitions to ba&nalysed.
In Model Checking this set is examined exhaustively, so that a codusive
verdict can always be given, provided that there are enough computatioal
resources. In our case, by contrast, only a small part of the state-spaces i
explored (i.e., those that are reached by the simulations performed)and one
can never be sure of having explored every possible state, since atgmre
given as black-boxes. Moreover, both methods allow the speci catiorof a
property of interest to be analysed with respect to a system, thusestablishing a
di erence between the model and the properties of the model. As whave seen,
in Model Checking such a property is typically given in terms of sone temporal
logics. In our approach we usesimulation purposes instead. By similar
reasons, it is also clear that our approach is distinct from the applicationof
Model Checking to formal MASs speci cations, as surveyed in Sectiof2.4.4.

The particular case of Bounded Model Checking is also worth commenting.
In this approach, one limits the length of a counterexample run to some @an-
stant. In this manner, the problem can be translated to an instance of SA
and addressed using SAT solvers. In our algorithms, we also limit theuns
we examine to some constant. However, this is done not to allow a trans-
lation to another format such as SAT, but simply because the search in te
synchronous product of a simulation purpose and an ATS must have a
maximum depth. Otherwise, the search could never end, since itsi possible
to have in nite branches in the synchronous product

In our veri cation algorithms we shall need a preprocessing procedre to cal-
culate shortest distances from a certain vertex in the graph inducedoy the
speci ed simulation purpose . To this end, we could use Dijkstra's algo-
rithm (Cormen et all 2001). However, the edges in our graph all have weight
1 (i.e., we count hops between a vertex and its successors), whigiermitted
the development of a more speci c algorithm. The reason is that, in thiscase,
it is not necessary to keep a priority queue with unexplored vertces (ordered
according to their current distances), which needs to be regulayl re-ordered to
account for updated entries. It su ces to explore the vertices in a depth- rst

50

3.5. Tool Implementation

manner.

3.5 Tool Implementation

The complete contribution is presented in Chaptef B.

The theory presented in this thesis has been implemented as a suffre tool
following the architecture outlined in Figure [[.1] In this respect, there are two
main distinct artefacts:

The implementation of the agent model;

The simulation and veri cation tool itself, FGS.

The implementation of agent model is actually a Java library that can be
used in many di erent manners, since it is merely a realization of an agecy
theory. It allows the creation of Organisms objects, which are initialized by
the provision of an XML® con guration le. In this le one speci es all that
makes the particular organism unique, such as the stimuli it is capableof
receiving, the actions it can perform, the operants it has already learné, and
S0 on.

In this thesis, we use these agents to specify MASs subject to sirfation and
veri cation. To this end, we provide the FGS tool, also written i n Java, which
takes the following as its main inputs:

A component repository. Components provide the implementation of
particular kinds of agents or properties. Their instantiations are the
\black-boxes" that are simulated. Our agent model is provided as one
such component. Propositions about these agents (e.g., \stimulus X is
reinforcing to agent Y.") can also be provided as a special kind of com-
ponent, called properties, whose values are calculated during simaition
as well.

A scenario description. A scenario is an XML le that speci es the MAS
to be simulated. It de nes the agents that are present, as well as the
environment in which they exist. To de ne an agent, one speci es the
component that implements it and the con guration le to initialize it
The environment, in turn, can be specied by using tags that map to
EMMAS elements (i.e., the<choice> tag maps to the the + operator).

®Extensible Markup Language.

51

3. Contribution of this Thesis

An experiment description. An experiment is an XML le that speci es
what kind of simulation and veri cation should be done with the given
scenario. Simulation purposes can be de ned by explicitly listing
their states, events and transitions.

Since the semantics oEMMAS is given in terms of the -calculus, we have
implemented a -calculus simulation library that is used by FGS to simulate
as directly as possibleEMMAS speci cations. A main advantage of pro-
ceeding in this manner is that modi cations and additions to EMMAS can
be more easily implemented. On the other hand, the direct simulatn of

-calculus brings some e ciency issues, which require the implmentation of
certain optimizations.

Finally, it is worth to emphasize that, besides its theoretical foundation, FGS is
designed with some practical engineering concerns in mind. In partular, the
fact that it is based on components allows the substitution of agents witlout
a ecting the simulation and veri cation infrastructure. So, for inst ance, if
a di erent agent implementation is devised, it can be immediately enployed
with the existing tool using the existing scenarios and experimets.’

3.5.1 Comparison with Other Approaches

The main innovation of FGS, of course, is the implementation of the novktech-
niques and models introduced in this thesis, which we have alegly considered.
Apart from that, two other characteristics are noteworthy: the -calculus sim-
ulation library, and the component-based architecture of the system.

Existing implementations of the -calculus, such as Pict [(Pierce and Turner,
1997) and CubeVM (Peschanski and Hym| 2006), are geared towards using
the -calculus as a foundation for programming languages. This means that
given a speci cation (indeed, a program), only one possible execution ath
is considered. Since for the purpose of veri cation it is necessaryot be able
to consider all possible executions (at least up to a certain length)these ap-
proaches are insu cient to address our concerns. The -calculus simulation
library of FGS is designed to ful | this need. It provides an execuable imple-
mentation of the -calculus which can be used to systematically investigate all
possible executions (up to a certain length). It does that by provding access
to the current state of the underlying transition system of the -calculus pro-
cess, which can then be used to explicitly calculate the possiblsuccessors. A

"An earlier version of this simulation infrastructure was designed exactly to show the
value of a component based approach to multi-agent simulation. We published this result in
(da Silva and de Melo, |2008), but at that time the simulator ha d not incorporated yet the
MAS models and veri cation techniques proposed in this thesis .

52

3.5. Tool Implementation

number of optimizations are required in order to make this calculation nore
e cient.

The architecture of FGS itself, in turn, has certain distinctive features worth
commenting in what relates to its focus on the separation of concerns and
reuse of artefacts (i.e., components, scenarios and experiments).

It is generally acknowledged that it is important to separate the simulator

infrastructure from the models being simulated. Swarm (Minar et al., (1996),
MASON (Luke et al., [2004) and Repast [(North et al., |2006), which are pop-
ular multi-agent simulation platforms, try to achieve this by provid ing both

a framework to program models and a simulation engine to run them. This
helps reuse simulation infrastructure, but does not simplify the reuse of parts
of simulation models in di erent simulations built by di erent pe ople.

A new version of Repast, called Repast S| (Northet al., 2005), is being de-
veloped in order, partly, to address this issue. This new versionsi similar to

our system in that external Java classes can be arranged together declaragly

(i.e., without Java programming) to compose simulation models. Howeve we

di er from them in a number of ways. First, the simulation models of Repast
S are mostly restrictions on which components are in the model, whileur

models carry information regarding not only the components, but also thé

actual instantiation (i.e., we represent a complete state of a airs). Scond,
Repast S has a very inclusive de nition of component, so that any Java lkass
can be a component, while we enforce several requirements in ordes attain

more semantics. Third, Repast S aims at being a general platform, whileve
prefer to adopt a domain-speci ¢ approach, which we believe to lead tanore
elegant and manageable simulation models, albeit with more limited apptia-
tions. Besides the points we shall discuss later, we think that thesimplicity

thus achieved is also important in order to make simulators more accedsie
to non-programmers, which is one of our objectives.

The idea of a component-based agent simulation environment is also used
the Quicksilver project (Burse, |2000). In that work, any compiled Java class
can be treated as a component. Some prede ned classes of agents are predd
and a special tool allows the user to instantiate classes, connect itesces and
run the simulation thus assembled. In this way, agents can be reuseit several
simulations. This approach, however, su ers from some problems. Lik&epast
S, it relies on a very inclusive de nition of component, which implies that such
components do not bring any advantage over normal Java classes. The reuse
technology is in the composition tool that allows arbitrary instances to be
easily connected by the user, but this is not really speci ¢ to sinulation, nor
does it help in enforcing any special semantics to the underlyinglasses. Hence,
such a reuse mechanism is mostly a general Java technology, which alls one
to build programs in a di erent manner. This contrasts with our approach,

53

3. Contribution of this Thesis

in which components are highly structured entities designed for shulation:
they must implement prede ned interfaces, be annotated in speal ways and
be deployed to a special location. Furthermore, Quicksilver assues that the
user has knowledge of Java programming. This makes it inaccessible tomn-
programmers, whereas our approach has the contrary goal of facilitating their
access to simulation.

This goal is also shared by NetLogo| (Wilensky, 1999), an environment designed
to simplify the creation of simulation models. To this end, a graphial editor
and a set of controls (e.g., buttons, sliders, plotters) are providedn order to
build the simulation front-end, while a special procedural scriging language
(assumed to be easier to learn than a general purpose language such as Java)
can be employed to specify the actual simulation behaviour. The syem,
however, does not o er any reuse mechanism beyond copy-and-paste ofigas.

With similar purposes, but in a more sophisticated realization, SeSAm

(Klugl and Puppe| 1998) provides a rich application in which users may ce-
ate agents, setup simulations and run them. Agent creation relies on a base
library of agent properties, which must be used in order to de ne newagents.
Though simple agents can be built easily with point-and-click interadion,
more advanced ones require the use of a custom scripting language. Theeer
ated agents are then instantiated in order to build one or more simulation
situations, all of which are stored in a model le. SeSAm, however, des
not provide advanced facilities to reuse such agents across di erergimulation
models. The only way to do so is through importing a model into anothe,
which amounts to a copy-and-paste technique. On the other hand, program
mers have the possibility of extending SeSAm through plugins writen in Java.
Such plugins allow the de nition of new elements that the nal user may em-
ploy when building his agents (e.g., new functions to be used whespecifying
the behavior of agents). Therefore, SeSAm does provide an interestj reuse
technology, but whose purpose di ers from ours, which aims at the easy ngse
of whole agents and other simulation elements.

Finally, in (Okuyama et al., [2005) we nd the ELMS markup language, which
bears some similarities to our scenario language in that both describe déures
of the simulation environment. However, the objective of ELMS is to restrict
the kinds of entities that exist, while ours is to explicitly de ne and compose
individual entities. Moreover, ELMS is geared towards agent-orientel pro-
gramming, while our underlying programming paradigm is the more common
object-oriented one.

54

3.6. Conclusion

3.6 Conclusion

In this chapter we have presented an overview of the main technicatontri-
butions of this thesis and related them to existing work. In order to develop
our approach, we build upon a number of ideas from di erent areas, therep
integrating them in a coherent framework. To clarify this overall relationship,
Table [3.1 selects some of the most relevant related work discussed keand
summarizes the comparison with our method by describing crucial asgcts of
each. From this comparison, it can be seen that our work borrows, integrate,
contrasts with and adds to ideas from disparate sources.

55

Work Speci cation Semantic Property Automated Agents Environments
Formalisms Model Checked Analysis
This thesis Z, -calculus | ATS Simulation Guided sim- | Behaviourist | Social net-
(base of EM- Purpose ulations; works; con-
MAS) satis ability hypothesis text for ex-
testing periments;
dynamic; non-
deterministic
Skinnerbots (Touretzky and Saksida, || { { { { Behaviourist | {
1997)
| SMART (d'Inverno and Luck, 2003) z { { { Any goal | Goal depen-
oriented dencies
BDI architecture (Rao and George , { { { { Practical Dynamic; non-
1995)) reasoning deterministic
| Inuences and reactions || Petri nets { { { Any Any syn-
(Ferber and Muller| [1996; |Ferber| chronous
1999) environment
| ELMS Okuyama et al.[(2005) { { { Simulation; BDI-based Grids; reactive
animation resources
TGV (Jard and Fron, 2005) { IOLTS ioco confor- | Test case gen-| Reactive {
mance eration systems
TTL (Bosse et al.| |2009) TTL Based on pred- | TTL prop- | Verication of LEADSTO LEADSTO
icate logic's erty traces speci cation | speci cation
MAS model checking (e.g., || Various lan- | Transition Temporal Exhaustive BDI-based,; {
Wooldridge et al.] 2006; || guages systems; in- | logic formu- | model check- | epistemic
Lomuscio et al.||2009) terpreted las ing
systems
MAS simulation such as SWARM { { { Simulation; Any Grids; social
(Minar et al.| 1996), RePast animation; networks; dy-
(North et al.| |2006) and MASON statistics com- namic
(Luke et al.|2004) pilation; input
optimization

3. Contribution of this Thesis

Table 3.1: Comparison of this thesis with some important related works. Calmns designate the aspect to be analysed, and lines show
the related works. Only the most relevant references discussed ithis chapter are given. A dash ({) indicates that the aspect is not

signi cantly addressed in the work. From this table, it is clear that t he approach proposed in this thesis relates to ideas from very dieren 0
areas.

Part Il

Multi-Agent Systems

57

CHAPTER

Behaviourist Agent
Architecture

In this chapter we present the Behaviourist Agent Architecture , the novel
agent architecture introduced by this thesis. Its structure follows core princi-
ples of Behaviour Analysis, as presented in Sectign 2.1.1.4, which we orgaa
in ve classes: (i) stimulus conditioning; (ii) respondent behavour (i.e., re-
exes); (iii) operant behaviour; (iv) drives; and (v) emotions.

Despite its many details, one can abstract two themes common to all of the:
adaptation and learning. These concern how environmental stimuli a ectthe
actions of agents over time. In this way, phenomena pertaining to agerst are
closely related to the possibilities o ered by an external environnent. In this
chapter, however, we focus on agents { the corresponding environmenare
addressed in Chaptef b.

We explain the main concepts of our work in an informal manner, but the
architecture itself is given as a formal speci cation written in the Z Notation.
This provision ensures that the architecture is de ned in a predse and com-
positional form. The bene ts of precision are evident. But compositiorality
should also be valued, for it allows each part of the speci cation to be eam-
ined and modi ed separately, and thus allows further progresses to & made
upon it. Indeed, certain parts in our speci cation, which we call extension
points , are designed to be changéedin order to allow the experimentation
with variations of particularly important mechanisms (e.g., the computation
of the utilities assigned to stimuli).

IHowever, since the schema calculus is not monotonic with respet to re nement, special
care must be taken when re ning the speci cation. See Section of Appendix E]

59

Behaviourist
Agent Architec-
ture

4. Behaviourist Agent Architecture

The implementation of the speci cation is given as a Java program. In a com
plete formal development approach, this Java program should be provedar-
rect with respect to the Z speci cation (e.g., by means of formal re nements).
This was not done in this thesis, where the main formal e ort has been deoted
to formally guided simulations and the related veri cation algorithms, w hich
are proved to be correct. However, the Java implementation of the agdnar-
chitecture follows very closely the structure of its Z speci cation, which helps
in avoiding errors that could arise in more complex implementation stategies.
In the present chapter only the formal speci cation is considered. Mre details
about its implementation are given in Chapter 8.

This chapter is organized as follows. First, in Sectiorf 4]1, we comment on
the overall themes of adaptation and learning that permeate the architeture.
In Section [4.2, then, we present ourBehaviourist Agent Architecture

speci cation in great detail, and this is the main contribution of the ch apter.
Finally, in Section @.3 we conclude with some observations. A summarpf the
Z Notation is provided in Appendix D]

4.1 Adaptation and Learning

Despite the many specialized parts of the architecture we introdge in this
chapter, there are two main themes that tie them together, namely, that of
adaptation and learning with respect to an environment. It is thus worth to
examine the general features of these two activities before proceieg to the
architecture speci cation itself.

The agents considered in this chapter:

exist within an environment that provides them with stimulation an d
which receives their actions;

prefer certain stimuli to others;

assume that relations exist between their actions and the stimuli that
they receive.

Given these characteristics, adaptation concerns any change in the agetfat
is caused by external stimuli. Moreover, since agents have prefences, such
changes often imply in behavioural modi cations that make it more likely to
obtain the preferred stimuli. For example, a hungry agent will be morelikely
to engage in actions that lead to food. In general, re exes, emotions and dires
are adaptations.

60

4.1. Adaptation and Learning

Learning is a form of adaptation with certain particularities. First, wh atever
is learned, is not present in the agenta priori. Rather, it must be gained
through experience. Second, whatever is learned can be forgotten. Thas
to say, something learned is not intrinsic to the agent's constituion. An
agent cannot learn to be hungry, but it can both learn how to get food and
forget this when it is no longer useful. For learning to work, however it is
necessary that the agent possesses the predisposition to observemember
and eventually forget relations between stimuli and actions. Hence, tIs is
a priori with respect to learning. In this chapter classical conditioning and
operant behaviour are de ned as the main learning mechanisms of organisms

Adaptation and learning experiences in uence each other. For instancean
agent may know how to get food (through learning), but because it has eate
too much already, it has no interest in doing so (an adaptation to having
eaten). This brings unity to these experiences, as they a ect theagent as a
whole.

All this is associated with an environment with certain characteristics. Clearly,
the environment must be ordered in a way that there is something usful to
learn about it. But perhaps less clear is the fact that this adaptive rehtion
with the environment can be used to study the agents themselves. f| from
an environmental perspective, one assumes that agents adapt and learn in
particular ways, one is then in a position to manipulate stimulation and ob-
serve the behaviour of agents in order to infer individual as well as ctdctive
agent properties. This close relation between agents and their enviranent
is inherited from the behaviourist tradition we subscribe to. The reason is
plain: in behaviourist approaches, by de nition, organisms are studiel solely
by means of stimulation and observation of the resulting actions. That is b
say, by producing an ordered environment that the agents can adapt tcand
that reveals the mechanisms used for such an adaptation.

