
HAL Id: tel-00656683
https://theses.hal.science/tel-00656683

Submitted on 4 Jan 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Coherence problem between Business Rules and
Business Processes

Mario Lezoche

To cite this version:
Mario Lezoche. Coherence problem between Business Rules and Business Processes. Modeling and
Simulation. Università degli studi Roma III, 2009. English. �NNT : �. �tel-00656683�

https://theses.hal.science/tel-00656683
https://hal.archives-ouvertes.fr

✐

✐

“main” — 2009/2/25 — 2:02 — page i — #1
✐

✐

✐

✐

✐

✐

UNIVERSITÀ DEGLI STUDI

ROMA

TRE

Roma Tre University
Ph.D. in Computer Science and Engineering

Coherence problem between
Business Rules and Business

Processes

Mario Lezoche

✐

✐

“main” — 2009/2/25 — 2:02 — page ii — #2
✐

✐

✐

✐

✐

✐

✐

✐

“main” — 2009/2/25 — 2:02 — page iii — #3
✐

✐

✐

✐

✐

✐

Coherence problem between Business Rules and Business
Processes

A thesis presented by
Mario Lezoche

in partial fulfillment of the requirements for the degree of
Doctor of Philosophy

in Computer Science and Engineering

Roma Tre University
Dept. of Informatics and Automation

March 2008

✐

✐

“main” — 2009/2/25 — 2:02 — page iv — #4
✐

✐

✐

✐

✐

✐

Committee:

Prof. Michele Missikoff

Reviewers:

Prof. Leonardo Tininini
Prof. Selmin Nurcan

✐

✐

“main” — 2009/2/25 — 2:02 — page v — #5
✐

✐

✐

✐

✐

✐

To my Mum.

✐

✐

“main” — 2009/2/25 — 2:02 — page vi — #6
✐

✐

✐

✐

✐

✐

✐

✐

“main” — 2009/2/25 — 2:02 — page vii — #7
✐

✐

✐

✐

✐

✐

vii

Abstract

Business Process (BP) transformation is a key aspect of BP lifecycle. There

are several reasons that may cause BP modifications. Among these, particu-

larly important are the changes of the enterprise organization and operation

strategies, which can be captured by business rules (BRs). This work focus on

a BP-based organization that is regulated by a set of BRs: such BPs and BRs

need to be globally consistent (and have to be maintained consistent after any

changes). In this thesis is presented an ontological approach capable of repre-

senting BRs and BPs in a coherent way. Then, the objective is identifying all

processes in the BP repository that are (or have become) inconsistent with the

BRs and thus need to be changed to reestablish the overall consistency.

✐

✐

“main” — 2009/2/25 — 2:02 — page viii — #8
✐

✐

✐

✐

✐

✐

✐

✐

“main” — 2009/2/25 — 2:02 — page ix — #9
✐

✐

✐

✐

✐

✐

Acknowledgments

I would like to thank professor Michele Missikoff who guided me through the
comprehension of the research way. My family and my friends who always
supported my efforts in this period.

ix

✐

✐

“main” — 2009/2/25 — 2:02 — page x — #10
✐

✐

✐

✐

✐

✐

Contents

Contents x

List of Tables xii

List of Figures xiii

1 Introduction 1

2 Business Process Modeling 5
2.1 What is a Business Process . 5
2.2 Business Process Modeling Languages 6

3 Business Rules 19
3.1 On the semantic of a BR . 20
3.2 Business Rule Approach . 22

4 An Ontological Framework: BPAL 27
4.1 Business Process Abstract Language 27
4.2 The semantic enrichment of BPMN: a mapping to PSL and BPAL 33
4.3 Business Process schema and instances in BPAL 34
4.4 Knowledge Representation Framework 36

5 Pilot Case 39
5.1 The E-procurement Community 39
5.2 Buyer and Seller . 39
5.3 E-procurement Process . 41

6 Impact of Business Rule onto Business Process Schema 43
6.1 Testing BP consistency to BRs 43

x

✐

✐

“main” — 2009/2/25 — 2:02 — page xi — #11
✐

✐

✐

✐

✐

✐

CONTENTS xi

6.2 A practical example . 45

7 Control Coherence Method 47
7.1 Architecture . 47
7.2 Coherence method . 49

Conclusion 57

Appendices 58

Appendix 1 - BPAL 61
BPAL Example of a BP ontology for the Existence Verification process 61
Sampling of BPAL in KIF . 62
BPAL File . 65

Appendix 2 - Software 67
UML class diagram . 67
Code . 67

Bibliography 109

✐

✐

“main” — 2009/2/25 — 2:02 — page xii — #12
✐

✐

✐

✐

✐

✐

List of Tables

xii

✐

✐

“main” — 2009/2/25 — 2:02 — page xiii — #13
✐

✐

✐

✐

✐

✐

List of Figures

2.1 Categorization of BPMN constructs and corresponding graphical
notation . 17

2.2 An excerpt of the existence verification process 17

3.1 Response semantics. 20
3.2 Precedence semantics. 20
3.3 Alternate Response semantics. 21
3.4 Alternate Precedence semantics. 21
3.5 Chain Response semantics. 21
3.6 Chain Precedence semantics. 22
3.7 Decision Table to disambiguate the BR: A precedes B. 23

4.1 A simple BPMN Diagram. 30
4.2 A BPAL Abstract Diagram. 31
4.3 A Generic BPAL Process. 32
4.4 Comparison between the BPMN, PSL, and BPAL. 34
4.5 A simple BPS diagram. 36
4.6 Knowledge Representation Framework used. 37

5.1 Informal representation of an E-procurement process. 40
5.2 BPMN formalization of the E-procurement process. 41

7.1 Solution Architecture. 48
7.2 Topological Paths. 49
7.3 Semantic Paths. 50
7.4 E-Procurement Process simplified Example. 51
7.5 And Block. 52
7.6 Block Elaboration. 53

xiii

✐

✐

“main” — 2009/2/25 — 2:02 — page xiv — #14
✐

✐

✐

✐

✐

✐

xiv List of Figures

7.7 Computational Gain for an ’OR Branch’. 54

A.1 Class Diagram Nodo. 68
A.2 Class Diagram A, Utility. 106
A.3 Class Diagram S, Adjacent Matrix. 107
A.4 Class Diagram Algoritmi. 107

✐

✐

“main” — 2009/2/25 — 2:02 — page 1 — #15
✐

✐

✐

✐

✐

✐

Chapter 1

Introduction

Business process (BP) modeling is opening a new phase in the development
of enterprise software applications (ESA), thanks to the recent proposal of the
Model Driven Architecture (MDA) approach, promoted by OMG [Sol00]. In
essence, MDA proposes 3 levels of BP models:

1. computational independent models (CIM), where business experts pro-
vide a first (informal) description of a BP (e.g. by using EPC [dA99]);

2. platform independent models (PIM), where business experts work to-
gether with IT experts to build a procedural specification of the process
in a rigorous way (e.g., by using BPMN [Whi04]), but leaving out low
level technical details;

3. platform specific models (PSM), developed by IT experts, where all the
technical details are introduced to achieve a complete specification, (e.g.,
by using BPEL4WS [IIIa]), ready to be executed by a suitable engine
(e.g., ActiveBPEL1) [?], invoking the required services.

The OMG-MDA proposal has been mainly conceived to support a layered
development of enterprise software applications, however for what concerns BP
lifecycle, and in particular BP evolution does not propose any specific approach.
In a dynamic enterprise, BPs need to be periodically revised and updated. Such
BP transformation may be necessary for different reasons, for instance:

• poor functional performances (e.g., a process takes too much time or fails
to fully achieve what expected);

1

✐

✐

“main” — 2009/2/25 — 2:02 — page 2 — #16
✐

✐

✐

✐

✐

✐

2 CHAPTER 1. INTRODUCTION

• poor non-functional performances (e.g., security and privacy are not suf-
ficiently guaranteed);

• new company policies (requiring the update of non conformant BPs).

In this work we address the latter issue, in a context where company poli-
cies are mainly expressed by business rules (BR).

Company policies are often represented in the form of business rules (BRs.)
Business experts usually tend to formulate a BR in natural language. For
instance, a BR can say: ”all expenses greater than 10.000 euros require the
approval of the Head of Unit”. Another BR may involve the way business
operations are performed, for instance: ”the receiving of a quotation must pre-
cede the issuing of a purchase order”. The latter BR can be synthesized by the
expression: A precedes B.

A challenging problem is to automatically identify the BPs that violate a
BR and, possibly, to make the former evolving according to the latter.

In this work we present an ontological approach to BP modelling, propos-
ing a method to verify if, given a BR, a process is consistent with it. To this
end, we introduce the BPAL (Business Process Abstract Language) ontological
framework and we show how the semantics of a BP can be modeled. The mod-
eling primitives of BPAL have been derived from Business Process Modeling
Notation (BPMN). The focus is, then, on the problem of a BR formulation in
the context of a BPAL ontology and how to decide if a given BP is still consis-
tent with the BR content or it should be modified. The proposal is positioned
across the CIM and PIM levels of the MDA. The idea is to enhance intuitive
modelling notations, such as BPMN, by associating to them a BP ontology
system. The latter will provide a formal setting and the related semantic ser-
vices.
Often, BRs are specified in natural language (NL) by business people and the
intended meaning may not be sufficiently precise, therefore it is necessary to
preliminarily understand what the BR content is, i.e., its semantics.
The focus of the first objective of the work is, therefore, on a method aimed at
supporting business experts to disambiguate BRs that may be interpreted in
different ways.
Once a BR has been disambiguated and reformulated to explicitly represent
its intended meaning, we can address the primary objective of the work: BP
consistency. Here, it is necessary to first identify the BPs that violate the

✐

✐

“main” — 2009/2/25 — 2:02 — page 3 — #17
✐

✐

✐

✐

✐

✐

3

BR, and then to propose the updates necessary to make the former consistent
with the latter.
BRs can represent a large variety of enterprise directives and constraints. Here
we focus on a specific case, the procedural aspect of a BP, namely the sequence
of activities, and BRs that indicate the correct order in which activities should
be performed. Such BRs, having the form: A precedes B, have been exten-
sively analysed by Van der Aalst [6]. Here we address the same problem, but
our solution is inherently different since we address the intensional level, i.e.,
BP schemas, while in [?] the focus is on the extensional level, i.e., BP instances.
The literature reports a large number of relevant results in the areas of pro-
cess modeling, rules representation and management and, in particular, results
addressing the analysis of activities sequencing. However, we wish to point
out that we avoided these types of approaches, such as those based on tempo-
ral algebra (see the proposals based on the Allens work [All83]) or temporal
logic [D.M91], and its variations (such as Event Calculus [RM86] and Situa-
tion Calculus [PF99]). Instead, here we approached the analysis of BP and the
sequencing of their activities by using the notion of precedence.
The application of the mentioned methodologies resulted in a tool whose func-
tion is of controlling the coherence between BR and BP.
The rest of the work is organized as follows. The next chapter introduces the
Business Process Modeling concept. Chapter 3 illustrates what are business
rules and how they are used. Chapter 4 introduces BPAL to represent a BP
and its specification. Chapter 5 shows a case study. Chapter 6 elaborates
Business Rules impact onto Business Process Schema. Chapter 7 presents the
developed application to control the coherence between business rule and busi-
ness process. Finally Chapter 8 presents the conclusions and the appendices
contain deepening on BPAL and the application code.

✐

✐

“main” — 2009/2/25 — 2:02 — page 4 — #18
✐

✐

✐

✐

✐

✐

✐

✐

“main” — 2009/2/25 — 2:02 — page 5 — #19
✐

✐

✐

✐

✐

✐

Chapter 2

Business Process Modeling

2.1 What is a Business Process

A model is a set of propositions or statements expressing relationship among
constructs.

A business process, or business method, is a model composed by a collec-
tion of related, structured activities or tasks that produce a specific service or
product (serve a particular goal) for a particular customer or customers.

There are three types of business processes:

1. Management processes, the processes that govern the operation of a sys-
tem. Typical management processes include ”Corporate Governance”
and ”Strategic Management”.

2. Operational processes, processes that constitute the core business and
create the primary value stream. Typical operational processes are Pur-
chasing, Manufacturing, Marketing, and Sales.

3. Supporting processes, which support the core processes. Examples in-
clude Accounting, Recruitment, Technical support.

A business process begins with a customers need and ends with a customers
need fulfillment. Process oriented organizations break down the barriers of
structural departments and try to avoid functional silos.

A business process can be decomposed into several sub-processes, which
have their own attributes, but also contribute to achieving the goal of the super-

5

✐

✐

“main” — 2009/2/25 — 2:02 — page 6 — #20
✐

✐

✐

✐

✐

✐

6 CHAPTER 2. BUSINESS PROCESS MODELING

process. The analysis of business processes typically includes the mapping of
processes and sub-processes down to activity level.

Business Processes are designed to add value for the customer and should
not include unnecessary activities. The outcome of a well designed business
process is increased effectiveness (value for the customer) and increased effi-
ciency (less costs for the company).

Business Processes can be modeled through a large number of methods and
techniques. For instance, the Business Process Modeling Notation is a Business
Process Modeling technique that can be used for drawing business processes in
a workflow.

2.2 Business Process Modeling Languages

Today there is a renewed interest in business processes (BP), especially from
a technological point of view. After a long time since the notion of a business
process or a workflow was introduced [Coab], the recent advent of Service Ori-
ented Architectures [OAS] gave a new momentum to this modelling practice.
However, there is still a great difference between what is seen as BP mod-
elling in the business world and in the IT world. In the former, processes are
described mainly for human-to- human communication, for decision making
in production processes, administrative processes, to understand their impact
on the enterprise organization. In the IT world, processes are seen as a form
of high level programming language (see for instance BPEL [?] [IIIb]), con-
ceived to achieve a better use of web services (and, more generally, e-services),
i.e., they represent an executable form of the application logics, as part of a
complex software artefact. While the IT view of a BP is based on a prescrip-
tive, executable form, aiming at a running software application (based on the
service-oriented paradigm), the business view of a BP remains at an intuitive
level, with models independent from the underlying technology. For its deep
nature, a business model is highly intuitive, easy to be read and understood by
humans, but at the same time exhibits a degree of ambiguity, incompleteness,
bearing often internal contradictions. The dichotomy between business and IT
approaches, that represents a serious problem in enterprise automation, has
been addressed by the Model-Driven Architecture (MDA) approach proposed
by the OMG. The MDA approach is structured in three main levels, with a
progression of modelling activities that go from a business perspective (CIM:
Computational Independent Modeling) to an application design perspective
(PIM: Platform Independent Modeling) and, finally, reaches the implementa-

✐

✐

“main” — 2009/2/25 — 2:02 — page 7 — #21
✐

✐

✐

✐

✐

✐

2.2. BUSINESS PROCESS MODELING LANGUAGES 7

tion perspective (PSM: Platform Specific Modeling.) The MDA appears today
as one of the most relevant proposals aimed at bridging the business world
with the IT world. With its progressive modeling framework, it addresses one
key problem laying in the different nature of business models and IT models.
However, MDA is still in an early stage and currently it mainly represents a
general reference framework with a limited actual impact. In parallel, there
are intense research activities aimed at producing specific methods and tools,
capable of providing a smooth and coherent evolution of models from the busi-
ness perspective to the technical one. To improve the picture, one idea is to
move upstream the moment where formal methods are introduced. However,
it is difficult to impose new, formal languages to business people. Therefore,
the solution is to inject formal semantics in existing business modelling meth-
ods. In this way, business people continue to use their modelling methods,
having in parallel a formal support to such established solutions. Semantic
annotations make use of ontologies (see OPAL [FD07].) However, current se-
mantic technologies [GA04] are particularly suited to model static structures,
e.g., the information part of a business model. The semantic enrichment of the
behavioural part is still an open research issue, despite existing encouraging
results [Coaa], [PR04], [DRF05]. In the literature, several languages for BP
have been proposed. Such languages can be sketchily gathered in three large
groups.

• Descriptive languages. They have been conceived within the busi-
ness culture, but they lack of a systematic formalization necessary to
be processed by an inference engine. In this group we find diagram-
matic languages, such as EPC [?], IDEF [idea] [ideb] UML-Activity Di-
agram [grob], and BPMN [Groa] [JM05]. Also UML-Activity Diagram
can be listed here, even if originally conceived for other purposes. The
BP defined with these languages are mainly conceived for inter-human
communication and are not directly executable by a computer.

• Procedural languages. They are fully executable by a computer but
are not intuitive enough for being used by humans, and lack of a declara-
tive semantics, necessary to be processed by a reasoning engine. Example
of these languages are BPEL [?] and XPDL [JM05] [WFM]. Formal lan-
guages. They are based on rigorous mathematical foundations, but are
difficult to be understood and are generally not accepted by business
people. In this group we find languages such as PSL [Boc05] [SC00],
Pi-Calculus [Mil99], Petri-Nets [Pet77].

✐

✐

“main” — 2009/2/25 — 2:02 — page 8 — #22
✐

✐

✐

✐

✐

✐

8 CHAPTER 2. BUSINESS PROCESS MODELING

• Ontology-based process languages, such as OWL-S [Coaa], WSDL-
S [W3C], WISMO [DRF05], and Meteor-S [PR04]. This group of lan-
guages have a wider scope, aiming at modeling semantically rich pro-
cesses in an ontological context, and have been conceived not directly
connected to the business world. They are hence not considered here.

In this section we analyse the three above categories of languages, with the
intent of proposing a solution that combines the key advantages of the three
above groups: intuititivity and ease of use, rigorous mathematical basis, and
possibility of execution.

