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Prédiction de suites individuelles et cadre statistique classique : étude de quelques
liens autour de la régression parcimonieuse et des techniques d’agrégation

Résumé : Cette thèse s’inscrit dans le domaine de l’apprentissage statistique. Le cadre principal
est celui de la prévision de suites déterministes arbitraires (ou suites individuelles), qui recouvre
des problèmes d’apprentissage séquentiel où l’on ne peut ou ne veut pas faire d’hypothèses de sto-
chasticité sur la suite des données à prévoir. Cela conduit à des méthodes très robustes. Dans ces
travaux, on étudie quelques liens étroits entre la théorie de la prévision de suites individuelles et le
cadre statistique classique, notamment le modèle de régression avec design aléatoire ou fixe, où les
données sont modélisées de façon stochastique. Les apports entre ces deux cadres sont mutuels :
certaines méthodes statistiques peuvent être adaptées au cadre séquentiel pour bénéficier de garan-
ties déterministes ; réciproquement, des techniques de suites individuelles permettent de calibrer
automatiquement des méthodes statistiques pour obtenir des bornes adaptatives en la variance du
bruit. On étudie de tels liens sur plusieurs problèmes voisins : la régression linéaire séquentielle
parcimonieuse en grande dimension (avec application au cadre stochastique), la régression linéaire
séquentielle sur des boules `1, et l’agrégation de modèles non linéaires dans un cadre de sélection
de modèles (régression avec design fixe). Enfin, des techniques stochastiques sont utilisées et
développées pour déterminer les vitesses minimax de divers critères de performance séquentielle
(regrets interne et swap notamment) en environnement déterministe ou stochastique.

Mots-clés : Apprentissage statistique, prévision séquentielle, suites individuelles, agrégation PAC-
bayésienne, pondération exponentielle, régression parcimonieuse, grande dimension, calibration
automatique, vitesses minimax, regret externe, regret interne, sélection de modèles.

—————————————

Prediction of individual sequences and prediction in the statistical framework:
some links around sparse regression and aggregation techniques

Abstract: The topics addressed in this thesis lie in statistical machine learning. Our main frame-
work is the prediction of arbitrary deterministic sequences (or individual sequences). It includes
online learning tasks for which we cannot make any stochasticity assumption on the data to be pre-
dicted, which requires robust methods. In this work, we analyze several connections between the
theory of individual sequences and the classical statistical setting, e.g., the regression model with
fixed or random design, where stochastic assumptions are made. These two frameworks benefit
from one another: some statistical methods can be adapted to the online learning setting to sat-
isfy deterministic performance guarantees. Conversely, some individual-sequence techniques are
useful to tune the parameters of a statistical method and to get risk bounds that are adaptive to the
unknown variance. We study such connections for several connected problems: high-dimensional
online linear regression under a sparsity scenario (with an application to the stochastic setting),
online linear regression on `1-balls, and aggregation of nonlinear models in a model selection
framework (regression on a fixed design). We also use and develop stochastic techniques to com-
pute the minimax rates of game-theoretic online measures of performance (e.g., internal and swap
regrets) in a deterministic or stochastic environment.

Keywords: Statistical learning, online learning, machine learning, individual sequences, regret
bounds, PAC-Bayesian aggregation, exponential weighting, high-dimensional regression, sparsity,
parameter tuning, minimax rates, external regret, internal regret, swap regret, model selection.

AMS Classification: 68Q32, 62J02, 62J05, 62C20.
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Chapitre 1

Vue d’ensemble des résultats

Ce chapitre est une exposition des principaux résultats de cette thèse. On présente d’abord très
brièvement le cadre, qui est celui de la prévision séquentielle de suites déterministes arbitraires
(ou suites individuelles) ainsi que ses liens étroits avec des cadres statistiques plus classiques
comme le modèle de régression avec un plan d’expérience aléatoire ou fixe. (Une présentation
plus étoffée est proposée au chapitre 2.) Nous détaillons ensuite les contributions principales de
chaque chapitre (sections 1.2 à 1.5) et concluons en présentant plusieurs axes de recherche futurs.
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10 CHAPITRE 1. VUE D’ENSEMBLE DES RÉSULTATS

1.1 Prévision de suites individuelles et cadre statistique classique

Dans cette thèse, on s’intéresse à deux types de problèmes d’apprentissage, tous deux du domaine
de la prévision :

• Le cadre principal de cette thèse est celui de la prévision de suites déterministes arbitraires
(ou suites individuelles) : il recouvre des problèmes d’apprentissage séquentiel où l’on ne
peut ou ne veut pas faire d’hypothèses de stochasticité sur la suite des données à prévoir.
Les algorithmes séquentiels qui en résultent bénéficient de garanties déterministes – valables
dans le pire des cas – et sont donc en ce sens très robustes.

• Nous nous sommes également intéressés aux liens étroits entre la prévision de suites indivi-
duelles et des cadres satistiques plus classiques comme le modèle de régression avec design
fixe ou aléatoire, où les données observées sont cette fois modélisées de façon stochastique.

Dans ce chapitre, nous introduisons brièvement le cadre de la prévision de suites individuelles
et décrivons les liens qu’il nourrit avec le cadre statistique classique. Nous exposons ensuite les
contributions principales de cette thèse dans les sections 1.2 à 1.5, lesquelles correspondent aux
chapitres centraux, i.e., les chapitres 3 à 6. On clôt ce chapitre par un bref exposé des perspectives
de recherche (section 1.6). Une introduction plus mathématique aux prérequis nécessaires à la
lecture de cette thèse est proposée au chapitre 2.

Vue d’ensemble 
des résultats

Introduction 
mathématique

Bornes de sparsité en 
régression linéaire 

séquentielle

Régression linéaire 
séquentielle optimale et 

adaptative sur des boules L1

Vitesses minimax des 
regrets interne et swap

Agrégation de modèles 
non linéaires

Techniques stochastiques 
utilisées à des fins déterministes

FIGURE 1.1 – Structure générale de cette thèse : dépendences entre les chapitres 1 à 6.



1.1. PRÉVISION DE SUITES INDIVIDUELLES ET CADRE STATISTIQUE CLASSIQUE 11

1.1.1 Prévision de suites individuelles

Considérons la tâche de prévision séquentielle suivante. Un statisticien cherche à prévoir tour
après tour les valeurs inconnues d’une suite d’observations y1, y2, . . . ∈ Y à partir de prévisions
(ou décisions) â1, â2, . . . ∈ D. (Les espaces d’observation Y et de décision D peuvent différer.)
En théorie statistique classique de prévision séquentielle, il est d’usage de supposer que la suite
y1, y2, . . . est la réalisation d’un certain processus stochastique, par exemple ergodique station-
naire. De telles hypothèses permettent d’estimer séquentiellement les caractéristiques du proces-
sus sous-jascent, et ainsi de construire des méthodes de prévision performantes quand le modèle
statistique choisi décrit bien les données en jeu. Cela peut en revanche s’avérer irréaliste dans
certaines situations difficilement modélisables de façon statistique, par exemple, lorsque la suite
y1, y2, . . . évolue et réagit aux décisions â1, â2, . . . comme c’est le cas pour la détection de cour-
riels frauduleux ou pour l’investissement sur le marché boursier.

Dans la théorie dite de prévision de suites individuelles, aucune hypothèse de stochasticité
n’est faite sur la façon dont est générée la suite des observations y1, y2, . . .. Toutes les suites pos-
sibles sont considérées et des garanties théoriques sont disponibles pour chacune d’elles – d’où le
nom de prévision de suites individuelles.

Dans un cadre aussi général, il est irréaliste de chercher à prévoir correctement l’observation
yt à chaque date t et sur le seul fondement des observations passées. En revanche, si le statisticien
dispose à chaque instant t de prévisions de base (ou avis d’experts) aθ,t ∈ D, θ ∈ Θ, alors un but
raisonnable consiste à prévoir presque aussi bien que le meilleur des experts sur le long terme. Ce
problème générique, qualifié de prévision avec avis d’experts, est celui considéré dans cette thèse.
Une description sous la forme d’un jeu répété entre le statisticien et l’environnement est donnée
en figure 1.2.

Paramètres : espace de décision convexe D, espace d’observation Y , fonction
de perte ` : D × Y → R, et ensemble Θ des indices d’experts.

A chaque date t ∈ N∗ , {1, 2, . . .},

1. l’environnement choisit les avis d’experts aθ,t ∈ D pour tout θ ∈ Θ ; ils
sont révélés au statisticien ;

2. le statisticien prend une décision ât ∈ D, qu’il garde confidentielle ou
révèlea à l’environnement ;

3. l’environnement choisit et révèle l’observation yt ∈ Y ;

4. le statisticien encourt la perte `
(
ât, yt

)
et chaque expert θ ∈ Θ encourt

la perte `
(
aθ,t, yt

)
.

aSi l’environnement n’a pas accès aux décisions ât du statisticien, il est qualifié d’oublieux.
Si, à l’inverse, l’environnement peut réagir aux décisions passées du statisicien, il est qualifié
d’antagoniste. Ces deux cadres sont équivalents lorsque l’algorithme de prévision utilisé est
déterministe ; cf. section 2.3.1.

FIGURE 1.2 – Prévision avec avis d’experts.
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Dans ce cadre, la qualité des prévisions du statisticien après T tours de prévision est mesurée
par sa perte cumulée

∑T
t=1 `(ât, yt). Un objectif classique est alors de faire en sorte que, malgré

la contrainte de prévision séquentielle, cette perte cumulée soit presque aussi petite que celle du
meilleur expert a posteriori. Cela correspond à minimiser la différence

T∑
t=1

`(ât, yt)− inf
θ∈Θ

T∑
t=1

`(aθ,t, yt) .

Cette différence est appelée regret (externe). D’autres formes de regret en lien avec la théorie des
jeux (par ex., regret interne, regret swap) sont considérées au chapitre 5 — cf. section 1.4.

Dans l’essentiel de cette thèse, nous suivons l’approche des suites individuelles, i.e., nous
étudions des stratégies du statisticien dont le regret (externe) est “petit” uniformément en toutes
les suites y1, y2, . . . ∈ Y . Par “petit”, il convient d’entrendre sous-linéaire en T (puisqu’une vitesse
linéaire en T est triviale quand ` est bornée). Cela correspond à un regret moyen dans le pire des
cas qui est asymptotiquement négatif quand T → +∞, i.e.,

sup
y1,...,yT∈Y

(aθ,1)θ,...,(aθ,T )θ∈DΘ

{
1

T

T∑
t=1

`(ât, yt)− inf
θ∈Θ

1

T

T∑
t=1

`(aθ,t, yt)

}
6 o(1) quand T → +∞ .

Une telle garantie indique qu’en moyenne, le statisticien prévoit presque aussi bien que le meilleur
des experts a posteriori. Quand Θ est fini de cardinal K, des ordres de grandeur typiques pour
le regret moyen dans le pire des cas sont

√
(lnK)/T lorque la perte ` est bornée et convexe ou

(lnK)/T lorsque la perte ` est exp-concave.

On suppose ci-après que Θ = {1, . . . ,K}. Un exemple classique et fondamental d’algorithme
séquentiel atteignant les vitesses mentionnées ci-dessus est le prédicteur par pondération exponen-
tielle introduit en machine learning par [LW94] et [Vov90]. A chaque date t > 1, la prévision de
cet algorithme est donnée par la combinaison convexe ât ,

∑K
j=1 pj,t aj,t, où (p1,1, . . . , pK,1) =

(1/K, . . . , 1/K) et où, pour tout t > 2,

pi,t ,
exp
(
−η
∑t−1

s=1 `(ai,s, ys)
)

∑K
j=1 exp

(
−η
∑t−1

s=1 `(aj,s, ys)
) , 1 6 i 6 K ,

où η > 0 est un paramètre de l’algorithme. Le théorème suivant indique que pour une calibration
judicieuse de η, le regret de cet algorithme est au plus de l’ordre de

√
T lnK ou de ln(K) selon

que la fonction de perte ` est convexe bornée ou exp-concave. Ce résultat est prouvé au chapitre 2
aux théorèmes 2.1 et 2.2, qui sont dus respectivement à [CB99] (cf. aussi [CBL06, théorème 2.2]
et [CBFH+97, CBL99]) et à [KW99].

Théorème 1.1. Supposons que l’une des deux hypothèses suivantes soit vérifiée :

(A1) La fonction ` : D × Y → R est convexe en son premier argument et est bornée à valeurs
[B1, B2], où B1 < B2 ∈ R.

(A2) La fonction ` : D × Y → R est η0-exp-concave en son premier argument pour un certain
η0 > 0, i.e., la fonction a 7→ e−η0`(a,y) est concave sur D pour tout y ∈ Y .
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Alors, pour tout T ∈ N∗ et toute suite d’avis d’experts ai,t ∈ D et d’observations yt ∈ Y , le regret
du prédicteur par pondération exponentielle calibré avec η > 0 vérifie :

• Sous (A1),

T∑
t=1

`
(
ât, yt

)
− min

16i6K

T∑
t=1

`
(
ai,t, yt

)
6

lnK

η
+
ηT (B2 −B1)2

8
.

Cette borne, minimisée en η = (B2−B1)−1
√

8(lnK)/T , devient (B2−B1)
√

(T/2) lnK.

• Sous (A2) et lorsque η ∈ (0, η0],

T∑
t=1

`
(
ât, yt

)
− min

16i6K

T∑
t=1

`
(
ai,t, yt

)
6

lnK

η
.

La calibration du paramètre η est un problème crucial. En effet, les valeurs suggérées pour
η dépendent de quantités potentiellement inconnues au début de la tâche de prévision comme
l’étendue des pertes B2−B1 et l’horizon de prévision T sous l’hypothèse (A1). Sous l’hypothèse
(A2), la valeur optimale suggérée pour η est η0, qui est également inconnue en général — par
exemple, la perte carrée ` : [−B,B]× [−B,B]→ R définie par `(a, y) = (y − a)2 est 1/(8B2)-
exp-concave en son premier argument ; l’amplitude des observations et des avis d’experts B est
généralement inconnue.

Il est possible de calibrer séquentiellement η de façon totalement automatique, tout en garan-
tissant des bornes de regret quasiment identiques (à de petits facteurs multiplicatif et additif près).
Une technique générale due à [ACBG02] puis à [CBMS07] consiste à redéfinir à chaque date t les
poids exponentiels (p1,t, . . . , pK,t) à l’aide d’un paramètre ηt choisi en fonction des observations
passées ys et des avis d’experts passés ai,s, s = 1, . . . , t − 1. De telles procédures de calibra-
tion séquentielle sont décrites en détail au chapitre 2 (cf. section 2.2.2). Nous en développons aux
chapitres 3 et 4 pour la perte carrée (cf. sections 1.2 et 1.3).

1.1.2 Liens avec le cadre statistique classique

On décrit ci-après des liens qu’entretient la prévision de suites individuelles avec des cadres sa-
tistiques plus classiques comme le modèle de régression avec plan d’expérience (design) fixe ou
aléatoire, où les données observées sont cette fois modélisées de façon stochastique.

Considérons le problème générique de prévision suivant. SoitD un espace de décision convexe,
Z un espace d’observation1, et ` : D×Z → R une fonction de perte convexe en son premier argu-
ment. Au début de la tâche de prévision, le statisticien observe T copies indépendantes Z1, . . . , ZT
de Z ∈ Z , de loi commune inconnue. Le but du statisticien est de prévoir l’observation suivante2

ZT+1 ∼ Z presque aussi bien que le meilleur élément (constant) d’un ensemble Θ ⊂ D. Plus
précisément, il s’agit de construire une décision âT ∈ D mesurable en l’échantillon (Z1, . . . , ZT )

1On utilise la notationZ au lieu deY pour éviter toute ambiguité avec le modèle de régression avec design aléatoire,
où Yt désigne uniquement la sortie alors que le statisticien observe le couple Zt = (Xt, Yt) ∈ X × R. Dans ce cadre,
Z = X × R.

2La variable aléatoire ZT+1 ∈ Z est indépendente de (Z1, . . . , ZT ) et de même loi que Z.
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de sorte à minimiser une quantité appelée excès de risque en espérance3

E
[
`
(
âT , Z

)]
− inf
a∈Θ

E
[
`
(
a, Z

)]
,

où l’espérance de gauche est prise par rapport à (Z1, . . . , ZT ) et Z. Un exemple classique de telle
tâche de prévision est donnée par le modèle de régression avec design aléatoire.

Exemple 1.1 (Agrégation dans le modèle de régression avec design aléatoire).
Soit (X ,B) un espace mesurable et Θ un ensemble de fonctions mesurables de X vers R. Le sta-
tisticien observe T copies indépendantes (X1, Y1), . . . , (XT , YT ) d’un couple aléatoire (X,Y ) ∈
X × R de loi inconnue, avec E[Y 2] < ∞. Dans ce cadre, un objectif de prévision consiste à
estimer la fonction de régression f : x ∈ X 7→ E[Y |X = x] presque aussi bien que le meilleur
élément de Θ. Plus précisément, il s’agit de construire un estimateur f̂T : X → R à partir de
l’échantillon (X1, Y1), . . . , (XT , YT ) de sorte à minimiser l’excès de risque en espérance

E
[(
f(X)− f̂T (X)

)2]− inf
g∈Θ

E
[(
f(X)− g(X)

)2]
,

où les espérances sont prises par rapport à (X1, Y1), . . . , (XT , YT ) et X . Or, par de simples
manipulations (en développant les carrés et en conditionnant par (X1, Y1), . . . , (XT , YT ), X),
l’excès de risque précédent est égal à

E
[(
Y − f̂T (X)

)2]− inf
g∈Θ

E
[(
Y − g(X)

)2]
.

Par conséquent, ce problème d’agrégation correspond au cadre décrit ci-dessus avec Z = X ×R,
avec D égal à l’ensemble des fonctions mesurables de X vers R, et avec ` : D × Z → R définie
par `

(
g, (x, y)

)
=
(
y − g(x)

)2.

La tâche de prévision décrite précédemment n’est pas séquentielle – on la qualifie de batch en
anglais car toutes les observations sont disponibles d’emblée. Cela n’interdit pas en revanche de
traiter l’échantillon de façon séquentielle. On rappelle ci-dessous une technique standard qui per-
met de convertir un algorithme séquentiel encourant un faible regret pour des suites individuelles
en une méthode stochastique encourant un petit excès de risque en espérance pour des suites i.i.d..

Soit (ãt)t>1 un algorithme séquentiel, i.e., dans ce cadre, une suite de fonctions mesurables
ãt : Zt−1 → D (ã1 est déterministe). L’échantillon Z1:T , (Z1, . . . , ZT ) est traité de façon
séquentielle de la date 1 à la date T : l’algorithme (ãt)t>1 produit séquentiellement les décisions
ãt(Z1:t−1) ∈ D mesurables en Z1:t−1 , (Z1, . . . , Zt−1), t = 1, . . . , T . Le résultat suivant est
dû à [CBCG04] (cf. aussi [Lit89]) ; nous le reprouvons au chapitre 2, proposition 2.5. Il indique
qu’une façon simple de convertir l’algorithme séquentiel (ãt)t>1 en méthode stochastique est de
considérer la moyenne

âT (Z1:T ) =
1

T

T∑
t=1

ãt(Z1:t−1) . (1.1)

Proposition 1.1 (Conversion online to batch, cf. proposition 2.5).
SoitD un espace de décision convexe, Z un espace d’observation, et ` : D×Z → R une fonction
de perte convexe en son premier argument. Soit (ãt)t>1 un algorithme séquentiel et (RT )T>1 une

3Le risque en espérance de la procédure âT correspond quant à lui à la quantité E
[
`
(
âT , Z

)]
.
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suite de réels telle que, pour tout T > 1 et tous z1, . . . , zT ∈ Z ,

T∑
t=1

`(ãt, zt)− inf
a∈Θ

T∑
t=1

`(a, zt) 6 RT .

Alors la conversion (1.1) appliquée à l’algorithme (ãt)t>1 donne une procédure âT telle que, pour
tout échantillon i.i.d. (Z1, . . . , ZT ) ∈ ZT ,

E
[
`
(
âT , Z

)]
− inf
a∈Θ

E
[
`
(
a, Z

)]
6
RT
T

,

où les espérances sont prises par rapport à (Z1, . . . , ZT , Z), avec Z ∈ Z une variable aléatoire
indépendante de (Z1, . . . , ZT ) et de même loi que Z1.

Sans surprise, la proposition précédente montre que tout algorithme séquentiel qui bénéficie
de garanties déterministes peut être converti en une méthode statistique bénéficiant de garanties en
espérance. Des bornes avec grande probabilité ont également été obtenues par [CBG08] dans un
cadre non nécessairement convexe et par [Zha05, KT09] dans un cadre “très convexe” (perte carrée
ou pertes fortement convexes). En régression, la conversion précédente est adaptée au modèle de
régression avec design aléatoire (cf. exemple 1.1). Le cas du design fixe peut, dans une certaine
mesure, être traité avec des techniques similaires ; voir la section 3.4.2.

La conversion précédente – qualifiée de online to batch en anglais – établit un lien de la
prévision de suites individuelles vers le cadre statistique classique. Il s’avère que les apports de
ces deux domaines sont en fait réciproques.

• Des méthodes statistiques classiques, conçues et étudiées sous des hypothèses stochastiques,
peuvent aussi, moyennant quelques adaptations, s’avérer performantes dans un cadre de
suites individuelles. C’est le cas de la méthode de régression ridge4 de [HK70], initialement
analysée dans le modèle de régression avec design fixe, qui a ensuite été adaptée et étudiée
pour des suites individuelles par [AW01] et [Vov01]. Les algorithmes de descente de gra-
dient stochastique bénéficient également de garanties déterministes comme l’ont montré, par
ex., [CBLW96, Zin03]. C’est le cas également du prédicteur par pondération exponentielle,
qui a été étudié parallèlement en machine learning et en statistique5, des travaux fondateurs
étant respectivement [LW94, Vov90] et [Cat99, Yan00, Yan01]. Dans tous les cas, analyser
des méthodes statistiques dans un cadre de suites individuelles permet d’en comprendre le
cœur déterministe et d’en évaluer la robustesse (i.e., de jauger à quel point les hypothèses
stochastiques sont nécessaires). Au chapitre 3, notre algorithme séquentiel SeqSEW est ins-
piré de la méthode statistique Sparse Exponential Weighting [DT08, DT11]. Ainsi, notre
analyse déterministe de l’algorithme SeqSEW indique que la méthode de [DT11] fonctionne
essentiellement pour des raisons déterministes.

• D’après la remarque précédente, la théorie de la prévision de suites individuelles hérite
d’idées fructueuses venant du cadre statistique classique, puisque ce dernier lui fournit de
sérieux candidats pour la conception de nouveaux algorithmes séquentiels.

4Rappelons qu’il s’agit d’une méthode de régression des moindres carrés régularisés par la norme `2.
5Dans le modèle de régression avec design aléatoire, la méthode statistique résultant d’un prédicteur par

pondération exponentielle via la conversion (1.1) est qualifiée de progressive mixture rule en anglais ; cf. [Cat04].
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• En retour, les algorithmes séquentiels nouvellement conçus peuvent être rapatriés dans le
cadre statistique classique via la conversion online to batch (1.1). Cela permet de construire
des méthodes statistiques calibrées automatiquement en fonction des données (par des tech-
niques de suites individuelles) et qui sont adaptatives. Nous illustrons cet intérêt au cha-
pitre 3 où l’on déduit des bornes de risque en design aléatoire similaires à [DT11], mais qui
sont adaptatives en la variance inconnue du bruit (à un facteur logarithmique près) quand ce
dernier est gaussien.

Nous venons d’évoquer des liens algorithmiques entre la prévision de suites individuelles et
le cadre statistique classique. Cela induit notamment des similarités au niveau des techniques de
preuve. Par exemple, la formule de dualité pour la divergence de Kullback-Leibler rappelée en
annexe A.1 est un outil clé tant dans le cadre déterministe (chapitres 3 et 4) que dans le cadre
stochastique (chapitre 6, où l’on considère le modèle de régression avec design fixe). Au chapitre 4,
nous adaptons également un argument statistique classique connu sous le nom d’argument à la
Maurey, qui permet de déterminer la qualité de l’approximation d’une discrétisation adéquate du
simplexe en dimension quelconque. Comme en témoigne la preuve du théorème 4.2, cet argument
s’adapte directement au cadre déterministe.

D’autres similarités dans les techniques de preuve apparaissent aussi pour l’obtention de bornes
inférieures. Une façon d’obtenir des bornes inférieures non asymptotiques en suites individuelles
repose en effet sur l’utilisation d’outils de théorie de l’information comme le lemme de Fano ou
l’inégalité de Pinsker (cf. annexe A.7), comme en statistique classique. La vitesse minimax du re-
gret externe peut ainsi être obtenue via une variante du lemme de Fano ; l’analyse correspondante
est due à [ACBFS02, CBLS05] et rappelée en section 2.3.2. En s’inspirant de ces techniques et
de [Sto05, théorème 3.3], nous obtenons au chapitre 5 une borne inférieure sur le regret swap via
l’inégalité de Pinsker.

Enfin, des techniques stochastiques peuvent être utilisées à des fins purement déterministes.
C’est le cas de la randomisation, que nous exploitons pour l’argument à la Maurey mentionné
ci-dessus ou pour obtenir des bornes inférieures (cf. section 2.1.3 pour plus de détails). C’est le
cas aussi des inégalités de concentration, telle l’inégalité de Hoeffding ou l’inégalité de Bernstein,
qui permettent de déduire des bornes de regret pour des suites déterministes — cf. section 2.2.1.
Au chapitre 5, nous développons également une technique stochastique qui permet de majorer le
regret minimax pour des suites individuelles (relativement à diverses formes de regret, par ex., ex-
terne, interne, swap). Cette technique repose en partie sur l’utilisation d’une inégalité élémentaire
de concentration de martingales, l’inégalité de Hoeffding-Azuma (cf. annexe A.5).

Les liens entre suites individuelles et cadre statistique classique évoqués précédemment sont
partiellement représentés en figure 1.1. Nous détaillons ci-après les contributions principales de
cette thèse, qui correspondent aux chapitres 3 à 6.

1.2 Bornes de parcimonie en régression linéaire séquentielle

Au cours de la dernière décennie, le phénomène de parcimonie – ou sparsité – a fait l’objet de
nombreux travaux dans le cadre statistique classique. Parmi les outils introduits à cet effet, la
notion d’inégalité oracle de sparsité – ou sparsity oracle inequality en anglais – joue un rôle
fondamental. En régression linéaire, de telles bornes impliquent que la tâche consistant à prévoir



1.2. BORNES DE PARCIMONIE EN RÉGRESSION LINÉAIRE SÉQUENTIELLE 17

presque aussi bien qu’un vecteur inconnu de grande dimension est statistiquement faisable pourvu
que ce vecteur ait peu de coordonnées non nulles.

Au chapitre 3, on introduit un équivalent séquentiel déterministe de la notion d’inégalité oracle
de sparsité. Nous prouvons de telles bornes pour un algorithme séquentiel appelé SeqSEW qui
procède par pondération exponentielle et par troncature dépendante des données. Dans un second
temps seulement, on applique une version totalement automatique de cet algorithme au cas par-
ticulier de suites i.i.d.. Les bornes de risque obtenues sont similaires à celles de [DT11] mais
répondent à deux questions soulevées par les auteurs. En particulier, nos bornes sont adaptatives
en la variance inconnue du bruit (à un facteur logarithmique près) si ce dernier est gaussien. Nous
traitons aussi le cas du design fixe comme dans [DT08].

Les contributions principales du chapitre 3 sont détaillées ci-après.

1.2.1 Cadre et enjeux

Contexte : régression linéaire séquentielle pour des suites individuelles

Le cadre principal du chapitre 3 est celui de la régression linéaire séquentielle pour des suites
individuelles. Il s’agit d’un cas particulier du problème de la prévision avec avis d’experts décrit
en figure 1.2. Un statisticien doit prévoir de façon séquentielle, à chaque tour t = 1, 2, . . ., la
valeur yt ∈ R d’une suite inconnue d’observations en fonction d’une valeur d’entrée xt ∈ X et
de prédicteurs de base ϕj : X → R, 1 6 j 6 d, à partir desquels il formule sa propre prévision
ŷt ∈ R (la famille (ϕj)16j6d est qualifiée de dictionnaire). La qualité des prévisions est évaluée
avec la perte carrée. L’objectif du statisticien est de prévoir presque aussi bien que le meilleur
prédicteur linéaire u ·ϕ ,

∑d
j=1 ujϕj , où u ∈ Rd, i.e., de satisfaire, uniformément sur toutes les

suites individuelles (xt, yt)16t6T , une borne de regret de la forme

T∑
t=1

(
yt − ŷt

)2
6 inf
u∈Rd

{
T∑
t=1

(
yt − u ·ϕ(xt)

)2
+ ∆T,d(u)

}
,

pour un terme de regret ∆T,d(u) aussi petit que possible et, en particulier, sous-linéaire en T .
(Par soucis de clarté, on omet les dépendances de ∆T,d(u) en les amplitudes max16t6T ‖xt‖∞ et
max16t6T |yt|.)

Hypothèse de parcimonie

Dans le cadre décrit ci-dessus, une variante6 de l’algorithme séquentiel ridge étudiée par [AW01]
et [Vov01] assure, lorsqu’elle est calibrée illégalement comme suggéré en section 2.4.2, un regret
d’ordre au plus d lnT . Quand la dimension ambiante d est bien plus grande que le nombre de tours
de prévision T , cette dernière borne de regret est bien supérieure à T et est donc en quelque sorte
triviale. Puisque la borne d lnT est optimale en un certain sens (cf. [Vov01, théorème 2]), des hy-
pothèses supplémentaires sont nécessaires pour garantir des performances théoriques intéressantes.

Une hypothèse naturelle, qui a déjà été maintes fois étudiée dans le cadre stochastique, est qu’il
existe une combinaison linéaire parcimonieuse u∗ (sparse en anglais, i.e., avec s� T/(lnT ) co-
ordonnées non nulles) dont la perte cumulée est petite. Si le statisticien connaissait à l’avance le
support J(u∗) , {j : u∗j 6= 0} de u∗, il pourrait appliquer le même algorithme de prévision

6Ce prédicteur séquentiel est rappelé au chapitre 2 ; cf. (2.26) en section 2.4.2.
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séquentielle que précédemment mais seulement au sous-espace vectoriel de dimension s donné
par

{
u ∈ Rd : ∀j /∈ J(u∗), uj = 0

}
. Le regret de cet “oracle” serait alors au plus de l’ordre

de s lnT et donc sous-linéaire en T . Sous cette hypothèse de parcimonie, un regret sous-linéaire
semble donc possible, même si, bien sûr, la borne de regret s lnT peut seulement être utilisée
comme une borne idéale de référence (puisque le support de u∗ est inconnu).

Au chapitre 3, on montre qu’il est possible d’atteindre une borne de regret proportionnelle à s
(à un facteur logarithmique près). On prouve ainsi en corollaire 3.1 (cf. proposition 1.2 ci-dessous)
et ses raffinements (cf., par ex., proposition 1.3 ci-dessous) des bornes de regret de la forme

T∑
t=1

(yt − ŷt)2 6 inf
u∈Rd

{
T∑
t=1

(
yt − u ·ϕ(xt)

)2
+
(
‖u‖0 + 1

)
gT,d

(
‖u‖1 , ‖ϕ‖∞

)}
, (1.2)

où ‖u‖0 désigne le nombre de coordonnées non nulles de u et où g est croissante mais croı̂t au
plus logarithmiquement en T , d, ‖u‖1 ,

∑d
j=1 |uj |, et ‖ϕ‖∞ , supx∈X max16j6d |ϕj(x)|. Nous

appellerons bornes de regret de sparsité – ou bornes de parcimonie – les bornes de regret de la
forme précédente.

Travaux connexes dans les cadres stochastique et déterministe

La borne de regret (1.2) peut être vue comme un équivalent séquentiel déterministe des inégalités
oracle de sparsité introduites dans le cadre statistique classique au cours de la dernière décennie.
Un exemple typique de telles bornes de risque est

R
(
ûT
)
6 (1 + a) inf

u∈Rd

{
R(u) + C(a)

‖u‖0 ln d+ 1

T

}
(1.3)

en espérance ou avec grande probabilité, où R(u) désigne le risque L2 de u · ϕ si le design est
aléatoire (i.e., R(u) = E

[(
f(X)− u · ϕ(X)

)2]) ou le risque empirique de u · ϕ si le design est
fixe (i.e.,R(u) = T−1

∑T
t=1

(
f(xt)−u ·ϕ(xt)

)2 sur le design (x1, . . . , xT )). Ainsi, les inégalités
oracle de sparsité expriment un compromis entre le risqueR(u) et le nombre de coordonnées non-
nulles ‖u‖0 de tout vecteur u ∈ Rd. De telles bornes ont été obtenues par [BM01a] via des argu-
ments de sélection de modèles et ont ensuite été développées, entre autres, par [BM07a, BTW07a]
dans le modèle de régression avec design fixe et par [BTW04] dans le modèle de régression avec
design aléatoire. Une introduction plus détaillée avec de plus amples références est proposée au
chapitre 2 (section 2.6).

Mentionnons néanmoins que, récemment, depuis les travaux de [DT08], des inégalités oracle
de sparsité avec constante 1 devant l’infimum7 ont été prouvées sans presque aucune hypothèse
sur le dictionnaire (ϕj)j , et pour des méthodes pouvant être approchées numériquement à un coût
algorithmique raisonnable pour de grandes valeurs de la dimension ambiante d. Ces méthodes
procèdent par pondération exponentielle ; cf. [DT07, DT08, RT11, AL11] pour le modèle de
régression avec design fixe et [DT11, AL11] pour le modèle de régression avec design aléatoire.

Quant au cadre séquentiel déterministe, à notre connaissance, les propositions 1.2 et 1.3 ci-
dessous (cf. aussi théorème 3.1 au chapitre 3) fournissent les premiers exemples de borne de regret

7Un exemple de telles bornes est donné par (1.3) avec a = 0. Ces bornes permettent de majorer les excès de risque
R
(
ûT
)
− inf{‖u‖06s}R(u) pour tout s ∈ {0, . . . , d}.
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de sparsité au sens de (1.2). De récents travaux [LLZ09, SST09, Xia10, DSSST10] en optimisation
convexe séquentielle ont certes abordé la question de la sparsité, mais sous un tout autre angle.
Dans le cas de la régularisation `1 sous la perte carrée, ces travaux proposent des algorithmes qui
prédisent comme une combinaison linéaire parcimonieuse ŷt = ût · ϕ(xt) des prévisions de base
(i.e., ‖ût‖0 est petit), alors que de telles garanties ne semblent pas pouvoir être montrées pour notre
algorithme SeqSEW. En revanche, ces travaux prouvent des bornes sur le regret `1-régularisé de
la forme

T∑
t=1

(
(yt − ût · xt)2 + λ ‖ût‖1

)
6 inf
u∈Rd

{
T∑
t=1

(
(yt − u · xt)2 + λ ‖u‖1

)
+ ∆̃T,d(u)

}
,

pour un terme de regret ∆̃T,d(u) qui croı̂t beaucoup plus rapidement (comme une puissance et non
logarithmiquement) en la dimension ambiante d, en la norme ‖u‖1 ou en T . Les bornes prouvées
pour ces algorithmes sont donc sous-optimales dans le cadre qui nous intéresse ici (prévision sur
des boules `0 de petit diamètre). Cela contraste avec les bornes de regret de la forme (1.2) que
vérifie, par exemple, notre algorithme SeqSEW.

On reprend ci-après à grands traits les algorithmes et résultats principaux du chapitre 3, d’abord
dans le cadre déterministe (section 1.2.2) puis dans le cadre stochastique (section 1.2.3).

1.2.2 Bornes de sparsité en suites individuelles

Pour simplifier l’analyse, on suppose d’abord que, au début du jeu, le statisticien a accès au nombre
T de tours de prévision, à une borne By sur l’amplitude des observations |y1|, . . . , |yT | et à une
borne BΦ sur la trace de la matrice de Gram empirique, i.e.,

y1, . . . , yT ∈ [−By, By] et
d∑
j=1

T∑
t=1

ϕ2
j (xt) 6 BΦ .

La première version de notre algorithme est définie en figure 1.3. Nous l’appelons SeqSEW puis-
qu’il s’agit d’une variante adaptée aux suites individuelles de l’algorithme Sparse Exponential
Weighting introduit dans le cadre statistique classique par [DT07, DT08].

En utilisant un lemme PAC-Bayésien déterministe dû à [Aud09] et la forme particulière du
prior πτ (à queue lourde), on montre que cet algorithme vérifie la borne de regret suivante.

Proposition 1.2 (cf. corollaire 3.1). Supposons que, pour des constantes connues By, BΦ > 0, les
(x1, y1), . . . , (xT , yT ) sont tels que y1, . . . , yT ∈ [−By, By] et

∑d
j=1

∑T
t=1 ϕ

2
j (xt) 6 BΦ .

Alors, l’algorithme SeqSEWB,η
τ calibré avec B = By, η = 1/(8B2

y) et τ =
√

16B2
y/BΦ vérifie

T∑
t=1

(yt − ŷt)2 6 inf
u∈Rd

{
T∑
t=1

(
yt − u ·ϕ(xt)

)2
+ 32B2

y ‖u‖0 ln

(
1 +

√
BΦ ‖u‖1

4By ‖u‖0

)}
+ 16B2

y .

Remarquons que, si ‖ϕ‖∞ , supx∈X max16j6d |ϕj(x)| est fini, alors la proposition précédente
fournit une borne de regret de sparsité au sens de (1.2). En effet, dans ce cas, on peut prendre
BΦ = d T ‖ϕ‖2∞, ce qui donne une borne de regret proportionnelle à ‖u‖0 et qui croı̂t logarithmi-
quement en d, T , ‖u‖1 et ‖ϕ‖∞.
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Paramètres : seuilB > 0, température inverse η > 0 et résolution τ > 0 à laquelle on associe
la loi a priori πτ sur Rd défini par

πτ (du) ,
d∏
j=1

(3/τ) duj
2
(
1 + |uj |/τ

)4 .
Initialisation : p1 , πτ .

A chaque tour de prévision t > 1,

1. Recevoir la donnée xt et prévoir ŷt ,
∫
Rd

[
u ·ϕ(xt)

]
B
pt(du) ,

où [x]B , max
{
−B,min{B, x}

}
;

2. Recevoir l’observation yt et calculer la probabilité a posteriori pt+1 sur Rd via l’expres-
sion (Wt+1 est une constante de renormalisation)

pt+1(du) ,
1

Wt+1
exp

(
−η

t∑
s=1

(
ys −

[
u ·ϕ(xs)

]
B

)2
)
πτ (du) . (1.4)

FIGURE 1.3 – Définition de l’algorithme SeqSEWB,η
τ .

Si le statisticien n’a pas accès à une borne a priori By sur les observations, il peut s’adapter
séquentiellement à cette borne inconnue en tronquant les prévisions u ·ϕ(xt) de façon dépendante
des données. L’algorithme plus sophistiqué SeqSEW∗

τ produit ainsi les prévisions

ŷt ,
∫
Rd

[
u ·ϕ(xt)

]
Bt
pt(du) , où Bt , inf

({√
2k; k ∈ Z

}
∩
[

max
16s6t−1

|ys|,+∞
))

,

et où la probabilité a posteriori pt sur Rd est définie comme précédemment mais en remplaçant la
température η par ηt , 1/(8B2

t ) et le seuil B par Bs pour chaque indice s de la somme dans (1.4).
Une analyse PAC-Bayésienne plus approfondie (cf. lemme 3.2) conduit à la borne suivante.

Proposition 1.3 (cf. proposition 3.2). Pour tout τ > 0, l’algorithme SeqSEW∗
τ précédent vérifie

T∑
t=1

(yt − ŷt)2 6 inf
u∈Rd

{
T∑
t=1

(
yt − u ·ϕ(xt)

)2
+ 64

(
max

16t6T
y2
t

)
‖u‖0 ln

(
1 +

‖u‖1
‖u‖0 τ

)}

+ τ2
d∑
j=1

T∑
t=1

ϕ2
j (xt) + 32 max

16t6T
y2
t .

Au vu de la dernière proposition, la calibration de τ requiert encore la connaissance a priori d’une
borne BΦ sur

∑d
j=1

∑T
t=1 ϕ

2
j (xt). Cela peut être évité au moyen d’une technique classique ap-

pelée doubling trick, qui donne lieu à une borne similaire (cf. théorème 3.1 et corollaire 3.4) à un
facteur logarithmique près, mais pour un algorithme cette fois totalement automatique.

1.2.3 Adaptativité en la variance pour des données i.i.d.

Dans cette sous-section, on applique l’algorithme SeqSEW au modèle de régression avec design
aléatoire (le cas du design fixe peut, dans une moindre mesure, être traité avec des techniques simi-
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laires, cf. section 3.4.2). Le statisticien a accès à T copies indépendantes (X1, Y1), . . . , (XT , YT )

de (X,Y ) ∈ X × R de loi inconnue. On suppose que E[Y 2] < ∞ ; l’objectif du statisticien est
d’estimer la fonction de régression f : X → R définie par f(x) , E[Y |X = x] pour tout x ∈ X .
On pose aussi ‖h‖L2 , (E[h(X)2])1/2 pour toute fonction mesurable h : X → R.

On emploie la conversion online to batch décrite en proposition 1.1. L’échantillon (Xt, Yt)
T
t=1

est traité de façon séquentielle, en appliquant l’algorithme SeqSEW∗
τ de la date 1 à la date T avec

τ = 1/
√
dT . L’estimateur f̂T : X → R retenu est défini par

f̂T (x) ,
1

T

T∑
t=1

∫
Rd

[
u ·ϕ(x)

]
Bt
pt(du) .

Contrairement à de nombreux travaux en statistique comme [Cat04, BN08, DT11], l’estimateur
f̂T est totalement automatique : il ne dépend d’aucune connaissance a priori sur la loi inconnue de
(X,Y ) telle que la variance du bruit E

[
(Y − f(X))2

]
ou les normes ‖ϕj‖∞ ou ‖f − ϕj‖∞ (nous

ne supposons d’ailleurs pas que ces dernières quantités sont finies). Nous prouvons au chapitre 3
une borne de risque pour f̂T valable sous de faibles hypothèses sur la loi de Y (cf. théorème 3.2 et
corollaire 3.5). Nous mentionnons seulement le cas sous-gaussien ci-dessous.

Proposition 1.4 (cf. corollaire 3.6). Supposons que ‖f‖∞ < +∞ et que, pour une constante

σ2 > 0 inconnue, E
[
eλ(Y−f(X))

∣∣∣ X] 6 eλ
2σ2/2 p.s.. Alors, pour tout T > 2,

E
[wwwf − f̂Twww2

L2

]
6 inf
u∈Rd

{
‖f − u ·ϕ‖2L2 + 128

(
‖f‖2∞ + 2σ2 ln(2eT )

) ‖u‖0
T

ln

(
1 +

√
dT ‖u‖1
‖u‖0

)}

+
1

dT

d∑
j=1

‖ϕj‖2L2 +
64

T

(
‖f‖2∞ + 2σ2 ln(2eT )

)
.

Cette borne est comparable à la proposition 1 prouvée par Dalalyan et Tsybakov [DT11].
Elle vaut néanmoins sur Rd tout entier au lieu de boules `1 de rayons finis, ce qui résout une
question laissée ouverte dans [DT11, section 4.2]. Par ailleurs, notre algorithme ne requiert pas la
connaissance a priori du facteur de variance σ2 > 0 du bruit, ce qui résout une seconde question
soulevée dans [DT11, section 5.1, remarque 6].

1.3 Régression linéaire séquentielle optimale et adaptative sur des
boules `1

Au chapitre 4, nous abordons un problème proche de celui du chapitre 3 : la régression linéaire
séquentielle sur des boules `1. Nous en détaillons ci-après le cadre et nos principales contributions.

1.3.1 Cadre et objectif de prévision

On considère la formulation suivante8 du problème de régression linéaire séquentielle pour des
suites individuelles (cf. section 2.4 pour une introduction à ce cadre). Au début de la tâche de

8La description du cadre de régression linéaire séquentielle diffère très légèrement de celle de la section 1.2 : le
vecteur des prévisions de base à l’instant t est xt alors qu’il s’agissait de ϕ(xt) en section 1.2. Les deux descriptions
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prévision, l’environnement choisit une suite d’observations (yt)t>1 dans R et une suite de vecteurs
de prévisions de base (xt)t>1 dans Rd, toutes deux initialement cachées au statisticien. A chaque
date t ∈ N∗ = {1, 2, . . .}, l’environnement révèle le vecteur xt ∈ Rd, le statisticien formule en-
suite sa propre prévision ŷt ∈ R, puis l’environnement révèle l’observation yt ∈ R ; le statisticien
encourt alors la perte carrée (yt − ŷt)2.

Objectif de prévision

Etant donné un rayon U > 0 et un horizon de prévision T > 1, l’objectif du statisticien est ici
de prévoir presque aussi bien que le meilleur prédicteur linéaire x ∈ Rd 7→ u · x ,

∑d
j=1 ujxj

tel que ‖u‖1 ,
∑d

j=1 |uj | 6 U . Autrement dit, il s’agit de minimiser le regret sur la boule `1

B1(U) ,
{
u ∈ Rd : ‖u‖1 6 U

}
défini par

T∑
t=1

(yt − ŷt)2 − min
u∈B1(U)

{
T∑
t=1

(yt − u · xt)2

}
.

Cet objectif de prévision généralise la tâche d’agrégation convexe ; il est d’ailleurs possible
d’être compétitif vis-à-vis de toutes les boules B1(U), simultanément pour tout U > 0 (cf. fin
de la section 1.3.3). Cette tâche peut s’avérer utile quand les observations yt sont correctement
approchées par une combinaison linéaire u ∈ Rd des prévisions de base xj,t, j = 1, . . . , d, avec
une petite norme ‖u‖1 — ce qui peut être le cas, par exemple, si u est approximativement par-
cimonieuse. Notons enfin que la dimension ambiante d peut être petite ou grande relativement à
l’horizon de prévision T : on considère tous les cas.

Dans la suite, on présente des algorithmes et des bornes sur leur regret qui valent uniformément
en toutes les individuelles9 (xt, yt)16t6T telles que ‖xt‖∞ 6 X and |yt| 6 Y pour tout t =

1, . . . , T , où X,Y > 0. Ces bornes de regret dépendent de quatre quantités importantes : U , X , Y
et T , lequelles peuvent être connues ou inconnues du statisticien.

On présente ci-après les principales contributions du chapitre 4 : la première concerne la
détermination de la vitesse minimax du regret (section 1.3.2), la seconde a trait à l’adaptation
en les quantités X , Y , T et U lorsqu’elles sont inconnues (section 1.3.3), et la troisième consiste
en un raffinement des bornes de regret via une technique appelée lipschitzification des pertes (sec-
tion 1.3.4).

1.3.2 Vitesse optimale

Notre première contribution consiste en la détermination de l’ordre de grandeur du regret minimax
sur B1(U) pour des données bornées par X et Y défini par

inf
(ŷt)t>1

sup
‖x1‖∞,...,‖xT ‖∞6X
|y1|,...,|yT |6Y

{
T∑
t=1

(yt − ŷt)2 − min
‖u‖16U

T∑
t=1

(yt − u · xt)2

}
, (1.5)

sont en fait équivalentes ; celle choisie ici est plus classique en suites individuelles, alors que celle avec ϕ était plus
adaptée pour le passage au design aléatoire.

9En fait, nos résultats sont aussi valables quand (xt, yt)t>1 est engendrée par un environnement antagoniste
puisque nous ne considérons que des algorithmes déterministes. Cf. section 2.3.1 pour de plus amples détails.
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où le supremum est pris sur toutes les suites individuelles (x1, y1), . . . , (xT , yT ) ∈ Rd × R telles
que ‖xt‖∞ 6 X et |yt| 6 Y pour tout t = 1, . . . , T , et où l’infimum est pris sur tous les
prédicteurs séquentiels (ŷt)t>1, i.e., toutes les suites de fonctions ŷt : (Rd × R)t−1 × Rd → R
associant aux données passées (xs, ys), 1 6 s 6 t − 1, et à la donnée d’entrée xt la prévision
au temps t, encore notée ŷt par un léger abus de notation. Le regret minimax (1.5) correspond
donc à la meilleure performance possible d’un prédicteur séquentiel, lorsque cette performance
est évaluée en termes du regret sur B1(U) dans le pire des cas.

Notre premier résultat est une borne supérieure sur le regret minimax qui, selon la valeur
de U , améliore légèrement la borne de regret de l’algorithme séquentiel EG± de [KW97] ou du
prédicteur séquentiel ridge de [AW01, Vov01]. En particulier, la deuxième borne améliore la borne
de l’algorithme EG± d’un facteur au plus de l’ordre de ln d. Cette borne découle d’un argument
à la Maurey, qui consiste à discrétiser la boule B1(U) et à montrer – par le biais d’une randomi-
sation auxiliaire – qu’il est sensiblement équivalent de minimiser le regret sur B1(U) ou sur une
discrétisation judicieuse. Cet argument est classique en statistique et a été utilisé, par exemple, par
[Nem00, Tsy03, BN08, SSSZ10] ; la preuve du résultat suivant montre qu’il s’adapte directement
au cadre déterministe.

Théorème 1.2 (cf. théorème 4.1). Soit d, T > 1 et U,X, Y > 0. Le regret minimax sur B1(U)

pour des données bornées par X et Y vérifie

inf
(ŷt)t>1

sup
‖x1‖∞,...,‖xT ‖∞6X
|y1|,...,|yT |6Y

{
T∑
t=1

(yt − ŷt)2 − min
‖u‖16U

T∑
t=1

(yt − u · xt)2

}

6


3UXY

√
2T ln(2d) si U < Y

X

√
ln(1+2d)
T ln 2 ,

26UXY

√
T ln

(
1 + 2dY√

TUX

)
si Y

X

√
ln(1+2d)
T ln 2 6 U 6 2dY√

TX
,

32 dY 2 ln
(

1 +
√
TUX
dY

)
+ dY 2 si U > 2dY

X
√
T
.

La borne de regret précédente peut être réécrite en termes de d, Y et d’une quantité intrinsèque
κ ,
√
TUX/(2dY ) qui relie la dimension ambiante d à

√
TUX/(2Y ). On obtient :

inf
(ŷt)t>1

sup
‖x1‖∞,...,‖xT ‖∞6X
|y1|,...,|yT |6Y

{
T∑
t=1

(yt − ŷt)2 − min
‖u‖16U

T∑
t=1

(yt − u · xt)2

}

6


6 dY 2κ

√
2 ln(2d) si κ <

√
ln(1+2d)

2d
√

ln 2
,

52 dY 2κ
√

ln(1 + 1/κ) si
√

ln(1+2d)

2d
√

ln 2
6 κ 6 1 ,

32 dY 2
(
ln(1 + 2κ) + 1

)
si κ > 1 .

(1.6)

En petite dimension, on remarque une transition d’une borne de regret de l’ordre de
√
T à une

borne de l’ordre de lnT autour du point κ = 1. Cette transition est absente en grande dimension :
pour d > ωT , avec ω ,

(
32(ln(3) + 1)

)−1, la borne de regret 32 dY 2
(
ln(1 + 2κ) + 1

)
est

supérieure à la borne triviale TY 2 pour tout κ > 1.
Quand κ >

√
ln(1 + 2d)/(2d

√
ln 2), la borne (1.6) correspond (à une division par T près)

à la vitesse optimale d’agrégation convexe dans le modèle de régression gaussienne avec de-
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sign aléatoire [Tsy03] et à la vitesse optimale d’estimation sur des boules `1 dans le modèle
de régression gaussienne avec design fixe et matrice identité10 [BM01a] (cf. aussi [DJ94b] et
[RWY11]). Ce fait indique que la régression linéaire sur des boules `1 n’est pas plus difficile dans
un cadre de suites individuelles que dans un cadre statistique classique.

Ces deux tâches de prévision (stochastique et déterministe) sont en fait de même complexité
(à des facteurs logarithmiques près) : d’après la conversion online to batch décrite à la pro-
position 1.1, la borne inférieure de [Tsy03] pour l’agrégation convexe en design aléatoire im-
plique une borne inférieure en suites individuelles (on exploite aussi la bornitude d’un bruit gaus-
sien avec grande probabilité). Le résultat suivant indique que pour tout d ∈ N∗, Y > 0 et
κ >

√
ln(1 + 2d)/(2d

√
ln 2), la borne (1.6) ne peut être améliorée de plus d’un facteur loga-

rithmique. Cette borne inférieure étend celles de [CB99, KW97], qui valent seulement pour κ petit
de l’ordre de 1/d.

Théorème 1.3 (cf. théorème 4.2). Pour tous d ∈ N∗, Y > 0 et κ >
√

ln(1+2d)

2d
√

ln 2
, il existe T > 1,

U > 0 et X > 0 tels que
√
TUX/(2dY ) = κ et

inf
(ŷt)t>1

sup
‖x1‖∞,...,‖xT ‖∞6X
|y1|,...,|yT |6Y

{
T∑
t=1

(yt − ŷt)2 − min
‖u‖16U

T∑
t=1

(yt − u · xt)2

}

>


c1

ln
(

2+16d2
)dY 2κ

√
ln (1 + 1/κ) si

√
ln(1+2d)

2d
√

ln 2
6 κ 6 1 ,

c2

ln
(

2+16d2
)dY 2 si κ > 1 ,

où c1, c2 > 0 sont des constantes absolues.

1.3.3 Adaptation aux paramètres du problème

Certains prédicteurs séquentiels utilisés dans la preuve du théorème 1.2 n’admettent pas de mise
en œuvre algorithmique efficace en grande dimension d (par exemple, celui utilisé conjointement
avec l’argument à la Maurey), et tous utilisent la connaissance a priori de X , Y , T ou U .

Une façon de surmonter ces limites est fournie par le self-confident p-norm algorithm de
[ACBFS02] ; pour p = 2 ln d, le regret de ce prédicteur sur B1(U) est borné par11

8UXY
√
eT ln d+ 32eU2X2 ln d .

Cet algorithme est efficace et notre borne inférieure montre qu’il est optimal à un facteur loga-
rithmique près dans le régime κ 6 1, i.e., en dimension d >

√
TUX/(2Y ), et ce sans utiliser de

connaissance a priori sur X , Y et T (voir une remarque ci-après pour le régime κ > 1).

Notre deuxième contribution consiste à montrer que des propriétés d’adaptativité similaires
peuvent être obtenues par pondération exponentielle, et ce pour un même coût algorithmique
(linéaire en d). Plus précisément, on étudie une variante du prédicteur séquentiel EG± de [KW97]
calibré avec un paramètre évolutif ηt choisi en fonction des données.

Cet algorithme séquentiel, que nous appelons algorithme EG± adaptatif, dépend du rayon U
de la boule considérée. A chaque date t > 1, sa prévision est donnée par ŷt = ût · xt avec

10Ce modèle est connu sous le nom de Gaussian sequence framework en anglais.
11Ce prédicteur vérifie en fait une borne plus fine, du même type que celle du théorème 1.4.
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ût ∈ B1(U) défini par

ût ,
d∑
i=1

(
p+
i,t (Uei) + p−i,t (−Uei)

)
,

où (e1, . . . , ed) désigne la base canonique de Rd et où les poids p+
i,t et p−i,t sont définis par

pγi,t ,

exp

(
−ηt

t−1∑
s=1

γU∇i`s(ûs)

)
∑

16j6d
µ∈{+,−}

exp

(
−ηt

t−1∑
s=1

µU∇j`s(ûs)

) , 1 6 i 6 d , γ ∈ {+,−} ,

avec ∇i`t(u) = −2(yt − u · xt)xi,t pour la perte carrée12. Lorsque l’on choisit la suite (ηt)t>1

selon la calibration automatique (fonction de la variance cumulée du prédicteur) introduite par
[CBMS07] et définie précisément en section 2.4.3, l’algorithme EG± adaptatif vérifie la borne
de regret suivante. Cette dernière indique avec les théorèmes 1.2 et 1.3 que l’algorithme EG±

adaptatif est effectivement adaptatif (à un facteur logarithmique près) en les paramètres X , Y et T
dans le régime κ 6 1, i.e., en dimension d >

√
TUX/(2Y ).

Théorème 1.4 (cf. corollaire 2.2). Soit U > 0. L’algorithme EG± adaptatif calibré avec U et la
suite (ηt)t>1 préconisée par [CBMS07] vérifie, pour toute suite (x1, y1), . . . , (xT , yT ) ∈ Rd×R,

T∑
t=1

(yt − ût · xt)2 − min
‖u‖16U

T∑
t=1

(yt − u · xt)2

6 8UX
√
L∗T ln(2d) +

(
137 ln(2d) + 24

) (
UXY + U2X2

)
6 8UXY

√
T ln(2d) +

(
137 ln(2d) + 24

) (
UXY + U2X2

)
, (1.7)

où L∗T , min‖u‖16U
∑T

t=1(yt − u · xt)2, X , max16t6T ‖xt‖∞ et Y , max16t6T |yt| sont
inconnus du statisticien.

Cette borne de regret est similaire à celle de l’algorithme EG± de [KW97], mais est obtenue
sans la connaissance a priori de X , Y , ou T . Elle est également de la même forme que la borne
du self-confident p-norm algorithm de [ACBG02], ce qui corrobore la proximité déjà observée par
[Gen03] entre l’algorithme p-norm et le prédicteur EG± (avant calibration adaptative).

Au chapitre 4, nous ne détaillons l’adaptation en X , Y et T que dans le régime κ 6 1 (i.e.,
d >
√
TUX/(2Y )). Il est néanmoins également possible d’obtenir une borne adaptative (à un fac-

teur logarithmique près) dans le régime κ > 1. Pour ce faire, il suffit de modifier l’algorithme de
prévision ridge séquentiel défini en section 2.4.2 en tronquant ses prévisions et en le calibrant au
moyen d’une technique générique appelée doubling trick. Cet algorithme peut être mis en oeuvre
avec une complexité algorithmique égale à celle de l’algorithme ridge séquentiel, donc au plus de

12De même que dans [CB99] et [CBL06, section 2.5], l’algorithme EG± adaptatif est générique et peut être utilisé
avec toute suite (`t)t>1 de fonctions de pertes convexes et différentiables sur Rd. Nous l’utilisons dans un premier
temps avec les fonctions de perte `t : u ∈ Rd 7→ (yt − u · xt)2.
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l’ordre de d3 à chaque tour de prévision.

Remarquons que la connaissance de U est encore requise par l’algorithme EG± adaptatif.
Il est en fait possible de s’adapter à U , i.e., d’atteindre approximativement le regret minimax
simultanément sur toutes les boulesB1(U), U > 0. A cette fin, on suppose d’abord pour simplifier
que X , Y et T sont connus. Il suffit alors d’agréger plusieurs instances de l’algorithme EG±

adaptatif calibrées avec différentes valeurs de U — celles associées à une grille exponentielle de
la forme {Ur = U0 2r : r = 0, . . . , R}, où U0 , Y/

(
X
√
T ln(2d)

)
; cf. théorème 4.4. Nous

expliquons ensuite, en section 4.5, comment étendre cette méthode pour construire un algorithme
totalement adaptatif, i.e., qui vérifie une borne de regret similaire à (1.7) pour tout U > 0 et qui ne
dépend d’aucune connaissance a priori sur U , X , Y ou T .

1.3.4 Une amélioration : la lipschitzification des pertes

Notre troisième contribution consiste en l’introduction d’une technique générique appelée lip-
schitzification des pertes. On transforme les fonctions de perte u 7→ (yt − u · xt)2 (ou u 7→∣∣yt − u · xt∣∣α si les prévisions sont évaluées avec la perte `α, α > 2) en des fonctions ˜̀t : Rd → R
convexes et lipschitziennes sur Rd. A chaque date t > 1, la lipschitzification est effectuée le
long de la direction de xt et au-delà d’un seuil adaptatif Bt ,

(
2dlog2 max16s6t−1 y

2
se
)1/2 ≈

max16s6t−1 |ys|, que nous avions déjà utilisé auparavant (cf. section 1.2.2). Plus précisément,
si yt /∈ [−Bt, Bt], alors on pose ˜̀t ≡ 0, sinon, on définit ˜̀t comme étant la plus petite fonction
convexe coı̈ncidant avec la perte carrée (yt − u · xt)2 lorsque |u · xt| 6 Bt (elle est donc affine
en dehors de [−Bt, Bt]). Ce dernier cas correspond graphiquement à la courbe en pointillés sur la
figure 1.4.
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FIGURE 1.4 – La perte carrée (yt − u · xt)2, sa version tronquée
(
yt − [u · xt]Bt

)2 – clipped en
anglais – et sa version lipschitzifiée ˜̀t(u) sont tracées en fonction de u · xt.

L’intérêt de la lipschitzification des pertes peut être illustré avec l’algorithme EG± adaptatif.
En effet, lorsque l’on applique ce prédicteur séquentiel aux fonctions de perte lipschitzifiées ˜̀t, il
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vérifie la borne de regret suivante (cf. théorème 4.3) :

T∑
t=1

(yt − ŷt)2 6 inf
‖u‖16U

T∑
t=1

˜̀
t(u) + 8UX

√√√√( inf
‖u‖16U

T∑
t=1

˜̀
t(u)

)
ln(2d)

+
(
153 ln(2d) + 58

) (
UXY + U2X2

)
+ 12Y 2 .

Les deux termes principaux de cette borne améliorent légèrement ceux de la borne obtenue sans
lipschitzification des pertes, puisqu’on a toujours ˜̀t(u) 6 (yt − u · xt)2 pour tout u ∈ Rd.

L’intérêt de la lipschitzification est plus clair pour des fonctions de perte de plus grande cour-
bure, par exemple, x 7→ |yt−x|α avec α > 2. Dans ce cas, l’algorithme EG± adaptatif avec pertes
lipschitzifiées a un regret qui croı̂t au plus linéairement en U , alors que la borne de l’algorithme
EG± adaptatif sans lipschitzification donne (au premier abord du moins) une borne naı̈ve en Uα/2.
Voir la remarque 4.1 pour de plus amples détails.

1.4 Vitesses minimax des regrets interne et swap

Au chapitre 5, on étudie une instance du protocole de prévision avec avis d’experts correspondant
à des pertes linéaires sur le simplexe. Ce problème de décision séquentielle est dû à [FS97] et peut
être décrit comme suit. A chaque date t ∈ N∗ = {1, 2, . . .}, le statisticien choisit un vecteur de
poids pt = (p1,t, . . . , pK,t) sur K > 2 actions différentes, i.e., pt appartient au simplexe

XK ,

{
x ∈ RK+ ,

K∑
i=1

xi = 1

}
.

L’environnement révèle ensuite le vecteur de pertes `t , (`i,t)16i6K ∈ [0, 1]K ; chaque action
i ∈ {1, . . . ,K} encourt la perte `i,t et le statisticien encourt la perte linéaire (ou perte moyenne)
pt·`t =

∑K
i=1 pi,t `i,t. Après T > 1 pas de temps, la perte cumulée du statisticien vaut

∑T
t=1 pt·`t,

et son objectif premier est de la minimiser.
On suppose que la suite (`t)t>1 est fixée à l’avance par l’environnement, et on étudie les deux

situations suivantes : (`t)t>1 est déterministe arbitraire13 (i.e., c’est une suite individuelle), ou
(`t)t>1 est aléatoire i.i.d. de loi inconnue.

Les vecteurs de poids pt sont choisis en fonction des vecteurs de pertes passées et peuvent donc
être vus comme des valeurs de fonctions pt(`1, . . . , `t−1). On appelle stratégie (du statisticien)
toute suite (pt)t>1 de fonctions boréliennes pt : [0, 1]K(t−1) → XK . Pour simplifier les notations,
on omettra souvent les dépendences et pt(`1, . . . , `t−1) sera simplement noté pt.

Regret interne et regret swap

Jusqu’à présent (chapitres 3 et 4), nous avons évalué la qualité d’un prédicteur séquentiel par son
regret externe. Dans le cadre considéré ici, le regret externe d’une stratégie S = (pt)t>1 pour une
suite `1:T , (`1, . . . , `T ) est défini par

13En fait, dans le cadre de suites individuelles, on pourrait plus généralement supposer que les pertes `t sont choisies
par un environnement antagoniste, i.e., qui réagit aux décisions du statisticien (cf. section 2.3.1).
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Rext
T (S, `1:T ) ,

T∑
t=1

pt · `t − min
16j6K

T∑
t=1

`j,t . (1.8)

Au chapitre 5, on étudie deux autres notions de regret qui jouent un rôle important en théorie
des jeux : les regrets interne et swap. L’ensemble des stratégies auxquelles est comparée la stratégie
S n’est plus externe comme dans (1.8) (où les stratégies de référence sont les stratégies constantes
(δi)t>1, avec δi la masse de Dirac en i ∈ {1, . . . ,K}) ; au contraire, il est composé de modifica-
tions de la stratégie S elle-même.

La notion de regret interne a été introduite et étudiée par [FV97, FV98, FV99] (cf. aussi [FL99,
HMC00, HMC01]). Pour une stratégie S = (pt)t>1 et une suite finie `1, . . . , `T ∈ [0, 1]K , le regret
interne Rint

T (S, `1:T ) d’une stratégie S associé à `1:T , (`1, . . . , `T ) est défini par

Rint
T (S, `1:T ) ,

T∑
t=1

pt · `t − min
16i 6=j6K

T∑
t=1

pi→jt · `t , (1.9)

où le vecteur de poids modifié pi→jt ∈ XK est obtenu à partir de pt en remplaçant l’action i par
l’action j. Plus précisément, pour tout k = 1, . . . ,K, la k-ème composante de pi→jt est définie par

(pi→jt )k =


0 si k = i,

pi,t + pj,t si k = j,

pk,t si k /∈ {i, j}.

Ainsi, le regret interne mesure le “regret” qu’encourt le statisticien à n’avoir pas choisi l’action j
à chaque fois qu’il a choisi l’action i, et ce pour tous les couples (i, j) possibles, i 6= j. Intuitive-
ment, si le statisticien minimise son regret interne, alors il bénéficie de propriétés de stabilité. Cela
a été illustré en théorie des jeux : [FV97, FV99] ont montré que, dans un jeu répété randomisé
entre un nombre fini de joueurs, si tous les joueurs suivent une stratégie dont le regret interne est
sous-linéaire en T , la distribution empirique jointe de leurs actions converge vers un ensemble
d’équilibres appelé l’ensemble des équilibres corrélés du jeu (cf. aussi [FL95, HMC00, SL07]).
Le regret interne a aussi des liens historiques avec une autre branche de la théorie des jeux appelée
calibration en anglais (à ne pas confondre avec parameter tuning). Ainsi, l’existence de stratégies
assurant un regret interne sous-linéaire en T implique l’existence d’algorithmes de prévision bien
calibrés (calibrated forecasters, cf. [FV98] par ex.).

La notion de regret swap a été introduite par [BM07b] (voir aussi [GJ03] pour la notion plus
générale de Φ-regret). Le regret swap Rsw

T (S, `1:T ) d’une stratégie S = (pt)t>1 pour une suite
finie `1, . . . , `T ∈ [0, 1]K est défini par

Rsw
T (S, `1:T ) ,

T∑
t=1

pt · `t − min
F∈FK

T∑
t=1

pFt · `t ,

où FK désigne l’ensemble des fonctions F : {1 . . . ,K} → {1 . . . ,K} et où le vecteur de poids
modifié pFt ∈ XK est obtenu à partir de pt en remplaçant chaque action i par l’action F (i), i.e.,
sa j-ème composante est définie par (pFt )j =

∑
i:F (i)=j pi,t, 1 6 j 6 K.

En particulier, le regret swap d’une stratégie est plus grand que ses regrets externe et interne.
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Bornes existantes sur les regrets interne et swap

Dans la suite, on détaille les contributions principales du chapitre 5, qui concernent principalement
les vitesses minimax des regrets interne et swap en environnement stochastique ou déterministe.

Pour le regret interne, on s’intéresse aux deux quantités minimax suivantes. D’après la borne
inférieure de [Sto05, théorème 3.3] et la borne supérieure de [SL05], on sait que14 le regret interne
minimax pour des vecteurs de pertes i.i.d. (à gauche ci-dessous) et le regret interne minimax pour
des suites individuelles [SL05, théorème 3] (à droite ci-dessous) vérifient l’encadrement suivant :

√
T/
(
64
√

3
)
6 inf

S
sup
Q

EQ⊗T
[
Rint
T (S, `1:T )

]
6 inf

S
sup

`1,...,`T∈[0,1]K
Rint
T (S, `1:T ) 6

√
T lnK ,

où la première inégalité vaut pour tout T > K2/192 (les deux autres inégalités sont valides pour
tout T > 1), où les deux infima sont pris sur toutes les stratégies S = (pt)t>1, où le supre-
mum supQ s’étend sur toutes les probabilités sur [0, 1]K (muni de sa tribu borélienne), et où dans
l’espérance, les vecteurs de pertes `1, . . . , `T ∈ [0, 1]K sont supposés i.i.d. de loi Q. On remarque
un facteur

√
lnK manquant entre les bornes inférieure et supérieure.

Quant au regret swap, [BM07b] ont construit une stratégie dont le regret swap est majoré par√
(T/2)K lnK uniformément sur toutes les suites individuelles (cf. aussi [SL05]). Ainsi, le regret

swap minimax pour des suites individuelles est majoré comme suit :

inf
S

sup
`1,...,`T∈[0,1]K

Rsw
T (S, `1:T ) 6

√
(T/2)K lnK .

Une borne inférieure sur le regret swap en suites individuelles de l’ordre de
√
TK a été exhibée

par [BM07b], mais seulement dans un sens assez faible : leur borne inférieure est prouvée dans un
cadre randomisé antagoniste et pour une quantité plus grande que le regret swap stricto sensu ; de
plus, elle n’est prouvée que lorsque T est sous-exponentiel en K.

1.4.1 Vitesse minimax du regret interne dans un environnement stochastique

La première contribution du chapitre 5 est la détermination de la vitesse minimax du regret interne
en environnement stochastique, qui est de l’ordre de

√
T et est donc indépendante de la dimension

ambiante K.

Théorème 1.5 (cf. corollaire 5.1). Il existe des constantes absolues c1, c2, c3 > 0 telles que, pour
tout K > 2 et tout T > c1K

2, le regret interne minimax pour des vecteurs de pertes i.i.d. vérifie

c2

√
T 6 inf

S
sup
Q

EQ⊗T
[
Rint
T (S, `1:T )

]
6 c3

√
T .

En particulier, le résultat est vrai pour c1 = 1/192 et c2 = 1/(64
√

3) ; la constante c3 peut
être calculée explicitement et directement à partir des fins des preuves des théorème 5.2 et corol-
laire 5.1, mais sa valeur n’a pas été optimisée.

La borne supérieure est obtenue de façon constructive : on montre en section 5.3 qu’une
stratégie procédant par pondération exponentielle et par estimation séquentielle des espérances

14Voir l’introduction du chapitre 5 pour de plus amples références.
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des pertes encourt un regret interne au plus de l’ordre de
√
T avec grande probabilité (via des

outils élémentaires de concentration, par ex., l’inégalité de Hoeffding). La forme des poids choisie
impose une répartition uniforme de la masse entre des pertes d’espérances proches ; cela s’avère
clé pour supprimer la dépendance du regret interne minimax en la dimension ambiante K.

1.4.2 Borne inférieure sur le regret swap pour des suites individuelles

Notre deuxième contribution consiste en l’obtention d’une borne inférieure de l’ordre de
√
TK

sur le regret swap minimax pour des suites individuelles. La preuve du théorème suivant s’appuie
sur l’inégalité de Pinsker (cf. annexe A.7) et repose en partie sur des techniques de borne inférieure
séquentielle développées par [ACBG02, CBLS05] et [Sto05, Theorem 3.3].

Théorème 1.6 (cf. théorème 5.3). Il existe une constante absolue c > 0 telle que, pour tousK > 2

et T > max
{

128c2K5,K
}

, le regret swap minimax pour des suites individuelles vérifie

inf
S

sup
`1,...,`T∈[0,1]K

{
T∑
t=1

pt · `t − min
F∈FK

T∑
t=1

pFt · `t

}
> c
√
TK .

En particulier, on prouve le théorème pour c = 1/
(
16
√

128 ln(4/3)
)
.

Cette borne inférieure est plus forte que celle de [BM07b, théorème 9], puisqu’elle vaut pour
le regret swap lui-même plutôt qu’une variante randomisée dans un cadre antagoniste (qui rend
l’obtention de la borne inférieure plus simple). Cela résout ainsi un problème ouvert de [BM07b,
section 9]. De plus, nous nous sommes affranchis de l’hypothèse d’un horizon T sous-exponentiel
en K.

Comme remarqué en section 5.4.2, notre borne inférieure de l’ordre de
√
TK pointe une

différence essentielle entre les regrets externe et swap. En effet, alors que le regret externe mi-
nimax est du même ordre de grandeur pour des pertes i.i.d. ou pour des suites individuelles (en
l’occurence,

√
T lnK, cf. chapitre 2), le regret swap est bien plus difficile à minimiser pour des

suites individuelles que pour des vecteurs de pertes i.i.d. (comparer la borne inférieure en
√
TK

ci-dessus avec la vitesse minimax en
√
T lnK pour des pertes i.i.d. prouvée en section 5.4.2).

1.4.3 Une technique stochastique pour des majorations en suites individuelles

La troisième contribution du chapitre 5 est le développement d’une technique stochastique pour
majorer dans un cadre de suites individuelles (déterministes) une forme généralisée de regret in-
cluant les regrets externe, interne et swap, et définie comme suit.

Définition 1.1. Soit E un espace vectoriel réel, ψ = (ψt)t>1 une suite de fonctions convexes
ψt : E → R, et ϕ : RK × RK → E une fonction bi-affine au sens où ϕ(u, ·) and ϕ(·,v) sont
affines pour tous u,v ∈ RK . On appelle (ψ,ϕ)-regret d’une stratégie S = (pt)t>1 sur une suite
finie de pertes `1, . . . , `T ∈ [0, 1]K la quantité ψT

(∑T
t=1 ϕ(pt, `t)

)
.

La quantité minimax associée au (ψ,ϕ)-regret peut être ré-interprétée de façon stochastique à
l’aide du théorème minimax suivant.
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Théorème 1.7 (cf. théorème 5.4). Soit E un espace vectoriel réel, ψ = (ψt)t>1 une suite de
fonctions convexes ψt : E → R, et ϕ : RK × RK → E une fonction bi-affine. Alors, le (ψ,ϕ)-
regret vérifie la formule de dualité suivante :

inf
S

sup
`1,...,`T∈[0,1]K

ψT

(
T∑
t=1

ϕ(pt, `t)

)
= sup

Q∈M+
1 ([0,1]KT )

inf
S

EQ

[
ψT

(
T∑
t=1

ϕ(pt, `t)

)]
,

où les deux infima sont pris sur toutes les stratégies S = (pt)t>1, où M+
1

(
[0, 1]KT

)
désigne

l’ensemble de toutes les probabilités sur [0, 1]KT , et où l’espérance EQ[ · ] est prise par rapport
aux variables aléatoires `1, . . . , `T ∈ [0, 1]K supposées de loi jointe Q.

Le théorème ci-dessus fournit un moyen non constructif de majorer le regret minimax (à
gauche) ; la quantité maximin (à droite) est d’apparence plus simple à majorer car la stratégie
S choisie peut dépendre de la loi jointe Q des pertes. Cette technique permet de retrouver de façon
stochastique les meilleures bornes supérieures connues sur les regrets externe, interne et swap
minimax, à savoir

√
(T/2) lnK,

√
T lnK et

√
(T/2)K lnK (cf. proposition 5.4). On l’utilise

également à la proposition 5.5 pour prouver une borne supérieure de l’ordre de
√
T lnK sur le

regret makespan (utile pour modéliser des problèmes de planification de tâches ou de répartition
de charges), améliorant ainsi la borne d’ordre ln(K)

√
T obtenue par [EDKMM09].

Mentionnons qu’une technique similaire a été étudiée indépendamment par [RST11]. Puisque
nous travaillons dans un cadre beaucoup plus restreint, il nous est possible d’obtenir des constantes
explicites (et même optimales dans le cas du regret externe). Notre preuve du théorème 1.7 s’ap-
puie sur des arguments simples comme la technique de bernoullisation de [Sch03] — qui permet
de recourir à une version du théorème minimax de von Neumann sans considérations topolo-
giques fines. La majoration de la quantité maximin (à droite) repose sur des outils élémentaires de
concentration de martingales comme l’inégalité de Hoeffding-Azuma, que nous combinons avec
une inégalité maximale pour des variables aléatoires sous-gaussiennes. Nous renvoyons le lecteur
à la section 5.5.1 pour une comparaison plus détaillée avec la littérature.

Notons que quelques questions importantes restent encore ouvertes. Tout d’abord, même si
la technique stochastique décrite précédemment est utile pour mieux comprendre le problème
de prévision sous-jascent (puisqu’elle permet de majorer le regret minimax associé), elle n’est
pas constructive — tout comme dans [RST11]. Il est donc important, pour la suite, d’exhiber
des algorithmes explicites qui atteignent les bornes supérieures nouvellement prouvées (par ex.,
existe-t-il un algorithme efficace dont le regret makespan est au plus de l’ordre de

√
T lnK ?).

Par ailleurs, la question du facteur logarihmique manquant
√

lnK entre les bornes inférieure et
supérieure des regrets interne et swap est toujours partiellement ouverte. On a prouvé que le facteur√

lnK n’était pas nécessaire pour le regret interne en environnement stochastique, mais la question
de savoir si cela est aussi le cas pour des suites individuelles n’est pas encore résolue.

1.5 Agrégation de modèles non linéaires

Au chapitre 6, on étudie un problème de régression en considérant des estimateurs reposant sur des
techniques d’agrégation, comme aux chapitres 3 et 4, mais dans un cadre de sélection de modèles.
Ce chapitre est un travail en cours.
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1.5.1 Cadre et objectif de prévision

Le cadre considéré au chapitre 6 est un modèle linéaire gaussien généralisé introduit par [BM01a]
et qui inclut les modèles de régression avec design fixe et le modèle de bruit blanc gaussien. Par
souci de simplicité, on se concentre ci-après sur le cas fini-dimensionnel, mais tous les résultats
énoncés sont aussi prouvés dans le cas où Rn est remplacé par un espace de Hilbert séparable.

Considérons ainsi le modèle de régression gaussienne avec design fixe : le statisticien observe
le vecteur (Y1, . . . , Yn) ∈ Rn donné par

Yi = si + σξi ∈ R , 1 6 i 6 n ,

où les variables aléatoires ξ1, . . . , ξn sont i.i.d. de loi N (0, 1), où σ > 0 est le niveau de bruit
supposé connu, et où s = (s1, . . . , sn) ∈ Rn est un vecteur déterministe inconnu.

L’objectif du statisticien est d’estimer s en fonction de Y = (Y1, . . . , Yn) ∈ Rn. La perfor-
mance d’un estimateur s̃ ∈ Rn est évaluée via son risque quadratique (empirique) ‖s̃− s‖2n, où
l’on pose ‖u‖2n , n−1

∑n
i=1 u

2
i pour tout u ∈ Rn.

Afin d’estimer s, le statisticien a accès à une famille au plus dénombrable (Sm)m∈M de parties
non vides de Rn (appelées modèles15 ci-après) ; il dispose alors des estimateurs des moindres
carrés16

ŝm ∈ argmin
t∈Sm

‖Y − t‖2n , m ∈M . (1.10)

La tâche de prévision consiste à construire un estimateur s̃ de s presque aussi bon que le meilleur
des estimateurs parmi {ŝm : m ∈M}. Par exemple, on dit que c’est le cas lorsque

Es
[
‖s̃− s‖2n

]
6 C inf

m∈M
Es
[
‖ŝm − s‖2n

]
,

où C > 1 est une constante (qui peut dépendre de la “taille” deM) et où Es désigne l’espérance
prise par rapport à Y (dont la loi dépend de s). La borne de risque précédente est qualifiée
d’inégalité oracle selon la terminologie de [DJ94a, BM01a].

1.5.2 Sélection et agrégation de modèles linéaires

On suppose dans cette sous-section que les modèles Sm sont linéaires, i.e., qu’il s’agit de sous-
espaces vectoriels de Sm. On rappelle ci-après — à très grands traits17 — deux approches alterna-
tives : sélection de modèles et agrégation de modèles. Une caractéristique commune de ces deux
approches est que les estimateurs ŝm sont combinés (ou sélectionnés) via les mêmes données que
celles ayant servi à leur construction ; on ne fait pas de sample splitting, qui n’est pas adapté au
cas du design fixe.

15Le terme modèle recouvre plusieurs significations : il est utilisé à la fois pour désigner le cadre (modèle de
régression) et une partie de Rn.

16On suppose pour simplifier que de tels estimateurs existent ; en toute généralité, on peut considérer des estimateurs
approchés des moindres carrés — cf. section 6.2.2.

17Une introduction plus détaillée (avec bien plus de références) est proposée au chapitre 6.
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La procédure de sélection de modèles par pénalisation de [BM01a] estime s avec s̃ = ŝm̂, où
l’indice m̂ sélectionné est défini par

m̂ ∈ argmin
m∈M

{
‖Y − ŝm‖2n + pen(m)

}
, avec pen(m)

(?)

> K
σ2Dm

n

(
1 +

√
2Lm

)2
;

dans l’expression ci-dessus, Dm , dim(Sm) désigne la dimension de Sm, et K > 1 ainsi que
(Lm)m∈M sont des paramètres de la procédure tels que Σ ,

∑
m:Dm>0 e

−LmDm < ∞. Comme
l’ont montré [BM01a], la procédure précédente vérifie l’inégalité oracle

Es
[
‖ŝm̂ − s‖2n

]
6 CK

(
inf
m∈M

{
d2(s, Sm) + pen(m)

}
+
σ2

n
(Σ + 1)

)
6
(
1 + supm∈M Lm

)
C ′K,Σ infm∈M Es

[
‖ŝm − s‖2n

]
si égalité dans (?),

où d2(s, Sm) , inft∈Sm ‖s− t‖
2
n et où CK , C ′K,Σ > 1 sont deux constantes dépendant unique-

ment deK et (K,Σ) respectivement. Ces résultats et la procédure de sélection de modèles associée
ont ensuite été étendus par [Mas07] au cas de modèles non linaires via une notion de dimension
généralisée (cf. section 1.5.3).

Plus récemment, [LB06] ont étudié une variante bayésienne de la procédure de sélection de
modèles. Au lieu de retenir ŝm̂, où m̂ ∈ argminm∈M

{
‖Y − ŝm‖2n + pen(m)

}
, ils considèrent la

combinaison convexe
∑

m∈M ρ̂
(η)
m ŝm, où

ρ̂ (η)
m =

exp
[
−η
(
‖Y − ŝm‖2n + pen(η)(m)

)]
∑

m′∈M exp
[
− η
(
‖Y − ŝm′‖2n + pen(η)(m′)

)] , m ∈M , (1.11)

avec une pénalité pen(η) qui peut maintenant dépendre de η (afin de prendre en compte une pro-
babilité a priori sur les modèles). Comme l’ont montré [LB06], si η 6 n/(4σ2) et pen(η)(m) =

2σ2Dm/n+ xm/η, où les xm > 0 sont tels que Σ ,
∑

m∈M e−xm < +∞, alors

Es
[www∑m∈M ρ̂

(η)
m ŝm − s

www2

n

]
6 inf

m∈M

{
Es
[
‖ŝm − s‖2n

]
+
xm
η

}
+

ln Σ

η
. (1.12)

Lorsque η = n/(4σ2) et supm xm < ∞, la borne de risque précédente est une inégalité oracle
exacte, i.e., avec constante 1 devant l’infimum.

1.5.3 Agrégation de modèles non linéaires : contributions

La borne de risque (1.12) de [LB06] a été obtenue sous l’hypothèse que les modèles Sm ⊂ Rn

sont linéaires et que les ŝm sont les estimateurs des moindres carrés associés (i.e., les projecteurs
orthogonaux de Y ∈ Rn sur les Sm). Ces travaux ont été étendus dans deux directions. D’une part,
le cas de la variance inconnue a été traité par [Gir08]. D’autre part, [DS11] ont remplacé la famille
de projecteurs orthogonaux

(
ŝm
)
m∈M par une famille quasi-arbitraire d’estimateurs affines ; cette

large classe d’estimateurs inclut, par ex., les filtres diagonaux et la régression ridge à noyau.
Au chapitre 6, on étend les travaux de [LB06] dans une troisième direction : on considère

toujours des estimateurs par projection (cf. (1.10)), mais les modèles Sm ⊂ Rn peuvent être
quasi-arbitraires (ou non linéaires). Dans une telle généralité, l’emploi de la formule d’estimation
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sans biais du risque de Stein [Ste81] à la manière de [LB06, DT08, DS11] semble difficile. On suit
à la place l’approche par concentration de [Mas07] pour obtenir des inégalités de type oracle avec
grande probabilité (mais avec une constante devant l’infimum supérieure à 1).

Dans le même esprit que [LB06], on procède par pondération exponentielle : on considère
l’estimateur de type Gibbs s̃ (η) ,

∑
m∈M ρ̂

(η)
m ŝm défini en (1.10) – (1.11). La pénalité pen(η)(m)

est quant à elle choisie en fonction d’une dimension généralisée Dm du modèle Sm introduite par
[Mas07] : Dm est la solution dans R∗+ de l’équation ϕm

(
τmσ

√
Dm/n

)
= σDm/

√
n, où τm , 1

si Sm est fermé et convexe et τm , 2 sinon, et où ϕm : R+ → R+ vérifie l’hypothèse suivante.

Hypothèse 1.1. ϕm : R+ → R+ est croissante, continue et telle que x ∈ R∗+ 7→ x−1ϕm(x) est
décroissante et, en posant ξ , (ξ1, . . . , ξn) et <u, v>n , n−1

∑n
i=1 uivi pour tous u, v ∈ Rn,

∀u ∈ Sm, ∀x > 0, 2
√
nE

[
sup
t∈Sm

(
<ξ, t>n −<ξ, u>n
‖t− u‖2n + x2

)]
6 x−2ϕm(x) .

