
�>���G �A�/�, �i�2�H�@�y�y�e�8�e�3�y�N

�?�i�i�T�b�,�f�f�i�2�H�X���`�+�?�B�p�2�b�@�Q�m�p�2�`�i�2�b�X�7�`�f�i�2�H�@�y�y�e�8�e�3�y�N

�a�m�#�K�B�i�i�2�/ �Q�M �8 �C���M �k�y�R�k

�>���G �B�b �� �K�m�H�i�B�@�/�B�b�+�B�T�H�B�M���`�v �Q�T�2�M ���+�+�2�b�b
���`�+�?�B�p�2 �7�Q�` �i�?�2 �/�2�T�Q�b�B�i ���M�/ �/�B�b�b�2�K�B�M���i�B�Q�M �Q�7 �b�+�B�@
�2�M�i�B�}�+ �`�2�b�2���`�+�? �/�Q�+�m�K�2�M�i�b�- �r�?�2�i�?�2�` �i�?�2�v ���`�2 �T�m�#�@
�H�B�b�?�2�/ �Q�` �M�Q�i�X �h�?�2 �/�Q�+�m�K�2�M�i�b �K���v �+�Q�K�2 �7�`�Q�K
�i�2���+�?�B�M�; ���M�/ �`�2�b�2���`�+�? �B�M�b�i�B�i�m�i�B�Q�M�b �B�M �6�`���M�+�2 �Q�`
���#�`�Q���/�- �Q�` �7�`�Q�K �T�m�#�H�B�+ �Q�` �T�`�B�p���i�2 �`�2�b�2���`�+�? �+�2�M�i�2�`�b�X

�G�ö���`�+�?�B�p�2 �Q�m�p�2�`�i�2 �T�H�m�`�B�/�B�b�+�B�T�H�B�M���B�`�2�>���G�- �2�b�i
�/�2�b�i�B�M�û�2 ���m �/�û�T�¬�i �2�i �¨ �H�� �/�B�z�m�b�B�Q�M �/�2 �/�Q�+�m�K�2�M�i�b
�b�+�B�2�M�i�B�}�[�m�2�b �/�2 �M�B�p�2���m �`�2�+�?�2�`�+�?�2�- �T�m�#�H�B�û�b �Q�m �M�Q�M�-
�û�K���M���M�i �/�2�b �û�i���#�H�B�b�b�2�K�2�M�i�b �/�ö�2�M�b�2�B�;�M�2�K�2�M�i �2�i �/�2
�`�2�+�?�2�`�+�?�2 �7�`���M�Ï���B�b �Q�m �û�i�`���M�;�2�`�b�- �/�2�b �H���#�Q�`���i�Q�B�`�2�b
�T�m�#�H�B�+�b �Q�m �T�`�B�p�û�b�X

�o�û�`�B�}�+���i�B�Q�M �/�2�b �b�v�b�i���K�2�b �K�m�H�i�B�@���;�2�M�i�b
�+�Q�K�T�Q�`�i�2�K�2�M�i���H�B�b�i�2�b �T���` �H�2 �K�Q�v�2�M �/�2�b �b�B�K�m�H���i�B�Q�M�b

�7�Q�`�K�2�H�H�2�K�2�M�i �;�m�B�/�û�2�b
�S���m�H�Q �a���H�2�K �.�� �a���H�2�K �/�� �a�B�H�p�� �a�B�H�p��

�h�Q �+�B�i�2 �i�?�B�b �p�2�`�b�B�Q�M�,

�S���m�H�Q �a���H�2�K �.�� �a���H�2�K �/�� �a�B�H�p�� �a�B�H�p���X �o�û�`�B�}�+���i�B�Q�M �/�2�b �b�v�b�i���K�2�b �K�m�H�i�B�@���;�2�M�i�b �+�Q�K�T�Q�`�i�2�K�2�M�i���H�B�b�i�2�b
�T���` �H�2 �K�Q�v�2�M �/�2�b �b�B�K�m�H���i�B�Q�M�b �7�Q�`�K�2�H�H�2�K�2�M�i �;�m�B�/�û�2�b�X �P�i�?�2�` �(�+�b�X�P�>�)�X �l�M�B�p�2�`�b�B�i�û �S���`�B�b �a�m�/ �@ �S���`�B�b �s�A�c
�l�M�B�p�2�`�b�B�/���/�2 �/�2 �a�½�Q �S���m�H�Q �U�"�`�û�b�B�H�V�- �k�y�R�R�X �1�M�;�H�B�b�?�X ���L�L�h �, �k�y�R�R�S���R�R�k�k�e�d���X ���i�2�H�@�y�y�e�8�e�3�y�N��



UNIVERSITÉ PARIS-SUD 11

ÉCOLE DOCTORALE: Informatique

Laboratoire de Recherche en Informatique

DISCIPLINE Informatique

THÈSE DE DOCTORAT

en co-tutelle avec l'Universidade de São Paulo

soutenu le 28/11/2011

par

Paulo SALEM DA SILVA

Veri�cation of behaviourist multi-agent systems
by means of formally guided simulations

Co-directrice de thèse: Marie-Claude GAUDEL Professeur émérite (Université Paris-Sud 11)
Co-directrice de thèse: Ana Cristina VIEIRA DE MELO Professeur (Universidade de São Paulo)

Composition du jury:

Président du jury: Flavio SOARES CORREA DA SILVA Professeur (Universidade de São Paulo)
Rapporteurs: Augusto SAMPAIO Professeur (Universidade Federal de Pernambuco)

Jean-Pierre BRIOT Directeur de recherche (CNRS)
Examinateurs: Marcelo FINGER Professeur (Universidade de São Paulo)









Science in the course of the few centuries of its
history has undergone an internal development
which appears to be not yet completed. One
may sum up this development as the passage
from contemplation to manipulation.

{ Bertrand Russell, The Scienti�c Outlook





Acknowledgements

My gratitude goes to the people who helped me either in the technical and
intellectual developments themselves or in the surprisingly hard work involved
in getting these developments through the academic bureaucracy. As itis
usual, I fear I may forget important names and contributions, but an attempt
must be made to give credit to whom credit is due.

This thesis is the result of a cooperation between two universities, with an
advisor from each one. Both were essential during the whole process, with-
out them this work would not exist. Thanks to my Brazilian advisor, Ana
Cristina, I got to know many of the central technical notions used in this the-
sis. Moreover, her many advices and comments during the whole time enriched
my work considerably. I am also particularly grateful for her incentive for me
to pursue my interests and to work on my own ideas, with all the advantages
and disadvantages involved. Ana was also very helpful in every bureaucratic
challenge, which were numerous. My French advisor, Marie-Claude, provided
crucial technical feedback and suggestions, which greatly improved my work.
Her attention to detail and high standards were fundamental in bringing the
thesis to its current form. I am also thankful for her logistic and bureaucratic
support in France in every respect, often going well beyond her obligations,
without which I doubt my stay there { previously only an abstract concept to
me { could have worked as well as it did.

During the doctorate I also had very fruitful interactions with sev eral friends,
colleagues and professors, many of whom I found along the way. Through tech-
nical remarks, enlightening conversation and friendly support, they helped
in creating a sound and stimulating environment. I am specially thankful
for my time with Agnes Helena Chiuratto, Alvaro Heiji Miyazawa, Marcelo
Hashimoto, Matthias P. Krieger, Markus (Makarius) Wenzel, Zahia Gues-
soum, Leliane Nunes de Barros, Renata Wassermann, Domingos Soares Neto,
Carlos Cardonha, Mounir Lallali, Abderrahmane (Abdu) Feliachi, M�arcio
Moretto Ribeiro, Ricardo Herrmann, Johan Oudinet, Lina Bentakouk, Fran�cois-
�Elie Calvier, Domingos Dellamonica Jr, Juliana Barby Sim~ao, Ellen Hidemi
Fukuda, Thiago Palmieri, Gordana Manic, Ricardo Andrade and Wendel Scar-
dua. My parents, who put great value on a solid education, were also very

i



supportive of this enterprise.

This is an unusually long thesis, and I am grateful that the jury members
actually took the time to read it. They provided detailed and useful feedback,
which not only improved the text itself, but also gave me an opportunity to
reect in new ways about my work.

Finally, I would like to acknowledge the e�ective and professional secretarial
support I got from Pinho at USP and St�ephanie Druetta at Paris-Sud.



Abstract

Multi-agent systems (MASs) can be used to model phenomena that can be
decomposed into several interacting agents which exist within an environment.
In particular, they can be used to model human and animal societies, for the
purpose of analysing their properties by computational means. This thesis
is concerned with the automated analysis of a particular kind of such social
models, namely, those based on behaviourist principles, which contrasts with
the more dominant cognitive approaches found in the MAS literature. The
hallmark of behaviourist theories is the emphasis on the de�nition of behaviour
in terms of the interaction between agents and their environment. In this
manner, not merely reexive actions, but also learning, drives, and emotions
can be de�ned. More speci�cally, in this thesis we introduce a formal agent
architecture (speci�ed with the Z Notation) based on the Behaviour Analysis
theory of B. F. Skinner, and provide a suitable formal notion of environment
(based on the� -calculus process algebra) to bring such agents together as an
MAS.

Simulation is often used to analyse MASs. The techniques involved typically
consist in implementing and then simulating a MAS several times toeither
collect statistics or see what happens through animation. However, simula-
tions can be used in a more veri�cation-oriented manner if one considers that
they are actually explorations of large state-spaces. In this thesis we propose
a novel veri�cation technique based on this insight, which consists in simu-
lating a MAS in a guided way in order to check whether some hypothesis
about it holds or not. To this end, we leverage the prominent position that
environments have in the MASs of this thesis: the formal speci�cation of the
environment of a MAS serves to compute the possible evolutions of the MAS
as a transition system, thereby establishing the state-space to beinvestigated.
In this computation, agents are taken into account by being simulated inorder
to determine, at each environmental state, what their actions are. Eachsimu-
lation execution is a sequence of states in this state-space, which is computed
on-the-y, as the simulation progresses.

The hypothesis to be investigated, in turn, is given as another transition sys-
tem, called a simulation purpose, which de�nes the desirable and undesirable

iii



simulations (e.g., \every time the agent does X, it will do Y later"). I t is then
possible to check whether the MAS satis�es the simulation purpose according
to a number of precisely de�ned notions of satis�ability. Algorithmic ally, this
corresponds to building a synchronous product of these two transitions sys-
tems (i.e., the MAS's and the simulation purpose) on-the-y and using it to
operate a simulator. That is to say, the simulation purpose is used to guide
the simulator, so that only the relevant states are actually simulated. By the
end of such an algorithm, it delivers either a conclusive or an inconclusive
verdict. If conclusive, it becomes known whether the MAS satis�es the sim-
ulation purpose with respect to the observations made during simulations. If
inconclusive, it is possible to perform some adjustments and try again.

In summary, then, in this thesis we provide four novel elements: (i) an agent
architecture; (ii) a formal speci�cation of the environment of these agents,
so that they can be composed into an MAS; (iii) a structure to describe the
property of interest, which we named simulation purpose; and (iv) a technique
to formally analyse the resulting MAS with respect to a simulation purpose.
These elements are implemented in a tool, called Formally Guided Simulator
(FGS). Case studies executable in FGS are provided to illustratethe approach.

Keywords: multi-agent systems, behaviourism, environments, formal meth-
ods, formal veri�cation, simulation, model-based testing.

An extended version of this abstract is given in Section F.1 of Appendix F.



Resumo

Sistemas multi-agentes (SMAs) podem ser usados para modelar fenômenos
que podem ser decompostos em diversos agentes que interagem entre si den-
tro de um ambiente. Em particular, eles podem ser usados para modelar
sociedades humanas e animais, com a �nalidade de se analisar as suas pro-
priedades computacionalmente. Esta tese trata da an�alise automatizadade um
tipo particular de tais modelos sociais, a saber, aqueles baseados em princ��pios
behavioristas, o que contrasta com as abordagens cognitivas mais dominante
na literatura de SMAs. A principal caracter��stica das teorias behaviorista �e a
ênfase na de�ni�c~ao do comportamento em termos da intera�c~ao entre agentes
e seu ambiente. Desta forma, n~ao apenas a�c~oes reexivas, mas tamb�em de
aprendizado, motiva�c~oes, e as emo�c~oes podem ser de�nidas. Mais especi�ca-
mente, nesta tese apresentamos uma arquitetura de agentes formal (especi�-
cada atrav�es da Nota�c~ao Z) baseada na teoria da An�alise do Comportamento
de B. F. Skinner, e fornecemos uma no�c~ao adequada e formal de ambiente
(com base na �algebra de processos� -calculus) para colocar tais agentes juntos
em um SMA.

Simula�c~oes s~ao freq•uentemente utilizadas para se analisar SMAs. As t�ec-
nicas envolvidas tipicamente consistem em simular um SMA diversas vezes,
seja para coletar estat��sticas, seja para observar o que acontece atrav�es da
anima�c~oes. Contudo, simula�c~oes podem ser usadas de forma a pertmitir a
realiza�c~ao de veri�ca�c~oes automatizadas do SMA caso sejam entendidascomo
explora�c~oes de grandes espa�cos-de-estados. Nesta tese propomos uma t�ecnica
de veri�ca�c~ao baseada nessa observa�c~ao, que consiste em simular umSMA de
uma forma guiada, a �m de se determinar se uma dada hip�otese sobre ele �e
verdadeira ou n~ao. Para tal �m, tiramos proveito da importância que os am-
bientes têm nesta tese: a especi�ca�c~ao formal do ambiente de umSMA serve
para calcular as evolu�c~oes poss��veis do SMA como um sistema de transi�c~ao,
estabelecendo assim o espa�co-de-estados a ser investigado. Neste c�alculo, os
agentes s~ao levados em conta simulando-os, a �m de determinar, em cada es-
tado do ambiente, quais s~ao suas a�c~oes. Cada execu�c~ao da simula�c~ao �e uma
seq•uência de estados nesse espa�co-de-estados, que �e calculado em tempo de
execu�c~ao, conforme a simula�c~ao progride.

v



A hip�otese a ser investigada, por sua vez, �e dada como um outro sistema
de transi�c~ao, chamado prop�osito de simula�c~ao, o qual de�ne as simula�c~oes
desej�aveis e indesej�aveis (e.g., \sempre que o agente �zer X, ele far�a Y depois").
Em seguida, �e poss��vel veri�car se o SMA satisfaz o prop�osito de simula�c~ao de
acordo com uma s�erie de rela�c~oes de satisfatibilidade precisamente de�nidas.
Algoritmicamente, isso corresponde a construir um produto s��ncrono desses
dois sistemas de transi�c~oes (i.e., o do SMA e o do prop�osito de simula�c~ao) em
tempo de execu�c~ao e us�a-lo para operar um simulador. Ou seja, o prop�osito
de simula�c~ao �e usado para guiar o simulador, de modo que somente os estados
relevantes sejam efetivamente simulados. Ao terminar, um tal algoritmopode
fornecer um veredito conclusivo ou inconclusivo. Se conclusivo, descobre-se se
o SMA satisfaz ou n~ao o prop�osito de simula�c~ao com rela�c~ao �as observa�c~oes
feitas durante as simula�c~oes. Se inconclusivo, �e poss��vel realizar alguns ajustes
e tentar novamente.

Em resumo, portanto, nesta tese propomos quatro novos elementos: (i) uma
arquitetura de agente, (ii) uma especi�ca�c~ao formal do ambiente desses agentes,
de modo que possam ser compostos em um SMA, (iii) uma estrutura para
descrever a propriedade de interesse, a qual chamamos de prop�osito de simu-
la�c~ao, e (iv) uma t�ecnica para se analisar formalmente o SMA resultante com
rela�c~ao a um prop�osito de simula�c~ao. Esses elementos est~ao implementados
em uma ferramenta, denominada Simulador Formalmente Guiado (FGS, do
inglês Formally Guided Simulator). Estudos de caso execut�aveis no FGS s~ao
fornecidos para ilustrar a abordagem.

Palavras-chave: sistemas multi-agentes, comportamentalismo, ambientes,
m�etodos formais, veri�ca�c~ao formal, simula�c~ao, teste baseado em modelos.

Uma vers~ao estendida deste resumo �e dada na Se�c~ao F.2 do Apêndice F.



Résumé

Les syst�emes multi-agents (SMA) peuvent être utilis�e pour mod�eliser les ph�enom�enes
qui peuvent être d�ecompos�es en plusieurs agents qui interagissent et qui exis-
tent au sein d'un environnement. En particulier, ils peuvent être utilis�es pour
mod�eliser les soci�et�es humaines et animales, aux �ns de l'analyse de leurs
propri�et�es par des moyens de calcul. Cette th�ese est consacr�ee �a l'analyse
automatis�ee d'un type particulier de ces mod�eles sociaux, �a savoir, celles qui
sont fond�ees sur les principes comportementalistes, qui contrastent avec les
approches cognitives plus dominante dans la litt�erature des SMAs. Lacarac-
t�eristique des th�eories comportementalistes est l'accent missur la d�e�nition
des comportements bas�ee sur l'interaction entre les agents et leurenviron-
nement. De cette mani�ere, non seulement des actions r�eexives, mais aussi
d'apprentissage, les motivations, et les �emotions peuvent être d�e�nies. Plus
pr�ecis�ement, dans cette th�ese, nous introduisons une architecture formelle
d'agent (sp�eci��ee avec la Notation Z) bas�ee sur la th�eorie d'analys e com-
portementale de B. F. Skinner, ainsi que une notion appropri�ee et formelle de
l'environnement (bas�ee sur l'alg�ebre de processus� -calculus) pour mettre ces
agents ensemble dans un SMA.

La simulation est souvent utilis�ee pour analyser les SMAs. Les techniques
consistent g�en�eralement �a simuler le SMA plusieurs fois, soit pour recueillir des
statistiques, soit pour voir ce qui se passe �a travers l'animation. Toutefois, les
simulations peuvent être utilis�es d'une mani�ere plus orient�ee vers la v�eri�cation
si on consid�ere qu'elles sont en r�ealit�e des explorations de grandes espaces
d'�etats. Dans cette th�ese nous proposons une technique de v�eri�cation nouvelle
bas�e sur cette id�ee, qui consiste �a simuler un SMA de mani�ere guid�ee, a�n
de v�eri�er si quelques hypoth�eses sur lui sont con�rm�ees ou non. �A cette
�n, nous tirons pro�t de la position privil�egi�ee que les environne ments sont
dans les SMAs de cette th�ese: la sp�eci�cation formelle de l'environnement
d'un SMA sert �a calculer les �evolutions possibles du SMA comme unsyst�eme
de transition, �etablissant ainsi l'espace d'�etats �a v�eri�er. D ans ce calcul, les
agents sont pris en compte en les simulant a�n de d�eterminer, �a chaque �etat de
l'environnement, quelles sont leurs actions. Chaque ex�ecution de la simulation
est une s�equence d'�etats dans cet espace d'�etats, qui est calcul�ee �a la vol�ee, au

vii



fur et �a mesure que la simulation progresse.

L'hypoth�ese �a �etudier, �a son tour, est donn�ee comme un autre sys t�eme de
transition, appel�e objectif de simulation, qui d�e�nit les simul ations d�esirables
et ind�esirables (e.g., \chaque fois que l'agent fait X, il fera Y plus tard"). Il
est alors possible de v�eri�er si le SMA est conforme �a l'objectif de simulation
selon un certain nombre de notions de satis�abilit�e tr�es pr�ecises. Algorith-
miquement, cela correspond �a la construction d'un produit synchrone de ces
deux syst�emes de transitions (i.e., celui du SMA et l'objectif de simulation)
�a la vol�ee et �a l'utiliser pour faire fonctionner un simulateur. C'est-�a-dire,
l'objectif de simulation est utilis�e pour guider le simulateur, d e sorte que seuls
les �etats concern�es sont en r�ealit�e simul�es. �A la �n d'un tel algorithme, il
d�elivre un verdict concluant ou non concluant. Si c'est concluant, il est connu
que le SMA est conforme �a l'objectif de simulation par rapport aux obser-
vations qui ont �et�e faites lors des simulations. Si c'est non-concluant, il est
possible d'e�ectuer quelques ajustements et essayer �a nouveau.

En r�esum�e, donc, dans cette th�ese nous fournissons quatre nouveaux �el�ements:
(i) une architecture d'agent; (ii) une sp�eci�cation formelle de l 'environnement
de ces agents, a�n qu'ils puissent être compos�es comme un SMA; (iii) une
structure pour d�ecrire les propri�et�es d'int�erêt, que nou s avons nomm�ee objectif
de simulation, et (iv) une technique pour l'analyse formelle du SMAr�esultant
par rapport �a un objectif de simulation. Ces �el�ements sont mis en � uvre dans
un outil, appel�e Simulateur Formellement Guid�e (FGS, de l'Anglai s Formally
Guided Simulator). Des �etudes de cas ex�ecutables dans FGS sont fournies
pour illustrer l'approche.

Mots-cl�es: syst�emes multi-agents, comportementalisme, environements, m�eth-
odes formelles, v�eri�cation formelle, simulation, test bas�e sur des mod�eles.

Une version �etendu de ce r�esum�e est donn�e dans la SectionF.3 de l'Annexe
F.



Contents

I Overview 1

1 Introduction 3
1.1 Automation of Experiments . . . . . . . . . . . . . . . . . . . . 9
1.2 Notation and other Conventions . . . . . . . . . . . . . . . . . 11
1.3 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Related Work 13
2.1 Autonomous Agents and Multi-Agent Systems . . . . . . . . . 13

2.1.1 Agent Models and Architectures . . . . . . . . . . . . . 14
2.1.2 Environments in Multi-Agent Systems . . . . . . . . . . 20
2.1.3 Multi-Agent Based Simulation . . . . . . . . . . . . . . 22

2.2 Formal Veri�cation . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.1 Model Checking . . . . . . . . . . . . . . . . . . . . . . 23
2.2.2 Model-Based Testing . . . . . . . . . . . . . . . . . . . . 24
2.2.3 Runtime Veri�cation . . . . . . . . . . . . . . . . . . . . 26
2.2.4 Process Algebras . . . . . . . . . . . . . . . . . . . . . . 27
2.2.5 Formal Development . . . . . . . . . . . . . . . . . . . . 28

2.3 Other Inuences . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3.1 Non-Agent Based Simulation Methods . . . . . . . . . . 28
2.3.2 Software Components . . . . . . . . . . . . . . . . . . . 29

2.4 Formal Approaches to Multi-Agent Systems . . . . . . . . . . . 30
2.4.1 Formal Speci�cation of Agent Architectures . . . . . . . 30
2.4.2 Formal Speci�cation of Environments . . . . . . . . . . 30
2.4.3 Formal Veri�cation and MAS Simulation . . . . . . . . 31
2.4.4 Model Checking of MAS . . . . . . . . . . . . . . . . . . 31

3 Contribution of this Thesis 33
3.1 Agent Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1.1 Comparison with Other Approaches . . . . . . . . . . . 36
3.2 Environment Model . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.1 Comparison with Other Approaches . . . . . . . . . . . 43
3.3 Transition Systems and Semantics . . . . . . . . . . . . . . . . 45

3.3.1 Comparison with Other Approaches . . . . . . . . . . . 45

ix



3.4 Veri�cation Technique . . . . . . . . . . . . . . . . . . . . . . . 46
3.4.1 Comparison with Other Approaches . . . . . . . . . . . 49

3.5 Tool Implementation . . . . . . . . . . . . . . . . . . . . . . . . 51
3.5.1 Comparison with Other Approaches . . . . . . . . . . . 52

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

II Multi-Agent Systems 57

4 Behaviourist Agent Architecture 59
4.1 Adaptation and Learning . . . . . . . . . . . . . . . . . . . . . 60
4.2 Formal Speci�cation . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2.1 Preliminary De�nitions . . . . . . . . . . . . . . . . . . 63
4.2.2 Stimulation . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.2.3 General Responding . . . . . . . . . . . . . . . . . . . . 73
4.2.4 Operant Behaviour . . . . . . . . . . . . . . . . . . . . . 83
4.2.5 Respondent Behaviour . . . . . . . . . . . . . . . . . . . 92
4.2.6 Drives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.2.7 Emotions . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.2.8 Subsystems Integration . . . . . . . . . . . . . . . . . . 102

4.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5 EMMAS 105
5.1 The Role of Environments . . . . . . . . . . . . . . . . . . . . . 107
5.2 Environment Model . . . . . . . . . . . . . . . . . . . . . . . . 108

5.2.1 Underlying Elementary � -Calculus Events . . . . . . . . 109
5.2.2 Environment Operations . . . . . . . . . . . . . . . . . . 110
5.2.3 Environment Structures . . . . . . . . . . . . . . . . . . 111

5.3 Convenience Elements and Operations . . . . . . . . . . . . . . 115
5.3.1 Composition Operators . . . . . . . . . . . . . . . . . . 115
5.3.2 Core Operations . . . . . . . . . . . . . . . . . . . . . . 117
5.3.3 Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.3.4 Predicates and Logical Formulas . . . . . . . . . . . . . 120
5.3.5 Quanti�cation . . . . . . . . . . . . . . . . . . . . . . . 120
5.3.6 Complex Operations . . . . . . . . . . . . . . . . . . . . 121

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

IIIFormal Analysis and Veri�cation 125

6 Transition Systems and Semantics 127
6.1 Annotated Transition Systems . . . . . . . . . . . . . . . . . . 127
6.2 EMMAS Semantics . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.2.1 Preliminary De�nitions . . . . . . . . . . . . . . . . . . 130



6.2.2 Building the Transition System . . . . . . . . . . . . . . 132
6.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

7 Veri�cation Technique 139
7.1 Making the Env. ATS Suitable for Sim. and Verif. . . . . . . . 140

7.1.1 Step 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
7.1.2 Step 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

7.2 Simulation Purposes . . . . . . . . . . . . . . . . . . . . . . . . 147
7.3 Synchronous Product of an ATS and a SP . . . . . . . . . . . . 148
7.4 Satis�ability Relations . . . . . . . . . . . . . . . . . . . . . . . 151
7.5 Veri�cation Algorithms . . . . . . . . . . . . . . . . . . . . . . 154

7.5.1 Simulator Interface . . . . . . . . . . . . . . . . . . . . . 154
7.5.2 Feasibility Veri�cation . . . . . . . . . . . . . . . . . . . 155
7.5.3 Refutability Veri�cation . . . . . . . . . . . . . . . . . . 162
7.5.4 Certainty Veri�cation . . . . . . . . . . . . . . . . . . . 162
7.5.5 Impossibility Veri�cation . . . . . . . . . . . . . . . . . 162

7.6 Analysis of the Algorithms . . . . . . . . . . . . . . . . . . . . . 162
7.6.1 Justi�cation of Completeness . . . . . . . . . . . . . . . 166
7.6.2 Justi�cation of Soundness . . . . . . . . . . . . . . . . . 167
7.6.3 Justi�cation of Termination . . . . . . . . . . . . . . . . 176
7.6.4 Justi�cation of Correctness . . . . . . . . . . . . . . . . 179
7.6.5 Justi�cation of Worst-Case Complexities . . . . . . . . . 179

7.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

IVImplementation 185

8 Simulator Implementation 187
8.1 Architecture of FGS . . . . . . . . . . . . . . . . . . . . . . . . 188

8.1.1 Components . . . . . . . . . . . . . . . . . . . . . . . . 189
8.1.2 Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . 190
8.1.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . 190

8.2 Simulation Execution and Analysis . . . . . . . . . . . . . . . . 190
8.3 Behaviourist Agent Architecture Component . . . . . . . . . . 192
8.4 � -Calculus Simulation Library . . . . . . . . . . . . . . . . . . . 192

8.4.1 Optimizations . . . . . . . . . . . . . . . . . . . . . . . . 193
8.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

9 Case Studies 199
9.1 Single Agent Examples . . . . . . . . . . . . . . . . . . . . . . . 200

9.1.1 Pavlovian Dog: Classical Conditioning . . . . . . . . . . 200
9.1.2 Worker: Operant Chaining . . . . . . . . . . . . . . . . 206

9.2 Multi-Agent Examples . . . . . . . . . . . . . . . . . . . . . . . 210
9.2.1 Violent Child: Behaviour Elimination . . . . . . . . . . 210



9.2.2 Factory: Rearranging a Social Network . . . . . . . . . 216
9.2.3 School Children: From Chaos to Order . . . . . . . . . . 224
9.2.4 Online Social Networks: Spreading a Message . . . . . . 232

9.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

V Conclusion 241

10 Conclusion 243

A Full Agent Speci�cation 247
A.1 Formal Speci�cation of Agent Behaviour . . . . . . . . . . . . . 247

A.1.1 Preliminary De�nitions . . . . . . . . . . . . . . . . . . 247
A.1.2 Stimulation . . . . . . . . . . . . . . . . . . . . . . . . . 251
A.1.3 General Responding . . . . . . . . . . . . . . . . . . . . 262
A.1.4 Operant Behaviour . . . . . . . . . . . . . . . . . . . . . 275
A.1.5 Respondent Behaviour . . . . . . . . . . . . . . . . . . . 284
A.1.6 Drives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
A.1.7 Emotions . . . . . . . . . . . . . . . . . . . . . . . . . . 289
A.1.8 Subsystems Integration . . . . . . . . . . . . . . . . . . 295

B Input Files and Tool Output for the Case Studies 297
B.1 Pavlovian Dog . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

B.1.1 Agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
B.1.2 Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
B.1.3 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . 301
B.1.4 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304

B.2 Worker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306
B.2.1 Agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306
B.2.2 Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
B.2.3 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . 309
B.2.4 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311

B.3 Violent Child . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
B.3.1 Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
B.3.2 Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
B.3.3 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . 319
B.3.4 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324

B.4 Factory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
B.4.1 Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
B.4.2 Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . 338
B.4.3 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . 345
B.4.4 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349

B.5 School Children . . . . . . . . . . . . . . . . . . . . . . . . . . . 351
B.5.1 Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351



B.5.2 Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . 358
B.5.3 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . 362
B.5.4 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363

B.6 Online Social Network . . . . . . . . . . . . . . . . . . . . . . . 364
B.6.1 Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364
B.6.2 Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
B.6.3 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . 379
B.6.4 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381

C Simulator Input Format and Parameters 385
C.1 Input Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385

C.1.1 Behaviourist Agent Architecture . . . . . . . . . . . . . 386
C.1.2 Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . 391
C.1.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . 395

C.2 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398

D Z Notation Overview 399
D.1 Types, Functions and Predicates . . . . . . . . . . . . . . . . . 399
D.2 Stateless De�nitions . . . . . . . . . . . . . . . . . . . . . . . . 399
D.3 State Schemas . . . . . . . . . . . . . . . . . . . . . . . . . . . 401
D.4 Operation Schemas . . . . . . . . . . . . . . . . . . . . . . . . . 402
D.5 Schema Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . 403
D.6 Re�nement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404

E � -calculus Overview 407

F Extended Abstracts 411
F.1 Extended Abstract . . . . . . . . . . . . . . . . . . . . . . . . . 411
F.2 Resumo Estendido . . . . . . . . . . . . . . . . . . . . . . . . . 422
F.3 R�esum�e �Etendu . . . . . . . . . . . . . . . . . . . . . . . . . . . 433

Glossary 445

Acronyms 449

Bibliography 449

Index 467





Part I

Overview

1





CHAPTER 1
Introduction

Is there a way to model and analyse human as well as animal societies? This
rather general question, either implicitly or explicitly, has been asked since at
least classical antiquity1. Whole scienti�c �elds, such as economics, psychology
and sociology have been developed to address speci�c versions of it. In all of
them, though, the di�culties involved are great: not only is it necessary to
somehow make sense of individual organisms, but it is also imperative to
understand their mutual relations; theories must be simple to be manageable,
but not so simple as to be meaningless; variety between individualsmust be
taken into account, and yet cannot be considered beyond a point in which
there is nothing but confusion; in the face of complexity, analysis methods
must at the same time be e�ective and e�cient.

Modern computing has given scientists a new set of tools to deal withthese
matters. In particular, as long as a theory can be put in the terms of a com-
puter program, it can also be subject to systematic and automated scrutiny
that would otherwise be too tiresome for human beings to pursue. Simpli�ca-
tions can be made less simple and more accurate because part of the job can
be transferred to a machine. This possibility raises the similar {but funda-
mentally new { question: is there a way to model and analyse human as well
as animal societiesthrough computing? Such is the motivation, in its most
general aspect, that guides us in this thesis. The problems we address here,
then, are steps in this direction.

It is not di�cult to see why this new computational problem is distinct from
the old one. Imagine, if you will, that a careful economist surveys his town
and describes, through some complicated set of rules, the idiosyncratic per-
sonalities of each townsman, as well as their relations to each other. How

1For instance, in Plato's Republic and Aristotle's Politics .

3



1. Introduction

is he to go about analysing this descriptive model? Perhaps he can address
certain questions, such as determining the most inuential personby looking
at the individual that has more friends. Nonetheless, questions concerning
how his model will evolve over time quickly become di�cult, for t he possi-
bilities o�ered by a su�ciently rich model are staggering. Will the re be an
economic depression or not? The answer depends partly on the behaviourof
each individual. If there are many di�erent and complicated individ uals that
relate in non-homogeneous ways, it is clear that the possible evolutionsof the
model are many, each possibly leading to di�erent conclusions. Thisrequires
explicit { and boring { calculations of how the model will actually evol ve.
Without computing machinery, therefore, it is not a practical metho d. The
traditional, non-computational, solution to such problems is to simplify the
model so that solutions can be calculated more easily. But with computing
one may actually pursue the evolution of complicated models in many di�er-
ent circumstances. This brings two new issues: how to describemodels so
that their evolutions can be computed, and how to make sense of the wealth
of computed evolutions.