Descriptive Methods

As anticipated, this group gathers the BP modelling methods that are mainly
conceived for inter-humans communications. Here, among the most renewed
methods, we have: UML, EPC, IDEF, and BPMN. The Unified Modeling Lan-
guage1 (UML) is an OMG2 standard providing the specification for a graphical,
general purpose, object-oriented modeling language. It defines 13 types of dia-
gram, classified as structural, behavioural, and interaction oriented, according
to what aspects of a system or a scenario they describe. These diagram types
adopt a common meta-model, MOF3, defining their abstract syntax. UML
has just an informal semantics associated and therefore it presents a high risk
of ambiguities and contradictions in its models. Here there is not an explicit
notion of a BP, however, the behavioural diagrams, and in particular the ac-
tivity diagram and the sequence diagram, can be used to model a BP. Another
important method is EPC: Event-driven Process Chains, a modeling technique
for business processes modeling developed in the 1990s. The basic elements
of EPC are: functions, corresponding to activities to be executed; events, de-
scribing the situation before and/or after a function execution; and logical
connectors (and, or, xor) used when events determine the branching of the
control flow. EPC has been proposed to model BP in the context of SAP R/3
application platform, then it has spread and there are popular modelling tools,
such as Visio and ARIS, that support it (the latter is based on an extensions,
eEPC, that integrate also the modelling of the enterprise data and organiza-
tion.) EPC is very limited in term of its modelling scope, but at the same
time it is simple and therefore its learning curve is rather steep. However,
since neither the syntax nor the semantics are well defined, it is not possible to
formally check the model for consistency and completeness. Furthermore the
lack of a formal representation can generate ambiguities, in particular, when

✐

✐

“main” — 2009/2/25 — 2:02 — page 9 — #23
✐

✐

✐

✐

✐

✐

2.2. BUSINESS PROCESS MODELING LANGUAGES 9

models are exchanged between different tools. To solve this problem there are
a number of proposals for a formalization, e.g., by using Petri Nets [?]. The
ICAM Definition method (IDEF) is a set of standardized modeling techniques,
initially proposed by an initiative of the United States Air Force. Among these
techniques we mention IDEF0, the function modeling method, and IDEF3, the
process description capture method. IDEF0 is a method designed to model
the decisions, actions, and activities of an organization or a system. It allows
activities and important relations between them to be represented in a non-
temporal fashion. It does not support the complete specification of a process.
The IDEF3 provides a mechanism for collecting and documenting processes,
by capturing precedence and causality relations between situations and events.
There are two IDEF3 description modes, process flow, capturing knowledge
of ”how things work” in an organization, and object-state transition network,
summarizing allowable transitions an object may undergo throughout a partic-
ular process. Here we have a limited scope (e.g., actors are not modeled) and a
fragmentation due to the need to use more than one diagram for the same BP.
The Business Process Modeling Notation (BPMN) is the most recent standard
notation proposed by OMG to design business processes. The main goal of
this graphical notation is to be readily understandable by all business users,
from the business analysts that create the initial drafts of the processes, to
the technical developers responsible for implementation to the business people
who will manage and monitor those processes. Since it is selected BPMN as
the candidate BP modelling method, it will be specifically elaborated on in the
Section 2.2.

Procedural Methods

This second group gathers the BP models endowed with a precise operational
semantics, having therefore an associated execution engine (i.e., an interpreter.)
The Business Process Execution Language for Web Services (BPEL4WS, or
BPEL for short) is a de-facto standard for implementing processes based on
web services. According to BPEL, processes can be described as executable
processes, modeling the behavior of a participant in a business interaction, or
as abstract processes, specifying the mutually visible message exchange among
the parties involved in the protocol, without revealing their internal behavior.
To obtain an executable BPEL process, modelers need to specify primitive
and structured activities, execution ordering, messages exchanged, and fault
and exception handling. Furthermore, a recent proposal, BPEL4People [IBM],
extends BPEL4WS specification to describe scenarios where users are involved

✐

✐

“main” — 2009/2/25 — 2:02 — page 10 — #24
✐

✐

✐

✐

✐

✐

10 CHAPTER 2. BUSINESS PROCESS MODELING

in business processes. BPEL is a powerful and a widely adopted standard.
Among its major drawbacks there are its inherent complexity, the verbosity of
the XML encoding and the lack of a specific graphical representation. Such
characteristics make it scarcely accepted by business people. The XML Process
Definition Language (XPDL) is a WfMC standard for interchanging process
models among process definition tools and workflow management systems. It
provides the modeling constructs of BPMN and allows a BPMN process to be
specified as an XML document. XPDL process models can be run on compliant
execution engines, even if has been originally conceived as a process design and
interchange format specifically for BPMN. It represents the linear form of the
process definition based on BPMN graphics.

Formal Methods

In this section we present three formal methods conceived to model a business
process in formal terms. Process Specification Language (PSL) is a general pro-
cess ontology developed at the National Institute of Standards and Technology
(NIST) for the description of basic manufacturing, engineering and business
processes. In the manufacturing domain, PSLs objective is to serve as an
interlingua for integrating several process-related applications (including pro-
duction planning, process planning, workflow management and project man-
agement) throughout the manufacturing process life cycle [GM99a]. In view
of our objective of associating a formal semantics to BPMN, PSL is a good
candidate, hence we will present it in more details, after the description of the
Petri Nets and Pi calculus, below. Petri Nets (also known as place/transition
nets) is one of several mathematical representations of discrete distributed sys-
tems [Pet77]. As a modeling language, it graphically depicts the structure of
a distributed system as a directed bipartite graph with annotations. A Petri
net consists of places, transitions, and directed arcs. Arcs run between places
and transitions. Places may contain any number of tokens. Transitions act on
input tokens by a process known as firing. Execution of Petri nets is nonde-
terministic. This means two things: multiple transitions can be enabled at the
same time, any one of which can fire, none are required to fire they fire at
will, between time 0 and infinity, or not at all. Since firing is nondeterministic,
Petri nets are well suited for modeling the concurrent behavior of distributed
systems [Pet81]. In theoretical computer science, the Pi-Calculus (-calculus) is
a process calculus originally developed by Robin Milner, Joachim Parrow and
David Walker as a continuation of the body of work on the process calculus
CCS (Calculus of Communicating Systems). The aim of the -calculus is to

✐

✐

“main” — 2009/2/25 — 2:02 — page 11 — #25
✐

✐

✐

✐

✐

✐

2.2. BUSINESS PROCESS MODELING LANGUAGES 11

be able to describe concurrent computations whose configuration may change
during the computation. The -calculus belongs to the family of process calculi,
mathematical formalisms for describing and analyzing properties of concur-
rent computation [Mil93]. In fact, the Pi- calculus, like the Pi-calculus, is so
minimal that it does not contain primitives such as numbers, booleans, data
structures, variables, functions, or even the usual flow control statements (such
as if... then...else, while...). Central to the Pi- calculus is the notion of name.
The simplicity of the calculus is due to the fact that names play a dual role
as communication channels and variables. The process constructs available
in the calculus are the following: concurrency, representing two processes or
threads executed concurrently; communication, with input/output prefixing
c¡y¿; replication, when a process creates a new copy. Although the minimality
of the -calculus prevents us from writing programs in the normal sense, it is
easy to extend the calculus. In particular, it is easy to define both control
structures such as recursion, loops and sequential composition and datatypes
such as first-order functions, truth values, lists and integers [Pic01]. Formal
methods are not suited to be directly released to the end users. They are mainly
conceived to study formal properties of certain categories of processes. The ob-
jective of our work is to select a formalism suited to be associated to BPMN.
For its characteristics, we identified PSL, as a good candidate, therefore it will
be presented in more detail in the next subsection.

PSL

The primary component of PSL is an ontology designed to represent the prim-
itive concepts that, according to PSL, are adequate for describing basic man-
ufacturing, engineering, and business processes [GM99a]. The challenge is to
make the meaning of the terminology in the ontology explicit. Any intuitions
that are implicit are a possible source of ambiguity and confusion. The PSL on-
tology provides a rigorous mathematical characterization of process information
as well as precise expression of the basic logical properties of that information
in the PSL language [SC00]. In providing the ontology the creators specify
three notions: language, model theory and proof theory.

The Language

A language is a lexicon (a set of symbols) and a grammar (a specification of
how these symbols can be combined to make well-formed formulas). The lex-
icon consists of logical symbols (such as boolean connectives and quantifiers)

✐

✐

“main” — 2009/2/25 — 2:02 — page 12 — #26
✐

✐

✐

✐

✐

✐

12 CHAPTER 2. BUSINESS PROCESS MODELING

and nonlogical symbols. For PSL, the nonlogical part of the lexicon consists
of expressions (constants, function symbols, and predicates) chosen to repre-
sent the basic concepts in the ontology. Notably, these will include the 1-place
predicates activity, activity- occurrence, object, and timepoint for the four pri-
mary kinds of entity in the basic PSL ontology, the function symbols beginof
and endof that return the timepoints at which an activity begins and ends, re-
spectively; there are also the 2-place predicates is-occurring-at, occurrence-of,
exists-at, before, and participates-in, which express important relations be-
tween various elements of the ontology. The underlying grammar used for PSL
is roughly based on the grammar of KIF [MRG92] (Knowledge Interchange
Format). KIF is a formal language based on first-order logic developed for
the exchange of knowledge among different computer programs with disparate
representations. KIF provides the level of rigor necessary to unambiguously
define concepts in the ontology, a necessary characteristic to exchange manu-
facturing process information using the PSL Ontology. Like KIF, PSL provides
a rigorous BNF (Backus-Naur form) specification [GM99b]. The BNF provides
a rigorous and precise recursive definition of the class of grammatically correct
expressions of the PSL language. Furthermore, the rigorous specification eases
the development of translators between PSL and other, similarly well-defined
BP representation languages.

Model Theory

The model theory provides a rigorous, abstract mathematical characterization
of the semantics, or meaning, of the language of PSL. This representation is
typically a set with some additional structure (e.g., a partial ordering, lattice,
or vector space). The model theory then defines meanings for the terminology
and a notion of truth for sentences of the language in terms of this model.
The objective is to identify each concept in the language with an element
of some mathematical structure, such as lattices, linear orderings, and vector
spaces. Given a model theory, the underlying mathematical structures becomes
available as a basis for reasoning about the concepts intended by the terms of
the PSL language and their logical relationships, so that the set of models
constitutes the formal semantics of the ontology.

Proof Theory

The proof theory consists of three components: PSL Core, one or more foun-
dational theories, and PSL extensions. PSL Core. The purpose of PSL-Core

✐

✐

“main” — 2009/2/25 — 2:02 — page 13 — #27
✐

✐

✐

✐

✐

✐

2.2. BUSINESS PROCESS MODELING LANGUAGES 13

is to axiomatize a set of intuitive semantic primitives that is adequate for de-
scribing the fundamental concepts of business processes. Consequently, this
characterization of basic processes makes few assumptions about their nature
beyond what is needed for describing those processes, and the Core is therefore
rather weak in terms of logical expressiveness. In particular, PSL-Core is not
strong enough to provide definitions of the many auxiliary notions that become
necessary to describe all intuitions about business processes. The PSL Core is
a set of axioms written in the basic language of PSL. The PSL Core axioms
provide a syntactic representation of the PSL model theory, in that they are
sound and complete with regard to the model theory. That is to say, every
axiom is true in every model of the language of the theory, and every sentence
of the language of PSL that is true in every model of PSL can be derived from
the axioms. Because of this tight connection between the Core axioms and the
model theory for PSL, the Core itself can be said to provide a semantics for
the terms in the PSL language.

Foundational Theories

The purpose of PSL Core is to axiomatize a set of intuitive semantic primitives
that is adequate for describing basic processes. Consequently, their charac-
terization does not make many assumptions about their nature, beyond their
elementary description. The advantage of this is that the account of processes
given in PSL Core is relatively straightforward and uncontroversial. However,
a corresponding liability is that the Core is rather weak in terms of pure logical
strength. In particular, the theory is not strong enough to provide definitions
of the many auxiliary notions that become needed to describe an increasingly
broader range of processes in increasingly finer detail. For this reason, PSL
includes one or more foundational theories. A foundational theory is a theory
whose expressive power is sufficient for giving precise definitions of, or axioma-
tizations for, the primitive concepts of PSL. Moreover, in a foundational theory,
one can define a substantial number of auxiliary terms, and prove important
metatheoretical properties of the core and its extensions. For PSLs purposes,
a suitable foundation is a modified and extended variation of the situation
calculus. The reason for this is that the situation calculuss own primitives
situation, action, fluent (roughly, proposition) are already highly compatible
with the primitives of PSL. It is very natural to identify PSL primitives with,
or define them in terms of, the primitives of the situation calculus. In addition,
the situation calculus is also strong enough to define a wide variety of auxiliary
notions and, with the addition of some set theory, it can be used as a basis for

✐

✐

“main” — 2009/2/25 — 2:02 — page 14 — #28
✐

✐

✐

✐

✐

✐

14 CHAPTER 2. BUSINESS PROCESS MODELING

proving basic metatheoretic results about the Core, and its extensions as well.

Extensions

The third component of PSL are the extensions. A PSL extension provides
the resources to express information involving concepts that are not part of
PSL Core. Extensions give PSL a clean, modular character. PSL Core is a
relatively simple theory that is adequate for expressing a wide range of ba-
sic processes. However, more complex processes require expressive resources
that exceed those of PSL Core. Rather than clutter PSL Core itself with ev-
ery conceivable concept that might prove useful in describing one process or
another, a variety of separate, modular extensions have been, and continue
to be, developed that can be added to PSL Core as needed. In this way a
user can tailor PSL precisely to suit his or her expressive needs. To define an
extension, new constants and/or predicates are added to the basic PSL lan-
guage, and, for each new linguistic item, one or more axioms are given that
constrain its interpretation. In this way one provides a semantics for the new
linguistic items. When combined with a foundational theory like the situation
calculus, a distinction can be drawn between definitional and nondefinitional
extensions. A definitional extension is an extension whose new linguistic items
can be completely defined in terms of the foundational theory and PSL Core.
Theoretically, then, definitional extensions add no new expressive power to PSL
Core + foundational theory, and hence involve no new theoretical overhead.
However, because definitions of many subtle notions can be quite involved,
definitional extensions can prove extremely useful for describing complex pro-
cesses in succinct manner. Nondefinitional extensions, called also core theories
are extensions that involve at least one notion that cannot be defined in terms
of PSL Core and the chosen foundational theory. All extensions within PSL
must be consistent extensions of PSL-Core, and may be consistent extensions
of other PSL extensions. However, not all extensions within PSL need be mu-
tually consistent [SC00]. As anticipated, seen its rich articulation, PSL has
been the first candidate to associate a formal semantics to BPMN. Next we
illustrate BPMN and then we will return on this issue.

Business Process Modeling Notation

As anticipated, among the methods accepted by business people, we select
BPMN for a number of reasons. Besides being the most recent one, outcome of
several research activities, it allows a BP to be modeled with a single diagram

✐

✐

“main” — 2009/2/25 — 2:02 — page 15 — #29
✐

✐

✐

✐

✐

✐

2.2. BUSINESS PROCESS MODELING LANGUAGES 15

type, avoiding the fragmentation inherent in the UML and IDEF solutions.
With respect to EPC it has a wider scope, being capable to capture a good
number of business notions, from actors to messages.

The main constructs of BPMN

The main goal of BPMN is to standardize a business process modeling nota-
tion in order to provide a simple means of communicating process information
among business users, customers, suppliers, and process implementers. It de-
fines a diagrammatic notation and an intuitive semantics for business process
modeling. In the following, the basic BPMN constructs are presented with the
support of a practical example. We have categorized the BPMN constructs us-
ing four basic conceptual categories as it is shown in figure 2.1: actor, behavior,
object, and co-action.

• Actor. This category refers to the constructs devoted to model any
relevant entity that is able to activate or perform a process. The BPMN
elements of this category are pool, and lane, representing more aggregate
organization units and more specific ones, respectively. They allow for a
partitioning of activities according to the performers.

• Behavior. This category refers to the constructs used to model the
dynamic aspects of a domain. An activity is a generic term for work per-
formed within a company. It can be atomic or non-atomic (compound).
The types of activity are: task, process, and sub- process. A task is an
atomic activity included within a process. Processes are either contained
within a pool or unbounded. Sub-processes are composed activities in-
cluded within a process. There are two types of sub-processes: embedded
and independent. The independent are re-usable in different processes.
A gateway is a modeling element used to represent the interaction of
different sequence flows, as they diverge and converge within a process.
When the sequence flows arrive at a gateway, they can be merged to-
gether on input and/or split apart on output. There are different types
of gateway according to the types of behavior they define in the sequence
flow. Decisions and branching are represented by the following gateways:
OR-Split, exclusive-XOR, inclusive-OR, and complex. Merging is rep-
resented by the OR-Join gateway. Finally, forking is represented by the
AND-Split gateway, and joining by the AND-Join gateway. Another con-
struct referring to this modeling category is event. An event is something

✐

✐

“main” — 2009/2/25 — 2:02 — page 16 — #30
✐

✐

✐

✐

✐

✐

16 CHAPTER 2. BUSINESS PROCESS MODELING

that happens, like a trigger or a result, during the execution of a busi-
ness process affecting the flow of the process. Since an event can start,
suspend, or end the flow, we can distinguish between start events, inter-
mediate events, and end events4. The last basic construct referring to
this category is the sequence flow (modeled with an arrow), used to rep-
resent the ordering of activities within a process. Their source and target
must be events, activities, and gateways. A sequence flow can not cross
the boundaries of a sub-process or a pool (messages are used instead).

• Object. This category refers to the constructs devoted to model passive
entities involved in one or more business processes. The main BPMN
element of this category is data object. A data object is used to represent
how data and documents are used within a process. They can be used
to define input and output of activities. Furthermore, data objects are
used to represent the state of a document (e.g. request document issued
or received) and how this state changes during the process.

• Co-action. The last category refers to the constructs devoted to model
the interaction between different actors. Message events represent start,
intermediate, and end events associated to the sending or receiving of a
message. The message flow is used to show the flow of messages between
two participants of a process. It can be connected to the boundary of a
pool, representing a participant in a process, or to an activity within the
pool.

An example: Existence Verification of a Company

To better illustrate the BP modeling by using BPMN, below we introduce a sim-
ple example (Figure 2.2), drawn from a case study addressed in the LD-CAST
European Project1: the search for a partner in a cross-border off-shoring. In
particular, it is addressed the activities related to the Supply Sub-Contracting,
according to a specific EU directive.

The case study concerns a Polish company that needs to purchase a set of
lift components to be locally assembled. To this end, it publishes in the Official
EU Gazette a call for proposals. The company receives tenders submitted by
a Rumanian company for supplying the cables, by an Italian company for pro-
viding the engine, and by a Bulgarian company for the cabin. Having received

1Local Development Cooperation Actions Enabled By Semantic Technology (LD-CAST)
Project: http://www.ldcastproject.com

✐

✐

“main” — 2009/2/25 — 2:02 — page 17 — #31
✐

✐

✐

✐

✐

✐

2.2. BUSINESS PROCESS MODELING LANGUAGES 17

Figure 2.1: Categorization of BPMN constructs and corresponding graphical
notation

Figure 2.2: An excerpt of the existence verification process

the tenders, the Polish company needs to perform a number of verifications.
In particular, for each proponent company, the following verifications are per-

✐

✐

“main” — 2009/2/25 — 2:02 — page 18 — #32
✐

✐

✐

✐

✐

✐

18 CHAPTER 2. BUSINESS PROCESS MODELING

formed:

1. existence verification;

2. fiscal verification;

3. technical requirements and quality standards verification.