Comme l’a montré [Mas07], Dm mesure la taille du modèle Sm (Dm est liée à la notion
d’entropie métrique). Par exemple, si Sm est linéaire, alors on peut choisirDm = dim(Sm) ; si Sm
est fini de cardinal |Sm|, alors on peut choisirDm = 8 ln |Sm| ; enfin, si Sm =

{∑d
j=1 ujϕj : u ∈

Rd, ‖u‖1 6 Um
}

pour un dictionnaire ϕ1, . . . , ϕd ∈ Rn, alors on peut choisir Dm proportionnel
à Um [MM11].

En combinant l’analyse par concentration de [Mas07] avec une formule de dualité sur la di-
vergence de Kullback-Leibler (déjà utilisée au chapitre 3), on obtient l’inégalité de type oracle avec
grande probabilité suivante. Comme à la section précédente, on pose d2(s, Sm) , inft∈Sm ‖s− t‖

2
n

pour tout m ∈M.

Théorème 1.8 (cf. théorème 6.2 et remarque 6.1). Soit η > 0, K > 1, et (xm)m∈M ∈ RM+ tel
que Σ ,

∑
m∈M e−xm <∞. Fixons pen(η) :M→ R+ telle que

∀m ∈M, pen(η)(m) >
Kσ2

n

(√
Dm +

√
2xm

)2
+
xm
η
.

Alors, pour une constanteCK>1 dépendant uniquement deK, l’estimateur s̃ (η) =
∑

m∈M ρ̂
(η)
m ŝm

défini en (1.10) – (1.11) vérifie, pour tout s ∈ Rn et tout z > 0, avec probabilité au moins égale à
1− Σ2e−z ,wwws̃ (η) − s

www2

n
6 CK inf

m∈M

{
d2(s, Sm) + pen(η)(m) +

ln Σ

η
+
σ2

n
(z + 1)

}
− J (ρ̂ (η)) , (1.13)

où J (ρ) ,
∑

m∈M ρm ‖ŝm − s‖2n −
ww∑

m∈M ρmŝm − s
ww2

n
> 0.

En intégrant la borne précédente, on peut en déduire une borne en espérance. Le théorème 6.2
fournit une autre borne en espérance un peu plus fine, de type PAC-bayésien ; cf. (6.21).

Le théorème précédent pointe un lien naturel entre agrégation de modèles et sélection de
modèles : notre inégalité de type oracle est valide pour un continuum d’estimateurs

{
s̃ (η) : η > 0

}
qui s’étend de l’agrégation de modèles classique (où η est au plus de l’ordre de n/σ2) à la sélection
de modèles (où η = +∞).
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En particulier, notre estimateur agrégé
∑

m∈M ρ̂
(η)
m ŝm converge presque sûrement vers l’es-

timateur sélectionné ŝm̂ de [Mas07] quand η → ∞ (si m̂ est unique), et on retrouve la même
borne de risque que celle de [Mas07, théorème 4.18] lorsqu’on passe à la limite dans (1.13) quand
η → +∞ (cf. corollaire 6.1). Par ailleurs, pour η assez grand (au moins de l’ordre de n/σ2), la
borne du théorème 1.8 est du même ordre de grandeur que celle de [Mas07, théorème 4.18]. Les
mêmes applications que celles traitées par [Mas07, MM11] peuvent donc être considérées : par
ex., modèles linéaires, modèles finis, ellipsoı̈des de Besov, boules `1. On en traite quelques-unes
en section 6.4.1.

Nous n’avons pas encore eu le temps d’étudier en détails si l’agrégation possède de meilleures
performances que la sélection de modèles pour des modèles non linéaires classiques comme ceux
cités précédemment. En revanche, la borne du théorème 1.8 suggère que cela puisse être le cas à
cause de la présence du terme positif J (ρ̂ (η)), qui est une différence dans une inégalité de Jensen.
Une autre motivation en faveur de l’agrégation est que, même dans le cas simple de modèles
linéaires, il existe des situations de fort biais pour lesquelles l’agrégation est plus robuste que
la sélection en termes d’excès de risque. On prouve ainsi en proposition 6.1 le fait suivant : il
existe une collection de modèles linéaires (Sm)m∈M avec |M| = 2 telle que, pour tout n >
16/(
√

2− 1)2,

∀s ∈ Rn, Es
[www∑m∈M ρ̂

(η)
m ŝm − s

www2

n

]
6 inf

m∈M
Es
[wwŝm − sww2

]
+

4 ln(2)σ2

n
, (1.14)

∀m̂, ∃s ∈ Rn, Es
[wwŝm̂ − sww2

]
> inf

m∈M
Es
[wwŝm − sww2

]
+

σ2

4
√
n
, (1.15)

où ρ̂ (η)
m est défini en (1.11) avec η = n/(4σ2) et pen(η)(m) = 2 dim(Sm)σ2/n (il s’agit de l’es-

timateur de [LB06] avec la plus grande température inverse autorisée, cf. (1.12)), et où (1.15) est
valide pour toute fonction de sélection m̂ : Rn →M mesurable en les données.

Les modèles linéaires S1, S2 ⊂ Rn et le vecteur s ∈ Rn exhibés dans la preuve de (1.15) sont
tels que les estimateurs des moindres carrés ŝ1 et ŝ2 associés à S1 et S2 possèdent un fort biais
(de l’ordre de la variance du bruit σ2), ont un risque Es

[wwŝm− sww2

n

]
proche et sont suffisamment

séparés l’un de l’autre. Les deux bornes (1.14) et (1.15) ci-dessus indiquent que l’estimateur agrégé
de [LB06] a un excès de risque au plus de l’ordre de 1/n uniformément en s, alors que toute
méthode de sélection de modèles encourt dans au moins une situation de fort biais (et telle que
décrite précédemment) un excès de risque au moins de l’ordre de 1/

√
n. En ce sens, l’agrégation

de modèles est plus robuste que la sélection de modèles.
La borne inférieure précédente est prouvée avec des modèles linéaires, mais sa simplicité

suggère que l’agrégation de modèles pourrait bénéficier d’une propriété de robustesse similaire
pour des modèles non linéaires classiques ; cette question ouverte sera abordée prochainement.

1.5.4 Travaux futurs

Comme mentionné précédemment, ce chapitre est un travail en cours. En particulier, d’importantes
questions restent ouvertes :

• Nos inégalités de type oracle ont une constante devant l’infimum strictement supérieure
à 1. Est-ce une conséquence de l’approche par concentration — qui donne en revanche des



36 CHAPITRE 1. VUE D’ENSEMBLE DES RÉSULTATS

bornes avec grande probabilité — ou de la généralité des modèles ? En particulier, quand
les modèles sont linéaires, il pourrait être intéressant de retrouver via une analyse unifiée les
bornes plus fines de [LB06] et de [BM07a] obtenues respectivement pour l’agrégation et la
sélection de modèles.

• La question importante de la calibration du paramètre η est ouverte. Est-il possible d’iden-
tifier — au moins pour des problèmes classiques — un choix optimal de η ? Si tel est le cas,
peut-on calibrer η de façon automatique et quasi-optimale ?

• Enfin, l’étude d’exemples classiques de modèles non linéaires (par ex., ellipsoı̈des de Be-
sov, boules `1, réseaux de neurones) pourrait permettre de mieux comparer la procédure de
sélection de modèles de [Mas07] avec les méthodes d’agrégation.

1.6 Perspectives de recherche dans la droite lignée des travaux de
cette thèse

Ces travaux de thèse soulèvent plusieurs questions que nous projetons d’aborder par la suite ;
nous les présentons brièvement ci-après. Ces problèmes sont à la frontière entre l’apprentissage
séquentiel de suites individuelles et l’apprentissage dans un cadre statistique plus classique.

Régression linéaire séquentielle parcimonieuse

Au chapitre 3, nous importons la notion d’inégalité oracle de sparsité dans un cadre de suites
déterministes arbitraires et traitons des problèmes d’adaptativité (dans un cadre déterministe dans
un premier temps, puis, en corollaire, dans un cadre statistique classique). Ces résultats pourraient
être prolongés de la façon suivante.

Peut-on modifier l’algorithme séquentiel SeqSEW pour produire des combinaisons linéaires
parcimonieuses ? Le prédicteur séquentiel SeqSEW construit au chapitre 3 vérifie des bornes de
regret de sparsité, mais ses prévisions séquentielles ŷt ne sont en général pas – au premier abord
du moins – des combinaisons linéaires parcimonieuses des prévisions de base, i.e., des prévisions
de la forme ŷt = ût · xt avec ‖ût‖0 � T . En fait, les prévisions de l’algorithme SeqSEW ont
une forme un peu plus élaborée car elles font intervenir l’opérateur de troncature avant le mélange
convexe ; elles sont en effet de la forme :

ŷt ,
∫
Rd

[
u ·ϕ(xt)

]
Bt
pt(du) . (1.16)

En grande dimension, produire des prévisions qui sont des combinaisons linéaires parcimonieuses
des prévisions de base pourrait pourtant être utile d’un point de vue statistique (à des fins de
sélection de variables) et algorithmique (pour diminuer l’espace mémoire nécessaire). On pourrait
envisager de modifier notre prédicteur SeqSEW en remarquant que la probabilité a priori πτ (du)

choisie sur Rd (et donc, dans une moindre mesure, les probabilités a posteriori pt(du) associées)
charge(nt) davantage les combinaisons linéaires u approximativement parcimonieuses. Dans le
modèle de régression avec design fixe, [DT09] remarquent ainsi sur des simulations que leur al-
gorithme exponentiel sélectionne correctement les variables pertinentes (pourvu qu’une troncature



1.6. PERSPECTIVES DE RECHERCHE DANS LA DROITE LIGNÉE DES TRAVAUX DE CETTE THÈSE 37

raisonnable soit appliquée aux composantes de la combinaison linéaire produite) ; voir [DT09, sec-
tion 5.2.1]. Dans notre cadre séquentiel, on pourrait envisager d’étudier si de telles propriétés sont
vraies (d’un point de vue pratique ou théorique) pour une modification appropriée de l’algorithme
SeqSEW. Autrement dit, peut-on approcher les prévisions ŷt définies par (1.16) par des prévisions
de la forme ût · xt avec ‖ût‖0 petit (par ex., ‖ût‖0 � t) et telles que la perte cumulée encourue
soit proche ?

Peut-on prouver des bornes de parcimonie pour des algorithmes séquentiels parcimonieux ?
Une autre piste de recherche, actuellement en cours, consiste à tenter de prouver des bornes de
parcimonie pour des algorithmes séquentiels dont on sait qu’ils produisent des combinaisons par-
cimonieuses. Un exemple de tel algorithme est donné par une variante séquentielle de l’estimateur
Lasso [Tib96, DJ94a] ; cette variante produit la prévision ŷt = ût · xt, où ût est donné par

ût ∈ argmin
u∈Rd

{
t−1∑
s=1

(ys − u · xs)2 + λ ‖u‖1

}
pour un paramètre de régularisation λ > 0 à calibrer judicieusement. En plus de produire des com-
binaisons parcimonieuses, l’algorithme précédent a l’avantage de pouvoir être implémenté18 avec
un coût algorithmique faible. Cela contraste ainsi avec notre prédicteur théorique SeqSEW, qui
pourrait certes être approché numériquement par des méthodes de Langevin Monte-Carlo étudiées
par [DT09] dans le cadre stochastique, mais qui ne jouit pour l’instant pas de garanties théoriques
quant à la précision de cette approximation.

Notons qu’on pourrait également tenter de prouver des bornes de parcimonie pour les algo-
rithmes séquentiels de [LLZ09, SST09, Xia10, DSSST10] mentionnés en section 1.2.1.

Regret interne

Comme précisé en section 1.4.3, plusieurs questions relatives au regret interne et au regret swap
sont encore ouvertes. Ainsi, la question du facteur logarithmique manquant

√
lnK entre les bornes

inférieure et supérieure des regrets interne et swap nécessite sans doute des techniques plus fines
que celles utilisées jusqu’à présent. On décrit en section 5.6 des pistes de majoration ou de mino-
ration.

Par ailleurs, la technique stochastique développée à la fin du chapitre 5 est utile d’un point de
vue théorique (puisqu’elle permet de majorer le regret minimax), mais elle n’est pas constructive.
Nous souhaiterions donc nous pencher sur la construction d’algorithmes (pt)t>1 explicites (et
efficaces) atteignant les bornes supérieures nouvellement prouvées, par exemple pour le regret
makespan, dont on a majoré la valeur minimax par une quantité de l’ordre de

√
T lnK. Une

construction générique traitant d’emblée le regret généralisé défini en section 5.5.1 (lequel inclut
regrets externe, interne, swap et makespan) serait idéale.

Agrégation de modèles non linéaires

Le dernier chapitre de la thèse présente des travaux en cours sur l’agrégation de modèles non
linéaires. Comme précisé en section 1.5.4, plusieurs questions importantes sont encore ouvertes.
Nous projetons ainsi d’étudier la possibilité d’obtenir des inégalités de type oracle exactes pour

18De surcroı̂t, une implémentation du type LARS [EHJT04] permet de calculer le chemin entier de régularisation,
ce qui est utile à des fins de calibration.
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des modèles Sm non linéaires (au moins sur des exemples classiques comme, par exemple, les
ellipsoı̈des de Besov et les réseaux de neurones). Ces exemples pourraient permettre de mieux
comparer les procédures d’agrégation de modèles et de sélection de modèles.

Enfin, nous souhaiterions aborder la question – cruciale en pratique – de la calibration du
paramètre η. Il s’agira probablement d’étudier l’existence d’une calibration optimale – au moins
sur des exemples classiques – puis de chercher à imiter cette calibration à l’aide des données
seulement. On pourrait par exemple mêler des arguments de calibration séquentielle proches de
ceux du chapitre 3 et des idées propres à l’heuristique de pente introduite par [BM07a, AM09].

Autres liens entre suites individuelles et sélection de modèles

Dans le cadre de la prévision avec un nombre fini d’avis d’experts (cf. figure 1.2 avec Θ =

{1, . . . ,K}), et pour des fonctions de perte convexes et bornées, on connaı̂t depuis plus d’une
décennie des procédures d’agrégation optimales au sens minimax. En particulier, le regret dans le
pire des cas des stratégies optimales correspondantes ne peut pas être amélioré (même d’un facteur
multiplicatif, cf. remarque 2.3 page 61). En revanche, les travaux plus récents de [FS97, ACBG02,
ANN04, CBMS07, HK08] ont montré qu’il existe des algorithmes qui, dans des cas favorables
(donc loin du pire des cas considéré pour la quantité minimax), possèdent des performances bien
meilleures. Les bornes associées ont été qualifiées de bornes du premier ou second ordre (on en
présente une introduction en section 2.2.2).

Dans ce cadre, un problème encore ouvert – formulé par [CBMS07] – consiste en l’obtention
de bornes de regret de type oracle, i.e., des bornes de regret du second ordre qui sont un analogue
séquentiel des inégalités de type oracle en sélection de modèles. Plus précisément, pour des fonc-
tions de perte ` : D×Y → R bornées et convexes en leur premier argument, il s’agirait de prouver
des bornes de regret de la forme

T∑
t=1

`
(
ât, yt

)
6 min

16i6K

{
T∑
t=1

`
(
ai,t, yt

)
+ γ1

√
Qi,T lnK

}
+ γ2E lnK , (1.17)

où γ1, γ2 > 0 sont des constantes, oùE , max16t6T max16i,j6K

∣∣`(ai,t, yt)−`(aj,t, yt)∣∣ désigne
l’étendue des pertes jusqu’à la date T , et où Qi,T est une quantité du second ordre, par exemple,
Qi,T =

∑T
t=1 `

2(ai,t, yt) ou, mieux, un terme de variance empirique

Qi,T =

T∑
t=1

(
`(ai,t, yt)− µi,T

)2
, avec µi,T ,

1

T

T∑
t=1

`(ai,t, yt) .

Une borne de la forme (1.17) permettrait de réaliser un compromis de type biais-variance entre les
experts : la perte cumulée

∑T
t=1 `(ai,t, yt) du i-ème expert joue le rôle d’une erreur d’approxima-

tion, alors que la quantité γ1

√
Qi,T lnK est une mesure de la difficulté séquentielle d’estimation

(et joue donc le rôle d’un terme de variance).
Les exemples de quantités du second ordre Qi,T mentionnés ci-dessus furent introduits par

[CBMS07, HK08], mais ces deux travaux ne prouvent une borne de la forme (1.17) qu’au prix
d’une très forte connaissance a priori sur la suite des données à prévoir (en l’occurrence, pour
obtenir la borne (1.17), il convient de calibrer leurs algorithmes en fonction de la quantité Qi∗T ,T ,
où i∗T réalise le minimum dans (1.17) ; en l’absence d’un tel a priori, leurs bornes sont plus faibles).
Notre objectif est donc de prouver une borne du type (1.17) pour un algorithme n’utilisant pas un
tel fort a priori. Il est vraisemblable que de nouvelles techniques de calibration soient nécessaires.



Chapter 2

Mathematical introduction

This chapter is a mathematical introduction to the content of this manuscript. We present the basics
of the theory of prediction of individual sequences, some of its connections with the stochastic
setting, and explain the main motivations under the notion of sparsity oracle inequalities in the
stochastic setting. Part of the material below is based on the monograph [CBL06] as well as on
recent lectures given by Gilles Stoltz at Paris-Sud XI University (cf. [Sto10b]) and by Peter Bartlett
at IHP (cf. [Bar11]).
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2.1 Introduction

In this thesis we study sequential prediction problems that can all be cast into the following setting.
A decision-maker – or forecaster – has to predict in a sequential fashion the values of an unknown
sequence y1, y2, . . . of elements of an outcome space Y . His decisions ât – or predictions – belong
to a decision space D, which we assume to be a convex subset of a vector space. Even if the case
when D = Y is easier to interpret, D may be different from Y . The prediction task is sequential:
the outcomes are only revealed one after another; at time t, the forecaster guesses the next outcome
yt right before it is revealed.

In the classical statistical theory of sequential prediction, some stochastic assumptions are
made on the way the sequence y1, y2, . . . is generated. For example, it may be assumed to be
the realization of an ergodic stationary process. Such assumptions enable to sequentially estimate
the properties of the underlying stochastic process and therefore to design statistical methods that
work well when the statistical model properly describes the data at hand. This however may be
unrealistic in practical problems where the process is hard to model from a statistical viewpoint
and may even react to the forecaster’s decisions – the last situation occurs, e.g., in computer secu-
rity and computational finance.

The theory of prediction of individual sequences addresses the sequential prediction problem
from a quite different angle. No stochastic assumptions whatsoever are made on the sequence of
outcomes y1, y2, . . . to be predicted. Therefore, all outcome sequences are considered and we look
for prediction methods that are robust in the sense that they work well even in the worst case. The
name individual sequences comes from the fact that performance guarantees are proved for any
arbitrary deterministic sequence y1, y2, . . . ∈ Y .

Without any stochastic model, it is not immediately clear how the prediction problem can
be made meaningful and which goals are reasonable. One popular possibility is to measure the
performance of a decision-maker by the loss he has accumulated in the long run, where the losses
are scored by a loss function ` : D × Y → R. The goal of the forecaster is to minimize his
cumulative loss

∑T
t=1 `(ât, yt).

Since no stochastic assumptions are made on the outcome sequence, a classical approach con-
sists in comparing the forecaster’s performance to that of reference forecasters – also called ex-
perts. Namely, we assume that at each time t, the forecaster has access to base forecasts aθ,t ∈ D,
θ ∈ Θ, where Θ is a fixed index set — the aθ,t are called the experts’ predictions or expert advice.
Then we look for methods that guarantee that the regret

T∑
t=1

`(ât, yt)− inf
θ∈Θ

T∑
t=1

`(aθ,t, yt)

is small uniformly over all outcome sequences y1, y2, . . . ∈ Y and all expert advice sequences
(aθ,1)θ∈Θ, (aθ,2)θ∈Θ, . . . ∈ DΘ. Further comments on the regret are made in Section 2.1.2 below.

The expert advice can be of quite different nature. They can correspond to statistical methods
designed under different assumptions on the underlying stochastic process. Minimizing the regret
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above then ensures that, in the long run, the predictions of the forecaster are almost as good
as that of the method associated with the unknown best statistical model (in this respect, regret
minimization can be seen as a meta-statistical problem). The expert advice can also be truly
deterministic predictions based on scientific modelling. Such situations occur, e.g., in daily ozone
forecasting, where the experts may be numerical simulations computed from chemico-physical
PDE models (electricity consumption forecasting is another fruitful example). Even worse, the
experts can also be malicious opponents that react to the forecaster’s decisions – as, e.g., in finance
or in spam email detection problems. Since the prediction guarantees of the forecasting methods
presented in the sequel hold uniformly over all individual sequences, all the examples above can
be handled by the theory at hand.

A few notations

Throughout this chapter, N = {0, 1, . . .} and N∗ , {1, 2, . . . , } denote the sets of nonnegative and
positive integers respectively, and e , exp(1) denotes Euler’s number. Vectors are denoted by
bold letters. Additional notations will be stated explicitely when necessary.

2.1.1 Prediction with expert advice: main framework

The problem of prediction with expert advice mentioned in the introductory paragraphs can be
formulated as a repeated game between the forecaster and the environment; see Figure 2.1.

Parameters: convex decision space D, outcome space Y , loss function
` : D × Y → R, and set Θ of expert indices.

At each time round t ∈ N∗,

1. the environment chooses the expert advice aθ,t ∈ D for all θ ∈ Θ; they
are revealed to the forecaster;

2. the forecaster chooses a point ât ∈ D, which may be kept secret or
revealeda to the environment;

3. the environment chooses and reveals the outcome yt ∈ Y;

4. the forecaster incurs the loss `
(
ât, yt

)
and each expert θ ∈ Θ incurs the

loss `
(
aθ,t, yt

)
.

aIf the environment does not have access to the forecaster’s predictions ât, then we say that
it is oblivious to the forecaster’s predictions. But if the environment can react to the forecaster’s
past moves, then we say that it is adversarial. See Section 2.3.1 for further comments.

Figure 2.1: Prediction with expert advice.

This formulation as a repeated game is convenient to make clear all the dependences between
the quantities at hand. For example, the prediction ât ∈ D of the forecaster at time t is a function
of the past expert advice

(
aθ,s
)
θ∈Θ
∈ DΘ and outcomes ys ∈ Y , 1 6 s 6 t− 1, and of the current

expert advice
(
aθ,t
)
θ∈Θ
∈ DΘ. More formally, in this setting, we call strategy of the forecaster

any sequence (ât)t>1 of functions ât :
(
DΘ × Y

)t−1 × DΘ → D. Though we most often omit
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these dependences for notational convenience, keeping them in mind is crucial to properly define
the problem and the associated optimal performance guarantees such as the minimax regret (see
Section 2.3).

Next we give some examples of decision spaces, outcome spaces, and loss functions that have
been extensively studied in the online prediction protocol of Figure 2.1.

Example 2.1. Typical examples of loss functions include (note that D and Y may be different):

• the square loss for bounded outcomes and predictions, which corresponds to D = Y =

[−B,B] (for some B > 0) and `(a, y) = (y − a)2;

• the relative entropy loss, which corresponds to D = Y = [0, 1] and `(a, y) = y ln(y/a) +

(1− y) ln
(
(1− y)/(1− a)

)
; this loss is called the logarithmic loss when Y = {0, 1};

• the Hellinger loss, which corresponds toD = Y = [0, 1] and `(a, y) = (1/2)(
√
a−√y)2 +

(1/2)(
√

1− a−
√

1− y)2;

• the absolute loss, which corresponds to D = [0, 1], Y = {0, 1} or Y = [0, 1], and
`(a, y) = |y − a|.

• the linear loss (or mixture loss), which corresponds to D = XK , Y = [0, 1]K (for some
K ∈ N∗), and `(a,y) =

∑K
i=1 aiyi, where XK denotes the simplex of order K:

XK ,

{
x ∈ RK+ :

K∑
i=1

xi = 1

}
. (2.1)

2.1.2 A performance criterion: the (external) regret

Since the sequences of outcomes and expert advice can be totally arbitrary, it is in general unre-
alistic for the forecaster to try to incur at each time t the smallest possible loss infa∈D `(a, yt) or
even the loss infθ∈Θ `(aθ,t, yt) of the best expert at time t (which may change at each round t).
However, in the long run (i.e., if the forecaster and the experts are scored through their cumula-
tive loss), predicting almost as well as the best fixed expert in hindsight is a realistic goal. Stated
otherwise, it corresponds to minimizing the regret

T∑
t=1

`(ât, yt)− inf
θ∈Θ

T∑
t=1

`(aθ,t, yt) ,

where the time horizon T may be known or unknown to the forecaster. Regret is sometimes called
external regret in contrast with other forms of regret such as internal and swap regrets (the last two
performance criteria are studied in Chapter 5). It can be thought of as the regret that the forecaster
feels after T time steps for not following the advice of the best expert in hindsight.

The notion of regret can be interpreted as an estimation error in the statistical terminology. As
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noted in [Sto10a], the cumulative loss of the forecaster up to time T can be decomposed as

T∑
t=1

`(ât, yt) = inf
θ∈Θ

T∑
t=1

`(aθ,t, yt)︸ ︷︷ ︸
∼ approximation error

+
T∑
t=1

`(ât, yt)− inf
θ∈Θ

T∑
t=1

`(aθ,t, yt)︸ ︷︷ ︸
∼ estimation error

.

The first term is an online counterpart of an approximation error given by the cumulative loss
incurred by the best expert in hindsight, while the second quantity — the regret — is an online
counterpart of an estimation error, which measures the difficulty of the forecaster to mimic the
best expert in hindsight while being compelled to output predictions in a sequential fashion.

To minimize his cumulative loss, the forecaster should control both the approximation and the
estimation error terms. Minimizing the approximation error is an important problem both in pratice
and in theory: the experts should be carefully chosen for their approximation properties (they can
be, e.g., statistical estimators associated to different functional bases with various approximation
properties, or numerical simulations associated with different physical models or different numer-
ical approximation schemes). In this thesis, we focus on the other quantity — the estimation error
— and study methods whose regret is small uniformly over all outcome sequences y1, y2, . . . ∈ Y
and all expert advice sequences (aθ,1)θ∈Θ, (aθ,2)θ∈Θ, . . . ∈ DΘ.

When the loss function ` is nonnegative and bounded, the regret grows at most linearly in the
number of time rounds T . Therefore, a first reasonable goal is to ensure a sublinear regret, i.e., to
guarantee a vanishing worst-case per-round regret

sup
y1,...,yT

(aθ,1)θ,...,(aθ,T )θ

{
1

T

T∑
t=1

`(ât, yt)− inf
θ∈Θ

1

T

T∑
t=1

`(aθ,t, yt)

}
6 o(1) as T → +∞ ,

where the supremum is taken over all outcome sequences y1, y2, . . . in Y and over all expert advice
sequences (aθ,1)θ∈Θ, . . . , (aθ,T )θ∈Θ in DΘ (the outcomes and the expert advice can be chosen ad-
versarially, see Section 2.3.1). The above guarantee indicates that, on the average, the forecaster
predicts almost as well as the best fixed expert in hindsight. As we show in Section 2.2, when Θ is
finite with cardinality |Θ|, typical rates of the per-round regret are

√
(ln |Θ|)/T and (ln |Θ|)/T .

The fact that the forecaster’s and experts’ predictions are scored through their cumulative
losses contrasts with the stochastic batch setting (where the forecaster is given an i.i.d. sample
(y1, . . . , yT ) from an unknown distribution, as, e.g., in the regression model with random design).
In the latter setting, the performance of a statistical predictor constructed on (y1, . . . , yT ) are in-
stead assessed on a new outcome yT+1 ∈ Y . The usual criterion to be minimized is the risk, i.e.,
the expected loss of the predictor on the next outcome (where the expectation is with respect to
the distribution of the outcome). The two performance criteria – cumulative loss or risk – are of
different nature. However, a close connection exists between them: we explain in Section 2.5 how
to convert an online forecaster into a method suitable for a stochastic batch setting.
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2.1.3 On the use of randomization

In this thesis all the strategies of the forecaster that we consider are deterministic. This is sufficient
since both the decision spaceD and the functions `(·, yt) are assumed to be convex. Such assump-
tions are natural in many applications: online linear regression, classification with the absolute
loss, sequential probability assignement, online portfolio optimization, among other examples.
Next we mention important situations where these convexity assumptions are however not satis-
fied; in such cases, randomization is useful since it is a way to convexify the problem.

An example where D is not convex is given by the binary classification problem, where D =

Y = {0, 1} and where `(a, y) = I{a6=y}. Assume that at each time t = 1, . . . , T , the forecaster
is given two expert advice: a1,t = 0 and a2,t = 1. Note that whatever the forecaster plays, there
is always an individual sequence y1, . . . , yT ∈ {0, 1} such that

∑T
t=1 `(ât, yt) = T (it is given by

yt = 1 − ât). Since in addition one of the two experts predicts correctly for at least half of the
rounds, we get that min16i62

∑T
t=1 `(ai,t, yt) 6 T/2. Therefore, the regret of the forecaster is

lower bounded by
T∑
t=1

`(ât, yt)− min
16i62

T∑
t=1

`(ai,t, yt) >
T

2
.

Thus, in this very simple but non-convex setting, a regret sublinear in T cannot be achieved. Had
the decision space (and the loss function) been convex, e.g., had we considered D̃ = [0, 1] and
`(a, y) = |a − y| instead, then the forecaster would have been allowed to choose his decisions ât
as convex combinations of the expert advice a1,t and a2,t (since [a1,t, a2,t] ⊂ D̃). Such weighted
average predictions are key to get a sublinear regret (see the next sections), but are forbidden in
the non-convex setting D = {0, 1} described above.

A way to compensate for the lack of convexity of D or `(·, yt) is to resort to a randomized
strategy: at each time t, the forecaster chooses a probability distribution pt on Θ, draws an expert
index θ̂t ∈ Θ at random from pt, and outputs the decision ât = a

θ̂t,t
∈ D. The environment has

access to pt before choosing the outcome yt, but only gets to see the decision ât after revealing
yt (contrary to the prediction protocol of Figure 2.1). This way, even if the environment uses the
knowledge of pt to react to the forecaster’s decisions, the forecaster can counteract the environ-
ment’s possible diabolic movements thanks to randomization; in many applications, it yields a
regret sublinear in T with high probability. This is essentially because the conditional expected
loss

E
[
`(ât, yt) | â1, . . . , ât−1

]
=

∫
Θ
`(aθ,t, yt) pt(dθ)

is linear and thus convex in the probability distribution pt: randomization is a way to convexify
the problem. (Unsurprisingly, many randomized strategies are based on the ideas presented in this
chapter for deterministic prediction with convex decision spaces and loss functions; the variability
introduced by randomization is then handled via martingale concentration inequalities.)

The setting of randomized prediction with expert advice (with finite Θ) has been extensively
studied since the seminal works of [Bla56] and [Han57]; see, eg, [FMG92, FV99, CBL99] and
[CBL06, Chapter 4] for a thorough introduction. More recently it has been analysed under various
restrictions on the information available to the forecaster. Well-known problems include:



2.2. PREDICTION WITH EXPERT ADVICE 45

• bandit games, where the forecaster has only access to the loss `(a
θ̂t,t
, yt) of his own decision,

but not to that of the other experts aθ,t, θ 6= θ̂t; see, e.g., [Rob52, ACBF02, ACBFS02,
AB09, BMSS11] and [CBL06, Chapter 6] for a detailed overview;

• label-efficient prediction, where the forecaster has only access to the outcomes yt at a small
number of rounds; see, eg, [HP97, CBLS05];

• sequential prediction under partial monitoring, where the forecaster does not have access to
the past outcomes yt but only to a feedback signal; see, e.g., [Rus99, CBLS06, LMS08].

We also refer the reader to [AB10] for a detailed account on minimax strategies under (combina-
tions of) some of the above restrictive assumptions.

In this thesis, we only consider the full information setting: at the beginning of each time round
t > 1, the whole history

(
(aθ,1)θ∈Θ, y1

)
, . . . ,

(
(aθ,t−1)θ∈Θ, yt−1

)
is available to the forecaster.

Moreover, since we focus on cases where both the decision space D and the functions `(·, yt) are
convex, it is enough to consider only deterministic strategies.

However, even if our setting and our strategies are deterministic, we sometimes use randomiza-
tion for the sake of mathematical analysis. Combined with Fano’s lemma or Pinsker’s inequality,
randomization indeed turns out to be useful to derive lower bounds on the minimax regret (cf.
Section 2.3 for the external regret and Chapter 5, Section 5.4 for the swap regret). We also use
ideas based on randomization to derive upper bounds (cf. Chapter 4, Section 4.2 where we use
a Maurey-type argument and Chapter 5, Section 5.5 where we restrict our attention to Bernoulli
losses through a simple randomization argument).

2.2 Prediction with expert advice

In this section we present some basic results on the theory of prediction with expert advice. We
consider the prediction protocol of Figure 2.1. For the sake of clarity, we assume thereafter that Θ

is finite. Therefore, up to a one-to-one relabelling, we have Θ = {1, . . . ,K} for some K ∈ N∗.
For all t > 1, we index the expert advice ai,t with i ∈ {1, . . . ,K}.

In the sequel, for all t > 1 and all i ∈ {1, . . . ,K}, we denote by `i,t , `(ai,t, yt) the loss of
expert i at time t and by Li,t ,

∑t
s=1 `i,s its cumulative loss up to time t (by convention, we also

set Li,0 , 0).

In the next subsections, we focus on the celebrated exponentially weighted average forecaster
and its refined variants. This forecaster benefits from interesting properties both in the online and
stochastic settings. For other algorithms belonging to the more general family of weighted average
forecasters or related to more specific problems, we refer the reader to the monograph [CBL06].

2.2.1 The exponentially weighted average forecaster

Next we recall one of the most famous algorithms in prediction with expert advice called the expo-
nentially weighted average forecaster. In machine learning theory this algorithm was introduced
by [LW94] and [Vov90].
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The statement of this algorithm is given in Figure 2.2. Note that the initial weight vector
p1 = (1/K, . . . , 1/K) is the uniform weight vector and that the weight pi,t assigned to expert i at
each time t > 2 is a smooth nonincreasing function of its past cumulative loss Li,t−1 ,

∑t−1
s=1 `i,s.

Parameter: η > 0.

Initialization: Li,0 , 0 for all i = 1, . . . ,K.

At each time round t > 1,

1. Receive the expert advice a1,t, . . . , aK,t ∈ D;

2. Compute the weight vector pt =
(
pi,t
)

16i6K ∈ XK defined by

pi,t ,
e−ηLi,t−1∑K
j=1 e

−ηLj,t−1
, 1 6 i 6 K .

3. Output the prediction ât ,
∑K

i=1 pi,tai,t ∈ D;

4. Receive the outcome yt ∈ Y , compute the instantaneous losses `i,t , `(ai,t, yt), and
update the cumulative losses Li,t , Li,t−1 + `i,t for all i = 1, . . . ,K.

Figure 2.2: The exponentially weighted average forecaster.

The next theorem bounds the regret of the exponentially weighted average forecaster when
the loss function ` : D × Y → R is bounded and convex in its first argument. It is based on the
work of [CB99] and can be found, e.g., in [CBL06, Theorem 2.2] for [B1, B2] = [0, 1]. See also
[CBFH+97, CBL99] for the particular case of binary prediction with the absolute loss.

Theorem 2.1. Assume that the loss function ` : D × Y → R is convex in its first argument and
takes its values in [B1, B2] for some constants B1 < B2 ∈ R. Then, for all T ∈ N∗ and all
η > 0, and for all sequences of expert advice ai,t ∈ D and of outcomes yt ∈ Y , the regret of the
exponentially weighted average forecaster with fixed parameter η is upper bounded by

T∑
t=1

`
(
ât, yt

)
− min

16i6K

T∑
t=1

`
(
ai,t, yt

)
6

lnK

η
+
ηT (B2 −B1)2

8
.

This bound is minimized at η = (B2−B1)−1
√

8(lnK)/T and becomes (B2−B1)
√

(T/2) lnK.

Proof: We set Wt , (1/K)
∑K

i=1 e
−ηLi,t−1 for all t = 1, . . . , T + 1 (recall that Li,0 , 0 for all

i = 1, . . . ,K by convention, so that W1 = 1). Next we bound the key quantity ln(WT+1/W1)

from below and above. On the one hand,

ln

(
WT+1

W1

)
= ln

(
K∑
i=1

e−ηLi,T

)
−lnK > ln

(
max

16i6K
e−ηLi,T

)
−lnK = −η min

16i6K
Li,T−lnK .

(2.2)
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On the other hand, we can rewrite ln(WT+1/W1) as a telescopic sum and get

ln

(
WT+1

W1

)
=

T∑
t=1

ln

(
Wt+1

Wt

)
=

T∑
t=1

ln

(∑K
i=1 e

−ηLi,t−1e−η`i,t∑K
i=1 e

−ηLi,t−1

)
=

T∑
t=1

ln

(
K∑
i=1

pi,te
−η`i,t

)
,

(2.3)
where we used the definition of pi,t in Figure 2.2. But, by Hoeffding’s lemma (see Lemma A.4
in Appendix A.5) and by the fact that the loss function ` is [B1, B2]-valued, we get that, for all
t = 1, . . . , T ,

ln

(
K∑
i=1

pi,te
−η`i,t

)
6 −η

K∑
i=1

pi,t`i,t +
η2(B2 −B1)2

8
.

Substituting the last inequality in (2.3), we get

ln

(
WT+1

W1

)
6 −η

T∑
t=1

K∑
i=1

pi,t`i,t +
η2T (B2 −B1)2

8
. (2.4)

Combining the last inequality with (2.2) and dividing by η yields

T∑
t=1

K∑
i=1

pi,t`i,t − min
16i6K

Li,t 6
lnK

η
+
ηT (B2 −B1)2

8
.

We conclude the proof by noting that `
(
ât, yt

)
6
∑K

i=1 pi,t`
(
ai,t, yt

)
=
∑K

i=1 pi,t`i,t for all
t = 1, . . . , T (by definition of ât and by convexity of ` in its first argument).

The above theorem shows that for all loss functions that are bounded and convex in their first
argument, the regret of the exponentially weighted average forecaster is at most of order

√
T lnK.

The next theorem shows that if the loss function ` : D×Y → R is exp-concave in its first argument
(which implies convexity, but not necessarily boundedness), then the regret of the same forecaster
is at most of the order of lnK (with a properly chosen η).

More precisely, following Appendix A.2, we say that a loss function ` : D × Y → R is η0-
exp-concave in its first argument for some η0 > 0 if the function a 7→ e−η0`(a,y) is concave on D
for all y ∈ Y .

Among the loss functions listed in Example 2.1 above, the following are η0-exp-concave: the
square loss on [−B,B] × [−B,B] (with η0 = 1/(8B2)), the relative entropy loss (with η0 = 1),
and the Hellinger loss (with η0 = 1). On the contrary, the linear loss and the absolute loss are
not η0-exp-concave for any value of η0 > 0 and therefore do not satisfy the assumptions of the
following theorem. We refer the reader to [Vov98, Vov01] and [HKW98, KW99] for further details
on exp-concavity. Finally, note that though exp-concavity implies convexity (cf. Appendix A.2),
it does not necessarily imply boundedness (e.g., the relative entropy is not bounded).

Theorem 2.2. Assume that for some η0 > 0, the loss function ` : D×Y → R is η0-exp-concave in
its first argument. Then, for all T > 1, the exponentially weighted average forecaster tuned with
any η ∈ (0, η0] satisfies, uniformly over all sequences of expert advice ai,t ∈ D and of outcomes
yt ∈ Y ,

T∑
t=1

`
(
ât, yt

)
− min

16i6K

T∑
t=1

`
(
ai,t, yt

)
6

lnK

η
.
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The above theorem is due to [KW99] (though stated in a slightly different form). See also
[CBL03] for an analysis in terms of the exponential potential u ∈ RK 7→ η−1 ln

(∑K
i=1 e

ηui
)
.

The following proof is however closer in spirit to [Vov01].

Proof: We follow the same lines as for Theorem 2.1, i.e., we start from (2.2) and (2.3) and simply
replace the call to Hoeffding’s lemma by a sharper argument. Indeed, we upper bound the right-
hand side of (2.3) by noting that, for all t = 1, . . . , T ,

K∑
i=1

pi,te
−η`
(
ai,t,yt

)
6 exp

(
−η `

(
K∑
i=1

pi,tai,t, yt

))
= exp

(
−η `

(
ât, yt

))
, (2.5)

where the inequality follows by concavity of a 7→ e−η`(a,yt) on D (since, by assumption, ` is
η0-exp-concave in its first argument and therefore η-exp-concave for all η ∈ (0, η0]; see Ap-
pendix A.2).

Taking the logarithms of both sides of the last inequality, summing it over t = 1, . . . , T , and
combining it with (2.2) and (2.3), we get

−η min
16i6K

Li,T − lnK 6 −η
T∑
t=1

`
(
ât, yt

)
.

Dividing the last inequality by η and rearranging terms, we conclude the proof.

Remark 2.1 (The Aggregating Algorithm). In the proof above, the only place where the particular
form of ât =

∑K
i=1 pi,tai,t is used is in (2.5). In particular, the bound of Theorem 2.2 would have

remained true for any ât ∈ D such that (2.5) holds, i.e., such that

∀yt ∈ Y , `
(
ât, yt

)
6 −1

η
ln

(
K∑
i=1

pi,te
−η`
(
ai,t,yt

))
.

Any algorithm that outputs predictions ât ∈ D satisfying the above inequality is called an aggre-
gating algorithm (see [Vov90, Vov98, Vov01]). An example is given by the exponentially weighted
average forecaster when the loss function ` is η-exp-concave in its first argument. But for some
loss functions, such an algorithm may exist even for values of η > 0 for which the loss function
is not η-exp-concave (e.g., for the square loss on [−B,B], there is an aggregating algorithm with
η = 1/(2B2) while the square loss is only 1/(8B2)-exp concave). The existence of an aggregat-
ing algorithm is ensured by a weaker assumption than exp-concavity that is called mixability in
[CBL06, Sections 3.5 and 3.6]; see [Vov90, Vov98, HKW98, KW99, Vov01] for further details.

In the subsequent chapters, we could sometimes directly address the more general aggregating
algorithm instead of studying only the exponentially weighted average forecaster. This is the case,
e.g., in Chapter 3 where, for the square loss, we could also use the aggregating algorithm to get
similar bounds (with actually a leading constant better by a factor of 4, and without any additional
difficulties). We however chose to focus on the exponentially weighted average forecaster for its
popularity, its wide use in practice, its nice theoretical performance, and the various parameter
tunings that have already been proposed so far.
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2.2.2 Parameter tuning techniques

The value of the parameter η minimizing the upper bound of Theorem 2.1 depends on the range
B2 − B1 and on the time horizon T , which may be unknown in practice. Similarly, Theorem 2.2
suggests to take η = η0, which may depend on quantities that are not known beforehand. For
example, the square loss on D ×Y = [−B,B]2 is 1/(8B2)-exp-concave in its first argument (see
Appendix A.2); in this case, η0 = 1/(8B2) depends on the possibly unknown range B of the
outcomes and the expert advice.

Next we introduce tuning techniques to choose η in an adaptive way, i.e., that do not require
any a priori knowledge on the data to be predicted (or less knowledge), while still ensuring regret
bounds of the same order of magnitude.

The doubling trick

We consider the setting of Theorem 2.1; we also assume for the moment that the range B2−B1 is
known beforehand. A way to adapt to the unknown time horizon T is the so-called doubling trick,
whose first precise analysis in machine learning theory can probably be dated back to [CBFH+97]
and [Vov98].

The idea underlying the doubling trick is to partition time into periods (or regimes) of exponen-
tially increasing lengths. Traditionnally we take regimes with doubling lengths, i.e., time intervals
of the form {2r, . . . , 2r+1 − 1}, r ∈ N. At the beginning of each regime r, the exponentially
weighted average forecaster is run with η tuned optimally as a function of the length of the period
(i.e., η = (B2 −B1)−1

√
8(lnK)/2r). When the regime ends, the algorithm is re-initialized1 and

run on the next regime with a new value of η = (B2 −B1)−1
√

8(lnK)/2r+1.

Theorem 2.3 (Adaptation to T via a doubling trick in T ).
Assume that the loss function ` : D×Y → R is convex in its first argument and takes its values in
[B1, B2] for some known constants B1 < B2 ∈ R. Then, the doubling version of the exponentially
weighted average forecaster described above satisfies, for all T ∈ N∗ and for all choices of the
experts’ predictions ai,t ∈ D and outcomes yt ∈ Y ,

T∑
t=1

`
(
ât, yt

)
− min

16i6K

T∑
t=1

`
(
ai,t, yt

)
6

√
2√

2− 1
(B2 −B1)

√
T

2
lnK + (B2 −B1) .

A version of the above theorem can be found, e.g., in [Sto05, Theorem 2.2]. As mentioned
therein, the classical choice of 2 for the regimes’ lengths ratio is not optimal but close to the
optimum. Note that it leads to a regret bound whose main term is within a factor of

√
2/(
√

2− 1)

of the best bound of Theorem 2.1.
The main idea underlying the proof of Theorem 2.3 as well as all other applications of the

doubling trick is the following. By superadditivity of the minimum, the regret on {1, . . . , T} is
smaller than the sum of the regrets on each regime {2r, . . . , 2r+1 − 1} ∩ [1, T ] such that 2r 6 T ,
i.e., such that r 6 R , blog2 T c. Therefore, by Theorem 2.1, the regret on {1, . . . , T} is at
most of the order of

∑R
r=0

√
2r lnK. The last sum is geometric and is therefore of the order of√

2R lnK, which is smaller than
√
T lnK by definition of R. This yields the desired result.

1In particular, the experts’ losses on the past regimes are no longer used and the weight vector of the forecaster is
reset to (1/K, . . . , 1/K).



50 CHAPTER 2. MATHEMATICAL INTRODUCTION

Time-varying tunings

Next we present an improved tuning technique that does not require that the exponentially weighted
average forecaster be restarted repeatedly, which is more desirable in practice. This technique con-
sists in tuning the exponentially weighted average forecaster with a time-varying parameter ηt that
can depend on t but also on the whole information available to the forecaster at the beginning of
the t-th round.

Parameter: sequence of functionsa (ηt)t>2 where ηt :
(
DK × Y

)t−1 ×DK → (0,+∞).

Initialization: Li,0 , 0 for all i = 1, . . . ,K.

At each time round t > 1,

1. Access the experts’ advice a1,t, . . . , aK,t ∈ D;

2. Compute the weight vector pt =
(
pi,t
)

16i6K ∈ XK defined by

pi,t ,
e−ηtLi,t−1∑K
j=1 e

−ηtLj,t−1
, 1 6 i 6 K .

3. Output the prediction ât ,
∑K

i=1 pi,tai,t ∈ D;

4. Receive the outcome yt ∈ Y , compute the instantaneous losses `i,t , `(ai,t, yt), and
update the cumulative losses Li,t , Li,t−1 + `i,t for all i = 1, . . . ,K.

aThe parameter ηt > 0 can be chosen as a function of t and of the information available to the forecaster at
the beginning of the t-th round.

Figure 2.3: The exponentially weighted average forecaster with time-varying parameter.

The corresponding algorithm is stated in Figure 2.3. The following lemma upper bounds its
regret when the sequence (ηt)t>2 is nonincreasing.

Lemma 2.1 (Time-varying parameter).
Let ` : D × Y → R be any loss function and (ηt)t>2 be any nonincreasing sequence of positive
real numbers (possibly chosen as a function of the past). Then, the exponentially weighted average
forecaster tuned with ηt as in Figure 2.3 satisfies, for all T ∈ N∗, for all choices of the experts’
predictions ai,t ∈ D and outcomes yt ∈ Y , and for all η1 > η2,

T∑
t=1

`
(
ât, yt

)
− min

16i6K

T∑
t=1

`
(
ai,t, yt

)
6

lnK

ηT+1
+

T∑
t=1

1

ηt
ln

(
K∑
i=1

pi,te
−ηt
[
`i,t−`(ât,yt)

])
. (2.6)

Moreover, if ` is convex in its first argument, then, setting ¯̀
t ,

∑K
i=1 pi,t`i,t for all t = 1, . . . , T ,

the regret can be further upper bounded by

T∑
t=1

`
(
ât, yt

)
− min

16i6K

T∑
t=1

`
(
ai,t, yt

)
6

lnK

ηT+1
+

T∑
t=1

1

ηt
ln

(
K∑
i=1

pi,te
−ηt
(
`i,t−¯̀

t

))
. (2.7)
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A general way to use the above lemma is to choose a nonincreasing sequence (ηt)t>2 such
that (lnK)/ηT+1 is of the order the desired bound for all T > 1. As for the remaining sum, note
that the logarithm in (2.7) is a log-moment generating function. In the case of general convex
and bounded loss functions, it can be upper bounded via Hoeffding’s lemma (see Proposition 2.1
below) or via Bernstein’s inequality (see Theorem 2.4 below). In the case of exp-concave loss
functions, it is preferable to use (2.6) since the corresponding logarithm is nonnegative if `(·, yt)
is ηt-exp concave. In Chapter 3 we detail for the square loss how to choose ηt so that `(·, yt) is
indeed ηt-exp-concave for most time rounds t (the other ones only accounting for a small regret).

Lemma 2.1 above is essentially due to an argument of [ACBG02], which was then adapted by
[CBMS07]. However, it slightly improves on [CBMS07, Lemma 3] in two ways. First, the term
(lnK)/ηT+1 above replaces the quantity (2/ηT+1−1/η1) lnK of [CBMS07]. Our term is always
smaller (since (ηt)t>1 is nonincreasing) and can be up to twice as small. See also Remark 2.2
below for a consequence of this fact. Second, the following proof, which is essentially due to
[GO07, Lemma 1], is much shorter and simply relies on Jensen’s inequality (see also [Aud06,
Theorem D.1] for a similar result in the batch stochastic setting under very generic assumptions).

Proof: We adapt the beginning of the proof of Theorem 2.1 to handle the case of a time-varying
parameter. More precisely, instead of controlling the telescopic sum

∑T
t=1 ln(Wt+1/Wt) and di-

viding the resulting bounds by η, we directly control
∑T

t=1

[
(lnWt+1)/ηt+1− (lnWt)/ηt

]
, where

Wt , (1/K)
∑K

i=1 e
−ηtLi,t−1 for all t = 1, . . . , T + 1 (recall that Li,0 , 0 for all i = 1, . . . ,K

by convention, so that W1 = 1). One the one hand, we get as in (2.2) that

lnWT+1

ηT+1
− lnW1

η1
=

1

ηT+1
ln

(
K∑
i=1

e−ηT+1Li,T

)
− lnK

ηT+1
> − min

16i6K
Li,T −

lnK

ηT+1
. (2.8)

On the other hand, we can rewrite (lnWT+1)/ηT+1 − (lnW1)/η1 as a telescopic sum and get

lnWT+1

ηT+1
− lnW1

η1
=

T∑
t=1

(
lnWt+1

ηt+1
− lnWt

ηt

)
=

T∑
t=1

(
lnWt+1

ηt+1
−

lnW ′t+1

ηt︸ ︷︷ ︸
,at

+
1

ηt
ln
W ′t+1

Wt︸ ︷︷ ︸
,bt

)
,

(2.9)
where W ′t+1 is obtained from Wt+1 by replacing ηt+1 with ηt, i.e., W ′t+1 , (1/K)

∑K
i=1 e

−ηtLi,t .

Let t ∈ {1, . . . , T}. As noted in [GO07, Lemma 1], the first term at is non-positive by Jensen’s
inequality. Indeed, by concavity of x 7→ xηt+1/ηt on R∗+ (since 0 < ηt+1 6 ηt by assumption), we
get that

Wt+1 ,
1

K

K∑
i=1

e−ηt+1Li,t =
1

K

K∑
i=1

(
e−ηtLi,t

)ηt+1/ηt 6

(
1

K

K∑
i=1

e−ηtLi,t

) ηt+1
ηt

,
(
W ′t+1

) ηt+1
ηt .

Taking the logarithms of both sides of the last inequality and dividing it by ηt+1, we get that
(lnWt+1)/ηt+1 6 (lnW ′t+1)/ηt, so that at 6 0. As for the second term bt, we get as in (2.3) that

bt ,
1

ηt
ln

(
W ′t+1

Wt

)
=

1

ηt
ln

(∑K
i=1 e

−ηtLi,t−1e−ηt`i,t∑K
i=1 e

−ηtLi,t−1

)
=

1

ηt
ln

(
K∑
i=1

pi,te
−ηt`i,t

)
,
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where the last equality follows by definition of pi,t in Figure 2.3. Therefore, substituting the last
upper bounds on at and bt in (2.9), and combining the latter inequality with (2.8), we get that

− min
16i6K

Li,T −
lnK

ηT+1
6

T∑
t=1

1

ηt
ln

(
K∑
i=1

pi,te
−ηt`i,t

)
.

Adding
∑T

t=1 `
(
ât, yt

)
to both sides of the last inequality and rearranging terms yields (2.6). As

for (2.7), it follows from the fact that `(ât, yt) 6 ¯̀
t by definition of ât and by convexity of `(·, yt).

This concludes the proof.

The above lemma can be used for several adaptation purposes. Next we derive a result similar
to Theorem 2.3 but for the exponentially weighted average forecaster tuned with a time-varying
parameter ηt. In view of Theorem 2.1, this parameter is chosen as ηt = (B2 −B1)−1

√
c ln(K)/t

for some constant c > 0 (we have in mind c = 8, but it turns out that c = 4 leads to a better
bound).

The next proposition is a variant of [CBL06, Theorem 2.3]. Our only modification is that we
use Lemma 2.1 instead of [CBMS07, Lemma 3]. This yields an improvement of a

√
2 multiplica-

tive factor (see the comments below).

Proposition 2.1 (Adaptation to T via a time-varying parameter).
Let c > 0. Assume that the loss function ` : D × Y → R is convex in its first argument and takes
its values in [B1, B2] for some known constants B1 < B2 ∈ R. Then, the exponentially weighted
average forecaster with time-varying parameter ηt = (B2 − B1)−1

√
c ln(K)/t of Figure 2.3

satisfies, for all T ∈ N∗ and for all sequences of expert advice ai,t ∈ D and of outcomes yt ∈ Y ,

T∑
t=1

`
(
ât, yt

)
− min

16i6K

T∑
t=1

`
(
ai,t, yt

)
6 (B2 −B1)

((
1√
c

+

√
c

4

)√
T lnK +

√
lnK

c

)
.

This upper bound is approximately minimized with c = 4 and becomes (B2 − B1)
√
T lnK +

(B2 −B1)
√

lnK/2.

Note that the main term (B2 − B1)
√
T lnK of the above regret bound with c = 4 is within

a mutiplicative factor of
√

2 of the best bound of Theorem 2.1 (which is minimax optimal; cf.
Remark 2.3 in Section 2.3). Therefore, adaptation to the unknown time horizon T is possible at
the price of a multiplicative factor at most of

√
2. In particular, the above bound improves on

Theorem 2.3 obtained via a doubling trick, where the price was a factor of
√

2/(
√

2 − 1) ≈ 3.41

(more importantly, the forecaster is no longer repeatedly re-initialized, which may lead to better
performance in practice). It also improves on the best bound known so far2 of [CBL06, Theo-
rem 2.3], where the price was a factor of 2.

Proof: By (2.7) in Lemma 2.1, we have

T∑
t=1

`
(
ât, yt

)
− min

16i6K

T∑
t=1

`
(
ai,t, yt

)
6

lnK

ηT+1
+

T∑
t=1

1

ηt
ln

(
K∑
i=1

pi,te
−ηt
(
`i,t−¯̀

t

))
, (2.10)

2We compare existing bounds in the case when B2 −B1 is known but T is unknown.
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where ¯̀
t ,

∑K
i=1 pi,t`i,t for all t = 1, . . . , T . But, as in Theorem 2.1, by Hoeffding’s lemma and

by the fact that `i,t ∈ [B1, B2] by assumption,

T∑
t=1

1

ηt
ln

(
K∑
i=1

pi,te
−ηt
(
`i,t−¯̀

t

))
6

T∑
t=1

1

ηt

η2
t (B2 −B1)2

8
=

(B2 −B1)
√
c lnK

8

T∑
t=1

1√
t

6
(B2 −B1)

√
c T lnK

4
,

where the first line follows by definition of ηt = (B2 − B1)−1
√
c ln(K)/t, and where the last

inequality follows from
∑T

t=1 1/
√
t 6 2

√
T . Substituting the last upper bound in (2.10), we get

T∑
t=1

`
(
ât, yt

)
− min

16i6K

T∑
t=1

`
(
ai,t, yt

)
6 (B2 −B1)

(√
(T + 1) lnK

c
+

√
c T lnK

4

)

6 (B2 −B1)

((
1√
c

+

√
c

4

)√
T lnK +

√
lnK

c

)
,

where we used the upper bound
√
T + 1 6

√
T + 1. This concludes the proof.

Lemma 2.1 can also be used to adapt simultaneously to the unknown time horizon T and the
unknown range B2−B1. Time-varying tunings achieving this task have been proposed by at least
two papers so far3: [ACBG02] and then [CBMS07]. The key idea in both papers is to use a sharper
inequality than Hoeffding’s lemma to upper bound the log-moment generating function appearing
in (2.7). Next we recall the result of [CBMS07] who use a Bernstein-type inequality to upper
bound the log-moment generating function.

The most sophisticated tuning of [CBMS07] for the exponentially weighted average forecaster
relies on the following two time-varying quantities. First, for all t > 1, the effective range of the
losses `i,s up to time t is approximated (and upper bounded) by

Êt , inf

{
2k : k ∈ Z, 2k > max

16s6t
max

16i,j6K

∣∣`i,s − `j,s∣∣} .

Second, the authors keep track of the cumulative variance of the forecaster up to time t defined by

Vt ,
t∑

s=1

K∑
i=1

pi,s

`i,s − K∑
j=1

pj,s`j,s

2

.

Then, setting C ,
√

2(
√

2− 1)/(e− 2), the time-varying parameter ηt is chosen for all t > 2 as

ηt , min

{
1

Êt−1

, C

√
lnK

Vt−1

}
. (2.11)

Note that ηt depends on the forecaster’s past predictions (through Vt−1) and is totally parameter-
3Time-varying tunings have also been designed for other frameworks or for other types of algorithms than the

exponentially weighted average forecaster: see, e.g., [BHR08, MS10, DHS10] for time-varying tunings in online convex
optimization.
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free. The next theorem bounds the regret of the corresponding exponentially weighted average
forecaster in terms of the cumulative variance VT .

Theorem 2.4 (Theorem 6 and Corollary 1 of [CBMS07]).
Assume that the loss function ` : D×Y → R is convex in its first argument. Then, the exponentially
weighted average forecaster with time-varying parameter ηt defined by Figure 2.3 and (2.11)
satisfies, for all T ∈ N∗ and for all sequences of expert advice ai,t ∈ D and of outcomes yt ∈ Y ,

T∑
t=1

`
(
ât, yt

)
− min

16i6K

T∑
t=1

`
(
ai,t, yt

)
6 4
√
VT lnK + 4E lnK + 6E , (2.12)

where E , max16t6T Et is the maximum value of the effective ranges Et , max
16i,j6K

∣∣`i,t − `j,t∣∣.
As a consequence, the regret is upper bounded by

T∑
t=1

`
(
ât, yt

)
− min

16i6K

T∑
t=1

`
(
ai,t, yt

)
6 2

√√√√( T∑
t=1

E2
t

)
lnK + 4E lnK + 6E (2.13)

6 2E
√
T lnK + 4E lnK + 6E . (2.14)

Remark 2.2 (A slight improvement in the constants). The regret bound (2.12) can actually be
slightly improved. To do so, it suffices to follow the proof of [CBMS07, Theorem 6] and to use
Lemma 2.1 instead of [CBMS07, Lemma 3]. The improvement is in the leading constant: the
bound 4

√
VT lnK + 4E lnK + 6E is replaced by

2

√
(e− 2)(

√
2 + 1)

√
VT lnK + 2E lnK + 6E 6 2.64E

√
VT lnK + 2E lnK + 6E .

Note from (2.14) that if ` is convex in its first argument and takes its values in [B1, B2],
then, without knowing neither T nor B2 − B1, the above algorithm satisfies the regret bound
(B2 − B1)

√
(T/2) lnK of Theorem 2.1 up to a multiplicative factor4 of 2

√
2 and small remain-

ing terms (since E 6 B2 −B1).

Moreover, the regret bound in (2.12) may improve significantly over the worst-case bound
(B2 − B1)

√
(T/2) lnK of Theorem 2.1. Though the latter is minimax optimal for some loss

functions (see Remark 2.3 in Section 2.3), the bound in (2.12) can be much smaller in situations
that are more favorable than the worst case, and in particular, when the cumulative variance VT of
the forecaster is small. Note that this property is natural: if the forecaster is confident enough to
rapidly concentrate its mass around the experts of smallest losses (which corresponds to a small
cumulative variance), then its regret should be small. This is close in spirit to the self-confident
forecasters of [ACBG02].

More generally, regret bounds that are minimax optimal (up to multiplicative factors) and that
can be significantly smaller than the worst-case bound in some favorable situations are called re-

4By Remark 2.2 above, the constant 2
√

2 ≈ 2.83 can actually be improved. More precisely, the mutiplicative price
to pay for adaptation to T and B2 −B1 is smaller than 2.64/2 = 1.87.



2.2. PREDICTION WITH EXPERT ADVICE 55

fined regret bounds. Following the terminology of [CBMS07], the bound (2.12) is called a second-
order regret bound (since the main term depends on second-order quantities like the squared
losses). Previous refined regret bounds were obtained by [FS97, ACBG02] and [ANN04]. These
papers provide first-order regret bounds, i.e., regret bounds expressed in terms of the quantities∑T

t=1 |`i,t|, 1 6 i 6 K.
In particular, in the case of nonnegative losses 0 6 `i,t 6 E, [FS97] showed that (a properly

tuned version of) the exponentially weighted average forecaster satisfies an improvement for small
losses, i.e., a regret bound of the order of

√
EL∗T lnK + E lnK, where L∗T , min16i6K Li,T is

the smallest cumulative loss up to time T . If L∗T is much smaller than TE, then the latter regret
bound is much smaller than the zero-order bound E

√
T lnK of Theorem 2.1 (hence the name of

the improvement).
An improvement for small losses can actually also be derived from (2.12) above. Indeed,

[CBMS07] show in Corollary 3 therein that for nonnegative losses `i,t ∈ [0, E],

T∑
t=1

`
(
ât, yt

)
− min

16i6K

T∑
t=1

`
(
ai,t, yt

)
6 4
√
EL∗T lnK + 39Emax{1, lnK} . (2.15)

2.2.3 An online PAC-Bayesian-style analysis

In the last section we mentioned several refined regret bounds satisfied by the exponentially
weighted average forecaster when the latter is properly tuned. It turns out that, even for the ba-
sic exponentially weighted average forecaster (with constant parameter η > 0), another type of
refinement in the regret bounds is possible — see Proposition 2.2 below. It uses the notion of
Kullback-Leibler divergence and resembles risk bounds from the PAC-Bayesian literature.

We first need the following definitions. Given a measurable space (E,B), we denote by
M+

1 (E) the set of all probability distributions on (E,B). Moreover, for all ρ, π ∈ M+
1 (E),

the Kullback-Leibler divergence K(ρ, π) between ρ and π is defined by

K(ρ, π) ,


∫
E

ln

(
dρ
dπ

)
dρ if ρ is absolutely continuous with respect to π;

+∞ otherwise,

where dρ
dπ denotes the Radon-Nikodym derivative of ρ with respect to π.

Example 2.2. If E is finite, say E = {1, . . . ,K}, then the Kullback-Leibler divergence K(p, q)

between two elements p = (p1, . . . , pK) and q = (q1, . . . , qK) of the simplex XK reads:

K(p, q) =

K∑
i=1

pi ln

(
pi
qi

)
,

where by convention 0 ln(0/x) = 0 for all x > 0 and x ln(x/0) = +∞ for all x > 0.

As recalled in Appendix A.1, the Kullback-Leibler divergence satisfies the following key du-
ality formula (see, e.g., [Cat04, pp. 159–160] for a proof of it): for all functions h : E → [a,+∞)
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lower bounded by some constant a ∈ R,

− ln

∫
E
e−hdπ = inf

ρ∈M+
1 (E)

{∫
E
h dρ + K(ρ, π)

}
. (2.16)

Moreover, the last infimum is achieved at ρ = πexp
−h , where πexp

−h ∈ M
+
1 (E) is absolutely continu-

ous with respect to π and is given by

dπexp
−h ,

e−h∫
E e
−hdπ

dπ . (2.17)

The elementary equality (2.16) proves to be very useful in most papers of the PAC-Bayesian litera-
ture (see, e.g., the monographs [Cat04, Cat07, Aud04a] and the references therein for the stochastic
batch setting; see also [Aud09, Section 4.2] for the online deterministic setting). We use it as a key
tool in Chapters 3 and 6 for online and batch purposes respectively.

An improvement over Theorem 2.1

The above duality formula can be used to refine the regret bound of Theorem 2.1 for general
convex and bounded loss functions. The next upper bound will be (somewhat abusively) called a
PAC-Bayesian bound.

Proposition 2.2. Assume that the loss function ` : D × Y → R is convex in its first argument and
takes its values in [B1, B2] for some constants B1 < B2 ∈ R. Then, for all T ∈ N∗ and all η > 0,
and for all sequences of expert advice ai,t ∈ D and outcomes yt ∈ Y , the exponentially weighted
average forecaster with fixed parameter η satisfies

T∑
t=1

`
(
ât, yt

)
6 inf
q∈XK

{
K∑
i=1

qi

T∑
t=1

`
(
ai,t, yt

)
+
K(q,p1)

η

}
+
ηT (B2 −B1)2

8
,

where p1 = (1/K, . . . , 1/K) ∈ XK is the initial weight vector of the forecaster.

The above proposition (together with the next remarks) is essentially due to [FSSW97] (see
also [KW99, CB99]), whose analysis is based on a telescopic argument involving the progress
K(q,pt)−K(q,pt+1) for any vector q ∈ XK .

More recently, [Aud09] proved a PAC-Bayesian result on individual sequences for general
losses and prediction sets. Combined with Hoeffding’s lemma, [Aud09, Theorem 4.6] also yields
the above proposition. As in [Aud09], the next proof relies on the duality formula (2.16). Our anal-
ysis is however slightly simpler since we only work in a particular case of [Aud09, Theorem 4.6].

Proof: The improvement over Theorem 2.1 appears at the beginning of the proof: instead of lower
bounding the sum

∑K
i=1 e

−ηLi,T by max16i6K e
−ηLi,T in (2.2), we use the duality formula (2.16)

with E = {1, . . . ,K} and the prior p1 = (1/K, . . . , 1/K) ∈ XK to get

ln

(
WT+1

W1

)
= ln

(
1

K

K∑
i=1

e−ηLi,T

)
= − inf

q∈XK

{
η

K∑
i=1

qiLi,t +K(q,p1)

}
.
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Combing the above equality with (2.4) in the proof of Theorem 2.1 and rearranging terms, we
conclude the proof.

The bound of Proposition 2.2 improves on the regret bound of Theorem 2.1. To see this, it
suffices to take the Dirac probability distribution q = δi∗ at i∗ ∈ argmin16i6K

∑T
t=1 `

(
ai,t, yt

)
and to use that K(q,p1) = lnK since p1 = (1/K, . . . , 1/K).

Since the bound of Theorem 2.1 is minimax optimal for some loss functions (see Section 2.3),
the improvement of Proposition 2.2 over Theorem 2.1 is not significant in all cases. However, it
indicates that the regret term (lnK)/η of Theorem 2.1 can actually be made smaller when several
experts have a cumulative loss close to the minimal one. For example, assume that the set J ∗ of
optimal experts (i.e., the experts whose cumulative loss up to time T is minimal) contains at least
k > 2 experts. Then, taking q =

(
I{i∈J ∗}/k

)
16i6K as the uniform weight vector over J ∗, we can

see from Proposition 2.2 that the term ln(K)/η can be replaced with the smaller term ln(K/k)/η.
Therefore, the PAC-Bayesian bound of Proposition 2.2 better reflects the complexity of the family
of experts.

Another interesting consequence of the duality formula (2.16) and of the form of the minimizer
(2.17) is that, at each time t > 1, the exponentially weighted average forecaster is seen to choose
exactely the convex combination pt ∈ XK that minimizes the upper bound of Proposition 2.2 at
time t− 1, i.e., it satisfies that

pt ∈ argmin
q∈XK

{
K∑
i=1

qi

t−1∑
s=1

`
(
ai,s, ys

)
+
K(q,p1)

η

}
.

(Put differently, pt minimizes the linearized past cumulative loss q 7→
∑K

i=1 qiLi,t−1 regularized
by the Kullback-Leibler divergence.)

Note also that the above analysis obviously remains the same if we allow the initial vector of
the exponentially weighted average forecaster to be arbitrary (instead of p1 = (1/K, . . . , 1/K)).
More precisely, for any prior π ∈ XK , if we define the weights pi,t by

pi,t ,
πie
−ηLi,t−1∑K

j=1 πje
−ηLj,t−1

instead of pi,t =
(1/K)e−ηLi,t−1∑K
j=1(1/K)e−ηLj,t−1

,

then the bound of Proposition 2.2 remains true with the initial weight vector p1 = π.

Other improvements

Following the same lines as in the proof of Proposition 2.2 above, it is also possible to improve the
regret bounds of Theorem 2.2 and Lemma 2.1. The resulting improvements consist in replacing in
the upper bounds the quantity

min
16i6K

T∑
t=1

`
(
ai,t, yt

)
+

lnK

η
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by the smaller quantity

inf
q∈XK

{
K∑
i=1

qi

T∑
t=1

`
(
ai,t, yt

)
+
K(q,p1)

η

}
.

(For Lemma 2.1, the above bound is obtained for η = ηT+1.)

Such improvements are not new. The improvement over Theorem 2.2 mentioned above is a
consequence of [Aud09, Theorem 4.6]. As for the improvement over Lemma 2.1, a similar result
in the stochastic batch setting (and that can be straightforwardly adapted to our deterministic on-
line setting) can be found in [Aud06, Theorem D.1].

We also note that the aforementioned PAC-Bayesian-type upper bounds readily extend to the
case where Θ is an arbitrary measurable space (possibly uncountably infinite); we only dealt with
the finite case to be consistent with the previous sections.

2.3 Minimax regret

In this section we first define two notions of minimax regret — associated with adversarial or
oblivious environments respectively — and show that these quantities are actually equal. We then
prove a lower bound on the minimax regret with the linear loss that matches the upper bound of
Theorem 2.1.

Let D be a decision space, Y be an outcome space, and ` : D × Y → R be any loss function.
We consider the same setting as in Section 2.2, i.e., the prediction protocol of Figure 2.1 with a
finite set of experts Θ (we use the same notations). We consider the next two definitions, which
are associated with adversarial or oblivious environments respectively.

Definition 2.1. We call minimax regret with an adversarial environment the quantity

inf
S

sup
A

{
T∑
t=1

`
(
ât, yt

)
− min

16i6K

T∑
t=1

`
(
ai,t, yt

)}
, (2.18)

where the infimum is taken over all strategies S = (ât)t>1 of the forecaster and where the supre-
mum is taken over all strategies A =

(
(ai,t)16i6K , yt

)
t>1

of the environment. More precisely,

the functions ât :
(
DK × Y

)t−1 × DK → D associate5 with the past expert advice and out-
comes and with the current expert advice the prediction of the forecaster at time t. The experts
ai,t : Dt−1 → D associate to the past predictions of the forecaster their advice at time t. The out-
comes are chosen as functions yt : Dt → Y of the forecaster’s past and current predictions. In this
case, the environment is said to be adversarial (i.e., it can react adversarially to the forecaster’s
predictions).

5We do not consider any dependence between the forecaster’s current prediction and its past predictions: this is
useless since the forecaster does not randomize and can thus at each time t re-compute all its past predictions (at least
theoretically). A similar comment holds for the environment’s moves, that only depend on the forecaster’s predictions.



2.3. MINIMAX REGRET 59

Definition 2.2. We call minimax regret on individual sequences the quantity

inf
S

sup
ai,t,yt

{
T∑
t=1

`
(
ât, yt

)
− min

16i6K

T∑
t=1

`
(
ai,t, yt

)}
, (2.19)

where the infimum is taken over all strategies S = (ât)t>1 of the forecaster and where the supre-
mum is taken over all sequences of elements (ai,1)16i6K , . . . , (ai,T )16i6K ∈ DK and y1, . . . , yT ∈
Y . In this case, the environment does not react to the forecaster’s past moves: it is said oblivious
to the forecaster’s predictions. The sequences of fixed-in-advance elements

(
(ai,t)16i6K , yt

)
t>1

are called individual sequences.

2.3.1 On the equivalence between oblivious and adversarial environments

In Proposition 2.3 below, which is now folklore knowledge in the theory of prediction with expert
advice, we show that the quantities (2.18) and (2.19) are equal. In other words, in our setting,
adversarial environments are not harder to beat than oblivious ones in a minimax sense. (This is
no longer true in general when the forecaster is allowed to resort to randomization, see below.)

For notational convenience, we write at = (ai,t)16i6K for all t = 1, . . . , T . In the first claim
below, we also write explicitely the dependencies of the predictions ât of the forecaster on the
available data (a′s, y

′
s)s6t−1 and a′t. However, in the second claim, we make some slight abuse of

notations by dropping these dependencies for the sake of readability.

Proposition 2.3 (Oblivious and adversarial environments are equivalent in deterministic games).
Consider the prediction protocol of Figure 2.1. Let S = (ât)t>1 be any strategy of the forecaster.
Then the following claims hold true.

• For all strategies A =
(
(ai,t)16i6K , yt

)
t>1

of the environment, the regret of S against A
equals the regret of S on a particular individual sequence of expert advice and outcomes
(a′1, y

′
1), . . . , (a′T , y

′
t) ∈ DK × Y , i.e.,

T∑
t=1

`
(
ât
(
(a′s, y

′
s)s6t−1,a

′
t

)
, y′t

)
− min

16i6K

T∑
t=1

`
(
a′i,t, y

′
t

)
,

where the quantities a′t = (a′i,t)16i6K ∈ DK and y′t ∈ Y are the values of the functions
(ai,t)16i6K and yt evaluated at the forecasters’ past predictions (see (2.20) and (2.21)).

• As a consequence, the worst-case regrets of S against adversarial environments and on
individual sequences are equal:

sup
A

{
T∑
t=1

`
(
ât, yt

)
− min

16i6K

T∑
t=1

`(ai,t, yt)

}
= sup
ai,t,yt

{
T∑
t=1

`
(
ât, yt

)
− min

16i6K

T∑
t=1

`(ai,t, yt)

}
,

where the first supremum is taken over all strategies of the environment while the second
supremum is restricted to the set of all individual sequences (see Definitions 2.1 and 2.2).

• Therefore, the minimax quantities (2.18) and (2.19) are equal. Their common value may be
simply refered to as the minimax regret.
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Proof: The third claim is straightforward, so that we only prove the first two ones.

First claim.
The first claim is just a matter of rewriting things properly, i.e., with all dependencies on the past
data. More formally, the sequence (a′1, y

′
1), . . . , (a′T , y

′
t) ∈ DK × Y is defined by a′1 , a1 and

y′1 , y1

(
â1(a′1)

)
and, by induction, for all t ∈ {2, . . . , T},

a′i,t , ai,t

(
â1(a′1), . . . , ât−1((a′s, y

′
s)s6t−2,a

′
t−1)

)
, 1 6 i 6 K , (2.20)

yt , y′t

(
â1(a′1), . . . , ât

(
(a′s, y

′
s)s6t−1,a

′
t

))
. (2.21)

The first claim then follows by definition of the regret.

Second claim.
Since the set of all strategies of the environment is larger than the set of all individual sequences,
we only need to prove that

sup
A

{
T∑
t=1

`
(
ât, yt

)
− min

16i6K

T∑
t=1

`
(
ai,t, yt

)}
6 sup

ai,t,yt

{
T∑
t=1

`
(
ât, yt

)
− min

16i6K

T∑
t=1

`
(
ai,t, yt

)}
.

(2.22)
For this purpose, let A =

(
(ai,t)16i6K , yt

)
t>1

be any strategy of the environment (i.e., a sequence
of functions). But, by the first claim, the regret of S against the environment’s strategy A satisfies

T∑
t=1

`
(
ât, yt

)
− min

16i6K

T∑
t=1

`
(
ai,t, yt

)
6 sup

a′i,t,y
′
t

{
T∑
t=1

`
(
ât, y

′
t

)
− min

16i6K

T∑
t=1

`
(
a′i,t, y

′
t

)}
,

where we made a slight abuse of notation by not writing all dependencies explicitely. The last
inequality yields (2.22), which concludes the proof.

In all subsequent chapters, we only consider individual sequences (i.e., the prediction game
is described as if the environment were oblivious to the forecaster’s predictions). By the above
proposition, this is actually not a restriction and we could just as well assume that the environment
were adversarial. Our choice however leads to a simpler presentation.

We stress that this equivalence is due to the fact that we only consider deterministic strate-
gies of the forecaster. Indeed, if the forecaster were allowed to resort to randomization (cf. Sec-
tion 2.1.3), then its worst-case expected regret could differ whether it were computed against
adversarial environements or against individual sequences. More formally, if at each time t, the
forecaster picks It ∈ {1, . . . ,K} at random according to a probability distribution pt ∈ XK built
on the past data and predicts as aIt,t, then there are situations for which

sup
A

E

[
T∑
t=1

`
(
aIt,t, yt

)
− min

16i6K

T∑
t=1

`(ai,t, yt)

]
> sup

ai,t,yt
E

[
T∑
t=1

`
(
aIt,t, yt

)
− min

16i6K

T∑
t=1

`(ai,t, yt)

]

where the first supremum is taken over all strategies of the environment6 while the second supre-

6As recalled in Section 2.1.3, in this randomized setting, the environment has access to pt before choosing the
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mum is restricted to the set of all individual sequences.

2.3.2 Lower bound on the minimax regret

Next we show that the upper bound of Theorem 2.1 cannot be improved for the linear loss. In
other words, the minimax regret associated with the linear loss is exactly of the order of

√
T lnK.

More precisely, we consider the prediction protocol of Figure 2.1 with the linear loss func-
tion ` : XK × [0, 1]K → R defined by `(a,y) =

∑K
i=1 aiyi (see Example 2.1). In the se-

quel the standard inner product between u,v ∈ RK is denoted by u · v. We also denote by
δi = (I{j=i})16j6K ∈ XK the Dirac probability distribution at i ∈ {1, . . . ,K}.

Note that ` is convex in its first argument and takes its values in [0, 1]. Therefore, by Theo-
rem 2.1, the minimax regret for the linear loss is at most of

√
(T/2) lnK. In the next theorem

we show that this upper bound cannot be improved by more than a constant factor (see also Re-
mark 2.3 below about the tightness of the constant c2).

Theorem 2.5 (Minimax lower bound for the linear loss).
There exist two absolute constants c1, c2 > 0 such that the following holds true. Let K > 1 and
T > c1 lnK. Consider the prediction protocol of Figure 2.1 with D = XK , Y = [0, 1]K , and the
linear loss `(a,y) = a · y. Then, the minimax regret for the linear loss is lower bounded by

inf
S

sup
ai,t,yt

{
T∑
t=1

`
(
ât,yt

)
− min

16i6K

T∑
t=1

`
(
ai,t,yt

)}
> c2

√
T

2
lnK , (2.23)

where the infimum is taken over all strategies of the forecaster and where the supremum is taken
over all individual sequences such that ai,t ∈ XK and yt ∈ [0, 1]K . In particular, we prove the
theorem for c1 , 40e/(2e+1) ∈ [16.8, 16.9] and c2 , [2/(2e+1)]

√
e/[5(2e+ 1)] ∈ [0.09; 0.1].

The above theorem is essentially due to [CBLS05] and uses techniques of [ACBFS02]. It
relies on a probabilistic method: we lower bound the supremum of the regret over all individual
sequences (yt)t>1 by the expected regret on a suitably chosen i.i.d. random sequence (yt)t>1,
which is at least of c2

√
(T/2) lnK; see Lemma 2.2 below.

Since the upper bound of Theorem 2.1 was obtained for individual sequences, our lower bound
on i.i.d. sequences mentioned above indicates that, surprisingly at first sight, minimizing the regret
on individual sequences is just as hard as minimizing it on i.i.d. sequences. As we show in Chap-
ter 5, this property in no longer true for refined notions of regret such as swap regret.

The first lower bounds on the minimax regret were also derived through a probabilistic method
but were asymptotic; e.g., for the absolute loss defined in Example 2.1, [CBFH+97] proved that

lim inf
K→+∞

lim inf
T→+∞

(
1√

(T/2) lnK
inf
S

sup
ai,t,yt

{
T∑
t=1

`
(
ât,yt

)
− min

16i6K

T∑
t=1

`
(
ai,t,yt

)})
> 1 .

outcome yt, but only gets to see the decision aIt,t after revealing yt.
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Remark 2.3 (On the tightness of the constant 1/
√

2).
The asymptotic lower bound above indicates that the constant 1/

√
2 of the upper bound of Theo-

rem 2.1 is asymptotically tight for the absolute loss. Since the minimax regret associated with the
linear loss is at least as large as that associated with the absolute loss (by convexity), it implies
that the constant c2 in (2.23) can be chosen as close to 1 as desired provided that K and T are
large enough.

We refer the reader to [HKW98] for asymptotic lower bounds with other loss functions (via
a probabilistic method) and for other deterministic techniques to derive lower bounds on individ-
ual sequences (e.g., by induction). We also refer to [CBL99] and [CBL06, Chapter 8] for lower
bounds associated with the absolute loss and particular families of experts (via tools from empir-
ical process theory). See also [RST10] for generic lower bounds on the regret (in a randomized
game) in terms of combinatorial parameters or sequential Rademacher averages.

Theorem 2.5 is a straightforward consequence of the following lemma, the proof of which is
essentially due to [CBLS05, Sto10b] and is postposed to Section 2.A. It is yet another application
of Fano’s lemma (see Appendix A.7), which has already proved very useful in nonparametric
statistics.

Lemma 2.2. There exist two absolute constants c1, c2 > 0 such that the following holds true.
Let K > 1 and T > c1 lnK. Consider the prediction protocol of Figure 2.1 with D = XK ,
Y = [0, 1]K , and the linear loss `(a,y) = a · y. Then, for constant expert advice given by(
ai,t
)
t>1

=
(
δi
)
t>1

for all i ∈ {1, . . . ,K}, we have

inf
S

sup
(Yt)t i.i.d.

E

[
T∑
t=1

`
(
ât,Yt

)
− min

16i6K

T∑
t=1

`
(
δi,Yt

)]
> c2

√
T

2
lnK , (2.24)

where in the last expectation,
(
Yt
)

16t6T is an i.i.d. random sequence in {0, 1}K , and where the
supremum is taken over all possible distributions for Y1 (i.e., over all probability distributions on
{0, 1}K). In particular, we prove the lemma with the constants c1 , 40e/(2e + 1) ∈ [16.8, 16.9]

and c2 , [2/(2e+ 1)]
√
e/[5(2e+ 1)] ∈ [0.09; 0.1].

Proof (of Theorem 2.5): The proof follows straightforwardly from Lemma 2.2. Indeed, for any
strategy S =

(
ât
)
t>1

of the forecaster, the worst-case regret of S over all individual sequences is
lower bounded by

sup
ai,t,yt

{
T∑
t=1

`
(
ât,yt

)
− min

16i6K

T∑
t=1

`
(
ai,t,yt

)}
> sup

yt

{
T∑
t=1

`
(
ât,yt

)
− min

16i6K

T∑
t=1

`
(
δi,yt

)}

> E

[
T∑
t=1

`
(
ât,Yt

)
− min

16i6K

T∑
t=1

`
(
δi,Yt

)]
,

where in the last expectation, (Yt)t>1 is any i.i.d. sequence in {0, 1}K . We conclude the proof by
using Lemma 2.2.
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Remark 2.4. In the above proof, Lemma 2.2 provides an i.i.d. sequence such that the expected
regret is at least of the order of

√
T lnK. The distribution of Y1 may depend on the strategy of the

forecaster (note that the sup is after the inf in the statement of Lemma 2.2). However, it is also
possible to construct explicitely a random sequence (Yt)16t6T yielding a similar lower bound but
whose distribution is independent of the forecaster (but the YT may be no longer i.i.d.). For further
details, see Remark 2.5 in Section 2.A.

Theorem 2.5 indicates that the upper bound of order
√
T lnK of Theorem 2.1 cannot be im-

proved uniformly over all convex and bounded loss functions. This does not mean that the rate√
T lnK is minimax optimal for any bounded and convex loss function. For instance, by Theo-

rem 2.2, the minimax regret associated with exp-concave and bounded loss functions (which are
in particular convex and bounded) is at most of the order of lnK and is therefore much smaller.
For such losses, lower bounds of the order of lnK can usually be derived — see, e.g., [HKW98,
Theorems 3.19 and 3.22] for the square loss, the relative entropy loss, and the Hellinger loss.

2.4 Online linear regression

In this section we introduce the setting of online linear regression, which we study in Chapter 3
under a sparsity scenario and in Chapter 4 for the problem of aggregation over `1-balls.

In the sequel, u ·v denotes the standard inner product between u,v ∈ Rd, and we set ‖u‖∞ ,

max16j6d |uj | and ‖u‖p ,
(∑d

j=1 |uj |p
)1/p for all p ∈ [1,+∞).

2.4.1 Framework

The online linear regression framework, also known as prediction with side information under the
square loss (cf. [CBL06, Chapter 11]), is a particular case of the framework of prediction with
expert advice that unfolds as follows. A forecaster has to predict in a sequential fashion the values
yt ∈ R of an unknown sequence of observations given some input data xt ∈ Rd. At each time
t > 1, on the basis of the newly revealed input data xt and on the past information (xs, ys)16s6t−1,
he outputs a prediction ŷt ∈ R, which is finally compared to the new observation yt through the
square loss. A precise description of this repeated game is given in Figure 2.4.