In computer science, questions such as these have been considered in the �eld
of Multi-Agent Systems. Many situations can be described in terms of inde-
pendent agents which interact within some environment in order to achieve
their aims. For example, not only phenomena related to human societies, but
also those concerning neural tissue and computer networks, di�erent as they
may be, all share this characteristic. A system that can be seen in this way is
called a multi-agent system (MAS)(Weiss, 1999; Wooldridge, 2009).

As the above examples suggest, agents can be either arti�cial entities (e.g.,
computers, software) or natural ones (e.g., humans, animals). Roughly, inthe
former case one is mostly worried about how toimplement an agent so that
it is capable of performing certain tasks, whereas in the latter case the focus
is on modelling the behaviour found in nature so that it can be investigated
by computational means. It is this latter possibility that concerns us in this
thesis.

To describe an MAS, one needs speci�c notions of agents and environments.
With respect to agents, much work has been done in trying to understand
and model so-calledintelligent and cognitive agents. These approaches focus
largely on what constitute rational decisions, specially in the case of agents
with limited computing capabilities (e.g., all of us). The Beliefs-Desires-
Intentions (BDI) architecture (Bratman, 1987; Cohen and Levesque, 1990;
Rao and George�, 1995) is a well-known example.

Behaviour of organisms, however, is sometimes better described indi�erent
terms. A dog does not reason that it will die if it does not eat2; rather, it

2Assuming, of course, that dogs cannot foresee their own deaths in the same way that

4



has a drive to seek food when hungry. If it has learned that wheneverhis
master whistles he provides food, the dog will salivate at the soundof the
whistle { without thinking. These observations suggest that a di�erent focus
in agent modelling is possible. This thesis provides such a model, based on the
psychology theory known as Behaviour Analysis (Skinner, 1953), a particular
branch of the behaviourist school of thought. In this theory, the actions of
agents are seen as the result of past stimulation and certain innate parameters
according to behavioural laws. One is not interested in mental qualities such
as the nature of reason, but merely in the prediction and control of behaviour
by means of environmental stimulation. This point of view, though classical
within psychology, is scarce in the MAS literature. As a contribution in this
sense, this thesis introduces theBehaviourist Agent Architecture .

In relation to agents, environments of MASs have received comparatively very
little attention, as the survey of Weyns et al. (2005) points out. The environ-
ment model of Ferber and M•uller (1996) is one exception. In this thesis we
propose theEnvironment Model for Multi-Agent Systems (EMMAS) ,
which is designed to work with our agent architecture. Since the psychology
theory from which we draw from puts great emphasis in the relation between
agents and their environment, it is clear that this is an important aspect of
our MASs. Furthermore, we shall see that our environments have certain
particular mathematical features that help in their analysis.

The purpose of an MAS model is to be studied so that its properties can be
understood. There are, of course, a number of ways in which this canbe ac-
complished, ranging from traditional mathematical approaches (e.g., by using
equations and calculating their properties) to fully automated and exhaustive
formal veri�cation (e.g., by means of Model Checking). The techniqueto be
employed, however, is not arbitrary, for it both imposes restrictions on how
the MAS model can be speci�ed and de�nes what kinds of properties can be
investigated. In general, the more details are allowed in a model, theharder it
is to determine its properties. Consider again a model of a society composed
of many di�erent agents, each containing its own independent set of possible
behaviours. We have seen that unless simpli�cations can be found, aman-
ual mathematical analysis would be too tedious and error prone to be carried
out. On the other hand, automated and exhaustive analyses would also face
severe challenges, for the state-spaces involved can easily become too large.
This is known as the state explosion problem, and is usually caused by the
combinatorial nature of the possible communications between agents.

Nevertheless, it is usually possible to simulate complicated MASs.That is to
say, given an MAS, one may calculate several sequences of states in orderto
explore some of its possible behaviours, and thus gain at least some partial

we humans can.

5



1. Introduction

knowledge about its properties.3 A technique often employed to this end in-
volves programming the agents and their environment using some general pur-
pose programming language (e.g., Java) and then running the resulting pro-
gram several times and under di�erent circumstances (Gilbert and Bankers,
2002). Since such programming languages allow any computation to be spec-
i�ed, it follows that very detailed models can be built in this way . In such
works, the analysis method of choice is usually the collection or optimization of
statistics over several simulation runs (e.g., the mean value of a numeric vari-
able over time). Examples of this approach include platforms such as Swarm
(Minar et al., 1996), MASON (Luke et al., 2004) and Repast (North et al.,
2006).

A simulation performed in this manner is typically constrained only by its
initial state. This is quite reasonable if the objective is merely to \see what
happens" to the system under di�erent circumstances of interest. However,
as soon as the objective includes a more sophisticated assessment, this lack
of constraints may become a hindrance. Consider, for example, a situation in
which the objective is to study what happens to an agent when it is, say, hun-
gry. The logical strategy in this case would be to simulate only the situations
in which the agent may indeed become hungry. But since only the initial state
is constrained, the simulation could possibly go constantly through states in
which this is not the case (e.g., because food is often available).

Though they are not usually found on MAS simulations, such constraints over
relevant states are common place in formal veri�cation. They are usually
speci�ed in terms of temporal logic formulas or automata which de�ne the
property of interest and, consequently, the relevant portion of the state-space.
Unfortunately, as we pointed out above, these techniques su�er from e�ciency
problems owing to the large size of state-spaces.

To address these problems, in this thesis we propose a way to combine the
strengths of simulation with those of formal veri�cation, thus creating a new
technique to model and verify MASs. Our method consists in systematically
guiding the simulation runs so that only the states relevant for the property of
interest are actually simulated. We call the property being investigated a sim-
ulation purpose , because it de�nes the purpose of the simulation. During
simulations, for reasons we explain in Section 1.1 below, agents and environ-
ment are used in di�erent ways. The former is implemented (in accordance
with the Behaviourist Agent Architecture ), executed and examined as
a black-box with interfaces, whereas the latter { together with a simulation

3Notice that by \simulation" we do not mean the formal relation am ong two transition
systems, such as what Milner (1999) employs. As we explain, in this thesis a \simulation"
refers { broadly { to an abstract reproduction of some target system by means of a detailed
and executable model, in the same sense that, for instance, Ferber (1999) uses to describe
multiagent simulations.

6



Figure 1.1: General architecture of FGS, our proposed tool. The simulatortakes two
inputs: (i) an MAS, composed by agent models and an environment speci�cation; (ii)
a simulation purpose to be tested. The simulation purpose speci�es the property to
be analysed and is used to guide the simulations (i.e., de�nes theirpurpose). The
simulator then produces traces as outputs. In principle, veri�cation can be done at
the simulation runtime level, as well as at the trace level. However,the veri�cation
technique developed in this thesis concerns only runtime analysis, because this allows
the simulations to be controlled in such a way that only the ones relevant to the
speci�ed simulation purpose are actually performed. It is worth to note, though, that
trace level analysis can also be pro�tably employed for veri�cation of MASs, and some
examples found in the literature are given in Section 2.4.3 of Chapter 2.

purpose { provides the formal elements that are manipulated in a �ne grained
manner by the veri�cation algorithms. This method is inspired by th e use of
formal test purposesin TGV (Jard and J�eron, 2005), a model-based software
testing approach.

In short, then, in this thesis we provide four novel elements: (i) an agent archi-
tecture; (ii) a formal speci�cation of the environment of these agents, so that
they can be composed into an MAS; (iii) a structure to describe the property

7



1. Introduction

of interest, which we namedsimulation purpose ; and (iv) a technique to
formally analyse the resulting MAS with respect to a simulation purpose .
These elements are combined in a tool, called Formally Guided Simulator
(FGS), as shown in Figure 1.1. In Chapter 3 we shall provide a technical
summary of these artefacts and explain in more detail their contribution with
respect to the current state of the art.

The analysis technique we propose is rather general, and as a consequence can
be applied to many kinds of MASs. Nevertheless, we have opted to develop
them in the context of a particularly suitable class of agents and environments
(i.e., behaviourist MASs). As a consequence, the novel contribution of this
thesis is twofold:

� New ways to model both agents and environments based on behaviourist
principles;

� A technique to perform partial, but automated, formal veri�cation in
the MAS thus described.

These are closely related. The technique depends on the possibility of system-
atically exploring an environment, which thus has to be explicitly separated
from agents. But this only makes sense if the phenomena concerning the agents
themselves can be expressed in terms of environmental conditions,which is a
strong point of the behaviourist perspective we adopt to design our agents.

It is important to note that despite the fact that the MASs de�ned and si mu-
lated in this thesis are based on an underlying psychology theory, we have not
attempted to forecast the results of actual empirical experiments (e.g., using
real animals) with them. Such an endeavour would require the consideration
of many other complex issues, such as how to establish an exact match be-
tween real and simulated organisms, and it would also involve validation work
concerning the psychology theory itself, which would be out of our scope. The
approach developed in this thesis aims only at providing an approximation of
actual animal behaviour, so that it can be represented in a computationalform,
though in a qualitative and limited manner. As we shall see throughout the
text, our approach allows the investigation of many fundamental issues, such
as the role of environments and agents, the importance of observable events,
and the kinds of questions that can be formulated. Hence, this thesis is a step
towards a more complete understanding of the computational modellingand
analysis of such behavioural phenomena, and it provides an important basis
for further progress. Nonetheless, as a more immediate practical application,
the developments presented here can also be used in circumstances where only
imitation of real behaviour is relevant, such as in games and other forms of
interactive �ction.

8



1.1. Automation of Experiments

1.1 Automation of Experiments

Programs are usually designed in order to accomplish something. That is to
say, they are supposed to obey a speci�cation4. If they indeed do so, they
are deemed correct. Otherwise, they are considered incorrect. Veri�cation,
and formal veri�cation in particular (where one has formal speci�cations of
the expected behaviour), is thus concerned with determining whether or not
programs satisfy speci�cations { from which one may infer the correctness of
the program.

However, one may have a slightly di�erent point of view on the matter. In our
case, we use programs to model MASs. From our perspective of modellers,
the MAS is not necessarily supposed to accomplish something, for it is merely
a representation of a certain state of a�airs, which may be outside of our
control. In investigating it, we are thus not necessarily concerned with whether
it is doing its job correctly. Indeed, we may very well ignore why the MAS
was designed in the way it was. We just want to discoverwhat it can or
cannot do. To this end, we may also employ a speci�cation. But it is the
speci�cation of a hypothesisto be investigated, and which can be either true
or false. Notice the crucial di�erence: when verifying a program, thefact that
the speci�cation was violated indicates a problem in the program, and thus
it is always undesirable; however, in our case, the fact that the hypothesis is
violated is not, in principle, an indication of a problem either in the MAS or
in the hypothesis itself. The judgement to be made depends of our objectives
in each particular circumstance. Are we trying to discover some lawabout
the MAS? In this case, if a hypothesis that represents this law turns out to
be false, it is the hypothesis that is incorrect, not the MAS. Are we trying
to engineer an MAS that obey some law? In this case we have the opposite,
a falsi�ed hypothesis indicates a problem in the MAS. This view is akin to
that found in empirical sciences, in which scientists investigate hypotheses and
make judgements in a similar manner.5 In this respect, the main di�erence
is that the empirical scientist studies the natural world directly, while we are
concerned with models of nature in the form of MASs.

In an MAS, the description of environments is often much simpler thanthat
of the agents. When this is the case, we can give a formal model for the
environment and treat the agents therein as black-boxes (which obey certain
interface requirements). As an example, let us consider a model ofan online
social network, where several persons exist and can interact with each other
through the features of a website.6 Clearly, the behaviour of each individual

4Even if the speci�cation exists only in the mind of the programm er.
5 In particular, the scienti�c implications of the falsi�abilit y of hypotheses have been

deeply investigated by Popper (1959), to whom we own part of th e philosophical position
outlined here.

6Actual examples of such networks currently include popular web sites such

9



1. Introduction

person is likely to be very complex, and if a model is given to them,it is possi-
ble that it will not be a simple one. But the environment, on the other hand,
can be described by some formalism that merely de�ne relations among agents
(e.g., a process algebra such as the� -calculus of Milner, 1999), providing a
much more tractable model. The purely formal manipulations, then, canbe
restricted to the environment model.

Notice that this is analogous to an experimental scientist working in hislab-
oratory. The scientist is usually interested in discovering the properties of
some agents, such as animals, chemicals, or elementary particles. He has no
control over the internal mechanism of these agents { that is why experiments
are needed. But he can control everything around them, so that they can
be subject to conditions suitable for their study. These scienti�c experiments
have some important characteristics:

� Inputs should be given to agents under experimentation;

� Outputs should be collected from these agents;

� Sometimes it is not possible to make some important measurement, and
therefore experiments often yieldincomplete knowledge;

� The experiment is designed to either con�rm some expectation (asuc-
cess) or refute it (a failure );

� The experiment should last a�nite amount of time , since the life of the
scientist is also �nite;

� The experiment should be assystematic as possible, though exhaustive-
ness is not required. The important thing is to try as many relevant
situations as possible. In particular, the scientist may control how to
continue the experiment depending on how the agents react;

� The experiment should de�ne a clear course of action from the start;

� The experiment can be a way to �nd out how to achieve a certain end,
after trying many things. Therefore, it must be performed in a construc-
tive manner, and not merely by deriving a contradiction;

� Absence of a success does not necessarily mean that there is no way to
achieve a desired e�ect. Hence, it is convenient to know when something
clearly indicates a failure.

as www.facebook.com, www.twitter.com , plus.google.com , www.orkut.com and
www.myspace.com.

10



1.2. Notation and other Conventions

A simulation purpose is like such a scientist: it controls the direction of the
simulation and determines whether something constitutes a success or a fail-
ure by following similar principles. An environment model, in turn, is similar
to the experimental setup, with its several instruments and agents. The sim-
ulation purpose interacts with the environment model in order to achieve its
aims. In this sense, hence, our approach can be seen as the automation of
experiments to investigate the properties of an MAS.

1.2 Notation and other Conventions

Notation and other conventions particular to the subject of a chapter are
introduced in the beginning of the relevant chapter itself. Technical terms are
introduced by using this special font , and referred to elsewhere by using this special font

this other special font .

Our general mathematical notation is mostly standard and therefore does not
require presentation. However, it is worth to de�ne the meaning of a few
symbols which do not enjoy such a universal acceptance:

� : P denotes the setf: p j p 2 Pg, where P is a set of propositions.

� P(S) denotes the power set of a setS (i.e., the set of all subsets ofS).

1.3 Thesis Organization

This thesis can be read serially, since chapters are given mostly in the order
in which their content is needed. Exceptions to this order are clearly marked
in the text with the appropriate references.

Very briey, the content of the chapters are as follows:

Chapter 2 Describes the relevant related work, thus providing an account of
the current state of the art.

Chapter 3 Provides a technical overview of the main elements introduced by
this thesis and compare them to the existing state of the art.

Chapter 4 Contains an in-depth account of the Behaviourist Agent Ar-
chitecture . This architecture is given using the Z Notation, of which a
summary is provided in Appendix D.

Chapter 5 De�nes the environment model, EMMAS . The theory devel-
oped here has a close relation to the agents described in Chapter 4:

11



1. Introduction

those agents expect a certain kind of interaction with their environment,
whereas the environment expects a certain kind of agent. Methodologi-
cally, this means that particular kinds of questions (i.e., of behaviourist
nature) can be addressed because both agents and environments sub-
scribe to common principles. Technically, this relation impliesin certain
formal requirements on both sides.

Chapter 6 Introduces the annotated transition systems (ATSs) which
are to be subject to veri�cation. After introducing such structu res in
their general form, the chapter employs them to provide the semantics of
EMMAS . This allows the reduction of the MASs developed in Chapters
4 and 5 into a structure that can be subject to formal analyses. This
semantics is quite general and is not tied to any particular application
(e.g., simulation).

Chapter 7 Provides a more concrete version of the semantics ofEMMAS
(to allow its simulation) and presents the veri�cation technique. Intro-
ducessimulation purposes , associated satis�ability relations, mathe-
matical concepts required to perform veri�cation and, �nally, the ve ri�-
cation algorithms themselves.

Chapter 8 Presents FGS, our tool, whose several parts implement our agents,
environments and veri�cation algorithms. This chapter is concerned
with design principles and architectural choices, not with detailson how
to run the system, which is covered in Appendix C.

Chapter 9 Provides case studies to illustrate the use of theBehaviourist
Agent Architecture and EMMAS . These are all executed using the
FGS tool. The actual input �les to FGS (and the corresponding out-
puts), however, are given only in Appendix B.

Chapter 10 Concludes the thesis by summarizing what has been achieved
and pointing out to further developments that can be made upon what
we have proposed.

A number of appendixes are also provided in the end of the thesis, which are
meant to be used as references whenever further details are needed. Appro-
priate pointers to these appendixes are given whenever relevant.

12



CHAPTER 2
Related Work

Our work draws inspiration and techniques from a number of disciplines. In
this chapter we present these several inuences, including the current state of
the art. However, their relation with our own work is not treated here { we
postpone this to Chapter 3, in which a technical summary of our approach
shall make it easier to establish this relation, as it depends on a number of
technicalities.

The relevant works can be broadly collected in four large groups, which cor-
respond to the organization of the present chapter. In Section 2.1 we explore
the area of Autonomous Agents and Multi-Agent Systems. In Section 2.2 we
present the pertinent works in the area of Formal Veri�cation. These are the
main inuences upon this thesis. Whatever cannot be classi�ed in oneof these
areas is dealt with in Section 2.3. Finally, in Section 2.4 we present works that
combine ideas from these di�erent domains.

2.1 Autonomous Agents and Multi-Agent Systems

The area of Autonomous Agents and Multi-Agent Systems provided the main
motivation for the problems we pose in this thesis. Thesemulti-agent systems
(Weiss, 1999; Ferber, 1999; Wooldridge, 2009), the objects of our study, are
systems composed by agents that exist and interact within an environment.
This of course only makes sense in the light of appropriate accounts of both
agents and environments. Thus, in what follows we examine the most per-
tinent notions for our purposes. Section 2.1.1 presents agents and surveys
related models. Section 2.1.2, in turn, explore environments. Finally, since
this thesis concerns the simulation of MASs, Section 2.1.3 addresses this topic.

13



2. Related Work

2.1.1 Agent Models and Architectures

There is no precise and universally accepted de�nition of what anagent is.
However, the undisputed characteristics of this concept can be summarized
as follows: an agent is as an entity that exists in an environment and that
interacts with it and other agents in an autonomous way.

This notion, in spite of its intuitive appeal, is all too abstract and in formal,
and thus cannot by itself provide the basis of a useful theory. For this reason,
researchers have proposed a number of more precise models in order to de�ne
agents of particular classes. Usually, the objective of such models is to be
general enough so that many agents of interest can be de�ned with them.
Such general models are often calledagent architectures. Wooldridge (2009)
de�nes an agent architecture as:

A software architecture for autonomous decision making: speci�es
the data structures, control ow, and, usually, the methodology
to be used for constructing an agent for a particular task in a
particular environment.

Let us rephrase this and call attention to other relevant points so that we may
have a de�nition to use in this thesis. In this thesis, an agent architecture
is an abstract, structured and integrated description of a class of agents. It
provides the necessary elements to build particular agents of sucha class.

In this section we present several such models and architectures, grouped
according to the main idea or underlying theory that they employ.

2.1.1.1 Rational Agents

In Arti�cial Intelligence the notion of intelligent or rational agents plays a
large role (Russell and Norvig, 2002). It was McCarthy (1958) who �rst pro-
posed that programs could be endowed with common sense, establishing the
basis for much of the future research on the topic. To McCarthy, logic could
be used to describe the knowledge of an agent, and then it would be justa
matter of automatically performing deduction in order to produce such intelli-
gent actions. There are, however, two problems with this approach. The �rst
is that theorem proving turns out to be very expensive computationally. The
second problem is that not all agents one might be interested in follow such
deduction principles to guide their actions. Each of these problems, in turn,
motivated further research.

14



2.1. Autonomous Agents and Multi-Agent Systems

2.1.1.2 Practical Reasoning

While, ideally, an intelligent agent should perform perfect logical deductions,
in reality no such perfect being exists. Men and animals alike havelimited
resources and must make decisions which are often not optimal. This in-
sight motivated the work on bounded rationality, which aims at determin-
ing how to compute the best answers given a limited amount of resources.
Russell and Subramanian (1995), for instance, show how optimality can be
treated under such limits. Another well-known model built along these lines
can be found in theBeliefs-Desires-Intentions (BDI) approach, originated by
Bratman (1987). In this work, Bratman introduces the notion of practical
rationality and proposes a theoretical explanation to the decision process em-
ployed by limited rational beings such as humans. In particular, he goes on to
show how one can use planning in order to take decisions, and that intentions
play an important role in this process. Further theoretical and computational
development of this approach can be found on Cohen and Levesque (1990) and
Rao and George� (1995). There are a number of implementations of the BDI
model, among which we can cite the PRS (Ingrandet al., 1992) and dMARS
(d'Inverno et al., 1997). Kakaset al. (2008) show a model inspired by BDI,
aiming mainly at solving certain di�culties involved in the implem entation
and formal veri�cation of BDI theories.

Agent-oriented programming is an area closely related to these architectures.
It was �rst proposed by Shoham (1993) as a means of describing general pro-
grams in terms of mentalistic notions. Indeed, the BDI approach o�ers a suit-
able set of such mentalistic de�nitions, and as a consequence the languages in
this area largely adopted the BDI approach as their underlying agency model.
AgentSpeak(L) (Rao, 1996) is one such language, and Jason (Bordiniet al.,
2007) is one of its modern implementations.

2.1.1.3 Cognitive Psychology

The concept of practical reasoning does not solve the problem that agents need
more than such general logical constraints in order to produce behaviour. In
fact, much of what many real agents do depend on mechanisms much moread
hoc to their nature. For example, human memory is not just a mathematical
set in which one can put knowledge. Rather, it has a detailed structure,
which makes knowledge retention and retrieval a complex task. The impact of
such idiosyncrasies can be seen by considering an agent that believesin some
proposition, but fails to use it in its reasoning because of problems inthe
retrieval of the relevant memory. These discoveries, which came mainly from
Cognitive Psychology (Neisser, 1967), led researchers to try to endow their
agents with the same properties. Thiscognitive approach produced a number

15



2. Related Work

of results. Simon (1996) is one of the pioneers on this area and provided many
insights on the computational properties of the human mind. More recentwork
includes the SOAR architecture (Laird et al., 1987), which provides a platform
for the development of arti�cial cognitive agents, and ACT-R (Anderson et al.,
2004), which, in particular, employs functional Magnetic Resonance Imaging
(fMRI) to validate its proposed models.

2.1.1.4 Behaviourism

The approaches we have reviewed so far have in common the fact that they
place great importance on internal, mental, states of agents. Behaviourism
provides a contrasting point of view, by focusing on their external, observable,
behaviour.

To understand what is special about a behaviourist point of view, we must �rst
examine the history of psychology. By the end of the XIXth century, psychol-
ogy was still a new discipline. Many of its �rst proponents saw introspection
and other forms of inner knowledge to be paramount to the understandingof
the human mind. However, such an inner knowledge is often unreliable, for
it lacks the objectivity of precise measurement. And it was becauseof this
fundamental limitation that some psychologists started to go against these
initial ideas in the search of an objective science. Thus, thesebehaviourists,
as they became known, maintained that psychology should derive its theories
only from the observable and measurable behaviour. A celebrated defence of
these fundamental principles was given by Watson (1913).

The behaviourist tradition produced several important thinkers, from which
Burrhus Frederic Skinner was, perhaps, the most notorious one. Between
the decades of 1930 and 1950 he developed his own kind of behaviourism,
called Behaviour Analysis. The classical exposition of this theory was given
by Skinner (1953), whereas a more modern reference to the area can be found
in Catania (1998). In Behaviour Analysis, an organism is an entity which
receivesstimuli from its environment, and producesbehavioural responsesthat
a�ect this same environment. It is assumed that these behavioural responses
are a function of the stimulation history of the organism, governed by certain
innate mechanisms. Therefore, the central aim of the theory is to establish
how such relations work. That is to say, to discover the laws whichallow one
to either control behaviour by means of stimulation or predict behaviour by
considering the organism's stimulation history.

Organisms are assumed to be constantly seeking pleasure and avoiding pain.
That is to say, their fundamental purpose is the maximization of pleasure and
the minimization of pain during their existence. This search is the basis for
most of the organism's behavioural responses. And while at �rst it might

16



2.1. Autonomous Agents and Multi-Agent Systems

seem a rather simple motivation, it turns out that it can be used in order to
describe a number of interesting phenomena.

A distinctive feature of the behaviourist tradition is its insist ence on the ir-
relevancy of how organisms are really implemented. It maintains that itdoes
not matter how the mind, the brain or any other organ works, as long as one
can provide abstract laws with predictive power. In this respect, then, it dif-
fers from other psychology schools, which often describe behaviour in terms
of the internal components of organisms. In behaviourism, any such reference
to internal structures must be seen merely as a technical device, which could
be completely substituted if an alternative o�ering superior predictive capa-
bilities could be found. This does not imply that behaviourism denies the
existence of internal structures responsible for behaviour (e.g., in the brain).
Rather, it merely takes the point of view of an external observer to thelimit
by elaborating abstract concepts and laws that relate stimulation to observed
behaviour.

Behaviour Analysis, in particular, o�ers a rich set of such abstract concepts,
relations and laws. We shall examine them in detail as we formalize themin
Chapter 4, but for the moment we may provide the following summary:

Stimulus (or classical) conditioning. Organisms may learn that a stim-
ulus is followed by another. For example, a dog may be taught that a
whistle is always followed by the provision of food. Hence, the dog may
react to the whistle as if it was the food itself. By such associations, an
organism can build a useful model of its environment.

Classes of behaviour. Behavioural responses are produced according to laws.
Such laws, in turn, can be grouped in di�erent classes of behaviour.Be-
haviour Analysis de�nes the classes ofrespondent behaviourand operant
behaviour:

Respondent behaviour Also known asreexive behaviour, this class
accounts for reexes, which are innate automatic responses to stim-
uli. Reexes, then, are integral parts of an organism, and cannot
be neither learned nor unlearned.

Operant behaviour Operant behaviour, on othe other hand, allows
an organism to learn what actions are appropriate to achieve cer-
tain ends. An operant is a learning structure that records which
action may lead to a stimulus, and how this takes place. Byrein-
forcing (i.e., rewarding) or punishing an organism's actions, it may
be taught new operants. With such operants, the organism may
then choose the action that best suits its interests.

Drives. These are innate needs for certain stimuli. The organism may then
be either satiated or deprived with respect to its drives. For example,

17



2. Related Work

thirst is a drive which is satiated by the provision of water. If no water
is provided, the organism becomes increasingly interested in water.

Emotions. These account for other temporary changes in the organism's be-
haviour. Each emotion has its own e�ect, but all of them are fully
characterized by behavioural changes. This is a particularly interesting
feature of Behaviour Analysis, for it contrasts with accounts of emotion
which depend on internal factors (e.g., the reduction of some neurotrans-
mitter in the brain). Depression, for instance, can be characterized by
a generalized reduction of behavioural responses with respect to some
normal level of response.

These elements interact in several ways in order to generate behaviour. For
example, when choosing an appropriate action, the organism will not only use
the laws of some behavioural class, but also the model that he has builtof the
environment using stimulus conditioning.

Notice that agents thus de�ned are di�erent from what is usually called r e-
ex agents (e.g., by Russell and Norvig, 2002) or reactive agents (e.g., by
Wooldridge, 2009), whose actions are elicited by stimulation according to very
direct relationships. As we have just seen, Behaviour Analysis does de�ne
reexes as a behavioural class, but it goes far beyond them, and its value lies
precisely on the richness that is achieved by the several behavioural structures
that it establishes.

Despite the importance of behaviourism within psychology, computational
models of agency based on Behaviour Analysis are scarce in the literature. To
the best of our knowledge, the approach of Touretzky and Saksida (1997) is
the most pertinent one. They propose agents calledskinnerbots, which are
endowed with learning capabilities based on classical and operant condition-
ing. Their model is particularly interesting because the learning that results
is capable of synthesizing more complex behavioural phenomena, notablyop-
erant chaining (i.e., a sequence of learned actions in which the execution of
an action sets the appropriate conditions for the execution of the next one),
and has also been implemented in robots. However, the proposed model is
more like a particular algorithm for calculating some aspects of classical and
operant conditioning than a general framework for a behavioural agent. The
main formal structure de�ned is a kind of rule (i.e., A  B [p]), in which
the �rst term (i.e., A, a stimulus consequence) is contingent upon the second
one (i.e., B , a conjunction of stimuli and actions) with a probability p. The
approach reduces to developing ways to learn these rules and chaining them.
Despite its qualities, then, this approach is limited to a very particular aspect
of agent behaviour, and it is also unclear how it could be extended or changed,
since no provision is explicit made for this.

18



2.1. Autonomous Agents and Multi-Agent Systems

Such an extensibility is specially important because, as McDowell(2004) re-
marks, there is no universally accepted mathematical model that predicts
quantitatively the exact way in which animals compute behavioural responses,
despite the fact that some relations between the overall rate of reinforcement
and the corresponding behaviour are known. McDowell (2004) then provides
its own computational model for this problem and argues that it generates
empirically plausible results. The main characteristic of the method proposed
is that it makes no reference to an utility function being maximized by the
agent. Rather, a genetic algorithm is employed to generate possible operants
a priori , which are then emitted. It is the environment then that selects cor-
rect responses by reinforcing them, and this is used to generate other similar
operants. This work is further extended by McDowell et al. (2006), where it
is shown how this local training can be used to compose operant chains.

There exists a program calledSni�y, the virtual rat which aims at providing an
interactive simulation of a rat for the purpose of teaching classical and operant
conditioning (Alloway, 2005). However, neither the underlying computational
model nor the actual source code are provided, so one cannot understand
precisely how the simulation works. It seems, though, that much of itis hard-
coded for very speci�c tasks, since, for example, possible actions and stimuli
are all �xed, as are also the experiments that can be conducted. Therefore,
despite being a program,Sni�y does not provide an actual computational
account of behavioural phenomena, but merely a tool for teaching known
concepts in an interactive manner (Jakubow, 2007).

Gaudiano and Phone (1997) propose a particular version of operant condi-
tioning using neural networks intended speci�cally to allow robots to avoid
obstacles. Naturally, though, this is too speci�c to constitute a general model
for operant conditioning. Hutchison (2010), on the other hand, claims to have
used neural networks to create a general adaptive autonomous agent that fol-
lows principles of Behaviour Analysis and is capable, in particular, ofverbal
behaviour. However, it is not clear exactly what has been accomplishedin
this work, since neither technical details nor concrete examples are provided.

Though the Behaviour Analysis perspective to agent modelling is uncommon,
some speci�c ideas concerning learning by reinforcement, originated on this
behaviourist literature, have been widely employed in Arti�ci al Intelligence
(Russell and Norvig, 2002). In particular, Q-learning theory (Watkins, 1989)
seeks to abstract the notion that an action's value may change over time ac-
cording to experience, similarly to the operants of Behaviour Analysis. How-
ever, Q-learning formulation assumes a particular calculation strategywhen
seeking the optimal action, which is not necessarily employed by agents (e.g.,
for e�ciency reasons, or other idiosyncrasies, agents might not perform the
kind of optimization postulated by Q-learning). Furthermore, it is not di-
rected towards obtaining some particular stimulus (i.e., utility is calculated

19



2. Related Work

over states, not over stimuli).

2.1.1.5 Behaviour-Based Robotics

As some of the previous examples suggested, robotics often employs learning
by reinforcement techniques, and indeed one of its branches is calledbehaviour-
based robotics(Matari�c, 1998). This name is misleading in the context of our
work. Behaviour-based robotics' emphasis is not on behaviourist psychological
approaches, but on a parallel and decentralized architecture. In suchan ar-
chitecture, independent and parallel \behaviours" account for particular goals
and tasks, with the objective of providing real-time decision making necessary
for robots. It originated specially on the subsumption architecture of Brooks
(1986, 1991). Some elements familiar to behaviourists (e.g., reexes) can be
found in such an approach, though they do not constitute its essence.

Behaviour-based robotics is a biologically inspired approach, but verygeneral,
and therefore bears no direct relationship with the particular behaviourist
theories found on psychology. To make matters worse, agents of this kind
are sometimes referred to asbehavioural agents(e.g., Wooldridge, 2009). The
reader should thus be careful to distinguish what concerns this method from
what pertains to behaviourist psychology properly, where the adjective be-
havioural is also widely employed. In this thesis, unless noted otherwise, our
use shall be of the latter kind.

2.1.2 Environments in Multi-Agent Systems

The term\environment" is not used consistently in the MAS literatu re (Weyns et al.,
2005). Sometimes, it is used to mean the conceptual entity in which theagents
and other objects exist and that allows them to interact; sometimes, it is used
to mean the computational infrastructure that supports the MAS (e.g., a sim-
ulator). We use the term in the former sense in this thesis. In Chapter 5 we
shall give a precise formal notion of our particular kind of environment, but
for the moment this intuitive notion su�ces.

In this sense, then, environments are conceptually as important as the agents
themselves. Despite this crucial role, the survey of Weynset al. (2005) also
points out that not much attention has been given to environments, which
often do not receive detailed technical treatment. For instance, although
Russell and Norvig (2002) present the notion of environments explicitlyand
analyse some of their possible properties, they do not develop any sophisti-
cated environment model in the same depth and detail that agent modelsare
developed. Nonetheless, there exist works that take environments and related
notions as �rst-class entities and which are particularly relevant to this thesis.

20



2.1. Autonomous Agents and Multi-Agent Systems

Ferber and M•uller (1996) presents a synchronous model for environment con-
struction. In it, the environment acts as a coordinator which receives inu-
ences from the agents and that generatesreactions towards them. In this
manner, �rst agents act, and then their actions are taken into account by the
environment, thus allowing simultaneous actions to be speci�ed.