In a psychological setting, as this discussion implies, organisms aredik-boxes
and the objective is to discover, through experimentation, the mebanisms
\hidden" therein. In this thesis, however, organisms are simulatel, and for

this it is necessary to provide these mechanisms in an executablerm. As

explained previously, in this chapter we do this by formalizing cetral charac-

teristics of the Behaviour Analysis theory as a computable agent architeture.

The corresponding environment, in turn, is the subject of Chapter5. There,

we shall see how these agents can be manipulated in order to reveal morecalt

their behaviour, by putting the basic behaviourist mechanisms ascribed here
in motion.

61

extension points

4. Behaviourist Agent Architecture

4.2 Formal Speci cation

In this section we present ourBehaviourist Agent Architecture . Itis for-
malized using the Z Notation, which employs logic as part of its speci caton
language. However, we emphasize that this does not mean that implementa-
tions following a speci cation should perform automated deductions. Rather,
the logical statements in a Z speci cation serve only as criteria of corect-
ness. They can be implemented by whatever means are available, as loag
the nal product respects the constraints imposed by the speci ation. This
means that specialized and e cient algorithms can often be provided n an
implementation. Moreover, the speci cation can be re ned by adding further
constraints, which allows one to extend it.

Let us then proceed with a systematic description of an agent's stratures as
de ned by our architecture. We divide an agent into several parts, andto
each one we provide the following information:

The rationale for its existence: it is important to understand why it is
needed before de ning it formally.

The main elements of its formal speci cation: since the full speci cation
is quite large, for the sake of readability we show only its main elemerst
in this chapter. Nevertheless, this gives the reader a compreheng
understanding of its main features. Furthermore, the full speci cation is
provided in Appendix |A] We reference this appendix whenever we ofih
some part of the speci cation, so that the reader may pursue the detas
if he or she so wishes.

How it could be changed:the speci cation we provide can be changed
in a number of ways. In particular, certain parts, which we refer to as

extension points , are designed to be specialized (e.g., through re ne-
ments). They are important aspects of agent behaviour that one may
wish to modify. These extension points are commented throughout

the text.

These subsystems come together to form anrganism, which is the name we
give to agents that follow our speci cations. Figure[4.] presents an ovariew
diagram of these subsystems and their relations. Formally, an organism is
given by the Organism schema.

62

4.2. Formal Speci cation

__Organism
StimulationSubsystem

RespondingSubsystem

DriveSubsystem

EmotionSubsystem

In the following sections we present each of its constituent partsBut we begin
by presenting some preliminary de nitions which will be used throughout this
presentation. And in the last section we show how to group all subsystas'
operations.

4.2.1 Preliminary De nitions

The Z Notation does not provide a built-in manner to treat rational numb ers.
Therefore, we have built our own de nition of rational numbers on top of the
de nitions available for integers. Moreover, our use of rational humbes is
always restricted to a certain interval. Thus, the arithmetic operators that we
de ne ensure that the upper and lower bound of this interval are resgcted.
We call magnitudes this bounded kind of rational number, but denote them
by the usual Q symbol.

Q==1fqg:Z Zjleta== rstq; b== secondq

b0 "
adivb 12
adivb 19

There are alsopositive magnitudes whose minimum element is neutral.

PositiveQ == fq:Z Zjlet a== rstq; b== secondq

b0~
adivb 17
adivb Og

See Appendix A for more details about these elements.

The operators and the relations over magnitudes are denoted by their usal

symbol followed by a subscript. This subscript is merely a techical convention

to di erentiate these symbols from the ones concerning integers. Tus, we have
symbols such as 4, 1, and =, whose intuitive meaning should be clear (for
the formal de nitions, see Appendix [A).

As a convenience, we de ne special kinds of magnitudes according to ¢fir
use in the specication. Hence, Intensity, Correlation and Probability are

63

4. Behaviourist Agent Architecture

Figure 4.1: Overview of the main parts that form an organism. Each box denotesne
such part and its main responsibilities. Arrows indicate important relations between
these parts. An arrow from A to B means that A provides something that in uences
B.

64

4.2. Formal Speci cation

all formally magnitudes (see Appendix[A), but are used in di erent manners
throughout the speci cation.

The passage of time is represented by natural numbers. But we also dee
new names for such integers according to their use, and thus we havéé
Instant and the Duration types (see Appendix[]). Importantly, the time an
organism has access to is based on counting its interactions with an exteal
environment, and is therefore independent of any global, absolute, clikk. The
passage of time, thus, is a function of an organism's perception of an exteah
environment, much like its behaviour (see Sectiotj 4.2]8 for more datls).

Finally, we assume the existence of aandom function which is capable of
generating a random magnitude from any given instant (see Appendix).

4.2.2 Stimulation

As we have seen, stimulation is one of the main concepts in behavioutis
theories. It is only by means of stimulation that an organism can be in uencd
by its environment (which includes other agents in the environmen). In this
section we will see how stimuli are de ned and perceived, how the relate
among themselves, how the organism learns about such relations.

4.2.2.1 Basic Entities

First of all, there is a primitive set of stimuli.

[Stimulus]

Each particular organism will have its own, particular, set. But for th e purpose
of this speci cation, it su ces to have such an abstract set.

Recall that the organism is divided in a number of subsystems. The $inu-
lation subsystem is one of them. It is de ned by the StimulationSubsystem
schema, and it holds the data structures relevant for stimulation.

65

4. Behaviourist Agent Architecture

__StimulationSubsystem
StimulationParameters

Stimulusimplication

StimulusEquivalence

currentStimuli : P Stimulus

pastStimuli : Instant 7 P Stimulus
stimulus_status : Stimulus ! StimulusStatus

stimulusBeginning : Stimulus 7 Instant

In particular, the subsystem is parametrized by the StimulationParameters
schema, which isolates some important parameters that vary from organism
to organism. An important parameter concerns the utility that the organism
attaches to stimuli. Some stimuli are naturally pleasant or painful. These are
called primary stimuli, for they have utilities a priori .

__StimulationParameters
StimulationHints

Conditioning _Ref1_Parameters
stimuli : P Stimulus

primaryStimuli : P Stimulus
primary _utility : Stimulus 7 Utility
max_delay : Duration

domprimary _utility = primaryStimuli

Every stimulus has an associated status information, which records ithe
stimulation is beginning, ending, stable or absent.

StimulusStatus::= Beginning j Ending | Stablej Absent

We call hints the stimuli that\give hints" about the state of the environment
or another organism. The StimulationHints schema accounts for the hints
available to the organism (see AppendiX A). These hints are particulary useful
when de ning emotions (i.e., for instance, an angry organism will want tocause
harm, and therefore there must be a way for him to detect harm).

Stimuli are delivered to organisms in the form of Stimulation schema, which
carries information about their intensity and status. Moreover, the status is
restricted to the two values that make sense in this context.

66

4.2. Formal Speci cation

__Stimulation
stimulus : Stimulus

intensity : Intensity

status : StimulusStatus

status = Beginning _ status = Ending

4.2.2.2 Relations Among Stimuli

Organisms establish relations among stimuli. These relations help tm in
understanding their environment, and therefore in achieving ther aims. For
example, a dog may be taught that a whistle is always followed by the povision
of food. Once the dog learns this relation, he will start salivating one he
hears the whistle. The principle behind this phenomenon is know asclassical
conditioning.

Here we generalize this principle in the form of a relation we callstimulus
implication. It accounts for the cases in which the organism believes that,
given the presence of a certain stimulus, another stimulus will comm. We use
a re exive and transitive order relation plus a sCorrelation function to model
these beliefs. TheStimulusimplication schema models this formally.

__Stimulusimplication
sCauses: P(Stimulus Stimulus)

sCorrelation : Stimulus ~ Stimulus 7 Correlation
851; ;53 1 Stimulus

(s1 sCausess;) »

(((s1 sCausessy) ™ (s sCausess))) (s1 sCausesss))
8s1; s @ Stimulus j s1 sCausess,

9c: Correlation ((s1;s2) 7!) 2 sCorrelation

Notice that stimulus implication may be regarded as a directed graph (Fo-
ure [4.2), in which vertices represent stimuli and edges are the coriibning
between stimuli. Furthermore, edges might have weight, if the corelation of
the conditioning is to be taken into account?

Stimulus equivalence captures the notion that, under some circuntances, a
stimulus might be treated as if it is another. We de ne such a notion as

ZNotice that this graph can also be seen as a semantic network (Seval [1987), but spe-
cialized for the representation of stimulation phenomena.

67

4. Behaviourist Agent Architecture

Figure 4.2: An example of stimulus implication represented as a dire&d graph.

a standard mathematical equivalence relation (i.e., re exive, symnetric and
transitive). The de nition is given in schema StimulusEquivalenceusing the
previous stimulus relation de nition.

__StimulusEquivalence
Stimulusimplication

equals: P(Stimulus Stimulus)
8s1; s : Stimulus
(s1 equalssy) , (s1 sCausessy) ™ (s sCausess)
8s1;s; : Stimulus j s; equalss;

sCorrelation(s;; s;) = sCorrelation(sp; s1)

As in implication relations, stimulus equivalence may be represeied by a
graph (Figure [4.3). But the symmetry in equivalence relations requies the
graph to be undirected.

4.2.2.3 Stimulus Utility

Recall from Section[2.1.1.4 that Behaviour Analysis assumes that the furat
mental purpose of organisms is the maximization of pleasure and the mini-
mization of pain throughout their lives. An organism, thus, can be thought of
as an agent trying to maximize anutility function . Such a function, in turn,
can be manipulated in a nhumber of ways in order to modify the organism's
behaviour.

The utility function associates an utility to each stimulus. The Utility type for-
malizes this quantity as a rational number betweenmin _utility and max_utility ,

68

4.2. Formal Speci cation

Figure 4.3: An example of stimulus equivalence represented as an undicted graph.

where the rst indicates the greatest pain and the second stands for tle great-
est pleasure. There is also aeutral _utility element, which accounts for indif-
ference (see AppendiX 7).

| Utility : PQ

Having established the possible relations that hold among stimuli and he
existence of some primary stimuli, it is then possible to de ne an dility for
any given stimulus. Computationally, this requires the de nition of a search
that, for any stimulus s in a stimuli graph (e.g., the one shown in Figure 4.2),
seeks the primary stimuli that s can reach and use their primary utility to
assign an utility to s itself. There are, however, many possible and reasonable
ways of giving such a de nition. Thus, we rst establish a very geneal schema,
StimulusUtility .

__ StimulusUtility
StimulationSubsystem

EmotionSubsystem
DriveSubsystem

sUtility : Stimulus ! Utility

Re nements must then be provided. Our own re nement is given by the
StimulusUtility _Ref1 schema, where the utility of a stimulus is de ned as the
utility of the best stimulus it can reach by the stimulus implicat ion relation,
but modi ed according to certain regulators (see Appendix[A). These regu-
lators account for the in uence of drives and emotions, which we examinen

Sections4.2.6. andl 4.2.7]2, respectively.

69

4. Behaviourist Agent Architecture

The computation of stimulus utility lends itself to di erent de nitions. Di er-
ent organisms may employ di erent mechanisms, and therefore each carete
case could be improved by an appropriate re nement of the stimulus utlity
we provide. For instance, for e ciency reasons, it might be the case hat
a particular search strategy is used when exploring the stimuli graph(e.g.,
depth- rst, breadth- rst, some kind of bounded search). This is an important
extension point in the agent architecture, since it allows the extension of
the architecture by merely providing a new re nement of StimulusUTtility .

4.2.2.4 Stimulus Conditioning

Stimuli that are not primary gain their utility through association to pr imary
stimuli. In general, this process is known asstimulus conditioning and the
stimulus that has its utility modi ed is called a conditioned stimulus. Usually,
stimulus conditioning resembles a causal law. That is, a stimulugs condi-
tioned because it seems to cause another.

As a learning process, stimulus conditioning has two fundamental opations.
The rst is the conditioning itself, which strengthens the assodation between
two stimuli. ConditioningOp_1 operation formalizes this. It states that if a
stimulus s; is followed by a stimuluss, within a maximum delay, then the pair
(s1; s2) must become part of the stimulus implication relation. If the maximum
delay is not respected, than nothing changes, and this neutral behaour is
speci ed by the ConditioningOp_2 schema. (See Appendik p).

T _ConditioningOp $ ConditioningOp_1 _ ConditioningOp_2

The second fundamental operation is the decay of the conditioning, whit
happens every time a stimulus is not followed by the expected comguence.
That is to say, once the organism learns that a stimuluss; follows a stimulus
s1, it expects this to happen. If it does not happen, it loses con dene in this
implication, and consequently the correlation betweens; and s, is reduced.
Moreover, if this correlation is below a certain minimum, the implication re-
lation between the two stimuli is simply unlearned. This is spec¢ed by the

UnconditioningOp_1 operation. If the conditions for such a decay are not met,
nothing changes, and this is de ned byUnconditioningOp_2. (See Appendix

A).
T _UnconditioningOp b UnconditioningOp_1 _ UnconditioningOp_2

These de nitions of conditioning and its decay are very general. For istance,
they do not specify at what rate the conditioning should take place. To sipply
these details, one must re ne these operations. We provide a simgllinear
policy re nement to conditioning. That is, a policy given by the follo wing
rules:

70

4.2. Formal Speci cation

the correlation grows with discrete increments, which are calculatd ev-
ery time the stimuli happen together;

each increment is inversely proportional to the delay between thewo
stimuli. The proportion constant is c.

Conditioning _Ref1_Parameters schema factors out the de nition of the condi-
tioning parameters, such as the constanic. ConditioningOp_Ref1 operation,
then, provides a re nement of ConditioningOp_1. Similarly,

UnconditioningOp_Ref1 operation re nes UnconditioningOp_1.23 (See Ap-

pendix [A).

T _UnconditioningOp_Refl b
UnconditioningOp_Ref1 _ UnconditioningOp_2

Clearly, other re nements can be provided. This is another usefulextension
point of our agent model.

4.2.2.5 Stimulation

Stimuli may be delivered to or removed from the organism. Once deliered,
the stimuli remain active until they are removed. That is, we assure that
the environment does not signal the presence of stimuli, but only tle change
of such a presence. This convention will be useful later on, when naelling
operant behaviour. Once a stimulus is delivered, the organism updas its
properties until it is removed.

This delivery is controlled by three schemas, namelyStimulationUpdateOp_1,
StimulationUpdateOp_2 and StimulationUpdateOp_3, each addressing a dif-
ferent step in the stimulation process (see Appendi A).

T _StimulationUpdateOp b
StimulationUpdateOp_1 _
StimulationUpdateOp_2 _
StimulationUpdateOp_3

Once a stimulus is delivered, it becomes part of the set ofurrent stimuli of
schemaStimulationSubsystem The importance of this set of stimuli is in that
it establishes a context for the organism's actions and observations, whbh is

SFor the sake of illustration, the proof that ConditioningOp is re ned
by ConditioningOp _Refl is given in Appendix [A] right after the de nition of
ConditioningOp _Ref1l. However, the re nements de ned in this thesis are all rather
simple, so we do not provide other similar proofs.

71

4. Behaviourist Agent Architecture

essential to learning processes such as the stimulus conditiorjnwve have just
seen and operant behaviour that is examined in Sectioh 4.2.4.

Each stimulus has an associatedStimulusStatus, which changes with time.
For example, a stimulus that originally had the Beginning status must be
changed to the Stable status. This change has also implications for the set of
current stimuli, since an absent stimulus clearly should not be inthis set. Since
we have four possible such statuses, this update operation is dividein four
schemas, namelyCurrentStimuliUpdateOp_1, CurrentStimuliUpdateOp_2,
CurrentStimuliUpdateOp_3 and CurrentStimuliUpdateOp_4 (see Appendi A).

T _CurrentStimuliUpdateOp b
CurrentStimuliUpdateOp_1 _
CurrentStimuliUpdateOp_2 _
CurrentStimuliUpdateOp_3 _
CurrentStimuliUpdateOp_4

Finally, it is necessary to record the stimuli present at the current instant.

This will be important in order to assess the context that a past action has
been performed, and hence determine the most favorable condition®if such
an action. This is achieved inT _PastStimuliUpdateOp schema (see Appendix

A).

4.2.2.6 Integration

At every instant, the organism may both receive new stimulation and process
the current stimuli. Hence, concerning stimuli, its main tasks are as follows:
Apply the T _ConditioningOp operation for each new stimulation;

Apply the T _UnconditioningOp operation for each pair of stimuli in the
stimulus implication relation;

Deliver stimulation by means of the T _StimulationUpdateOp operation;

Update the current stimuli using the T _CurrentStimuliUpdateOp oper-
ation;

Record the current stimuli for later reference using the
T _PastStimuliUpdateOp operation.

The schemaOrganism_StimulusProcessinggroups all of these tasks together
(see Appendix[A).

72

4.2. Formal Speci cation

4.2.3 General Responding

Behavioural responses constitute the means through which organisms alt
their environments. As such, responses are also the only way we can gain
knowledge about organisms. They are, thus, the counterpart of stimuli.

As we have seen, Behaviour Analysis de nes two fundamental classes bé-
haviours, namely, operant behaviour and re exive behaviour (also kown as
respondent behaviour). We can, however, abstract common propertiesf these
two classes. For example, both classes require primitive actions tbe per-
formed and both require a scheduling mechanism.