In this setting the goal of the forecaster is to predict almost as well as the best linear fore-
caster x ∈ Rd 7→ u · x, where u ∈ Rd, i.e., to satisfy, uniformly over all individual sequences
(xt, yt)16t6T , a regret bound of the form

T∑
t=1

(
yt − ŷt

)2
6 inf
u∈Rd

{
T∑
t=1

(
yt − u · xt

)2
+ ∆T,d(u)

}
,

for some regret term ∆T,d(u) that should be as small as possible and, in particular, sublinear in T
(actually, ∆T,d(u) may also depend on the amplitudes of the individual sequence (xt, yt)16t6T

such as max16t6T ‖xt‖∞ and max16t6T |yt|). Sublinearity in T ensures that the regret bound
is non trivial: it is indeed easy to ensure a regret of TB2

y if the observations all lie in a bounded
interval [−By, By] — this regret is achieved by, e.g., the constant predictions ŷt = 0. Moreover,
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Initial step: the environment chooses a sequence of observations (yt)t>1 in R and a sequence
of input data (xt)t>1 in Rd but the forecaster has not access to them.

At each time round t ∈ N∗,

1. The environment reveals the input data xt ∈ Rd.

2. The forecaster chooses a prediction ŷt ∈ R
(possibly as a linear function of xt, but this is not necessary).

3. The environment reveals the observation yt ∈ R.

4. Each linear forecaster x 7→ u · x, for u ∈ Rd, incurs the loss
(
yt − u · xt

)2 and the
forecaster incurs the loss (yt − ŷt)2.

Figure 2.4: The online linear regression setting.

dividing both sides by T , the above regret bound becomes

1

T

T∑
t=1

(
yt − ŷt

)2
6 inf
u∈Rd

{
1

T

T∑
t=1

(
yt − u · xt

)2
+

∆T,d(u)

T

}
.

Therefore, sublinearity of ∆T,d(u) in T implies that, on the average, the loss of the forecaster is
smaller than that of each linear forecaster x 7→ u ·x up to a vanishing remainder term ∆T,d(u)/T .
The similarity of the above regret bound with risk bounds in the stochastic batch setting is exploited
in Section 2.5.

The next two comments are of qualitative nature; they aim to at better comparing the different
frameworks considered in this manuscript. Therefore, the reader only interested in online linear
regression can skip them and go directly to Section 2.4.2.

A first comment

The setting of Figure 2.4 is a particular case of the prediction protocol of Figure 2.1 (cf. page 41)
with decision and outcome spaces7 D = Y = R, with the square loss function (a, y) 7→ (y − a)2,
and with experts indexed by Θ = Rd and predicting au,t = u ·xt at each time t > 1 for all u ∈ Θ.

Another way to cast online linear regression into the prediction protocol of Figure 2.1 is the
following. At each round t > 1, the prediction ŷt is chosen as a function of the new input xt
and the past data (xs, ys)16s6t−1, so that the forecaster can be thought of, before observing xt,
as choosing a function f̃t : Rd × (Rd × R)t−1 → R; its t-th prediction is then given by ŷt =

f̃t
(
xt; (xs, ys)16s6t−1

)
. Therefore, another way to cast online linear regression into the prediction

protocol of Figure 2.1 is to consider Y = Rd × R (the set of all pairs (x, y)), D = RRd (the
set of all functions from Rd to R), ` : D × Y → R defined by `

(
f, (x, y)

)
,
(
y − f(x)

)2,

7In the sequel, we may restrict Y to a bounded interval [−By, By] to emphasize the fact that the performance of
the online algorithm under analysis are assessed for bounded observations yt ∈ [−By, By].
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Θ =
{
x ∈ Rd 7→ u · x : u ∈ Rd

}
, and constant experts’ advice aθ,t = θ. This description is

closer to works from the stochastic setting. We use a similar description in Section 2.5.2 for the
online to batch conversion.

A second comment

The setting of Figure 2.4 is studied in Chapter 4. In Chapter 3 we consider the following gen-
eralized variant (more suited for a comparison with the stochastic setting, see Section 2.5.2 and
Chapter 3). Instead of repeatedly observing pairs (xt, yt) ∈ Rd×R, the forecaster observes input-
output pairs (xt, yt) ∈ X × R where X is an arbitrary measurable set. At the beginning of the
game, the forecaster is also given a dictionary ϕ = (ϕ1, . . . , ϕd) of base forecasters ϕj : X → R,
1 6 j 6 d (the ϕj can be, e.g., elements of a suitably chosen functional basis or estimators asso-
ciated with different statistical models). The goal of the forecaster is then to predict almost as well
as the best forecaster u · ϕ ,

∑d
j=1 ujϕj for u ∈ Rd. The last setting is clearly a generalization

of the prediction protocol of Figure 2.4 (consider the particular case where X = Rd and ϕ is
the identity function). However, if the input data xt are only used through the base predictions
ϕ(xt) ∈ Rd, then the two settings are equivalent.

Among the many papers that addressed the online linear regression framework, the first indi-
vidual sequence analyses can be dated back to [Fos91, LLW95, CBLW96, KW97]. Next we recall
a few basic algorithms in a non-chronological order together with their regret guarantees.

2.4.2 The sequential ridge regression forecaster

In the online linear regression framework described above, we can consider the following online
analogue of the ridge regression method that [HK70] introduced in the stochastic setting (linear
regression model with fixed design). Its predictions are of the form ŷt = ût · xt, where û1 = 0 ∈
Rd and where, at each time t > 2, the linear combination ût ∈ Rd is the solution of the following
optimization problem:

ût ∈ argmin
u∈Rd

{
t−1∑
s=1

(ys − u · xs)2 + λ ‖u‖22

}
. (2.25)

In the above equation, λ > 0 is a parameter of the algorithm. The regularization term λ ‖u‖22
ensures that the solution ût is unique and, more importantly, that it cannot be too far away from
the null vector 0. This shrinking property (or, to see it from an online convex optimization per-
spective, the strong convexity of ‖·‖22 with respect to the norm ‖·‖2) is important to get non-trivial
regret guarantees.

The following theorem was proved by [AW01] via a key telescoping argument involving linear
algebra calculations (see also [CBL06, Theorem 11.7], which combines such arguments with other
ideas of [For99]).
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Theorem 2.6 (Theorem 4.6 of [AW01]).
For all λ > 0, the online algorithm described above satisfies

T∑
t=1

(
yt − ût · xt

)2
6 inf
u∈Rd

{
T∑
t=1

(
yt − u · xt

)2
+ λ ‖u‖22

}
+ 4B2d ln

(
1 +

TB2
x

λ

)
,

where Bx = max
{
|xj,t| : 1 6 j 6 d, 1 6 t 6 T

}
and B = max

{
|yt|, |ût · xt| : 1 6 t 6 T

}
.

A drawback of the previous bound is that the quantity B depends on the amplitude of the
predictions of the algorithm |ût · xt|. It is not difficult to see that |ûT · xT |2 can be as large
as d(T − 1)/(4λ), so that the above regret bound only implies regret bounds that have a large
dependence in T (e.g., a slow rate

√
T with λ chosen of the order of

√
T , instead of a fast rate lnT

as in Theorem 2.7 below). Such a situation occurs, e.g., when

y1 = . . . , yT−1 = 1 , x1, . . . ,xT−1 = (α, . . . , α) ∈ Rd ,

and
yT = 0 , xT = (1, . . . , 1) ∈ Rd .

Indeed, we can see by (2.25) and by symmetry of the problem that

ûT =
(T − 1)α

λ+ (T − 1)dα2
(1, . . . , 1) .

Therefore, choosing α =
√
λ/
(
d(T − 1)

)
ensures that all observations yt and base predictions

xi,t lie in [−1, 1] as soon as T > λ/d+ 1, and that (ûT · xT )2 = d(T − 1)/(4λ).

Fortunately it turns out that a key modification of the previous algorithm no longer suffers from
this drawback. The next algorithm is due to [AW01] and [Vov01]. We call8 it the sequential ridge
regression forecaster throughout this manuscript; it should not be confused with the algorithm
defined by (2.25). Its predictions are of the form ŷt = ût · xt, where û1 = 0 ∈ Rd and where,
at each time t > 2, the linear combination ût ∈ Rd is the solution of the following optimization
problem:

ût ∈ argmin
u∈Rd

{
t−1∑
s=1

(ys − u · xs)2 + (u · xt)2 + λ ‖u‖22

}
. (2.26)

Note that the modification consists in adding (u · xt)2. This quantity can be interpreted as the
proxy loss at time t of the linear forecaster x 7→ u · x, where the unknown observation yt is
replaced by 0.

Theorem 2.7 (Theorem 5.6 of [AW01] and Theorem 1 of [Vov01]).
For all λ > 0, the sequential ridge regression forecaster defined in (2.26) satisfies

T∑
t=1

(
yt − ût · xt

)2
6 inf
u∈Rd

{
T∑
t=1

(
yt − u · xt

)2
+ λ ‖u‖22

}
+B2

yd ln

(
1 +

TB2
x

λ

)
,

where Bx = max
{
|xj,t| : 1 6 j 6 d, 1 6 t 6 T

}
and By = max

{
|yt| : 1 6 t 6 T

}
.

8This algorithm is also called the Vovk-Azoury-Warmuth forecaster in [CBL06, Section 11.8].



2.4. ONLINE LINEAR REGRESSION 67

The above theorem was proved independently by [AW01] and by [Vov01] via quite different
arguments (see also [For99]). The proof of [AW01, Theorem 5.6] uses a key telescopic lemma
combined with linear algebra calculations. As for the analysis of [Vov01, Theorem 1], it con-
sists in interpreting the sequential ridge regression forecaster as an aggregating algorithm with
continuous weights on Rd and a Gaussian prior. The regret of this aggregating algorithm is then
upper bounded via an analysis close to the online PAC-Bayesian-style analysis carried out in Sec-
tion 2.2.3. But instead of upper bounding the right-hand side of the duality formula (2.16) via the
choice of a suitable probability distribution ρ ∈M1

+(Rd), Vovk uses exact calculations in [Vov01,
Appendix A.2] to compute the log-moment generating function appearing on the left-hand side.

The optimal a posteriori tuning of the ridge regression forecaster

We end this subsection with a comment on the tuning of the sequential ridge regression forecaster.
We explain below that an (ideal) tuning of λ leads to a regret bound that depends logarithmically
— as opposed to linearly — in ‖u‖22. This tuning is first carried out in an illegal way (i.e., it
depends the whole data sequence (xt, yt)16t6T ); we explain in the last two paragraphs of this
subsection how to overcome this limitation.

In the sequel we set, for all λ > 0 and all u ∈ Rd,

Bλ(u) ,
T∑
t=1

(
yt − u · xt

)2
+ λ ‖u‖22 +B2

yd ln

(
1 +

TB2
x

λ

)
,

so that the upper bound of Theorem 2.7 reads infu∈Rd Bλ(u). To minimize it over λ ∈ R∗+, we
first note that

inf
λ>0

inf
u∈Rd

Bλ(u) = inf
u∈Rd

inf
λ>0

Bλ(u)

= inf
u∈Rd

{
T∑
t=1

(
yt − u · xt

)2
+ inf
λ>0

[
λ ‖u‖22 +B2

yd ln

(
1 +

TB2
x

λ

)]}
.

By elementary calculations (i.e., derivation at the first order), the last infimum over λ > 0 can be
seen to be achieved at λ = λ∗(u), where

λ∗(u) ,
TB2

x

2

(
−1 +

√
1 +

4dB2
y

T ‖u‖22B2
x

)
.

Substituting the last expression into the previous equality, we can see that the optimal a posteriori
(and therefore illegal) choice of λ leads to the ideal upper bound:

inf
λ>0

inf
u∈Rd

Bλ(u) = inf
u∈Rd

{
T∑
t=1

(
yt − u · xt

)2
+
TB2

x ‖u‖
2
2

2

(
−1 +

√
1 +

4dB2
y

T ‖u‖22B2
x

)

+B2
yd ln

(
1 +

2

−1 +
√

1 + (4dB2
y)/(T ‖u‖22B2

x)

)}
.

The above upper bound does not depend linearly in ‖u‖22 as in Theorem 2.7 but only logarithmi-
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cally when ‖u‖2 → +∞ (because of the equivalent
√

1 + x ∼ 1 + x/2 when x → 0). To see it
perhaps more simply, we can use the suboptimal but simpler tuning λ̃(u) , B2

yd/ ‖u‖
2
2 to get the

ideal (illegal) bound:

inf
λ>0

inf
u∈Rd

Bλ(u) 6 inf
u∈Rd

B
λ̃(u)

(u)

= inf
u∈Rd

{
T∑
t=1

(
yt − u · xt

)2
+B2

yd+B2
yd ln

(
1 +

TB2
x ‖u‖

2
2

B2
yd

)}
. (2.27)

Therefore, if the linear forecaster u ∈ Rd with smallest cumulative loss has a “small” `2-norm
(say, at most of the order of T γ for some γ > 0), then the regret on Rd of the sequential ridge
regression forecaster with optimal a posteriori tuning is roughly upper bounded by dB2

y ln(T )

— note that a linear dependence in ‖u‖22 would yield a much worse regret bound. The bound
dB2

y ln(T ) is used in Chapter 3 to motivate the notion of sparsity regret bound.

As we already mentioned at the beginning of this subsection, the upper bound (2.27) is ideal
since the optimal tuning of λ depends on the sequence (xt, yt)16t6T . (To be more precise, to get
(2.27), it suffices to choose λ = λ̃(ũ) = B2

yd/ ‖ũ‖
2
2, where ũ minimizes the right-hand side of

(2.27) over u ∈ Rd; this tuning however still depends on the data sequence through ‖ũ‖2.) One
way around this is to take a grid {Ur = 22r : r = 0, 1, . . .} of R+ and to associate with each
`2-ball {u ∈ Rd : ‖u‖2 6 Ur} a sequential ridge regression forecaster

(
û

(r)
t

)
t>1

tuned with the
quasi-optimal parameter λr = B2

yd/U
2
r . Then, by Theorem 2.7, we get, for all r > 0,

T∑
t=1

(
yt − û(r)

t · xt
)2

6 inf
‖u‖26Ur

{
T∑
t=1

(
yt − u · xt

)2
+B2

yd+B2
yd ln

(
1 +

TB2
xU

2
r

B2
yd

)}
.

Using an exponentially weighted average forecaster (with a so-called clipping technique) to com-
bine the sub-algorithms

(
û

(r)
t

)
t>1

, we can construct a single algorithm that almost achieves the
last upper bounds uniformly over all r ∈ N, and that therefore satisfies a bound similar to (2.27).
The main argument is that the square loss is exp-concave on bounded intervals. For further details,
see Chapter 4, Section 4.4, where a similar double mixture is carried out for adaptation purposes.

2.4.3 The Exponentiated Gradient forecaster

Various gradient-based forecasters have been proposed for online linear regression, and, more gen-
erally, for online convex optimization: the gradient-descent algorithm [WH60, CBLW96, KW97,
CB99], the Exponentiated Gradient forecaster [KW97, CB99], the p-norm algorithms9 [GL99,
Gen03], and unifying forecasters such as the general additive algorithms10 [WJ98, KW01], the
mirror descent algorithm [NY83, BT03], and the composite objective mirror descent algorithm
[DSSST10]. Next we recall the basic properties of the Exponentiated Gradient forecaster, which
will be used in Chapter 4.

The Exponentiated Gradient forecaster was designed by [KW97] to be competitive against
any vector of the simplex Xd — or, by a simple trick detailed later, of `1-balls of arbitrary radii.

9See also [GLS01] in the classification context.
10Same comment.
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We present below a generic version of this algorithm suited not only for the square loss but for
general convex and differentiable loss functions11: at each time t, the forecaster chooses a linear
combination ût ∈ Rd (denoted below by pt since it belongs to Xd), then the environment chooses
and reveals a convex and differentiable loss function `t : Rd → R, and the forecaster incurs the
loss `t(ût). In online linear regression, the loss functions are given by `t(u) = (yt − u · xt)2.

Let (ηt)t>2 be a sequence of nonnegative parameters that can be chosen in a sequential fash-
ion (strictly speaking, ηt is a function of `1, . . . , `t−1). Then, the Exponentiated Gradient fore-
caster tuned with (ηt)t>2 predicts at each time t as ŷt = pt · xt, where the weight vector pt =

(pi,t)16i6d ∈ Xd is defined by p1 , (1/d, . . . , 1/d), and, for all t > 2, by

pi,t ,
exp
(
−ηt

∑t−1
s=1∇i`s(ps)

)
∑d

j=1 exp
(
−ηt

∑t−1
s=1∇j`s(ps)

) , 1 6 i 6 d , (2.28)

where ∇i`t(u) denotes the first-order partial derivative of `t : Rd → R in its i-th variable at the
point u— e.g., for the square loss `t(u) = (yt−u ·xt)2, we have∇i`t(u) = −2(yt−u ·xt)xi,t.

An automatic tuning for the Exponentiated Gradient algorithm with general loss functions

Several regret bounds have been derived for the Exponentiated Gradient algorithm. Originally
analysed with the square loss by [KW97], it was later studied for more general loss functions by
[CB99]. A general and simple analysis for arbitrary differentiable convex loss functions can also
be found in [CBL06, Section 2.5]. The latter analysis probably gives the best intuition on the Ex-
ponentiated Gradient algorithm. It relies on the fact that this algorithm is nothing but an exponen-
tially weighted average forecaster applied to the loss vectors ∇`t(pt) ,

(
∇i`t(pt)

)
16i6d ∈ Rd,

t > 1. In the next corollary we use the fully automatic exponentially weighted average forecaster
of [CBMS07]; it yields an Exponentiated Gradient algorithm for which (ηt)t>2 is tuned in a fully
automatic way. More precisely, replacing the losses with the gradients of the losses in (2.11), we
set, for all t > 2,

ηt , min

{
1

Êt−1

, C

√
lnK

Vt−1

}
, (2.29)

where C ,
√

2(
√

2− 1)/(e− 2) and where

Êt−1 , inf
k∈Z

{
2k : 2k > max

16s6t−1
max

16j,k6d

∣∣∇j`s(ps)−∇k`s(ps)∣∣} ,

Vt−1 ,
t−1∑
s=1

d∑
j=1

pj,s

(
∇j`s(ps)−

d∑
k=1

pk,s∇k`s(ps)
)2

.

The next proposition is a direct consequence of [CBMS07, Corollary 1] (see Theorem 2.4).
We denote the gradient of `t at any u ∈ Rd by ∇`t(u) ,

(
∇1`t(u), . . . ,∇d`t(u)

)
. The reason

why we do not bound ‖∇`t(pt)‖
2
∞ uniformly over all t = 1, . . . , T within the square root will

become clear in Corollary 2.2 (application to the square loss).

11This corresponds to the online convex optimization setting.
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Proposition 2.4 (The Exponentiated Gradient algorithm with automatic tuning).
Assume that the forecaster is repeatedly given a convex differentiable12 loss function `t : Rd → R,
and that he uses the Exponentiated Gradient algorithm defined in (2.28) with (ηt)t>2 given by
Equation (2.29). Then, for all T > 1 and all sequences `1, . . . , `T ,

T∑
t=1

`t(pt)− min
q∈Xd

T∑
t=1

`t(q) 6 4

√√√√( T∑
t=1

‖∇`t(pt)‖
2
∞

)
ln d+ (8 ln d+ 12) max

16t6T
‖∇`t(pt)‖∞ .

Proof: Since `t : Rd → R is differentiable and convex for all t = 1, . . . , T , we get that

T∑
t=1

`t(pt)− min
q∈Xd

T∑
t=1

`t(q) = max
q∈Xd

T∑
t=1

(
`t(pt)− `t(q)

)
6 max
q∈Xd

T∑
t=1

∇`t(pt) · (pt − q)

= max
16i6d

T∑
t=1

∇`t(pt) · (pt − ei) (2.30)

=

T∑
t=1

d∑
i=1

pi,t∇i`t(pt)− min
16i6d

T∑
t=1

∇i`t(pt) , (2.31)

where (2.30) follows from the fact that q 7→
∑T

t=1∇`t(pt) · (pt − q) is affine (convexity is
sufficient) on the polytope Xd, the vertices of which are denoted by ei ,

(
I{j=i}

)
16j6d. But, by

definition of pt and ηt above, we can apply Theorem 2.4 with the linear loss (cf. Example 2.1 on
page 42), the observations yt = ∇`t(pt) ∈ Rd, and the constant expert advice ai,t = ei ∈ Xd to
get that

T∑
t=1

d∑
i=1

pi,t∇i`t(pt)− min
16i6d

T∑
t=1

∇i`t(pt) 6 4

√√√√( T∑
t=1

‖∇`t(pt)‖
2
∞

)
ln d

+ (4 ln d+ 6)

(
2 max

16t6T
‖∇`t(pt)‖∞

)
,

where we used the fact that, in our case, the effective ranges Et , max16i,j6d

∣∣∇i`t(pt) −
∇j`t(pt)

∣∣ in (2.13) are upper bounded as Et 6 2 ‖∇`t(pt)‖∞. This concludes the proof.

Extension to `1-balls

In the previous paragraphs, we showed that the Exponentiated Gradient algorithm is competitive
against the whole simplex Xd. A limitation is that the vectors of Xd are restricted to have nonneg-
ative components and an `1-norm bounded by 1. Next, we overcome this limitation via a trick due
to [KW97] and that transforms the Exponentiated Gradient forecaster into an algorithm which is
competitive against all vectors of the `1-ball B1(U) ,

{
u ∈ Rd : ‖u‖1 6 U

}
for a given U > 0.

In the general case of convex and differentiable loss functions `t : Rd → R, the trick of
[KW97] unfolds as follows. First note that the polytope B1(U) is the convex hull of its 2d ver-
tices ±Uei, i = 1, . . . , d (recall that ei ,

(
I{j=i}

)
16j6d). Therefore, for all u ∈ B1(U), there

12If the convex loss functions `t : Rd → R are not differentiable, gradients can be replaced with subgradients.
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exists13 a convex combination p = (p+
1 , p

−
1 , . . . , p

+
d , p

−
d ) ∈ X2d such that

u =

d∑
i=1

[
p+
i (Uei) + p−i (−Uei)

]
= U

d∑
i=1

(
p+
i − p

−
i

)
ei .

The last remark suggests to apply the Exponentiated Gradient algorithm defined in (2.28)–(2.29)
to the augmented loss function `(U)

t : R2d → R defined for all v = (v+
1 , v

−
1 , . . . , v

+
d , v

−
d ) ∈ R2d

by

`
(U)
t (v) , `t

(
U

d∑
i=1

(
v+
i − v

−
i

)
ei

)
. (2.32)

Denote the resulting weight vectors by pt = (p+
1,t, p

−
1,t, . . . , p

+
d,t, p

−
d,t) ∈ X2d. Then, we call

adaptive EG± algorithm onB1(U) the forecaster that outputs the linear combinations ût ∈ B1(U)

given by

ût = U

d∑
i=1

(
p+
i,t − p

−
i,t

)
ei , t = 1, . . . , T .

A formal definition of the adaptive EG± algorithm on B1(U) is given in Figure 2.5. Note that
this forecaster takes as input parameter the radius U of the `1-ball B1(U). The form of the update
(2.33) follows from the fact that, for all t = 1, . . . , T and all v = (v+

1 , v
−
1 , . . . , v

+
d , v

−
d ) ∈ R2d,

d`(U)
t

dv+
j

(v) = U∇j`t

(
U

d∑
i=1

(
v+
i − v

−
i

)
ei

)
and

d`(U)
t

dv−j
(v) = −U∇j`t

(
U

d∑
i=1

(
v+
i − v

−
i

)
ei

)
,

so that, by definition of ût above, we have, for all j ∈ {1, . . . , d} and all γ ∈ {+,−},

d`(U)
t

dvγj
(pt) = γU∇j`t(ût) , (2.34)

where, by a slight abuse of notation, the symbols “+” and “−” also denote the values +1 and −1

respectively (e.g., γU should be understood as −U if γ = −). We can use Proposition 2.4 to
bound the regret of the adaptive EG± algorithm as follows.

Corollary 2.1 (The adaptive EG± algorithm for general convex and differentiable loss functions).
Let U > 0. Then, the adaptive EG± algorithm on B1(U) defined in Figure 2.5 satisfies, for all
T > 1 and all sequences of convex and differentiable14 loss functions `1, . . . , `T : Rd → R,

T∑
t=1

`t(ût)− min
u:‖u‖16U

T∑
t=1

`t(u)

6 4U

√√√√( T∑
t=1

‖∇`t(ût)‖2∞

)
ln(2d) + U

(
8 ln(2d) + 12

)
max

16t6T
‖∇`t(ût)‖∞ .

In particular, the regret is bounded by 4U
(
max16t6T ‖∇`t(ût)‖∞

)(√
T ln(2d) + 2 ln(2d) + 3

)
.

13The corresponding vector p ∈ X2d is not unique. An example is given by p+
i = (ui)+/U +

(
U −‖u‖1

)
/(2dU)

and by p−i = (ui)−/U +
(
U − ‖u‖1

)
/(2dU).

14Again, gradients can be replaced with subgradients in case of non-differentiability.
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Parameter: radius U > 0.

Initialization: p1 = (p+
1,1, p

−
1,1, . . . , p

+
d,1, p

−
d,1) ,

(
1/(2d), . . . , 1/(2d)

)
∈ R2d.

At each time round t > 1,

1. Output the linear combination ût , U

d∑
j=1

(
p+
j,t − p

−
j,t

)
ej ∈ B1(U);

2. Get the (convex and differentiable) loss function `t : Rd → R and define

z+
j,s , U∇j`s(ûs) and z−j,s , −U∇j`s(ûs) , j = 1, . . . , d, s = 1, . . . , t ,

Êt , inf
k∈Z

2k : 2k > max
16s6t

max
16j,k6d
γ,µ∈{+,−}

∣∣zγj,s − zµk,s∣∣
 ,

Vt ,
t∑

s=1

∑
16j6d
γ∈{+,−}

pγj,s

zγj,s − ∑
16k6d
µ∈{+,−}

pµk,sz
µ
k,s


2

;

3. Update the parameter ηt+1 according to

ηt+1 , min

{
1

Êt
, C

√
lnK

Vt

}
, where C ,

√
2(
√

2− 1)/(e− 2) ;

4. Update the weight vector pt+1 = (p+
1,t+1, p

−
1,t+1, . . . , p

+
d,t+1, p

−
d,t+1) ∈ X2d defined for

all j = 1, . . . , d and γ ∈ {+,−} by

pγj,t+1 ,

exp

(
−ηt+1

t∑
s=1

γU∇j`s(ûs)

)
∑

16k6K
µ∈{+,−}

exp

(
−ηt+1

t∑
s=1

µU∇k`s(ûs)

) . (2.33)

Figure 2.5: The adaptive EG± algorithm on B1(U) for general convex and differentiable loss
functions (cf. Corollary 2.1).
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Proof: The result follows straightforwardly from Proposition 2.4 by noting that, on the one hand,
by definitions of `(U)

t , pt, and ût,

T∑
t=1

`t(ût) =

T∑
t=1

`
(U)
t (pt) and min

u:‖u‖16U

T∑
t=1

`t(u) = min
q∈X2d

T∑
t=1

`
(U)
t (q) ,

and, on the other hand,
www∇`(U)

t (pt)
www
∞

= U ‖∇`t(ût)‖∞ for all t = 1, . . . , T (by (2.34)).

An improvement for small losses under the square loss

In the particular case of the square loss `t(u) = (yt−u·xt)2, the gradients are given by∇`t(u) =

−2(yt −u ·xt)xt for all u ∈ Rd. Applying Corollary 2.1, we get the following improvement for
small losses.

Corollary 2.2 (An improvement for small losses under the square loss).
Let U > 0. Consider the online linear regression setting. Then, the adaptive EG± algorithm
on B1(U) defined in Figure 2.5 with the loss functions `t : u 7→ (yt − u · xt)2 satisfies, for all
sequences of (x1, y1), . . . , (xT , yT ) ∈ Rd × R,

T∑
t=1

(yt − ût · xt)2 6 L∗T + 8UX
√
L∗T ln(2d) +

(
137 ln(2d) + 24

) (
UXY + U2X2

)
,

where the quantities L∗T , min{u∈Rd:‖u‖16U}
∑T

t=1(yt − u · xt)2, X , max16t6T ‖xt‖∞, and
Y , max16t6T |yt| are unknown to the forecaster.

We point out that the large constants 137 and 24 above can be improved. This can be done, e.g.,
by using the tighter bound of Remark 2.2 on page 54, instead of the original bound of [CBMS07].
Note that this also reduces the constant 8 of the main regret term to 8× 1.32/2 = 5.28.

The above bound is comparable to the bound 2UX
√

2B ln(2d) + 2U2X2 ln(2d) implied by
[KW97, Theorem 5.11], where B is a known upper bound on L∗T . Note that our main term is
larger than that of [KW97] by a multiplicative factor of 2

√
2; our lower-order term is also larger

by (quite large15) multiplicative factors and by an additional term of the order of UXY ln(2d).
However, to get their bound, [KW97] tuned the EG± algorithm as a function of B and of two
known upper bounds X and Y on the input data and the observations (cf. the choice of η =

(
√

ln(2d))/(UX
√

2B + 2U2X2
√

ln(2d)) therein). On the contrary, the version of the EG±

algorithm we use does not require the knowledge of B, X , and Y .
Thus, Corollary 2.2 is of the same flavor as the regret bound of [ACBG02, Theorem 3.1] for

the self-confident p-norm algorithm. Indeed, for a given parameter U > 0 and for p = 2 ln d,
[ACBG02] show that the cumulative loss L̂T of the self-confident p-norm algorithm16 satisfies,

15See the comment on the constants 137 and 24 above.
16The vectors output by the self-confident p-norm algorithm with parameter U lie in the `q-ball {u ∈ Rd : ‖u‖q 6

U}, where q is the conjugate of p, i.e., q = p/(p− 1) ≈ 1 + 1/(2 ln d) if p = 2 ln d. This `q-ball contains the `1-ball
B1(U) but is only a slight overapproximation of it since e−1 ‖·‖1 6 ‖·‖q 6 ‖·‖1.
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for some nonnegative quantity kT 6 (2e ln d)U2X2,

L̂T 6 L∗T + 8kT + 8
√

(kTL∗T )/2 + k2
T

6 L∗T + 8UX
√

(e ln d)L∗T + (32e ln d)U2X2 ,

where the quantities L∗T , min{u∈Rd:‖u‖16U}
∑T

t=1(yt − u · xt)2, X , max16t6T ‖xt‖∞,
and Y , max16t6T |yt| are unknown to the forecaster. The fact that we got a similar bound is
not surprising because the p-norm algorithm is known to share many properties with the EG±

algorithm (in the limit p → +∞ with an appropriate initial weight vector, or for p of the order of
ln d with a zero initial weight vector, cf. [Gen03]). The bound of Corollary 2.2 corroborates this
similarity.

Proof (of Corollary 2.2): We apply Corollary 2.1 with the square loss `t(u) = (yt − u · xt)2:

T∑
t=1

`t(ût)− min
u:‖u‖16U

T∑
t=1

`t(u)

6 4U

√√√√( T∑
t=1

‖∇`t(ût)‖2∞

)
ln(2d) + U

(
8 ln(2d) + 12

)
max

16t6T
‖∇`t(ût)‖∞ .

Using the equality ∇`t(u) = −2(yt − u · xt)xt for all u ∈ Rd, we get that, on the one hand, by
the upper bound ‖xt‖∞ 6 X ,

‖∇`t(ût)‖2∞ 6 4X2`t(ût) , (2.35)

and, on the other hand, max16t6T ‖∇`t(ût)‖∞ 6 2(Y +UX)X (indeed, by Hölder’s inequality,∣∣ût · xt∣∣ 6 ‖ût‖1 ‖xt‖∞ 6 UX). Substituting the last two inequalities in the bound of Corol-
lary 2.1, setting L̂T ,

∑T
t=1 `t(ût), and recalling that L∗T , min{u∈Rd:‖u‖16U}

∑T
t=1 `t(u), we

get that

L̂T 6 L∗T + 8UX

√
L̂T ln(2d) +

(
16 ln(2d) + 24

)(
UXY + U2X2

)︸ ︷︷ ︸
,C

.

Solving for L̂T via Lemma A.2 in Appendix A.4, we get that

L̂T 6 L∗T + C +
(

8UX
√

ln(2d)
)√

L∗T + C +
(

8UX
√

ln(2d)
)2

6 L∗T + 8UX
√
L∗T ln(2d) + 8UX

√
C ln(2d) + 64U2X2 ln(2d) + C .

Using that

UX
√
C ln(2d) = UX ln(2d)

√(
16 + 24/ ln(2d)

)(
UXY + U2X2

)
6
√
U2X2 + UXY ln(2d)

√(
16 + 24/ ln(2)

)(
UXY + U2X2

)
=
√

16 + 24/ ln(2)
(
UXY + U2X2

)
ln(2d)
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and performing some simple upper bounds concludes the proof.

In the last corollary we used the adaptive EG± algorithm with the square loss functions
`t : u 7→ (yt − u · xt)2. In Chapter 4 we use yet another instance of the adaptive EG± algo-
rithm that we call the Lipschitzifying Exponentiated Gradient (LEG) algorithm. It corresponds to
the adaptive EG± algorithm applied not to the square loss but to a Lipschitz continuous modifi-
cation ˜̀t : Rd → R of the square loss. Both the modified loss function ˜̀t and the threshold used
to perform an additional clipping are updated as a function of the available data only. Applying
Corollary 2.1 again, we show in Theorem 4.3 of Chapter 4 that the cumulative loss L̂T of the LEG
algorithm is upper bounded by

L̂T 6 L̃∗T + 8UX

√
L̃∗T ln(2d) +

(
153 ln(2d) + 58

) (
UXY + U2X2

)
+ 12Y 2 ,

where L̃∗T , min{u∈Rd:‖u‖16U}
∑T

t=1
˜̀
t(u) is the optimal cumulative Lipschitzified loss within

B1(U). The main two terms of the last bound slightly improve on those of Corollary 2.2 since, by
Figure 4.2 of Chapter 4, we always have

L̃∗T 6 min
u∈Rd:‖u‖16U

T∑
t=1

(yt − u · xt)2 .

As explained therein, the improvement brought about by the Lipschitzification step is more signif-
icant for loss functions with higher curvature than the square loss, e.g., loss functions of the form
u 7→

∣∣yt − u · xt∣∣α with α > 2.

2.5 From online to batch bounds

In this section we explain how to convert an online algorithm into a method suitable for a proba-
bilistic batch setting. We then point out that, contrary to a common belief, online methods can be
used in the regression model with random design even if the outputs are unbounded.

2.5.1 The online-to-batch conversion

LetD be a convex decision space, Z be an outcome space17, and ` : D×Z → R be a loss function
convex in its first argument. In the sequel we consider the following batch stochastic setting. The
forecaster is given at the beginning of the game T independent random copies Z1, . . . , ZT of
Z ∈ Z , whose common distribution is unknown. The goal of the forecaster is to predict the next
outcome ZT+1 ∼ Z almost as well as does any fixed element in a non-empty subset Θ ⊂ D.
More precisely, its goal is to output a decision âT ∈ D based on the sample (Z1, . . . , ZT ) so as to
minimize its excess expected risk

E
[
`
(
âT , Z

)]
− inf
a∈Θ

E
[
`
(
a, Z

)]
, (2.36)

where the expectation on the left is taken with respect to all sources of randomness (i.e., with
respect to (Z1, . . . , ZT ) and Z).

17We use the notation Z instead of Y to avoid any ambiguity with the regression model with random design where
Yt only denotes the output while we observe the whole pair Zt = (Xt, Yt) ∈ X × R. In this setting, Z = X × R.
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We illustrate in the sequel the links between this batch18 setting and the online framework of
prediction with expert advice studied in the previous sections. More precisely, consider the online
protocol of Figure 2.1 when the outcome space is Z and when the expert advice are constant and
given by aθ,t = θ for all θ ∈ Θ and all t > 1. In this particular setting, the online protocol of
Figure 2.1 can be rewritten as follows: a forecaster repeatedly outputs a decision ãt ∈ D, observes
the new outcome zt ∈ Z , and incurs the loss `(ãt, zt); after T time steps, its regret against the set
of experts Θ reads:

T∑
t=1

`(ãt, zt)− inf
a∈Θ

T∑
t=1

`(a, zt) . (2.37)

(The above online protocol is known as online convex optimization when Θ = D; see, e.g.,
[Zin03, SSSSS09].)

Next we show that any online algorithm—i.e., any strategy of the forecaster— (ãt)t>1 that has
a small regret (2.37) in the above online protocol can be converted into a method âT that has a
small excess expected risk (2.36) in the batch stochastic setting.

The following online-to-batch conversion is a standard trick in the machine learning commu-
nity that can be traced back to around [Lit89] (see also the earlier references given in [DS06]).
High-probability data-dependent risk bounds for arbitrary convex decision spaces and convex and
bounded loss functions were derived by [CBCG04]. The latter paper also addresses the case when
either the decision space or the (bounded) loss function is not convex via a more sophisticated
online-to-batch conversion. Several improved high-probability risk bounds were then obtained by
[CBG08] in the possibly non-convex setting and by [Zha05, KT09] for convex decision spaces and
“Bernstein-friendly” loss functions (e.g., strongly convex losses).

The conversion consists in treating the sample Z1:T , (Z1, . . . , ZT ) in a sequential fash-
ion: even if all the Zt are known at the beginning of the game, they are only used one at a time
from round 1 to round T , that is, the online algorithm (ãt)t>1 sequentially outputs its decisions
ãt(Z1:t−1) ∈ D based on the past data Z1:t−1 , (Z1, . . . , Zt−1), t = 1, . . . , T (ã1 is determinis-
tic). Finally, the simplest way to define âT (Z1:T ) when D is convex is to consider the average:

âT (Z1:T ) =
1

T

T∑
t=1

ãt(Z1:t−1) .

Proposition 2.5. Let D be a convex decision space, Z be an outcome space, and ` : D ×Z → R
be a loss function convex in its first argument. Let (ãt)t>1 be any online algorithm and (RT )T>1

be any real-valued sequence such that, for all T > 1, uniformly over all z1, . . . , zT ∈ Z ,

T∑
t=1

`(ãt, zt)− inf
a∈Θ

T∑
t=1

`(a, zt) 6 RT . (2.38)

Then the above online to batch conversion applied to (ãt)t>1 yields a procedure âT such that, for

18“Batch” means that all outcomes Z1, . . . , ZT are available at the beginning of the game—as opposed to the online
setting.
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all i.i.d. samples (Z1, . . . , ZT ) ∈ ZT ,

E
[
`
(
âT , Z

)]
− inf
a∈Θ

E
[
`
(
a, Z

)]
6
RT
T

,

where the expectations are taken with respect to both the sample (Z1, . . . , ZT ) and a random
variable Z ∈ Z independent of (Z1, . . . , ZT ) and distributed as Z1.

Proof: In the sequel we explicitely write all the dependencies ãt(Z1:t−1) and âT (Z1:T ). By as-
sumption, the regret bound (2.38) holds uniformly over all individual sequences (z1, . . . , zT ) ∈
ZT . Therefore, almost surely,

T∑
t=1

`
(
ãt(Z1:t−1), Zt

)
6 inf

a∈Θ

T∑
t=1

`(a, Zt) +RT . (2.39)

In particular the last inequality holds in expectation, so that, dividing by T and using the fact that
E
[
infa∈Θ

∑T
t=1 `(a, Zt)

]
6 infa∈Θ E

[∑T
t=1 `(a, Zt)

]
, we get

1

T
E

[
T∑
t=1

`
(
ãt(Z1:t−1), Zt

)]
6

1

T
inf
a∈Θ

E

[
T∑
t=1

`(a, Zt)

]
+
RT
T

= inf
a∈Θ

E
[
`(a, Z)

]
+
RT
T

, (2.40)

where the last equality follows from the fact that Zt and Z are identically distributed for all
t = 1, . . . , T . We conclude the proof via Jensen’s inequality: by definition of âT (Z1:T ) and
by convexity of ` in its first argument, we have

E
[
`
(
âT (Z1:T ), Z

)]
= E

[
`

(
1

T

T∑
t=1

ãt(Z1:t−1), Z

)]
6

1

T

T∑
t=1

E
[
`
(
ãt(Z1:t−1), Z

)]
=

1

T

T∑
t=1

E
[
`
(
ãt(Z1:t−1), Zt

)]
,

where we used the fact that (Z1:t−1, Z) and (Z1:t−1, Zt) are identically distributed (since Z and
Zt are identically distributed and both independent of Z1:t−1). Combining the last inequality with
(2.40) concludes the proof.

Note that ZT was not used to construct the procedure âT (Z1:T ). Taking instead the average
âT (Z1:T ) , (T + 1)−1

∑T+1
t=1 ãt(Z1:t−1) up to time T + 1, we can see from the above analysis

that it has an excess risk upper bounded by RT+1/(T + 1), which is usually smaller than RT /T .
(This was carried out, e.g., in [Aud09, Bar11].)

More importantly, the following improvements or extensions are possible:

(a) We assumed that RT was a uniform upper bound on the regret of (ãt)t>1 (cf. (2.38)). The
above analysis also works if RT = RT (z1, . . . , zT ) is data-dependent. The risk bound
becomes:

E
[
`
(
âT , Z

)]
− inf
a∈Θ

E
[
`
(
a, Z

)]
6

E
[
RT (Z1:T )

]
T

.
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(b) Proposition 2.5 tranforms the almost-sure regret bound (2.39) into a risk bound in expecta-
tion. It is also possible to transform (2.39) into a high-probability data-dependent risk bound
via standard martingale concentration tools (e.g., the Hoeffding-Azuma inequality or Bern-
stein’s inequality for martingales). See [CBG08] for a different conversion suited for gen-
eral decision spaces and bounded loss functions (not necessarily convex) and [Zha05, KT09]
for the same conversion as the one studied above but in the particular case of “Bernstein-
friendly” losses (e.g., strongly convex).

(c) As showed in [Bar11], the online-to-batch conversion described above can be slightly mod-
ified to handle sequences (Z1, . . . , ZT , Z) that are generated by a stationary process —
independence is no longer required. This can be achieved by defining

âT (Z1:T ) =
1

T + 1

T∑
t=0

ãT−t+1(Zt+1:T ) .

In this case the online algorithm is repeatedly re-initialized: for each t = 0, . . . , T , the algo-
rithm is restarted and run on the sub-sample Zt+1:T , (Zt+1, . . . , ZT ) of length T − t (so
that the corresponding decision function is ãT−t+1). By similar arguments, this procedure
is seen to satisfy the bound

E
[
`(âT , Z)

]
− inf
a∈Θ

E
[
`(a, Z)

]
6
RT+1

T + 1
.

2.5.2 Application: regression model with random design and unbounded outputs

In this section, we focus on the online-to-batch conversion from the online linear regression setting
to the regression model with random design. The case of a fixed design is not addressed here, but
it can to some extent be dealt with via similar techniques (see Section 3.4.2 in Chapter 3). In
the sequel, we first make some preliminary comments and introduce the regression model with
random design together with some related aggregation problems. Afterward we study the online-
to-batch conversion in the easy case of bounded outputs. We then discuss a trick of [BN08] to deal
with unbounded outputs when the forecaster has access to some prior knowledge on the regression
function and on the dictionary at hand. We finally explain how to overcome the last limitation,
i.e., how to design a fully automatic online algorithm whose batch conversion satisfies adaptivity
properties.

Preliminary comments

In the last section we showed that, unsurprisingly, worst-case regret bounds imply risk bounds in
expectation. In this respect, individual sequence prediction methods can be thought of as being
more robust than standard batch methods as they can be lead to controls under almost no assump-
tion on the data at hand. The only assumptions are on the loss function (e.g., boundedness and
convexity, exp-concavity) and on the set of experts’ indices Θ (e.g., finiteness, convexity).

A major criticism that has however sometimes been issued as far as the square loss is concerned
is that only bounded outputs can be dealt with in online (deterministic) linear regression, while this
restriction fails even in a stochastic setting as simple as the regression model with random design
and Gaussian noise. It actually turns out that, with additional care, individual sequence methods
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can still be used in this setting. This was illustrated by [BN08], and we make further progress in
this direction.

Note that most methods studied in the batch stochastic setting already handle unbounded out-
puts (at least in the Gaussian case, or more generally, when the regression function is uniformly
bounded and when the deviation of the output from the regression function has a bounded ex-
ponential moment). See, e.g., [Nem00, Cat99, Tsy03, Aud04b] and [Cat04, Chapters 3 and 4];
see also [AC11] for PAC-Bayesian methods under even weaker assumptions. It also turns out
that some of these methods have an online nature: e.g., the progressive mixture rule is nothing
else than the exponentially weighted average forecaster with constant parameter η combined with
the online-to-batch conversion. Its theoretical properties with unbounded outputs were derived in
[Cat04, Chapter 3] using arguments different from that of the individual sequence framework (see
also [BN08, Theorem 1-(a)]). The corresponding risk bounds were proved when the parameter
η is tuned as a function of a known uniform bound on the regression function and on the base
regressors and of a known bound related to the moment-generating function of the noise. It is not
clear whether the latter tuning ensures non-trivial regret bounds for individual sequences. Next
we focus on online algorithms (e.g., properly tuned variants of the exponentially weighted aver-
age forecaster) that have provable guarantees for individual sequences and for which the standard
online-to-batch conversion yields interesting risk bounds in the stochastic setting. This individual
sequence approach not only ensures that the resulting method is robust in some sense, but also
provides adaptivity results to unknown quantities in the stochastic setting.

Regression model with random design

Next we introduce the regression model with random design and related aggregation problems.
In this batch setting the forecaster is given at the beginning of the game T independent random
copies (X1, Y1), . . . , (XT , YT ) of (X,Y ) ∈ X × R whose common distribution is unknown. The
random variables Yt, 1 6 t 6 T , are called outputs or (somewhat abusively) observations. We
assume thereafter that E[Y 2] <∞; the goal of the forecaster is to estimate the regression function
f : X → R defined by f(x) , E[Y |X = x] for all x ∈ X . The quality of a regressor f̂T : X → R
based on the sample (X1, Y1), . . . , (XT , YT ) is measured by its L2-risk

wwf − f̂T
ww2

L2 , where,
denoting the distribution of X by PX , we set, for all measurable functions h : X → R,

‖h‖L2 ,

(∫
X
h(x)2PX(dx)

)1/2

=
(
E
[
h(X)2

])1/2
.

In the sequel we focus on the expected L2-risk E
[wwf − f̂Tww2

L2

]
.

Nota: Setting εt , Yt − f(Xt) for all t = 1, . . . , T , the regression model can be
rewritten as

Yt = f(Xt) + εt , 1 6 t 6 T ,

where the pairs (X1, ε1), . . . , (XT , εT ) are i.i.d. with E[ε2
1] < ∞, E[f2(X1)] < ∞,

and E[ε1|X1] = 0 almost surely (note that ε1 andX1 are not necessarily independent).
This equivalent description is sometimes chosen to state the regression model with
random design.
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We consider the following aggregation problem. The forecaster is given a dictionnary ϕ =

(ϕ1, . . . , ϕd) of base regressors ϕj : X → R, 1 6 j 6 d (the ϕj can be, e.g., elements of a suit-
ably chosen functional basis or estimators computed on an independent sample). The goal of the
forecaster is to output a regressor f̂T : X → R based on the sample (X1, Y1), . . . , (XT , YT ) and
whose expected L2-risk is almost as small as that of the best linear regressor u · ϕ ,

∑d
j=1 ujϕj

in a given reference class {u · ϕ : u ∈ U}, where U ⊂ Rd. Namely, its goal is to satisfy a risk
bound of the form

E
[wwwf − f̂www2

L2

]
6 inf
u∈U

{
‖f − u ·ϕ‖2L2 + ψT,d,U (u)

}
(2.41)

for a remainder term ψT,d,U (u) that should be as small as possible. Note that ψT,d,U (u) depends
on the sample size T , the ambient dimension d, and the comparison set U . To be more rigorous,
it may actually also depend on the joint distribution P of (X,Y ) (through, e.g., the noise level
E[(Y − f(X))2]) and on the dictionary ϕ (through, e.g., some norm ‖ϕ‖). Following [Nem00,
Chapter 5] and [Tsy03] (see also [Lou07]), the comparison set U ⊂ Rd can be taken as, e.g.,
the set of the vertices of the simplex in Rd (which corresponds to the problem of model-selection
aggregation), the whole simplex (which corresponds to convex aggregation), or the whole Rd space
(which corresponds to linear aggregation).

From online to batch: straightforward bounds for bounded outputs

Next we discuss the applicability of algorithms designed for online linear regression (cf. Sec-
tion 2.4) to the regression model with random design. For the three aggregation problems men-
tioned above, there are online algorithms19 (f̃t)t>1 that satisfy regret bounds of the following form:
uniformly over all sequences (x1, y1), . . . , (xT , yT ) ∈ X × [−By, By],

T∑
t=1

(
yt − f̃t(xt)

)2
6 inf
u∈U

{
T∑
t=1

(
yt − u ·ϕ(xt)

)2
+ ∆T,d,By(u)

}
, (2.42)

where By is a bound on the observations |y1|, . . . , |yT | and where the regret term20 ∆T,d,By(u) is:

• of the order of B2
y ln d for the problem of model-selection type aggregation (see, e.g.,

Lemma 4.5 in Chapter 4, Appendix 4.B);

• of the order ofBy ‖ϕ‖∞
√
T ln d for convex aggregation in high dimension d (cf. Chapter 4,

Section 4.2.1);

• of the order of B2
yd ln

[
T ‖u‖22 ‖ϕ‖

2
∞ /(dB

2
y)
]

for linear aggregation (cf. (2.27)), where we
set ‖ϕ‖∞ , max16j6d supx∈X

∣∣ϕj(x)
∣∣.

In their basic forms, most online algorithms satisfying (2.42) are tuned as a function of the
bound By (e.g., the exponentially weighted average forecaster for model-selection aggregation,

19By online algorithm, we mean here any sequence (f̃t)t>1 of functions such that f̃t : Rd×(Rd×R)t−1 → R maps
at time t the new input xt and the past data (xs, ys)16s6t−1 to a prediction f̃t

(
xt; (xs, ys)16s6t−1

)
, also denoted by

f̃t
(
xt) or by ŷt for notational convenience.
20As mentioned above, we recall that, for the sake of clarity, we only write the more important dependencies in T ,

d, and By , but the regret term ∆T,d,By (u) usually also depends on the dictionary ϕ (through, e.g., some norm ‖ϕ‖).
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the Exponentiated Gradient algorithm for convex aggregation, or the sequential ridge regression
forecaster with the ideal tuning (2.27) of the end of Section 2.4.2 for linear aggregation).

We can then use the online to batch conversion of Section 2.5.1 with Z = X × [−By, By],
D being the set of all measurable functions from X to [−By, By], ` : D × Z → R defined by
`
(
f, (x, y)

)
,
(
y − f(x)

)2, and Θ = {u · ϕ : u ∈ U}. If the output Y lies almost surely
in [−By, By], this online to batch conversion transforms the aforementioned online algorithms
(f̃t)t>1 into data-based regressors f̂T , 1

T

∑T
t=1 f̃t that satisfy the risk bound

E
[(
Y − f̂T (X)

)2]
6 inf
u∈U

{
E
[(
Y − u ·ϕ(X)

)2]
+

∆T,d,By(u)

T

}
.

Elementary manipulations then yield the desired risk bound (see the proof of Theorem 3.2 in
Chapter 3, Appendix 3.A.3 for more details):

E
[wwwf − f̂Twww2

L2

]
6 inf
u∈U

{
‖f − u ·ϕ‖2L2 +

∆T,d,By(u)

T

}
.

What about unbounded outputs Yt? — The method of [BN08] under some prior knowledge
on the regression function f and the dictionary ϕ.

In the previous paragraphs, we assumed that the output Y lied in some bounded interval [−By, By].
Assume now that Y is unbounded in the sense that

∀B > 0, P
(
|Y | > B

)
> 0 . (2.43)

In this case, one method suggested by [BN08] is to truncate the outputs Yt to some threshold
γ = b or γ = b lnT (up to constant factors) for some known bound b > 0 on the infinity norms of
the regression function f and the base regressors ϕj , 1 6 j 6 d, i.e.,

b > max
{
‖f‖∞ , ‖ϕ1‖∞ , . . . , ‖ϕd‖∞

}
.

The authors then apply an exponentially weighted average forecaster to the truncated outputs

Ỹt = [Yt]γ , 1 6 t 6 T ,

where [x]γ , min
{
γ,max{−γ, x}

}
denotes the truncation (or clipping) of x ∈ R to the thresh-

old level γ. They then prove a risk bound for f̂T in terms of the truncated output Ỹ = [Y ]γ , from
which they derive by an approximation argument a risk bound in terms of the non-truncated (and
possibly unbounded) output Y .

A drawback of the previous approach is that the bound b is assumed to be known in advance.
Besides, the base forecasters u · ϕ, u ∈ U , are not uniformly bounded if ϕ 6= 0 and U = Rd, so
that the approach followed in [BN08] for model-selection or convex aggregation does not readily
apply to linear aggregation. For these two reasons, we truncate the base forecasters u · ϕ instead
of the outputs Yt (see below); truncation is carried out in an automatic way in the sense that no a
priori knowledge is required.

The idea of truncating the base forecasts was used many times in the past; see, e.g., [Vov01]
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for the online linear regression setting, [GKKW02, Chapter 10] for the regression problem with
random design, and [GO07, BBGO10] for sequential prediction of unbounded time series under
the square loss. A key ingredient in our work (i.e., in Chapters 3 and 4) is to perform truncation
with respect to a data-driven threshold.

Online adaptation to the almost-sure bound max16t6T |Yt| — Dealing with all previous is-
sues.

Another way to handle the case where the output Y is unbounded is to note that, almost surely,
the finite sequence Y1, . . . , YT lies in the bounded interval [−By, By] where By , max16t6T |Yt|
(By < +∞ a.s. since E

[
|Y |
]
< +∞ by assumption). The almost-sure boundedness of the Yt

should not be confused with the boundedness of Y in the sense of (2.43).

The above remark suggests to design algorithms (f̃t)t>1that satisfy regret bounds of the form
(2.42) without knowing the random bound By = max16t6T |Yt| in advance. Indeed, by Re-
mark (a) at the end of Section 2.5.1 and by elementary manipulations carried out in the proof of
Theorem 3.2 (Chapter 3), the resulting batch method f̂T , 1

T

∑T
t=1 f̃t satisfies

E
[wwwf − f̂Twww2

L2

]
6 inf
u∈U

{
‖f − u ·ϕ‖2L2 +

E
[
∆T,d,By(u)

]
T

}
.

As can be seen from the examples of ∆T,d,By(u) following Equation (2.42), the regret term
∆T,d,By(u) usually (roughly) scales as B2

y or By. Hence the term E
[
∆T,d,By(u)

]
scales as

E[B2
y ] = E

[
max16t6T Y

2
t

]
or as E[By] = E

[
max16t6T |Yt|

]
. The last two quantities can be

both upper bounded under general assumptions on the distribution of Y , e.g., when Y −E[Y ] sat-
isfies a tail assumption such as boundedness, a subgaussian tail, or a bounded exponential moment
(see Corollary 3.5 in Chapter 3). In a word, an online adaptation to the unknown bound By is key
to handle unbounded outputs with individual sequence techniques.

In Chapter 3, Section 3.4, we design such an algorithm (f̃t)t>1 when U = Rd, i.e., it satisfies a
regret bound of the form (2.42) without knowing the random bound By. This algorithm is a prop-
erly tuned exponentially weighted average forecaster (with continuous weights on Rd) applied to
truncated base forecasts

[
u · ϕ(Xt)]Bt — note that, contrary to [BN08, Corollary 1 and Theo-

rem 1-(b)], we truncate the base forecasts instead of truncating the outputs Yt. Ideally we would
like to choose the threshold Bt equal to the unknown random bound max16t6T |Yt|, since this can
only improve prediction. The actual truncation (and the tuning of ηt) is thus performed with re-
spect to a time-varying threshold Bt that adapts to max16t6T |Yt| via parameter-tuning techniques
provided by [ACBG02, CBMS07].

Adaptation means here that we are able to prove regret bounds within constant factors of
(quasi-optimal) bounds that could be proved if max16t6T |Yt| was known in advance by the fore-
caster. By a remark above on the upper bounding of E

[
max16t6T Y

2
t

]
, this adaptivity property

in the online deterministic setting leads to sparsity oracle inequalities in the stochastic setting that
are adaptive to the unknown variance of the noise at least whenever the latter is Gaussian — see
Chapter 3, page 113 .
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2.6 Sparsity oracle inequalities in the stochastic setting

Sparsity has been extensively studied in the stochastic setting over the past decade. Among the
tools introduced for this purpose the notion of sparsity oracle inequality plays a fundamental role.
In high-dimensional linear regression, such inequalities indicate that the task consisting in predict-
ing almost as well as an unknown target vector is still statistically feasible if the target vector has
only few non-zero coordinates. Such theoretical guarantees and the associated statistical methods
have proved useful in many contemporary applications such as computational biology (e.g., anal-
ysis of DNA sequences), collaborative filtering (e.g., Netflix, Amazon), satellite and hyperspectral
imaging, and high-dimensional econometrics (e.g., cross-country growth regression problems).

In this section we recall the basic ideas underlying the notion of sparsity oracle inequality in
the stochastic batch setting. In Chapter 3 we use similar ideas in the framework of individual
sequences to introduce a new type of (deterministic) regret bounds under a sparsity scenario.

Framework

We first consider the (generalized) linear regression model with fixed or random design. The
forecaster observes independent random pairs (X1, Y1), . . . , (XT , YT ) ∈ X × R given by

Yt = u∗ ·ϕ(Xt) + εt , 1 6 t 6 T , (2.44)

where the Xt ∈ X are either i.i.d random variables (random design) or fixed elements (fixed
design), denoted in both cases by capital letters in this section, where ϕ = (ϕ1, . . . , ϕd) is a
dictionary of base regressors ϕj : X → R, 1 6 j 6 d, where u∗ ∈ Rd is the unknown linear
combination (recall that u∗ · ϕ ,

∑d
j=1 u

∗
jϕj), and where the εt are i.i.d. square-integrable real

random variables with zero mean (conditionally on the Xt if the design is random).

Three main statistical problems arise in this linear regression framework:

• prediction: estimating
(
u∗ ·ϕ(Xt)

)
16t6T (fixed design) or u∗ ·ϕ (random design);

• estimation: estimating u∗;

• support estimation: estimating the set of the non-zero coordinates of u∗.

These three tasks have been extensively studied over the past decade in the high-dimensional
setting under a sparsity scenario, namely, when

‖u∗‖0 � T � d , (2.45)

where ‖u∗‖0 ,
∣∣{j : u∗j 6= 0}

∣∣ denotes the number of non-zero coordinates of u∗. In this thesis,
we focus on the prediction problem. As we will see later, this problem can be addressed in rather
general regression models both in the stochastic batch setting (see (2.46) below) and in the deter-
ministic online setting (see Chapter 3).

In the stochastic setting, most risk bounds for the prediction problem under a sparsity scenario
take the form of sparsity oracle inequalities. We explain below the basic idea that underlies such
risk bounds, as well as their main consequences.
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2.6.1 An ideal ordinary least-squares estimator

In the (generalized) linear regression model with fixed or random design (2.44), the ordinary least
squares estimator

ûT ∈ argmin
u∈Rd

1

T

T∑
t=1

(
Yt − u ·ϕ(Xt)

)2
has an expected risk E

[
R
(
ûT
)]

at most of the order of d/T (see [GKKW02] and the references
therein for the fixed design, and the more recent advances in [AC11] for the random design un-
der weak assumptions on the output distribution). Here, we defined the risk R(u) of any linear
combination u ∈ Rd by

R(u) ,


‖u∗ ·ϕ− u ·ϕ‖2L2 (random design),

1

T

T∑
t=1

(
u∗ ·ϕ(Xt)− u ·ϕ(Xt)

)2 (fixed design),

where, in the random design case, we set ‖h‖L2 ,
(
E[h(X1)2]

)1/2 for all measurable functions
h : X → R such that E[h(X1)2] <∞.

When the ambient dimension d is much larger than the sample size T , a direct minimization
of the least-squares criterion on Rd can lead to overfitting, which is reflected in the non-vanishing
upper bound d/T . However, as suggested by the following remark, it is still possible to achieve a
small risk under the additional assumption ‖u∗‖0 = s� T . Indeed, if the support

J(u∗) ,
{
j ∈ {1, . . . , d} : u∗j 6= 0

}
of u∗ was known in advance, the oracle applying the ordinary least squares estimator to the linear
subspace

{
u ∈ Rd : ∀j /∈ J(u∗), uj = 0

}
would have a risk at most of the order of s/T � 1.

This suggests that the prediction task in high dimension is still feasible under a sparsity scenario.
However this ordinary least-squares is ideal since the support J(u∗) is unknown in practice; it is
closely related to the notion of oracle in the terminology of model selection (see Chapter 6 for
further details).

2.6.2 Adaptivity to the unknown sparsity by model selection

The rate s/T of the above ideal least-squares estimator can actually be achieved up to a ln d factor
without the prior knowledge of the set J(u∗) nor even of its cardinality s = ‖u∗‖0. This was first
done by adding a `0-complexity penalty to the least-squares criterion:

ûpen
T ∈ argmin

u∈Rd

{
1

T

T∑
t=1

(
Yt − u ·ϕ(Xt)

)2
+ pen(u)

}
,

where the penalty pen(u) is proportional to the number ‖u‖0 of non-zero coefficients of u (see
[Aka71] for the AIC criterion, [Mal73] for Mallows’Cp, and [Sch78, FG94] for the BIC criterion).
In the fixed design case, [BM01a] proved via model-selection arguments that for a penalty pen(u)

of the order of ‖u‖0
[
1 + ln(d/ ‖u‖0)

]
, the penalized least-squares estimator ûpen

T “mimics” the
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`0-oracle in the sense that its risk is at most of the order of

s ln(d/s)

T
.

For a detailed proof of this fact with a Bayesian variant of the estimator ûpen
T , see Chapter 6,

Section 6.4.1. The above rate follows from (6.41) therein.

Numerous works addressed this model-selection-type problem: see, e.g., [BM07a, ABDJ06,
BTW07a] for the fixed design setting and [BTW04] for the random design setting. Further refer-
ences can be found, e.g., in [ABDJ06] and in [AGS11, Chapter 4].

The above rate holds without any assumption on the dictionary ϕ = (ϕ1, . . . , ϕd) and without
any prior knowledge on the support J(u∗). Note that the rate contains an additional multiplicative
factor ln(d/s) compared to the upper bound s/T satisfied by the ideal least-squares estimator of
the previous section. This logarithmic factor is the price to pay for not knowing J(u∗) in ad-
vance. Indeed, [RWY11, Ver10] proved that the rate s ln(d/s)/T is minimax optimal on `0-balls
for fixed or Gaussian random designs (see also [BM01b] in the infinite-dimensional Gaussian
sequence model). In this respect, methods with a risk at most of order s ln(d/s)/T are termed
adaptive to the unknown sparsity s of u∗.

The risk bounds proved in [BM01a, BTW04, BTW07a] are actually stronger, since they are
stated in a more general regression model already encountered in the previous sections:

Yt = f(Xt) + εt , 1 6 t 6 T , (2.46)

where the Xt are either i.i.d. random variables (random design) or deterministic elements (fixed
design). Since f is not necessarily assumed to be of the form f = u∗·ϕ, the risk bounds mentioned
earlier

E
[
R
(
ûT
)]

= O
(
s ln(d/s)

T

)
are replaced with bounds on the differences E

[
R
(
ûT
)]
− R(u) for all u ∈ Rd, where the risk

R(u) is now defined by

R(u) ,


‖f − u ·ϕ‖2L2 (random design)

1

T

T∑
t=1

(
f(Xt)− u ·ϕ(Xt)

)2 (fixed design).

The risk bounds proved in [BTW04, BTW07a] are indeed of the form

E
[
R
(
ûT
)]

6 (1 + a) inf
u∈Rd

{
R(u) + C(a)

‖u‖0
T

ln

(
e d

max
{
‖u‖0 , 1

})} , (2.47)

where C(a) ∼ a−1 → +∞ as a → 0. The above upper bound is a typical example of what is
called a sparsity oracle inequality, i.e., in the prediction problem, a risk bound involving a trade-off
between the risk R(u) and the number of non-zero coordinates ‖u‖0 of all u ∈ Rd.
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2.6.3 Other methods: `1-regularization and exponential weighting

We end this section with a brief computational efficiency-oriented overview of alternatives to `0-
regularization. Indeed, a major drawback of `0-regularization is that the corresponding non-convex
minimization problems are not computationally tractable. This complexity issue has been handled
by replacing the `0-penalty with a `1-penalty (proportional to the sum of the absolute values of the
coefficients). `1-regularization can indeed be seen as a ‘convex relaxation’ of `0-regularization,
i.e., from a geometrical viewpoint, it behaves similarly to the `0-penalty but leads to convex and
thus computationally tractable minimization problems. It was first proposed by [Tib96] for the
so-called Lasso estimator and by [DJ94a] for a soft thresholding-based estimator in the context of
wavelet regression. In its dual form, the simplest version of the Lasso is defined by

ûLasso
T ∈ argmin

u∈Rd

{
1

T

T∑
t=1

(
Yt − u ·ϕ(Xt)

)2
+ λ ‖u‖1

}
,

for some tuning parameter λ usually taken of the order of σ
√

ln(d)/T if εt ∼ N (0, σ2). The
`0-oracle properties of the Lasso (and variants of the Lasso), i.e., risk bounds typically of the form
s ln(d)/T , have then been extensively studied over the past decade. A list of few references —
but far from being comprehensive — includes [BTW07b, CT07, vdG08, BRT09, Kol09a, Kol09b,
HvdG11, KLT11, LPvdGT11]. Until very recently all sparsity oracle inequalities proved for the
Lasso had a leading constant strictly larger than 1. This apparent drawback (as compared to expo-
nential weighting algorithms mentioned below) was overcome in [KLT11], who derived a sharp
sparsity oracle inequality for the Lasso, i.e., a sparsity oracle inequality with leading constant equal
to 1.

We also mention that [MM11] recently addressed the `1-oracle properties of the Lasso estima-
tor from a different viewpoint. They analyze the Lasso not as a variable selector but as a model
selector among a countably infinite collection of `1-balls. Their oracle-type inequalities follow
from the general model selection theorem for nonlinear models of [Mas07, Theorem 4.18]. For
further details, see Chapter 6 where we analyze a Bayesian extension of this model-selection pro-
cedure based on exponential weighting.

Despite their computational efficiency, the aforementioned `1-regularized methods still suffer
from a drawback: their `0-oracle properties hold under rather restrictive assumptions on the (fixed
or random) design; namely, that the covariates should be nearly orthogonal. We refer the reader to
[vdGB09] for a detailed discussion on these assumptions.

Recently an attempt has thus been made to reach a compromise between strong theoretical
guarantees (that hold under very weak assumptions on the design) and computational efficiency.
In this respect [DT07, DT08, DT11] proposed an aggregation algorithm which is based on expo-
nential weighting, which satisfies sharp sparsity oracle inequalities on a fixed or random design
under almost no assumption on the dictionary, and which can be approximated numerically at a
reasonable computational cost for large values of the ambient dimension d (cf. [DT09] who use
Langevin Monte-Carlo methods). This is the algorithm from which our online forecaster SeqSEW
of Chapter 3 in the deterministic setting is inspired.

More recently [RT11, AL11] designed aggregation algorithms that achieve optimal rates of
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sparse aggregation in the regression model with fixed design (in the sense of [RT11]). [AL11] also
addressed the regression model with random design but the corresponding risk bounds depend as
in [DT11] on the logarithms of ‖u∗‖1 and T (but their bound holds with large probability). In
both papers [RT11, AL11] the corresponding algorithms were shown to be well approximated by
MCMC methods with conclusive experimental results.

2.6.4 Some interesting consequences of sparsity oracle inequalities

As detailed in [BTW06, BTW07a, DT08], sparsity oracle inequalities have interesting conse-
quences. They indeed imply that:

• In the high-dimensional linear regression model (2.44), prediction is still statistically feasi-
ble under a sparsity scenario (this is the main motivation we chose to introduce the notion
of sparsity oracle inequality).

• Statistical procedures satisfying such sparsity oracle inequalities can be used to perform
adaptive nonparametric regression (i.e., for an appropriately well chosen basis, these pro-
cedures are adaptive to the unknown smoothness of the regression function f ). See also
[BM01a, Mas07].

• Statistical procedures satisfying sharp sparsity oracle inequalities achieve (quasi-)optimal
rates of model-selection, convex, and linear aggregation in the sense of [Nem00, Tsy03].
Namely, up to some small remainder terms, these procedures predict at least as well as the
best among the base predictors ϕj (model-selection aggregation), the best convex combi-
nation of the ϕj (convex aggregation), and the best linear combination of the ϕj (linear
aggregation); the corresponding remainder terms are the smallest possible ones. Further
details can be found, e.g., in [RT11, Section 6] (note that there are also other types of aggre-
gation than the three ones mentioned above, such as D-convex aggregation [Lou07]).

2.A Proofs

Proof (of Lemma 2.2): Note that the lower bound is trivial21 if K = 1. Therefore, we assume
in the sequel that K > 2. In the sequel Ber(q) denotes the Bernoulli distribution with parameter
q ∈ [0, 1].

The proof technique is due to [CBLS05, Sto10b] and relies on arguments of [ACBFS02].
Consider the space Ω = ({0, 1}K)T endowed with its discrete σ-algebra. For all 1 6 t 6 T ,
define the random variable Yt : ({0, 1}K)T → {0, 1}K as the t-th coordinate mapping on
({0, 1}K)T . We equip Ω with a family of probability distributions

(
Q⊗Tj

)
16j6K , where we set

Qj =
⊗K

i=1 Ber
(
1/2 − ε I{i=j}

)
for some ε ∈ (0, 1/2) to be determined by the analysis. The

proof is dedicated to show that

inf
S

max
16j6K

EQ⊗Tj

[
T∑
t=1

ât · Yt − min
16i6K

T∑
t=1

Yi,t

]
> c2

√
T

2
lnK . (2.48)

21Indeed, the expected regret is nonnegative for the i.i.d. sequence Y1 = . . . = YT = 0, and
√

(T/2) ln 1 = 0.
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This will then conclude the proof since `(ât,Yt) = ât · Yt and `(δi,Yt) = δi · Yt = Yi,t for all
i ∈ {1, . . . ,K} and t ∈ {1, . . . , T} almost surely.

Note that, by construction, the random vectors Yt = (Y1,t, . . . , YK,t), 1 6 t 6 T , are such that for
all j = 1, . . . ,K, under Q⊗Tj ,

• the real random variables Yi,t, 1 6 i 6 K, 1 6 t 6 T , are independent;

• for all i ∈ {1, . . . ,K}, the random sequence
(
Yi,t
)

16t6T associated with the i-th action is
an i.i.d. Bernoulli sequence with parameter 1/2 (if i 6= j) or 1/2− ε (if i = j).

By Fano’s lemma, we show next that if ε is small enough, then the forecaster cannot identify the
best action j too quickly uniformly over all distributionsQ⊗Tj , and therefore incurs a regret at least
of the order of

√
T lnK for at least one distribution Q⊗Tj .

Let S =
(
ât
)
t>1

be any strategy of the forecaster. We split below the expected regret into two
parts. On the one hand, denoting by Y1:t−1 ,

(
Y1, . . . ,Yt−1) the whole22 information available

to the forecaster before making its prediction at time t, and noting that ât ·Yt =
∑K

i=1 âi,tYi,t, we
get by the tower rule that, for all j ∈ {1, . . . ,K},

EQ⊗Tj

[
T∑
t=1

ât · Yt

]
=

T∑
t=1

K∑
i=1

EQ⊗Tj

[
EQ⊗Tj

[
âi,tYi,t

∣∣Y1:t−1

]]
=

T∑
t=1

K∑
i=1

EQ⊗Tj
[
âi,t
](1

2
− εI{i=j}

)
(2.49)

=
T

2
− ε

T∑
t=1

EQ⊗Tj
[
âj,t
]
, (2.50)

where (2.49) follows from the fact that âi,t is Y1:t−1-measurable (recall that the experts’ advice
ai,t = δi are deterministic) and from the fact that, under Q⊗Tj , Yi,t ∼ Ber

(
1/2 − ε I{i=j}

)
is

independent of Y1:t−1. As for (2.50), it follows from the almost sure equality
∑K

i=1 âi,t = 1 (since
ât ∈ XK).

Next we introduce an external randomization (as in [CBLS05, Sto10b]). Let (Ωext,Bext,Qext)

be a probability space, and let I1, . . . , IT ∈ {1, . . . ,K} be random variables defined on the
augmented space ({0, 1}K)T × Ωext such that23 It is measurable with respect to the σ-field
σ(Y1, . . . ,Yt−1)⊗ Bext, and, for all j ∈ {1, . . . ,K},

∀t ∈ {1, . . . , T}, ∀i ∈ {1, . . . ,K}, Q⊗Tj ⊗Qext

[
It = i

∣∣ (Y1, I1), . . . , (Yt−1, It−1)
]

= âi,t .

(Recall that
∑K

i=1 âi,t = 1 almost surely.) By the property above, (2.50) can be rewritten for all

22Since the expert advice are constant and known to the forecaster (they are given by ai,t = δi), the only useful
information at time t is Y1:t−1 =

(
Y1, . . . ,Yt−1).

23The random variables It can be constructed as follows: at each time t = 1, . . . , T , pick It ∈ {1, . . . ,K} at
random such that It = i with probability âi,t (conditionally on the past data (Y1, I1), . . . , (Yt−1, It−1)).
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j ∈ {1, . . . ,K} as

EQ⊗Tj

[
T∑
t=1

ât · Yt

]
=
T

2
− ε

T∑
t=1

Q⊗Tj ⊗Qext

[
It = j

]
. (2.51)

On the other hand, by Jensen’s inequality and by definition of Qj , we get, for all j ∈ {1, . . . ,K},

EQ⊗Tj

[
min

16i6K

T∑
t=1

Yi,t

]
6 min

16i6K
EQ⊗Tj

[
T∑
t=1

Yi,t

]
= EQ⊗Tj

[
T∑
t=1

Yj,t

]
=
T

2
− Tε .

Combining the last inequality with (2.51), we can lower bound the expected regret under each
probability distribution Q⊗Tj and get that

max
16j6K

EQ⊗Tj

[
T∑
t=1

ât · Yt − min
16i6K

T∑
t=1

Yi,t

]
> Tε

(
1− min

16j6K

1

T

T∑
t=1

Q⊗Tj ⊗Qext

[
It = j

])
.

(2.52)

To conclude the proof of (2.48), it suffices to lower bound the minimum in the parentheses by a
positive absolute constant for ε of the order of

√
(lnK)/T . But, by the extension of Fano’s lemma

to convex combinations due to [CBLS05] (see Lemma A.10 in Appendix A.7) and by the fact that
K > 2, we get

min
16j6K

1

T

T∑
t=1

Q⊗Tj ⊗Qext

[
It = j

]
6 max

{
2e

2e+ 1
,
K̄

lnK

}
, (2.53)

where

K̄ ,
1

K − 1

K∑
j=2

T∑
t=1

1

T
K
(
Q⊗Tj ⊗Qext, Q

⊗T
1 ⊗Qext

)
=

T

K − 1

K∑
j=2

K
(
Qj , Q1

)
. (2.54)

In the last equality, we used the fact thatK
(
Q⊗Tj ⊗Qext, Q

⊗T
1 ⊗Qext

)
= TK

(
Qj , Q1

)
by the chain

rule for the Kullback-Leibler divergence. But, noting that for all j = 2, . . . ,K, the probability
distributionsQj = ⊗Ki=1Ber

(
1/2−ε I{i=j}

)
andQ1 = ⊗Ki=1Ber

(
1/2−ε I{i=1}

)
only differ on the

two actions 1 and j by ε, we have, using again the chain rule for the Kullback-Leibler divergence,

K
(
Qj , Q1

)
= K

(
Ber(1/2),Ber(1/2− ε)

)
+K

(
Ber(1/2− ε),Ber(1/2)

)
6 5ε5 , (2.55)

where the last inequality is proved in [Sto05, Lemma A.5] for all 0 6 ε 6 1/10. Putting (2.53),
(2.54), and (2.55) together, we get that, for all 0 < ε 6 1/10,

min
16j6K

1

T

T∑
t=1

Q⊗Tj ⊗Qext

[
It = j

]
6 max

{
2e

2e+ 1
,
5Tε2

lnK

}
=

2e

2e+ 1
, (2.56)

where the last equality follows from the choice of

ε =

√
2e

2e+ 1

lnK

5T
,
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which is indeed smaller than 1/10 (as required) if T > [40e/(2e+ 1)] lnK. Substituting (2.56) in
(2.52), we get (2.48) by setting c1 , 40e/(2e + 1) and c2 , [2/(2e + 1)]

√
e/[5(2e+ 1)]. This

concludes the proof.

Remark 2.5. In the proof above, we showed via a version of Fano’s lemma that there exists a
probability distribution under which the random vectors Yt, 1 6 t 6 T , are i.i.d. and such that
the expected regret is at least of the order of

√
T lnK (see (2.48)). This probability distribution

is of the form Q⊗Kj∗ , where j∗ ∈ {1, . . . ,K} minimizes the left-hand side of (2.53). Therefore, it
depends on the strategy of the forecaster (ât)t>1 through (It)t>1.

Note that we could have used another variant of Fano’s lemma24 for K > 3 or Pinsker’s in-
equality (see Appendix A.7) forK = 2 to prove that the expected regret under (1/K)

∑K
i=1Q

⊗T
j is

also at least of the order of
√
T lnK for any strategy of the forecaster. Interestingly, the probability

distribution (1/K)
∑K

i=1Q
⊗T
j is now independent of the forecaster. Besides, the aforementioned√

T lnK lower bound on the expected regret under (1/K)
∑K

i=1Q
⊗T
j yields a lower bound simi-

lar to (2.48), at the price of worst constants though.

24See, e.g., [Bir01] and the references therein.



Chapter 3

Sparsity regret bounds for individual
sequences in online linear regression

We consider the problem of online linear regression on arbitrary deterministic sequences when
the ambient dimension d can be much larger than the number of time rounds T . We introduce
the notion of sparsity regret bound, which is a deterministic online counterpart of the so-called
sparsity oracle inequalities from the stochastic setting. We prove such regret bounds for an online-
learning algorithm called SeqSEW and based on exponential weighting and data-driven truncation.
In a second part we apply a parameter-free version of this algorithm to the regression model with
random design (i.i.d. data) and derive risk bounds of the same flavor as in [DT11] but which solve
two questions left open therein. In particular our risk bounds are adaptive (up to a logarithmic
factor) to the unknown variance of the noise if the latter is Gaussian. We also address the regression
model with fixed design as in [DT08].

NOTA: This chapter is the full version (with extensive proofs) of a conference paper [Ger11a] that
appeared in the proceedings of COLT 2011. Corollary 3.5 and Section 3.4.2 are published here
for the first time.
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3.1 Introduction

Sparsity has been extensively studied in the stochastic setting over the past decade. Among the
theoretical tools introduced for this purpose, the notion of sparsity oracle inequality plays a fun-
damental role. In high-dimensional linear regression, such inequalities indicate that the task con-
sisting in predicting almost as well as an unknown target vector is still statistically feasible if the
target vector has only few non-zero coordinates. A detailed motivation of such risk bounds and
some bibliographic references are provided in Section 2.6 of Chapter 2.

In this chapter, we bring the notion of sparsity oracle inequality into the framework of predic-
tion of individual sequences (of deterministic nature). The corresponding deterministic inequal-
ities are called sparsity regret bounds. We prove such bounds for an online-learning algorithm
called SeqSEW which is inspired from the Sparse Exponential Weighting algorithm introduced in
the stochastic setting by [DT07]. Thanks to individual sequences techniques (e.g., online trunca-
tion and online tuning), the most sophisticated version of our algorithm is fully automatic in the
sense that no a priori knowledge is needed for the choice of the tuning parameters.

The second contribution of this chapter deals with fruitful connections between the framework
of individual sequences and the stochastic setting. More precisely, we show that, via the standard
online to batch trick, the online truncation and parameter tuning performed by the algorithm Se-
qSEW for deterministic purposes yield, in the regression model with random or fixed design, spar-
sity oracle inequalities with leading constant 1 which are of the same flavor as in [DT08, DT11].
In addition our bounds are adaptive to the unknown variance σ2 of the noise (up to a logarithmic
factor) at least whenever the latter is Gaussian; weaker bounds are also proved under weaker as-
sumptions. Therefore, in the batch stochastic setting, individual sequence techniques appear to be
useful for adaptation purposes.

In the next paragraphs, we introduce our main setting and motivate the notion of sparsity regret
bound from an online learning viewpoint (this motivation can be paralleled to that of Section 2.6.1
in Chapter 2). We then detail our main contributions with respect to the statistical literature and
the machine learning literature.

Introduction of a deterministic counterpart of sparsity oracle inequalities

We consider the problem of online linear regression on arbitrary deterministic sequences. A fore-
caster has to predict in a sequential fashion the values yt ∈ R of an unknown sequence of ob-
servations given some input data xt ∈ X and some base forecasters ϕj : X → R, 1 6 j 6 d,
on the basis of which he outputs a prediction ŷt ∈ R. The quality of the predictions is assessed
by the square loss. The goal of the forecaster is to predict almost as well as the best linear fore-
caster u ·ϕ ,

∑d
j=1 ujϕj , where u ∈ Rd, i.e., to satisfy, uniformly over all individual sequences

(xt, yt)16t6T , a regret bound of the form

T∑
t=1

(
yt − ŷt

)2
6 inf
u∈Rd

{
T∑
t=1

(
yt − u ·ϕ(xt)

)2
+ ∆T,d(u)

}
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for some regret term ∆T,d(u) that should be as small as possible and, in particular, sublinear
in T . (For the sake of introduction, we omit the dependencies of ∆T,d(u) on the amplitudes
max16t6T ‖xt‖∞ and max16t6T |yt|.)

In this setting the version of the sequential ridge regression forecaster1 studied by [AW01] and
[Vov01] and tuned with the illegal optimal tuning of Section 2.4.2 has a regret ∆T,d(u) of order
at most d ln

(
T ‖u‖22

)
; see (2.27) in the aforementioned section. When the ambient dimension d

is much larger than the number of time rounds T , the bound d lnT may unfortunately be larger
than T and is thus somehow trivial. Since the regret bound d lnT is optimal in a certain sense (see
[Vov01, Theorem 2]), additional assumptions are needed to get interesting theoretical guarantees.

A natural assumption, which has already been extensively studied in the stochastic setting, is
that there is a sparse linear combination u∗ (i.e., with s� T/(lnT ) non-zero coefficients) which
has a small cumulative square loss. If the forecaster knew in advance the support J(u∗) , {j :

u∗j 6= 0} of u∗, he could apply the same forecaster as above but only to the s-dimensional linear
subspace

{
u ∈ Rd : ∀j /∈ J(u∗), uj = 0

}
. The regret bound of this “oracle” would be roughly

of order s lnT and thus sublinear in T . Under this sparsity scenario, a sublinear regret thus seems
possible, though, of course, the aforementioned regret bound s lnT can only be used as an ideal
benchmark (since the support of u∗ is unknown).

In this chapter, we prove that a regret bound proportional to s is achievable (up to logarithmic
factors). In Corollary 3.1 and its refinements (Corollary 3.2 and Theorem 3.1), we indeed derive
regret bounds of the form

T∑
t=1

(yt − ŷt)2 6 inf
u∈Rd

{
T∑
t=1

(
yt − u ·ϕ(xt)

)2
+
(
‖u‖0 + 1

)
gT,d

(
‖u‖1 , ‖ϕ‖∞

)}
, (3.1)

where ‖u‖0 denotes the number of non-zero coordinates of u and where g is increasing but grows
at most logarithmically in T , d, ‖u‖1 ,

∑d
j=1 |uj |, and ‖ϕ‖∞ , supx∈X max16j6d |ϕj(x)|. We

call regret bounds of the above form sparsity regret bounds.

This work is in connection with several papers that belong either to the statistical or to the
machine learning literature. Next we discuss these papers and some related references.

Related works in the stochastic setting

The above regret bound (3.1) can be seen as a deterministic online counterpart of the so-called
sparsity oracle inequalities introduced in the stochastic setting in the past decade. The latter are
risk bounds expressed in terms of the number of non-zero coefficients of the oracle vector. Such
inequalities were derived by [BM01a] through model selection arguments and later developed by,
e.g., [BM07a, BTW07a] in the regression model with fixed design and by [BTW04] for the case
of a random design. An introduction to the notion of sparsity oracle inequality can be found in
Section 2.6 (Chapter 2); we refer the reader to this section for further references.

We only mention that, recently, sparsity oracle inequalities with leading constant equal to 1

1This forecaster is recalled in Chapter 2; see (2.26) in Section 2.4.2.
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were proved for procedures based on exponential weighting; see [DT07, DT08, RT11, AL11] for
the regression model with fixed design and [DT11, AL11] for the regression model with random
design. These papers show that a trade-off can be reached between strong theoretical guarantees
(as with `0-regularization) and computational efficiency (as with `1-regularization). They indeed
propose aggregation algorithms which satisfy sparsity oracle inequalities under almost no assump-
tion on the base forecasters (ϕj)j , and which can be approximated numerically at a reasonable
computational cost for large values of the ambient dimension d.

Our online-learning algorithm SeqSEW is inspired from [DT08, DT11]. Following the same
lines as in [DT09], it is possible to slightly adapt its statement to make it computationally tractable
by means of Langevin Monte-Carlo approximation while not affecting its statistical properties.
The technical details are however omitted in this chapter, which only focuses on the theoretical
guarantees of the algorithm SeqSEW.

Previous works on sparsity in the framework of individual sequences

To the best of our knowledge, Corollary 3.1 and its refinements (Corollary 3.2 and Theorem 3.1)
provide the first examples of sparsity regret bounds in the sense of (3.1). To comment on the op-
timality of such regret bounds and compare them to related results in the framework of individual
sequences, note that (3.1) can be rewritten in the equivalent form:

For all s ∈ N and all U > 0,

T∑
t=1

(yt − ŷt)2 − inf
‖u‖06s
‖u‖16U

T∑
t=1

(
yt − u ·ϕ(xt)

)2
6
(
s+ 1

)
gT,d

(
U, ‖ϕ‖∞

)
,

where g grows at most logarithmically in T , d, U , and ‖ϕ‖∞. When s � T , this upper bound
matches (up to logarithmic factors) the lower bound of order s lnT that follows in a straightfor-
ward manner from [Vov01, Theorem 2] or [CBL06, Chapter 11]. Indeed, if s� T , X = Rd, and
ϕj(x) = xj , then for any forecaster, there is an individual sequence (xt, yt)16t6T such that the
regret of this forecaster on

{
u ∈ Rd : ‖u‖0 6 s and ‖u‖1 6 d

}
is bounded from below by a

quantity of order s lnT . Therefore, up to logarithmic factors, any algorithm satisfying a sparsity
regret bound of the form (3.1) is minimax optimal on intersections of `0-balls (of radii s� T ) and
`1-balls. This is in particular the case for our algorithm SeqSEW, but this contrasts with related
works discussed below.