Okuyama et al. (2005) de�nes the Environment Description Language for Multi-
Agent Simulation (ELMS). It allows the speci�cation, in XML, of agent's
potential actions and perceptions, as well as other resources presentin the en-
vironment. Such speci�cations may carry certain logical preconditions which
must be satis�ed, thus constraining their execution. The language also sup-
ports the de�nition of the structure of the environment as a grid, whi ch can
be used in calculating preconditions or assigning e�ects (e.g., an action's e�ect
might be to change the agent's position from one grid cell to another). The
simulation itself is performed by combining an environment speci�cation with
agent implementations.

Part of the purpose of an environment is to allow agents to interact. A way
to deal with such interaction is through protocols, which de�ne how messages
must be exchanged between agents. A number of initiatives exists inthis
sense. The COOrdination Language (COOL) (Barbuceanu and Fox, 1995) is
an early example of such an approach. In COOL, a protocol is a conversation
represented by a �nite state machine (FSM), in which transitions represent
message exchanges based on speech act theory. Each agent must instantiate
such an FSM, which regulates the agent's individual state in the conversation.
To choose a transition, agents must comply with certain rules, whichare part
of the coordination protocol.

A more recent and well-known approach to describing agent interactionis the
AUML sequence diagram (FIPA, 2003), an extension of UML sequence dia-
gram for MASs. However, like UML itself, this is largely an abstract graphical
notation, and lacks both a formal and programming model. The IOM/T lan-
guage (Doi et al., 2005) is a Java-like language designed to allow the actual
programming of such AUML interactions. Quenum et al. (2006) proposes a
similar framework, but designed to emphasize the separation betweenagents
and their role in protocols, thereby making the protocols generic. This requires
the addition of features, such as the di�erentiation between agent actions and
messages, to those provided by AUML and variants. Moreover, contrary to
imperative approaches such as IOM/T, Quenumet al. (2006) argue in favour
of a declarative speci�cation language.

The notion of an organization (Ferber, 1999) can be related with environ-
ments. An organization, in this sense, is divided in two parts: the abstract
organizational structure and the concrete organizations. The organizational
structure de�nes the roles that agents might occupy, independently of the

21



2. Related Work

actual agents that will eventually ful�l the roles. Roles de�ne powers and
responsibilities, and are related to other roles too. A concrete organization,
in turn, is an actual MAS that ful�ls the constraints imposed by an organi-
zational structure. The relation to environments can be establishedat this
concrete level, since the MAS environment, if represented explicitly, may as
well be subject to organizational constraints. If the environment is not repre-
sented explicitly, the mechanism that allow the agents to interactaccording to
the organizational structure can be seen as a kind of environment, although
possibly quite an abstract one. MOISE (Hannounet al., 2000) is an example
of such an organization model.

Finally, it is worth to mention the work done in reasoning involving depen-
dency networks (Sichmanet al., 1998). By modelling the capabilities of other
agents and the dependencies among them, an agent can build a network of
dependencies that comprises the whole MAS, thereby creating a model of its
environment in so far as such dependencies are concerned. While this is not
an environment in itself, this kind of social reasoning can be used tooperate
in an environment rationally. Social networks such as these in fact present a
general way of modelling and reasoning about societies, which has also been
studied in the sociology area of Social Network Analysis (Wassermanet al.,
1994).

2.1.3 Multi-Agent Based Simulation

In the context of a scienti�c inquiry, a model is an abstract representation of
a target system, the entity one wishes to study (Frigg and Hartmann, 2009).
Accordingly, in this thesis we are concerned withsimulation models. A simu-
lation, in turn, is the execution of such a model by asimulator, which produces
a sequence of simulator states.

Multi-Agent Systems can be used to develop models of interesting situations in
order to analyse their properties. Simulation is often used to perform such an
analysis, and a number of tools are available to this end (Gilbert and Bankers,
2002). These tools usually provide both a programming framework in which
to de�ne agents and a simulation tool to actually perform simulations. This
general architecture was introduced by the SWARM platform (Minar et al.,
1996). More recent examples can be found on the RePast (Northet al., 2006)
and MASON (Luke et al., 2004) platforms. Tobias and Hofmann (2004) sur-
vey a number of such platforms and compare them.

Simulation platforms often require the user to program. This, of course, pre-
vents many potential users from employing them. To mitigate this problem,
some tools, such as NetLogo (Wilensky, 1999) and SeSAm (Klugl and Puppe,
1998), have easy of use as an explicit goal

22



2.2. Formal Veri�cation

Multi-Agent models have been used, in particular, to simulate social phenom-
ena. Notably, Epistein and Axtell (1996) explored phenomena such as trade,
war and disease transmission using the Sugarscape platform they developed.
Their objective was to show that these phenomena can be explained by�nding
the right simulation rules that generate them.

Many similar studies through simulation have been devised, addressing many
di�erent matters, such as: natural resources management (Briotet al., 2010),
epidemiology (Alam et al., 2009; Bearmanet al., 2004; Eubanket al., 2004;
Mysore V. et al., 2005), terrorism (Tsvetovat and Latek, 2009), climate (Downing et al.,
2001; Balbi et al., 2010), crowd behaviour (Henein and White, 2005; Bansalet al.,
2008), opinion formation (Stocker et al., 2001), archaeology (Doran and Palmer,
1995; Deanet al., 2000), economics (McCarthyet al., 2008), crime (Bosse and Gerritsen,
2008), stem cells (d'Inverno and Saunders, 2005) and computer networks (Bhargavan et al.,
2002).

2.2 Formal Veri�cation

The idea of analysing the properties of MASs automatically came mostly from
the broad �eld of Formal Veri�cation, to which we now turn our attention.
Section 2.2.1 concerns Model Checking, from which we took the idea of system-
atically exploring state-spaces. Section 2.2.2 addresses Model-Based Testing,
an area that combines formal speci�cations with actual program execution.
Section 2.2.3 presents Runtime Veri�cation, an approach that veri�es exe-
cutions of programs, not their speci�cations. Finally, Section 2.2.4 presents
process algebras, among which we found semantic models useful for veri�ca-
tion.

2.2.1 Model Checking

In modal logics, a model M for a formula � is a graph with labelled states
that provides the semantics of � . Model Checking is a veri�cation method
�rst proposed by Clarke and Emerson (1981) and Queille and Sifakis (1982)
in which the properties of interest are evaluated directly on the model for a
system, instead of the speci�cation's syntax. That is to say, instead of trying
to produce a proof, one merely scans a model searching for violations ofthe
desired formula � . We denote that some states of the model M satis�es �
by writing:

M ; s j= �

In Model Checking, M typically represents some computational system of in-
terest (e.g., a set of computers that communicate through some protocol), and

23



2. Related Work

� some property concerning such a system (e.g., that no deadlock occurs). M
can be obtained automatically from higher-level descriptions that specify the
behaviour of the system (i.e., from a program), and� can be given explicitly
in terms of temporal logics (a kind of modal logic) such as the Computation
Tree Logic (CTL) or the Linear Temporal Logic (LTL). For instance, in LTL
one can formalize the assertion

\It will always be the case that when process p requests resource r , it will
eventually receive it."

by writing something like

G(p requests r ) F (p receives r ))

where G (\ Globally") and F (\in the F uture") are temporal modalities.

Model Checking has seen considerable progress since its inception. Symbolic
Model Checking (Burch et al., 1990) has made the treatment of large state-
spaces possible by using special data structures (i.e., Binary Decision Dia-
grams) to encode them succinctly. More recently, Bounded Model Checking
(Biere et al., 1999, 2003; Clarkeet al., 2001) has pro�ted from the develop-
ments in SAT solvers. This is done by limiting the length of the counterexam-
ples one is searching for, which allows an e�cient translation of the resulting
problem to an instance of SAT.

Clarke et al. (1999) and Baier and Katoen (2008) provide long and self-contained
texts covering much of the developments in Model Checking. Finally, Clarke
(2008) gives a historical account of this development.

2.2.2 Model-Based Testing

Software Testing is a form of veri�cation in which a system under test(SUT)
is systematically executed according totest casesin order to identify defects.
Model-Based Testing (MBT) (e.g., Gaudel, 1995; Brinksma and Tretmans,
2001), in turn, is a formal approach to testing which employs mathematical
models of the SUT to generate test cases. This brings two main advantages:

� test cases can be generated automatically from the model;

� test cases can be chosen in such a way that some coverage guarantee can
be given. For instance, if the system is modelled as a control-ow graph,
one can aim at covering all possible execution paths of such a graph.

24



2.2. Formal Veri�cation

A well-known example of such an approach was proposed by Tretmans (2008).
There, the SUT is speci�ed as a labelled transition system, which can be used
to generate test cases. By this method, it is possible to systematically test
whether the SUT conforms to its speci�cation with respect to the so-called
ioco relation.

In order to produce test cases directed for some particular end, one can em-
ploy test purposes. Such test purposes can, in particular, be represented for-
mally. This approach is used on the TGV tool (Jard and J�eron, 2005), where
both test purposes and SUTs are modelled as input-output transition sys-
tems (IOTSs). By performing a special synchronized product between them,
along with other transformations, one gets another smaller automaton from
which test cases can be extracted in order to assess whether the SUT is ioco-
conformant to the speci�cation. By this method, only relevant tests are ex-
ecuted. TGV itself is based on a more general approach to on-the-y veri�-
cation, which can also be used to perform Model Checking and to determine
bisimulations (Fernandez et al., 1992).

Often, the state-space relevant for testing is very large. For this reason, tech-
niques to partially explore the state-space have been devised. Inparticular,
the use of statistical methods allows the performance ofrandom testing. As
the name implies, random testing is concerned with generating testcases in a
random way. Randomness can be introduced in a variety of manners, suchas
providing random inputs, or performing a random walk on a control graph.
The latter approach is of particular interest because it allows the exploration
of the state-space according to desired statistical criteria. Moreover, formal
approaches often assume the existence of a graph model of the SUT, which
make such random walks a natural choice for their testing.

There are a number of ways in which one can perform a random walk. First,
one can proceed using an uninformed random walk, which simply chooses
randomly between the successors states of the current execution state. This
method, however, produces biased coverages of the graph. To correctthis,
Deniseet al. (2004) proposed a method in which each possible execution trace
has the same probability of been chosen (i.e., a uniform distributionover
traces). Later improvements of this method allow the uniform selection of
traces in a concurrent system, in which each program has its own, smaller,
control graph (Denise et al., 2008). This allows the uniform analysis of much
larger state spaces.

At last, we consider the area ofpassive testing(Lee et al., 1997). In passive
testing, checks are performeda posteriori. That is to say, the SUT is not
exercised by test cases; rather, checks are performed on the execution traces
of the SUT's normal behaviour, and thus have a passive role. Usually, an
automaton represents the property to be tested. It is then just a matter of

25



2. Related Work

performing language recognition on the traces. This approach, though from a
di�erent community, resembles Runtime Veri�cation in that one has not much
(or none at all) control over the concerned system, and checks are performed
merely by observing its normal behaviour. Passive testing, however, make
such observations after the system has been executed (by examiningthe logged
traces), whereas Runtime Veri�cation, which we shall now turn our attention
to, focus on runtime observations.

2.2.3 Runtime Veri�cation

Formal Veri�cation techniques are designed to be applied to speci�cations of
systems so that it can be guaranteed that it conforms to some property of
interest. This, however, is often unfeasible, owing to the largemodels that
need to be analysed. Runtime Veri�cation (RV) is an alternative to such
usual methods. In RV, instead of proving that the speci�cation of a system
conforms to a property, one merely checks whether the execution of the system
is conformant. Thus, while it cannot guarantee that the system is conformant,
it can at least provide a way to detect and respond to deviations from the
desired behaviour.

Typically, this is achieved using amonitor , which is an extra component that
is added to the system in order to perform the veri�cation. The precise nature
of such monitors vary according to the kind of property to be analysed. It
turns out that linear-time properties are more suitable such an architecture,
and thus most approaches employ some variation of a linear-time logics, such
as Linear Temporal Logic (LTL).

However, the traditional semantics for LTL assumes an in�nite execution trace.
Thus, it is unable to cope with cases in which only �nite traces are available.
For example, a liveness property such asGFp (i.e., \in the future, p will
always happen again") cannot be veri�ed because one cannot know whether
p will happen again after a trace terminates. To solve this problem, one may
rede�ne the semantics of LTL to account for the case in which traces are�nite
entities. This approach is followed by Finkbeiner and Sipma (2004), where an
upper-bound (i.e., the trace length) is introduced in the semantics and it is
shown how to build monitors for it. A similar approach is taken by Geilen
(2001), where the technique presented is capable of ensuring certainkinds of
LTL properties.

Another way of solving the problem of �nite traces is to modify LTL more
extensively. This is achieved, for instance, by Baueret al. (2007), where the
Runtime Veri�cation Linear-Temporal Logic (RV-LTL) { a four-valued versi on
of LTL { is de�ned, alongside an appropriate monitor. This work is itself
built upon two other modi�cations of LTL for �nite traces, namely, FLT L

26



2.2. Formal Veri�cation

(Lichtenstein et al., 1985) and LTL3 (Bauer et al., 2006).

An even more sophisticated approach can be found on Eagle (Barringeret al.,
2004a; Goldberg and Havelund, 2005), which is a general logic framework
which can be specialized to a number of particular logics. It is designed to
allow the creation of monitors and is implemented as a Java library. An LTL
specialization for Eagle is given by Barringeret al. (2004b).

The RV community also emphasizes practical implementations, and there-
fore a number of software architectures have been designed in order to sup-
port the veri�cation techniques. Monitoring-Oriented Programming ( MOP)
(Chen and Ro�su, 2007), for instance, is an e�ort to build a whole paradigm
using monitoring ideas. Using MOP, one can employ a number of di�erent
formalisms to express properties, and the generated monitors can be written
in a number of di�erent programming languages. Java-MOP (Chen and Ro�su,
2005) is the version for the Java platform. The MaC architecture (Kim et al.,
2001) follows a similar platform-independence principle, but is tied to its own
particular speci�cation language. Java-MaC is the version for Java of this
general architecture.

2.2.4 Process Algebras

Concurrent systems are notably di�cult to design correctly. This h as led to
the development of formal approaches to their speci�cation and veri�cation,
among which process algebras have been particularly fruitful. In such a for-
malism, processesare algebraic expressions that model, in an abstract manner,
the communication capabilities of individual systems. By putting such pro-
cesses in parallel, it is possible to assess their combined behaviour, which is
the main source of complications arising in concurrent systems. Examples of
process algebras include ACP (Bergstra and Klop, 1984), CSP (Hoare, 1985),
CCS and � -calculus (Milner, 1999) (see Appendix E for an overview), and
Ambient Calculus (Cardelli and Gordon, 1998).

Besides serving as formalisms for speci�cations, some of these process alge-
bras have been actually implemented in some form, so that speci�cations can
actually be executed as programs. Pict (Pierce and Turner, 1997) is an exam-
ple of programming language based on the� -calculus. Peschanski and Hym
(2006) develops the cube-calculus, based on the� -calculus, which is actually
a language designed to run in an interpreter called the CubeVM. JCSP (Lea,
1999) provides a Java framework for the implementation of CSP, so that it
is possible to create Java programs whose communication structures follow a
CSP speci�cation. Applications of JCSP include the works of Oliveira (2005)
and Freitas and Cavalcanti (2006).

27



2. Related Work

2.2.5 Formal Development

In a formal development approach, one starts with a formal speci�cation of the
system to be created and, through some technique that guarantees correctness,
transforms this speci�cation in either another speci�cation or actual software.
Typically, the formal speci�cation de�nes the high-level requirements of the
system, without considering implementation details, and is thus more focused
on the abstract properties of the problem to be solved. Another advantage of
proceeding in this manner is that one may, at each formal speci�cation level,
verify whether certain properties hold or not (e.g., by means of logical proofs
or Model Checking), which may be more di�cult or even impossible in an
implementation.

The Z Notation (ISO/IEC, 2002; Woodcock and Davies, 1996; Jacky, 1996)
is a well-known formalism for writing such speci�cations, based on set the-
ory and �rst-order logic (see Appendix D for an overview of Z). Z is de-
signed for the speci�cation of systems composed of states and transitions
among states, although stateless de�nitions are also possible. A calculus allows
the composition of more complex speci�cations out of simpler ones. Circus
(Woodcock and Cavalcanti, 2001) is a related method, which integrates Zwith
CSP in order to allow the communication aspects of the system to be more
properly speci�ed. Given such a speci�cation, the question of howto transform
it in correct software arises. A solution is to proceed with formal re�nements,
which are transformations that allow one to go from abstract speci�cations to
less abstract ones, until an implementation is reached. Sampaioet al. (2002)
provides an example of such a re�nement technique for Circus. TheB Method
(Abrial, 1996) is another approach, based largely on Z notions, but with a fo-
cus on facilitating re�nement to executable code.

2.3 Other In�uences

2.3.1 Non-Agent Based Simulation Methods

Schruben (2010) points out the simulation modelling and analysis are often
seen as two entirely di�erent activities, and argues that it would be more
productive to design models considering how they are supposed tobe analysed.

The Discrete Event System Speci�cation (DEVS) (Zeigler et al., 2000) family
of simulation formalisms provides conceptual frameworks to put simulation
under rigorous de�nitions. In particular, DEVS de�nes the notion of experi-
mental frame as an entity which provides inputs to a simulation model and
judges its outputs. For the sake of uniformity, experimental frames can be ex-
pressed with the same formalism used to specify the simulation model itself.

28



2.3. Other In�uences

Experiments run in this fashion, though, have no control over the simulation
once it is started, and can only evaluate its �nal result. This is su�ci ent to
devise certain optimization techniques, by which several input parameters are
tested in order to �nd the ones that generate the best output according to
some optimization criteria (Halim and Seck, 2011).

Even though a DEVS model is meant for simulation, it can sometimes be
subject to formal veri�cation through model checking, provided that the model
can be reduced to a particular subset of DEVS such as FD-DEVS (Hwang,
2005). Model-based testing can also be applied (Liet al., 2011).

2.3.2 Software Components

Software componentsare used in the implementation of our tool, so let us
examine what they are. The fundamental ideas concerning components were
given by McIlroy (1968), in which it was envisioned that software should be
built using reusable parts, much like electronics are built using reusable inte-
grated circuits. To this end, the task of developing software would have to be
divided into two branches. One that would take care of building components
useful in many di�erent situations, and another that would develop the �nal
software using these reusable components. This way, developers would save
time by not having to rewrite software parts.

These ideas have developed through the years, and today we have a Component-
Based Software Engineering �eld. Following the contemporary treatment of
the subject found by Szyperski (1999), a software component is characterized
as follows:

� It is an independent unit of deployment. That is, it can be packaged and
transmitted independently of anything else;

� It is a unity of third-party composition. Components are designed to be
reused in unknown applications, built by di�erent people;

� It has no externally observable state. This is just a technical detail
to make sure that the same components will always perform the same
functions;

� It has contractually speci�ed interfaces and explicit context dependencies
only. In other words, one can know what the component requires from
and provides to an application;

� It targets a particular component platform. Components frequently as-
sume the existence of a platform that provides useful services.

29



2. Related Work

To be used, software components must providecomponent instances(i.e., ob-
jects that do have an observable state1 and are, thus, useful in particular
applications) and such instances must becomposed.

2.4 Formal Approaches to Multi-Agent Systems

Benerecetti et al. (1998) remarks that, in 1998, there were few approaches
to the formal veri�cation of MASs. Since then, however, there has been an
increasing interest in applying formal methods to MASs, including formal
veri�cation techniques. In this section we present the approacheswhich are
most signi�cant for our own attempt in bringing these areas together.

2.4.1 Formal Speci�cation of Agent Architectures

Some researchers are particularly interested in establishing precise basis in
which to de�ne agents. The SMART framework (d'Inverno and Luck, 2003),
for instance, employs the Z Notation in order to formalize a general theory
of agency. Its aim is to allow any other agency theory to be speci�ed in its
terms, provided that a few minimal obligations are met. One such extension
can be found in da Silva (2005), where a theory of business management is
formalized as a multi-agent system.

Another example is the dMARS system we saw in Section 2.1.1.2, which was
formalized by d'Inverno et al. (1997).

2.4.2 Formal Speci�cation of Environments

Since process algebras (see Section 2.2.4) are designed to model and verify
communications in concurrent systems, it would be natural to employthem
in the speci�cation of MAS environments. Yet, this is seldom done in the
context of MAS simulation. One exception is the work of Wang and Wysk
(2008), which uses a modi�ed� -calculus to express a certain class of agents
and their environments. Another example is the IOM/T language (Doi et al.,
2005), which is used to specify interaction protocols, and whose semantics can
be given using the � -calculus. IOM/T is actually designed to be a textual
representation of AUML sequence diagrams (FIPA, 2003), and the� -calculus
semantics is used to formally demonstrate their equivalence.

As we saw in Section 2.1.2 above, Ferber and M•uller (1996) develop a model
to the speci�cation of environments of multi-agent systems. This model can

1Even if, owing to information hiding, only partly or indirectly ob servable.

30



2.4. Formal Approaches to Multi-Agent Systems

be formalized to some extent by the Block-like Representation of Interactive
Components (BRIC) developed by Ferber (1999). A BRIC speci�cation is
de�ned by blocks which possess their own behaviour (speci�ed as Petri nets)
and can be connected to each other. In this way, agents and their environment,
as well as the mechanisms of synchronization and message passing that relate
them, can be speci�ed as individual but interconnected blocks.

Although not actually part of the computer science community, it is worth to
note that in the sociology area of Social Network Analysis (Wassermanet al.,
1994), social networks are precisely de�ned (as graphs), along with properties
of interest (such as the centrality of an individual in a network). All this
is provided using formal de�nitions, and indeed software that, given a social
network (e.g., as an adjacency matrix), can calculate these properties.Exam-
ples of such software include Pajek (Batagelj and Mrvar, 1998) and UCINet
(Borgatti et al., 2002).

2.4.3 Formal Veri�cation and MAS Simulation

Most approaches to MAS simulation do not employ any form of automated
formal analysis. There are, however, a few notable exceptions. Let us review
them.

Bosseet al. (2009) presents the Temporal Trace Language (TTL), which has
an associated tool, designed to de�ne simulation models (in a sublanguage
called LEADSTO), as well as linear-time properties about such models.The
approach is to execute the simulation model and check whether the resulting
traces obey the speci�ed linear-time properties. An example of thismethod
is given by Bosse and Gerritsen (2008), where criminal behaviour is modelled,
simulated and analysed. A similar method was given by Mysore V.et al.
(2005), who developed a multi-agent model of food poisoning using the RePast
(North et al., 2006) simulation platform and analysed it by checking the re-
sulting simulation traces with respect to LTL formulas.

Despite the clear possibility, Runtime Veri�cation (see Section 2.2.3) is not
usually applied to simulations. An exception is the network simulator Verisim
(Bhargavan et al., 2002). This tool runs the simulation normally, but checks
linear-time properties as it proceeds using runtimemonitors. Indeed, the MaC
architecture (Kim et al., 2001) is employed to implement such monitors.

2.4.4 Model Checking of MAS

While MAS simulation is usually treated in an informal manner, there are a
number of approaches to formally specify and verify MASs (not necessarily
meant for simulation). These, in essence, are merely the applicationof usual

31



2. Related Work

model checking techniques to particular kinds of formal speci�cations (i.e.,
speci�cations of MAS), as we shall see below. Furthermore,
van der Hoek and Wooldridge (2003) note that there is a di�culty in relating
an agent'sprogram to its formal speci�cation . Indeed, though the pioneer work
of Rao and George� (1993) shows how to model check a BDI-based modal logic
speci�cation, the problem of how to implement such a speci�cation remains.
This is an important gap, since the ultimate objective is to understand the
properties of an actual agent, which must exist as an implementation too.

Benerecetti et al. (1998) attempted to solve this problem by demanding that
one codi�es agents in an extension of the input language PROMELA of the
SPIN model checker (Holzmann, 2003). In a more high-level manner, this issue
has also been addressed by devising special purpose programming languages,
which are then translated to the input of a model checker. For example,
MABLE (Wooldridge et al., 2006) is a programming language which, in addi-
tion to usual imperative constructs, adds the possibility of specifying mental
states in accordance to the BDI theory we saw previously (e.g., by specify-
ing an agent's beliefs). The veri�cation of a MABLE program is achieved by
translating it in PROMELA and using the SPIN model checker. Hence, the
approach reduces to devising a translation scheme to the input accepted by a
traditional model checker.

Similarly, Bordini et al. (2003) have shown that AgentSpeak(F), a (�nite state)
subset of the AgentSpeak(L) language to specify BDI agents, is reducibleto
PROMELA. Moreover, Bordini et al. (2004) have shown how to reduce these
same agents to Java, in which case veri�cation can be done using the JPF2
model checker (Visseret al., 2003).

MCMAS (Lomuscio et al., 2009) follows a similar approach, but instead of
reducing an MAS program to another formalism, it provides a model checker
that operates directly on the program provided. This is done by increment-
ing existing BDD-based algorithms with procedures for the new epistemic
modalities introduced by the approach (e.g.,knowledge). This approach has
been particularly relevant to the analysis of communication protocols among
agents, whose properties can often be expressed more elegantly using the pro-
vided epistemic modalities.

32



CHAPTER 3
Contribution of this Thesis

In previous chapters we have seen the motivation and general aspects of our
approach, as well as the works related to it. Let us now turn to its technical
characteristics and show how it compares with the state of the art. In what
follows we present an overview of the main elements introduced bythis thesis
and explain how they relate to existing methods, thereby providing both a
detailed account of our scienti�c contribution and a summary of its technical
content.

This presentation is done by, in each section: (i) summarizing the contents of
a particular chapter, which is speci�ed in the beginning of the section; and
then (ii) comparing our contribution with existing approaches. Chapters that
are not mentioned are of course original as well, but they play a support role
with respect to the ones which are dealt with here (e.g., Chapter 9, which
provides examples of uses of our approach, and thus supports the theory).
Notice that in the present chapter the technical terms areemphasized but
used informally. Their precise de�nitions are left for their respective chapters.
This is done to avoid introducing unnecessary complications and minutiae at
this point. The interested reader may refer directly to the de� nition in the
appropriate chapter.

3.1 Agent Architecture

The complete contribution is presented in Chapter 4.

33



3. Contribution of this Thesis

It is clear that owing to its focus on the organism as a whole (i.e., not on
isolated details of particular internal structures), as seen in Section 2.1.1.4,
Behaviour Analysis incidentally provides a useful basis for a computational
agent architecture. That is to say, a framework with which to de�ne agents
capable of receiving stimuli and performing actions in a rather generalmanner.

In this thesis we introduce a new agent architecture based on the core elements
of Behaviour Analysis1, which we call the Behaviourist Agent Architec-
ture 2. Besides the overall perspective of agent behaviour that it is capable of
providing, this behaviourist theory is valuable to us also for the following rea-
sons: (i) it places great importance on de�ning and analysing behaviour from
an external point of view, which in the light of the methodology suggested
in Section 1.1 is clearly important; (ii) it is based on an empirical science,
and therefore is capable of modelling many realistic animal phenomena,such
as learning; and (iii) the underlying psychological theory is su�ciently well
de�ned in order to allow the possibility of a formalization, which is n ecessary
for a computational implementation. Moreover, its practical usefulness can
arise in the following situations:

� if the agents are to be studied and manipulated using similar techniques
to those allowed by Behaviour Analysis;

� if the agents are actually models of real organisms. In such a case, the
agents can be simulated in order to infer results about the organisms
they model;

� if one believes that copying these natural mechanisms provides more
e�cient ways to solve problems.

The architecture gives a computational account of the Behaviour Analytic
elements we presented in Section 2.1.1.4, namely: (i) stimulus conditioning;
(ii) respondent behaviour (i.e., reexes); (iii) operant behaviour; (iv) drives;
and (v) emotions. Agent behaviour arises from the interaction of these several
parts among themselves as well as with the surrounding environment.

While a direct implementation of such an architecture would in fact be a
formalization (i.e., because the program's text is written in a formal language),
we chose to write anabstract formalization �rst to serve as the speci�cation of
the implementation. In this way we were able to separate the theory itself from

1Part of which we published in (da Silva and de Melo, 2007).
2We realize that the word \behaviour" and its variants are quite broa d and have many

intuitive meanings. Nevertheless, we have chosen to keep them as technical terms here in
order to remain faithful to the naming conventions usually employ ed in the behaviourist
literature we draw from. Thus, all of our references to the \behaviour" o f agents should be
seen from this perspective, unless explicitly noted otherwise.

34



3.1. Agent Architecture

implementation details. This formal speci�cation is written in the Z Notation
(ISO/IEC, 2002; Woodcock and Davies, 1996; Jacky, 1996) and constitutes
the subject of Chapter 4. Its implementation, which we use in the simulations,
is done in Java in a rather straightforward manner. More details about the
implementation are given in Chapter 8, and a reference of the requiredinput
format is provided in Appendix C.

The agent architecture de�nes an agent as anorganism which is capable of
receiving stimuli and providing behavioural responses. These responses can
constitute instances either of reexive behaviour, or operant behaviour. The
former accounts for actions which are directly elicited by stimulation, whereas
the latter accounts for actions that are emitted autonomously because of pre-
vious learning. Operant behaviour is formed and maintained byreinforcing
actions through pleasant stimuli.

The purpose of an organism is to �nd pleasant stimuli and avoid unpleasant
ones. This task is complicated by the fact that theutility of stimuli can change
over time, as the organism may learn new relations among them. For example,
a neutral stimulus may become pleasant if the organisms �nds out that the
�rst is always followed by the latter in its environment.

Drives and emotions can regulate behaviour by modifying either the behaviour
emission itself or stimulus utility. Drives formalize the notion t hat some stimuli
becomes increasingly important to organism while it is deprived of them (e.g.,
thirst is a drive in animals). Emotions specify other behavioural modi�cations
suitable in particular circumstances (e.g., afrustrated organism becomes more
likely to emit actions carelessly).

As an example of what this architecture can represent, let us considera be-
haviour analytic description of a typical laboratory experiment that one could
perform on, say, a pigeon. The pigeon is put on a cage, where both a button
and a light bulb are present. Before giving food to the pigeon, and only then,
the experimenter tuns the light on. After some time, the pigeon learns that
light is followed by food. So every time the light is on, the pigeon acts as if the
food has arrived. This is an example ofclassical conditioning. Moreover, the
pigeon initially does only random actions, because it does not know how its
environment works. But eventually it discovers that by pushing a button, the
light is turned on. This is an example of operant conditioning. By combining
these two conditionings, the pigeon then becomes likely toemit the behaviour
of pushing the button when it wants to eat. Its hunger, in turn, is giv en by a
drive, which changes the utility of stimuli according to how much the pigeon
has already eaten. Finally, the experimenter might decide that no food shall
be given in association with the light. In this case, the pigeon will begradually
unconditioned, and the behaviour of pushing the button will be extinct. This
causesfrustration on the pigeon.

35



3. Contribution of this Thesis

The precise meaning of the emphasized terms will be given in Chapter 4, but
for the moment it su�ces to note that they provide a relevant vocabul ary to
describe the experiment. Remarkably, it is a vocabulary whose expressions are
ultimately de�ned in terms of externally observable behavioural responses and
stimulation. Take hunger, for instance. It is a drive, which means that it is
de�ned by the existence of two operations, namely,satiation and deprivation,
with respect to a particular kind of stimulus, in this case food. By depriving
the organism of food, it becomes more likely to emit behaviours that lead
to food. By satiating it, the contrary happens. This is the de�niti on found
on the psychology theory. To make it computational, we add the notion of
stimulus utility , which provides a minimal explanation for the phenomenon:
drives a�ect the utility of stimuli, which in turn a�ect behaviou r emission.

Since behaviourist principles were largely developed using animals, examples
like the one we gave above abound on the related literature.3 Nevertheless,
the underlying principles that arise from such experiments are applicable to
humans as well. Consider, for example, any interactive website. In this case,
one may well be interested in how often, and under which conditions, some
users will perform some actions. For instance, how often they click oncertain
links, use certain features, or which kind of advertisement is moree�ective.
Because of the abstract nature of such a model, it can be put in behaviourist
terms much like the experiments with, say, pigeons. To the extent that the
user is interacting in this well-de�ned and abstract space, he can be seen
just as the pigeon in its experimental chamber. We shall see other examples
involving people in Chapter 9.

3.1.1 Comparison with Other Approaches

We avoid introducing constructs which we do not �nd necessary for the com-
putational formalization of the original de�nitions of Behaviour Analysis, t hus
upholding its values as much as possible. In particular, though agents thus
de�ned have state, which is necessary for computation, we do not ascribe usual
mental qualities to them, such as will, belief, intention, knowledge, memory,
and reasoning. This is so because Behaviour Analysis rejects these usual ex-
planations of behaviour, and puts in their place a di�erent set of concepts,
focused on the properties of externally observable events { that is to say,
behavioural responses and stimulation.

In this way, we di�erentiate our architecture from a number of other s. Many
of the fundamental ideas of Arti�cial Intelligence are related to the vi ew that
human intellect can be understood as an information processing device, much
like a computer (e.g., Simon, 1996). This view �nds considerable support

3For a curious one, see Skinner (1948), where it is shown experimentally that some
superstitions can be explained in behaviourist terms.