It is worth to notice that one may imagine other classes of behaviour besles
re exes and operants. If such classes were de ned, they could betegrated in
the responding subsystem by providing structures similar to hose for re exes
and operants. This constitutes a possible way to improve the archiecture,
although it would require changes to many schemas (probably re nements
would not su ce), and therefore it would not be a straightforward task.

In this section we present these common features, while in the néxwo we
explore each behavioural class in its speci cities. Here we see whatimitive
actions are, what property they have, how behaviours are scheduledhow
con icts among potential behaviours are solved, and nally how behavioual
responses are managed.

4.2.3.1 Basic Entities

The Responding Subsystem aggregates all de nitions of behavioural class
and also hold the particular behaviour available to the organism. While we
specify the details of operant and respondent behaviour in the nextwo sec-
tions, the present de nitions use them.

The RespondingSubsystenschema imports a number of other schemas, which
we will examine shortly. It also de nes the setsoperants and re exes, which
contain the behaviours available to the organism.

73

4. Behaviourist Agent Architecture

__RespondingSubsystem
CurrentBehaviors

CurrentResponses
Actions
ActionHistory
ActionCon ict
ActionBaselevel
operants : P Operant

re exes : PRe ex

At every instant, the organism may or may not wish to employ a behaviou.
The behaviours which are planned to be performed are de ned in th&€urrentBehaviors
schema. Notice that this schema contains, in particular, thespontaneousac-
tions set. This accounts for actions that are to be performed independgly of
any re ex or operant. The introduction of such a set, however, is a mee tech-
nicality, for ultimately these spontaneous actions are expected to lad to the
formation of operants according to the consequences that they bring. Bube-
fore any such consequence can be perceived by the organism, there mbe a
way to specify that certain actions can happen without elicitation (i.e., do not
arise from re exes) even though they are not associated with any consegmce
(i.e., are not operants). Hence, with respect to the present spedation, op-
erants should not be confused with spontaneous actions, although informall
one may say that operants are spontaneous (i.e., because they are emittand
not elicited) much like Skinner (1953) himself does.

CurrentBehaviors
elicited : PRe ex

emitted : P Operant

spontaneous: P Action

When a behaviour is actually performed, it generates eehavioural response
These are kept by the CurrentResponsesschema, which de nes the current
responses and map the pertinent behaviours to them.

74

4.2. Formal Speci cation

__CurrentResponses
responses. P Response

activeResponses P Response

inactiveResponses P Response

re exResponse: Re ex 7 Response

operantResponse Operant 7 Response

spontaneousResponseAction 7 Response

re exElicitationTime :Reex 7 Instant
responses= activeResponse$ inactiveResponses

activeResponse$ inactiveResponses= ;

ran re exResponse= responses

ran operantResponse= responses

ran spontaneousResponse responses

4.2.3.2 Actions

To distinguish behavioural classes (i.e., re exes and operants) &m the actual
behavioural responses, we introduce the concepts attion and response Ac-
tions are what the organism actually does (e.g., the movement of a muscle
is an action) and responses is how he does it (e.g., for how long, with what
intensity). Actions are primitive concepts, the most fundamental things an
organism can do.

[Action]

Each concrete organism will have its own set of actions. But like for stinuli, it
su ces for the purpose of this speci cation to have an abstract set of acions
without their particularities.

Actions can either be con icting or non-con icting. For instance, if tw o actions
require di erent movements from an organism's muscle at the same tire, then
they are conicting. If, however, the execution of each action is indgendent,
then they are non-con icting.

Conict = conicting j noncon icting

Action con icts are, of course, particularities of each organism. Therefoe, we
provide a structure to hold this information.

75

4. Behaviourist Agent Architecture

ActionConict
conict : Action Action! Conict

Though, in principle, an action can be part of any behavioural class, it is
also necessary to restrict some of them to speci c classes. For iratce, pupil
movements cannot gure in operant behaviour, since such movementare con-
trolled completely by environmental light variations. On the other hand, some
muscular movements can be triggered either by re ex (e.g., when onae ex-

ively, removes one's hands from a hot surface) or operants (e.g., all\vohtary"

movements). At last, there is also the case in which only operant bedwiour

can be involved, as in speech. Therefore, we must provide de nitins to ac-
count for two classes of actions.

Actions
operantActions : P Action

re exActions : P Action

Notice that an action can belong to both classes at the same time.

As is detailed in Section[4.2.44, organisms can learn how their actions a ect
their environments. Once they know what to expect from a particular ac-
tion, they can repeat such an action when the appropriate conditions arise
However, if an action has never being performed, organisms cannot know
their consequences. The approach we employ to solve this issue i8 &ssign

a probability, called base levelof spontaneous occurrence to each possible ac-
tion.# This base level probability is given by the baseLevelfunction of the
ActionBaselevel schema.

__ActionBaselevel
Actions

baselLevel. Action ! Probability
8a : Action j a 2 operantActions baselLeve{a) >1 min_probability

8a : Action j a 2 re exActions " a 2 operantActions
baselLevefa) = ;1 min_probability

Finally, we provide a record of all performed actions. This will be ugd when
de ning operant behaviour later on.

ActionHistory
TactionsHistory : Instant 7 P Action

“Note that such spontaneous occurrences can be seen as a form of cuwsity, because the
organism becomes inclined to explore new things for no particular reason other than chance.

76

4.2. Formal Speci cation

4.2.3.3 Behavioural Responses

A response, captured by theResponseschema, is an actual behavioural in-
stance. It is the structure that actually interacts with the envir onment, a
concrete action. Thus, besides the action to be performed, there nai be
also a relatedduration (i.e., for how long the action will be performed) and
magnitude (i.e., the \vigor" of the response). Moreover, a latency (i.e., a
temporal interval between the response emission and the performanagf the
corresponding action) is sometimes required.

__Response
action : Action

latency : Duration
duration : Duration

magnitude : Intensity

4.2.3.4 Response Scheduling Operations

Before responses are actually performed, it is necessary to gure out lch
operants and re exes have been triggered. Operant and re ex de nitbns
provide schemas with the conditions for that, namely, Re exElicitationCond
and OperantEmissionCond. Moreover, response scheduling must also account
for the spontaneous occurrences of actions, which are de ned through thbase
level probability associated with each available action.

Operants, re exes and spontaneous actions that ful Il the conditions are then
scheduled to be realized as responses by putting them in the appropte sets
of the CurrentBehaviors schema we have seen. This is achieved, respectively,
by the OperantSchedulingOp Re exSchedulingOpand BaselLevelSchedulingOp
schemas (see Appendik A).

4.2.3.5 Conict Resolution Operations

As we have seen, some actions conict. Hence, when two such actions are
scheduled for execution, a problem arises. To deal with this, a nuimer of
con ict resolution operations are de ned. Each such operation providesa
solution for the con ict between two classes of behaviour, and an assoaied
condition is also de ned in order to determine when there is a con ct in the

rst place.

Let us consider the particular case of an operant conicting with another
operant. The condition for this is given by the OperantCon ictCond schema.

77

4. Behaviourist Agent Architecture

__OperantCon ictCond
ActionCon ict

01; 02 : Operant

con ict (01:action;oz:action) = con icting

If two operants conict, the strategy to be adopted is quite clear: either
the one with greater utility will be chosen or, if both have the same uility,
the choice is arbitrary. This is speci ed by the OperantCon ictResolutionOp
schema, where the content of theemoveO set de nes the operants that are
to be removed.

__OperantCon ictResolutionOp
CurrentBehaviors

StimulationSubsystem
OperantUtility
ActionCon ict
removeO : P Operant

801; 02 : emitted] OperantCon ictCond
(oUtility (o1; currentStimuli) > 1 oUltility (02; currentStimuli))
02 2 removeQ) »
(oUtility (o1; currentStimuli) =5 oUtility (o2; currentStimuli))
(01 2 removeO) _ (0, 2 removeQ))

Similarly, the following kinds of con icts may take place:

78

A re ex may con ict with another re ex. The condition for this is give n
in Re exConictCond and its solution in Re exCon ictResolutionOp .
There are, however, many ways in which such a con ict could be sola
and thus this schema is supposed to be re ned. We provide two pogde
re nements in Re exCon ictResolutionOp _Ref1 and

Re exCon ictResolutionOp _Ref2 schemas, which use di erent attributes
of the re exes in order to determine which should have priority. (See

Appendix [A).

An operant may con ict with a re ex. The condition for this is given by
OperantRe exCon icCond and the solution is given by
OperantRe exCon ictResolutionOp (see Appendix@).

A spontaneous action may con ict with another such action, or a re-
ex or an operant. The conditions and the solutions for this are all

4.2. Formal Speci cation

given in the BaseLevelCon ictResolutionOp schema (see Appendix A).
We assume here that such spontaneous occurrences are as relevant as
actions governed by operants. The reason is that both have to do with
understanding the environment, since the former allows the organis to
explore it, while the latter allows the organism to exploit information
thus gained. Re exes, however, always have priority over spontanaus
actions.

An auxiliary schema, AuxCon ictResolutionOp , is also provided to de ne how
all of these con ict resolution operations work together to change
CurrentBehaviors (see Appendix[A).

We can then combine the con ict resolution operations.

Con ictResolutionOp b
OperantCon ictResolutionOp ~
Re exCon ictResolutionOp *
OperantRe exCon ictResolutionOp *
BaselLevelCon ictResolutionOp »
AuxCon ictResolutionOp

If we use re nements for some of these operations, we also need to rede
this composed operation. Since we provide two possible re nementfor the
con ict resolution of re exes, we also provide the corresponding corposed
operations Con ictResolutionOp _Refl and Con ictResolutionOp _Ref2 (see

Appendix [A).

4.2.3.6 Response Emission, Update and Termination Operations

Once behaviours have been selected, it is necessary to transforthem into
actual responses. Responses, in turn, are not instantaneous, they hadura-
tion. Thus, they must be updated for some time, until termination conditions
are reached and they cease.

The OperantEmissionOp operation below de nes how operants turn into re-
sponses. It states that there must not already be a response associatedth
the operant, and then de nes that such a response must be created. lalso
records when the operant's action has been performed for future refence.

79

4. Behaviourist Agent Architecture

__OperantEmissionOp
ActionHistory

CurrentResponses
currentinstant ? : Instant
07? : Operant
: (9rp : Response operantResponsé€o?) = rp)

9rp : Response
rp:action = o?:action »
inactiveResponse8= inactiveResponseg f rpg *
operantRespons&= operantResponse f 0? 7! rpg

actionsHistory {currentinstant ?) =
actionsHistory (currentinstant ?) [f o?:actiong

The elicitation of re exes and the emission of spontaneous actions followimi-
lar principles and are captured inRe exElicitationOp and BaselLevelEmissionOp
schemas, respectively (see AppendA).

Notice that response emission operations do not constrain some parameters of
the responses. This re ects the fact that there is no universallyaccepted com-
putational theory capable of calculating the exact quantitative properties of
operant emission (McDowell,l 2004). Hence, our architecture does not emiice
any particular view. In fact, one may extend it by providing suitabl e re ne-
ments to perform the initialization of these unconstrained variablesaccording
to speci c theories.

Once responses are being performed, they must be updated over tén There
are some cases to consider:

80

A response might be inactive owing to its assigned latency. That is
to say, the response is going to be performed, but only after its spec
ied latency. In this circumstance, we just decrease the latency to
account for the fact that an instant has passed. This is done by the
InactiveResponseUpdateOpl schema, which we show below.

Once the latency reaches zero, the response can be activated. This is
accomplished in a similar fashion by thelnactiveResponseUpdateOp2
operation (see AppendixA).

If the response is active, its duration must be decreased, in orderot
account for the fact that an instant has passed. This is done by the
ActiveResponseUpdateOmperation (see Appendix A).

4.2. Formal Speci cation

If none of the above cases hold, then nothing changes, as speci ed by
NeutralResponseUpdateO(see Appendix|A).

__InactiveResponseUpdateOpl
CurrentResponses

Response

Response2 inactiveResponses
Response2 activeResponses
latency > 0
latency®= latency 1
activeResponse$= activeResponses

inactiveResponse8= (inactiveResponses f Respons@) [f Respons&y

Thus, we reach the following total operation for response update.

T _ResponseUpdateOb
InactiveResponseUpdateOpl
InactiveResponseUpdateOp2
ActiveResponseUpdateOp_
NeutralResponseUpdateOp

At last, we must consider how to terminate responses. There are tlge cases
to consider:

If the response’s duration has reached zero, it means that it should ceas
This is speci ed in the ResponseTerminationOp_1 operation below.

If the behaviour that justi ed the response is no longer selected ér exe-
cution, then the response must cease as well. This situation might ase
during con ict resolutions, when a more important behaviour may take
the place of another. This is speci ed by theResponseTerminationOp_2
operation (see AppendixA).

Finally, if none of these conditions hold, nothing changes, as speci ed

by
ResponseTerminationOp_3 (see Appendix A).

81

4. Behaviourist Agent Architecture

__ResponseTerminationOp_1
CurrentResponses

CurrentBehaviors
rp? : Response

rp? 2 activeResponses
rp?.duration O
activeResponse$= activeResponses frp?g
inactiveResponse8= inactiveResponses frp ?g
80 : emitted operantRespons¢o) = rp?) o 2 emitted®
8r : elicited re exResponseg(r) = rp?) r 2 elicited®

8a : spontaneous spontaneousRespond@) = rp?) a 2 spontaneous$

Then, the total operation is as follows.

T _ResponseTerminationOpb
ResponseTerminationOp.1
ResponseTerminationOp.2 _
ResponseTerminationOp_3

4.2.3.7 Integration

As the previous operations suggest, responding is constituted by fouristinct
stages, and for each one we provide an operation to allow its integration in
the organism:

First, operants, re exes and spontaneous actions are selected. Thisi
accomplished by the Organism_BehaviorSelection operation (see Ap-

pendix [A).

Then, possible con icts are solved. This is done by theOrganism_Con icResolution
operation (see AppendixA).

Next, responses are generated, according to tHerganism_ResponseEmission
operation (see AppendixA).

Finally, responses are updated, until they reach a termination condion.
This is achieved by the Organism_ResponseMaintenanceoperation (see

Appendix [A).

82

4.2. Formal Speci cation

4.2.4 Operant Behaviour

Organisms seek pleasure and avoid pain in an ever changing world. The con-
sequences of their actions change constantly, in such a way that what ed
to be an applicable behaviour may no longer be appropriate, and useless-ac
tions may become interesting. Learning is, therefore, a necessanyjriue. In
Behaviour Analysis, operant behaviour is the kind of behaviour that acounts
for this.

Because the consequences that organisms seek are always reinforcinggrayts
are also known ascontingencies of reinforcement However, by no means rein-
forcing stimuli are the only consequences that matter. It is equallyimportant
to know actions that lead to aversive stimuli in order to avoid them.

In this section we present operants, the relations that might be estalished
among them, and the several operations that may be performed on them.

4.2.4.1 Basic Entities

An operant records the manner through which a specic stimulus may be
reached. That is, how to operate in the environment in order to obtain some
consequence. Unlike re exes, operants are not prede ned and staticngities:

they might be created, modi ed and destroyed. Each of these possibiies is

given by a di erent procedure.

The Operant schema is a structure that links an action to a consequence
(i.e., the consequent stimulu3. This link models the belief that the ac-
tion, when performed, causes the stimulus. Such a belief, howey, varies
in strength. And within the same operant, this strength varies, through the
conseguenceContingencyfunction, depending on the stimuli present on the
environment (i.e., the antecedent stimuli). Figure [4.4 depicts this tripartite

structure.

__Operant
StimulusUtility

antecedents: P(P Stimulus)

action : Action

conseguence Stimulus
consequenceContingency (P Stimulus) 7 Correlation

sUtility (consequencg 6 neutral _utility

domconsequenceContingency: antecedents

83

4. Behaviourist Agent Architecture

Figure 4.4: An operant is composed by possible antecedent stimuli, an acth and a
consequent stimulus. In this example, there are three sets of antedent stimuli. Each
set models a context that the organism encountered previously.

In Behaviour Analysis, an operant class of behaviours is de ned by some
shared consequence. To facilitate computation, though, ouOperant schema
associates only one action with a stimulus consequence. Two instargef this
schema, then, could have the same consequent stimulus, but di ent actions.
This allows the independent calculation concerning each particulaaction. For
instance, it could be that an action has the same consequence that another at
some moment, but this may not last forever. Hence, there must be a wayo
learn them separately?

5The triple of antecedent stimuli, behaviour, and consequent stimulus is sometimes called
a three-term contingency (e.g., by |Catania| 1998), thus de ning the second term as the op-
erant. In this speci cation, however, we call this whole triple an operant. For our purposes,
this formalizes the notion more correctly and succinctly, since: (i) the essence of operant be-
haviour is in the consequences of actions (i.e., a mere actiorwith no e ect on the organism's
environment should not be considered an operant); and (ii) once we incorporate a conse-
quence in the de nition of what an operant is, there is no need to introduce another entity
to model the contingency, and it is simpler to incorporate the a ntecedent stimuli (if any)
in the de nition of the operant as well. This gives us a single e ntity, the Operant schema,
that captures the intuitive notion of what an operant is and can be easily used to compute
related behavioural phenomena.