Recent works in the field of online convex optimization addressed the sparsity issue in the on-
line deterministic setting, but from a quite different angle. They focus on algorithms which output
sparse linear combinations, while we are interested in algorithms whose regret is small under a
sparsity scenario, i.e., on `0-balls of small radii. See, e.g., [LLZ09, SST09, Xia10, DSSST10]
and the references therein. All these articles focus on convex regularization. In the particular case
of `1-regularization under the square loss, the aforementioned works propose algorithms which
predict as a sparse linear combination ŷt = ût · ϕ(xt) of the base forecasts (i.e., ‖ût‖0 is small),
while no such guarantee can be proved for our algorithm SeqSEW. However they prove bounds on
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the `1-regularized regret of the form

T∑
t=1

(
(yt − ût · xt)2 + λ ‖ût‖1

)
6 inf
u∈Rd

{
T∑
t=1

(
(yt − u · xt)2 + λ ‖u‖1

)
+ ∆̃T,d(u)

}
, (3.2)

for some regret term ∆̃T,d(u) which is suboptimal on intersections of `0- and `1-balls as explained
below. The truncated gradient algorithm of [LLZ09, Corollary 4.1] satisfies2 such a regret bound
with ∆̃T,d(u) at least of order ‖ϕ‖∞

√
dT when the base forecasts ϕj(xt) are dense in the sense

that max16t6T
∑d

j=1 ϕ
2
j (xt) ≈ d ‖ϕ‖

2
∞. This regret bound grows as a power of and not logarith-

mically in d as is expected for sparsity regret bounds (recall that we are interested in the case when
d� T ).

The three other papers mentioned above do prove (some) regret bounds with a logarithmic
dependence in d, but these bounds do not have the dependence in ‖u‖1 and T we are looking for.
For p−1 ≈ 1/(ln d), the p-norm RDA method of [Xia10] and the algorithm SMIDAS of [SST09]
– the latter being a particular case of the algorithm COMID of [DSSST10] specialized to the p-
norm divergence – satisfy regret bounds of the above form (3.2) with ∆̃T,d(u) ≈ µ ‖u‖1

√
T ln d,

for some gradient-based constant µ. Therefore, in all three cases, the function ∆̃ grows at least
linearly in ‖u‖1 and as

√
T . This is in contrast with the logarithmic dependence in ‖u‖1 and the

fast rate O(lnT ) we are looking for and prove, e.g., in Corollary 3.1.

Note that the suboptimality of the aforementioned algorithms is specific to the goal we are pur-
suing, i.e., prediction on `0-balls (intersected with `1-balls). On the contrary the rate ‖u‖1

√
T ln d

is more suited and actually nearly optimal for learning on `1-balls (see Chapter 4). Moreover, the
predictions output by our algorithm SeqSEW are not necessarily sparse linear combinations of the
base forecasts. A question left open is thus whether it is possible to design an algorithm which
both ouputs sparse linear combinations (which is statistically useful and sometimes essential for
computational issues) and satisfies a sparsity regret bound of the form (3.1).

PAC-Bayesian analysis in the framework of individual sequences

To derive our sparsity regret bounds, we follow a PAC-Bayesian approach combined with the
choice of a sparsity-favoring prior. We do not have the space to review the PAC-Bayesian literature
in the stochastic setting and only refer the reader to [Cat04] for a thorough introduction to the
subject. As for the online deterministic setting, PAC-Bayesian-type inequalities were proved in
the framework of prediction with expert advice, e.g., in [FSSW97] and [KW99], or in the same
setting as ours with a Gaussian prior in [Vov01]. More recently, [Aud09] proved a PAC-Bayesian
result on individual sequences for general losses and prediction sets. The latter result relies on a
unifying assumption called the online variance inequality, which holds true, e.g., when the loss
function is exp-concave. In the present chapter, we only focus on the particular case of the square
loss. We first use Theorem 4.6 of [Aud09] to derive a non-adaptive sparsity regret bound. We then

2The bound stated in [LLZ09, Corollary 4.1] differs from (3.2) in that the constant before the infimum is equal to
C = 1/(1− 2c2dη), where c2d ≈ max16t6T

∑d
j=1 ϕ

2
j (xt) 6 d ‖ϕ‖2∞, and where a reasonable choice for η can easily

be seen to be η ≈ 1/
√

2c2dT . If the base forecasts ϕj(xt) are dense in the sense that c2d ≈ d ‖ϕ‖2∞, then we have
C ≈ 1 +

√
2c2d/T , which yields a regret bound with leading constant 1 as in (3.2) and with ∆̃T,d(u) at least of order√

c2dT ≈ ‖ϕ‖∞
√
dT .
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provide an adaptive online PAC-Bayesian inequality to automatically adapt to the unknown range
of the observations max16t6T |yt|.

Open questions by Dalalyan and Tsybakov

In Section 3.4.1 we apply a parameter-free version of our algorithm SeqSEW on i.i.d. data and
derive a risk bound of the same flavor as in [DT11]. However, our risk bound holds on the whole
Rd space instead of `1-balls of finite radii, which solves one question left open by [DT11, Sec-
tion 4.2]. Besides, our algorithm does not need the a priori knowledge of the variance factor of the
noise when the latter is subgaussian, which solves a second question raised in [DT11, Section 5.1,
Remark 6].

Outline of the chapter

This chapter is organized as follows. In Section 3.2 we describe our main (deterministic) setting
as well as our main notations. In Section 3.3 we prove the aforementioned sparsity regret bounds
for our algorithm SeqSEW, first when the forecaster has access to some a priori knowledge on
the observations (Sections 3.3.1 and 3.3.2), and then when no a priori information is available
(Section 3.3.3), which yields a fully automatic algorithm. In Section 3.4 we apply the algorithm
SeqSEW to the regression model with random design (Section 3.4.1) and to the regression model
with fixed design (Section 3.4.2). Some technical tools are finally given in appendix.

3.2 Setting and notations

The main setting considered in this chapter is an instance of the game of prediction with expert
advice called prediction with side information (under the square loss) or, more simply, online lin-
ear regression. This online protocol is described in Figure 3.1. An introduction to this setting is
provided in Section 2.4 of Chapter 2.

Note that our online protocol is described as if the environment were oblivious to the fore-
caster’s predictions. Actually, since we only consider deterministic forecasters, all regret bounds
of this chapter also hold when (xt)t>1 and (yt)t>1 are chosen by an adversarial environment. See
Section 2.3.1 of Chapter 2 for further details.

Two stochastic batch settings are also considered later in this chapter. See Section 3.4.1 for
the regression model with random design, and Section 3.4.2 for the regression model with fixed
design.

Some notations

We now define some notations. Vectors in Rd will be denoted by bold letters. For all u,v ∈ Rd,
the standard inner product in Rd between u = (u1, . . . , ud) and v = (v1, . . . , vd) will be denoted
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Parameters: input data set X , base forecasters ϕ = (ϕ1, . . . , ϕd) with ϕj : X → R,
1 6 j 6 d.

Initial step: the environment chooses a sequence of observations (yt)t>1 in R and a sequence
of input data (xt)t>1 in X but the forecaster has not access to them.

At each time round t ∈ N∗,

1. The environment reveals the input data xt ∈ X .

2. The forecaster chooses a prediction ŷt ∈ R
(possibly as a linear combination of the ϕj(xt), but this is not necessary).

3. The environment reveals the observation yt ∈ R.

4. Each linear forecaster u · ϕ ,
∑d

j=1 ujϕj , u ∈ Rd, incurs the loss
(
yt − u · ϕ(xt)

)2
and the forecaster incurs the loss (yt − ŷt)2.

Figure 3.1: The online linear regression setting.

by u · v =
∑d

i=j uj vj ; the `0-, `1-, and `2-norms of u = (u1, . . . , ud) are respectively defined by

‖u‖0 ,
d∑
j=1

I{uj 6=0} =
∣∣{j : uj 6= 0}

∣∣ , ‖u‖1 ,
d∑
j=1

|uj | , and ‖u‖2 ,

 d∑
j=1

u2
j

1/2

.

The set of all probability distributions on a set Θ (endowed with some σ-algebra, e.g., the Borel σ-
algebra when Θ = Rd) will be denoted byM+

1 (Θ). For all ρ, π ∈M+
1 (Θ), the Kullback-Leibler

divergence between ρ and π is defined by

K(ρ, π) ,


∫
Rd

ln

(
dρ
dπ

)
dρ if ρ is absolutely continuous with respect to π;

+∞ otherwise,

where dρ
dπ denotes the Radon-Nikodym derivative of ρ with respect to π.

For all x ∈ R and B > 0, we denote by dxe the smallest integer larger than or equal to x,
and by [x]B its thresholded (or clipped) value:

[x]B ,


−B if x < −B;

x if −B 6 x 6 B;

B if x > B.

Finally, we will use the (natural) conventions 1/0 = +∞, (+∞)× 0 = 0, and 0 ln(1 +U/0) = 0

for all U > 0. Any sum
∑0

s=1 as indexed from 1 up to 0 is by convention equal to 0.
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3.3 Sparsity regret bounds for individual sequences

In this section we prove sparsity regret bounds for different variants of our algorithm SeqSEW.
We first assume in Section 3.3.1 that the forecaster has access in advance to a bound By on the
observations |yt| and a bound BΦ on the trace of the empirical Gram matrix. We then remove
these requirements one by one in Sections 3.3.2 and 3.3.3.

3.3.1 Known bounds By on the observations and BΦ on the trace of the empirical
Gram matrix

To simplify the analysis, we first assume that, at the beginning of the game, the number of rounds
T is known to the forecaster and that he has access to a boundBy on all the observations y1, . . . , yT
and to a bound BΦ on the trace of the empirical Gram matrix, i.e.,

y1, . . . , yT ∈ [−By, By] and
d∑
j=1

T∑
t=1

ϕ2
j (xt) 6 BΦ .

The first version of the algorithm studied in this chapter is defined in Figure 3.2 (adaptive vari-
ants will be introduced later). We name it SeqSEW for it is a variant of the Sparse Exponential
Weighting algorithm introduced in the stochastic setting by [DT07, DT08] which is tailored for
the prediction of individual sequences.

The choice of the heavy-tailed prior πτ is due to [DT07]. The role of heavy-tailed priors to
tackle the sparsity issue was already pointed out earlier; see, e.g., the discussion in [See08, Sec-
tion 2.1]. In high dimension, such heavy-tailed priors favor sparsity: sampling from these prior
distributions (or posterior distributions based on them) typically results in approximately sparse
vectors, i.e., vectors having most coordinates almost equal to zero and the few remaining ones with
quite large values.

Proposition 3.1. Assume that, for a known constant By > 0, the (x1, y1), . . . , (xT , yT ) are such
that y1, . . . , yT ∈ [−By, By]. Then, for all B > By, all η 6 1/(8B2), and all τ > 0, the
algorithm SeqSEWB,η

τ satisfies

T∑
t=1

(yt−ŷt)2 6 inf
u∈Rd

{
T∑
t=1

(
yt − u ·ϕ(xt)

)2
+

4

η
‖u‖0 ln

(
1 +

‖u‖1
‖u‖0 τ

)}
+τ2

d∑
j=1

T∑
t=1

ϕ2
j (xt) .

(3.3)

Corollary 3.1. Assume that, for some known constants By > 0 and BΦ > 0, the
(x1, y1), . . . , (xT , yT ) are such that y1, . . . , yT ∈ [−By, By] and

∑d
j=1

∑T
t=1 ϕ

2
j (xt) 6 BΦ .

Then, when used with B = By, η =
1

8B2
y

, and τ =

√
16B2

y

BΦ
, the algorithm SeqSEWB,η

τ satisfies

T∑
t=1

(yt − ŷt)2 6 inf
u∈Rd

{
T∑
t=1

(
yt − u ·ϕ(xt)

)2
+ 32B2

y ‖u‖0 ln

(
1 +

√
BΦ ‖u‖1

4By ‖u‖0

)}
+ 16B2

y .

(3.4)
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Parameters: threshold B > 0, inverse temperature η > 0, and prior scale τ > 0 with which
we associate the sparsity prior πτ ∈M+

1 (Rd) defined by

πτ (du) ,
d∏
j=1

(3/τ) duj
2
(
1 + |uj |/τ

)4 .
Initialization: p1 , πτ .

At each time round t > 1,

1. Get the input data xt and predicta as ŷt ,
∫
Rd

[
u ·ϕ(xt)

]
B
pt(du) ;

2. Get the observation yt and compute the posterior distribution pt+1 ∈M+
1 (Rd) as

pt+1(du) ,

exp

(
−η

t∑
s=1

(
ys −

[
u ·ϕ(xs)

]
B

)2
)

Wt+1
πτ (du) ,

where

Wt+1 ,
∫
Rd

exp

(
−η

t∑
s=1

(
ys −

[
v ·ϕ(xs)

]
B

)2
)
πτ (dv) .

aThe clipping operator [·]B is defined in Section 3.2.

Figure 3.2: The algorithm SeqSEWB,η
τ .

Note that, if ‖ϕ‖∞ , supx∈X max16j6d |ϕj(x)| is finite, then the last corollary provides a
sparsity regret bound in the sense of (3.1). Indeed, in this case, we can take BΦ = d T ‖ϕ‖2∞,
which yields a regret bound proportional to ‖u‖0 and that grows logarithmically in d, T , ‖u‖1,
and ‖ϕ‖∞.

To prove Proposition 3.1, we first need the following deterministic PAC-Bayesian inequality
which is at the core of our analysis. It is a straightforward consequence of Theorem 4.6 of [Aud09]
when applied to the square loss (see also Appendix 3.A.1 for a self-contained proof). An adaptive
variant of this inequality will be provided in Section 3.3.2.

Lemma 3.1. Assume that for some known constant By > 0, we have y1, . . . , yT ∈ [−By, By].
For all τ > 0, if the algorithm SeqSEWB,η

τ is used with B > By and η 6 1/(8B2), then

T∑
t=1

(yt − ŷt)2 6 inf
ρ∈M+

1 (Rd)

{∫
Rd

T∑
t=1

(
yt −

[
u ·ϕ(xt)

]
B

)2
ρ(du) +

K(ρ, πτ )

η

}
(3.5)

6 inf
ρ∈M+

1 (Rd)

{∫
Rd

T∑
t=1

(
yt − u ·ϕ(xt)

)2
ρ(du) +

K(ρ, πτ )

η

}
. (3.6)
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Proof (of Lemma 3.1): Inequality (3.5) is a straightforward consequence of Theorem 4.6 of
[Aud09] when applied to the square loss, the set of prediction functions G ,

{
x 7→

[
u ·ϕ(x)

]
B

:

u ∈ Rd
}

, and the prior3 π on G induced by the prior πτ on Rd via the mapping u ∈ Rd 7→[
u ·ϕ(·)

]
B
∈ G.

To apply the aforementioned theorem, recall from Appendix A.2 that the square loss is 1/(8B2)-
exp-concave on [−B,B] and thus η-exp-concave4 (since η 6 1/(8B2) by assumption). Therefore,
by Theorem 4.6 of [Aud09] with the variance function δη ≡ 0 (see the comments following
Remark 4.1 therein), we get

T∑
t=1

(yt − ŷt)2 6 inf
µ∈M+

1

(
G
)
{∫
G

T∑
t=1

(
yt − g(xt)

)2
µ(dg) +

K(µ, π)

η

}

6 inf
ρ∈M+

1 (Rd)

{∫
Rd

T∑
t=1

(
yt −

[
u ·ϕ(xt)

]
B

)2
ρ(du) +

K(ρ̃, π)

η

}
,

where the last inequality follows by restricting the infimum over M+
1

(
G
)

to the subset
{
ρ̃ :

ρ ∈ M+
1 (Rd)

}
⊂ M+

1

(
G
)
, where ρ̃ ∈ M+

1

(
G
)

denotes the probability distribution induced
by ρ ∈M+

1 (Rd) via the mapping u ∈ Rd 7→
[
u ·ϕ(·)

]
B
∈ G. Inequality (3.5) then follows from

the fact that for all ρ ∈M+
1 (Rd), we have K(ρ̃, π) 6 K(ρ, πτ ) by joint convexity of K(·, ·).

As for Inequality (3.6), it follows from (3.5) by noting that

∀y ∈ [−B,B], ∀x ∈ R,
∣∣y − [x]B

∣∣ 6 |y − x| .
Therefore, truncation to [−B,B] can only improve prediction under the square loss if the observa-
tions are [−B,B]-valued, which is the case here since by assumption yt ∈ [−By, By] ⊂ [−B,B]

for all t = 1, . . . , T .

Remark 3.1. As can be seen from the previous proof, Lemma 3.1 still holds when πτ is replaced
with any prior π ∈ M+

1 (Rd) (both in the statement of the lemma and in the definition of the
algorithm SeqSEW). This fact is standard in the PAC-Bayesian approach; see, e.g., [Cat04] and
[DT08]. As a consequence, any algorithm satisfying (3.6) will also satisfy Proposition 3.1 and
Corollary 3.1.

Proof (of Proposition 3.1): Our proof mimics the proof of Theorem 5 in [DT08]. We thus only
write the outline of the proof and stress the minor changes that are needed to derive Inequal-
ity (3.3). The key technical tools provided in [DT08] are reproduced in Appendix 3.B.1 for the
convenience of the reader.

3The set G is endowed with the σ-algebra generated by all the coordinate mappings g ∈ G 7→ g(x) ∈ R, x ∈ X
(where R is endowed with its Borel σ-algebra).

4This means that for all y ∈ [−B,B], the function x 7→ exp
(
−η(y − x)2

)
is concave on [−B,B].
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Let u∗ ∈ Rd. Since B > By and η 6 1/(8B2), we can apply Lemma 3.1 and get

T∑
t=1

(yt − ŷt)2 6 inf
ρ∈M+

1 (Rd)

{∫
Rd

T∑
t=1

(
yt − u ·ϕ(xt)

)2
ρ(du) +

K(ρ, πτ )

η

}

6
∫
Rd

T∑
t=1

(
yt − u ·ϕ(xt)

)2
ρu∗,τ (du)︸ ︷︷ ︸

(1)

+
K(ρu∗,τ , πτ )

η︸ ︷︷ ︸
(2)

. (3.7)

In the last inequality, ρu∗,τ is taken as the translated of πτ at u∗, namely,

ρu∗,τ (du) ,
dπτ
du

(u− u∗) du =

d∏
j=1

(3/τ) duj
2
(
1 + |uj − u∗j |/τ

)4 .
The two terms (1) and (2) can be upper bounded as in the proof of Theorem 5 in [DT08].
By a symmetry argument recalled in Lemma 3.3, the first term (1) can be rewritten as

∫
Rd

T∑
t=1

(
yt − u ·ϕ(xt)

)2
ρu∗,τ (du) =

T∑
t=1

(
yt − u∗ ·ϕ(xt)

)2
+ τ2

d∑
j=1

T∑
t=1

ϕ2
j (xt) . (3.8)

As for the term (2), we have, as is recalled in Lemma 3.4,

K(ρu∗,τ , πτ )

η
6

4

η
‖u∗‖0 ln

(
1 +

‖u∗‖1
‖u∗‖0 τ

)
. (3.9)

Combining (3.7), (3.8), and (3.9), which all hold for all u∗ ∈ Rd, we get Inequality (3.3).

Proof (of Corollary 3.1): Applying Proposition 3.1, we have, since B > By and η 6 1/(8B2),

T∑
t=1

(yt − ŷt)2 6 inf
u∈Rd

{
T∑
t=1

(
yt − u ·ϕ(xt)

)2
+

4

η
‖u‖0 ln

(
1+
‖u‖1
‖u‖0 τ

)}
+ τ2

d∑
j=1

T∑
t=1

ϕ2
j (xt)

6 inf
u∈Rd

{
T∑
t=1

(
yt − u ·ϕ(xt)

)2
+

4

η
‖u‖0 ln

(
1 +

‖u‖1
‖u‖0 τ

)}
+ τ2BΦ , (3.10)

since
∑d

j=1

∑T
t=1 ϕ

2
j (xt) 6 BΦ by assumption. The particular choices for η and τ given in the

statement of the corollary then yield the desired inequality (3.4).

We end this subsection with a remark on the choices ofB, η, and τ suggested in Corollary 3.1.
The best choice of (B, η) that satisfies the assumptions of Proposition 3.1 is B = By and η =

1/(8B2
y). As for the choice of τ , it approximately minimizes the upper bound given in (3.10).

Indeed, for all C1, C2, C3 > 0, the function f : (0,+∞)→ R defined by

f(τ) , C1 ln

(
C2

τ

)
+ C3τ

2

has a derivative equal to f ′(τ) = −C1/τ + 2C3τ = τ−1(2C3τ
2 − C1), which is negative on
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(
0,
√
C1/(2C3)

)
and positive on

(√
C1/(2C3),+∞

)
. The function f thus admits a global min-

imum in τ =
√
C1/(2C3). Since the sum of the last two terms of (3.10) is approximately of the

form of f(τ) with5 C1 = 4/η = 32B2
y and C3 = BΦ, a reasonable choice for τ is given by

τ =

√
32B2

y

2BΦ
=

√
16B2

y

BΦ
.

3.3.2 Unknown bound By on the observations but known bound BΦ on the trace of
the empirical Gram matrix

In the previous section, to prove the upper bounds stated in Lemma 3.1 and Proposition 3.1, we
assumed that the forecaster had access to a bound By on the observations |yt| and to a bound BΦ

on the trace of the empirical Gram matrix. In this section, we remove the first requirement and
prove a sparsity regret bound for a variant of the algorithm SeqSEWB,η

τ which is adaptive to the
unknown bound By = max16t6T |yt|; see Proposition 3.2 and Remark 3.2 below.

Parameter: prior scale τ > 0 with which we associate the sparsity prior πτ ∈ M+
1 (Rd)

defined by

πτ (du) ,
d∏
j=1

(3/τ) duj
2
(
1 + |uj |/τ

)4 .
Initialization: B1 , 0, η1 , +∞, and p1 , πτ .

At each time round t > 1,

1. Get the input data xt and predicta as ŷt ,
∫
Rd

[
u ·ϕ(xt)

]
Bt
pt(du);

2. Get the observation yt and update:

• the threshold Bt+1 ,
(

2dlog2 max16s6t y
2
se
)1/2

,

• the inverse temperature ηt+1 , 1/
(
8B2

t+1

)
,

• and the posterior distribution pt+1 ∈M+
1 (Rd) as

pt+1(du) ,

exp

(
−ηt+1

t∑
s=1

(
ys −

[
u ·ϕ(xs)

]
Bs

)2
)

Wt+1
πτ (du) ,

where

Wt+1 ,
∫
Rd

exp

(
−ηt+1

t∑
s=1

(
ys −

[
v ·ϕ(xs)

]
Bs

)2
)
πτ (dv) .

aThe clipping operator [·]B is defined in Section 3.2.

Figure 3.3: The algorithm SeqSEW∗
τ .

5We omit the factor ‖u‖0 in C1, since the `0-norm of the minimizer u of (3.10) is unknown and “small” under a
sparsity scenario. This approximation leads to a reasonable tuning as can be seen from Corollary 3.1.
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For this purpose we consider the algorithm of Figure 3.3, which we call SeqSEW∗
τ thereafter.

It differs from SeqSEWB,η
τ defined in the previous section in that the threshold B and the inverse

temperature η are now allowed to vary over time and are chosen at each time round as a function
of the data available to the forecaster.

The idea of truncating the base forecasts was used many times in the past; see, e.g., [Vov01]
for the online linear regression setting, [GKKW02, Chapter 10] for the regression problem with
random design, and [GO07, BBGO10] for sequential prediction of unbounded time series under
the square loss. A key ingredient in the present chapter is to perform truncation with respect to
a data-driven threshold. The online tuning of this threshold is based on a pseudo-doubling-trick
technique provided in [CBMS07]. (We use the prefix pseudo since the algorithm does not restart
at the beginning of each new regime.)

Proposition 3.2. For all τ > 0, the algorithm SeqSEW∗
τ satisfies

T∑
t=1

(yt − ŷt)2 6 inf
u∈Rd

{
T∑
t=1

(
yt − u ·ϕ(xt)

)2
+ 32B2

T+1 ‖u‖0 ln

(
1 +

‖u‖1
‖u‖0 τ

)}
(3.11)

+ τ2
d∑
j=1

T∑
t=1

ϕ2
j (xt) + 16B2

T+1 ,

where B2
T+1 , 2dlog2 max16t6T y

2
t e 6 2 max16t6T y

2
t .

Remark 3.2. In view of Proposition 3.1, the algorithm SeqSEW∗
τ satisfies a sparsity regret bound

which is adaptive to the unknown bound By = max16t6T |yt|. The price for the automatic tuning
with respect to By consists only of a multiplicative factor smaller than 2 and the additive factor
16B2

T+1 which is smaller than 32B2
y .

As in the previous section, several corollaries can be derived from Proposition 3.2. If the
forecaster has access beforehand to a quantity BΦ > 0 such that

∑d
j=1

∑T
t=1 ϕ

2
j (xt) 6 BΦ, then

a suboptimal but reasonable choice of τ is given by τ = 1/
√
BΦ; see Corollary 3.2 below. The

simpler tuning6 τ = 1/
√
dT of Corollary 3.3 will be useful in the stochastic batch setting (cf.

Section 3.4). The proofs of the next corollaries are immediate.

Corollary 3.2. Assume that, for a known constant BΦ > 0, the (x1, y1), . . . , (xT , yT ) are such
that

∑d
j=1

∑T
t=1 ϕ

2
j (xt) 6 BΦ. Then, when used with τ = 1/

√
BΦ, the algorithm SeqSEW∗

τ

satisfies

T∑
t=1

(yt − ŷt)2 6 inf
u∈Rd

{
T∑
t=1

(
yt − u ·ϕ(xt)

)2
+ 32B2

T+1 ‖u‖0 ln

(
1 +

√
BΦ ‖u‖1
‖u‖0

)}
(3.12)

+ 16B2
T+1 + 1 ,

where B2
T+1 , 2dlog2 max16t6T y

2
t e 6 2 max16t6T y

2
t .

6The tuning τ = 1/
√
dT only uses the knowledge of T , which is known by the forecaster in the stochastic batch

setting. In that framework, another simple and easy-to-analyse tuning is given by τ = 1/(‖ϕ‖∞
√
d T ) — which

corresponds to BΦ = d T ‖ϕ‖2∞ — but it requires that ‖ϕ‖∞ , supx∈X max16j6d |ϕj(x)| be finite. Note that the
last tuning satisfies the scale-invariant property pointed out in [DT11, Remark 4].
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Corollary 3.3. Assume that T is known to the forecaster at the beginning of the prediction game.
Then, when used with τ = 1/

√
dT , the algorithm SeqSEW∗

τ satisfies

T∑
t=1

(yt − ŷt)2 6 inf
u∈Rd

{
T∑
t=1

(
yt − u ·ϕ(xt)

)2
+ 32B2

T+1 ‖u‖0 ln

(
1 +

√
dT ‖u‖1
‖u‖0

)}
(3.13)

+
1

dT

d∑
j=1

T∑
t=1

ϕ2
j (xt) + 16B2

T+1 ,

where B2
T+1 , 2dlog2 max16t6T y

2
t e 6 2 max16t6T y

2
t .

As in the previous section, to prove Proposition 3.2, we first need a key PAC-Bayesian inequal-
ity. The next lemma is an adaptive variant of Lemma 3.1.

Lemma 3.2. For all τ > 0, the algorithm SeqSEW∗
τ satisfies

T∑
t=1

(yt − ŷt)2 6 inf
ρ∈M+

1 (Rd)

{∫
Rd

T∑
t=1

(
yt −

[
u ·ϕ(xt)

]
Bt

)2
ρ(du) + 8B2

T+1K(ρ, πτ )

}
+ 8B2

T+1

(3.14)

6 inf
ρ∈M+

1 (Rd)

{∫
Rd

T∑
t=1

(
yt − u ·ϕ(xt)

)2
ρ(du) + 8B2

T+1K(ρ, πτ )

}
+ 16B2

T+1 ,

(3.15)

where B2
T+1 , 2dlog2 max16t6T y

2
t e 6 2 max16t6T y

2
t .

Proof (of Lemma 3.2): The proof is based on arguments that are similar to those underlying
Lemma 3.1, except that we now need to deal withB and η changing over time. In the same spirit as
in [ACBG02, CBMS07, GO07], our analysis relies on the control of (lnWt+1)/ηt+1− (lnWt)/ηt
where W1 , 1 and, for all t > 2,

Wt ,
∫
Rd

exp

(
−ηt

t−1∑
s=1

(
ys −

[
u ·ϕ(xs)

]
Bs

)2
)
πτ (du) .

On the one hand, we have

lnWT+1

ηT+1
− lnW1

η1
=

1

ηT+1
ln

∫
Rd

exp

(
−ηT+1

T∑
t=1

(
yt −

[
u ·ϕ(xt)

]
Bt

)2
)
πτ (du) − 1

η1
ln 1

= − inf
ρ∈M+

1 (Rd)

{∫
Rd

T∑
t=1

(
yt −

[
u ·ϕ(xt)

]
Bt

)2
ρ(du) +

K(ρ, πτ )

ηT+1

}
, (3.16)

where the last equality follows from a convex duality argument for the Kullback-Leibler diver-
gence (cf., e.g., [Cat04, p. 159]) which we recall in Proposition A.1 in Appendix A.1.
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On the other hand, we can rewrite (lnWT+1)/ηT+1 − (lnW1)/η1 as a telescopic sum and get

lnWT+1

ηT+1
− lnW1

η1
=

T∑
t=1

(
lnWt+1

ηt+1
− lnWt

ηt

)
=

T∑
t=1

(
lnWt+1

ηt+1
−

lnW ′t+1

ηt︸ ︷︷ ︸
(1)

+
1

ηt
ln
W ′t+1

Wt︸ ︷︷ ︸
(2)

)
,

(3.17)
where W ′t+1 is obtained from Wt+1 by replacing ηt+1 with ηt; namely,

W ′t+1 ,
∫
Rd

exp

(
−ηt

t∑
s=1

(
ys −

[
u ·ϕ(xs)

]
Bs

)2
)
πτ (du) .

Let t ∈ {1, . . . , T}. The first term (1) is non-positive by Jensen’s inequality (note that x 7→
xηt+1/ηt is concave on R∗+ since ηt+1 6 ηt by construction). As for the second term (2), by
definition of W ′t+1,

1

ηt
ln
W ′t+1

Wt

=
1

ηt
ln

∫
Rd

exp

(
−ηt

(
yt −

[
u ·ϕ(xt)

]
Bt

)2
)

exp

(
−ηt

t−1∑
s=1

(
ys −

[
u ·ϕ(xs)

]
Bs

)2
)

Wt
πτ (du)

=
1

ηt
ln

∫
Rd

exp

(
−ηt

(
yt −

[
u ·ϕ(xt)

]
Bt

)2
)
pt(du) (3.18)

6

{
−(yt − ŷt)2 if Bt+1 = Bt;
−(yt − ŷt)2 + (2Bt+1)2 if Bt+1 > Bt;

(3.19)

where (3.18) follows by definition of pt. To get Inequality (3.19) when Bt+1 = Bt, or, equiva-
lently, |yt| 6 Bt, we used the fact that the square loss is 1/(8B2

t )-exp-concave on [−Bt, Bt] (as in
Lemma 3.1). Indeed, by definition of ηt , 1/(8B2

t ) and by Jensen’s inequality, we get∫
Rd
e
−ηt
(
yt−
[
u·ϕ(xt)

]
Bt

)2

pt(du) 6 exp

(
−ηt

(
yt −

∫
Rd

[
u ·ϕ(xt)

]
Bt
pt(du)

)2
)

= e−ηt(yt−ŷt)
2

,

where the last equality follows by definition of ŷt. Taking the logarithms of both sides of the last
inequality and dividing by ηt, we get (3.19) when Bt+1 = Bt.

As for the rounds t such that Bt+1 > Bt, the square loss x 7→ (yt−x)2 is no longer 1/(8B2
t )-exp-

concave on [−Bt, Bt]. In this case (3.19) follows from the cruder upper bound (1/ηt) ln(W ′t+1/Wt) 6
0 6 −(yt − ŷt)2 + (2Bt+1)2 (since |yt|, |ŷt| 6 Bt+1). Summing (3.19) over t = 1, . . . , T , Equa-
tion (3.17) yields

lnWT+1

ηT+1
− lnW1

η1
6 −

T∑
t=1

(yt − ŷt)2 + 4

T∑
t=1

t:Bt+1>Bt

B2
t+1 6 −

T∑
t=1

(yt − ŷt)2 + 8B2
T+1 , (3.20)

where, setting K , dlog2 max16t6T y
2
t e, we bounded the geometric sum

∑T
t:Bt+1>Bt

B2
t+1 from

above by
∑K

k=−∞ 2k = 2K+1 , 2B2
T+1 in the same way as in Theorem 6 of [CBMS07].
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Putting Equations (3.16) and (3.20) together, we get the PAC-Bayesian inequality

T∑
t=1

(yt − ŷt)2 6 inf
ρ∈M+

1 (Rd)

{∫
Rd

T∑
t=1

(
yt −

[
u ·ϕ(xt)

]
Bt

)2
ρ(du) +

K(ρ, πτ )

ηT+1

}
+ 8B2

T+1 ,

which yields (3.14) by definition of ηT+1 , 1/(8B2
T+1). The other PAC-Bayesian inequality

(3.15), which is stated for non-truncated base forecasts, follows from (3.14) by the fact that trun-
cation to Bt can only improve prediction if |yt| 6 Bt. The remaining t’s such that |yt| > Bt then
just account for an overall additional term at most equal to

∑T
t:Bt+1>Bt

(
2Bt+1

)2
6 8B2

T+1, which
concludes the proof.

Proof (of Proposition 3.2): The proof follows the exact same lines as in Proposition 3.1 except
that we apply Lemma 3.2 instead of Lemma 3.1. Indeed, using Lemma 3.2 and restricting the
infimum to the ρu∗,τ , u∗ ∈ Rd (cf. (3.43)), we get that

T∑
t=1

(yt − ŷt)2 6 inf
u∗∈Rd

{∫
Rd

T∑
t=1

(
yt − u ·ϕ(xt)

)2
ρu∗,τ (du) + 8B2

T+1K(ρu∗,τ , πτ )

}
+ 16B2

T+1

6 inf
u∗∈Rd

{
T∑
t=1

(
yt − u∗ ·ϕ(xt)

)2
+ 32B2

T+1 ‖u∗‖0 ln

(
1 +

‖u∗‖1
‖u∗‖0 τ

)}

+ τ2
d∑
j=1

T∑
t=1

ϕ2
j (xt) + 16B2

T+1 ,

where the last inequality follows from Lemmas 3.3 and 3.4.

3.3.3 A fully automatic algorithm

In the previous section, we proved that adaptation toBy was possible. If we also no longer assume
that a bound BΦ on the trace of the empirical Gram matrix is available to the forecaster, then we
can use a doubling trick on the nondecreasing quantity

γt , ln

1 +

√√√√ t∑
s=1

d∑
j=1

ϕ2
j (xs)


and repeatedly run the algorithm SeqSEW∗

τ of the previous section for rapidly-decreasing values
of τ . This yields a sparsity regret bound with extra logarithmic multiplicative factors as compared
to Proposition 3.2, but which holds for a fully automatic algorithm; see Theorem 3.1 below.

More formally, our algorithm SeqSEW∗
∗ is defined as follows. The set of all time rounds

t = 1, 2, . . . is partitioned into regimes r = 0, 1, . . . whose final time instances tr are data-driven.
Let t−1 , 0 by convention. We call regime r, r = 0, 1, . . ., the sequence of time rounds (tr−1 +

1, . . . , tr) where tr is the first date t > tr−1 + 1 such that γt > 2r. At the beginning of regime r,
we restart the algorithm SeqSEW∗

τ defined in Figure 3.3 with the parameter τ = τr, where τr is
the solution of the equation 2r = ln(1 + 1/τ), i.e., τr , 1/

(
exp(2r)− 1

)
.
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Theorem 3.1. Without requiring any preliminary knowledge at the beginning of the prediction
game, SeqSEW∗

∗ satisfies, for all T > 1 and all (x1, y1), . . . , (xT , yT ) ∈ X × R,

T∑
t=1

(yt − ŷt)2 6 inf
u∈Rd

{
T∑
t=1

(
yt − u ·ϕ(xt)

)2
+ 256

(
max

16t6T
y2
t

)
‖u‖0 ln

e+

√√√√ T∑
t=1

d∑
j=1

ϕ2
j (xt)


+ 64

(
max

16t6T
y2
t

)
AT ‖u‖0 ln

(
1 +
‖u‖1
‖u‖0

)}
+
(

1 + 38 max
16t6T

y2
t

)
AT ,

where AT , 2 + log2 ln
(
e+

√∑T
t=1

∑d
j=1 ϕ

2
j (xt)

)
.

On each regime r, the current instance of the algorithm SeqSEW∗
τr only uses the past obser-

vations ys, s ∈ {tr−1 + 1, . . . , t − 1}, to perform the online trunction and to tune the inverse
temperature parameter. Therefore, the algorithm SeqSEW∗

∗ is fully automatic.
Note however that two possible improvements could be addressed in the future. From a theo-

retical viewpoint, can we contruct a fully automatic algorithm with a bound similar to Theorem 3.1
but without the extra logarithmic factor AT ? From a practical viewpoint, is it possible to perform
the adaptation to BΦ without restarting the algorithm repeatedly (just like we did for By)? A
smoother time-varying tuning (τt)t>2 might enable to answer both questions. This would be very
probably at the price of a more involved analysis (e.g., if we adapt the PAC-Bayesian bound of
Lemma 3.2, then a third approximation term would appear in (3.17) since πτt changes over time).

Proof sketch (of Theorem 3.1): The proof relies on the application of Proposition 3.2 with τ =

τr on all regimes r visited up to time T . Summing the corresponding inequalities over r then
concludes the proof. See Appendix 3.A.2 for a detailed proof.

Theorem 3.1 yields the following corollary. It upper bounds the regret of the algorithm
SeqSEW∗

∗ uniformly over all u ∈ Rd such that ‖u‖0 6 s and ‖u‖1 6 U , where the sparsity
level s ∈ N and the `1-diameter U > 0 are both unknown to the forecaster. The proof is postponed
to Appendix 3.A.2.

Corollary 3.4. Fix s ∈ N and U > 0. Then, for all T > 1 and all (x1, y1), . . . , (xT , yT ) ∈ X ×R,
the regret of the algorithm SeqSEW∗

∗ on
{
u : ‖u‖0 6 s

}⋂{
u : ‖u‖1 6 U

}
is bounded by

T∑
t=1

(yt − ŷt)2 − inf
‖u‖06s
‖u‖16U

T∑
t=1

(
yt − u ·ϕ(xt)

)2

6 256
(

max
16t6T

y2
t

)
s ln

e+

√√√√ T∑
t=1

d∑
j=1

ϕ2
j (xt)

+ 64
(

max
16t6T

y2
t

)
AT s ln

(
1 +

U

s

)
+
(

1 + 38 max
16t6T

y2
t

)
AT ,

where AT , 2 + log2 ln
(
e+

√∑T
t=1

∑d
j=1 ϕ

2
j (xt)

)
.
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3.4 Adaptivity to the unknown variance in the stochastic setting

In this section, we apply the online algorithm SeqSEW∗
τ of Section 3.3.2 to two related stochastic

settings: the regression model with random design (Section 3.4.1) and the regression model with
fixed design (Section 3.4.2). The sparsity regret bounds proved for this algorithm on individual
sequences imply in both settings sparsity oracle inequalities with leading constant 1. These risk
bounds are of the same flavor as in [DT08, DT11] but they are adaptive (up to a logarithmic fac-
tor) to the unknown variance σ2 of the noise if the latter is Gaussian. In particular, we solve two
questions left open in [DT11] in the random design case.

In the sequel, just like in the online deterministic setting, we assume that the forecaster has
access to a dictionaryϕ = (ϕ1, . . . , ϕd) of measurable base regressors ϕj : X → R, j = 1, . . . , d.

3.4.1 Regression model with random design

In this section we apply the algorithm SeqSEW∗
τ to the regression model with random design.

In this batch setting the forecaster is given at the beginning of the game T independent random
copies (X1, Y1), . . . , (XT , YT ) of (X,Y ) ∈ X × R whose common distribution is unknown. We
assume thereafter that E[Y 2] <∞; the goal of the forecaster is to estimate the regression function
f : X → R defined by f(x) , E[Y |X = x] for all x ∈ X . Setting εt , Yt − f(Xt) for all
t = 1, . . . , T , note that

Yt = f(Xt) + εt , 1 6 t 6 T ,

and that the pairs (X1, ε1), . . . , (XT , εT ) are i.i.d. and such that E[ε2
1] < ∞ and E[ε1|X1] = 0

almost surely. In the sequel, we denote the distribution of X by PX and we set, for all measurable
functions h : X → R,

‖h‖L2 ,

(∫
X
h(x)2PX(dx)

)1/2

=
(
E
[
h(X)2

])1/2
.

Next we construct a regressor f̂T : X → R based on the sample (X1, Y1), . . . , (XT , YT ) that
satisfies a sparsity oracle inequality, i.e., its expected L2-risk E

[wwf − f̂Tww2

L2

]
is almost as small

as the smallest L2-risk ‖f − u ·ϕ‖2L2 , u ∈ Rd, up to some additive term proportional to ‖u‖0.

Algorithm and main result

Even if the whole sample (X1, Y1), . . . , (XT , YT ) is available at the beginning of the prediction
game, we treat it in a sequential fashion. We run the algorithm SeqSEW∗

τ of Section 3.3.2 from
time 1 to time T with τ = 1/

√
dT (note that T is known in this setting). Using the standard online

to batch conversion (cf. Section 2.5 in Chapter 2), we define our data-based regressor f̂T : X → R
as the uniform average

f̂T ,
1

T

T∑
t=1

f̃t (3.21)

of the regressors f̃t : X → R sequentially built by the algorithm SeqSEW∗
τ as

f̃t(x) ,
∫
Rd

[
u ·ϕ(x)

]
Bt
pt(du) . (3.22)
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Note that, contrary to much prior work from the statistics community such as [Cat04, BN08,
DT11], the regressors f̃t : X → R are tuned online. Therefore, f̂T does not depend on any prior
knowledge on the unknown distribution of the (Xt, Yt), 1 6 t 6 T , such as the unknown variance
E
[
(Y − f(X))2

]
of the noise, the ‖ϕj‖∞, or the ‖f − ϕj‖∞ (actually, the ϕj and the f − ϕj do

not even need to be bounded in `∞-norm).
In this respect, as explained in Section 2.5.2 (Chapter 2), this work improves on [BN08] who

tune their online forecasters as a function of max16j6d ‖ϕj‖∞. The major technique difference
is that we truncate the base forecasts u · ϕ(Xt) instead of truncating the observations Yt. In par-
ticular, this enables to aggregate the base regressorsu·ϕ for allu ∈ Rd, i.e., in the whole Rd space.

The next sparsity oracle inequality is the main result of this section. It follows from the de-
terministic regret bound of Corollory 3.3 and from Jensen’s inequality. Two corollaries are to be
derived later.

Theorem 3.2. Assume that (X1, Y1), . . . , (XT , YT ) ∈ X × R are independent random copies of
(X,Y ) ∈ X × R, where E[Y 2] < +∞ and ‖ϕj‖2L2 , E[ϕj(X)2] < +∞ for all j = 1, . . . , d.
Then, the data-based regressor f̂T defined in (3.21)-(3.22) satisfies

E
[wwwf − f̂Twww2

L2

]
6 inf
u∈Rd

{
‖f − u ·ϕ‖2L2 + 64

E
[
max16t6T Y

2
t

]
T

‖u‖0 ln

(
1 +

√
dT ‖u‖1
‖u‖0

)}

+
1

dT

d∑
j=1

‖ϕj‖2L2 + 32
E
[
max16t6T Y

2
t

]
T

.

Note that our risk bounds are stated in expectation (which already improves on existing results
in the stochastic setting, see the next section). However, by convexity (and closedness) of all sets
of the form

{
u · ϕ : J(u) ⊂ J0, ‖u‖1 6 U}, where U > 0 and J0 ⊂ {1, . . . , d}, and where

J(u) , {j : uj 6= 0}, it is possible to use [Zha05, Theorem 8] to transform our results into risk
bounds with high probability (at least when the output Y is bounded, but similar results should
hold true under reasonable assumptions on the output distribution).

Proof sketch (of Theorem 3.2): By Corollary 3.3 and by definition of f̃t above and ŷt , f̃t(Xt)

in Figure 3.3, we have, almost surely,

T∑
t=1

(Yt − f̃t(Xt))
2 6 inf

u∈Rd

{
T∑
t=1

(
Yt − u ·ϕ(Xt)

)2
+ 64

(
max

16t6T
Y 2
t

)
‖u‖0 ln

(
1 +

√
dT ‖u‖1
‖u‖0

)}

+
1

dT

d∑
j=1

T∑
t=1

ϕ2
j (Xt) + 32 max

16t6T
Y 2
t .

Taking the expectations of both sides and applying Jensen’s inequality yields the desired result.
For a detailed proof, see Appendix 3.A.3.

Theorem 3.2 above can be used under several assumptions on the distribution of the output Y .
In all cases, it suffices to upper bound the amplitude E

[
max16t6T Y

2
t

]
. We present below a general

corollary and explain later why our fully automatic procedure f̂T solves two questions left open
by [DT11] (see Corollary 3.6).
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A general corollary

Using Lemmas 3.5, 3.6, and 3.7 in Appendix 3.B to upper bound the two terms E
[
max16t6T Y

2
t

]
of Theorem 3.2, we get the following sparsity oracle inequality. The proof is postponed to Ap-
pendix 3.A.3.

Corollary 3.5. Assume that (X1, Y1), . . . , (XT , YT ) ∈ X × R are independent random copies of
(X,Y ) ∈ X × R, that sup16j6d ‖ϕj‖

2
L2 < +∞, that E|Y | < +∞, and that one of the following

assumptions holds on the distribution of ∆Y , Y − E[Y ].

•
(
BD(B)

)
: |∆Y | 6 B almost surely for a given constant B > 0;

•
(
SG(σ2)

)
: ∆Y is subgaussian with variance factor σ2 > 0, that is, E

[
eλ∆Y

]
6 eλ

2σ2/2

for all λ ∈ R;

•
(
BEM(α,M)

)
: ∆Y has a bounded exponential moment, that is, E

[
eα|∆Y |

]
6M for some

given constants α > 0 and M > 0;

•
(
BM(α,M)

)
: ∆Y has a bounded moment, that is, E

[
|∆Y |α

]
6 M for some given con-

stants α > 2 and M > 0.

Then, the data-based regressor f̂T defined above satisfies

E
[wwwf − f̂Twww2

L2

]
6 inf
u∈Rd

{
‖f − u ·ϕ‖2L2 + 128

(
E[Y ]2

T
+ ψT

)
‖u‖0 ln

(
1 +

√
dT ‖u‖1
‖u‖0

)}

+
1

dT

d∑
j=1

‖ϕj‖2L2 + 64

(
E[Y ]2

T
+ ψT

)
,

where

ψT ,
1

T
E
[

max
16t6T

(
Yt − E[Yt]

)2]
6



B2

T
under Assumption

(
BD(B)

)
,

2σ2 ln(2eT )

T
under Assumption

(
SG(σ2)

)
,

ln2
(
(M + e)T

)
α2 T

under Assumption
(
BEM(α,M)

)
,

M2/α

T (α−2)/α
under Assumption

(
BM(α,M)

)
.

Several comments can be made about Corollary 3.5. We first stress that, if T > 2, then the
two “bias” terms E[Y ]2/T above can be avoided, at least at the price of a multiplicative factor of
2T/(T − 1) 6 4. This can be achieved via a slightly more sophisticated online clipping — see
Remark 3.4 in Appendix 3.A.3.

Second, under the assumptions
(
BD(B)

)
,
(
SG(σ2)

)
, or

(
BEM(α,M)

)
, the key quantity ψT

is respectively of the order of 1/T , ln(T )/T and ln2(T )/T . Up to a logarithmic factor, this
corresponds to the classical fast rate of convergence 1/T obtained in the random design setting
for different aggregation problems (see, e.g., [Cat99, JRT08, Aud09] for model-selection-type
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aggregation and [DT11] for linear aggregation). However, the rate T−(α−2)/α we proved under
the bounded moment assumption

(
BM(α,M)

)
does not match the faster rate T−α/(α+2) obtained

in [JRT08, Aud09] under a similar assumption. In particular the bound of Corollary 3.5 goes to
M > 0 as α→ 2, while the optimal rate for α = 2 in similar situations is T−1/2 [Aud09].

The minor logarithmic difference under Assumptions
(
SG(σ2)

)
or
(
BEM(α,M)

)
and the

clear difference in the rates under Assumption
(
BM(α,M)

)
come from the fact that our on-

line algorithm SeqSEW∗
τ was primarily designed for bounded individual sequences with an un-

known bound. As remarked in Section 2.5.2 (Chapter 2), the finite i.i.d. sequence Y1, . . . , YT
is almost surely uniformly bounded by the random bound max16t6T |Yt|. Our individual se-
quence techniques adapt sequentially to this random bound, yielding a regret bound that scales
as max16t6T Y

2
t . As a result, the risk bounds obtained after the online to batch conversion scale

as E
[
max16t6T Y

2
t

]
/T . If the distribution of the output Y is bounded or lightly-tailed, then we

can (almost) recover for free the fast rate of convergence 1/T (the extra logarithmic factor com-
ing from the “slight” non-boundedness of Y ). But if the distribution of Y is heavy-tailed, then a
different tuning of ηt or a more sophisticated online truncation seem necessary. Doing so without
requiring any prior knowledge on the output distribution such as the quantities σ2, α, M ... — as
is the case for our fully automatic procedure f̂T — is a challenging task.

Third, several variations on the assumptions are possible. First note that several classical
assumptions on Y expressed in terms of f(X) and ε , Y − f(X) are either particular cases
of the above corollary or can be treated similarly. Indeed, each of the four assumptions above
on ∆Y , Y − E[Y ] = f(X) − E[f(X)] + ε is satisfied as soon as both the distribution of
f(X) − E[f(X)] and the conditional distribution of ε (conditionally on X) satisfy the same type
of assumption. For example, if f(X)−E[f(X)] is subgaussian with variance factor σ2

X and if ε is
subgaussian conditionally on X with a variance factor uniformly bounded by a constant σ2

ε , then
∆Y is subgaussian with variance factor σ2

X +σ2
ε (see also Remark 3.5 in Appendix 3.A.3 to avoid

conditioning).

The assumptions on f(X)−E[f(X)] and ε can also be mixed together. For instance, as explained
in Remark 3.5 in Appendix 3.A.3, under the classical assumptions

‖f‖∞ < +∞ and E
[
eα|ε|

∣∣∣ X] 6M a.s. (3.23)

or
‖f‖∞ < +∞ and E

[
eλε
∣∣∣ X] 6 eλ

2σ2/2 a.s., ∀λ ∈ R , (3.24)

the key quantity ψT in the corollary can be bounded from above by

ψT 6


8 ‖f‖2∞
T

+
2 ln2

(
(M + e)T

)
α2 T

under the set of assumptions (3.23),

8 ‖f‖2∞
T

+
4σ2 ln(2eT )

T
under the set of assumptions (3.24).

In particular, under the set of assumptions (3.24), our procedure f̂T solves two questions left
open in [DT11]. We discuss below our contributions in this particular case.
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Questions left open by Dalalyan and Tsybakov

In this subsection we focus on the case when the regression function f is bounded (by an unknown
constant) and when the noise ε , Y − f(X) is subgaussian conditionally on X in the sense that,
for some (unknown) constant σ2 > 0,

‖f‖∞ < +∞ and E
[
eλε
∣∣∣ X] 6 eλ

2σ2/2 a.s., ∀λ ∈ R . (3.25)

In this case, the two terms E
[
max16t6T Y

2
t

]
of Theorem 3.2 can be upper bounded in a simpler

and slightly tighter way as compared to the proof of Corollary 3.5 (we only use the inequality
(x+ y)2 6 2x2 + 2y2 once, instead of twice). It yields the following sparsity oracle inequality.

Corollary 3.6. Assume that (X1, Y1), . . . , (XT , YT ) ∈ X × R are independent random copies of
(X,Y ) ∈ X × R such that the set of assumptions (3.25) above holds true. Then, the data-based
regressor f̂T defined in (3.21)-(3.22) satisfies

E
[wwwf − f̂Twww2

L2

]
6 inf
u∈Rd

{
‖f − u ·ϕ‖2L2 + 128

(
‖f‖2∞ + 2σ2 ln(2eT )

) ‖u‖0
T

ln

(
1 +

√
dT ‖u‖1
‖u‖0

)}

+
1

dT

d∑
j=1

‖ϕj‖2L2 +
64

T

(
‖f‖2∞ + 2σ2 ln(2eT )

)
.

Proof: We apply Theorem 3.2 and bound E
[
max16t6T Y

2
t

]
from above. By the elementary in-

equality (x+ y)2 6 2x2 + 2y2 for all x, y ∈ R, we get

E
[

max
16t6T

Y 2
t

]
= E

[
max

16t6T

(
f(Xt) + εt

)2]
6 2

(
‖f‖2∞ + E

[
max

16t6T
ε2
t

])
6 2

(
‖f‖2∞ + 2σ2 ln(2eT )

)
,

where the last inequality follows from Lemma 3.5 in Appendix 3.B and from the fact that, for all
1 6 t 6 T and all λ ∈ R, we have E

[
eλεt

]
= E

[
eλε
]

= E
[
E
[
eλε
∣∣X]] 6 eλ

2σ2/2 by (3.25).
(Note that the assumption of conditional subgaussianity in (3.25) is stronger than what we need,
i.e., subgaussianity without conditioning.) This concludes the proof.

The above bound is of the same order (up to a lnT factor) as the sparsity oracle inequality
proved in Proposition 1 of [DT11]. For the sake of comparison we state below with our nota-
tions (e.g., β therein corresponds to 1/η in this chapter) a straightforward consequence of this
proposition, which follows by Jensen’s inequality and the particular7 choice τ = 1/

√
dT .

7Proposition 1 of [DT11] may seem more general than Theorem 3.2 at first sight since it holds for all τ > 0, but
this is actually also the case for Theorem 3.2. The proof of the latter would indeed have remained true had we replaced
τ = 1/

√
dT with any value of τ > 0. We however chose the reasonable value τ = 1/

√
dT to make our algorithm

parameter-free. As noted earlier, if ‖ϕ‖∞ , supx∈X max16j6d |ϕj(x)| is finite and known by the forecaster, another
simple and easy-to-analyse tuning is given by τ = 1/(‖ϕ‖∞

√
d T ).
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Proposition 3.3 (A consequence of Prop. 1 of [DT11]).
Assume that sup16j6d ‖ϕj‖∞ <∞ and that the set of assumptions (3.25) above hold true. Then,

for all R > 2
√
d/T and all η 6 η̄(R) ,

(
2σ2 + 2 sup‖u‖16R ‖u ·ϕ− f‖

2
∞
)−1, the mirror

averaging aggregate f̂T : X → R defined in [DT11, Equations (1) and (3)] satisfies

E
[wwwf − f̂Twww2

L2

]
6 inf
‖u‖16R−2

√
d/T

{
‖f − u ·ϕ‖2L2 +

4

η

‖u‖0
T + 1

ln

(
1 +

√
dT ‖u‖1
‖u‖0

)}

+
4

dT

d∑
j=1

‖ϕj‖2L2 +
1

(T + 1)η
.

We can now discuss the two questions left open by [DT11]. Despite the similarity of the two
bounds, the sparsity oracle inequality stated in Proposition 3.3 above only holds for vectors u
within an `1-ball of finite radius R − 2

√
d/T , while our bound holds over the whole Rd space.

Moreover, the parameter R above has to be chosen in advance, but it cannot be chosen too large
since 1/η > 1/η̄(R), which grows as R2 when R → +∞ (if ϕ 6= 0). The authors asked
in [DT11, Section 4.2] whether it was possible to get a bound with 1/η < +∞ such that the
infimum in Proposition 3.3 extends to the whole Rd space. Our results show that, thanks to data-
driven truncation, the answer is positive.

Note that it is still possible to transform the bound of Proposition 3.3 into a bound over the
whole Rd space if the parameter R is chosen (illegally) as R = ‖u∗‖1 + 2

√
d/T (or as a tight

upper bound of the last quantity), where u∗ ∈ Rd minimizes over Rd the regularized risk

‖f − u ·ϕ‖2L2 +
4

η̄(‖u‖1 + 2
√
d/T )

‖u‖0
T + 1

ln

(
1 +

√
dT ‖u‖1
‖u‖0

)

+
4

dT

d∑
j=1

‖ϕj‖2L2 +
1

(T + 1)η̄(‖u‖1 + 2
√
d/T )

.

For instance, choosing R = ‖u∗‖1 + 2
√
d/T and η = η̄(R), we get from Proposition 3.3 that

the expected L2-risk E
[
‖f − f̂T ‖2L2

]
of the corresponding procedure is upper bounded by the in-

fimum of the above regularized risk over all u ∈ Rd. However, this parameter tuning is illegal
since ‖u∗‖1 is not known in practice. On the contrary, thanks to data-driven truncation, the prior
knowledge of ‖u∗‖1 is not required by our procedure.

The second open question, which was raised in [DT11, Section 5.1, Remark 6], deals with
the prior knowledge of the variance factor σ2 of the noise. The latter is indeed required by their
algorithm for the choice of the inverse temperature parameter η. The authors thus asked whether
adaptivity to σ2 was possible. Corollary 3.6 above provides a positive answer (up to a lnT factor).

3.4.2 Regression model with fixed design

In this section, we consider the regression model with fixed design. In this batch setting the
forecaster is given at the beginning of the game a T -sample (x1, Y1), . . . , (xT , YT ) ∈ X × R,
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where the xt are deterministic elements in X and where

Yt = f(xt) + εt , 1 6 t 6 T, (3.26)

for some i.i.d. sequence ε1, . . . , εT ∈ R (with unknown distribution) and some unknown function
f : X → R.

In this setting, just like in Section 3.4.1, our algorithm and the corresponding analysis are
a straightforward consequence of the general results on individual sequences developed in Sec-
tion 3.3. As in the random design setting, the sample (x1, Y1), . . . , (xT , YT ) is treated in a sequen-
tial fashion. We run the algorithm SeqSEW∗

τ defined in Figure 3.3 from time 1 to time T with the
particular choice of τ = 1/

√
dT . We then define our data-based regressor f̂T : X → R by

f̂T (x) ,


1

nx

∑
16t6T
t:xt=x

f̃t(x) if x ∈ {x1, . . . , xT } ,

0 if x /∈ {x1, . . . , xT } ,

(3.27)

where nx ,
∣∣{t : xt = x

}∣∣ =
∑T

t=1 I{xt=x}, and where the regressors f̃t : X → R sequentially
built by the algorithm SeqSEW∗

τ are defined by

f̃t(x) ,
∫
Rd

[
u ·ϕ(x)

]
Bt
pt(du) . (3.28)

In the particular case when the xt are all distinct, f̂T is simply defined by f̂T (x) , f̃T (x) if
x ∈ {x1, . . . , xT } and by f̂T (x) = 0 otherwise.

The next theorem is the main result of this subsection. It follows as in the random design
setting from the deterministic regret bound of Corollory 3.3 and from Jensen’s inequality. The
proof is postponed to Appendix 3.A.4.

Theorem 3.3. Consider the regression model with fixed design described in (3.26). Then, the
data-based regressor f̂T defined in (3.27)–(3.28) satisfies

E

[
1

T

T∑
t=1

(
f(xt)− f̂T (xt)

)2]
6 inf
u∈Rd

{
1

T

T∑
t=1

(
f(xt)− u ·ϕ(xt)

)2
+ 64

E
[
max16t6T Y

2
t

]
T

‖u‖0 ln

(
1 +

√
dT ‖u‖1
‖u‖0

)}

+
1

dT 2

d∑
j=1

T∑
t=1

ϕ2
j (xt) + 32

E
[
max16t6T Y

2
t

]
T

.

As in Section 3.4.1, the amplitude E
[
max16t6T Y

2
t

]
can be upper bounded under various

assumptions. The proof of the following corollary is postponed to Appendix 3.A.4.
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Corollary 3.7. Consider the regression model with fixed design described in (3.26). Assume that
one of the following assumptions holds on the distribution of ε1.

•
(
BD(B)

)
: |ε1| 6 B almost surely for a given constant B > 0;

•
(
SG(σ2)

)
: ε1 is subgaussian with variance factor σ2 > 0, that is, E

[
eλε1

]
6 eλ

2σ2/2 for
all λ ∈ R;

•
(
BEM(α,M)

)
: ε has a bounded exponential moment, that is, E

[
eα|ε|

]
6M for some given

constants α > 0 and M > 0;

•
(
BM(α,M)

)
: ε has a bounded moment, that is, E

[
|ε|α
]
6 M for some given constants

α > 2 and M > 0.

Then, the data-based regressor f̂T defined in (3.27)–(3.28) satisfies

E

[
1

T

T∑
t=1

(
f(xt)− f̂T (xt)

)2]
6 inf
u∈Rd

{
1

T

T∑
t=1

(
f(xt)− u ·ϕ(xt)

)2
+ 128

(
max16t6T f

2(xt)

T
+ ψT

)
‖u‖0 ln

(
1 +

√
dT ‖u‖1
‖u‖0

)}

+
1

dT 2

d∑
j=1

T∑
t=1

ϕ2
j (xt) + 64

(
max16t6T f

2(xt)

T
+ ψT

)
,

where

ψT ,
1

T
E
[

max
16t6T

ε2
t

]
6



B2

T
if Assumption

(
BD(B)

)
holds,

2σ2 ln(2eT )

T
if Assumption

(
SG(σ2)

)
holds,

ln2 ((M + e)T )

α2 T
if Assumption

(
BEM(α,M)

)
holds,

M2/α

T (α−2)/α
if Assumption

(
BM(α,M)

)
holds.

The above bound is of the same flavor as that of [DT08, Theorem 5]. It has one advantage and
one drawback. On the one hand, we note two additional “bias” terms

(
max16t6T f

2(xt)
)
/T as

compared to the bound of [DT08, Theorem 5]. As of now, we have not been able to remove them
using ideas similar to what we did in the random design case (see Remark 3.4 in Appendix 3.A.3).
On the other hand, under Assumption

(
SG(σ2)

)
, contrary to [DT08], our algorithm does not

require the prior knowledge of the variance factor σ2 of the noise.

3.A Proofs

3.A.1 Another proof of Lemma 3.1 (Section 3.3.1)

In Section 3.3.1 we already provided a short proof of Lemma 3.1 via the use of [Aud09, Theo-
rem 4.6]. Below is an alternative self-contained proof of Inequality (3.5) that we only provide for
the convenience of the reader.
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Proof (of Inequality (3.5) of Lemma 3.1): As is usually done in the online learning setting
for the study of the exponentially weighted average forecaster, this proof relies on the control of∑

t η
−1 ln(Wt+1/Wt) where we recall that W1 , 1 and, for all t > 2,

Wt ,
∫
Rd

exp

(
−η

t−1∑
s=1

(
ys −

[
u ·ϕ(xs)

]
B

)2
)
πτ (du) .

On the one hand, we have

1

η
ln
WT+1

W1
=

1

η
ln

∫
Rd

exp

(
−η

T∑
t=1

(
ys −

[
u ·ϕ(xs)

]
B

)2
)
πτ (du) − 1

η
ln 1

= − inf
ρ∈M+

1 (Rd)

{∫
Rd

T∑
t=1

(
yt −

[
u ·ϕ(xt)

]
B

)2
ρ(du) +

K(ρ, πτ )

η

}
, (3.29)

where the last equality follows from a convex duality argument for the Kullback-Leibler diver-
gence (cf., e.g., [Cat04, p. 159]) which we recall in Proposition A.1 in Appendix A.1.

On the other hand, we rewrite η−1 ln(WT+1/W1) =
∑T

t=1 η
−1 ln(Wt+1/Wt) as a telescopic sum

and note that, for all t = 1 . . . , T ,

1

η
ln
Wt+1

Wt

=
1

η
ln

∫
Rd

exp

(
−η
(
yt −

[
u ·ϕ(xt)

]
B

)2
)

exp

(
−η

t−1∑
s=1

(
ys −

[
u ·ϕ(xs)

]
B

)2
)

Wt
πτ (du)

=
1

η
ln

∫
Rd

exp

(
−η
(
yt −

[
u ·ϕ(xt)

]
B

)2
)
pt(du) , (3.30)

where (3.30) follows from the definition of pt.

Let t ∈ {1, . . . , T}. First note that by assumption yt ∈ [−By, By] ⊂ [−B,B] so that both yt and[
u·ϕ(xt)

]
B

are [−B,B]-valued for allu ∈ Rd. Moreover, from Proposition A.2 in Appendix A.2,
the square loss is 1/(8B2)-exp-concave on [−B,B] and thus η-exp-concave (since η 6 1/(8B2)

by assumption). Therefore, by Jensen’s inequality,∫
Rd
e
−η
(
yt−
[
u·ϕ(xt)

]
B

)2

pt(du) 6 exp

(
−η
(
yt −

∫
Rd

[
u ·ϕ(xt)

]
B
pt(du)

)2
)
.

Taking the logarithms of both sides of the inequality yields

ln

∫
Rd
e
−η
(
yt−
[
u·ϕ(xt)

]
B

)2

pt(du) 6 −η
(
yt −

∫
Rd

[
u ·ϕ(xt)

]
B
pt(du)

)2

= −η(yt − ŷt)2 . (3.31)

Dividing the latter inequality by η, summing over t ∈ {1, . . . , T} and combining with Equa-
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tion (3.30), we get
1

η
ln
WT+1

W1
6 −

T∑
t=1

(yt − ŷt)2 .

We conclude the proof of (3.5) of Lemma 3.1 by combining the last inequality with (3.29).

3.A.2 Proofs of Theorem 3.1 and Corollary 3.4

Before proving Theorem 3.1, we first need the following comment. Since the algorithm SeqSEW∗
τ

is restarted at the beginning of each regime, the threshold values Bt used on regime r by the
algorithm SeqSEW∗

τ are not computed on the basis of all past observations y1, . . . , yt−1 but only
on the basis of the past observations yt, t ∈ {tr−1 + 1, . . . , t− 1}. To avoid any ambiguity, we set

Br,t ,
(

2dlog2 maxtr−1+16s6t−1 y
2
se
)1/2

, t ∈ {tr−1 + 1, . . . , tr} . (3.32)

Proof (of Theorem 3.1): We denote by R , min{r ∈ N : T 6 tr} the index of the last regime.
For notational convenience, we re-define tR , T (even if γT 6 2R).

We upper bound the regret of the algorithm SeqSEW∗
∗ on {1, . . . , T} by the sum of its regrets

on each time interval. To do so, first note that

T∑
t=1

(yt − ŷt)2 =
R∑
r=0

tr∑
t=tr−1+1

(yt − ŷt)2 =
R∑
r=0

(ytr − ŷtr)2 +

tr−1∑
t=tr−1+1

(yt − ŷt)2


6

R∑
r=0

2(y2
tr +B2

r,tr) +

tr−1∑
t=tr−1+1

(yt − ŷt)2

 (3.33)

6
R∑
r=0

 tr−1∑
t=tr−1+1

(yt − ŷt)2

+ 6(R+ 1)y∗T
2 , (3.34)

where we set y∗T , max16t6T |yt|, where (3.33) follows from the upper bound (ytr − ŷtr)2 6
2(y2

tr + ŷ2
tr) 6 2(y2

tr +B2
r,tr) (since |ŷtr | 6 Br,tr by construction), and where (3.34) follows from

the inequality y2
tr 6 y∗T

2 and the fact that

B2
r,tr , 2dlog2 maxtr−1+16t6tr−1 y

2
t e 6 2 max

tr−1+16t6tr−1
y2
t 6 2 y∗T

2 .

But, for every r = 0, . . . , R, the trace of the empirical Gram matrix on {tr−1 + 1, . . . , tr − 1} is
upper bounded by

tr−1∑
t=tr−1+1

d∑
j=1

ϕ2
j (xt) 6

tr−1∑
t=1

d∑
j=1

ϕ2
j (xt) 6 (e2r − 1)2 ,

where the last inequality follows from the fact that γtr−1 6 2r (by definition of tr). Since in
addition τr , 1/

√
(e2r − 1)2, we can apply Corollory 3.2 on each period {tr−1 + 1, . . . , tr − 1},
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r = 0, . . . , R, with BΦ = (e2r − 1)2 and get from (3.34) the upper bound

T∑
t=1

(yt − ŷt)2 6
R∑
r=0

inf
u∈Rd


tr−1∑

t=tr−1+1

(
yt − u ·ϕ(xt)

)2
+ ∆r(u)

 + 6(R+ 1)y∗T
2 , (3.35)

where

∆r(u) , 32B2
tr ‖u‖0 ln

(
1 +

(
e2r − 1

)
‖u‖1

‖u‖0

)
+ 16B2

r,tr + 1 . (3.36)

Since the infimum is superadditive and since
(
ytr −u ·ϕ(xtr)

)2
> 0 for all r = 0, . . . , R, we get

from (3.35) that

T∑
t=1

(yt − ŷt)2 6 inf
u∈Rd

R∑
r=0

 tr∑
t=tr−1+1

(
yt − u ·ϕ(xt)

)2
+ ∆r(u)

 + 6(R+ 1)y∗T
2

= inf
u∈Rd

{
T∑
t=1

(
yt − u ·ϕ(xt)

)2
+

R∑
r=0

∆r(u)

}
+ 6(R+ 1)y∗T

2 . (3.37)

Let u ∈ Rd. Next we bound
∑R

r=0 ∆r(u) and 6(R+1)y∗T
2 from above. First note that, by the

upper bound B2
r,tr 6 2y∗T

2 and by the elementary inequality ln(1 + xy) 6 ln ((1 + x)(1 + y)) =

ln(1 + x) + ln(1 + y) with x = e2r − 1 and y = ‖u‖1 / ‖u‖0, (3.36) yields

∆r(u) 6 64 y∗T
2 ‖u‖0 2r + 64 y∗T

2 ‖u‖0 ln

(
1 +
‖u‖1
‖u‖0

)
+ 32y∗T

2 + 1 .

Summing over r = 0, . . . , R, we get

R∑
r=0

∆r(u) 6 64
(
2R+1 − 1

)
y∗T

2 ‖u‖0+(R+1)

(
64 y∗T

2 ‖u‖0 ln

(
1 +
‖u‖1
‖u‖0

)
+ 32y∗T

2 + 1

)
.

(3.38)

First case: R = 0

Substituting (3.38) in (3.37), we conclude the proof by noting that AT > 2 + log2 1 > 1 and that

ln
(
e+

√∑T
t=1

∑d
j=1 ϕ

2
j (xt)

)
> 1.

Second case: R > 1

Since R > 1, we have, by definition of tR−1,

2R−1 < γtR−1 , ln

1 +

√√√√tR−1∑
t=1

d∑
j=1

ϕ2
j (xt)

 6 ln

e+

√√√√ T∑
t=1

d∑
j=1

ϕ2
j (xt)

 .

The last inequality entails that 2R+1 − 1 6 4 · 2R−1 6 4 ln
(
e+

√∑T
t=1

∑d
j=1 ϕ

2
j (xt)

)
and that
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R+1 6 2+log2 ln
(
e+

√∑T
t=1

∑d
j=1 ϕ

2
j (xt)

)
, AT . Therefore, one the one hand, via (3.38),

R∑
r=0

∆r(u) 6 256 y∗T
2 ‖u‖0 ln

e+

√√√√ T∑
t=1

d∑
j=1

ϕ2
j (xt)

+ 64 y∗T
2AT ‖u‖0 ln

(
1 +
‖u‖1
‖u‖0

)
+AT

(
32y∗T

2 + 1
)
,

and, on the other hand,
6(R+ 1)y∗T

2 6 6AT y
∗
T

2 .

Substituting the last two inequalities in (3.37) and noting that y∗T
2 = max16t6T y

2
t concludes the

proof.

Proof (of Corollary 3.4): The proof is straightforward. In view of Theorem 3.1, we just need to
check that the quantity (continuously extended in s = 0)

256
(

max
16t6T

y2
t

)
s ln

e+

√√√√ T∑
t=1

d∑
j=1

ϕ2
j (xt)

+ 64
(

max
16t6T

y2
t

)
AT s ln

(
1 +

U

s

)

is non-decreasing in s ∈ R+ and in U ∈ R+.

This is clear for U . The fact that it also non-decreasing in s comes from the following remark. For
all U > 0, the function s ∈ (0,+∞) 7→ s ln(1 + U/s) has a derivative equal to

ln

(
1 +

U

s

)
− U/s

1 + U/s
for all s > 0 .

From the elementary inequality

ln(1 + u) = − ln

(
1

1 + u

)
> −

(
1

1 + u
− 1

)
=

u

1 + u
,

which holds for all u ∈ (−1,+∞), the above derivative is nonnegative for all s > 0 so that the
continuous extension s ∈ R+ 7→ s ln (1 + U/s) is non-decreasing.

3.A.3 Proofs of Theorem 3.2 and Corollary 3.5

In this subsection, we set ε , Y − f(X), so that the pairs (X1, ε1), . . . , (XT , εT ) are independent
copies of (X, ε) ∈ X × R. We also define σ > 0 by

σ2 , E
[
ε2
]

= E
[
(Y − f(X))2

]
.

Proof (of Theorem 3.2): By Corollory 3.3 and the definitions of f̃t above and ŷt , f̃t(Xt) in
Figure 3.3, we have, almost surely,

T∑
t=1

(Yt − f̃t(Xt))
2 6 inf

u∈Rd

{
T∑
t=1

(
Yt − u ·ϕ(Xt)

)2
+ 64

(
max

16t6T
Y 2
t

)
‖u‖0 ln

(
1+

√
dT ‖u‖1
‖u‖0

)}
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+
1

dT

d∑
j=1

T∑
t=1

ϕ2
j (Xt) + 32 max

16t6T
Y 2
t .

It remains to take the expectations of both sides with respect to
(
(X1, Y1), . . . , (XT , YT )

)
. First

note that for all t = 1, . . . , T , since εt , Yt − f(Xt), we have

E
[(
Yt − f̃t(Xt)

)2]
= E

[(
εt + f(Xt)− f̃t(Xt)

)2]
= σ2 + E

[(
f(Xt)− f̃t(Xt)

)2]
,

since E
[
ε2
t

]
= E

[
ε2
]
, σ2 one the one hand, and, on the other hand, f̃t is a measurable function

of (Xs, Ys)16s6t−1 and E
[
εt
∣∣(Xs, Ys)16s6t−1, Xt

]
= E

[
εt
∣∣Xt

]
= 0 (from the independence of

(Xs, Ys)16s6t−1 and (Xt, Yt) and by definition of f ).

In the same way,

E
[(
Yt − u ·ϕ(Xt)

)2]
= σ2 + E

[(
f(Xt)− u ·ϕ(Xt)

)2]
.

Therefore, by Jensen’s inequality and the concavity of the infimum, the last inequality becomes,
after taking the expectations of both sides,

Tσ2 +

T∑
t=1

E
[(
f(Xt)− f̃t(Xt)

)2]
6 inf
u∈Rd

{
Tσ2 +

T∑
t=1

E
[(
f(Xt)− u ·ϕ(Xt)

)2]
+ 64E

[
max

16t6T
Y 2
t

]
‖u‖0 ln

(
1 +

√
dT ‖u‖1
‖u‖0

)}

+
1

dT

d∑
j=1

T∑
t=1

E
[
ϕ2
j (Xt)

]
+ 32E

[
max

16t6T
Y 2
t

]
.

Noting that the Tσ2 cancel out, dividing the two sides by T , and using the fact that Xt ∼ X in the
right-hand side, we get

1

T

T∑
t=1

E
[(
f(Xt)− f̃t(Xt)

)2]
6 inf
u∈Rd

{
‖f − u ·ϕ‖2L2

+ 64
E
[
max16t6T Y

2
t

]
T

‖u‖0 ln

(
1 +

√
dT ‖u‖1
‖u‖0

)}

+
1

dT

d∑
j=1

‖ϕj‖2L2 + 32
E
[
max16t6T Y

2
t

]
T

.

The right-hand side of the last inequality is exactly the upper bound stated in Theorem 3.2. To
conclude the proof, we thus only need to check that ‖f − f̂T ‖2L2 is bounded from above by the
left-hand side. But by definition of f̂T and by convexity of the square loss we have

E
[wwwf − f̂Twww2

L2

]
, E

[(
f(X)− 1

T

T∑
t=1

f̃t(X)

)2
]
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6
1

T

T∑
t=1

E
[(
f(X)− f̃t(X)

)2]
=

1

T

T∑
t=1

E
[(
f(Xt)− f̃t(Xt)

)2]
.

The last equality follows classically from the fact that, for all t = 1, . . . , T , (Xs, Ys)16s6t−1 (on
which f̃t is constructed) is independent from both Xt and X and the fact that Xt ∼ X .

Remark 3.3. The fact that the inequality stated in Corollary 3.3 has a leading constant equal to 1

on individual sequences is crucial to derive in the stochastic setting an oracle inequality in terms
of the (excess) risks E

[
‖f − f̂T ‖2L2

]
and ‖f − u ·ϕ‖2L2 . Indeed, if the constant appearing in front

of the infimum was equal to C > 1, then the Tσ2 would not cancel out in the previous proof, so
that the resulting expected inequality would contain a non-vanishing additive term (C − 1)σ2.

Proof (of Corollary 3.5): We can apply Theorem 3.2. Then, to prove the upper bound on
E
[
‖f − f̂T ‖2L2

]
, it suffices to show that

E
[
max16t6T Y

2
t

]
T

6 2

(
E[Y ]2

T
+ ψT

)
. (3.39)

Recall that

ψT ,
1

T
E
[

max
16t6T

(
Yt − E[Yt]

)2
]

=
1

T
E
[

max
16t6T

(∆Y )2
t

]
,

where we defined (∆Y )t , Yt − E[Yt] = Yt − E[Y ] for all t = 1, . . . , T .

From the elementary inequality (x+ y)2 6 2x2 + 2y2 for all x, y ∈ R, we have

E
[

max
16t6T

Y 2
t

]
, E

[
max

16t6T

(
E[Y ] + (∆Y )t

)2]
6 2E[Y ]2 + 2E

[
max

16t6T
(∆Y )2

t

]
. (3.40)

Dividing both sides by T , we get (3.39).

As for the upper bound on ψT , since the (∆Y )t, 1 6 t 6 T , are distributed as ∆Y , we can apply
Lemmas 3.5, 3.6, and 3.7 in Appendix 3.B.2 to bound ψT from above under the assumptions(
SG(σ2)

)
,
(
BEM(α,M)

)
, and

(
BM(α,M)

)
respectively (the upper bound under

(
BD(B)

)
is

straightforward):

E
[

max
16t6T

(∆Y )2
t

]
6



B2 if Assumption
(
BD(B)

)
holds,

σ2 + 2σ2 ln(2eT ) if Assumption
(
SG(σ2)

)
holds,

ln2
(
(M + e)T

)
α2

if Assumption
(
BEM(α,M)

)
holds,

(MT )2/α if Assumption
(
BM(α,M)

)
holds .

Remark 3.4. If T > 2,then the two “bias” terms E[Y ]2/T appearing in Corollary 3.5 can be
avoided, at least at the price of a multiplicative factor of 2T/(T − 1) 6 4. It suffices to use a
slightly more sophisticated online clipping defined as follows. The first round t = 1 is only used
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to observe Y1. Then, the algorithm SeqSEW∗
τ is run with τ = 1/

√
d(T − 1) from round 2 up

to round T with the following important modification: instead of truncating the predictions to
[−Bt, Bt], which is best suited to the case E[Y ] = 0, we truncate them to the interval

[
Y1 −B′t, Y1 +B′t

]
, where B′t ,

(
2dlog2 max26s6t−1 |Ys−Y1|2e

)1/2
.

If ηt is changed accordingly, i.e., if ηt = 1/(8B′t
2), then it easy to see that the resulting procedure

f̂T , 1
T−1

∑T
s=2 f̃s (where f̃2, . . . , f̃T are the regressors output by SeqSEW∗

τ ) satisfies

E
[wwwf − f̂Twww2

L2

]
6 inf
u∈Rd

{
‖f − u ·ϕ‖2L2 + 128

(
Var[Y ]

T − 1
+ ψT−1

)
‖u‖0 ln

(
1 +

√
dT ‖u‖1
‖u‖0

)}

+
1

dT

d∑
j=1

‖ϕj‖2L2 + 64

(
Var[Y ]

T − 1
+ ψT−1

)
,

where Var[Y ] , E
[
(Y − E[Y ])2

]
. Comparing the last bound to that of Corollary 3.5, we note

that the two terms E[Y ]2/T are absent, and that we loose a multiplicative factor at most of 4 since
Var[Y ] 6 E

[
max26t6T (Yt − E[Yt])

2
]
, (T − 1)ψT−1 so that

Var[Y ]

T − 1
+ ψT−1 6 2ψT−1 6 2

(
T

T − 1

)
ψT 6 4ψT .

Remark 3.5. We mentioned after Corollary 3.5 that each of the four assumptions on ∆Y is ful-
filled as soon as both the distribution of f(X) − E[f(X)] and the conditional distribution of ε
(conditionally on X) satisfy the same type of assumption. It actually extends to the more general
case when the conditional distribution of ε given X is replaced with the distribution of ε itself
(without conditioning). This relies on the elementary upper bound

E
[

max
16t6T

(∆Y )2
t

]
= E

[
max

16t6T

(
f(Xt)− E[f(X)] + εt

)2]
6 2E

[
max

16t6T

(
f(Xt)− E[f(X)]

)2]
+ 2E

[
max

16t6T
ε2
t

]
.

From the last inequality, we can also see that assumptions of different nature can be made on
f(X)− E[f(X)] and ε, such as the assumptions given in (3.23) or in (3.24).

3.A.4 Proofs of Theorem 3.3 and Corollary 3.7

Proof (of Theorem 3.3): The proof follows the sames lines as in the proof of Theorem 3.2. We
thus only sketch the main arguments. In the sequel, we set σ2 , E

[
ε2

1].

Applying Corollory 3.3 we have, almost surely,

T∑
t=1

(
Yt − f̃t(xt)

)2
6 inf
u∈Rd

{
T∑
t=1

(
Yt − u ·ϕ(xt)

)2
+ 64

(
max

16t6T
Y 2
t

)
‖u‖0 ln

(
1 +

√
dT ‖u‖1
‖u‖0

)}
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+
1

dT

d∑
j=1

T∑
t=1

ϕ2
j (xt) + 32 max

16t6T
Y 2
t .

Taking the expectations of both sides, expanding the squares
(
Yt− f̃t(xt)

)2 and
(
Yt−u ·ϕ(xt)

)2,
noting that two terms Tσ2 cancel out, and then dividing both sides by T , we get

E

[
1

T

T∑
t=1

(
f(xt)− f̃t(xt)

)2]
6 inf
u∈Rd

{
1

T

T∑
t=1

(
f(xt)− u ·ϕ(xt)

)2
+ 64

E
[
max16t6T Y

2
t

]
T

‖u‖0 ln

(
1 +

√
dT ‖u‖1
‖u‖0

)}

+
1

dT 2

d∑
j=1

T∑
t=1

ϕ2
j (xt) + 32

E
[
max16t6T Y

2
t

]
T

.

The right-hand side is exactly the upper bound stated in Theorem 3.3. We thus only need to check
that

E

[
1

T

T∑
t=1

(
f(xt)− f̂T (xt)

)2]
6 E

[
1

T

T∑
t=1

(
f(xt)− f̃t(xt)

)2]
. (3.42)

This is an equality if the xt are all distinct. In general we get an inequality which follows from the
convexity of the square loss. Indeed, by definition of nx, we have, almost surely,

T∑
t=1

(
f(xt)− f̂T (xt)

)2
=

∑
x∈{x1,...,xT }

∑
16t6T
t:xt=x

(
f(xt)− f̂T (xt)

)2
=

∑
x∈{x1,...,xT }

nx
(
f(x)− f̂T (x)

)2

=
∑

x∈{x1,...,xT }

nx

(
f(x)− 1

nx

∑
16t6T
t:xt=x

f̃t(x)

)2

6
∑

x∈{x1,...,xT }

nx
1

nx

∑
16t6T
t:xt=x

(
f(x)− f̃t(x)

)2
=

T∑
t=1

(
f(xt)− f̃t(xt)

)2
,

where the second line is by definition of f̂T and where the last line follows from Jensen’s inequal-
ity. Dividing both sides by T and taking their expectations, we get (3.42), which concludes the
proof.

Proof (of Corollary 3.7): First note that

E
[

max
16t6T

Y 2
t

]
, E

[
max

16t6T

(
f(xt) + εt

)2]
6 2

(
max

16t6T
f2(xt) + E

[
max

16t6T
ε2
t

])
.

The proof then follows the exact same lines as for Corollary 3.5 with the sequence (εt) instead of
the sequence

(
(∆Y )t

)
.



124 CHAPTER 3. SPARSITY REGRET BOUNDS FOR INDIVIDUAL SEQUENCES IN ONLINE LINEAR REGRESSION

3.B Tools

3.B.1 Some tools to exploit our PAC-Bayesian inequalities

In this section, we recall two results needed for the derivation of Proposition 3.1 and Proposi-
tion 3.2 from the PAC-Bayesian inequalities (3.6) and (3.15). The proofs are due to [DT07, DT08]
and we only reproduce8 them for the convenience of the reader.