Such verifications are performed through the local Chambers of Commerce.
The Figure 2.2 represents the BPMN process concerning point (i), the request
for verifying the actual existence of the potential partner. According to the
process in the figure, the legal office of a company sends a request message to
the marketing department of the local Chamber of Commerce (CoC) to obtain
an existence verification of that company. The CoC checks if the requested
document should have a legal validity or not. Accordingly, the CoC releases a
certificate or a survey, respectively. Finally, the CoC sends the document, the
company receives it and the process ends. This example will be represented in
formal terms by using BPAL, as reported in the appendix.

✐

✐

“main” — 2009/2/25 — 2:02 — page 19 — #33
✐

✐

✐

✐

✐

✐

Chapter 3

Business Rules

Business rules are used by managers to indicate invariants that impact on the
organization and its way of operating. Rules represent a very powerful mod-
elling paradigm. Here we focus on the impact of rules guiding the design and
the evolution of BPSs. BRs are usually specified in natural language, but it
is well-known that NL is often ambiguous and error-prone. For this reason,
there are interesting proposals of using structured (controlled) natural lan-
guage. Recently, OMG promoted the use of structured English in the business
rules framework SBRV [?]. Another interesting proposal is ACE (Attempto
Controlled English [?]): a rich subset of standard English, designed for speci-
fication and knowledge representation. By using ACE, BRs can be expressed
in rigorous way, having at the same time a simple (almost) natural language
interface that can be easily used by business experts. ACE relies on a platform
capable of translating a sentence expressed in a controlled natural language
into a first order logic (FOL) formula. The latter can be then verified by using
a theorem prover. In this work is showed how the problem of BR formulation
can be effectively solved in the context of a BPAL ontology. It is showed how
is it possible to support a business expert in formulating an example BR of the
kind: A precedes B. The BR will be initially expressed in generic terms, then
incrementally refined, by prompting the business expert with simple, specific
questions, aiming at progressively removing the ambiguities.

19

✐

✐

“main” — 2009/2/25 — 2:02 — page 20 — #34
✐

✐

✐

✐

✐

✐

20 CHAPTER 3. BUSINESS RULES

3.1 On the semantic of a BR

As anticipated, in order to illustrate the BPAL approach to BR formulation,
we use an example BR, informally expressed by the sentence: A precedes B.
Although the intuitive meaning seems to be clear, a more careful analysis
shows different possible interpretations. Here we will consider, as an illustrative
example, a subset of the cases reported in [?]. The semantics of each case will
be represented at an intuitive level.

1. Response: every time activity A executes, activity B has to be executed
after it. B does not have to execute immediately after A, and another A
can be executed between the first A and the subsequent B. Furthermore,
an execution of B does not require to be preceded by A. i.e. in Figure
3.1;

Figure 3.1: Response semantics.

2. Precedence: if activity B is executed, its (possibly multiple) executions
must follow the execution of A. i.e. in Figure 3.2;

Figure 3.2: Precedence semantics.

3. Alternate response: after activity A there must be an activity B, and
before that activity B there can not be another activity A (but a B not
following A is ok). i.e. in Figure 3.3;

✐

✐

“main” — 2009/2/25 — 2:02 — page 21 — #35
✐

✐

✐

✐

✐

✐

3.1. ON THE SEMANTIC OF A BR 21

Figure 3.3: Alternate Response semantics.

4. Alternate precedence: every instance of activity B has to be preceded
by an instance of activity A and the next instance of activity B can not
be executed before the next instance of activity A is executed. i.e. in
Figure 3.4;

Figure 3.4: Alternate Precedence semantics.

5. Chain response: the next activity after each activity A has to be ac-
tivity B, then the execution in Figure 3.5 is a correct one;

Figure 3.5: Chain Response semantics.

6. Chain precedence: requires that the activity A is the first preceding
activity before B (but is not necessary that a B follows an A) and, hence,
the sequence in Figure 3.6 is correct.

✐

✐

“main” — 2009/2/25 — 2:02 — page 22 — #36
✐

✐

✐

✐

✐

✐

22 CHAPTER 3. BUSINESS RULES

Figure 3.6: Chain Precedence semantics.

Clarifying the semantics of a BR

Our goal is to disambiguate the BR A precedes B, with respect to the six
reported cases, by posing few and simple questions to the user. Instead of
using a question for each of the six (fairly complex) cases reported above, we
propose a more intuitive disambiguation method, requiring a lower number of
simple yes/no questions.

1. Can I execute any activities between A and B?

2. Can an activity B be executed before an activity A?

3. Does an activity B has to be executed after an A?

The proposed disambiguation method is based on these three questions
and a Decision Table, as reported below. By answering these simple yes/no
questions the user will be driven to clarify the intended meaning of the BR
prec(A,B), by selecting it among possible alternative meanings. Figure 3.7
represents the mapping from answer combinations to possible meanings.

3.2 Business Rule Approach

The business rules approach has drawn a lot of attention already and a number
of architectures, technologies, frameworks have been proposed and a number of
tools have been developed (both for research and commercial purposes). The
proposed BR-centric approaches are applicable for explicit work with business
rules at various phases of IS development cycle. However, there are just few
results reported on business rules automation. By business rules automation
it can be assumed the automatic generation of executable business rules speci-
fication from the declarative business rules statements or business rules model
in some modelling language or interchange format.

✐

✐

“main” — 2009/2/25 — 2:02 — page 23 — #37
✐

✐

✐

✐

✐

✐

3.2. BUSINESS RULE APPROACH 23

Figure 3.7: Decision Table to disambiguate the BR: A precedes B.

Business Rule Concept

A number of definitions for business rule were developed. Business rules def-
inition may be analysed from two perspectives: business perspective and IS
development perspective [?], [?]. From business perspective (’Zachman [?] row-
2’) business rule is a statement that defines or constrains some aspect of the
business; it is intended to assert business structure, or to control or influence
the behaviour of the business. From IS perspective (’Zachman row-3’) business
rule is a statement which constrains certain business aspect, defines business
structure, and controls business processes that are supported by enterprise
information systems. In IS business rules may be implemented as facts regis-
tration (as data) and constraints applied during registration process. Von Halle
in [?] summarizes the business rule definition problem as follows: depending on
whom you ask, business rules may encompass some or all relationship verbs,
mathematical calculations, inference rules, step-by-step instructions, database
constraints, business goals and policies, and business definitions. In our re-
search we use the definition given above providing the concept in business con-
text business rule defines the way of operating enterprise business (policies,
guidelines, behaviours, etc.). However, we require that enterprise business rules
model comprised only atomic business rules. Atomic business rules are such
that cannot be broken down or decomposed further into more detailed business
rules because, if reduced any further, there would be loss of important infor-
mation about the business. This limitation comes from the IS implementation
perspective and is reasonable because not-implementable business rules model

✐

✐

“main” — 2009/2/25 — 2:02 — page 24 — #38
✐

✐

✐

✐

✐

✐

24 CHAPTER 3. BUSINESS RULES

can guarantee neither consistency, nor unambiguity. The various taxonomies
of business rules discussed in details in [?], [?] show the lack of standards in
business rules community on types, classes and categories of business rules.
However, the surveys show that the taxonomies of business rules presented
by different authors depend on the intended purpose (for example, enterprise
management or implementation of business rules in IS, or implementation of
business rules in rules engines).

BR-Centric Frameworks

According to the survey of BR-centric frameworks, architectures and technolo-
gies given in [?] [?], [?], the proposed ideas are rather diverse depending on
perspective or intended purpose and can be summarised as follows:

• From implementation perspective the proposed business rules approaches
can be classified into three broad types: rules implemented as application
logic components, rules implemented using active databases technologies,
and rules implemented in rules engines (enforcement, inference, etc).

• From architectural focus: different authors stress different IS develop-
ment life cycle phases from elicitation to maintenance; accordingly their
proposed frameworks vary. Some concentrate on business objects defini-
tions and modelling, others go for automatic implementation frameworks
and technologies.

• From modelling perspective: a lot of attention is paid to the modelling is-
sues of business rules. Some proposed modelling techniques, for example,
by Ross [?], are both modelling language and modelling method in one.
Another approaches stem from adapting popular modelling languages,
such as UML and OCL, to business rules modelling activity. However,
none of the proposed languages or methods are accepted as technology
standard yet.

BR-Centric Frameworks

Business Rules Tools Available
There is a number of different business rule management and enforcement
tools available today. The common component of the majority of tools is the
business rules repository which is later used for different tasks. However, as it
was mentioned above, they employ different, sometimes very specific modelling

✐

✐

“main” — 2009/2/25 — 2:02 — page 25 — #39
✐

✐

✐

✐

✐

✐

3.2. BUSINESS RULE APPROACH 25

languages. As for the functionality that the tools offer it is centred on the
following tasks:

• Manage rules components for rules input and modification (rule editors);

• Store rules rules repository;

• Enforce rules rules engines or similar mechanisms.

The rules enforcement components offer the reference (transparent for busi-
ness users) from declarative business rules statements stored in business rules
repository to the actual enforcement mechanism thus achieving the required au-
tomatic dependency of the business rules implementation on declarative busi-
ness rules statements. Blaze Advisor [9] system offers the complete process
for designing, running, and maintaining e-business applications. Blaze Advisor
consists of the following 5 components:

• Builder a rule creating tool targeted for developers;

• Innovator a rule management and maintenance tool targeted for business
users;

• Rule Engine a scalable processing engine that determines and executes
the control flow of rules, works together with the Rule Server;

• Rule Server a dedicated rule server which supports rule execution, session
management, scheduling, and dynamic load balancing.

Blaze Advisor uses its unique Structured Rule Language for input of busi-
ness rules; decision trees and decision tables can be employed as well. Infrex [?]
is another type of tool while Blaze Advisor is a totally stand alone applica-
tion, Infrex can be embedded into applications written in C/C++/Java/C#.
Infrex uses classes and variables of the application with the support for high
level operators for rules specification. Rule Translator component generates
C/C++/Java/C# code which is compiled and linked with the application to
create an executable. The executable has the rules to be called at run-time,
through the engine. Thus the adaptivity feature is achieved by the ability
of the tool automatically create executable code from the rules specification.
However, the language for rules specification is not suitable for business users
because it directly operates with classes and variables which are not exactly the
business terms. QuickRules [?] is a business rules management system which
allows inserting and editing business rules using the specific QuickRules Rules

✐

✐

“main” — 2009/2/25 — 2:02 — page 26 — #40
✐

✐

✐

✐

✐

✐

26 CHAPTER 3. BUSINESS RULES

Mark-up Language. Rules are stored in XML format and may be executed by
Business Rules Engine component. ILOG rules are of ECA (Event, Condition,
Action) type and consist of three parts: header, condition and action specifi-
cations [?]. The rules can be defined using BAL (Business Action Language),
IF-THEN-ELSE rule format and TRL (Technical Rule Language). The above
mentioned tools have their own business rules engines therefore it is obligatory
for enterprises to buy the respective product suit in order to be able to use
their offerings. The opposite solution would be to use a wide spread technol-
ogy (e.g., of active database management systems [?]) for rules repository and
as an enforcement engine. The Dulcian company (an Oracle consulting firm
that specializes in data warehousing, systems development and products that
support the Oracle environment) is working in this direction offering BRIM
Business Rules Information Manager [?] which offers the rules editing, design-
ing and implementation functionality. The rules editing is done over two steps
analysis rules are entered using weakly structured RuleSpeak language (pro-
posed by Business Rules Solutions [[?]) and implementation rules are specified
using UML [?] class and activity diagrams. The mapping between analysis and
implementation rules may be done by business users manually associating rules
with classes, states and diagrams. The automatic code generation component
creates text files that either creates triggers on tables or alters the existing
triggers on tables. The technology is completely Oracle- centred. The survey
of the tools given above is by no means complete but it highlights the trends
within the field of interest. The lack of standards is obvious for business rules
modelling languages, repositories format, architectures. It is not possible to
exchange business rules among different products or present to the business
users more or less standard rules language. However, the promising step in
business rules repository is the usage of XML as the business rules storage
format which would enable the business rules sharing and exchange.

✐

✐

“main” — 2009/2/25 — 2:02 — page 27 — #41
✐

✐

✐

✐

✐

✐

Chapter 4

An Ontological Framework:

BPAL

4.1 Business Process Abstract Language

Below, we illustrate a first version of a proposal aimed at defining the key
modelling notions of a Process Ontology, referred to as BPAL: Business Process
Abstract Language. It has been conceived to support the formal definition
of a BP, having in mind the modelling notation proposed by OMG, mainly
directed to business people: Business Process Modeling Notation (BPMN.)
Furthermore, in the proposed representation method we include, inherently,
modelling facilities to support a stepwise development of a BP. Summarising,
we propose BPAL, as a Core BP ontology to support the use of BPMN (but
it is general enough to be used in conjunction with any other BP modelling
method), characterised by the following properties:

• key constructs corresponding to concepts and modelling notions drawn
from the business community;

• formal grounding, with the possibility of translating it to a formal lan-
guage such as KIF [MRG92];

• axiomatization to allow inference mechanisms to be applied;

• possibility of execution, by mapping BPAL to the popular BPEL.

The set of symbols denoting such modeling notions is the lexicon of the
BPAL. The corresponding concepts, in the form of atomic formulae (atoms),

27

✐

✐

“main” — 2009/2/25 — 2:02 — page 28 — #42
✐

✐

✐

✐

✐

✐

28 CHAPTER 4. AN ONTOLOGICAL FRAMEWORK: BPAL

represent the core BP ontology. BPAL atoms are used to build abstract dia-
grams that, once validated with respect to the BPAL Axioms, yield to abstract
processes. An abstract process is isomorphic to a BPMN7 process and provides
its formal semantics.

• BPAL Atoms: represented in the form of predicates. They are the core
of the BPAL ontological approach and a specific BP ontology is modeled
by instantiating8 one or more Process Atoms. Atoms represent unary and
n-ary business concepts. Furthermore, there are special atoms aimed at
supporting the modeling process (see below.)

• BPAL Axioms: represent the rules and constraints that a BPAL Dia-
gram must respect to be a BPAL Process.

• BPAL Diagram: a set of BPAL Atoms represents an abstract diagram.
In general, a diagram is an intermediate form assumed by a modeling
artifact during the design process. It is not required to satisfy all the
axioms.

• BPAL Process: this is a BPAL Diagram that has been validated with
respect to the BPAL Axioms. In the paper, we will refer to it as an
abstract process.

• BPAL Application Ontology: a collection of BPAL Processes coop-
erating in a given application. Below we report a list of the BPAL Atoms
and then we give a few examples of their use for building abstract di-
agrams and BPs. Please remember that BPAL is not a diagrammatic
notation, for this reason we refer to a BPAL artefact as an abstract di-
agram. Seen it originates from BPMN, the latter is used whenever we
need a concrete (displayed) diagram.

BPAL Atoms

The BPAL atoms are predicates where functors represent ontological categories,
while arguments are typed variables representing concepts in the Core Business
Ontology (CBO). For instance, an activity variable can be instantiated with a
process name in the CBO. Variables are characterized by a prefixed underscore
and, in building a BP ontology, will be instantiated with concept names of the
category indicated by the functor. A process ontology is built by instantiat-
ing the following unbound predicates with the constants (i.e., concept names)
declared in the CBO.

✐

✐

“main” — 2009/2/25 — 2:02 — page 29 — #43
✐

✐

✐

✐

✐

✐

4.1. BUSINESS PROCESS ABSTRACT LANGUAGE 29

Unary predicates (upre)

• act(a): a business activity, element of an abstract diagram.

• role(x): a business actor, involved with a given role in one or more
activities.

• dec(bexp): a generic decision point. Its argument is a Boolean expression
evaluated to true, false. It is used in the preliminary design phases when
developing a BP with a stepwise refinement approach. In later phases,
it will be substituted with one of the specific decision predicates (see
below).

• adec(bexp), odec(bexp): decision points representing a branching in the
sequence flow, where the following paths will be executed in parallel, or
in alternative respectively.

• cont(obj): an information structure. For instance a business document
(e.g., purchaseOrder).

• cxt(obj): a context, represented by a collection of information structures.

Relational predicates

• prec(act— dec, act— dec): a precedence relation between activities, de-
cisions, or an activity and a decision.

• xdec(bexp, trueAct): this is a decision where only one successor will
receive the control, depending on the value of bexp.

• iter(startAct, endAct, bexp): a subdiagram, having startAct and en-
dAct as source and sink, respectively. It is repeated until the boolean
expression bexp evaluates to true.

• perf(role, act): a relation that indicates which role(s) is dedicated to
which activities.

• msg(obj, sourceNode, destNode): a message, characterized, for instance,
by a content (obj), a sending activity (sourceNode), and a receiving
activity (destNode).

Development predicates The following predicates are used during the
BP development process. They are part of the BPAL core ontology, but are
not used to categorise business concepts (therefore will not contribute to the
generation of the executable image.)

✐

✐

“main” — 2009/2/25 — 2:02 — page 30 — #44
✐

✐

✐

✐

✐

✐

30 CHAPTER 4. AN ONTOLOGICAL FRAMEWORK: BPAL

• pof(upre, upre): Part of relation that applies to any unary predicate. It
allows for a top-down decomposition of concepts.

• isa(upre, upre): Specialization relation that applies to any unary predi-
cate. It allows to build a hierarchy of BP concepts, supporting a top-down
refinement.

Finally, we have two operations acting on a BP abstract diagram:

• Assert (BP Atom). It allows a new atom to be included in the ontology;

• Retract (BP Atom). It allows an existing atom to be removed from the
ontology.

To improve readability, multiple operations of the same sort can be com-
pacted in a single operation on multiple arguments (see the example below.)

BPAL diagrams and processes

By using BPAL atoms it is possible to compose an abstract diagram first and,
after its validation, a BPAL process. An abstract diagram is a set of BPAL
atoms respecting the (very simple) formation rules. In Figure 4.1 we illustrate
an abstract diagram; the presentation is supported by a concrete diagram,
drawn with a BPMN style. The node labels are concepts in the CBO.

Figure 4.1: A simple BPMN Diagram.

Here, in Figure 4.2 we have the corresponding BPAL abstract diagram.

✐

✐

“main” — 2009/2/25 — 2:02 — page 31 — #45
✐

✐

✐

✐

✐

✐

4.1. BUSINESS PROCESS ABSTRACT LANGUAGE 31

Figure 4.2: A BPAL Abstract Diagram.

Please note that in a BPAL diagram the order of the atoms is ininfluent
and, in the punctuation, comma and colon are equivalent, while the full stop
ends the abstract diagram.

