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1 Biology and mathematical modelling of haematopoiesis

1.1 Haematopoiesis

Haematopoiesis is the process of blood cell production. In human adults, it occurs within the

bone marrow, whereas in mice haematopoietic organs are located in the bone marrow and in the

spleen. Blood cell production begins with haematopoietic stem cells (HSCs), which are multi-

FIGURE 1 – Haematopoiesis scheme.

potent cells with self-renewal capacity and the ability to generate all blood cell types [22, 124].

Stem cells were discovered by Till and McCulloch [109] in 1961. More information about stem

cells and their history can be found in [56]. Several types of stem cells can be distinguished :

� totipotent stem cells can differentiate into embryonic and extraembryonic cell types.

Such cells can construct a complete, viable organism. Cells produced by the first few

divisions of the fertilised egg are also totipotent ;
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� pluripotent stem cells are the descendants of totipotent cells and can differentiate into

almost all cells ;

� multipotent stem cells can differentiate into a number of closely related cells ;

� oligopotent stem cells can differentiate into only a few cells, such as lymphoid or mye-

loid stem cells ;

� unipotent stem cells can produce only one cell type, their own (for example skin, liver).

The number of HCSs is very small and they are difficult to identify. About 90% of HSCs

remain in quiescent stage and do not proliferate. All blood cells originate from HSCs and can

be divided into three categories (Figure 1) :

� Erythrocytes (red blood cells, RBC) are simple cells filled with haemoglobin. Their main

function is to transport oxygen to organs. In humans erythrocytes do not contain nucleus. The

process of red blood cell production is called erythropoiesis.

� Leukocytes (white blood cells) are cells of the immune system that defend the organism

against various infectious diseases and foreign debris. They are produced through leukopoiesis

and are divided into three subtypes :

� granulocytes possess granules in their cytoplasm. They phagocytose and destruct small

foreign organisms ;

� monocytes move from blood to infected organs and phagocytose microbes, whole cells

and also small pollutants ;

� lymphocytes are responsible for the specific recognition of foreign agents and their sub-

sequent removal from the organism. They are divided into two groups, T and B lympho-

cytes. T lymphocytes are agents of cellular immunity that recognise infected cells and

destroy them. B lymphocytes are involved in so-called humoral immunity. They destroy

foreign substances.

� Platelets (trombocytes) are produced by fragmentation of megakaryocytes. They play a fun-

damental role in haemostasis and blood coagulation.

In humans all these cells represent about 45% of blood volume, the rest of 55% is plasma

composed mostly of water. Life time of white blood cells is about 24 hours, one week for

platelets and about 120 days for red blood cells. One liter of blood contains 5 × 1012 of RBCs,

109 of WBCs and 3 × 1011 of platelets. Almost the whole volume of circulating blood cells is
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occupied by RBCs.

1.2 Erythropoiesis

The focus of this work is, in particular, red blood cell lineage. Erythropoiesis is the process

by which red blood cells are produced.

Haematopoietic stem cells differentiate into immature erythroid cells, called erythroid pro-

genitors, which are undifferentiated cells committed to erythroid lineage. Then, through matu-

ration and differentiation stages, erythroid progenitors become reticulocytes, which are almost

mature red blood cells. These latter end their maturation to become red blood cells and enter

the blood stream.

Erythropoiesis consists in a series of cell divisions through which erythroid cells acquire

differentiation characteristics. This process allows the production of sufficient amount of ery-

throcytes to transport oxygen to organs. Erythropoiesis can sometimes exhibit disorders, such

as excessive proliferation of immature cells, as observed in acute leukaemias [64, 74]. Such di-

sorders can be caused by alteration of intracellular regulatory networks, which control cell fate

(e.g. Madan et al. [70]), that is self-renewal (the ability to produce daughter cells of the same

maturity [123]), differentiation (the ability to produce more mature daughter cells) or apoptosis

(programmed cell death). Hence, the regulation of erythropoiesis depends on a precise control

of cell fate by means of intracellular proteins and growth factors.

Usually self-renewal is considered to be a property of stem cells. However recent stu-

dies [51, 83] have shown that erythroid progenitors, which are committed stem cells, also pos-

sess this ability. Differentiation allows the production of two daughter cells, one of which at

least being more mature than the mother cell. Apoptosis is a programmed cell death [108]. It is

a particular form of cell death, different from necrosis, which is controlled by various regulatory

mechanisms.

One of the most well studied growth factors, playing an important role in erythropoiesis

regulation, is erythropoietin (Epo), a glucoprotein released by the kidney in response to hypoxia,

that is a lack of oxygen in tissues. Glucocorticoids (GCs) are lipophilic hormones involved in

the regulation of various physiological responses, and in particular in stress erythropoiesis. They
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are known to favour cell proliferation [129]. Growth factors operate by activating membrane

receptors on cell surface to trigger intracellular protein activation.

Recently, Rubiolo et al. [96] proposed a description of the regulatory network that controls

erythroid progenitor fate : some proteins are involved in a self-renewal loop, some others in a

differentiation/apoptosis loop, see Figure 4. The first loop self-activates and inhibits the second

one, whereas the second loop can inhibit the first one and, depending on Epo levels, induce

either erythroid progenitor differentiation or apoptosis. Self-renewal loop relies on proteins of

the MAPK family, the other loop is mainly controlled by Fas, a protein of the tumour-necrosis

factor family.

FIGURE 2 – Summary of intracellular protein interactions that determine erythroid progenitor

fate, partially adapted from [96].

Cells in the bone marrow are known to exchange different signals that regulate cell beha-

viour. Hence, it is important to take into account spatial distribution of cells. In the next section

we discuss spatial organisation of the bone marrow.
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1.3 Spatial structure of the bone marrow

Bone marrow is a flexible tissue located in the hollow interior of bones. It is located mainly

in flat bones, such as the hip bone, breast bone, skull, ribs, vertebrae, and in the cancellous

material at the epiphyseal ends of the long bones such as the femur and humerus.

Bone marrow cells have a certain spatial structure. Animal studies support the hypothesis

that the HSCs and progenitor cells are localised much closer to the bone trabecula surfaces and

decrease in concentration within deeper regions of bone marrow [80, 107]. Works by Frassoni

et al. [47], Lord [66], and Cui et al. [37] on the mouse femoral shaft have demonstrated a clear

spatial gradient in the distribution of different cell lines responding to marrow growth factors as

a function of distance inside the femoral medullary cavity.

One of recent studies of spatial distribution of cells in the bone marrow was published by

Watchman et al. [122]. The objective of this work was to directly measure the spatial concentra-

tion of HSCs and progenitor cells within human disease-free bone marrow. The authors obtained

that haematopoietic CD34+ cells (stem cells committed to erythroid lineage) were located along

a linear spatial gradient with a maximal areal concentration localised within the first 50μm of

the bone surfaces.

For erythroid progenitors, an important role play erythroblastic islands. Erythroblastic is-

lands are specific microenvironmental compartments, within which erythroblasts proliferate

and differentiate. They have been firstly described by M. Bessis [18]. In the center of such

an island a macrophage is located surrounded by a ring of developing erythroblasts in various

stages of differentiation, ranging from CFU-E (immature erythroid progenitors) to young re-

ticulocytes [72]. Erythroblastic islands are uniformly distributed throughout the bone marrow

and contain variable number of erythroblasts. Rat femurs have about 10 cells per island, whe-

reas islands harvested from human bone marrow contain 5–30 erythroblasts. The interaction

between different components of these structures is essential through all stages of maturation.

It is suggested that during early stages of maturation, macrophages provide nutrients and proli-

ferative signals to erythroblasts, during late stages macrophages promote enucleation and pha-

gocytose injected nuclei. Both macrophages and erythroblasts display adhesive interactions that

maintain island integrity. These interactions enable regulatory feedbacks between cells within
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islands and also trigger intracellular signaling pathways that regulate gene expressions. Some

feedbacks between mature and immature erythroblasts as well as between macrophages and

immature erythroblasts carry out controls of apoptosis. The process of enucleation which is

governed by macrophages decreases the adhesion between the macrophages and well differen-

tiated erythroblasts (reticulocytes). These latter detach from the islands and are taken away by

the blood stream.

Different disorders can appear during these complex processes of cell production, among

which leukaemias. In the next section we discuss leukaemias and their treatment.

1.4 Leukaemias and treatments

Up to now, cancer was the second cause of death in developed countries, after cardio-

vascular diseases (CVDs). Since 1980’s and by 2004 the number of deaths due to CVDs has

decreased twice while that due to cancer has decreased only by 10%. Statistics on deaths in

France shows that cancer has become the first cause of death in 2004 and will certainly keep

this position. Among cancers, leukaemia occupies the third place [8].

Leukaemia is a cancer of blood or bone marrow and is characterised by abnormal prolife-

ration of precursor cells or haematopoietic stem cells within the bone marrow. Leukaemia can

be acute (rapid increase of immature blood cells) or chronic (excessive production of relatively

mature blood cells). Leukaemias are generally classified according to the type of blood cells

affected. Four most common kinds of leukaemia are acute lymphoblastic leukaemia (ALL),

chronic lymphocytic leukaemia (CLL), chronic myeloid leukaemia (CML) and acute myeloid

leukaemia (AML). In 1970th so-called French-American-British (FAB) classification of leu-

kaemias was elaborated. In this work the attention is focused on the AML, FAB classification

for AML can be found in Figure 3.

Acute leukaemias, by its definition, develop abruptly and require urgent treatment, it pro-

gresses rapidly and is typically fatal within weeks or months if left untreated. The first step in

diagnosis is the enumeration of blast cells (immature progenitors) in the blood and examina-

tion of their cytologic features. In [16, 106] more information about leukaemia diagnosis can

be found. AML (known also as acute myelogenous leukaemia or acute nonlymphocytic leu-
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FIGURE 3 – Myeloid cell differentiation - Schematic figure of myeloid differentiation including

the corresponding leukaemia and non-Hodgkin lymphomas as well as cell markers involved in

each stage, adapted from [86].
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kaemia) is a subtype of leukaemia in which myeloid lineage is involved. It is rare in childhood

(15% of childhood AL), but is much more frequent than ALL in adults [16] with median age

above 60 years. Usual symptoms of AML are fatigue, weight loss, shortness of breath, easy

bruising and bleeding and increased risk of infection. Although several risk factors for AML

have been identified, the specific cause of AML remains unclear.

The treatment of acute leukaemia consists generally of chemotherapy with or without stem

cell transplantation [24, 100]. Two phases of treatment are usually applied, the standard first

phase of AML treatment is induction chemotherapy. The goal is to bring the disease into re-

mission, when the patient’s blood counts return to normal and bone marrow samples show no

sign of disease, i.e. less than 5% of cells are leukaemic. Induction chemotherapy is very in-

tense and usually lasts one week, followed by three or more weeks for the patient to recover

from the treatment. The second phase is consolidation chemotherapy, the goal is to destroy any

remaining leukaemic cells.

The majority of cytotoxic drugs that are used in chemotherapy are not specific to malignant

cells. They affect normal bone marrow cells as well, which is its great disadvantage. Generally,

chemotherapy drugs are cycle-active agents, it kills all cells that are in S phase of cell cycle.

Hence, such a treatment has many side effects. Stem cell transplantation is a powerful technique

but many side effects persist in early and late phases after the transplantation [112].

One of the standard and most important drugs currently available for the treatment of

AML is AraC (1-β-D-arabinofuranosylcytosine, cytarabine, cytosine arabinoside), see [61, 97].

AraC is administered in combination with other drugs, usually daunorubicin or idarubicin. It

is also active against other haematologic malignancies, including acute lymphoblastic leukae-

mia (ALL) and non-Hodgkin’s lymphoma. AraC is a cytotoxic nucleoside analog that has some

differences in chemical structure with respect to physiological nucleosides. Its metabolism and

mechanism of action are relatively well known [58], but its efficacy is limited by numerous re-

sistances that occur during treatment [58, 102]. For example, AraC shows virtually no activity

with isolated leukaemic stem cells [57].

Active form of AraC is its triphosphate AraCTP, which competes with deoxycytidine tri-

phosphate (dCTP) for incorporation into DNA. When incorporated, AraCTP blocks DNA syn-

thesis and thus cell proliferation. At high intracellular concentrations, AraCTP is cytotoxic, at
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low intracellular concentrations there is still a pronounced cytostatic effect. The numbers of

killed malignant as well as normal cells are determined by intracellular AraCTP concentra-

tions. Thus, crucial importance has the knowledge of relationship between administered AraC

and intracellular AraCTP concentrations. The measurements of intracellular concentrations of

nucleoside analogs imply complex procedures. One of the approaches to measure several in-

tracellular nucleosides simultaneously has been recently developed and approved [34]. It is not

clear which dose of AraC is optimal for concrete patient, though some standard protocols are

usually applied. Some trials are currently being carried out, in which clinicians try to find out

optimal conditions of treatment. For example, in [61] the authors study if high-dose AraC treat-

ment is more effective for patient survival than standard dose AraC treatment. Mathematical

modelling can be a good additional utility for that kind of research.

In the next section we present an overview of the works on mathematical modelling of

haematopoiesis and erythropoiesis. In Section 1.6 we discuss possible ways to model leukaemia

treatment.

1.5 Mathematical modeling of haematopoiesis and erythropoiesis

Mathematical modelling of haematopoiesis and HSC dynamics has been attracting much

attention since the end of the 1970’s. One of the first models was proposed by Mackey [67]

in 1978, which described periodic haematopoiesis at the cellular level by delay equations. The

approach proposed in [67] was later used in many works devoted to the description of oscillatory

behaviours within haematopoietic systems. In [17] Bernard et al. focused on the white blood cell

production to bring an explanation to oscillatory phenomena observed in patients with cyclical

neutropenia. A global model of haematopoietic cell dynamics has been proposed by Colijn and

Mackey [32, 33] in 2005. Other works on haematopoiesis modelling have been proposed by

Loeffler and his collaborators since the beginning of the 1980’s, see [91, 93].

Pioneering models of erythropoiesis regulation were proposed by Wichmann and Loef-

fler [126] in 1985. They modelled the dynamics of haematopoietic stem cells, erythroid proge-

nitors and erythroid precursors (reticulocytes). The authors considered feedback controls from

reticulocytes on progenitors and from progenitors on stem cells, confronted their models with
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experimental data on stress erythropoiesis (bleeding, irradiation) and fitted model parameters.

Later Wulff et al. [128] and Wichmann et al. [127] improved Wichmann and Loeffler’s models.

In 1995, Bélair et al. [15] proposed a model of erythropoiesis, partially based on previous works

by Mackey [67, 68] and his collaborators [69] on haematopoietic stem cell dynamics. In [15]

the authors proposed an age-structured model describing erythroid cell dynamics, including

an explicit control of differentiation by erythropoietin. This model was then improved in [71].

Other works inspired by [15] proposed mathematical models of erythropoiesis [1, 2, 12]. The

erythropoietin-mediated inhibition of apoptosis has been considered in Adimy and Crauste [3].

The authors focused on the appearance of periodic haematological diseases (such as periodic

chronic myeloid leukemia [46]).

It is however noticeable that in all above-mentioned papers self-renewal ability is associa-

ted with haematopoietic stem cells only. Relatively new feature in erythropoiesis modelling is

related to self-renewal ability of erythroid progenitors. In [36] the authors concluded that ad-

ding self-renewing capacity to erythroid progenitors allows a better fit of experimental data on

induced anaemia.

Modelling of regulatory networks involved in cell decision has been the subject of recent

analysis of lineage specification. As it is known, erythrocytes and platelets have one myeloid

progenitor in common, called MEP (for Megakaryocytic-Erythroid Progenitor). As a result of

a competition between two proteins (PU.1 and GATA-1), the MEP differentiates either into an

erythroid progenitor or into a megakaryocytic progenitor. This choice has been modelled by

Roeder and Glauche [92] and Huang et al. [55]. In both studies, models proposed by the authors

demonstrated a bistable behaviour. This idea has been further developed in Chickarmane et

al. [30].

Cell-to-cell interactions inside bone marrow play a crucial role for haematopoiesis regula-

tion. One of the appropriate approaches that would allow taking into account these interactions

is the individual based modelling. This considers each cell as an independent element of the

whole system and, thus, every cell can have its own properties and protein concentrations. Some

IBM models of growth of cell populations were presented in [50]. In [43] the authors discussed

individual based models of growth of unstructured cell populations, that is spatial structure for-

mation of monolayers and multicellular spheroids. In [26] the authors compared two alternative
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theoretical approaches for simulating the growth of cell aggregates in vitro : individual based

models and continuous models.

There is an extensive literature devoted to modelling of solid tumors. Cell proliferation

results in the motion of the medium described by Darcy’s law or Navier-Stokes equations, see [7,

49, 87]. The PDE models of cell motion can be justified by probabilistic methods (see [27] and

the references therein). In [44] the authors described cell concentrations within the bone marrow

by reaction-diffusion equations and their motion by Darcy’s law.

1.6 PK/PD modelling

Pharmacokinetic-pharmacodynamic (PK/PD) models study drug distribution and efficacy.

Such models include accurate description of drug delivery to the specific organs being treated

and introduce an insight into the understanding of the drug action. In the future it promises

an important tool for designing new drugs and protocols applicable for treatment of certain

diseases. Once the drug is delivered to the organ being treated it penetrates through the cell

membrane. Inside cells a scheme of metabolism provides detailed description of drug transfor-

mation into its active form. This set of events constitutes pharmacokinetics. Pharmacodynamics,

in turn, describes how active metabolite of the drug acts on diseased organs [111].

PK/PD modelling and simulations can be used as an applied tool to provide more insignts

into efficacy and safety of new drugs faster and at a lower cost, it can be helpful through all cli-

nical and preclinical phases of drug development. Let us give an example from the current prac-

tice of PK/PD involvement into the drug design process. CPX-351 (cytarabine/daunorubicin

liposome injection) is a liposomal formulation of a synergistic, fixed combination of AraC and

daunorubicin encapsulated within the liposomes for intravenous infusion. The two drugs leak

out much easier when liposomes are situated inside bone marrow. CPX-351 is currently under

Phase II of clinical trial. The paper [14] provides a pharmacokinetic model of CPX-351 lipo-

some injection in the mouse. The authors studied leak rates from liposomes in plasma and bone

marrow, which allowed the prediction of free drug concentrations. In [88] an interested reader

will find a review of PK/PD applications for drug development and its use in pharmacological

industry.
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Sometimes modelers use the term WBPBPKPD, which stands for the Whole Body Physio-

logically Based PK/PD modelling. An interesting work was presented in [113], in which the

authors studied a WBPBPKPD model of the drug called capecitabine, which is a triple prodrug

of 5-FU. More general model of this type can be found in [121]. In [31] the author remarks that

developing such WBPBPKPD models needs a lot of experimental work in vitro as well as in

vivo and that this modelling is very drug specific.

Modelling of leukaemia and its treatment attracts much attention since 1970s. For example

in paper [94] by Rubinow et al., the authors proposed a dynamic mathematical model of the

acute myeloblastic leukaemic state, in which normal neutrophils (granulocytes) and their pre-

cursors, and leukemic myeloblasts, proliferate as distinct but interacting cell populations, G0

compartment (resting cells) is considered for each population. In [95] Rubinow et al. introdu-

ced a model of chemotherapy and by calculations they demonstrated that small changes in the

protocol can have significant effects on efficacy of treatment. They then found optimal treatment

protocol. Another mathematical model of AML can be found in [4], in which cell populations

are supposed to have Gompertzian dynamics. In [89] Ribba et al. considered a mathematical

model of treatment of non-Hodkin’s lympoma. The authors investigated drug pharmacokinetics

(PK) in order to determine drug concentrations in the vasculature at any given time and drug

pharmacodynamics (PD). They then investigated qualitatively some treatment regimens.

Recently, the work [25] was published, in which the authors considered a simple PK/PD mo-

del of treatment of non-small cell lung cancer and breast cancer. The integrated model contains

four major components : PK model, biomarker model, model of signal transduction and tumour

response model (PD). Some experiments were carried out in parallel with cell lines that allowed

the estimation of certain model parameters.

In [65, 76] Morrison and his collaborators proposed a very accurate PK/PD model of AML

treatment with AraC. They introduced a model of drug distribution in the body, drug meta-

bolism and drug action on DNA synthesis. The authors estimated all constants for L1210 cell

line (lymphocytic leukaemia cells derived from mice) and carried out computer simulations of

treatment. A PK/PD model presented in this thesis is based on these works.
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2 Summary of the results

The thesis deals with several aspects of haematopoiesis modelling and with modelling of

leukaemia treatment. Some of the results are published in [19, 20, 35, 40, 41, 42]. The work

consists of four chapters.

In the first chapter we present two multiscale models of haematopoiesis regulation. In the

second chapter we consider spatial models of haematopoiesis. Third chapter is devoted to in-

dividual based modelling approach. The last chapter of the work describes a PK/PD model of

leukaemia treatment with AraC.

Multi-scale modelling of erythropoiesis. Haematopoiesis is a process of blood cell pro-

duction, which occurs mainly in the bone marrow. All blood cells are divided into three groups :

red blood cells, white blood cells and platelets. The process of production of red blood cells is

called erythropoiesis. We developed two mathematical models that describe haematopoiesis

regulation, one more specific to erythropoiesis. Normal erythropoiesis is maintained by the ba-

lance between self-renewal, differentiation and apoptosis. There are a number of intracellular

proteins and growth factors that control this balance. The scheme of the intracellular regulatory

network can be found in Figure 4. Two intracellular proteins, Erk and Fas, are supposed to be

determinant for regulation of self-renewal, differentiation and apoptosis.