For any u∗ ∈ Rd and τ > 0, define ρu∗,τ as the translated of πτ at u∗, namely,

ρu∗,τ ,
dπτ
du

(u− u∗) du =

d∏
j=1

(3/τ) duj
2
(
1 + |uj − u∗j |/τ

)4 . (3.43)

Lemma 3.3. For all u∗ ∈ Rd and τ > 0, the probability distribution ρu∗,τ satisfies

∫
Rd

T∑
t=1

(
yt − u ·ϕ(xt)

)2
ρu∗,τ (du) =

T∑
t=1

(
yt − u∗ ·ϕ(xt)

)2
+ τ2

d∑
j=1

T∑
t=1

ϕ2
j (xt) .

Lemma 3.4. For all u∗ ∈ Rd and τ > 0, the probability distribution ρu∗,τ satisfies

K(ρu∗,τ , πτ ) 6 4 ‖u∗‖0 ln

(
1 +

‖u∗‖1
‖u∗‖0 τ

)
.

Proof (of Lemma 3.3): For all t ∈ {1, . . . , T} we expand the square
(
yt − u · ϕ(xt)

)2
=(

yt − u∗ ·ϕ(xt) + (u∗ − u) ·ϕ(xt)
)2 and use the linearity of the integral to get

∫
Rd

T∑
t=1

(
yt − u ·ϕ(xt)

)2
ρu∗,τ (du) (3.44)

=
T∑
t=1

(
yt − u∗ ·ϕ(xt)

)2
+

T∑
t=1

∫
Rd

(
(u∗ − u) ·ϕ(xt)

)2
ρu∗,τ (du)

+
T∑
t=1

2
(
yt − u∗ ·ϕ(xt)

) ∫
Rd

(u∗ − u) ·ϕ(xt) ρu∗,τ (du)︸ ︷︷ ︸
=0

The last sum equals zero by symmetry of ρu∗,τ aroundu∗, which entails that
∫
R
u ρu∗,τ (du) = u∗.

As for the second sum of the right-hand side, it can be bounded from above similarly. Indeed, ex-

8The notations are however slightly modified because of the change in the statistical setting and goal. The tar-
get predictions (f(x1), . . . , f(xT )) are indeed replaced with the observations (y1, . . . , yT ) and the prediction loss
‖ f− fu‖2n is replaced with the cumulative loss

∑T
t=1

(
yt−u ·ϕ(xt)

)2. Moreover, the analysis of the present proof is
slightly simpler since we just need to consider the case L0 = +∞ according to the notations of Theorem 5 in [DT08].
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panding the inner product and then the square
(
(u∗ − u) ·ϕ(xt)

)2 we have, for all t = 1, . . . , T ,

(
(u∗ − u) ·ϕ(xt)

)2
=

d∑
j=1

(u∗j − uj)2ϕ2
j (xt) +

∑
16j 6=k6d

(u∗j − uj)(u∗k − uk)ϕj(xt)ϕk(xt) .

By symmetry of ρu∗,τ around u∗ and the fact that ρu∗,τ is a product-distribution, we get

T∑
t=1

∫
Rd

(
(u∗ − u) ·ϕ(xt)

)2
ρu∗,τ (du) =

T∑
t=1

d∑
j=1

ϕ2
j (xt)

∫
Rd

(u∗j − uj)2ρu∗,τ (du) + 0

=
T∑
t=1

d∑
j=1

ϕ2
j (xt)

∫
R

(u∗j − uj)2 (3/τ) duj
2
(
1 + |uj − u∗j |/τ

)4
(3.45)

=τ2
T∑
t=1

d∑
j=1

ϕ2
j (xt)

∫
R

3t2dt
2(1 + |t|)4

(3.46)

=τ2
T∑
t=1

d∑
j=1

ϕ2
j (xt) . (3.47)

Equation (3.45) follows from the definition of ρu∗,τ . Equation (3.46) is obtained by the change of

variables t = (uj−u∗j )/τ . As for Equation (3.47), it follows from the equality
∫
R

3t2dt

2
(
1 + |t|

)4 = 1

that can be proved by integrating by parts.

Combined with (3.47), Equation (3.44) yields the desired equality.

Proof (of Lemma 3.4): By definition of ρu∗,τ and πτ , we have

K(ρu∗,τ , πτ ) ,
∫
Rd

(
ln

dρu∗,τ
dπτ

(u)

)
ρu∗,τ (du) =

∫
Rd

ln
d∏
j=1

(
1 + |uj |/τ

)4(
1 + |uj − u∗j |/τ

)4
 ρu∗,τ (du)

= 4

∫
Rd

( d∑
j=1

ln
1 + |uj |/τ

1 + |uj − u∗j |/τ

)
ρu∗,τ (du) . (3.48)

But, for all u ∈ Rd, by the triangle inequality,

1 + |uj |/τ 6 1 + |u∗j |/τ + |uj − u∗j |/τ 6
(
1 + |u∗j |/τ

)(
1 + |uj − u∗j |/τ

)
,

so that Equation (3.48) yields the upper bound

K(ρu∗,τ , πτ ) 6 4

d∑
j=1

ln
(
1 + |u∗j |/τ

)
= 4

∑
j:u∗j 6=0

ln
(
1 + |u∗j |/τ

)
.

We now recall that ‖u∗‖0 ,
∣∣{j : u∗j 6= 0}

∣∣ and apply Jensen’s inequality to the concave function
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x ∈ (−1,+∞) 7−→ ln(1 + x) to get

∑
j:u∗j 6=0

ln
(
1 + |u∗j |/τ

)
= ‖u∗‖0

1

‖u∗‖0

∑
j:u∗j 6=0

ln
(
1 + |u∗j |/τ

)
6 ‖u∗‖0 ln

(
1 +

∑
j:u∗j 6=0 |u∗j |

‖u∗‖0 τ

)

6 ‖u∗‖0 ln

(
1 +

‖u∗‖1
‖u∗‖0 τ

)
.

This concludes the proof.

3.B.2 Some maximal inequalities

In this section, we prove three maximal inequalities needed for the derivation of Corollaries 3.5
and 3.7 from Theorems 3.2 and 3.3 respectively. Their proofs are quite standard but we provide
them for the convenience of the reader.

Lemma 3.5. Let Z1, . . . , ZT be T > 1 (centered) real random variables such that, for a given
constant ν > 0, we have

∀t ∈ {1, . . . , T}, ∀λ ∈ R, E
[
eλZt

]
6 eλ

2ν/2 . (3.49)

Then,

E
[

max
16t6T

Z2
t

]
6 2ν ln(2eT ) .

Lemma 3.6. Let Z1, . . . , ZT be T > 1 real random variables such that, for some given constants
α > 0 and M > 0, we have

∀t ∈ {1, . . . , T}, E
[
eα|Zt|

]
6M .

Then,

E
[

max
16t6T

Z2
t

]
6

ln2
(
(M + e)T

)
α2

.

Lemma 3.7. Let Z1, . . . , ZT be T > 1 real random variables such that, for some given constants
α > 2 and M > 0, we have

∀t ∈ {1, . . . , T}, E
[
|Zt|α

]
6M .

Then,

E
[

max
16t6T

Z2
t

]
6 (MT )2/α .

Proof (of Lemma 3.5): Let t ∈ {1, . . . , T}. From the subgaussian assumption (3.49) it is well-
known (see, e.g., [Mas07, Chapter 2]) that for all x > 0, we have

∀t ∈ {1, . . . , T} , P
(
|Zt| > x

)
6 2e−x

2/(2ν) .
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Let δ ∈ (0, 1). By the change of variables x =
√

2ν ln(2T/δ), the last inequality entails that, for
all t = 1, . . . , T , we have |Zt| 6

√
2ν ln(2T/δ) with probability at least 1− δ/T . Therefore, by

a union bound, we get, with probability at least 1− δ,

∀t ∈ {1, . . . , T} , |Zt| 6
√

2ν ln(2T/δ) .

As a consequence, with probability at least 1− δ,

max
16t6T

Z2
t 6 2ν ln(2T/δ) 6 2ν ln(1/δ) + 2ν ln(2T ) .

Integrating the last high-probability bound via Lemma A.7 in Appendix A.6 (cf. Example A.1
with the change of variables z = ln(1/δ)), we get that E

[
max16t6T Z

2
t

]
6 2ν + 2ν ln(2T ),

which concludes the proof.

Proof (of Lemma 3.6): We first need the following definitions. Let ψα : R+ → R be a convex
majorant of x 7→ eα

√
x on R+ defined by

ψα(x) ,

{
e if x < 1/α2 ,

eα
√
x if x > 1/α2 .

We associate with ψα its generalized inverse ψ−1
α : R→ R+ defined by

ψ−1
α (y) =

{
1/α2 if y < e ,

(ln y)2/α2 if y > e .

Elementary manipulations show that:

• ψα is nondecreasing and convex on R+;

• ψ−1
α is nondecreasing on R;

• x 6 ψ−1
α

(
ψα(x)

)
for all x ∈ R+.

The proof is based on a Pisier-type argument as is done, e.g., in [Mas07, Lemma 2.3] to prove
the maximal inequality E[max16t6T ξt] 6

√
2ν lnT for all subgaussian real random variables ξt,

1 6 t 6 T , with common variance factor ν > 0 (see Lemma A.3 in Appendix A.5).

From the inequality x 6 ψ−1
α

(
ψα(x)

)
for all x ∈ R+ we have

E
[

max
16t6T

Z2
t

]
6 ψ−1

α

(
ψα

(
E
[

max
16t6T

Z2
t

]))
6 ψ−1

α

(
E
[
ψα

(
max

16t6T
Z2
t

)])
= ψ−1

α

(
E
[

max
16t6T

ψα
(
Z2
t

)])
,

where the last two inequalities follow by Jensen’s inequality (since ψα is convex) and the fact that
both ψ−1

α and ψα are nondecreasing.
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Since ψα > 0 and ψ−1
α is nondecreasing we get

E
[

max
16t6T

Z2
t

]
6 ψ−1

α

(
E

[
T∑
t=1

ψα
(
Z2
t

)])
= ψ−1

α

(
T∑
t=1

E
[
ψα
(
Z2
t

)])

6 ψ−1
α

(
T∑
t=1

E
[
eα|Zt| + e

])

6 ψ−1
α

(
MT + eT

)
=

ln2
(
MT + eT

)
α2

,

where the second line follows from the inequality ψα(x) 6 e + eα
√
x for all x ∈ R+, and where

the last line follows from the bounded exponential moment assumption and the definition of ψ−1
α .

It concludes the proof.

Proof (of Lemma 3.7): As in the previous proof, we have, by Jensen’s inequality and the fact that
x 7→ xα/2 is convex and nondecreasing on R+ (since α > 2),

E
[

max
16t6T

Z2
t

]
6 E

[(
max

16t6T
Z2
t

)α/2]2/α

= E
[

max
16t6T

∣∣Zt∣∣α]2/α

6 E

[
T∑
t=1

∣∣Zt∣∣α]2/α

6 (MT )2/α

by the bounded moment assumption, which concludes the proof.



Chapter 4

Adaptive and optimal online linear
regression on `1-balls

We consider the problem of online linear regression on individual sequences. The goal in this paper
is for the forecaster to output sequential predictions which are, after T time rounds, almost as good
as the ones output by the best linear predictor in a given `1-ball in Rd. We consider both the cases
where the dimension d is small and large relative to the time horizon T . We first present regret
bounds with optimal dependencies on d, T , and on the sizes U , X and Y of the `1-ball, the input
data and the observations. The minimax regret is shown to exhibit a regime transition around the
point d =

√
TUX/(2Y ). Furthermore, we present efficient algorithms that are adaptive, i.e., that

do not require the knowledge of U , X , Y , and T , but still achieve nearly optimal regret bounds.

NOTA: This chapter is the full version of a conference paper [GY11] to be presented at ALT 2011.
Some improved bounds are published here for the first time (Theorem 4.3 and Remark 4.1).
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4.1 Introduction

In this chapter, we consider the problem of online linear regression against arbitrary sequences
of input data and observations, with the objective of being competitive with respect to the best
linear predictor in an `1-ball of arbitrary radius. This extends the task of convex aggregation. We
consider both low- and high-dimensional input data. Indeed, in a large number of contemporary
problems, the available data can be high-dimensional—the dimension of each data point is larger
than the number of data points. Examples include analysis of DNA sequences, collaborative fil-
tering, astronomical data analysis, and cross-country growth regression. In such high-dimensional
problems, performing linear regression on an `1-ball of small diameter may be helpful if the best
linear predictor is sparse. Our goal is, in both low and high dimensions, to provide online linear re-
gression algorithms along with bounds on `1-balls that characterize their robustness to worst-case
scenarios.

4.1.1 Setting

We consider the online version of linear regression, which unfolds as follows (see also Section 2.4
for an introduction to this setting). First, the environment chooses a sequence of observations
(yt)t>1 in R and a sequence of input vectors (xt)t>1 in Rd, both initially hidden from the fore-
caster. At each time instant t ∈ N∗ = {1, 2, . . .}, the environment reveals the data xt ∈ Rd; the
forecaster then gives a prediction ŷt ∈ R; the environment in turn reveals the observation yt ∈ R;
and finally, the forecaster incurs the square loss (yt− ŷt)2. The dimension d can be either small or
large relative to the number T of time steps: we consider both cases.

In the sequel, u ·v denotes the standard inner product between u,v ∈ Rd, and we set ‖u‖∞ ,
max16j6d |uj | and ‖u‖1 ,

∑d
j=1 |uj |. The `1-ball of radius U > 0 is the following bounded

subset of Rd:

B1(U) ,
{
u ∈ Rd : ‖u‖1 6 U

}
.

Given a fixed radius U > 0 and a time horizon T > 1, the goal of the forecaster is to predict almost
as well as the best linear forecaster in the reference set

{
x ∈ Rd 7→ u ·x ∈ R : u ∈ B1(U)

}
, i.e.,

to minimize the regret on B1(U) defined by

T∑
t=1

(yt − ŷt)2 − min
u∈B1(U)

{
T∑
t=1

(yt − u · xt)2

}
.

We shall present algorithms along with bounds on their regret that hold uniformly over all
sequences1 (xt, yt)16t6T such that ‖xt‖∞ 6 X and |yt| 6 Y for all t = 1, . . . , T , where X,Y >

0. These regret bounds depend on four important quantities: U , X , Y , and T , which may be
known or unknown to the forecaster.

1Actually our results hold whether (xt, yt)t>1 is generated by an oblivious environment or a non-oblivious oppo-
nent since we consider deterministic forecasters. See Section 2.3.1 in Chapter 2 for further details.
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4.1.2 Contributions and related works

Next we detail the main contributions of this chapter in view of related works in online linear
regression.

Our first contribution consists of a minimax analysis of online linear regression on `1-balls in
the arbitrary sequence setting. We first provide a refined regret bound expressed in terms of Y , d,
and a quantity κ =

√
TUX/(2dY ). This quantity κ is used to distinguish two regimes: we show

a distinctive regime transition2 at κ = 1 or d =
√
TUX/(2Y ). Namely, for κ < 1, the regret is of

the order of
√
T , whereas it is of the order of lnT for κ > 1.

The derivation of this regret bound partially relies on a Maurey-type argument used under var-
ious forms with i.i.d. data, e.g., in [Nem00, Tsy03, BN08, SSSZ10] (see also [Yan04]). We adapt
it in a straightforward way to the deterministic setting. Therefore, this is yet another technique that
can be applied to both the stochastic and individual sequence settings.

Unsurprisingly, the refined regret bound mentioned above matches the optimal risk bounds for
stochastic settings3 [BM01a, Tsy03] (see also [RWY11]). Hence, linear regression is just as hard
in the stochastic setting as in the arbitrary sequence setting. Using the standard online to batch
conversion, we make the latter statement more precise by establishing a lower bound for all κ at
least of the order of

√
ln d/d. This lower bound extends those of [CB99, KW97], which only hold

for small κ of the order of 1/d.

The algorithm achieving our minimax regret bound is both computationally inefficient and
non-adaptive (i.e., it requires prior knowledge of the quantities U , X , Y , and T that may be
unknown in practice). Those two issues were first overcome by [ACBG02] via an automatic tuning
termed self-confident (since the forecaster somehow trusts himself in tuning its parameters). They
indeed proved that the self-confident p-norm algorithm with p = 2 ln d and tuned with U has a
cumulative loss L̂T =

∑T
t=1(yt − ŷt)2 bounded by

L̂T 6 L∗T + 8UX
√

(e ln d)L∗T + (32e ln d)U2X2

6 8UXY
√
eT ln d+ (32e ln d)U2X2 ,

where L∗T , min{u∈Rd:‖u‖16U}
∑T

t=1(yt − u · xt)2 6 TY 2. This algorithm is efficient, and our
lower bound in terms of κ shows that it is optimal up to logarithmic factors in the regime κ 6 1

without prior knowledge of X , Y , and T .

In Section 4.3, we study the adaptivity possibilities of a closely related forecaster due to
[KW97] and called the EG± algorithm. A detailed presentation of this forecaster can be found
in Section 2.4.3 (Chapter 2). As proved in [KW97, Theorem 5.11], when tuned as a function of
U , X , and a known upper bound B on L∗T , this algorithm has a regret bounded from above by

2In high dimensions (i.e., when d > ωT , for some absolute constant ω > 0), we do not observe this transition (cf.
Figure 4.1).

3For example, (xt, yt)16t6T may be i.i.d. , or xt can be deterministic and yt = f(xt) + εt for an unknown
function f and an i.i.d. sequence (εt)16t6T of Gaussian noise.
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2UX
√

2B ln(2d) + 2U2X2 ln(2d). Again, this algorithm is efficient and nearly optimal in the
regime κ 6 1. However, the EG± algorithm requires prior knowledge of U , X , and B — or,
alternatively, U , X , Y , and T .

Our second contribution — already detailed in Chapter 2 — is a generic version of the EG± al-
gorithm for general convex loss functions. When applied to the square loss and combined with the
variance-based tuning of [CBMS07], the corresponding adaptive EG± algorithm satisfies a regret
bound comparable to that of the self-confident p-norm algorithms (Corollary 2.2 in Section 2.4.3).
In particular this algorithm adapts automatically to X , Y , and T when U is known.

Our third contribution is a generic technique called loss Lipschitzification. It transforms the
loss functions u 7→ (yt − u · xt)2 (or u 7→

∣∣yt − u · xt∣∣α if the predictions are scored with the
α-loss, α > 2) into Lipschitz continuous functions. We illustrate this technique by applying the
generic adaptive EG± algorithm to the modified loss functions. When the predictions are scored
with the square loss, this yields an algorithm (the LEG algorithm) whose main regret term can only
improve on that derived for the adaptive EG± algorithm without Lipschtizification. The benefits
of this technique are clearer for loss functions with higher curvature: if α > 2, the resulting regret
bound roughly grows as U instead of a naive Uα/2.

Finally, we provide a simple way to achieve minimax regret uniformly over all `1-balls B1(U)

for U > 0. This method aggregates instances of an algorithm that require prior knowledge of U .
For the sake of simplicity, we assume that X , Y , and T are known, but explain in the discussions
how to extend the method to a fully adaptive algorithm that requires the knowledge neither of U ,
X , Y , nor T .

This chapter is organized as follows. In Section 4.2, we establish our refined upper and lower
bounds in terms of the intrinsic quantity κ. In Section 4.3, we present an efficient and adaptive
algorithm — the adaptive EG± algorithm with or without loss Lipschitzfication — that achieves
the optimal regret on B1(U) when U is known. In Section 4.4, we use an aggregating strategy
to achieve an optimal regret uniformly over all `1-balls B1(U), for U > 0, when X , Y , and T
are known. Finally, in Section 4.5, we discuss as an extension a fully automatic algorithm that
requires no prior knowledge of U , X , Y , or T . Some proofs and additional tools are postponed to
the appendix.

4.2 Optimal rates

In this section, we first present a refined upper bound on the minimax regret on B1(U) for an
arbitrary U > 0. In Corollary 4.1, we express this upper bound in terms of an intrinsic quantity
κ ,
√
TUX/(2dY ). The optimality of the latter bound is shown in Section 4.2.2.

We first consider the following definition to avoid any ambiguity. We call online forecaster
any sequence F = (f̃t)t>1 of functions such that f̃t : Rd × (Rd × R)t−1 → R maps at time t the
new input xt and the past data (xs, ys)16s6t−1 to a prediction f̃t

(
xt; (xs, ys)16s6t−1

)
. Depending

on the context, the latter prediction may be simply denoted by f̃t
(
xt) or by ŷt.
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4.2.1 Upper bound

Theorem 4.1 (Upper bound). Let d, T ∈ N∗, and U,X, Y > 0. The minimax regret on B1(U) for
bounded base predictions and observations satisfies

inf
F

sup
‖xt‖∞6X, |yt|6Y

{
T∑
t=1

(yt − ŷt)2 − inf
‖u‖16U

T∑
t=1

(yt − u · xt)2

}

6


3UXY

√
2T ln(2d) if U < Y

X

√
ln(1+2d)
T ln 2 ,

26UXY

√
T ln

(
1 + 2dY√

TUX

)
if Y

X

√
ln(1+2d)
T ln 2 6 U 6 2dY√

TX
,

32 dY 2 ln
(

1 +
√
TUX
dY

)
+ dY 2 if U > 2dY

X
√
T
,

where the infimum is taken over all forecasters F and where the supremum extends over all se-
quences (xt, yt)16t6T ∈ (Rd×R)T such that |y1|, . . . , |yT | 6 Y and ‖x1‖∞ , . . . , ‖xT ‖∞ 6 X .

Theorem 4.1 improves the bound of [KW97, Theorem 5.11] for the EG± algorithm. First, our
bound depends logarithmically—as opposed to linearly—on U for U > 2dY/(

√
TX). Secondly,

it is smaller by a factor ranging from 1 to
√

ln d when

Y

X

√
ln(1 + 2d)

T ln 2
6 U 6

2dY√
TX

. (4.1)

Hence, Theorem 4.1 provides a partial answer to a question4 raised in [KW97] about the gap of√
ln(2d) between the upper and lower bounds.

Before proving the theorem (see below), we state the following immediate corollary. It ex-
presses the upper bound of Theorem 4.1 in terms of an intrinsic quantity κ ,

√
TUX/(2dY ) that

relates
√
TUX/(2Y ) to the ambient dimension d.

Corollary 4.1 (Upper bound in terms of an intrinsic quantity). Let d, T ∈ N∗, and U,X, Y > 0.
The upper bound of Theorem 4.1 expressed in terms of d, Y , and the intrinsic quantity κ ,√
TUX/(2dY ) reads:

inf
F

sup
‖xt‖∞6X, |yt|6Y

{
T∑
t=1

(yt − ŷt)2 − inf
‖u‖16U

T∑
t=1

(yt − u · xt)2

}

6


6 dY 2κ

√
2 ln(2d) if κ <

√
ln(1+2d)

2d
√

ln 2
,

52 dY 2κ
√

ln(1 + 1/κ) if
√

ln(1+2d)

2d
√

ln 2
6 κ 6 1 ,

32 dY 2
(
ln(1 + 2κ) + 1

)
if κ > 1 .

The upper bound of Corollary 4.1 is shown in Figure 4.1. Observe that, in low dimension
(Figure 4.1(b)), a clear transition from a regret of the order of

√
T to one of lnT occurs at κ = 1.

This transition is absent for high dimensions: for d > ωT , where ω ,
(
32(ln(3) + 1)

)−1, the
regret bound 32 dY 2

(
ln(1 + 2κ) + 1

)
is worse than a trivial bound of TY 2 when κ > 1.

4The authors of [KW97] asked: “For large d there is a significant gap between the upper and lower bounds. We
would like to know if it possible to improve the upper bounds by eliminating the ln d factors.”



134 CHAPTER 4. ADAPTIVE AND OPTIMAL ONLINE LINEAR REGRESSION ON `1-BALLS

1
�
min �

Y2 T

Y2 lnd
52dY2�ln(1+1/�)

(a) High dimension d > ωT .

�
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Y2 d
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(b) Low dimension d < ωT .

Figure 4.1: The regret bound of Corollary 4.1 over B1(U) as a function of κ =
√
TUX/(2dY ).

The constant c is chosen to ensure continuity at κ = 1, and ω ,
(
32(ln(3) + 1)

)−1. We define:
κmin =

√
ln(1 + 2d)/(2d

√
ln 2) and κmax = (e(T/d−1)/c − 1)/2.

We now prove Theorem 4.1. The main part of the proof relies on a Maurey-type argument.
Although this argument was used in the stochastic setting [Nem00, Tsy03, BN08, SSSZ10], we
adapt it to the deterministic setting. This is yet another technique that can be applied to both the
stochastic and individual sequence settings.

Proof (of Theorem 4.1): First note from Lemma 4.4 in Appendix 4.B that the minimax regret on
B1(U) is upper bounded5 by

min

{
3UXY

√
2T ln(2d), 32 dY 2 ln

(
1 +

√
TUX

dY

)
+ dY 2

}
. (4.2)

Therefore, the first case U < Y
X

√
ln(1+2d)
T ln 2 and the third case U > dY

X
√
T

are straightforward.

Therefore, we assume in the sequel that YX

√
ln(1+2d)
T ln 2 6 U 6 2dY√

TX
.

We use a Maurey-type argument to refine the regret bound (4.2). This technique was used under
various forms in the stochastic setting, e.g., in [Nem00, Tsy03, BN08, SSSZ10]. It consists of
discretizing B1(U) and looking at a random point in this discretization to study its approximation
properties. We also use clipping to get a regret bound growing as U instead of a naive U2.

More precisely, we first use the fact that to be competitive against B1(U), it is sufficient to be
competitive against its finite subset

B̃U,m ,


(
k1U

m
, . . . ,

kdU

m

)
: (k1, . . . , kd) ∈ Zd,

d∑
j=1

|kj | 6 m

 ⊂ B1(U) ,

5As proved in Lemma 4.4, the regret bound (4.2) is achieved either by the EG± algorithm, the algorithm
SeqSEWB,η

τ of Chapter 3 (we could also get a slightly worse bound with the sequential ridge regression forecaster), or
the trivial null forecaster.



4.2. OPTIMAL RATES 135

where m , bαc with α ,
UX

Y

√
T (ln 2)/ ln

(
1 +

2dY√
TUX

)
.

By Lemma 4.6 in appendix, and since m > 0 (see below), we indeed have

inf
u∈B̃U,m

T∑
t=1

(yt − u · xt)2

6 inf
u∈B1(U)

T∑
t=1

(yt − u · xt)2 +
TU2X2

m

6 inf
u∈B1(U)

T∑
t=1

(yt − u · xt)2 +
2√
ln 2

UXY

√
T ln

(
1 +

2dY√
TUX

)
, (4.3)

where (4.3) follows from m , bαc > α/2 since α > 1 (in particular, m > 0 as stated above).

To see why α > 1, note that it suffices to show that x
√

ln(1 + x) 6 2d
√

ln 2 where we
set x , 2dY/(

√
TUX). But from the assumption U > (Y/X)

√
ln(1 + 2d)/(T ln 2), we have

x 6 2d
√

ln(2)/ ln(1 + 2d) , y, so that, by monotonicity, x
√

ln(1 + x) 6 y
√

ln(1 + y) 6
y
√

ln(1 + 2d) = 2d
√

ln 2.

Therefore it only remains to exhibit an algorithm which is competitive against B̃U,m at an
aggregation price of the same order as the last term in (4.3). This is the case for the standard
exponentially weighted average forecaster applied to the clipped predictions[

u · xt
]
Y
, min

{
Y,max

{
−Y,u · xt

}}
, u ∈ B̃U,m ,

and tuned with the inverse temperature parameter η = 1/(8Y 2). More formally, this algorithm
predicts at each time t = 1, . . . , T as

ŷt ,
∑

u∈B̃U,m

pt(u)
[
u · xt

]
Y
,

where p1(u) , 1/
∣∣B̃U,m∣∣ (denoting by

∣∣B̃U,m∣∣ the cardinality of the set B̃U,m), and where the
weights pt(u) are defined for all t = 2, . . . , T and u ∈ B̃U,m by

pt(u) ,
exp

(
−η
∑t−1

s=1

(
ys − [u · xs]Y

)2)
∑
v∈B̃U,m exp

(
−η
∑t−1

s=1

(
ys − [v · xs]Y

)2) .
By Lemma 4.5 in appendix, the above forecaster tuned with η = 1/(8Y 2) satisfies

T∑
t=1

(yt − ŷt)2 − inf
u∈B̃U,m

T∑
t=1

(yt − u · xt)2 6 8Y 2 ln
∣∣B̃U,m∣∣

6 8Y 2 ln

(
e(2d+m)

m

)m
(4.4)

= 8Y 2m
(
1 + ln(1 + 2d/m)

)
6 8Y 2α

(
1 + ln(1 + 2d/α)

)
(4.5)
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= 8Y 2α+ 8Y 2α ln

1 +
2dY√
TUX

√
ln
(
1 + 2dY/(

√
TUX)

)
ln 2


6 8Y 2α+ 16Y 2α ln

(
1 +

2dY√
TUX

)
(4.6)

6

(
8√
ln 2

+ 16
√

ln 2

)
UXY

√
T ln

(
1 +

2dY√
TUX

)
. (4.7)

To get (4.4) we used Lemma 4.7 in appendix. Inequality (4.5) follows by definition of m 6
α and the fact that x 7→ x

(
1 + ln(1 + A/x)

)
is nondecreasing on R∗+ for all A > 0. In-

equality (4.6) follows from the assumption U 6 2dY/(
√
TX) and the elementary inequality

ln
(
1 + x

√
ln(1 + x)/ ln 2

)
6 2 ln(1 + x) which holds for all x > 1 and was used, e.g., at the end

of [BN08, Theorem 2-a)]. Finally, elementary manipulations combined with the assumption that
2dY/(

√
TUX) > 1 lead to (4.7).

Putting Equations (4.3) and (4.7) together, the previous algorithm has a regret onB1(U) which
is bounded from above by

(
10√
ln 2

+ 16
√

ln 2

)
UXY

√
T ln

(
1 +

2dY√
TUX

)
,

which concludes the proof since 10/
√

ln 2 + 16
√

ln 2 6 26.

4.2.2 Lower bound

Corollary 4.1 gives an upper bound on the regret in terms of the quantities d, Y , and κ ,√
TUX/(2dY ). We now show that for all d ∈ N∗, Y > 0, and κ >

√
ln(1 + 2d)/(2d

√
ln 2), the

upper bound can not be improved6 up to logarithmic factors.

Theorem 4.2 (Lower bound). For all d ∈ N∗, Y > 0, and κ >
√

ln(1+2d)

2d
√

ln 2
, there exist T > 1,

U > 0, and X > 0 such that
√
TUX/(2dY ) = κ and

inf
F

sup
‖xt‖∞6X, |yt|6Y

{
T∑
t=1

(yt − ŷt)2 − inf
‖u‖16U

T∑
t=1

(yt − u · xt)2

}

>


c1

ln
(

2+16d2
)dY 2κ

√
ln (1 + 1/κ) if

√
ln(1+2d)

2d
√

ln 2
6 κ 6 1 ,

c2

ln
(

2+16d2
)dY 2 if κ > 1 ,

where c1, c2 > 0 are absolute constants. The infimum is taken over all forecasters F and the
supremum extends over all sequences (xt, yt)16t6T ∈ (Rd × R)T such that |y1|, . . . , |yT | 6 Y

and ‖x1‖∞ , . . . , ‖xT ‖∞ 6 X .

6For T sufficiently large, we may overlook the case κ <
√

ln(1 + 2d)/(2d
√

ln 2) or
√
T <

(Y/(UX))
√

ln(1 + 2d)/ ln 2. Observe that in this case, the minimax regret is already of the order of Y 2 ln(1 + d)
(cf. Figure 4.1).
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The above lower bound extends those of [CB99, KW97], which hold for small κ of the order
of 1/d. The proof is postponed to Appendix 4.A.1. We perform a reduction to the stochastic batch
setting—via the standard online to batch conversion, and employ a version of a lower bound of
[Tsy03].

4.3 Adaptation to unknown X , Y and T via exponential weights

Although the proof of Theorem 4.1 already gives an algorithm that achieves the minimax regret,
the latter takes as inputs U , X , Y , and T , and it is inefficient in high dimensions. In this sec-
tion, we present a new method that achieves the minimax regret both efficiently and without prior
knowledge of X , Y , and T provided that U is known. Adaptation to an unknown U is consid-
ered in Section 4.4. Our method consists of modifying an underlying linear regression algorithm
such as the EG± algorithm [KW97] or the sequential ridge regression [Vov01, AW01]. Next, we
show that automatically tuned variants of the EG± algorithm – the first of which was introduced in
Section 2.4.3 — nearly achieve the minimax regret for the regime d >

√
TUX/(2Y ). A similar

modification could be applied to the ridge regression forecaster to achieve a nearly optimal regret

bound of order dY 2 ln
(

1 + d
(√

TUX
dY

)2)
in the regime d <

√
TUX/(2Y ). The latter analysis is

more technical and hence is omitted.

4.3.1 An adaptive EG± algorithm

The second algorithm of the proof of Theorem 4.1 is computationally inefficient because it ag-
gregates approximately d

√
T experts. In contrast, the EG± algorithm has a manageable compu-

tational complexity that is linear in d. In Section 2.4.3 of Chapter 2 we introduced a version of
the EG± algorithm — called the adaptive EG± algorithm — that does not require prior knowl-
edge of X , Y and T (as opposed to the original EG± algorithm of [KW97]). This version uses
the automatic tuning of [CBMS07]. As proved in Corollary 2.2 of Chapter 2 — a consequence
of [CBMS07, Corollary 1] — the adaptive EG± algorithm on B1(U) defined in Figure 2.5 with
`t(u) = (yt − u · xt)2 satisfies, for all choices of (x1, y1), . . . , (xT , yT ) ∈ Rd × R,

T∑
t=1

(yt − ût · xt)2 6 L∗T + 8UX
√
L∗T ln(2d) +

(
137 ln(2d) + 24

) (
UXY + U2X2

)
, (4.8)

where the quantities L∗T , min{u∈B1(U)}
∑T

t=1(yt − u · xt)2, X , max16t6T ‖xt‖∞, and
Y , max16t6T |yt| are unknown to the forecaster.

The above regret bound is an improvement for small losses (cf. (2.15) in Section 2.2.2). By the
elementary inequality L∗T 6 TY 2 (since 0 ∈ B1(U)), it yields the zero-order regret bound

T∑
t=1

(yt − ût · xt)2 − min
u∈B1(U)

T∑
t=1

(yt − u · xt)2

6 8UXY
√
T ln(2d) +

(
137 ln(2d) + 24

) (
UXY + U2X2

)
.

Therefore, our version of the EG± algorithm is efficient and adaptive in X , Y , and T . It achieves
approximately the regret bound of Theorem 4.1 in the regime κ 6 1, i.e., d >

√
TUX/(2Y ).
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Another way to perform the adaptation to X , Y , and T in an efficient way is provided by
the self-confident p-norm algorithm of [ACBG02] with p = 2 ln d. As commented on after the
statement of Corollary 2.2 in Chapter 2, this algorithm satisfies an improvement for small losses
similar to (4.8). The fact that we got a similar bound is not surprising because the p-norm algo-
rithms are known to share many properties with the EG± algorithm (in the limit p→ +∞ with an
appropriate initial weight vector, or for p of the order of ln d with a zero initial weight vector, cf.
[Gen03]). The bound of Corollary 2.2 corroborates this similarity.

In the next subsections, we use yet another instance of the adaptive EG± algorithm that we call
the Lipschitzifying Exponentiated Gradient (LEG) algorithm. It corresponds to the adaptive EG±

algorithm applied not to the square loss but to a Lipschitz continuous modification ˜̀t : Rd → R of
the square loss.

4.3.2 Lipschitzification of the loss function

Our key technique consists of transforming the loss functions u 7→ (yt−u ·xt)2 into functions ˜̀t
that are Lipschitz continuous with respect to ‖·‖1. Afterward, adaptation to the unknown Lipschitz
constants ‖∇˜̀t‖∞ is carried out using the techniques of [CBMS07].

We point out that our Lipschitzification method can be applied to other convex loss func-
tions with higher curvature, see Remark 4.1 later. Moreover, this technique is not specific to
the pair of dual norms (‖·‖1 , ‖·‖∞) and to the EG± algorithm; it could be used with other pairs
(‖·‖q , ‖·‖p) (with 1/p+ 1/q = 1) and other gradient-based algorithms, such as the p-norm algo-
rithm [Gen03, ACBG02] and its regularized variants (SMIDAS and COMID) [SST09, DSSST10].

The Lipschitzification proceeds as follows. At each time t > 1, using adaptivity-oriented ideas
from Chapter 3, we set

Bt ,
(

2dlog2(max16s6t−1 y
2
s)e
)1/2

,

so thatBt satisfies |ys| 6 Bt for all s = 1, . . . , t−1. The modified (or Lipschitzified) loss function˜̀
t : Rd → R is constructed as follows:

• if |yt| > Bt, then ˜̀
t(u) , 0 for all u ∈ Rd ;

• if |yt| 6 Bt, then ˜̀t is the convex function that coincides with the square loss when
∣∣u·xt∣∣ 6

Bt and is linear elsewhere. This function is shown in Figure 4.2 and can be formally defined
as

˜̀
t(u) ,


(yt − u · xt)2 if

∣∣u · xt∣∣ 6 Bt,

(yt −Bt)2 + 2(Bt − yt)(u · xt −Bt) if u · xt > Bt,

(yt +Bt)
2 + 2(−Bt − yt)(u · xt +Bt) if u · xt < −Bt.

Observe that in both cases |yt| > Bt and |yt| 6 Bt, the function ˜̀t is continuously differen-
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tiable. Moreover, if |yt| 6 Bt, then

∀u ∈ Rd , ∇˜̀t(u) = −2
(
yt − [u · xt]Bt

)
xt , (4.9)

where we define the clipping operator [·]B by [x]B , min
{
B,max{−B, x}

}
for all x ∈ R and

all B > 0.

Therefore, in both cases |yt| > Bt and |yt| 6 Bt, the function ˜̀t is Lipschitz continuous with
respect to ‖·‖1 with Lipschitz constant∥∥∥∇˜̀t∥∥∥

∞
6 2

∣∣yt − [u · xt]Bt
∣∣ ‖xt‖∞ (4.10)

6 2
(
|yt|+Bt

)
‖xt‖∞ 6 2

(
1 +
√

2
)
‖xt‖∞ max

16s6t
|ys| , (4.11)

where we used the fact that Bt 6
√

2 max16s6t−1 |ys|. We can also glean from Figure 4.2 that,
when |yt| 6 Bt, the modified loss function ˜̀t : Rd → R lies in between the square loss and its
clipped version:

∀u ∈ Rd,
(
yt − [u · xt]Bt

)2
6 ˜̀t(u) 6

(
yt − u · xt

)2
. (4.12)

�4 �2 0 2 4 6
u ·xt

0

2

4

6
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16

yt Bt
�Bt

Square loss
Lipschitzified
Clipped

Figure 4.2: Example when |yt| 6 Bt. The square loss (yt−u ·xt)2, its clipped version
(
yt− [u ·

xt]Bt
)2 and its Lipschitzified version ˜̀t(u) are plotted as a function of u · xt.

4.3.3 Lipschitzifying Exponentiated Gradient algorithm

In this section we illustrate the Lipschitzification technique described above with the adaptive EG±

algorithm. We denote by (ej)16j6d the canonical basis of Rd and by ∇j the j-th component of
the gradient.
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Parameter: radius U > 0.

Initialization: B1 , 0, p1 = (p+
1,1, p

−
1,1, . . . , p

+
d,1, p

−
d,1) ,

(
1/(2d), . . . , 1/(2d)

)
∈ R2d.

At each time round t > 1,

1. Compute the linear combination ût , U
d∑
j=1

(
p+
j,t − p

−
j,t

)
ej ∈ B1(U);

2. Get xt ∈ Rd and output the clipped prediction ŷt ,
[
ût · xt

]
Bt

;

3. Get yt ∈ R and define the modified loss function ˜̀t : Rd → R as in Section 4.3.2;

4. Update the parameter ηt+1 according to (4.13);

5. Update the weight vector pt+1 = (p+
1,t+1, p

−
1,t+1, . . . , p

+
d,t+1, p

−
d,t+1) ∈ X2d defined for

all j = 1, . . . , d and γ ∈ {+,−} bya

pγj,t+1 ,

exp

(
−ηt+1

t∑
s=1

γU∇j ˜̀s(ûs))
∑

16k6K
µ∈{+,−}

exp

(
−ηt+1

t∑
s=1

µU∇k ˜̀s(ûs)
) .

6. Update the threshold Bt+1 ,
(

2dlog2(max16s6t y
2
s)e
)1/2

.

aFor all γ ∈ {+,−}, by a slight abuse of notation, γU denotes U or −U if γ = + or γ = − respectively.

Figure 4.3: The Lipschitzifying Exponentiated Gradient (LEG) algorithm.

Consider the Lipschitzifying Exponentiated Gradient (LEG) algorithm of Figure 4.3. It is yet
another instance of the adaptive EG± algorithm on B1(U) (cf. Figure 2.5 of Section 2.4.3) applied
not to the square loss but to the Lipschitzified loss functions ˜̀t, t > 1. In particular the LEG
algorithm uses as a blackbox the exponentially weighted majority forecaster of [CBMS07] on 2d

experts—namely, the vertices±Uej ofB1(U)—as in [KW97]. It adapts to the unknown Lipschitz
constants ‖∇˜̀t‖∞ by the particular choice of ηt due to [CBMS07] and defined for all t > 2 by

ηt = min

{
1

Êt−1

, C

√
lnK

Vt−1

}
, (4.13)

where C ,
√

2(
√

2− 1)/(e− 2) and where we set, for all t = 1, . . . , T ,

z+
j,s , U∇j ˜̀s(ûs) and z−j,s , −U∇j ˜̀s(ûs) , j = 1, . . . , d, s = 1, . . . , t ,

Êt , inf
k∈Z

2k : 2k > max
16s6t

max
16j,k6d
γ,µ∈{+,−}

∣∣zγj,s − zµk,s∣∣
 ,
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Vt ,
t∑

s=1

∑
16j6d
γ∈{+,−}

pγj,s

zγj,s − ∑
16k6d
µ∈{+,−}

pµk,sz
µ
k,s


2

.

Note that Êt−1 approximates the range of the zγj,s up to time t−1, while Vt−1 is the corresponding
cumulative variance of the forecaster.

The next theorem bounds the regret of the LEG algorithm on B1(U). As with the square
loss, this algorithm is efficient and adaptive in X , Y , and T ; it achieves approximately the regret
bound of Theorem 4.1 in the regime κ 6 1, i.e., d >

√
TUX/(2Y ). The proof is postponed to

Appendix 4.A.2. It follows from the bound on the adaptive EG± algorithm for general convex loss
functions that we proved in Corollary 2.1 (Section 2.4.3).

Theorem 4.3. Let U > 0. Then, the Lipschitzifying Exponentiated Gradient algorithm tuned
with U satisfies, for all T > 1 and all individual sequences (x1, y1), . . . , (xT , yT ) ∈ Rd × R,

T∑
t=1

(yt − ŷt)2 6 inf
‖u‖16U

T∑
t=1

˜̀
t(u) + 8UX

√√√√( inf
‖u‖16U

T∑
t=1

˜̀
t(u)

)
ln(2d)

+
(
153 ln(2d) + 58

) (
UXY + U2X2

)
+ 12Y 2 ,

where none of the three quantities inf{u∈Rd:‖u‖16U}
∑T

t=1
˜̀
t(u), X , max16t6T ‖xt‖∞, and

Y , max16t6T |yt| is known to the forecaster.

The first two terms of the bound of Theorem 4.3 slightly improve on those obtained without
Lipschitzification (cf. (4.8)) since we always have

inf
‖u‖16U

T∑
t=1

˜̀
t(u) 6 inf

u∈Rd:‖u‖16U

T∑
t=1

(yt − u · xt)2 , (4.14)

where we used the key property ˜̀t(u) 6 (yt − u · xt)2 for all u ∈ Rd and all t = 1, . . . , T

(by (4.12) if |yt| 6 Bt, obvious otherwise). Though the improvement in the regret bound entailed
by (4.14) is usually only of minor importance, Lipschitzification can be useful in at least two ways.

Remark 4.1 (Application to other convex loss functions with higher curvature).
Lipschitzification can be used in a much more general setting than the one studied in this paper,
i.e., when the loss functions are of the form x 7→ f

(
|yt− x|

)
for an increasing twice differentiable

function f : R+ → R such that f ′′ > 0. Assume, e.g., that f(x) = xα for all x > 0 and some
α > 2. As explained below, the benefits of Lipschitzification become clear when α > 2: it yields a
regret bound that depends linearly in U , instead of the rate Uα/2 that would follow from a similar
analysis for the adaptive EG± algorithm without loss Lipschitzification.

Next we assume that for some α > 2, the predictions ŷt of the forecaster and the base pre-
dictions u · xt are scored with the loss functions x 7→ |yt − x|α, t > 1. Correspondingly, we set
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`t(u) = |yt − u · xt|α for all u ∈ Rd. The Lipschtizification step of Section 4.3.2 can easily be
extended to this case. The main two changes consist of the following:

• The adaptive clipping level is defined by Bt ,
(
2dlog2(max16s6t−1 |ys|α)e)1/α.

• At every round t such that |yt| 6 Bt, the Lipschitzified loss function ˜̀t : Rd → R is defined
by

˜̀
t(u) ,


∣∣yt − u · xt∣∣α if

∣∣u · xt∣∣ 6 Bt,∣∣yt −Bt∣∣α + α
∣∣yt −Bt∣∣α−1

(u · xt −Bt) if u · xt > Bt,∣∣yt +Bt
∣∣α − α∣∣yt +Bt

∣∣α−1
(u · xt +Bt) if u · xt < −Bt.

Consider the adaptive EG± algorithm of Section 2.4.3 applied to the Lipschitzified loss func-
tions ˜̀t. To analyse its performance, it suffices to follow the same lines as in the proof of Theo-
rem 4.3. Again, a key property is that7∇˜̀t(ût) = −α sgn

(
yt−[ût·xt]Bt

)∣∣yt−[ût·xt]Bt
∣∣α−1

xt =

−α sgn
(
yt − ŷt

)∣∣yt − ŷt∣∣α−1
xt. This entails thatwww∇˜̀t(ût)www2

∞
6 α2X2

∣∣yt − ŷt∣∣2α−2
= α2X2

∣∣yt − ŷt∣∣α−2 ∣∣yt − ŷt∣∣α
6 α2X2(Bt+1 +Bt)

α−2
∣∣yt − ŷt∣∣α 6 α2X2

(
(1 + 21/α)Y

)α−2 ∣∣yt − ŷt∣∣α .
Then, following the same lines as in the proof of Theorem 4.3, we can see that the adaptive EG±

algorithm applied to (˜̀t)t>1 has a cumulative loss
∑T

t=1

∣∣yt − ŷt∣∣α at most of

L̃∗T + c1(α)UXY
α
2
−1
√
L̃∗T ln(2d)

+ c2(α)
(
UXY α−1 + U2X2Y α−2

)
ln(2d) ,

where L̃∗T , inf{u∈Rd:‖u‖16U}
∑T

t=1
˜̀
t(u) 6 TY α and where c1(α), c2(α) > 0 are constants

depending only on α (e.g., c1(α) = 4α
(
1 + 21/α

)α/2−1). This bound improves on the bound we
would have obtained via the same analysis for the adaptive EG± algorithm applied to the original
losses `t(u) = |yt − u · xt|α:

L∗T + c3(α)UX(Y + UX)
α
2
−1
√
L∗T ln(2d)

+ c4(α)
(
αUX(Y + UX)α−1 + α2U2X2(Y + UX)α−2

)
ln(2d) ,

where we set L∗T , inf{u∈Rd:‖u‖16U}
∑T

t=1 |yt − u · xt|α, and where c3(α), c4(α) > 0 are
constants depending only on α. The main difference between the two regret bounds above lies in
the dependence in U : our main regret term scales as UXY α/2−1 while the one obtained without
Lipschitzification scales as UX(Y + UX)α/2−1. The first term grows linearly in U while the
second grows as Uα/2, hence a clear improvement for α > 2.

Remark 4.2 (A simpler analysis for the minimax regret).
Another benefit of Lipschitzification is that all online convex optimization regret bounds expressed
in terms of the maximal dual norm of the gradients — i.e., max16t6T ‖∇˜̀t‖∞ in our case — can

7For all x ∈ R, sgn(x) equals 1 (resp. −1, 0) if x > 0 (resp. x < 0, x = 0).
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be used fruitfully with the Lipschitzified loss functions ˜̀t. For instance, using the very simple bound
(2.13) of Theorem 2.4 (a consequence of Corollary [CBMS07, Corollary 1], see Section 2.2.2), we
can prove that

T∑
t=1

(yt − ŷt)2 − inf
‖u‖16U

T∑
t=1

(yt − u · xt)2 6 c1UXY
(√

T ln(2d) + 8 ln(2d)
)

+ c2Y
2 ,

where c1 , 8
(√

2+1
)

and c2 , 4
(
1 + 1/

√
2
)2

. The bound is no longer an improvement for small
losses, but the analysis is even more straightforward (no need to solve a quadratic inequality); see
below.

Proof (of Remark 4.2): By the key property (4.12) that holds for all rounds t such that |yt| 6
Bt (the other rounds accounting only for an additional total loss at most of c2Y

2, see (4.48) in
Appendix 4.A.2), we get that

T∑
t=1

(yt − ŷt)2 − inf
‖u‖16U

T∑
t=1

(yt − u · xt)2

6
T∑
t=1

˜̀
t(ût)− inf

‖u‖16U

T∑
t=1

˜̀
t(u) + c2Y

2

6 4U max
16t6T

∥∥∥∇˜̀t∥∥∥
∞

(√
T ln(2d) + 2 ln(2d) + 3

)
+ c2Y

2 (4.15)

6 c1UXY
(√

T ln(2d) + 8 ln(2d)
)

+ c2Y
2 , (4.16)

where (4.15) follows from the last bound of Corollary 2.1 (i.e., with a uniform scaling factor
max16t6T ‖∇˜̀t‖∞), and where (4.16) follows from max16t6T ‖∇˜̀t‖∞ 6 2

(
1 +
√

2
)
XY (by

(4.11)) and from the elementary inequality 3 6 6 ln(2d).

4.4 Adaptation to unknown U

In the previous section, the forecaster is given a radius U > 0 and asked to ensure a low worst-case
regret on the `1-ball B1(U). In this section, U is no longer given: the forecaster is asked to be
competitive against all balls B1(U), for U > 0. Namely, its worst-case regret on each B1(U)

should be almost as good as if U were known beforehand. For simplicity, we assume that X , Y ,
and T are known: we discuss in Section 4.5 how to simultaneously adapt to all parameters.

We define

R , dlog2(2T/c)e+ and Ur ,
Y

X

2r√
T ln(2d)

, for r = 0, . . . , R , (4.17)

where c > 0 is a known absolute constant and

dxe+ , min
{
k ∈ N : k > x

}
for all x ∈ R .

The Scaling algorithm of Figure 4.4 works as follows. We have access to a sub-algorithm A(U)
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Parameters: X,Y, η > 0, T > 1, and c > 0 (a constant).
Initialization: R = dlog2(2T/c)e+, w1 = ~1/(R+ 1) ∈ RR+1.
For time steps t = 1, . . . , T :

1. For experts r = 0, . . . , R:

• Run the sub-algorithm A(Ur) on the ball B1(Ur) and obtain
the prediction ŷ(r)

t .

2. Output the prediction ŷt =
∑R

r=0
w

(r)
t∑R

r′=0 w
(r′)
t

[
ŷ

(r)
t

]
Y

.

3. Update w(r)
t+1 = w

(r)
t exp

(
−η
(
yt −

[
ŷ

(r)
t

]
Y

)2) for r = 0, . . . , R.

Figure 4.4: The Scaling algorithm.

which we run simultaneously for all U = Ur, r = 0, . . . , R. Each instance of the sub-algorithm
A(Ur) performs online linear regression on the `1-ball B1(Ur). We employ an exponentially
weighted forecaster to aggregate these R + 1 sub-algorithms to perform online linear regression
simultaneously on the balls B1(U0), . . . , B1(UR). The following regret bound follows by exp-
concavity of the square loss.

Theorem 4.4. Suppose that X,Y > 0 are known. Let c, c′ > 0 be two absolute constants.
Suppose that for all U > 0, we have access to a sub-algorithm A(U) with regret against B1(U)

of at most

cUXY
√
T ln(2d) + c′Y 2 for T > T0 , (4.18)

uniformly over all sequences (xt) and (yt) bounded by X and Y . Then, for a known T > T0, the
Scaling algorithm with η = 1/(8Y 2) satisfies

T∑
t=1

(yt − ŷt)2 6 inf
u∈Rd

{
T∑
t=1

(yt − u · xt)2 + 2c ‖u‖1XY
√
T ln(2d)

}
+ 8Y 2 ln

(
dlog2(2T/c)e+ + 1

)
+ (c+ c′)Y 2. (4.19)

In particular, for every U > 0,

T∑
t=1

(yt − ŷt)2 6 inf
u∈B1(U)

{
T∑
t=1

(yt − u · xt)2

}
+ 2cUXY

√
T ln(2d)

+ 8Y 2 ln
(
dlog2(2T/c)e+ + 1

)
+ (c+ c′)Y 2.

Remark 4.3. By Theorem 4.3 the LEG algorithm satisfies assumption (4.18) with T0 = ln(2d),
c , 9c1 = 72

(√
2 + 1

)
, and c′ , c2 = 4

(
1 + 1/

√
2
)2

.

Proof: Since the Scaling algorithm is an exponentially weighted average forecaster (with clipping)
applied to the R + 1 experts A(Ur) =

(
ŷ

(r)
t

)
t>1

, r = 0, . . . , R, we have, by Lemma 4.5 in the
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appendix,

T∑
t=1

(yt − ŷt)2 6 min
r=0,...,R

T∑
t=1

(
ŷ

(r)
t − ŷt

)2
+ 8Y 2 ln(R+ 1)

6 min
r=0,...,R

{
inf

u∈B1(Ur)

{
T∑
t=1

(yt − u · xt)2

}
+ cUrXY

√
T ln(2d)

}
+ z , (4.20)

where the last inequality follows by assumption (4.18), and where we set

z , 8Y 2 ln(R+ 1) + c′Y 2 .

Let u∗T ∈ arg minu∈Rd
{∑T

t=1(yt − u · xt)2 + 2c ‖u‖1XY
√
T ln(2d)

}
. Next, we proceed by

considering three cases: U0 < ‖u∗T ‖1 < UR, ‖u∗T ‖1 6 U0, and ‖u∗T ‖1 > UR.

Case 1: U0 < ‖u∗T ‖1 < UR. Let r∗ , min
{
r = 0, . . . , R : Ur > ‖u∗T ‖1

}
. Note that r∗ > 1

since ‖u∗T ‖1 > U0. By (4.20) we have

T∑
t=1

(yt − ŷt)2 6 inf
u∈B1(Ur∗ )

{
T∑
t=1

(yt − u · xt)2

}
+ cUr∗XY

√
T ln(2d) + z

6
T∑
t=1

(yt − u∗T · xt)2 + 2c ‖u∗T ‖1XY
√
T ln(2d) + z ,

where the last inequality follows from u∗T ∈ B1(Ur∗) and from the fact that Ur∗ 6 2 ‖u∗T ‖1
(since, by definition of r∗, ‖u∗T ‖1 > Ur∗−1 = Ur∗/2). Finally, we obtain (4.19) by definition of
u∗T and z , 8Y 2 ln(R+ 1) + c′Y 2.

Case 2: ‖u∗T ‖1 6 U0. By (4.20) we have

T∑
t=1

(yt − ŷt)2 6

{
T∑
t=1

(yt − u∗T · xt)2 + cU0XY
√
T ln(2d)

}
+ z , (4.21)

which yields (4.19) by the equality cU0XY
√
T ln(2d) = cY 2 (by definition of U0), by adding

2c ‖u∗T ‖1XY
√
T ln(2d) > 0, and by definition of u∗T and z.

Case 3: ‖u∗T ‖1 > UR. By construction, we have ŷt ∈ [−Y, Y ], and by assumption, we have
yt ∈ [−Y, Y ], so that

T∑
t=1

(yt − ŷt)2 6 4Y 2T 6
T∑
t=1

(yt − u∗T · xt)2 + 2cURXY
√
T ln(2d)

6
T∑
t=1

(yt − u∗T · xt)2 + 2c ‖u∗T ‖1XY
√
T ln(2d) ,

where the second inequality follows by 2cURXY
√
T ln(2d) = 2cY 22R > 4Y 2T (since 2R >

2T/c by definition of R), and the last inequality uses the assumption ‖u∗T ‖1 > UR. We finally get
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(4.19) by definition of u∗T .
This concludes the proof of the first claim (4.19). The second claim follows by bounding

‖u‖1 6 U .

4.5 Extension to a fully adaptive algorithm and other discussions

The Scaling algorithm of Section 4.4 uses prior knowledge of Y , Y/X , and T . In order to obtain
a fully automatic algorithm, we need to adapt efficiently to these quantities. Adaptation to Y is
possible via a technique already used for the LEG algorithm, i.e., by updating the clipping range
Bt based on the past observations |ys|, s 6 t− 1.

In parallel to adapting to Y , adaptation to Y/X can be carried out as follows. We replace the
exponential sequence {U0, . . . , UR} by another exponential sequence {U ′0, . . . , U ′R′}:

U ′r ,
1

T k
2r√

T ln(2d)
, r = 0, . . . , R′ , (4.22)

where R′ , R+
⌈
log2 T

2k
⌉

= dlog2(2T/c)e+ +
⌈
log2 T

2k
⌉
, and where k > 1 is a fixed constant.

On the one hand, for T > T0 , max
{

(X/Y )1/k, (Y/X)1/k
}

, we have (cf. (4.17) and (4.22)),

[U0, UR] ⊂ [U ′0, U
′
R′ ] .

Therefore, the analysis of Theorem 4.4 applied to the grid {U ′0, . . . , UR′} yields8 a regret bound of
the order of UXY

√
T ln d+Y 2 ln(R′+1). On the other hand, clipping the predictions to [−Y, Y ]

ensures the crude regret bound 4Y 2T0 for small T < T0. Hence, the overall regret for all T > 1 is
of the order of

UXY
√
T ln d+ Y 2 ln(k lnT ) + Y 2 max

{
(X/Y )1/k, (Y/X)1/k

}
.

Adaptation to an unknown time horizon T can be carried out via a standard doubling trick on
T . However, to avoid restarting the algorithm repeatedly, we can use a time-varying exponential
sequence {U ′−R′(t)(t), . . . , U

′
R′(t)(t)} where R′(t) grows at the rate of k ln(t). This gives9 us an

algorithm that is fully automatic in the parameters U , X , Y and T . In this case, we can show that
the regret is of the order of

UXY
√
T ln d+ Y 2k ln(T ) + Y 2 max

{(√
TX/Y

)1/k
,
(
Y/(
√
TX)

)1/k}
,

where the last two terms are negligible when T → +∞ (since k > 1).

Next we discuss another possible improvement. There is a logarithmic gap between the upper
bound of Theorem 4.1 and the lower bound of Theorem 4.2. This gap comes from a concentration
argument on a specific sequence of (unbounded) normal random variables in the proof of the lower
bound. We think that in the interval κ > cd (for some large enough absolute constant c > 0),
we can recover the missing ln(1 + 2κ) in our lower bound by using the argument of [Vov01,

8The proof remains the same by replacing 8Y 2 ln(R+ 1) with 8Y 2 ln(R′ + 1).
9Each time the exponential sequence (U ′r) expands, the weights assigned to the existing points U ′r are appropriately

reassigned to the whole new sequence.
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Theorem 2] instead. As for the interval κ 6 cd, we could use a different sequence of random
variables with bounded support, and, e.g., Assouad’s Lemma.

4.A Proofs

4.A.1 Proof of Theorem 4.2

To prove Theorem 4.2, we perform a reduction to the stochastic batch setting (via the standard
online to batch trick), and employ a version of the lower bound proved in [Tsy03] for convex ag-
gregation.

We first need the following notations. Let T ∈ N∗. Let (S, µ) be a probability space for which
we can find an orthonormal family10 (ϕj)16j6d with d elements in the space of square-integrable
functions on S, which we denote by L2(S, µ) thereafter. For all u ∈ Rd and γ, σ > 0, denote by
Pγ,σu the joint law of the i.i.d. sequence (Xt, Yt)16t6T such that

Yt = γϕu(Xt) + σεt ∈ R , (4.23)

where ϕu ,
∑d

j=1 ujϕj , where the Xt are i.i.d points in S drawn from µ, and where the εt are
i.i.d standard Gaussian random variables such that (Xt)16t6T and (εt)16t6T are independent.

The next lemma is a direct adaptation of [Tsy03, Theorem 2], which we state with our notations
in a slightly more precise form (we make clear how the lower bound depends on the noise level σ
and the signal level γ).

Lemma 4.1 (An extension of Theorem 2 of [Tsy03]).
Let d, T ∈ N∗ and γ, σ > 0. Let (S, µ) be a probability space for which we can find an orthonor-
mal family (ϕj)16j6d in L2(S, µ), and consider the Gaussian linear model (4.23). Then there exist
absolute constants c4, c5, c6, c7 > 0 such that

inf
f̂T

sup
u∈Rd+∑
j uj61

{
EPγ,σu

∥∥∥f̂T − γϕu∥∥∥2

µ

}

>


c4
dσ2

T if d√
T
6 c5

γ
σ ,

c6γσ

√
1
T ln

(
1 + dσ√

Tγ

)
if c5

γ
σ <

d√
T
6 c7

γd

σ
√

ln(1+d)
,

where the infimum is taken over all estimators11 f̂T : S → R, where the supremum is taken
over all nonnegative vectors with total mass at most 1, and where ‖f‖2µ ,

∫
S f(x)2µ(dx) for all

measurable functions f : S → R.

Note that the lower bound we stated in Theorem 4.2 is very similar to T times the above lower
bound with γ ∼ X and σ ∼ Y (recall that κ ,

√
TUX/(2dY )). The main difference is that

10An example is given by S = [−π, π], µ(dx) = dx/(2π), and ϕj(x) =
√

2 sin(jx) for all 1 6 j 6 d and
x ∈ [−π, π]. We will use this particular case later.

11As usual, an estimator is a measurable function of the sample (Xt, Yt)16t6T , but the dependency on the sample
is omitted.
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the latter holds for unbounded observations, while we need bounded observations yt, 1 6 t 6
T . A simple concentration argument will show that these observations lie in [−Y, Y ] with high
probability, which will yield the desired lower bound. The proof of Theorem 4.2 thus consists of
the following steps:

• step 1: reduction to the stochastic batch setting;

• step 2: application of Lemma 4.1;

• step 3: concentration argument.

Proof (of Theorem 4.2): We first assume that
√

ln(1 + 2d)/
(
2d
√

ln 2
)
6 κ 6 1. The case when

κ > 1 will easily follow from the monotonicity of the minimax regret in κ (see the end of the
proof). We set

T , 1 +
⌈
(4dκ)2

⌉
, U , 1 , and X ,

2dκY√
T

, (4.24)

so that T > 2,
√
TUX/(2dY ) = κ, and X 6 Y/2 (since

√
T > 4dκ).

Step 1: reduction to the stochastic batch setting.
First note that by clipping to [−Y, Y ], we have

inf
(f̃t)t

sup
‖xt‖∞6X
|yt|6Y

{
T∑
t=1

(
yt − f̃t(xt)

)2 − inf
‖u‖16U

T∑
t=1

(yt − u · xt)2

}

= inf
(f̃t)t
|f̃t|6Y

sup
‖xt‖∞6X
|yt|6Y

{
T∑
t=1

(
yt − f̃t(xt)

)2 − inf
‖u‖16U

T∑
t=1

(yt − u · xt)2

}
, (4.25)

where the first infimum is taken over all online forecasters12 (f̃t)t, where the second infimum is
restricted to online forecasters (f̃t)t which output predictions in [−Y, Y ], and where both suprema
are taken over all individual sequences (xt, yt)16t6T ∈ (Rd × R)T such that |y1|, . . . , |yT | 6 Y

and ‖x1‖∞ , . . . , ‖xT ‖∞ 6 X .

Next we use the standard online to batch conversion (cf. Section 2.5.1) to bound from below
the right-hand side of (4.25) by T times the lower bound of Lemma 4.1, which we apply to the
particular case where S = [−π, π], µ(dx) = dx/(2π), and ϕj(x) =

√
2 sin(jx) for all 1 6 j 6 d

and x ∈ [−π, π]. Let

γ , c8X and σ ,
c9Y√
lnT

, (4.26)

for some absolute constants c8, c9 > 0 to be chosen by the analysis.

Let (f̃t)t>1 be any online forecaster whose predictions lie in [−Y, Y ], and consider the estimator

12Recall that an online forecaster is a sequence of functions (f̃t)t>1, where f̃t : Rd × (Rd × R)t−1 → R maps at
time t the new input xt and the past data (xs, ys)16s6t−1 to a prediction f̃t

(
xt; (xs, ys)16s6t−1

)
. However, unless

mentioned otherwise, we omit the dependency in (xs, ys)16s6t−1, and only write f̃t(xt).
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f̂T defined for each sample (Xt, Yt)16t6T and each new input X ′ by

f̂T

(
X ′; (Xt, Yt)16t6T

)
,

1

T

T∑
t=1

f̃t

(
γϕ(X ′); (γϕ(Xs), Ys)16s6t−1

)
, (4.27)

where ϕ , (ϕ1, . . . , ϕd), and where we explicitely wrote all the dependencies12 of the f̃t, t =

1, . . . , T .
Takeu∗ ∈ Rd+ achieving the supremum13 in Lemma 4.1 for the estimator f̂T . Note that ‖u∗‖1 6 1.
Besides, consider the i.i.d. random sequence (xt, yt)16t6T in Rd ×R defined for all t = 1, . . . , T

by
xt ,

(
γϕ1(Xt), . . . , γϕd(Xt)

)
and yt , γϕu∗(Xt) + σεt , (4.28)

where ϕu∗ ,
∑d

j=1 u
∗
jϕj (so that yt = u∗ · xt + σεt for all t), where the Xt are i.i.d points in

[−π, π] drawn from the uniform distribution µ(dx) = dx/(2π), and where the εt are i.i.d standard
Gaussian random variables such that (Xt)t and (εt)t are independent. All the expectations below
are thus taken with respect to the probability distribution Pγ,σu∗ .

By standard manipulations (e.g., using the tower rule and Jensen’s inequality), we get the
following lower bound. A detailed proof can be found after the proof of the present theorem
(page 154).

Lemma 4.2 (Reduction to the batch setting).
With (f̃t)16t6T , f̂T , and u∗ defined above, we have

E

[
T∑
t=1

(
yt − f̃t(xt)

)2 − inf
‖u‖161

T∑
t=1

(
yt − u · xt

)2]
> T E

∥∥∥f̂T − γϕu∗∥∥∥2

µ
.

Step 2: application of Lemma 4.1.
Next we use Lemma 4.1 to prove that, for some absolute constants c9, c11 > 0,

T E
∥∥∥f̂T − γϕu∗∥∥∥2

µ
>

c11c
2
9

ln
(
2 + 16d2

)dY 2κ
√

ln(1 + 1/κ) . (4.29)

By Lemma 4.1 and by definition of u∗, we have

E
∥∥∥f̂T − γϕu∗∥∥∥2

µ

>


c4
dσ2

T if d√
T
6 c5

γ
σ ,

c6γσ

√
1
T ln

(
1 + dσ√

Tγ

)
if c5

γ
σ <

d√
T
6 c7γd

σ
√

ln(1+d)
.

>


c4c29

T (lnT )dY
2 if d√

T
6 c5

γ
σ ,

c6c8c9√
lnT

UXY

√
1
T ln

(
1 + c9dY

c8
√
T (lnT )UX

)
if c5

γ
σ <

d√
T
6 c7γd

σ
√

ln(1+d)
,

(4.30)

13If the supremum in Lemma 4.1 is not achieved, then we can instead take an ε-almost-maximizer for any ε > 0.
Letting ε→ 0 in the end will conclude the proof.



150 CHAPTER 4. ADAPTIVE AND OPTIMAL ONLINE LINEAR REGRESSION ON `1-BALLS

where the last inequality follows from (4.26) and from U = 1.

The above lower bound is only meaningful if the following condition holds true:

d√
T

6
c7γd

σ
√

ln(1 + d)
. (4.31)

But, by definition of T , 1 +
⌈
(4dκ)2

⌉
and by the assumption

√
ln(1 + 2d)/

(
2d
√

ln 2
)
6 κ,

elementary manipulations show that (4.31) actually holds true whenever14 c9 6 c7c8c10, where

c10 , 1
2 inf

x>2
√

ln 3
ln 2

{
x√

1+dx2e

}
(note that c10 > 0).

Therefore, if c9 6 c7c8c10, then (4.30) entails that

E
∥∥∥f̂T − γϕu∗∥∥∥2

µ

> min

 c4c
2
9

T (lnT )
dY 2,

c6c8c9√
lnT

UXY

√√√√ 1

T
ln

(
1 +

c9dY

c8

√
T (lnT )UX

) . (4.32)

Moreover, note that if c9 6 c82
√

ln 2, then c8 > c9/(2
√

ln 2) > c9/(2
√

lnT ). In this case, since
x 7→ x

√
ln(1 +A/x) is nondecreasing on R∗+ for all A > 0, we can replace c8 with c9/(2

√
lnT )

in the next expression and get

c6c8c9√
lnT

UXY

√√√√ 1

T
ln

(
1 +

c9dY

c8

√
T (lnT )UX

)

>
c6c

2
9

2 lnT
UXY

√
1

T
ln

(
1 +

2dY√
TUX

)
=

c6c
2
9

T (lnT )
dY 2κ

√
ln(1 + 1/κ) ,

where we used the definition of κ ,
√
TUX/(2dY ).

In the sequel we will choose the absolute constants c8 and c9 such that

c9 6 c7c8c10 and c9 6 c82
√

ln 2 . (4.33)

Therefore, by the above remarks, by the fact that lnT , ln
(
1 + d(4dκ)2e

)
6 ln

(
2 + 16d2

)
(since

κ 6 1 by assumption), and multiplying both sides of (4.32) by T , we get

T E
∥∥∥f̂T − γϕu∗∥∥∥2

µ
> min

{
c4c

2
9

ln
(
2 + 16d2

)dY 2,
c6c

2
9

ln
(
2 + 16d2

)dY 2κ
√

ln(1 + 1/κ)

}

>
c11c

2
9

ln
(
2 + 16d2

)dY 2κ
√

ln(1 + 1/κ) ,

where we set c11 , min
{
c4/
√

ln 2, c6

}
, and where used the fact that x 7→ x

√
ln(1 + 1/x) is

nondecreasing on R∗+, so that its value at x = κ 6 1 is smaller than
√

ln 2. This concludes the

14By definition of γ and σ, (4.31) is equivalent to T lnT > c29/(c
2
7c

2
8)(Y/X)2 ln(1 + d). But by definition of

X and by the assumption κ >
√

ln(1 + 2d)/(2d
√

ln 2), we have Y/X 6 1/c10. Therefore, (4.31) is implied by
T lnT > c29/(c

2
7c

2
8c

2
10) ln(1 + d), which in turn is implied by the condition c9 6 c7c8c10 (by definition of T ).
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proof of (4.29).

Combining Lemma 4.2 and (4.29), we get

E

[
T∑
t=1

(
yt − f̃t(xt)

)2 − inf
‖u‖161

T∑
t=1

(
yt − u · xt

)2]

>
c11c

2
9

ln
(
2 + 16d2

)dY 2κ
√

ln(1 + 1/κ) . (4.34)

Step 3: concentration argument.
At this stage it would be tempting to conclude by using (4.34) to assert that since the expectation is
lower bounded, then there is at least one individual sequence with the same lower bound. However,
we have no boundedness guarantee about such individual sequence since the random observations
yt lie outside of [−Y, Y ] with positive probability. Next we prove that the probability of the event

A ,
T⋂
t=1

{
|yt| 6 Y

}
is actually close to 1, and that

E
[
IA
(
L̂T − inf

‖u‖161
LT (u)

)]
>

1

2

c11c
2
9

ln
(
2 + 16d2

)dY 2κ
√

ln(1 + 1/κ) . (4.35)

(Note a missing factor of 2 between (4.34) and (4.35).) The last lower bound will then enable to
conclude the proof of this theorem.

Set L̂T ,
∑T

t=1

(
yt − f̃t(xt)

)2 and LT (u) ,
∑T

t=1

(
yt − u · xt

)2 for all u ∈ Rd. Denote by Ac

the complement of A, and by IA and IAc the corresponding indicator functions. We have

E
[
IA
(
L̂T − inf

‖u‖161
LT (u)

)]
= E

[
L̂T − inf

‖u‖161
LT (u)

]
− E

[
IAc
(
L̂T − inf

‖u‖161
LT (u)

)]
>

c11c
2
9

ln
(
2 + 16d2

)dY 2κ
√

ln(1 + 1/κ)− E
[
IAcL̂T

]
, (4.36)

where the last inequality follows by (4.34) and by the fact that LT (u) > 0 for all u ∈ Rd. The
rest of the proof is dedicated to upper bounding the above quantity E

[
IAcL̂T

]
by half the term on

its left. This way, we will have proved (4.35).

First note that

E
[
IAcL̂T

]
, E

[
IAc

T∑
t=1

(
yt − f̃t(xt)

)2]
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6 E

[
IAc

T∑
t=1

(
4Y 2I{|yt|6Y } +

(
yt − f̃t(xt)

)2I{|yt|>Y })
]

(4.37)

6 4TY 2P
(
Ac
)

+

T∑
t=1

E
[(
yt − f̃t(xt)

)2 I{|εt|> Y
2σ}
]
, (4.38)

where (4.37) follows from the fact that the online forecaster (f̃t)t outputs its predictions in [−Y, Y ].
As for (4.38), note by definition of yt that |yt| 6 ‖u∗‖1 γ ‖ϕ(Xt)‖∞+σ|εt| 6 γ

√
2 +σ|εt| since

‖u∗‖1 6 1 and |ϕj(x)| , |
√

2 sin(jx)| 6
√

2 for all j = 1, . . . , d and x ∈ R. Therefore, by
definition of γ , c9X , and sinceX 6 Y/2 (by definition ofX), we get |yt| 6 c9

√
2Y/2+σ|εt| 6

Y/2 + σ|εt| provided that

c9 6
1√
2
, (4.39)

which we assume thereafter. The above remarks show that {|yt| > Y } ⊂ {|εt| > Y/(2σ)}, which
entails (4.38). By the same comments and since |f̃t| 6 Y , we have, for all t = 1, . . . , T ,

E
[(
yt − f̃t(xt)

)2I{|εt|> Y
2σ}
]
6 E

[(
Y/2 + σ|εt|+ Y

)2I{|εt|> Y
2σ}
]

6 2

(
3Y

2

)2

P
(
|εt| >

Y

2σ

)
+ 2σ2E

[
ε2
t I{|εt|> Y

2σ}
]

(4.40)

6
9Y 2

2
P
(
|εt| >

Y

2σ

)
+ 2σ2

√
3P1/2

(
|εt| >

Y

2σ

)
(4.41)

6 9Y 2T−1/(8c29) + 2
c2

9Y
2

ln 2

√
6T−1/(16c29) , (4.42)

where we used the following arguments. Inequality (4.40) follows by the elementary inequality
(a+ b)2 6 2(a2 + b2) for all a, b ∈ R. To get (4.41) we used the Cauchy-Schwarz inequality and
the fact that E

[
ε4
t

]
= 3 (since εt is a standard Gaussian random variable). Finally, (4.42) follows

by definition of σ , c9Y/
√

lnT 6 c9Y/
√

ln 2 and from the fact that, since εt is a standard
Gaussian random variable,

P
(
|εt| >

Y

2σ

)
6 2e−

1
2( Y2σ )

2

= 2e
− 1

2

(√
lnT

2c9

)2

= 2T−1/(8c29) .

Using the fact that P
(
Ac
)
6
∑T

t=1 P
(
|yt| > Y

)
6
∑T

t=1 P
(
|εt| > Y/(2σ)

)
6 2T 1−1/(8c29) by

the inequality above and substituting (4.42) in (4.38), we get

E
[
IAcL̂T

]
6 8Y 2T 2−1/(8c29) + 9Y 2T 1−1/(8c29) +

2c2
9

√
6

ln 2
Y 2T 1−1/(16c29)

6 8Y 222−1/(8c29) + 9Y 221−1/(8c29) +
2c2

9

√
6

ln 2
Y 221−1/(16c29) , (4.43)

where the last inequality follows from the fact that Tα 6 2α for all α < 0 (since T > 2) and from
a choice of c9 such that c9 < 1/4 (which we assume thereafter).
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In order to further upper bound E
[
IAcL̂T

]
, we use the following technical lemma, which is proved

after the proof of the present theorem (see page 155).

Lemma 4.3. There exists an absolute constant c13 > 0 such that, for all c9 ∈ (0, c13),

8Y 222−1/(8c29) + 9Y 221−1/(8c29) +
2c2

9

√
6

ln 2
Y 221−1/(16c29) 6

1

2

c11c
2
9

ln
(
2 + 16d2

)dY 2κ
√

ln(1 + 1/κ) .

We can now fix the values of the constants c8 and c9 and conclude the proof. Choosing c9 and
c8 , max

{
c9/(2

√
ln 2), c9/(c7c10)

}
such that c9 < 1/

√
2 (condition (4.39)), c9 < 1/4, and

c9 6 c13, then the condition (4.33) also holds, and (4.43) combined with Lemma 4.3 entails that

E
[
IAcL̂T

]
6

1

2

c11c
2
9

ln
(
2 + 16d2

)dY 2κ
√

ln(1 + 1/κ) .

Substituting the last inequality in (4.36), we get that

E
[
IA
(
L̂T − inf

‖u‖161
LT (u)

)]
>

1

2

c11c
2
9

ln
(
2 + 16d2

)dY 2κ
√

ln(1 + 1/κ) .

By the above lower bound and the fact that, Pγ,σu∗ -almost surely, ‖xt‖∞ 6 γ
√

2 6 X for all
t = 1, . . . , T (since γ , c9X and c9 6 1/

√
2), we get that

sup
‖x1‖∞,...,‖xT ‖∞6X

y1,...,yT∈R

{
IA
(
L̂T − inf

‖u‖161
LT (u)

)}
>

1

2

c11c
2
9

ln
(
2 + 16d2

)dY 2κ
√

ln(1 + 1/κ) .

Therefore, by definition ofA ,
⋂T
t=1

{
|yt| 6 Y

}
, of L̂T ,

∑T
t=1

(
yt− f̃t(xt)

)2, and of LT (u) ,∑T
t=1(yt−u ·xt)2, we get that, for all online forecasters (f̃t)t>1 whose predictions lie in [−Y, Y ],

sup
‖x1‖∞,...,‖xT ‖∞6X
|y1|,...,|yT |6Y

{
T∑
t=1

(
yt − f̃t(xt)

)2 − inf
‖u‖16U

T∑
t=1

(yt − u · xt)2

}

>
1

2

c11c
2
9

ln
(
2 + 16d2

)dY 2κ
√

ln(1 + 1/κ) .

Combining the last lower bound with (4.25) and setting c1 , c11c
2
9/2 concludes the proof under

the assumption
√

ln(1 + 2d)/
(
2d
√

ln 2
)
6 κ 6 1.

Assume now that κ > 1.
The stated lower bound follows from the case when κ = 1 and by monotonicity of the minimax
regret in κ (when d and Y are kept constant).

More formally, by the first part of this proof (when κ = 1), we can fix T > 1, U1 > 0, and
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X > 0 such that
√
TU1X/(2dY ) = 1 and

inf
(f̃t)t

sup
‖xt‖∞6X
|yt|6Y

{
T∑
t=1

(
yt − f̃t(xt)

)2 − inf
‖u‖16U1

T∑
t=1

(yt − u · xt)2

}

>
c1

ln
(
2 + 16d2

)dY 2
√

ln 2 ,

where the infimum is taken over all online forecasters (f̃t)t>1, and where the supremum is taken
over all individual sequences bounded by X and Y .

Now take κ > 1, and setU , κU1 > U1, so that
√
TUX/(2dY ) = κ (since

√
TU1X/(2dY ) = 1).

Moreover, for all individual sequences bounded by X and Y , the regret on B1(U) is at least as
large as the regret on B1(U1) (since U > U1). Combining the latter remark with the lower bound
above and setting c2 , c1

√
ln 2 concludes the proof.

Proof (of Lemma 4.2): We use the same notations as in Step 1 of the proof of Theorem 4.2.
Let (X ′, y′) be a random copie of (X1, y1) independent of (Xt, yt)16t6T , and define the random
vector x′ ,

(
γϕ1(X ′), . . . , γϕd(X

′)
)
. By the tower rule, we have

E
[
(yt − f̃t(xt)2

]
= E

[
E
[
(yt − f̃t(xt))2

∣∣(xs, ys)s6t−1

]]
= E

[
(y′ − f̃t(x′)2

]
,

where we used the fact that f̃t is built on the past data (xs, ys)s6t−1 and that (x′, y′) and (xt, yt)

are both independent of (xs, ys)s6t−1 and are identically distributed. Similarly E
[
(yt−u·xt)2

]
=

E
[
(y′ − u · x′)2

]
. Using the last equalities and the fact that E

[
inf{. . .}

]
6 inf E

[
{. . .}

]
, we get

E

[
T∑
t=1

(
yt − f̃t(xt)

)2 − inf
‖u‖161

T∑
t=1

(
yt − u · xt

)2]

> T

(
1

T

T∑
t=1

E
[(
y′ − f̃t(x′)

)2]− inf
‖u‖161

E
[(
y′ − u · x′

)2])

> T

(
E
[(
y′ − f̂T (X ′)

)2]− inf
‖u‖161

E
[(
y′ − u · x′

)2]) (4.44)

= T E
[(
γϕu∗(X

′)− f̂T (X ′)
)2] (4.45)

= T E
∥∥∥f̂T − γϕu∗∥∥∥2

µ
.

Inequality (4.44) follows by definition of f̂T , T−1
∑T

t=1 f̃t (see (4.27)) and by Jensen’s inequal-
ity. As for Inequality (4.45), it follows by expanding the square(

y′ − f̂t(X ′)
)2

=
(
γϕu∗(X

′)− f̂T (X ′) + y′ − γϕu∗(X ′)
)2
,

by noting that E
[
y′ − γϕu∗(X ′)

∣∣X ′] = 0 (via (4.28)) and by the fact that

inf
‖u‖161

E
[(
y′ − u · x′

)2]
= E

[(
y′ − γϕu∗(X ′)

)2]
,
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where we used ‖u∗‖1 6 1 (by definition of u∗) and u · x′ = γϕu(X ′). This concludes the
proof.

Proof (of Lemma 4.3): We use the same notations and assumptions as in the proof of Theo-
rem 4.2. Since the function x 7→ x

√
ln(1 + 1/x) is nondecreasing on R∗+ and since κ > κmin ,√

ln(1 + 2d)/(2d
√

ln 2) by assumption, we have

c11c
2
9

ln
(
2 + 16d2

)dY 2κ
√

ln(1 + 1/κ)

>
c11c

2
9

ln
(
2 + 16d2

)dY 2κmin

√
ln(1 + 1/κmin)

=
c11c

2
9

2
√

ln 2
Y 2

√
ln(1 + 2d)

√
ln
[
1 + 2d

√
ln 2/

√
ln(1 + 2d)

]
ln
(
2 + 16d2

) (4.46)

>
c11c

2
9

2
√

ln 2
Y 2c12 , (4.47)

where c12 denotes the infimum of the last fraction of (4.46) over all d > 1; in particular, c12 > 0.
It is now easy to see that by choosing the absolute constant c13 > 0 small enough (where c13 can
be expressed in terms of c11 and c12), we have, for all c9 ∈ (0, c13),

8 · 22−1/(8c29) + 9 · 21−1/(8c29) +
2c2

9

√
6

ln 2
21−1/(16c29) 6

c11c
2
9

2
√

ln 2
c12 .

Multiplying both sides of the last inequality by Y 2 and combining it with (4.47) concludes the
proof.

4.A.2 Proof of Theorem 4.3

Proof (of Theorem 4.3): The proof follows directly from Corollary 2.2 of Chapter 2 and from the
fact that the Lipschitzified losses are larger than their clipped versions. Indeed, first note that, by
definition of ŷt and Bt+1 > |yt|, we have

T∑
t=1

(
yt − ŷt

)2
6

T∑
t=1

t:|yt|6Bt

(
yt −

[
ût · xt

]
Bt

)2
+

T∑
t=1

t:|yt|>Bt

(Bt+1 +Bt)
2

6
T∑
t=1

t:|yt|6Bt

˜̀
t(ût) +

(
1 +

1√
2

)2 T∑
t=1

t:Bt+1>Bt

B2
t+1

6
T∑
t=1

˜̀
t(ût) + 4

(
1 +

1√
2

)2

Y 2 , (4.48)

where the second inequality follows from the fact that:

• if |yt| 6 Bt then (yt − [ût · xt]Bt)2 6 ˜̀t(ût) by Equation (4.12);
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• if |yt| > Bt, which is equivalent to Bt+1 > Bt by definition of Bt+1, then Bt 6 Bt+1/
√

2,
so that Bt+1 +Bt 6

(
1 + 1/

√
2
)
Bt+1.

As for the third inequality above, we used the non-negativity of ˜̀t(ût) and upper bounded the
geometric sum

∑T
t:Bt+1>Bt

B2
t+1 in the same way as in [CBMS07, Theorem 6], i.e., setting K ,

dlog2 max16t6T y
2
t e,

T∑
t:Bt+1>Bt

B2
t+1 6

K∑
k=−∞

2k = 2K+1 6 4Y 2 .

To bound (4.48) further from above, we now use the fact that, by construction, the LEG algorithm
is the adaptive EG± algorithm applied to the modified loss functions ˜̀t. Therefore, we get from
Corollary 2.1 (cf. Chapter 2) that

T∑
t=1

˜̀
t(ût) 6 inf

‖u‖16U

T∑
t=1

˜̀
t(u)

+ 4U

√√√√( T∑
t=1

www∇˜̀t(ût)www2

∞

)
ln(2d) + U

(
8 ln(2d) + 12

)
max

16t6T

www∇˜̀t(ût)www
∞
.