BPAL Axioms

The BPAL framework is characterised by a number of axioms that must be
satisfied by a BPAL Process. They are conceived starting from the guidelines
for building a correct BPMN process. As anticipated, there is neither a formal
specification nor a widely accepted view of the formation rules for a BPMN
process, therefore we provide a reasonable solution, derived from the analysis of
a number of publications and practical experiences. In any case, we are ready to
update the proposed axiomatization as soon as an official specification will be
available. Here we do not intend to present a complete treatement of the BPAL
axiomatic theory, we rather wish to achieve a clear description of our proposal,
trading completeness with conciseness. BPAL axioms address different features
of a BPMN process formalization. Here we will formalize just one axiom, to
provide a first insight in the BPAL methodology.

Branching Each time a node is followed by more than one immediate
successor activities, such a node must be a decision.

∀x, y ∈ CBO : act(y) ∧ S(x) = {y : prec(x, y)}∧ | S(x) |> 1 → dec(x) (4.1)

According to Axiom1, the diagram of Figure 1 is invalid and needs to be
transformed in the diagram of Figure 4.3.

This transformation is obtained by a number of updates on the original
BPAL abstract diagram, sketchily summarised as follows:

assert : dec(k), prec(k, b), prec(k, c), prec(a, k)
retract : prec(a, b), prec(a, c)

Accordingly, the BPAL abstract diagram in Figure 2 is transformed into:

✐

✐

“main” — 2009/2/25 — 2:02 — page 32 — #46
✐

✐

✐

✐

✐

✐

32 CHAPTER 4. AN ONTOLOGICAL FRAMEWORK: BPAL

Figure 4.3: A Generic BPAL Process.

act(a), act(b), act(c), act(d), act(e), dec(k);
prec(a, k), prec(k, b), prec(k, c), prec(c, d), prec(b, d), prec(d, e).

Abstract BPAL generic process
Please note that we have now a Generic BPAL abstract process. It is

a process since the Axiom1 is no more violated and therefore the Diagram
4.3 is validated. However, it is Generic, since there is a generic atom dec(k)
that need to be substitute with a specific atom (one of: adec, odec, xdec.)
Such a substitution, assuming that in the following steps of the BP design
we discover that we need an and branching, will be achieved by the following
design operations:

assert : adec(k)
retract : dec(k)

Further steps of design refinement will involve other BPAL atoms, to specify
roles, messages, etc.

Transforming BPAL abstract process in an executable form

The BPMN tool that we considered as a reference point allows a BPEL exe-
cutable process to be generated starting from the built diagram. Since there is
a tight correspondence between the BPMN and the BPAL constructs, it is easy
to adopt an equivalent correspondence between BPAL and BPEL constructs,
and then provide the generation of an executable BPEL file starting from a
complete BPAL process.

✐

✐

“main” — 2009/2/25 — 2:02 — page 33 — #47
✐

✐

✐

✐

✐

✐

4.2. THE SEMANTIC ENRICHMENT OF BPMN: A MAPPING TO PSL

AND BPAL 33

4.2 The semantic enrichment of BPMN: a mapping to

PSL and BPAL

One of the initial objective of this work was to provide a formal account of
a BPMN diagram. This can be achieved by building a mapping between the
constructs of the latter and a formal language for BP modeling. To this end we
considered as a candidate PSL, presented in Chapter . However, we realized
that BPMN-PSL mapping is not straight, being PSL a sound and rich BP mod-
eling framework, not primarily conceived having the business modeling needs
in mind. Therefore we decided to propose BPAL. In the Figure 4.4, we report
a sketchy representation of a comparison between the two mappings: BPMN
with PSL and BPAL, for an easy checking the better mapping yield by the
latter. A first consideration concerns the fact that PSL Core is far to succinct
and it must be considered with some extensions in any concrete case. For a
fair comparison we considered the following PSL extensions (the semantics of
the constructs is intuitive):

• PSL-Core:

– Activity

– Before

– Object

• Outer Core:

– SubActivity

• Activity Extension:

– Branch

• Actor and Agent theories

– Activity performance

• Duration and Ordering Activity

– Iterated Activity

✐

✐

“main” — 2009/2/25 — 2:02 — page 34 — #48
✐

✐

✐

✐

✐

✐

34 CHAPTER 4. AN ONTOLOGICAL FRAMEWORK: BPAL

Figure 4.4: Comparison between the BPMN, PSL, and BPAL.

From the Figure 4.4 it emerges that, with respect to the BPMN modeling
paradigm, BPAL shows a better coverage than PSL. Furthermore, BPAL is
compact, while PSL is fragmented in different extensions. These considerations
justify our work on BPAL. The different mappings should not be confused
with the respective expressive power (with its various extensions, PSL is more
expressive than BPAL.) Here we prefer to talk about adequacy, i.e., the affinity
between the two modeling methods.

4.3 Business Process schema and instances in BPAL

BPAL [11] is an ontology modelling framework that allows a predicative spec-
ification of a BP Schema to be formulated. The simplified version of BPAL
adopted in the rest of the work uses symbols for constants (a, b, c,), variables
(?a, ?b, ?c,), and conditionals (?h, ?k,), as well as the following atoms to
represent:
- Activities: act(?a)
- Precedence relations: prec(?a,?b)
- Decisions: dec(?k,?a)

✐

✐

“main” — 2009/2/25 — 2:02 — page 35 — #49
✐

✐

✐

✐

✐

✐

4.3. BUSINESS PROCESS SCHEMA AND INSTANCES IN BPAL 35

Note that decision atoms can be specialized to AND, OR or XOR type, e.g.
a XOR decision will be represented by xdec(?k, ?a). Where ?a represents the
then-activity in a typical IF-THEN-ELSE decision. When more than two mu-
tually exclusive branches are available, it is necessary to use a sequence of xdec.
Conversely, the AND, OR decisions essentially act as a semaphore go/no-go and
therefore they only require a conditional. We distinguish a BP Schema (BPS),
which is a set of predicative atoms, from a BP Instance (BPI) represented by
a chain of ground terms. A BPI originates from the actual execution of a BP
Schema and each element of the chain (activity instance) corresponds to an
execution of an activity (variable) in BPS. Activity variables are assumed to
be typed, according to a set of activity kinds, denoted by capital letters (A, B,
C). To keep the notation lightweight, in this paper we avoid the explicit typing
of activities, and the implicit typing is achieved by matching the first letter of
the term. For example, type(?a, A) is always true. A similar method is applied
to instantiation and activity instances are denoted by letters that correspond
to the activity kinds. A relation inst(?a,a) says that a is an instance activity
of ?a. We will also refer to a BPI as a BP Log. Activity kinds are essential
to express rules and constraints, since they are general and do not apply to a
single BPS or BPI, but to all of them (unless otherwise specified.) Therefore
a rule of the form: prec(A,B) imposes a control flow constraint on all activ-
ities act(?a) and act(?b) of type A and B, respectively. Then, prec(?a,?b) is
consistent with a BR stating prec(A,B) and consequently all its executions will
produce valid ground terms of the form: prec(a,b). In the following we show
a simple example of a BPS modelled as a set of atoms, and its BPIs, modelled
as chains of ground terms. In Figure 4.5, the following BPS is displayed:

bps1 = act(?a), act(?b), act(?c), act(?d), act(?e), prec(?a,?b), prec(?b,?d),
prec(?d,?e), prec(?a,?c), prec(?c,?e)

The execution of the BPS in Figure 4.5 will produce one of the following
instances, depending on the kind of branching:
1) In case of an AND branching: bpiAND = { < a, b, c, d, e >, < a, c, b, d, e >

, < a, b, d, c, e > }.
2) In case of an OR branching: bpiOR = {< a, b, c, d, e >, < a, c, b, d, e >, <

a, b, d, c, e >, < a, b, d, e >, < a, c, e >}.
3) In case of a XOR branching: bpiXOR = {< a, b, d, e >, < a, c, e >}.

Please note that an activity instance is registered in the log at the moment
of its completion. Therefore prec(b,c) may hold, even if the activity instance c

✐

✐

“main” — 2009/2/25 — 2:02 — page 36 — #50
✐

✐

✐

✐

✐

✐

36 CHAPTER 4. AN ONTOLOGICAL FRAMEWORK: BPAL

Figure 4.5: A simple BPS diagram.

has started before b, because c execution may take longer, causing c completion
to follow that of b.

4.4 Knowledge Representation Framework

Knowledge representation is an area in artificial intelligence that is concerned
with how to formally ”think”, that is, how to use a symbol system to rep-
resent ”a domain of discourse” - that which can be talked about, along with
functions that may or may not be within the domain of discourse that allow
inference (formalized reasoning) about the objects within the domain of dis-
course to occur. Generally speaking, some kind of logic is used both to supply
a formal semantics of how reasoning functions apply to symbols in the do-
main of discourse, as well as to supply (depending on the particulars of the
logic), operators such as quantifiers, modal operators, etc. that along with an
interpretation theory, give meaning to the sentences in the logic.

When we design a knowledge representation (and a knowledge representa-
tion system to interpret sentences in the logic in order to derive inferences from
them) we have to make trades across a number of design spaces. The single
most important decision to be made, however is the expressivity of the KR.
The more expressive, the easier (and more compact) it is to ”say something”.
However, more expressive languages are harder to automatically derive infer-
ences from. An example of a less expressive KR would be propositional logic.
An example of a more expressive KR would be autoepistemic temporal modal
logic. Less expressive KRs may be both complete and consistent (formally less

✐

✐

“main” — 2009/2/25 — 2:02 — page 37 — #51
✐

✐

✐

✐

✐

✐

4.4. KNOWLEDGE REPRESENTATION FRAMEWORK 37

expressive than set theory). More expressive KRs may be neither complete nor
consistent.

In Figure 4.6 is presented the Knowledge Representation Framework used
in this work. L2 shows the high level concepts and the relations between them.
In it we have unambiguous concept definition. L1 comprehends the abstract
language that allows a predicative specification of a Business Process to be
formulated. In it we have the n times uses of that concept in the process
schema. L0 shows execution level with all the execution traces of the BPAL
schema.

Figure 4.6: Knowledge Representation Framework used.

✐

✐

“main” — 2009/2/25 — 2:02 — page 38 — #52
✐

✐

✐

✐

✐

✐

✐

✐

“main” — 2009/2/25 — 2:02 — page 39 — #53
✐

✐

✐

✐

✐

✐

Chapter 5

Pilot Case

In this chapter will be presented a pilot case which will let a better understand-
ing of the study faced.
The case showed is an e-procurement process that involve communication be-
tween a seller and a buyer. Several actions have to be performed by the two
actors to let the process come to a successful end.

5.1 The E-procurement Community

The concept of a Community is used in the Organisational Perspective to dis-
cuss the collection of entities (e.g. individuals, organisations, information sys-
tems, resources, or various combination of these), established to meet some
objective. A Community is specified in terms of community roles and a com-
munity contract. In the case of e-procurement, the objective to be achieved
is the exchange of documents in order to affect the purchase of goods or ser-
vices. The community consists of several community roles. In this case the
most important of these are a buyer and a seller, and other roles can include
e- procurement hubs, banks, shippings agents and others. The way in which
these roles relate to one another is known as a community contract, and it is
well understood by all parties involved in e-procurement.

5.2 Buyer and Seller

eProcurement is an inter-enterprise process that is conducted with two main
roles: a buyer and a seller with the purpose of the buyer purchasing goods

39

✐

✐

“main” — 2009/2/25 — 2:02 — page 40 — #54
✐

✐

✐

✐

✐

✐

40 CHAPTER 5. PILOT CASE

Figure 5.1: Informal representation of an E-procurement process.

(including services) from the seller. This is done by the exchange of various
documents, followed by the exchange of goods and money. The scope of this
presentation is limited to the exchange of a small number of documents. The
logistics of goods delivery and receipt, and financial transactions are explicitly
out of scope.
The eProcurement processes have been narrowed down to a core set of inter-
actions involving documents starting with Purchase Order and ending with
Invoice. All catalogue, order fulfilment logistics and payment related parts
of these processes have been deemed out of scope for the first version of the
e-procurement model. It is important when exchanging actual e-procurement
documents that the process context of the documents is understood, so that
correct error handling can be in place when expected interactions do not occur.

✐

✐

“main” — 2009/2/25 — 2:02 — page 41 — #55
✐

✐

✐

✐

✐

✐

5.3. E-PROCUREMENT PROCESS 41

5.3 E-procurement Process

The online buying process starts with a Buyer who performs a research on
Internet or on a magazine to find what he needs. If he finds what he’s looking
for on Internet he will compile a web form and will send the data to the seller
otherwise he will use the traditional post methods. At this point the purchase
order is sent to the Seller who will process it and will start two simultaneous
set of actions.
The first set is about the payment while the second is relative to the client
care.

Figure 5.2: BPMN formalization of the E-procurement process.

In the first set the Seller sends the invoice to the Buyer who will receive
it and will decide the payment method. When the Buyer ends his payment
action will send the receipt to the Seller.
While these actions are carrying out, the other action set is performing. The

✐

✐

“main” — 2009/2/25 — 2:02 — page 42 — #56
✐

✐

✐

✐

✐

✐

42 CHAPTER 5. PILOT CASE

Seller will control if the client is a gold client or a normal one and in relation
of the typology he will send a gift or a questionnaire. Only when both sets of
actions are performed the process can go on and the Seller sends the requested
object to the shipping company. In the Figure 5.1 there’s an informal repre-
sentation of the process. The same process can be presented in a formal and
shared notation such as BPMN in fact in the Figure 5.2; presents the BPMN
form of the E-procurement process.

✐

✐

“main” — 2009/2/25 — 2:02 — page 43 — #57
✐

✐

✐

✐

✐

✐

Chapter 6

Impact of Business Rule onto

Business Process Schema

The goal of this work is twofold: to support the business expert in clarifying
the intended meaning of a rule (when its interpretation is ambiguous) and
verifying which BPs in a repository are not consistent with the rule. In the
previous chapter we addressed the first objective, here we address the latter.
To this end, we consider an example of a BPS fragment and analyse the impact
that the constraint prec(A,B) has on it. Note that our approach is inherently
different from BP instance based approaches (e.g. that in [?]), since we only
address the intensional level, i.e., BP schemas. Note also that our approach
can be applied even if some decision nodes are not fully specified (i.e., as AND,
OR, XOR), although more detailed and precise information about BR violation
can be inferred when decision nodes are specified.

6.1 Testing BP consistency to BRs

Table 2 shows the validity of a process schema for each of the six different
semantics of the constraint A precedes B considered above. We assume that
in order to be valid a BP must satisfy the rule for all its possible execution
(instances). In the first column an example of business process schema is shown
with two (generic) decision nodes. The possible specification combinations for
the decision nodes are listed in the second column, in particular:

• AND: The presence of an AND operator creates a non determinism in

43

✐

✐

“main” — 2009/2/25 — 2:02 — page 44 — #58
✐

✐

✐

✐

✐

✐

44
CHAPTER 6. IMPACT OF BUSINESS RULE ONTO BUSINESS

PROCESS SCHEMA

the process execution. In fact, it is not possible to determine a-priori the
execution order of two activities located on two parallel paths.

• XOR: In this case the two branches are mutually exclusive and the re-
sulting logs will be constituted by the activity sequences of either one or
the other branch.

• OR: The semantics of the OR decision node is the most articulated since
the resulting logs is the union of the two previous cases.

The third column is organised in six sub-columns: one for each meaning
that the natural language sentence A precedes B can assume, more precisely:

1. Response

2. Precedence

3. Alternate Response

4. Alternate Precedence

5. Chain Response

6. Chain Precedence

The row-column intersections show the validation results corresponding
to the combinations of decision node specifications and sentence meanings,
namely:

• V: Every instance of the schema validates the constraint.

• N: No instance of the schema validates the constraint.

• S: Some instances of the schema doesnt validate the constraint.

The values obtained (V, N, S) can be effectively used to support the BP
designer in updating and refining the BP schema, by highlighting the incon-
sistencies and providing warnings for potentially inconsistent situations. Note
that in 5 out of the 6 possible BR interpretations an inconsistency can be
detected, even if both decision nodes remain unspecified. Conversely, when
considering the first interpretation, the consistency can be verified in some
cases, even if only one of the two decision nodes is specified.

✐

✐

“main” — 2009/2/25 — 2:02 — page 45 — #59
✐

✐

✐

✐

✐

✐

6.2. A PRACTICAL EXAMPLE 45

6.2 A practical example

In Figure 2, we present an example of a BPMN process (realised by using the
Intalio Editor Tool [?]). This process deals with a procurement scenario; the
two pools are two different organizations performing the roles of Buyer and
Supplier. The Buyer sends the Request for Quotation (RFQ) to the Supplier
which replies sending back a Quotation. Afterwards, the Buyer analyzes the
Quotation and, if satisfied, sends the Purchase Order (PO) to the Supplier,
otherwise, the Quotation is rejected. Invoicing from the Supplier and Payment
from the Buyer concludes the process.

The illustrated BPMN process can be represented in BPAL as follows:
act(sendingRFQ),
act(processingRFQ),
act(sendingQuotation),
act(receivingQuotation),
act(issuingPo),
act(processingPo),
act(invoicing),
act(payingInvoicing),
act(rejectingQuotation),
prec(sendingRFQ, processingRFQ),
prec(processingRFQ,
sendingQuotation),
prec(sendingQuotation,
receivingQuotation),
prec(recivingQuotation,
quotationAccepted),
prec(xdec, rejectingQuotation),
prec(xdec, issuingPO)
xdec(quotationAccepted, issuingPO),
prec(issuingPO, processingPO),
prec(processingPO, invoicing),
prec(invoicing, payingInvoice).

An example of BR to be tested on this BPS is the following: the activity of
receiving a quotation must precede that of issuing a Purchase Order. In order
to disambiguate the BR we apply the decision table method presented above
and we assume, for example, that the three yes/no answers of the table identify
the Alternate Precedence (4) as the intended BR meaning. By analysing the

✐

✐

“main” — 2009/2/25 — 2:02 — page 46 — #60
✐

✐

✐

✐

✐

✐

46
CHAPTER 6. IMPACT OF BUSINESS RULE ONTO BUSINESS

PROCESS SCHEMA

consistency table for this BPS, we can infer that a path is inconsistent and some
BP instances may be invalid. In particular the BPI can violate the specified BR
if the quotation is not accepted. In general the management should therefore
be promptly alerted that some modifications to the BPS, to make it consistent
with the BR are required, sometimes could also happen that the management
comprehend that the BR describes no more the reality of the company and it
should be updated. In Figure (n) the branch arising the problem is highlighted.

✐

✐

“main” — 2009/2/25 — 2:02 — page 47 — #61
✐

✐

✐

✐

✐

✐

Chapter 7

Control Coherence Method

This chapter will present the method created to solve the problem of identifying
inconsistencies between business rules and business process. The adopted solu-
tion is set inside an architecture, showed in Figure 7.1, that will be presented
in the next section.