Two models of the intracellular regulatory network, which governs these processes, are

proposed. We first consider a general bistable dynamic system, which can be applied to haema-

topoiesis modelling as well. Then, we describe the intracellular regulatory network as a set of

chemical reactions and obtained the following system,

⎧⎪⎨⎪⎩
dE

dt
=

(
α(Epo,GC) + βEk

)
(1 − E) − aE − bEF,

dF

dt
= γ(Pn)(1 − F ) − cEF − dF,

where E and F are Erk and Fas concentrations, functions α(Epo, GC) and γ(Pn) describe

feedback controls. We conclude that this system has a bistable behaviour for certain parameter

values.

We consider several compartments of erythroid progenitors according to maturity, denoted



24

FIGURE 4 – Summary of intracellular protein interactions that determine erythroid progenitor

fate, partially adapted from [96].

by P1, . . . , Pn, and a population of erythrocytes, denoted by M , see Figure 5. For each sub-

FIGURE 5 – Differentiation scheme of erythroid progenitors. Pi, i = 1, . . . , n, denotes the

number of progenitors in the i-th sub-population per μl of blood, and by si, di and ai their rates

of self-renewal, differentiation and apoptosis, respectively.

population of progenitors we introduce self-renewal, differentiation and apoptosis rates, si, di

and ai. Dynamics of erythroid progenitors are described by the following differential equations,

dP1

dt
= HSC + s1P1 − d1P1 − a1P1,
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where HSC accounts for the cell influx from the stem cell compartment, and for i = 2, . . . , n,

dPi

dt
= 2di−1Pi−1 + siPi − diPi − aiPi.

Dynamics of erythrocyte count satisfies

dM

dt
= dnPn − δM,

where δ is the natural mortality rate of erythrocytes.

Regulation of erythropoiesis is realised through several feedback controls, which are turned

on in stress situations, e.g. anaemia, lack of red blood cells. We introduce into the model two

growth factors, erythropoietin (Epo) and glucocorticoids (GC). Their dynamics are described

by

dEpo

dt
= fEpo(M) − kEpo Epo,

dGC

dt
= fGC(M) − kGC GC,

where kEpo and kGC are degradation constants, and fEpo and fGC are production terms, deter-

mined by the number of erythrocytes. We choose Michaelis-Menten functions to describe these

dependencies.

The rates are controlled through intracellular regulatory network, based on Erk and Fas.

We consider as well a direct inhibition of apoptosis by Epo, independently of the intracellular

network. Hence, functions the si, di and ai are defined as

si = s(Ei, Fi), di = d(Ei, Fi), ai = a(Ei, Fi) faEpo(Epo),

The function faEpo describes a direct mechanism of apoptosis inhibition by Epo. We considered

Hill function to describe it.

We thus obtain two models of erythropoiesis. The first one is a general model which can

be extended to haematopoiesis, it is presented in [40]. The second one contains more precise

description of the intracellular network involved in erythropoiesis regulation. The objective of
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this work is to evaluate the roles of the feedback controls in order to provide more insights into

the regulation of erythropoiesis. This work is presented in [35].

For each model we find steady states and their stability using Implicit Function Theorem.

To test the models, we carry out computer simulations of anaemia, that is a lack of red blood

cells. The obtained results are confronted with experimental data on induced by phenylhydra-

zine anaemia in mice, see Figure 20. The second model allows the conclusion that feedback by

Epo on apoptosis rate, independently of the intracellular network based on Erk and Fas, is de-

terminant during early stages after anaemia induction, whereas intracellular regulatory network

is important later. These two models can be found in Chapter I.

Spatial models of erythropoiesis. Bone marrow has a particular structure. Current re-

search in this field provides more and more insights into its spatial composition. A part of the

work is dedicated to spatial models of erythropoiesis.

We describe erythropoiesis by a system of reaction-diffusion-convection equations in a po-

rous medium,

∂ci

∂t
+ ∇.(civ) = dΔci + k(ci−1 − ci), i = 1, . . . , n, c0 = 0,

ΔP = k(c1 + . . . + cn), ∇P = νv,

which is considered in the domain

Ω = (0, Lx) × (0, Ly)

with boundary conditions

∂P

∂x
(0, y) = 0,

∂P

∂y
(x, 0) = 0,

∂P

∂y
(x, Ly) = 0, P (Lx, y) = 0,

c1(0, y) = 1,
∂c1

∂y
(x, 0) = 0,

∂c1

∂y
(x, Ly) = 0,

∂c1

∂x
(Lx, y) = 0,

∂ci

∂x
(0, y) = 0,

∂ci

∂y
(x, 0) = 0,

∂ci

∂y
(x, Ly) = 0,

∂ci

∂x
(Lx, y) = 0,

i = 2, . . . , n.
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where ci denotes concentration of cells in i-th sub-population, v is the velocity of the medium,

d is diffusion coefficient. Reaction functions are determined from the populational model intro-

duced above.

Using Leray-Schauder method we prove the existence of a stationary solution in 1D case,

that is a solution of the following system,

dc′′i − (cip
′)′ + k(ci−1 − ci) = 0, i = 1, ..., n, c0 = 0

p′′ = ν

(
n−1∑
k=1

(si + di)ci + (sn − dn)cn

)
,

together with the boundary conditions

c1(0) = 1, c′i(0) = 0 i = 2, ..., n,

c′i(L) = 0, i = 1, .., n,

p′(0) = 0, p(0) = 0.

To do so we introduce the following homotopy,

dc′′i − τ(cip
′)′ + (τ2di−1ci−1 − bici) = 0, c0 = 0, i = 1, ..., n, τ ∈ [0, 1],

p′′ = ν

n∑
k=1

kici,

and find a priori estimates of solutions of this system, which allows the application of Leray-

Schauder method.

Computer simulations in 2D case are carried out using COMSOL MULTIPHYSICS software.

In leukaemic case, malignant cells propagate as a travelling wave. We describe their distribution

in the bone marrow the following equation,

∂s

∂t
+ ∇.(sv) = dsΔs + kss,
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with the same boundary conditions as for other cells,

∂s

∂x
(0, y) = 0,

∂s

∂y
(x, 0) = 0,

∂s

∂y
(x, Ly) = 0,

∂s

∂x
(Lx, y) = 0.

We calculate wave speed of malignant cell propagation in two ways, using direct numerical

calculations and analytical approximations. We then compared results of the two methods of

wave speed calculation. This work was presented in the paper [41].

Cells in the bone marrow exchange bio-chemical signals. This communication has direct

impact on cell behaviour and is important for erythropoiesis regulation. A cell can perceive

signals from other cells that are located in certain neighbourhood. We study the existence of

a solution of the following non-local reaction-diffusion equation, which describes such a cell

communication,
∂u

∂t
=

∂2u

∂x2
+ J(u) u(1 − u) − αu, x ∈ R,

where

J(u) =

∫ ∞

−∞
φ(x − y)u(y, t)dy.

Here φ(x) is a non-negative function with a bounded support, φ(x − y) shows how the cells

located at the point y influence the cells located at the point x.

We prove the existence of solution in the form of travelling wave u(x, t) = w(x − ct).

In [10] the authors proved the existence of solutions in the form of monotone travelling waves

for a similar integro-differential equation, in which function φ had a small support [−ε0, ε0].

We construct a homotopy with parameter τ ∈ [0, 1] that relies our equation to the equation with

function φ having a small support. A solution in the form of travelling wave satisfies

w′′ + cw′ + Jτ (w)w(1 − w) − αw = 0 (0.1)

with

Jτ (u) =

∫ ∞

−∞
φτ (x − y)u(y)dy,

where

φτ (x) =
(ε0 − 1)τ + 1

ε0

φ

(
((ε0 − 1)τ + 1)x

ε0

)
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We are interested in solutions with the following conditions at infinities,

lim
x→±∞

w(x) = w±. (0.2)

We work in Hölder weighted spaces. Obviously, any function u ∈ Ck+α
μ (R) tends to zero

at infinity. On the other hand, we look for solutions of Equation (0.1) with the limits (0.2).

Therefore, we introduce an infinitely differentiable function ψ(x) such that ψ(x) = w+ for

x � 1 and ψ(x) = w− for x � −1 and put w = u + ψ. Hence we can write Equation 0.1 in the

form

(u + ψ)′′ + c(u + ψ)′ + J(u + ψ)(u + ψ)(1 − u − ψ) − α(u + ψ) = 0.

We consider the operator A(u) corresponding to the left-hand side of the previous equation,

Aτ (u) = (u + ψ)′′ + c(u + ψ)′ + Jτ (u + ψ)(u + ψ)(1 − u − ψ) − α(u + ψ)

Again, we use Leray-Schauder method to prove the existence of waves. In order to construct

the topological degree for operator Aτ (u) acting in weighted Hölder spaces,

A : C2+α
μ (R) → Cα

μ (R), μ(x) = 1 + x2

with norms

‖u‖C2+α
μ (R) = ‖uμ‖C2+α(R),

we demonstrate that it is proper and its linearised operator L is Fredholm with zero index. Note

that due to the invariance of solutions u(x + h) obtained by a translation of the solution u(x),

they are not bounded in the weighted Hölder space C2+α
μ (R). This makes impossible to find a

priori estimate of solutions. In order to get rid of this invariance, we apply a functionalisation

of parameter c. We introduce functional

c(u) = ln

∫
R

(u(x) + ψ(x) − w+)2σ(x)dx,
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where σ(x) is an increasing function, with σ(−∞) = 0, σ(+∞) = 1 and

∫ 0

−∞
σ(x)dx < ∞.

We find a priori estimates of solutions that allows the application of Leray-Schauder method [42].

These two models can be found in Chapter II.

Individual based modelling approach. Cell-to-cell communications are very important

for the erythropoiesis regulation. One of the appropriate approaches that would allow taking

into account this communication is the individual based modelling. This considers each cell as

an independent element of the whole system and, thus, allows considering communications of

every single cell with its neighbours that can provide additional insights into the behaviour of

cell populations.

In Section 10 a multi-agent software that describes such a communication is presented [20].

It allows us to numerically study spatial distribution of erythroid progenitors in the bone mar-

row, see Section 11. Using this software we demonstrate that cell division can generate random

cell motion, see Section 12. Random cell motion, in turn, can be described by a diffusion term

when dealing with continuous models [19]. This modelling together with the description of the

software are presented in Chapter III.

PK/PD modelling of AML treatment with AraC. Acute myeloid leukaemia, known also

as non-lymphocytic or myelogenous leukaemia, is a type of leukaemia characterised by abnor-

mal proliferation of immature myeloid cells. One of the most common and effective chemo-

therapeutic agents against AML is AraC (cytosine arabinoside, cytarabine), which is used in

combination with other drugs. Pharmacokinetics-pharmacodynamics approach is one of mo-

dern ways to study drug efficiency for treatment of certain diseases. The last part of the work is

devoted to the PK/PD modelling of AML treatment with AraC.

We built a mathematical model of AraC distribution in the body and of its action. The mo-

del consists of two parts. First part describes pharmacokinetics of AraC, that is drug delivery

to the bone marrow, penetration through cell membrane and its metabolism, which is a set of

interactions between the drug and intracellular proteins, its degradation, phosphorylation and
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deamination. We consider AraC distribution between two compartments, blood and bone mar-

row. Using Michaelis-Menten kinetics we describe metabolism of AraC. Its scheme is presented

in Figure 6. Dynamics of extracellular AraC concentration in blood (ab) and in bone marrow

(am) are given by

dab

dt
= I(t) − kbm(ab − am) − γbab,

dam

dt
= kbm(ab − am) − khENT1(am − ami) − γmam,

where I(t) determines treatment protocol, γb and γm are clearance constants in blood and

in bone marrow, kbm describes the rate of AraC distribution between the two compartments,

khENT1 describes thansmembrane transport of AraC in the bone marrow. This simple model

allows us to take into account transmembrane transport of AraC.

Dynamics of intracellular AraC (ami) and AraCTP (ap3) concentrations are given by

dai

dt
= khENT1(a − ami) − ṙp + ṙdp − ṙda,

dap3

dt
= (ṙp − ṙdp)/α̃,

where phosphorylation rate of AraC is given by

ṙp ≡
[
d(ap1 + ap2 + ap3)

dt

]
p

=
Vk

1 + Km

ami

(
1 + c

Ki
+ dC

KI
+ ap3

K′
i

)
+ Km

(
c

KiK′
m

+ ap3

K′
iK

′′
m

) ,

dephosphorylation rate is given by

ṙdp ≡
[
d(ap1 + ap2 + ap3)

dt

]
dp

=

(
1 +

1

α1α2

+
1

α1

)[
d ap3

dt

]
dp

=
Vdp

1 +
α1α2Kdp

ap3

,

and deamination rate is given by

ṙda =
da

dt
=

Vda

1 + Kda

ami

.

Second part of the modelling is pharmacodynamics. We consider the following spatial mo-
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FIGURE 6 – The metabolism of AraC, adapted from [76].

del of erythroleukaemia,⎧⎪⎪⎨⎪⎪⎩
∂P

∂t
= DP

∂2P

∂x2
+ H + (s − d)P (P0 − P − Q) − aP,

∂Q

∂t
= DQ

∂2Q

∂x2
+ (sm − dm)Q(P0 − P − Q) − amQ,

where P denotes normal cell population and Q denotes malignant cell population, H denotes

the influx of haematopoietic stem cells, s, d and a are respectively self-renewal, differentiation

and apoptosis rates (sm, dm and am are the rates for malignant cells). We suppose that cell

concentrations cannot surpass certain threshold value P0. We find conditions of existence of

leukaemic equilibrium (P ∗
m, Q∗

m) for the system without diffusion terms. Then we demonstrate

that this equilibrium is globally assimptotically stable in the sense that any solution with the ini-

tial condition (P0(x), Q0(x)), where P0(x) � ε, Q0(x) � ε, ε is a positive constant, converges

uniformly to (P,Q) = (P ∗
m, Q∗

m) as t → ∞.

We describe the drug action as a dependence of the three rates on AraCTP concentration.

s = s(ap3), d = d(ap3), a = a(ap3),

We then carry out simulations of WBPBPK model and PK/PD and test different treatment pro-



2. Summary of the results 33

tocols. The work has been developed in the frame of ANR project AnaTools and is presented in

Chapter IV.
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Première partie

Multi-scale Modelling of Erythropoiesis
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This part of the work is devoted to mathematical modelling of erythropoiesis. We propose

two multi-scale models, in which we bring together erythroid progenitor dynamics and intra-

cellular regulatory network that determines erythroid cell fate. First model is based on a general

bistable system which describes intracellular regulatory network. In the second model we des-

cribe intracellular regulatory network as a set of chemical reactions. All erythroid progenitors

are divided into several sub-populations according to their maturity. Two intracellular proteins,

Erk and Fas, are supposed to be determinant for regulation of self-renewal, differentiation and

apoptosis. We consider two growth factors, erythropoietin and glucocorticoids, and describe

their dynamics. Several feedback controls are introduced in the model. We carry out computer

simulations of anaemia and compare the obtained results with available experimental data on

induced anaemia in mice. The main objective of this work is to evaluate the roles of the feed-

back controls in order to provide more insights into the regulation of erythropoiesis. Feedback

by Epo on apoptosis is shown to be determinant in the early stages of the response to anaemia,

whereas regulation through intracellular regulatory network, based on Erk and Fas, appears to

operate on a long-term scale.

3 Intracellular regulatory network

In a recent paper, Rubiolo et al. [96] investigated the differentiation process of erythroid

progenitors. In particular, they identified key proteins involved in self-renewal and differentia-

tion/apoptosis, see Figure 7. Differentiation and apoptosis appear to be controlled by the same

proteins. In fact, different proteins are involved both in cell differentiation and cell apoptosis,

however, depending on external conditions, cells undergo either differentiation or apoptosis.

For example, Epo has been shown to inhibit erythroid progenitor apoptosis [63]. Hence, when

Epo levels are low, erythroid progenitors preferentially die by apoptosis, whereas with high Epo

levels they differentiate.

Rubiolo et al. [96] showed that self-renewal was controlled by the self-activated cascade

Raf-1 - Mek - Erk, whereas differentiation was controlled by the cascade Fas - Ask-1 - Jnk/p38,

Fas triggering also cell apoptosis. This latter protein cascade is inhibited by the former, and

vice versa. Hence erythroid progenitor self-renewal and differentiation/apoptosis processes are
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FIGURE 7 – Summary of intracellular protein interactions that determine erythroid progenitor

fate, partially adapted from [96].

controlled by two inhibitor loops, one being self-activating. Two proteins are of particular inter-

est : Erk and Fas. The former is the cornerstone of the inhibition of differentiation and apoptosis.

Erk (Extracellular signal-Regulated Kinase) is a member of the MAPK family, also known as

the classical MAP kinase, it regulates cell proliferation and differentiation. Fas belongs to the

tumour necrosis factor family (TNF), it induces cell apoptosis. We focus our attention on the

interaction between these two proteins, that are key regulators of erythroid progenitor fate.

As mentioned in Figure 7, external signals activate intracellular proteins. Epo is known

to have the dual action of being both a mitogen and a survival factor [103]. The molecular

mechanisms involved have been clarified (for a review, see [98]) : Epo prevents apoptosis of

erythroid progenitors through Stat5/GATA-1/Bcl-xL pathway [53], that is largely independent

of the ERK pathway [28, 79, 105]. Self-renewal promoting activity of Epo, on the contrary,

seems to rely mainly on the activation of the ERK kinase [96, 104]. We therefore decided to

integrate separately these two aspects of Epo action in the model : prevention of apoptosis is

modelled as a direct mechanism, i.e. the molecular players are not explicitly taken into account.

This feedback is assumed to be independent of the intracellular regulatory network based on

Erk and Fas interactions. This is introduced in Section 5.1, Equation (1.18). On the contrary,
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self-renewal is modelled as an ERK-dependent mechanism. GCs are involved in regulation of

stress erythropoiesis [13, 51]. They activate self-renewing loop by increasing the level of Raf-1

expression.

One source term of activation appears in Figure 7 concerning the differentiation/apoptosis

part. Fas-ligand, denoted by FasL, a membrane protein, activates the transmembrane protein

Fas. De Maria et al. [39] suggested the existence of a negative regulatory feedback between

mature and immature erythroid progenitors, in which mature cells exert a cytotoxic effect on

immature cells. Mature erythroid progenitors, called reticulocytes, express FasL, which stimu-

lates activation of Fas in immature erythroid progenitors. Sensitivity to FasL decreases with cell

maturation. Other external factors, such as c-Kit, the protein associated with the stem cell factor

(SCF) [77], proteins from the JAK family [114], etc., regulate the levels of activated intracellu-

lar proteins. Yet, we cannot take all these proteins into account, and we focus, in the following,

on Epo, GCs, and FasL.

Further we discuss two different approaches to describe the intracellular regulatory net-

work. First approach considers a bistable system that describes interaction between Erk and Fas

(Section 3.1). In the second approach we make transition from a linear system describing inter-

actions presented in Figure 7 to a nonlinear system that can have either monostable or bistable

behaviour depending on parameter values (Section 3.2). Consider the first approach.

3.1 General bistable system

We focus our attention on two proteins, Erk and Fas, and we suppose that their expression

levels determine the values of self-renewal, differentiation and apoptosis rates. Note that these

proteins are present in cells in two forms, activated and inactivated. We are interested in the

activated protein forms. There exist maximum values for Erk and Fas activated forms that cannot

be surpassed. So, we denote by E the ratio of activated Erk form to its maximum value, by F

the ratio of Fas activated form to its maximum value. This guarantees the variables E and F to

be between 0 and 1, that is favorable for mathematical analysis and not limiting for modelling.

To describe the competition between Erk and Fas we consider the following system that has a
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bistable behaviour, ⎧⎪⎨⎪⎩
dE

dt
=(E − a)(b − E − c(F − a)),

dF

dt
=(F − a)(b − F − c(E − a)),

(1.1)

where a, b and c are positive constants, a < b and c > 1. The system has four steady states,

(E1, F 1) = (a, a), (E2, F 2) = (a, b), (E3, F 3) = (b, a), (E4, F 4) =
(

b+ac
1+c

, b+ac
1+c

)
. The

steady states (E2, F 2) and (E3, F 3) are stable. The steady state (E2, F 2) = (a, b) corresponds

to Fas domination, which means that the cell rather chooses differentiation or apoptosis than

self-renewal, and the steady state (E3, F 3) = (b, a) corresponds to Erk prevalence, which means

that the cell undergoes rather self-renewal. Thus (E3, F 3) is associated with cell proliferation,

whereas (E2, F 2) is associated with cell differentiation and apoptosis. The two other steady

states, (E1, F 1) and (E4, F 4), are unstable. A detailed mathematical analysis of a system similar

to the system above can be found in [78].

If in this system we add external sources of activation : the activation of ERK-cascade due

to Epo and GCs denoted by α and FasL-related activation of Fas denoted by γ, then it becomes,

⎧⎪⎨⎪⎩
dE

dt
=(E − a)(b − E − c(F − a)) + α,

dF

dt
=(F − a)(b − F − c(E − a)) + γ.

(1.2)

In the next section we consider a specific system that describes intracellular protein interac-

tions presented in Figure 7 as a set of chemical reactions.

3.2 From linear behaviour to bistability

Denote by R, M , E, F , A and J the levels of activated forms of Raf-1, Mek, Erk, Fas,

Ask-1 and Jnk/p38, respectively. We describe the reactions of either activation/suppression of

expression or activation by means of linear ordinary differential equations. Enzymatic activa-

tion is expressed by a positive linear term, whereas suppression of expression or suppression

of activation appears as a negative linear term. When modelling intracellular regulation me-

chanisms, external signal sources are considered as constants. We denote by λGC the source

of glucocorticoids stimulating Raf-1 activation, by λEpo the source of erythropoietin activating
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Erk, and by λFL the external source of FasL stimulating Fas activation. Then, the following

system describes the regulatory network summarised in Figure 7,⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dR

dt
= λGC + k1E − k2R,

dF

dt
= λFL − k8E − k9F,

dM

dt
= k3R − k4M,

dA

dt
= k10F − k11A,

dE

dt
= λEpo + k5M − k6E − k7J,

dJ

dt
= k12A − k13J.