(4.49)

We can now follow the same lines as in Corollary 2.2, except that we use the particular shape of
the Lipschitzified losses. First note from (4.11) that max16t6T ‖∇˜̀t(ût)‖∞ 6 2

(
1 +
√

2
)
XY .

Moreover, using (4.9) and the definition of ŷt in Figure 4.3, we can see that the gradients satisfy
∇˜̀t(ût) = −2

(
yt− [ût ·xt]Bt

)
xt = −2(yt− ŷt)xt. Combining the last equality with the upper

bound ‖xt‖∞ 6 X , we get thatwww∇˜̀t(ût)www2

∞
6 4X2(yt − ŷt)2 .

Substituting the last two inequalities in (4.49) and combining the resulting bound with (4.48), we
get

T∑
t=1

(
yt − ŷt

)2
6 inf
‖u‖16U

T∑
t=1

˜̀
t(u) + 8UX

√√√√( T∑
t=1

(
yt − ŷt

)2)
ln(2d)

+
(
16 ln(2d) + 24

)(
1 +
√

2
)
UXY + 4

(
1 + 1/

√
2
)2
Y 2 .

Setting C ,
(
16 ln(2d) + 24

)(
1 +
√

2
)
UXY + 4

(
1 + 1/

√
2
)2
Y 2, L̂T ,

∑T
t=1(yt − ŷt)2, and

L̃∗T , min{u∈Rd:‖u‖16U}
∑T

t=1
˜̀
t(u), the previous inequality can be simply rewritten as

L̂T 6 L̃∗T + C + 8UX

√
L̂T ln(2d) .

Solving for L̂T via Lemma A.2 in Appendix A.4, we get that

L̂T 6 L̃∗T + C +
(

8UX
√

ln(2d)
)√

L̃∗T + C +
(

8UX
√

ln(2d)
)2
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6 L̃∗T + 8UX

√
L̃∗T ln(2d) + 8UX

√
C ln(2d) + 64U2X2 ln(2d) + C . (4.50)

But, rewriting C = C1 + C2 with C1 ,
(
16 ln(2d) + 24

)(
1 +
√

2
)
UXY and C2 , 4

(
1 +

1/
√

2
)2
Y 2, we get that

UX
√
C ln(2d) 6 UX

√
C1 ln(2d) + UX

√
C2 ln(2d)

= UX
√
C1 ln(2d) + 2

(
1 + 1/

√
2
)
UXY

√
ln(2d) , (4.51)

where

UX
√
C1 ln(2d) = UX ln(2d)

√(
16 + 24/ ln(2d)

)(
1 +
√

2
)
UXY

6
√
U2X2 + UXY ln(2d)

√(
16 + 24/ ln(2)

)(
1 +
√

2
)(
UXY + U2X2

)
=

√(
16 + 24/ ln(2)

)(
1 +
√

2
) (
UXY + U2X2

)
ln(2d) .

Combining (4.50) with (4.51) and the last inequality and performing some simple upper bounds,
we conclude the proof.

4.B Lemmas

The next lemma is useful to prove Theorem 4.1. At the end of this section, we also provide an
elementary lemma about the exponentially weighted average forecaster combined with clipping.

Lemma 4.4. Let d, T ∈ N∗, and U,X, Y > 0. The minimax regret on B1(U) for bounded base
predictions and observations satisfies

inf
F

sup
‖xt‖∞6X, |yt|6Y

{
T∑
t=1

(yt − ŷt)2 − inf
‖u‖16U

T∑
t=1

(yt − u · xt)2

}

6 min

{
3UXY

√
2T ln(2d), 32 dY 2 ln

(
1 +

√
TUX

dY

)
+ dY 2

}
,

where the infimum is taken over all forecasters F and where the supremum extends over all se-
quences (xt, yt)16t6T ∈ (Rd×R)T such that |y1|, . . . , |yT | 6 Y and ‖x1‖∞ , . . . , ‖xT ‖∞ 6 X .

Proof: We treat each of the two terms in the above minimum separately.

Step 1: We prove that their exists a forecaster F whose worst-case regret on B1(U) is upper
bounded by 3UXY

√
2T ln(2d).

First note that if U > (Y/X)
√
T/(2 ln(2d)), then the upper bound 3UXY

√
2T ln(2d) >

3TY 2 > TY 2 is trivial (by choosing the forecaster F which outputs ŷt = 0 at each time t).

We can thus assume that U < (Y/X)
√
T/(2 ln(2d)). Consider the EG± algorithm as given in

[KW97, Theorem 5.11], and denote by ût ∈ B1(U) the linear combination it outputs at each time
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t > 1. Then, by the aforementioned theorem, this forecaster satisfies, uniformly over all individual
sequences bounded by X and Y , that

T∑
t=1

(yt − ût · xt)2 − inf
‖u‖16U

T∑
t=1

(yt − u · xt)2

6 2UXY
√

2T ln(2d) + 2U2X2 ln(2d)

6 2UXY
√

2T ln(2d) + 2

(
Y

√
T

2 ln(2d)

)
UX ln(2d) (4.52)

6 3UXY
√

2T ln(2d) ,

where (4.52) follows from the assumption UX < Y
√
T/(2 ln(2d)). This concludes the first step

of this proof.

Step 2: We prove that their exists a forecaster F whose worst-case regret on B1(U) is upper
bounded by 32 dY 2 ln

(
1 +

√
TUX
dY

)
+ dY 2.

Such a forecaster is given by the algorithm SeqSEWB,η
τ of Section 3.3.1 (Chapter 3) tuned

with B = Y , η = 1/(8Y 2) and τ = Y/(
√
TX). Indeed, by Proposition 3.1 of Chapter 3, the

cumulative square loss of this algorithm is upper bounded by

inf
u∈Rd

{
T∑
t=1

(
yt − u · xt

)2
+ 32 ‖u‖0 Y

2 ln

(
1 +

√
TX ‖u‖1
‖u‖0 Y

)}
+ dY 2

6 inf
‖u‖16U

{
T∑
t=1

(
yt − u · xt

)2}
+ 32dY 2 ln

(
1 +

√
TXU

dY

)
+ dY 2 ,

where the last inequality follows by monotonicity15 in ‖u‖0 and ‖u‖1 of the second term of the
left-hand side. This concludes the proof.

Next we recall a regret bound satisfied by the standard exponentially weighted average fore-
caster applied to clipped base forecasts. Assume that at each time t > 1, the forecaster has access
to K > 1 base forecasts ŷ(k)

t ∈ R, k = 1, . . . ,K, and that for some known bound Y > 0 on the
observations, the forecaster predicts at time t as

ŷt ,
K∑
k=1

pk,t
[
ŷ

(k)
t

]
Y
.

In the equation above, [x]Y , min{Y,max{−Y, x}} for all x ∈ R, and the weight vectors

15Note that for all A > 0, the function x 7→ x ln(1 + A/x) (continuously extended at x = 0) has a nonnegative
first derivative and is thus nondecreasing on R+.
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pt ∈ RK are given by p1 = (1/K, . . . , 1/K) and, for all t = 2, . . . , T , by

pk,t ,
exp

(
−η
∑t−1

s=1

(
ys −

[
ŷ

(k)
s

]
Y

)2
)

∑K
j=1 exp

(
−η
∑t−1

s=1

(
ys −

[
ŷ

(j)
s

]
Y

)2
) , 1 6 k 6 K ,

for some inverse temperature parameter η > 0 to be chosen below. The next lemma is a straigth-
forward consequence of Theorem 2.2 in Chapter 2.

Lemma 4.5 (Exponential weighting with clipping). Assume that the forecaster knows beforehand
a bound Y > 0 on the observations |yt|, t = 1, . . . , T . Then, the exponentially weighted average
forecaster tuned with η 6 1/(8Y 2) and with clipping [ · ]Y satisfies

T∑
t=1

(
yt − ŷt

)2
6 min

16k6K

T∑
t=1

(
yt − ŷ(k)

t

)2
+

lnK

η
.

Proof (of Lemma 4.5): The proof follows straightforwardly from Theorem 2.2 in Chapter 2. To
apply the latter result, recall from Appendix A.2 that the square loss is 1/(8Y 2)-exp-concave on
[−Y, Y ] and thus η-exp-concave16 (since η 6 1/(8Y 2) by assumption). Therefore, by definition
of our forecaster above, Theorem 2.2 yields

T∑
t=1

(
yt − ŷt

)2
6 min

16k6K

T∑
t=1

(
yt −

[
ŷ

(k)
t

]
Y

)2
+

lnK

η
.

To conclude the proof, note for all t = 1, . . . , T and k = 1, . . . ,K that |yt| 6 Y by assumption,
so that clipping the base forecasts to [−Y, Y ] can only improve prediction, i.e.,

(
yt−

[
ŷ

(k)
t

]
Y

)2
6(

yt − ŷ(k)
t

)2.

4.C Additional tools

The next approximation argument is originally due to Maurey, and was used under various forms,
e.g., in [Nem00, Tsy03, BN08, SSSZ10].

Lemma 4.6 (Approximation argument). Let U > 0 and m ∈ N∗. Define the following finite
subset of B1(U):

B̃U,m ,


(
k1U

m
, . . . ,

kdU

m

)
: (k1, . . . , kd) ∈ Zd,

d∑
j=1

|kj | 6 m

 ⊂ B1(U) .

Then, for all (xt, yt)16t6T ∈
(
Rd × R

)T such that max16t6T ‖xt‖∞ 6 X ,

inf
u∈B̃U,m

T∑
t=1

(yt − u · xt)2 6 inf
u∈B1(U)

T∑
t=1

(yt − u · xt)2 +
TU2X2

m
.

16This means that for all y ∈ [−Y, Y ], the function x 7→ exp
(
−η(y − x)2

)
is concave on [−Y, Y ].
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Proof: The proof is quite standard and follows the same lines as [Nem00, Proposition 5.2.2] or
[BN08, Theorem 2] who addressed the aggregation task in the stochastic setting. We rewrite this
argument below in our online deterministic setting.

Fixu∗ ∈ argminu∈B1(U)

∑T
t=1(yt−u·xt)2. Define the probability distribution π = (π−d, . . . , πd) ∈

R2d+1
+ by

πj ,



(u∗j )+

U
if j > 1;

(u∗j )−

U
if j 6 −1;

1−
d∑
j=1

|u∗j |
U

if j = 0 .

Let J1, . . . , Jm ∈ {−d, . . . , d} be i.i.d. random integers drawn from π, and set

ũ ,
U

m

m∑
k=1

eJk ,

where (ej)16j6d is the canonical basis of Rd, where e0 , 0, and where e−j , −ej for all
1 6 j 6 d. Note that ũ ∈ B̃U,m by construction. Therefore,

inf
u∈B̃U,m

T∑
t=1

(yt − u · xt)2 6 E

[
T∑
t=1

(yt − ũ · xt)2

]
. (4.53)

The rest of the proof is dedicated to upper bounding the last expectation. Expanding all the squares
(yt − ũ · xt)2 = (yt − u∗ · xt + u∗ · xt − ũ · xt)2, first note that

E

[
T∑
t=1

(yt − ũ · xt)2

]
=

T∑
t=1

(yt − u∗ · xt)2 +
T∑
t=1

E
[
(u∗ · xt − ũ · xt)2

]
+ 2

T∑
t=1

(yt − u∗ · xt)E
[
u∗ · xt − ũ · xt

]
. (4.54)

But by definition of ũ and π,

E
[
ũ
]

= U E
[
eJ1

]
= U

d∑
j=−d

πjej

= U
d∑
j=1

((
u∗j
)

+

U
ej +

(
u∗j
)
−

U
(−ej)

)
= U

d∑
j=1

u∗j
U
ej = u∗ ,

so that E
[
ũ · xt

]
= u∗ · xt for all 1 6 t 6 T . Therefore, the last sum in (4.54) above equals zero,

and

E
[(
u∗ · xt − ũ · xt

)2]
= Var

(
ũ · xt

)
=
U2

m2

m∑
k=1

Var
(
eJk · xt

)
6
U2X2

m
,
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where the second equality follows from ũ ·xt = (U/m)
∑m

k=1 eJk ·xt and from the independence
of the Jk, 1 6 k 6 m, and where the last inequality follows from |eJk ·xt| 6 ‖eJk‖1 ‖xt‖∞ 6 X

for all 1 6 k 6 m.

Combining (4.54) with the remarks above, we get

E

[
T∑
t=1

(yt − ũ · xt)2

]
6

T∑
t=1

(yt − u∗ · xt)2 +
TU2X2

m

= inf
u∈B1(U)

T∑
t=1

(yt − u · xt)2 +
TU2X2

m
,

where the last line follows by definition of u∗. Substituting the last inequality in (4.53) concludes
the proof.

The combinatorial result below (or variants of it) is well-known; see, e.g., [Tsy03, BN08]. We
reproduce its proof for the convenience of the reader. We use the notation e , exp(1).

Lemma 4.7 (An elementary combinatorial upper bound).
Let m, d ∈ N∗. Denoting by |E| the cardinality of a set E, we have∣∣∣∣∣∣

(k1, . . . , kd) ∈ Zd :
d∑
j=1

|kj | 6 m


∣∣∣∣∣∣ 6

(
e(2d+m)

m

)m
.

Proof (of Lemma 4.7): Setting (k′−j , k
′
j) ,

(
(kj)−, (kj)+

)
for all 1 6 j 6 d, and k′0 , m −∑d

j=1 |kj |, we have ∣∣∣∣∣∣
(k1, . . . , kd) ∈ Zd :

d∑
j=1

|kj | 6 m


∣∣∣∣∣∣

6

∣∣∣∣∣∣
(k′−d, . . . , k

′
d) ∈ N2d+1 :

d∑
j=−d

k′j = m


∣∣∣∣∣∣

=

(
2d+m

m

)
(4.55)

6

(
e(2d+m)

m

)m
. (4.56)

To get inequality (4.55), we used the (elementary) fact that the number of 2d + 1 integer-valued
tuples summing up to m is equal to the number of lattice paths from (1, 0) to (2d + 1,m) in
N2, which is equal to

(
2d+1+m−1

m

)
. As for inequality (4.56), it follows straightforwardly from a

classical combinatorial result stated, e.g., in [Mas07, Proposition 2.5].
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Chapter 5

Minimax rates of internal and swap
regrets

Within the framework of prediction with expert advice under linear losses, we study the minimax
rates of two performance criteria related to game theory: internal regret and swap regret. We first
prove the exact rates

√
T and

√
T lnK respectively for internal and swap regrets when the loss

vectors are i.i.d.. This shows that the missing
√

lnK factor between the known upper and lower
bounds of [SL05] and [Sto05] on internal regret is unnecessary in the stochastic i.i.d. setting. Sec-
ond, in the game with arbitrary deterministic loss vectors, we provide a lower bound of order

√
TK

on the swap regret; it improves on a lower bound of [BM07b]. Finally, we develop a generic tech-
nique that enables to reinterpret known deterministic regret bounds from a stochastic viewpoint,
but also to derive a new regret bound in the problem of learning with global cost functions.

NOTA: A large part of this chapter was presented at the conferences 42èmes Journées de Statistique
[Ger10b] and StatMathAppli 2010 [Ger10a]. Since then, [RST11] published an independent work
that has significant overlaps with Section 5.5. However, some important questions remain open
(see Section 5.1.2).
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5.1 Introduction

In this chapter, we consider a decision-theoretic variant1 of the framework of prediction with ex-
pert advice due to [FS97]. The problem is stated as a repeated game between a forecaster and
an environment. At each time round t ∈ N∗ = {1, 2, . . .}, the forecaster chooses a weight vec-
tor pt = (p1,t, . . . , pK,t) over K > 2 different actions, i.e., pt belongs to the simplex XK ,
{x ∈ RK+ ,

∑K
i=1 xi = 1}. The environment then reveals a loss vector `t , (`i,t)16i6K in

[0, 1]K ; each action i ∈ {1, . . . ,K} incurs the loss `i,t and the forecaster incurs the linear loss
pt · `t =

∑K
i=1 pi,t `i,t. After T > 1 time rounds, the cumulative loss of the forecaster equals∑T

t=1 pt · `t, and his primary goal is to minimize it. In the sequel, we assume for simplicity that
the loss sequence `1, . . . , `T is fixed in advance by the environment. However, by Section 2.3.1
(cf. Chapter 2), since we only consider deterministic forecasters, all upper bounds stated for indi-
vidual sequences also hold true for adversarial environments.

The weight vectors pt are chosen on the basis of the past loss vectors and can therefore be
seen as values of functions pt(`1, . . . , `t−1). We call strategy (of the forecaster) any sequence
(pt)t>1 of Borel functions pt : [0, 1]K(t−1) → XK . For notational convenience, we often omit the
dependency in (`1, . . . , `t−1) and write pt instead of pt(`1, . . . , `t−1).

A classical way to assess the quality of a strategy S = (pt)t>1 on a finite loss sequence
`1:T , (`1, . . . , `T ) is to compare its cumulative loss to that of the best action in hindsight. The
difference between these two quantities, i.e.,

Rext
T (S, `1:T ) ,

T∑
t=1

pt · `t − min
16j6K

T∑
t=1

`j,t , (5.1)

is called the external regret of the forecaster and measures his difficulty to mimic the best action
in hindsight while being compelled to output decisions in a sequential fashion. This performance
criterion was introduced in Chapter 2 and studied in Chapters 3 and 4.

In this chapter, we study two stronger notions of regret called internal regret and swap regret,
which play an important role in the theory of repeated games. Like for the external regret, the
cumulative loss of the forecaster is compared to that of the best strategy (in hindsight) in a given
reference class. However, the reference strategies are not external as for the external regret, but
are instead given by consistent modifications of the forecaster’s own strategy — hence the term
internal.

The notion of internal regret was first studied by [FV97, FV98, FV99] (see also [FL99, HMC00,
HMC01]). For any strategy S = (pt)t>1 and any finite loss sequence `1, . . . , `T ∈ [0, 1]K , the

1This prediction protocol corresponds to the framework of prediction with expert advice described in Figure 2.1
(Chapter 2) with D = XK , Y = [0, 1]K , the linear loss (p, `) ∈ XK × [0, 1]K 7→ p · `, and constant expert advice
ai,t = δi , (I{j=i})16j6K , i = 1, . . . ,K, t = 1, . . . , T .
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internal regret Rint
T (S, `1:T ) of the strategy S on the sequence `1:T , (`1, . . . , `T ) is defined by

Rint
T (S, `1:T ) ,

T∑
t=1

pt · `t − min
16i 6=j6K

T∑
t=1

pi→jt · `t , (5.2)

where the modified weight vector pi→jt ∈ XK is obtained from pt by replacing action i with
action j. Namely, for all k = 1, . . . ,K, the k-th component of pi→jt equals

(pi→jt )k =


0 if k = i,

pi,t + pj,t if k = j,

pk,t if k /∈ {i, j}.
(5.3)

Internal regret thus measures for all pairs (i, j), i 6= j, the regret the forecaster feels for not choos-
ing action j each time he chose action i (all loss vectors being equal). Intuitively, if a forecaster has
a small internal regret then he enjoys some stability properties. This has indeed been illustrated
in game theory: [FV97, FV99] showed that if all players of a finite randomized game choose a
strategy whose internal regret is almost surely sublinear in T , then the joint empirical frequencies
of play converge almost surely to an equilibrium set called the set of correlated equilibria (see also
[FL95, HMC00, SL07]). Internal regret also has some historical connections with another branch
of game theory called calibration: the existence of strategies with sublinear internal regret im-
plies the existence of calibrated forecasters (see [FV98] and the other references given in [CBL06,
Chapter 4]).

The notion of swap regret was introduced by [BM07b] (see also [GJ03] for the broader notion
of Φ-regret). The swap regret of a strategy is larger than its internal regret, since the pool of mod-
ified strategies {(pi→jt )t>1, i 6= j} to which the forecaster’s strategy is compared is extended to
all linear modifications {(ϕ(pt))t>1}, where ϕ extends over all linear mappings from the simplex
XK into itself. As is done in [Sto05, Chapter 3] via the Krein-Millman theorem, we can equiv-
alently define the swap regret Rsw

T (S, `1:T ) of a strategy S = (pt)t>1 on a finite loss sequence
`1, . . . , `T ∈ [0, 1]K by

Rsw
T (S, `1:T ) ,

T∑
t=1

pt · `t − min
F∈FK

T∑
t=1

pFt · `t , (5.4)

where FK denotes the set of all mappings F : {1 . . . ,K} → {1 . . . ,K} and where the modified
weight vector pFt ∈ XK is obtained from pt by replacing each action i with the action F (i).
Namely, for 1 6 j 6 K, the j-th component of pFt is defined by

(pFt )j =
∑

i:F (i)=j

pi,t . (5.5)

5.1.1 Known upper and lower bounds on internal and swap regrets

The existence of strategies with a small (sublinear in T ) internal regret on individual sequences was
first shown by [FV97]; see also [FL99, HMC00, HMC01]. More precisely, [FV97] designed an
algorithm whose internal regret on all individual sequences `1, . . . , `T ∈ [0, 1]K is upper bounded
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by
√

2KT . The dependence in T is correct (see below), but the dependence in K is far from being
optimal. Indeed, using an argument of [HMC01], [CBL03] proved the upper bound 2

√
T lnK for

a suitable exponentially weighted average forecaster. This bound was later lowered by [SL05] to√
T lnK via a new analysis based on a fixed-point property. Therefore, up to now, the best2 upper

bound on the minimax internal regret for individual sequences reads:

inf
S

sup
`1,...,`T∈[0,1]K

Rint
T (S, `1:T ) 6

√
T lnK , (5.6)

where the infimum is taken over all strategies S = (pt)t>1 of the forecaster. As shown by [Sto05],
the last upper bound cannot be improved more than by a logarithmic factor

√
lnK. Indeed, it is

proved in [Sto05, Theorem 3.3] that, for all K > 2 and all T > K2/192, the minimax internal
regret for i.i.d. loss vectors is bounded from below by

inf
S

sup
Q

EQ⊗T
[
Rint
T (S, `1:T )

]
>
√
T/
(
64
√

3
)
, (5.7)

where the infimum is taken over all strategies S = (pt)t>1, where the supremum is taken over all
probability distributions on [0, 1]K (endowed with its Borel σ-algebra), and where the loss vectors
`1, . . . , `T ∈ [0, 1]K are i.i.d. with common distribution Q. Since the minimax internal regret for
individual sequences is larger than the minimax internal regret with i.i.d. loss vectors, the inequal-
ities above show that the orders of magnitude in T and K of both minimax quantities lie between√
T and

√
T lnK. We note a missing

√
lnK factor between the lower and upper bounds.

In the same spirit, [BM07b] proved that there exists an (efficient) algorithm whose swap regret
is upper bounded by

√
(T/2)K lnK uniformly over all individual sequences; see also [SL05] for

an alternative proof with a less efficient algorithm (of combinatorial nature). Therefore, as of now,
the best upper bound on the minimax swap regret for individual sequences reads:

inf
S

sup
`1,...,`T∈[0,1]K

Rsw
T (S, `1:T ) 6

√
(T/2)K lnK .

The last upper bound was shown to be almost optimal by [BM07b], who exhibited a lower bound
of the order of

√
TK. Their lower bound has however two limitations: first, it is proved in a

randomized and adversarial setting for a quantity larger than the swap regret stricto sensu. Second,
it is proved only for rounds T that are sub-exponential in K. See Section 5.4 for further details.

5.1.2 Main contributions

The main contributions of this chapter are the following. The first one is related to the stochastic
protocol (i.i.d. loss vectors) while the other two ones are related to the deterministic protocol
(arbitrary loss vectors).

• In the stochastic protocol, we derive the exact minimax rates of internal regret and swap
regret for i.i.d. loss vectors. Using the same notations as above, we show that they are

2To be exact, the best upper bound known so far equals
√

T
2

ln[K(K − 1)] which is smaller but close to
√
T lnK.
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respectively of the order3 of
√
T and

√
T lnK:

inf
S

sup
Q

EQ⊗T
[
Rint
T (S, `1:T )

]
�
√
T and inf

S
sup
Q

EQ⊗T
[
Rsw
T (S, `1:T )

]
�
√
T lnK .

In particular, when the loss vectors are i.i.d., the optimal rate of internal regret is independent
of the ambient dimension K.

• We prove a lower bound of the order of
√
TK on the minimax swap regret for individual

sequences: setting c , 1/
(
16
√

128 ln(4/3)
)
, we show that, for all K > 2 and all T >

max
{

128c2K5,K
}

,

inf
S

sup
`1,...,`T∈[0,1]K

Rsw
T (S, `1:T ) > c

√
TK .

This lower bound is stronger than that of [BM07b, Theorem 9] since it holds for the swap
regret itself instead of a randomized variant of it (see Section 5.4). This solves a question
left open in [BM07b, Section 9]. Besides, we do not need their assumption that T be sub-
exponential in K.

Moreover, our lower bound of order
√
TK highlights a major difference between external

and swap regrets. On the one hand, as recalled in Chapter 2, the external regret behaves
similarly on i.i.d. loss vectors and on individual sequences. Indeed, combining Theorem 2.1
and Lemma 2.2 therein (cf. pages 46 and 62), we get that, using the same notations as above,
for all K > 1 and all T >

[
40e/(2e+ 1)

]
lnK,

2

2e+ 1

√
e T lnK

5(2e+ 1)
6 inf

S
sup
Q

EQ⊗T
[
Rext
T (S, `1:T )

]
6 inf

S
sup

`1,...,`T∈[0,1]K
Rext
T (S, `1:T ) 6

√
T

2
lnK .

On the other hand, contrary to external regret, swap regret is much harder to minimize with
individual sequences than with i.i.d. losses (compare the rates

√
TK and

√
T lnK above).

• We develop a stochastic technique to derive upper bounds on a generalized form of regret
including external, internal, and swap regrets. This technique provides a new insight on
the rates of these three types of regret and can be used to recover the best upper bounds
known so far. We also derive — in a non-constructive way — a new upper bound of order√
T lnK on the makespan regret, thus improving on the known bound of order ln(K)

√
T

of [EDKMM09].

As is detailed in Section 5.5.1, a similar stochastic technique was independently studied in
[RST11]. Since we work in a much more specific setting, we are able to get (sometimes
tight) explicit constants. Our proof relies on arguments such as Bernoullization and an
elementary maximal inequality for subgaussian random variables.

This work in progress raises some important questions. First, though the aforementioned
stochastic technique is useful to better understand the problem at hand (since it provides an upper

3We write aT,K � bT,K if and only if there exist two absolute constants c1, c2 > 0 and a sequence (tK)K>1 in N∗
such that c1bT,K 6 aT,K 6 c2bT,K for all K > 1 and all T > tK .
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bound on the minimax regret), it is not constructive. Designing explicit algorithms that achieve the
obtained upper bounds is an important task to be addressed in the future (e.g., is there any efficient
algorithm with a makespan regret at most of order

√
T lnK?). Note that the same issue arises in

[RST11]. Second, the question of the missing logarithmic factor
√

lnK between the lower and
upper bounds on the internal regret is still (partially) open. We did prove that the

√
lnK factor

is unnecessary for i.i.d. loss vectors, but we still do not know whether this is also the case for
arbitrary deterministic loss vectors.

Outline of the chapter

The rest of the chapter is organized as follows. In Section 5.2 we formally describe our setting and
notations and state some basic facts. In Section 5.3 we derive the

√
T minimax rate of internal

regret in a stochastic environment. In Section 5.4 we prove a lower bound of the order of
√
TK

on the minimax swap regret with individual sequences, together with the optimal rate
√
T lnK for

the minimax swap regret with i.i.d. loss vectors. The results in Sections 5.3 and 5.4 are obtained
in a constructive way. In Section 5.5 we provide a general (non-constructive) stochastic technique
to derive upper bounds with individual sequences on the quantities studied before and on other
ones. Finally, some technical proofs can be found in Section 5.A while some elementary lemmas
are provided in Section 5.B.

5.2 Setting, notations, and basic properties

5.2.1 Setting and notations

We give in Figure 5.1 a formal description of our repeated game. We consider two different as-
sumptions on the way the loss vectors `t are chosen before the beginning of the game: the `t can
either be drawn by a stochastic environment or they can form an individual sequence.

In the sequel, we denote by XK ,
{
x ∈ RK+ :

∑K
i=1 xi = 1

}
the simplex of order K and by

FK the set of all functions from {1, . . . ,K} to {1, . . . ,K}. We also set, for all x ∈ R,

bxc , sup
{
k ∈ Z : k 6 x

}
and dxe , inf

{
k ∈ Z : k > x

}
.

5.2.2 Basic properties

Next we recall some basic properties of external, internal, and swap regrets and well-known in-
equalities to compare them.

Equivalent definitions of external, internal, and swap regrets

In view of (5.1), the external regret can be rewritten as follows:

Rext
T (S, `1:T ) = max

16j6K

K∑
i=1

T∑
t=1

pi,t(`i,t − `j,t) . (5.8)
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Initial step: the environment chooses a sequence of loss vectors (`t)t∈N∗ ,
where the `t = (`i,t)i ∈ [0, 1]K will be revealed round after round. Two
different assumptions are considered:

• stochastic environment: (`t)t>1 is an i.i.d. sequence;

• individual sequence: (`t)t>1 is an arbitrary deterministic sequence.

At each time round t ∈ N∗,

1. the forecaster chooses a convex combination pt ∈ XK ;

2. the environment reveals the loss vector `t ∈ [0, 1]K ;

3. each action i incurs the loss `i,t and the forecaster incurs the linear loss
pt · `t =

∑K
i=1 pi,t `i,t.

Figure 5.1: Description of the online protocol. The environment can be either stochastic (i.i.d.
sequence) or deterministic (individual sequence).

As for the internal regret, note that since the weight vectors pi→jt and pt only differ in at most two
coordinates, many terms cancel out in the difference (5.2). Therefore, we get that

Rint
T (S, `1:T ) = max

16i 6=j6K

T∑
t=1

pi,t(`i,t − `j,t) . (5.9)

Finally, in view of (5.4) and (5.5), and noting that pFt · `t =
∑K

i=1 pi,t`F (i),t, the swap regret can
be rewritten as follows:

Rsw
T (S, `1:T ) = max

F∈FK

K∑
i=1

T∑
t=1

pi,t
(
`i,t − `F (i),t

)
=

K∑
i=1

max
16j6K

T∑
t=1

pi,t
(
`i,t − `j,t

)
. (5.10)

Comparison of external, internal, and swap regrets

The three notions of external, internal, and swap regret are closely related. Equations (5.1), (5.2),
and (5.4) show that

Rext
T 6 Rsw

T and Rint
T 6 Rsw

T . (5.11)

Internal and swap regrets are of the same order of magnitude in T since Rsw
T 6 K (Rint

T )+ by
(5.9) and (5.10), so that

Rint
T 6 Rsw

T 6 K (Rint
T )+ .

On the contrary, external and internal regrets are not necessarily of the same order of magnitude
in T . On the one hand, we can see from (5.8) and (5.9) that

Rext
T 6 (K − 1) (Rint

T )+ ,
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so that minimizing internal regret is a more difficult task than minimizing external regret (up to
the constant factor K − 1). On the other hand, we cannot upper bound the internal regret by a
constant times the external regret in the general case. Indeed, as shown by [SL05], there exists an
algorithm whose external regret is sublinear in T but whose internal regret grows linearly in T .

5.2.3 A new elementary upper bound on the internal regret

Next we design a strategy whose internal regret is almost bounded by min
{√

T lnK,T/K
}

uniformly over all individual sequences `1, . . . , `T ∈ [0, 1]K . The latter bound interpolates the√
T lnK bound of [SL05] and the trivial T/K bound satisfied by the forecaster choosing constant

weight vectors pt = (1/K, . . . , 1/K). Such an interpolation improves on the bound
√
T lnK for

large values of K since T/K 6
√
T lnK when K

√
lnK >

√
T .

If T is known in advance, the bound min
{√

T lnK,T/K
}

can be easily achieved. Indeed,
it suffices to predict either with uniform weight vectors if K

√
lnK >

√
T or with a strategy

attaining the upper bound
√
T lnK if K

√
lnK <

√
T (e.g., the strategy described in [SL05, The-

orem 3.1]). Next we design a simple trick which, up to a factor of
√

2 and a small remainder term,
achieves the bound min

{√
T lnK,T/K

}
without knowing T in advance.

Let S be any strategy whose internal regret after T time steps is upper bounded by
√
T lnK.

We denote its t-th weight vector by pSt (`1, . . . , `t−1) when applied to the loss sequence `1, `2, . . . ∈
[0, 1]K . Our meta-strategy (pt)t>1 is built on S as follows. We split the whole time interval N∗

into two periods {1, . . . , T0} and {T0 + 1, T0 + 2, . . .}, where

T0 ,
⌊
K2 lnK

⌋
+ 1 .

Note that T0 approximately satisfies K
√

lnK ≈
√
T0, so that K

√
lnK &

√
T for all T 6 T0

while K
√

lnK .
√
T for all T > T0 + 1. The last comment combined with the above remark

about the case when T is known in advance suggests to define our meta-strategy as follows. On
the first period, our meta-strategy outputs uniform weights, i.e.,

pt , (1/K, . . . , 1/K) , for all t ∈ {1, . . . , T0} . (5.12)

On the second period, we start the strategy S at time T0 +1 from scratch (i.e., the past information
(`1, . . . , `T0) is not used) and we output the same weight vectors as S, i.e.,

pt , p
S
t−T0

(`T0+1, . . . , `t−1) , for all t > T0 + 1 . (5.13)

Proposition 5.1 (A new elementary upper bound on the internal regret). Let K > 2. Then,
the internal regret of the strategy defined in (5.12) and (5.13) satisfies, for all T > 1 and all
`1, . . . , `T ∈ [0, 1]K ,

max
16i 6=j6K

T∑
t=1

pi,t(`i,t − `j,t) 6
√

2 min
{
T/K,

√
T lnK

}
+ 1/K .
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Remark 5.1. Up to a factor of
√

2 and a small remainder term, the above bound interpolates the
two aforementioned bounds

√
T lnK and T/K. In particular, it improves on the

√
T lnK bound

for large values of K. Note that it is achieved by a strategy that does not use prior knowledge
of T .

Proof: The case T 6 T0 is straightforward: since the weight vectors pt are uniform for all t 6 T0,

max
16i 6=j6K

T∑
t=1

pi,t(`i,t − `j,t) 6 T/K 6
√

2 min
{
T/K,

√
T lnK

}
+ 1/K .

We can thus assume that T > T0. Since the maximum is subadditive, we have

max
16i 6=j6K

T∑
t=1

pi,t(`i,t − `j,t) 6 max
16i 6=j6K

T0∑
t=1

pi,t(`i,t − `j,t) + max
16i 6=j6K

T∑
t=T0+1

pi,t(`i,t − `j,t) .

In the last inequality, the first term of the right-hand side is bounded from above by T0/K since
the first T0 weights are uniform. In view of the requirement imposed on the strategy S, the second
term is bounded from above by

√
(T − T0) lnK. Therefore, we get that

max
16i 6=j6K

T∑
t=1

pi,t(`i,t − `j,t) 6
T0

K
+
√

(T − T0) lnK

6
K2 lnK + 1

K
+
√

(T −K2 lnK) lnK (5.14)

= 1/K +
√
K2 ln2K +

√
T lnK −K2 ln2K

6 1/K +
√

2(T lnK) , (5.15)

where (5.14) follows from the fact that T0 − 1 6 K2 lnK 6 T0 (by definition of T0), and where
(5.15) follows from the elementary inequality

√
x+
√
y 6

√
2(x+ y) that holds for all x, y > 0 .

Since T > T0 > K2 lnK, we have
√
T lnK 6 T/K, so that√

2(T lnK) 6
√

2 min
{
T/K,

√
T lnK

}
.

This concludes the proof.

Since the bound T/K is easy to achieve, in the sequel, we focus on the most interesting regime
(i.e., the second one, when T is large enough). For example, we show in the next section that when
the loss vectors are i.i.d., the upper bound

√
T lnK can be lowered to

√
T .

5.3 Minimax rate of internal regret in a stochastic environment

In this section we derive the optimal rate of internal regret in a stochastic environment. Namely,
we consider the repeated game of Figure 5.1 with i.i.d. loss vectors: the `t ∈ [0, 1]K , t > 1, are
drawn independently at random from a common distribution Q ∈M+

1

(
[0, 1]K

)
.

In the sequel, all expectations are taken with respect to Q⊗T , where T > 1 is a fixed time horizon.
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We set mi , E[`i,1] = . . . = E[`i,T ] for all 1 6 i 6 K and define the gaps ∆i by

∆i , mi −mi∗ , where i∗ ∈ argmin
16j6K

mj .

Next we prove upper bounds for the internal regret that are of the order of
√
T with high

probability. This entails that the optimal rate of the expected internal regret against i.i.d. loss
vectors is

√
T and therefore does not depend on the ambient dimension K. For the sake of clarity,

we first assume that the distribution Q of the loss vectors is known to the forecaster, and then
extend the analysis to the case when it is unknown.

5.3.1 Known distribution

In this subsection we assume that the distribution Q of the loss vectors is known to the forecaster.
We explain below why it is possible to achieve an internal regret independent of the ambient di-
mension K. A key remark is that, contrary to the external regret where the weights pi,t appear
additively over i ∈ {1, . . . ,K}, the internal regret max16i 6=j6K

∑T
t=1 pi,t(`i,t − `j,t) scales as a

single pi,t (the sum over i is replaced by a maximum). Therefore, if several actions i are almost
optimal (i.e., if they almost minimize mi), then the probability mass of pt should be well spread
among those actions.

Let us illustrate the above remark with the toy situation where the losses `i,t, i = 1, . . . ,K,
t = 1, . . . , T , are i.i.d. Bernoulli random variables with parameter 1/2. In this case, the strategy
that constantly outputs the Dirac probability distribution pt = δi∗ at some i∗ ∈ argmin16i6K mi

has an expected internal regret of

E

[
max

16i 6=j6K

T∑
t=1

pi,t(`i,t − `j,t)

]
= E

[
T∑
t=1

`i∗,t − min
16j6K

T∑
t=1

`j,t

]
= E

[
max

16j6K

T∑
t=1

(
1

2
− `j,t

)]
.

By central limit arguments4, the last expectation is of the order of
√
T lnK. On the contrary, the

strategy that outputs uniform weight vectors pt = (1/K, . . . , 1/K) has an expected internal regret

E

[
max

16i 6=j6K

T∑
t=1

pi,t(`i,t − `j,t)

]
=

1

K
E

[
max

16i 6=j6K

T∑
t=1

(`i,t − `j,t)

]

of the order of
√
T lnK/K. Therefore, though tempting at first sight, the naive strategy (δi∗)t>1

is suboptimal against i.i.d. vectors, while averaging over the actions leads to a
√
T -internal regret.

Consider now the still ideal but slightly more difficult situation where the distribution Q of the
loss vectors is such that, for some K ′ ∈ {1, . . . ,K},

m1 = . . . = mK′ < mK′+1 = . . . = mK where mK′+1 −mK′ �
√

lnK

T
.

In this case assigning uniform weights to all the actions is clearly a bad choice, and a suitable

4See ,e.g., [CBFH+97, Section 3.2] or [CBL06, Theorem 3.7] where asymptotic lower bounds of order
√
T lnK

are derived on the minimax external regret.



5.3. MINIMAX RATE OF INTERNAL REGRET IN A STOCHASTIC ENVIRONMENT 173

trade-off between “selecting the good actions” and “spreading the probability mass sufficiently” is
necessary. A simple and reasonable strategy consists in assigning zero weights to the suboptimal
actions i ∈ {K ′ + 1, . . . ,K} and uniform weights to the optimal actions i ∈ {1, . . . ,K ′}; more
formally,

p1 = . . . = pK′ = 1/K ′ and pK′+1 = . . . = pK′ = 0 .

Then, due to the averaging, the expected internal regret is not of order
√
T ln(K ′) (as would be

the case with (δi∗)t>1) but at most of order
√
T ln(K ′)/K ′, hence a

√
T -rate again. The latter

statement is proved for a more general (smoothed) strategy in Theorem 5.1 and can be roughly
explained as follows: decomposing

∑T
t=1 pi(`i,t − `j,t) into a bias term and a deviation term,

E

[
max

16i 6=j6K

T∑
t=1

pi(`i,t − `j,t)

]

= E

[
max

16i 6=j6K

{
piT (mi −mj) + pi

T∑
t=1

(
`i,t − `j,t − (mi −mj)

)}]

≈ E

[
max

16i 6=j6K′

{
piT (mi −mj) + pi

T∑
t=1

(
`i,t − `j,t − (mi −mj)

)}]

=
1

K ′
E

[
max

16i 6=j6K′

T∑
t=1

(
`i,t − `j,t − (mi −mj)

)]
, (5.16)

where the approximation above (i.e., the restriction of the minimum to {1, . . . ,K ′}) follows from
the fact that pi = 0 for all i > K ′ and from the fact that, for all i 6 K ′ and j > K ′,

T (mi −mj)︸ ︷︷ ︸
�−
√
T lnK

+
T∑
t=1

(
`i,t − `j,t − (mi −mj)

)
︸ ︷︷ ︸

.
√
T lnK

� 0 ,

where we used the assumption mi −mj � −
√

(lnK)/T and the fact that, by Hoeffding-Azuma
inequality (cf. Lemma A.6 in Appendix A.5), the deviations

∑T
t=1

(
`i,t − `j,t − (mi −mj)

)
are

at most of the order of
√
T lnK with high-probability. But, by a well-known maximal inequality

stated in [Mas07, Lemma 2.3] (see Lemma A.3 in Appendix A.5), the expectation in (5.16) is at
most of the order of

√
T ln(K ′)/K ′.

Parameters: Q ∈M+
1

(
[0, 1]K

)
and T > 1.

At each time round t = 1, . . . , T ,
Output the same weight vector pint(Q) =

(
pint
i (Q)

)
16i6K defined by

pint
i (Q) ,

e−
√
T mi∑K

j=1 e
−
√
T mj

, 1 6 i 6 K , (5.17)

where mi , EQ[`i,1] for all i ∈ {1, . . . ,K}.

Figure 5.2: A simple internal-regret-minimizing strategy when the distribution Q of the loss
vectors is known (cf. Theorem 5.1).
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If the distribution Q of the loss vectors is arbitrary, then the trade-off between “selecting the
good actions” and “spreading the probability mass sufficiently” can be carried out in a continuous
way. The above explanation suggests to take constant weigth vectors pt = p1 such that pi,1
decreases continuously with the gap ∆i , mi −mi∗ . Such a choice is given by the exponential
weights defined in Figure 5.2. Note that the corresponding weights pint

i (Q) can be rewritten as

pint
i (Q) =

e−
√
T∆i∑K

j=1 e
−
√
T∆j

=
e−
√
T∆i

Keff
where Keff ,

K∑
j=1

e−
√
T∆j ∈ [1,K] .

Keff is a smooth generalization of the number K ′ considered in the example above; it can be
thought of as the effective number of good actions.

The next theorem provides an (optimal)
√
T -high-probability upper bound on the internal re-

gret of the simple strategy of Figure 5.2. In particular, it is independent of the ambient dimen-
sion K.

Theorem 5.1 (A
√
T -internal regret when the distribution Q of the loss vectors is known).

Let K > 2 and T > 1. Assume that the loss vectors `t ∈ [0, 1]K , 1 6 t 6 T , are drawn
independently at random from a common known distribution Q ∈M+

1 ([0, 1]K).
Then, for all δ ∈ (0, 1), with probability at least 1 − δ, the internal regret of the constant

sequence
(
pint(Q)

)
t>1

defined in (5.17) is upper bounded by

max
16i 6=j6K

T∑
t=1

pint
i (Q)(`i,t − `j,t) 6

3

Keff

√
T ln

(
3Keff

δ

)
6 3

√
T ln

(
3

δ

)
,

where Keff ,
∑K

i=1 e
−
√
T∆i ∈ [1,K] can be interpreted as the effective number of good actions.

The proof is postponed to Appendix 5.A. As noted in Remark 5.6 therein, a weighted union-
bound is key to derive an upper bound of the order of

√
T .

5.3.2 Unknown distribution

In this section the distribution Q of the loss vectors is no longer assumed to be known in advance
by the forecaster. We adapt the simple strategy of Figure 5.2 to this setting by a plug-in method:
the expectations mi , EQ[`i,1] are sequentially estimated over exponentially growing epochs {1}
and

{
2r−1 + 1, . . . , 2r

}
, r ∈ N∗. The resulting strategy is defined in Figure 5.3. We prove in

Theorem 5.2 that it still achieves a
√
T -internal regret with high probability.

Theorem 5.2 (A
√
T -internal regret when the distribution Q of the loss vectors is unknown).

There is an absolute constant c0 > 0 such that the following holds true. Let K > 2 and T > 1.
Assume that the loss vectors `t ∈ [0, 1]K , 1 6 t 6 T , are drawn independently at random from an
unknown distribution Q ∈M+

1 ([0, 1]K).
Then, for all δ ∈ (0, 1), with probability at least 1−δ, the internal regret of the strategy defined

in Figure 5.3 is upper bounded by

max
16i 6=j6K

T∑
t=1

pi,t(`i,t − `j,t) 6 c0

√
T exp

(
2
√

2 ln(4/δ)
)

+ 1 .
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Parameter: none.

Initialization: output the weight vector p1 = (1/K, . . . , 1/K) ∈ XK .

For each regime r ∈ N∗,

1. Set m̂(r)
i =

1

2r−1

2r−1∑
t=1

`i,t for all i ∈ {1, . . . ,K};

2. At each time round t ∈
{

2r−1 + 1, . . . , 2r
}

,

output the same weight vector pt , p
(r) =

(
p

(r)
i

)
16i6K defined by

p
(r)
i =

exp
(
−
√

2r−1 m̂
(r)
i

)
K∑
j=1

exp
(
−
√

2r−1 m̂
(r)
j

) , 1 6 i 6 K . (5.18)

Figure 5.3: An internal-regret-minimizing strategy when the distribution Q of the loss vectors is
unknown (cf. Theorem 5.2).

The proof of Theorem 5.2 is postponed to Appendix 5.A. It is a simple adaptation of that
of Theorem 5.1. The only but important additional tool is a “backward weighted union-bound”
carried out at the end of the proof.

Note that an explicit upper bound on the absolute constant c0 can be computed at the end of
the proof. However, since for the sake of clarity, we sometimes performed crude upper bounds, its
value may be far from optimal.

Though Q is unknown, the bound of the above theorem is still independent of the ambient
dimension K. Moreover, even if the deviation factor exp

(
2
√

2 ln(4/δ)
)

above is much larger
than the more standard factor

√
T ln(3/δ) of Theorem 5.1, it is still small enough to yield a

bound of order
√
T in expectation. It suffices to integrate the above high-probability bound (see

Section A.6) and to combine it with the lower bound of [Sto05] to get the following.

Corollary 5.1 (Minimax rate of internal regret with i.i.d. loss vectors).
There exist absolute constants c1, c2, c3 > 0 such that the following holds true. Let K > 2 and
T > c1K

2. Then, the minimax internal regret with i.i.d. loss vectors satisfies

c2

√
T 6 inf

S
sup

Q∈M+
1 ([0,1]K)

EQ⊗T

[
max

16i 6=j6K

T∑
t=1

pi,t(`i,t − `j,t)

]
6 c3

√
T ,

where the infimum is taken over all strategies S = (pt)t>1 of the forecaster, and where, in the last
expectation, the loss vectors `1, . . . , `T are i.i.d. with common distribution Q.

The proof of Corollary 5.1 is postponed to Appendix 5.A. Again, explicit bounds on the ab-
solute constants c1,c2,c3 can easily be computed at the end of the proof, but their values have not
been optimized.
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5.4 Lower bound on the swap regret with individual sequences

In this section we prove a lower bound of order
√
TK on the minimax swap regret with indi-

vidual sequences. This lower bound solves a question left open in [BM07b] — see below. It
also highlights a major difference between external and swap regrets: contrary to external regret,
swap regret is much harder to minimize with individual sequences than with i.i.d. losses — see
Section 5.4.2.

5.4.1 Main result

The main result of this section is the following.

Theorem 5.3 (Lower bound on the minimax swap regret).
There exists an absolute constant c > 0 such that the following holds true. Let K > 2 and
T > max

{
128c2K5,K

}
. Then the minimax swap regret with individual sequences satisfies

inf
S

sup
`1,...,`T∈[0,1]K

{
T∑
t=1

pt · `t − min
F∈FK

T∑
t=1

pFt · `t

}
> c
√
TK ,

where the infimum is taken over all strategies S = (pt)t>1 of the forecaster, where FK denotes the
set of all functions from {1, . . . ,K} to {1, . . . ,K}, and where the transformed weight vector pFt
is defined in (5.5). In particular, we prove the theorem for c = 1/

(
16
√

128 ln(4/3)
)
.

The above theorem solves an open problem stated in [BM07b, Section 9]. The latter authors
already proved a lower bound of order

√
TK but only in a weak sense:

• Their lower bound was stated in a randomized and adversarial setting for a quantity larger
than the swap regret stricto sensu (which makes the lower bound easier to prove). Their
adversarial setting is defined recursively as follows. The environment – or adversary – has
a strategy: it chooses a sequence (πt)t>1 of conditional probability distributions on [0, 1]K

such that πt
(
d`t
∣∣ (`s,ps, Is)s6t−1,pt

)
is the law of `t conditionally on the available data(

(`s,ps, Is)s6t−1,pt
)
. At each time t, the forecaster picks It ∈ {1, . . . ,K} at random

such that, conditionally on the past data (`s, Is)16s6t−1, the random variables It and `t
are independent and It = i with probability pi,t. The weight vectors pt are now measurable
functions of (`s, Is)16s6t−1, and the corresponding sequence of functions (pt)t>1 is called a
randomized strategy. Then, setting δIt , (I{It=i})16i6K , Theorem 9 of [BM07b] provides
a lower bound on the quantity

sup
(πt)t>1

inf
S rand

E

[
T∑
t=1

δIt · `t − min
F∈FK

T∑
t=1

δFIt · `t

]
,

where the supremum is taken over all adversaries (πt)t>1, where the infimum is taken
over all randomized strategies S, and where the expectation is taken with respect to all
sources of randomness (i.e., (`t, It)16t6T ). By Jensen’s inequality and by the fact that
E
[
δIt
∣∣ (`s, Is)s6t−1, `t

]
= pt, the above quantity is larger than

sup
(πt)t>1

inf
S rand

E

[
T∑
t=1

pt · `t − min
F∈FK

T∑
t=1

pFt · `t

]
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> sup
Q∈M+

1 ([0,1]K)

inf
S

EQ

[
T∑
t=1

pt · `t − min
F∈FK

T∑
t=1

pFt · `t

]
(5.19)

= inf
S

sup
`1,...,`T∈[0,1]K

{
T∑
t=1

pt · `t − min
F∈FK

T∑
t=1

pFt · `t

}
, (5.20)

where the supremum in (5.19) is restricted5 to the set of all probability distributions on
[0, 1]KT (the corresponding expectation is taken with respect to (`1, . . . , `T ) with joint dis-
tribution Q), and where (5.20) follows from minimax duality (cf. Theorem 5.4 of the next
section).

Therefore, our lower bound is stronger than the one of [BM07b, Theorem 9]. It solves
a question left open in [BM07b, Section 9]: the authors showed that, in the randomized
setting described above, it was not possible to ensure a worst-case swap regret of εT in a
number of rounds T sublinear in K. They asked whether such impossiblity result remained
true in the distributional setting (i.e., in our own non-randomized setting, with pt instead
of δFIt), where the task of the forecaster seems easier. Our lower bound provides a positive
answer: a worst-case swap regret of εT is only possible for T at least of the order of K/ε2.

• The lower bound
√
TK/160 − 1 of [BM07b, Theorem 9] is only stated for K 6 T 6

exp(K/288)/
√
K, therefore, only for rounds T that are sub-exponential in K. On the

contrary, our lower bound holds for all T > max
{

128c2K5,K
}

.

The proof of Theorem 5.3 is postponed to Appendix 5.A.2. We use the key equality (5.10)
of Section 5.2.2 to rewrite the swap regret as a sum of K ′ , K/2 internal regrets on time sub-
intervals of length T/K ′. The

√
T -lower bound on the internal regret of [Sto05, Theorem 3.3]

then yields a lower bound on the swap regret of order K ′
√
T/K ′ =

√
TK ′. We make this

statement more precise by using techniques borrowed from [Sto05, Theorem 3.3]. Namely, we
use a reduction to stochastic losses for which, at each time t, only two of them are small, and then
use Pinsker’s inequality. However, due to the larger complexity of swap regret, our analysis is
more involved than for internal regret — see the construction by induction in Appendix 5.A.2.

5.4.2 A major difference with classical works on external regret

In this section we point out a major difference between external and swap regrets: contrary to
external regret, swap regret is much harder to minimize with individual sequences than with i.i.d.
losses6.

Indeed, on the one hand, all known lower bounds on the minimax external regret with individ-
ual sequences are proved with i.i.d. loss sequences (whose distribution may depend on the strategy
of the forecaster). This is the case in the full information setting (see Section 2.3.2 in Chapter 2),
but also in the bandit setting (cf. [ACBFS02, Theorem 5.1]), or in the label-efficient prediction
setting (cf. [CBLS05, Theorem 13]).

5Since in (5.19) the environment is oblivious to the forecaster’s past moves, the infimum inf{S rand} can be restricted
to non-randomized strategies, i.e., such that pt is a measurable function of (`s)16s6t−1 (by Jensen’s inequality).

6As of now, we do not know if their is such difference for the internal regret. In any case, contrary to swap regret,
such difference cannot be too large since the minimax internal regret for individual sequences is at most a factor of√

lnK larger than the minimax internal regret for i.i.d. loss vectors — cf. (5.6) and (5.7).
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On the other hand, there is a large gap between the minimax swap regret for individual se-
quences and the minimax swap regret for i.i.d. loss vectors. Indeed, as shown below, if the
loss vectors are i.i.d. with common distribution Q ∈ M+

1

(
[0, 1]K

)
, then the expected swap re-

gret can be made as small as
√
T lnK (up to a constant factor) uniformly over all distributions

Q ∈ M+
1

(
[0, 1]K

)
. On the contrary, we proved in Theorem 5.3 that the minimax swap regret

for individual sequences is at least of the order of
√
TK: setting c , 1/

(
16
√

128 ln(4/3)
)
, we

showed that, for all K > 2 and all T > max
{

128c2K5,K
}

,

inf
S

sup
`1,...,`T∈[0,1]K

{
T∑
t=1

pt · `t − min
F∈FK

T∑
t=1

pFt · `t

}
> c
√
TK ,

where the infimum is taken over all strategies S = (pt)t>1 of the forecaster. This lower bound
was derived with piecewise i.i.d. loss vectors. Therefore, the lack of stationarity in the loss se-
quence deteriorates the ability of the forecaster to minimize his swap regret. This is in contrast with
the external regret, for which arbitrary loss sequences are as easy to control as i.i.d. loss sequences.

Next we prove the aforementioned
√
T lnK bound: we design a simple strategy whose ex-

pected swap regret is at most of the order of
√
T lnK uniformly over all distributions Q ∈

M+
1

(
[0, 1]K

)
. This upper bound is optimal (up to constant factors). Indeed, by the lower bound

of order
√
T lnK on the external regret proved in Lemma 2.2 of Chapter 2 (which a fortiori

implies a lower bound on the swap regret by (5.11)), we get that, for all K > 1 and all T >[
40e/(2e+ 1)

]
lnK,

inf
S

sup
Q∈M+

1 ([0,1]K)

EQ⊗T

[
T∑
t=1

pt · `t − min
F∈FK

T∑
t=1

pFt · `t

]
>

2

2e+ 1

√
e T lnK

5(2e+ 1)
, (5.21)

where the infimum is taken over all strategies S = (pt)t>1 of the forecaster and where in the last
expectation, the loss vectors `1, . . . , `T are i.i.d. with common distribution Q.

For the sake of simplicity, we first assume that the distribution Q is known in advance by the
forecaster. In this case, we set mi , EQ[`i,1] for all i = 1, . . . ,K and consider the simple strategy
that constantly outputs the Dirac probability distribution

pt = δi∗ , 1 6 t 6 T , where i∗ ∈ argmin
16i6K

mi .

The following proposition indicates that this simple strategy, which we proved to be suboptimal for
internal regret with i.i.d. loss vectors (cf. Section 5.3), is however sufficient to attain the optimal
rate of swap regret.

Proposition 5.2. Let K > 2 and T > 1. Assume that the loss vectors `t ∈ [0, 1]K , 1 6 t 6 T ,
are drawn independently at random from a common known distribution Q ∈ M+

1 ([0, 1]K). Then
the swap regret of the constant strategy (δi∗)t>1 described above satisfies

EQ⊗T

[
T∑
t=1

δi∗ · `t − min
F∈FK

T∑
t=1

δFi∗ · `t

]
6

√
T

2
lnK .
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Proof: The proof uses arguments that are similar to the ones of Theorem 5.1, but is even simpler
due to the simpler form of the weight vector δi∗ . Therefore, we only sketch below the main lines.

First note that since δFi∗ = δF (i∗) for all F ∈ FK , we get that minF∈FK
∑T

t=1 δ
F
i∗ · `t =

min16j6K
∑T

t=1 `j,t, so that the swap regret reduces to the external regret:

EQ⊗T

[
T∑
t=1

δi∗ · `t − min
F∈FK

T∑
t=1

δFi∗ · `t

]
= EQ⊗T

[
T∑
t=1

`i∗,t − min
16j6K

T∑
t=1

`j,t

]

6 Tmi∗ − min
16j6K

{
Tmj

}
︸ ︷︷ ︸

= 0

+EQ⊗T

[
max

16j6K

T∑
t=1

(mj − `j,t)

]
︸ ︷︷ ︸

6
√

(T/2) lnK

,

where the last inequality follows from the fact that mini ai − mini bi 6 maxi(ai − bi) for all
(ai)i, (bi)i ∈ RK , and where the upper bound by

√
(T/2) lnK follows from Hoeffding’s in-

equality combined with an elementary maximal inequality for subgaussian random variables (cf.
Lemmas A.5 and A.3 respectively in Appendix A.5). This concludes the proof.

We only stated a result in expectation. Note that a similar bound of the order of
√
T ln(2K/δ)

can be seen to hold true with probability at least 1− δ. Moreover, if the distribution Q of the loss
vectors is unknown to the forecaster, then we can also derive a bound of the order of

√
T ln(2K/δ)

by adapting the above strategy via a plug-in method based on a doubling trick — in the same
spirit as in Section 5.3.2, except that the weights are much simpler here. More precisely, set
p1 = (1/K, . . . , 1/K) ∈ XK and set pt = p(r) for all t ∈ {2r−1 + 1, . . . , 2r}, r > 1, where

p(r) , δîr , with îr ∈ argmin
16j6K

m̂
(r)
j = argmin

16j6K

 1

2r−1

2r−1∑
t=1

`j,t

 .

Then, adapting the proof of Proposition 5.2 through the use a “backward weighted union-bound”
as in the proof of Theorem 5.2, we could prove the following7 (the proof is omitted for the sake of
concision).

Proposition 5.3. LetK > 2 and T > 1. Assume that the loss vectors `t ∈ [0, 1]K , 1 6 t 6 T , are
drawn independently at random from a common unknown distribution Q ∈ M+

1 ([0, 1]K). Then,
for some absolute constant c4 > 0, the swap regret of the strategy defined above satisfies, for all
δ > 0, with probability at least 1− δ,

T∑
t=1

pt · `t − min
F∈FK

T∑
t=1

pFt · `t 6 c4

√
T ln

(
2K

δ

)
.

Integrating the last upper bound (via Lemma A.7 in Appendix A.6) and combining it with the
lower bound (5.21), we get the next corollary.

7Contrary to Theorem 5.2, we are able to prove a bound that grows root-logarithmically in 1/δ. This is due to the
simpler form of the weights (Dirac probability distributions) compared to those of Figure 5.3 (exponential weights).
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Corollary 5.2 (Minimax rate of swap regret with i.i.d. loss vectors).
There exist absolute constants c5, c6, c7 > 0 such that the following holds true. Let K > 2 and
T > c5 lnK. Then, the minimax swap regret with i.i.d. loss vectors satisfies

c6

√
T lnK 6 inf

S
sup

Q∈M+
1 ([0,1]K)

EQ⊗T

[
T∑
t=1

pt · `t − min
F∈FK

T∑
t=1

pFt · `t

]
6 c7

√
T lnK ,

where the infimum is taken over all strategies S = (pt)t>1 of the forecaster and where in the last
expectation, the loss vectors `1, . . . , `T are i.i.d. with common distribution Q.

5.5 A stochastic technique for upper bounds with individual sequences

In this second part of the chapter, we develop a general stochastic technique to upper bound the
minimax regret on arbitrary deterministic sequences. This technique is non-constructive but can be
used for more general forms of regret than the ones studied before. It relies on a minimax duality
theorem that enables to rewrite the minimax regret as a maximin regret where the loss vectors are
random with a known joint distribution (see Sections 5.5.1 and 5.5.2 below). In Section 5.5.3 we
then use this technique to recover known upper bounds on the external, internal and swap regrets.
Finally, in Section 5.5.4, we derive a new upper bound of order

√
T lnK on the makespan regret,

thus improving on the known bound of order ln(K)
√
T of [EDKMM09].

As is detailed in Section 5.5.1, page 183, a similar technique has been independently studied
in [RST11]. Since we work in a much more specific setting, we are able to get (sometimes tight)
explicit constants. Our proofs rely on less involved arguments (e.g., the Bernoullization technique
of [Sch03] and an elementary maximal inequality for subgaussian random variables of [Mas07]).

We also stress that, though this stochastic technique is useful to better understand the problem
at hand (since it provides an upper bound on the minimax regret), it is non-constructive. Designing
explicit algorithms that achieve the obtained upper bounds is an important task to be addressed in
the future (e.g., an efficient algorithm with a

√
T lnK makespan regret). Note that the same issue

arises in [RST11].

5.5.1 Definitions and sketch of the stochastic technique

Next we introduce a generalized form of regret that includes as special cases the external, internal,
and swap regrets, as well as the regret associated to global cost functions of [EDKMM09]. We
then sketch the stochastic technique we use in the following sections to upper bound the minimax
rate of such regrets on arbitrary deterministic sequences.

A generalized form of regret

Definition 5.1 ((ψ,ϕ)-regret). Let E be a real vector space, let ψ = (ψt)t>1 be a sequence of
convex functions ψt : E → R, and let ϕ : RK × RK → E be a bi-affine function, that is, ϕ(u, ·)
and ϕ(·,v) are affine8 for all u,v ∈ RK .

8A function f : RK → R is affine if and only if f − a is linear for some a ∈ R.
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Then, for any strategy S = (pt)t>1 of the forecaster, we define its (ψ,ϕ)-regret after T time rounds
on any loss sequence `1, . . . , `T ∈ [0, 1]K by

ψT

(
T∑
t=1

ϕ(pt, `t)

)
.

Example 5.1 (External regret).
In view of (5.1), external regret corresponds toE = RK , ψt : RK → R, and ϕ : RK×RK → RK

defined by ψt(x) = max16i6K xi and by ϕ(u,v) = (u · v − vi)16i6K .

Example 5.2 (Internal regret).
By (5.9), internal regret corresponds to E = RK×K , ψt : RK×K → R, and ϕ : RK × RK →
RK×K defined by ψt

(
(xi,j)i,j

)
= max16i 6=j6K xi,j and by ϕ(u,v) =

(
ui (vi − vj)

)
16i,j6K .

Example 5.3 (Swap regret).
By (5.10), swap regret corresponds toE = RK×K , ψt : RK×K → R, and ϕ : RK×RK → RK×K

defined by ψt
(
(xi,j)i,j

)
=
∑K

i=1 max16j6K xi,j and by ϕ(u,v) =
(
ui (vi − vj)

)
16i,j6K .

Example 5.4 (Online learning with global cost functions).
The framework of online learning with global cost functions recently introduced9 by [EDKMM09]
can also be cast into our generalized setting. More precisely, letC : RK+ → R be a convex function
such that C∗ : RK+ → R defined by

C∗(x1, . . . , xK) , min
α∈XK

C(α1x1, . . . , αKxK)

is concave, and where XK ,
{
x ∈ RK+ :

∑K
i=1 xi = 1

}
. Typical examples of C include

the makespan (C(x1, . . . , xK) = maxi xi) and the d-norm cost (C(x1, . . . , xK) = (
∑

i x
d
i )

1/d).
Then, for any strategy S = (pt)t>1 and any loss sequence `1, . . . , `T ∈ [0, 1]K , [EDKMM09]
define the regret of S on (`1, . . . , `T ) with respect to the global cost function C by

C

(
1

T

T∑
t=1

p1,t`1,t, . . . ,
1

T

T∑
t=1

pK,t`K,t

)
− C∗

(
1

T

T∑
t=1

`1,t, . . . ,
1

T

T∑
t=1

`K,t

)
.

This regret corresponds to the (ψ,ϕ)-regret when E = RK × RK and when ψt : RK × RK → R
and ϕ : RK × RK → RK × RK are defined by ψt(u,v) = C

(
t−1u

)
− C∗

(
t−1v

)
and by

ϕ(u,v) =
(
(ui vi)16i6K ,v

)
.

Analysis from a stochastic viewpoint

In the sequel we derive upper bounds on the minimax (ψ,ϕ)-regret defined by

inf
S

sup
`1,...,`T∈[0,1]K

ψT

(
T∑
t=1

ϕ(pt, `t)

)

for at least all (ψ,ϕ) corresponding to either external, internal, swap, or makespan regret (see the
examples above). The infimum is taken over all strategies S = (pt)t>1 of the forecaster. We

9This setting was motivated by load balancing and job scheduling applications. See Section 5.5.4.
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explain below how the minimax (ψ,ϕ)-regret – of deterministic nature – can be re-interpreted as a
quantity involving random variables whose joint distribution is known and that are therefore easily
manageable.

Step 1: Using minimax duality.
The first step consists in using a minimax duality theorem (see Theorem 5.4 below) to exchange
the infimum and the supremum in the sense that

inf
S

sup
`1,...,`T∈[0,1]K

ψT

(
T∑
t=1

ϕ(pt, `t)

)
= sup

Q∈M+
1 ([0,1]KT )

inf
S

EQ

[
ψT

(
T∑
t=1

ϕ(pt, `t)

)]
,

where the supremum in the right-hand-side is taken over all probability distributions on [0, 1]KT

and where its expectation is taken with respect to random variables `1, . . . , `T ∈ [0, 1]K with joint
distribution Q.

The left-hand-side quantity corresponds to a minimax game: the goal of the forecaster is to
choose a strategy S whose worst-case regret is the smallest possible. In particular, the forecaster
does not have any prior knowledge on the loss sequence to be dealt with. On the contrary, the
right-hand-side quantity corresponds to a maximim game: the forecaster is first given the joint
distribution Q of the future loss sequence (`1, . . . , `T ) and then chooses a strategy S accordingly.

Step 2: Upper bounding the maximin regret.
By the equality above, we can see that the two aforementioned games are equally difficult. There-
fore, the minimax regret can be upper bounded through its maximin counterpart. The last quantity
is generally easier to control: at each time t, the forecaster knows the distributions of all future
losses conditionnally on the past (since he knows Q and the past loss vectors). Therefore, the
forecaster can minimize a “conditional variant” of the (ψ,ϕ)-regret given by

ψT

(
T∑
t=1

ϕ
(
pt,E

[
`t
∣∣ `1:t−1

]))
.

Deviations of the true (ψ,ϕ)-regret from this “conditional variant” are often small enough; in our
proofs, we will control them via standard martingale concentration arguments.

One simple strategy for dealing with this “conditional variant” consists in putting at each
round t a unit mass at the index I∗t minimizing the next expected loss (conditionnally on the past).
This corresponds to the strategy S∗(Q) = (pQt )t>1 defined by

pQt , δI∗t , with I∗t ∈ argmin
16i6K

EQ
[
`i,t
∣∣ `1:t−1

]
, (5.22)

where δi ∈ XK denotes the Dirac distribution at i ∈ {1, . . . ,K} and where `1:T is assumed to
be drawn at random with joint distribution Q ∈ M+

1

(
[0, 1]KT

)
. Note that pQt depends on Q as

suggested above. We will use S∗(Q) later to revisit known upper bounds on external, internal, and
swap regrets.
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Comparison to the literature

The use of minimax duality to analyse the minimax rate of external regret was first exploited by
[AABR09] and later by [RST10]. The analysis of the aforementioned papers is generic enough
to cover various loss functions but relies in a somewhat crucial way on the fact that the weight
vectors pt appear additively in the external regret10.

In the present chapter, we focus on the linear loss but extend the analysis of [AABR09] to other
types of regret that do not satisfy this additivity property, e.g., the internal, swap, and makespan re-
grets. Such an extension has been independently carried out by [RST11] via the so-called “Triplex
Inequality” and the control of “sequential Rademacher complexities”. The setting considered in
the last paper is much broader than ours: their analysis covers a wider sprectrum of cases and our
notion of (ψ,ϕ)-regret resembles the regret of [RST11] in a particular situation that they called
“when B is a function of the average” – see Section 3.2 therein.

However, in our simpler setting, our analysis relies on related but simpler tools such as Bernoul-
lization and an elementary maximal inequality for subgaussian random variables (cf. Lemma 5.1
below and Lemma A.3 in Appendix A.5). The Bernoullization step allows to resort directly to
a version of von Neumann’s minimax theorem without the need to write the minimax regret as
a cumbersome sequence of multiple infima and suprema — this is in contrast with [AABR09,
RST10, RST11]. As for the aforementioned maximal inequality, it replaces a Dudley-entropy-
type upper bound. The last tool is much more general, but it is unncessarily involved in our case
since we only consider finite reference classes. Moreover, our approach yields explicit sharp con-
stants that exactely recover the best constants known so far for the external, internal, and swap
regrets.

5.5.2 A minimax theorem for the (ψ, ϕ)-regret

The next minimax duality theorem is the main result of this section.

Theorem 5.4 (A minimax theorem for the (ψ,ϕ)-regret).
Let E be a real vector space, let ψ = (ψt)t>1 be a sequence of convex functions ψt : E → R, and
let ϕ : RK × RK → E be a bi-affine function (cf. Definition 5.1). Then the (ψ,ϕ)-regret satisfies
the following duality formula:

inf
S

sup
`1,...,`T∈[0,1]K

ψT

(
T∑
t=1

ϕ(pt, `t)

)
= sup

Q∈M+
1 ([0,1]KT )

inf
S

EQ

[
ψT

(
T∑
t=1

ϕ(pt, `t)

)]
,

where both infima are taken over all strategies S = (pt)t>1, whereM+
1

(
[0, 1]KT

)
denotes the set

of all probability distributions on [0, 1]KT , and where the expectation EQ[ · ] is taken with respect
to the random variables `1, . . . , `T ∈ [0, 1]K with joint distribution Q.

The proof of Theorem 5.4 consists of a careful application of a version of von Neumann’s
minimax theorem (stated as Lemma A.1 in Appendix A.3). To use it in a convenient way, we will

10The fact that the pt appear additively in the external regret has been used many other times. An example is in
the water-filling technique used to derive the exact minimax external regret in the binary prediction problem under the
absolute loss; see, e.g., [CBL06, Section 8.2] and the references therein.
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first use the next technical lemma that enables a reduction to binary losses and relies on a technique
due to [Sch03]. With this reduction, the compacity and continuity assumptions of Lemma A.1 are
then satisfied.

Lemma 5.1 (Bernoullization).
Let E be a real vector space, let ψ = (ψt)t>1 be a sequence of convex functions ψt : E → R, and
let ϕ : RK ×RK → E be a bi-affine function (cf. Definition 5.1). Then the minimax (ψ,ϕ)-regret
can be reduced to binary losses `1, . . . , `T ∈ {0, 1}K in the sense that

inf
S

sup
`1,...,`T∈[0,1]K

ψT

(
T∑
t=1

ϕ(pt, `t)

)
= inf

S
sup

`1,...,`T∈{0,1}K
ψT

(
T∑
t=1

ϕ(pt, `t)

)
,

where both infima are taken over all strategies S = (pt)t>1.

Note that the above lemma would be immediate if the considered strategies S were static, i.e.,
such that pt(`1:t−1) = qt for all t > 1 and `1:t−1 , (`1, . . . , `t−1) and for some fixed sequence
(qt)t>1 in XK . Indeed, the (ψ,ϕ)-regret of such strategies is convex on the polytope [0, 1]KT and
thus achieves its supremum on the hypercube {0, 1}KT . The above lemma shows that, even for
non-static strategies, the hypercube is in some sense sufficient to assess the performance of any
strategy (see also Remark 5.2 below).

Proof (of Lemma 5.1): Our proof is based on a Bernoullization argument of [Sch03] which we
slightly simplify via the use of Jensen’s inequality. Let Ui,t, 1 6 i 6 K, 1 6 t 6 T , be in-
dependent real random variables uniformly distributed on [0, 1]. We set U t , (Ui,t)16i6K and
U1:t , (U s)16s6t for all t ∈ {1, . . . , T}. In this proof, we write EU1:t or EU t when the expec-
tation is taken over U1:t or U t respectively. To avoid any ambiguity, we also explicitly see the
weights as functions pt : [0, 1]K (t−1) → XK of the past loss vectors `1:t−1 , (`1, . . . , `t−1), and
hence write pt(`1:t−1).

We first introduce the following key definitions. We associate with any deterministic loss sequence
`1, . . . , `T ∈ [0, 1]K its randomly thresholded version ̂̀1, . . . , ̂̀T ∈ {0, 1}K defined for all t bŷ̀
i,t , I{`i,t>Ui,t}, 1 6 i 6 K. Moreover, we associate with any strategy S = (pt)t>1 its

bernoullized variant S̃ = (p̃t)t>1 defined for all `1, . . . , `T ∈ [0, 1]K by

p̃t(`1:t−1) , EU1:t−1

[
pt

(̂̀
1:t−1

)]
= EU1:t−1

[
pt

((
I{`i,s>Ui,s}

)
16i6K

16s6t−1

)]
. (5.23)

Thus, at each round t, the Bernoullized strategy S̃ first transforms the past losses `i,s, 1 6 i 6 K,
1 6 s 6 t − 1, into independent Bernoulli random variables ̂̀i,s with respective parameters `i,s,
then applies the function pt to them, and finally averages the result out.

As noted in Remark 5.2 after the present proof, for any strategy S, the Bernoullized variant
S̃ has a lower worst-case regret than S. However, computing p̃t(`1:t−1) in practice requires to
evaluate the function pt at the 2K(t−1) vertices of the hypercube {0, 1}K(t−1), so that S̃ is only of
theoretical interest.
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To prove the lemma it suffices to show that

inf
S

sup
`1,...,`T∈[0,1]K

ψT

(
T∑
t=1

ϕ
(
pt(`1:t−1), `t

))
6 inf

S
sup

`1,...,`T∈{0,1}K
ψT

(
T∑
t=1

ϕ
(
pt(`1:t−1), `t

))
.

(5.24)
First, restricting the infimum of the right-hand side to the set of all Bernoullized strategies S̃ =

(p̃t)t>1, we get that

inf
S

sup
`1,...,`T∈[0,1]K

ψT

(
T∑
t=1

ϕ(pt(`1:t−1), `t)

)
6 inf

S
sup

`1,...,`T∈[0,1]K
ψT

(
T∑
t=1

ϕ
(
p̃t(`1:t−1), `t

))
.

(5.25)
Let S = (pt)t>1 and `1, . . . , `T ∈ [0, 1]K . The definition of S̃ in (5.23) and the equality
EU t

[̂̀
i,t

]
= EU t

[
I{`i,t>Ui,t}

]
= `i,t for all i = 1, . . . ,K and t = 1, . . . , T yield

ψT

(
T∑
t=1

ϕ

(
p̃t(`1:t−1), `t

))
= ψT

(
T∑
t=1

ϕ

(
EU1:t−1

[
pt

(̂̀
1:t−1

)]
,EU t

[̂̀
t

]))

= ψT

(
T∑
t=1

EU1:t

[
ϕ
(
pt

(̂̀
1:t−1

)
, ̂̀t)]) (5.26)

= ψT

(
EU1:T

[
T∑
t=1

ϕ
(
pt

(̂̀
1:t−1

)
, ̂̀t)])

6 EU1:T

[
ψT

(
T∑
t=1

ϕ
(
pt

(̂̀
1:t−1

)
, ̂̀t))] , (5.27)

where (5.26) follows from the fact that ϕ : RK×RK → E is bi-affine (cf. Definition 5.1) and from
Fubini’s theorem (since U1:t−1 and U t are independent), and where (5.27) follows from Jensen’s
inequality (since ψT : E → R is convex). Note that all expectations above are actually taken over
a finite number of points since ̂̀1:T ∈ {0, 1}KT almost surely. Therefore no additional assump-
tion on the real vector space E was needed to ensure that these expectations are well-defined or to
apply Fubini’s theorem and Jensen’s inequality.

Since ̂̀1:T ∈ {0, 1}KT , the expectation in (5.27) is upper bounded by a supremum over {0, 1}KT .
Therefore we have proved that for all S = (pt)t>1,

sup
`1,...,`T∈[0,1]K

ψT

(
T∑
t=1

ϕ
(
p̃t(`1:t−1), `t

))
6 sup
`1,...,`T∈{0,1}K

ψT

(
T∑
t=1

ϕ
(
pt(`1:t−1), `t

))
.

(5.28)

Combining the last inequality with (5.25) immediately yields (5.24). This concludes the proof.

Remark 5.2 (Bernoullization can only help).
Note from (5.28) above that the Bernoullized variant S̃ of any strategy S performs always better
than S in a worst-case sense. More precisely, since the weights pt(`1:t−1) of S and the weights
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p̃t(`1:t−1) of S̃ coincide for all `1, . . . , `T ∈ {0, 1}KT , Inequality (5.28) is actually an equality:

sup
`1,...,`T∈[0,1]K

ψT

(
T∑
t=1

ϕ
(
p̃t(`1:t−1), `t

))
= sup
`1,...,`T∈{0,1}K

ψT

(
T∑
t=1

ϕ
(
pt(`1:t−1), `t

))

6 sup
`1,...,`T∈[0,1]K

ψT

(
T∑
t=1

ϕ
(
pt(`1:t−1), `t

))
.

Therefore, the Bernoullization of any strategy can only improve its worst-case regret on [0, 1]KT .
Even better, by the above equality, the worst-case regret of S̃ on [0, 1]KT equals that of S on the
restricted set {0, 1}KT and is therefore not influenced by the (potentially bad) performance of S
outside of the hypercube {0, 1}KT . However, as mentioned earlier, the strategy S̃ is unfortunately
only of theoretical interest because of its exponential computational complexity.

Proof (of Theorem 5.4): The proof consists of a careful application of a version of von Neumann’s
minimax theorem. We first use a reduction to binary losses (via Lemma 5.1), then apply the
aforementioned version of von Neumann’s minimax theorem, and finally get back to [0, 1]-valued
losses. To avoid any ambiguity, we write all dependencies pt(`1:t−1) explicitely. By Lemma 5.1,
we have

inf
S

sup
`1,...,`T∈[0,1]K

ψT

(
T∑
t=1

ϕ(pt(`1:t−1), `t)

)
= inf

S
sup

`1,...,`T∈{0,1}K
ψT

(
T∑
t=1

ϕ(pt(`1:t−1), `t)

)

= inf
S

sup
Q∈M+

1 ({0,1}KT )

EQ

[
ψT

(
T∑
t=1

ϕ(pt(`1:t−1), `t)

)]
︸ ︷︷ ︸

,F (Q,S)

(5.29)

= sup
Q∈M+

1 ({0,1}KT )

inf
S

EQ

[
ψT

(
T∑
t=1

ϕ(pt(`1:t−1), `t)

)]
, (5.30)

where in the last two equalities, the expectations EQ[ · ] are taken with respect to the random vari-
ables `1, . . . , `T ∈ [0, 1]K with joint distribution Q, and where we used the following arguments.

• (5.29) is elementary: the inequality “6” follows by considering the Dirac probability dis-
tributions Q = δ(`1,...,`T ) for all (`1, . . . , `T ) ∈ {0, 1}KT ; the inequality “>” follows from
the fact that any expectation is smaller than or equal to the supremum of its integrand.

• As for (5.30), the equality infS supQ F (Q, S) = supQ infS F (Q, S) follows by applying
a version of von Neumann’s minimax theorem due to [Fan53, Theorem 2] to the function
F :M+

1 ({0, 1}KT )× S → R defined by11 (S denotes the set of all strategies12)

F (Q, S) , EQ

[
ψT

(
T∑
t=1

ϕ
(
pt(`1:t−1), `t

))]

11We make a slight abuse of notation by denoting with the same symbols `1, . . . , `T either random variables (with
joint distribution Q) or fixed elements of {0, 1}K .

12Recall that a strategy is a sequence S = (pt)t>1 of Borel functions pt : [0, 1]K(t−1) → XK .
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=
∑

`1:T∈{0,1}KT
Q
(
{`1:T }

)
ψT

(
T∑
t=1

ϕ
(
pt(`1:t−1), `t

))
.

The aforementioned version of von Neumann’s minimax theorem is recalled in Lemma A.1
(Appendix A.3). Its assumptions are immediately satisfied in this finite-dimensional setting:
M+

1 ({0, 1}KT ) ≡ X2KT is a convex, Haussdorff, and compact subset of R2KT (under the
Euclidean topology), S is clearly convex, and F satisfies:

– for all S ∈ S , Q 7→ F (Q, S) is linear onM+
1 ({0, 1}KT ) ≡ X2KT (and thus concave

and continuous);

– for all Q ∈ M+
1 ({0, 1}KT ), S 7→ F (Q, S) is convex on S since ψT is convex and

ϕ(·,v) is affine for all v ∈ RK .

We can thus apply Lemma A.1, which yields (5.30).

To conclude the proof, we get back to [0, 1]-valued losses by noting that

sup
Q∈M+

1 ({0,1}KT )

inf
S

EQ

[
ψT

(
T∑
t=1

ϕ(pt, `t)

)]
6 sup

Q∈M+
1 ([0,1]KT )

inf
S

EQ

[
ψT

(
T∑
t=1

ϕ(pt, `t)

)]

6 inf
S

sup
Q∈M+

1 ([0,1]KT )

EQ

[
ψT

(
T∑
t=1

ϕ(pt, `t)

)]

= inf
S

sup
`1,...,`T∈[0,1]K

ψT

(
T∑
t=1

ϕ(pt, `t)

)
,

where the second line follows from the standard inequality sup inf 6 inf sup, and where the
last equality follows from arguments similar to those used for (5.29). By (5.30), all the previous
inequalities are equalities, which concludes the proof.

Remark 5.3 (Why use Bernoullization?).
Bernoullization enables a reduction to simple topological spaces — e.g.,M+

1 ({0, 1}KT ) lies in a
finite-dimensional space. In particular, there is no need here to use finer topological notions such
as weak topology.

5.5.3 Rederivation of known bounds on external, internal, and swap regret

In this section we use the above minimax theorem to rederive known regret bounds on individual
sequences from a stochastic viewpoint. A similar treatment will be carried out in the next section
to derive a new bound on the makespan regret.

For all forms of regret considered below – e.g., external, internal, and swap regret – we use the
distribution-dependent strategy S∗(Q) defined in (5.22). Recall that this strategy assigns at each
time t a unit mass at the random index I∗t ∈ argmin16i6K EQ

[
`i,t
∣∣`1:t−1

]
.

Let Φ ⊂ FK be a set of functions from {1, . . . ,K} to {1, . . . ,K}; we denote its cardinality



188 CHAPTER 5. MINIMAX RATES OF INTERNAL AND SWAP REGRETS

by |Φ|. The next proposition provides an upper bound on the minimax Φ-regret defined by

inf
S

sup
`1,...,`T∈[0,1]K

{
T∑
t=1

pt · `t −min
F∈Φ

T∑
t=1

(pt)
F · `t

}
,

where the infimum is taken over all strategies S = (pt)t>1 of the forecaster and where (pt)
F is the

weight vector induced by pt via the mapping F (cf. (5.5)). The notion of Φ-regret was introduced
by [GJ03]; it includes as special cases the external, internal, and swap regrets (see below). Though
we are mainly interested in those three particular cases, our analysis is generic enough to cover the
cases of all subsets Φ ⊂ FK (see also [RST11]).

Proposition 5.4 (Φ-regret from a stochastic viewpoint).
Let Q ∈M+

1

(
[0, 1]KT

)
. Then, the strategy S∗(Q) defined in (5.22) satisfies

EQ

[
T∑
t=1

pt · `t −min
F∈Φ

T∑
t=1

(pt)
F · `t

]
6

√
T

2
ln |Φ| , (5.31)

where `1:T is drawn at random from the joint distribution Q ∈M+
1

(
[0, 1]KT

)
. As a consequence,

the minimax Φ-regret on individual sequences satisfies

inf
S

sup
`1,...,`T∈[0,1]K

{
T∑
t=1

pt · `t −min
F∈Φ

T∑
t=1

(pt)
F · `t

}
6

√
T

2
ln |Φ| ,

where the infimum is taken over all strategies of the forecaster S = (pt)t>1.

Before proving the last proposition, note that, as a corollary, we can recover the best upper
bounds known so far for the external, internal, and swap regrets.

• External regret corresponds to the transformation set Φ = {Fi : i = 1, . . . ,K}, where Fi is
defined by Fi(k) = i for all k = 1, . . . ,K. Since |Φ| = K, the above proposition entails
that the minimax external regret is upper bounded by

√
(T/2) lnK.

• Internal regret corresponds to the transformation set Φ = {Fi,j : 1 6 i 6= j 6 K}, where
Fi,j is defined by Fi,j(k) = k for all k 6= i and by Fi,j(i) = j. Since |Φ| = K(K−1) 6 K2,
the above proposition entails that the minimax internal regret is upper bounded by

√
T lnK.

• Swap regret corresponds to the whole transformation set Φ = FK , whose cardinality equals
KK . Therefore, by the above proposition, the minimax swap regret is upper bounded by√

(T/2)K lnK.