7.1 Architecture

As shownin Figure 7.1, the inputs are Business processes and Business Rules.
The choice made in this work is oriented towards the most common of config-
uration. Business Process designed in BPMN and Business Rules expressed in
natural language. On the left side of the architecture can be seen a transforma-
tion, under development, that take as input the BPMN Business process and
produces as output a BPAL Business Processes. On the other side of the ar-
chitecture there are the Business Rules initially expressed in natural language
then, through a transformation using Attempto Controlled English (ACE), pre-
sented in the subsection 7.1. ACE is a method, comprehensive of several tools,
to transform natural language sentences in a first order formal language: After
using ACE the rules can be transformed in BPAL rules.
At this point, with both Business Process and Business Rules in BPAL format,
the Control Coherence Algorithm is activated and in output there will be the
information about the inconsistent process pieces with the rules.

47

✐

✐

“main” — 2009/2/25 — 2:02 — page 48 — #62
✐

✐

✐

✐

✐

✐

48 CHAPTER 7. CONTROL COHERENCE METHOD

Figure 7.1: Solution Architecture.

Attempto Controlled English

Attempto Controlled English is a controlled natural language, i.e. a subset of
standard English with a restricted syntax and a restricted semantics described
by a small set of construction and interpretation rules.
ACE can serve as knowledge representation, specification, and query language,
and is intended for professionals who want to use formal notations and formal
methods, but may not be familiar with them. Though ACE appears perfectly
natural it can be read and understood by anybody it is in fact a formal lan-
guage.
ACE and its related tools have been used in the fields of software specifica-
tions, theorem proving, text summaries, ontologies, rules, querying, medical
documentation and planning. In 2004, ACE was adopted as the controlled
natural language of the EU Network of Excellence REWERSE (Reasoning on
the Web with Rules and Semantics)

✐

✐

“main” — 2009/2/25 — 2:02 — page 49 — #63
✐

✐

✐

✐

✐

✐

7.2. COHERENCE METHOD 49

7.2 Coherence method

Before analyzing the Coherence Method some definitions are necessary:

Different Path types

Topological paths are those paths that include all node in a determined path
passing through a block and selecting only an alternative path whatever branch
type encounter. In Figure 7.2 is presented a graph with its topological paths
associated.

Figure 7.2: Topological Paths.

Semantic paths, instead, are those paths that include all node in a de-
termined path passing through a block and selecting all the nodes that are
semantically valid in relation to the branch type encountered. In Figure 7.3 is
presented the same graph with its semantic paths associated. The branch is
an AND type.

Different Branch types

There are three different types of branch studied:

• AND: every node between an AND branch and his merge point has to
be visited to pass after the Merge Point.

✐

✐

“main” — 2009/2/25 — 2:02 — page 50 — #64
✐

✐

✐

✐

✐

✐

50 CHAPTER 7. CONTROL COHERENCE METHOD

Figure 7.3: Semantic Paths.

• OR: every branch can be visited, but the first one that is completed stops
the other and the control goes behind the Merge point.

• XOR: its a semaphore only the nodes of one branch are visited

Algorithm Operation

The algorithm used to control the coherence is composed by four steps

1. Find all the Topological Paths;

2. Find the blocks composed by same branch-merge point;

3. Compose the node to solve the block in partial Semantical Paths, apply-
ing the Rules during the composition;

4. Create the complete list of inconsistent Semantical Paths;

✐

✐

“main” — 2009/2/25 — 2:02 — page 51 — #65
✐

✐

✐

✐

✐

✐

7.2. COHERENCE METHOD 51

Algorithm Data

• Graph

• From Adjacency Matrix:

– Vector: a[i] : edge number out from node i

– Matrix: S[i,j] : j-esimo adjacent node to i

The graph used to show how the algorithm works is a semplification of
the example in the chapter 5.3. The simplified process is presented in Figure
7.4, where is missing two branch, the initial one when the user decides what
type of tool will use to select his object and the payment type branch. This
semplification permits to better understand the algorithm created.

Figure 7.4: E-Procurement Process simplified Example.

✐

✐

“main” — 2009/2/25 — 2:02 — page 52 — #66
✐

✐

✐

✐

✐

✐

52 CHAPTER 7. CONTROL COHERENCE METHOD

From the Adjacency Matrix are derived two objects a Vector a[i], that
represents the edges going out from each node and the Matrix S[i, j], that
informs on the j − esimo node adjacent to node i

Block Elaboration

Once, with a search in depth method, every topological path is found the next
step is made of the search of the set of nodes having the same branch node and
merge node. These sets are called blocks and they can be simple or composed.
The simple blocks are the ones without other branch and merge nodes in their
inside, while the composed are the blocks containing other blocks inside. This
category can be of various complexity degree gaining a complexity level each
time a block is nested inside another block. A block example is presented in
Figure 7.5.

Figure 7.5: And Block.

The blocks are characterized not only from their complexity level but also
from their typology, they can be of three types. They are presented in compu-
tational simplicity order:

✐

✐

“main” — 2009/2/25 — 2:02 — page 53 — #67
✐

✐

✐

✐

✐

✐

7.2. COHERENCE METHOD 53

• Xor

• And

• Or

Each type of block is elaborated in a different way. Once individuated every
block type and their complexity level the algorithm starts solving the block with
minimum complexity in simplicity order, first XOR type, then AND type and
last OR type. In Figure 7.6 is presented the plain elaboration of the AND
block of Figure 7.5.

Figure 7.6: Block Elaboration.

The block elaboration is calculated dividing the block in different lines and
starting creating a nodes tree with a root taken from the first node of each line
strictly following the precedence order in the line. In this way it’s, by default,
calculated the precedence relation between the different nodes and is gained a
computational advantage for not calculating every possible nodes combination.

Computational gain

In relation of what kind of block is considered there can be different computa-
tional gain. For the AND block of Figure 7.5 the possible combination number

✐

✐

“main” — 2009/2/25 — 2:02 — page 54 — #68
✐

✐

✐

✐

✐

✐

54 CHAPTER 7. CONTROL COHERENCE METHOD

of 5 elements is given from factorial combination of the elements. The result is
120 possible nodes sequences. With the block elaboration presented the possi-
ble combination is reduced to 30 different possibilities. 12 for the tree with t1
as root, 6 for the tree with t3 as root and 12 for the tree with t4 as root.

If the same nodes were part of a OR block the elaboration would be different,
in fact the possible combination of 5 elements, following the OR semantics is
given from the sum of the disposition of elements taken in group of 1, 2, 3, 4
and 5 elements. The result would be 325 possible nodes sequences. In Figure
7.7 is presented the computational gain for the same nodes set but inserted in
an OR block.

Figure 7.7: Computational Gain for an ’OR Branch’.

The simplest elaboration is relative of a XOR block. Given the XOR
semaphoric semantics, the possible semantic paths created are only the sin-
gle block lines.

After the recursive elaboration of every block presented in the graph they
are reinserted in their place with a procedure that creates the semantic paths.
If no violation is found the output is a no coherence problem business process
and business rules applied.
The Business Rules are inserted in various moment of the elaboration. In the

✐

✐

“main” — 2009/2/25 — 2:02 — page 55 — #69
✐

✐

✐

✐

✐

✐

7.2. COHERENCE METHOD 55

next subsection are presented the way they are used.

Business Rules introduction and optimization

There are two moments where the Business Rule are controlled for their validity
respect the elaborating Business Process. The first is during the elaboration of
the single blocks in every recursive step. If theres a violation during the solving
step of the block a branch of the making root is pruned out and there will be
an output with the path reporting the semantic path with the problem and the
violated rule. The second is during insertion of elaborated blocks inside the
BP graph. Possible rules violations in semantic paths generation are reported
as in the precedent case.

A series of optimization have been introduced to have better performance:

• Look for the presence of constrained task inside BP, if there are large
part of BP without that task eliminate it from the input of algorithm.

• Unify, as super-task, tasks that are not affected by BRs.

• If in a part of a BP theres only a task affected by BR substitute that BP
part with an equivalent simplify one.

✐

✐

“main” — 2009/2/25 — 2:02 — page 56 — #70
✐

✐

✐

✐

✐

✐

✐

✐

“main” — 2009/2/25 — 2:02 — page 57 — #71
✐

✐

✐

✐

✐

✐

Conclusion

In this work the focus has been on some important issues related to Busi-
ness Process modeling, modifications and representation in an ontological form,
there has been also the presentation of business rules and their interaction with
business processes. It has been presented an ontological approach, where Busi-
ness Processes and Business Rules can be formally represented in a unified
context and their consistency checked and maintained by means of defined and
developed tool. The main ideas for future works are relates to extend the con-
trol to other relations but the precedence, like existence, role and others. In
this way can be used actors, objects and process in a unique algorithm input
control BPAL graph.

57

✐

✐

“main” — 2009/2/25 — 2:02 — page 58 — #72
✐

✐

✐

✐

✐

✐

✐

✐

“main” — 2009/2/25 — 2:02 — page 59 — #73
✐

✐

✐

✐

✐

✐

Appendices

59

✐

✐

“main” — 2009/2/25 — 2:02 — page 60 — #74
✐

✐

✐

✐

✐

✐

✐

✐

“main” — 2009/2/25 — 2:02 — page 61 — #75
✐

✐

✐

✐

✐

✐

Appendix 1 - BPAL

Appendix on BPAL formalization

BPAL Example of a BP ontology for the Existence

Verification process

act(request for existence verification),
act(checking the requested document),
act(releasing certificate),
act(releasing survey),
act(sending document),
act(receiving document),
role(company),
role(chamber of commerce),
role(legal office),
role(marketing department),
xdec(Is The Requested Document Legally Valid, releasing certificate),
cont(certificate),
cont(survey),
cont(request),
cont(existence document),
prec(request for existence verification, receiving document),
prec(checking the requested document, Is The Requested Document Legally Valid),
prec(Is The Requested Document Legally Valid, releasing certificate),
prec(Is The Requested Document Legally Valid, releasing survey),
prec(releasing certificate, sending document),
prec(releasing survey, sending document)
perf(legal office, request for existence verification),

61

✐

✐

“main” — 2009/2/25 — 2:02 — page 62 — #76
✐

✐

✐

✐

✐

✐

62 APPENDIX 1 - BPAL

perf(marketing department, checking the requested document),
perf(marketing department, releasing certificate),
perf(marketing department, releasing survey),
perf(marketing department, sending document),
perf(legal office, receiving document),
msg(request, request for existence verification, checking the requested document),
msg(existence document, sending document, receiving document),
pof(company, legal office),
pof(chamber of commerce, marketing department),
isa(existence document, certificate),
isa(existence document, survey).

Sampling of BPAL in KIF

Primitive Lexicon

The Lexicon is represented by the atoms reported in the Section 4 with a prefix
syntax and variables preceded by the question mark, all enclosed in parenthesis.
Example: (act?a), (role?r), (dec?d).

KIF atoms

• (act ?a) is TRUE in an interpretation of BPAL if and only if ?a is a
member of the set of activities in the universe of discourse of the interpre-
tation. Intuitively, activities can be considered to be reusable behaviours
within the domain.

• (role ?r) is TRUE in an interpretation of BPAL if and only if ?r is a
member of the set of roles in the universe of discourse of the interpreta-
tion.

• (dec ?d) is TRUE in an interpretation of BPAL if and only if ?d is a
member of the set of decisions in the universe of discourse of the inter-
pretation.

• (cont ?t) is TRUE in an interpretation of BPAL if and only if ?t is a
member of the set of contents in the universe of discourse of the inter-
pretation.

✐

✐

“main” — 2009/2/25 — 2:02 — page 63 — #77
✐

✐

✐

✐

✐

✐

SAMPLING OF BPAL IN KIF 63

• (cxt ?c) is TRUE in an interpretation of BPAL if and only if ?c is a
member of the set of contexts in the universe of discourse of the inter-
pretation.

• (prec ?a1 ?a2) is TRUE in an interpretation of BPAL if and only if
the activity ?a1 is before ?a2 in the linear ordering over activities in the
interpretation.

• (xdec ?f ?a1 ?a2) is TRUE in an interpretation of BPAL if and only
if ?f is a function that maps sentences in truth values TRUE or FALSE,
consequently, if the ?f maps to TRUE, activity ?a1 is executed otherwise
activity ?a2 is executed.

• (msg ?c ?a1 ?a2) is TRUE in an interpretation of BPAL if and only if
activity ?a1 sends a content ?c to activity ?a2.

• (iter ?a1, ?an ?f) is TRUE in an interpretation of BPAL if and only if
the activities contained between ?a1 to ?an are repeated until the condi-
tional ?f returns value TRUE.

AXIOMS

Axiom 1 (Branching)

Each time an activity is followed by more than one immediate successor activ-
ities, a decision atom must be interposed.

(forall (?x ?y)
(if
(and (act ?y)
(prec ?x ?y)
((abs ?y) ¿ 1))
(dec ?x)))

Axiom 2

The precedence relation only holds between activities and decisions.
(forall (?x ?y)

(if (prec ?x ?y)
(or (and (act ?x) (dec ?y))
(and (act ?x) (act ?y))

✐

✐

“main” — 2009/2/25 — 2:02 — page 64 — #78
✐

✐

✐

✐

✐

✐

64 APPENDIX 1 - BPAL

(and (dec ?x) or (act ?y)))))

Axiom 3

Everything is either an activity, a role, a decision, a content, or a context.
(forall (?x)

(or (act ?x)
(role ?x)
(dec ?x)
(cont ?x)
(cxt ?x)))

Axiom 4

Activities, decisions, roles, contents, and contexts are all distinct kinds of
things.

(forall (?x)
(and (if (act ?x)
(not (or (dec ?x) (role ?x) (cont ?x) (cxt ?x)))
(if (dec ?x)
(not (or (role ?x) (cont ?x) (cxt ?x)))
(if (role ?x)
(not (or (cont ?x) (cxt ?x)))
(if (cont ?x)
(not (cxt ?x)))))

Axiom 5

The msg function holds only between a content and activities or roles.
(forall (?c ?n1 ?n2)

(if (msg ?c ?n1 ?n2)
(and (cont ?c)
(or act ?n1 role ?n1)
(or act ?n2 role ?n2)))

✐

✐

“main” — 2009/2/25 — 2:02 — page 65 — #79
✐

✐

✐

✐

✐

✐

BPAL FILE 65

Axiom 6

The xdec function holds only between an expression and an activity.
(forall (?f ?a1)

(if (xdec ?f ?a1)
(and (bexp ?f)
(act ?a1)))

Axiom 7. The iteration function holds only between activities and an ex-
pression.

(forall (?a1 ?a2 ?f)
(if (iter ?a1 ?a2 ?f)
(and
(act ?a1)
(act ?a2)
(bexp ?f))).

BPAL File

// OPAL
include procurement.opal
// Events
ev(eventStart, startingTime, bexp(TRUE))
// Actions
act(issuingPurchaseOrder 01)
// Messages
msg(purchaseOrder, sendingPO, recivedPO, eventRecivedPO)
// ISA Relations
isa(SendingPO, msg)
// Part OF Relations
pof(sendToShippingCompany 01, shippingObject 01)
// Fulfil Relations
fulfil(issuingPurchaseOrder 01, issuingPurchaseOrder)
// Precedent Relations
cpre(eventStart, issuingPurchaseOrder 01),
cpre(issuingPurchaseOrder 01, eventRecivedPO)
cpre(eventRecivedPO, processingPO 01)
cpre(processingPO 01, ADprocessingOrder)

✐

✐

“main” — 2009/2/25 — 2:02 — page 66 — #80
✐

✐

✐

✐

✐

✐

66 APPENDIX 1 - BPAL

// Gateway
adec(ADprocessingOrder, bexp(processingPO 01))
xdec(XDclientType, bexp(processingOrder))
odec(ODclientType, bexp(processingOrder3))
andmerge(SMprocessingOrder)
xormerge(XMclientType)
ormerge(OMpayment)

✐

✐

“main” — 2009/2/25 — 2:02 — page 67 — #81
✐

✐

✐

✐

✐

✐

Appendix 2 - Software

In this Appendix is presented the principal UML class diagrams and the code
of the application developed to control the coherence between Business Rules
and Business Process.

UML class diagram

The Class Diagram in Figure A.1 is an important class that models the single
node of the graph. It has, as auxiliary structures classes, the class A, an utility
class, and the class S, model of the adjacent matrix and its functions. The
Class A is presented in Figure A.2 and the Class S in the Figure A.3.

The algorithm is modeled in a class named Algoritmi and presented in the
Figure A.4

Code

In this section is presented the program code.

Nodo.java

package Modello;

/**

67

✐

✐

“main” — 2009/2/25 — 2:02 — page 68 — #82
✐

✐

✐

✐

✐

✐

68 APPENDIX 2 - SOFTWARE

Figure A.1: Class Diagram Nodo.