(1.3)

The last term in each equation stands for degradation. All constants ki, i = 1, . . . , 13, are

positive.

In order to focus on Erk and Fas dynamics, we suppose that all reactions except those for

Erk and Fas are rapid. This allows obtaining equations for Erk and Fas, while keeping all the

information contained in System (1.3). Rapid reactions are then in steady state with respect to

slow reactions, which provides⎧⎪⎪⎨⎪⎪⎩
R =

λGC + k1E

k2

, A =
k10

k11

F,

M =
k3

k4

R, J =
k12

k13

A.

(1.4)

Using values of R, M , J and A in (1.4) in equations for E and F in (1.3), the following linear

system describing interactions between activated Erk and activated Fas is obtained,

⎧⎪⎨⎪⎩
dE

dt
= α + βE − aE − bF,

dF

dt
= γ − cE − dF,

(1.5)

where

α = λEpo +
k3k5

k2k4

λGC , β =
k1k3k5

k2k4

, γ = λFL,

and

a = k6, b =
k7k10k12

k11k13

, c = k8, d = k9.

All coefficients a, b, c, d and α, β, γ are nonnegative. First terms on the right hand side of

System (1.5) account for activation of Erk and Fas by external factors (α and γ) and by self-
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activation (βE). Other terms describe suppression of activation.

System (1.5) is a linear system of ordinary differential equations. It has a unique steady

state, whose stability depends upon the parameter values. We are particularly interested in the

instability of this steady state. Indeed, when it is unstable, either there is an unlimited growth of

activated Erk concentration, and the cell finally undergoes self-renewal, or an unlimited growth

of activated Fas concentration, and the cell undergoes either differentiation or apoptosis. In

reality, this growth is limited, due to cell division for instance. Hence, this linear system appears

well adapted to the description of Erk and Fas interactions, even if it is biologically limited.

Since we aim at using this system coupled with a description of cell population dynamics,

which is reported in Section 4, and also for the model to be more biologically realistic, we make

some additional assumptions on the dynamics of Erk and Fas concentrations.

First, as described in Figure 7, Fas acts on Erk by suppressing its expression and conversely

Erk suppresses Fas activation. In agreement with mass action law, we assume the rates of these

suppressions, coefficients b and c in System (1.5), are proportional to the concentration of E and

F respectively, so that the terms −bF and −cE become −bEF and −cEF . This assumption

allows, in particular, the Problem (1.5) to be well-posed in the sense that E and F cannot

become negative contrary to the original system.

The second term in the right-hand side of the first equation in (1.5), describing Erk self-

activation, is replaced with βEk, where k � 1. This considers a nonlinear rate of Erk pro-

duction. The choice of this nonlinearity can be discussed. In particular, as observed in Fi-

gure 7, Erk self-activation is obtained through a kinase cascade, that could be appropriately

fitted with Michaelis-Menten functions (smooth positive increasing s-shaped functions). Quali-

tatively, both assumptions are equivalent. Yet, the choice we make allows an easier analysis of

the final System (1.6), and consequently its deeper study.

Third, due to limited resources, we assume there exist maximal values that limit productions

of Erk and Fas. Denote by E0 the maximum value of activated Erk, and by F0 the maximum

value of activated Fas. System (1.5) now reads as

⎧⎪⎨⎪⎩
dE

dt
= (α + βEk)(E0 − E) − aE − bEF,

dF

dt
= γ(F0 − F ) − cEF − dF.

(1.6)
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To find steady states of System (1.6), we should solve

dE

dt
= 0 and

dF

dt
= 0,

that is

F =
(α + βEk)(E0 − E)

bE
− a

b
and F =

γF0

cE + d + γ
. (1.7)

Depending on the parameter values, (1.7) can have one to three solutions. Indeed, denote by ξ

and χ the following functions,

ξ(E) =
(α + βEk)(E0 − E)

bE
− a

b
and χ(E) =

γF0

cE + d + γ
. (1.8)

Then one easily obtains that χ is a bounded positive decreasing function, mapping the interval

[0, E0] into [γF0/(cE0 + d + γ), γF0/(d + γ)]. The function ξ satisfies

lim
E→0

ξ(E) = +∞ and ξ(E0) = −a

b
< 0.

Consequently, System (1.6) has at least one steady state.

The analysis of the variations of function ξ, easy though tedious, shows that for some values

of the parameters ξ is decreasing, hence System (1.6) has only one steady state. For other para-

meter values however, ξ is not monotonous and up to three steady states may exist. In particular,

to obtain existence of three steady states it is necessary that k > 1.

The case of three steady states is shown in Figure 8. The points A and C are stable nodes,

the point B is a saddle. The point A corresponds to high levels of activated Fas and low levels

of activated Erk, whereas the point C corresponds to low levels of activated Fas and high levels

of activated Erk. Hence, the point A is associated with erythroid progenitor differentiation or

apoptosis, the point C with erythroid progenitor self-renewal.

The basins of attraction of the points A and C are separated by the separatrix of the point

B. If the initial condition is chosen in a random way on the plane (E, F ), then the probability

for the trajectory to go to the point A or to the point C depends on the areas of their basins of

attraction. Let us denote these probabilities by pA and pC , respectively. It can be easily verified
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FIGURE 8 – Curves defined by (1.8). Three intersection points determine steady states of Sys-

tem (1.6). Two of them, A and C, are stable.

that pA increases with the increase of γ and decreases with the increase of α. Moreover,

pA =

⎧⎨⎩ 0, if γ � γ1,

1, if γ � γ2,

where γ1 and γ2 are some given values, γ1 < γ2, which depend on α. We note that pA +

pC = 1. Hence, if γ is sufficiently large the erythroid progenitor will undergo differentiation or

apoptosis, whereas if γ is sufficiently small it will self-renew.

When there is only one steady state, it is asymptotically stable, and corresponds either to a

high level of activated Fas (with low level of activated Erk), or to a high level of activated Erk

(with low level of activated Fas). These situations may be obtained when γ > γ2, for instance,

or γ < γ1. Equivalently, this corresponds to a movement upwards of the curve F = χ(E) in

Figure 8 (γ > γ2) or downwards (γ < γ1).

If α and γ are not constant but dynamically depend on growth factors, then, during a res-

ponse to a stress, values of α and γ can be such that temporarily System (1.6) goes from three

steady states to only one steady state, and all cells undergo either self-renewal or differentia-

tion/apoptosis.



4. Erythroid progenitor dynamics 45

4 Erythroid progenitor dynamics

Since erythroid cell sensitivity to external signals strongly depends on the maturity, we

consider several erythroid progenitor differentiation stages, called sub-populations, characteri-

sed by their maturity. We suppose there are n erythroid progenitor sub-populations, with n > 1

fixed. Let us denote by Pi, i = 1, . . . , n, the number of progenitors in the i-th sub-population

per μl of blood, and by si, di and ai their rates of self-renewal, differentiation and apoptosis,

respectively. For the sake of simplicity we consider only symmetric cell division. Then, proge-

nitor self-renewal produces two daughter cells with the same maturity as the mother cell, thus,

the two cells belong to the same sub-population. Differentiation produces two cells, which are

more mature, and then belong to the next sub-population, see Figure 9. Dynamics of erythroid

FIGURE 9 – Differentiation scheme of erythroid progenitors. Pi, i = 1, . . . , n, denotes the

number of progenitors in the i-th sub-population per μl of blood, and by si, di and ai their rates

of self-renewal, differentiation and apoptosis, respectively.

progenitors are described by the following system of differential equations,

dP1

dt
= HSC + s1P1 − d1P1 − a1P1, (1.9)

where HSC accounts for the cell influx from the stem cell compartment, and for i = 2, . . . , n,

dPi

dt
= 2di−1Pi−1 + siPi − diPi − aiPi. (1.10)
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Moreover, we denote by M the number of erythrocytes per μl of blood, which satisfies

dM

dt
= dnPn − δM, (1.11)

where δ is the natural mortality rate of erythrocytes.

The term red blood cell (RBC) refers to an erythroid cell which circulates in the blood

flow and carries oxygen to tissues. It can be an erythrocyte or a reticulocyte. During normal

erythropoiesis very few reticulocytes circulate in the blood. For this reason and since we do

not consider spatial aspects of erythropoiesis that could allow distinguishing between circu-

lating reticulocytes and reticulocytes in the bone marrow, we assume that RBC count equals

erythrocyte count. RBC count is determinant for the release of various growth factors in the

blood stream. For instance, due to a lack of oxygen, kidneys release Epo. RBCs also induce

the release of glucocorticoids in stress situations [13]. Denote by Epo and GC the blood le-

vels of erythropoietin and glucocorticoids respectively. They are supposed to satisfy ordinary

differential equations [15, 71],

dEpo

dt
= fEpo(M) − kEpo Epo, (1.12)

dGC

dt
= fGC(M) − kGC GC, (1.13)

where kEpo and kGC are degradation constants, and fEpo and fGC are production terms. They

depend on the number of erythrocytes, and are supposed to be positive, bounded, decreasing

functions, since the more erythrocytes the lower erythropoietin and glucocorticoid levels.

In the next section we couple intracellular protein dynamics with cell population dynamics,

and obtain multi-scale models of erythropoiesis.

5 Models of erythropoiesis

5.1 Coupling the two scales

To simplify the modelling, we neglect variations in cell cycle durations, so cell cycle lengths

are supposed to be constant, equal to Tc. Each cell cycle ends up with either self-renewal,
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differentiation or apoptosis. Then, on every time unit

si + di + ai =
1

Tc

.

Since erythroid progenitors perform one cell cycle in about 24 hours [36], and the time unit

considered in this paper is also 24 hours, we suppose Tc = 1 and the above equality becomes

si + di + ai = 1. (1.14)

Let us specify how these rates are defined. This is used later in this section and in Section 6.

Denote by ps the probability of self-renewal provided that the cell does not undergo apoptosis.

Then the probability of differentiation pd, provided that the cell does not undergo apoptosis, is

pd = 1 − ps. Since cell cycle time is fixed and equals one time unit, we can then write s and d

(subscripts are deliberately omitted) as

s = (1 − a)ps, d = (1 − a)(1 − ps). (1.15)

The term 1−a accounts for the rate of survival to apoptosis. Consequently, s denotes the overall

self-renewal rate, which is in fact expressed by the probability of self-renewal of non-apoptotic

cells ps multiplied by the rate of survival 1 − a. The same holds for the differentiation rate.

As described in Section 3, self-renewal, differentiation and apoptosis rates depend on one

hand on the intracellular protein regulatory network inherent to each erythroid progenitor, and

on another hand apoptosis is inhibited by Epo. Proteins Erk and Fas have been previously identi-

fied as the main regulators of erythroid progenitor fate, see Section 3. Erk induces self-renewal,

and inhibits differentiation and apoptosis, whereas Fas inhibits self-renewal and induces dif-

ferentiation or apoptosis, depending on Epo blood concentration. In the first model, concen-

trations of Erk and Fas, denoted by E and F , satisfy System (1.2), in the second model the

satisfy System (1.6), where constants α and γ account for external sources of Erk and Fas ac-

tivators, respectively. As mentioned in Section 3, the source of Erk activator consists mainly in

erythropoietin and glucocorticoids. Hence, we assume α is an increasing function of Epo and
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GC,

α = α(Epo, GC).

Parameter γ stands for activation of Fas by FasL, which is expressed on surface of reticulocytes.

Hence, we assume γ depends on Pn, which correspond to reticulocytes, and the sensitivity of γ

to Pn decreases with maturity level i, so that

γ = γi(Pn),

and γi is a positive, bounded and increasing function.

Finally, before stating the system verified by concentrations E and F , let us present the last

assumption. As explained in the previous section, quantities of Erk and Fas are supposed to

have maximum values, denoted by E0 and F0 respectively. Usually, exact quantities of Erk and

Fas in erythroid cells cannot be measured, rather relative levels of activated Erk and Fas are

provided. Hence, in order to render this model more comprehensible, we normalise activated

Erk and Fas quantities, denoting by E and F the ratios E/E0 and F/F0. This guarantees the

variables E and F to be between 0 and 1. Thus, Ei and Fi, the levels of activated Erk and Fas

in the i-th progenitor sub-populations, satisfy the following system, obtained from (1.6),

⎧⎪⎨⎪⎩
dEi

dt
=

(
α(Epo, GC) + βEk

i

)
(1 − Ei) − aEi − bEiFi,

dFi

dt
= γi(Pn)(1 − Fi) − cEiFi − dFi,

(1.16)

where β, a, b, c and d respectively stand for βEk
0 , aE0, bE0F0, cE0F0 and dF0. Note that all

cells of a sub-population are assumed to express the same levels of activated Erk and Fas. This

is a strong hypothesis, because in reality, different progenitors with the same maturity express

different levels of Erk and Fas indicating stochasticity in protein expression. This stochasticity

certainly plays an important role in erythropoiesis, yet in this model we do not take it into

account.
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The same normalisation can be done for System (1.2),

⎧⎪⎨⎪⎩
dE

dt
=(E − a)(b − E − c(F − a)) + α(Epo, GC),

dF

dt
=(F − a)(b − F − c(E − a)) + γi(Pn).

(1.17)

For example, for the first equation of the system, if α = 0, then E < b if initial condition

Einit < E0 = b. If α > 0, then E < E0 = 0.5(a + b +
√

(a − b)2 + 4αmax). So we solve this

system, obtain (E, F ) and do the normalisation to use (E, F ) in the system.

One may observe the complexity of erythropoiesis through the model we propose. Ery-

throid progenitors and erythrocytes contribute to the control of growth factor concentrations in

blood, which in turn regulate intracellular mechanisms of cell fate (self-renewal, differentiation,

apoptosis). We complete the model of erythropoiesis by specifying how intracellular regulatory

mechanisms influence erythroid progenitor fate.

As described in Section 3, self-renewal, differentiation and apoptosis rates depend on le-

vels of activated Erk and Fas, denoted by Ei and Fi, the subscript i referring to a given sub-

population. Moreover, apoptosis rate is also inhibited by Epo independently of the intracellular

network based on Erk and Fas. Hence, functions si, di and ai are defined as

si = s(Ei, Fi), di = d(Ei, Fi), ai = a(Ei, Fi) faEpo(Epo), (1.18)

where functions s, d and a define self-renewal, differentiation, and apoptosis rates, respectively,

for given Erk and Fas levels. The function faEpo describes a direct mechanism of apoptosis

inhibition by Epo, which is independent of the intracellular regulatory network. It is assumed to

be bounded, positive and decreasing.

Dynamics of erythroid progenitors, described by Equations (1.9)–(1.10), are then coupled

to protein levels (1.17) in the first model (to protein levels (1.16) in the second model) through

erythrocyte dynamics in (1.11), growth factor concentration evolution in (1.12)–(1.13), and self-

renewal, differentiation and apoptosis rates definitions in (1.14) and (1.18). This set of equations

forms the multi-scale models of erythropoiesis we study below.
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5.2 Existence of steady states

5.2.1 General bistable model

We begin with the analysis of the system consisting of (1.9)-(1.11), (1.1) written for each

cell sub-population and (1.12)-(1.13). Denote this system by Σ1. Once the system is examined,

we establish the correspondence between the steady states of the System Σ1 and the steady

states of the System (1.9)-(1.11), (1.17), (1.12)-(1.13) (denoted by Σ2). This allows us to find

steady states of the System Σ2 and their stability.

The System Σ1 is decoupled into three parts (because the System (1.1) does not contain

the terms α(Epo, GC) and γi(Pn)). The first one describes Erk-Fas interaction, the second one

describes sub-population dynamics and the third one describes Epo and GCs dynamics. Denote

by (E∗
i , F

∗
i ) the values of (Ei, Fi) in a steady state, i = 1, . . . , n, and introduce the notations

s∗i = s(E∗
i , F

∗
i ), d∗

i = d(E∗
i , F

∗
i ), a∗

i = a(E∗
i , F

∗
i )faEpo(Epo∗).

Then (P ∗
1 , . . . , P ∗

n ,M∗), given by

P ∗
1 =

HSC

d∗
1 + a∗

1 − s∗1
, P ∗

i =
2d∗

i−1P
∗
i−1

d∗
i + a∗

i − s∗i
, i = 2, . . . , n, M ∗ =

d∗
nP ∗

n

δ
,

is the corresponding steady state of the second subsystem. The condition of the existence of

this steady state, taking into account (1.14), is s∗i < 1/2, i = 1, . . . , n, i.e. during normal

erythropoiesis erythroid progenitors self-renew with a rate less than 50%.

Finally, (Epo∗, GC∗), given by

Epo∗ =
fEpo(M

∗)
kEpo

, GC∗ =
fGC(M∗)

kGC

,

is the corresponding steady state of the third subsystem. Since System (1.1) has 4 steady states

and we consider n cell sub-populations, we conclude that the System Σ1 has 4n steady states.

To study their stability we linearise the system about a steady state. The resulting matrix is

decoupled into three sub-matrices (one part corresponds to the first subsystem, one part to the

second subsystem and one part to the third subsystem, see Figure 10). The second sub-matrix
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FIGURE 10 – Matrix of the System Σ1 linearised about one of its steady states (see text for

details). Symbol x stands for a non-zero element. The matrix has three sub-matrices located on

its diagonal and zeros above. First sub-matrix corresponds to the subsystem describing Ei, Fi

interactions, second sub-matrix corresponds to the cell sub-population dynamics and the third

one corresponds to the growth factor dynamics. Eigenvalues of this matrix are eigenvalues of

the three sub-matrices.
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is a triangle matrix with negative diagonal elements, the third sub-matrix is a diagonal matrix

with negative diagonal elements. So all eigenvalues of the linearised matrix, except maybe the

eigenvalues of the first sub-matrix, are negative real numbers. Hence the eigenvalues of the first

sub-matrix determine stability of the full System Σ2.

The first sub-matrix contains n times the matrix of the System (1.1) linearised about one of

its steady states, once for each cell sub-population. We have noted that the stable steady states

of the System (1.1) are (E∗, F ∗) = (α, β) and (E∗, F ∗) = (β, α). This means that stable steady

states of the System Σ1 are determined by (E∗
i , F

∗
i ) = (α, β) and (E∗

i , F
∗
i ) = (β, α), i =

1, . . . , n. Since only two of four steady states of the System (1.1) are stable, the System Σ1

has 2n stable steady states. Then the System Σ2, like the System Σ1, has also 2n stable steady

states defined by (Ẽ∗
i , F̃

∗
i ), i = 1, . . . , n, that are small perturbations of those mentioned above.

Consequently, some sub-populations are characterised by a domination of Erk, the others by a

domination of Fas. Let us discuss some biological limitations that we have to take into account.

During the process of maturation, erythroid progenitors lose their ability to self-renew [38],

thus immature cells are more inclined to self-renewal and mature ones are more inclined to diffe-

rentiation. Hence, among all possible stable steady states only those which are characterised by a
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certain integer number k, 1 � k � n, such that cells in sub-populations P1, . . . , Pk−1 preferen-

tially self-renew (Erk dominates in cells of these sub-populations) and cells in sub-populations

Pk, . . . , Pn preferentially differentiate (Fas dominates in cells of these sub-populations) are bio-

logically reasonable. It reduces the number of biologically meaningful stable steady states to n.

It seems natural to expect that in normal erythropoiesis the number of mature cells is larger than

the number of immature cells, so we impose the conditions P ∗
i > P ∗

i−1, that are equivalent to

2d∗
i−1

1 − 2s∗i
> 1, i = 2, . . . , n.

Thus the multi-scale model has, generally speaking, several (from 1 up to n) stable steady states

that satisfy all biological conditions discussed above.

5.2.2 Model with erythropoiesis-specific intracellular system

We investigate the existence of steady states for the system formed with (1.9)–(1.14), (1.16)

and (1.18). It should be noted that existence of such solutions is not straightforward. Indeed, de-

note by P ∗
i the steady state values of (1.9)–(1.10), M∗ the steady state value of (1.11), Epo∗ and

GC∗ the steady state values of (1.12)–(1.13), and E∗
i and F ∗

i the steady state values of (1.16).

We also introduce the notations

s∗i = s(E∗
i , F

∗
i ), d∗

i = d(E∗
i , F

∗
i ), a∗

i = a(E∗
i , F

∗
i )faEpo(Epo∗).

Then, P ∗
i , i = 1, . . . , n, exist if and only if⎧⎨⎩ (d∗

1 + a∗
1 − s∗1)P

∗
1 = HSC,

(d∗
i + a∗

i − s∗i )P
∗
i = 2d∗

i−1P
∗
i−1, i = 2, . . . , n.

Hence, using (1.14), P ∗
i exists for i = 1, . . . , n provided that

s∗i <
1

2
,
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and P ∗
i is given by

P ∗
1 =

HSC

1 − 2s∗1
, P ∗

i =
2d∗

i−1

1 − 2s∗i
P ∗

i−1, i = 2, . . . , n.

Then, M∗, Epo∗ and GC∗ are uniquely defined by

M∗ =
d∗

n

δ
P ∗

n , Epo∗ =
fEpo(M

∗)
kEpo

, GC∗ =
fGC(M∗)

kGC

.

