Pureté des fibres de Springer affines pour GL_4

Abstract : This thesis consists of two parts. In the first part, we prove the purity of affine Springer fibers for $\gl_{4}$ in the unramified case. More precisely, we have constructed a family of non standard affine pavings for the affine grassmannian, which induce an affine paving for the affine Springer fiber. In the second part, we introduce a notion of $\xi$-stability on the affine grassmannian $\xx$ for the group $G=\gl_{d}$, and we calculate the Poincaré polynomial of the quotient $\xx^{\xi}/T$ of the stable part $\xxs$ by the maximal torus $T$ by a process analogue to the Harder-Narasimhan reduction.
Document type :
Theses
Complete list of metadatas

Cited literature [20 references]  Display  Hide  Download

https://tel.archives-ouvertes.fr/tel-00656163
Contributor : Abes Star <>
Submitted on : Tuesday, January 3, 2012 - 4:27:21 PM
Last modification on : Friday, May 17, 2019 - 10:40:59 AM
Long-term archiving on : Monday, November 19, 2012 - 12:10:44 PM

File

VD2_CHEN_ZONGBIN_05122011.pdf
Version validated by the jury (STAR)

Identifiers

  • HAL Id : tel-00656163, version 1

Collections

Citation

Zongbin Chen. Pureté des fibres de Springer affines pour GL_4. Mathématiques générales [math.GM]. Université Paris Sud - Paris XI, 2011. Français. ⟨NNT : 2011PA112266⟩. ⟨tel-00656163⟩

Share

Metrics

Record views

477

Files downloads

229