36



3.1. Agent Architecture

on approaches to psychology that seek to identify and analyse these internal
information processing mechanisms. This excludes Behaviour Analysis, but
includes both folk psychology (e.g., as pointed out by Bratman, 1987), as
well as academic branches such as Cognitive Psychology (Neisser, 1967). It
is only natural, then, that many well-known agent architectures, such as the
examples we cited in Section 2.1.1, should be based on similar principles,
that for convenience we shall callmentalistic. These are appropriate in many
cases, but behaviour of humans and other animals alike is often determined
by mechanisms which cannot be e�ectively presented using such mentalistic
descriptions alone.

Though not incompatible, mentalistic and behaviourist theories are very dif-
ferent. In particular, cognitive approaches treat agents as information pro-
cessing units endowed with certain mental mechanisms, such as memory and
planning capabilities, and try to analyse the properties of such mechanisms
experimentally (e.g., the capacity of working memory as shown by Miller,
1956). Behaviourism, in contrast, seeks mathematical relations betweenstim-
ulation and behavioural responses without assuming any intermediary mental
mechanism (e.g., the rate of behavioural responses in relation to the rate of
reinforcement as studied by Herrnstein, 1970). Hence, the two perspectives
can be seen as complementary, but with distinct focuses and theories.

To see this more clearly, we may return to the example of the pigeon ina
cage given previously. How could one use mentalistic notions to describe the
experiment with the pigeon? Let us examine some possibilities. If knowledge
is represented explicitly and the agent relies only on reasoning, it would be
necessary to add knowledge concerning the several phenomena involved, which
would state that it is right to make such conditioning, and specify how they
are to be de�ned, maintained and eventually dissolved. Knowledge forthe
regulation of hunger over time, and of the emotional e�ects of frustration,
would also have to be provided. But then one would be using mental terms
to describe not the knowledge of the agent, but unconscious mechanisms that
regulate its behaviour. And in this case it would be better to describe such
mechanisms directly, instead of relying on an agent's rational machinery to
deduce their consequences. Conversely, if instead of explicit knowledge one
employed intricate internal cognitive or neural mechanisms, it would possibly
add more complexity than it is required for the description of the observed
phenomenon. For instance, if one knows a mathematical formula capable of
describing how classical conditioning takes place, there is no need to provide
a detailed neural explanation in so far as the simulation of the behaviouris
concerned. In summary, it seems that certain classes of behaviour arebetter
understood without reference to mental entities, but merely environmental
ones.

It is clear that the modelling of organisms can be done at many points in a

37



3. Contribution of this Thesis

continuum of abstraction: from the use of disembodied reason (very abstract)
down to the mimicking the physical properties of actual organisms and their
brains (very concrete). Owing to its emphasis in the interface between or-
ganisms and their environments, a behaviour analytic approach provides an
interesting alternative, a middle ground between these two extremes. It is
not, of course, the only possible alternative, but it is one with an established,
distinct and coherent psychological theory, which was created with certain
particular problems in mind, and therefore merits attention. Nonetheless, it
must be be emphasized that our objective is not to dismiss or substitute any
of the existing agency models, mentalistic or otherwise. Rather, ourapproach
complements existing ideas and allows the study of agent behaviour from a
di�erent point of view, suitable for di�erent purposes.

Computational models for Behaviour Analysis are scarce in the literature, and
none of the existing ones gives a uni�ed account of its main elements, which we
group as follows: (i) stimulus conditioning; (ii) respondent behaviour (i.e., re-
exes); (iii) operant behaviour; (iv) drives; and (v) emotions. Th e approaches
that do exist, such as the work of Touretzky and Saksida (1997), focus mostly
on algorithmic aspects of operant conditioning, a form of learning by rein-
forcement. Important as this may be, it is not su�cient as an architect ural
basis, which requires a more extensive and structural speci�cation of what
constitutes an agent. It must be extensive because there is great dependency
among the several behavioural phenomena, and to represent one it is often
necessary to represent another. In particular, operant conditioningitself de-
pends on other aspects of the agent, such as drives and emotions. It must
also be structural because it serves as a fundamental basis for both implemen-
tation and further theoretical development. Therefore, its elements must be
organized in such a way that they can be easily identi�ed, analysed, related,
changed and extended { that is to say, highly structured.

Concerning the work of Touretzky and Saksida (1997) speci�cally, despite its
merits, it is limited in ways our approach is not. No account is given of drives
and emotional behaviour, nor is stimulus utility represented explicitly. Re-
exes are also not represented. Moreover, the treatment of operant behaviour
itself, though interesting, is limited in some important ways. For instance,
it assumes that reinforcement must be provided in the instant following the
action to be reinforced, whereas it could be a longer delay. It is also unclear
how the model could be extended or changed, since no other structures are
presented. Our approach, in contrast, provides a general framework foragent
modelling which de�nes several aspects of agent behaviour, shows how they
relate to each other and can also be extended and changed modularly. This
implies, in particular, that di�erent calculations for operant condit ioning can
be speci�ed within our architecture.

Extensibility is an important design goal for us. While we provide abstract

38



3.1. Agent Architecture

de�nitions and corresponding re�nements, it should be possible todevise al-
ternative re�nements. This is possible by the use of the Z Notion, andcan
be useful in order to specialize or change the architecture in a systematic
manner. For example, if one wishes to consider a di�erent way of learning
in operant behaviour, it is possible to de�ne it and integrate in the architec-
ture. This exibility contrasts, for instance, with Q-learning t heory (Watkins,
1989), in which a certain learning mechanism is de�ned and is not supposed
to be changed. Our approach to operant modelling, on the other hand, aims
at being exible enough so that a wide range of utility calculation strategies
can be de�ned, and it is designed to model the usual operant contingency
as a triple of antecedent stimuli, action and consequent stimulus. Moreover,
our approach is closely linked to other agent's aspects, such as its stimuli
processing facilities and its emotional state.

It is also worth to note that McCarthy (2008) has argued that some innate
notions and mechanisms can be useful in complementing an agent's learning
process. Our approach can be seen under this light, since we provide a number
of supporting mechanisms that the agent uses to guide and structure its learn-
ing. However, instead of relying on theorem proving, as McCarthy suggests,
we de�ne specialized structures for the several mechanisms. We thus avoid
the e�ciency complications that might arise from automatic theorem prov ing.

A number of other speci�c comparisons can be made. The following points
are particularly relevant:

� The conditioning mechanisms we de�ne, namely, stimulus and operant
conditioning, provide a learning framework suitable for understanding
and acting upon an environment. By structuring the relations between
the observed environment elements, these mechanisms allow the agent to
reuse these experiences in future situations in order to eithermanipulate
or react properly to the environment. In contrast, rationality-inspi red
architectures, such as BDI (Bratman, 1987; Rao and George�, 1995),
do not de�ne the learning mechanisms involved, but merely assume that
learning is performed and its results transformed into beliefs. In other
words, we assumea priori features of the agent's environment (e.g.,
events that happened together may happen together again in the fu-
ture), and pro�t from them by de�ning associate learning mechanisms.
But this also reduces the generality of our approach. In particular,
it is not clear if we could develop a useful agent-oriented programming
(Shoham, 1993) language based on our architecture, although this might
be attempted. To this end, one would have to isolate tasks that a pro-
grammer may wish to accomplish and that �nd a good representation
using behaviourist notions. Currently, though, our architecture seems
more appropriate for modelling actual organisms, including whatever

39



3. Contribution of this Thesis

idiosyncrasies they might have.

� Historically, Behaviour Analysis has developed a distinct perspective
and theory on organism behaviour, di�erent from approaches based on
mental mechanisms such as Cognitive Psychology. TheBehaviourist
Agent Architecture helps in bringing these di�erences to computa-
tional agent architectures, in which cognitive approaches, such as SOAR
(Laird et al., 1987) and ACT-R (Anderson et al., 2004), predominate.

� Because our agent architecture is geared towards representing actual an-
imal behaviour, it is more suitable for modelling such behaviour than
approaches that lack similar empirical basis. This feature might be use-
ful, for instance, in modelling and forecasting social behaviour. This kind
of study has already been done using much simpler models of agency.
Epistein and Axtell (1996), for example, employ a kind of cellular au-
tomaton to this end. It would be interesting to undertake similar st udies
using behaviourist models instead.

� The structures used to represent conditioning, such as the stimulus
graph, are themselves objects to be studied. Questions might be asked
about how exactly organisms search over these structures, and therefore
the architecture can be re�ned to reect actual behaviour more closely.
These structures can be seen as a type of semantic network (Sowa, 1987)
specialized for behaviourist phenomena.

� The several parts of our architecture work with each other in order to
provide the �nal organism behaviour. For instance, the operant utilit y
is calculated considering the stimulus utility, which in turn m ight be
changed by an emotion or a drive. Naturally, this deep relationships are
missing in many approaches that seek to capture only speci�c parts of
organisms, such as it is usually done in the reinforcement learning area
(Russell and Norvig, 2002), and even in the treatment given to operant
conditioning in the skinnerbots of Touretzky and Saksida (1997). While
there are bene�ts in such an isolation, it is clear that there is also some
loss if the objective is to model a whole organism, whose behaviour is a
consequence of several interacting mechanisms.

� Moreover, learning by reinforcement techniques, though inspired by be-
haviourism, often restrict themselves to the notions ofreinforcement and
punishment without further analysis. Our formalization, however, pro-
vides �ner structures to model learning. For instance, we have seen that
both reinforcement and punishment can be subdivided intopositive and
negative. And each might have particular characteristics. Negative pun-
ishment, for example, triggers the emotion of depression. Furthermore,
extensions of our architecture may pro�t from this �ner structure i n
order to add other characteristics in an equally �ne manner.

40



3.2. Environment Model

� We have shown that drives and emotions can be de�ned in behaviourist
terms and are relevant to model actual organism behaviour. However,
they are not usually considered by other agent architectures. Even the
few approaches based on behaviourism that we are aware of ignore this.

� Our characteristic employment of an utility function di�erentiat es our
approach from that of McDowell et al. (2006), which explicitly avoids
any similar scheme. Hence, it is not clear whether it is possible to
express drives and emotions in their framework. In any case, they do
not show how to do such a thing.

� Operant utility calculation can be seen as a form of automated planning
(Nau et al., 2004), because it involves the composition of a sequence of
operants in order to achieve a goal (i.e., the best stimulus available).
As such, our architecture could bene�t from the research done in this
area. This need for planning is also at the heart of BDI approaches and
related agent-oriented programming languages, such as AgentSpeak(L)
(Rao, 1996).

� Though d'Inverno and Luck (2003) provides an extensible agent theory
based on the Z Notation, we de�ne our own model from scratch. The
reason is that we are interested in specifying very basic mechanisms,
such as the notion of behaviour itself, and in this case the foundation
provided by the SMART framework would not be suitable. Moreover,
in SMART the bound between agents is the goals they share, whereas in
our approach agents can only be related by mutual stimulation, not some
abstract goal. Nevertheless, its use of Z clearly inuenced our choice of
a formal notation for agent modelling.

3.2 Environment Model

The complete contribution is presented in Chapter 5.

As we remarked in Section 1.1, the environment of an MAS can be used as a
crucial element in its automated analysis. Because the greater complexity of
interest is often within the agents, which are thus simulated as black-boxes,
simpler and merely coordinating functions can be attributed to their envi-
ronment. These functions, in turn, lend themselves to simple and explicit
formal representations, which is attractive from a formal veri�cation stand-
point. It was with this in mind that we designed the Environment Model
for Multi-Agent Systems (EMMAS) 4.

4Part of which we published in (da Silva and de Melo, 2011a).

41



3. Contribution of this Thesis

EMMAS provides both a suitable coordination mechanism for our behaviourist
agents and a way to specify several possible experimentation scenarios in a suc-
cinct manner. This latter point is particularly distinctive, as it provides the
basis upon which we can perform formal veri�cation.

To achieve this, we employ ideas from process algebra by realising that our
agents can be seen as communicating processes. Indeed,EMMAS itself is
de�ned on top of the � -calculus process algebra (Milner, 1999). Among other
qualities, � -calculus has a simple operational semantics (i.e., the meaning of
expressions is given by considering a transition system). This means that it is
possible to transform an environment speci�cation into a transition system, in
which runs (i.e., sequences of states and events) denote the possible evolutions
of the environment.

An EMMAS speci�cation de�nes three aspects of an environment:

� Which agents are present. The agents are seen as black-boxes, and only
a minimal interface is explicit in the speci�cation (i.e., what st imuli each
can receive, and actions each can emit).

� How these agents relate to each other. These relations are given by
de�ning how the action of an agent is transformed into a stimulus for
another. The environment structure, then, is a social network (in the
sense of Wassermanet al., 1994).

� A number of behaviours of the environment itself, which are speci�ed as
operations .

All of these elements are put in parallel composition in the speci�cation so
that they can interact.

It is mostly through environment behaviours that experimental situations can
be speci�ed in EMMAS . For example, suppose that one wishes to test two
di�erent ways to manipulate a group of agents. One can de�ne an operation
Op1 to account for the �rst, and another operation Op2 for the second. Then,
to specify that the two are to be experimented with, one requestsa non-
deterministic choice in the form of the following composed operation:

Op1 + Op2

During simulation, this means that there are two distinct possible courses of
actions { one employing Op1 and another employing Op2. During veri�ca-
tion, both of these simulation paths might be examined to ensure that some
property holds in both cases. The mechanism by which such choices aremade
can vary, but in this thesis they are de�ned by the veri�cation algorit hms we
provide and which we present later.

42



3.2. Environment Model

Owing to its process algebraic foundation, there are a number of such compo-
sition operators, which can be used in a structurally recursive wayto de�ne
intricate operations. Moreover, EMMAS also provides primitive operations
which must be used when building more complex ones. These primitive op-
erations include, for instance, the stimulation of agents and the creation of
new relations between agents. As a further example, consider the following
operation:

((Stimulate(s1; ag) + Stimulate(s2; ag));
(Stimulate(s3; ag) + Stimulate(s4; ag))) k

Stimulate(s5; ag)

It de�nes: (i) that an agent ag be stimulated �rst by either s1 or s2, and then
by either s3 or s4; but also (ii) that at any moment ag might be stimulated
by s5. As in the previous example, though not as obviously, there exists
a transition system that represents all of the possibilities contained in this
operation.

3.2.1 Comparison with Other Approaches

The ELMS (Okuyama et al., 2005) approach we saw in Section 2.1.2 also
employs the idea of combining environment speci�cations with agentimple-
mentations to perform simulations. However, there are a number of important
di�erences. Most crucially, ELMS does not seem designed with formalver-
i�cation goals in mind. Thus, di�erently from our method, no underly ing
semantics amenable to formal analyses (e.g., transition systems) is provided
in ELMS. In particular, it is not possible to specify multiple situ ations via
non-deterministic operators, which hinders its applicability to the speci�ca-
tion of experimental situations. Furthermore, ELMS's agents are assumed
to be implemented using AgentSpeak(L)(Rao, 1996), whereas our approach
assumes a di�erent agent architecture, as explained previously.

Ferber and M•uller (1996) develops an execution scheme similar to ours for
de�ning environments, which is formalized by Ferber (1999). However, the
formalism itself is entirely di�erent, as it is based on Petri nets and not on
process algebras. Other important di�erences are:

� Although Petri nets are used, the environment reactions to agent ac-
tions are actually not given in the Petri net formalism. Rather, any
description language can be used to do so. This presents a di�culty
to formally analyse these reactions. In contrast, ourEMMAS is en-
tirely formal, and therefore poses no such di�culty. This restric ts what
can be expressed (since it is not an arbitrary description language), but

43



3. Contribution of this Thesis

allows entirely formal investigations with respect to the environment's
structure and behaviour.

� The focus of Ferber's (1999) environments is on the synchronization of
agent inuences and environment reactions, as required by the theory
developed by Ferber and M•uller (1996). No provision is made for the
concise de�nition of multiple experiments and situations, which is a main
concern inEMMAS . This arises, in part, from the previous point, since
if the behaviour of environments (beyond synchronization) is not given
explicitly by Ferber's (1999) formalism, then it is not possible to explore
them systematically.

� Ferber's (1999) agents are supposed to signal when they are done with
their actions, so that one can determine which group of actions can be
considered simultaneous. EMMAS requires no such thing from the
agents. Rather, all possibilities of simultaneous actions are automati-
cally considered at the semantic level. This arises from our focus on
veri�cation.

� Ferber's (1999) environment aims at being domain independent, while
EMMAS has no such ambition, and addresses only a class of MASs.

It is also enlightening that Ferber (1999, p. 211) shares one of our main
concerns:

Unfortunately, very little work has been done on modelling envi-
ronments, and details relating to environments are usually lost in
explanations of systems which have implemented them, or indeed
completely buried in the code for their implementation.

Both our contribution and Ferber's (1999) aim at this problem.

We employ a process algebra to provide the semantics ofEMMAS and,
as seen in the previous section, use the Z Notation to specify the agents.
Thus, there are similarities with the Circus (Woodcock and Cavalcanti, 2001)
method, in which the process algebra CSP and Z are combined in a uniform
framework. However, here we use the� -calculus instead of CSP. Moreover,
although the agents are speci�ed in Z, this speci�cation is used mostlyas a
guide for implementing them, so that during veri�cation and simulat ion the
algorithms do not manipulate its internal structures. That is to say, veri�ca-
tion is achieved by manipulating the structures of the environment, and agents
are considered mostly as black-boxes with interfaces.

44



3.3. Transition Systems and Semantics

3.3 Transition Systems and Semantics

The complete contribution is presented in Chapter 6.

We saw in the previous section thatEMMAS environments can be put in
terms of transition systems. In this thesis we develop a particularkind of
such structures, which we callannotated transition system (ATS) . Thus,
a crucial step to formally analyse an MAS in our approach is to translate an
EMMAS speci�cation into an ATS . We do this in two di�erent ways.

The �rst is by giving a general semantics of EMMAS in terms of an ATS .
This is achieved by considering the operational semantics of� -calculus, which
provides a transition system, and then removing certain undesirable runs. The
resulting ATS provides a rigorous semantics, but is does not include imple-
mentation details that are needed for particular applications { it is an abstract
semantic model, and shows thatEMMAS is not limited to simulation appli-
cations.

However, since the technique developed in this thesis is based onthe possibility
of simulating an EMMAS speci�cation, it is necessary to provide a more
concrete translation from such a speci�cation to anATS . This second way of
performing a translation is tied to the simulator and the associated veri�cation
technique, and therefore is considered in Section 3.4.

3.3.1 Comparison with Other Approaches

Transition systems are classical mathematical entities to represent semantics of
concurrent systems. For example, they are used by Milner (1999) to provide
the semantics of both CCS and� -calculus process algebras. Model check-
ing techniques (Baier and Katoen, 2008) employ transition systems as well to
represent the systems to be analysed. Therefore, with respect to transition
systems, our contribution, if any, is merely the de�nition of a parti cular kind
of transition system (the ATSs ) that groups a number of well-known features
useful in our work, in particular: input and output events, internal events,
labelled transitions and labelled states.

Our signi�cant contribution, though, is the provision of a semantics for our
EMMAS in terms of such transition systems. To our knowledge, it is the only
MAS environment to have such a semantics. The practical importance ofthis
is that, as we shall see in the next section, such a semantics is fundamental
for the veri�cation technique we develop.

45



3. Contribution of this Thesis

3.4 Veri�cation Technique

The complete contribution is presented in Chapter 7.

To apply the veri�cation technique developed here, we �rst need a suitable
ATS to represent the MAS, which can be derived from anEMMAS spec-
i�cation. As explained previously, the general semantics to be developed in
Chapter 6 does not contemplate the particular needs of the simulator required
for the application of the technique. The problem, essentially, is that there
must be a way to explicitly request, during simulation, that agents change
their current actions and acknowledge changes in environmental stimulation
(i.e., the agents must be updated). This is an implementation issue, and there-
fore we have not included in the generalEMMAS semantics. Nevertheless, a
more concrete semantics is given by introducing a new event, called commit,
which works as a signal to make such a request. This produces anATS whose
runs can be directly interpreted by the simulator. In particular, whenever the
simulator �nds a commit event in a run of the ATS , it enforces the update of
the agents. Moreover, thisATS is mathematically well-de�ned in its entirety,
but its actual construction is done during simulations, as each particular state
becomes relevant - that is, on-the-y.

One models an MAS in order to study its properties. In this thesis,we propose
a way to do so by formulating hypotheses about the MAS and automatically
checking whether they hold or not (e.g., \every time the agent does X, will it do
Y later?"). 5 If a hypothesis does not hold, it means that either the hypothesis
is false or the MAS has not been correctly speci�ed. The judgement to be
made depends on our objectives in each particular circumstance. Are we
trying to discover some law about the MAS? In this case, if a hypothesis that
represents this law turns out to be false, it is the hypothesis that is incorrect,
not the MAS. Are we trying to engineer an MAS that obey some law? In this
case we have the opposite, a falsi�ed hypothesis indicates a problemin the
MAS. This view is akin to that found in empirical sciences, in which scientists
investigate hypotheses and make judgements in a similar manner. In this
respect, the main di�erence is that the empirical scientist studies the natural
world directly, while we are concerned withmodels of nature in the form of
MASs.

In this thesis, such a hypothesis is de�ned by specifying asimulation pur-
pose and a satis�ability relation. If the MAS satis�es the speci�ed simu-
lation purpose with respect to the desired satis�ability relation, then the
hypothesis is corroborated. Otherwise, it is falsi�ed. Formally, a simula-

5We have published part of this technique in (da Silva and de Mel o, 2011b).

46



3.4. Veri�cation Technique

Figure 3.1: Veri�cation and simulation elements interaction. Notice, in particular,
the important role that the environment has in relating veri�cation and simulation.
It acts as a coordinator which, on the one hand, formally de�nes what can be done,
while on the other hand requests actual simulator operations. The environment's
implementation is provided mainly by a � -calculus simulation library, as explained in
Section 3.5 below.

tion purpose is an ATS subject to further restrictions. In particular, it has
�nitely many states and de�nes two special states, Successand Failure . All
runs that lead to Successdenote desirable simulations, whereas all that lead
to Failure denote undesirable ones. Moreover, di�erently from theATS that
is automatically and progressively derived from anEMMAS speci�cation,
thesesimulation purposes must be speci�ed explicitly and a priori .

Simulation purposes not only give criteria for correctness but are also em-
ployed to guide the simulation, so that states irrelevant for the property are
not explored. The veri�cation is achieved by building { on-the-y { a special
kind of synchronous product (written SP 
 M ) between anATS M rep- synchronous prod-

uctresenting the MAS of interest and asimulation purpose SP denoting the
property of interest. This synchronous product is itself an ATS , in which
states are of the form (q; s), where q is a state of SP and s is a state of M .

47



3. Contribution of this Thesis

A feasible run in this product is a run whose last state (q; s) is such that
q = Success.

This formal construction depends on and inuences the behaviour of agents,
which are simulated as black-boxes (but have a known interface). For example,
a transition that states that a certain agent has performed a certain actioncan
only take place if the agent in question really performed that action (i.e., if the
simulator, after being queried, informs that the agent did so in the simulation).
Conversely, if a transition that speci�es that a certain agent receives a certain
stimulus takes place, then it is necessary that the agent really receives the
stimulus (i.e., by requesting the simulator to stimulate it). T his interaction
with the simulator is formalized by the provision of an abstract simulator
interface, which can be incorporated in formal de�nitions and implemented by
the actual simulator. Hence, there is an interplay between the formalanalyses
and the simulation. The formal structures provide order to the simulation in
the form of an abstract representation, but they would be pointless without
an actual simulation to put in order in the �rst place. This close relati onship
between these two aspects is a distinguishing feature of the work developed in
this thesis (see Figure 3.1).

This synchronous product can be used in various ways to de�ne whetherSP
satis�es M . In this thesis we de�ne the following such satis�ability relati ons:

� Feasibility : SP is feasible with respect to M if there is at least oneFeasibility

run in SP 
M which terminates in a state (q; s) such that q = Success.
There are weak and strong variants of this.

� Refutability : SP is refutable with respect to M if there is at least oneRefutability

run in SP 
M which terminates in a state (q; s) such that q = Failure .
There are weak and strong variants of this.

� Certainty : SP is certain with respect to M if all runs in SP 
 MCertainty

terminate in a state (q; s) such that q = Success.

� Impossibility : SP is impossible with respect to M if all runs inImpossibility

SP 
 M terminate in a state (q; s) such that q = Failure .

Each satis�ability relation is veri�ed by a di�erent, but similar, algorithm.
They all share the following main characteristics:

� They perform a depth-�rst search on the synchronous product of SP
and M ;

� The search has a maximum depth,depthmax ;

48



3.4. Veri�cation Technique

� SP 
M is computed on-the-y (i.e., it is not computed a priori ; rather,
at each state, the algorithm calculates the next states necessary to con-
tinue), becauseM itself is obtained on-the-y from the � -calculus ex-
pressions present in each of its states. Visited states inM are not marked
as such.

� A simulator interface is assumed to exist. This is used to control the
simulation execution, including the possibility of storing simulator states
and backtracking to them later.

� The algorithm is guaranteed to terminate, and the result is a conclusive
or inconclusive verdict. If conclusive, it becomes known whether the
MAS satis�es the simulation purpose with respect to the observations
made during simulations. If inconclusive, it is possible to perform some
adjustments and try again.

Regarding the complexities of the algorithms, this means that they must be
given mainly in terms of depthmax and the maximum branching factor (i.e., the
maximum number of possible successors of any state), instead of the number
of states and transitions in the complete transition system. Moreover, since
states in M are actually computed from an EMMAS environment speci-
�cation, the complexities of these computations must be taken into account
as well. These characteristics lead to many parameters to be accountedfor
in the statement of the complexities. The complete development isgiven in
Chapter 7. In a few words, the complexity in space is polynomial with respect
to the size of theenvironment and other parameters, and the complexity in
time is exponential with respect to depthmax .

What is important in this technique is that, once given a simulation pur-
pose, it chooses which simulations to execute automatically and in a system-
atic manner, instead of depending on a user to guide and inspect the simulation
manually, thereby exploring the possible simulations more e�ciently, even if
inconclusively. Moreover, the algorithms are carefully shown to becorrect
according to precise notions of soundness and completeness.

3.4.1 Comparison with Other Approaches

Our approach is largely inspired by TGV (Jard and J�eron, 2005), which we
saw in Section 2.2.2. But we di�erentiate ourselves fundamentally because our
objective is not the generation of test cases, and in particular we are not tied
to the ioco conformance relation. Indeed, oursimulation purpose is itself
the structure that shall determine success or failure of a veri�cation procedure
(i.e., not somea posteriori test cases). As a consequence, di�erent criteria of
success or failure can be given, and then computed on-the-y. As we sawin

49



3. Contribution of this Thesis

Section 1.1, a number of particular methodological considerations are at the
heart of these de�nitions. Moreover, there are also other technical di�erences,
such as the fact that we use labelled states (and not only transitions), and
that simulation purposes need not be input complete.

Although uncommon, there are works on the veri�cation of simulation traces,
as we have seen in Section 2.4.3, such as that of Bosseet al. (2009). Our
method, however, distinguishes itself mainly by actuallyguiding the simula-
tion, and not only checking properties over tracesa posteriori.

Though quite di�erent, our technique has nevertheless common characteristics
with Model Checking, presented in Section 2.2.1. Most importantly, both
assume the existence of an explicit set of states and transitions to beanalysed.
In Model Checking this set is examined exhaustively, so that a conclusive
verdict can always be given, provided that there are enough computational
resources. In our case, by contrast, only a small part of the state-space is
explored (i.e., those that are reached by the simulations performed), and one
can never be sure of having explored every possible state, since agents are
given as black-boxes. Moreover, both methods allow the speci�cationof a
property of interest to be analysed with respect to a system, thusestablishing a
di�erence between the model and the properties of the model. As wehave seen,
in Model Checking such a property is typically given in terms of some temporal
logics. In our approach we usesimulation purposes instead. By similar
reasons, it is also clear that our approach is distinct from the applicationof
Model Checking to formal MASs speci�cations, as surveyed in Section2.4.4.

The particular case of Bounded Model Checking is also worth commenting.
In this approach, one limits the length of a counterexample run to some con-
stant. In this manner, the problem can be translated to an instance of SAT
and addressed using SAT solvers. In our algorithms, we also limit the runs
we examine to some constant. However, this is done not to allow a trans-
lation to another format such as SAT, but simply because the search in the
synchronous product of a simulation purpose and an ATS must have a
maximum depth. Otherwise, the search could never end, since it is possible
to have in�nite branches in the synchronous product .

In our veri�cation algorithms we shall need a preprocessing procedure to cal-
culate shortest distances from a certain vertex in the graph inducedby the
speci�ed simulation purpose . To this end, we could use Dijkstra's algo-
rithm (Cormen et al., 2001). However, the edges in our graph all have weight
1 (i.e., we count hops between a vertex and its successors), whichpermitted
the development of a more speci�c algorithm. The reason is that, in thiscase,
it is not necessary to keep a priority queue with unexplored vertices (ordered
according to their current distances), which needs to be regularly re-ordered to
account for updated entries. It su�ces to explore the vertices in a depth-�rst

50



3.5. Tool Implementation

manner.

3.5 Tool Implementation

The complete contribution is presented in Chapter 8.

The theory presented in this thesis has been implemented as a software tool
following the architecture outlined in Figure 1.1. In this respect, there are two
main distinct artefacts:

� The implementation of the agent model;

� The simulation and veri�cation tool itself, FGS.

The implementation of agent model is actually a Java library that can be
used in many di�erent manners, since it is merely a realization of an agency
theory. It allows the creation of Organisms objects, which are initialized by
the provision of an XML 6 con�guration �le. In this �le one speci�es all that
makes the particular organism unique, such as the stimuli it is capableof
receiving, the actions it can perform, the operants it has already learned, and
so on.

In this thesis, we use these agents to specify MASs subject to simulation and
veri�cation. To this end, we provide the FGS tool, also written i n Java, which
takes the following as its main inputs:

� A component repository. Components provide the implementation of
particular kinds of agents or properties. Their instantiations are the
\black-boxes" that are simulated. Our agent model is provided as one
such component. Propositions about these agents (e.g., \stimulus X is
reinforcing to agent Y.") can also be provided as a special kind of com-
ponent, called properties, whose values are calculated during simulation
as well.

� A scenario description. A scenario is an XML �le that speci�es the MAS
to be simulated. It de�nes the agents that are present, as well as the
environment in which they exist. To de�ne an agent, one speci�es the
component that implements it and the con�guration �le to initialize it .
The environment, in turn, can be speci�ed by using tags that map to
EMMAS elements (i.e., the<choice> tag maps to the the + operator).

6Extensible Markup Language.

51



3. Contribution of this Thesis

� An experiment description. An experiment is an XML �le that speci�es
what kind of simulation and veri�cation should be done with the given
scenario. Simulation purposes can be de�ned by explicitly listing
their states, events and transitions.

Since the semantics ofEMMAS is given in terms of the � -calculus, we have
implemented a � -calculus simulation library that is used by FGS to simulate
as directly as possibleEMMAS speci�cations. A main advantage of pro-
ceeding in this manner is that modi�cations and additions to EMMAS can
be more easily implemented. On the other hand, the direct simulation of
� -calculus brings some e�ciency issues, which require the implementation of
certain optimizations.

Finally, it is worth to emphasize that, besides its theoretical foundation, FGS is
designed with some practical engineering concerns in mind. In particular, the
fact that it is based on components allows the substitution of agents without
a�ecting the simulation and veri�cation infrastructure. So, for inst ance, if
a di�erent agent implementation is devised, it can be immediately employed
with the existing tool using the existing scenarios and experiments.7

3.5.1 Comparison with Other Approaches

The main innovation of FGS, of course, is the implementation of the novel tech-
niques and models introduced in this thesis, which we have already considered.
Apart from that, two other characteristics are noteworthy: the � -calculus sim-
ulation library, and the component-based architecture of the system.

Existing implementations of the � -calculus, such as Pict (Pierce and Turner,
1997) and CubeVM (Peschanski and Hym, 2006), are geared towards using
the � -calculus as a foundation for programming languages. This means that
given a speci�cation (indeed, a program), only one possible execution path
is considered. Since for the purpose of veri�cation it is necessary to be able
to consider all possible executions (at least up to a certain length),these ap-
proaches are insu�cient to address our concerns. The� -calculus simulation
library of FGS is designed to ful�l this need. It provides an executable imple-
mentation of the � -calculus which can be used to systematically investigate all
possible executions (up to a certain length). It does that by providing access
to the current state of the underlying transition system of the � -calculus pro-
cess, which can then be used to explicitly calculate the possiblesuccessors. A

7An earlier version of this simulation infrastructure was designed exactly to show the
value of a component based approach to multi-agent simulation. We published this result in
(da Silva and de Melo, 2008), but at that time the simulator ha d not incorporated yet the
MAS models and veri�cation techniques proposed in this thesis .

52



3.5. Tool Implementation

number of optimizations are required in order to make this calculation more
e�cient.

The architecture of FGS itself, in turn, has certain distinctive features worth
commenting in what relates to its focus on the separation of concerns and
reuse of artefacts (i.e., components, scenarios and experiments).

It is generally acknowledged that it is important to separate the simulator
infrastructure from the models being simulated. Swarm (Minar et al., 1996),
MASON (Luke et al., 2004) and Repast (North et al., 2006), which are pop-
ular multi-agent simulation platforms, try to achieve this by provid ing both
a framework to program models and a simulation engine to run them. This
helps reuse simulation infrastructure, but does not simplify the reuse of parts
of simulation models in di�erent simulations built by di�erent pe ople.