Yet, implicitly, all the above steady state values, and in particular P ∗
n , Epo∗ and GC∗, are func-

tions of E∗
i and F ∗

i , for i = 1, . . . , n, through the steady state values of the different rates s∗i , d∗
i

and a∗
i . Since E∗

i and F ∗
i are solutions of system⎧⎨⎩

(
α(Epo∗, GC∗) + β(E∗

i )
k
)
(1 − E∗

i ) − aE∗
i − bE∗

i F
∗
i = 0,

γi(P
∗
n)(1 − F ∗

i ) − cE∗
i F

∗
i − dF ∗

i = 0,

which has been shown to have 1 to 3 solutions when α and γ are constant (see Section 3.2), it

follows that determining steady states for the full model is equivalent to solving a system in the

form ⎧⎨⎩ E∗
i = ϕi(E

∗
1 , . . . , E

∗
n, F ∗

1 , . . . , F ∗
n),

F ∗
i = ψi(E

∗
1 , . . . , E

∗
n, F ∗

1 , . . . , F ∗
n),

for all i = 1, . . . , n. Functions ϕi and ψi are some unknown functions. In a general case such a

system cannot be solved.

For the sake of simplicity, suppose α is given by

α(Epo, GC) = α0 + f(Epo) + g(GC),

where α0 > 0 accounts for Erk activation when erythropoietin and glucocorticoids are low.

Since erythropoietin and glucocorticoids are not the only activators of Erk, this assumption is

biologically reasonable. Functions f and g are bounded nonnegative increasing functions, for

instance, of Michaelis-Menten type, with f(0) = g(0) = 0. Similarly, suppose γi is given by

γi(Pn) = γ0 + μiγ̄(Pn),



54

where γ0 is a constant source of Fas activation independent of mature progenitor cell production

of Fas ligand, and μi is a parameter accounting for sensitivity of Fas activation to cell maturity.

The function γ̄ is assumed to be nonnegative, bounded and increasing, with γ̄(0) = 0 and

γ(Pn) � 1.

With these assumptions, we can apply the Implicit Function Theorem to find steady states of

the full model. Suppose that in the steady state, values of Epo∗ and GC∗ are such that f(Epo∗)+

g(GC∗) is very small, close to zero. Moreover, μi are supposed to be small parameters.

We first note that the following system,⎧⎨⎩
(
α0 + β(E∗

i )
k
)
(1 − E∗

i ) − aE∗
i − bE∗

i F
∗
i = 0,

γ0(1 − F ∗
i ) − cE∗

i F
∗
i − dF ∗

i = 0,
(1.19)

has one to three solutions, depending on the values of α0 and γ0. This has been obtained in

Section 3.2, for α = α0 and γ = γ0, see System (1.7). Denote by (E∗,0, F ∗,0) one of these

potential solutions. Then for every pair (E∗,0, F ∗,0), there exists a unique value of s∗i , d∗
i and a∗

i ,

and consequently of P ∗
i , i = 1, . . . , n, M∗, Epo∗ and GC∗.

As μi increases away from zero, the Implicit Function Theorem gives the existence of steady

states for the full model. These steady states are small perturbations of the above mentioned

steady states, based on (E∗,0, F ∗,0). Hence, stability does not change, and steady states of the

full system are stable (respectively, unstable) if steady states of (1.9)–(1.14), (1.18) and (1.19)

are stable (respectively, unstable). And (1.19) has up to 2 stable steady states for all i = 1, . . . , n.

We can then state that full system formed with (1.9)–(1.14), (1.16) and (1.18) has up to 2n

stable steady states. This number may appear large, yet it does not take into account biological

constraints.

During the process of maturation, erythroid progenitors lose their ability to self-renew [38],

thus immature cells are more inclined to self-renewal and mature ones are more inclined to

differentiation. Hence, among all possible stable steady states only those, characterised by a

certain integer j, 1 � j � n, such that cells in the first j sub-populations (corresponding to

variables P1 to Pj) preferentially self-renew (let us call them self-renewing sub-populations),

and cells in the last n− j sub-populations (corresponding to variables Pj+1 to Pn) preferentially

differentiate (let us call them differentiating sub-populations), are biologically reasonable. It
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reduces the number of biologically meaningful stable steady states to n. Moreover, it seems

natural to expect that in normal erythropoiesis the number of mature cells is larger than the

number of immature cells, so we impose the conditions P ∗
i < P ∗

i+1, which are equivalent to

2d∗
i

1 − 2s∗i+1

> 1, i = 1, . . . , n − 1.

Thus the multi-scale model formed with (1.9)–(1.14), (1.16) and (1.18) has, generally speaking,

several (from 1 up to n) stable steady states, which satisfy the biological constraints discussed

above.

The next section is devoted to numerical simulations. The attention is focused, in particular,

on anaemia situations.

6 Simulations of anaemia

A typical situation of stress erythropoiesis is anaemia : a lack of red blood cells, or haemo-

globin. It can be either induced, for instance by killing erythrocytes, which can be obtained with

phenylhydrazine, or by bleeding, or disease-related. A number of haematological diseases are

characterised by or associated with severe anaemia, such as aplastic anaemia or some leukae-

mias.

6.1 General bistable model

To carry out simulations we have to specify the shape of the functions s(E, F ), d(E, F ),

a(E, F ) and faEpo(Epo) in (1.18). We suppose that α(Epo, GC) = α0 + f(Epo) + g(GC), so

we should specify fE(Epo), fG(GC). We suppose as well that γi(Pn) = μiγ(Pn). We should

specify as well fEpo(M) in (1.12) and fGC(M) in (1.13). To define the functions s(E, F ) and

d(E, F ) it is sufficient to fix ps(E,F ) and a(E, F ), see (1.15). For simplicity we consider that

the functions ps(E,F ) and a(E, F ) are functions of one variable, ps(E, F ) = ps(F − E) and
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TABLE 1 – Parameters for functions defined by (1.20). Functions of two types (Hill and

Michaelis-Menten) are described in the table. Parameter b expresses the maximum value, para-

meter θ is a threshold value, with the same units as function variable units, parameter n is the

sensitivity (dimensionless quantity). Parameter units are specified in parenthesis after the value.

function name function type b θ n

f̃aEpo(Epo) Hill 1.2 6.3 (U. ml−1) 3
fE(Epo) Michaelis 0.04 (d−1) 100 (U. ml−1) 6
fG(Epo) Michaelis 0.03 (d−1) 250 (U. ml−1) 10
fF (Pn) Michaelis 1 (d−1) 20 (cells. μl−1) 1
fEpo(M) Hill 7130 (U. ml−1.d−1) 225 (cells. μl−1) 7
fGC(M) Hill 2930 (U. ml−1.d−1) 320 (cells. μl−1) 6

a(E, F ) = a(F − E). We consider

⎧⎪⎪⎨⎪⎪⎩
a(x) = (amax − amin)

(x + 1)na

1 + (x + 1)na
+ amin

ps(x) = (smax − smin)
1

1 + (x + 1)ns
+ smin

, x ∈ [−1, 1],

with amin = 0.1 d−1, amax = 0.48 d−1, smin = 0.1, smax = 0.57 and na = 6, ns = 5.

Functions fE(Epo), fG(GC), fF (Pn) , fEpo(M) and fGC(M) are either Hill or Michaelis-

Menten functions (g1 and g2 in (1.20) respectively) and are defined by three parameters indicated

in Table 1.

g1(x) = b
xn

θn + xn
, g2(x) = b

θn

θn + xn
. (1.20)

Epo cannot suppress apoptosis completely, thus we consider that the function faEpo(Epo) has

a minimum value different from zero, faEpo(Epo) = 0.2 + f̃aEpo(Epo), where f̃aEpo(Epo)

is Hill function with parameters mentioned in Table 1. Erythrocyte lifespan is considered to

be 40 days (average lifespan of an erythrocyte in mice), thus δ = 1/40 d−1. Parameters α =

0.1, β = 0.6, γ = 2.7, μ1 = 0.04, μi = 3μi−1/4, i = 2, . . . , n are dimensionless quantities.

Epo and GCs elimination constants are kEpo = 7.1295 d−1 and kGC = 5.8714 d−1. Parameters

are chosen to describe erythropoiesis in mice.

As discussed above, the model has several, up to n, stable steady states. In the k-th possible

stable steady state, cells in sub-populations P1, . . . , Pk−1 self-renew and in sub-populations
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Pk, . . . , Pn differentiate, thus we can say that a steady state is characterised by a number k. This

number stands for the number of self-renewing sub-populations plus one. Then, for parameters

of the system mentioned above, the steady state value of erythrocyte count in the stable steady

state with k self-renewing sub-populations is about one order larger than the steady state value

of erythrocyte count in the stable steady state with k−1 self-renewing sub-populations. Thus, ta-

king into consideration the realistic proportion between the daily influx of HSC and erythrocyte

count we can choose only one of the possible steady states that would meet this criterion. The

exact proportion between the daily influx of HSC and erythrocyte count cannot be determined,

yet we can estimate the order of the proportion. To our knowledge this proportion is of order

105 [36]. For the parameters mentioned above, the appropriate configuration is four immature

sub-populations with Erk domination and four mature sub-populations with Fas domination.

Anaemia is a critical lack of haemoglobin that can be caused by erythrocyte loss. Thus, to

model an anaemia, as initial conditions in the simulations we take steady state values for all

variables except for erythrocyte count, for which we take an underestimate value (about 30% of

the steady state value).

Left picture in Figure 11 represents cell sub-population dynamics on a logarithmic scale.

We carry out simulations for n = 8 progenitor sub-populations. Four immature progenitor sub-

populations preferentially self-renew (dot lines), four mature ones preferentially differentiate

(solid lines). We can see the amplification by about one order from one self-renewing sub-

population to another one, and an overshoot in erythrocyte count following the anaemia. This

has already been noticed in [36]. In the right picture, dynamics of Ei and Fi, i = 1, . . . , n,

perturbed during anaemia, are presented. Erk dominates in self-renewing cells, Fas dominates in

differentiating cells. Figure 12 shows weak self-renewal rate in differentiating sub-populations,

important self-renewal rate in self-renewing sub-populations, apoptosis rate is about 45% for

differentiating cells and about 10% for self-renewing cells. Differentiation rate does not differ

much from one cell sub-population to another, except during the days following the anaemia.

During anaemia mature progenitors self-renew twice more intensively than in normal situation,

with maximum rate about 18%, apoptosis rate is weak for all cells during anaemia. After about

35 days the three rates come back with damped oscillations to their normal values. In Figure 13

growth factor dynamics are presented. We observe elevated levels (Epo levels increase by about
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three orders) during anaemia that come back to the normal state after 5 days.
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FIGURE 11 – Results of anaemia simulations over 45 days. Left : cell sub-population dynamics,

presented on log scale. Right : Ei and Fi dynamics. Parameter n = 8, i.e. the simulations are

carried out with eight progenitor maturation levels. Four immature progenitor sub-populations,

inclined to self-renewal, are described by dot lines, four others, mature cell sub-populations,

are illustrated with solid lines. Dash-dot line represents the dynamics of erythrocytes. Initial

conditions for variables P1, . . . , P8 equal their steady state values, initial condition for erythro-

cyte count is the value that equals 30% of its steady state value. This number is chosen in

accordance with simulations of an anaemia presented in [36]. It takes 6 days to come back to

normal erythrocyte count that is followed by an overshoot. The return after the overshoot to

the steady state is slow because of the small value of erythrocyte elimination constant (erythro-

cyte lifespan, that is equal to 40 days, is assumed to be not modified during anaemia). Erk and

Fas quantities are importantly modified during anaemia, and within 15 days they return to their

normal values.

6.2 Model with erythropoiesis-specific intracellular system

6.2.1 Parameter values

The nature of the induced anaemia can be very different, according to the method used to

urge it. [45] noticed that the way haematocrit evolves following the anaemia induction, and in

particular the speed of the return to the equilibrium, strongly depends on its strength. In other

words, the more red blood cells are removed from the body, the stronger response to anaemia

is. Results of experiments on mice with phenylhydrazine-induced anaemia obtained in [29] are

presented in Figure 14. One can observe that, following the anaemia, the erythrocyte count
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FIGURE 12 – Three rates during anaemia simulations. Left : self-renewal rate. Center : differen-

tiation rate. Right : apoptosis rate. Dot lines correspond to immature cell sub-populations, solid

lines describe the three rates in mature cell sub-populations. The rates are almost the same wi-

thin all immature (mature) sub-populations. Feedbacks by Epo and GCs on Erk activation and

feedback by Epo on apoptosis rate modify the self-renewal rate that increases twice in mature

progenitors during anaemia. During anaemia the majority of mature progenitors differentiate

with weak apoptosis rate to gain normal erythrocyte count as fast as possible. The three rates

are strongly perturbed during the first 6 days.
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FIGURE 13 – Growth factor dynamics on log scale during anaemia. Left : Epo levels. Right :

GCs levels. Epo concentration increases by about 3 orders due to the lack of haemoglobin

(corresponds to lack of red blood cells) in the blood. After about 5 days it returns to its normal

values. A small undershoot with respect to normal values is observed on day 8.
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quickly increases and, although still not at its equilibrium, decreases once again on day 11

before finally reaching normal values from day 18 up to the end of experiments. This surprising

decrease (days 11 to 18) will be investigated in Section 6.2.2 : we will look for feedback controls

responsible for it.
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FIGURE 14 – Phenylhydrazine-induced anaemia in mice, adapted from [29]. Two injections

(60mg/kg) are administered intraperitoneally at days 0 and 1. Mean values among six mice are

presented with error bars. Initial value of red blood cell count (before starting the experiment)

is about 107 cells.μl−1.

We consider the model of erythropoiesis that consists of Equations (1.9)-(1.11) describing

immature and mature blood cell dynamics, Equations (1.12)-(1.13) describing growth factors

dynamics, and Equation (1.16) accounting for intracellular regulatory mechanisms.

We determine functions and parameter values of the model. Some parameters are rather ea-

sily accessible, whereas other parameters and most feedback functions are usually unavailable.

We distinguish between these two kinds of values.

Estimations based on existing data. Among easily accessible parameter values, the mortality

rate of erythrocytes (δ in equation (1.11)) is the first for which a value can be assigned. Since

erythrocyte average lifespan in mice equals 40 days, we chose δ = 1/40 d−1.
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Let now focus on growth factor dynamics system (1.12)-(1.13). In mice the half-life of ery-

thropoietin is about 180 minutes [85]. The half-life of glucocorticoids ranges in a wide interval,

yet 90 minutes can be considered as reasonable for short-term glucocorticoids [129] (that is

glucocorticoids acting for a short time), like cortisol, which are likely to be involved in stress

erythropoiesis [13]. Using the definition of half-life, we compute degradation constants : consi-

der a substance that degrades with constant rate ν, then its dynamics can be described by the

equation,
dx

dt
= −νx,

whose solution is x(t) = x0e
−νt. The half-life is the time T1/2 such that

x(T1/2) =
x0

2
,

which gives ν = ln(2)/T1/2. Using the above estimations for the half-life of erythropoietin and

glucocorticoids, we obtain the following values for the degradation constants,

kEpo = 5.55 d−1, kGC = 11.1 d−1.

The functions fEpo and fGC in (1.12) and (1.13), accounting for growth factor production

terms, are supposed to be Hill functions [15, 71],

fEpo(M) = f0
Epo

θqE

Epo

θqE

Epo + M qE
, fGC(M) = f 0

GC

θqG

GC

θqG

GC + M qG
.

During anaemia Epo blood concentrations increase by 2-3 orders [90]. To our knowledge, va-

riations of glucocorticoids are less important, but exact values are not available. We then chose

parameters of functions fEpo(M) and fGC(M) that allowed us to obtain such variations of Epo

and GCs in anaemia simulations we carried out. All these parameters are listed in Table 2.

As obtained in Section 5.2.2, the model we consider has from 1 up to n stable steady states.

Not all steady states are biologically meaningful and one of these numerous steady states can be

selected by taking into consideration a realistic proportion between the daily influx of haema-

topoietic stem cells (input of the model) and erythrocyte count in mice (output of the model).
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TABLE 2 – Values of the parameters used to numerically compute erythrocyte count and growth

factor levels. N.U means “no unit is relevant”.

Parameter Value Unit

δ mortality rate of erythrocytes 0.025 d−1

kEpo degradation rate of Epo 5.55 d−1

kGC degradation rate of GC 11.1 d−1

f 0
Epo maximum value of fEpo 7130 mU.μl−1

θEpo threshold value of fEpo 4.63 × 106 cells.μl−1

qE sensitivity of fEpo 7 N.U.

f 0
GC maximum value of fGC 2930 mU.μl−1

θGC threshold value of fGC 7.69 × 106 cells.μl−1

qG sensitivity of fGC 6 N.U.

From [36], the ratio M∗/HSC between normal erythrocyte count and HSC daily influx can be

estimated in the order of 105. The number of self-renewing sub-populations (see discussion at

the end of Section 5.2.2) allows to select the appropriate steady state. We carried out several

simulations with different numbers of self-renewal-inclined sub-populations and we obtained

a correct ratio M∗/HSC for n = 8 and the case of 4 immature preferentially self-renewing

sub-populations, and consequently 4 mature differentiation-inclined sub-populations.

Intracellular regulatory network. Let first focus on the part of the intracellular regulatory

system (1.16) independent of feedback functions. Variables E and F are dimensionless and the

parameter values we use are deduced from numerical simulations since no data are available in

the literature. They are

k = 2, β = 40 d−1, a = 2 d−1,

b = 40 d−1, c = 10 d−1, d = 2.5 d−1.
(1.21)

With these values, the intracellular regulatory network may have three steady states for given α

and γ (Figure 8), two steady states being stable.

As mentioned in previous sections, System (1.16), describing intracellular regulatory net-

work, in which α stands for Erk activation by Epo and GCs, and γ stands for Fas activation by

FasL, can have either one or two stable steady states. Thus, primordially bistable system can
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temporarily lose its bistability when values of parameters α and γ change, like in stress situa-

tions. For the parameters of the intracellular regulatory network mentioned in (1.21), we found

numerically the set of (α, γ) values, for which System (1.16) has a bistable behaviour (domain

D1 in Figure 15).
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FIGURE 15 – Intracellular system (1.16) has a bistable behaviour for (α, γ) inside D1. Two

examples of (α, γ) variations are tested numerically, domains D2 and D3, when bistability can

be temporarily lost.

After determining system parameters (see below), we numerically tested two cases : first

when intracellular regulatory network always keeps a bistable behaviour during anaemia, in-

dependently of the values of α and γ, and second when for some extreme values of α and γ

the bistability is temporarily lost and the intracellular regulatory network has only one stable

steady state. The first case corresponds to variations of α and γ in the rectangular domain D2 in

Figure 15 that is entirely inside the bistability area. The second case corresponds, for instance

(this is what was tested), to variations of α and γ in the domain D3 that partially exits D1. If a

system trajectory goes through these out-of-D1 parts of D3, then the bistability of System (1.16)

is lost for the corresponding values of (α, γ). We investigated the consequences of these two

distinct situations on the response to anaemia.

In the second case the response of the system was stronger but qualitatively the same as

the one obtained in the first case. We tried to increase out-of-D1 parts of domain D3 through
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which the trajectory goes and we obtained that beyond certain thresholds (i.e. if the trajectory

stays long enough outside the domain D1), the solution could not come back to its initial state,

the solution changed an attractor and went definitely to another steady state, or in other words,

the system switched to single stable steady state regimen. The system would then lose its bio-

logical meaning (the balance between self-renewal and differentiation would be broken) and

consequently we decided to focus only on the first case (α and γ range in D2) and we present

numerical simulations only for this case.

Let now concentrate ourselves on the choice of functions α and γ.

For the sake of simplicity, we supposed that FasL exerts the same feedback control on Fas

activation for all progenitor sub-populations, which implies that γi(Pn) in (1.16) is independent

of i : γi(Pn) = γ(Pn) for all i = 1, . . . , n.

The system trajectory represented on (α, γ)-plane stays inside domain D2 during erythro-

cyte recovery. The domain D2 is characterised by α ∈ [0.1, 0.6], γ ∈ [0.5, 1.2], see Figure 15.

Recall that α = α(Epo, GC) and γ = γ(Pn). We suppose α(Epo, GC) = α0 + f(Epo) +

g(GC), where α0 is constant and f(Epo), g(GC) are Hill functions,

f(Epo) = fmax
Epoqf

θ
qf

f + Epoqf
, g(GC) = gmax

GCqg

θ
qg
g + GCqg

. (1.22)

Function γ(Pn) is supposed to be a Hill function, given by

γ(Pn) = γmin + (γmax − γmin)
P

qγ
n

θ
qγ
γ + P

qγ
n

. (1.23)

No information could allow us to determine the shape of such functions. The choice of Hill

functions lies on the interest of these functions in describing kinase cascades and, more gene-

rally, biological phenomena with saturation effects. Parameter values of functions α(Epo,GC)

and γ(Pn) are given in Table 3. They were deduced from numerical simulations.
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TABLE 3 – Parameters of the intracellular regulatory network, functions α(Epo,GC) = α0 +
f(Epo) + g(GC) and γ(Pn), defined in (1.22) and (1.23). N.U means “no unit is relevant”.

Parameter Value Unit

k sensitivity of Erk self-activation 2 N.U.

β rate of Erk self-activation 40 d−1

a Erk degradation rate 2 d−1

b suppression of Erk expression rate 40 d−1

c suppression of Fas expression rate 10 d−1

d Fas degradation rate 2.5 d−1

α0 constant Erk activation rate 0.1 d−1

fmax maximum value of f(Epo) 0.25 d−1

qf sensitivity of f(Epo) 6 N.U.

θf threshold value of f(Epo) 100 mU.μl−1

gmax maximum value of g(GC) 0.25 d−1

qg sensitivity of g(GC) 2 N.U.