BRANCH:
0 : no branch
1 : AND
2 : XOR
3 : OR

MERGE :
0 : No merge
1 : Sync Merge
2 : Xor Merge
3 : Or Merge
/

✐

✐

“main” — 2009/2/25 — 2:02 — page 69 — #83
✐

✐

✐

✐

✐

✐

CODE 69

public class Nodo {
private String act; // Tipologia dell’azione relativa a quel nodo
private String name; // Nome del nodo
private int branch;
private int merge;
public float x;
public float y;

public Nodo(String nome, String act){
this.name=nome;
this.act=act;
this.branch=0;
this.merge=0;
x=0;y=0;
}

public Nodo(String nome, String act,int branch, int merge){
this.name=nome;
this.act=act;
this.branch=branch;
this.merge=merge;
x=0;y=0;
}

public int getMerge() {
return merge;
}

public int getBranch() {
return branch;
}

public void setMerge(int merge) {
this.merge = merge;
}

public void setBranch(int branch) {
this.branch = branch;
}

✐

✐

“main” — 2009/2/25 — 2:02 — page 70 — #84
✐

✐

✐

✐

✐

✐

70 APPENDIX 2 - SOFTWARE

public String getAct() {
return act;
}

public String getName() {
return name;
}

public void setAct(String act) {
this.act = act;
}

public void setName(String name) {
this.name = name;
}

}

Block.java

package Modello;

import java.util.LinkedList;
import java.util.List;

public class Block {
public List blockPaths;
public int blockType;
public List outPaths;
public String BranchName;
public String MergeName;
public int ComplexDegree;
public int blockFlag;
public boolean isReaded;

public Block() {
this.blockPaths = new LinkedList();
this.blockType=0;

✐

✐

“main” — 2009/2/25 — 2:02 — page 71 — #85
✐

✐

✐

✐

✐

✐

CODE 71

this.outPaths=new LinkedList();
this.BranchName=””;
this.MergeName=””;
this.ComplexDegree=0;
this.blockFlag=0;
this.isReaded=false;

}

public Block(Block b) {
this.blockPaths = new LinkedList();
this.blockType=0;
this.outPaths=new LinkedList();
this.BranchName=””;
this.MergeName=””;
this.ComplexDegree=0;
this.blockFlag=0;
this.isReaded=false;
this.BranchName=b.BranchName;
this.ComplexDegree=b.ComplexDegree;
this.MergeName=b.MergeName;
this.blockPaths.add(b.blockPaths);
this.blockType=b.blockType;
this.blockFlag=b.blockFlag;

}

}

BlockList.java

package Modello;

import java.util.LinkedList;
import java.util.List;

public class BlockList {
public List ListaBlocchi;

✐

✐

“main” — 2009/2/25 — 2:02 — page 72 — #86
✐

✐

✐

✐

✐

✐

72 APPENDIX 2 - SOFTWARE

public BlockList() {
this.ListaBlocchi= new LinkedList();
}

public void addPathToBlock(Block b) {
Block bl;

for (int i=0;i¡this.ListaBlocchi.size();i++) {
bl=(Block) this.ListaBlocchi.get(i);
if (bl.BranchName.equals(b.BranchName))bl.blockPaths.add(b.blockPaths);}

}
}

public void calculateComplex() {
Block b;
int complex=0;
List branchs ;
List path;
Nodo n;
for (int i=0;i¡this.ListaBlocchi.size();i++){ // per ogni blocco
branchs = new LinkedList();
complex=0;
b = (Block) this.ListaBlocchi.get(i);
for (int j=0;j¡b.blockPaths.size();j++){ // per ogni path del blocco
path = (List) b.blockPaths.get(j);
for (int k=0;k¡path.size();k++){ // per ogni nodo del path del blocco
n = (Nodo) path.get(k);
if ((n.getBranch()!=0)&&(!isNodePresenseInBranches(n.getName(),branchs)))
{
branchs.add(n.getName());
complex++;

}

}
}
b.ComplexDegree=complex;

✐

✐

“main” — 2009/2/25 — 2:02 — page 73 — #87
✐

✐

✐

✐

✐

✐

CODE 73

}

}

public boolean isPresent(Block b) {
Block bl;
boolean trovato=false;
for (int i=0;i¡this.ListaBlocchi.size();i++){
bl=(Block) this.ListaBlocchi.get(i);
if (bl.BranchName.equals(b.BranchName))trovato= true;}

}
return trovato;
}

private boolean isNodePresenseInBranches(String name, List bran) {
boolean res = false;
String s;
for (int i=0;i¡bran.size();i++){
s= (String) bran.get(i);
if(name.equals(s)) {res=true;}
}
return res;
}

}

A.java

package Modello.Apackage;

import java.util.Iterator;
import java.util.LinkedList;
import java.util.List;

public class A {
private List archiUscenti;

✐

✐

“main” — 2009/2/25 — 2:02 — page 74 — #88
✐

✐

✐

✐

✐

✐

74 APPENDIX 2 - SOFTWARE

public A() {
this.archiUscenti=new LinkedList();
}

public List getArchiUscenti() {
return archiUscenti;
}

public void insertElement(AElement element) {
this.archiUscenti.add(element);
}

public int getNumeroArchi(String nomeNodo) {
AElement ae ;
int res=0;
for (int i=0;i¡this.archiUscenti.size();i++) {
ae = (AElement) this.archiUscenti.get(i);
if (ae.getName().equals(nomeNodo)) res=ae.getNumeroArchi(); }
}
return res;
}

public void incrementaArchiUscenti (String nomeNodo){
Iterator it = this.archiUscenti.iterator();
AElement n;
boolean esiste = false;
while (it.hasNext()){
n = (AElement) it.next();
if (nomeNodo.equals(n.getName())) {
n.setNumeroArchi(n.getNumeroArchi()+1);
esiste = true;
}
}
if (!esiste) {
n = new AElement(nomeNodo,1);
archiUscenti.add(n);
}
}

✐

✐

“main” — 2009/2/25 — 2:02 — page 75 — #89
✐

✐

✐

✐

✐

✐

CODE 75

public void inizializzaD (int numeroNodi) {
AElement n;
for (int i=0;i¡numeroNodi;i++) {

}
}

public AElement getNodoTerminale(){
AElement ae;
AElement aeTrovato=null;
boolean trovato=false;

for (int i=0;i¡this.archiUscenti.size();i++) {
ae = (AElement) this.archiUscenti.get(i);
if ((ae.getNumeroArchi()==0)&&(!trovato)) {trovato=true;aeTrovato=ae;}
}
return aeTrovato;
}

public AElement getNodoXNome(String nome){
AElement ae;
AElement aeTrovato=null;
boolean trovato=false;

for (int i=0;i¡this.archiUscenti.size();i++){
ae = (AElement) this.archiUscenti.get(i);
if ((ae.getName().equals(nome))&&(!trovato)) trovato=true;aeTrovato=ae;}
}
return aeTrovato;
}

}

AElement.java

package Modello.Apackage;

public class AElement {

✐

✐

“main” — 2009/2/25 — 2:02 — page 76 — #90
✐

✐

✐

✐

✐

✐

76 APPENDIX 2 - SOFTWARE

private String name;
private int numeroArchi;

public AElement(String nome, int na){
this.name=nome;
this.numeroArchi=na;
}

public String getName() {
return name;
}

public int getNumeroArchi() {
return numeroArchi;
}

public void setName(String name) {
this.name = name;
}

public void setNumeroArchi(int numeroArchi) {
this.numeroArchi = numeroArchi;
}

}

S.java

package Modello.Spakage;

import java.util.LinkedList;
import java.util.List;

public class S {
private List s;

public S(){
s= new LinkedList();

✐

✐

“main” — 2009/2/25 — 2:02 — page 77 — #91
✐

✐

✐

✐

✐

✐

CODE 77

}

public void addSElement(SElement se){
this.s.add(se);
}

public List getAdiacenzeXNodo(String nome){
List res=null;
SElement se;

for (int i=0;i¡this.s.size();i++){
se =(SElement) this.s.get(i);
if (nome.equals(se.getName())) {res=se.getAdiacenze();}
}
return res;
}

public void setAdiacenzeXNodo (String nomeNodo, String nomeNodoAdi-
acente) {
SElement se, se appo;
boolean esiste = false;

for (int i=0;i¡this.s.size();i++){
se =(SElement) this.s.get(i);
if (nomeNodo.equals(se.getName())) {
se.addAdiacenza(nomeNodoAdiacente);
esiste = true;
}
}
if (!esiste){
se appo = new SElement(nomeNodo);
se appo.addAdiacenza(nomeNodoAdiacente);
s.add(se appo);
}
}

public List getS() {
return s;
}

✐

✐

“main” — 2009/2/25 — 2:02 — page 78 — #92
✐

✐

✐

✐

✐

✐

78 APPENDIX 2 - SOFTWARE

}

SElement.java

package Modello.Spakage;

import java.util.LinkedList;
import java.util.List;

public class SElement {
private String name;
private List adiacenze;

public SElement() {
this.name=””;
}

public SElement(String name){
this.name=name;
this.adiacenze=new LinkedList();
}

public void addAdiacenza(String nodo){
this.adiacenze.add(nodo);
}

public List getAdiacenze() {
return adiacenze;
}

public String getName() {
return name;
}

public void setAdiacenze(List adiacenze) {
this.adiacenze = adiacenze;
}

✐

✐

“main” — 2009/2/25 — 2:02 — page 79 — #93
✐

✐

✐

✐

✐

✐

CODE 79

}

Algoritmi.java

package Algoritmi;

import Modello.Apackage.A;
import Modello.Apackage.AElement;
import Modello.Block;
import Modello.BlockList;
import Modello.Nodo;
import Modello.Spakage.S;
import Modello.Spakage.SElement;
import java.io.File;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.PrintStream;
import java.util.Iterator;
import java.util.LinkedList;
import java.util.List;

import java.util.logging.Level;
import java.util.logging.Logger;

public class Algoritmi {

private List ListaPath;
private BlockList Blocks;
private BlockList BlockGroups;
private List result;

public Algoritmi() {
this.ListaPath = new LinkedList();
this.Blocks = new BlockList();
this.BlockGroups = new BlockList();
this.result = new LinkedList();

✐

✐

“main” — 2009/2/25 — 2:02 — page 80 — #94
✐

✐

✐

✐

✐

✐

80 APPENDIX 2 - SOFTWARE

}

public void ScriviFile(String nomeFile, List path) {
FileOutputStream fos = null;
try {
File f = new File(nomeFile);
fos = new FileOutputStream(f, true);
PrintStream ps = new PrintStream(fos);
ps.println(” ”);
ps.print(”Path: [”);
ps.print(((Nodo) path.get(0)).getName());
for (int i = 1; i ¡ path.size(); i++) {
// Inserito il getName perche path.get(i) restituisce un nodo
ps.print(”, ” + ((Nodo) path.get(i)).getName());
}
ps.print(”]”);
} catch (FileNotFoundException ex) {
Logger.getLogger(Algoritmi.class.getName()).log(Level.SEVERE, null, ex);
} finally {
try {
fos.close();
} catch (IOException ex) {
Logger.getLogger(Algoritmi.class.getName()).log(Level.SEVERE, null, ex);
}
}
}

private void ControllaInserimentoPath(Block blocco) {

System.out.println(”————-¿ path presa in esame: ” + blocco.BranchName
+ ” ¡-¿ ” + blocco.MergeName);
List t = (List) blocco.blockPaths;
for (int h = 0; h ¡ t.size(); h++) {
Nodo g = (Nodo) t.get(h);
System.out.print(g.getName() + ”,”);
}
if (this.Blocks.ListaBlocchi.size() == 0) {
this.Blocks.ListaBlocchi.add(blocco);
System.out.println(” inserita!”);

✐

✐

“main” — 2009/2/25 — 2:02 — page 81 — #95
✐

✐

✐

✐

✐

✐

CODE 81

} // il primo elemento
else {
//Devo scorrere la lista dei Blocchi
boolean uguaglianzaPath = false;
int uguaglianzaConPaths = 0;
for (int i = 0; i ¡ this.Blocks.ListaBlocchi.size(); i++) {
Block b = (Block) this.Blocks.ListaBlocchi.get(i); // per ogni block di Blocks
prendere il path
if ((b.BranchName.equals(blocco.BranchName)) && (b.MergeName.equals(blocco.MergeName))
&& (b.blockPaths.size() == blocco.blockPaths.size())) {
//Ne controllo il nome e la lunghezza Se uguali allora passo al controllo dei
path
uguaglianzaPath = true;
for (int j = 0; j ¡ b.blockPaths.size(); j++) {
//Controllare che il path sia diverso da quello che voglio inserire nodo per nodo
Nodo b Nodo = (Nodo) b.blockPaths.get(j);
Nodo blocco Nodo = (Nodo) blocco.blockPaths.get(j);
if (!(b Nodo.getName().equals(blocco Nodo.getName()))) {
//Se i Nodi sono diversi allora i path sono diversi ed esco dalla for
uguaglianzaPath = false;
break;
}
}
if (uguaglianzaPath) {
uguaglianzaConPaths++;
}
}
}
if (uguaglianzaConPaths == 0) {
this.Blocks.ListaBlocchi.add(blocco);
System.out.println(” inserita!”);
} else {
System.out.println(” NO!”);
}
}
}

private void StampaPathSemantici() {

✐

✐

“main” — 2009/2/25 — 2:02 — page 82 — #96
✐

✐

✐

✐

✐

✐

82 APPENDIX 2 - SOFTWARE

for (int i = 0; i ¡ this.result.size(); i++) {
System.out.println(”Path Semantica n: ” + i);
List l = (List) this.result.get(i);
for (int j = 0; j ¡ l.size(); j++) {
Nodo n = (Nodo) l.get(j);
System.out.print(n.getName() + ”,”);
}
System.out.println(””);
}
}

private List clona(List l) {
List a = new LinkedList();
for (int i = 0; i ¡ l.size(); i++) {
Nodo n = (Nodo) l.get(i);
a.add(n);
}
return a;
}

private Nodo getNodoDaListaNodiXNome(String nome, List nodi) {
Nodo res = null;
boolean trovato = false;
Nodo app;
for (int i = 0; i ¡ nodi.size(); i++) {
app = (Nodo) nodi.get(i);

// if (res.getName().equals(nome)) {
if (app.getName().equals(nome)) {
trovato = true;
res = app;
}
}
return res;
}

public void VisitaEsaustivaSemplice(List ln, A la, A ld, S ls) { // Crea i
path topologici
List listaNodi = ln;

✐

✐

“main” — 2009/2/25 — 2:02 — page 83 — #97
✐

✐

✐

✐

✐

✐

CODE 83

A listaA = la;
A listaD = ld;
S matriceS = ls;
List path = new LinkedList();

int l = 0; // Lunghezza cammino corrente

int z = 1; // Switch che dice se il cammino percorso andando avanti o in-
dietro

Nodo t = new Nodo(”nome”, ”act”); // Nodo corrente

AElement nodoTerminale = listaA.getNodoTerminale();

System.out.println(” ——————– VISITA ESAUSTIVA SEMPLICE IN-
IZIO ————– ”);
// Inizializzazione v[t]
A V = new A();
for (int i = 0; i ¡ listaNodi.size(); i++) {
AElement newAe = new AElement(((Nodo) listaNodi.get(i)).getName(), 1);
V.insertElement(newAe);
}

t = (Nodo) listaNodi.get(0);

while (l ¿= 0) {

if (z == 1) {
if (t.getName().equals(nodoTerminale.getName())) // Sono arrivato alla fine
{
path.add(t);
List pathTrue = new LinkedList();
this.ScriviFile(”VisitaEsaustivaSemplice.txt”, path);
System.out.println(”path:”);
for (int ji = 0; ji ¡ path.size(); ji++) {
Nodo no = (Nodo) path.get(ji);
System.out.print(no.getName() + ”,”);
pathTrue.add(no);
}

✐

✐

“main” — 2009/2/25 — 2:02 — page 84 — #98
✐

✐

✐

✐

✐

✐

84 APPENDIX 2 - SOFTWARE

System.out.println(””);
this.ListaPath.add(pathTrue);
z = 0;
path.remove(path.size() - 1);
// Nel path.get(path.size() - 1)) ho aggiunto il .getName() per tirar fuori la
stringa
if (l ¿ 0) {
t = this.getNodoDaListaNodiXNome((((Nodo) path.get(path.size() - 1)).get-
Name()), listaNodi);
}
l–;

} else {
if (V.getNodoXNome(t.getName()).getNumeroArchi() == 0) //Dal nodo cor-
rente non arrivo al terminale
{
z = 0;
l–;
} else {
path.add(l, t);
int NumeroarchiUscentiVisitati = ((AElement) listaD.getNodoXNome(t.getName())).getNumeroArchi();
List nodiAdiacentiAlNodoCorrente = (matriceS.getAdiacenzeXNodo(t.getName()));

String nomeNodoSuccessivo = (String) nodiAdiacentiAlNodoCorrente.get(NumeroarchiUscentiVisitati);
Nodo app t = this.getNodoDaListaNodiXNome(nomeNodoSuccessivo, listaN-
odi);
// app t = S[t,d[t]]; //Prendo il t-esimo nodo adiacente al nodo corrente
l++;
((AElement) listaD.getNodoXNome(t.getName())).setNumeroArchi(((AElement)
listaD.getNodoXNome(t.getName())).getNumeroArchi() + 1); // d[t]++;

t = app t;
}
}
} else {

if (((AElement) listaD.getNodoXNome(t.getName())).getNumeroArchi() ¡
((AElement) listaA.getNodoXNome(t.getName())).getNumeroArchi()) // if (d[t]

✐

✐

“main” — 2009/2/25 — 2:02 — page 85 — #99
✐

✐

✐

✐

✐

✐

CODE 85

¡ a[t]) // ”¡” vuol dire che posso ancora andare avanti e che non ho esaurito la
verifica di tutti i nodi uscenti
{
// t = S[t,d[t]]; // Vado avanti
int NumeroarchiUscentiVisitati = ((AElement) listaD.getNodoXNome(t.getName())).getNumeroArchi();

List lista = matriceS.getAdiacenzeXNodo(t.getName());

String nomeNodoSuccessivo = (String) lista.get(NumeroarchiUscentiVisitati);
((AElement) listaD.getNodoXNome(t.getName())).setNumeroArchi(((AElement)
listaD.getNodoXNome(t.getName())).getNumeroArchi() + 1);
t = this.getNodoDaListaNodiXNome(nomeNodoSuccessivo, listaNodi);

l++;
z = 1;
} else {

((AElement) listaD.getNodoXNome(t.getName())).setNumeroArchi(0);
path.remove(path.size() - 1);
//d[t] = 0; // La volta successiva che si ripassera dal nodo provenendo da
un’altra direzione si riniziera l’esplorazione di tutti gli archi a partire da quel
nodo.
// Nel path.get(path.size() - 1)) ho aggiunto il .getName() per tirar fuori la
stringa
if (l ¿ 0) {
t = this.getNodoDaListaNodiXNome((((Nodo) path.get(path.size() - 1)).get-
Name()), listaNodi);
}
//t = path[l - 1];
l–;
}
}
}
System.out.println(” ——————– VISITA ESAUSTIVA SEMPLICE FINE
————– ”);
SemanticPath();
}

private void SemanticPath() {

✐

✐

“main” — 2009/2/25 — 2:02 — page 86 — #100
✐

✐

✐

✐

✐

✐

86 APPENDIX 2 - SOFTWARE

System.out.println(” ——————– INDIVIDUAZIONE DEI BLOCCHI IN-
IZIO ————– ”);
getBlocksFromPaths();// blocks e la struttura che contiene tutte le path con
il blocco ad esse associato
StampaBlocchi();
System.out.println(” ——————– INDIVIDUAZIONE DEI BLOCCHI FINE
————– ”);
SolveBlocks();