Remark 5.4. For the external regret, the stochastic viewpoint not only enables to get the optimal
rate
√
T lnK but also the asymptotically optimal constant 1/

√
2 (cf. Remark 2.3 in Chapter 2,

Section 2.3.2). As for the internal and swap regrets, the bounds proved above are the best known
so far, and we know from (5.7) and Theorem 5.3 that they are rate-optimal up to a factor at most
of the order of

√
lnK (see also the next remark).
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Remark 5.5. For the particular case of internal regret, we do not know yet whether the strategy
S∗(Q) is sufficient to get the optimal individual sequence rate (i.e., whether the missing

√
lnK

factor is necessary), but we do know from Section 5.3 that S∗(Q) is suboptimal if the loss vectors
are i.i.d.. Indeed, in the last case, a less aggressive strategy that appropriately spreads the prob-
ability mass among the actions achieves a

√
T -upper bound (while S∗(Q) does not). A natural

question which should be addressed in the future is whether S∗(Q) can be refined in the same
spirit as in Section 5.3 to get an internal regret at most of the order of

√
T on individual sequences

(if such bound is possible). See Section 5.6 for some suggestions.

Proof (of Proposition 5.4): In the sequel we set ¯̀
i,t , EQ

[
`i,t
∣∣ `1:t−1

]
for all i = 1, . . . ,K and

all t = 1, . . . , T (the dependence in Q is omitted). Since for all t = 1, . . . , T , the weight vector
pQt defined in (5.22) is measurable with respect to `1:t−1, we get that

EQ

[
T∑
t=1

pQt · `t

]
=

T∑
t=1

K∑
i=1

EQ

[
pQi,t EQ

[
`i,t
∣∣ `1:t−1

]]
= EQ

[
T∑
t=1

pQt · ¯̀t

]
,

where we set ¯̀
t = (¯̀

1,t, . . . , ¯̀
K,t). Using the last equality and the fact that mini ai − mini bi 6

maxi(ai − bi) for all (ai)i, (bi)i ∈ RK , we get that

EQ

[
T∑
t=1

pQt · `t −min
F∈Φ

T∑
t=1

(
pQt
)F · `t]

6 EQ

[
T∑
t=1

pQt · ¯̀t −min
F∈Φ

T∑
t=1

(
pQt
)F · ¯̀t︸ ︷︷ ︸

6 0 a.s.

]
+ EQ

[
max
F∈Φ

T∑
t=1

(
pQt
)F · (¯̀t − `t)] . (5.32)

The first expectation of the right-hand side corresponds to what we called the “conditional variant”
of the regret in Section 5.5.1. It is non-positive since, by definition of the weight vector pQt , δI∗t
and of the index I∗t ∈ argmin16i6K EQ

[
`i,t
∣∣ `1:t−1

]
, we have, almost surely,

T∑
t=1

pQt · `t =

T∑
t=1

min
16i6K

¯̀
i,t 6 min

F∈Φ

T∑
t=1

(
pQt
)F · ¯̀t .

The last expectation of (5.32), which is a deviation term, can be upper bounded via a classical max-
imal inequality for subgaussian random variables that can be found, e.g., in [Mas07, Lemma 2.3
and Section 6.1.1] and that we recall in Appendix A.5. Note indeed that for all F ∈ Φ, the random
sequence (

(pQt )F · (¯̀t − `t)
)
t>1

is a martingale difference sequence with respect to the filtration generated by the `t. Moreover,
it takes its values in the predictable intervals [At, At + 1], where At , (pQt )F · ¯̀t − 1 (since
the losses are [0, 1]-valued). Therefore, by the Hoeffding-Azuma inequality (cf. Lemma A.6 in
Appendix A.5), the random variables

∑T
t=1(pQt )F·(¯̀t−`t), F ∈ Φ, are subgaussian with common

variance factor v = T/4. Hence, by Lemma A.3 in Appendix A.5,

EQ

[
max
F∈Φ

T∑
t=1

(
pQt
)F · (¯̀t − `t)] 6

√
2
T

4
ln |Φ| =

√
T

2
ln |Φ| .
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Substituting the last inequality in (5.32), we get (5.31), which concludes the first part of the propo-
sition. As a consequence, for all Q ∈M+

1

(
[0, 1]KT

)
,

inf
S

EQ

[
T∑
t=1

pQt · `t −min
F∈Φ

T∑
t=1

(
pQt
)F · `t] 6

√
T

2
ln |Φ| ,

where the infimum is taken over all strategies of the forecaster S = (pt)t>1. Therefore, to prove
the second part of the proposition, it suffices to use the minimax duality result of Theorem 5.4 to
get that

inf
S

sup
`1,...,`T∈[0,1]K

{
T∑
t=1

pQt · `t −min
F∈Φ

T∑
t=1

(
pQt
)F · `t}

= sup
Q∈M+

1 ([0,1]KT )

inf
S

EQ

[
T∑
t=1

pQt · `t −min
F∈Φ

T∑
t=1

(
pQt
)F · `t] 6

√
T

2
ln |Φ| .

This concludes the proof.

5.5.4 A new bound on the makespan regret

In this section, we derive a new bound on the minimax makespan regret. Following13 [EDKMM09]
(see Example 5.4), we define the makespan regret of any strategy S = (pt)t>1 on any loss se-
quence `1, . . . , `T ∈ [0, 1]K by

max
16i6K

T∑
t=1

pi,t`i,t − min
q∈XK

{
max

16i6K

T∑
t=1

qi`i,t

}
.

This notion of regret is useful, e.g., to model job scheduling or load balancing problems. In such
settings, a decision-maker repeatedly distributes a job to K machines; pi,t denotes the propor-
tion of the t-th job assigned to the i-th machine and `i,t denotes the loss (or load) per job unit
incurred by this machine at time t (so that the decision-maker incurs the weighted loss pi,t`i,t on
this machine). The goal of the decision-maker is to minimize the worst cumulative weighted loss
max16i6K

∑T
t=1 pi,t`i,t over the K machines, and his performance is compared to that of the best

static allocation q ∈ XK .

Using the same non-constructive stochastic viewpoint as in the previous subsection, we prove
next that the minimax makespan regret is upper bounded by

√
T +

√
T ln(2K)/2. This improves

on the bound of order ln(K)
√
T initially obtained by [EDKMM09] through an explicit algorithm.

The design of an explicit algorithm with the better rate
√
T lnK should of course be addressed in

the future.
We mention that a similar upper bound of the order of

√
T lnK was derived independently by

[RST11]; see Section 5.5.1, page 183, for further details.

13Note that, contrary to [EDKMM09], we chose not to normalize the sums
∑T
t=1 pi,t`i,t and

∑T
t=1 qi`i,t by T .

This definition is of course equivalent to that of [EDKMM09], but it is more consistent with the other definitions of
regret considered in this chapter (none of which is normalized).
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We first define a new distribution-dependent strategy. Let Q ∈ M+
1

(
[0, 1]KT

)
and set ¯̀

i,t ,
EQ
[
`i,t
∣∣ `1:t−1

]
for all i = 1, . . . ,K and t = 1, . . . , T (where `1:T has joint distribution Q). We

associate with Q the strategy Smk(Q) whose weight vectors (pt)t>1 are recursively defined by

pt ∈ argmin
q∈XK

max
16i6K

{
t−1∑
s=1

pi,s ¯̀
i,s + qi ¯̀i,t

}
, 1 6 t 6 T . (5.33)

Note that Smk(Q) is a greedy-type strategy minimizing the makespan regret associated with the
conditional losses ¯̀

i,s. But, by an elementary induction and by Lemma 5.2 in Appendix 5.B, we
can see that, for all t = 1, . . . , T and all i = 1, . . . ,K,

pi,t ¯̀i,t =
1∑K

j=1 1/¯̀
j,t

and pi,t =
1/¯̀

i,t∑K
j=1 1/¯̀

j,t

if ¯̀
i,t > 0 , (5.34)

with the convention that 1/0 = +∞, 1/(+∞) = 0, and x+ (+∞) = +∞ for all x ∈ R+.

Proposition 5.5 (A new bound on the makespan regret).
Let Q ∈ M+

1

(
[0, 1]KT

)
. Then, the makespan regret of the strategy Smk(Q) defined in (5.33)

satisfies

EQ

[
max

16i6K

T∑
t=1

pi,t`i,t − min
q∈XK

max
16i6K

T∑
t=1

qi`i,t

]
6
√
T +

√
T ln(2K)/2 , (5.35)

where `1:T is drawn at random from the joint distribution Q ∈M+
1

(
[0, 1]KT

)
. As a consequence,

the minimax makespan regret on individual sequences satisfies

inf
S

sup
`1,...,`T∈[0,1]K

{
max

16i6K

T∑
t=1

pi,t`i,t − min
q∈XK

max
16i6K

T∑
t=1

qi`i,t

}
6
√
T +

√
T ln(2K)/2 .

Proof: First note that, by subadditivity of the maximum, we can upper bound the makespan regret
by the sum of its “conditional variant” and two deviation terms, i.e., almost surely,

max
16i6K

T∑
t=1

pi,t`i,t − min
q∈XK

max
16i6K

T∑
t=1

qi`i,t 6 max
16i6K

T∑
t=1

pi,t ¯̀i,t − min
q∈XK

max
16i6K

T∑
t=1

qi ¯̀i,t

+ max
16i6K

T∑
t=1

pi,t
(
`i,t − ¯̀

i,t

)
+ min
q∈XK

max
16i6K

T∑
t=1

qi ¯̀i,t − min
q∈XK

max
16i6K

T∑
t=1

qi`i,t .

(5.36)

Next we upper bound each of the three terms of the righ-hand side separately.
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Term 1.
The first term is non-positive since, by (5.34),

max
16i6K

T∑
t=1

pi,t ¯̀i,t =
T∑
t=1

1∑K
j=1 1/¯̀

j,t

6
1∑K

j=1 1/
(∑T

t=1
¯̀
j,t

) = min
q∈XK

max
16j6K

qj

T∑
t=1

¯̀
j,t ,

(5.37)
where the inequality above follows from Lemma 5.3 in Appendix 5.B applied to the vectors
(¯̀
j,t)16j6K ∈ RK+ , t = 1, . . . , T , and where the last equality follows from Lemma 5.2 in Ap-

pendix 5.B.

Term 2.
The second term is upper bounded by

√
T in expectation. Indeed, by the elementary maximal

inequality E[maxi Zi] 6
(∑

i E[Z2
i ]
)1/2 that holds for all integrable random vectors (Zi)16i6K ∈

RK , we get that

EQ

[
max

16i6K

T∑
t=1

pi,t
(
`i,t − ¯̀

i,t

)]
6

 K∑
i=1

EQ

( T∑
t=1

pi,t
(
`i,t − ¯̀

i,t

))2
1/2

=

(
K∑
i=1

T∑
t=1

EQ

[
p2
i,t

(
`i,t − ¯̀

i,t

)2])1/2

(5.38)

6

(
T∑
t=1

EQ

[
K∑
i=1

p2
i,t

])1/2

6
√
T , (5.39)

where (5.38) follows from the Pythagorean theorem since, for every i = 1, . . . ,K, the random
sequence

(∑T
t=1 pi,t

(
`i,t− ¯̀

i,t

))
16t6T is a square-integrable martingale and therefore has orthog-

onal increments. As for (5.39) it follows from the boundedness property |`i,t − ¯̀
i,t| 6 1 and from

the inequality
∑K

i=1 p
2
i,t 6

∑K
i=1 pi,t = 1.

Term 3.
Set L̄T ,

(∑T
t=1

¯̀
i,t

)
16i6K and LT ,

(∑T
t=1 `i,t

)
16i6K , and define the function f : RK+ → R

by
f(x) , min

q∈XK
max

16i6K
qixi .

Since f is 1-Lipschitz continuous with respect to the infinity norm ‖ · ‖∞ (essentially because the
minimum and maximum functions are also 1-Lipschitz continuous), the last term of (5.36) reads,
almost surely,

min
q∈XK

max
16i6K

T∑
t=1

qi ¯̀i,t − min
q∈XK

max
16i6K

T∑
t=1

qi`i,t

= f(L̄T )− f(LT ) 6
wwL̄T −LTww∞ = max

16i6K

∣∣∣∣∣
T∑
t=1

(
¯̀
i,t − `i,t

)∣∣∣∣∣ .
Taking the expectations of both sides of the inequality above, we get, using again the Hoeffding-
Azuma inequality and an elementary maximal inequality for subgaussian random variables (cf.
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Lemmas A.6 and A.3 in Appendix A.5),

EQ

[
min
q∈XK

max
16i6K

T∑
t=1

qi ¯̀i,t − min
q∈XK

max
16i6K

T∑
t=1

qi`i,t

]
6

√
T

2
ln(2K) . (5.40)

Putting everything together.
We conclude the proof of (5.35) by substituting the upper bounds (5.37), (5.39), and (5.40) in
(5.36). As for the second part of the proposition, it follows again by using the minimax duality
property of Theorem 5.4.

5.6 Future works

We recall that the present chapter is a work in progress, which raises some important questions.
First, though the stochastic technique of Section 5.5 is useful to better understand the problem at
hand (since it provides an upper bound on the minimax regret), it is non-constructive. Designing
explicit algorithms that achieve the obtained upper bounds is an important task to be addressed in
the future. For instance, is there any efficient algorithm with a makespan regret at most of order√
T lnK?

Another fundamental question that remains open is related to the missing logarithmic factor
between the known lower and upper bounds on internal regret (of the order of

√
T and

√
T lnK

respectively). Is this logarithmic factor necessary or not? We proved that it is unncessary for i.i.d.
loss vectors, we also recovered the best known upper bound

√
T lnK on individual sequences

(with the best known constant) through a new viewpoint, but we still do not know whether the√
lnK factor is necessary for individual sequences. We briefly sketch below some ideas to tackle

either the lower bound or the upper bound. (Note that both directions could be useful in case the
order of magnitude of the minimax internal regret for individual sequences lies strictly between√
T and

√
T lnK.)

Note that similar questions arise about the minimax swap regret for individual sequences (the
rate of which lies between

√
TK and

√
TK lnK). The next suggestions are however more suited

for the internal regret.

Refinement of the
√
T lnK upper bound on internal regret?

By minimax duality, to prove a
√
T -upper bound on the minimax internal regret for individual

sequences, it is sufficient to prove a
√
T -upper bound in the maximin game of Section 5.5.3. For

arbitrary joint distributions Q on [0, 1]KT , the strategy S∗(Q) achieves a
√
T lnK-upper bound.

The results of Section 5.3 indicate that this strategy is suboptimal in the particular case of i.i.d.
loss vectors (i.e., for Q of the form Q = Q⊗T , Q ∈ M+

1 ([0, 1]K)). In that setting, it can indeed
be refined through exponential weighting to yield a

√
T -upper bound. Is such an improvement

also possible for all joint distributions Q on [0, 1]KT ? We could study a smooth variant of S∗(Q)

given, e.g., by the exponential weights pt = (pi,t)16i6K defined as

pi,t =
e−c
√
T ¯̀

i,t∑K
j=1 e

−c
√
T ¯̀

j,t

, 1 6 i 6 K ,
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where ¯̀
i,t , EQ

[
`i,t
∣∣ `1:t−1

]
for all i ∈ {1, . . . ,K} and t > 1, and where c > 0 is an absolute

constant. The above strategy generalizes that of Section 5.3 for i.i.d. loss vectors when T is known
in advance (which is the case here since T is a parameter of the minimax rate).

Note that the weight vectors pt suggested above are no longer constant over time in general.
This prevents from factorizing the internal regret by pi as we did in Section 5.3. Therefore, in
this more general setting, the use of Bernstein’s inequality for martingales (see [Fre75]) seems
more appropriate than the Hoeffding-Azuma inequality. (Indeed, the conditional variances of
the random variables pi,t(`i,t − `j,t) should be taken into account to see that the deviations of∑T

t=1 pi,t(`i,t − `j,t) from
∑T

t=1 pi,t(
¯̀
i,t − ¯̀

j,t) scale as
√∑T

t=1 p
2
i,t instead of

√
T .)

Refinement of the
√
T lower bound on internal regret?

Another direction consists in proving a larger lower bound (if such improvement is possible). In
view of all known lower bounds on the external regret, it could be tempting to try to construct a
suitable i.i.d. sequence (possibly depending on the strategy of the forecaster) for which the internal
regret of the forecaster is at least of the order of

√
Tf(K) with f(K) → +∞ when K → +∞.

The results of Section 5.3 provide a negative answer by indicating that this is not possible (note
that mixtures of i.i.d. sequences are banned as well). More sophisticated stochastic sequences
could thus be studied in the future, e.g., piecewise i.i.d. Bernoulli sequences.

5.A Proofs

In this section we provide the proofs of Theorem 5.1, Theorem 5.2, and Corollary 5.1 (internal re-
gret in a stochastic environment), as well as the proof of Theorem 5.3 (swap regret with individual
sequences).

5.A.1 Proofs related to internal regret in a stochastic environment

Proof (of Theorem 5.1):
In the sequel we write pi = pint

i (Q) for notational convenience. First note that

max
16i 6=j6K

T∑
t=1

pi(`i,t − `j,t) 6 max
16i,j6K

T∑
t=1

pi(`i,t − `j,t)

= max
16i6K

{
pi

(
T∑
t=1

`i,t − min
16j6K

T∑
t=1

`j,t

)}
, (5.41)

where the last equality follows from the fact that the weights pi are constant over time.

Next we bound with high probability
∑T

t=1 `i,t from above and min16j6K
∑T

t=1 `j,t from below.
Since for all i ∈ {1, . . . ,K}, the `i,t, 1 6 t 6 T , are independent, [0, 1]-valued, and have common
mean mi, Hoeffding’s inequality (see Lemma A.5 in Appendix A.5) entails that

∀i ∈ {1, . . . ,K}, ∀δi ∈ (0, 1) , P

[∣∣∣∣∣
T∑
t=1

`i,t − Tmi

∣∣∣∣∣ >
√
T

2
ln

(
2

δi

)]
6 δi .
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Now, let δ ∈ (0, 1) and α1, . . . , αK > 0 such that
∑K

i=1 αi = 1 (the αi will be determined by
the analysis). Combining the above inequality with a union bound, we get that, with probability at
least 1−

∑K
i=1 αiδ = 1− δ,

∀i ∈ {1, . . . ,K}, Tmi −

√
T

2
ln

(
2

αiδ

)
6

T∑
t=1

`i,t 6 Tmi +

√
T

2
ln

(
2

αiδ

)
. (5.42)

Therefore, with probability at least 1− δ, for all 1 6 i 6 K,

T∑
t=1

`i,t − min
16j6K

T∑
t=1

`j,t 6 Tmi +

√
T

2
ln

(
2

αiδ

)
− min

16j6K

{
Tmj −

√
T

2
ln

(
2

αjδ

)}

= 2Tmi − Tmi +

√
T

2
ln

(
2

αiδ

)
+ max

16j6K

{
−Tmj +

√
T

2
ln

(
2

αjδ

)}

6 2Tmi + 2 max
16j6K

{
−Tmj +

√
T

2
ln

(
2

αjδ

)}
.

Substituting the last inequality in (5.41) and using the fact that mi = mi∗ + ∆i by definition, we
get that, with probability at least 1− δ,

max
16i 6=j6K

T∑
t=1

pi(`i,t − `j,t) 6 max
16i6K

pi

(
2T∆i + 2 max

16j6K

{
−T∆j +

√
T

2
ln

(
2

αjδ

)})

6 2
√
T max

16i6K

{
pi
√
T∆i

}
+ 2

(
max

16i6K
pi

)(
max

16j6K

{
−T∆j +

√
T

2
ln

(
2

αjδ

)})
,

(5.43)

where in the last inequality, we used the subadditivity of the maximum and the fact the last max-
imum is nonnegative (since −T∆i∗ = 0). But, multiplying the numerator and the denominator
of (5.17) by exp

(√
Tmi∗

)
, the weights pi can be rewritten for all i ∈ {1, . . . ,K} as

pi =
e−
√
T∆i∑K

j=1 e
−
√
T∆j

=
e−
√
T∆i

Keff
where Keff ,

K∑
j=1

e−
√
T∆j ∈ [1,K] . (5.44)

Next we combine (5.43) with (5.44). First note from (5.44) that pi
√
T∆i = K−1

eff e
−
√
T∆i
√
T∆i

so that pi
√
T∆i 6 K−1

eff supx>0

{
e−x x

}
= 1/(eKeff). Second, we get max16i6K pi = 1/Keff

from (5.44). Subtituting the last two upper bounds in (5.43), we get, with probability at least 1−δ,

max
16i 6=j6K

T∑
t=1

pi(`i,t − `j,t) 6
2
√
T

eKeff
+

2

Keff
max

16i6K

{
−T∆i +

√
T

2
ln

(
2

αiδ

)}
. (5.45)

It turns out that a convenient choice of the αi is enough to get the claimed bound. Note that it
is such that the lower confidence bounds of (5.42) on the quantities

∑T
t=1 `i,t, 1 6 i 6 K, are
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approximately equalized; see (5.47) below. More precisely, we set

αi ,
e−2T∆2

i∑K
j=1 e

−2T∆2
j

, 1 6 i 6 K . (5.46)

Substituting the definition of the αi in (5.45), we get, with probability at least 1− δ,

max
16i 6=j6K

T∑
t=1

pi(`i,t − `j,t)

6
2
√
T

eKeff
+

2

Keff
max

16i6K

−T∆i +

√√√√√T

2
ln
(
e2T∆2

i

)
+
T

2
ln

2

δ

K∑
j=1

e−2T∆2
j




6
2
√
T

eKeff
+

1

Keff

√√√√√2T ln

2

δ

K∑
j=1

e−2T∆2
j

 , (5.47)

where the last inequality follows from the elementary upper bound
√
x+ y 6

√
x +
√
y for

all x, y > 0 (so that −T∆i and T∆i cancel out). But note that for all 1 6 j 6 K, we have
e−2T∆2

j 6 e−
√
T∆j supx>0

{
e−2x2+x

}
= e−

√
T∆j e1/8, so that

K∑
j=1

e−2T∆2
j 6 e1/8

K∑
j=1

e−
√
T∆j = e1/8Keff . (5.48)

Substituting the last inequality in (5.47), we get, with probability at least 1− δ,

max
16i 6=j6K

T∑
t=1

pi(`i,t − `j,t) 6
2
√
T

eKeff
+

1

Keff

√
2T ln

(
2 e1/8Keff

δ

)

6

(
2

e
+
√

2

)
1

Keff

√
T ln

(
3Keff

δ

)
6

3

Keff

√
T ln

(
3Keff

δ

)
,

where the second inequality follows from the fact that 2 e1/8 6 3 and that
√

ln(3Keff/δ) > 1

(since Keff > 1 and δ 6 1). As for the last inequality, it follows from the elementary upper bound
2/e+

√
2 6 3.

We have just proved the first inequality of the theorem. The second one follows from the fact
that the function x 7→ x−1

√
ln(3x/δ) is nonincreasing14 on

[
1,+∞

)
and from the inequality

Keff > 1. This concludes the proof.

Remark 5.6. The weighted union bound with (α1, . . . , αK) in the previous proof is key to derive
an upper bound of order

√
T . It will also be useful in the case when Q is unknown — see below.

14Indeed, the first derivative of x 7→ x−2 ln(x) is equal to x−3
(
1−2 ln(x)

)
, which is non-positive on

[
e1/2,+∞

)
.

Therefore, the function x 7→ x−1
√

ln(3x/δ) is non-increasing on
[
e1/2δ/3,+∞

)
and in particular on [1,+∞) (since

e1/2δ/3 6 e1/2/3 6 1).
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Proof (of Theorem 5.2): The proof uses the same key arguments as that of Theorem 5.1 — in
particular, careful weighted union bounds are central to our analysis. Therefore, we omit some
details already encountered in the previous proof and only stress the major changes (namely, we
now need to control the deviations of the estimates m̂(r)

i from their expectations mi and to deal
with the change of regimes).

In the sequel, we set R , dlog2 T e, t−1 , 0, tr , 2r for all r ∈ {0, . . . , R− 1}, and tR , T .
Therefore {tr−1 + 1, . . . , tr} = {2r−1 + 1, . . . , 2r} ∩ [1, T ] for all 1 6 r 6 R and we have the
partition {1, . . . , T} =

⋃R
r=0{tr−1 + 1, . . . , tr}.

First, rewriting the sum
∑T

t=1 =
∑R

r=0

∑tr
t=tr−1+1 and using the subadditivity of the maximum,

we get that, almost surely,

max
16i 6=j6K

T∑
t=1

pi,t(`i,t − `j,t) 6
R∑
r=0

max
16i,j6K

tr∑
t=tr−1+1

pi,t(`i,t − `j,t)

6 1 +
R∑
r=1

max
16i6K

p(r)
i

 tr∑
t=tr−1+1

`i,t − min
16j6K

tr∑
t=tr−1+1

`j,t

 .

(5.49)

To get the last equality, we upper bounded the summand at r = 0 by 1 (since the losses lie in [0, 1]

and since t0−t−1 = 1), and we used for r > 1 the fact that pi,t = p
(r)
i for all t ∈ {tr−1+1, . . . , tr}.

Next we control the deviations of the sums
∑tr

t=tr−1+1 `i,t and of the estimators m̂(r)
i around their

expectations, uniformly over all r = 1, . . . , R. Let δ ∈ (0, 1), and fix β1, . . . , βR > 0 such that∑R
r=1 βr 6 1. Fix also α1,r, . . . , αK,r > 0 and α′1,r, . . . , α

′
K,r > 0 such that

∑K
i=1 αi,r = 1 and∑K

i=1 α
′
i,r = 1 for all r = 1, . . . , R (the βr, αi,r, and α′i,r will be determined by the analysis).

Following the same lines that led to (5.42), we get that, by Hoeffding’s inequality and by several
union bounds: on some event Ωδ of probability at least 1−δ, for all 1 6 r 6 R and all 1 6 i 6 K,

τrmi −

√
τr
2

ln

(
4

βrαi,rδ

)
6

tr∑
t=tr−1+1

`i,t 6 τrmi +

√
τr
2

ln

(
4

βrαi,rδ

)
(5.50)

and

2r−1mi −

√√√√2r−1

2
ln

(
4

βrα′i,rδ

)
6

2r−1∑
t=1

`i,t 6 2r−1mi +

√√√√2r−1

2
ln

(
4

βrα′i,rδ

)
, (5.51)

where we set τr , tr − tr−1. Note that, by definition of the tr, we have τ0 = 1, τr = 2r−1 for all
r ∈ {1, . . . , R− 1}, and τR = T − 2R−1. In particular, τr 6 2r−1 for all 1 6 r 6 R.
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By (5.50) and by the same upper bounding that led to (5.43), we get, on Ωδ, for all r ∈ {1, . . . , R},

max
16i6K

p(r)
i

 tr∑
t=tr−1+1

`i,t − min
16j6K

tr∑
t=tr−1+1

`j,t


6 2
√
τr max

16i6K

{
p

(r)
i

√
τr∆i

}
+ 2

(
max

16i6K
p

(r)
i

)
max

16i6K

{
−τr∆i +

√
τr
2

ln

(
4

βrαi,rδ

)}

6 2
√

2r−1 max
16i6K

{
p

(r)
i

√
2r−1∆i

}
+ 2

(
max

16i6K
p

(r)
i

)√√√√√τr
2

ln

 4

βrδ

K∑
j=1

e−2τr∆2
j

 , (5.52)

where the last inequality follows from the fact that τr 6 2r−1 for all 1 6 r 6 R and from a choice
of αi,r similar to (5.46), i.e.,

αi,r ,
e−2τr∆2

i∑K
j=1 e

−2τr∆2
j

, 1 6 i 6 K , 1 6 r 6 R .

(For the moment, we do not upper bound τr by 2r−1 in the last term of (5.52); see the tighter bound
in (5.56).)

Contrary to the proof of Theorem 5.1, the weights p(r)
i are not exactly of the form e−

√
2r−1∆i/K

(r)
eff

(since the gaps ∆i are now estimated by their empirical counterparts m̂(r)
i ). Next we show that

p
(r)
i 6 Cr(δ)e

−
√

2r−1∆i/2/K
(r)
eff on Ωδ, where Cr(δ) is small enough, and where

K
(r)
eff ,

K∑
j=1

exp

(
−
√

2r−1
3∆j

2

)
, 1 6 r 6 R . (5.53)

For this purpose, we choose the α′i,r in a way similar to the αi,r:

α′i,r ,
e−2r−1∆2

i /2∑K
j=1 e

−2r−1∆2
j/2

, 1 6 i 6 K , 1 6 r 6 R .

By definition of m̂(r)
i = 2−(r−1)

∑2r−1

t=1 `i,t and of ∆i , mi −mi∗ , it is easy to see from (5.51)
and from the choice of α′i,r above that, on Ωδ, for all i ∈ {1, . . . ,K},

mi∗ +
∆i

2
−Br(δ) 6 m̂

(r)
i 6 mi∗ +

3∆i

2
+Br(δ) ,

where we set

Br(δ) ,

√√√√√ 1

2r
ln

 4

βrδ

K∑
j=1

e−2r−1∆2
j/2

 .

Subtituting the last inequalities in the definition of p(r)
i (cf. Figure 5.3) and using the definition of
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K
(r)
eff in (5.53), we get that, on Ωδ, for all i ∈ {1, . . . ,K},

p
(r)
i 6 exp

(
2
√

2r−1Br(δ)
) exp

(
−
√

2r−1 ∆i/2
)

K
(r)
eff

. (5.54)

Before combining (5.52) with the above inequalities, note that, following the same lines that led to
(5.48) and using the elementary equality supx>0

{
e−x

2/2+3x/2
}

= e9/8, we get the upper bound∑K
j=1 e

−2r−1∆2
j/2 6 e9/8K

(r)
eff , so that, by definition of Br(δ) above,

2
√

2r−1Br(δ) 6

√√√√2 ln

(
4 e9/8K

(r)
eff

βrδ

)
. (5.55)

In the same way, the elementary equality supx>0

{
e−2x2+3x/2

}
= e9/32 yields the upper bound∑K

j=1 e
−2τr∆2

j 6
(
e9/32

)2r−1/τr
K

(r)
eff , so that

τr ln

 4

βrδ

K∑
j=1

e−2τr∆2
j

 6 τr ln

(
4

βrδ

(
e9/32

)2r−1/τr
K

(r)
eff

)
6 2r−1 ln

(
4 e9/32K

(r)
eff

βrδ

)
,

(5.56)
where the last inequality follows from the bound τr 6 2r−1 and from the fact that x 7→ x ln

(
a b1/x

)
is nondecreasing on R∗+ for all a > 1 and all b > 0 (note that 4K

(r)
eff /(βrδ) > 1). Substituting the

upper bounds (5.54), (5.55), and (5.56) in (5.52), we get that, on Ωδ, for all r ∈ {1, . . . , R},

max
16i6K

p(r)
i

 tr∑
t=tr−1+1

`i,t − min
16j6K

tr∑
t=tr−1+1

`j,t


6

2

K
(r)
eff

exp


√√√√2 ln

(
4 e9/8K

(r)
eff

βrδ

)√2r−1 sup
x>0

{
e−x/2 x

}
+

√√√√2r−1

2
ln

(
4 e9/32K

(r)
eff

βrδ

)
6 c
√

2r−1 exp

(√
2 ln

(
4

βrδ

))√
ln

(
4

βrδ

)
, (5.57)

where

c , sup
K′>1

 2

K ′
exp

(√
2 ln
(
e9/8K ′

))sup
x>0

{
e−x/2 x

}
+

1√
2

+

√
ln
(
e9/32K ′

)
2

 .

Elementary manipulations show that c 6 2 e3/2
(
2/e + 1/

√
2 + 1

)
e2 6 162. Substituting (5.57)

in (5.49) and using the fact that ex x 6 e2x for all x ∈ R, we get that, on Ωδ,

max
16i 6=j6K

T∑
t=1

pi,t(`i,t − `j,t) 6 1 +
R∑
r=1

c√
2

√
2r−1 exp

(
2

√
2 ln

(
4

βrδ

))

6 1 +
c√
2

exp

(
2
√

2 ln
(
4/δ
)) R∑

r=1

√
2r−1 exp

(
2
√

2 ln
(
1/βr

))
.
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Recall that the βr are parameters of the analysis and can therefore be chosen at our own conve-
nience. To avoid any extra exp

(√
lnT

)
factor, we carry out a “backward weighted union bound”

by choosing βr ,
6/π2

(R− r + 1)2
for all 1 6 r 6 R, so that

∑R
r=1 βr 6 1. This yields the bound

R∑
r=1

√
2r−1 exp

(
2
√

2 ln
(
1/βr

))
6 exp

(
2
√

2 ln
(
π2/6

)) R∑
r=1

√
2r−1 exp

(
4
√

ln(R− r + 1)
)

6 8
√

2R
R∑
k=1

√
2−k exp

(
4
√

ln(k)
)

︸ ︷︷ ︸
,c′0<∞

6 8c′0
√

2T ,

where the second inequality follows from the change of variables k = R−r+1, and where the last
inequality follows from the fact that R , dlog2(T )e 6 log2(T ) + 1. Combining the inequalities
above, we conclude the proof by setting c0 , 8 c c′0 <∞.

Proof (of Corollary 5.1): The lower bound with the constants c1 , 1/192 and c2 , 1/
(
64
√

3
)

follows straightforwardly from the proof of [Sto05, Theorem 3.3]. As for the upper bound, it
follows by integrating the high-probability bound of Theorem 5.2. More precisely, combining
Theorem 5.2 and Example A.2 in Appendix A.6, we get that

inf
S

sup
Q∈M+

1 ([0,1]K)

EQ⊗T

[
max

16i 6=j6K

T∑
t=1

pi,t(`i,t − `j,t)

]
6 c′3
√
T + 1 6 (c′3 + 1)

√
T ,

where, using the constant c0 of Theorem 5.2, we set c′3 , c0 exp
[
2
√

2 ln(4)
](
e16 + 1

)
(this

constant can be improved). We conclude the proof by setting c3 , c′3 + 1.

5.A.2 Proof of the lower bound on the swap regret

Proof (of Theorem 5.3): In the sequel we first assume that T is a mutiple of bK/2c , max
{
k ∈

N : k 6 K/2
}

(the general case will follow by monotonicity of the minimax swap regret in T —
see the end of the proof). Under this assumption, we prove in what follows that

sup
`1,...,`T∈[0,1]K

{
T∑
t=1

pt · `t − min
F∈FK

T∑
t=1

pFt · `t

}
> c
√

2TK . (5.58)

We use the standard reduction to stochastic losses. Let S = (pt)t>1 be any strategy of the fore-
caster. First note that

sup
`1,...,`T∈[0,1]K

{
T∑
t=1

pt · `t − min
F∈FK

T∑
t=1

pFt · `t

}

> sup
Q∈M+

1

(
[0,1]KT

)EQ

[
T∑
t=1

pt · `t − min
F∈FK

T∑
t=1

pFt · `t

]
, (5.59)

whereM+
1

(
[0, 1]KT

)
denotes the set of all probability distributions on [0, 1]KT (endowed with its
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Borel σ-algebra) and where the loss vectors `1, . . . , `T ∈ [0, 1]K appearing inside the expectation
EQ[ · ] are drawn at random with joint distribution Q.

Next we consider a finite family (Qγ)γ of probability distributions on [0, 1]KT under which
the random15 vectors `t ∈ [0, 1]K are piecewise i.i.d.. The time interval {1, . . . , T} is divided
into bK/2c sub-intervals {tr−1 + 1, . . . , tr} such that t0 , 0 < t1 < . . . < tbK/2c , T and
tr − tr−1 = T/bK/2c for all r = 1, . . . , bK/2c. Then, for all γ = (γr)16r6bK/2c ∈ {0, 1}bK/2c,
we define the probability distribution Qγ on [0, 1]KT such that, under Qγ :

• the (real-valued) losses `i,t, 1 6 i 6 K, 1 6 t 6 T are independent;

• on each sub-interval {tr−1 + 1, . . . , tr} (1 6 r 6 bK/2c), the loss vectors `t ∈ [0, 1]K are
i.i.d. and 

`i,t = 1 a.s. if i /∈ {2r − 1, 2r} ,
`i,t ∼ Ber(1/2− γrε) if i = 2r − 1 ,

`i,t ∼ Ber(1/2− (1− γr)ε) if i = 2r ,

where Ber(q) denotes the Bernoulli distribution with parameter q ∈ [0, 1] and where ε ∈ (0, 1/2)

will be chosen by the analysis. We also set ir(γ) , 2r − (1 − γr) and jr(γ) , 2r − γr, so that{
ir(γ), jr(γ)

}
= {2r − 1, 2r} and, for all t ∈ {tr−1 + 1, . . . , tr},

EQγ
[
`ir(γ),t

]
= 1/2, EQγ

[
`jr(γ),t

]
= 1/2− ε, EQγ

[
`k,t
]

= 1, ∀k /∈ {2r − 1, 2r} . (5.60)

Note also that

∀t /∈ {tr−1 + 1, . . . , tr}, `ir(γ),t = `jr(γ),t = 1 a.s. (5.61)

Next we use an induction argument and Pinsker’s inequality to show that, for at least one γ in
the hypercube {0, 1}bK/2c, the expected swap regret under Qγ is at least of the order of

√
TK.

The lower bound on individual sequences will then follow by (5.59). First note from the key
equality (5.10) of Section 5.2.2 that, for all γ ∈ {0, 1}bK/2c,

EQγ

[
T∑
t=1

pt · `t − min
F∈FK

T∑
t=1

pFt · `t

]
= EQγ

[
K∑
i=1

max
16j6K

T∑
t=1

pi,t(`i,t − `j,t)

]

> EQγ

bK/2c∑
r=1

∑
i∈{2r−1,2r}

max
16j6K

T∑
t=1

pi,t(`i,t − `j,t)

 (5.62)

> EQγ

bK/2c∑
r=1

tr∑
t=tr−1+1

pir(γ),t(`ir(γ),t − `jr(γ),t)

 . (5.63)

Inequality (5.62) follows from the fact that the pairs {2r − 1, 2r}, r = 1, . . . , bK/2c, are mutu-
ally disjoint subsets of {1, . . . ,K} and from the nonnegativity of max16j6K

∑T
t=1 pi,t(`i,t− `j,t)

for i = K (useful when K is odd). As for (5.63), we only kept for each r = 1, . . . , bK/2c
the term corresponding to i = ir(γ) (the other one being nonnegative) and used the fact that

15With a slight abuse of notation, we denote the identity function on [0, 1]TK by `1:T = (`1, . . . , `T ). The co-
ordinate mappings `t : [0, 1]TK → [0, 1]K can be seen as random vectors defined on the measurable space [0, 1]TK

(endowed with its Borel σ-algebra).
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`ir(γ),t − `jr(γ),t = 1− 1 = 0 a.s. for all t /∈ {tr−1 + 1, . . . , tr} (by (5.61)).

But, by (5.60) and by conditioning on (`1, . . . , `t−1), we have EQγ
[
pir(γ),t(`ir(γ),t − `jr(γ),t)

]
=

εEQγ
[
pir(γ),t

]
. Substituting the last equality in (5.63), we get

EQγ

[
T∑
t=1

pt · `t − min
F∈FK

T∑
t=1

pFt · `t

]
> ε

bK/2c∑
r=1

tr∑
t=tr−1+1

EQγ
[
pir(γ),t

]

= ε

bK/2c∑
r=1

tr∑
t=tr−1+1

EQγ

1− pjr(γ),t −
∑

k/∈{2r−1,2r}

pk,t



> ε

bK/2c∑
r=1

T

bK/2c

1− bK/2c
T

tr∑
t=tr−1+1

EQγ
[
pjr(γ),t

]
︸ ︷︷ ︸

Ar,γ

− bK/2c
T

∑
k/∈{2r−1,2r}

tr∑
t=tr−1+1

EQγ[pk,t]︸ ︷︷ ︸
Br,γ

 ,

(5.64)

where we used the fact that tr − tr−1 = T/bK/2c for all r = 1, . . . , bK/2c.

Next we show that, in non-trivial situations, Ar,γ 6 3/4 and Br,γ 6 1/8 for an appropriate choice
of γ ∈ {0, 1}bK/2c. We start with Br,γ . By (5.60) and yet another use of the tower rule, we have,
for all r ∈

{
1, . . . , bK/2c

}
and all k /∈ {2r − 1, 2r},

1

2

tr∑
t=tr−1+1

EQγ [pk,t] = EQγ

 tr∑
t=tr−1+1

pk,t
(
`k,t − `ir(γ)

) .

Following an argument of [Sto05, Theorem 3.3], note that the last expectation can be assumed to
be smaller than c

√
2TK for all r ∈

{
1, . . . , bK/2c

}
and all k /∈ {2r − 1, 2r}. Otherwise, the

lower bound of (5.58) would follow straightforwardly by using (5.59) on the sub-interval {tr−1 +

1, . . . , tr} and by monotonicity16 of the minimax swap regret in T . Therefore, we can assume that,
for all r ∈

{
1, . . . , bK/2c

}
,

bK/2c
T

∑
k/∈{2r−1,2r}

tr∑
t=tr−1+1

EQγ [pk,t] 6
bK/2c
T

(K − 2)2 c
√

2TK 6

√
2c2K5

T
6

1

8
, (5.65)

where the last inequality follows from the assumption T > 128c2K5.

As for the term Ar,γ , we show in what follows that, by iteratively using Pinsker’s inequality, there

16To see why the minimax swap regret is nondecreasing in T , it suffices to show that the worst-case swap regret of
any strategy S is nondecreasing in T . The latter fact is elementary by associating with each loss sequence (`1, . . . , `T )
the loss sequence (`1, . . . , `T ,0).
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exists γ ∈ {0, 1}bK/2c such that, for all r ∈
{

1, . . . , bK/2c
}

,

bK/2c
T

tr∑
t=tr−1+1

EQγ
[
pjr(γ),t

]
6

3

4
. (5.66)

For this purpose, we introduce an external randomization (as in [Sto05, Theorem 3.3]). Let
(Ωext,Bext,Qext) be a probability space, and let I1, . . . , IT ∈ {1, . . . ,K} be random variables
defined on the augmented space [0, 1]TK × Ωext such that17 It is measurable with respect to the
σ-field σ(`1, . . . , `t−1)⊗ Bext, and, for all γ ∈ {0, 1}bK/2c,

∀t ∈ {1, . . . , T}, ∀i ∈ {1, . . . ,K}, Qγ ⊗Qext

[
It = i

∣∣ (`1, I1), . . . , (`t−1, It−1)
]

= pi,t .

By the property above, (5.66) is equivalent to

bK/2c
T

tr∑
t=tr−1+1

Qγ ⊗Qext

[
It = jr(γ)

]
6

3

4
,

i.e.,
bK/2c
T

tr∑
t=tr−1+1

Q(γ1,...,γr,•) ⊗Qext

[
It = 2r − γr

]
6

3

4
, (5.67)

where we used the definition of jr(γ) , 2r−γr, and where Q(γ1,...,γr,•) denotes the joint distribu-
tion of (`1, . . . , `tr) (note that for all t 6 tr, It is measurable with respect to σ(`1, . . . , `t−1)⊗Bext

and a fortioti to σ(`1, . . . , `tr)⊗ Bext).

Next we define γ∗ =
(
γ∗1 , . . . , γ

∗
bK/2c

)
∈ {0, 1}bK/2c such that the condition (5.67) holds for all

r ∈
{

1, . . . , bK/2c
}

. Fix

γ∗1 ∈ argmin
γ1∈{0,1}

{
t1∑

t=t0+1

Q(γ1,•)

[
It = 2− γ1

]}
,

and, by induction,

γ∗r ∈ argmin
γr∈{0,1}


tr∑

t=tr−1+1

Q(γ∗1 ,...,γ
∗
r−1,γr,•) ⊗Qext

[
It = 2r − γr

] .

The definition of γ∗r above is motivated by the use of Pinsker’s inequality — see (5.73) below.
Let r = 1, . . . , bK/2c. Then, using Pinsker’s inequality at each t ∈ {tr−1 + 1, . . . , tr} (see
Lemma A.8 in Appendix A.7), and averaging the resulting bounds, we get, for all γr ∈ {0, 1},

bK/2c
T

tr∑
t=tr−1+1

Q(γ∗1 ,...,γ
∗
r−1,γr,•) ⊗Qext

[
It = 2r − γr

]
6
bK/2c
T

tr∑
t=tr−1+1

P(γ∗1 ,...,γ
∗
r−1,•) ⊗Qext

[
It = 2r − γr

]
+
bK/2c
T

tr∑
t=tr−1+1

√
K̄r,t(γr)

2
, (5.68)

17The random variables It can be constructed as follows: at each time t = 1, . . . , T , pick It ∈ {1, . . . ,K} at
random such that It = i with probability pi,t (conditionally on the past data (`1, I1), . . . , (`t−1, It−1)).
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where P(γ∗1 ,...,γ
∗
r−1,•) is defined similarly to Q(γ∗1 ,...,γ

∗
r−1,γr,•) except that `2r−1,t and `2r,t are both

Ber(1/2) under P(γ∗1 ,...,γ
∗
r−1,•) on the regime {tr−1 + 1, . . . , tr}, and where we set

K̄r,t(γr) , K
((

P(γ∗1 ,...,γ
∗
r−1,•) ⊗Qext

)It
,
(
Q(γ∗1 ,...,γ

∗
r−1,γr,•) ⊗Qext

)It)
(5.69)

6 K
(
P(γ∗1 ,...,γ

∗
r−1,•) ⊗Qext, Q(γ∗1 ,...,γ

∗
r−1,γr,•) ⊗Qext

)
(5.70)

=
T

bK/2c
K
(

Ber(1/2),Ber(1/2− ε)
)

(5.71)

6
T

bK/2c
8 ln(4/3) ε2 6

32T ln(4/3) ε2

K
(5.72)

provided that ε 6 1/4. In (5.69) we denote by
(
Q′ ⊗ Qext

)It the law of It under Q′ ⊗ Qext.
Inequality (5.70) follows by joint convexity of K(·, ·). To get (5.71), we used the chain rule for the
Kullback-Leibler divergence, the independence of the losses `i,t, 1 6 i 6 K, 1 6 t 6 T , and the
fact that P(γ∗1 ,...,γ

∗
r−1,•) and Q(γ∗1 ,...,γ

∗
r−1,γr,•) only differ on the regime {tr−1 +1, . . . , tr} (of length

T/bK/2c) at i = 2r−γr. Finally, (5.72) follows from the fact that K
(
Ber(1/2),Ber(1/2− ε)

)
=

− ln(1 − 4ε2)/2 and that − ln(1 − x) 6 4 ln(4/3)x for all x ∈ (0, 1/4) (see, e.g., [CBL06, pp.
167-168]), and from the elementary inequality bK/2c > K/4 (since K > 2).

Substituting the upper bound of (5.72) (that does not depend on γr) in (5.68) and using the defini-
tion of γ∗r , we get

bK/2c
T

tr∑
t=tr−1+1

Q(γ∗1 ,...,γ
∗
r ,•) ⊗Qext

[
It = 2r − γ∗r

]
6 min

γr∈{0,1}

bK/2c
T

tr∑
t=tr−1+1

P(γ∗1 ,...,γ
∗
r−1,•) ⊗Qext

[
It = 2r − γr

]
︸ ︷︷ ︸

61/2

+

√
16T ln(4/3)ε2

K
(5.73)

6 3/4 , (5.74)

where the upper bound by 1/2 in (5.73) follows from the fact that18

min
γr∈{0,1}

tr∑
t=tr−1+1

P(γ∗1 ,...,γ
∗
r−1,•) ⊗Qext

[
It = 2r − γr

]
6

1

2

∑
γr∈{0,1}

tr∑
t=tr−1+1

P(γ∗1 ,...,γ
∗
r−1,•) ⊗Qext

[
It = 2r − γr

]
6
tr − tr−1

2
=

T

2bK/2c
,

and where (5.74) holds provided that ε 6 1/4 and 16T ln(4/3)ε2/K 6 1/16. For such an ε, and
for the choice of γ∗ ,

(
γ∗1 , . . . , γ

∗
bK/2c

)
above, we have just proved (5.67) or, equivalently, (5.66).

18Note that the minimum of two quantities is smaller than their means, and that {It = 2r} ∩ {It = 2r − 1} = ∅.
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Combining it with (5.64) and (5.65), we finally get

EQγ∗

[
T∑
t=1

pt · `t − min
F∈FK

T∑
t=1

pFt · `t

]
> εT/8 .

Choosing ε = 8c
√

2K/T with c , 1/
(
16
√

128 ln(4/3)
)
, we can check that 16T ln(4/3)ε2/K 6

1/16 and that ε 6 1/4 (since by assumption T > 128c2K5 > (32c)22K because K4 > 24). This
choice of ε yields the lower bound c

√
2TK under Qγ∗ , which in turn yields (5.58) by (5.59). This

concludes the proof of the theorem when T is a multiple of bK/2c.

General case: We no longer assume that T is a multiple of bK/2c.
We use a reduction to the previous case. Denote by T ′ ∈ N the largest multiple of bK/2c smaller
than or equal to T . Then, by monotonocity of the worst-case swap regret in T (see Footnote 16 on
Page 202), we have

sup
`1,...,`T∈[0,1]K

{
T∑
t=1

pt · `t − min
F∈FK

T∑
t=1

pFt · `t

}
> sup
`1,...,`T ′∈[0,1]K

{
T ′∑
t=1

pt · `t − min
F∈FK

T ′∑
t=1

pFt · `t

}
> c
√

2T ′K ,

where the last inequality follows from the previous analysis (see (5.58)). We conclude the proof
by noting that, by definition of T ′,

T ′ > T − bK/2c > T/2

(since bK/2c 6 T/2 by the assumption T > K).

5.B Elementary lemmas

The first lemma of this section follows from elementary manipulations and can be found, e.g., in
[EDKMM09, Lemma 3].

Lemma 5.2. Let K > 1 and x1, . . . , xK ∈ R+. Then, using the conventions 1/0 = +∞,
1/(+∞) = 0, and x+ (+∞) = +∞ for all x ∈ R+, we have

min
q∈XK

max
16i6K

qixi =
1∑K

i=1 1/xi
.

Moreover, for every minimizer q ∈ XK of the above expression, we have, for all i = 1, . . . ,K,

qixi =
1∑K

j=1 1/xj
so that qi =

1/xi∑K
j=1 1/xj

if xi > 0 .

The second lemma can be obtained from elementary calculations or directly seen as a conse-
quence of the concavity of (u1, . . . , uK) ∈ (R∗+)K 7→

(∑K
j=1 1/uj

)−1 proved, e.g., in [EDKMM09,
Lemma 22]. It indicates that the harmonic mean is superadditive.
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Lemma 5.3. Let K,T > 1 and x1, . . . ,xT ∈ RK+ . Then, using the same conventions as above,
we have

T∑
t=1

1∑K
j=1 1/xj,t

6
1∑K

j=1 1/
(∑T

t=1 xj,t
) .



Chapter 6

Aggregation of nonlinear models

We consider the generalized linear Gaussian framework introduced in [BM01a], which includes
as special cases the Gaussian regression model with fixed design and the white noise framework.
Given a collection of subsets (or nonlinear models) in a separable Hilbert space, the goal is to
estimate the unknown vector almost as well as the best of the least squares estimators associated
with the models in the collection. In this setting we analyse a Bayesian variant of the celebrated
general model selection procedure of [BM01a, Mas07]. As in [LB06], our procedure is based
on exponential weighting, but the models at hand can be arbitrary. In such generality, we use
the concentration approach of [Mas07] and derive (non-sharp) oracle-type inequalities with high
probability. This work exhibits a natural connection between model aggregation and model selec-
tion: our oracle-type inequalities hold for a continuum of estimators ranging from classical model
aggregation (where the inverse temperature parameter is small enough) to model selection (where
the inverse temperature parameter is infinite). We finally prove a lower bound indicating that ag-
gregation is more robust that model selection in case of linear models. This lower bound suggests
that aggregation might benefit from a similar advantage with nonlinear models.

DISCLAIMER: This chapter is a work in progress. In particular, important questions remain open
(see Section 6.5). The preliminary results stated thereafter were presented at the workshop Stat-
MathAppli 2011 [Ger11b].
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6.1 Introduction

In this section we briefly introduce our framework and our statistical procedure. We also discuss
our main contributions and some related works. For the sake of clarity, we omit some technical
details, which are postponed to Section 6.2.

We consider the generalized linear Gaussian framework introduced in [BM01a], i.e., one ob-
serves the whole stochastic process

(
Yε(t)

)
t∈H given by

Yε(t) = <s, t>+ εW (t) , t ∈ H , (6.1)

where
(
H, <·, ·>

)
is some separable Hilbert space, where W is an isonormal process on H (i.e.,

an isometry from H onto a centered Gaussian space1), where the noise level ε > 0 is assumed to
be known, and where s ∈ H is the unknown vector to be estimated. See Examples 6.1 and 6.2.

To estimate the unknown vector s, the statistician is given a family of least-squares estimators
associated with different models, and his goal is to mimic the best of them. More precisely,
following the same lines as [Mas07], we fix some at most countable collection (Sm)m∈M of non-
empty subsets of H, which will be refered to as the models thereafter. For eachm ∈M, the closest
point to s in Sm (when it exists) is sm ∈ argmint∈Sm ‖t− s‖

2 = argmint∈Sm
{
‖t‖2− 2<s, t>

}
.

Therefore, a natural estimator of s within the model Sm is a least-squares estimator2 ŝm ∈ Sm
defined by

ŝm ∈ argmin
t∈Sm

γε(t) , where γε(t) , ‖t‖2 − 2Yε(t) . (6.2)

In this setting, a natural goal is to construct an estimator s̃ ∈ H of s which is almost as good
as the best least-squares estimator in the family

(
ŝm
)
m∈M. This is the case, when, e.g., s̃ satisfies

a risk bound of the form

Es
[
‖s̃− s‖2

]
6 C inf

m∈M
Es
[
‖ŝm − s‖2

]
, (6.3)

where Es denotes the expectation with respect to the law of
(
Yε(t)

)
t∈H (which depends on the

unknown vector s), and where C > 1 is a constant.

Example 6.1 (Gaussian regression framework with fixed design). In this setting, we
observe

Yi = si + σξi , 1 6 i 6 n ,

where the ξi are independent standard normal random variables, where the noise
level σ > 0 is assumed to be known, and where s ∈ Rn is the vector to be es-
timated. As explained in [BM01a], this setting corresponds to H = Rn endowed
with <u, v> = n−1

∑n
i=1 uivj , together with Y (t) = <Y, t>, W (t) =

√
n<ξ, t>,

s = (s1, . . . , sn), and ε = σ/
√
n, where Y , (Y1, . . . , Yn) and ξ , (ξ1, . . . , ξn).

1Equivalently,W =
(
W (t)

)
t∈H is a family of real random variables such that, for all p > 1 and all t1, . . . , tp ∈ H,

the random vector
(
W (t1), . . . ,W (tp)

)
is Gaussian with zero mean and covariance matrix

(
<ti, tj>

)
16i,j6p

.
2In this introduction we assume that a least-squares estimator ŝm exists for all m ∈M. The standard extension to

approximate least-squares estimators is presented in Section 6.2.2.
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Note that in this setting, the least-squares criterion can be rewritten as γε(t) = ‖t‖2−
2<Y, t> = ‖Y − t‖2 − ‖Y ‖2. Therefore, the least-squares estimators take the more
standard form:

ŝm ∈ argmin
t∈Sm

‖Y − t‖2 .

Example 6.2 (White noise framework). In this setting, we observe the whole path of
the stochastic process

(
ζε(u)

)
06u61

defined by

ζε(u) =

∫ u

0
s(x)dx+ εB(u) ,

where
(
B(u)

)
u>0

is a standard Brownian motion, and where s ∈ L2([0, 1], dx) is an
unknown square-integrable function on [0, 1]. As noted in [BM01a], this setting cor-
responds to H = L2([0, 1], dx), W (t) =

∫ 1
0 t(x)dB(x), and Yε(t) =

∫ 1
0 t(x)dζε(x)

provided that H is equipped with the usual inner product <s, t> =
∫ 1

0 s(x)t(x)dx.

6.1.1 Model selection

One way to obtain risk bounds of the form (6.3) is to employ the celebrated model selection via
penalization procedure of [BM01a, Mas07]. In the setting described above, this procedure chooses
the estimator s̃ = ŝm̂, where m̂ minimizes some penalized least-squares criterion overM. When
the models Sm are finite-dimensional linear subspaces of H, and for an appropriately well-chosen
penalty function, the estimator s̃ = ŝm̂ is shown to satisfy a risk bound of the form (6.3) with a
constant C > 1 depending on the collection (Sm)m∈M (C can be large if there are many models
of the same dimension). Following the terminology of [DJ94a], the latter risk bound is called an
oracle inequality, since it indicates that the estimator s̃ = ŝm̂ mimics the oracle ŝm∗(s), where
m∗(s) ∈ argminm∈M Es

[
‖ŝm − s‖2

]
corresponds to the unknown best model in (Sm)m∈M.

First consider the case where all the models Sm are finite-dimensional linear subspaces of H
(in the sequel, such models are refered to as linear models). As detailed in [BM01a, Mas07], this
includes as important examples the problems of variable selection, curve estimation, and change
points detection. In this setting [BM01a] associate with each model Sm a “weight” Lm > 0 such
that Σ ,

∑
m∈M:Dm>0 e

−LmDm <∞, where Dm denotes the dimension of the linear space Sm.
They then select the model m̂ as a minimizer of a penalized least-squares criterion:

m̂ ∈ argmin
m∈M

{
γε(ŝm) + pen(m)

}
, where pen(m) > Kε2Dm

(
1 +

√
2Lm

)2

for some constantK > 1 to be chosen by the statistician. Note that the lower bound on the penalty
pen(m) is proportional to the dimension Dm. As shown in [BM01a], for some constant CK > 1

depending only on K, the selected estimator ŝm̂ satisfies the oracle-type inequality

Es
[
‖ŝm̂ − s‖2

]
6 CK

(
inf
m∈M

{
‖sm − s‖2 + pen(m)

}
+ (Σ + 1) ε2

)
(6.4)

6 C ′K,Σ

(
1 + sup

m∈M
Lm

)
inf
m∈M

Es
[
‖ŝm − s‖2

]
, (6.5)
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where the last inequality holds true if pen(m) = Kε2Dm

(
1 +
√

2Lm
)2, and where C ′K,Σ > 1 is

a constant depending only on K and Σ. In particular (6.5) yields an oracle inequality of the form
(6.3) if we can choose the Lm such that supm Lm < ∞ and Σ ,

∑
m∈M:Dm>0 e

−LmDm < ∞.
Examples include the problems of ordered variable selection (where the Lm can be chosen such
that supm Lm is independent of the number of variables) and of complete variable selection (where
an optimal choice of the Lm is such that supm Lm scales as the logarithm of the number of vari-
ables); see Section 6.4.1 for further details. Another important consequence of (6.4) is that, as
shown in [BM01b], the model selection procedure ŝm̂ can be used to perform adaptive estimation
in an (approximately) minimax sense for various problems (e.g., variable selection, curve estima-
tion).

The case where the models Sm are not necessarily linear was addressed by [Mas07] via a
notion of generalized dimension Dm (defined through a suitable weighted empirical process – see
Section 6.2.2). The family of models (Sm)m∈M is associated with “weights” xm > 0 such that
Σ ,

∑
m∈M e−xm <∞. The selected model m̂ is then defined by

m̂ ∈ argmin
m∈M

{
γε(ŝm) + pen(m)

}
, where pen(m) > Kε2

(√
Dm +

√
2xm

)2

for some constant K > 1 to be chosen by the statistician. As shown in [Mas07], the selected
estimator ŝm̂ satisfies the risk bound

Es
[
‖ŝm̂ − s‖2

]
6 CK

(
inf
m∈M

{
‖sm − s‖2 + pen(m)

}
+ ε2(Σ + 1)

)
.

The above risk bound cannot be rewritten in the form (6.3) in general. It is thus called an oracle-
type inequality. Note however that it still leads to adaptivity properties (see, e.g., [Mas07, Sec-
tion 4.4.2] about adaptation to Besov ellipsoids). In this chapter, we derive risk bounds of the same
form but for a more general procedure based on exponential weighting.

Some references on model selection

The model selection via penalization approach of [BM01a] was inspired from the pioneering paper
[BC91]. It was first introduced by [BM97] in the context of density estimation and later developed
in [BBM99, BM01a] for the density estimation and regression problems. Several extensions and
refinements were later addressed, e.g., by [Bar00] in non-Gaussian settings, by [Bar02, Bir04] for
the random-design case, by [BM07a, AM09] for the study of minimal penalties and the corre-
sponding slope’s heuristics, by [BGH09] in the case of an unknown variance, and by [BGH11]
for the wider problem of estimator selection. We refer the reader to [Mas07] for a comprehensive
introduction to the topic. Detailed historical references can also be found in [MCL98].

6.1.2 Aggregation: main contributions and related works

In this chapter we are interested in the connections between model selection and aggregation, in
the same vein as in [FG00] and, more recently, [LB06]. The key idea, already pointed out in
[BM01a, Section 3.4], is to interpret the selected model m̂ in Theorem 6.1 as the mode of some
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posterior probability distribution in a Bayesian context3. More precisely, putting all convergence
issues aside (see Section 6.3), we have

m̂ ∈ argmax
m∈M

ρ̂ (η)
m ,

where, for some inverse temperature parameter η > 0, the posterior probability distribution ρ̂ (η) =(
ρ̂

(η)
m

)
m∈M is defined by

ρ̂ (η)
m =

exp

[
− η
(
γε(ŝm) + pen(m)

)]
∑

m′∈M exp

[
− η
(
γε(ŝm′) + pen(m′)

)] , m ∈M . (6.6)

In this chapter, we consider the following Bayesian variant of the model selection procedure of
[BM01a, Mas07]. Instead of estimating s with ŝm̂ where m̂ is the mode of ρ̂ (η), we estimate s
with the convex combination of the estimators ŝm given by ρ̂ (η), i.e., with the estimator

s̃ (η) =
∑
m∈M

ρ̂ (η)
m ŝm . (6.7)

(In the sequel, we also allow pen to depend on η.)

Aggregation (or mixing) via exponential weighting has now quite a long history in both the
machine learning and the statistical literatures. In machine learning, the exponentially weighted
average forecaster has received a considerable attention from the seminal works [Vov90, LW94]
to more recent parameter-tuning-oriented papers such as [CBMS07]; see Chapter 2 and [CBL06]
for an introduction to the subject.

As for the statistical literature, progressive mixture rules4 for the regression model with ran-
dom design have been thoroughly studied by [Cat99, Cat04] and later, e.g., by [Yan00, Yan01,
Yan03, Yan04] and [Aud07]. In this batch i.i.d. setting, aggregation via exponential weighting can
also be carried out in a non-sequential way, i.e., by computing the exponential weights only once,
with the whole sample — as in (6.6)–(6.7). Versions of such procedures were first analysed under
the name of Gibbs estimators by [Cat04], where they are proved to satisfy sharp oracle-type in-
equalities (i.e., with a leading constant equal to 1). Subsequent contributions include, among other
papers, [Aud04b] and [Alq08, AL11]. Most results of the aforementioned works are obtained for
families of base estimators that are deterministic — or random, but independent of the sample used
for the aggregation task (the last situation corresponds to the so-called sample splitting trick).

In the regression framework with fixed design (cf. Example 6.1), sharp PAC-Bayesian oracle-
type inequalities for deterministic base estimators were derived by [DT08] under weak assump-
tions on the noise distribution. However, if the aggregated estimators are random and constructed

3When H = Rn, [BM01a] show in Section 3.4 that m̂ is the mode of the posterior probability distribution in a
Bayesian framework with an improper “uniform” prior on each model Sm and a prior on the collectionM which is
proportional to exp

(
−pen(m)/(2ε2)

)
, m ∈M. See also [FG00, Theorem 1], [AG10], and [AGS11, Part IV].

4In the terminology of online learning, a progressive mixture rule is the result of the standard online-to-batch
conversion (see Section 2.5.1) when applied to an exponentially weighted average forecaster computed on the sample.
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on a fraction of the whole sample, it is not possible in general to combine them via the remaining
subsample so as to ensure a low expected empirical squared error on the whole sample (since the
two subsamples are no longer identically distributed). In a word, the sample splitting trick is not
appropriate in this setting.

The model selection via penalization procedure of [BM01a] is a way to overcome this lim-
itation: the selected model m̂ is chosen as a function of the same sample on which the least-
squares estimators ŝm are constructed. Another way is to use the Bayesian variant introduced
above. A key contribution in this respect was carried out by [LB06] when the (finite) family
of estimators consists of least-squares estimators on linear models Sm (still in the framework of
Example 6.1). Using our notations, and denoting by Dm the dimension of Sm, their procedure
is of the form of (6.6)–(6.7) with pen(m) = 2Dmσ

2/n + xm/η, where the xm are such that
Σ ,

∑
m∈M e−xm < +∞. Then, [LB06] show that for all η 6 n/(4σ2), the estimator s̃ (η)

defined in (6.6)–(6.7) satisfies the sharp oracle-type inequality

Es

[wwww ∑
m∈M

ρ̂ (η)
m ŝm − s

wwww2
]
6 inf

m∈M

{
Es
[
‖ŝm − s‖2

]
+
xm
η

}
+

ln Σ

η
. (6.8)

The above risk bound has proved useful, e.g., in high-dimensional linear regression. As shown by
[LB06, RT11, AL11], for a proper choice of the prior weights e−xm/Σ, this risk bound leads to
sharp sparsity oracle inequalities without any assumption on the dictionary at hand (cf. Chapter 2,
Section 2.6).

First contribution: aggregation of nonlinear models

The risk bound (6.8) of [LB06] was derived under the assumption that the models Sm ⊂ Rn are
linear and that the ŝm are the associated least-squares estimators (i.e., the orthogonal projections of
Y ∈ Rn on the Sm). This work was further extended in two directions. On the one hand, the case
of an unknown variance was addressed by [Gir08]. On the other hand, [DS11] replaced the family
of projection estimators

(
ŝm
)
m∈M with an arbitrary family of affine estimators; this wider class

of estimators includes, e.g., diagonal filters, kernel ridge regression, and multiple kernel learning.

In this chapter, we extend the work of [LB06] in a third direction: we still consider projection
estimators, but the models Sm ⊂ Rn can be almost arbitrary (or nonlinear). (Actually, we consider
the more general case Sm ⊂ H, where H is possibly infinite-dimensional). In such generality, the
use of the key Stein’s unbiased risk formula of [Ste81] as carried out in [LB06, DT08, DS11]
seems difficult. Instead we follow the concentration approach of [Mas07] to derive oracle-type
inequalities with high probability (with, however, leading constants larger than 1).

Second contribution: continuum of estimators from model aggregation to model selection

This work exhibits a natural connection between model aggregation and model selection: our
oracle-type inequalities hold for a continuum of estimators

{
s̃ (η) : η > 0

}
ranging from classical

model aggregation (where η is at most of the order5 of 1/ε2) to model selection (where η = +∞).

5In the Gaussian regression framework with fixed design, [LB06, DS11] assume that η 6 n/(4σ2), where n and
σ2 denote the sample size and the variance of the noise respectively. This condition can be rewritten in our setting (6.1)
as η 6 1/(4ε2) (cf. the correspondence ε = σ/

√
n in Example 6.1).
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In particular, for an appropriate choice of the penalty, our aggregating estimator s̃ (η) converges
almost surely to the selected estimator ŝm̂ as η →∞ (if m̂ is unique); see Corollary 6.1. This fact
is not surprising since our analysis is mostly based on the arguments of [Mas07, Theorem 4.18] —
the main change, however, consists in using a key duality formula for the Kullback-Leibler diver-
gence instead of the definition of m̂. The present chapter thus shows that the analysis of [Mas07]
for nonlinear models can be extended to arbitrary values of η > 0, instead of just taking η = +∞.

As of now, we do not know whether aggregation outperforms model selection for classical
nonlinear models (e.g., Besov ellipsoids, `1-balls, neural networks). However, our risk bounds
suggest that it might be the case because of the presence of a Jensen-type nonnegative term — see
Corollary 6.2. Another reason is that, even in the case of linear models, there are situations where
aggregation is more robust than model selection in terms of excess risks — see Section 6.4.2 for
a lower bound on model selection procedures. This lower bound suggests that aggregation might
benefit from a similar advantage with nonlinear models.

Outline of the chapter

This chapter is organized as follows. In Section 6.2 we formally describe our statistical framework
together with the model-selection and aggregation procedures at hand. In Section 6.3 we prove our
main oracle-type inequality for aggregation of nonlinear models. Then, in Section 6.4, we derive
several corollaries in classical examples and explain in which situations convexification may be
useful (as compared to model selection). Finally some important questions raised by this work in
progress are stated in Section 6.5.

6.2 Framework and statistical procedures at hand

In this section we recall the framework mentioned in the introduction and give a precise description
of the collection of models at hand. Then we recall with our notations the main theorem of [Mas07]
for model selection with nonlinear models. Finally we define our aggregation procedure.

6.2.1 The generalized linear Gaussian framework

We consider the generalized linear Gaussian framework introduced in [BM01a], i.e., one observes
the whole stochastic process

(
Yε(t)

)
t∈H given by

Yε(t) = <s, t>+ εW (t) , t ∈ H , (6.9)

where
(
H, <·, ·>

)
is some separable Hilbert space, where W is an isonormal process on H (i.e.,

an isometry from H onto a centered Gaussian space6), where the noise level ε > 0 is assumed to
be known, and where s ∈ H is the unknown vector to be estimated.

In the sequel, Ps denotes the law of
(
Yε(t)

)
t∈H (which depends on the unknown vector s), and

Es denotes the corresponding expectation.

6Equivalently,W =
(
W (t)

)
t∈H is a family of real random variables such that, for all p > 1 and all t1, . . . , tp ∈ H,

the random vector
(
W (t1), . . . ,W (tp)

)
is Gaussian with zero mean and covariance matrix

(
<ti, tj>

)
16i,j6p

.
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6.2.2 Collection of models

We follow below the same lines as in [Mas07]. Fix some at most countable collection (Sm)m∈M
of subsets of H, which will be refered to as the models thereafter. We assume that for every
m ∈ M, there exists some almost-surely continuous version of the isonormal process W on the
closure Sm of Sm, still denoted by W .

[Mas07] associates with each model Sm a generalized dimension Dm defined as follows (see
Section 6.4.1 for some examples). We assume that for all m ∈ M, their exists a nondecreasing
continuous function ϕm : [0,+∞)→ R+ such that x 7→ x−1ϕm(x) is nonincreasing on R∗+ and7

2E
[

sup
t∈Sm

(
W (t)−W (u)

‖t− u‖2 + x2

)]
6 x−2ϕm(x) , (6.10)

for all x > 0 and all u ∈ Sm. We let τm = 1 if Sm is closed and convex and τm = 2 otherwise.
Under the assumptions above, we associate with each model Sm a generalized dimensionDm > 0

defined by:

• if ϕm ≡ 0, then Dm , 0;

• if ϕm(x0) > 0 for some x0 > 0, then Dm is the unique positive solution of the equation

ϕm
(
τmε

√
Dm

)
= εDm . (6.11)

Legitimate definition: Next we explain why Dm is well-defined when there is x0 > 0

such that ϕm(x0) > 0. Note that (6.11) has a unique solution Dm > 0 if and only
if the equation x−2ϕm(x) = 1/(τ2

mε) has a unique solution x > 0 (by the change of
variables x = τmε

√
Dm).

But, since x 7→ x−1ϕm(x) is nonincreasing on (0, x0] and since ϕm is nondecreasing
on [x0,+∞), we can see that ϕm(x) > 0 for all x > 0.

Therefore, x 7→ x−2ϕm(x) is a product of two continuous, positive, and nonincreas-
ing functions x 7→ x−1ϕm(x) and x 7→ x−1, one of them being decreasing. The func-
tion x 7→ x−2ϕm(x) is thus continuous and decreasing on (0,+∞). Since in addition
limx→0 x

−2ϕm(x) = +∞ and limx→+∞ x
−2ϕm(x) = 0 (because x 7→ x−1ϕm(x)

is positive and nonincreasing), we get from the intermediate value theorem that the
equation x−2ϕm(x) = 1/(τ2

mε) has a unique solution x > 0. This implies that (6.11)
has a unique solution Dm > 0.

We associate with each m ∈ M a real number xm > 0 such that Σ ,
∑

m∈M e−xm < ∞.
The sequence (e−xm/Σ)m∈M can be seen as a prior probability distribution on the sequence of
models (Sm)m∈M. We will denote thereafter by ∆(M) the set of all probability distributions on

7To avoid any measurability issues, the supremum supt∈Sm
in (6.10) should be understood as a supremum

supt∈Am
over any at most countable dense subset Am ⊂ Sm. In the same way, the infimum inft∈Sm in (6.13)

can be replaced with an infimum inft∈Am ; the resulting weaker assumption ensures that their always exists (ŝm)m∈M
such that ŝm and W (ŝm) are measurable. Though we do not focus on measurablity issues in this chapter, all stated
results remain true under the aforementioned slight modification (by density of Am and since W admits an almost-sure
continuous version on Sm).
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M (endowed with its discrete σ-algebra).

We also set, for all t ∈ H,
γε(t) = ‖t‖2 − 2Yε(t) . (6.12)

Given µ > 0, we associate with this empirical contrast some collection of µ-least-squares estima-
tors (ŝm)m∈M (or µ-LSEs for short). This means that for all m ∈M,

ŝm ∈ Sm and γε(ŝm) 6 inf
t∈Sm

γε(t) + µ almost surely. (6.13)

Finally, for all m ∈M, we denote by d(s, Sm) , inft∈Sm ‖s− t‖ the distance between s and the
model Sm.

6.2.3 Model selection via penalization

In the framework described above, the general model selection theorem by [Mas07, Theorem 4.18]
reads as follows. Note that it holds for possibly nonlinear models Sm (i.e., the Sm ⊂ H are not
necessarily linear subspaces of H).

Theorem 6.1 (A general model selection theorem by [Mas07] for nonlinear models).
Consider the framework given in (6.9). Let K > 1 be some constant and pen :M→ R+ be such
that, for all m ∈M,

pen(m) > Kε2
(√

Dm +
√

2xm

)2
, (6.14)

whereDm is defined in (6.10) – (6.11) and where (xm) ∈ RM+ is such that Σ ,
∑

m∈M e−xm <∞.
Then, almost surely, there is a minimizer

m̂ ∈ argmin
m∈M

{
γε(ŝm) + pen(m)

}
. (6.15)

Defining a penalized µ-LSE as s̃ = ŝm̂, we have, for some constant CK > 1 depending only onK,
for all s ∈ H,

Es
[
‖s̃− s‖2

]
6 CK

(
inf
m∈M

{
d2(s, Sm) + pen(m)

}
+ ε2(Σ + 1) + µ

)
. (6.16)

6.2.4 Our aggregation procedure

Our aggregation procedure is defined as follows. We refer the reader to the introduction for related
references.

Given an inverse temperature parameter η > 0 and a penalty function pen(η) : M → R+, we
define the associated Gibbs posterior ρ̂ (η) =

(
ρ̂

(η)
m

)
m∈M ∈ ∆(M) by

ρ̂ (η)
m =

exp

[
− η
(
γε(ŝm) + pen(η)(m)

)]
∑

m′∈M exp

[
− η
(
γε(ŝm′) + pen(η)(m′)

)] , m ∈M . (6.17)
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We will later see sufficient conditions for the almost sure convergence of the series in the denom-
inator above, in which case ρ̂ (η) is well-defined. If this is the case, and if almost surely the next
series converges absolutely in H, then we define our estimator s̃ (η) by

s̃ (η) =
∑
m∈M

ρ̂ (η)
m ŝm . (6.18)

Note that ρ̂ (η) and s̃ (η) are always well-defined whenM is finite.

6.3 Model aggregation with nonlinear models

In this section we prove an oracle-type inequality for the aggregation procedure s̃ (η). To avoid
convergence technicalities, all the proofs in this section are given for the case of a finite collec-
tionM; the extensions to any at most countable collection are postponed to Section 6.A.

We first fix some notations. We set ln+(x) , max
{

ln(x), 0
}

for all x ∈ R. Moreover, for all
ρ, π ∈ ∆(M), the Kullback-Leibler divergence K(ρ, π) between ρ and π is defined by

K(ρ, π) ,


∑
m∈M

ρm ln

(
ρm
πm

)
if ρ is absolutely continuous with respect to π;

+∞ otherwise.

Finally, for all ρ ∈ ∆(M) such that
∑

m∈M ρm ‖ŝm‖ <∞ almost surely (which is the case when,
e.g.,M is finite), we set

J (ρ) ,
∑
m∈M

ρm ‖ŝm − s‖2 −

wwwww ∑
m∈M

ρmŝm − s

wwwww
2

. (6.19)

Note that J (ρ) > 0 by Jensen’s inequality.

The main result of this section is the following theorem. See also Remark 6.1 below for a risk
bound with high probability.

Theorem 6.2. Consider the framework given in (6.9). Assume thatM is at most countable. Let
η > 0 and K > 1 be some constants and take pen(η) :M→ R+ such that, for all m ∈M,

pen(η)(m) > Kε2
(√

Dm +
√

2xm

)2
+
xm
η
, (6.20)

whereDm is defined in (6.10)–(6.11) and where (xm) ∈ RM+ is such that Σ ,
∑

m∈M e−xm <∞.
Then, almost surely,

•
∑

m∈M exp
[
−η
(
γε(ŝm) + pen(η)(m)

)]
<∞, so that ρ̂ (η) is well defined in (6.17);

•
∑

m∈M ρ̂
(η)
m ‖ŝm‖ <∞, so that s̃ (η) =

∑
m∈M ρ̂

(η)
m ŝm is well defined in (6.18).

Moreover, defining the prior π ∈ ∆(M) by πm , e−xm/Σ for all m ∈ M, we have, for some
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constant CK > 1 depending only on K (cf. (6.34)), for all s ∈ H,

Es
[wwws̃ (η) − s

www2
]

6 CK

(
inf

ρ∈∆(M)

{ ∑
m∈M

ρm

[
d2(s, Sm) + pen(η)(m)− xm

η

]
+
K(ρ, π)

η

}

+ ε2(ln+(Σ) + 1) + µ

)
− Es

[
J
(
ρ̂ (η)

)]
(6.21)

6 CK

(
inf
m∈M

{
d2(s, Sm) + pen(η)(m)

}
+

ln Σ

η
+ ε2(ln+(Σ) + 1) + µ

)
− Es

[
J
(
ρ̂ (η)

)]
.

(6.22)

Remark 6.1 (High-probability bound).
The above oracle-type inequalities are only stated in expectation. The proof of Theorem 6.2 also
leads to the following high-probability bound: for all z > 0, with probability at least 1− Σ2e−z ,wwws̃ (η) − s

www2
6 C ′K

(
inf
m∈M

{
d2(s, Sm) + pen(η)(m)

}
+

ln Σ

η
+ ε2(z + 1) + µ

)
− J

(
ρ̂ (η)

)
for some absolute constant C ′K > 0 depending only on K (cf. (6.35)). See Remark 6.2 later for a
proof of this bound. Note that it implies a bound in expectation similar to (6.22) — via Lemma A.7
in Appendix A.6 — but that is in general not comparable to (6.21).

Before proving Theorem 6.2, we first make some comments on the procedure s̃ (η) and state
two corollaries of Theorem 6.2.

Next we compare s̃ (η) with the standard model selection procedure ŝm̂ recalled in Theo-
rem 6.1; we assume for simplicity that M is finite. For this purpose, let pen : M → R+ be
a penalty function, and consider the case when pen(η)(m) = pen(m) + xm/η for all m ∈ M.
Assume that, for all m ∈ M, we have pen(m) > Kε2

(√
Dm +

√
2xm

)2, or, equivalently,

pen(η)(m) > Kε2
(√
Dm +

√
2xm

)2
+ xm/η. Then, by the fact that ρ̂ (η)

m is proportional to

exp

[
− η
(
γε(ŝm) + pen(η)(m)

)]
= exp

[
− η
(
γε(ŝm) + pen(m)

)
− xm

]
, (6.23)

it is easy to see that, as η → +∞, the probability distribution ρ̂ (η) converges almost surely to
ρ̂ (∞) ∈ ∆(M) ⊂ R|M| defined by

∀m ∈M , ρ̂ (∞)
m ,

{
e−xm/Ẑ if m ∈ M̂ ,

0 if m /∈ M̂ ,
(6.24)

where M̂ , argminm∈M
{
γε(ŝm)+pen(m)

}
⊂M and where Ẑ ,

∑
m∈M̂ e−xm . In particular,

if there is a unique minimizer m̂ ∈ argminm∈M
{
γε(ŝm) + pen(m)

}
, then ρ̂ (η) tends to the Dirac

distribution at m̂, so that s̃ (η) → ŝm̂ almost surely. This is stated formally in Corollary 6.1 below.
On the contrary, when η → 0, we can see from (6.23) that, almost surely, the probability dis-

tribution ρ̂ (η) tends to the prior π , (e−xm/Σ)m∈M, so that s̃ (η) →
∑

m∈M πmŝm. Therefore,
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the continuous family
{
s̃ (η) : η > 0} contains Bayesian variants of the estimator ŝm̂ ranging from

pure model aggregation (when η → 0) to pure model selection (when η →∞).

How to choose the value of the tuning parameter η? Though this important question is be-
yond the scope of the present chapter, two values of η seem reasonable. As indicated above (and
formally stated in Corollary 6.1 below), letting η → +∞ is never a bad choice, since we recover
the theoretical guarantees of the standard model selection procedure ŝm̂ stated in Theorem 6.1.
Another interesting choice is suggested in Corollary 6.2. For smaller values of η ≈ 1/ε2, the
estimator s̃ (η) still satisfies a risk bound comparable to that of ŝm̂, but it can also benefit from the
convexification phenomenon due to aggregation — see the brief comment after Corollary 6.2 and
the discussion in Section 6.4.2.

Note that for the two choices of η mentioned above, the estimator s̃ (η) is built as a function
of the noise level ε, which may be unknown in practice. In the case η = +∞, adaptation to
ε was first tackled by [BM07a, AM09] for histogram-based regression via the so-called slope’s
heuristics. As for smaller values of η ≈ 1/ε2, adaptation to ε was addressed by [Gir08] for linear
models with a Mallows’ Cp-type penalty. However, it is not clear whether the choices η = +∞
or η ≈ 1/ε2 mentioned above are the best ones, so that two important questions remain open.
First, can we identify an optimal choice of η (in a reasonable sense) at least for classical prediction
problems? Second, if such an optimal (and theoretical) choice is identified, is it possible to tune
our aggregating procedure in an automatic and near-optimal way?

Corollary 6.1 (Choice of η → +∞). Consider the framework given in (6.9). Assume that
M is at most countable. Let K > 1 be a constant and take pen : M → R+ such that
pen(m) > Kε2

(√
Dm +

√
2xm

)2 for all m ∈ M, where Dm is defined in (6.10) – (6.11) and
where (xm) ∈ RM+ is such that Σ ,

∑
m∈M e−xm <∞.

Set pen(η)(m) , pen(m) + xm/η. Then, as η → +∞, the estimator s̃ (η) defined in (6.17) –
(6.18) converges almost surely to the estimator

s̃ (∞) ,
∑
m∈M

ρ̂ (∞)
m ŝm ,

where ρ̂ (∞) is defined in (6.24) and has almost surely a finite support M̂. Moreover, for some
constant CK > 1 depending only on K, we have, for all s ∈ H,

Es
[wwws̃ (∞) − s

www2
]
6 CK

(
inf
m∈M

{
d2(s, Sm) + pen(m)

}
+ ε2(ln+(Σ) + 1) + µ

)
. (6.25)

The proof of the last corollary is immediate when M is finite: the almost sure convergence
‖s̃ (η) − s̃ (∞)‖ → 0 was already explained in the previous paragraphs, and the risk bound above
follows from Fatou’s lemma and from (6.22) in Theorem 6.2. The proof in the general case of an
at most countable collectionM is postponed to Appendix 6.A.2.

Note that the oracle-type inequality above is identical to that of [Mas07, Theorem 4.18] re-
called in Theorem 6.1 (except for the term ln+(Σ) that is smaller than Σ, but this improvement
can also be made for Theorem 6.1). This is not surprising since our proof of Theorem 6.2 follows
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the same lines as that of Theorem 6.1. The present chapter thus shows that the analysis of [Mas07]
for nonlinear models can be extended to arbitrary values of η > 0, instead of just taking η = +∞.

Corollary 6.2 (Choice of η = c/ε2). Consider the framework given in (6.9). Assume thatM is at
most countable. Let c > 0 and K > 1 be some constants and take penc :M→ R+ such that, for
all m ∈M,

penc(m) > Kε2
(√

Dm +
√

2xm

)2
+ c−1ε2xm , (6.26)

whereDm is defined in (6.10) – (6.11) and where (xm) ∈ RM+ is such that Σ ,
∑

m∈M e−xm <∞.

Then, for some constant CK > 1 depending only on K, the estimator s̃ (c/ε2) defined in (6.17) –
(6.18) satisfies, for all s ∈ H,

Es
[wwws̃ (c/ε2) − s

www2
]

6 CK

(
inf
m∈M

{
d2(s, Sm) + penc(m)

}
+
ε2 ln Σ

c
+ ε2(ln+(Σ) + 1) + µ

)
− Es

[
J
(
ρ̂(c/ε2)

)]
.

The last corollary is an immediate consequence of Theorem 6.2, so the proof is omitted. Note
that the risk bound above is at most of the same order8 as the bound of Corollary 6.1 if in each
corollary the penalty functions are chosen as the smallest penalties allowed by the assumptions.
However, choosing η = c/ε2 instead of η → ∞ enables to reduce the risk bound by the additive
term Es

[
J
(
ρ̂(c/ε2)

)]
. We have not investigated yet the extent to which the above risk bound im-

proves — via the term Es
[
J
(
ρ̂(c/ε2)

)]
— on the bound of Theorem 6.1 for model selection. We

however briefly explain in Section 6.4.2 in which situations the convexification phenomenon due
to aggregation may be useful.

Proof (of Theorem 6.2): To avoid any convergence technicalities, we assume in the sequel that
M is finite (in particular, the first two claims of the theorem are straightforward). The proof in the
countably infinite case is postponed to Appendix 6.A.1.