θg threshold value of g(GC) 49.4 mU.μl−1

γmin minimum value of γ(Pn) 0.5 d−1

γmax maximum value of γ(Pn) 1.2 d−1

qγ sensitivity of γ(Pn) 3 N.U.

θγ threshold value of γ(Pn) 1.14 × 106 cells.μl−1

Self-renewal, differentiation and apoptosis rates. From Equations (1.14), (1.15) and (1.18),

self-renewal, differentiation and apoptosis rates are given, for i = 1, . . . , n, by⎧⎪⎪⎪⎨⎪⎪⎪⎩
si = (1 − ai) ps(Ei, Fi),

di = 1 − si − ai,

ai = a(Ei, Fi) faEpo(Epo).

(1.24)

The dependence upon Erk and Fas is defined through function ps(E, F ), which describes how

the probability of self-renewal depends upon Erk and Fas, and function a(E, F ), which des-

cribes how apoptosis rate depends on Erk and Fas. The direct action of Epo on apoptosis rate

is determined by faEpo(Epo). Hence, the three functions ps, a and faEpo entirely determine the

three rates.

The function faEpo is supposed to be decreasing and bounded. In order to describe the effect

of large Epo variations (quick changes from 5 to 1000 mU.μl−1), we chose a Hill function of
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the logarithm of Epo, given by,

faEpo(Epo) = 0.2 +
0.73 × 1.19.2

1.19.2 + (log10(Epo))9.2
, (1.25)

the parameters being dimensionless, except the threshold value 1.1, which is expressed in

mU.μl−1. Parameters have been chosen so that faEpo(Epo) in the steady state Epo∗ equals

0.9 and numerical simulations fit correctly experimental data from Figure 14.

For the sake of simplicity, we supposed functions ps(E, F ) and a(E, F ) to be functions of

one variable, ps(E, F ) = ps(E − F ) and a(E,F ) = a(F − E). The function ps is supposed to

take larger values when Erk levels are high, whereas the value of a is more important when Fas

levels are high. Consequently, both functions are supposed to be increasing. Moreover, they are

positive and we assumed the following form,

z(x) = zmin +
(zmax − zmin)(x + 1)nz

θnz
z + (x + 1)nz

, x ∈ [−1, 1].

Before giving values of the parameters zmin, zmax, nz and θz associated with functions ps

and a, let us illustrate how the roles of Erk and Fas are investigated through these functions.

Let us recall that we assumed functions γi do not depend on the index i. Hence, from (1.16)

it follows that all sub-populations have the same steady state values (E∗, F ∗), which do not de-

pend on i. Moreover, by assuming that α and γ evolve in the restricted domain D2, we ensure the

existence of two stable steady states for System (1.16), one in which Erk levels are higher than

Fas levels, and the other one with higher Fas levels. These two steady states (E∗, F ∗) provide

two distinct values of the variable F ∗−E∗, one positive and one negative. The positive value is

associated with cell differentiation, whereas the negative one corresponds to cell self-renewal.

Hence, the positive value of F ∗ − E∗ characterises differentiation-inclined erythroid progeni-

tors, that is mature cells, and the negative one self-renewal-inclined erythroid progenitors, that

is immature cells.

During anaemia, concentrations of Erk and Fas vary, therefore values of F − E vary as

well. Carrying out simulations however, we observed that variations of F − E were limited to

neighborhoods of the two stationary points F ∗ − E∗, and did not range in the whole interval

[−1, 1]. This means that variations of functions ps(E − F ) and a(F − E) are only relevant
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on these neighborhoods of F ∗ − E∗. Consequently, in order to determine the roles of Erk and

Fas on the response to anaemia, we considered three cases describing three different ways of

acting on self-renewal, differentiation and apoptosis rates, based on variations of ps and a in the

neighborhoods of the steady state values.

In the first case ps(E −F ) and a(F −E) vary slightly on both neighborhoods of the steady

states. In the second case ps(E − F ) (respectively a(F − E)) varies a lot near the steady state

corresponding to Erk prevalence, i.e. F ∗ − E∗ < 0 (respectively, Fas prevalence, i.e. F ∗ −
E∗ > 0), and is almost constant near the other steady state. Biologically it can be interpreted

as follows : in critical situations Erk and Fas importantly modify the progenitor self-renewal

rate of immature but not of mature cells, and apoptosis rate is strongly modified in mature

cells but not in immature ones. The third case is opposite to the second one. It should be noted

that the assumption on the three rates that confines them in the interval [0, 1], limits maximum

values of functions ps and a, so the fourth possible case, when the functions vary a lot on both

neighborhoods is ineligible. Simulations indicated that the response obtained in the first case is

weak, that is the system takes more time to come back to the equilibrium. Second case seemed

to us biologically more realistic than the third one, hence we chose to use only the second case

for the numerical simulations. Nevertheless, it can be noted that the simulation of the third case

showed a weaker response, i.e. slower erythrocyte count dynamics, though the rates displayed

different dynamics.

In order to obtain a good fit of experimental data, functions ps(E − F ) and a(F − E) used

for the simulations are

ps(x) = 0.1 +
1.2 × x40

1.740 + x40
, a(x) = 0.12 +

1.02 × x40

1.540 + x40
.

Units of 0.12 and 1.02 for function a are d−1, other parameters are dimensionless values.

Steady state values. Since we are going to confront the simulation results with experimental

data presented in Figure 14, we tried to get equilibrium value of erythrocyte count M∗ = 107

cells.μl−1. This implied HSC = 80 cells.μl−1.d−1. As initial condition for the number of ery-

throcytes we took 30% of its equilibrium value, which corresponds to the anaemia presented in
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Figure 14 (see value of RBC count on day 3). Equilibrium values are taken as initial conditions

for all other system variables. Steady state values of the main system components, obtained

through the simulation, are presented in Table 4.

TABLE 4 – Steady state values of the main variables of the system.

Steady states Value Units

Erythrocyte count M∗ 107 cells.μl−1

Reticulocyte count P ∗
8 4.75 × 105 cells.μl−1

Erythropoietin level Epo∗ 5.7 mU.μl−1

Glucocorticoids level GC∗ 44.6 mU.μl−1

Fas − Erk level for immature cells F ∗ − E∗ −0.66 N.U.

Fas − Erk level for mature cells F ∗ − E∗ 0.48 N.U.

Activation rate of Erk α(Epo∗, GC∗) α∗ 0.21 d−1

Activation rate of Fas γ(P ∗
n) γ∗ 0.55 d−1

Self-renewal rate of immature cells s∗ 0.44 d−1

Self-renewal rate of mature cells s∗ 0.06 d−1

Differentiation rate of immature cells d∗ 0.45 d−1

Differentiation rate of mature cells d∗ 0.53 d−1

Apoptosis rate of immature cells a∗ 0.11 d−1

Apoptosis rate of mature cells a∗ 0.41 d−1

As shown in Table 4, in normal erythropoiesis reticulocyte count is 20-fold smaller than

erythrocyte count. Progenitor sub-populations P1, . . . , P7 are much smaller than P8 (not shown

here). The model predicts that 44% of immature progenitors self-renew per day (only 6% of ma-

ture progenitors per day), which allows the conclusion that mature progenitors mainly lost their

ability to self-renew. Apoptosis rate is high in mature cells (41% d−1), whereas it is only 11%

d−1 in immature cells. About 53% of mature and 45% of immature progenitors differentiate per

day, providing that the differentiation remains important in all erythroid cells. Thus, in normal

erythropoiesis, immature progenitor sub-populations are characterised by weak apoptosis and

comparable self-renewal and differentiation rates. Mature progenitors, however, preferentially

differentiate with high apoptosis.

The next section is devoted to numerical simulations of phenylhydrazine-induced anaemia.
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6.2.2 Simulation of phenylhydrazine-induced anaemia and comparison with experimen-

tal data

Using parameter values obtained in the previous section, we numerically computed solu-

tions of system formed with Equations (1.9) to (1.13) and Equation (1.16), for an anaemia-

induced situation : it is assumed that at the beginning of the numerical computations (day 0)

the erythrocyte count is lower than its equilibrium value (30% of its equilibrium) due to pre-

vious phenylhydrazine injections. Simulations were carried out using MATLAB and results are

presented in Figures 16 to 20.

First, dynamics of main variables of the system and of some relevant rates are illustrated :

erythrocyte and reticulocyte counts in Figure 16, erythropoietin and glucocorticoid levels in

Figure 17, Erk and Fas levels in Figure 18, self-renewal, differentiation and apoptosis rates in

Figure 19. Explanations on the dynamics of the system are proposed. Then results are confron-

ted to experimental data from Figure 14 in Figure 20.

All simulations start at day zero. For the sake of clarity, equilibrium values are shown on

days -1 to 0.

Erythrocyte and reticulocyte counts. Erythrocyte count (solid line) and reticulocyte count

(dash line) dynamics are presented in Figure 16.

Following the anaemia, erythrocyte count quickly increases and reaches a maximum value

(lower than the equilibrium value) after 7 days, then stays there up to day 10. Afterwards, ery-

throcyte count slowly decreases (days 10 to 17). Quick increase is observed between days 17

to 21, followed by a gradual return to the equilibrium. Although erythrocyte count globally in-

creases between day 0 and day 30, it should be noted that 30 days after anaemia the erythrocyte

count is still below its equilibrium value.

At day 0, the reticulocyte count increases to reach a maximum value that equals approxima-

tely four-fold of its equilibrium value on day 4, then comes back to its steady state and keeps

on decreasing. On day 17, when erythrocyte count is decreasing, the number of reticulocyte

increases once again, though less importantly this time.

The first increase of reticulocyte count (up to day 4) is due to a strong increase of mature

progenitor differentiation, see Figure 19.B. Explanations on the behavior of erythrocyte and
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FIGURE 16 – Anaemia simulation. Erythrocyte and reticulocyte count dynamics. Solid curve

represents erythrocyte count, dash curve represents reticulocytes. Equilibrium value of erythro-

cyte count used in the simulation is M∗ = 107cells.μl−1.

reticulocyte counts on day 17 are however less straightforward and will be given later in this

section, when confronting the results with experimental data.

Growth factors dynamics. In Figure 17, erythropoietin and glucocorticoid dynamics are

shown. Growth factor levels are strongly perturbed (large increase) during the first five days

following the anaemia, this perturbation being characterised by a sharp increase of both concen-

trations on day 1, when the organism lacks erythrocytes. Then values of Epo and GCs levels

smoothly return to their equilibria, with small perturbations, in particular they both increase

once again on day 17, due to the fall in erythrocyte count (Figure 16).

As it will be noted in the following sections, two different actions of Epo and GCs appear

in the response to anaemia. First, in the early stages of the response to anaemia (between days

0 and 5) mainly Epo inhibits apoptosis (Figure 19), leading to high proliferation of immature

progenitors. Second, from day 6 up to the end of the response, Epo and GCs levels are closer

to their equilibrium values and they regulate erythropoiesis mainly through Erk-Fas regulation

(Figure 18).
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FIGURE 17 – Anaemia simulation. Dynamics of growth factors, shown on logarithmic scale.

Erk and Fas levels. Dynamics of variable F − E and feedback controls expressed by α and

γ are presented in Figure 18. Values of F −E in all mature (respectively, in all immature) sub-

populations are similar because the feedback by FasL has been supposed to be the same on all

cells (see Section 6.2.1).
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FIGURE 18 – Anaemia simulation. Panel A : Dynamics of F −E for self-renewing (green solid

curve) and differentiating (red dash curve) sub-populations. Panel B : Dynamics of α(Epo,GC)
(blue solid curve) and γ(Pn) (red dash curve).
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On the first day following anaemia the quantity F −E decreases. This is more clearly obser-

ved for mature cells (red dash curve), yet it also occurs for immature cells (green solid curve).

This is due to high values of α (Panel B), the feedback function controling Erk production.

Then, F − E increases and reaches its extreme values after 5-6 days following anaemia induc-

tion. As one can observe on Panel A, between days 9 and 19 the difference F − E has values

below its equilibria, which is due to the regulation through α and γ.

Production of Erk, the feedback control expressed by α, is at its maximum during the first

four days, while γ (production of Fas) is increasing. Then, α sharply decreases almost down

to its equilibrium, while γ decreases smoothly and reaches its minimum value, where it stays

from day 10 up to day 18. On day 18, a new increase of γ is observed, due to the increase of the

reticulocyte count (Figure 16). Two different behaviors are observed in α and γ dynamics : fast

changes (α on days 1 and 4) and modest variations (γ between days 1 and 8, and days 18 and

25). Fast changes of α are directly due to sharp Epo and GCs dynamics (see Figure 17), while

modest γ dynamics is due to modest evolution of reticulocyte count (see Figure 16).

Self-renewal, differentiation and apoptosis rates. Self-renewal, differentiation and apopto-

sis rates are presented in Figure 19. The three rates exhibit important fluctuations. Their dyna-

mics for immature and mature cell populations are different.

Self-renewal rate varies a lot for all cells. At first sight, it seems not to be the case for

mature cells, yet self-renewal equilibrium value is small and the variations represent a two-

fold increase of the equilibrium value. Such important variations are also observed for the two

other rates. Moreover, two different types of changes in values of the rates appear in Figure 19.

First, sharp variations appear between days 0 and 1 : they are strong, for instance, for mature

sub-populations (red dash curves in Figure 19). Then, after day 1, variations are more gradual,

sometimes with large amplitudes.

Taking into account the nature of the feedback controls, we conclude that sudden sharp va-

riations in the three rates right after the induction of anaemia are due to direct inhibition of

apoptosis by Epo, independently of the intracellular network based on Erk and Fas, and gradual

variations that occur later (after day 2) are due to Erk and Fas regulation. During the first six

days these gradual variations are observed for the self-renewal rate (Panel A) and the diffe-
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FIGURE 19 – Anaemia simulation. Self-renewal, differentiation and apoptosis rates of immature

self-renewing (green solid curve) and mature differentiating (red dash curve) sub-populations.
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rentiation rate (Panel B) of immature cells. During days 6-32, the three rates keep on varying

gradually, which is due to Erk and Fas variations. These fluctuations are important, suggesting

a strong dependence of the rates on Erk and Fas (which at the same time vary modestly), and

last longtime (40-45 days, not shown here). These conclusions must however be completed by

the fact that the influence of Epo on apoptosis rate is observed as long as its levels are not back

to equilibrium value, especially for immature self-renewing sub-populations (Figure 19.C).

It should be noted as well that differentiation in our model is a choice by default, i.e. a cell

that is protected against apoptosis and which does not self-renew differentiates.

Confrontation to experimental data. Simulation results and experimental data are presented

in Figure 20. The blue dash curve represents the simulation discussed above (Figure 16), the

black solid line represents the outcome of experiments by [29] (Figure 14).
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FIGURE 20 – Anaemia simulations. Erythrocyte count dynamics obtained by [29] in experi-

ments on induced anaemia in mice (black circled solid line), obtained in simulations carried out

with δ = 1/40 d−1 (blue dash curve) and with δ = 1/30 d−1 (red dash-dot curve).

Let focus on the simulated blue dash curve. First, from day 0 to day 7, the computed erythro-

cyte count increases as fast as observed in the experiments, with only one day delay. From day
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10, simulated erythrocyte count decreases in spite of its low value (lower than equilibrium). Si-

milar phenomenon is observed in the experiments (black solid line) from day 8 to 15. The cause

of such a decrease in cell numbers although the erythrocyte count is still lower than normal is

investigated in the following.

In Figure 16, reticulocyte count starts decreasing at day 4. Figure 19 shows that during first

four days apoptosis rate is below its equilibrium for mature cells, whereas both self-renewal

and differentiation rates are above their equilibrium values. This results in an increase of the

number of mature progenitors (not shown here). However, for immature cells the picture is a bit

different, self-renewal rate increases a little bit on the first day and then decreases a lot due to

high F−E values (Figure 18.A), differentiation rate is higher than at equilibrium, apoptosis rate

is lower than at equilibrium. This results in a decrease of the number of immature progenitors

(not shown here). Hence, on day 4 the system starts lacking immature cells to maintain the

increase of mature progenitors that triggers a decrease of the latter and, thus, of reticulocytes.

Apoptosis of mature progenitors is high during days 6-8 (Figure 19.C), whereas differentiation

rate is low (Panel B) and self-renewal is about its steady state (Panel A). This makes reticulocyte

count decrease even faster (Figure 16), go below its equilibrium on day 8, where it stays up to

day 19. This, in turn, decreases the supply of mature erythrocytes that results in the reduction

of erythrocyte count observed between day 10 and day 18. Thus, our model suggests that this

decrease of erythrocyte count is a consequence of low self-renewal rate of immature cells during

first seven days and of the high apoptosis of mature cells during days 6-8. This, in turn, is due

to a high value of F − E (Figure 18.A) and not to Epo control of apoptosis, which is below

its equilibrium during these days and should, in contrary, decrease apoptosis rate (Figure 21).

Consequently, this decrease (days 10-18) of the erythrocyte count can be explained by Erk-Fas

regulation. It can be compared to the quick increase of erythrocyte count following the anaemia,

which is clearly due to an inhibition of progenitor apoptosis by Epo, independently of Erk-Fas

regulation.

The above analysis enlightens two different and clear mechanisms of erythropoiesis regu-

lation : first, inhibition of apoptosis by Epo in the early stages of the response to anaemia,

and second, a more moderate regulation on the long-term of erythroid progenitor self-renewal,

differentiation and apoptosis based on intracellular regulation (Erk and Fas).
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FIGURE 21 – Anaemia simulation. Function faEpo(Epo).

Although close to experimental data, the simulated erythrocyte count (blue dash curve) does

not appear to be the best fit to the data. Focusing on the nature of the anaemia, that is the

consequences of phenylhydrazine use, we can obtain better results.

Phenylhydrazine is known to damage cell membrane, which results in reduced lifetime of

erythrocytes following the injections. We tested this assumption with our model, assuming a

mortality rate of erythrocytes δ = 1/30 d−1, which means the average lifetime of an erythrocyte

is reduced to 30 days under the action of phenylhydrazine. Red dash-dot curve in Figure 20

represents erythrocyte count in this case. It provides a better fit of the data, with a stronger

slope on the first days (days 1 to 5), a smaller undershoot afterward and a faster return to the

equilibrium. It should be noted that the current modification of the value of δ does not alter

the above analysis and conclusions, it only allows a better fit of the data. For both simulations

presented in Figure 20, one feature of experimental curve is however not well approached :

the undershoot in both simulations (observed around day 18) is slower, occurs later and is also

smaller than the one obtained in the experiments (observed around day 14).

We confronted our model with other experimental data on phenylhydrazine-induced anae-

mia, presented in [36]. In these experiments, haematocrit values were measured during 45 days
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after anaemia induction. The model used in this work does not a priori provide haematocrit, but

only erythrocyte count. Haematocrit H(t) is defined by

H(t) =
vM(t)

vM(t) + Plasma volume
,

where vM(t) represents the volume of erythrocytes in the blood. In [36] we assumed that the

plasma volume was not modified during the experiments and considering normal haematocrit

H∗ (assumed to equal 50%) and erythrocyte count M∗ we obtained

H∗ =
vM∗

vM ∗ + Plasma volume
,

which provides

Plasma volume =
1 − H∗

H∗ vM∗.

Consequently, haematocrit can be deduced from the erythrocyte count,

H(t) =
M(t)

M(t) + (1 − H∗)M∗/H∗ .

This is displayed in Figure 22.

To obtain an overshoot on day 5 as presented in Figure 22, it was necessary to modify

functions faEpo(Epo), ps(E −F ) and a(F −E). In particular, the minimum value of faEpo has

been dropped from 0.2 down to 0.1, see (1.25), functions ps(E − F ) and a(F − E) have been

modified to have smaller variations on the relevant intervals of F − E. One can observe that

experimental results are properly reproduced by the model, although the decrease following the

peak in haematocrit values is slower in the model. Erythrocyte lifespan must be reduced from

40 days to 15 days to obtain these results, similarly to what has been done in [36].

Hence, this model is able to reproduce features of a simpler model, and also leads to more

insights into regulatory mechanisms of erythropoiesis.
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FIGURE 22 – Anaemia simulation. Haematocrit dynamics. Blue solid line represents simulation

results, red dash line represents results of experiments on induced anaemia in mice obtained

in [36]. Normal haematocrit is assumed to equal 50%, lifetime of erythrocytes is 15 days.

7 Discussion

In this chapter we presented two multi-scale mathematical models of erythropoiesis taking

into account several biological aspects known nowadays. The objective of the first model was

to bring together all available biological information in a mathematical model. Intracellular

regulatory network has been described by a bistable system. Results of simulations were not

confronted with experimental data. Second model is based on the first model. It is more pre-

cise and contains more biological information. Some model parameters have been taken from

the literature, others have been chosen to qualitatively represent erythropoiesis regulation. Se-

cond model has been better studied numerically, i.e. more simulations have been carried out.

The results were confronted with two different experimental data sets on induced anaemia. The

objective of the second model was to study roles of different feedback mechanisms in the regu-

lation of erythropoiesis. The results of the second model were deeper analysed.

In the first model intracellular regulatory network, determining cell choice between self-

renewal, differentiation and apoptosis, was supposed to have bistable behaviour. Erk and Fas
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were considered as key proteins determining progenitor fate choice. We considered several

progenitor compartments and erythrocyte compartment that allowed the construction of po-

pulational dynamics with regulation by feedbacks from erythrocyte compartment to progenitor

compartments through two growth factors, Epo and GCs. Epo was supposed to implement two

feedbacks, it controlled Erk levels in cells and regulated apoptosis rate. Reticulocytes imple-

mented feedback on progenitors by means of FasL. An essential feature considered in the model

was the ability of progenitors to self-renew. The resulting mathematical model was analysed, we

found steady states and their stability using Implicit Function Theorem. The considered model

had several stable steady states, but only one among them satisfied all biological conditions. We

carried out simulations of anaemia situation. The numerical results were in agreement with our

expectations.