A new version of Repast, called Repast S (Northet al., 2005), is being de-
veloped in order, partly, to address this issue. This new version is similar to
our system in that external Java classes can be arranged together declaratively
(i.e., without Java programming) to compose simulation models. However, we
di�er from them in a number of ways. First, the simulation models of Repast
S are mostly restrictions on which components are in the model, whileour
models carry information regarding not only the components, but also their
actual instantiation (i.e., we represent a complete state of a�airs). Second,
Repast S has a very inclusive de�nition of component, so that any Java class
can be a component, while we enforce several requirements in order to attain
more semantics. Third, Repast S aims at being a general platform, whilewe
prefer to adopt a domain-speci�c approach, which we believe to lead tomore
elegant and manageable simulation models, albeit with more limited applica-
tions. Besides the points we shall discuss later, we think that thesimplicity
thus achieved is also important in order to make simulators more accessible
to non-programmers, which is one of our objectives.

The idea of a component-based agent simulation environment is also usedin
the Quicksilver project (Burse, 2000). In that work, any compiled Java class
can be treated as a component. Some prede�ned classes of agents are provided
and a special tool allows the user to instantiate classes, connect instances and
run the simulation thus assembled. In this way, agents can be reusedin several
simulations. This approach, however, su�ers from some problems. LikeRepast
S, it relies on a very inclusive de�nition of component, which implies that such
components do not bring any advantage over normal Java classes. The reuse
technology is in the composition tool that allows arbitrary instances to be
easily connected by the user, but this is not really speci�c to simulation, nor
does it help in enforcing any special semantics to the underlyingclasses. Hence,
such a reuse mechanism is mostly a general Java technology, which allows one
to build programs in a di�erent manner. This contrasts with our approach ,

53



3. Contribution of this Thesis

in which components are highly structured entities designed for simulation:
they must implement prede�ned interfaces, be annotated in special ways and
be deployed to a special location. Furthermore, Quicksilver assumes that the
user has knowledge of Java programming. This makes it inaccessible to non-
programmers, whereas our approach has the contrary goal of facilitating their
access to simulation.

This goal is also shared by NetLogo (Wilensky, 1999), an environment designed
to simplify the creation of simulation models. To this end, a graphical editor
and a set of controls (e.g., buttons, sliders, plotters) are providedin order to
build the simulation front-end, while a special procedural scripting language
(assumed to be easier to learn than a general purpose language such as Java)
can be employed to specify the actual simulation behaviour. The system,
however, does not o�er any reuse mechanism beyond copy-and-paste of scripts.

With similar purposes, but in a more sophisticated realization, SeSAm
(Klugl and Puppe, 1998) provides a rich application in which users may cre-
ate agents, setup simulations and run them. Agent creation relies on a base
library of agent properties, which must be used in order to de�ne newagents.
Though simple agents can be built easily with point-and-click interaction,
more advanced ones require the use of a custom scripting language. The cre-
ated agents are then instantiated in order to build one or more simulation
situations, all of which are stored in a model �le. SeSAm, however, does
not provide advanced facilities to reuse such agents across di�erentsimulation
models. The only way to do so is through importing a model into another,
which amounts to a copy-and-paste technique. On the other hand, program-
mers have the possibility of extending SeSAm through plugins written in Java.
Such plugins allow the de�nition of new elements that the �nal user may em-
ploy when building his agents (e.g., new functions to be used whenspecifying
the behavior of agents). Therefore, SeSAm does provide an interesting reuse
technology, but whose purpose di�ers from ours, which aims at the easy reuse
of whole agents and other simulation elements.

Finally, in (Okuyama et al., 2005) we �nd the ELMS markup language, which
bears some similarities to our scenario language in that both describe features
of the simulation environment. However, the objective of ELMS is to restrict
the kinds of entities that exist, while ours is to explicitly de� ne and compose
individual entities. Moreover, ELMS is geared towards agent-oriented pro-
gramming, while our underlying programming paradigm is the more common
object-oriented one.

54



3.6. Conclusion

3.6 Conclusion

In this chapter we have presented an overview of the main technicalcontri-
butions of this thesis and related them to existing work. In order to develop
our approach, we build upon a number of ideas from di�erent areas, thereby
integrating them in a coherent framework. To clarify this overall relationship,
Table 3.1 selects some of the most relevant related work discussed here and
summarizes the comparison with our method by describing crucial aspects of
each. From this comparison, it can be seen that our work borrows, integrates,
contrasts with and adds to ideas from disparate sources.

55



3.
C

on
tr

ib
ut

io
n

of
th

is
T

he
si

s

Work Speci�cation
Formalisms

Semantic
Model

Property
Checked

Automated
Analysis

Agents Environments

This thesis Z, � -calculus
(base of EM-
MAS )

ATS Simulation
Purpose
satis�ability

Guided sim-
ulations;
hypothesis
testing

Behaviourist Social net-
works; con-
text for ex-
periments;
dynamic; non-
deterministic

Skinnerbots (Touretzky and Saksida,
1997)

{ { { { Behaviourist {

SMART (d'Inverno and Luck, 2003) Z { { { Any goal
oriented

Goal depen-
dencies

BDI architecture (Rao and George�,
1995)

{ { { { Practical
reasoning

Dynamic; non-
deterministic

Inuences and reactions
(Ferber and M •uller, 1996; Ferber,
1999)

Petri nets { { { Any Any syn-
chronous
environment

ELMS Okuyama et al. (2005) { { { Simulation;
animation

BDI-based Grids; reactive
resources

TGV (Jard and J�eron, 2005) { IOLTS ioco confor-
mance

Test case gen-
eration

Reactive
systems

{

TTL (Bosse et al., 2009) TTL Based on pred-
icate logic's

TTL prop-
erty

Veri�cation of
traces

LEADSTO
speci�cation

LEADSTO
speci�cation

MAS model checking (e.g.,
Wooldridge et al., 2006;
Lomuscio et al., 2009)

Various lan-
guages

Transition
systems; in-
terpreted
systems

Temporal
logic formu-
las

Exhaustive
model check-
ing

BDI-based;
epistemic

{

MAS simulation such as SWARM
(Minar et al., 1996), RePast
(North et al., 2006) and MASON
(Luke et al., 2004)

{ { { Simulation;
animation;
statistics com-
pilation; input
optimization

Any Grids; social
networks; dy-
namic

Table 3.1: Comparison of this thesis with some important related works. Columns designate the aspect to be analysed, and lines show
the related works. Only the most relevant references discussed in this chapter are given. A dash ({) indicates that the aspect is not
signi�cantly addressed in the work. From this table, it is clear that t he approach proposed in this thesis relates to ideas from very di�erent
areas.

56



Part II

Multi-Agent Systems

57





CHAPTER 4
Behaviourist Agent

Architecture

In this chapter we present theBehaviourist Agent Architecture , the novel Behaviourist
Agent Architec-
ture

agent architecture introduced by this thesis. Its structure follows core princi-
ples of Behaviour Analysis, as presented in Section 2.1.1.4, which we organize
in �ve classes: (i) stimulus conditioning; (ii) respondent behaviour (i.e., re-
exes); (iii) operant behaviour; (iv) drives; and (v) emotions.

Despite its many details, one can abstract two themes common to all of them:
adaptation and learning. These concern how environmental stimuli a�ect the
actions of agents over time. In this way, phenomena pertaining to agents are
closely related to the possibilities o�ered by an external environment. In this
chapter, however, we focus on agents { the corresponding environments are
addressed in Chapter 5.

We explain the main concepts of our work in an informal manner, but the
architecture itself is given as a formal speci�cation written in the Z Notation.
This provision ensures that the architecture is de�ned in a precise and com-
positional form. The bene�ts of precision are evident. But compositionality
should also be valued, for it allows each part of the speci�cation to be exam-
ined and modi�ed separately, and thus allows further progresses to be made
upon it. Indeed, certain parts in our speci�cation, which we call extension
points , are designed to be changed1 in order to allow the experimentation
with variations of particularly important mechanisms (e.g., the computation
of the utilities assigned to stimuli).

1However, since the schema calculus is not monotonic with respect to re�nement, special
care must be taken when re�ning the speci�cation. See Section D. 6 of Appendix D.

59



4. Behaviourist Agent Architecture

The implementation of the speci�cation is given as a Java program. In a com-
plete formal development approach, this Java program should be proved cor-
rect with respect to the Z speci�cation (e.g., by means of formal re�nements).
This was not done in this thesis, where the main formal e�ort has been devoted
to formally guided simulations and the related veri�cation algorithms, w hich
are proved to be correct. However, the Java implementation of the agent ar-
chitecture follows very closely the structure of its Z speci�cation, which helps
in avoiding errors that could arise in more complex implementation strategies.
In the present chapter only the formal speci�cation is considered. More details
about its implementation are given in Chapter 8.

This chapter is organized as follows. First, in Section 4.1, we comment on
the overall themes of adaptation and learning that permeate the architecture.
In Section 4.2, then, we present ourBehaviourist Agent Architecture
speci�cation in great detail, and this is the main contribution of the ch apter.
Finally, in Section 4.3 we conclude with some observations. A summaryof the
Z Notation is provided in Appendix D.

4.1 Adaptation and Learning

Despite the many specialized parts of the architecture we introduce in this
chapter, there are two main themes that tie them together, namely, that of
adaptation and learning with respect to an environment. It is thus worth to
examine the general features of these two activities before proceeding to the
architecture speci�cation itself.

The agents considered in this chapter:

� exist within an environment that provides them with stimulation an d
which receives their actions;

� prefer certain stimuli to others;

� assume that relations exist between their actions and the stimuli that
they receive.

Given these characteristics, adaptation concerns any change in the agentthat
is caused by external stimuli. Moreover, since agents have preferences, such
changes often imply in behavioural modi�cations that make it more likely to
obtain the preferred stimuli. For example, a hungry agent will be morelikely
to engage in actions that lead to food. In general, reexes, emotions and drives
are adaptations.

60



4.1. Adaptation and Learning

Learning is a form of adaptation with certain particularities. First, wh atever
is learned, is not present in the agenta priori . Rather, it must be gained
through experience. Second, whatever is learned can be forgotten. Thatis
to say, something learned is not intrinsic to the agent's constitution. An
agent cannot learn to be hungry, but it can both learn how to get food and
forget this when it is no longer useful. For learning to work, however, it is
necessary that the agent possesses the predisposition to observe, remember
and eventually forget relations between stimuli and actions. Hence, this is
a priori with respect to learning. In this chapter classical conditioning and
operant behaviour are de�ned as the main learning mechanisms of organisms.

Adaptation and learning experiences inuence each other. For instance, an
agent may know how to get food (through learning), but because it has eaten
too much already, it has no interest in doing so (an adaptation to having
eaten). This brings unity to these experiences, as they a�ect theagent as a
whole.

All this is associated with an environment with certain characteristics. Clearly,
the environment must be ordered in a way that there is something useful to
learn about it. But perhaps less clear is the fact that this adaptive relation
with the environment can be used to study the agents themselves. If, from
an environmental perspective, one assumes that agents adapt and learn in
particular ways, one is then in a position to manipulate stimulation and ob-
serve the behaviour of agents in order to infer individual as well as collective
agent properties. This close relation between agents and their environment
is inherited from the behaviourist tradition we subscribe to. The reason is
plain: in behaviourist approaches, by de�nition, organisms are studied solely
by means of stimulation and observation of the resulting actions. That is to
say, by producing an ordered environment that the agents can adapt toand
that reveals the mechanisms used for such an adaptation.

In a psychological setting, as this discussion implies, organisms are black-boxes
and the objective is to discover, through experimentation, the mechanisms
\hidden" therein. In this thesis, however, organisms are simulated, and for
this it is necessary to provide these mechanisms in an executableform. As
explained previously, in this chapter we do this by formalizing central charac-
teristics of the Behaviour Analysis theory as a computable agent architecture.
The corresponding environment, in turn, is the subject of Chapter5. There,
we shall see how these agents can be manipulated in order to reveal more about
their behaviour, by putting the basic behaviourist mechanisms described here
in motion.

61



4. Behaviourist Agent Architecture

4.2 Formal Speci�cation

In this section we present ourBehaviourist Agent Architecture . It is for-
malized using the Z Notation, which employs logic as part of its speci�cation
language. However, we emphasize that this does not mean that implementa-
tions following a speci�cation should perform automated deductions. Rather,
the logical statements in a Z speci�cation serve only as criteria of correct-
ness. They can be implemented by whatever means are available, as longas
the �nal product respects the constraints imposed by the speci�cation. This
means that specialized and e�cient algorithms can often be provided in an
implementation. Moreover, the speci�cation can be re�ned by adding further
constraints, which allows one to extend it.

Let us then proceed with a systematic description of an agent's structures as
de�ned by our architecture. We divide an agent into several parts, and to
each one we provide the following information:

� The rationale for its existence: it is important to understand why it is
needed before de�ning it formally.

� The main elements of its formal speci�cation: since the full speci�cation
is quite large, for the sake of readability we show only its main elements
in this chapter. Nevertheless, this gives the reader a comprehensive
understanding of its main features. Furthermore, the full speci�cation is
provided in Appendix A. We reference this appendix whenever we omit
some part of the speci�cation, so that the reader may pursue the details
if he or she so wishes.

� How it could be changed:the speci�cation we provide can be changed
in a number of ways. In particular, certain parts, which we refer to as
extension points , are designed to be specialized (e.g., through re�ne-extension points

ments). They are important aspects of agent behaviour that one may
wish to modify. These extension points are commented throughout
the text.

These subsystems come together to form anorganism, which is the name we
give to agents that follow our speci�cations. Figure 4.1 presents an overview
diagram of these subsystems and their relations. Formally, an organism is
given by the Organism schema.

62



4.2. Formal Speci�cation

Organism
StimulationSubsystem

RespondingSubsystem

DriveSubsystem

EmotionSubsystem

In the following sections we present each of its constituent parts.But we begin
by presenting some preliminary de�nitions which will be used throughout this
presentation. And in the last section we show how to group all subsystems'
operations.

4.2.1 Preliminary De�nitions

The Z Notation does not provide a built-in manner to treat rational numb ers.
Therefore, we have built our own de�nition of rational numbers on top of the
de�nitions available for integers. Moreover, our use of rational numbers is
always restricted to a certain interval. Thus, the arithmetic operators that we
de�ne ensure that the upper and lower bound of this interval are respected.
We call magnitudes this bounded kind of rational number, but denote them
by the usual Q symbol.

Q == f q : Z � Z j let a == �rst q ; b == second q�
b 6= 0 ^
a div b � 1 ^
a div b � � 1g

There are alsopositive magnitudes, whose minimum element is neutral.

PositiveQ == f q : Z � Z j let a == �rst q ; b == second q�
b 6= 0 ^
a div b � 1 ^
a div b � 0g

See Appendix A for more details about these elements.

The operators and the relations over magnitudes are denoted by their usual
symbol followed by a subscript. This subscript is merely a technical convention
to di�erentiate these symbols from the ones concerning integers. Thus, we have
symbols such as +1, � 1, and = 1, whose intuitive meaning should be clear (for
the formal de�nitions, see Appendix A).

As a convenience, we de�ne special kinds of magnitudes according to their
use in the speci�cation. Hence, Intensity , Correlation and Probability are

63



4. Behaviourist Agent Architecture

Figure 4.1: Overview of the main parts that form an organism. Each box denotesone
such part and its main responsibilities. Arrows indicate important relations between
these parts. An arrow from A to B means that A provides something that inuences
B .

64



4.2. Formal Speci�cation

all formally magnitudes (see Appendix A), but are used in di�erent manners
throughout the speci�cation.

The passage of time is represented by natural numbers. But we also de�ne
new names for such integers according to their use, and thus we have the
Instant and the Duration types (see Appendix A). Importantly, the time an
organism has access to is based on counting its interactions with an external
environment, and is therefore independent of any global, absolute, clock. The
passage of time, thus, is a function of an organism's perception of an external
environment, much like its behaviour (see Section 4.2.8 for more details).

Finally, we assume the existence of arandom function which is capable of
generating a random magnitude from any given instant (see Appendix A).

4.2.2 Stimulation

As we have seen, stimulation is one of the main concepts in behaviourist
theories. It is only by means of stimulation that an organism can be inuenced
by its environment (which includes other agents in the environment). In this
section we will see how stimuli are de�ned and perceived, how they relate
among themselves, how the organism learns about such relations.

4.2.2.1 Basic Entities

First of all, there is a primitive set of stimuli.

[Stimulus]

Each particular organism will have its own, particular, set. But for th e purpose
of this speci�cation, it su�ces to have such an abstract set.

Recall that the organism is divided in a number of subsystems. The stimu-
lation subsystem is one of them. It is de�ned by the StimulationSubsystem
schema, and it holds the data structures relevant for stimulation.

65



4. Behaviourist Agent Architecture

StimulationSubsystem
StimulationParameters

StimulusImplication

StimulusEquivalence

currentStimuli : PStimulus

pastStimuli : Instant 7! PStimulus

stimulus status : Stimulus ! StimulusStatus

stimulusBeginning : Stimulus 7! Instant

In particular, the subsystem is parametrized by the StimulationParameters
schema, which isolates some important parameters that vary from organism
to organism. An important parameter concerns the utility that the organism
attaches to stimuli. Some stimuli are naturally pleasant or painful. These are
called primary stimuli , for they have utilities a priori .

StimulationParameters
StimulationHints

Conditioning Ref 1 Parameters

stimuli : PStimulus

primaryStimuli : PStimulus

primary utility : Stimulus 7! Utility

max delay : Duration

domprimary utility = primaryStimuli

Every stimulus has an associated status information, which records ifthe
stimulation is beginning, ending, stable or absent.

StimulusStatus ::= Beginning j Ending j Stablej Absent

We call hints the stimuli that \give hints" about the state of the environment
or another organism. The StimulationHints schema accounts for the hints
available to the organism (see Appendix A). These hints are particularly useful
when de�ning emotions (i.e., for instance, an angry organism will want tocause
harm, and therefore there must be a way for him to detect harm).

Stimuli are delivered to organisms in the form ofStimulation schema, which
carries information about their intensity and status. Moreover, the status is
restricted to the two values that make sense in this context.

66



4.2. Formal Speci�cation

Stimulation
stimulus : Stimulus

intensity : Intensity

status : StimulusStatus

status = Beginning _ status = Ending

4.2.2.2 Relations Among Stimuli

Organisms establish relations among stimuli. These relations help them in
understanding their environment, and therefore in achieving their aims. For
example, a dog may be taught that a whistle is always followed by the provision
of food. Once the dog learns this relation, he will start salivating once he
hears the whistle. The principle behind this phenomenon is known asclassical
conditioning.

Here we generalize this principle in the form of a relation we callstimulus
implication . It accounts for the cases in which the organism believes that,
given the presence of a certain stimulus, another stimulus will come. We use
a reexive and transitive order relation plus a sCorrelation function to model
these beliefs. TheStimulusImplication schema models this formally.

StimulusImplication
sCauses: P(Stimulus � Stimulus)

sCorrelation : Stimulus � Stimulus 7! Correlation

8 s1; s2; s3 : Stimulus �

(s1 sCausess1) ^

((( s1 sCausess2) ^ (s2 sCausess3)) ) (s1 sCausess3))

8 s1; s2 : Stimulus j s1 sCausess2 �

9 c : Correlation � ((s1; s2) 7! c) 2 sCorrelation

Notice that stimulus implication may be regarded as a directed graph (Fig-
ure 4.2), in which vertices represent stimuli and edges are the conditioning
between stimuli. Furthermore, edges might have weight, if the correlation of
the conditioning is to be taken into account.2

Stimulus equivalence captures the notion that, under some circumstances, a
stimulus might be treated as if it is another. We de�ne such a notion as

2Notice that this graph can also be seen as a semantic network (Sowa, 1987), but spe-
cialized for the representation of stimulation phenomena.

67



4. Behaviourist Agent Architecture

Figure 4.2: An example of stimulus implication represented as a directed graph.

a standard mathematical equivalence relation (i.e., reexive, symmetric and
transitive). The de�nition is given in schema StimulusEquivalenceusing the
previous stimulus relation de�nition.

StimulusEquivalence
StimulusImplication

equals: P(Stimulus � Stimulus)

8 s1; s2 : Stimulus �

(s1 equalss2) , (s1 sCausess2) ^ (s2 sCausess1)

8 s1; s2 : Stimulus j s1 equalss2 �

sCorrelation(s1; s2) = sCorrelation(s2; s1)

As in implication relations, stimulus equivalence may be represented by a
graph (Figure 4.3). But the symmetry in equivalence relations requires the
graph to be undirected.

4.2.2.3 Stimulus Utility

Recall from Section 2.1.1.4 that Behaviour Analysis assumes that the funda-
mental purpose of organisms is the maximization of pleasure and the mini-
mization of pain throughout their lives. An organism, thus, can be thought of
as an agent trying to maximize anutility function . Such a function, in turn,
can be manipulated in a number of ways in order to modify the organism's
behaviour.

The utility function associates an utility to each stimulus. The Utility type for-
malizes this quantity as a rational number betweenmin utility and max utility ,

68



4.2. Formal Speci�cation

Figure 4.3: An example of stimulus equivalence represented as an undirected graph.

where the �rst indicates the greatest pain and the second stands for the great-
est pleasure. There is also aneutral utility element, which accounts for indif-
ference (see Appendix A).

Utility : PQ

Having established the possible relations that hold among stimuli and the
existence of some primary stimuli, it is then possible to de�ne an utility for
any given stimulus. Computationally, this requires the de�nition of a search
that, for any stimulus s in a stimuli graph (e.g., the one shown in Figure 4.2),
seeks the primary stimuli that s can reach and use their primary utility to
assign an utility to s itself. There are, however, many possible and reasonable
ways of giving such a de�nition. Thus, we �rst establish a very general schema,
StimulusUtility .

StimulusUtility
StimulationSubsystem

EmotionSubsystem

DriveSubsystem

sUtility : Stimulus ! Utility

Re�nements must then be provided. Our own re�nement is given by the
StimulusUtility Ref 1 schema, where the utility of a stimulus is de�ned as the
utility of the best stimulus it can reach by the stimulus implicat ion relation,
but modi�ed according to certain regulators (see Appendix A). These regu-
lators account for the inuence of drives and emotions, which we examinein
Sections 4.2.6.2 and 4.2.7.2, respectively.

69



4. Behaviourist Agent Architecture

The computation of stimulus utility lends itself to di�erent de� nitions. Di�er-
ent organisms may employ di�erent mechanisms, and therefore each concrete
case could be improved by an appropriate re�nement of the stimulus utility
we provide. For instance, for e�ciency reasons, it might be the case that
a particular search strategy is used when exploring the stimuli graph(e.g.,
depth-�rst, breadth-�rst, some kind of bounded search). This is an important
extension point in the agent architecture, since it allows the extension of
the architecture by merely providing a new re�nement of StimulusUtility .

4.2.2.4 Stimulus Conditioning

Stimuli that are not primary gain their utility through association to pr imary
stimuli. In general, this process is known asstimulus conditioning and the
stimulus that has its utility modi�ed is called a conditioned stimulus. Usually,
stimulus conditioning resembles a causal law. That is, a stimulusis condi-
tioned because it seems to cause another.

As a learning process, stimulus conditioning has two fundamental operations.
The �rst is the conditioning itself, which strengthens the association between
two stimuli. ConditioningOp 1 operation formalizes this. It states that if a
stimulus s1 is followed by a stimuluss2 within a maximum delay, then the pair
(s1; s2) must become part of the stimulus implication relation. If the maximu m
delay is not respected, than nothing changes, and this neutral behaviour is
speci�ed by the ConditioningOp 2 schema. (See Appendix A).

T ConditioningOp b= ConditioningOp 1 _ ConditioningOp 2

The second fundamental operation is the decay of the conditioning, which
happens every time a stimulus is not followed by the expected consequence.
That is to say, once the organism learns that a stimuluss2 follows a stimulus
s1, it expects this to happen. If it does not happen, it loses con�dence in this
implication, and consequently the correlation betweens1 and s2 is reduced.
Moreover, if this correlation is below a certain minimum, the implication re-
lation between the two stimuli is simply unlearned. This is speci�ed by the
UnconditioningOp 1 operation. If the conditions for such a decay are not met,
nothing changes, and this is de�ned byUnconditioningOp 2. (See Appendix
A).

T UnconditioningOp b= UnconditioningOp 1 _ UnconditioningOp 2

These de�nitions of conditioning and its decay are very general. For instance,
they do not specify at what rate the conditioning should take place. To supply
these details, one must re�ne these operations. We provide a simple linear
policy re�nement to conditioning. That is, a policy given by the follo wing
rules:

70



4.2. Formal Speci�cation

� the correlation grows with discrete increments, which are calculated ev-
ery time the stimuli happen together;

� each increment is inversely proportional to the delay between thetwo
stimuli. The proportion constant is c.

Conditioning Ref 1 Parameters schema factors out the de�nition of the condi-
tioning parameters, such as the constantc. ConditioningOp Ref 1 operation,
then, provides a re�nement of ConditioningOp 1. Similarly,
UnconditioningOp Ref 1 operation re�nes UnconditioningOp 1.3 (See Ap-
pendix A).

T UnconditioningOp Ref 1 b=
UnconditioningOp Ref 1 _ UnconditioningOp 2

Clearly, other re�nements can be provided. This is another usefulextension
point of our agent model.

4.2.2.5 Stimulation

Stimuli may be delivered to or removed from the organism. Once delivered,
the stimuli remain active until they are removed. That is, we assume that
the environment does not signal the presence of stimuli, but only the change
of such a presence. This convention will be useful later on, when modelling
operant behaviour. Once a stimulus is delivered, the organism updates its
properties until it is removed.

This delivery is controlled by three schemas, namely,StimulationUpdateOp 1,
StimulationUpdateOp 2 and StimulationUpdateOp 3, each addressing a dif-
ferent step in the stimulation process (see Appendix A).

T StimulationUpdateOp b=
StimulationUpdateOp 1 _
StimulationUpdateOp 2 _
StimulationUpdateOp 3

Once a stimulus is delivered, it becomes part of the set ofcurrent stimuli of
schemaStimulationSubsystem. The importance of this set of stimuli is in that
it establishes a context for the organism's actions and observations, which is

3For the sake of illustration, the proof that ConditioningOp is re�ned
by ConditioningOp Ref 1 is given in Appendix A right after the de�nition of
ConditioningOp Ref 1. However, the re�nements de�ned in this thesis are all rather
simple, so we do not provide other similar proofs.

71



4. Behaviourist Agent Architecture

essential to learning processes such as the stimulus conditioning we have just
seen and operant behaviour that is examined in Section 4.2.4.

Each stimulus has an associatedStimulusStatus, which changes with time.
For example, a stimulus that originally had the Beginning status must be
changed to theStable status. This change has also implications for the set of
current stimuli, since an absent stimulus clearly should not be inthis set. Since
we have four possible such statuses, this update operation is divided in four
schemas, namely,CurrentStimuliUpdateOp 1, CurrentStimuliUpdateOp 2,
CurrentStimuliUpdateOp 3 andCurrentStimuliUpdateOp 4 (see Appendix A).

T CurrentStimuliUpdateOp b=
CurrentStimuliUpdateOp 1 _
CurrentStimuliUpdateOp 2 _
CurrentStimuliUpdateOp 3 _
CurrentStimuliUpdateOp 4

Finally, it is necessary to record the stimuli present at the current instant.
This will be important in order to assess the context that a past action has
been performed, and hence determine the most favorable conditions for such
an action. This is achieved inT PastStimuliUpdateOp schema (see Appendix
A).

4.2.2.6 Integration

At every instant, the organism may both receive new stimulation and process
the current stimuli. Hence, concerning stimuli, its main tasks are as follows:

� Apply the T ConditioningOp operation for each new stimulation;

� Apply the T UnconditioningOp operation for each pair of stimuli in the
stimulus implication relation;

� Deliver stimulation by means of the T StimulationUpdateOp operation;

� Update the current stimuli using the T CurrentStimuliUpdateOp oper-
ation;

� Record the current stimuli for later reference using the
T PastStimuliUpdateOp operation.

The schemaOrganism StimulusProcessinggroups all of these tasks together
(see Appendix A).

72



4.2. Formal Speci�cation

4.2.3 General Responding

Behavioural responses constitute the means through which organisms alter
their environments. As such, responses are also the only way we can gain
knowledge about organisms. They are, thus, the counterpart of stimuli.

As we have seen, Behaviour Analysis de�nes two fundamental classes ofbe-
haviours, namely, operant behaviour and reexive behaviour (also known as
respondent behaviour). We can, however, abstract common propertiesof these
two classes. For example, both classes require primitive actions tobe per-
formed and both require a scheduling mechanism.

It is worth to notice that one may imagine other classes of behaviour besides
reexes and operants. If such classes were de�ned, they could be integrated in
the responding subsystem by providing structures similar to those for reexes
and operants. This constitutes a possible way to improve the architecture,
although it would require changes to many schemas (probably re�nements
would not su�ce), and therefore it would not be a straightforward task.

In this section we present these common features, while in the next two we
explore each behavioural class in its speci�cities. Here we see whatprimitive
actions are, what property they have, how behaviours are scheduled,how
conicts among potential behaviours are solved, and �nally how behavioural
responses are managed.

4.2.3.1 Basic Entities

The Responding Subsystem aggregates all de�nitions of behavioural classes
and also hold the particular behaviour available to the organism. While we
specify the details of operant and respondent behaviour in the next two sec-
tions, the present de�nitions use them.

The RespondingSubsystemschema imports a number of other schemas, which
we will examine shortly. It also de�nes the setsoperants and reexes, which
contain the behaviours available to the organism.

73



4. Behaviourist Agent Architecture

RespondingSubsystem
CurrentBehaviors

CurrentResponses

Actions

ActionHistory

ActionConict

ActionBaselevel

operants : POperant

reexes : PReex

At every instant, the organism may or may not wish to employ a behaviour.
The behaviours which are planned to be performed are de�ned in theCurrentBehaviors
schema. Notice that this schema contains, in particular, thespontaneousac-
tions set. This accounts for actions that are to be performed independently of
any reex or operant. The introduction of such a set, however, is a mere tech-
nicality, for ultimately these spontaneous actions are expected to lead to the
formation of operants according to the consequences that they bring. Butbe-
fore any such consequence can be perceived by the organism, there must be a
way to specify that certain actions can happen without elicitation (i.e., do not
arise from reexes) even though they are not associated with any consequence
(i.e., are not operants). Hence, with respect to the present speci�cation, op-
erants should not be confused with spontaneous actions, although informally
one may say that operants are spontaneous (i.e., because they are emitted and
not elicited) much like Skinner (1953) himself does.

CurrentBehaviors
elicited : PReex

emitted : POperant

spontaneous: PAction

When a behaviour is actually performed, it generates abehavioural response.
These are kept by theCurrentResponsesschema, which de�nes the current
responses and map the pertinent behaviours to them.

74



4.2. Formal Speci�cation

CurrentResponses
responses: PResponse

activeResponses: PResponse

inactiveResponses: PResponse

reexResponse: Reex 7! Response

operantResponse: Operant 7! Response

spontaneousResponse: Action 7! Response

reexElicitationTime : Reex 7! Instant

responses= activeResponses[ inactiveResponses

activeResponses\ inactiveResponses= ;

ran reexResponse= responses

ran operantResponse= responses

ran spontaneousResponse= responses

4.2.3.2 Actions

To distinguish behavioural classes (i.e., reexes and operants) from the actual
behavioural responses, we introduce the concepts ofaction and response. Ac-
tions are what the organism actually does (e.g., the movement of a muscle
is an action) and responses is how he does it (e.g., for how long, with what
intensity). Actions are primitive concepts, the most fundamental things an
organism can do.

[Action ]

Each concrete organism will have its own set of actions. But like for stimuli, it
su�ces for the purpose of this speci�cation to have an abstract set of actions
without their particularities.

Actions can either be conicting or non-conicting. For instance, if tw o actions
require di�erent movements from an organism's muscle at the same time, then
they are conicting. If, however, the execution of each action is independent,
then they are non-conicting.

Conict ::= conicting j nonconicting

Action conicts are, of course, particularities of each organism. Therefore, we
provide a structure to hold this information.

75



4. Behaviourist Agent Architecture

ActionConict
conict : Action � Action ! Conict

Though, in principle, an action can be part of any behavioural class, it is
also necessary to restrict some of them to speci�c classes. For instance, pupil
movements cannot �gure in operant behaviour, since such movementsare con-
trolled completely by environmental light variations. On the other hand, some
muscular movements can be triggered either by reex (e.g., when one, reex-
ively, removes one's hands from a hot surface) or operants (e.g., all \voluntary"
movements). At last, there is also the case in which only operant behaviour
can be involved, as in speech. Therefore, we must provide de�nitions to ac-
count for two classes of actions.

Actions
operantActions : PAction

reexActions : PAction

Notice that an action can belong to both classes at the same time.

As is detailed in Section 4.2.4, organisms can learn how their actions a�ect
their environments. Once they know what to expect from a particular ac-
tion, they can repeat such an action when the appropriate conditions arise.
However, if an action has never being performed, organisms cannot know
their consequences. The approach we employ to solve this issue is to assign
a probability, called base level, of spontaneous occurrence to each possible ac-
tion.4 This base level probability is given by the baseLevelfunction of the
ActionBaselevel schema.

ActionBaselevel
Actions

baseLevel: Action ! Probability

8 a : Action j a 2 operantActions � baseLevel(a) > 1 min probability

8 a : Action j a 2 reexActions ^ a =2 operantActions �
baseLevel(a) = 1 min probability

Finally, we provide a record of all performed actions. This will be used when
de�ning operant behaviour later on.

ActionHistory
actionsHistory : Instant 7! PAction

4Note that such spontaneous occurrences can be seen as a form of curiosity, because the
organism becomes inclined to explore new things for no particular reason other than chance.

76



4.2. Formal Speci�cation

4.2.3.3 Behavioural Responses

A response, captured by theResponseschema, is an actual behavioural in-
stance. It is the structure that actually interacts with the envir onment, a
concrete action. Thus, besides the action to be performed, there must be
also a relatedduration (i.e., for how long the action will be performed) and
magnitude (i.e., the \vigor" of the response). Moreover, a latency (i.e., a
temporal interval between the response emission and the performanceof the
corresponding action) is sometimes required.