}

private void getBlocksFromPaths() {// Dalle path topologiche passiamo ai
blocchi
BlockList blocchi = new BlockList();
Block blocco;

boolean stop = false;
List pathTopologica;
Nodo nodo, nodoApp;

for (int i = 0; i ¡ this.ListaPath.size(); i++) { // Scorrimento delle path
topologice
pathTopologica = (List) this.ListaPath.get(i); // per ognuna delle quali

for (int j = 0; j ¡ pathTopologica.size(); j++) { // Scorriamo tutti i nodi
della path topologica
nodo = (Nodo) pathTopologica.get(j);// per ogni nodo controllo se
if (nodo.getBranch() != 0) // un nodo di Branch
blocco = new Block(); // creo un nuovo blocco
blocco.blockType = nodo.getBranch();// inserisco la tipologia del blocco
blocco.BranchName = nodo.getName(); // chiamo il blocco con il nome del
nodo branch
//blocco.ComplexDegree=1; // setto la complessita
blocco.blockFlag = 1; // ed il contatore dei Branch
int scorriblocco = j; // poi scorro la sub path
while (blocco.blockFlag ¿ 0) // finche non trovo il merge di questo branch
scorriblocco++;
nodoApp = (Nodo) pathTopologica.get(scorriblocco); // prendo il prossimo
nodo

✐

✐

“main” — 2009/2/25 — 2:02 — page 87 — #101
✐

✐

✐

✐

✐

✐

CODE 87

if (nodoApp.getBranch() != 0) {
blocco.ComplexDegree++; // e un branch
blocco.blockFlag++;
}
if (nodoApp.getMerge() != 0) {
blocco.blockFlag–;
}
if (blocco.blockFlag != 0) {
blocco.blockPaths.add(nodoApp);

}
if (blocco.blockFlag == 0) {
blocco.MergeName = nodoApp.getName();
ControllaInserimentoPath(blocco); // blocks e la struttura che contiene tutte
lepath con il blocco ad esse associato
}

}
}

}

}

}

private void StampaBlocchi() {
Block b;
Nodo n;
System.out.println(””);
System.out.println(”—————– STAMPA DELLA STRUTTURA BLOCCHI
——————-”);
for (int i = 0; i ¡ this.Blocks.ListaBlocchi.size(); i++) {
b = (Block) this.Blocks.ListaBlocchi.get(i);
System.out.println(”Blocco: ” + b.BranchName + ”¡-¿” + b.MergeName + ”
complessita del path topologico: ” + b.ComplexDegree + ” tipologia blocco:
” + b.blockType);
System.out.print(” ”);
for (int j = 0; j ¡ b.blockPaths.size(); j++) {

✐

✐

“main” — 2009/2/25 — 2:02 — page 88 — #102
✐

✐

✐

✐

✐

✐

88 APPENDIX 2 - SOFTWARE

n = (Nodo) b.blockPaths.get(j);
System.out.print(n.getName() + ”-”);
}
System.out.println(””);
}
}

private void SolveBlocks() {

System.out.println(” ——————– CREAZIONE DI BLOCK GROUPS
INIZIO ————– ”);
Block block; // Generazione della struttura BlockGroups
Block b;
for (int i = 0; i ¡ this.Blocks.ListaBlocchi.size(); i++) {
b = (Block) this.Blocks.ListaBlocchi.get(i);
if ((!b.isReaded) && (!this.BlockGroups.isPresent(b))) {
block = new Block(b);
b.isReaded = true;
this.BlockGroups.ListaBlocchi.add(block);
}
if ((!b.isReaded) && (this.BlockGroups.isPresent(b))) {
b.isReaded = true;
this.BlockGroups.addPathToBlock(b);
}
}

// Calcolo della complessita dei singoli blocchi
this.BlockGroups.calculateComplex();

Nodo nodo;
List path;
for (int i = 0; i ¡ this.BlockGroups.ListaBlocchi.size(); i++) {
block = (Block) this.BlockGroups.ListaBlocchi.get(i);
System.out.println(”blocco: ” + block.BranchName + ” ¡-¿ ” + block.MergeName
+ ” tipologia: ” + block.blockType + ” complessita : ” + block.ComplexDegree);
System.out.println(” path coinvolte nel blocco: ” + block.blockPaths.size());
for (int k = 0; k ¡ block.blockPaths.size(); k++) {
path = (List) block.blockPaths.get(k);
System.out.print(” Path: ”);

✐

✐

“main” — 2009/2/25 — 2:02 — page 89 — #103
✐

✐

✐

✐

✐

✐

CODE 89

for (int j = 0; j ¡ path.size(); j++) {
nodo = (Nodo) path.get(j);
System.out.print(nodo.getName() + ”-”);
}
System.out.println(””);

}
}
System.out.println(” ——————– CREAZIONE DI BLOCK GROUPS FINE
————– ”);
// Inizio della solve
solve();
System.out.println(””);

// StampaSemanticPaths();
}

public void solve() {
// Carichiamo i blocchi di complessita 0 che siano XOR togliendo // I) Se ci
sono blocchi XOR di complessita 0 dobbiamo andare a togliere i nodi branch/merge
di tale blocchi nei
// blocchi (di complessita quindi ¿0) nei quali compare il blocco XOR preso in
esame
Block blocco;
String BranchStart = ””, MergeEnd = ””;
List path;
Nodo n;
System.out.println(””);
System.out.println(”————– ELABORAZIONE BLOCCHI XOR ————
——-”);
boolean esistonoBlocchiXorInComp 0 = true;
while (esistonoBlocchiXorInComp 0) {
esistonoBlocchiXorInComp 0 = false;
for (int i = 0; i ¡ this.BlockGroups.ListaBlocchi.size(); i++) {
blocco = (Block) this.BlockGroups.ListaBlocchi.get(i);
if ((blocco.ComplexDegree == 0) && (blocco.blockType == 2)) {// Blocco
XOR di complessita 0
BranchStart = blocco.BranchName;
MergeEnd = blocco.MergeName;

✐

✐

“main” — 2009/2/25 — 2:02 — page 90 — #104
✐

✐

✐

✐

✐

✐

90 APPENDIX 2 - SOFTWARE

esistonoBlocchiXorInComp 0 = true;
blocco.ComplexDegree–;
System.out.println(”Trovato blocco xor fra: ” + BranchStart + ”¡-¿” + MergeEnd);
}
}

for (int i = 0; i ¡ this.BlockGroups.ListaBlocchi.size(); i++) {
blocco = (Block) this.BlockGroups.ListaBlocchi.get(i);
System.out.println(” Ricerca del blocco Xor nel blocco : ” + blocco.BranchName
+ ”¡-¿” + blocco.MergeName);
for (int j = 0; j ¡ blocco.blockPaths.size(); j++) {
path = (List) blocco.blockPaths.get(j);
System.out.println(” Ricerca del blocco Xor nella path : ” + j);
int indiceBranch = 0;
int indiceMerge = 0;
boolean trovato = false;
for (int k = 0; k ¡ path.size(); k++) {
n = (Nodo) path.get(k);
if ((n.getName().equals(BranchStart))) {
indiceBranch = k;
trovato = true;
}
if (n.getName().equals(MergeEnd)) {
indiceMerge = k;
}
}
if (trovato) {
blocco.ComplexDegree–; // aggiornamento della complessita del blocco conte-
nente il blocco xor
path.remove(indiceMerge);
path.remove(indiceBranch);
System.out.println(” Elaborazione del blocco Xor ai nodi : ” + indiceBranch
+ ” e: ” + indiceMerge);

}
}
}
}
System.out.println(”————– ELABORAZIONE BLOCCHI XOR FINE!—

✐

✐

“main” — 2009/2/25 — 2:02 — page 91 — #105
✐

✐

✐

✐

✐

✐

CODE 91

—————-”);
System.out.println(””);
System.out.println(”————– ELABORAZIONE BLOCCHI AND ————
———”);
// RICERCA DEL BLOCCO AND CON COMPLESSITA 0
boolean esistonoBlocchiANDInComp 0 = true;
while (esistonoBlocchiANDInComp 0) {
esistonoBlocchiANDInComp 0 = false;
List permutazioniBloccoAND = null;
for (int i = 0; i ¡ this.BlockGroups.ListaBlocchi.size(); i++) {
blocco = (Block) this.BlockGroups.ListaBlocchi.get(i);
if ((blocco.ComplexDegree == 0) && (blocco.blockType == 1)) {// Blocco
XOR di complessita 0
BranchStart = blocco.BranchName;
MergeEnd = blocco.MergeName;
blocco.ComplexDegree–;
esistonoBlocchiANDInComp 0 = true;
System.out.println(”Trovato blocco AND fra: ” + BranchStart + ”¡-¿” +
MergeEnd);
Permutazioni permutazioni = new Permutazioni(blocco.blockPaths);
permutazioniBloccoAND = permutazioni.executeANDPermutations();
blocco.blockPaths.clear();
for (int o=0;o¡permutazioniBloccoAND.size();o++){
blocco.blockPaths.add(permutazioniBloccoAND.get(o));
}

}
}
// SOSTITUZIONE DELLE PERMUTAZIONI NEGLI ALTRI BLOCCHI
// RICERCA DELLE PATH CHE PRESENTANO QUEL BLOCCO AND

for (int i = 0; i ¡ this.BlockGroups.ListaBlocchi.size(); i++) {
List indici = new LinkedList();
blocco = (Block) this.BlockGroups.ListaBlocchi.get(i);
System.out.println(” Ricerca del blocco AND nel blocco : ” + blocco.BranchName
+ ”¡-¿” + blocco.MergeName);
for (int j = 0; j ¡ blocco.blockPaths.size(); j++) {
path = (List) blocco.blockPaths.get(j);
System.out.println(” Ricerca del blocco AND nella path : ” + j);

✐

✐

“main” — 2009/2/25 — 2:02 — page 92 — #106
✐

✐

✐

✐

✐

✐

92 APPENDIX 2 - SOFTWARE

for (int t = 0; t ¡ path.size(); t++) {
Nodo nodo = (Nodo) path.get(t);
if (nodo.getName().equals(BranchStart)) {
indici.add(j);
System.out.println(”occorrenza trovata !!!”);
}
}
}
if (indici.size() ¿ 0) {
System.out.println(” In questo blocco sono state trovate :” + indici.size() + ”
path contenenti quel blocco”);
sostituisciPermutazioni(blocco, BranchStart, MergeEnd, (Integer) indici.get(0),
permutazioniBloccoAND);
for (int t = indici.size(); t ¿ 0; t–) { // rimozione di tutte le path che sono
state sostituite int rimuovi = (Integer) indici.get(t - 1);
blocco.blockPaths.remove(rimuovi);

}
}
blocco.blockPaths.addAll(blocco.outPaths);
blocco.outPaths.clear();
}

}
System.out.println(”————– ELABORAZIONE BLOCCHI AND FINE —
——————”);

System.out.println(”————– ELABORAZIONE BLOCCHI OR ———
————”);
// RICERCA DEL BLOCCO OR CON COMPLESSITA 0
boolean esistonoBlocchiORInComp 0 = true;
while (esistonoBlocchiORInComp 0) {
esistonoBlocchiORInComp 0 = false;
List permutazioniBloccoOR = null;
for (int i = 0; i ¡ this.BlockGroups.ListaBlocchi.size(); i++) {
blocco = (Block) this.BlockGroups.ListaBlocchi.get(i);
if ((blocco.ComplexDegree == 0) && (blocco.blockType == 3)) {
BranchStart = blocco.BranchName;
MergeEnd = blocco.MergeName;

✐

✐

“main” — 2009/2/25 — 2:02 — page 93 — #107
✐

✐

✐

✐

✐

✐

CODE 93

blocco.ComplexDegree–;
esistonoBlocchiORInComp 0 = true;
System.out.println(”Trovato blocco OR fra: ” + BranchStart + ”¡-¿” + MergeEnd);
Permutazioni permutazioniOR = new Permutazioni(blocco.blockPaths);
permutazioniBloccoOR = permutazioniOR.executeORPermutations();
blocco.blockPaths.clear();
for (int o=0;o¡permutazioniBloccoOR.size();o++){
blocco.blockPaths.add(permutazioniBloccoOR.get(o));
}
System.out.println(””);
}
}
// SOSTITUZIONE DELLE PERMUTAZIONI NEGLI ALTRI BLOCCHI
// RICERCA DELLE PATH CHE PRESENTANO QUEL BLOCCO AND

for (int i = 0; i ¡ this.BlockGroups.ListaBlocchi.size(); i++) {
List indici = new LinkedList();
blocco = (Block) this.BlockGroups.ListaBlocchi.get(i);
System.out.println(” Ricerca del blocco OR nel blocco : ” + blocco.BranchName
+ ”¡-¿” + blocco.MergeName);
for (int j = 0; j ¡ blocco.blockPaths.size(); j++) {
path = (List) blocco.blockPaths.get(j);
System.out.println(” Ricerca del blocco OR nella path : ” + j);
for (int t = 0; t ¡ path.size(); t++) {
Nodo nodo = (Nodo) path.get(t);
if (nodo.getName().equals(BranchStart)) {
indici.add(j);
System.out.println(”occorrenza trovata !!!”);
}
}
}
if (indici.size() ¿ 0) {
System.out.println(” In questo blocco sono state trovate :” + indici.size() + ”
path contenenti quel blocco”);
sostituisciPermutazioni(blocco, BranchStart, MergeEnd, (Integer) indici.get(0),
permutazioniBloccoOR);
for (int t = indici.size(); t ¿ 0; t–) { // rimozione di tutte le path che sono
state sostituite
int rimuovi = (Integer) indici.get(t - 1);

✐

✐

“main” — 2009/2/25 — 2:02 — page 94 — #108
✐

✐

✐

✐

✐

✐

94 APPENDIX 2 - SOFTWARE

blocco.blockPaths.remove(rimuovi);

}
}
blocco.blockPaths.addAll(blocco.outPaths);
blocco.outPaths.clear();
}

}
System.out.println(”————– ELABORAZIONE BLOCCHI OR FINE ——
—————”);
System.out.println(”————– ELABORAZIONE PATH SEMANTICI DEFINI-
TIVI ———————”);
// Prendo il nome del primo branch nelle topological path che sara il blocco
piu largo
// e quindi quello che andra sostituito attraverso le semantic path trovate
List primaPathTopologica = (List) this.ListaPath.get(0);
// scorro per prendermi sinistra destra branch e merge

String Branch = ””;
String Merge = ””;
List sinistra = new LinkedList();
int stato = 0; // 0=immissione normale; ¿1=salto
boolean isResultList = false;// flag per la prima esecuzione -¿ aggiungo il nodo
ad una lista non a tutte le liste
boolean stop = false; // mi avvisa ogni volta che finisce un blocco -¿ ogni volta
che lo stato torna a zero dopo un merge
for (int i = 0; i ¡ primaPathTopologica.size(); i++) {

Nodo nodo = (Nodo) primaPathTopologica.get(i);
if (nodo.getBranch() == 0) // e un nodo generico
if (stato == 0) {
if (!isResultList) {
sinistra.add(nodo);
}// se non sono in un blocco aggiungo il nodo al result
else {
aggiungiResult(nodo);
}
}

✐

✐

“main” — 2009/2/25 — 2:02 — page 95 — #109
✐

✐

✐

✐

✐

✐

CODE 95

}
if (nodo.getBranch() != 0) // e un nodo di branch
if (!isResultList) {
this.result.add(sinistra); // se non ho incontrato ancora nessun branch allora
metto sinistra nella lista dei risultato
isResultList = true;
} // e avviso il sistema che la ’sinistra’ e terminata
if (stato == 0) {
Branch = nodo.getName();
}
stato++;

}
if (nodo.getMerge() != 0) // e un nodo di merge
stato–;
if (stato == 0) {
Merge = nodo.getName();
stop = true;
}
}
if (stop) {
getBlocco(Branch, Merge);
stop = false;
}
}
StampaPathSemantici();
}

private void getBlocco(String Branch, String Merge) {
Block blocco = null;
for (int i = 0; i ¡ this.BlockGroups.ListaBlocchi.size(); i++) {
blocco = (Block) this.BlockGroups.ListaBlocchi.get(i);
if ((blocco.BranchName.equals(Branch)) && (blocco.MergeName.equals(Merge)))
{
break;
}
}
List resultApp = new LinkedList();

✐

✐

“main” — 2009/2/25 — 2:02 — page 96 — #110
✐

✐

✐

✐

✐

✐

96 APPENDIX 2 - SOFTWARE

for (int i = 0; i ¡ this.result.size(); i++) {// scorro le path di result
List l = (List) this.result.get(i);

for (int j = 0; j ¡ blocco.blockPaths.size(); j++) // a ognuna delle quali
aggiungo le path che espletano il blocco
List k = clona(l);
k.addAll((List) blocco.blockPaths.get(j));
resultApp.add(k);

}
}
this.result = resultApp;
}

private void aggiungiResult(Nodo nodo) {
for (int i = 0; i ¡ this.result.size(); i++) {
List l = (List) this.result.get(i);
l.add(nodo);
}
}

private void sostituisciPermutazioni(Block blocco, String BranchStart, String
MergeEnd, int indice, List permutazioni) {
List path = (List) blocco.blockPaths.get(indice);
int indiceBranch = 0;
int indiceMerge = 0;
List sinistra = new LinkedList();
List destra = new LinkedList();
int sez = 0;
boolean trovato = false;
for (int k = 0; k ¡ path.size(); k++) {
Nodo n = (Nodo) path.get(k);

if (sez == 1) {
destra.add(n);
}
if ((n.getName().equals(BranchStart))) {
indiceBranch = k;
trovato = true;

✐

✐

“main” — 2009/2/25 — 2:02 — page 97 — #111
✐

✐

✐

✐

✐

✐

CODE 97

sez = -1;
}
if (n.getName().equals(MergeEnd)) {
indiceMerge = k;
sez = 1;
}
if (sez == 0) {
sinistra.add(n);
}
}
if (trovato) {
blocco.ComplexDegree–; // aggiornamento della complessita del blocco conte-
nente il blocco xor
//———————
// Creazione delle paths permutate
for (int i1 = 0; i1 ¡ permutazioni.size(); i1++) {
List appoggio = new LinkedList();
appoggio.addAll(sinistra);
appoggio.addAll((List) permutazioni.get(i1));
appoggio.addAll(destra);
blocco.outPaths.add(appoggio);
}

System.out.println(” Elaborazione del blocco AND ai nodi : ” + indice-
Branch + ” e: ” + indiceMerge);

}
}

private void StampaSemanticPaths() {
System.out.println(”————- PATHS SEMANTICI TROVATE —————
——”);
for (int i = 0; i ¡ this.BlockGroups.ListaBlocchi.size(); i++) {
Block l = (Block) this.BlockGroups.ListaBlocchi.get(i);
System.out.println(” Blocco: ” + l.BranchName + ” ¡-¿ ” + l.MergeName);
for (int j = 0; j ¡ l.blockPaths.size(); j++) {
List path = (List) l.blockPaths.get(j);
for (int k = 0; k ¡ path.size(); k++) {
System.out.print(((Nodo) path.get(k)).getName() + ”,”);