In the second approach, intracellular model was based on the scheme proposed in [96] and

was obtained as a transition from a simple linear model to a non-linear bistable system. Again,

two intracellular proteins, Erk and Fas, were supposed to be determinant for cell fate. Cell

cycles were supposed to be constant and equaled one day. We considered several compartments

of erythroid progenitors and a population of erythrocytes. A new feature, which we took into

account in the model, is self-renewal ability of erythroid progenitors. For each sub-population

of progenitors, we defined self-renewal, differentiation and apoptosis rates. We introduced as

well two growth factors, Epo and GCs. Connections between the two modelling scales were

provided by several feedback controls : Erk and Fas determined self-renewal, differentiation

and apoptosis rates ; Epo and GCs were controlled by erythrocyte count ; Epo directly inhibited

apoptosis rate independently of Erk activation. These feedback controls are turned on in critical

situations. The resulting mathematical model was analysed, we found steady states and their

stability. Then, simulations of anaemia were carried out and the results were confronted with

experimental data. This allowed the evaluation of the roles of the feedback controls in response

to anaemia : feedback by Epo on apoptosis, independently of the intracellular network based on

Erk and Fas, was found to be determinant in the early stage of the response, to quickly increase

the number of erythrocytes, whereas feedback control through the intracellular regulatory net-

work, introduced in Section 3.2, is more important later in the response, when the erythrocyte

count almost reached its equilibrium value, to regulate on a long-term the response to the stress.
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Epo, however, has a permanent influence on progenitor apoptosis.

An additional feature brought by the model concerns apoptosis rate. The presented simula-

tion provided that the apoptosis rate in mature sub-populations equals a∗ = 0.41 d−1. Thus, the

model suggests that in normal erythropoiesis, 41% of produced mature erythroid progenitors un-

dergo apoptosis daily. The model shows that in stress situations, like anaemia, organism reacts

by temporarily suppressing apoptosis that allows fast recovery of erythrocytes (Figure 19).

Other simulations (not shown here) were carried out as well, to test hypotheses not pre-

sented here. For instance, consequences of the loss of bistability of intracellular network were

investigated. The response of the system in this case was qualitatively the same as the one ob-

tained in the simulations presented in Section 6. As mentioned in the previous section, different

shapes for the probability function ps and the apoptosis function a were considered. The pre-

sented simulation has shown a better fit, other simulations (not presented here) provided weaker

response. We also tried different feedback functions faEpo, to evaluate the role of the feedback

by Epo on apoptosis rate in response to the anaemia (strong or weak sensitivity of apoptosis to

Epo). We also carried out simulations of less severe anaemia, with initial value of erythrocyte

count being equal to 0.7 of steady state value. Obtained dynamics of erythrocyte count was

qualitatively the same.

All the simulations were performed under the assumption that cell cycle durations were

constant, equal to one day. Although there is no evidence that cell cycles vary during response

to a stress, nor that such variations could be important, this assumption appears restrictive. In

particular, it is responsible in part for the delay observed in the first days of the response for the

increase of the erythrocyte count. Hence, considering that cell cycles can be shortened during

stress erythropoiesis could enhance the results of the proposed model, by allowing a better fit to

the data, and consequently more relevance of the predicted parameters.

The modelling presented in this chapter is novel and introduce some new insights into ery-

thropoiesis regulation in critical situations.
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8 Spatial distribution of cell populations in the process of

erythropoiesis

Bone marrow has a particular structure. Current research in this field provides more and

more insights into its spatial composition. This part of the work is devoted to spatial modelling

of erythropoiesis. We take into account spatial cell distribution inside the bone marrow and

cell motion resulting from cell proliferation. Immature erythrocytes appear and push each other

through the medium formed by other cells and by porous matrix. In the process of this motion,

cells increase their maturity. Mature blood cells are pushed out into blood vessels going through

the marrow, see Figure 23. Thus, normal haematopoiesis implies certain spatial cell organisation

FIGURE 23 – Spatial structure of the bone marrow.

according to their maturity level. There are little experimental results about spatial distribution

of blood cells in the bone marrow. It is known that stem cell can be localised and form a stem

cell niche [75, 81, 84, 99, 110]. One of recent studies of spatial distribution of cells in the bone

marrow was published by Watchman et al. [122]. The authors obtained that haematopoietic

CD34+ cells (stem cells committed to erythroid lineage) were located along a linear spatial

gradient with a maximal areal concentration localised close to the bone surfaces.
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Excessive proliferation of immature cells, which can be related to certain blood diseases in-

cluding leukaemia, changes normal cell distribution in the marrow. If proliferation of malignant

cells is sufficiently fast, then the tumour grows and can fill the whole marrow. The propagation

of leukaemic cells corresponds to travelling wave solutions of reaction-diffusion-convection

equations. We study in this model spatial cell distribution for both normal and leukaemic hae-

matopoiesis.

In this work we describe cell concentrations by reaction-diffusion-convection equations and

their motion by Darcy’s law. The difference with the works cited before is related in particular to

some specific features of cell production in the process of haematopoiesis. A close problem was

studied in [44] in the 1D spatial case. In this work we are particularly interested by propagation

of 2D waves which correspond to leukaemia development in the bone marrow.

The work is organised as follows. In Section 8.1 we present reaction-diffusion equations

in porous media which describe evolution of cell populations. This model is briefly discussed

in the general framework and more specifically for erythroid progenitors. In Section 8.2 we

prove the existence of a stationary solution in the 1D case. This solution gives a stationary cell

distribution in the cross-section of the bone marrow considered as a 2D rectangular domain. In

the leukaemic case, this 1D solution can become unstable. The region filled by malignant cells

will propagate and fill the whole domain. We study this phenomenon numerically in Section 8.3.

We give an analytical approximation for the speed of the travelling wave and compare it with

the numerical results.

8.1 Models of cell populations

8.1.1 Equations of continuous mechanics

We consider a cell population in a porous medium. In particular, this can be blood cells in

the bone marrow. Let us denote by ci, i = 1, ..., n the concentrations of different cell types, that

is the mass fraction of cells of the i-th type in a unit volume. Cell population is considered as a

continuous medium. The evolution of the concentrations is governed by the following equation

∂ci

∂t
+ ∇.(vci) = dΔci + Fi, (2.1)
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where v is the velocity of the medium, d is the diffusion coefficient and Fi is the production rate

of the i-th type of cells. The diffusion terms describes random cell motion. Let φ be the total

cell concentration, that is

φ = c1 + ... + cn. (2.2)

Taking a sum of all equations in (2.1), we obtain that φ satisfies the equation

∂φ

∂t
+ ∇.(vφ) = dΔφ +

n∑
i=1

Fi. (2.3)

Let us consider cells as spherical particles which consist of an external elastic membrane and

which are filled by an incompressible fluid. Let us suppose for simplicity that all particles have

the same size and denote their diameter by r and the volume by v0. Consider next a sufficiently

small cube with the side a and the volume V . Denote by p the pressure, that is the force acting

from the particles on the sides of the cube. Let N be the number of particles inside the cube. If

N < N0 = (a/r)3, then the particles can be distributed in such a way inside the cube that there

is no repulsion between them and no force on the sides of the cube. The maximal number of

particles can be estimated by Nmax = V/v0. In this case the cube is filled by an incompressible

fluid. If the number of particles is between N0 and Nmax, then the pressure is a function of N .

Thus, the pressure p is a function of the total cell concentration φ :

p(φ) =

⎧⎨⎩ 0 , φ � φ0

p0(φ) , φ0 < φ < φmax

,

where p0(φ) is some given function, φ0 and φmax are positive parameters. If φ = φmax, then

from (2.3) we obtain the following equation

∇.v =
1

φmax

n∑
i=1

Fi. (2.4)

In the case without sources (Fi = 0, i = 1, ..., n), we obtain an incompressible medium.

The pressure-concentration dependence is shown in Figure 24. The equation of state can be
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written as

H(p, φ) = 0, (2.5)

where the function H is such that H(p(φ), φ) = 0.

FIGURE 24 – The pressure-concentration dependence in the equation of state.

If we consider a porous medium, then convective motion is described by Darcy’s law :

ρ

ε

∂v

∂t
= −∇p − μ

K
v, (2.6)

Here p is the pressure, ρ the density, ε the porosity of the medium, K the permeability and μ

the viscosity. System of equations (2.1), (2.3), (2.5), (2.6) should be considered in some domain

and completed by appropriate initial and boundary conditions.

8.1.2 Cell proliferation, differentiation, apoptosis

Here we specify the functions Fi used in the previous section. They describe the rates of

production or disappearance of various cell types. Consider a single cell lineage which consists

of n sub-populations with the following properties. The cells in each sub-population Pi are

identical to each other. They can self-renew with the rate si, differentiate with the rate di or

die by apoptosis with the rate ai, see Figure 9. By self-renewal we understand here that two

daughter cells are identical to the mother cell. In the case of differentiation, daughter cells
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belong to the next sub-population Pi+1. We assume that there is an influx of cells to the first

sub-population P1 with a constant rate S. These cells can come from stem cell compartment

or from other immature cell populations. Finally, the cells of the last sub-population Pn can

differentiate into other cells or leave the system. This situation corresponds to the development

of erythroid progenitors in the bone marrow, as discussed in previous chapter.

Under these assumptions, homogeneous in space concentrations ci of cell sub-populations

Pi and cD of dead cells are described by the following system of equations :

dc1

dt
= S + (s1 − d1 − a1)c1 ≡ F1, (2.7)

dci

dt
= (si − di − ai)ci + 2di−1ci−1 ≡ Fi, i = 2, ..., n, (2.8)

dcD

dt
= a1c1 + . . . + ancn ≡ FD. (2.9)

The rates of cell self-renewal, differentiation and apoptosis are determined by intracellular

regulatory networks and can be influenced by surrounding cells, by the whole cell population

and by external regulatory mechanisms based on hormones and growth factors. We do not consi-

der here intracellular regulatory networks (see previous chapter for more detailed discussion)

and suppose that these rates can be only influenced by surrounding cells. This means that the

coefficients si, di, ai can depend on c1, ..., cn. In particular, we will take into account the limita-

tion on cell proliferation. When the total cell concentration cΣ = c1 + ... + cn approaches some

maximal value cmax, cells produce signals which reduce their proliferation rate :

si = s0
i (cmax − cΣ), di = d0

i (cmax − cΣ). (2.10)

It is also possible that cells accelerate their own proliferation or proliferation of other cells. In

the case of linear self-acceleration, instead of (2.8) we will have

si = s0
i ci(cmax − cΣ), di = d0

i ci(cmax − cΣ). (2.11)

In this case

F1(c) = S + (s0
1 − d0

1) cm
1 (cmax − cΣ) − a1c1,
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Fi(c) = (si − di) cm
i (cmax − cΣ) + 2di−1(cmax − cΣ)ci−1 − aici, i = 2, ..., n,

where c = (c1, ..., cn), m = 1, 2. We note that the restriction on cell proliferation by the total

number of cells may not take place. In particular, this can be the case for malignant cells. Similar

models can be written for several cell lineages.

8.1.3 Summary of the models

Depending on the value of cell concentration, we obtain the models which differ by the

equations of motion. If cΣ � φ0, then p = 0. From (2.6) it follows that v = 0 and the model is

reduced to reaction-diffusion system (2.1) without convective terms. The condition on cΣ will

be verified if cmax < φ0.

If cΣ < φmax, then p = p0(φ). The model is given by equation (2.1) and

ρ

ε

∂v

∂t
= −∇p0(cΣ) − μ

K
v.

Under the quasi-stationary approximation, the last equation is replaced by

v = −K

μ
∇p0(cΣ).

If we consider a linear approximation of the function p0, we obtain v = −κ∇(c1 + ... + cn)

(cf. [44]), where κ = K/μ is a positive parameter.

If cΣ = φmax, then the model is given by equations (2.1), (2.4), (2.6). It is possible to have

all three cases cΣ � φ0, φ0 < cΣ < φmax, cΣ = φmax at the same time, each one in some

subdomain. The boundaries between the subdomains can depend on time.

8.2 Incompressible medium

Let us consider the case cΣ = φmax. Then, in the 1D case, we obtain the system of equations

∂ci

∂t
+

∂(vci)

∂x
= d

∂2ci

∂x2
+ Fi(c), i = 1, ..., n, (2.12)
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∂v

∂x
=

1

φmax

(
n∑

i=1

Fi(c) + FD(c)

)
. (2.13)

We consider it in the bounded interval 0 � x � L with the boundary conditions

x = 0 : c1 = c0
1,

∂ci

∂x
= 0, i = 2, ...n, x = L :

∂ci

∂x
= 0, i = 1, ..., n. (2.14)

This problem is supplemented with the condition ∂v
∂x

= 0 at x = 0 and is also supplemented

with some suitable positive initial data. Up to a normalisation of the parameters, we will assume

in the sequel that c0
1 = 1. Denote

Fi = (si − di − ai)ci + 2di−1ci−1, c0 = 0, i = 1, . . . , n,

F = F1 + . . . + Fn + FD =
n−1∑
k=1

(si + di)ci + (sn − dn)cn.

Then stationary solutions of Problem (2.12)-(2.14) satisfy the following system of equations :

dc′′i − (cip
′)′ + Fi(c) = 0, i = 1, ..., n, (2.15)

p′′ = νF, (2.16)

together with the boundary conditions

c1(0) = 1, c′i(0) = 0 i = 2, ..., n,

c′i(L) = 0, i = 1, .., n,

p′(0) = 0, p(0) = 0.

(2.17)

Here v = p′, ν = μ/(Kφmax). We obtain the following result.

Theorem 1. Let us suppose that

di + ai − si � 0, i = 1, . . . n, and sn − dn � 0.
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Then System (2.15)-(2.17) has a solution (c1,0, .., cn,0, p0) ∈ C2([0, L])n+1 such that

ci,0 � 0, ∀ i = 1, ..., n. (2.18)

Proof. The proof of this theorem is based on the Leray-Schauder method. A similar problem

but with different boundary conditions was considered in [44].

Denote bi = di + ai − si, i = 1, . . . n, ki = si + di, i = 1, . . . n − 1 and kn = sn − dn and

suppose that all bi and ki are positive. With these notations System (2.15)-(2.16) becomes

dc′′i − (cip
′)′ + (2di−1ci−1 − bici) = 0, c0 = 0, i = 1, ..., n,

p′′ = ν

n∑
k=1

kici.

Let us consider the system depending on a parameter τ :

dc′′i − τ(cip
′)′ + (τ2di−1ci−1 − bici) = 0, c0 = 0, i = 1, ..., n, (2.19)

p′′ = ν|k1c1 + . . . + kncn|, (2.20)

together with boundary conditions (2.17). Here τ ∈ [0, 1] is the homotopy parameter. If τ =

1, then we obtain the previous problem. For τ = 0 we obtain a model problem with known

properties.

Consider a solution of Problem (2.15), (2.16) and (2.17). Show first that ci � 0. The equation

for c1 is

dc′′1 − τc′1p
′
1 − (τp′′ + b1)c1 = 0, c1(0) = 1, c′1(L) = 0. (2.21)

Since (τp′′ + b1) is positive, then c1(x) cannot have negative minima. Indeed, let x0 be a point

of a local minimum of the function c1(x). Then, in this point c′′1(x0) > 0 and c′1(x0) = 0.

Substituting it into Equation (2.21) we obtain that c1(x) � 0. Let us show that the case where

exists x0 ∈ (0, L) such that c1(x) � 0 for x ∈ (0, x0) and c1(x) < 0 for x ∈ (x0, L) is not

possible as well. In this case we would have c′′1(L) > 0 that would provide c1(L) > 0. Thus,

c1(x) � 0, ∀x ∈ [0, L]. Repeating this reasoning for every i = 2, . . . , n we obtain that ci � 0.
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Thus, Equation (2.20) is transformed into the following one :

p′′ = ν(k1c1 + . . . + kncn).

The second step is to obtain a priori estimates of these solutions. Let us multiply Equa-

tion (2.19) by ci and integrate it over (0, L). Then we obtain

L∫
0

dc′′i cidx −
L∫

0

τ(cip
′)′cidx +

L∫
0

(τ2di−1ci−1 − bici)cidx = 0

d

L∫
0

(c′i)
2dx + bi

L∫
0

c2
i dx + dc′i(0)ci(0) +

τν

2

L∫
0

c2
i (k1c1 + . . . + kncn)dx =

= −τ

2
c2
i (L)p′(L) + 2τdi−1

L∫
0

ci−1cidx

Denote by C positive constants that do not depend on the solution. Since p′(L) =
∫ L

0
(c1 + . . .+

cn)dx, then p′(L) � 0 and

C‖ci‖2
H1 � −dc′i(0)ci(0) + 2τdi−1

L∫
0

ci−1cidx � −dc′i(0)ci(0) + 2di−1

L∫
0

ci−1cidx.

For i = 1 we have

C‖c1‖2
H1 � −dc′1(0), (2.22)

while for i � 2,

C‖ci‖2
H1 � 2di−1

L∫
0

ci−1cidx � 2di−1‖ci−1‖L2‖ci‖L2 � 2di−1‖ci−1‖L2‖ci‖H1 ,

and, therefore,

C‖ci‖H1 � 2di−1‖ci−1‖L2 .
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By induction, we obtain that for i � 2 the following estimate holds :

‖ci‖H1 � C‖c1‖H1 . (2.23)

In order to estimate c′1(0), let us integrate the equation for c1 over (0, L). We obtain the equality

−dc′1(0) = τp′(L)c1(L) + b1

L∫
0

c1dx.

We have

p′(L) = ν

∫ L

0

(k1c1 + . . . + kncn)dx.

The Hölder inequality provides the following estimate :

p′(L) � C(‖c1‖L2 + . . . + ‖cn‖L2).

Using (2.23), we obtain

p′(L) � C‖c1‖L2 .

The function c1 satisfies the problem

dc′′1 − τc′1p
′
1 − (τp′′ + b1)c1 = 0, c1(0) = 1, c′1(L) = 0.

Since p′′ � 0, then from the maximum principle we obtain that c1 � 1, and then c1(L) � 1.

This allows obtaining the following estimate :

−dc′1(0) � C‖c1‖L2 .

Finally, due to (2.22) we conclude that ‖ci‖2
H1

� C for i = 1, . . . , n. This bound provides

an estimate of p in space H3. Due to Sobolev embedding theorem, we obtain an estimate in

C2[0, L] of the function p and due to equation (2.19) we obtain a bound in C1[0, L] for ci.
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Consider now the Banach space Y defined by

Y =
(
C1([0, L])

)n × C2([0, L]),

endowed with the norm

‖(c1, . . . , cn, p)‖Y = ‖c1‖C1([0,L]) + . . . + ‖cn‖C1([0,L]) + ‖p‖C2([0,L]).

Consider the mapping Tτ : Y → Y defined by Tτ ((c̃1, . . . , c̃n), q) = ((c1, . . . , cn), p), where

(c1, . . . , cn, p) is the solution of the linear system

dc′′i − bici = τ((c̃iq
′)′ − 2di−1c̃i−1), c0 = 0, i = 1, ..., n, (2.24)

p′′ = ν(k1c1 + . . . + kncn), (2.25)

together with boundary conditions (2.17). From the elliptic regularity it follows that the mapping

Tτ is a compact operator.

Next, from the above a priori estimates it follows that there exists such constant M > 0 that

for any τ ∈ [0, 1], (C, p) is a fixed point of the operator Tτ implies that ‖C, p‖Y < M. Then, if

we consider B = BY (0,M), then the topological degree deg(I − Tτ , B, 0) is well defined and

from the homotopy invariance we have

deg(I − T0, B, 0) = deg(I − T1, B, 0). (2.26)

The operator T0 corresponds to the constant operator

T (C̃, q) = (c0
1, . . . , c

0
n, p0),

where c0
i ≡ 0, i � 2, the function c0

1 is given by resolution of the equation

dc′′1 − b1c1 = 0, c1(0) = 1, c′1(L) = 0
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and p0(x) =
∫ L

x

∫ s

0
(c0

1(t))dtds. Thus we obtain that deg(I − T0, B, 0) = 1 and, due to (2.26),

system (2.15)-(2.17) has a solution. This completes the proof of the theorem.

�

8.3 Numerical simulations

In this section we present numerical simulations of the system considered in the previous

section but in the 2D space. We suppose for simplicity that all parameters ki defined in the proof

of Theorem 1 are equal to each other. We denote them by k. The system of equations

∂ci

∂t
+ ∇.(civ) = dΔci + k(ci−1 − ci), i = 1, . . . , n, c0 = 0,

ΔP = k(c1 + . . . + cn), ∇P = νv

is considered in the domain

Ω = (0, Lx) × (0, Ly)

with the boundary conditions

∂P

∂x
(0, y) = 0,

∂P

∂y
(x, 0) = 0,

∂P

∂y
(x, Ly) = 0, P (Lx, y) = 0,

c1(0, y) = 1,
∂c1

∂y
(x, 0) = 0,

∂c1

∂y
(x, Ly) = 0,

∂c1

∂x
(Lx, y) = 0,

∂ci

∂x
(0, y) = 0,

∂ci

∂y
(x, 0) = 0,

∂ci

∂y
(x, Ly) = 0,

∂ci

∂x
(Lx, y) = 0,

i = 2, . . . , n.

The boundary conditions for the pressure mean that the vertical component vy of the velocity

vanishes at the top and at the bottom of the rectangular domain. The horizontal component of the

velocity vx equals zero at the left boundary because there is no convective flux. This means that

stem cells are attached to the left boundary and provide a constant concentration of immature

cells c1. Cell proliferation inside the domain results in cell flow outside the domain through the

right boundary where the pressure is zero.