Response
action : Action

latency : Duration

duration : Duration

magnitude : Intensity

4.2.3.4 Response Scheduling Operations

Before responses are actually performed, it is necessary to �gure out which
operants and reexes have been triggered. Operant and reex de�nitions
provide schemas with the conditions for that, namely,ReexElicitationCond
and OperantEmissionCond. Moreover, response scheduling must also account
for the spontaneous occurrences of actions, which are de�ned through the base
level probability associated with each available action.

Operants, reexes and spontaneous actions that ful�ll the conditions are then
scheduled to be realized as responses by putting them in the appropriate sets
of the CurrentBehaviors schema we have seen. This is achieved, respectively,
by the OperantSchedulingOp, ReexSchedulingOpand BaseLevelSchedulingOp
schemas (see Appendix A).

4.2.3.5 Con�ict Resolution Operations

As we have seen, some actions conict. Hence, when two such actions are
scheduled for execution, a problem arises. To deal with this, a number of
conict resolution operations are de�ned. Each such operation providesa
solution for the conict between two classes of behaviour, and an associated
condition is also de�ned in order to determine when there is a conict in the
�rst place.

Let us consider the particular case of an operant conicting with another
operant. The condition for this is given by the OperantConictCond schema.

77



4. Behaviourist Agent Architecture

OperantConictCond
ActionConict

o1; o2 : Operant

conict (o1:action; o2:action) = conicting

If two operants conict, the strategy to be adopted is quite clear: either
the one with greater utility will be chosen or, if both have the same utility,
the choice is arbitrary. This is speci�ed by the OperantConictResolutionOp
schema, where the content of theremoveO set de�nes the operants that are
to be removed.

OperantConictResolutionOp
� CurrentBehaviors

StimulationSubsystem

OperantUtility

ActionConict

removeO : POperant

8 o1; o2 : emitted j OperantConictCond �
(oUtility (o1; currentStimuli ) > 1 oUtility (o2; currentStimuli ) )

o2 2 removeO) ^
(oUtility (o1; currentStimuli ) = 1 oUtility (o2; currentStimuli ) )

(o1 2 removeO) _ (o2 2 removeO))

Similarly, the following kinds of conicts may take place:

� A reex may conict with another reex. The condition for this is give n
in ReexConictCond and its solution in ReexConictResolutionOp .
There are, however, many ways in which such a conict could be solved,
and thus this schema is supposed to be re�ned. We provide two possible
re�nements in ReexConictResolutionOp Ref 1 and
ReexConictResolutionOp Ref 2 schemas, which use di�erent attributes
of the reexes in order to determine which should have priority. (See
Appendix A).

� An operant may conict with a reex. The condition for this is given by
OperantReexConicCond and the solution is given by
OperantReexConictResolutionOp (see Appendix A).

� A spontaneous action may conict with another such action, or a re-
ex or an operant. The conditions and the solutions for this are all

78



4.2. Formal Speci�cation

given in the BaseLevelConictResolutionOp schema (see Appendix A).
We assume here that such spontaneous occurrences are as relevant as
actions governed by operants. The reason is that both have to do with
understanding the environment, since the former allows the organism to
explore it, while the latter allows the organism to exploit information
thus gained. Reexes, however, always have priority over spontaneous
actions.

An auxiliary schema, AuxConictResolutionOp , is also provided to de�ne how
all of these conict resolution operations work together to change
CurrentBehaviors (see Appendix A).

We can then combine the conict resolution operations.

ConictResolutionOp b=
OperantConictResolutionOp ^
ReexConictResolutionOp ^
OperantReexConictResolutionOp ^
BaseLevelConictResolutionOp ^
AuxConictResolutionOp

If we use re�nements for some of these operations, we also need to rede�ne
this composed operation. Since we provide two possible re�nementsfor the
conict resolution of reexes, we also provide the corresponding composed
operations ConictResolutionOp Ref 1 and ConictResolutionOp Ref 2 (see
Appendix A).

4.2.3.6 Response Emission, Update and Termination Operations

Once behaviours have been selected, it is necessary to transformthem into
actual responses. Responses, in turn, are not instantaneous, they have dura-
tion. Thus, they must be updated for some time, until termination conditions
are reached and they cease.

The OperantEmissionOp operation below de�nes how operants turn into re-
sponses. It states that there must not already be a response associatedwith
the operant, and then de�nes that such a response must be created. Italso
records when the operant's action has been performed for future reference.

79



4. Behaviourist Agent Architecture

OperantEmissionOp
� ActionHistory

� CurrentResponses

currentInstant ? : Instant

o? : Operant

: (9 rp : Response� operantResponse(o?) = rp)

9 rp : Response�
rp:action = o?:action ^
inactiveResponses0 = inactiveResponses[ f rpg ^
operantResponse0 = operantResponse� f o? 7! rpg

actionsHistory0(currentInstant ?) =
actionsHistory(currentInstant ?) [ f o?:actiong

The elicitation of reexes and the emission of spontaneous actions followsimi-
lar principles and are captured inReexElicitationOp and BaseLevelEmissionOp
schemas, respectively (see Appendix A).

Notice that response emission operations do not constrain some parameters of
the responses. This reects the fact that there is no universallyaccepted com-
putational theory capable of calculating the exact quantitative properti es of
operant emission (McDowell, 2004). Hence, our architecture does not enforce
any particular view. In fact, one may extend it by providing suitabl e re�ne-
ments to perform the initialization of these unconstrained variablesaccording
to speci�c theories.

Once responses are being performed, they must be updated over time. There
are some cases to consider:

� A response might be inactive owing to its assigned latency. That is
to say, the response is going to be performed, but only after its spec-
i�ed latency. In this circumstance, we just decrease the latency, to
account for the fact that an instant has passed. This is done by the
InactiveResponseUpdateOp1 schema, which we show below.

� Once the latency reaches zero, the response can be activated. This is
accomplished in a similar fashion by theInactiveResponseUpdateOp2
operation (see Appendix A).

� If the response is active, its duration must be decreased, in order to
account for the fact that an instant has passed. This is done by the
ActiveResponseUpdateOpoperation (see Appendix A).

80



4.2. Formal Speci�cation

� If none of the above cases hold, then nothing changes, as speci�ed by
NeutralResponseUpdateOp(see Appendix A).

InactiveResponseUpdateOp1
� CurrentResponses

� Response

� Response2 inactiveResponses

� Response=2 activeResponses

latency > 0

latency0 = latency � 1

activeResponses0 = activeResponses

inactiveResponses0 = ( inactiveResponsesn f � Responseg) [ f � Response0g

Thus, we reach the following total operation for response update.

T ResponseUpdateOpb=
InactiveResponseUpdateOp1 _
InactiveResponseUpdateOp2 _
ActiveResponseUpdateOp_
NeutralResponseUpdateOp

At last, we must consider how to terminate responses. There are three cases
to consider:

� If the response's duration has reached zero, it means that it should cease.
This is speci�ed in the ResponseTerminationOp 1 operation below.

� If the behaviour that justi�ed the response is no longer selected for exe-
cution, then the response must cease as well. This situation might arise
during conict resolutions, when a more important behaviour may take
the place of another. This is speci�ed by theResponseTerminationOp 2
operation (see Appendix A).

� Finally, if none of these conditions hold, nothing changes, as speci�ed
by
ResponseTerminationOp 3 (see Appendix A).

81



4. Behaviourist Agent Architecture

ResponseTerminationOp 1
� CurrentResponses

� CurrentBehaviors

rp? : Response

rp? 2 activeResponses

rp?:duration � 0

activeResponses0 = activeResponsesn f rp?g

inactiveResponses0 = inactiveResponsesn f rp?g

8 o : emitted � operantResponse(o) = rp? ) o =2 emitted0

8 r : elicited � reexResponse(r ) = rp? ) r =2 elicited0

8 a : spontaneous� spontaneousResponse(a) = rp? ) a =2 spontaneous0

Then, the total operation is as follows.

T ResponseTerminationOp b=
ResponseTerminationOp 1 _
ResponseTerminationOp 2 _
ResponseTerminationOp 3

4.2.3.7 Integration

As the previous operations suggest, responding is constituted by four distinct
stages, and for each one we provide an operation to allow its integration in
the organism:

� First, operants, reexes and spontaneous actions are selected. This is
accomplished by the Organism BehaviorSelection operation (see Ap-
pendix A).

� Then, possible conicts are solved. This is done by theOrganism ConicResolution
operation (see Appendix A).

� Next, responses are generated, according to theOrganism ResponseEmission
operation (see Appendix A).

� Finally, responses are updated, until they reach a termination condition.
This is achieved by theOrganism ResponseMaintenanceoperation (see
Appendix A).

82



4.2. Formal Speci�cation

4.2.4 Operant Behaviour

Organisms seek pleasure and avoid pain in an ever changing world. The con-
sequences of their actions change constantly, in such a way that what used
to be an applicable behaviour may no longer be appropriate, and useless ac-
tions may become interesting. Learning is, therefore, a necessary virtue. In
Behaviour Analysis, operant behaviour is the kind of behaviour that accounts
for this.

Because the consequences that organisms seek are always reinforcing, operants
are also known ascontingencies of reinforcement. However, by no means rein-
forcing stimuli are the only consequences that matter. It is equallyimportant
to know actions that lead to aversive stimuli in order to avoid them.

In this section we present operants, the relations that might be established
among them, and the several operations that may be performed on them.

4.2.4.1 Basic Entities

An operant records the manner through which a speci�c stimulus may be
reached. That is, how to operate in the environment in order to obtain some
consequence. Unlike reexes, operants are not prede�ned and static entities:
they might be created, modi�ed and destroyed. Each of these possibilities is
given by a di�erent procedure.

The Operant schema is a structure that links an action to a consequence
(i.e., the consequent stimulus). This link models the belief that the ac-
tion, when performed, causes the stimulus. Such a belief, however, varies
in strength. And within the same operant, this strength varies, through the
consequenceContingencyfunction, depending on the stimuli present on the
environment (i.e., the antecedent stimuli). Figure 4.4 depicts this tripartite
structure.

Operant
StimulusUtility

antecedents: P(PStimulus)

action : Action

consequence: Stimulus

consequenceContingency: (PStimulus) 7! Correlation

sUtility (consequence) 6= neutral utility

domconsequenceContingency= antecedents

83



4. Behaviourist Agent Architecture

Figure 4.4: An operant is composed by possible antecedent stimuli, an action and a
consequent stimulus. In this example, there are three sets of antecedent stimuli. Each
set models a context that the organism encountered previously.

In Behaviour Analysis, an operant class of behaviours is de�ned by some
shared consequence. To facilitate computation, though, ourOperant schema
associates only one action with a stimulus consequence. Two instances of this
schema, then, could have the same consequent stimulus, but di�erent actions.
This allows the independent calculation concerning each particularaction. For
instance, it could be that an action has the same consequence that another at
some moment, but this may not last forever. Hence, there must be a wayto
learn them separately.5

5The triple of antecedent stimuli, behaviour, and consequent s timulus is sometimes called
a three-term contingency (e.g., by Catania, 1998), thus de�ning the second term as the op-
erant. In this speci�cation, however, we call this whole triple an operant. For our purposes,
this formalizes the notion more correctly and succinctly, since: (i) the essence of operant be-
haviour is in the consequences of actions (i.e., a mere actionwith no e�ect on the organism's
environment should not be considered an operant); and (ii) once we incorporate a conse-
quence in the de�nition of what an operant is, there is no need to introduce another entity
to model the contingency, and it is simpler to incorporate the a ntecedent stimuli (if any)
in the de�nition of the operant as well. This gives us a single e ntity, the Operant schema,
that captures the intuitive notion of what an operant is and can be easily used to compute
related behavioural phenomena.

84



4.2. Formal Speci�cation

4.2.4.2 Operant Implication

A single operant holds information about how to obtain a particular stimu-
lus. In order to link operants to several consequent stimuli, it is necessary
to establish how operants relate to each other. We do this with theoperant
implication oCausesrelation below. It speci�es that an operant either directly
causes a stimulus or sets the conditions for another operant to be executed,
which, in turn, lead to other stimuli. The oCorrelation function, in turn, pro-
vides the correlation between an operant and its direct and indirect stimulus
consequences.

OperantImplication
StimulusImplication

Discrimination

oCauses: P(Operant � Stimulus)

oCorrelation : Operant � Stimulus 7! Correlation

8 o : Operant � o oCauseso:consequence

8 o1; o2 : Operant; S : PStimulus j S discriminatesNonEmpty o2 �

(8 s : S � o1:consequence sCausess) )

o1 oCauseso2:consequence

domoCorrelation = oCauses

The crucial element that links di�erent operants in the above schema is the
discrimination relation given in schema Discrimination (see Appendix A). It
establishes that a set of stimulidiscriminates an operant if it is present among
the operant's antecedents.

4.2.4.3 Operant Utility

Operants have utilities, since they lead to stimuli. That is to say, operants
gain their usefulness owing to the stimuli they allow an organism to reach.

As it happens with stimulus utility, there are several ways to de� ne operant
utility. Thus, the OperantUtility schema below, merely de�nes that an utility
function oUtility exists. This function takes an operant and a set of stimuli in
order attribute an utility to the operant. This set of stimuli, as it i s explained
below, is actually the current stimuli that the organism is subject to.

85



4. Behaviourist Agent Architecture

OperantUtility
StimulusUtility

OperantImplication

oUtility : (Operant � PStimulus) ! Utility

Re�nements can now be provided. We give one such re�nement, the
OperantUtility Ref 1 schema (see Appendix A), which de�nes that the utility
of an operant is calculated as:

� a neutral or positive utility given by the maximum stimulus utilit y that
the operant can reach through the operant implication relation, provided
that there are no reachable stimuli with negative utility;

� a negative utility given by the minimum stimulus utility that the operant
can reach, if indeed there is at least one stimulus with negative utility;

� the neutral utility, if none of the previous cases hold.

In other words, the utility of an operant o is de�ned by considering which
sequence of operants starting ino leads to the best stimulus, provided that
no harmful stimuli can be reached in the same way. It is, therefore,a way
of performing planning using the fact that one operant may set the necessary
antecedents of another. However, it is a planning subject to constantre-
evaluation, since the operants in which it depends may change at any instant.

If one has more knowledge about the organism being modeled, or if one merely
wishes to experiment with di�erent search strategies, one may de�ne di�erent
re�nements for this utility. In particular, it is interesting t o note that our
own re�nement is an idealized one: the organism seeks the best solution.
In practice, though, this is possibly an ine�cient strategy. Hence, one may
wonder what kind of approximations could be employed in order to improve
this.

4.2.4.4 Fundamental Operations

Operants, being exible units of learning, are subject to many operations.
Most of these operations, however, share some characteristics, to be found in
the OperantFormationOp or OperantOp schemas (see Appendix A). The for-
mer takes care of creating new operants, while the later accounts for operants
that already exists.

86



4.2. Formal Speci�cation

Operant formation arises continuously. Every action that is followed by a
stimulus presentation can, under certain timing restrictions, give birth to an
operant, which records the contingency between the action and the stimulus.

At �rst, however, these are very weak contingencies. But an organism's oper-
ants are constantly being modi�ed as well, and this will ensure that recently
created operants evolve appropriately. If the recently detected contingencies
never arise again, the organism interprets them as accidents and not as laws
to be learned. On the other hand, if the contingencies keep coming up, the
associated operants increase in strength.

When the correlations between an action and a consequent stimulus in an
operant become too low, the operant loses its usefulness. Hence, it must be
eliminated. This is accomplished by theOperantEliminationOp 1 operation.
A neutral complement to this is also provided in OperantEliminationOp 2.
(See Appendix A).

It is then possible to form the total operation TOperantEliminationOp .

T OperantEliminationOp b=
OperantEliminationOp 1 _
OperantEliminationOp 2

OperantOp can be further re�ned into four operations:

� Discrimination. Operant discrimination happens when a new set of an-
tecedent stimuli is learned. That is, when a new environmental condition
regarding an operant is found, a discrimination process takes place in
order to incorporate this new knowledge. This process is formalizedby
the DiscriminationOp schema below.

� Operant conditioning. Operant conditioning takes place when a known
environmental condition is met and the operant's stimulus consequence
is reached. In this case, the contingency that links the action and the
stimulus is strengthened. In other words, when the operant success-
fully leads to a stimulus, it becomes stronger. This is speci�ed in the
OperantConditioningOp schema (see Appendix A).

� Operant extinction. If some known environmental condition is found but
the stimulus consequence is not reached, the relation of contingencyis
weakened, as speci�ed in theExtinctionOp schema (see Appendix A).
This extinction operation also gives rise to an emotion calledfrustration .
A frustrated organism becomes more likely to explore new possibilities,
since his knowledge of the world has been proven to be incomplete. We
examine this emotion in Section 4.2.7.

87



4. Behaviourist Agent Architecture

� As a technical matter, a neutral operation is also provided in schema
NeutralOp, so that the fact that sometimes no change takes place be-
comes explicit (see Appendix A).

DiscriminationOp
OperantOp

discriminativeStimuli ? =2 domconsequenceContingency

consequence? sCausesconsequence

consequence? =2 discriminativeStimuli ?

domconsequenceContingency0 =
domconsequenceContingency[ f discriminativeStimuli ?g

consequenceContingency0(discriminativeStimuli ?) > 1 min correlation

At this point it should already be clear that operant behaviour endows anagent
with learning capabilities. Similarly to the process of stimulusconditioning we
saw in Section 4.2.2.4, the above operations allow the organism to modify its
representation of how its environment work. Here, however, insteadof relating
stimuli to other stimuli, one is concerned with how actions relate to stimuli.
This relation is subject to change based on how the environment responds to
the organism's actions, and thus constitutes a way of learning about suchan
environment.

The above four operations are grouped as theFundamentalOperantOp.

FundamentalOperantOp b=
DiscriminationOp _
OperantConditioningOp _
ExtinctionOp _
NeutralOp

As the name suggests, this combined operation will serve as the basis of more
detailed operations. This basis accounts for the learning that takes place, but
the behavioural modi�cations that happen go beyond this. For a complete
mechanism, it is necessary to qualify the experience as a reinforcement or
a punishment, because each case may bring di�erent consequences, such as
di�erent emotional responses.

4.2.4.5 Reinforcement and Punishment Operations

Reinforcement and punishment play a large role in Behaviour Analysis, for
they are the main behavioural modi�cation mechanisms. It is therefore worth

88



4.2. Formal Speci�cation

to de�ne such operations separately and in detail.

An operant is reinforced if the received stimulation is pleasant and associated
with the operant's consequence. The purpose of reinforcement is tostrengthen
the relation between an action and a pleasant consequence.

Positive reinforcement accounts for the particular case in which pleasure comes
from the provision of a pleasant stimulus.

PositiveReinforcement
StimulusUtility

consequence? : Stimulus

sUtility (consequence?) > 1 neutral utility

stimulus status(consequence?) = Beginning

Notice that the above schema is not an operation. It merely states a condi-
tion for positive reinforcement. Recall that we have two types of operations
concerning operants. The �rst deals with existing operants, and theother ac-
counts for new operants. Hence, in order to turn positive reinforcement into ac-
tual operations, we group the condition above with bothFundamentalOperantOp
and OperantFormationOp.

PositiveReinforcementOp 1 b=
FundamentalOperantOp^
PositiveReinforcement

PositiveReinforcementOp 2 b=
OperantFormationOp ^
PositiveReinforcement

Reinforcement has a complementary negative form. Negative reinforcement
takes place when pleasure arises from the removal of a painful stimulus, instead
of the provision of a pleasant one.

NegativeReinforcement
StimulusUtility

consequence? : Stimulus

sUtility (consequence?) < 1 neutral utility

stimulus status(consequence?) = Ending

Again, we provide two operations to account for negative reinforcement.

89



4. Behaviourist Agent Architecture

NegativeReinforcementOp 1 b=
FundamentalOperantOp^
NegativeReinforcement

NegativeReinforcementOp 2 b=
OperantFormationOp ^
NegativeReinforcement

Let us now de�ne punishment operations. An operant is punished when the
received stimulation is undesirable. It teaches the organism that an action,
which was previously neutral or bene�cial, is becoming harmful.

Positive punishment accounts for the particular case in which pain comes from
the provision of a painful stimulus.

PositivePunishment
StimulusUtility

consequence? : Stimulus

sUtility (consequence?) < 1 neutral utility

stimulus status(consequence?) = Beginning

And the related operations are as follows.

PositivePunishmentOp 1 b=
FundamentalOperantOp^
PositivePunishment ^
StartAngerOp

PositivePunishmentOp 2 b=
OperantFormationOp ^
PositivePunishment ^
StartAngerOp

Notice that besides the positive punishment condition, we also addStartAngerOp,
which speci�es that the anger emotion will be generated. Anger takes place
as a mechanism of defense, putting the organism in an aggressive state. We
explain what this means in Section 4.2.7.

Negative punishment, in turn, takes place when pain arises from the removal
of a pleasant stimulus.

90



4.2. Formal Speci�cation

NegativePunishment
StimulusUtility

consequence? : Stimulus

sUtility (consequence?) > 1 neutral utility

stimulus status(consequence?) = Ending

The related operations are below. Notice that, again, there is an emotional
response associated. The organism becomes depressive if pleasant stimuli are
removed. This will be explained in Section 4.2.7.

NegativePunishmentOp 1 b=
FundamentalOperantOp^
NegativePunishment^
StartDepressionOp

NegativePunishmentOp 2 b=
OperantFormationOp ^
NegativePunishment^
StartDepressionOp

In a number of occasions, neither reinforcement nor punishment takes place.
The conditions for this are formalized in NeutralReinforcementOp 1 and
NeutralReinforcementOp 2 (see Appendix A).

At last, we combine all previous operations in order to account for all possible
cases of stimulus inuence on an operant.

T OperantOp b=
PositiveReinforcementOp 1 _ NegativeReinforcementOp 1 _
PositivePunishmentOp 1 _ NegativePunishmentOp 1 _
NeutralReinforcementOp 1

T OperantFormationOp b=
PositiveReinforcementOp 2 _ NegativeReinforcementOp 2 _
PositivePunishmentOp 2 _ NegativePunishmentOp 2 _
NeutralReinforcementOp 2

4.2.4.6 Emission Condition

An operant is to be emitted if it is relevant in the current state of a�ai rs, if
its utility is more than neutral and if other operants associated to the same
action also have such an utility. The reason for this latter restriction is that

91



4. Behaviourist Agent Architecture

operants may have the same action, which at di�erent times resultedin di�er-
ent consequences. Hence, it is necessary to make sure that an operant's action
is not considered harmful in the context of another operant.

OperantEmissionCond
RespondingSubsystem

StimulationSubsystem

OperantUtility

Discrimination

o : Operant

currentStimuli discriminates o

oUtility (o; currentStimuli ) > 1 neutral utility

8 x : operants j
x 6= o ^ currentStimuli discriminates x ^ x:action = o:action �

oUtility (x; currentStimuli ) � 1 neutral utility

4.2.4.7 Integration

Three operations are necessary in order to integrate operants to the organism:

� It is necessary to apply theT OperantFormationOp operation consider-
ing the actions that have taken place in the recent past (de�ned by the
max delay constant). This ensures that an action that was performed
previously has a chance of becoming an operant. This procedure is given
in the Organism OperantFormationOp schema (see Appendix A).

� Similarly, it is necessary to apply the T OperantOp operation consid-
ering these same actions that took place in the recent past, so that the
corresponding operants (if any) may me modi�ed appropriately. This is
achieved by theOrganism OperantOp schema (see Appendix A).

� Finally, it is necessary to apply T OperantEliminationOp to each oper-
ant available to the organism in order to eliminate the useless ones (see
Appendix A).

4.2.5 Respondent Behaviour

Respondent behaviour (also known as reexes or reexive behaviour) is the
simplest kind of behaviour that an organism possess. A reex is, essentially, a

92



4.2. Formal Speci�cation

Figure 4.5: A reex is composed by an antecedent stimulus and an action.

reliable causal relation between a stimulus and an action (see Figure 4.5). That
is, the presence of the stimulus triggers, with high probability, the emission of
the action.

While reexes may adapt to account for, say, excessive stimulation,they are
not learning structures. Organisms are born with prede�ned reexes, which
remain the same throughout their lives.

In this section we will see what constitutes a reex, how it can be adjusted
over time, and how it may be triggered.

4.2.5.1 Basic Entities

The Reex schema de�nes a reex as anantecedent stimulus which causes
an action to be performed. The remaining variables account for the several
properties of this causal relation:

� threshold de�nes the minimum intensity of the stimulation that causes
the reex to be triggered.

� elicitation de�nes the probability of the action to be actually performed
after the stimulation threshold has been reached.

� magnitude speci�es the intensity of the behavioural response when the
action is performed.

� duration determines for how long the action will be performed.

� latency determines a duration prior to the action performance.

All of these variables change their values as time goes by, but they are always
kept within lower and upper bounds.

93



4. Behaviourist Agent Architecture

Reex
Actions

ReexParameters

antecedent: Stimulus

action : Action

threshold : Intensity

elicitation : Probability

magnitude : Intensity

duration : Duration

latency : Duration

action 2 reexActions

min elicitation � 1 elicitation � 1 max elicitation

min magnitude � 1 magnitude � 1 max magnitude

min duration � duration � max duration

min latency � latency � max latency

min threshold � 1 threshold � 1 max threshold

These bounds, as well as the functions to modify the related variables, are
given as parameters in theReexParameters schema (see Appendix A). This
schema de�nes a number of functions, but do not specify their form. The
reason is that each reex may be adjusted di�erently (e.g., in the case of an
animal model, because the underlying organs to realize the reexes have dif-
ferent properties). Hence, one may experiment with many di�erent functions
(e.g., linear, exponential).

4.2.5.2 Operations

Although reexes are innate to the organism, and therefore cannot be neither
learned nor unlearned, it is still possible to modify them. This is useful, for in-
stance, in order to account for the fact that a reexive response uses resources,
and thus successive responses may have di�erent properties (e.g., the magni-
tude of the response may get increasingly weaker). TheReexAdjustmentOp
operation provides a way to adjust a given reex according to the di�erence
between the instant of the current reex elicitation and the instan t in which
the reex was used for the last time. That is to say, according to the time

94



4.2. Formal Speci�cation

that the organism did not employ that reex (see Appendix A). To do so,
this operation uses the functions found on theReexParameter schema of the
reex being adjusted, which assign a new value for the variables according to
the elapsed time and their previous value.

4.2.5.3 Elicitation Condition

When a reex is used, we say that it has beenelicited. The ReexElicitationCond
schema gives the conditions for reex elicitation. One of these conditions is
that the intensity of the stimulation must be greater than or equal to th e
threshold parameter of the reex. The other condition, which is somewhat
more subtle, is that the stimulus that triggers the reex must be related to the
antecedent stimulus of the reex by the stimulus implication relation. That
is to say, any stimulus that the organism believes to cause theantecedent,
including antecedent itself, may elicit the reex.

ReexElicitationCond
StimulusImplication

r : Reex

s : Stimulus

i : Intensity

s sCauses(r :antecedent)

(r :threshold) � 1 i

4.2.6 Drives

In order to stay alive, organisms constantly consume environmental resources.
For instance, water, food, air, and so on. Clearly, the utility of these resources
must vary over time. An animal that has just drank a lot of water most likely
will not be thirsty. On the other hand, an animal that has not drank anythin g
for a day or two will do anything for water.

The mechanisms that control these variations are calleddrives. A drive can be
thought as an appetite for a particular stimulus. The longer one stays without
this stimulus, the stronger the appetite for it will be. Conversely, the more
one has of the stimulus, the less one will want it.

In this section we see what constitutes a drive, how it relates with the envi-
ronmental stimuli, and how it a�ects the organism's behaviour.

95



4. Behaviourist Agent Architecture

4.2.6.1 Basic Entities

An organism has a setactiveDrives of drives which form its Drive Subsystem.
While individual drives will su�er alterations, none is ever added nor removed
from the set. Each organism has a prede�ned set of drives that accompany
him during his existence.

DriveSubsystem
activeDrives : PDrive

Drives are de�ned by the schemaDrive . A drive aims at motivating the
organism to �nd the stimuli contained in its desires set. The intensity of this
motivation is given by the drive's importance, which is a utility that vary
over time within a minimum and a maximum value. The deprivation function
modi�es this importance when the organism is deprived from obtaining the
stimuli in desires. Conversely, thesatiation function modi�es this importance
when the organisms manages to reach such stimuli.

Drive
importance : Utility

desires: PStimulus

deprivation : Utility ! Utility

satiation : Utility ! Utility

maxImportance; minImportance : Utility

importance � 1 minImportance

importance � 1 maxImportance

8 u : Utility � deprivation(u) � 1 u

8 u : Utility � satiation (u) � 1 u

Drives depend strongly on the functions used to calculate the rate of satia-
tion and deprivation. Therefore, one should consider which function is more
suitable for each drive (e.g., linear, exponential). Our only restriction is the
monotonicity requirement. Here, then, is another extension point of the
model.

4.2.6.2 Stimulus Regulation

Drives work by modifying the way that the organisms perceive the utility
of stimuli. The mechanism to do so is given by theStimulusDriveRegulator

96



4.2. Formal Speci�cation

schema, where the functiondriveRegulator is de�ned (see Appendix A). This
function is used by the Stimulation Subsystem in order modify theorganism's
utility function. To do so, the function takes a stimulus and a init ial utility
as arguments. Then, it adds the inuence of each drive to this initial utility.
The speci�ed stimulus is used to discover whether the drive is applicable (i.e.,
whether it is in its desires set). The resulting utility is then returned to
the Stimulation Subsystem, which is then used as the utility to be currently
attributed to the speci�ed stimulus stimulus.

4.2.6.3 Operations

The DriveOp schema abstracts the common properties of satiation and depri-
vation operations (see Appendix A). It merely states that the stimuli t o be
considered must have aStable status.

A drive's importance can be modi�ed through operations of satiation and
deprivation. Satiation happens when the organism is given a desired stimuli
set.

SatiationOp
DriveOp

desires � present

importance0 = satiation (importance)

On the other hand, deprivation takes place when the given stimulus isnot
desired.

DeprivationOp
DriveOp

: (desires � present)

importance0 = deprivation(importance)

These two operations can then be combined into a total one.

T DriveOp b= SatiationOp _ DeprivationOp

4.2.6.4 Integration

At every instant, the organism is given a new set of stimulations. Then, for
each drive, the Organism DrivesUpdate operation (see Appendix A) applies

97



4. Behaviourist Agent Architecture

the T DriveOp operation, which allows the drive to assess the current stimu-
lations. That is, it makes sure every drive gets an opportunity to be satiated
or deprived.

4.2.7 Emotions

Emotions are usually thought of as subjective and private events. Still, one
can usually guess what a person is feeling by watching her behaviour.Aggres-
siveness, for instance, usually indicates a state of anger.

From a behaviourist point of view, though, private events are only relevant to
the extent that they produce observable behaviour. So aggressiveness is not
just a consequence of anger in a behaviourist theory; rather, it is taken to be
anger itself.

In the present work, an emotion is de�ned as a temporary modi�cation in
operant behaviour that is not explained by the organism's drives. The purpose
of emotions is to �ne tune the organism's behaviour to match the needs ofa
given situation. \Pure" operant behaviour would only record the relation s
among actions and stimuli. However, the fact that sometimes actions must
be, for example, specially vigorous (e.g., when �ghting an opponent), would
not be captured. \Pure" stimuli conditioning would be incapable of modifying
the utility of primary reinforcers. And that might be exactly what is r equired
sometimes, in order to explain certain kinds of behaviour (e.g., depression).
Similarly to what we have seen for drives, there are clever ways toinsert such
�ne tunning in the framework we have developed so far.

However, di�erently from what we did for drives, emotions are not de�n ed in
a very general manner. They encompass any behavioural modi�cation, and
therefore we cannot provide a single mechanism to account for all possible
emotions. Hence, in our framework, an emotion must be de�ned mostly in-
dividually, although some general properties are established. For thisreason,
we have provided only three emotions, chosen mostly because they serve as
good examples of what it means to formalize an emotion using our framework.
Clearly, then, it would be possible to improve this subsystem bythe addition
of other emotions. To do so, it would su�ce to create similar schemas to the
ones we provide. This is another importantextension point of our model.

4.2.7.1 Basic Entities

The Emotional Subsystem is given by theEmotionSubsystemschema, which
holds information regarding the organism's current emotional state.

98



4.2. Formal Speci�cation

EmotionSubsystem
anger : Anger

depression: Depression

frustration : Frustration

Each emotion can be either active or inactive. This will determine whether
the emotion inuences or not the organism's behaviour.

EmotionStatus ::= Active j Inactive

The Emotion schema de�nes the general properties that every emotion must
have. However, in itself this schema is not an emotion.

Emotion
status : EmotionStatus

intensity : Intensity

duration : Duration

The e�ect of an emotion is speci�ed by how it a�ects stimuli processing and be-
havioural response emission. For each of these regulation mechanisms, we pro-
vide an appropriate regulation function, within the UtilityRegulatorEmotion
and
ProbabilityRegulatorEmotion schemas.

UtilityRegulatorEmotion
Emotion

utilityChange : Intensity ! Utility

ProbabilityRegulatorEmotion
Emotion

probabilityChange: Intensity ! Probability

We can now de�ne the three emotions we provide,Anger, Depression and
Frustration .

Anger
UtilityRegulatorEmotion

99



4. Behaviourist Agent Architecture

Depression
UtilityRegulatorEmotion

Frustration
ProbabilityRegulatorEmotion

4.2.7.2 Stimulus Regulation

Much like drives, some emotions exert their inuence by modifying how the
organism perceives the utility of stimuli. This regulation mechanism is de�ned
by the
StimulusEmotionalRegulator schema, which provides theemotionalRegulator
function (see Appendix A).