84

4.2. Formal Speci cation

4.2.4.2 Operant Implication

A single operant holds information about how to obtain a particular stimu-
lus. In order to link operants to several consequent stimuli, it isnecessary
to establish how operants relate to each other. We do this with theoperant
implication oCausesrelation below. It speci es that an operant either directly
causes a stimulus or sets the conditions for another operant to be exemd,
which, in turn, lead to other stimuli. The oCorrelation function, in turn, pro-
vides the correlation between an operant and its direct and indirect §imulus
consequences.

__Operantimplication
Stimulusimplication

Discrimination

oCauses: P(Operant Stimulus)

oCorrelation : Operant Stimulus 7 Correlation
80 : Operant o0 oCauseso:conseguence

80;1;02 : Operant; S : PStimulus j S discriminatesNonEmpty o,

(8s:S o0;p:consequence sCauses))

0; oCauseso,:consequence

domoCorrelation = oCauses

The crucial element that links di erent operants in the above schama is the
discrimination relation given in schema Discrimination (see Appendix@). It
establishes that a set of stimulidiscriminates an operant if it is present among
the operant's antecedents.

4.2.4.3 Operant Utility

Operants have utilities, since they lead to stimuli. That is to say, operants
gain their usefulness owing to the stimuli they allow an organism to each.

As it happens with stimulus utility, there are several ways to de ne operant
utility. Thus, the OperantUtility schema below, merely de nes that an utility
function oUltility exists. This function takes an operant and a set of stimuli in
order attribute an utility to the operant. This set of stimuli, as iti s explained
below, is actually the current stimuli that the organism is subject to.

85

4. Behaviourist Agent Architecture

OperantUtility
StimulusUTtility

Operantimplication

oUtility : (Operant PStimulus) ! Ultility

Re nements can now be provided. We give one such re nement, the
OperantUtility _Ref1 schema (see Appendik A), which de nes that the utility
of an operant is calculated as:

a neutral or positive utility given by the maximum stimulus utilit y that
the operant can reach through the operant implication relation, provided
that there are no reachable stimuli with negative utility;

a negative utility given by the minimum stimulus utility that the operant
can reach, if indeed there is at least one stimulus with negative utity;

the neutral utility, if none of the previous cases hold.

In other words, the utility of an operant o is de ned by considering which
sequence of operants starting ino leads to the best stimulus, provided that
no harmful stimuli can be reached in the same way. It is, thereforea way
of performing planning using the fact that one operant may set the necssary
antecedents of another. However, it is a planning subject to constantre-
evaluation, since the operants in which it depends may change at any iant.

If one has more knowledge about the organism being modeled, or if one meyel
wishes to experiment with di erent search strategies, one may dee di erent

re nements for this utility. In particular, it is interesting t o note that our
own re nement is an idealized one: the organism seeks the best soloti.
In practice, though, this is possibly an ine cient strategy. Hence, one may
wonder what kind of approximations could be employed in order to imprae
this.

4.2.4.4 Fundamental Operations

Operants, being exible units of learning, are subject to many operatons.

Most of these operations, however, share some characteristics, to beuind in

the OperantFormationOp or OperantOp schemas (see Appendik). The for-
mer takes care of creating new operants, while the later accounts for opants

that already exists.

86

4.2. Formal Speci cation

Operant formation arises continuously. Every action that is followed by a
stimulus presentation can, under certain timing restrictions, give birth to an
operant, which records the contingency between the action and the stiulus.

At rst, however, these are very weak contingencies. But an organisns oper-
ants are constantly being modi ed as well, and this will ensure that recently
created operants evolve appropriately. If the recently detected cotingencies
never arise again, the organism interprets them as accidents and not as law
to be learned. On the other hand, if the contingencies keep coming ypthe
associated operants increase in strength.

When the correlations between an action and a consequent stimulus in an
operant become too low, the operant loses its usefulness. Hence, itust be
eliminated. This is accomplished by theOperantEliminationOp _1 operation.
A neutral complement to this is also provided in OperantEliminationOp _2.
(See Appendix[A).

It is then possible to form the total operation TOperantEliminationOp .

T _OperantEliminationOp $
OperantEliminationOp _1 _
OperantEliminationOp _2

OperantOp can be further re ned into four operations:

Discrimination. Operant discrimination happens when a new set of an-
tecedent stimuli is learned. That is, when a new environmental codition
regarding an operant is found, a discrimination process takes place in
order to incorporate this new knowledge. This process is formalizetly
the DiscriminationOp schema below.

Operant conditioning. Operant conditioning takes place when a known
environmental condition is met and the operant's stimulus consequece

is reached. In this case, the contingency that links the action and the
stimulus is strengthened. In other words, when the operant succeas
fully leads to a stimulus, it becomes stronger. This is speci ed m the

OperantConditioningOp schema (see AppendiX).

Operant extinction. If some known environmental condition is found but
the stimulus consequence is not reached, the relation of contingendg
weakened, as speci ed in theExtinctionOp schema (see AppendiX 7).
This extinction operation also gives rise to an emotion calledrustration .
A frustrated organism becomes more likely to explore new possibiligs,
since his knowledge of the world has been proven to be incomplete. &V
examine this emotion in Section4.2.7.

87

4. Behaviourist Agent Architecture

As a technical matter, a neutral operation is also provided in schema
NeutralOp, so that the fact that sometimes no change takes place be-
comes explicit (see Appendix A).

__DiscriminationOp
OperantOp

discriminativeStimuli ? 2 dom consequenceContingency
consequenc® sCausesconsequence
consequenc® 2 discriminativeStimuli ?

dom consequenceContingend=
domconsequenceContingencyf discriminativeStimuli ?g

consequenceContingendydiscriminativeStimuli ?) > min_correlation

At this point it should already be clear that operant behaviour endows anagent
with learning capabilities. Similarly to the process of stimulus conditioning we
saw in Section[4.2.2.14, the above operations allow the organism to modifyst
representation of how its environment work. Here, however, instea@f relating

stimuli to other stimuli, one is concerned with how actions relate o stimuli.

This relation is subject to change based on how the environment respals to

the organism's actions, and thus constitutes a way of learning about suclan

environment.

The above four operations are grouped as th€undamentalOperantOp.

FundamentalOperantOp b
DiscriminationOp _
OperantConditioningOp _
ExtinctionOp _
NeutralOp

As the name suggests, this combined operation will serve as the basis of neor
detailed operations. This basis accounts for the learning that takes plag, but
the behavioural modi cations that happen go beyond this. For a complete
mechanism, it is necessary to qualify the experience as a reinfament or
a punishment, because each case may bring di erent consequencgesich as
di erent emotional responses.

4.2.45 Reinforcement and Punishment Operations

Reinforcement and punishment play a large role in Behaviour Analysis for
they are the main behavioural modi cation mechanisms. It is therefore worth

88

4.2. Formal Speci cation

to de ne such operations separately and in detail.

An operant is reinforced if the received stimulation is pleasant and assciated
with the operant's consequence. The purpose of reinforcement is tgtrengthen
the relation between an action and a pleasant consequence.

Positive reinforcement accounts for the particular case in which plasure comes
from the provision of a pleasant stimulus.

__PositiveReinforcement
StimulusUtility

consequence : Stimulus
sUtility (consequenc®) > ; neutral _utility

stimulus_status(consequenc®) = Beginning

Notice that the above schema is not an operation. It merely states a condi-
tion for positive reinforcement. Recall that we have two types of opeations
concerning operants. The rst deals with existing operants, and theother ac-
counts for new operants. Hence, in order to turn positive reinforcemst into ac-
tual operations, we group the condition above with bothFundamentalOperantOp
and OperantFormationOp.

PositiveReinforcementOp_1 b
FundamentalOperantOp”
PositiveReinforcement

PositiveReinforcementOp_2 b
OperantFormationOp *
PositiveReinforcement

Reinforcement has a complementary negative form. Negative reinforceme
takes place when pleasure arises from the removal of a painful stimudyinstead
of the provision of a pleasant one.

__NegativeReinforcement
StimulusUtility

consequenc® : Stimulus
sUtility (consequenc®) < ; neutral _utility

stimulus_status(consequenc@) = Ending

Again, we provide two operations to account for negative reinforcement.

89

4. Behaviourist Agent Architecture

NegativeReinforcementOp.1 b
FundamentalOperantOp”
NegativeReinforcement

NegativeReinforcementOp 2 b
OperantFormationOp *
NegativeReinforcement

Let us now de ne punishment operations. An operant is punished when e
received stimulation is undesirable. It teaches the organism that an aion,
which was previously neutral or bene cial, is becoming harmful.

Positive punishment accounts for the particular case in which pain comas from
the provision of a painful stimulus.

__PositivePunishment
StimulusUtility

consequenc® : Stimulus

sUtility (consequenc®) < ; neutral _utility

stimulus_status(consequenc@) = Beginning

And the related operations are as follows.

PositivePunishmentOp_1 b
FundamentalOperantOp”
PositivePunishment
StartAngerOp

PositivePunishmentOp_2 b
OperantFormationOp *
PositivePunishment ~
StartAngerOp

Notice that besides the positive punishment condition, we also ad&tartAngerOp,
which speci es that the anger emotion will be generated. Anger takes place
as a mechanism of defense, putting the organism in an aggressive state. We
explain what this means in Section 4.2.]7.

Negative punishment, in turn, takes place when pain arises from the neoval
of a pleasant stimulus.

90

4.2. Formal Speci cation

__NegativePunishment
StimulusUtility

conseguenc® : Stimulus

sULtility (consequenc®) > 1 neutral _utility

stimulus_status(consequenc®) = Ending

The related operations are below. Notice that, again, there is an emotional
response associated. The organism becomes depressive if pleasantsti are

removed. This will be explained in Section 4.2.].

NegativePunishmentOp.1 b
FundamentalOperantOp”
NegativePunishment”
StartDepressionOp

NegativePunishmentOp2 b
OperantFormationOp *
NegativePunishment”
StartDepressionOp

In a number of occasions, neither reinforcement nor punishment tags place.
The conditions for this are formalized in NeutralReinforcementOp_1 and
NeutralReinforcementOp_2 (see AppendiXA).

At last, we combine all previous operations in order to account for all posdile
cases of stimulus in uence on an operant.

T _OperantOp b
PositiveReinforcementOp_1 _ NegativeReinforcementOp.1 _
PositivePunishmentOp_1 _ NegativePunishmentOp.1 _
NeutralReinforcementOp_1

T _OperantFormationOp b
PositiveReinforcementOp_2 _ NegativeReinforcementOp 2 _
PositivePunishmentOp_2 _ NegativePunishmentOp2
NeutralReinforcementOp_2

4.2.4.6 Emission Condition
An operant is to be emitted if it is relevant in the current state of aai rs, if
its utility is more than neutral and if other operants associated to the same

action also have such an utility. The reason for this latter restriction is that

91

4. Behaviourist Agent Architecture

operants may have the same action, which at di erent times resultedin di er-
ent consequences. Hence, it is necessary to make sure that an operardction
is not considered harmful in the context of another operant.

__OperantEmissionCond
RespondingSubsystem

StimulationSubsystem
OperantUtility
Discrimination
0 : Operant
currentStimuli discriminates o
oUtility (o; currentStimuli) >, neutral _utility

8x : operants
x 6 o currentStimuli discriminates x x:action = o:action
oUtility (x; currentStimuli) 1 neutral _utility

4.2.4.7 Integration

Three operations are necessary in order to integrate operants to the orgasin:

It is necessary to apply theT _OperantFormationOp operation consider-
ing the actions that have taken place in the recent past (de ned by the
max_delay constant). This ensures that an action that was performed
previously has a chance of becoming an operant. This procedure is given
in the Organism_OperantFormationOp schema (see Appendiﬂ\).

Similarly, it is necessary to apply the T _OperantOp operation consid-
ering these same actions that took place in the recent past, so that the
corresponding operants (if any) may me modi ed appropriately. This is
achieved by the Organism_OperantOp schema (see Appendi;@\).

Finally, it is necessary to apply T _OperantEliminationOp to each oper-
ant available to the organism in order to eliminate the useless ones (se

Appendix [A).

4.2.5 Respondent Behaviour

Respondent behaviour (also known as re exes or re exive behavioyris the
simplest kind of behaviour that an organism possess. A re ex is, esséally, a

92

4.2. Formal Speci cation

Figure 4.5: A re ex is composed by an antecedent stimulus and an action.

reliable causal relation between a stimulus and an action (see Figufe 4.5)That
is, the presence of the stimulus triggers, with high probability, the emission of
the action.

While re exes may adapt to account for, say, excessive stimulationthey are
not learning structures. Organisms are born with prede ned re exes, which
remain the same throughout their lives.

In this section we will see what constitutes a re ex, how it can be agusted
over time, and how it may be triggered.

4.2.5.1 Basic Entities

The Re ex schema de nes a re ex as anantecedent stimulus which causes
an action to be performed. The remaining variables account for the several
properties of this causal relation:

threshold de nes the minimum intensity of the stimulation that causes
the re ex to be triggered.

elicitation de nes the probability of the action to be actually performed
after the stimulation threshold has been reached.

magnitude speci es the intensity of the behavioural response when the
action is performed.

duration determines for how long the action will be performed.

latency determines a duration prior to the action performance.

All of these variables change their values as time goes by, but they are ahys
kept within lower and upper bounds.

93

4. Behaviourist Agent Architecture

_ Re ex
Actions

Re exParameters
antecedent: Stimulus
action : Action
threshold : Intensity
elicitation : Probability
magnitude : Intensity
duration : Duration
latency : Duration
action 2 re exActions
min_elicitation 1 elicitation 1 max_elicitation
min_magnitude 1 magnitude 1 max_magnitude
min _duration duration max_duration
min_latency latency max_latency

min _threshold 4 threshold ; max_threshold

These bounds, as well as the functions to modify the related variabke are
given as parameters in theRe exParameters schema (see Appendix A). This
schema de nes a number of functions, but do not specify their form The
reason is that each re ex may be adjusted di erently (e.g., in the cag of an
animal model, because the underlying organs to realize the re exesave dif-
ferent properties). Hence, one may experiment with many di erer functions
(e.g., linear, exponential).

4.2.5.2 Operations

Although re exes are innate to the organism, and therefore cannot be neitler
learned nor unlearned, it is still possible to modify them. This is useful, for in-
stance, in order to account for the fact that a re exive response usesasources,
and thus successive responses may have di erent properties (g, the magni-
tude of the response may get increasingly weaker). Th&e exAdjustmentOp

operation provides a way to adjust a given re ex according to the di erence
between the instant of the current re ex elicitation and the instant in which

the re ex was used for the last time. That is to say, according to the time

94

4.2. Formal Speci cation

that the organism did not employ that re ex (see Appendix A]. To do so,

this operation uses the functions found on theRe exParameter schema of the
re ex being adjusted, which assign a new value for the variables accoidg to

the elapsed time and their previous value.

4.2.5.3 Elicitation Condition

When are ex is used, we say that it has beerelicited. The Re exElicitationCond
schema gives the conditions for re ex elicitation. One of these condions is
that the intensity of the stimulation must be greater than or equal to th e
threshold parameter of the re ex. The other condition, which is somewhat
more subtle, is that the stimulus that triggers the re ex must be related to the
antecedent stimulus of the re ex by the stimulus implication relation. That
is to say, any stimulus that the organism believes to cause theantecedent
including antecedentitself, may elicit the re ex.

__Re exElicitationCond
Stimulusimplication

Ir : Re ex

s : Stimulus

i : Intensity

s sCauseqr :antecedeny
(r:threshold) 1 i

4.2.6 Drives

In order to stay alive, organisms constantly consume environmental resurces.
For instance, water, food, air, and so on. Clearly, the utility of these resources
must vary over time. An animal that has just drank a lot of water most likely
will not be thirsty. On the other hand, an animal that has not drank anythin g
for a day or two will do anything for water.

The mechanisms that control these variations are calledlrives. A drive can be
thought as an appetite for a particular stimulus. The longer one stays witout
this stimulus, the stronger the appetite for it will be. Conversely, the more
one has of the stimulus, the less one will want it.

In this section we see what constitutes a drive, how it relates wih the envi-
ronmental stimuli, and how it a ects the organism's behaviour.

95

4. Behaviourist Agent Architecture

4.2.6.1 Basic Entities

An organism has a setactiveDrives of drives which form its Drive Subsystem.
While individual drives will su er alterations, none is ever added nor removed
from the set. Each organism has a prede ned set of drives that accompany
him during his existence.

DriveSubsystem
TactiveDrives : PDrive

Drives are de ned by the schemaDrive. A drive aims at motivating the
organism to nd the stimuli contained in its desires set. The intensity of this
motivation is given by the drive's importance, which is a utility that vary

over time within a minimum and a maximum value. The deprivation function
modi es this importance when the organism is deprived from obtainingthe
stimuli in desires Conversely, thesatiation function modi es this importance
when the organisms manages to reach such stimuli.

__Drive
importance : Utility

desires: P Stimulus

deprivation : Utility ! Utility

satiation : Utility ! Utility
maxIimportance; minlmportance : Utility
importance ; minlmportance
importance 1 maxlmportance

8u : Utility deprivation(u) u

8u : Utility satiation(u) 1 u

Drives depend strongly on the functions used to calculate the rate of atia-
tion and deprivation. Therefore, one should consider which function $ more
suitable for each drive (e.g., linear, exponential). Our only restrttion is the
monotonicity requirement. Here, then, is another extension point of the
model.