Computer simulations are carried out using COMSOL Multiphysics 3.4 software. This soft-

ware uses finite element methods. We do not list technical parameters of the calculations for the
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sake of brevity. The simulations are carried out for three cell populations c1, c2 and c3, Lx = 10,

Ly = 20, d = 0.1, k = 15.

Hereafter we present simulations of the stationary solution the existence of which was pro-

ved in the previous section, simulations of wave propagation and the calculation of the wave

speed.

8.3.1 Stationary solution

We first present simulations of the stationary problem. Note that the stationary solution does

not depend on the variable y. Hence, the solution of the 2D problem considered as a function of

x coincides with the 1D stationary solution. Its existence is proved in Section 8.2. Left image

of the Figure 25 represents cell population distributions, the right image shows the pressure

distribution.

Recall that the domain Ω represents a bone marrow in which the wall x = 0 is the wall with

stem cells fixed on it, the boundary x = Lx is the boundary between the bone marrow and the

blood stream. Mature cells pass it and leave the bone marrow into the blood stream. Cells of

population ci are considered to be more mature than those of population ci−1. As we can see

from the left image of Figure 25, the majority of cells located on the left boundary x = 0 are

immature cells of population c1, whereas among cells leaving the bone marrow mature cells are

present in bigger quantity.

8.3.2 2D waves

Suppose that malignant cells appear at some moment of time. These cells lose (or decrease)

their ability to differentiate and excessively self-renew. Their distribution in the bone marrow

can be described by the following equation :

∂s

∂t
+ ∇.(sv) = dsΔs + kss,

with the same boundary conditions as for other cells :

∂s

∂x
(0, y) = 0,

∂s

∂y
(x, 0) = 0,

∂s

∂y
(x, Ly) = 0,

∂s

∂x
(Lx, y) = 0.
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FIGURE 25 – Stationary solution as a function of the variable x (it does not depend on y).

Simulations are carried out for three cell populations. Left : cell population distributions. Right :

pressure distribution.

In this section we present simulations of propagations of the region filled by malignant cells. As

initial condition for malignant cell population we consider a function that is zero everywhere

in the domain except for a small area inside the domain, the nidus from which malignant cells

start developing. An example of numerical simulations is given in Figure 26. The values of

the parameters are the same as above. We can see that the concentration of malignant cells

gradually grows and propagates along the bone marrow as a travelling wave. At the first stage

of the development the tumour propagates along the x-direction (along the flow), at the second

stage along the y-direction (perpendicular to the flow).

Wave propagation occurs if the stationary solution discussed above becomes unstable. The

stability of the stationary solution for a similar problem is studied in [44].

The speed of the propagation depends on the diffusion coefficients d and ds of normal and

malignant cells, and on the parameters k and ks. We study the speed of propagation in the

section.
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FIGURE 26 – Propagation of malignant cells in the bone marrow. Their concentration at times

t = 0, 0.02, 0.2, 0.6, 1.2 and 1.8. Malignant cells propagate and finally occupy the whole bone

marrow.
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8.3.3 Wave speed

From mathematical point of view, wave propagation should be studied in the infinite strip

Ω = (0, L) × R. We consider the system of equations

∂ci

∂t
+ ∇.(civ) = dΔci + k(ci−1 − ci), i = 1, .., n, c0 = 0. (2.27)

∂s

∂t
+ ∇.(sv) = dsΔs + kss, (2.28)

∇.v = k(c1 + ... + cn) + kss, ∇p = νv, (2.29)

in this domain together with boundary conditions

c1(0, y) = 1, ∂xs(0, y) = ∂xci(0, y) = 0 for y ∈ R and i = 2, .., n, (2.30)

∂xs(L, y) = ∂xci(L, y) = 0 for y ∈ R and i = 1, .., n, (2.31)

∂p

∂x
(0, y) = 0, p(L, y) = 0 for y ∈ R. (2.32)

In order to find an analytical approximation of the wave front speed we suppose first that

there exists a one-dimensional disease free stationary solution

(ci,0, s0, p0, v0) = (ci,0(x), 0, p0(x), v0(x)).

It corresponds to solutions of the stationary problem in the interval (0, L) :

(ci,0v0)
′ = dc′′i,0 + k(ci−1,0 − ci,0), i = 1, .., n, c0 = 0

v′
0 = k(c1,0 + ... + cn,0), p′0 = νv0

c1,0(0) = 1, c′i,0 = 0 for i = 2, .., n

c′i,0(L) = 0, p′0(0) = 0, p0(L) = 0.

This stationary solution is supposed to be stable with respect to the system without malignant



8. Spatial distribution of cell populations in the process of erythropoiesis 99

cells. This means that the eigenvalue problem : find λ ∈ C, c1, .., cn and v satisfying

λci + (ci,0v)′ + (civ0)
′ = dc′′i + k(ci−1 − ci), i = 1, .., n, c0 = 0

v′ = k(c1 + ... + cn), p′ = νv

c1(0) = 0, c′i(0) = 0 for i = 2, .., n

c′i(L) = 0, p′(0) = 0, p(L) = 0,

(2.33)

has solutions only with a negative real part, 
λ < 0.

We now consider travelling wave solutions of Problem (2.27)-(2.32), that are solutions in

the form

(c1, .., cn, s, p,v) (t, x, y) = (c̃1, .., c̃n, s̃, p̃, ṽ) (x, y − ct),

where c > 0 is the wave speed. In order to simplify the notations, we omit the tilde. Setting

z = y − ct, we obtain that the travelling wave solution satisfies the following problem in the

moving frame :

dΔci + c
∂ci

∂z
−∇.(civ) + k(ci−1 − ci) = 0, i = 1, .., n, c0 = 0.

dsΔs + c
∂s

∂z
−∇.(sv) + kss = 0, (2.34)

∇.v = k(c1 + ..cn) + kss, ∇p = νv,

together with the boundary conditions

c1(0, z) = 1, ∂xs(0, z) = ∂xci(0, z) = 0 for z ∈ R and i = 2, .., n,

∂xs(L, z) = ∂xci(L, z) = 0 for z ∈ R and i = 1, .., n,

∂p

∂x
(0, z) = 0, p(L, z) = 0 for z ∈ R.

We are looking for a travelling wave that connects the disease free stationary state when unstable

(with respect to the complete model) to what we expect to be a stationary solution, which
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corresponds to the disease, that is

lim
z→+∞

(c1, .., cn, s, p,v)(x, z) = (c1,0(x), .., cn,0(x), 0, p0(x), v0(x)), (2.35)

∂yp(x,±∞) = 0 for x ∈ (0, L),

and we assume that

∂y(c1, .., cn)(x,±∞) = 0 for x ∈ (0, L).

To find the wave speed, we assume that the solution has an exponential behaviour as z →
+∞. More precisely we suppose that

s(z, x) ≈ e−μzs(x) z → +∞.

Since the function s(z, x) is assumed to be positive, one obtains the conditions

μ ∈ (0,∞), s � 0.

We substitute the solution in this form into (2.34) and using condition (2.35), we obtain that

(dsμ
2 − cμ)s + ds∂

2
ys − (sv0(x))′ + kss = 0,

s′(0) = 0, s′(L) = 0.

Consider the operator

Ls = ds∂
2
ys − (sv0(x))′ + kss, s′(0) = 0, s′(L) = 0. (2.36)

Then, s is its eigenvector and cμ − dsμ
2 is an associated eigenvalue. Since s � 0, then we

conclude that it is an eigenvector associated with the principal eigenvalue λp > 0 of the operator

L, i.e., Ls = λps, and μ satisfies

cμ − dsμ
2 = λp, μ > 0.
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This equation has a real and positive solution if and only if c2 − 4dsλp � 0, that is for any c

such that

c � c∗ with c∗ = 2
√

dsλp. (2.37)

Finally, we expect that c∗ corresponds to the spreading rate of the malignant cells.

Numerical computations of c∗ for n = 3 and Lx = 1 and direct numerical computations

of the speed of front propagation of malignant cells cnum are presented in Table 5. Wave speed

obtained by the analytical approximation is in a good agreement with the wave speed found by

direct numerical calculations.

TABLE 5 – Comparison between analytical approximation of the wave speed and numerical

simulations. The values of the parameters are d = 0.1, k = 15 and ds = 0.8. Analytical

approximation is obtained through linearisation of the equation.

ks 8 10 12 14 16 18 20
c∗ 2.06 3.26 4.13 4.84 5.46 6.02 6.53

cnum 1.98 3.20 4.06 4.80 5.49 6.15 6.83

Since λp is the principal eigenvalue of the operator L defined by (2.36), one can conclude

that λp depends linearly on ks. Then from (2.37) we obtain that (c∗)2 linearly depends on ks.

We verify this dependence for analytical and numerical computations. For the values given

in Table 5, we test this linear dependence between ks and c2
num. The results are presented in

Figure 27.

8.4 Discussion

We studied a spatial model of erythropoiesis. The model consisted of a system of reaction-

diffusion-convection equations in the porous medium described by Darcy’s law. We proved the

existence of a 1D solution. If we introduce malignant cells, which have a higher proliferation

rate than normal cells, then one-dimensional cell distribution can lose its stability. This corres-

ponds to the appearance of tumour. We carried out numerical simulations of tumour growth,

that is of malignant cell propagation. This propagation has a form of a two-dimensional travel-

ling wave. The speed of the wave was calculated in two ways. Firstly, we linearised the system
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FIGURE 27 – Dependence of c2 on ks. Circles : analytical approximation, asterisks : direct

numerical simulations.

and obtained an eigenvalue problem. It allowed us to find the minimal wave speed from the

condition of positivity of the corresponding eigenfunction. Secondly, we found the wave speed

in direct numerical simulations. These two approaches are in a good agreement, see Table 5.

9 Nonlocal reaction-diffusion equation

In this section we study a nonlocal reaction-diffusion equation arising in population dyna-

mics. We prove the existence of travelling wave solutions using the Leray-Schauder method.

In order to do this we define topological degree and obtain a priori estimates of solutions in

weighted Hölder spaces.

9.1 Introduction

We study the integro-differential equation

∂u

∂t
=

∂2u

∂x2
+ J(u) u(1 − u) − αu, (2.38)
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where

J(u) =

∫ ∞

−∞
φ(x − y)u(y, t)dy,

φ(x) is a non-negative function with a bounded support and
∫ ∞
−∞ φ(x)dx = 1. If we replace φ

by a δ-function, then instead of (2.38) we obtain the reaction-diffusion equation

∂u

∂t
=

∂2u

∂x2
+ u2(1 − u) − αu. (2.39)

In population dynamics it describes evolution of a population density. The reproduction term

u2(1 − u) is proportional to the square of the density (sexual reproduction) and to available

resources (1 − u). The last term in the right-hand side describes mortality of the population. In

some cases the interaction of the individuals in the population can be nonlocal. This can be for

example plants that can distribute their pollen in some area around their location or biological

cells which can send signalling molecules stimulating other cells to proliferate. In this case,

instead of the reaction-diffusion equation we should consider the integro-differential equation

(2.38).

The properties of the reaction-diffusion equation (2.39) are well-known. If 0 < α < 1/4,

then the nonlinearity

F (u) = u2(1 − u) − αu

has three zeros :

w+ = 0, w0 =
1

2
−

√
1

4
− α, w− =

1

2
+

√
1

4
− α .

In this case equation (2.39) has a travelling wave solution, that is solution of the form u(x, t) =

w(x − ct), with the limits w(±∞) = w± at infinity. It is unique up to translation in space, and

globally stable.

We study the existence of waves for equation (2.38). In the other words, we look for solu-

tions of the problem

w′′ + cw′ + J(w)w(1 − w) − αw = 0. (2.40)
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lim
x→±∞

w(x) = w±. (2.41)

This particular equation represents, for example, cell communitation during the process of hae-

matopoiesis. The main result is stated in the following theorem.

Theorem 2. There exists a monotone travelling wave, that is a constant c and a twice conti-

nuously differentiable monotone function w(x) satisfying (2.40), (2.41).

In the case of the scalar reaction-diffusion equation, the proof of the wave existence is

simple. It is sufficient to reduce the equation

w′′ + cw′ + F (w) = 0

to the system of first order equations and to prove the existence of a heteroclinic trajectory. For

obvious reasons, this method is not applicable for the integro-differential equation. The proof

becomes much more involved and requires a rather sophisticated mathematical construction. It

is based on the Leray-Schauder method which implies the existence of a topological degree for

the corresponding operators and a priori estimates solutions.

Topological degree for elliptic operators in unbounded domains is constructed using the

properties of Fredholm and proper operators with the zero index [117, 119, 120]. The same

construction can be used for the nonlocal reaction-diffusion operators. We discuss this question

in Section 9.2. We need to use here weighted spaces. Otherwise the degree may not be defined.

The method to obtain a priori estimates of solutions is similar to the method developed for

monotone reaction-diffusion systems [119]. It is based on the maximum principle which appears

to be applicable for the equations under consideration. This is an important point which should

be emphasised. If the integral enters the nonlinearity in a different way, for example u(1 − J),

as it is the case for the nonlocal Fisher equation, then the maximum principle is not applicable.

In this case, the properties of the equation become quite different. It possesses an interesting

nonlinear dynamics [23, 52] but the wave existence can be proved only in the case of functions

φ with a small support where the perturbation methods are applicable [9, 10]. Here we do not

assume that the support is small. A priori estimates of solutions are proved in Section 9.3.
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9.2 Operators, spaces, topological degree

9.2.1 Operators and spaces

We recall that the Leray-Schauder method, which is used here to prove the existence of

waves, implies that the topological degree for the corresponding operators is defined. If it is the

case, a homotopy of a given operator to some model operator with known properties should be

constructed, and a priori estimates of solutions in the process of this deformation of the operator

should be obtained.

When we consider unbounded domains, we should use some specially chosen weighted

spaces. Otherwise, the degree with the usual properties may not exist. Here we use weighted

Hölder spaces Ck+α
μ (R) with the norm

‖u‖Ck+α
μ (R) = ‖uμ‖Ck+α(R),

where k is a non-negative integer, 0 < α < 1, Ck+α(R) is the usual Hölder space. Parame-

ter α here is different from constant α introduced in (2.38). The weight function μ(x) has a

polynomial growth at infinity. We take μ(x) = 1 + x2.

Obviously, any function u ∈ Ck+α
μ (R) tends to zero at infinity. On the other hand, we look

for solutions of equation (2.40) with the limits (2.41). Therefore, we introduce an infinitely

differentiable function ψ(x) such that ψ(x) = w+ for x � 1 and ψ(x) = w− for x � −1 and

put w = u + ψ. Hence we can write equation (2.40) in the form

(u + ψ)′′ + c(u + ψ)′ + J(u + ψ)(u + ψ)(1 − u − ψ) − α(u + ψ) = 0. (2.42)

Consider the operator A(u) corresponding to the left-hand side of the previous equation,

A(u) = (u + ψ)′′ + c(u + ψ)′ + J(u + ψ)(u + ψ)(1 − u − ψ) − α(u + ψ) (2.43)

and acting in weighted Hölder spaces, A : C2+α
μ (R) → Cα

μ (R).
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9.2.2 Homotopy

In [10] the authors have proved the existence of solutions in the form of monotone tra-

velling waves for a similar integro-differential equation, in which function φ had a small sup-

port [−ε0, ε0]. In this section we construct a homotopy that relies equation (2.40) to the equa-

tion with function φ having a small support. Let us introduce a family of operators Aτ :

C2+α
μ (R) × [0, 1] → Cα

μ (R) :

Aτ (u) = (u + ψ)′′ + c(u + ψ)′ + Jτ (u + ψ)(u + ψ)(1 − u − ψ) − α(u + ψ) (2.44)

with

Jτ (u) =

∫ ∞

−∞
φτ (x − y)u(y)dy, (2.45)

where

φτ (x) =
(ε0 − 1)τ + 1

ε0

φ

(
((ε0 − 1)τ + 1)x

ε0

)
. (2.46)

We study the following equation,

w′′ + cw′ + Jτ (w)w(1 − w) − αw = 0 (2.47)

If τ = 0 then we obtain operator A0 with function φ(x), which has a small support, and,

thus, the existence of a solution of equation A0(u) = 0 is known [10]. When τ = 1 we obtain

equation (2.40).

Linearised near function u1(x) operator Aτ , introduced in (2.44), is

Lτu = lim
t→0

Aτ (u1 + tu) − Aτu1

t
= u′′ + cu′ + Jτ (w1)(1 − 2w1)u + w1(1 − w1)Jτ (u) − αu,

(2.48)

where w1 = u1 + ψ. Let us introduce limiting operators of operator L,

Lτ±u = u′′ + cu′ + w±(1 − 2w±)u + w±(1 − w±)Jτ (u) − αu. (2.49)

Let us recall the definition of a proper operator and of Condition NS.

Definition 3 (Properness). Operator A(u) : E0 → E is proper if intersection of an inverse
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image of a compact set with any bounded closed ball B ∈ E0 is compact.

Definition 4 (Condition NS). We say that the operator L satisfies Condition NS if the limiting

equations L±u = 0 do not have nonzero solutions. in C2+α(R).

Lemma 5 (Schauder estimate). For any solution u of equation Lτu = f ∈ Cα(R), the following

estimate holds :

‖u‖C2+α(R) � K(‖Lτu‖Cα(R) + ‖u‖C(R)) (2.50)

where K is a constant.

Proof. The proof of this lemma for similar integro-differential operator can be found in [10].

�

9.2.3 Fredholm operator with zero index

We recall that an operator satisfies the Fredholm property if it is normally solvable, its

kernel has a finite dimension and the codimension of its image is also finite. Elliptic operators

in unbounded domains are normally solvable with a finite dimensional kernel if the Condition

NS is satisfied [116]. Invertibility of limiting operators provides the Fredholm property.

The operator Lτ acting from C2+α(R) into Cα(R) satisfies the Fredholm property and

has the zero index. The proof of this assertion follows the same lines as for elliptic operators

(cf. [10]). We should verify that the Fredholm property remains valid in the weighted spaces,

Lτ : C2+α
μ (R) → Cα

μ (R), and the index equals zero. From Lemma 2.24 in [119] it follows that

it is sufficient to verify that the operator

Ku = μLτu − Lτ (μu), K : C2+α
μ (R) → Cα(R)

is compact. Consider a sequence {ui} such that ‖ui‖C2+α
μ (R) � M. We should prove that from

the sequence {Kui} we can find a convergent in Cα(R) subsequence. Put vi = uiμ. Then

‖vi‖C2+α(R) � M. From the sequence {vi} we can find a subsequence, denoted again by {vi},

convergent locally in C2 to some function v0. Denote zi = vi − v0, then

‖Kui − Ku0‖Cα(R) = ‖K zi

μ
‖Cα(R),
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where ‖zi‖C2+α(R) � M1, zi → 0 in C2 locally. Denote yi = K(zi/μ). We should prove that

‖yi‖Cα → 0. The definition of the operator K gives

yi = μLτ (zi/μ) − Lτzi =(
−zi

μ′′

μ
− 2z′i

μ′

μ
+ 2zi

(
μ′

μ

)2

− czi
μ′

μ

)
+ w1(1 − w1)(μJ(zi/μ) − J(zi)). (2.51)

We have

μJ(zi/μ) − J(zi) =

∫ ∞

−∞
φ(ξ)zi(x − ξ)

(
μ(x)

μ(x − ξ)
− 1

)
dξ.

Both terms in the right-hand side of (2.51) uniformly tends to zero at infinity. From this and

from the local convergence zi → 0 in C2, it follows that yi converges to zero in Cα(R).

9.2.4 Properness

In this section we show that operator Aτ , defined in (2.44), is proper. First, let us prove the

following lemma.

Lemma 6. For any u, u0 ∈ C2+α
μ and τ, τ0 ∈ [0, 1] the following representation holds

Aτ (u) − Aτ0(u0) = A′
τ0

(u0)(u − u0) + ϕ(u, u0, τ, τ0), (2.52)

where A′
τ0

(u0)(u − u0) = Lτ0(u0)(u − u0) and

ϕ(u, u0, τ, τ0) = Jτ (w)w(1 − w) − Jτ0(w)w0(1 − w0) − Jτ0(w0)(1 − 2w0)(w − w0),

where w = u + ψ and w0 = u0 + ψ. Moreover

ϕ(u, u0, τ0, τ0) = (u − u0)(Jτ0(w)(1 − w − w0) − Jτ0(w0)(1 − 2w0)). (2.53)

Proof. Let us denote the difference Aτ (u)−Aτ0(u0)−Lτ0(u0)(u− u0) by ϕ(u, u0, τ, τ0), then
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using (2.44) and (2.48) we obtain

ϕ(u, u0, τ, τ0) = (u − u0)
′′ + c(u − u0)

′ + Jτ (w)w(1 − w) − Jτ0(w0)w0(1 − w0) − α(u − u0)−
(u − u0)

′′ − c(u − u0)
′ − Jτ0(w0)(1 − 2w0)(w − w0) − w0(1 − w0)Jτ0(w − w0) + α(u − u0) =

Jτ (w)w(1 − w) − Jτ0(w0)w0(1 − w0) − Jτ0(w0)(1 − 2w0)(w − w0) − w0(1 − w0)Jτ0(w − w0) =

Jτ (w)w(1 − w) − Jτ0(w)w0(1 − w0) − Jτ0(w0)(1 − 2w0)(w − w0).

Simple transformation of ϕ(u, u0, τ0, τ0) gives (2.53). The lemma is proved.

�

Theorem 7 (properness of operator Aτ ). If the operator Lτ , defined in (2.48), satisfies Condi-

tion NS, then the operator Aτ (u), defined in (2.44), is proper with respect to both u and τ.