This regulation mechanism depends on two emotions, namely, depression and
anger. Thus, for each one, a regulator is provided in theDepressionRegulator 1
and AngerRegulator 1 schemas. When the emotions are inactive, their e�ect is
neutral, as speci�ed in DepressionRegulator 2 andAngerRegulator 2 schemas.
(See Appendix A).

These two possibilities for depression and anger are put together in the
DepressionRegulatorand AngerRegulator schemas, respectively.

DepressionRegulatorb= DepressionRegulator 1 _ DepressionRegulator 2

AngerRegulator b= AngerRegulator 1 _ AngerRegulator 2

Depression regulation causes any stimulus utility to be reduced bythe intensity
of the depression. This implies that the organism will behave less,because
stimuli that used to be desirable become either less desirable or even aversive.

Anger regulation, in turn, increases the utility of stimuli which in dicates that
harm has been caused to either the environment or another agent. The stimuli
that indicate this can be found on the StimulationHints schema we saw in
Section 4.2.2. For example, the sight of blood could be de�ned as one such
stimulus. By this method, the organism becomes more inclined in behave in a
way that brings such stimuli (i.e., by performing operants whose consequences
are among these stimuli).

4.2.7.3 Response Regulation

We have just seen that some emotions can be de�ned according to the e�ects
that they have on the perception of stimuli. However, some emotions cannot

100



4.2. Formal Speci�cation

be de�ned in this way, because they modify behaviour more directly. The
ResponseEmotionalRegulatorschema de�nes theresponseRegulatorfunction,
which take as input an action and a the probability of spontaneously emitting
such an action (see Appendix A). By modifying this probability, it i s possible
to interfere directly with an organism's behaviour.

As an example of such an emotion, our speci�cation de�nes frustration as a
generalized increase of spontaneous behaviour. This captures the ordinary
notion of frustration, which is a response to a situation in which actions do
not produce their expected outcome. As a result, the organism becomesmore
inclined to perform arbitrary actions in order to check whether any of them
is useful.

Again, the formal de�nition of the emotion is divided in a schema that de� nes
these e�ects, FrustrationRegulator 1, and another schema,
FrustrationRegulator 2, which accounts for the case in which the emotion is
inactive (see Appendix A). We can then compose the complete frustration
regulator.

FrustrationRegulator b= FrustrationRegulator 1 _ FrustrationRegulator 2

4.2.7.4 Operations

The operations concerning emotions are very simple and deal only with their
start, maintenance and termination. For each emotion, thus, three operations
are de�ned6:

� Start operations. When an emotion starts, it is necessary to set its status
to Active, and attribute it a duration and an intensity. These operations
are provided byStartDepressionOp, StartAngerOp and StartFrustrationOp
schemas (see Appendix A).

� Maintenance operations. Once an emotion is active, it may be up-
dated. This update consists in reducing its remaining duration, to ac-
count for the time that has passed. These operations are provided by
UpdateDepressionOp, UpdateAngerOpand UpdateFrustrationOp schemas
(see Appendix A).

� Termination operations. Finally, when an emotion reaches a duration
less than or equal to zero, it must be terminated by setting its status
to Inactive. This is achieved by EndDepressionOp, EndAngerOp and
EndFrustrationOp schemas (see Appendix A).

6 It would be better to de�ne only three operations that could work for all the emotions.
However, this is not possible because of limitations on the Z Notation (i.e., there is no
polymorphism). We are thus forced to de�ne new operations for each p articular emotion.

101



4. Behaviourist Agent Architecture

Notice that while our maintenance operations merely decrement the remaining
duration, one can think of other modi�cations they could perform. For exam-
ple, they could decrease the emotion's intensity according to some function.
This, then, is another way in which our model can be customized.

4.2.7.5 Integration

The Emotion Subsystem is integrated in the organism by the
Organism EmotionUpdate operation, which merely applies update or termi-
nation operations (see Appendix A). To start an emotion, however, the appro-
priate start operation has to be called directly, which we did in Section 4.2.4
when de�ning punishment and reinforcement.

Notice that since each emotion is rather unique, it follows that its starting
points are also idiosyncratic. Hence, if one wishes to add new emotions to our
framework, it would also be necessary to add starting points elsewhere in the
organism.

4.2.8 Subsystems Integration

We have seen that each subsystem provides a number of operations to allow
their integration with the rest of the organism. These operations assumethat
time advances in a discrete manner, and often require the speci�cation of a
current instant. To group them together, then, we specify a data structure,
Simulator , and an overall operation calledSimulatorIterationOp . This oper-
ation advances time, applies the integration operations, deliver stimuli and
collect responses.

Simulator
Organism

currentInstant : Instant

102



4.2. Formal Speci�cation

SimulatorIterationOp
� Simulator

Organism ConicResolution

Organism ResponseMaintenance

Organism OperantEliminationOp

Organism DrivesUpdate

Organism EmotionUpdate

stimulations? : PStimulation

responses! : PResponse

currentInstant 0 = currentInstant + 1

9 Organism StimulusProcessing� currentInstant ? = currentInstant

9 Organism BehaviorSelection�
currentInstant ? = currentInstant ^ responses! = activeResponses

9 Organism ResponseEmission� currentInstant ? = currentInstant

9 Organism OperantOp � currentInstant ? = currentInstant

9 Organism OperantFormationOp � currentInstant ? = currentInstant

These schemasare not part of what constitutes an agent. Rather, they specify
how an actual simulator should interact with an agent. The environment is
represented in this interaction by the variablesstimulations? and responses!.
The former collects the stimulations coming from the environment to a par-
ticular organism, and the latter speci�es the behavioural responses ofthis or-
ganism being delivered to the environment, both in the current instant. There
is, therefore, merely an interface to the surrounding environment { which is
all that is required to simulate an environment with its several agents, as we
shall see in Chapter 5.

Moreover, the passage of time as perceived by the organism is subjective.
From the point of view of the organism, time is perceived to advance at each
interaction with the environment, and it is this subjective time counting that
is taken in account. This provision makes it possible for the organism to
make internal calculations based on the passage of time without having to
be told the actual, universal and absolute time, which is not available from
the EMMAS environments of Chapter 5. Of course, if a global clock was
available, then the internal time counting of the organism could be madeto
match such a clock, but that is not a requirement.

103



4. Behaviourist Agent Architecture

4.3 Conclusion

Any mathematical formalization of a domain not strictly mathematical is
bound to make certain choices (e.g., to solve textual ambiguities) and in-
troduce new technicalities in order to mechanize as much as possible of the
informal and original meaning. It is also di�cult to capture all relevant p he-
nomena under one uni�ed mathematical theory, since the details necessary for
such an uni�cation might not be present in the original informal theory. O ur
formalization, then, is subject to similar problems. Nevertheless, we have tried
to minimize any such idiosyncrasies so that the �nal result can be regarded as
a sensible interpretation of Behaviour Analysis. In particular, though it can-
not account for all possible behavioural phenomena found on the literature,
it is capable of modelling many of them, and in such a way that they relate
to each other in a coherent whole. Indeed, it is largely because of thiscoher-
ence that our formalization is suitable as an agent architecture, since itallows
di�erent mechanisms to operate together in creating several aspectsthat con-
tribute to an interesting agent (e.g., a certain autonomy, learning capabilities,
interaction with the environment).

Despite the complexities of our architecture, its elements are allultimately
given in terms of stimuli and behavioural responses. As a consequence, an
agent's behaviour is always either controllable or at least observable inthis
approach. Hence, much more power is available to the environment where the
agent is located (e.g., a laboratory), for the agent's state can be easily charac-
terized by external events alone. This is a distinctive feature ofbehaviourist
approaches, and should be true in any such behaviourist architecture.

The behaviourist view of agency that we presented brings a reversedperspec-
tive on agents { let us see why. Usually, agents are de�ned by their internal
elements and their relations. Thus, for instance, the question of whether the
agent performs correct deductions is important in such cases. But by making
stimuli and behaviour prominent, and de�ning everything else in their terms,
we e�ectively shift the questions that can be asked about such agents.We are
not worried about, say, knowledge and correct reasoning, but by predicting
and controlling behaviour. This emphasizes the relation that the agenthas
with its environment, and creates new possibilities therein. Forexample, one
may consider sophisticated ways in which the environment may inuence its
agents in order to achieve certain results of interest. This shall become clear
in Chapter 5.

104



CHAPTER 5
Environment Model for

Multi-Agent Systems

Environments account for the medium through which agents may interact.
In this chapter we develop an environment model that has a social network
structure in which nodes are agents, and the links between them arede�ned
by the capabilities that agents have to act upon each other. Furthermore,
these environments are more than a network structure, as they may change
dynamically, either spontaneously or as a reaction to an agent's actions. These
design choices arise from the agent model given in Chapter 4, which suggests a
number of desirable features from an environment that brings them together.
For instance, we place great importance on the possibility of performingexper-
iments of di�erent kinds, and of responding to agent's actions in appropriate
ways. Our approach achieves this by theenvironment behaviours it de-
�nes. Moreover, interaction can be treated by abstracting physical properties
(e.g., spacial position) away and dealing only with relationships, which we
do by adopting a social network structure andenvironment operations to
modify it.

We provide a simple formal framework in which to de�ne such environments so
that they can be subject to automated analyses procedures. A mathematical
model is provided, which we call theEnvironment Model for Multi-Agent
Systems (EMMAS) , and its semantics is given in terms of the� -calculus Environment

Model for Multi-
Agent Systems
(EMMAS)

process algebra (see Appendix E for an overview of� -calculus).

Process algebras are typically employed to describe concurrent systems. They
are good at succinctly describing behaviours relevant to inter-process commu-
nication. The particular choice of � -calculus as a theoretical foundation is
motivated by some of its features, which together make it a distinguished for-

105



5. EMMAS

malism among existing such algebras. First, it takes communication through
channels as a primitive notion, which makes it a natural choice for repre-
senting networks. Second, it allows for dynamic modi�cation, which makes
the creation and destruction of connections between agents possible. Third,
it provides a convenient representation for broadcast behaviour through its
replication operator. Finally, it has few operators and a simple operational
semantics.

The semantics ofEMMAS is actually given in two stages, by considering: (i)
a syntactical translation of EMMAS into � -calculus expressions; (ii) a math-
ematical foundation which relates� -calculus events to the stimuli and actions
of agents in a transition system. The� -calculus translation of (i), through its
operational semantics (De�nition E.5), provides an over-approximation of the
desired behaviour1, which is then made precise using the restrictions provided
by (ii). By this method, we are able to build a transition system th at de�nes
the possible states and transitions for any particular environment speci�ca-
tion. In the present chapter, however, we only provide (i). Stage (ii) is left for
Chapter 6, because it requires a number of new de�nitions concerning tran-
sition systems, which are better understood if isolated in a chapter of their
own.

The semantics thus achieved is general and is not tied to any particularap-
plication, not even simulation. For the purposes of the veri�cation technique,
however, it will be necessary to carry out stage (ii) in a slightly more speci�c
manner, so that the result can be used in a simulator. This is explained in
more detail and accomplished in Chapter 7, which also presents the veri�cation
technique itself.

We purposefully treat agents as black-boxes inEMMAS , because it is not
necessary to expose their internal structure in order to manipulate them from
an environmental perspective. As we saw in Section 4.1, this arises directly
from the behaviourist tradition we use as inspiration. However, there must
be a way to interface the agents with their environment. This is achieved
through the assumption that agents receivestimuli as input and that they
output actions , as explained in Chapter 4. Moreover, communication between
agents is also mediated by the environment.

This view of the agents as black-boxes does not mean that theBehaviourist
Agent Architecture given in Chapter 4 is irrelevant. Rather, it only means
that its purpose is to allow the simulated agents to behave in ways such that
the environment de�ned in the present chapter can fruitfully in teract with
them. That is to say, while the internal mechanisms of agents are not rep-
resented explicitly in EMMAS , they are necessary to actually simulate and

1That is to say, an approximation that contains all the desired b ehaviours, but also some
undesired ones.

106



5.1. The Role of Environments

verify it. Indeed, as argued in Section 1.1, it is because this separation of en-
vironments and agents can be done that the technique presented in this thesis
is practical. The role of environments is to be amenable to systematicanaly-
ses, whereas the purpose of agents is to implement, as completely as possible,
individual behavioural phenomena, with no particular commitment to being
amenable to internal formal analyses. It is only the external, observable, ac-
tions of agents, as reected in an environment, that one may analyse by this
method.

A few remarks on notation are in order before proceeding:

� We have omitted � -calculus input and output parameters when such
parameters are not relevant (e.g., we writea instead of ahxi if x is not
used later).

� For the sake of readability, some elements are coloured in a di�erent
manner. This will be clear from their use, but let us quickly summarize
what these colours are for each kind of element:semantic de�nitions;
expressions, sets and logical formulas used by EMMAS ; and the [ ]�
translation function used to convert EMMAS expressions in� -calculus
introduced by De�nition 5.1.

This chapter is organized as follows. In Section 5.1 we explain in more detail
the role of environments in the overall approach. The environment model
itself is presented in Section 5.2. It is designed to be small, which implies that
convenience constructs are left out. Yet, it provides the basic elements with
which such conveniences can be built, and thus in Section 5.3 we provide some
such conveniences. The reason for this twofold division is to facilitate both
the mathematical treatment of the model (i.e., because it is kept small) and
the addition of new convenience constructs beyond those we provide here (i.e.,
because the fundamental rules to respect are few). At last, in Section 5.4 we
make some concluding remarks. As already remarked above, an overview of
� -calculus is given in Appendix E.

5.1 The Role of Environments

Though environments are often ignored in the design of MAS (Weynset al.,
2005), they play a crucial role in our approach. In Section 1.1 of Chapter 1, we
saw that it can be useful to see the environment as a simpler, more tractable,
entity than the agents that inhabit it. In our approach, this intuition i s made
concrete by the following main points:

107



5. EMMAS

� The Behaviourist Agent Architecture presented in Chapter 4 is
only meaningful if there is an environment to provide it with stimu li
and receive its actions. In particular, an agent can only interact with
another agent if there is an environment to transform the actions of one
into stimuli for the other.

� The environments can be translated into a representation of the MAS
in terms of a transition system, which is required by the veri�cat ion
technique presented in Chapter 7. That is to say, the environmentde�nes
the state-space that the veri�cation algorithms shall explore.

These characteristics are, of course, very related. It is precisely because the
environment de�nes the possible communications with and between agents
that it can provide a representation of all possible behaviours of the MAS.

This does not mean that one may knowa priori , just by the structure of
the environment, exactly how a simulation of an MAS will progress. While
all possibilities are known, the actual sequence of states to be produced by a
simulation will depend on the internal mechanisms of the agents, which are not
available to the environment. In other words, the interaction between agents
and their environment is essential in order to have an actual simulation.

It is also worth to consider the methodological implications of having the en-
vironment in such a prominent position. As we remarked in Chapter 4, the
agent architecture follows a behaviourist approach, which puts great emphasis
on de�ning behaviours in terms of their e�ects and dependencies upon an en-
vironment. This means that problems concerning such agents are invariably
formulated in terms of environmental properties. For example, if one is inter-
ested in teaching a certain behaviour to an agent, the solution will begiven
in environmental terms: how the environment should reinforce theagent, or
how the environment should connect agents so that one may interfere in the
behaviours of the other. Therefore, the environment is a fundamental part of
the very questions which our theory and technology address.

5.2 Environment Model

EMMAS is a mathematical framework that can be used to specify environ-
ments for multi-agent systems. In order to give its semantics, we have chosen
to translate its constructs to the � -calculus process algebra, which provide
simpler elements, with an already established semantics. Such a translation is
achieved by using a translation function to map constructs ofEMMAS into
� -calculus (i.e., a constructC is translated to [C ]� ).

De�nition 5.1 (Translation function) . The translation function [ ]� mapstranslation func-
tion

108



5.2. Environment Model

constructs of EMMAS into � -calculus expressions.

The full de�nition of this function is given as new constructs are int roduced.

The constructs of EMMAS can be divided into structures and environment
operations. The former de�ne the elements that exist and how they interact.
The later account for the manipulation of these structures.

The text below is organized as follows. Section 5.2.1 de�nes the fundamental
� -calculus events upon which the formalization is built. Section 5.2.2estab-
lishes what is an operation, which is an important concept used to de�nethe
model. Finally, Section 5.2.3 describes the structures of the model itself.

5.2.1 Underlying Elementary � -Calculus Events

A � -calculus speci�cation can be divided into two parts. First, and most
fundamentally, it is necessary to specify the set of events that areparticular
to that speci�cation. Second, it is necessary to specify processes built using
those events. In this section we account for this �rst part.

Input and output events are all made from basic names. Hence, we �rst
formally de�ne a set of names in order to have the corresponding events. The
de�nition below establishes such names, and Table 5.1 presents an informal
description of the events that arise. The formal description of theirmeaning,
however, shall be given later on, in Sections 6.2.2 and 7.1, by de�ning the
possible transitions associated with each name.

De�nition 5.2 (Environment Names). The environment names are de- environment
names�ned by the following set:

ENames = f emit n
a ; stopn

a ; beginningn
s ; stablen

s ; absentns ;
destroys;m

a;n ; ccn; done j
a 2 Actions ; s 2 Stimuli ; m; n 2 AgentIDsg

The setsActions, Stimuli and AgentIDs shall be introduced in De�nition 6.5.
For the moment, it su�ces to note that they represent all possible actions,
stimuli and agents in an environment, respectively. In this way, theseenviron-
ment names are tied to particular actions, stimuli and agents. Nevertheless,
they are atomic entities from the point of view of � -calculus, even though they
are denoted here with subscripts and superscripts. This writing style is merely
for readability's sake.

With these names, we now establish the set of events relevant toEMMAS .

De�nition 5.3 (Environment Events) . The environment events are de- environment
events�ned by the following set:

109



5. EMMAS

EEvents = f ehxi ; e(x) j e; x 2 ENamesg [ f � g

As a technicality, it is sometimes convenient to be able to translate� -calculus
processes and events using the[ ]� function. The result of such a translation
is, of course, the process or event itself. Thus we extend the domain of [ ]� to
include � -calculus and give the following de�nition.

De�nition 5.4. Let P be an arbitrary � -calculus process or pre�x. Then,

[P]� = P

A corollary of this de�nition is that the [ ]� function is idempotent (i.e.,
[[C ]� ]� = [C ]� ).

Event Informal description

Agent to environment
emit n

a Agent identi�ed by n performs action a.
stopn

a Agent identi�ed by n stops performing action a.

Environment to agent
beginningn

s Delivery of stimulus s to the agent identi�ed by n is begin-
ning.

stablen
s Delivery of stimulus s to the agent identi�ed by n is stable.

endingn
s Delivery of stimulus s to the agent identi�ed by n is ending.

absentns Delivery of stimulus s to the agent identi�ed by n becomes
absent.

Environment to environment
destroys;m

a;n Requests the destruction of an action transformer that con-
verts action a from agent identi�ed by n into stimulus s
accepted by the agent identi�ed by m.

ccn Requests the creation of a new action transformer.
done Signals that an operation has terminated.

Table 5.1: Informal description of events, divided in three categoriesaccording to
their origin and destination. The corresponding output or input events not shown
merely allow the ones described to work properly.

5.2.2 Environment Operations

In order to exhibit dynamic behaviour, the environment depends onenviron-
ment operations to modify its structures.

De�nition 5.5 (Environment Operation) . An environment operation isenvironment oper-
ation any � -calculus process such that:

110



5.2. Environment Model

� its names belong to the set ENames;

� in the corresponding LTS, for all transitions of the form P
l

� 0, it must
be the case that l= done (i.e., the operation signals its termination
using the done pre�x).

The second condition is particularly important because it allows the sequential
composition of operations, as described in Section 5.3.1 later on. It statesthat
whenever the processes is reduced to the primitive Nil process (denoted by0),
it must be the case that the done pre�x preceded it. In this manner, other
operations can detect the termination (i.e., by specifying a done pre�x to
synchronize with done).

Of course such an abstract de�nition of environment operations cannot be
used directly. Nevertheless, it su�ces to de�ne the basic model for environ-
ments. Concreteenvironment operations are given in Section 5.3.2.

Because the Z Notation used in Chapter 4 has its own notion of operation,
for consistency we must name the operations ofEMMAS di�erently, and we
have opted for calling themenvironment operations . Nonetheless, for con-
venience, we refer to theseenvironment operations merely asoperations
in the remainder of the present chapter, as well as in the rest of the thesis
whenever it is clear from context that the subject is EMMAS .

5.2.3 Environment Structures

The environment is the central structure of speci�cations. It de�nes which
agents are present, how they are initially connected, and what dynamicbe-
haviours exist in the environment itself.

De�nition 5.6 (Environment) . An environment is a tuple hAG ; AT ; EB i environment

such that:

� AG = f ag1 : : : agl g is a set of agent pro�les ;

� AT = f t1 : : : tm g is a set of action transformers ;

� EB = f eb1 : : : ebn g is a set ofoperations , referred to as environment
behaviours . environment

behaviours

Moreover, let f en1; : : : ; enog = ENames. Then the corresponding� -calculus
expression for the environment is de�ned as:

111



5. EMMAS

[hAG ; AT ; EB i ]� = ( � en1; : : : ; eno)
([ag1]� j [ag2]� j : : : j [agl ]� j
[t1]� j [t2]� j : : : j [tm ]� j
[eb1]� j [eb2]� j : : : j [ebn ]� j
!NewAT

where

NewAT = ccn(emit ; stop; absent; beginning; stable; ending; destroy):
T (emit ; stop; absent; beginning; stable; ending; destroy)

and T is given in De�nition 5.8.

This de�nition merits a few comments. First, all names from ENames are
restricted to the environment. Second, the set of action transformers pro-
vide the network structure that connects the agents. Third, the environment
behaviours, as the name implies, speci�es behaviours that belong to the en-
vironment itself. This is useful to model reactions to agent's actions, as well
as to capture ways in which the environment may evolve. In the �rst case
the behaviour is speci�ed as anenvironment response(De�nition 5.19 below),
while in the second case the behaviour is simply anEMMAS operation. Fi-
nally, the component NewAT allows the creation of new action transformers.
In order to do so, it receives a messageccn (\create connection"), whose pa-
rameters initialize the rest of the expression. To see this more clearly, suppose
that NewAT is in parallel composition as follows:

ccnhemit n
a ; stopn

a ; absentms ; beginningm
s ; stablem

s ; endingm
s ; destroys;m

a;n i j NewAT

Then ccn will react with ccn in NewAT , and the resulting expression will be
the following:

T (emit n
a ; stopn

a ; absentms ; beginningm
s ; stablem

s ; endingm
s ; destroys;m

a;n )

This expression corresponds to the de�nition of an action transformer,which
is introduced in De�nition 5.8, and specify how an action emitted by an agent
is received as a stimulus by another agent. Furthermore, in the environment
de�nition there is a parallel replication operator on !NewAT to ensure that
the creation of action transformers can happen as many times as needed to
produce reactions2, owing to the following structural congruence rule:

2 It can be observed from the � -calculus operational semantics given in Appendix E that
because allenvironment names are restricted, the only way for the system to progress is
by performing reactions by the application of the COM rule. Moreover, the rule STRUCT
together with the structural congruence relation ensures that COM will be applied as long
as there areccn events to react with NewAT .

112



5.2. Environment Model

!NewAT � NewAT j!NewAT

Environments exist in order to allow agents to interact. As we remarked
earlier, the internal structure of these agents, as complex as it may be, is
mostly irrelevant to their interaction model. Thus, we have abstracted it
away as much as possible. What is left are the interfaces that allow agents to
interact with each other and with the environment itself, which we call agent
pro�les . Hence, we have the following de�nition.

De�nition 5.7 (Agent Pro�le) . An agent pro�le is a triple hn; S; Ai such agent profile

that:

� n 2 AgentIDs is a unique identi�er for the agent;

� A = f a1 : : : ai g � Actions is a set of actions;

� S = f s1 : : : sj g � Stimuli is a set of stimuli.

Moreover,

[hn; S; Ai ]� = ( [Act (a1; n)]� j [Act (a2; n)]� j : : : j [Act (ai ; n)]� ) j
([Stim(s1; n)]� j [Stim(s2; n)]� j : : : j [Stim(sj ; n)]� )

such that, for all a 2 A and s 2 S, we have:

[Act (a; n)]� =!( emitn
a :stopn

a )

[Stim(s; n)]� = piStim(beginningn
s ; stablen

s ; endingn
s ; absentns )

where

piStim(beginning; stable; ending; absent) =
beginning:stable:ending:absent:piStim(beginning; stable; ending; absent)

This de�nition states that agents have several components, each responsible
for controlling one particular action or stimulus. Act (a; n) de�nes that the
agent identi�ed by n can start emitting an action a and can then stop such
emission. The replication operator (!) ensures that this sequence can be carried
out an unbounded number of times.Stim(s; n), in turn, de�nes that the agent
identi�ed by n can be stimulated by s, and that this stimulation follows four
steps. The recursive call ensures that this stimulation sequence can start again
as soon as it �nishes the last step. These de�nitions reect the assumptions
about the agent model we consider (Chapter 4).

113



5. EMMAS

The relations among agents inEMMAS are given in the form of a social
network. This means that the physical positions of agents are not taken into
account; rather, only the relationships between agents are represented, thus
inducing a graph in which the vertices are agents and the edges denote pos-
sible interactions between them. In this manner, modelling and analysis can
be focused on the logical properties of their interaction, and ignore physical
details (e.g., it does not matter that agent ag1 is 3 meters away fromag2 if
one is concerned merely about specifying thatag1 can hear what ag2 says).

Given the behaviourist point of view that we adopt, these relationships are
modelled by de�ning how the actions of an agent are transformed in stimuli for
other agents. Their interaction, thus, is based on stimulation. Formally, this
is represented byaction transformers , which de�ne how a particular action
of an agent is perceived as a particular stimulus by another agent.Action
transformers are not static: they can be created and destroyed dynamically.
The importance of this is twofold. First, it allows the speci�cation of phenom-
ena in which the relation among agents change as they age. Second, it allows
speci�cation of several possible network structures for the same environment
(i.e., the description of a class of social networks, and not one particular so-
cial network). This latter possibility can be used to determine, through the
veri�cation algorithms we shall introduce in Chapter 7, whether any of t hese
possible network structures satisfy some property of interest.

De�nition 5.8 (Action Transformer) . An action transformer is a tupleaction trans-
former hag1; a; s; ag2i such that:

� ag1 is an agent pro�le hn; S1; A1i ;

� ag2 is an agent pro�le hm; S2; A2i ;

� a is an action such that a2 A1;

� s is a stimulus such that s2 S2;

Moreover, the corresponding� -calculus expression for the action transformer
is de�ned as:

[hag1; a; s; ag2i ]� =
T (emit n

a ; stopn
a ; absentms ; beginningm

s ; stablem
s ; endingm

s ; destroys;m
a;n )

where

T (emit ; stop; absent; beginning; stable; ending; destroy) =

(

Normal behaviour
z }| {
emit :beginning:stable:stop:ending:absent:T (emit ; stop; absent; beginning; stable; ending; destroy))

+
destroy
| {z }
To destroy

114



5.3. Convenience Elements and Operations

The above de�nition can be divided in two parts. First, there is it s normal
behaviour, which merely de�nes the correct sequence through which an action
is transformed in a stimulus. Once such a sequence is completed,a recursive
call to the process de�nition restarts the action transformer. Second, there is
the part that allows the transformer to be destroyed. By performing destroy,
the action transformer disappears, since this event is not followed by anything.

Providing an intermediate structure such as the action transformerbetween
the agents instead of allowing a direct communication is useful because an
agent's actions may have other e�ects besides stimulation. In particular, the
environment can also respond to such actions in custom ways. This can be
done by specifyingenvironment response operations as part of the envi-
ronment behaviours (see Section 5.3.2.3).

5.3 Convenience Elements and Operations

So far we have de�ned the bare minimum for describing environments so that
they can be formally analysed. Clearly, though, more constructs are necessary
in order to make such speci�cations. For example, we de�ned what is an op-
eration in general, but we have not presented any particular operation. In the
present section, then, we provide a number of convenience elements that can
be used to build concreteEMMAS models. Section 5.3.1 gives operators that
can be used to build more complexoperations from simpler ones. Section
5.3.2 presents coreoperations that accomplish basic tasks. Section 5.3.3 and
Section 5.3.4 de�ne, respectively, some core sets and predicates. Section 5.3.5
provides some useful quanti�ers. Finally, Section 5.3.6 employs all of these
elements in order to de�ne some complex operations.

5.3.1 Composition Operators

In order to build complex operations on top of the basic ones, it is useful
to de�ne composition operators. Some of these can be mapped directly to
� -calculus operators, but others require more sophistication.

De�nition 5.9 (Sequential Composition). Let Op1 and Op2 be operations .
Then their sequential composition is also anoperation and is written as: sequential compo-

sition

Op1; Op2

Moreover,

115



5. EMMAS

[Op1; Op2]� = ( � start )[Op1]� f start =doneg j start :[Op2]�

The above translation aims at accounting for the intuition that Op1 must
take place beforeOp2. However, we cannot translateOp1; Op2 immediatly
as [Op1]� :[Op2]� , because in general� -calculus would not allow the resulting
syntax (e.g., (P + Q):R would not be a valid expression). Therefore, we adapt
the suggestion o�ered by Milner (1999) (in Example 5.27), which works as
follows. We assume that every operation signals its own termination using the
done event. Then, when composingOp1 and Op2, we: (i) create a new event,
start ; (ii) rename the done event in Op1 to start ; (iii) make start guard Op2;
(iv) put the two resulting processes in parallel. By this construction, the only
way that Op2 can be performed is afterstart is performed, which can only
happen whenOp1 terminates.

De�nition 5.10 (Sequence). Let Op be an operation and n be an integer
such that n � 1. Then a sequence of n compositions ofOp is de�ned as:sequence

Seq(Op; n) =
�

Op; Seq(Op; n � 1) n > 1
Op n = 1

De�nition 5.11 (Unbounded Sequence). Let Op an operation . Then an
unbounded sequence of compositions ofOp is de�ned as:unbounded se-

quence
Forever(Op) = Op; Forever(Op)

The translation of these two kinds of sequences to� -calculus follows, of course,
from the translation of the sequential composition operator.

De�nition 5.12 (Choice). Let Op1 and Op2 be operations. Then their com-
position as a choice is also an operation and is written as:choice

Op1 + Op2

Moreover,

[Op1 + Op2]� = [Op1]� + [Op2]�

De�nition 5.13 (Parallel Composition). Let Op1 and Op2 be operations .
Then their parallel composition is also an operation and is written as:parallel composi-

tion
Op1 k Op2

Moreover,

[Op1 k Op2]� = ( � start )[Op1]� f start =doneg j
[Op2]� f start =doneg j
start :start :done

116



5.3. Convenience Elements and Operations

The translation for the parallel composition is not straightforward because
it is necessary to ensure thatdone is sent only once in the composed operation.
That is to say, the parallel composition of 2operations is anoperation itself,
and it only terminates when each of its components terminates. If thiscare
is not taken, later sequential compositions will not work as expected. This
de�nition ensures the correct translation by: (i) creating a new name, start ,
restricted to the composition; (ii) renaming done to start in Op1 and Op2;
(iii) creating a new component that waits for 2 start events before sending
one done. By this construction, the only way that a done event can be sent
is by �rst producing 2 start events, which can only happen if each operation
terminates individually.

5.3.2 Core Operations

We can now provide a core ofoperations upon which others can be built.
Below we present them according to their purpose.

5.3.2.1 Agent Stimulation Operations

The following operations are provided to control the stimulation of agents.

De�nition 5.14 (Begin stimulation operation) . Let ag = hn; S; Ai be an
agent pro�le, and s 2 S be a stimulus. Then thebegin stimulation opera- begin stimulation

tion is writen as:

BeginStimulation(s; ag)

Moreover,

[BeginStimulation(s; ag)]� = beginningn
s :stablen

s :done

De�nition 5.15 (End stimulation operation) . Let ag = hn; S; Ai be an agent
pro�le, and s 2 S be a stimulus. Then theend stimulation operation is end stimulation

writen as:

EndStimulation (s; ag)

Moreover,

[EndStimulation (s; ag)]� = endingn
s :absentns :done

De�nition 5.16 (Stimulate operation). Let ag = hn; S; Ai be an agent pro�le,
and s 2 S be a stimulus. Then thestimulate operation is de�ned as: stimulate

Stimulate(s; ag) = BeginStimulation(s; ag); EndStimulation (s; ag)

117



5. EMMAS

5.3.2.2 Action Transformers Operations

The following operations are provided to manipulate action transformers.

De�nition 5.17 (Create action transformer operation). Let ag1 = hn; S1; A1i
be an agent pro�le, ag2 = hm; S2; A2i be another agent pro�le, a 2 A1 be an
action, and s 2 S2 be a stimulus. Then thecreate action transformercreate action

transformer operation is writen as:

Create(ag1; a; s; ag2)

Moreover,

[Create(ag1; a; s; ag2)]� = ccnhemit n
a ; stopn

a ; absentms ; beginningm
s ;

stablem
s ; endingm

s ; destroys;m
a;n i :done

In the above de�nition, ccn is crafted to react with the component NewAT
given in De�nition 5.6. Since operations will ultimately be put together with
parallel composition in the environment, it follows that the Create(ag1; a; s; ag2)
operation will be able to react with NewAT and originate a new action trans-
former.