4.2.6.2 Stimulus Regulation

Drives work by modifying the way that the organisms perceive the utlity
of stimuli. The mechanism to do so is given by theStimulusDriveRegulator

96

4.2. Formal Speci cation

schema, where the functiondriveRegulator is de ned (see Appendix[A). This
function is used by the Stimulation Subsystem in order modify theorganism's
utility function. To do so, the function takes a stimulus and a init ial utility
as arguments. Then, it adds the in uence of each drive to this initial utility.
The speci ed stimulus is used to discover whether the drive $ applicable (i.e.,
whether it is in its desires set). The resulting utility is then returned to
the Stimulation Subsystem, which is then used as the utility to be currently
attributed to the speci ed stimulus stimulus.

4.2.6.3 Operations

The DriveOp schema abstracts the common properties of satiation and depri-
vation operations (see Appendix[A). It merely states that the stimuli to be
considered must have &Stable status.

A drive's importance can be modied through operations of satiation and
deprivation. Satiation happens when the organism is given a desired stiuli
set.

__SatiationOp
DriveOp

desires present

importance®= satiation (importance)

On the other hand, deprivation takes place when the given stimulus isnot
desired.

__DeprivationOp
DriveOp

. (desires present)

importance®= deprivation (importance)

These two operations can then be combined into a total one.

T _DriveOp b SatiationOp _ DeprivationOp

4.2.6.4 Integration

At every instant, the organism is given a new set of stimulations. The, for
each drive, the Organism_DrivesUpdate operation (see Appendix|A) applies

97

4. Behaviourist Agent Architecture

the T _DriveOp operation, which allows the drive to assess the current stimu-
lations. That is, it makes sure every drive gets an opportunity to be satated
or deprived.

4.2.7 Emotions

Emotions are usually thought of as subjective and private events. Still one
can usually guess what a person is feeling by watching her behaviouAggres-
siveness, for instance, usually indicates a state of anger.

From a behaviourist point of view, though, private events are only rele/ant to
the extent that they produce observable behaviour. So aggressiveas is not
just a consequence of anger in a behaviourist theory; rather, it is takn to be
anger itself.

In the present work, an emotion is de ned as a temporary modi cation in
operant behaviour that is not explained by the organism's drives. The urpose
of emotions is to ne tune the organism's behaviour to match the needs oh
given situation. \Pure" operant behaviour would only record the relations
among actions and stimuli. However, the fact that sometimes actions must
be, for example, specially vigorous (e.g., when ghting an opponent), wold
not be captured. \Pure" stimuli conditioning would be incapable of modifying
the utility of primary reinforcers. And that might be exactly what is r equired
sometimes, in order to explain certain kinds of behaviour (e.g., degession).
Similarly to what we have seen for drives, there are clever ways tmsert such
ne tunning in the framework we have developed so far.

However, di erently from what we did for drives, emotions are not de ned in
a very general manner. They encompass any behavioural modi cation, and
therefore we cannot provide a single mechanism to account for all posdi
emotions. Hence, in our framework, an emotion must be de ned mostly in-
dividually, although some general properties are established. For thiseason,
we have provided only three emotions, chosen mostly because theyrse as
good examples of what it means to formalize an emotion using our framework.
Clearly, then, it would be possible to improve this subsystem bythe addition
of other emotions. To do so, it would su ce to create similar schemas to he
ones we provide. This is another importantextension point of our model.

4.2.7.1 Basic Entities

The Emotional Subsystem is given by theEmotionSubsystemschema, which
holds information regarding the organism's current emotional state.

98

4.2. Formal Speci cation

EmotionSubsystem
anger : Anger

depression: Depression

frustration : Frustration

Each emotion can be either active or inactive. This will determine wrether
the emotion in uences or not the organism's behaviour.

EmotionStatus ::= Active j Inactive

The Emotion schema de nes the general properties that every emotion must
have. However, in itself this schema is not an emotion.

Emotion
status : EmotionStatus

intensity : Intensity

duration : Duration

The e ect of an emotion is speci ed by how it a ects stimuli processing and be-
havioural response emission. For each of these regulation mechanisms pro-
vide an appropriate regulation function, within the UtilityRegulatorEmotion
and

ProbabilityRegulatorEmotion schemas.

UtilityRegulatorEmotion
Emotion

utilityChange : Intensity ! Utility

ProbabilityRegulatorEmotion
Emotion

probabilityChange: Intensity ! Probability

We can now de ne the three emotions we provide Anger, Depression and
Frustration .

Anger
UtilityRegulatorEmotion

99

4. Behaviourist Agent Architecture

__Depression
UtilityRegulatorEmotion

__Frustration
ProbabilityRegulatorEmotion

4.2.7.2 Stimulus Regulation

Much like drives, some emotions exert their in uence by modifyng how the
organism perceives the utility of stimuli. This regulation mechanism is de ned
by the

StimulusEmotionalRegulator schema, which provides theemotionalRegulator
function (see Appendix[A).

This regulation mechanism depends on two emotions, namely, depressi and
anger. Thus, for each one, a regulator is provided in th®epressionRegulator 1
and AngerRegulator_1 schemas. When the emotions are inactive, their e ect is
neutral, as speci ed in DepressionRegulator 2 and AngerRegulator_2 schemas.
(See Appendix[A).

These two possibilities for depression and anger are put together in
DepressionRegulatorand AngerRegulator schemas, respectively.

DepressionRegulatord DepressionRegulator 1 _ DepressionRegulator 2
AngerRegulator $ AngerRegulator_1 _ AngerRegulator_2

Depression regulation causes any stimulus utility to be reduced byhe intensity
of the depression. This implies that the organism will behave lesshecause
stimuli that used to be desirable become either less desirable oven aversive.

Anger regulation, in turn, increases the utility of stimuli which in dicates that
harm has been caused to either the environment or another agent. The stiuli
that indicate this can be found on the StimulationHints schema we saw in
Section[4.2.2. For example, the sight of blood could be de ned as one such
stimulus. By this method, the organism becomes more inclined in breave in a
way that brings such stimuli (i.e., by performing operants whose cosequences
are among these stimuli).

4.2.7.3 Response Regulation

We have just seen that some emotions can be de ned according to the eats
that they have on the perception of stimuli. However, some emotions camot

100

4.2. Formal Speci cation

be de ned in this way, because they modify behaviour more diredy. The

ResponseEmotionalRegulatorschema de nes theresponseRegulatorfunction,

which take as input an action and a the probability of spontaneously emitting

such an action (see AppendixX A). By modifying this probability, it i s possible
to interfere directly with an organism's behaviour.

As an example of such an emotion, our speci cation de nes frustration as a
generalized increase of spontaneous behaviour. This captures the ondiry

notion of frustration, which is a response to a situation in which actiors do

not produce their expected outcome. As a result, the organism becomesore

inclined to perform arbitrary actions in order to check whether any of them

is useful.

Again, the formal de nition of the emotion is divided in a schema that de nes
these e ects, FrustrationRegulator _1, and another schema,
FrustrationRegulator _2, which accounts for the case in which the emotion is
inactive (see Appendix[A). We can then compose the complete frustratin
regulator.

FrustrationRegulator b FrustrationRegulator _1 _ FrustrationRegulator _2

4.2.7.4 Operations

The operations concerning emotions are very simple and deal only with thir
start, maintenance and termination. For each emotion, thus, three operaions
are de ned®:

Start operations. When an emotion starts, it is necessary to set its status
to Active, and attribute it a duration and an intensity. These operations
are provided by StartDepressionOp StartAngerOp and StartFrustrationOp
schemas (see Appendik).

Maintenance operations. Once an emotion is active, it may be up-
dated. This update consists in reducing its remaining duration, to ac-
count for the time that has passed. These operations are provided by
UpdateDepressionOp UpdateAngerOpand UpdateFrustrationOp schemas
(see Appendix[A).

Termination operations. Finally, when an emotion reaches a duration
less than or equal to zero, it must be terminated by setting its status
to Inactive. This is achieved by EndDepressionOp EndAngerOp and
EndFrustrationOp schemas (see Appendik).

61t would be better to de ne only three operations that could work for all the emotions.
However, this is not possible because of limitations on the Z Notation (i.e., there is no
polymorphism). We are thus forced to de ne new operations for each p articular emotion.

101

4. Behaviourist Agent Architecture

Notice that while our maintenance operations merely decrement the reraining
duration, one can think of other modi cations they could perform. For exam-
ple, they could decrease the emotion's intensity according to someufction.
This, then, is another way in which our model can be customized.

4.2.7.5 Integration

The Emotion Subsystem is integrated in the organism by the
Organism_EmotionUpdate operation, which merely applies update or termi-
nation operations (see AppendiX A). To start an emotion, however, the appo-
priate start operation has to be called directly, which we did in Secton [4.2.4
when de ning punishment and reinforcement.

Notice that since each emotion is rather unique, it follows that its starting
points are also idiosyncratic. Hence, if one wishes to add new emotions bur
framework, it would also be necessary to add starting points elsewherin the
organism.

4.2.8 Subsystems Integration

We have seen that each subsystem provides a number of operations tolam
their integration with the rest of the organism. These operations assumehat
time advances in a discrete manner, and often require the speci cédn of a
current instant. To group them together, then, we specify a data stucture,
Simulator, and an overall operation calledSimulatorlterationOp . This oper-
ation advances time, applies the integration operations, deliver stimili and
collect responses.

Simulator
Organism

currentinstant : Instant

102

4.2. Formal Speci cation

__SimulatorlterationOp
Simulator

Organism_Con icResolution

Organism_ResponseMaintenance
Organism_OperantEliminationOp

Organism_DrivesUpdate

Organism_EmotionUpdate

stimulations? : P Stimulation

responses : P Response

currentinstant °= currentinstant + 1

9 Organism_StimulusProcessing currentinstant ? = currentinstant

9 Organism_BehaviorSelection
currentinstant ? = currentinstant * responses = activeResponses

9 Organism_ResponseEmission currentinstant ? = currentinstant
9 Organism_OperantOp currentinstant ? = currentinstant

9 Organism_OperantFormationOp currentinstant ? = currentinstant

These schemasire not part of what constitutes an agent. Rather, they specify
how an actual simulator should interact with an agent. The environment is
represented in this interaction by the variables stimulations? and responses.

The former collects the stimulations coming from the environment toa par-
ticular organism, and the latter speci es the behavioural responses ofhis or-

ganism being delivered to the environment, both in the current irstant. There
is, therefore, merely an interface to the surrounding environmet{ which is

all that is required to simulate an environment with its several agents, as we
shall see in Chapter[5.

Moreover, the passage of time as perceived by the organism is subjediv
From the point of view of the organism, time is perceived to advance at each
interaction with the environment, and it is this subjective time counting that
is taken in account. This provision makes it possible for the organism to
make internal calculations based on the passage of time without having to
be told the actual, universal and absolute time, which is not available fom
the EMMAS environments of Chapter[§. Of course, if a global clock was
available, then the internal time counting of the organism could be madeto
match such a clock, but that is not a requirement.

103

4. Behaviourist Agent Architecture

4.3 Conclusion

Any mathematical formalization of a domain not strictly mathematical is

bound to make certain choices (e.g., to solve textual ambiguities) andn-
troduce new technicalities in order to mechanize as much as possélof the
informal and original meaning. It is also di cult to capture all relevant p he-
nomena under one uni ed mathematical theory, since the details necssary for
such an uni cation might not be present in the original informal theory. O ur

formalization, then, is subject to similar problems. Neverthelesswe have tried
to minimize any such idiosyncrasies so that the nal result can be rgarded as
a sensible interpretation of Behaviour Analysis. In particular, though it can-
not account for all possible behavioural phenomena found on the literatue,
it is capable of modelling many of them, and in such a way that they relae
to each other in a coherent whole. Indeed, it is largely because of thisoher-
ence that our formalization is suitable as an agent architecture, since iallows
di erent mechanisms to operate together in creating several aspectthat con-

tribute to an interesting agent (e.g., a certain autonomy, learning capmbilities,

interaction with the environment).

Despite the complexities of our architecture, its elements are alultimately
given in terms of stimuli and behavioural responses. As a consequencan
agent's behaviour is always either controllable or at least observable irthis
approach. Hence, much more power is available to the environment wherthe
agent is located (e.g., a laboratory), for the agent's state can be easily chac-
terized by external events alone. This is a distinctive feature ofbehaviourist
approaches, and should be true in any such behaviourist architecture

The behaviourist view of agency that we presented brings a reversegerspec-
tive on agents { let us see why. Usually, agents are de ned by their intenal
elements and their relations. Thus, for instance, the question of whther the
agent performs correct deductions is important in such cases. But by mking
stimuli and behaviour prominent, and de ning everything else in their terms,
we e ectively shift the questions that can be asked about such agentsWe are
not worried about, say, knowledge and correct reasoning, but by prediéhg
and controlling behaviour. This emphasizes the relation that the agenthas
with its environment, and creates new possibilities therein. Forexample, one
may consider sophisticated ways in which the environment may inuence its
agents in order to achieve certain results of interest. This shall beome clear
in Chapter |

104

CHAPTER

Environment Model for
Multi-Agent Systems

Environments account for the medium through which agents may interact
In this chapter we develop an environment model that has a social netark
structure in which nodes are agents, and the links between them arde ned
by the capabilities that agents have to act upon each other. Furthermore
these environments are more than a network structure, as they may dinge
dynamically, either spontaneously or as a reaction to an agent's actions. Tése
design choices arise from the agent model given in Chaptgt 4, which sugges
number of desirable features from an environment that brings them togeter.
For instance, we place great importance on the possibility of performingxper-
iments of di erent kinds, and of responding to agent's actions in appropiate
ways. Our approach achieves this by theenvironment behaviours it de-
nes. Moreover, interaction can be treated by abstracting physical poperties
(e.g., spacial position) away and dealing only with relationships, whth we
do by adopting a social network structure andenvironment operations to
modify it.

We provide a simple formal framework in which to de ne such envirorments so
that they can be subject to automated analyses procedures. A mathematal
model is provided, which we call theEnvironment Model for Multi-Agent
Systems (EMMAS) , and its semantics is given in terms of the -calculus
process algebra (see Appendix|E for an overview of-calculus).

Process algebras are typically employed to describe concurrent stems. They
are good at succinctly describing behaviours relevant to inter-pocess commu-
nication. The particular choice of -calculus as a theoretical foundation is
motivated by some of its features, which together make it a distinguisled for-

105

Environment

Model for Multi-
Agent Systems
(EMMAS)

5. EMMAS

malism among existing such algebras. First, it takes communication though
channels as a primitive notion, which makes it a natural choice for repe-
senting networks. Second, it allows for dynamic modi cation, which makes
the creation and destruction of connections between agents possible. hird,
it provides a convenient representation for broadcast behaviour though its
replication operator. Finally, it has few operators and a simple operational
semantics.

The semantics ofEMMAS is actually given in two stages, by considering: (i)
a syntactical translation of EMMAS into -calculus expressions; (ii) a math-
ematical foundation which relates -calculus events to the stimuli and actions
of agents in a transition system. The -calculus translation of (i), through its
operational semantics (De nition E.5), provides an over-approximation of the
desired behaviout, which is then made precise using the restrictions provided
by (ii). By this method, we are able to build a transition system th at de nes
the possible states and transitions for any particular environment spei ca-
tion. In the present chapter, however, we only provide (i). Stage (i) is left for
Chapter [6, because it requires a number of new de nitions concernig tran-
sition systems, which are better understood if isolated in a chapr of their
own.

The semantics thus achieved is general and is not tied to any particulaap-
plication, not even simulation. For the purposes of the veri cation technique,
however, it will be necessary to carry out stage (ii) in a slightly more specic
manner, so that the result can be used in a simulator. This is explaiad in
more detail and accomplished in Chapte[', which also presents the vecation
technique itself.

We purposefully treat agents as black-boxes iIEMMAS , because it is not
necessary to expose their internal structure in order to manipulaé them from
an environmental perspective. As we saw in Sectiofi 4.1, this arises réctly
from the behaviourist tradition we use as inspiration. However, thee must
be a way to interface the agents with their environment. This is acleved
through the assumption that agents receivestimuli as input and that they
output actions , as explained in Chapte4. Moreover, communication between
agents is also mediated by the environment.

This view of the agents as black-boxes does not mean that thBehaviourist
Agent Architecture given in Chapter[4 is irrelevant. Rather, it only means
that its purpose is to allow the simulated agents to behave in ways sth that
the environment de ned in the present chapter can fruitfully interact with
them. That is to say, while the internal mechanisms of agents are not rp-
resented explicitly in EMMAS , they are necessary to actually simulate and

1That is to say, an approximation that contains all the desired b ehaviours, but also some
undesired ones.

106

5.1. The Role of Environments

verify it. Indeed, as argued in Sectior{ 1.1L, it is because this separath of en-
vironments and agents can be done that the technique presented in thithesis
is practical. The role of environments is to be amenable to systemati@analy-
ses, whereas the purpose of agents is to implement, as completely as pibte,
individual behavioural phenomena, with no particular commitment to being
amenable tointernal formal analyses. It is only the external, observable, ac-

tions of agents, as re ected in an environment, that one may analyse by tts
method.

A few remarks on notation are in order before proceeding:

We have omitted -calculus input and output parameters when such
parameters are not relevant (e.g., we writea instead of ahxi if x is not
used later).