The proof follows the same lines as the general model selection theorem of [Mas07, Theo-
rem 4.18] recalled in Theorem 6.1. The key point is to replace the line stating that m̂ minimizes
some penalized empirical risk over M by the fact that ρ̂ (η) minimizes some penalized average
empirical risk over ∆(M). Indeed, first note that ρ̂ (η) defined in (6.17) can be rewritten as

ρ̂ (η)
m =

exp

[
− η
(
γε(ŝm) + pen

(η)
2 (m)

)]
πm∑

m′∈M exp

[
− η
(
γε(ŝm′) + pen

(η)
2 (m′)

)]
πm′

, m ∈M ,

where πm , e−xm/Σ and pen
(η)
2 (m) , pen(η)(m)−xm/η for allm ∈M. We can thus use a key

duality formula on the Kullback-Leibler divergence proved, e.g., in [Cat04, pp. 159-160] and that
8Indeed, for allm ∈M, the bound of Corollary 6.2 is larger than the bound of Corollary 6.1 by at most the additive

term c−1ε2xm + c−1ε2 ln Σ. Therefore, the overall bound of Corollary 6.2 is smaller than (1 + c−1) times that of
Corollary 6.1 (note that c−1ε2xm 6 c−1Kε2

(√
Dm +

√
2xm

)2 since K > 1 > 1/2).
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we recall in Proposition A.1 of Appendix A.1. Applying Proposition A.1 with E = M and the
(random) function h :M→ R defined by h(m) = η

(
γε(ŝm) + pen

(η)
2 (m)

)
for all m ∈ M, we

can see that h is almost surely bounded onM (sinceM is finite) and that ρ̂ (η) = πexp
−h ; therefore,

for all ρ ∈ ∆(M) and all families (sm)m∈M of elements in H, almost surely,

∑
m∈M

ρ̂ (η)
m

(
γε(ŝm) + pen

(η)
2 (m)

)
+
K
(
ρ̂ (η), π

)
η

6
∑
m∈M

ρm
(
γε(ŝm) + pen

(η)
2 (m)

)
+
K(ρ, π)

η

6
∑
m∈M

ρm
(
γε(sm) + pen

(η)
2 (m)

)
+
K(ρ, π)

η

+ µ , (6.27)

where the last inequality follows by definition of ŝm in (6.13) and by the fact that
∑

m∈M ρm = 1.
In the sequel we fix δ > 0 and choose sm ∈ Sm such that ‖s− sm‖2 6 d2(s, Sm) + δ2 for all
m ∈M. At the end of the proof, we will let δ → 0.

We also fix ρ ∈ ∆(M). We can assume that K(ρ, π) <∞ (since otherwise, ρ does not participate
to the infimum in (6.21)). Therefore, by (6.27), we also have K

(
ρ̂ (η), π

)
< ∞, so that all terms

in (6.27) are finite. Moreover, note that for all t ∈ H, by definition of γε(t) and Yε(t),

γε(t) , ‖t‖2 − 2Yε(t) = ‖t‖2 − 2
(
<s, t>+ εW (t)

)
= ‖t− s‖2 − ‖s‖2 − 2εW (t) . (6.28)

Substituting the last equality in (6.27), and noting that two terms −‖s‖2 cancel out, we get

∑
m∈M

ρ̂ (η)
m ‖ŝm − s‖

2 6
∑
m∈M

ρm
(
‖sm − s‖2 + pen

(η)
2 (m)

)
+
K(ρ, π)

η
−
K
(
ρ̂ (η), π

)
η

+ µ

+ 2ε

( ∑
m∈M

ρ̂ (η)
m W (ŝm)−

∑
m∈M

ρmW (sm)

)
−
∑
m∈M

ρ̂ (η)
m pen

(η)
2 (m) .

(6.29)

But since W : H → L2
(
Ps
)

is linear (by definition of an isonormal process), we have, almost
surely,

∑
m∈M ρmW (sm) = W

(∑
m∈M ρmsm

)
= W

(
sρ
)
, where we set sρ ,

∑
m∈M ρmsm.

Therefore, using the fact that
∑

m ρ̂
(η)
m = 1, we get, almost surely,∑

m∈M
ρ̂ (η)
m W (ŝm)−

∑
m∈M

ρmW (sm) =
∑
m∈M

ρ̂ (η)
m

(
W (ŝm)−W (sρ)

)
6
∑
m∈M

ρ̂ (η)
m wm(ŝm) sup

t∈Sm

(
W (t)−W (sρ)

wm(t)

)
,

where, for allm ∈M and t ∈ H, we setwm(t) , (1/2)
([
‖s− sρ‖+ ‖s− t‖

]2
+ y2

m

)
for some

real numbers ym to be chosen later. Substituting the above inequality in (6.29), and neglecting the
term K

(
ρ̂ (η), π

)
/η > 0, we get, almost surely,

∑
m∈M

ρ̂ (η)
m ‖ŝm − s‖

2 6
∑
m∈M

ρm
(
‖sm − s‖2 + pen

(η)
2 (m)

)
+
K(ρ, π)

η
+ µ
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+
∑
m∈M

ρ̂ (η)
m

(
2εwm(ŝm) sup

t∈Sm

(
W (t)−W (sρ)

wm(t)

)
︸ ︷︷ ︸

,Vm

−pen
(η)
2 (m)

)
.

(6.30)

The rest of the proof follows the same lines as the proof of [Mas07, Theorem 4.18] (recalled in
Theorem 6.1). First, we use the fact that with large probability, for all m ∈ M, the penalty
pen

(η)
2 (m) is large enough to annihilate the fluctuations 2εwm(ŝm)Vm. This is proved in [Mas07,

Theorem 4.18] between Equations (4.78) and (4.82); Lemma 6.2 in Appendix 6.B.2 is a straight-
forward variant of this argument. We apply it with a = sρ.

To that end, let z > 0 and K ′ > 1, and set ym , K ′ε
(√
Dm +

√
2xm + (2π)−1/2 +

√
2z
)

for
all m ∈ M. Then, Lemma 6.2 indicates that on some event Ωz,K′ of probability Ps

(
Ωz,K′

)
>

1− Σe−z , for all m ∈M,

2εwm(ŝm)Vm 6 K ′2ε2
(√

Dm +
√

2xm
)2

+
2K ′2ε2

K ′ − 1

(
1

2π
+ 2z

)
+

1√
K ′

(
‖s− ŝm‖2 +

‖s− sρ‖2√
K ′ − 1

)
.

Now, we chooseK ′ ,
√
K. Therefore, from the last inequality and from the fact that pen

(η)
2 (m) ,

pen(η)(m)−xm/η > Kε2
(√
Dm +

√
2xm

)2 by Assumption (6.20), we can see that on the event
Ωz,K′ , for all m ∈M,

2εwm(ŝm)Vm − pen
(η)
2 (m) 6

2Kε2

√
K − 1

(
1

2π
+ 2z

)
+

1

K1/4

(
‖s− ŝm‖2 +

‖s− sρ‖2

K1/4 − 1

)
.

(6.31)
Substituting the last inequality in (6.30), and using again the fact that

∑
m ρ̂

(η)
m = 1, we get, on

the event Ωz,K′ ,∑
m∈M

ρ̂ (η)
m ‖ŝm − s‖

2 6
∑
m∈M

ρm
(
‖sm − s‖2 + pen

(η)
2 (m)

)
+
K(ρ, π)

η
+ µ

+
1

K1/4

∑
m∈M

ρ̂ (η)
m ‖s− ŝm‖

2 +
2Kε2

√
K − 1

(
1

2π
+ 2z

)
+

‖s− sρ‖2

K1/4
(
K1/4 − 1

) .
Noting that ‖s− sρ‖2 6

∑
m∈M ρm ‖s− sm‖2 by definition of sρ and by convexity of ‖·‖2, and

reordering the terms of the inequality above, we get, with probability at least 1− Σe−z ,(
1− 1

K1/4

) ∑
m∈M

ρ̂ (η)
m ‖ŝm − s‖

2

6 (1 +AK)

( ∑
m∈M

ρm
(
‖sm − s‖2 + pen

(η)
2 (m)

)
+
K(ρ, π)

η
+ µ

)
+

2Kε2

√
K − 1

(
1

2π
+ 2z

)
,

(6.32)

where we set AK , 1/
(
K1/4(K1/4 − 1)

)
. Dividing both sides by 1 − K−1/4, recalling that
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‖s− sm‖2 6 d2(s, Sm) + δ2 for all m ∈M, and integrating the resulting high-probability bound
via Lemma A.7 in Appendix A.6 (see Example A.1), we get that

Es

[ ∑
m∈M

ρ̂ (η)
m ‖ŝm − s‖

2

]

6
1 +AK

1−K−1/4

( ∑
m∈M

ρm
(
d2(s, Sm) + δ2 + pen

(η)
2 (m)

)
+
K(ρ, π)

η
+ µ

)

+
2Kε2(

1−K−1/4
)(√

K − 1
) ( 1

2π
+ 2
(
ln+(Σ) + 1

))
. (6.33)

Since the last inequality holds for all δ > 0 and all ρ ∈ ∆(M) such that K(ρ, π) < ∞, we
conclude the proof of (6.21) by letting δ → 0, by recalling that pen

(η)
2 (m) = pen(η)(m)− xm/η,

by setting

CK , max

{
1 +AK

1−K−1/4
,

2K(
1−K−1/4

)(√
K − 1

) ( 1

2π
+ 2

)}
> 1 , (6.34)

and by using the definitions of J
(
ρ̂ (η)

)
and of s̃ (η).

The upper bound (6.22) then follows straightforwardly by restricting the infimum over all
ρ ∈ ∆(M) to the Dirac distributions ρ = δm at m ∈ M, and by noting that K(δm, π) =

ln(1/πm) = xm + ln Σ (since πm , e−xm/Σ).

Remark 6.2 (Bound with high probability). We can derive oracle-type inequalities with high
probability instead of risk bounds in expectation (as in [AM09, MM11] for instance). Indeed, note
that (6.32) in the proof above holds with probability at least Σe−z for any fixed ρ ∈ ∆(M), and
in particular for any fixed Dirac distribution δm′ at m′ ∈ M. Therefore, by a union-bound over
M and by the equality K(δm′ , π) = xm′ + ln Σ, we get that, with probability at least 1− Σ2e−z ,
for all m′ ∈M,

∑
m∈M

ρ̂ (η)
m ‖ŝm − s‖

2 6
1 +AK

1−K−1/4

(
‖sm′ − s‖2 + pen

(η)
2 (m′) +

xm′ + ln Σ

η
+ µ

)
+

2Kε2(
1−K−1/4

)(√
K − 1

) ( 1

2π
+ 2(z + xm′)

)
.

Therefore, using again ‖s− sm′‖2 6 d2(s, Sm′) + δ2 and pen
(η)
2 (m′) = pen(η)(m′) − xm′/η,

and letting9 δ → 0, we get that, with probability at least 1− Σ2e−z , for all m′ ∈M,

∑
m∈M

ρ̂ (η)
m ‖ŝm − s‖

2 6
1 +AK

1−K−1/4

(
d2(s, Sm′) + pen(η)(m′) +

ln Σ

η
+ µ

)
+
A′K2Kε2xm′

1−K−1/4

+
2Kε2(

1−K−1/4
)(√

K − 1
) ( 1

2π
+ 2z

)
,

9Note that the probability Σ2e−z is independent of δ and that P[Z > a + δ] ↑ P[Z > a] as δ ↓ 0 for any real
random variable Z and any constant a ∈ R.
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where we set A′K , 2/
(√
K − 1

)
. Finally, noting that 2Kε2xm′ 6 pen(η)(m′) (by Assump-

tion (6.20)), using the definitions of J
(
ρ̂ (η)

)
and of s̃ (η), and setting

C ′K , max

{
1 +AK +A′K

1−K−1/4
,

4K(
1−K−1/4

)(√
K − 1

)} , (6.35)

we get the bound stated in Remark 6.1: with probability at least 1− Σ2e−z ,wwws̃ (η) − s
www2

6 C ′K inf
m′∈M

{
d2(s, Sm′) + pen(η)(m′) +

ln Σ

η
+ ε2(z + 1) + µ

}
− J

(
ρ̂ (η)

)
.

6.4 Examples

In this section we apply Theorem 6.2 to classical problems such as aggregation of linear models,
of finite models, and of `1-balls. The resulting oracle-type inequalities are comparable to those
obtained with the model selection procedure of [Mas07, Theorem 4.18] (cf. Theorem 6.1). In
a second part, we briefly explain why aggregation might outperform model selection in some
situations where convexification is useful.

6.4.1 Application to some classical problems

Next we derive several corollaries of Theorem 6.2 in classical settings. They follow in a straight-
forward manner from the latter theorem and from the computations of the various generalized
dimensions Dm that are carried out in [Mas07, Chapter 4]. We only present a few of them (linear
models, finite models, and `1-balls) but all examples treated in [Mas07, Chapter 4] could also be
addressed here (e.g., aggregation of Besov ellipsoids).

Aggregation of linear models

As explained in [BM01a, Mas07], the particular case of linear models already includes important
practical problems such as variable selection, curve estimation, and change points detection.

The next corollary is an immediate consequence of Theorem 6.2 (with µ = 0 and η > c/ε2)
and of the fact that, for any finite dimensional linear subspace Sm of H, its generalized dimension
Dm coincides with its (classical) dimension – see [Mas07, p. 130].

Corollary 6.3 (Linear models). Fix some constant c > 0. Consider the framework given in (6.9),
and assume that (Sm)m∈M is an at most countable collection of linear subspaces of H with finite
dimensions Dm respectively. For all m ∈ M, let ŝm ∈ argmint∈Sm

{
‖t‖2 − 2Yε(t)

}
be the

least-squares estimator on Sm. Finally, let η > c/ε2 and K > 1 be some constants and take
pen(η) :M→ R+ such that, for all m ∈M,

pen(η)(m) > Kε2
(√

Dm +
√

2xm

)2
+
xm
η
, (6.36)

where (xm) ∈ RM+ is such that Σ ,
∑

m∈M e−xm <∞.
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Then, for some constant CK > 1 depending only on K, the estimator s̃ (η) defined in (6.17) –
(6.18) satisfies, for all s ∈ H,

Es
[wwws̃ (η) − s

www2
]
6 CK

(
inf
m∈M

{
d2(s, Sm) + pen(η)(m)

}
+

ln Σ

η
+ ε2(ln+(Σ) + 1)

)
6 CK

(
inf
m∈M

{
d2(s, Sm) + pen(η)(m)

}
+ ε2

(
(1 + c−1) ln+(Σ) + 1

))
.

A possible choice for the constant CK above is given in (6.34). This choice, which follows
from our analysis for nonlinear models, can of course be tightened in the particular case of lin-
ear models. A tighter analysis for refined penalties was indeed carried out for selection of lin-
ear models in [BM07a]. As for the aggregation of linear models, [LB06, Corollary 6] proved
an oracle-type inequality with leading constant 1 (instead of CK > 1) for an inverse temper-
ature parameter corresponding to η 6 1/(4ε2). They use a Mallow’s Cp-type penalty (i.e.,
pen(η)(m) = 2ε2Dm + xm/η) and analyse it through Stein’s unbiased risk formula [Ste81].

An interesting open question is thus the following: in the particular case of linear models,
and for a proper choice of the penalty, can we extend the refined risk bounds of [BM07a, LB06]
through a single analysis to all η > 0 (instead of η = +∞ or η 6 1/(4ε2))? In particular,
what are the performance of our aggregation procedure with a Mallow’s Cp-type penalty when
η > 1/(4ε2)? Stein’s unbiased risk formula could also be useful in this case.

Next we rewrite the risk bound above for the particular problems of ordered and complete vari-
able selection in the Gaussian regression framework with fixed design. Recall from Example 6.1
in Section 6.1 that, in this setting, we observe

Yi = si + σξi , 1 6 i 6 n ,

where the ξi are independent standard normal random variables, where the noise level σ > 0

is assumed to be known, and where s ∈ Rn is the vector to be estimated. Recall also from
Example 6.1 that for all m ∈ M, the least-squares estimator ŝm ∈ argmint∈Sm

{
‖t‖2 − 2Yε(t)

}
can be rewritten in a more standard way:

ŝm ∈ argmin
t∈Sm

‖Y − t‖2 .

Let (ϕj)16j6p be a family of linearly independent vectors in H = Rn. Let M be a finite
collection of subsets of {1, . . . , p}. For all m ∈M, define Sm as the linear span of {ϕj : j ∈ m},
i.e.,

Sm ,


p∑
j=1

ujϕj : u ∈ Rp; ∀j /∈ m , uj = 0

 ,

and denote by Dm = |m| the dimension of Sm. Following the same lines as [BM01a, Mas07], we
take xm , x(Dm) defined by

x(D) , αD + ln
∣∣MD

∣∣ , 0 6 D 6 p , (6.37)
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where MD , {m ∈ M : Dm = D} and where α > 0 is an absolute constant. Then we get
Σ =

∑p
D=0

∣∣MD

∣∣e−x(D) = 1/
(
1 − e−α

)
< ∞. With this choice of (xm)m∈M, the choice

of pen(η)(m) = Kε2
(√
Dm +

√
2x(Dm)

)2
+ x(Dm)/η, and the choice of η > c/ε2 (as in

Corollary 6.2), we get the risk bound

Es
[wwws̃ (η) − s

www2
]
6 C ′K min

06D6p

{
d2
(
s, S(D)

)
+ ε2D + ε2

(
ln
∣∣MD

∣∣+ 1
)}

, (6.38)

for some constantC ′K > 1 depending only on (K,α, c). In the last inequality, S(D) ,
⋃
m∈MD

Sm
so that

d2
(
s, S(D)

)
= inf

m∈M:Dm=D
d2(s, Sm) ,

where the right-hand side equals +∞ by convention if no model Sm has dimension D.

In the problem of ordered variable selection, M ,
{
{1, . . . , D} : D = 1, . . . , p

}
, so that,

for all m = {1, . . . , D} ∈ M, we have Sm = span
(
ϕ1, . . . , ϕD

)
and Dm = D. Moreover,∣∣MD

∣∣ = 1 for all D = 1, . . . , p. Therefore, the risk bound (6.38) reads

Es
[wwws̃ (η) − s

www2
]
6 C ′K

(
min

16D6p

{
d2
(
s, span(ϕ1, . . . , ϕD)

)
+ ε2D

}
+ ε2

)
= C ′K

(
min
m∈M

Es
[
‖ŝm − s‖2

]
+ ε2

)
. (6.39)

The last equality follows from the well-known bias-variance decomposition Es
[
‖ŝm − s‖2

]
=

d2
(
s, span(ϕ1, . . . , ϕD)

)
+ ε2D for all m = {1, . . . , D}, D = 1, . . . , p (see, e.g., [Mas07,

Section 4.2]). It indicates that the estimator s̃ (η) mimics the oracle ŝm∗(s), where m∗(s) ∈
argminm∈M Es

[
‖ŝm − s‖2

]
. It is thus an oracle inequality.

We now turn to the problem of complete variable selection, whereM , P
(
{1, . . . , N}

)
. For

all D = 0, . . . , p, we have10 ln
∣∣MD

∣∣ = ln
(
p
D

)
6 D ln(ep/D) by, e.g., [Mas07, Proposition 2.5].

Therefore, the risk bound (6.38) reads

Es
[wwws̃ (η) − s

www2
]
6 C ′K min

06D6p

{
d2
(
s, S(D)

)
+ ε2D

(
2 + ln

p

D

)
+ ε2

}
, (6.40)

where S(D) ,
⋃
Dm=D Sm. Note that the above risk bound can be rewritten in a way similar to

(6.39) but with a leading constant of the order of ln p. However, if (ϕj)16j6p is an orthonormal
system in Rn, then, by the lower bound for complete variable selection of [Mas07, Corollary 4.12],
the risk bound above cannot be improved on any S(D) more than by constant factors. In particular,
the estimator s̃ (η) is minimax optimal (up to constant factors) on each S(D), D = 1, . . . , p.

Note that (6.40) yields the following risk bound. This bound, which is due to [BM01a] for
η = +∞, is one of the first sparsity oracle inequalities — see Section 2.6 in Chapter 2 for an

10We use the natural convention 0 ln(A/0) = 0 for all A > 0.
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introduction. Recall that ‖u‖0 ,
∣∣{j : uj 6= 0}

∣∣ for all u ∈ Rp.

Es
[wwws̃ (η) − s

www2
]
6 C ′K min

u∈Rp


wwww p∑
j=1

ujϕj − s
wwww2

+
σ2

n
‖u‖0

(
2 + ln

p

‖u‖0

)
+
σ2

n

 .

(6.41)
To see why (6.40) leads to (6.41), it suffices to note that for all u ∈ Rd, we have u ∈ Sm(u)

where m(u) , {j : uj 6= 0}. Then, upper bounding the minimum in (6.40) by its argument in
Dm(u) 6 |m(u)| , ‖u‖0, noting that x 7→ x

(
2 + ln(p/x)

)
is nondecreasing11 on [0, ep] (and a

fortiori on [0, p]), and using u ∈ Sm(u) ⊂ S(Dm(u)) and ε = σ/
√
n concludes the proof of (6.41).

Remark 6.3. The linear independence assumption on the dictionary (ϕj)16j6p is not necessary
to derive the sparsity oracle inequality (6.41). This assumption is only useful to reinterpret (6.38)
as an oracle inequality of the form (6.3), e.g., in (6.39). If (ϕj)16j6p is abitrary, then the penalty
pen(η)(m) = Kε2

(√
|m| +

√
2x′(|m|)

)2
+ x′(|m|)/η with x′(D) , αD + D ln(ep/D) still

satisfies (6.36)–(6.37) (since |m| > Dm and since D 7→ x(D) is nondecreasing and such that
x′(D) > x(D)). Applying Corollary 6.3 then also yields (6.41).

Aggregation of finite models

Next we rewrite Theorem 6.2 in the case of an at most countable collection of finite models. The
interest of such models is commented on after the proof of the corollary.

Corollary 6.4 (Finite models). Consider the framework given in (6.9). Assume that (Sm)m∈M
is an at most countable collection of non-empty finite subsets of H, and denote their cardinalities
by |Sm|. Let η > 0 and K > 1 be some constants and take pen(η) : M→ R+ such that, for all
m ∈M,

pen(η)(m) > Kε2
(√

8 ln |Sm|+
√

2xm

)2
+
xm
η
,

where (xm) ∈ RM+ is such that Σ ,
∑

m∈M e−xm <∞.

Then, for some constant CK > 1 depending only on K, the estimator s̃ (η) defined in (6.17) –
(6.18) satisfies, for all s ∈ H,

Es
[wwws̃ (η) − s

www2
]
6 CK

(
inf
m∈M

{
d2(s, Sm) + pen(η)(m)

}
+

ln Σ

η
+ ε2(ln+(Σ) + 1)

)
.

Proof: In view of Theorem 6.2 the only thing to prove is that for all m ∈ M, a valid value12 for
the generalized dimension Dm of Sm is given by Dm = 8 ln |Sm|. By (6.11) it is sufficient to
prove that the assumption (6.10) is satisfied with ϕm(x) = x

√
2 ln |Sm|.

For this purpose, let x > 0 and u ∈ Sm. Then, by the elementary inequality a2 + b2 > 2ab, and

11See Footnote 10.
12If Sm has cardinality one, then τm = 1 so that the value 8 ln |Sm| exhibited below is only an upper bound on the

solution of (6.11). This is not an issue since Theorem 6.2 only assumes a lower bound on the penalty.
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by linearity13 of t 7→W (t), we get

2E
[

sup
t∈Sm

(
W (t)−W (u)

‖t− u‖2 + x2

)]
6 x−1E

[
sup
t∈Sm

(
W (t)−W (u)

‖t− u‖

)]
= x−1E

[
max
t∈Sm

W

(
t− u
‖t− u‖

)]
6 x−1

√
2 ln |Sm| = x−2x

√
2 ln |Sm| ,

where the last upper bound follows from a maximal inequality for subgaussian random variables
stated in [Mas07, Lemma 2.3]. This fact is recalled in Lemma A.3 in Appendix A.5; we used it
here with T = |Sm| > 1 and with v = 1 (since the random variables W

(
(t − u)/ ‖t− u‖

)
all

have standard Gaussian distribution).

Therefore, the choice of ϕm(x) = x
√

2 ln |Sm| satisfies (6.10), which in turns yields Dm =

8 ln |Sm| by (6.11). This concludes the proof.

Note that the above proof slightly improves on a computation carried out in [Mas07, Sec-
tion 4.4.3] through a peeling argument. The author first remarks that Dudley’s bound for metric en-
tropy combined with this peeling argument immediately yields (6.10) with ϕm(x) = κx

√
ln |Sm|

for some absolute constant κ > 0. He then mentions that this is true for κ = 8
√

2 by Lemma A.3.
The proof above shows that, unsurprisingly, we get a better constant κ =

√
2 via a global argument

(i.e., without using a peeling argument, which is unnecessarily involved here). This is in the same
spirit as in [MM11, Theorem A.1].

Finite models can be useful in at least two situations. First, we can see from the above corol-
lary that deterministic estimators sm of s are associated with the 0-dimensional nonlinear models
Sm = {sm}. Thus, to aggregate deterministic or frozen estimators in the Gaussian regression
framework with fixed design, it is sufficient to use the penalty pen(η)(m) = 2

(
Kε2 + 1/η

)
xm. In

this case, up to a small additive term of the order of ln+(Σ), the price pen(η)(m) to pay for aggre-
gation is only proportional to the logarithm of the inverse of the prior probability mass e−xm/Σ
assigned tom ∈M. This is what is expected when aggregating deterministic estimators (see, e.g.,
[DT08]).

The second situation for which finite models are useful (at least from a theoretical viewpoint)
is when the models at hand are arbitrary compact subsets of H. In this case, each model can
be approximated by a finite set, so that selecting the best model in the collection approximately
amounts to selecting the best associated finite set. This remark is one of the ideas that underly the
metric point of view advocated by [Bir06] for adaptive estimation. We refer the reader to [Mas07,
Section 4.4.3] for further details.

Aggregation of `1-balls

Next we derive another corollary of Theorem 6.2 when the models are associated to `1-balls. We
consider the Gaussian regression framework with fixed design described in Example 6.1. Let
p > 1 and ϕ = (ϕj)16j6p be a family of vectors in Rn. We denote ‖u‖1 ,

∑p
j=1 |uj | and

13More precisely, we use the fact that, for all t ∈ Sm,
(
W (t)−W (u)

)
/ ‖t− u‖ = W

(
(t− u)/ ‖t− u‖

)
almost

surely (since by definition of an isonormal process t 7→ W (t) is a linear function from H into a space of square-
integrable random variables). Since Sm is finite, the latter equality holds almost surely simultaneously for all t ∈ Sm.
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u ·ϕ ,
∑p

j=1 ujϕj ∈ Rn for all u ∈ Rp. For all U > 0 we set

û(U) ∈ argmin
u∈Rp:‖u‖16U

wwY − u ·ϕww2
. (6.42)

Let (Um)m∈M be an at most countable family of positive real numbers. Following (6.17), given
η > 0 and a penalty function pen(η) :M→ R, we set, for all m ∈M,

ρ̂ (η)
m =

exp

[
− η
(
‖Y − û(Um) ·ϕ‖2 + pen(η)(m)

)]
∑

m′∈M exp

[
− η
(
‖Y − û(Um′) ·ϕ‖2 + pen(η)(m′)

)] . (6.43)

The next corollary upper bounds the risk of the aggregated estimator
∑

m∈M ρ̂
(η)
m

(
û(Um) · ϕ

)
.

As in the previous corollaries, it essentially relies on the computation of generalized dimensions
carried out by [MM11, Theorem 3.1]. A key contribution of the last paper was to interpret the
Lasso estimator as a selected projection estimator ŝm̂ and hence to derive `1-oracle-type inequali-
ties on the Lasso without any assumption on the dictionary ϕ. Next we show that, unsurprisingly,
the Bayesian variant

∑
m∈M ρ̂

(η)
m

(
û(Um) · ϕ

)
satisfies a similar risk bound. We however do not

claim that this estimator should be prefered to the Lasso since, unlike this efficient algorithm, it
involves the computation of possibly many exponential weights14.

Corollary 6.5 (Aggregation of `1-balls). Consider the Gaussian regression framework with fixed
design described in Example 6.1. Let (ϕj)16j6p be a family of vectors in Rn, and (Um)m∈M be
an at most countable family of positive real numbers. Let η > 0 and K > 1 be some constants
and take pen(η) :M→ R+ such that, for all m ∈M,

pen(η)(m) > 4KUmγσ

√
2 ln(2p)

n
+

(
4Kσ2

n
+

1

η

)
xm , (6.44)

where (xm)m∈M ∈ RM+ is such that Σ ,
∑

m∈M e−xm <∞ and where γ , max16j6p ‖ϕj‖ =

max16j6p
(
n−1

∑n
i=1 ϕ

2
i,j

)1/2.

Then, the estimator s̃ (η) =
∑

m∈M ρ̂
(η)
m

(
û(Um) · ϕ

)
given by (6.42)–(6.43) is well-defined and

satisfies, for some constant CK > 1 depending only on K, for all s ∈ Rn,

Es
[wwws̃ (η) − s

www2
]

6 CK

(
inf
m∈M

{
min

u:‖u‖16Um
‖u ·ϕ− s‖2 + pen(η)(m)

}
+

ln Σ

η
+
σ2

n
(ln+(Σ) + 1)

)
.

Before proving the corollary, note that if the penalty is chosen as the right-hand side of (6.44)
and if η is at least of the order of n/σ2, then the risk bound of Corollary 6.5 scales for eachm ∈M
approximately as Umγσ

√
ln(2p)/n. It is therefore very similar to the regret bounds derived on `1-

balls in the online linear regression setting (see Chapters 2 and 4). This similarity is not surprising
14Note however that, letting ûLSE be any least-squares estimator in Rp, we can choose û(Um) = ûLSE for all Um >wwûLSEww

1
. Thus, for Um of the form Um = 2mσ/(γ

√
n) and for xm = m, the infinite sum in (6.43) and the estimator

s̃ (η) can be computed exactly and with a computational complexity which is linear in log2

(wwûLSEww
1
γ
√
n/σ

)
.
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in view of the connections between the online linear regression setting and the stochastic batch
setting (e.g., as shown in Section 4.2.1, a Maurey-type argument can be used in both settings).

The connections between these settings are actually deeper. Indeed, take M = N and set
Um , 2mσ/(

√
nγ) and xm , m for all m ∈ N in a way similar to [MM11]; choose the penalty

as the right-hand side of (6.44). Then, we can see that for all η at least of the order of n/σ2,
Corollary 6.5 yields a risk bound of the form

Es
[wwws̃ (η) − s

www2
]
6 C ′K

(
inf
u∈Rp

{
‖u ·ϕ− s‖2 + ‖u‖1 γσ

√
ln(2p)

n

}
+
σ2

n
(ln+(Σ) + 1)

)
,

where C ′K > 0 is an absolute constant depending only on K. In Chapter 4 we proved a regret
bound of a similar form as far as adaptation to U was concerned (see Section 4.4).

Proof (of Corollary 6.5): First note that the estimators û(Um) · ϕ ∈ Rn are nothing but the
projection estimators associated to the models

SUm ,
{
u ·ϕ : u ∈ Rp, ‖u‖1 6 Um

}
,

i.e.,
(
û(Um) · ϕ

)
∈ argmint∈SUm ‖Y − t‖

2 for all m ∈ M. Note also that, by (6.44) and by the
elementary inequality 2(a2 + b2) > (a+ b)2 for all a, b ∈ R, we have, for all m ∈M,

pen(η)(m) > K
σ2

n

(√
2Umγ

σ

√
2n ln(2p) +

√
2xm

)2

+
xm
η
.

Theorefore, in view of Theorem 6.2, the only thing to prove is that for all m ∈ M, a valid value
for the generalized dimension Dm of SUm is given by Dm = (2Umγ/σ)

√
2n ln(2p). By (6.11)

and by the fact that ε = σ/
√
n, it is sufficient to prove that the assumption (6.10) is satisfied

with ϕm(x) = 2Umγ
√

2 ln(2p). This fact is essentially proved in [MM11, Theorem 3.1] via
the linearity of t 7→ W (t) on the polytope SUm and via the maximal inequality for subgaussian
random variables of [Mas07, Lemma 2.3] (cf. Lemma A.3 in Appendix A.5).

6.4.2 A situation where convexification is useful

In all the examples addressed in the previous section, we always neglected the nonnegative term
Es
[
J
(
ρ̂(η)
)]

appearing in the risk bound of Theorem 6.2. As a consequence, all bounds of the
previous section are comparable to the bounds that would derive from Theorem 6.1 for the model
selection procedure, but they do not show any improvement over them. Since the nonnegative
term Es

[
J
(
ρ̂(η)
)]

is a gap in a Jensen-type inequality, it suggests that in some favorable situ-
ations, combining the base estimators ŝm instead of selecting one of them may result in better
performance. Next we describe a typical situation in which convexification is indeed useful and
we prove a simple toy lower bound for model selection indicating that the latter is less robust than
aggregation in large-bias situations.

The benefits of convexification were already pointed out in various settings in the past (see,
e.g., the introduction of [Yan01]). For example, the bagging method introduced by [Bre96] was
shown to improve the performance of unstable base estimators. For the regression problem, the
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latter technique consists in computing several predictions over independent bootstrap samples,
and then in averaging the resulting predictions. As indicated by the author, this averaging is useful
when the base predictions are unstable (because of a large gap in a Jensen-type inequality).

The improvement of model aggregation over model selection was formally proved by, e.g.,
[Cat99, Section 8] for a distribution estimation problem and by [Cat04, Section 4.7] and [Aud07,
JRT08, LM09] for the regression problem. A key idea in these works is that aggregation proce-
dures can improve over selection procedures if the base (deterministic) estimators at hand are far
away from the prediction target and if several of them are quasi-optimal and well-separated. The
aforementioned works address the case of deterministic (frozen) base estimators.

Next we show that a similar improvement is also possible in our setting, where the base esti-
mators ŝm are random (recall that no sample splitting is allowed in this fixed-design context).

Proposition 6.1 (A lower bound on model selection). Consider the regression framework with
fixed design described in Example 6.1. Then, there exists a collection of linear models (Sm)m∈M
in Rn with |M| = 2 such that for all n > 16/(

√
2− 1)2,

∀s ∈ Rn, Es
[wws̃(η) − s

ww2
]
6 inf

m∈M
Es
[wwŝm − sww2

]
+

4 ln(2)σ2

n
, (6.45)

∀m̂, ∃s ∈ Rn, Es
[wwŝm̂ − sww2

]
> inf

m∈M
Es
[wwŝm − sww2

]
+

σ2

4
√
n
, (6.46)

where s̃(η) is defined in (6.17)-(6.18) with η = n/(4σ2) and pen(η)(m) = 2 dim(Sm)σ2/n (i.e.,
s̃(η) is the aggregating estimator of [LB06] with the largest allowed inverse temperature param-
eter), and where (6.46) holds for all measurable functions m̂ : Rn → M (i.e., all data-driven
selectors).

Therefore, there are situations where the aggregation procedure of [LB06] has a risk smaller
than that of the oracle up to an additive term at most of the order of 1/n, while any model selection
procedure cannot beat the oracle at a rate faster than 1/

√
n uniformly over all s ∈ Rn.

In the toy example exhibited in the subsequent proof, the bias of the estimators ŝ1 and ŝ2 is
large (of the order of σ2). Therefore, the lower bound (6.46) does not contradict the fact that model
selection procedures are minimax optimal (up to constant factors) in many classical problems for
which the prediction target s lies within a model (see, e.g., [Mas07, Chapter 4]). However, this
lower bound indicates that, at least for linear models, if the target vector is far from all the models
at hand (hence a large bias) and if a few models are nearly-optimal and well-separated, then there
is an aggregation procedure whose excess risk is much smaller than that of any model selection
procedure (compare the rates 1/n and 1/

√
n). In this sense, model aggregation can be thought of

as more robust than model selection.
In the general case of nonlinear models, all our oracle-type inequalities were obtained with

leading constants larger than 1 (contrary to [LB06]). Therefore, it is not clear for the moment
whether the aforementioned robustness property also holds true for our aggregation procedure.
However, in view of the simplicity of the example exhibited in the following proof, we tend to think
that aggregation might benefit from a similar advantage with nonlinear models. This important
question remains open.
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Proof (of Proposition 6.1): The upper bound (6.45) follows directly from [LB06, Corollary 6].
As for the lower bound (6.46), it can be proved with the following toy example, which is inspired
from a lower bound of [Cat04, pages 134–135] in a slightly different setting (in our case, the base
estimators ŝm are random). Define the two models S1 ⊂ Rn and S2 ⊂ Rn by

S1 , R× {0} × . . .× {0} and S2 , {0} × R× {0} × . . .× {0} .

Consider the following two potential target vectors (one of which is going to be badly estimated
by the model selection procedure m̂ at hand):

sα , σ
√
n

(
1 +

cα√
n
, 1− cα√

n
, 0, . . . , 0

)
∈ Rn , α ∈ {−1, 1} ,

where c ∈ (0, 1) is an absolute constant to be determined by the analysis. If the true vector is sα,
the statistician observes the n-dimensional vector Y = sα + σξ with ξ = (ξ1, . . . , ξn), where the
ξi are i.i.d. standard normal random variables (cf. Example 6.1). In the sequel we denote the law
of sα + σξ by Psα (i.e., Psα = N (sα, σ

2In)) and the corresponding expectation by Esα .

Let m̂ : Rn → {1, 2} be any measurable function. The rest of the proof is dedicated to show that,
for all c ∈ (0, 1),

max
α∈{−1,1}

{
Esα
[wwŝm̂ − sαww2

]
− inf
m∈{1,2}

Esα
[wwŝm − sαww2

]}
>

4cσ2

√
n

(
1

2
− c√

2
− 1

4c
√
n

)
.

(6.47)
First note that if Y = sα + σξ, then, by definition of ŝm ∈ argmint∈Sm ‖Y − t‖

2,

ŝ1 =

(
σ
√
n

(
1 +

cα√
n

)
+ σξ1, 0, 0, . . . , 0

)
,

ŝ2 =

(
0, σ
√
n

(
1− cα√

n

)
+ σξ2, 0, . . . , 0

)
.

Recall from Example 6.1 that we set ‖u‖2 , n−1
∑n

i=1 u
2
i for all u ∈ Rn. By the two equalities

above, if Y = sα + σξ, then for all m ∈ {1, 2},

‖ŝm − sα‖2 =


σ2ξ2

1

n
+ σ2

(
1− cα√

n

)2

if m = 1 ,

σ2

(
1 +

cα√
n

)2

+
σ2ξ2

2

n
if m = 2 .

The last equality yields, on the one hand,

inf
m∈{1,2}

Esα
[wwŝm − sαww2

]
= σ2

(
1− c√

n

)2

+
σ2

n
, (6.48)

and, on the other hand, almost surely,

‖ŝm̂ − sα‖2 > I{m̂=1} σ
2

(
1− cα√

n

)2

+ I{m̂=2} σ
2

(
1 +

cα√
n

)2
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= σ2

(
1 +

c√
n

)2

− σ2

[(
1 +

c√
n

)2

−
(

1− c√
n

)2
]
I{m̂=mα} ,

where we set m1 , 1 and m−1 , 2 and where used the fact that I{m̂=1} + I{m̂=2} = 1 almost
surely. Taking the expectations of both sides of the last inequality, substracting (6.48), and using
the fact that

(
1 + c/

√
n
)2 − (1− c/√n)2 = 4c/

√
n, we get

max
α∈{−1,1}

{
Esα
[
‖ŝm̂ − sα‖2

]
− inf
m∈{1,2}

Esα
[wwŝm − sαww2

]}
>

4cσ2

√
n

(
1− min

α∈{−1,1}
Psα
[
m̂ = mα

])
− σ2

n
. (6.49)

To prove (6.47), it suffices to upper bound the minimum in the last inequality. But, using Pinsker’s
inequality (cf. Lemma A.8 in Appendix A.7), we can see that, if Ps0 denotes the law of the n-
dimensional random vector s0 + σξ with s0 , σ

√
n(1, 1, 0, . . . , 0), then

min
α∈{−1,1}

Psα
[
m̂ = mα

]
6 min

α∈{−1,1}

Ps0
[
m̂ = mα

]
+

√
K
(
Psα ,Ps0

)
2


6 min

α∈{−1,1}
Ps0
[
m̂ = mα

]
+

√
maxα∈{−1,1}K

(
Psα ,Ps0

)
2

6
1

2
+

c√
2
,

where the last inequality follows from the fact that {m̂ = m1} ∩ {m̂ = m2} = ∅ and from the
elementary equalities K

(
Psα ,Ps0

)
=
∑n

i=1

(
si,α − si,0

)2
/(2σ2) = 2σ2c2/(2σ2) = c2.

Substituting the last upper bound in the right-hand side of (6.49) directly yields the lower bound
(6.47). We conclude the proof of (6.46) by choosing c = 1/(2

√
2) and by using the assumption

that n > 16/(
√

2− 1)2.

6.5 Future works

As mentioned earlier, this chapter is a work in progress. In particular, important open questions
remain open. Among the issues raised throughout this chapter, we ask the following:

• Our oracle-type inequalities are only obtained with leading constants larger than 1. Is this a
consequence of the concentration approach — which however yields risk bounds with high
probability — or of the generality of the models? In particular, when the models are linear,
it could be interesting to recover via a single analysis the tighter bounds of [LB06] and of
[BM07a] obtained for model aggregation and model selection respectively.

• The important problem of the tuning of η is left open. Is it possible to identify — at least
for classical problems — an optimal choice of η? If so, can we tune η in an automatic and
nearly-optimal way?
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• Finally, investigating classical examples of nonlinear models (e.g., Besov ellipsoids, `1-
balls, neural networks) could help to compare the model selection procedure of [Mas07]
with our aggregation procedure.

6.A Proofs

6.A.1 Proof of Theorem 6.2 whenM is countably infinite

Theorem 6.2 is stated for an at most countable collection M. In Section 6.3 we only proved it
under the assumption thatM is finite. Next we provide a proof in the other and more technical
case, i.e., whenM is countably infinite.

Proof (of Theorem 6.2, M countably infinite): We assume in the sequel thatM in countably
infinite. The proof consists of three steps. In Steps 1 and 2, we check that the two sums overM
appearing in the definition of s̃ (η) are convergent. In Step 3, we then employ a reduction to the
case of a finite collection to prove the oracle-type inequality (6.21).

Step 1: We prove that

Z ,
∑
m∈M

exp
[
− η
(
γε(ŝm) + pen(η)(m)

)]
<∞ almost surely.

Recall from (6.28) that γε(ŝm) can be rewritten as

γε(ŝm) = ‖ŝm − s‖2 − ‖s‖2 − 2εW
(
ŝm
)
, m ∈M . (6.50)

We also set pen
(η)
2 (m) , pen(η)(m)−xm/η for all m ∈M. Therefore, we have, for all m ∈M,

exp
[
− η
(
γε(ŝm) + pen(η)(m)

)]
= eη‖s‖

2

e−xm exp
[
− η ‖ŝm − s‖2

]
exp

[
η
(

2εW
(
ŝm
)
− pen

(η)
2 (m)

)]
. (6.51)

Next we use Lemma 6.2 to upper bound the quantity 2εW
(
ŝm
)
−pen

(η)
2 (m) with high probability.

We follow the same arguments that led to (6.31) in the proof of Theorem 6.2 for a finite collection
(see Section 6.3). Namely, let z > 0, and set, for all m ∈M and t ∈ H,

ym ,
√
Kε
(√

Dm +
√

2xm + (2π)−1/2 +
√

2z
)
,

wm(t) ,
1

2

([
‖s‖+ ‖s− t‖

]2
+ y2

m

)
.

Applying Lemma 6.2 in Appendix 6.B.2 withK ′ =
√
K, a = 0, and Vm = supt∈Sm

{
W (t)/wm(t)

}
,

we get, on some event Ωz,K′ of probability Ps
(
Ωz,K′

)
> 1− Σe−z , that for all m ∈M,

2εW (ŝm) 6 2εwm(ŝm)Vm 6 Kε2
(√

Dm +
√

2xm
)2

+
2Kε2

√
K − 1

(
1

2π
+ 2z

)
+K−1/4

(
‖s− ŝm‖2 +

‖s‖2

K1/4 − 1

)
.
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Therefore, from the last inequality and from the fact that pen
(η)
2 (m) , pen(η)(m) − xm/η >

Kε2
(√
Dm +

√
2xm

)2 by Assumption (6.20), we can see that, on the event Ωz,K′ , for allm ∈M,

2εW (ŝm)− pen
(η)
2 (m) 6

2Kε2

√
K − 1

(
1

2π
+ 2z

)
+K−1/4

(
‖s− ŝm‖2 +

‖s‖2

K1/4 − 1

)
. (6.52)

Substituting the last inequality in (6.51), we get, on the event Ωz,K′ , that for all m ∈M,

exp
[
− η
(
γε(ŝm) + pen(η)(m)

)]
6 Aη,ε,s,K exp

[
4ηKε2z√
K − 1

]
e−xm exp

[
− η
(
1−K−1/4

)
‖ŝm − s‖2

]
, (6.53)

where we set Aη,ε,s,K , eη‖s‖
2

exp
[(
π−1ηKε2

)
/
(√
K − 1

)
+
(
ηK−1/4 ‖s‖2

)
/
(
K1/4 − 1

)]
.

Upper bounding the last exponential in (6.53) by 1 (since K > 1), summing the resulting inequal-
ity over m ∈ M, and using the assumption

∑
m∈M e−xm < ∞ (see Section 6.2.2), we can see

that
Z ,

∑
m∈M

exp
[
− η
(
γε(ŝm) + pen(η)(m)

)]
is finite on all events Ωz,K′ , z > 0. Applying, e.g., Borel-Cantelli’s lemma to the family of com-
plementary events

(
Ωc

2 ln k

)
k∈N∗ , we deduce from

∑∞
k=1 Ps

(
Ωc

2 ln k

)
6
∑∞

k=1 Σ/k2 < ∞ that,
almost surely, the defining conditions of the events Ω2 ln k are satisfied for all k large enough.
Therefore, Z is almost surely finite, which proves that ρ̂ (η) is well-defined.

Step 2: We prove that
∑

m∈M ρ̂
(η)
m ‖ŝm‖ <∞ almost surely.

We follow the same lines as in Step 1. Noting that ρ̂ (η)
m = Z−1 exp

[
− η
(
γε(ŝm) + pen(η)(m)

)]
whereZ > 0 is the random normalization constant studied above, we get, by the triangle inequality
and by the equality

∑
m∈M ρ̂

(η)
m = 1, that on the event Ωz,K′ introduced in Step 1,∑

m∈M
ρ̂ (η)
m ‖ŝm‖

6 ‖s‖+
∑
m∈M

ρ̂ (η)
m ‖ŝm − s‖

= ‖s‖+
1

Z

∑
m∈M

exp
[
− η
(
γε(ŝm) + pen(η)(m)

)]
‖ŝm − s‖

6 ‖s‖+
Aη,ε,s,K
Z

exp

[
4ηKε2z√
K − 1

] ∑
m∈M

e−xm exp
[
− η
(
1−K−1/4

)
‖ŝm − s‖2

]
‖ŝm − s‖ ,

where the last inequality follows from (6.53). Using the fact that supt∈R+

{
e−At

2
t
}
< ∞ for all

A > 0, and in particular for A , η
(
1−K−1/4

)
(note that A > 0 since K > 1), we get that∑

m∈M
ρ̂ (η)
m ‖ŝm‖ <∞ on all events Ωz,K′ , z > 0 .

Therefore, using the same argument as at the end of Step 1 (e.g., Borel-Cantelli’s lemma), we can
see that

∑
m∈M ρ̂

(η)
m ‖ŝm‖ is almost surely finite. Since H is complete (by definition of a Hilbert
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space), this proves that s̃ (η) =
∑

m∈M ρ̂
(η)
m ŝm is well-defined.

Step 3: Reduction to a finite collection.

SinceM is countably infinite, we can assume (up to a one-to-one mapping) thatM = N. In or-
der to derive (6.21), we employ a reduction to the finite collections (Sm)06m6M , where M ∈ N.
Applying Theorem 6.2 in the finite case will then conclude the proof.

To that end, we set, for all M ∈ N and all m ∈ {0, . . . ,M},

ρ̂ (η,M)
m ,

exp

[
− η
(
γε(ŝm) + pen(m)

)]
∑M

m′=0 exp

[
− η
(
γε(ŝm′) + pen(m′)

)] (6.54)

π(M)
m ,

e−xm∑M
m′=0 e

−xm′
. (6.55)

Thus ρ̂ (η,M) ,
(
ρ̂

(η,M)
m

)
06m6M ∈ ∆

(
{0, . . . ,M}

)
is the Gibbs distribution associated with the

finite collection (Sm)06m6M (compare to (6.17)), and π(M) ,
(
π

(M)
m

)
06m6M ∈ ∆

(
{0, . . . ,M}

)
is the associated prior. The corresponding estimator is defined by

s̃ (η,M) =

M∑
m=0

ρ̂ (η,M)
m ŝm . (6.56)

Now we apply the conclusions of Theorem 6.2 to the finite collection (Sm)06m6M . Setting Bm ,
d2(s, Sm)+pen(η)(m)−xm/η for allm ∈ N, we get from (6.21) and by definition of J

(
ρ̂ (η,M)

)
that for all M ∈ N,

Es

[
M∑
m=0

ρ̂ (η,M)
m ‖ŝm − s‖2

]

6 CK

(
inf

ρ∈∆({0,...,M})

{
M∑
m=0

ρmBm +
K
(
ρ, π(M)

)
η

}
+ ε2

(
ln+

(
Σ(M)

)
+ 1
)

+ µ

)

6 CK

(
inf

ρ∈∆({0,...,M})

{
+∞∑
m=0

ρ̃mBm +
K
(
ρ̃, π
)

η

}
+ ε2(ln+(Σ) + 1) + µ

)
, (6.57)

where we set Σ(M) ,
∑M

m′=0 e
−xm′ 6 Σ and where for all M ∈ N and ρ ∈ ∆({0, . . . ,M}), we

defined ρ̃ ∈ ∆(N) by ρ̃m = ρm if 0 6 m 6 M and by ρ̃m = 0 if m > M . Inequality (6.57)
follows by noting that π(M)

m > πm so that

K
(
ρ, π(M)

)
=

M∑
m=0

ρm ln
(
ρm/π

(M)
m

)
6

M∑
m=0

ρm ln
(
ρm/πm

)
= K

(
ρ̃, π
)
.

Now, noting that almost surely
∑M

m=0 ρ̂
(η,M)
m ‖ŝm − s‖2 →

∑+∞
m=0 ρ̂

(η)
m ‖ŝm − s‖2 as M → +∞



236 CHAPTER 6. AGGREGATION OF NONLINEAR MODELS

(see Explanation 1 below), we get from (6.57) and from Fatou’s lemma15 that

Es

[
+∞∑
m=0

ρ̂ (η)
m ‖ŝm − s‖

2

]

6 CK lim inf
M→+∞

inf
ρ∈∆({0,...,M})

{
+∞∑
m=0

ρ̃mBm +
K
(
ρ̃, π
)

η

}
+ CK

(
ε2 (ln+(Σ) + 1) + µ

)
= CK inf

ρ∈∆(N)
supp(ρ)<∞

{
+∞∑
m=0

ρmBm +
K(ρ, π)

η

}
+ CK

(
ε2 (ln+(Σ) + 1) + µ

)
(6.58)

= CK inf
ρ∈∆(N)

{
+∞∑
m=0

ρmBm +
K(ρ, π)

η

}
+ CK

(
ε2 (ln+(Σ) + 1) + µ

)
, (6.59)

where the infimum in (6.58) is taken over all ρ ∈ ∆(N) whose support supp(ρ) , {m ∈ N :

ρm > 0} is finite ((6.58) is straightforward), and where (6.59) follows from Explanation 2 below.
Combining (6.59) with the definition of J

(
ρ̂ (η)

)
concludes the proof.

Explanation 1: We show below that, almost surely,

M∑
m=0

ρ̂ (η,M)
m ‖ŝm − s‖2 →

+∞∑
m=0

ρ̂ (η)
m ‖ŝm − s‖

2 as M → +∞.

First note that, by the same arguments16 as in Step 2,
∑+∞

m=0 ρ̂
(η)
m ‖ŝm − s‖2 is almost

surely finite. Moreover, by the triangle inequality, for all M ∈ N,∣∣∣∣∣
M∑
m=0

ρ̂ (η,M)
m ‖ŝm − s‖2 −

+∞∑
m=0

ρ̂ (η)
m ‖ŝm − s‖

2

∣∣∣∣∣
6

M∑
m=0

∣∣∣ρ̂ (η,M)
m − ρ̂ (η)

m

∣∣∣ ‖ŝm − s‖2 +
+∞∑

m=M+1

ρ̂ (η)
m ‖ŝm − s‖

2 . (6.60)

The second sum
∑+∞

m=M+1 ρ̂
(η)
m ‖ŝm − s‖2 converges almost surely to 0 asM → +∞

since
∑+∞

m=0 ρ̂
(η)
m ‖ŝm − s‖2 is finite almost surely. As for the first sum, note by defi-

nitions of ρ̂ (η,M)
m and ρ̂ (η)

m that it can be rewritten as

M∑
m=0

∣∣∣ρ̂ (η,M)
m − ρ̂ (η)

m

∣∣∣ ‖ŝm − s‖2
=

∑+∞
m′=0 exp

(
− η
(
γε(ŝm′) + pen(m′)

))
∑M

m′=0 exp
(
− η
(
γε(ŝm′) + pen(m′)

)) − 1

 M∑
m=0

ρ̂ (η)
m ‖ŝm − s‖

2

15Note that we only work in expectation here. However, it is of course also possible to follow similar arguments to
derive a high-probability bound from the high-probability bound obtained with finite collections (Remark 6.2).

16We use supt∈R+

{
e−At

2

t2
}
<∞ for all A > 0 instead of supt∈R+

{
e−At

2

t
}
<∞.
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6

∑+∞
m′=0 exp

(
− η
(
γε(ŝm′) + pen(m′)

))
∑M

m′=0 exp
(
− η
(
γε(ŝm′) + pen(m′)

)) − 1

 +∞∑
m=0

ρ̂ (η)
m ‖ŝm − s‖

2 .

Since
∑+∞

m=0 ρ̂
(η)
m ‖ŝm − s‖2 is almost surely finite, the last upper bound converges

almost surely to 0 as M → +∞.

Therefore, combining (6.60) with the above remarks, we get that, almost surely,∑M
m=0 ρ̂

(η,M)
m ‖ŝm − s‖2 →

∑+∞
m=0 ρ̂

(η)
m ‖ŝm − s‖2 as M → +∞.

Explanation 2: We show that

inf
ρ∈∆(N)

|supp(ρ)|<∞

{
+∞∑
m=0

ρmBm +
K(ρ, π)

η

}
= inf

ρ∈∆(N)

{
+∞∑
m=0

ρmBm +
K(ρ, π)

η

}
.

(6.61)
Note that it suffices to show that, for all ρ ∈ ∆(N),

inf
ρ′∈∆(N)

|supp(ρ′)|<∞

{
+∞∑
m=0

ρ′mBm +
K(ρ′, π)

η

}
6

+∞∑
m=0

ρmBm +
K(ρ, π)

η
. (6.62)

Let ρ ∈ ∆(N) and δ > 0. We can assume thatK(ρ, π) <∞ (otherwise, the inequality
obviously holds true). Then, since

∑+∞
m=0 ρm = 1 and

∑+∞
m=0 ρm ln(ρm/πm) =

K(ρ, π) <∞, we can fix M ∈ N such that

S ,
M∑
m=0

ρm >
1

1 + δ
and

+∞∑
m=M+1

ρm ln(ρm/πm) > −δ . (6.63)

Define ρ′ ∈ ∆(N) by ρ′m , ρm/S for all m ∈ {0, . . . ,M} and by ρ′m , 0 for all
m >M + 1, so that |supp(ρ′)| <∞. Moreover, we have

+∞∑
m=0

ρ′mBm +
K(ρ′, π)

η
=

1

S

M∑
m=0

ρmBm +
1

ηS

M∑
m=0

ρm ln

(
ρm
πm

)
− lnS

η

6 (1 + δ)

(
M∑
m=0

ρmBm +
1

η

(
K(ρ, π) + δ

))
+

ln(1 + δ)

η
,

where the last inequality follows from (6.63). Letting δ → 0, we get (6.62), which in
turn yields (6.61).

6.A.2 Proof of Corollary 6.1

Proof (of Corollary 6.1): We prove that s̃ (η) −→
η→∞

s̃ (∞) almost surely. The bound (6.25) will

then follow directly from Fatou’s lemma by letting η →∞ in (6.22) of Theorem 6.2.

First note that the random set M̂ , argminm∈M
{
γε(ŝm) + pen(m)

}
⊂ M is almost surely

non-empty and finite. This fact is proved in [Mas07, p. 130] under the assumption that pen(m) >
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Kε2
(√
Dm +

√
2xm

)2 for all m ∈ M. Therefore, the probability distribution ρ̂ (∞) defined in

(6.24) has almost surely a finite support M̂, so that the estimator s̃ (∞) ,
∑

m∈M ρ̂
(∞)
m ŝm is

well-defined. Moreover, by the triangle inequality,

wwws̃ (η) − s̃ (∞)
www =

wwwww ∑
m∈M

(
ρ̂ (η)
m − ρ̂ (∞)

m

)
ŝm

wwwww 6
∑
m∈M

∣∣∣ρ̂ (η)
m − ρ̂ (∞)

m

∣∣∣ ‖ŝm‖
6
∑
m∈M̂

∣∣∣∣ρ̂ (η)
m − e−xm

Ẑ

∣∣∣∣ ‖ŝm‖+
∑

m∈M\M̂

ρ̂ (η)
m ‖ŝm‖ , (6.64)

where the last inequality follows by definition of ρ̂ (∞)
m in (6.24), and where Ẑ ,

∑
m∈M̂ e−xm .

We start by proving that the first sum above goes to 0 as η → +∞. First note from (6.17) and
from the equality pen(η)(m) = pen(m) + xm/η that ρ̂ (η)

m can be rewritten as

ρ̂ (η)
m =

exp

[
− η
(
γε(ŝm) + pen(m)−B

)
− xm

]
∑

m′∈M exp

[
− η
(
γε(ŝm′) + pen(m′)−B

)
− xm′

] , (6.65)

where we set B , minm∈M
{
γε(ŝm) + pen(m)

}
. By definition of B and M̂, the quantity

γε(ŝm) + pen(m) − B is equal to zero if and only if m ∈ M̂, and it is positive otherwise.
Therefore, we get, almost surely, for all m ∈M,

exp

[
− η
(
γε(ŝm) + pen(m)−B

)
− xm

]
−→
η→∞

{
e−xm if m ∈ M̂ ,

0 if m /∈ M̂ .
(6.66)

Since the exponential above is nonincreasing in η and is bounded by e−xm for all m ∈M, we get
by Lebesgue’s dominated convergence theorem that, almost surely,∑

m∈M
exp

[
− η
(
γε(ŝm) + pen(m)−B

)
− xm

]y ∑
m∈M̂

e−xm , Ẑ as η →∞ . (6.67)

Combining (6.65), (6.66), and (6.67), we get that, almost surely, ρ̂ (η)
m −→

η→∞
e−xm/Ẑ for all m ∈

M. Since M̂ is almost surely finite, we can conclude that
∑

m∈M̂
∣∣ρ̂ (η)
m − e−xm/Ẑ

∣∣ ‖ŝm‖ −→
η→∞

0

almost surely.

We now show that
∑

m∈M\M̂ ρ̂
(η)
m ‖ŝm‖ −→

η→∞
0 almost surely. First note from (6.65) and

from (6.67) that, almost surely,

0 6
∑

m∈M\M̂

ρ̂ (η)
m ‖ŝm‖ 6

1

Ẑ

∑
m∈M\M̂

exp
[
− η
(
γε(ŝm) + pen(m)−B

)
− xm

]
‖ŝm‖ .

The last sum above is convergent for all η > 0 (see, e.g., Step 2 in the proof of Theorem 6.2). Since
in addition the summand decreases to 0 as η → ∞ (by (6.66)), we get by Lebesgue’s dominated
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convergence theorem that
∑

m∈M\M̂ ρ̂
(η)
m ‖ŝm‖ −→

η→∞
0 almost surely.

Putting everything together, we get from (6.64) that, almost surely, s̃ (η) → s̃ (∞) as η →∞.

6.B Useful lemmas

In this section we recall two results that prove to be useful throughout this chapter.

6.B.1 A classical concentration inequality for Gaussian processes

We recall below a well-known concentration inequality for the suprema of Gaussian processes that
follows straightforwardly from [Led01, Theorem 7.1] by the almost-sure continuity assumption
and by separability arguments (see also [Mas07, Proposition 3.19]).

Lemma 6.1. Let (Xt)t∈S be a centered Gaussian process indexed by a separable topological
space S such that t 7→ Xt is almost surely continuous on S. Then, for all x > 0,

P

[
sup
t∈S

Xt 6 E
[
sup
t∈S

Xt

]
+ x

]
> 1− exp

(
−x2/(2ν)

)
,

where ν , supt∈S E
[
X2
t

]
, where E

[
supt∈S Xt

]
∈ (−∞,+∞] is always well-defined17 (sinceXt0

is integrable for any t0 ∈ S), and where we used the conventions +∞ 6 +∞ and (+∞) + x =

+∞ for all x ∈ R.

6.B.2 An upper bound on some fluctuations

Next we recall a result due to [Mas07]. We use it in Theorem 6.2 to show that with large
probability, for all m ∈ M, the penalty pen

(η)
2 (m) is large enough to annihilate the fluctua-

tions 2εwm(ŝm)Vm. WhenM is infinite, it is also useful to show that the normalizing constant∑
m∈M exp

[
− η
(
γε(ŝm) + pen

(η)
2 (m)

)]
and the sum

∑
m∈M ρ̂

(η)
m ‖ŝm‖ are almost surely finite.

Lemma 6.2. As in Section 6.2.2, we assume that for everym ∈M, there exists some almost-surely
continuous version of the isonormal processW on the closure Sm of Sm and that (6.10) holds true
for some nondecreasing continuous function ϕm : [0,+∞) → R+ such that x 7→ x−1ϕm(x) is
nonincreasing on R∗+. We let τm = 1 if Sm is closed and convex and τm = 2 otherwise and define
the generalized dimension Dm of Sm as in (6.11).

Let z > 0 and K ′ > 1, and set ym , K ′ε
(√
Dm +

√
2xm + (2π)−1/2 +

√
2z
)

for all m ∈ M.

Let a ∈ H, define wm(t) , (1/2)
([
‖s− a‖+ ‖s− t‖

]2
+ y2

m

)
for all m ∈ M and t ∈ H, and

set

Vm , sup
t∈Sm

(
W (t)−W (a)

wm(t)

)
, m ∈M .

17As previously mentioned, if supt∈S Xt is not measurable, we consider supt∈AXt instead, whereA is any at most
countable dense subset of S; the last two suprema are almost surely equal by the almost-sure continuity of t 7→ Xt.
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Then, on some event Ωz,K′ of probability Ps
(
Ωz,K′

)
> 1− Σe−z , we have, for all m ∈M,

2εwm(ŝm)Vm 6 K ′2ε2
(√

Dm +
√

2xm
)2

+
2K ′2ε2

K ′ − 1

(
1

2π
+ 2z

)
+

1√
K ′

(
‖s− ŝm‖2 +

‖s− a‖2√
K ′ − 1

)
.

Proof: This upper bound is proved in [Mas07, Theorem 4.18] between Equations (4.78) and (4.82)
therein18. We only recall its proof for the convenience of the reader.

We first make the following assumption. The general case will be addressed at the end of the proof.

Assumption 6.1. Sm is closed for all m ∈M.

Step 1: High-probability bound on εVm.
Recall that we fixed z > 0. Next we apply a well-known concentration inequality for the suprema
of Gaussian processes that can essentially be found, e.g., in [Led01, Theorem 7.1] or [Mas07,
Proposition 3.19], and that is recalled in Lemma 6.1 above. By definition of Vm and since the
centered Gaussian process

(
[W (t) −W (a)]/wm(t)

)
t∈Sm is almost surely continuous on Sm (by

the almost-sure continuity of t 7→W (t) on Sm), Lemma 6.1 ensures that, for all m ∈M,

P
[
Vm 6 E[Vm] +

√
2vm(xm + z)

]
> 1− e−xme−z , (6.68)

where

vm , sup
t∈Sm

E

[(
W (t)−W (a)

wm(t)

)2
]

= sup
t∈Sm

‖t− a‖2

w2
m(t)

.

But we havewm(t) > ‖t− a‖ ym by definition ofwm(t) , (1/2)
([
‖s− a‖+ ‖s− t‖

]2
+ y2

m

)
,

by the triangle inequality, and by the the fact that 2ab 6 a2 + b2 for all a, b ∈ R. Therefore,
vm 6 y−2

m for all m ∈ M. Substituting the latter inequality in (6.68) and using a union-bound
overM, we get, on some event Ωz,K′ of probability Ps

(
Ωz,K′

)
> 1− Σe−z ,

∀m ∈M , Vm 6 E[Vm] + y−1
m

√
2(xm + z) . (6.69)

The rest of this step is dedicated to upper bounding the expectation E[Vm]. First note that by
definition of Vm,

E[Vm] 6 E
[

sup
t∈Sm

(
W (t)−W (sm)

wm(t)

)]
+ E

[(
W (sm)−W (a)

)
+

inft∈Sm wm(t)

]
. (6.70)

We upper bound each term of the right-hand side separately. Let δ > 0. Recall that, by definition,
τm = 1 if Sm is closed and convex, and τm = 2 otherwise. In all cases, by Assumption 6.1, we
can fix for all m ∈M a point sm ∈ Sm such that the two following conditions are satisfied:

‖s− sm‖ 6 (1 + δ) d(s, Sm) , (6.71)

18The slight improvement with respect to [Mas07, Theorem 4.18] (with however, the exact same proof) is that we
let a be arbitrary.
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‖sm − t‖ 6 τm(1 + δ) ‖s− t‖ , for all t ∈ Sm . (6.72)

Details:
Indeed, if Sm is closed and convex, then we can take sm as the projection of s onto
Sm, so that ‖s− sm‖ = d(s, Sm). Moreover, since the projection is a contraction, we
have ‖sm − t‖ 6 ‖s− t‖ for all t ∈ Sm, which yields (6.72) with τm = 1.

But if the Sm are arbitrary, then there always exists sm ∈ Sm such that (6.71) holds
true (by Assumption 6.1 if d(s, Sm) = 0, obvious if d(s, Sm) > 0). The property
(6.72) then follows by noting that, for all t ∈ Sm, ‖sm − t‖ 6 ‖sm − s‖+‖s− t‖ 6
2(1 + δ) ‖s− t‖.

By definition of wm(t) and by (6.72), we have 2wm(t) > τ−2
m (1 + δ)−2 ‖t− sm‖2 + y2

m. Using
the assumption (6.10) with u = sm, we get

E
[

sup
t∈Sm

(
W (t)−W (sm)

wm(t)

)]
6 y−2

m ϕm
(
τm(1 + δ)ym

)
6 y−1

m

(
ε
√
Dm

)−1
ϕm

(
τm(1 + δ)ε

√
Dm

)
, (6.73)

where the last inequality follows from the lower bound ym > ε
√
Dm and from the fact that

x 7→ x−1ϕm
(
τm(1 + δ)x

)
in nonincreasing on R∗+ (since it is the case for x 7→ x−1ϕm(x) by

assumption).
As for the second term in (6.70), we can see from wm(t) , (1/2)

([
‖s− a‖+ ‖s− t‖

]2
+ y2

m

)
,

from ‖s− t‖ > (1 + δ)−1 ‖s− sm‖ for all t ∈ Sm (by (6.71)), and from the triangle inequality
that

inf
t∈Sm

wm(t) > (1/2)
(

(1 + δ)−2 ‖a− sm‖2 + y2
m

)
> (1 + δ)−1 ‖sm − a‖ ym ,

where the last inequality follows from the fact that 2ab 6 a2 + b2 for all a, b ∈ R. Therefore,

E

[(
W (sm)−W (a)

)
+

inft∈Sm wm(t)

]
6 (1 + δ) y−1

m E
[(

W (sm)−W (a)

‖sm − a‖

)
+

]
= (1 + δ) y−1

m (2π)−1/2 ,

where, to get the last equality, we used the fact that
(
W (sm) −W (a)

)
/ ‖sm − a‖ is a standard

normal random variable.
Substituting the last upper bound and (6.73) in (6.70), we get

E[Vm] 6 y−1
m

(
ε
√
Dm

)−1
ϕm

(
τm(1 + δ)ε

√
Dm

)
+ (1 + δ)y−1

m (2π)−1/2 .

Letting δ → 0, we get by continuity of ϕm on R+ that

E[Vm] 6 y−1
m

(
ε
√
Dm

)−1
ϕm

(
τmε

√
Dm

)
+ y−1

m (2π)−1/2

6 y−1
m

(√
Dm + (2π)−1/2

)
, (6.74)

where the last inequality follows from the fact that ϕm
(
τmε
√
Dm

)
= εDm by definition of Dm
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(see (6.11)). Substituting the last upper bound in (6.69), we get, on the event Ωz,K′ ,

∀m ∈M , εVm 6 εy−1
m

(√
Dm + (2π)−1/2 +

√
2xm + 2z

)
6 K ′−1 , (6.75)

where the last inequality follows by definition of ym , K ′ε
(√
Dm +

√
2xm + (2π)−1/2 +

√
2z
)
.

Step 2: Upper bound on 2wm(ŝm).
Let m ∈M. Next we bound from above the quantity 2wm(ŝm) ,

(
‖s− a‖+ ‖s− ŝm‖

)2
+ y2

m.
Using repeatedly the elementary inequality

(a+ b)2 6 (1 + θ)a2 + (1 + θ−1)b2 , a, b ∈ R ,

for various values of θ > 0, we get, on the one hand (with θ =
√
K ′ − 1),

(
‖s− ŝm‖+ ‖s− a‖

)2
6
√
K ′

(
‖s− ŝm‖2 +

‖s− a‖2√
K ′ − 1

)
,

and, on the other hand (first with θ = K ′ − 1, and then with θ = 1),

y2
m , K ′2ε2

(√
Dm +

√
2xm + (2π)−1/2 +

√
2z
)2

6 K ′2ε2

[
K ′
(√

Dm +
√

2xm

)2
+

2K ′

K ′ − 1

(
1

2π
+ 2z

)]
.

Combining the two inequalities above, we get

2wm(ŝm) 6
√
K ′

(
‖s− ŝm‖2 +

‖s− a‖2√
K ′ − 1

)
+K ′3ε2

(√
Dm +

√
2xm

)2

+
2K ′3ε2

K ′ − 1

(
1

2π
+ 2z

)
. (6.76)

Step 3: Putting everything together.
Combining (6.75) and (6.76), we get

2εwm(ŝm)Vm 6
1√
K ′

(
‖s− ŝm‖2 +

‖s− a‖2√
K ′ − 1

)

+K ′2ε2
(√

Dm +
√

2xm
)2

+
2K ′2ε2

K ′ − 1

(
1

2π
+ 2z

)
,

which conludes the proof under Assumption 6.1.

General case: We no longer assume that Sm is closed for all m ∈M.
We employ a reduction to the case studied above. Namely, we use the above analysis to the
modified collection of models

(
Sm
)
m∈M.

By contruction, the collection
(
Sm
)
m∈M satisfies Assumption 6.1. Let us check that it also satis-

fies the assumptions of Lemma 6.2. First, the existence of an almost-sure continuous version ofW
on Sm = Sm is straightforward. Moreover, (6.10) holds true for Sm since it holds on the restricted
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set Sm (by assumption) and since W has an almost-sure continuous version on Sm.
Second, setting τ ′m = 1 if Sm is convex and τ ′m = 2 otherwise, we note that τ ′m 6 τm.

Therefore, the generalized dimension D′m of Sm defined as in (6.11) satisfies D′m 6 Dm. (The
last inequality follows from the lower bound 1/(τ ′2mε) > 1/(τ2

mε) and from the same arguments
as those used after (6.11), e.g., from the fact that x 7→ x−2ϕm(x) is nonincreasing on R∗+.).

We can thus apply the conclusion of Step 3 to the collection
(
Sm
)
m∈M. To conclude the

proof, it suffices to use the fact that D′m 6 Dm for all m ∈M and to note that

Vm 6 V ′m , sup
t∈Sm

(
W (t)−W (a)

wm(t)

)
.
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In the sequel we use the following notation. For all probability distributions ρ, π on a given
measurable space (E,B), the Kullback-Leibler divergence K(ρ, π) between ρ and π is defined by

K(ρ, π) ,


∫
E

ln

(
dρ
dπ

)
dρ if ρ is absolutely continuous with respect to π;

+∞ otherwise.

A.1 A duality formula for the Kullback-Leibler divergence

We recall below a key duality formula satisfied by the Kullback-Leibler divergence and whose
proof can be found, e.g., in [Cat04, pp. 159–160] (see also [DZ98, p. 264]).

Proposition A.1. For any measurable space (E,B), any probability distribution π on (E,B), and
any measurable function h : E → [a,+∞) bounded from below (by some a ∈ R), we have

− ln

∫
E
e−hdπ = inf

ρ∈M+
1 (E)

{∫
E
h dρ + K(ρ, π)

}
,

whereM+
1 (E) denotes the set of all probability distributions on (E,B), and where the expecta-

tions
∫
E h dρ ∈ [a,+∞] are always well defined since h is bounded from below.

Moreover, the above infimum is achieved at ρ = πexp
−h , where πexp

−h ∈ M
+
1 (E) is absolutely con-

tinuous with respect to π and is given by

dπexp
−h ,

e−h∫
E e
−hdπ

dπ .
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The above duality formula can be equivalently reformulated as follows (just apply it with−h).
For any measurable function h : E → (−∞, a] bounded from above (by some a ∈ R),

ln

∫
E
ehdπ = sup

ρ∈M+
1 (E)

{∫
E
h dρ − K(ρ, π)

}
.

This more classical statement indicates that the log-moment generating function can be thought of
as the Legendre transform of the Kullback-Leibler divergence.

A.2 Exp-concavity of the square loss

Next we recall the notion of exp-concavity and the elementary fact that the square loss is 1/(8B2)-
exp-concave on [−B,B]. See, e.g., [KW99] or [CBL06, Chapter 3] for a reference on exp-concave
losses.

Definition A.1 (Exp-concavity).
Let D be a convex subset of a real vector space. A function h : D → R is said to be exp-concave
for a given η > 0 (or simply η-exp-concave) if the function Hη , e−η h is concave on D.

Noting that Hη′ = H
η′/η
η and h = − 1

η lnHη, we can see that if h : D → R is η-exp-concave, then

• h is η′-exp-concave for all 0 < η′ 6 η (since x 7→ xη
′/η is concave and non-decreasing);

• h is convex (since x 7→ − 1
η lnx is convex and non-increasing).

The next elementary result can be found, e.g., in [KW99, Proof of Theorem 2] or in [Vov01,
Remark 3].

Proposition A.2. The square loss is 1/(8B2)-exp-concave on [−B,B] in the sense that, for all
y ∈ [−B,B], the function x ∈ [−B,B] 7→ (y − x)2 is 1/(8B2)-exp-concave. (Moreover, the
constant 1/(8B2) is not improvable.)

A.3 A version of von Neumann’s minimax theorem

We recall below a version of von Neumann’s minimax theorem due to [Kne52] and [Fan53]. The
next statement is a straightforward consequence of [Fan53, Theorem 2] (see also [Sio58, Theo-
rem 4.2]). Our assumptions are slightly stronger (concave/convex instead of concave-like/convex-
like, and continuous instead of upper semi-continuous), but they are sufficient for our purposes.

Lemma A.1 (A version of von Neumann’s minimax theorem).
Let X and Y be convex subsets of vector spaces and let f : X × Y → R be a function such that
f( · , y) is concave for all y ∈ Y , and f(x, · ) is convex for all x ∈ X . Assume also that X is
endowed with a topology that makes it Haussdorff and compact, and that f( · , y) is continuous for
all y ∈ Y . Then,

sup
x∈X

inf
y∈Y

f(x, y) = inf
y∈Y

sup
x∈X

f(x, y) .
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A.4 An elementary lemma to solve for the cumulative loss

The next elementary lemma is due to [CBLS05, Appendix III]. It is useful to compute an upper
bound on the cumulative loss L̂T of a forecaster when L̂T satisfies an inequality of the form (A.1).

Lemma A.2. Let a, b > 0. Assume that x > 0 satisfies the inequality

x 6 a+ b
√
x . (A.1)

Then,
x 6 a+ b

√
a+ b2 .

A.5 Some concentration inequalities and a maximal inequality

The next maximal inequality was proved by [Mas07, Lemma 2.3] through an argument of [Pis83]
to control the expected supremum of random variables that belong to a given Orlicz space.

Lemma A.3 (A maximal inequality). Let Zt, 1 6 t 6 T , be centered real random variables for
which there exists v ∈ R+ such that E

[
eλZt

]
6 eλ

2 v/2 for all t ∈ {1, . . . , T} and all λ > 0 (we
say that the Zt are subgaussian with common variance factor v). Then,

E
[

max
16t6T

Zt

]
6
√

2 v lnT .

The next two lemmas are due to [Hoe63]. The first lemma is stated for a single random
variable. The second lemma is a direct extension of the first one by independence of the random
variables Zt, t = 1, . . . , T .

Lemma A.4 (Hoeffding’s lemma). Let Z be a real random variable such that a 6 Z 6 b almost
surely, where a < b ∈ R are deterministic constants. Then Z−E[Z] is subgaussian with variance
factor (b− a)2/4, i.e.,

∀λ ∈ R, E
[
exp
(
λ
(
Z − E[Z]

))]
6 exp

(
λ2

8
(b− a)2

)
.

The above bound can also be rewritten as ln
(
E
[
eλZ
])

6 λE[Z] + λ2(b− a)2/8.

Lemma A.5 (Hoeffding’s inequality). Let Zt, 1 6 t 6 T , be independent real random variables
such that Zt ∈ [at, bt] a.s. for all t ∈ {1, . . . , T}, where at, bt ∈ R are some constants. Then the
sum

∑T
t=1

(
Zt − E[Zt]

)
is subgaussian with variance factor

∑T
t=1(bt − at)2/4, i.e.

∀λ ∈ R, E

[
exp

(
λ

T∑
t=1

(
Zt − E[Zt]

))]
6 exp

(
λ2

8

T∑
t=1

(bt − at)2

)
.

As a consequence, for all δ ∈ (0, 1),

P

 T∑
t=1

(
Zt − E[Zt]

)
>

√√√√1

2

T∑
t=1

(bt − at)2 ln

(
1

δ

) 6 δ
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and

P

∣∣∣∣∣
T∑
t=1

(
Zt − E[Zt]

)∣∣∣∣∣ >
√√√√1

2

T∑
t=1

(bt − at)2 ln

(
2

δ

) 6 δ .

The next lemma is an extension of Hoeffding’s inequality to martingales with zero-mean and
bounded increments. It is due to [Hoe63] and [Azu67].

We first need the following definition. A sequence of random variables (Xt)t∈N∗ on a prob-
ability space (Ω,A,P) is a martingale difference sequence with respect to a filtration (Ft)t∈N if
and only if, for all t > 1, Xt is Ft-measurable, integrable, and satisfies, almost surely,

E
[
Xt

∣∣Ft−1

]
= 0 .

Lemma A.6 (The Hoeffding-Azuma inequality). Let (Xt)t∈N∗ be a martingale difference se-
quence with respect to a filtration (Ft)t∈N. Assume that for all t > 1, there exists a Ft−1-
measurable random variable At and a nonnegative constant ct such that Xt ∈ [At, At + ct]

almost surely. Then, the martingale (St)t>1 defined by St ,
∑t

s=1Xs satisfies, for all t > 1,

∀λ ∈ R , E
[
eλSt

]
6 exp

(
λ2

8

t∑
s=1

c2
s

)
.

In other words, St is subgaussian with variance factor
(∑t

s=1 c
2
s

)
/4. As a consequence,

∀x > 0 , P
[

max
16t′6t

St′ > x

]
6 exp

(
−2x2∑t
s=1 c

2
s

)
.

A.6 Integration of high-probability bounds

The next elementary lemma is useful to derive bounds in expectation from bounds in high proba-
bility. We then specialize it to two examples that are used throughout the manuscript.

Lemma A.7 (Integration of high-probability bounds).
Let Z be a real random variable such that, for some constants a,Σ > 0 and b ∈ R, and for some
increasing and continuous function f : R+ → R+, whose inverse we denote by f−1,

∀z > 0 , P
(
Z 6 af(z) + b

)
> 1− Σe−z . (A.2)

Assume that x 7→ exp
(
−f−1(x)

)
is integrable on

(
f(0), lim

∞
f
)
, where lim

∞
f , lim

u→+∞
↑ f(u).

Then, E[Z] ∈ [−∞,+∞) is well-defined and

E[Z] 6 a

(
f
(
ln+(Σ)

)
+ Σ

∫ lim
∞
f

f(ln+(Σ))
exp
(
−f−1(x)

)
dx

)
+ b , (A.3)

where ln+(Σ) , max
{

ln(Σ), 0
}

.
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Example A.1. Let a,Σ > 0 and b ∈ R. Let Z be a real random variable such that Z 6 az + b

with probability at least 1 − Σe−z for all z > 0. This example corresponds to f(z) = z with the
notations above. Therefore we get that E[Z] 6 a

(
ln+(Σ) + 1

)
+ b.

Example A.2. Let a, c > 0 and b ∈ R. Let Z be a real random variable such that, for all
δ ∈ (0, 1), we have Z 6 a exp

(
c
√

ln(1/δ)
)

+ b with probability at least 1 − δ. This example
corresponds to f(z) = a exp

(
c
√
z
)

+ b and Σ = 1 with the notations above. Therefore, we get
from (A.3) and from elementary manipulations that E[Z] 6 a

(
exp(2c2) + 1

)
+ b.

Proof (of Lemma A.7): First note from the intermediate value theorem that since f is increasing
and continuous, it is a one-to-one mapping from R+ to

[
f(0), lim

∞
f
)
. Moreover, setting x+ ,

max{x, 0
}

for all x ∈ R, we have

E
[(

Z − b
a

)
+

]
=

∫ +∞

0
P
[(

Z − b
a

)
+

> x

]
dx

=

∫ +∞

0
P
(
Z > ax+ b

)
dx (A.4)

6 f
(
ln+(Σ)

)
+

∫ lim
∞
f

f(ln+(Σ))
Σ exp

(
−f−1(x)

)
dx , (A.5)

where (A.4) follows from the fact that
{

((Z − b)/a)+ > x
}

=
{

(Z − b)/a > x
}

for all x > 0

and where we proceeded as follows to get (A.5). We split the integral into three terms and upper
bounded P

(
Z > ax + b

)
separately. We first used the crude1 upper bound P

(
Z > ax + b

)
6 1

for all 0 6 x 6 f
(
ln+(Σ)

)
. Second, for x ∈

(
f(ln+(Σ)), lim

∞
f
)

we used the fact that P
(
Z >

ax+ b
)

= P
(
Z > af

(
f−1(x)

)
+ b
)
6 Σ exp

(
−f−1(x)

)
by assumption (A.2). Finally, by (A.2)

again, and by the fact that f is increasing, we get that, for all x > lim
∞
f = supu>0 f(u),

P
(
Z > ax+ b

)
6 inf

z>0
P
(
Z > af(z) + b

)
6 inf

z>0

{
Σe−z

}
= 0 .

Since x 7→ exp
(
−f−1(x)

)
is integrable on

(
f(0), lim

∞
f
)
, then E

[
Z+

]
6 E

[
(Z−b)+

]
+b+ < +∞

by (A.5), so that E
[
Z
]
∈ [−∞,+∞) is well-defined. Using the fact that (Z−b)/a 6 ((Z−b)/a)+

and rearranging the terms of (A.5) concludes the proof.

A.7 Some information-theoretic tools

The next inequality is due to Pinsker [Pin64] (and to [CK81] for the optimal constant 1/
√

2).

Lemma A.8 (Pinsker’s inequality).
Let P and Q be two probability distributions on a given measurable space (E,B). Then,

‖P −Q‖TV 6

√
K(P,Q)

2
,

where ‖P −Q‖TV , supB∈B
∣∣P (B)−Q(B)

∣∣ is the total variation distance between P and Q.

1Note that if ln+(Σ) > 0, then this crude upper bound is smaller than Σ exp
(
−f−1(x)

)
> 1 for all x <

f
(
ln+(Σ)

)
since f−1 is increasing.
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The next lemma is a version of Fano’s lemma due to [Bir05] (see also [Mas07, Corollary 2.18]
for the statement given below). We denote by N∗ = {1, 2, . . .} the set of positive integers.

Lemma A.9 (Fano’s lemma — Birgé’s version).
Let (E,B) be a measurable space and N ∈ N∗. Let (A0, . . . , AN ) be a measurable partition of
(E,B) and (P0, . . . ,PN ) be a family of probability distributions on (E,B). Then we have

min
06i6N

Pi(Ai) 6 max

{
κ,

K̄
ln(N + 1)

}
,

where κ > 0 is an absolute constant such that κ 6 2e/(2e + 1) and where K̄ ,
1

N

N∑
i=1

K(Pi,P0).

The next lemma is an extension of Lemma A.9 to convex combinations of probability distri-
butions. This extension was proved (with different constants) in [CBLS05, Lemma 18] through a
simple adaptation of the arguments of [Bir05]. Another way to prove it is to use Lemma A.9 on the
augmented space Ω×{1, . . . , S} and to rewrite the resulting bound via the law of total probability
and the chain rule for the Kullback-Leibler divergence.

Lemma A.10 (Fano’s lemma for convex combinations).
Let (E,B) be a measurable space and N,S ∈ N∗. Let

{
(As,0, . . . , As,N ) : s = 1, . . . , S

}
be a

family of measurable partitions of (E,B) and
{
Ps,j : s = 1, . . . , S, j = 1, . . . , N

}
be a family of

probability distributions on (E,B). Let α1, . . . , αS ∈ R+ be such that
∑S

s=1 αs = 1. Then,

min
06i6N

S∑
s=1

αsPs,j
[
As,j

]
6 max

{
κ,

K̄
ln(N + 1)

}
,

where κ > 0 is an absolute constant such that κ 6 2e/(2e + 1) and where

K̄ ,
1

N

N∑
i=1

S∑
s=1

αsK(Ps,i,Ps,0) .
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