✐

✐

“main” — 2009/2/25 — 2:02 — page 98 — #112
✐

✐

✐

✐

✐

✐

98 APPENDIX 2 - SOFTWARE

}
System.out.println(””);
}
}
}
}

ManipolaFile.java

package esempi;

import Algoritmi.Algoritmi;
import java.io.BufferedReader;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintStream;
import java.util.LinkedList;
import java.util.List;
import java.util.logging.Level;
import java.util.logging.Logger;
import Modello.Apackage.A;
import Modello.Apackage.AElement;
import Modello.Nodo;
import Modello.Spakage.S;
import Modello.Spakage.SElement;
import graphics.Grafo;
import javax.swing.JFrame;
import javax.swing.JPanel;

public class ManipolaFile {

public File fileLettura;
public File fileScrittura;
public List righeFile;

✐

✐

“main” — 2009/2/25 — 2:02 — page 99 — #113
✐

✐

✐

✐

✐

✐

CODE 99

public List listaNodi;
public A listaA;
public A listaD;
public S matriceS;
private Algoritmi algoritmi;

public ManipolaFile(String filediLettura, String filediScrittura){
fileLettura = new File(filediLettura);
fileScrittura = new File(filediScrittura);
this.righeFile = new LinkedList();
this.listaNodi = new LinkedList();
this.listaA = new A();
this.listaD = new A();
this.matriceS = new S();
algoritmi= new Algoritmi();
}

public void LeggiFile (){
FileInputStream fis = null;
try System.out.println(”————————– READ FILE START —————
———————–”);
fis = new FileInputStream(fileLettura);
InputStreamReader isr = new InputStreamReader(fis);
BufferedReader br = new BufferedReader(isr);
String linea = br.readLine();
while (linea != null) {
righeFile.add(linea);
System.out.println(linea);
linea = br.readLine();
}
System.out.println(”————————– READ FILE STOP ———————
—————–”);
System.out.println();
System.out.println();
} catch (IOException ex) {
Logger.getLogger(ManipolaFile.class.getName()).log(Level.SEVERE, null, ex);
} finally {
try {
fis.close();

✐

✐

“main” — 2009/2/25 — 2:02 — page 100 — #114
✐

✐

✐

✐

✐

✐

100 APPENDIX 2 - SOFTWARE

} catch (IOException ex) {
Logger.getLogger(ManipolaFile.class.getName()).log(Level.SEVERE, null, ex);
}
}
}

public void ScriviFile() {
FileOutputStream fos = null;
try {
String azione;
// Per usare l’Append allora fos = new FileOutputStream(fileScrittura,true);
fos = new FileOutputStream(fileScrittura);
PrintStream ps = new PrintStream(fos);
for (int i=0;i¡this.righeFile.size();i++){
azione=(String)this.righeFile.get(i);
ps.println(azione);}
} catch (FileNotFoundException ex) {
Logger.getLogger(ManipolaFile.class.getName()).log(Level.SEVERE, null, ex);
} finally {
try {
fos.close();
} catch (IOException ex) {
Logger.getLogger(ManipolaFile.class.getName()).log(Level.SEVERE, null, ex);
}
}

}

public void ParserFile (){
String appoggio;
String fulfil = ”fulfil(”;
String prec = ”prec(”;
String ev = ”ev(”;
String msg = ”msg(”;

Nodo n ;
AElement a elem;

for (int i=0;i¡this.righeFile.size();i++){

✐

✐

“main” — 2009/2/25 — 2:02 — page 101 — #115
✐

✐

✐

✐

✐

✐

CODE 101

appoggio = (String) righeFile.get(i);
if (!appoggio.contains(”//”)){
if (appoggio.contains(fulfil)){
n= new Nodo(appoggio.substring(appoggio.indexOf(”(”)+2, appoggio.indexOf(”,”)),
appoggio.substring(appoggio.indexOf(”, ”)+3, appoggio.indexOf(”)”)));
this.listaNodi.add(n);
}
else if (appoggio.contains(ev)){
n= new Nodo(appoggio.substring(appoggio.indexOf(”(”)+2, appoggio.indexOf(”,”)),
”Evento”);
this.listaNodi.add(n);
}
/* else if (appoggio.contains(msg)){
n= new Nodo(appoggio.substring(appoggio.indexOf(”(”)+2, appoggio.indexOf(”,”)),
”Messaggio”);
this.listaNodi.add(n);
}*/
else if (appoggio.contains(prec)) {
String primoNodo = appoggio.substring(appoggio.indexOf(”(”)+2, appoggio.indexOf(”,”));
String secondoNodo = appoggio.substring(appoggio.indexOf(”, ”)+3, appog-
gio.indexOf(”)”));
listaA.incrementaArchiUscenti(primoNodo);
matriceS.setAdiacenzeXNodo(primoNodo, secondoNodo);
}
else if (appoggio.contains(”adec(”)) // BRANCH = AND
String nodoInBranch = appoggio.substring(appoggio.indexOf(”(”)+2, appog-
gio.indexOf(”,”));
n = new Nodo(nodoInBranch,”Branch”);
n.setBranch(1);
this.listaNodi.add(n);
}
else if (appoggio.contains(”xdec(”)) // BRANCH = XOR
String nodoInBranch = appoggio.substring(appoggio.indexOf(”(”)+2, appog-
gio.indexOf(”,”));
n = new Nodo(nodoInBranch,”Branch”);
n.setBranch(2);
this.listaNodi.add(n);

}

✐

✐

“main” — 2009/2/25 — 2:02 — page 102 — #116
✐

✐

✐

✐

✐

✐

102 APPENDIX 2 - SOFTWARE

else if (appoggio.contains(”odec(”)) // BRANCH = OR
String nodoInBranch = appoggio.substring(appoggio.indexOf(”(”)+2, appog-
gio.indexOf(”,”));
n = new Nodo(nodoInBranch,”Branch”);
n.setBranch(3);
this.listaNodi.add(n);

}
else if (appoggio.contains(”syncmerge(”)) // MERGE = SYNC
String nodoInMerge = appoggio.substring(appoggio.indexOf(”(”)+2, appog-
gio.indexOf(”)”));
n = new Nodo(nodoInMerge,”Merge”);
n.setMerge(1);
this.listaNodi.add(n);

}
else if (appoggio.contains(”omerge(”)) // MERGE = SIMPLE
String nodoInMerge = appoggio.substring(appoggio.indexOf(”(”)+2, appog-
gio.indexOf(”)”));

n = new Nodo(nodoInMerge,”Merge”);
n.setMerge(3);
this.listaNodi.add(n);
}
else if (appoggio.contains(”xmerge(”)) // MERGE = SIMPLE
String nodoInMerge = appoggio.substring(appoggio.indexOf(”(”)+2, appog-
gio.indexOf(”)”));

n = new Nodo(nodoInMerge,”Merge”);
n.setMerge(2);
this.listaNodi.add(n);
}
}
}

for (int i=0;i¡listaNodi.size();i++) {
boolean presente=false;
String stringaListaNodo = ((Nodo)listaNodi.get(i)).getName(); //gt name sul
nodo mi restituisce una stringa

✐

✐

“main” — 2009/2/25 — 2:02 — page 103 — #117
✐

✐

✐

✐

✐

✐

CODE 103

for (int k=0;k¡listaA.getArchiUscenti().size();k++) {
String stringaListaA = ((AElement) listaA.getArchiUscenti().get(k)).getName();
if(stringaListaA.equals(stringaListaNodo))presente=true;}

// Fare il controllo per inserire i nodi che non contengono successori in A
// listaNodi.get(i)).getName()
// listaA.getArchiUscenti().get(i)
}
if (!presente){
AElement newAe = new AElement(stringaListaNodo,0);
listaA.insertElement(newAe);
}
}

for (int i=0;i¡listaA.getArchiUscenti().size();i++) {
a elem = new AElement(((AElement)listaA.getArchiUscenti().get(i)).getName(),0);
listaD.insertElement(a elem);
}
}

public void ApplicaAlgoritmoVisitaEsaustivaSemplice(){
this.algoritmi.VisitaEsaustivaSemplice(listaNodi, listaA, listaD, matriceS);
}

public static void main(String[] args) {
ManipolaFile manipolaFile = new ManipolaFile(”Prova grande.txt”, ”out.txt”);
manipolaFile.LeggiFile();
manipolaFile.ParserFile();
manipolaFile.StampaStrutture();
//manipolaFile.ScriviFile();
manipolaFile.ApplicaAlgoritmoVisitaEsaustivaSemplice();

}

private void DisegnaGrafo() {
JFrame frame = new JFrame();
JPanel grafo = new Grafo(this);
frame.add(grafo);

✐

✐

“main” — 2009/2/25 — 2:02 — page 104 — #118
✐

✐

✐

✐

✐

✐

104 APPENDIX 2 - SOFTWARE

frame.setBounds(50, 50, 800, 600);
frame.setVisible(true);
frame.setDefaultCloseOperation(JFrame.EXIT ON CLOSE);
}

private void StampaStrutture() {
System.out.println(”————————– GRAPH START ————————
————–”);
for (int i=0;i¡this.listaNodi.size();i++)
{System.out.println(”Nodo ”+i+” :”+ ((Nodo)this.listaNodi.get(i)).getName()+
”, act: ”+ ((Nodo)this.listaNodi.get(i)).getAct()+”, branch: ”+((Nodo)this.listaNodi.get(i)).getBranch()+”,
merge: ”+ ((Nodo)this.listaNodi.get(i)).getMerge());

}
System.out.println(” ”);
AElement ae;
for (int i=0;i¡this.listaA.getArchiUscenti().size();i++){
ae = (AElement) this.listaA.getArchiUscenti().get(i);
System.out.println(”AElement ”+ i + ” :”+ae.getName()+” numero archi:
”+ae.getNumeroArchi());
}
System.out.println(” ”);

SElement se;
for (int i=0;i¡this.matriceS.getS().size();i++)
{se = (SElement) this.matriceS.getS().get(i);
System.out.println(” SElement ”+i+” :”+se.getName());
for (int k=0;k¡se.getAdiacenze().size();k++)
{System.out.println(” Adiacenza ”+k+” :”+((String)se.getAdiacenze().get(k)));

}

}
System.out.println(”————————– GRAPH STOP —————————
———–”);
System.out.println();
System.out.println();

// DisegnaGrafo();

✐

✐

“main” — 2009/2/25 — 2:02 — page 105 — #119
✐

✐

✐

✐

✐

✐

CODE 105

}

}

✐

✐

“main” — 2009/2/25 — 2:02 — page 106 — #120
✐

✐

✐

✐

✐

✐

106 APPENDIX 2 - SOFTWARE

Figure A.2: Class Diagram A, Utility.

✐

✐

“main” — 2009/2/25 — 2:02 — page 107 — #121
✐

✐

✐

✐

✐

✐

CODE 107

Figure A.3: Class Diagram S, Adjacent Matrix.

Figure A.4: Class Diagram Algoritmi.

✐

✐

“main” — 2009/2/25 — 2:02 — page 108 — #122
✐

✐

✐

✐

✐

✐

✐

✐

“main” — 2009/2/25 — 2:02 — page 109 — #123
✐

✐

✐

✐

✐

✐

Bibliography

[All83] J.F. Allen. Maintaining knowledge about temporal intervals. Com-
munications of the ACM, 26(832.843), 1983.

[Baj00] Rupnik R. Krisper M. Bajec, M. Using business rules technologies
to bridge the gap between business and business applications. In
Ed G Rechnu, editor, Information Technology for Business Manage-
ment, pages 77–85, 2000.

[Boc05] Gruninger M. Bock, C. Psl: A semantic domain for flow models. In
Software and Systems Modeling Journal, 2005.

[Boo00] Rumbaugh J. Jacobson Booch, G. The Unified Modelling Language
User Guide. Booch, G., Rumbaugh, J., Jacobson,, 2000.

[Coaa] The OWL Services Coalition. Owl-s: Semantic markup for web ser-
vices.

[Coab] Workflow Management Coalition. Wfmc.

[Con96] ACT-NET Consortium. The active database management systems
manifesto: A rulebase of adbms features. In ACM Sigmod Record,
pages 40–49, 1996.

[dA99] Van der Aalst. Formalization and verification of event-driven process
chains. In Information & Software Technology, volume 41, pages
639–650, 1999.

[D.M91] Gabbay. D.M. Temporal Logic: Mathematical Foundations and Com-
putational Aspects. Oxford University Press, 1991.

[Dor] P. Dorsey. Business rules analysis in the real world.

109

✐

✐

“main” — 2009/2/25 — 2:02 — page 110 — #124
✐

✐

✐

✐

✐

✐

110 BIBLIOGRAPHY

[DRF05] H. Lausen J. de Bruijn R. Lara M. Stollberg A. Polleres C. Feier
C. Bussler D. Roman, U. Keller and D. Fensel. Applied Ontology,
volume 1, chapter Web Service Modeling Ontology. Applied Ontol-
ogy, 2005.

[FD07] F. Taglino. F. D’Antonio, M. Missikoff. Formalizing the opal ebusi-
ness ontology design patterns with owl. Third International Con-
ference on Interoperability for Enterprise Applications and Software,
I-ESA, 2007.

[Fuc08] Kaljurand K. Kuhn T. Fuchs, N.E. Discourse representation struc-
tures for ace 6.0. ifi 2008.02, Department of Informatics, University
of Zurich, 2008.

[GA04] F. van Harmelen. G. Antoniou. Handbook on Ontologies., chapter
Web ontology language: Owl., pages 67–92. Springer, 2004.

[GM99a] Schlenoff Craig Gruninger Michael. Process specification language
(psl): results of the first pilot implementation. In Proceedings of
IMECE: International Mechanical Engineering Congress and Expo-
sition, pages 1–10, 1999.

[GM99b] Schlenoff Craig Gruninger Michael. A robust process ontology for
manunfacturing system integration. NIST, 1999.

[Groa] Object Management Group. Business process modeling notation
specification. version 1.0. february 2006.

[Grob] Object Management Group. Business rules in models: Request for
information.

[groc] OMG UML group. Unified modeling language: Superstructure ver-
sion 2.1.1.

[Gro00] Business Rules Group. efining Business Rules What Are They
Really? Business Rules Group, 3rd edition, 2000.

[Gro06] OMG Group. Semantics of Business Vocabulary and Business Rules
Specification. OMG, 2006.

[hom] Business Rules Solutions homepage.

[IBM] SAP AG IBM. Ws-bpel extension for people–bpel4people 2005.

✐

✐

“main” — 2009/2/25 — 2:02 — page 111 — #125
✐

✐

✐

✐

✐

✐

BIBLIOGRAPHY 111

[idea] idef. Idef function modeling method.

[ideb] idef. Idef process description capture method.

[IIIa] BEA Inc SAP AG IBM Inc, Microsoft Corp and Siebel Systems Inc.
The business process execution language for web services. version
1.1, may 2003.

[IIIb] BEA Inc SAP AG IBM Inc, Microsoft Corp and Siebel Systems Inc.
The business process execution language for web services, version
1.1, may 2003.

[Inf] Infrex. Infrex. product overview.

[Int] Intalio. Intalio business process management suite.

[JM05] A. Price J. Mendling, M. zur Muehlen. Process-Aware Information
Systems, pages 281–316. WILEY-INTERSCIENCE, 2005.

[Mil93] Robin Milner. The Polyadic -Calculus: A Tutorial. Logic and Algebra
of Specification. Milner, 1993.

[Mil99] Robin Milner. Communicating and Mobile Systems: the Pi-Calculus.
Cambridge Univ. Press, 1999.

[MRG92] R. E. Fikes M. R. Genesereth. Knowledge interchange format, ver-
sion 3.0 reference manual. Technical Report 92-1, Computer Science
Department, Stanford University, 1992.

[OAS] OASIS. Reference model for service oriented architecture 1.0 (com-
mittee specification).

[Pet77] James L. Peterson. Petri Nets, volume 3, pages 223–252. ACM
Computing Surveys, 1977.

[Pet81] James Lyle Peterson. Petri Net Theory and the Modeling of Systems.
ISBN 0-13-661983-5. Prentice Hall, 1981.

[PF99] Reiter R. Pirri F. Some contributions to the metatheory of the sit-
uation calculus. In ACM, editor, Journal of the ACM, volume 46,
pages 325–361. ACM, 1999.

[Pic01] The Pi-calculus: A Theory of Mobile Processes. Cambridge Univer-
sity Press, 2001.

✐

✐

“main” — 2009/2/25 — 2:02 — page 112 — #126
✐

✐

✐

✐

✐

✐

112 BIBLIOGRAPHY

[PR04] K. Verma A. Sheth P. Rajasekaran, J. Miller. Enhancing web services
description and discovery to facilitate composition. In International
Workshop on Semantic Web Services and Web Process Composition,
2004.

[RM86] Kowalski R. and Sergot M. A logic-based calculus of events. In New
Generation Computing., number 4(1), pages 67–96. 1986.

[Ros97] R.G. Ross. The Business Rule Book: Classifying, Defining and Mod-
elling Rules. Database Research Group, 2nd edition, 1997.

[Ros02] Greenspan S. Wild C.: Rosca, D. Enterprise modelling and decision-
support for automating the business rules lifecycle. In Automated
Software Engineering, volume 9, 2002.

[SC00] et al Schlenoff Craig, Gruninger Michael. The Process Specifica-
tion Language (PSL) Overview and Version 1.0 Specification. NIST,
2000.

[Sol00] et al. Soley, R. Model Driven Architecture. OMG, 2000.

[Sow92] Zachman J.A. Sowa, F. Extending and formalising the framework
for information systems architecture. In BM Systems Journal. IBM,
1992.

[Tec] Yasu Technologies. Quickrules discovery guide.

[Val04] Vasilecas O. Valatkaite, I. On business rules approach to the in-
formation systems development. In Proc. of Twelfth International
Conference on Information Systems Development. Constructing the
Infrastructure for the Knowledge Economy., 2004.

[VdA06] Pesic M Van der Aalst, W.M.P. Decserflow: Towards a truly declar-
ative service flow language. In DecSerFlow. WS-FM, 2006.

[VH94] B. Von Halle. Back to Business Rule Basics, Database Programming
and Design, pages 15–18. Business Rules Group, 1994.

[W3C] W3C. Web service semantics - wsdl-s 2005.

[WFM] WFMC. Process definition interface – xml process definition lan-
guage, version 2.00, october 2005.

✐

✐

“main” — 2009/2/25 — 2:02 — page 113 — #127
✐

✐

✐

✐

✐

✐

BIBLIOGRAPHY 113

[Whi04] S.A. White. Introduction to BPMN. IBM, 2004.

[WK04] Loucopoulos P. Wan Kadir, W.M.N. Relating evolving business rules
to software design. In Journal of Systems Architecture, pages 367–
382, 2004.