For the sake of readability, some elements are coloured in a di erent
manner. This will be clear from their use, but let us quickly summarize
what these colours are for each kind of elementsemantic de nitions;
expressions sets and logical formulas used by EMMAS ; and the
translation function used to convert EMMAS expressions in -calculus
introduced by De nition

This chapter is organized as follows. In Sectiof 5|1 we explain in more ¢kl
the role of environments in the overall approach. The environment moel
itself is presented in Sectiorj 5.. It is designed to be small, wbh implies that
convenience constructs are left out. Yet, it provides the basic @ments with
which such conveniences can be built, and thus in Sectidn 5.3 we pridle some
such conveniences. The reason for this twofold division is to faciléte both
the mathematical treatment of the model (i.e., because it is kept small) and
the addition of new convenience constructs beyond those we provideehe (i.e.,
because the fundamental rules to respect are few). At last, in Seitn [5.4 we
make some concluding remarks. As already remarked above, an overview of
-calculus is given in Appendix[E.

5.1 The Role of Environments

Though environments are often ignored in the design of MAS|(Weynst al.,
2005), they play a crucial role in our approach. In Sectiorj 1.1 of Chaptefr|1, we
saw that it can be useful to see the environment as a simpler, more &ctable,
entity than the agents that inhabit it. In our approach, this intuition i s made
concrete by the following main points:

107

translation func-
tion

5. EMMAS

The Behaviourist Agent Architecture presented in Chapter[4 is
only meaningful if there is an environment to provide it with stimuli

and receive its actions. In particular, an agent can only interact with
another agent if there is an environment to transform the actions of one
into stimuli for the other.

The environments can be translated into a representation of the MAS
in terms of a transition system, which is required by the veri cation

technique presented in Chaptef ¥. That is to say, the environmentle nes

the state-space that the veri cation algorithms shall explore.

These characteristics are, of course, very related. It is precisglbecause the
environment de nes the possible communications with and between agents
that it can provide a representation of all possible behaviours of the M\S.

This does not mean that one may knowa priori, just by the structure of
the environment, exactly how a simulation of an MAS will progress. While
all possibilities are known, the actual sequence of states to be praded by a
simulation will depend on the internal mechanisms of the agents, whig are not
available to the environment. In other words, the interaction between agents
and their environment is essential in order to have an actual simulatbn.

It is also worth to consider the methodological implications of having the en-
vironment in such a prominent position. As we remarked in Chapter[4, the
agent architecture follows a behaviourist approach, which puts great mphasis
on de ning behaviours in terms of their e ects and dependencies pon an en-
vironment. This means that problems concerning such agents are invaably
formulated in terms of environmental properties. For example, if one $ inter-
ested in teaching a certain behaviour to an agent, the solution will begiven
in environmental terms: how the environment should reinforce theagent, or
how the environment should connect agents so that one may interferenithe
behaviours of the other. Therefore, the environment is a fundameral part of
the very questions which our theory and technology address.

5.2 Environment Model

EMMAS is a mathematical framework that can be used to specify environ-

ments for multi-agent systems. In order to give its semantics, we he chosen

to translate its constructs to the -calculus process algebra, which provide

simpler elements, with an already established semantics. Such aanslation is

achieved by using a translation function to map constructs ofEMMAS into
-calculus (i.e., a constructC is translated to [C]).

De nition 5.1 (Translation function) . The translation function maps

108

5.2. Environment Model

constructs of EMMAS into -calculus expressions.

The full de nition of this function is given as new constructs are introduced.

The constructs of EMMAS can be divided into structures and environment
operations. The former de ne the elements that exist and how they interact.
The later account for the manipulation of these structures.

The text below is organized as follows. Sectiof 5.2/1 de nes the fundaemtal
-calculus events upon which the formalization is built. Section5.2.pestab-

lishes what is an operation, which is an important concept used to de nethe

model. Finally, Section[5.2.3 describes the structures of the maal itself.

5.2.1 Underlying Elementary -Calculus Events

A -calculus speci cation can be divided into two parts. First, and mog
fundamentally, it is necessary to specify the set of events that argoarticular
to that speci cation. Second, it is necessary to specify processebuilt using
those events. In this section we account for this rst part.

Input and output events are all made from basic names. Hence, we rst
formally de ne a set of names in order to have the corresponding evest The

de nition below establishes such names, and Tabl¢ 5|1 presents anformal

description of the events that arise. The formal description of theirmeaning,

however, shall be given later on, in Section$ 6.212 and 7.1, by de ning th
possible transitions associated with each name.

De nition 5.2 (Environment Names). The environment names are de-
ned by the following set:

ENames= femitg; stop]; beginnind; stable] ; absent';
destroyan ; ccn; donej
a 2 Actions;s 2 Stimuli;m;n 2 AgentlDsg

The setsActions, Stimuli and AgentlDs shall be introduced in De nition
For the moment, it su ces to note that they represent all possible actions,
stimuli and agents in an environment, respectively. In this way, theseenviron-
ment names are tied to particular actions, stimuli and agents. Nevertheless,
they are atomic entities from the point of view of -calculus, even though they
are denoted here with subscripts and superscripts. This writiy style is merely
for readability's sake.

With these names, we now establish the set of events relevant tEMMAS

De nition 5.3 (Environment Events). The environment events are de-
ned by the following set:

109

environment
names

environment
events

environment oper-
ation

5. EMMAS

EEvents= fexi;e(x)j e;x 2 ENamesg[f g

As a technicality, it is sometimes convenient to be able to translate -calculus
processes and events using thg function. The result of such a translation
is, of course, the process or event itself. Thus we extend the donrabf to
include -calculus and give the following de nition.

De nition 5.4. Let P be an arbitrary -calculus process or pre x. Then,

Pl =P
A corollary of this de nition is that the function is idempotent (i.e.,
C = [C]).
| Event | Informal description \
Agent to environment
emit] Agent identi ed by n performs action a.
stopf) Agent identi ed by n stops performing actiona.

Environment to agent
beginning | Delivery of stimulus s to the agent identi ed by n is begin-

ning.
stabld Delivery of stimulus s to the agent identi ed by n is stable.
endingl Delivery of stimulus s to the agent identi ed by n is ending.
absenf Delivery of stimulus s to the agent identi ed by n becomes
absent.

Environment to environment

destroyz'n | Requests the destruction of an action transformer that con-
verts action a from agent identied by n into stimulus s
accepted by the agent identi ed by m.

cchn Requests the creation of a new action transformer.

done Signals that an operation has terminated.

Table 5.1: Informal description of events, divided in three categoriesaccording to
their origin and destination. The corresponding output or input events not shown
merely allow the ones described to work properly.

5.2.2 Environment Operations

In order to exhibit dynamic behaviour, the environment depends onenviron-
ment operations to modify its structures.

De nition 5.5 (Environment Operation). An environment operation is
any -calculus process such that:

110

5.2. Environment Model

its names belong to the set ENames;

[
in the corresponding LTS, for all transitions of the form P 0, it must
be the case that I= done (i.e., the operation signals its termination
using the done pre x).

The second condition is particularly important because it allows the gquential
composition of operations, as described in Sectidn 5.3.1 later on. It statdbat
whenever the processes is reduced to the primitive Nil procegdenoted by0),
it must be the case that the done pre x preceded it. In this manner, other
operations can detect the termination (i.e., by specifying a done pre x to
synchronize with done).

Of course such an abstract de nition of environment operations cannot be
used directly. Nevertheless, it su ces to de ne the basic modé for environ-
ments. Concreteenvironment operations are given in Section5.3.P.

Because the Z Notation used in Chaptef i has its own notion of operation,
for consistency we must name the operations dEMMAS di erently, and we
have opted for calling themenvironment operations . Nonetheless, for con-
venience, we refer to thesenvironment operations merely asoperations

in the remainder of the present chapter, as well as in the rest of thehesis
whenever it is clear from context that the subject is EMMAS

5.2.3 Environment Structures

The environment is the central structure of speci cations. It de nes which
agents are present, how they are initially connected, and what dynamide-
haviours exist in the environment itself.

De nition 5.6 (Environment). An environment is a tuple hPAG; AT ;EBi
such that:

AG = fag :::aggis a set ofagent proles ;
AT = ft1:::tgis a set ofaction transformers ;

EB = feb :::eh,gis a set ofoperations , referred to as environment
behaviours .

expression for the environment is de ned as:

111

environment

environment
behaviours

5. EMMAS

hAG ;AT ;EBIi| = (em;:::;eng)
(lacn! jlag] j:::jlag] |
ta] jltal jrirjltml]
eb| jlek] j:iijleln] |
INewAT

where

NewAT = ccn(emit; stop; absent beginning; stable ending; destroy):
T (emit; stop; absent beginning; stable ending; destroy)

and T is given in De nition 5.8

This de nition merits a few comments. First, all names from ENames are
restricted to the environment. Second, the set of action transformes pro-
vide the network structure that connects the agents. Third, the ervironment

behaviours, as the name implies, speci es behaviours that belongotthe en-
vironment itself. This is useful to model reactions to agent's actons, as well
as to capture ways in which the environment may evolve. In the rst case
the behaviour is speci ed as anenvironment response(De nition §.19 pelow),

while in the second case the behaviour is simply aEMMAS operation. Fi-
nally, the component NewAT allows the creation of new action transformers.
In order to do so, it receives a messagecn (\create connection”), whose pa-
rameters initialize the rest of the expression. To see this more ehrly, suppose
that NewAT is in parallel composition as follows:

cenhemit?; stopl ; abseng” ; beginning” ; stable; ending; destroyg'i j NewAT

Then ctcn will react with ccn in NewAT , and the resulting expression will be
the following:

T (emitl; stop] ; absenf; beginning; stable"; ending"; destroysn')

This expression corresponds to the de nition of an action transformer,which

is introduced in De nition 5.8, and specify how an action emitted by an agent

is received as a stimulus by another agent. Furthermore, in the envonment
de nition there is a parallel replication operator on !NewAT to ensure that
the creation of action transformers can happen as many times as needed to
produce reactiong, owing to the following structural congruence rule:

2|t can be observed from the -calculus operational semantics given in Appendix E]that
because allenvironment names are restricted, the only way for the system to progress is
by performing reactions by the application of the COM rule. Moreover, the rule STRUCT
together with the structural congruence relation ensures that COM will be applied as long
as there aretcn events to react with NewAT .

112

5.2. Environment Model

INewAT NewAT jINewAT

Environments exist in order to allow agents to interact. As we remarkel
earlier, the internal structure of these agents, as complex as it may &, is
mostly irrelevant to their interaction model. Thus, we have abstracted it
away as much as possible. What is left are the interfaces that allow agestto
interact with each other and with the environment itself, which we call agent
proles . Hence, we have the following de nition.

De nition 5.7 (Agent Prole) . An agent prole is a triple m;S;Ai such
that:

n 2 AgentlDs is a unique identi er for the agent;
A=fa:::ag Actions is a set of actions;

S=fs:iigg Stimuli is a set of stimuli.

Moreover,

;S;Ail = ([Act(a;n)] jlAct(ag;n)] j:::jlAct(a;n)])|
(IStim(sg;n)] j[Stim(sp;n)| j:::j[Stim(s;n)])

such that, for all a2 A and s2 S, we have:
Act(a;n)| =!(emit):stop])
Stim(s;n)] = piStim (beginning]; stabl€'; endingl ; absent')

where

piStim (beginning; stable ending; absenf) =

beginning:stableending:absentpiStim (beginning; stable ending; abseny

This de nition states that agents have several components, each respaible
for controlling one particular action or stimulus. Act(a;n) de nes that the

agent identi ed by n can start emitting an action a and can then stop such
emission. The replication operator (!) ensures that this sequencean be carried
out an unbounded number of times. Stim(s; n), in turn, de nes that the agent

identi ed by n can be stimulated by s, and that this stimulation follows four

steps. The recursive call ensures that this stimulation sequergcan start again
as soon as it nishes the last step. These de nitions re ect the assmptions
about the agent model we consider (Chaptef |4).

113

agent profile

5. EMMAS

The relations among agents INEMMAS are given in the form of a social
network. This means that the physical positions of agents are not taken inb
account; rather, only the relationships between agents are represésd, thus
inducing a graph in which the vertices are agents and the edges denoteop-
sible interactions between them. In this manner, modelling and aalysis can
be focused on the logical properties of their interaction, and ignore phsical
details (e.g., it does not matter that agent ag; is 3 meters away fromag if
one is concerned merely about specifying thaag, can hear whatag, says).

Given the behaviourist point of view that we adopt, these relationshps are
modelled by de ning how the actions of an agent are transformed in stimti for
other agents. Their interaction, thus, is based on stimulation. Formally, this
is represented byaction transformers , which de ne how a particular action
of an agent is perceived as a particular stimulus by another agent.Action
transformers are not static: they can be created and destroyed dynamically.
The importance of this is twofold. First, it allows the speci cation of phenom-
ena in which the relation among agents change as they age. Second, it allows
speci cation of several possible network structures for the same erronment
(i.e., the description of a class of social networks, and not one partidar so-
cial network). This latter possibility can be used to determine, through the
veri cation algorithms we shall introduce in Chapter 7] whether any of these
possible network structures satisfy some property of interest.

action trans- De nition 5.8 (Action Transformer). An action transformer is a tuple
former hagi; a;s;agi such that:
ag is an agent prole ;Sp; Aii;
ag is an agent prole m; Sy; Asi;
a is an action such that a2 Aq;
s is a stimulus such that 2 Sp;
Moreover, the corresponding -calculus expression for the action transformer
is de ned as:
hagi; a;s;agi| =
T (emit)); stop] ; absenf"; beginning; stable"; ending; destroya'n')

where

T (emit; stop; absent, beginning; stable; ending; destroy) =
. Normal lﬁhaviour {

(emit :beginning:stable:stop:ending:absent: T (emit; stop; absent beginning; stable; ending; destroy))

flesroy

To destroy

114

5.3. Convenience Elements and Operations

The above de nition can be divided in two parts. First, there is it s normal
behaviour, which merely de nes the correct sequence through wich an action
is transformed in a stimulus. Once such a sequence is completed,recursive
call to the process de nition restarts the action transformer. Secoml, there is
the part that allows the transformer to be destroyed. By performing destroy,
the action transformer disappears, since this event is not followed yanything.

Providing an intermediate structure such as the action transformerbetween
the agents instead of allowing a direct communication is useful becaesan
agent's actions may have other e ects besides stimulation. In particlar, the

environment can also respond to such actions in custom ways. This caneb
done by specifyingenvironment response operations as part of the envi-

ronment behaviours (see Sectioh 5.3.2.3).

5.3 Convenience Elements and Operations

So far we have de ned the bare minimum for describing environmerg so that
they can be formally analysed. Clearly, though, more constructs are necsary
in order to make such speci cations. For example, we de ned what is an op
eration in general, but we have not presented any particular operation. h the
present section, then, we provide a humber of convenience elemts that can
be used to build concretetEMMAS models. Sectior} 5.3]1 gives operators that
can be used to build more complexoperations from simpler ones. Section
[5.3.3 presents coreperations that accomplish basic tasks. Sectiofi 5.3]3 and
Section[5.3.4 de ne, respectively, some core sets and predicatesec®ion[5.3.5
provides some useful quanti ers. Finally, Section[5.3.p employs &lof these
elements in order to de ne some complex operations.

5.3.1 Composition Operators

In order to build complex operations on top of the basic ones, it is useful
to de ne composition operators. Some of these can be mapped directly to
-calculus operators, but others require more sophistication.

De nition 5.9 (Sequential Composition). Let Op; and Op, be operations .
Then their sequential composition is also anoperation and is written as:

Op1; Op2
Moreover,

115

sequential compo-
sition

sequence

unbounded se-

quence

choice

parallel composi-
tion

5. EMMAS

Op1; Opz] =(start)|Op;| fstart=doneg j start: Op,

The above translation aims at accounting for the intuition that Op; must
take place beforeOp,. However, we cannot translate Op;; Op, immediatly
as|[Op;] :[Opz] , because in general -calculus would not allow the resulting
syntax (e.g., (P + Q):R would not be a valid expression). Therefore, we adapt
the suggestion o ered by Milner (1999) (in Example 5.27), which works as
follows. We assume that every operation signals its own termination usig the
done event. Then, when composingOp; and Opy, we: (i) create a new event,
start; (ii) rename the done event in Op; to start; (iii) make start guard Opy;
(iv) put the two resulting processes in parallel. By this construction, the only
way that Op, can be performed is afterstart is performed, which can only
happen whenOp; terminates.

De nition 5.10 (Sequence) Let Op be anoperation and n be an integer
such that n 1. Then a sequence of n compositions of Op is de ned as:

Op; SeqOp;n 1) n>1

SedOopin) = 4 n=1

De nition 5.11 (Unbounded Sequence) Let Op an operation . Then an
unbounded sequence of compositions of Op is de ned as:

Forever(Op) = Op; Forever(Op)

The translation of these two kinds of sequences to -calculus follows, of course,
from the translation of the sequential composition operator.