De�nition 5.18 (Destroy action transformer operation). Let ag1 = hn; S1; A1i
be an agent pro�le, ag2 = hm; S2; A2i be another agent pro�le, a 2 A1 be an
action, and s 2 S2 be a stimulus. Then thedestroy action transformerdestroy action

transformer operation is written as:

Destroy(n; a; s; m)

Moreover,

[Destroy(n; a; s; m)]� = destroys;m
a;n :done

5.3.2.3 Environment Response Operations

As we remarked earlier, besides transforming an action of an agent into stimuli
for other agents, theenvironment itself can also react to such actions. This is
achieved byenvironment response operations, which may de�ne a custom
operation for each action of each agent.

De�nition 5.19 (Environment Response). Let hn; S; Ai be anagent pro�le ,
a 2 A an action and Op an operation . Then the environment responseenvironment

response function ER() for these elements is de�ned as follows:

ER(a; ag; Op) = Forever(Emit (a; ag); Op; Stop(a; ag))

118



5.3. Convenience Elements and Operations

Where:

[Emit (a; ag)]� = emit n
a :done

[Stop(a; ag)]� = stopn
a :done

As an example of such an environment response, we may cite the classicalno-
tion of reinforcement from behaviourist psychology. When an agent performs
a desirable action, the environment may be designed so that the agent re-
ceives a reward in order to reinforce this behaviour. This relationbetween the
agent's action and an associate reward can be elegantly modelled in a process
algebraic way according to the above de�nition of environment response.

5.3.2.4 Do Nothing Operation

At last, it is also convenient to de�ne a standard operation to state that
nothing should be performed. This can be used in a number of ways, such as
delaying (in a sequential composition ) the performance of anotheropera-
tion , serving as place holders in an incomplete model, or stating conditions in
the form of environment responses without de�ning any particular e�ects.
This last possibility has a particularly important technical purpose, since only
the actions that are used somehow in the environment are taken in account
in the �nal semantic model. The reason is that in this way only the actions
relevant to an environment are taken in account, thereby making its analysis
more e�cient.

De�nition 5.20 (Do Nothing Operation) . The do nothing operation is do nothing opera-
tiondenoted by

NOP

Moreover, the corresponding� -calculus expression is as follows:

[NOP]� = done

5.3.3 Sets

Certain sets of elements are particularly useful for modelling.

De�nition 5.21. Let X be any set, S� Stimuli , A � Actions , ag = hn; S; Ai
be an agent pro�le, i; j be natural numbers and I � AgentIDs. Then we have
the following special sets:

� ; : The empty set.

119



5. EMMAS

� P(X ): The set of all subsets ofX (i.e., its power set).

� canReceive(n) = S

� canEmit (n) = A

� i ::j = f k j i � k � j g.

� hI ; S; Ai = fhid ; S; Ai j id 2 I g

The hI ; S; Ai construction allows the concise speci�cation of large sets of sim-
ilar agents. It is especially useful if the agent identi�ers are natural numbers,
because in this case it can be used in association with thei ::j construction.
For example, if we know that agent identi�ed by 1 up to 100 are all similar,
we can specify all of their pro�les at once by writing h1::100; S; Ai .

Composite sets can be obtained by the usual operators of[ (union), \ (inter-
section) and n (subtraction).

5.3.4 Predicates and Logical Formulas

Primitive predicates are necessary to specify conditions. Belowwe de�ne
relevant predicates forEMMAS .

De�nition 5.22. Let X be a set, ag1 = hn; S1; A1i and ag2 = hm; S2; A2i be
agent pro�les , a 2 A1 be an action and s2 S1 be a stimulus. Then we have
the following predicates:

� isConnected(ag1; a; s; ag2): True if, and only if, there exists an action
transformer that takes action a from agent ag1 and transforms it in
stimulus s delivered to agent ag2.

� ag1 = ag2: True if, and only if, n = m.

� ag1 6= ag2: True if, and only if, n 6= m.

Formulas can be obtained by using the usual logical connectives: (negation),
^ (conjunction), _ (disjunction) and ! (implication).

5.3.5 Quanti�cation

In order to succinctly express arbitrary number either of choicesor of concur-
rent execution, it is convenient to de�ne two special quanti�cati on operators.

120



5.3. Convenience Elements and Operations

Given a set of possible parameters and a parameterized expression, these op-
erators generate a new expression that corresponds to a composition of the
several instantiations that the given expression might have with respect to the
speci�ed set of possible parameters.

De�nition 5.23 (Universal quanti�cation with sum) . Let Y be a �nite set,
Exp() be an arbitrary expression, andFormula be a logic formula that is obeyed
by the elements y1; y2; : : : yn 2 Y . Then the universal quanti�cation with
sum is de�ned as: universal quan-

tification with
sum8+ y : Y j Formula � Exp(y) = Exp(y1) + Exp(y2) + : : : + Exp(yn )

De�nition 5.24 (Universal quanti�cation with parallel composition) . Let Y
be a �nite set, Exp() be an arbitrary expression, andFormula be a logic for-
mula that is obeyed by the elements y1; y2; : : : yn 2 Y . Then the universal
quanti�cation with parallel composition is de�ned as: universal quan-

tification with
parallel composi-
tion

8j y : Y j Formula � Exp(y) = Exp(y1) k Exp(y2) k : : : k Exp(yn )

5.3.6 Complex Operations

Using the elements de�ned above, it is possible to create a numberof other
convenience operations. There are many possibilities for such operations. Be-
low we give some examples that seem useful. We employ polymorphism where
appropriate to avoid creating new names and to show possible variations of
an operation.

Let S � Stimuli be a set of stimuli, s 2 Stimuli be a stimulus, A � Actions
be a set of actions, andAG , AG1 and AG2 be sets ofagent pro�les . Then
we have the following operations.

Stimulate several agents. A stimulus is delivered to the agents.

Stimulate(s; AG ) = 8j ag : AG j s 2 canReceive(ag)�
Stimulate(s; ag)

Stimulate several agents with several stimuli. Several stimuli are deliv-
ered to the agents.

Stimulate(S; AG ) = 8j s : S � Stimulate(s; A)

Connect two sets of agents. Allows the creation of action transformers
between two speci�ed sets of agents using the speci�ed sets of actions
and stimuli. This does not mandate that the action transformers should
actually be created. Rather, it speci�es that it is possible for them to be

121



5. EMMAS

created. This allows one to consider all the possibilities of connections
between the two sets.

Connect(AG1; AG2; A; S) = 8j ag1 : AG1 � 8 j ag2 : AG2�
8j a : A � 8 j s : S j
AG1 \ AG2 = ; ^
a 2 canEmit (ag1) ^
s 2 canReceive(ag2)�
Create(ag1; a; s; ag2)

Connect agents in set. Similarly, allows the creation of action transformers
between the agents of a speci�ed set using the speci�ed sets of actions
and stimuli.

Connect(AG ; A; S) = 8j ag1 : AG � 8 j ag2 : AG �
8j a : A � 8 j s : S j
ag1 6= ag2 ^
a 2 canEmit (ag1) ^
s 2 canReceive(ag2)�
Create(ag1; a; s; ag2)

Disconnect agent in a set. Destroys the action transformers between the
agents in the speci�ed set.

Disconnect(AG ) = 8j ag1 : AG � 8 j ag2 : AG �
8j a : canEmit (ag1)�
8j s : canReceive(ag2) j
ag1 6= ag2 ^ isConnected(ag1; a; s; ag2)�
Destroy(ag1; a; s; ag2)

5.4 Conclusion

In this chapter we presentedEMMAS , a model of environments for multi-
agent systems. The proposed environments have both structural and opera-
tional aspects. That is to say, they represent certain structures, which can then
be changed by certain operations. Theseoperations serve to two purposes.
First, they provide a way to specify behaviours of the environments themselves
(e.g., environment responses to the actions of agents). Second, they allow the
succinct speci�cation of several possible scenarios for an environment (e.g.,
several possible ways of stimulating agents). This latter possibility is one of
the great advantages o�ered by the use of a process algebra as a semantic basis
(e.g., an algebraic expressiona + b de�nes the non-deterministic possibility of

122



5.4. Conclusion

either a or b), and to the best of our knowledge renders our approach unique
insofar as environments for MASs are concerned.

EMMAS is also distinctive in that it is designed to work with the Be-
haviourist Agent Architecture developed in Chapter 4. As seen in that
chapter, the agents strongly depend on an external environment, sinceprob-
lems dealing with them must be speci�ed in terms of the stimulation they
receive (from an environment) and the actions they produce (to an environ-
ment). In the present chapter we have seen how this can be accomplished,
for instance, with the operations given in Section 5.3.2 which provide ways
to manipulate stimulation. In Chapter 9 we shall see concrete application
examples.

In our implementation, an EMMAS speci�cation is provided as a XML de-
scription. This practical aspect is presented in Chapter 8, and a reference of
the input format is given in Appendix C.

The semantics ofEMMAS is given in two stages. First, its elements are trans-
lated to � -calculus expressions. This was accomplished in this chapter. The
second stage consists in computing the semantics of such� -calculus expres-
sions in terms of transition systems. This is crucial, because the veri�cation
algorithms we develop later on will operate on such transition systems, and
not on � -calculus expressions. However, this second stage is described inthe
next chapter. The reason for this is simple: transition systems constitute a
formalism in their own right, and at a di�erent level of abstraction. We have
therefore put them in a chapter of their own, in which we present these struc-
tures in their general form and then use them to produce the �nal semantics
of EMMAS .

123





Part III

Formal Analysis and Veri�cation

125





CHAPTER 6
Transition Systems and

Semantics

Formal veri�cation requires formal structures to operate on. This chapter
introduces such structures as the underlying semantics of the MASs to be
investigated. We �rst present, in Section 6.1, the notion of annotated tran-
sition systems (ATSs) , the formal structures to be operated on. In Section
6.2, then, we employ these transition systems to give the semanticsof EM-
MAS , the environment model presented in Chapter 5. This is achieved by
considering the � -calculus translation provided in Chapter 5, and employing
the � -calculus operational semantics and certain constraints to build anATS
that de�nes the possible evolutions of an environment. Although anEMMAS
speci�cation is syntactically �nite, the corresponding ATS that gives its se-
mantics possibly has in�nitely many states. This semantics is independent of
any particular application, and in particular is not restricted to simu lations
{ it is a general semantics. For the purpose of simulation and the related
veri�cation technique, it will have to be modi�ed. The main reason is that
to perform simulations e�ciently it will be necessary to make the semantics
more concrete. But since this is an implementation concern, this provision is
left for Chapter 7. Finally, Section 6.3 concludes the chapter.

6.1 Annotated Transition Systems

While there may be many ways to specify the systems and their properties
(e.g., programming languages, process algebras, logic), it is convenient to have
a simple and canonical representation to serve as their common underlying
semantic model. Here, we de�ne and employannotated transition systems

127



6. Transition Systems and Semantics

(ATSs) to this end, which are nothing but transition systems with labels given
to both states and transitions.

The ATS de�nition is very similar to what is merely called a transition syst em
by Baier and Katoen (2008). We think, however, that it is worth to emphasize
that it is a special kind of transition system, in order to avoid confusion. In
particular, an ATS is not what is usually called a labelled transition system
(LTS). In an LTS, states are not labelled, the set of events may be in�nite
(Milner, 1999, p. 16). In the ATSs , by contrast, states may be labelled (i.e.,
\annotated", as we say, to avoid confusion) and the set of events is �nite.

In an ATS , events play a central role, and are further divided into input
events and output events . The former represent events that may be con-
trolled by the veri�cation procedure (i.e., may be given as an input to the
simulator), and the latter events that cannot (e.g., because they are the out-
put of some internal { and uncontrollable { behaviour of the simulator). T wo
special events are also provided. First, theinternal event (� ) denotes an
event that takes place but whose precise identity is not known.1 Second, the
other event (� ) represents an event that, given a states, matches any in-
put or output event e, provided that e is not part of a transition leaving
s. That is to say, the other event is a convenience to allow the speci�cation
of a default transition for the events that are not explicitly mentione d in any
given state. Such a default transition, moreover, simpli�es calculations during
veri�cation, since only one event must be considered instead of a setof several
events. The following de�nition establishes all these possible kinds of events.

De�nition 6.1 (Events). Let N be a primitive set of names. Anevent isevent

one of the following:

� an input event , denoted by?n for some n 2 N .input event

� an output event , denoted2 by !n for some n 2 N .output event

� the internal event , denoted by� , such that � =2 N .internal event

� the other event , denoted by� , such that � =2 N .other event

An ATS is then de�ned as follows.

De�nition 6.2 (Annotated Transition System) . An annotated transition
system (ATS) is a tuple hS; E ; P; ! ; L; s0i such that:annotated transi-

tion system (ATS)

� S is the set of primitive states .states

1This concerns our ATSs , but note that the � -calculus itself de�nes such an internal
event as well.

2Not to be confused with the replication operator of the � -calculus.

128



6.1. Annotated Transition Systems

� E is the �nite set of events .

� P is the �nite set of primitive propositions.

� ! : S � E � S is the transition relation .

� For any s 2 S and e2 E, there are only �nitely many s 0 2 S such that
s e! s0 (i.e., �nite branching).

� L : S 7! P(P [ : P) is the labelling function of states.3

� For all s 2 S and all p 2 P, if p 2 L(s), then : p 62L(s) (i.e., the
labelling function is consistent).

� s0 2 S is the initial state .

The labelling function associates literals4, and not merely propositions, to the
states . This allows the speci�cation that some propositions are known to be
false in astate (i.e., : p), but also that other propositions are not known (i.e.,
in case neitherp nor : p are assigned to the state). This last possibility is
convenient for modelling situations in which the truth value of a proposition
cannot be assessed, as it may happen in experimental situations.

Thus, an ATS represents some system that has severalstates , each one pos-
sessing a number of attributes, and a number of transition choices. The sys-
tem progresses by choosing, at everystate , a transition that leads to another
state through some event . Given an ATS , any such particular sequence of
its events and states is called arun .

De�nition 6.3 (Run) . Let hS; E ; P; ! ; L; s0i be an ATS , e0; e1; : : : ; en 2 E
and s0; s1; : : : ; sn 2 S. Then the sequence

(s0; e0; s1; e1; : : : ; sn � 1; en � 1; sn )

is a a run of the ATS . Let us denote this sequence by� . Then its length, run

denoted byj � j, is n + 1 . Moreover, we also denote� by � 0:en � 1:sn , where � 0

corresponds to thesubrun (s0; : : : ; sn � 1). subrun

The set of all possibleruns of an ATS can also be de�ned.

De�nition 6.4 (runs() Function) . Let M be an ATS . Then the set of all
runs of M is denoted by:

runs(M )

3As indicated in Section 1.2, by P(P [ : P ) we mean the power set of (P [ : P ) (i.e.,
the set of all subsets of (P [ : P )), and by : P we mean the set f: p j p 2 Pg.

4For any proposition p, its associate literal l is de�ned either by l = p or l = : p. In the
former case, we say it is apositive literal , whereas in the latter we say it is a negative literal.

129



6. Transition Systems and Semantics

s0

f yg

s1

f x; yg

s2

f xg
s3

f xg

: : :

s4

f xg

: : :
s5

f x; yg

s6

f zg
. . .

?a ?b

?c

!d
?e

!f

Figure 6.1: Examples of anATS . Transitions are annotated with events (i.e., ?a,
?b, ?c, ?e, !f , !d) and states are annotated with literals (i.e., x, y, z). The dots
(: : :) denote that the ATS continues beyond thestates shown (it may have in�nitely
many states).

6.2 EMMAS Semantics

As seen in Chapter 5, the semantics ofEMMAS is given in two main steps.
First, a translation from the elements of EMMAS to � -calculus expressions
is provided, and this was done in that chapter. The second step consists in
using the � -calculus operational semantics, as well as some other restrictions
we introduce, in order to transform these � -calculus expressions into transi-
tion systems { more precisely, intoATSs . In this section we accomplish this
latter step. Section 6.2.1 presents some preliminary structures.Building on
these elements, Section 6.2.2 presents the actual construction of the transition
systems.

6.2.1 Preliminary De�nitions

The model must have a way to e�ectively interact with the agents of an MAS.
Agents may trigger events that have a meaning in the environment spec-
i�cation (e.g., the performance of an action). Conversely, the environment
speci�cation may request the performance of an operation (e.g., to stimu-
late an agent). We ful�l such requirements by providing both a vocabulary
in which a few primitives are de�ned and a de�nition for what constit utes
an environment status with respect to these primitives. These de�nitions
emanate from the agent model provided in Chapter 4, and can be seen as
interfaces that allow an environment to communicate with its agents.

De�nition 6.5 (Vocabulary) . A vocabulary is a tuplevocabulary

hStimuli ; Actions ; AgentIDs; Propositionsi

130



6.2. EMMAS Semantics

such that:

� Stimuli is a �nite set of stimuli ;

� Actions is a �nite set of actions;

� AgentIDs is a �nite set of agent identi�ers ;

� Propositions is a �nite set of atomic propositions.

The setsStimuli , Actions , AgentIDs and Propositions de�ne, respectively, all
available stimuli, actions, agent identi�ers and atomic propositions. These are
sets containing primitive, unstructured, elements.

Moreover, the setsStimuli and Actions must reect the actual agents being
considered. In Chapter 4 we saw that the agents interact with their envi-
ronment by means of stimuli (see p. 65) and actions (see p. 75) { but each
agent can, in principle, adopt di�erent stimuli and actions. Therefor e, the
sets Stimuli and Actions introduced here must contain the stimuli and ac-
tions adopted by each agent.

The environment status , in turn, describes the dynamic connection between
the agents of Chapter 4 and the environment described in the presentchapter:
the actual values of the functions de�ned therein reect the state of the agents,
which can (and normally will) change as the MAS evolves.5

De�nition 6.6 (Environment Status) . An environment status is a tuple environment sta-
tus

hStimulation ; Response; Literals i

such that:

� Stimulation : AgentIDs � Stimuli ! f Beginning; Stable; Ending; Absentg;

� Response: AgentIDs � Actions ! f Emitting ; NotEmitting g;

� Literals � Propositions [ : Propositions.

The Stimulation function gives the stimulation of a particular agent by a
particular stimulus. Agent stimulation is not an instantaneous operation. As
de�ned in Chapter 4, the agents di�erentiate the beginning, the stable phase,

5From the semantic point of view considered in the present chapter, these functions are
merely given (i.e., they are assumed to exist). How they are actually computed is a topic
pertaining to the implementation of the simulator, to be seen i n Chapter 8.

131



6. Transition Systems and Semantics

the ending, and the absence of a particular stimulation. Hence, we provide
the appropriate elements in the function's range.

The Responsefunction keeps track of the actions being emitted by the agents.
In accordance with the agent architecture, we assume that actions begin and
end instantaneously, and therefore we de�ne only two elements in the func-
tion's range.

Finally, the Literals set contains propositions and their negations. This allows
the speci�cation of more general constraints that are not immediately related
to stimulation or behavioural responses.

6.2.2 Building the Transition System

Given an environment Env, we build an environment ATS in two steps.
First, we consider the transition system induced by[Env]� and show how to
transform it into an ATS whosestates are each annotated with an environ-
ment status (De�nition 6.6). Then, we subject the resulting ATS to some
restrictions concerning its possible runs, thereby obtaining the environment
ATS , which describes all the legal evolutions of the MAS.

6.2.2.1 Step 1: From the � -calculus LTS to the Unrestricted
Environment ATS

In order to obtain the desired behaviour, we had to restrict most � -calculus
names on theenvironment (De�nition 5.6). For instance, this ensured that
emit n

a pre�x would only take place if its counterpart emit n
a was available else-

where in the environment , by means of theCOM rule of the � -calculus oper-
ational semantics (De�nition E.5). However, in the corresponding � -calculus
LTS, this reaction, like any other, appears merely as an internal pre�x (i.e.,
the � pre�x). While this provides the correct structure to the LTS, it also
hides the causes of such transitions. This poses a problem, since inmost sit-
uations we would like to know which events led to the transitions that took
place.

A solution to this issue is to merely transform each such� pre�x into an
appropriate input or output event for the ATSs , as described in Chapter
7. To di�erentiate these events from the � -calculus pre�xes, we denote them
by ?n (input ) and !n (output ), where n is somename . Sometimes, however,
the underlying input and output pre�xes are not useful, because they pertain
only to the internal machinery of the environment, and in such cases we leave
the � pre�x in place. All of this is formalized by the following econv function,
which takes � -calculus pre�xes and map them to the appropriate events .

132



6.2. EMMAS Semantics

De�nition 6.7 (Event Conversion Function). Let Proc1 and Proc2 be � -
calculus processes, l a� -calculus event, a, x and y arbitrary names, and�
the transition relation induced by the � -calculus operational semantics (De�-

nition E.5) such that Proc1
l

� Proc2. Then the event conversion function event conversion
functioneconv is de�ned by the following rules:

� If l = � , and it was obtained in Proc1 by the internal reaction of some
aj

i (x) and aj
i hyi such that a2 f emit ; stopg, then econv(Proc1; l ; Proc2) =

?aj
i ;

� If l = � , and it was obtained in Proc1 by the internal reaction of some
aj

i (x) and aj
i hyi such that a 2 f absent; beginning; stable; endingg, then

econv(Proc1; l ; Proc2) =! aj
i ;

� If l = � and none of the previous cases hold, then econv(Proc1; l ; Proc2) =
� as well;

In the above de�nition, the �rst rule de�nes that pre�xes pertain ing to agent
action shall beinput events in the ATS . This means that the event shall be
given by some external source as an input. The second rule, in turn, de�nes
that all pre�xes concerning stimulation are transformed in output events .
That is to say, such events are to be given to some external receptor. We
shall see in Chapter 7 that the external source and receptor, in this thesis, is
the simulator which controls the agents. At that point it will be clear t hat
this di�erence between output and input is fundamental, since in one case the
simulation may always proceed, whereas in the other case it dependson a
condition which is not certain to be ful�lled.

The states of the original � -calculus LTS must also be augmented with con-
textual information relevant to the ATS . Thus, besides the original� -calculus
process, thestate will also contain an environment status tuple that we
saw earlier, resulting in the following form.

De�nition 6.8 (Environment State) . Let Env be an environment and Proc
be a � -calculus process obtained by applying� -calculus operational semantics
rules to [Env]� . Moreover, let hStimulation ; Response; Literals i be an envi-
ronment status . Then an environment state is de�ned as the following environment state

pair:

(Proc; hStimulation ; Response; Literals i )

By this construction, at any point of the ATS we shall be able to know
both what is the current situation of the agents in so far as the environment is
concerned (because of the added environment status) and what are the possible
changes from that point (because of the� -calculus operational semantics).

133



6. Transition Systems and Semantics

At last, given a method of obtaining the relevant events , and the form of the
environment states , we now de�ne the unrestricted environment ATS
inductively.

De�nition 6.9 (Unrestricted Environment ATS) . Let Env be an environ-
ment (De�nition 5.6), and let � be the transition relation induced by the
� -calculus operational semantics (De�nition E.5). Then the unrestricted
environment ATS hS; E ; P; ! ; L; s0i is such that:unrestricted envi-

ronment ATS

� P = Propositions;

� S and ! are constructed inductively as follows:

{ Initial state . s0 = ( [Env]� ; es) 2 S, where
es = hStimulation ; Response; Literals i such that L(s0) = Literals
and for all a 2 Actions , s 2 Stimuli , and n 2 AgentIDs we have
Stimulation (n; s) = Absent and Response(n; a) = NotEmitting .

{ Other states and transitions .
If s1 = ( Proc1; hStimulation1; Response1; Literals1i ) 2 S,
then s2 = ( Proc2; hStimulation2; Response2; Literals2i ) 2 S, s1

e!
s2, e 2 E and L(s2) = Literals2 if and only if:

� There exists a� -calculus event l such that Proc1
l

� Proc2 and
e = econv(Proc1; l ; Proc2);

� Stimulation2 is de�ned with respect to Proc2 according to Def-
inition 6.11.

This de�nition can be summarized as follows. TheATS has an initial state ,
which is made of the� -calculus process of someenvironment , as well as an
environment status that says that all actions are not being emitted, and
that all stimuli are absent in every agent. From this initial state we begin
the construction of the remaining (reachable) states and of the transition
relation. This is accomplished by using the� -calculus operational semantics to
know the available transitions at any given state , and augment the reachable
states with environment status. This procedure is repeated to every new
state introduced until there are no new transitions possible.

To proceed with this construction, we need a number of de�nitions. Let us
begin by providing a way to observe the internal transitions of an environment,
which is a fundamental capability that we need before proceeding. As seen in
De�nition 5.6, an environment's � -calculus process has a number of restrictions
that would prevent such observations (i.e., the transitions would beinternal
to the process and not discernible in the LTS). It is, however, possible to
characterize these restrictions syntactically, and thus we may provide a simple

134



6.2. EMMAS Semantics

method to remove them when needed. This is accomplished by the following
environment unrestriction function unr .

De�nition 6.10 (Environment Unrestriction Function) . Let P and Q be � -
calculus processes such that

P = ( � en1; : : : ; eno)Q

where f en1; : : : ; enog = ENames. Then the environment unrestriction
function is de�ned as unr(P) = Q. environment unre-

striction function

We may now de�ne the Stimulation function present in eachstate as follows.

De�nition 6.11 (Stimulation) . Let (Proc; hStimulation ; Response; Literals i )
be anenvironment state . Moreover, let ! be the transition relation induced
by the � -calculus operational semantics. Then, for all s2 Stimuli and n 2
AgentIDs, we have:

Stimulation (n; s) =

8
>>>>><

>>>>>:

Absent if 9 P0such that unr(P)
beginning n

s! P0

Beginning if 9 P0such that unr(P)
stablen

s! P0

Stable if 9 P0such that unr(P)
ending n

s! P0

Ending if 9 P0such that unr(P)
absentns! P0

The Stimulation de�nition establishes the status of a particular stimulation
based on the order that stimulations must change (see De�nition 5.7). For
instance, if a process is capable of receiving abeginningn

s event , it must be
the case that stimulus s is currently absent in agent identi�ed by n. The
Stimulation function, therefore, merely gives a way of reading the� -calculus
LTS in order to have this information explicitly for every agent and st imulus
in any given process.

On the other hand, both the Responsefunction and the Literals set are as-
sumed as given. In Chapter 7 we will see that the simulator provides their
values according to the current simulation state. Thus, we do not need to
formally de�ne them here. However, Responseimposes some constraints on
the ATS , which we must specify and take into account.

6.2.2.2 Step 2: From the Unrestricted Environment ATS to the
Environment ATS

The unrestricted environment ATS we have obtained so far is an over-
approximation of the desiredATS . It contains runs which are not supposed to
be part of the model. For instance, if an agent identi�ed by n is still emitting

135



6. Transition Systems and Semantics

an action a, it cannot be the case that the event ?stopn
a takes place, since

this would indicate that the agent is not emitting the action (a contradi ction).
Such problems arise because the relation between the� -calculus speci�cation
and the contextual information about the agents (i.e., the functions in an
environment status ) has not yet been considered. To handle this issue,
the following constraints are used to prune theunrestricted environment
ATS .

De�nition 6.12 (Transitions Constraints) . Let
s1 = ( P1; hStimulation1; Response1; Literals1i ) and s2 be states of anATS
hS; E ; P; ! ; L; s0i . Then the transition s1

e! s2 is forbidden if one of the
cases hold:

� There exists a2 Actions and n 2 AgentIDs such that:

{ Response1(n; a) = Emitting ;

{ e =?stopn
a .

� There exists a2 Actions and n 2 AgentIDs such that:

{ Response1(n; a) = NotEmitting ;

{ e =?emit n
a .

� There exists a2 Actions and n 2 AgentIDs such that:

{ Response1(n; a) = Emitting ;

{ Response2(n; a) = NotEmitting ;

{ there exists an s0 2 S such that s1
?emit n

a! s0.

� There exists a2 Actions and n 2 AgentIDs such that:

{ Response1(n; a) = NotEmitting ;

{ Response2(n; a) = Emitting ;

{ there exists an s0 2 S such that s1
?stopn

a! s0.

The �rst constraint asserts that if an agent identi�ed by n is emitting an
action a, then it cannot produce the ?stopn

a event to proceed to a new state.
Conversely, the second constraint states that if the agent is not emitting such
an action, then it cannot produce the ?emitn

a event . The third constraint
asserts that if the agent is emitting the action in a givenstate , and it proceeds
to a state in which it might no longer emitting such an action, then it must
not be the case that some process was still ready to receive that action (i.e.,
by producing the input event ?emit n

a ). This means that it can only stop

136



6.3. Conclusion

emitting an action when the action has already produced all of its e�ects.
The �nal constraint is the counterpart for stopping an emission. Hence,if an
agent is not emitting some action, and then it start emitting it, it mus t not
be the case that some process was still ready to receive the stop signal(i.e.,
by producing the input event ?stopn

a ).

With such restrictions in place, we may now proceed to the de�nition of the
�nal Environment ATS .

De�nition 6.13 (Environment ATS) . Let M be anunrestricted environ-
ment ATS (De�nition 6.9). Then the environment ATS M 0 is equal to environment ATS

M pruned according to transition constraints (De�nition 6.1 2).

This environment ATS possibly has in�nitely many states , since there
could be evolutions of the MAS that always result in newstates . This arises
because the underlying� -calculus process may contain recursive de�nitions
and the use of the replication operator that ensure that the transition system
can always move into a new state.

6.3 Conclusion

We have seen in this chapter a special kind of transition system which we
have calledATS . Using such structures, we managed to provide the seman-
tics of EMMAS . We have therefore reduced the problem of analysing the
environment of an MAS to the one of analysing anATS .

The semantics given, however, is not geared towards any particular application
of the MAS being modelled { it is a general semantics. In particular, details
necessary for the simulation of anEMMAS environment are not present.
This shows that EMMAS is capable of representing MASs independently of
their implementation (e.g., as a simulation), which is a desirable feature, and
for this reason we have proceeded in this way. Nevertheless, for the purposes of
the veri�cation technique, it will be necessary to introduce new characteristics
in the semantics. Accordingly, we have left this provision for Chapter 7, which
is also where the veri�cation technique is presented.

137





CHAPTER 7
Veri�cation Technique

In this chapter we present our approach to the formal veri�cation of the multi-
agent systems composed by the agents and environments described in previous
chapters. In Section 1.1 of Chapter 1 we saw that in this thesis we view
veri�cation as a means of performing experiments in an automated way. This
means that given a system modelM and a property SP, we determine whether
M satis�es SP in a number of precise senses that we introduce. Notably, there
is a sense in which the satisfaction ofSP provides the instructions of how to
bring it about, in the spirit of the experimental perspective we take (i.e., by
showing how to construct a successful experiment out of several possibilities).
All this is accomplished by algorithms that perform on-the-y explorati ons in
M .

Formally, M is an annotated transition system (ATS) (possibly with
in�nitely many states ) and SP is a simulation purpose . The former
represents anEMMAS environment , while the latter is introduced in the
present chapter { but for the moment it su�ces noting that it is a �ni te ATS
subject to certain extra restrictions. Veri�cation is achieved by considering
the synchronous product of these two transition systems. The algorithms
perform depth-�rst searches on this synchronous product , which is built
on-the-y. These searches are limited to a maximum depthdepthmax , since
there might be branches of in�nite length in the search tree.

These characteristics lead to many parameters to be accounted for in the
statement of the complexities. In a few words, the complexity in space is
polynomial with respect to the size of theenvironment and other parameters,
and the complexity in time is exponential with respect to depthmax . The
complete development of these calculations is provided in Section 7.6 of this
chapter.

139



7. Veri�cation Technique

The technique described here is designed to work with theEMMAS environ-
ments, whose semantics was given in Chapter 6. However, in order to simulate
(a precondition for veri�cation) such environments, it is necessary to introduce
certain implementation considerations in their semantics. Since this concerns
the particular application of EMMAS to simulation, and not its general role
with respect to MASs, we address this issue in this chapter as well.

We divide the presentation as follows. First, in Section 7.1 we explain the
necessity and make the required adjustments in the semantics ofEMMAS so
that the resulting ATS can be used for simulations. In Section 7.2, we de�ne
precisely what simulation purposes are. In Section 7.3, we present asyn-
chronous product that provides the basis for veri�cation. Then, in Section
7.4 we de�ne the satis�ability relations of interest. Based on these,in Section
7.5 we provide the veri�cation algorithms themselves, and explain informally
how they work. More rigorous analyses concerning soundness, completeness
and worst-case complexities are given in Section 7.6. We �nish with some
concluding remarks in Section 7.7. Actual execution of these algorithms is
postponed until Chapter 9.

7.1 Making the Environment ATS Suitable for
Simulation and Veri�cation

The semantics we provided toEMMAS in Chapter 6 is su�cient to describe
all the relevant evolutions of any given environment, in the form of anATS ,
without making reference to implementation details. In particular , this ab-
stract model does not de�ne precisely how a simulation based onEMMAS
should be carried out. However, since the veri�cation technique isbased on the
possibility of simulating an MAS, it is necessary, before proceeding, to make
the semantics provided there more concrete so that eachrun in the �nal ATS
corresponds to something that can be directly and e�ciently simulated.

The problem lies in how the simulator is supposed to interact with the agents
while obeying the restrictions imposed by De�nition 6.12. These restrictions
forbid certain transitions from happening by employing both preconditions
(i.e., what must be true in the current state ) and postconditions (i.e., what
must be true in the next state ). During simulations, the preconditions can
be assessed merely by examining the current simulation state. Butthe post-
conditions can only be known after the transition is simulated. If after this it
is found that the postconditions are violated, then it is necessary to backtrack
to the previous state and try another transition. Clearly, it would be m ore
e�cient to have a way to be sure a priori that the postconditions will hold,
instead of having to test them and backtrack if needed.

140




















































































































































































































































































































































































































































































































































































































































































	Overview