De nition 5.12 (Choice). Let Op; and Op, be operations. Then their com-
position as achoice is also an operation and is written as:

Op: + Ope

Moreover,
Opy + Opp] = [Op1] + [Op

De nition 5.13 (Parallel Composition). Let Op; and Op, be operations .
Then their parallel composition is also anoperation and is written as:

Op1 k Op2

Moreover,

Op1 kOpy] = (start)[Op;] fstart=doneg j
Opy| fstart=doneg j
start:start:done

116

5.3. Convenience Elements and Operations

The translation for the parallel composition is not straightforward because
it is necessary to ensure thatdone is sent only once in the composed operation.
That is to say, the parallel composition of 2operations is anoperation itself,
and it only terminates when each of its components terminates. If thiscare
is not taken, later sequential compositions will not work as expected. This
de nition ensures the correct translation by: (i) creating a new name, start,
restricted to the compaosition; (ii) renaming done to start in Op; and Opy;
(i) creating a new component that waits for 2 start events before sending
one done. By this construction, the only way that a done event can be sent
is by rst producing 2 start events, which can only happen if each operation
terminates individually.

5.3.2 Core Operations

We can now provide a core ofoperations upon which others can be built.
Below we present them according to their purpose.

5.3.2.1 Agent Stimulation Operations

The following operations are provided to control the stimulation of agents.

De nition 5.14 (Begin stimulation operation). Let ag = m;S;Ai be an
agent pro le, and s 2 S be a stimulus. Then thebegin stimulation opera- begin stimulation
tion is writen as:

BeginStimulation (s; ag)

Moreover,

BeginStimulation(s; ag)| = beginning :stable:done

De nition 5.15 (End stimulation operation) . Let ag= m; S; Ai be an agent
prole, and s 2 S be a stimulus. Then theend stimulation operation is end stimulation
writen as:

EndStimulation (s; ag)

Moreover,

EndStimulation(s;ag)] = endingl:absent :done

De nition 5.16 (Stimulate operation). Let ag = n; S; Ai be an agent pro le,
and s2 S be a stimulus. Then thestimulate operation is de ned as: stimulate

Stimulate(s; ag) = BeginStimulation(s; ag); EndStimulation (s; ag)

117

create action
transformer

destroy action
transformer

environment
response

5. EMMAS

5.3.2.2 Action Transformers Operations

The following operations are provided to manipulate action transformers.

De nition 5.17 (Create action transformer operation). Let agy = ; S;; A1l
be an agent pro le, ag = hm; S,; Azi be another agent prole, a2 A; be an
action, and s 2 S, be a stimulus. Then thecreate action transformer
operation is writen as:

Create(ag; a; s; ag)

Moreover,

Create(ag;; a;s;ag)| = tenhemit]; stop]; absent”; beginning™;
stabld"; ending"; destroys'; i :done

In the above de nition, ccn is crafted to react with the component NewAT
given in De nition $.6] Since operations will ultimately be put together with
parallel composition in the environment, it follows that the Create(ag:; a; s; ag)
operation will be able to react with NewAT and originate a new action trans-
former.

De nition 5.18 (Destroy action transformer operation). Let agy = m; Sg; Aji
be an agent pro le, ag = hm; Sy; ALi be another agent prole, a2 A; be an
action, and s 2 S, be a stimulus. Then thedestroy action transformer
operation is written as:

Destroy(n;a;s;m)

Moreover,

Destroy(n;a;s;m)| = destroysn :done

5.3.2.3 Environment Response Operations

As we remarked earlier, besides transforming an action of an agent into stiuli
for other agents, theenvironment itself can also react to such actions. This is
achieved byenvironment response operations, which may de ne a custom
operation for each action of each agent.

De nition 5.19 (Environment Response) Let m;S; Ai be anagent prole
a 2 A an action and Op an operation . Then the environment response
function ER() for these elements is de ned as follows:

ER(a;ag; Op) = Forever(Emit (a;ag); Op; Stop(a;ag))

118

5.3. Convenience Elements and Operations

Where:

emit) :done
stop} :done

Emit (a; ag)
Stop(a; ag)

As an example of such an environment response, we may cite the classicel-

tion of reinforcement from behaviourist psychology. When an agent perfams

a desirable action, the environment may be designed so that the agenter

ceives a reward in order to reinforce this behaviour. This relationbetween the
agent's action and an associate reward can be elegantly modelled in a praase
algebraic way according to the above de nition of environment response

5.3.2.4 Do Nothing Operation

At last, it is also convenient to de ne a standard operation to state that
nothing should be performed. This can be used in a number of ways, shb as
delaying (in a sequential composition) the performance of anotheropera-
tion , serving as place holders in an incomplete model, or stating conditiahin
the form of environment responses without de ning any particular e ects.
This last possibility has a particularly important technical purpose, since only
the actions that are used somehow in the environment are taken in account
in the nal semantic model. The reason is that in this way only the actions
relevant to an environment are taken in account, thereby making its anaysis
more e cient.

De nition 5.20 (Do Nothing Operation). The do nothing operation is
denoted by

NOP

Moreover, the corresponding -calculus expression is as follows:

NOP| = done

5.3.3 Sets

Certain sets of elements are particularly useful for modelling.

De nition 5.21. Let X be any set, S Stimuli, A Actions, ag= m; S; Ai
be an agent prole, i;j be natural numbers and I AgentlDs. Then we have
the following special sets:

;» The empty set.

119

do nothing opera-
tion

5. EMMAS

P(X): The set of all subsets oK (i.e., its power set).

canReceivegn) = S

canEmit(n) = A

isj=fkji k jag

H;S;Ai = thid;S;Aij id 2 1g
The N ; S; Ai construction allows the concise speci cation of large sets of sim-
ilar agents. It is especially useful if the agent identi ers are natual numbers,
because in this case it can be used in association with thie:;j construction.

For example, if we know that agent identi ed by 1 up to 100 are all similar,
we can specify all of their pro les at once by writing hl::100, S; Ai.

Composite sets can be obtained by the usual operators ¢f (union), \ (inter-
section) and n (subtraction).

5.3.4 Predicates and Logical Formulas

Primitive predicates are necessary to specify conditions. Belowve de ne
relevant predicates forEMMAS

De nition 5.22. Let X be a set, ag = m;S;; Al and ag = m; Sp; Azl be
agent proles , a2 A; be an action and s2 S; be a stimulus. Then we have
the following predicates:

isConnectedags; a; s;aw): True if, and only if, there exists an action
transformer that takes action a from agent ag and transforms it in
stimulus s delivered to agent ag

ag = agp: True if, and only if, n = m.

ag 6 ag: True if, and only if, n 6 m.

Formulas can be obtained by using the usual logical connectives (negation),
A (conjunction), _ (disjunction) and ! (implication).

5.3.5 Quanti cation

In order to succinctly express arbitrary number either of choicesor of concur-
rent execution, it is convenient to de ne two special quanti cati on operators.

120

5.3. Convenience Elements and Operations

Given a set of possible parameters and a parameterized expressionegse op-
erators generate a new expression that corresponds to a composition of the
several instantiations that the given expression might have with repect to the
speci ed set of possible parameters.

De nition 5.23 (Universal quanti cation with sum) . Let Y be a nite set,
Exp() be an arbitrary expression, and~ormula be a logic formula that is obeyed
by the elements y;y2;:::yn 2 Y . Then the universal quanti cation with

sum is de ned as: universal quan-
tification with
8, y:Y jFormula Exp(y) = Exp(yr)+ EXp(y2) + :::+ EXp(yn) sum

De nition 5.24 (Universal quanti cation with parallel composition) . Let Y
be a nite set, Exp() be an arbitrary expression, andFormula be a logic for-
mula that is obeyed by the elements;yy,;:::yn 2 Y. Then the universal

guanti cation with parallel composition is de ned as: universal quan-
tification with
8y :Y jFormula Exp(y) = Exp(y1) k Exp(y2) k ::: kK EXp(yn) parallel composi-
tion

5.3.6 Complex Operations

Using the elements de ned above, it is possible to create a numbeof other
convenience operations. There are many possibilities for such operatis. Be-
low we give some examples that seem useful. We employ polymorphisnhere
appropriate to avoid creating new names and to show possible variations of
an operation.

Let S Stimuli be a set of stimuli, s 2 Stimuli be a stimulus, A Actions
be a set of actions, andAG, AG; and AG, be sets ofagent proles . Then
we have the following operations.

Stimulate several agents. A stimulus is delivered to the agents.

Stimulate(s; AG) = 8jag: AG j s 2 canReceivdag)
Stimulate(s; ag)

Stimulate several agents with several stimuli. Several stimuli are deliv-
ered to the agents.

Stimulate(S; AG) = 8js:S Stimulate(s; A)

Connect two sets of agents. Allows the creation of action transformers
between two speci ed sets of agents using the speci ed sets of aotis
and stimuli. This does not mandate that the action transformers should
actually be created. Rather, it speci es that it is possible for themto be

121

5. EMMAS

created. This allows one to consider all the possibilities of conneitins
between the two sets.

Connect(AG1; AG,; A;S) = 8j ag - AGq 8j ag : AG»
ga:rA 8;s: Sj
AGl\ AG, =7
a 2 canEmit(ag) *
s 2 canReceivdag)
Create(ag:; a; s; agp)

Connect agents in set. Similarly, allows the creation of action transformers
between the agents of a speci ed set using the speci ed sets of aotis
and stimuli.

Connect(AG; A;S) = 8jag : AG 8;ap : AG
ga:A 8;s: Sj
ag 6 agp
a 2 canEmit(ag) ®
s 2 canReceivdag)
Create(ag; a; s; ag)

Disconnect agent in a set. Destroys the action transformers between the
agents in the speci ed set.

Disconnect(AG) = 8jam : AG 8;ag : AG
8j a : canEmit(ag)
8is: canReceivda®) |
ag. 6 agp isConnectedag:; a; s; awp)
Destroy(ag; a; s; agp)

5.4 Conclusion

In this chapter we presentedEMMAS , a model of environments for multi-
agent systems. The proposed environments have both structural and opa-
tional aspects. That is to say, they represent certain structureswhich can then
be changed by certain operations. Theseperations serve to two purposes.
First, they provide a way to specify behaviours of the environmats themselves
(e.g., environment responses to the actions of agents). Second, theyi@ak the
succinct speci cation of several possible scenarios for an environmefe.g.,
several possible ways of stimulating agents). This latter possibity is one of
the great advantages o ered by the use of a process algebra as a semantic Isas
(e.g., an algebraic expressiom + b de nes the non-deterministic possibility of

122

5.4. Conclusion

either a or b), and to the best of our knowledge renders our approach unique
insofar as environments for MASs are concerned.

EMMAS is also distinctive in that it is designed to work with the Be-

haviourist Agent Architecture developed in Chapter[4. As seen in that
chapter, the agents strongly depend on an external environment, sincerob-

lems dealing with them must be specied in terms of the stimulation they

receive (from an environment) and the actions they produce (to an enwvon-

ment). In the present chapter we have seen how this can be accomghed,
for instance, with the operations given in Section[5.3.2 which provide ways
to manipulate stimulation. In Chapter 9|we shall see concrete applicabn

examples.

In our implementation, an EMMAS speci cation is provided as a XML de-
scription. This practical aspect is presented in Chapter 8, and a redrence of
the input format is given in Appendix C]

The semantics oEMMAS is given in two stages. First, its elements are trans-
lated to -calculus expressions. This was accomplished in this chapter. The
second stage consists in computing the semantics of suchcalculus expres-
sions in terms of transition systems. This is crucial, because theeri cation
algorithms we develop later on will operate on such transition systems, ath
not on -calculus expressions. However, this second stage is describedtie
next chapter. The reason for this is simple: transition systems cortiute a
formalism in their own right, and at a di erent level of abstraction. We have
therefore put them in a chapter of their own, in which we present hese struc-
tures in their general form and then use them to produce the nal senantics
of EMMAS

123

Part Il

Formal Analysis and Veri cation

125

CHAPTER

Transition Systems and
Semantics

Formal veri cation requires formal structures to operate on. This chapter
introduces such structures as the underlying semantics of the MSs to be
investigated. We rst present, in Section[6.1, the notion of annotated tran-
sition systems (ATSs) , the formal structures to be operated on. In Section
[6.7, then, we employ these transition systems to give the semanticsf EM-
MAS , the environment model presented in Chapter . This is achieved Y
considering the -calculus translation provided in Chapter[5, and employing
the -calculus operational semantics and certain constraints to build anATS
that de nes the possible evolutions of an environment. Although anEMMAS
speci cation is syntactically nite, the corresponding ATS that gives its se-
mantics possibly has in nitely many states. This semantics is indgpendent of
any particular application, and in particular is not restricted to simu lations
{ it is a general semantics. For the purpose of simulation and the related
veri cation technique, it will have to be modi ed. The main reason is that
to perform simulations e ciently it will be necessary to make the semantics
more concrete. But since this is an implementation concern, this povision is
left for Chapter [/} Finally, Section concludes the chapter.

6.1 Annotated Transition Systems

While there may be many ways to specify the systems and their proerties
(e.g., programming languages, process algebras, logic), it is conveniemnt have
a simple and canonical representation to serve as their common undeiityg
semantic model. Here, we de ne and employnnotated transition systems

127

event

input event
output event
internal event

other event

annotated transi-
tion system (ATS)

states

6. Transition Systems and Semantics

(ATSs) to this end, which are nothing but transition systems with labels given
to both states and transitions.

The ATS de nition is very similar to what is merely called a transition syst em
by Baier and Katoen (2008). We think, however, that it is worth to emphasize
that it is a special kind of transition system, in order to avoid confuson. In
particular, an ATS is not what is usually called a labelled transition system
(LTS). In an LTS, states are not labelled, the set of events may be innite
(Milner, 1999, p. 16). In the ATSs , by contrast, states may be labelled (i.e.,
\annotated", as we say, to avoid confusion) and the set of events is nite

In an ATS , events play a central role, and are further divided into input
events and output events . The former represent events that may be con-
trolled by the veri cation procedure (i.e., may be given as an input to the
simulator), and the latter events that cannot (e.g., because they are tle out-
put of some internal { and uncontrollable { behaviour of the simulator). T wo
special events are also provided. First, theinternal event () denotes an
event that takes place but whose precise identity is not known: Second, the
other event () represents an event that, given a states, matches anyin-
put or output event e, provided that e is not part of a transition leaving
s. That is to say, the other event is a convenience to allow the speci cation
of a default transition for the events that are not explicitly mentioned in any
given state. Such a default transition, moreover, simpli es calcuations during
veri cation, since only one event must be considered instead of a seif several
events. The following de nition establishes all these possible ikds of events.

De nition 6.1 (Events). Let N be a primitive set of names. Anevent is
one of the following:

an input event , denoted by?n for some n2 N .
an output event , denoted® by In for some n2 N .
the internal event , denoted by , such that 2 N .

the other event , denoted by , such that 2N .

An ATS is then de ned as follows.

De nition 6.2 (Annotated Transition System). An annotated transition
system (ATS) s atuplehS;E;P;! ;L;si such that:

S is the set of primitive states .

1This concerns our ATSs , but note that the -calculus itself de nes such an internal
event as well.
2Not to be confused with the replication operator of the -calculus.

128

6.1. Annotated Transition Systems

E is the nite set of events .
P is the nite set of primitive propositions.
I S E S is the transition relation.

For any s2 S and e2 E, there are only nitely many s°2 S such that
s1° s9(i.e., nite branching).

L:S7! P(P[: P)is the labelling function of states.?

Foralls 2 Sandallp2 P, if p 2 L(s), then: p 62L(s) (i.e., the
labelling function is consistent).

So 2 S is the initial state .

The labelling function associates literal$, and not merely propositions, to the
states . This allows the speci cation that some propositions are known to be
false in astate (i.e.,: p), but also that other propositions are not known (i.e.,
in case neitherp nor : p are assigned to the state). This last possibility is
convenient for modelling situations in which the truth value of a proposition
cannot be assessed, as it may happen in experimental situations.

Thus, an ATS represents some system that has severatates, each one pos-
sessing a number of attributes, and a number of transition choices. he sys-
tem progresses by choosing, at evergtate , a transition that leads to another
state through someevent. Given an ATS , any such particular sequence of
its events and states is called arun .

is a arun of the ATS . Let us denote this sequence by. Then its length,
denoted byj |, is n +1. Moreover, we also denote by %e, 1:s,, where ©

The set of all possibleruns of an ATS can also be de ned.

De nition 6.4 (runs() Function). Let M be an ATS . Then the set of all
runs of M is denoted by:

runs(M)

3As indicated in Section by P(P [: P) we mean the power setof P [: P) (i.e,,
the set of all subsets of P [: P)), and by : P we mean the setf: pjp2Pg.

“4For any proposition p, its associate literal | is de ned eitherby | = porl = : p. Inthe
former case, we say it is apositive literal , whereas in the latter we say it is a negative literal.

129

run

subrun

vocabulary

6. Transition Systems and Semantics

Figure 6.1: Examples of anATS . Transitions are annotated with events (i.e., ?a,
?b, ?c, ?e, 'f, !d) and states are annotated with literals (i.e., X, y, z). The dots
(:::) denote that the ATS continues beyond thestates shown (it may have in nitely
many states).

6.2 EMMAS Semantics

As seen in Chapter 5, the semantics oEMMAS is given in two main steps.
First, a translation from the elements of EMMAS to -calculus expressions
is provided, and this was done in that chapter. The second step consis in
using the -calculus operational semantics, as well as some other restrictions
we introduce, in order to transform these -calculus expressions into transi-
tion systems { more precisely, into ATSs . In this section we accomplish this
latter step. Section[6.2.] presents some preliminary structuresBuilding on
these elements, Sectioh 6.2/2 presents the actual construction oféftransition
systems.

6.2.1 Preliminary De nitions

The model must have a way to e ectively interact with the agents of an MAS.
Agents may trigger events that have a meaning in the environment spec-

i cation (e.g., the performance of an action). Conversely, the environnent
speci cation may request the performance of an operation (e.g., to stira-
late an agent). We ful | such requirements by providing both a vocabulary

in which a few primitives are de ned and a de nition for what constit utes
an environment status with respect to these primitives. These de nitions
emanate from the agent model provided in Chaptef 4, and can be seen as
interfaces that allow an environment to communicate with its agents.

De nition 6.5 (Vocabulary). A vocabulary is a tuple
hStimuli ; Actions ; AgentIDs; Propositionsi

130

6.2. EMMAS Semantics

such that;

Stimuli is a nite set of stimuli;
Actions is a nite set of actions;
AgentlDs is a nite set of agent identi ers;

Propositions is a nite set of atomic propositions.

The setsStimuli, Actions, AgentlDs and Propositions de ne, respectively, all
available stimuli, actions, agent identi ers and atomic propositions. These are
sets containing primitive, unstructured, elements.

Moreover, the setsStimuli and Actions must re ect the actual agents being
considered. In Chapter[4 we saw that the agents interact with their evi-
ronment by means of stimuli (see p.[6p) and actions (see f. 5) { but each
agent can, in principle, adopt di erent stimuli and actions. Therefore, the
sets Stimuli and Actions introduced here must contain the stimuli and ac-
tions adopted by each agent.

The environment status , in turn, describes the dynamic connection between
the agents of Chapter[4 and the environment described in the presenthapter:
the actual values of the functions de ned therein re ect the state of the agents,
which can (and normally will) change as the MAS evolves.

De nition 6.6 (Environment Status). An environment status is a tuple environment
tus

hStimulation ; ResponseLiterals i

such that:

Stimulation : AgentIDs Stimuli ! f Beginning; Stable Ending; Absentg;
Response: AgentIDs Actions ! f Emitting ; NotEmitting g;
Literals Propositions [: Propositions.

The Stimulation function gives the stimulation of a particular agent by a

particular stimulus. Agent stimulation is not an instantaneous operation. As
de ned in Chapter @] the agents di erentiate the beginning, the stable phase,

®From the semantic point of view considered in the present chapter, these functions are
merely given (i.e., they are assumed to exist). How they are actually computed is a topic
pertaining to the implementation of the simulator, to be seen i n Chapter E|

131

sta-

6. Transition Systems and Semantics

the ending, and the absence of a particular stimulation. Hence, we prdde
the appropriate elements in the function's range.

The Responsefunction keeps track of the actions being emitted by the agents.
In accordance with the agent architecture, we assume that actions begin ah
end instantaneously, and therefore we de ne only two elements in te func-
tion's range.

Finally, the Literals set contains propositions and their negations. This allows
the speci cation of more general constraints that are not immediately rdated
to stimulation or behavioural responses.

6.2.2 Building the Transition System

Given an environment Env, we build an environment ATS in two steps.
First, we consider the transition system induced by|Env| and show how to
transform it into an ATS whosestates are each annotated with an environ-
ment status (De nition §.6). Then, we subject the resulting ATS to some
restrictions concerning its possible runs, thereby obtaining tle environment
ATS , which describes all the legal evolutions of the MAS.

6.2.2.1 Step 1. Fromthe -calculus LTS to the Unrestricted
Environment ATS

In order to obtain the desired behaviour, we had to restrict most -calculus
names on theenvironment (De nition For instance, this ensured that
emit] pre x would only take place if its counterpart emit] was available else-
where in the environment , by means of theCOM rule of the -calculus oper-
ational semantics (De nition E.5). However, in the corresponding -calculus
LTS, this reaction, like any other, appears merely as an internal pre x (i.e.,
the pre x). While this provides the correct structure to the LTS, it also
hides the causes of such transitions. This poses a problem, since nmost sit-
uations we would like to know which events led to the transitions that took
place.

A solution to this issue is to merely transform each such pre x into an
appropriate input or output event for the ATSs , as described in Chapter
[7. To di erentiate these events from the -calculus pre xes, we denote them
by ?n (input) and In (output), wheren is somename. Sometimes, however,
the underlying input and output pre xes are not useful, because they pertain
only to the internal machinery of the environment, and in such cases & leave
the pre xin place. All of this is formalized by the following econv function,
which takes -calculus pre xes and map them to the appropriate events .

132

6.2. EMMAS Semantics

De nition 6.7 (Event Conversion Function). Let Proc; and Proc, be -
calculus processes, | a -calculus event, a, x and y arbitrary names, and
the transition relation induced by the -calculus operational semantics (De -

o [. .
nition E.5) such that Proc, Proc,. Then the event conversion function event conversion
econv is de ned by the following rules: function
If | = , and it was obtained in Proc, by the internal reaction of some
al (x) and & hyi such that a2 f emit; stopg, then econy(Procy; |; Proc;) =
2al ;
If | = , and it was obtained in Prog by the internal reaction of some

aij (x) and é{ tyi such that a 2 f absent beginning; stable endingg, then
econV(Procy; |; Procy) =! &/ ;

If1 = and none of the previous cases hold, then ecofRroc; |; Procy) =
as well;

In the above de nition, the rst rule de nes that pre xes pertain ing to agent
action shall beinput events in the ATS . This means that the event shall be
given by some external source as an input. The second rule, in turn, de nes
that all pre xes concerning stimulation are transformed in output events
That is to say, such events are to be givento some external receptor. We
shall see in Chapter ¥ that the external source and receptor, in this hesis, is
the simulator which controls the agents. At that point it will be clear t hat
this di erence between output and input is fundamental, since in one case the
simulation may always proceed, whereas in the other case it depends: a
condition which is not certain to be ful lled.

The states of the original -calculus LTS must also be augmented with con-
textual information relevant to the ATS . Thus, besides the original -calculus
process, thestate will also contain an environment status tuple that we

saw earlier, resulting in the following form.

De nition 6.8 (Environment State). Let Env be an environment and Proc

be a -calculus process obtained by applying-calculus operational semantics

rules to [Env] . Moreover, let hStimulation; ResponselLiteralsi be anenvi-

ronment status . Then an environment state is de ned as the following environment state
pair:

(Proc; hStimulation ; ResponseLiteralsi)
By this construction, at any point of the ATS we shall be able to know
both what is the current situation of the agents in so far as the environmet is

concerned (because of the added environment status) and what are the psible
changes from that point (because of the -calculus operational semantics).

133

unrestricted envi-
ronment ATS

6. Transition Systems and Semantics

At last, given a method of obtaining the relevant events , and the form of the
environment states , we now de ne the unrestricted environment ATS
inductively.

De nition 6.9 (Unrestricted Environment ATS) . Let Env be an environ-
ment (De nition and let be the transition relation induced by the
-calculus operational semantics (De nition E.5). Then the unrestricted

envionment ATS ©S;E;P;! ;L;si is such that:

P = Propositions;
S and! are constructed inductively as follows:

{ Initial state . sp=([Env] ;es) 2 S, where
es = hStimulation ; ResponselLiteralsi such that L(sp) = Literals
and for all a 2 Actions, s 2 Stimuli, and n 2 AgentlDs we have
Stimulation (n; s) = Absent and Responsén; a) = NotEmitting .

{ Other states and transitions
If s; = (Procy; hStimulations; Response; Literals1i) 2 S,
then $ = (Procy; hStimulation,; Response; Literalssi) 2 S, § 1©
S, € 2 E and L(sp) = Literals, if and only if:

There exists a -calculus event | such that Prog | Proc, and
e = econv(Procs; |; Procy);

Stimulation, is de ned with respect to Proc, according to Def-
inition €111

This de nition can be summarized as follows. TheATS has an initial state ,

which is made of the -calculus process of somenvironment , as well as an
environment status that says that all actions are not being emitted, and
that all stimuli are absent in every agent. From this initial state we begin
the construction of the remaining (reachable) states and of the transition

relation. This is accomplished by using the -calculus operational semantics to
know the available transitions at any given state , and augment the reachable
states with environment status. This procedure is repeated to every na/

state introduced until there are no new transitions possible.

To proceed with this construction, we need a number of de nitions Let us
begin by providing a way to observe the internal transitions of an eniwronment,
which is a fundamental capability that we need before proceeding. Aseen in
De nition §.6,|an environment's -calculus process has a number of restrictions
that would prevent such observations (i.e., the transitions would beinternal
to the process and not discernible in the LTS). It is, however, wssible to
characterize these restrictions syntactically, and thus we may povide a simple

134

6.2. EMMAS Semantics

method to remove them when needed. This is accomplished by thellowing
environment unrestriction function unr.

De nition 6.10 (Environment Unrestriction Function) . Let P and Q be -
calculus processes such that

where fen;:::;enng = ENames. Then the environment unrestriction
function is dened as unr(P)= Q.

We may now de ne the Stimulation function present in eachstate as follows.

De nition 6.11 (Stimulation) . Let (Proc; hStimulation ; ResponselLiteralsi)
be anenvironment state . Moreover, let! be the transition relation induced
by the -calculus operational semantics. Then, for all s2 Stimuli and n 2
AgentlDs, we have:

Absent if 9P%Such thatunr(P) 1M%< po
Beginning if 9P%uch thatunr(P) *1'* po
Stable if 9P%Such thatunr(P) *"1"% po
Ending if 9P%uch thatunr(P) *7*" pO

Stimulation (n;s) =

* VAW AV VY ee)

The Stimulation de nition establishes the status of a particular stimulation

based on the order that stimulations must change (see De nition[5.7). For
instance, if a process is capable of receiving beginning' event, it must be

the case that stimulus s is currently absent in agent identied by n. The
Stimulation function, therefore, merely gives a way of reading the -calculus
LTS in order to have this information explicitly for every agent and stimulus
in any given process.

On the other hand, both the Responsefunction and the Literals set are as-
sumed as given. In Chapterl ¥ we will see that the simulator provides Hheir
values according to the current simulation state. Thus, we do not ned to
formally de ne them here. However, Responseimposes some constraints on
the ATS , which we must specify and take into account.

6.2.2.2 Step 2: From the Unrestricted Environment ATS to the
Environment ATS

The unrestricted environment ATS we have obtained so far is an over-
approximation of the desired ATS . It contains runs which are not supposed to
be part of the model. For instance, if an agent identi ed by n is still emitting

135

environment unre-
striction function

6. Transition Systems and Semantics

an action a, it cannot be the case that the event ?stop] takes place, since
this would indicate that the agent is not emitting the action (a contradi ction).
Such problems arise because the relation between thecalculus speci cation
and the contextual information about the agents (i.e., the functions in an
environment status) has not yet been considered. To handle this issue,
the following constraints are used to prune theunrestricted environment

ATS .

De nition 6.12 (Transitions Constraints). Let

s1 = (Pq;hStimulation; Response; Literals i) and s be states of anATS
hS;E;P;! ;L;si. Then the transition s; 1© s, is forbidden if one of the
cases hold:

There exists a2 Actions and n 2 AgentlDs such that:

{ Responseg(n;a) = Emitting ;
{ e=2?stop].

There exists a2 Actions and n 2 AgentlDs such that:

{ Responseg(n;a) = NotEmitting ;

{ e=?emit].
There exists a2 Actions and n 2 AgentlDs such that:

{ Response(n;a) = Emitting ;
{ Response(n;a) = NotEmitting ;

{ there exists an €2 S such that § Mta 50
There exists a2 Actions and n 2 AgentlDs such that:

{ Responseg(n;a) = NotEmitting ;
{ Response(n;a) = Emitting ;

{ there exists an £2 S such that § oPa 50

The rst constraint asserts that if an agent identied by n is emitting an
action a, then it cannot produce the %stop] event to proceed to a new state.
Conversely, the second constraint states that if the agent is not emiting such
an action, then it cannot produce the Zmit] event. The third constraint
asserts that if the agent is emitting the action in a givenstate , and it proceeds
to a state in which it might no longer emitting such an action, then it must
not be the case that some process was still ready to receive that action.é¢.,
by producing the input event “?emit]). This means that it can only stop

136

6.3. Conclusion

emitting an action when the action has already produced all of its e ects
The nal constraint is the counterpart for stopping an emission. Hence,if an
agent is not emitting some action, and then it start emitting it, it mus t not
be the case that some process was still ready to receive the stop sigrak.,
by producing the input event ?stop}).

With such restrictions in place, we may now proceed to the de ntion of the
nal Environment ATS

De nition 6.13 (Environment ATS) . Let M be anunrestricted environ-
ment ATS (De nition Then the environment ATS M %is equal to
M pruned according to transition constraints (De nition 6.1 2).

This environment ATS possibly has in nitely many states, since there
could be evolutions of the MAS that always result in newstates . This arises
because the underlying -calculus process may contain recursive de nitions
and the use of the replication operator that ensure that the transition system
can always move into a new state.

6.3 Conclusion

We have seen in this chapter a special kind of transition system wigch we
have called ATS . Using such structures, we managed to provide the seman-
tics of EMMAS . We have therefore reduced the problem of analysing the
environment of an MAS to the one of analysing anATS .

The semantics given, however, is not geared towards any particular apjgation
of the MAS being modelled { it is a general semantics. In particular, dcetails
necessary for the simulation of anEMMAS environment are not present.
This shows that EMMAS is capable of representing MASs independently of
their implementation (e.g., as a simulation), which is a desirable éature, and
for this reason we have proceeded in this way. Nevertheless, forépurposes of
the veri cation technique, it will be necessary to introduce new characteristics
in the semantics. Accordingly, we have left this provision for Chaper[7, which
is also where the veri cation technique is presented.

137

environment ATS

CHAPTER

Veri cation Technigue

In this chapter we present our approach to the formal veri cation of the multi-
agent systems composed by the agents and environments described irepious
chapters. In Section[I.]1 of Chapter[L we saw that in this thesis we vie
veri cation as a means of performing experiments in an automated way. Tlis
means that given a system modeM and a property SP, we determine whether
M satis es SP in a number of precise senses that we introduce. Notably, there
is a sense in which the satisfaction oSP provides the instructions of how to
bring it about, in the spirit of the experimental perspective we take (i.e., by
showing how to construct a successful experiment out of severalogsibilities).
All this is accomplished by algorithms that perform on-the- y explorati ons in
M.

Formally, M is an annotated transition system (ATS) (possibly with
in nitely many states) and SP is a simulation purpose . The former
represents anEMMAS environment , while the latter is introduced in the

present chapter { but for the moment it su ces noting thatitisa ni te ATS

subject to certain extra restrictions. Veri cation is achieved by considering
the synchronous product of these two transition systems. The algorithms
perform depth- rst searches on this synchronous product , which is built
on-the-y. These searches are limited to a maximum depthdepthynax, Since
there might be branches of in nite length in the search tree.

These characteristics lead to many parameters to be accounted for in
statement of the complexities. In a few words, the complexity in sp@ce is
polynomial with respect to the size of theenvironment and other parameters,
and the complexity in time is exponential with respect to depthnax. The
complete development of these calculations is provided in Sectidn §.of this
chapter.

139

7. \Veri cation Technique

The technique described here is designed to work with thEMMAS environ-

ments, whose semantics was given in Chapt¢l] 6. However, in order to sirtate

(a precondition for veri cation) such environments, it is necessay to introduce

certain implementation considerations in their semantics. Since his concerns
the particular application of EMMAS to simulation, and not its general role
with respect to MASs, we address this issue in this chapter as well

We divide the presentation as follows. First, in Section[7.1l we exg@lin the
necessity and make the required adjustments in the semantics #MMAS so
that the resulting ATS can be used for simulations. In Sectiof 7]2, we de ne
precisely what simulation purposes are. In Section[7.3, we present ayn-
chronous product that provides the basis for veri cation. Then, in Section
[7.4 we de ne the satis ability relations of interest. Based on these,in Section
we provide the veri cation algorithms themselves, and explain iformally
how they work. More rigorous analyses concerning soundness, completss
and worst-case complexities are given in Section 7.6. We nish with some
concluding remarks in Section[7.]f. Actual execution of these algorithmssi
postponed until Chapter [9.

7.1 Making the Environment ATS Suitable for
Simulation and Veri cation

The semantics we provided toEMMAS in Chapter [is su cient to describe
all the relevant evolutions of any given environment, in the form of anATS ,
without making reference to implementation details. In particular, this ab-
stract model does not de ne precisely how a simulation based oitMMAS
should be carried out. However, since the veri cation technique idased on the
possibility of simulating an MAS, it is necessary, before proceedig, to make
the semantics provided there more concrete so that eactun in the nal ATS
corresponds to something that can be directly and e ciently simulated.

The problem lies in how the simulator is supposed to interact with the agents
while obeying the restrictions imposed by De nition [6.12. These refrictions

forbid certain transitions from happening by employing both precondtions

(i.e., what must be true in the current state) and postconditions (i.e., what
must be true in the next state). During simulations, the preconditions can
be assessed merely by examining the current simulation state. Buthe post-
conditions can only be known after the transition is simulated. If after this it

is found that the postconditions are violated, then it is necessary to lacktrack
to the previous state and try another transition. Clearly, it would be more
e cient to have a way to be sure a priori that the postconditions will hold,

instead of having to test them and backtrack if needed.

140

	Overview