Proof. Consider a convergent in Cα
μ (R) sequence {fn} → f0 and solutions of the equations

Aτn(un) = fn (2.54)

bounded in C2+α
μ (R)×[0, 1], ‖un‖C2+α

μ (R) � M. We should prove the existence of a subsequence

{umn} that is convergent in C2+α
μ (R) to a function u0 ∈ C2+α

μ (R).

Since {un} is bounded in C2+α
μ (R), it admits a subsequence {unm}, which is convergent

to a function u0, uniformly on any bounded interval I ⊂ R. By diagonalisation process we

prolong u0 to all R. The limit function u0 ∈ C2+α
μ (R). Passing to the limit m → ∞ in equation

Aτnm
(unm) = fnm we obtain

Aτ0(u0) = f0. (2.55)

We know that unm → u0 uniformly on any bounded interval I. Let us show that the convergence

is uniform with respect to x on the whole axis, unm → u0 in C(R).

Let us write the subscript n instead of nm and denote

vn = unμ, v0 = u0μ, zn = vn − v0, gn = fnμ, g0 = f0μ. (2.56)



110

Subtracting (2.55) from (2.54) and multiplying it by μ we obtain

(Aτn(un) − Aτ0(un))μ + (Aτ0(un) − Aτ0(u0))μ = gn − g0. (2.57)

Denote

rn = (Aτn(un) − Aτ0(un))μ, (2.58)

then we have

‖rn‖Cα(R) → 0, n → ∞.

Injecting (2.56), (2.58), operator definition (2.44) into (2.57) and taking into account Lemma 6

we obtain

z′′n+z′n + Jτ0(w0)(1 − 2w0)zn + w0(1 − w0)Jτ0(un − u0)μ − αzn+(
−zn

μ′′

μ
− 2z′n

μ′

μ
+ 2zn

(
μ′

μ

)2

− czn
μ′

μ

)
+ ϕ(un, u0, τ0, τ0)μ = gn − g0 − rn.

(2.59)

We should prove that there exists a subsequence {znk
} convergent uniformly on the whole

axis, znk
→ 0 in C(R). Suppose that it is not true. Then there exists an unbounded sequence

{xm}, such that |zm(xm)| � ε > 0. Let us introduce shifted functions,

z̃m(x) = zm(x + xm).

Since ‖z̃m‖C2+α(R) � M, from sequence {z̃m} we can choose a subsequence {z̃mk
(x)} conver-

ging to a limiting function z̃0 ∈ C2+α(R) in C2 uniformly on any bounded interval I ⊂ R (the

same reasoning as above). We have |z̃0(0)| � ε > 0. Functions z̃mk
(x) with shifted arguments

satisfy equation (2.59). From definition of weight function μ we obtain

μ′(x + xm)

μ(x + xm)
→ 0,

μ′′(x + xm)

μ(x + xm)
→ 0 as xm → ∞.
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From (2.53) :

ϕ(um(x + xm), u0(x + xm), τ0, τ0)μ =

z̃m(x)(Jτ0(wm(x + xm))(1 − wm(x + xm) − w0(x + xm)) − Jτ0(w0(x + xm))(1 − 2w0(x + xm))).

Since w0(x + xm), wm(x + xm) → w±
0 as m → ∞, we obtain that

‖ϕ(um(x + xm), u0(x + xm), τ0, τ0)μ‖Cα → 0 as m → ∞.

By definition of gm and g0, ‖gm − g0‖Cα(R) → 0 as m → ∞. In the limit m → ∞, equa-

tion (2.59) becomes

L̂z̃0 = 0,

which means that limiting operator L̂ admits a nonzero solution. This contradicts Condition

NS. Thus, convergence zm → 0 is uniform in C(R). Using this convergence and Schauder

estimate (Lemma 5) we obtain convergence zm → 0 in C2+α(R), which means the convergence

um → u0 in C2+α
μ (R). This completes the proof.

�

9.2.5 Functionalisation of parameter c

We recall that parameter c in (2.40) is an unknown constant that should be found along

with function w(x). Note that solutions of (2.40) are invariant with respect to translation, i.e. if

w(x) = u(x) + ψ(x) is a solution of (2.40), then w(x + h) = u(x + h) + ψ(x + h) is also a

solution of this equation for all h ∈ R. Then the weighted norm ‖u(x + h)μ(x)‖C2+α tends to

infinity as h → ±∞. Hence the set of solutions of the equation A(u) = 0 is not bounded in the

space C2+α
μ (R), and the topological degree cannot be applied.

To get rid of the invariance of solutions with respect to translation, we apply functionali-

sation of parameter c first used for travelling waves in [117, 118]. We introduce a functional

c = c(u) that satisfies the following properties :

1. c(u) satisfies Lipschitz condition on every bounded set in C2+α
μ (R) and has a continuous

Fréchet derivative,
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2. function c̃(h) = c(u(x + h)) is a decreasing function of h, such that c̃(−∞) = +∞ and

c̃(+∞) = −∞,

3. the solution w = u + ψ of equation (2.40) satisfies

〈c′(u), w′〉 �= 0.

We introduce the following function

c(u) = ln

∫
R

(u(x) + ψ(x) − w+)2σ(x)dx,

where σ(x) is an increasing function, with σ(−∞) = 0, σ(+∞) = 1 and

∫ 0

−∞
σ(x)dx < ∞.

The function c(u) introduced in this way satisfies the conditions enumerated above, the proof

can be found in [117]. Equation (2.40) is equivalent to the equation

(u + ψ)′′ + c(u)(u + ψ)′ + J(u + ψ)(u + ψ)(1 − u − ψ) − α(u + ψ) = 0. (2.60)

9.2.6 Construction of topological degree

Consider an operator A acting from a Banach space E into another Banach space F . By

definition, topological degree is an integer number γ(A,D) which depends on the operator

and on the domain D in the function space E. Topological degree for elliptic operators in

unbounded domains is constructed in [119, 120] on the basis of the theory of Fredholm and

proper operators. The results on the Fredholm property and properness of the integro-differential

operators presented above allow us to use the same construction.

One of the main applications of the topological degree is related to the Leray-Schauder

method widely used to prove existence of solutions of various problems. We briefly recall the

main ideas of this method. If the operator Aτ continuously depends on the parameter τ and

Aτ (u) �= 0, u ∈ ∂D, τ ∈ [0, 1], (2.61)
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then the value γ(Aτ , D) of the degree does not depend on τ . This property is called homotopy

invariance. If we can reduce the operator A = A1 by a continuous deformation to a model

operator A0 for which γ(A0, D) �= 0 and (2.61) is satisfied, then γ(A,D) �= 0. Another property

of the degree, nonzero rotation, ensures that the equation A(u) = 0 has a solutions in the domain

D.

Let us take as a domain D a ball B of the radius R. Then condition (2.61) will be satisfied

if all solutions of the equation Aτ (u) = 0 satisfy the inequality ‖u‖ � R. These are a priori

estimates of solutions. They play a crucial role in the proof of the existence of solutions. We

discuss them in the next section.

9.3 A priori estimates

A priori estimates of travelling wave solutions have some specific features. We note first

of all that they imply not only the estimate of the function w(x) but also of the wave velocity.

Moreover, the function w(x) should be estimated in the weighted space. We consider in fact the

function u(x) = w(x)−ψ(x) with the zero limits at infinity. It decays exponentially at infinity,

so its weighted norm with a polynomial weight is limited. The difficulty is to estimate it "far"

from infinity.

To explain the origin of this difficulty, let us consider the following geometrical interpreta-

tion. Travelling wave is a heteroclinic trajectory of some first order ordinary differential system

of equations. Suppose that this trajectory approaches some intermediate stationary point during

the deformation of the system. In the limit we can obtain two heteroclinic trajectories which

connect consecutively three stationary points.This situation corresponds to loss of a priori esti-

mates in the weighted space. Thus, we need to prove that the trajectory, which corresponds to

the travelling wave, cannot approach intermediate stationary points or other invariant manifolds.

We will follow here the method developed in [117, 118] for monotone reaction-diffusion

systems. It consists of two steps. First of all, we separate monotone and non-monotone solu-

tions w(x) of problem (2.40), (2.41). This means that two sequences of solutions, wj
M(x) and

wj
N(x), where the former are monotone with respect to x and the latter non-monotone, can-

not converge in C2(R) to the same limiting function. This result allows us to deal only with
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monotone solutions. At the second step, we obtain a priori estimates of monotone solutions.

According to the geometrical interpretation given above, we prove that the trajectory cannot be

attracted by an intermediate stationary point. This will follow from the sign of the wave velo-

city. Here we use the monotonicity of solutions. Otherwise, the intermediate manifold can have

a more complex structure, and the method is not applicable.

9.3.1 Monotonicity

In this section we show that monotone solutions of equation (2.47) are strictly monotone. We

begin with an auxiliary result on the positiveness of solutions of the linear parabolic equation

∂v

∂t
=

∂2v

∂x2
+ a(x, t)J(v) + b(x, t)v (2.62)

in x ∈ R assuming that a(x, t) and b(x, t) are continuous functions, a(x, t) � 0. We cannot

directly use the classical positiveness theorems here because of the integral term in the right-

hand side.

Lemma 8. Suppose that a(x, t) + b(x, t) < 0 for |x| � N , 0 � t � T with some positive N

and T . If v(x, 0) � 0 and v(x, 0) �≡ 0, then v(x, t) > 0 for 0 � t � T .

Proof. Suppose that the assertion of the lemma does not hold. If there exists such (x0, t0) that

v(x0, t0) = 0, v(x, t0) � 0 for all x ∈ R, and v(x, t) > 0 for all x ∈ R and 0 < t < t0, then

we obtain a contradiction with the classical positiveness theorem [48]. Indeed, we can write

equation (2.62) in the form

∂v

∂t
=

∂2v

∂x2
+ b(x, t)v + c(x, t),

where c(x, t) = a(x, t)J(v) � 0 for all x and 0 � t � t0. Since v(x, 0) is non-negative and not

identically zero, then v(x, t0) should be strictly positive.

Otherwise, the solution becomes negative for some t1 > 0. Then there exists such t0, 0 �
t0 � t1 that v(x, t0) � 0 for all x ∈ R and v(xk, tk) < 0 for some sequences xk and tk > t0,

tk → t0 as k → ∞. If the sequence xk is bounded, then we can find a convergent subsequence.
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Denote its limit by x0. Then v(x, t0) � 0 for all x and v(x0, t0) = 0. As above, we obtain the

contradiction with the positiveness theorem.

Hence, the sequence xk does not have bounded limiting points. Without loss of generality

we can assume that xk → +∞. For each fixed t we have v(x, t) → 0 as x → ∞. Therefore, the

function v(x, t) has a negative minimum that we denote by xm
k . As before, xm

k → +∞.

Let us choose k sufficiently large such that xm
k > N . Put z = v + ε where ε = |v(xm

k , tk)|.
Then z satisfies the equation

∂z

∂t
=

∂2z

∂x2
+ a(x, t)J(z) + b(x, t)z − (a(x, t) + b(x, t))ε. (2.63)

Moreover, z(x, tk) � 0 for all x, 0 � t � tk and z(xk, tk) = 0. We obtain a contradiction in

signs in the last equation. Indeed, the time derivative at the point x = xk, t = tk is non-positive,

while all all terms in the right-hand side are non-negative. The last term is strictly positive. The

lemma is proved.

�

Lemma 9. If w0(x) is a non-constant solution of equation (2.47) such that w′
0(x) � 0 for all

x ∈ R, then w′
0(x) < 0.

Proof. Denote v = −w′. Differentiating equation (2.47) and taking into account that J ′(w) =

J(v), we obtain

v′′ + cv′ + a(x)J(v) + b(x)v = 0,

where

a(x) = w(1 − w), b(x) = J(w)(1 − 2w) − α,

a(x) + b(x) < 0 for |x| sufficiently large. We should prove that solution of this equation, which

satisfies v � 0, is strictly positive. This follows from Lemma 8 if we take function v(x) as

initial condition.

�

Lemma 10. If wj(x) is a sequence of solutions of problem (2.47), (2.41) such that wj → w0 in

C1(R), where w′
0(x) � 0, x ∈ R, then for all j sufficiently large 0 < wj(x) < 1 and w′

j(x) < 0,

x ∈ R.
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Proof. Let us first prove the inequality 0 < wj(x) < 1. The right inequality holds for j suffi-

ciently large because of the uniform convergence wj → w0 and 0 < w0(x) < w− < 1. We now

verify that wj(x) is positive for all x. If this is not the case, then each of these functions has a

negative minimum xj . From the uniform convergence wj → w0 it follows that xj → +∞ and

J(wj(xj)) → 0. Hence,

w′′
j (xj) � 0, w′

j(xj) = 0, J(wj(xj))(1 − wj(xj)) − α < 0, wj(xj) < 0.

This gives a contradiction in signs in the equation

w′′
j + cw′

j + (J(wj)(1 − wj) − α)wj = 0.

Next, we prove that the functions wj are decreasing. Suppose that this assertion does not

hold and there exists a sequence xj such that w′
j(xj) = 0. If it is bounded, then there exists a

subsequence converging to some point x0. Hence w′
0(x0) = 0. We obtain a contradiction with

Lemma 9.

Consider now the case where xj → +∞. Denote v = −w′. Differentiating equation (2.47)

and taking into account that J ′(w) = J(v), we obtain

v′′ + cv′ + a(x)J(v) + b(x)v = 0,

where

a(x) = w(1 − w), b(x) = J(w)(1 − 2w) − α.

If vj(x) � 0 for all x, then the existence of xj such that vj(xj) = 0 contradicts Lemma 9.

Therefore, there exist negative values of this function for each j. On the other hand, from the

convergence w′
j → w′

0 it follows that vj is positive in each given interval for j sufficiently large.

Finally, note that vj(x) → 0 as x → ±∞. Hence, there exists a sequence x̂j → ∞ such that it

is a negative minimum of the function vj(x). The uniform convergence w′
j(x) → w′

0(x) implies

that vj(x̂j) → 0 as j → ∞.
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Put ε = vj(x̂j) for some j sufficiently large and z(x) = vj(x) + ε. Then

z′′ + cz′ + a(x)J(z) + b(x)z − (a(x) + b(x))ε = 0. (2.64)

Moreover, z(x) � 0 for −∞ < x < ∞, z(xj) = 0. Hence z′′(xj) � 0, z′(xj) = 0, J(z)(xj) �
0. Since 0 < wj(x) < 1, then a(xj) > 0. It remains to note that a(xj) + b(xj) < 0 for j

sufficiently large. Indeed, if xj → +∞, then a(xj) → 0, b(xj) → −α. If xj → −∞, then

a(xj) → α, b(xj) → w−(1 − 2w−) − α, that is

a(xj) + b(xj) → w−(1 − 2w−) < 0.

We obtain a contradiction in signs in equation (2.64). The lemma is proved.

�

9.3.2 Estimates of derivatives

In this section we obtain estimates in C(−∞, +∞) of the derivatives w′(x) and w′′(x) of the

solution w(x) of equation (2.47). We will use the notation R2 = max
|w|�R

|Jτ (w)w(1 − w) − αw|.

Lemma 11. Let solution w(x) of equation (2.47) satisfy inequality |w(x)| � R for all x. Then

the derivatives w′(x) and w′′(x) can be estimated in C(−∞, +∞) by a constant, depending

only on R and R2.

Proof. Let us first obtain an estimate for the first derivative w′(x). We consider two cases,

|c| � 1 and |c| < 1. Suppose that |c| � 1. The second derivative w′′(x) equals zero when w′(x)

is at its extremum point, which we denote by x0. Then from equation (2.47) we obtain

|w′(x)| � |w′(x0)| � |Jτ (w(x0))w(x0)(1 − w(x0)) − αw(x0))| � R2, ∀x ∈ R.

Suppose now that |c| < 1. Consider an interval [α, β] where |w′(x)| � 1. Integrating equa-

tion (2.47) over the interval [α, x], we obtain

w′(x) − w′(α) + c(w(x) − w(α)) +

x∫
α

(Jτ (w(x))w(x)(1 − w(x)) − αw(x))dx = 0.
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This provides

|w′(x)| � 1 + |c||w(x) − w(α)| + R2(β − α) � 1 + 2R + R2(β − α).

The mean-value theorem gives

|w(β) − w(α)| = |w′(x0)|(β − α) � (β − α),

which provides that β − α � 2R and thus finally we obtain

|w′(x)| � 1 + 2R + 2R R2.

So we have estimated the first derivative of the function w(x). Let us now estimate the second

derivative. From equation (2.47) we obtain

|w′′(x)| � |cw′(x)| + R2.

The first term in the right-hand side has its maximum when w′(x) reaches its extremum, that is

w′′(x) = 0 at this point. Therefore, from equation (2.47)

|cw′(x)| � R2.

Hence

|w′′(x)| � 2R2,

which completes the proof of the lemma.

�

9.3.3 A priori estimates of the speed

In this section we obtain a priori estimates of the speed c of monotone waves. Suppose that

there exists a solution w(x) of equation (2.40) for some c = c0 with the limits (2.41) at infinity.
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Let us estimate the value c0 of the speed. For this purpose we consider the evolution equation

∂u

∂t
=

∂2u

∂x2
+ c0

∂u

∂x
+ J(u)u(1 − u) − αu. (2.65)

So that w(x) is a stationary solution of this equation. Let u(x, t) be a solution of equation (2.65)

and v = u − w0, where w0 < 1/2 satisfies w0(1 − w0) = α. Then v satisfies the equation

∂v

∂t
=

∂2v

∂x2
+ c0

∂v

∂x
+ J(v)(1 − w0)u − J(u)uv. (2.66)

Suppose that 0 < u < 1 and v > 0. Then

J(v)(1 − w0)u − J(u)uv � J(v). (2.67)

Next, consider the equation
∂z

∂t
=

∂2z

∂x2
+ c0

∂z

∂x
+ Jη(z), (2.68)

where

Jη(z) =

∫ ∞

−∞
η(x − y)z(y, t)dy,

η(x) is a piece-wise constant function equal M = supx φ(x) in the support of the function φ(x)

and zero otherwise. Let the support of the function η(x) be [−N, N ]. Let us look for a solution

of the equation

w′′ + cw′ + Jη(w) = 0 (2.69)

for some c possibly different from c0 in the form of the exponential w(x) = e−λx. We obtain

λ2 − cλ +
M

λ

(
eλN − e−λN

)
= 0.

For any M and N , if c is sufficiently large, then this equation has a solution λ. Let us take

these values of c and λ and consider the corresponding solution w(x) of equation (2.69). Then

z(x, t) = w(x − (c − c0)t) is a solution of equation (2.68), which has a constant profile and

moves to the right with the speed (c − c0). The function û(x, t) = z(x, t) + w0 satisfies the
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FIGURE 28 – The estimate of the speed of the travelling wave solution of equation (2.38). The

wave w propagates with the speed c0, the solution û with the speed c. The wave remains below

the solution. If it touches it, this will contradict the comparison of solutions. Hence c > c0.

equation
∂û

∂t
=

∂2û

∂x2
+ c0

∂û

∂x
+ Jη(û − u0) (2.70)

Let us now compare the solution u(x, t) of equation (2.65) and the solution û(x, t) of equa-

tion (2.70) (Figure 1). We recall that u(x, t) → w± as x → ±∞ for each t � 0 and û(x, t) is

a strictly decreasing function converging to w0 as x → +∞ and exponentially growing at −∞.

Hence, we can choose a constant h such that u(x, 0) < û(x − h, 0) for all x ∈ R. We are going

to prove that u(x, t) < û(x − h, t) for all x ∈ R and t � 0. Suppose that this is not true. Then

there exists t0 > 0 such that u(x, t0) � û(x − h, t0) for all x ∈ R and u(x0, t0) = û(x0 − h, t0)

for some x0. Since û(x0 − h, t0) > w0, then v(x0, t0) > 0. This inequality holds in some

neighborhood δ(x0) of x = x0. Moreover, 0 < u(x, t) < 1, J(u) > 0. Hence, by virtue of

(2.67),

J(u)u(1−u)−αu = J(v)(1−w0)u−J(u)uv � J(v) = J(u−w0) � Jη(û−w0), x ∈ δ(x0).

We obtain a contradiction with the positiveness theorem. Thus, if there exists a stationary solu-

tion w(x) of equation (2.65), then we put u(x, 0) = w(x) and obtain w(x) ≡ u(x, t) < û(x, t).
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Therefore, c0 < c, where c is the value of the speed chosen above.

In order to estimate the speed c from below, we repeat a similar construction with a solution

w(x) such that w(x) → w0 as x → ∞ and exponentially decreasing as x → +∞. It propagates

to the left with a certain speed (c − c0). We thus have proved the following theorem.

Theorem 12. For any arbitrary solution (c, w) of problem (2.47), (2.41), where w(x) is mono-

tonically decreasing function, there exists an estimate of the speed c independent of τ.

9.3.4 Sign of the speed

In this section we consider behaviour of solutions of equation (2.47) as x → ±∞. The

subscript τ is omitted. We prove that the waves connecting a stable point with an unstable point

can exist only with the speed of a certain sign. This will be used below in order to obtain a priori

estimates of solutions. We begin with an auxiliary result.

Lemma 13. Suppose that v(x) is a decreasing positive function, φ(x) is even and non-negative.

Then for any N

∫ ∞

N

dx

∫ ∞

−∞
φ(x − y)v(y)dy �

∫ ∞

N

dx

∫ ∞

−∞
φ(x − y)v(x)dy. (2.71)

If v is a positive and increasing function, then

∫ N

−∞
dx

∫ ∞

−∞
φ(x − y)v(y)dy �

∫ N

−∞
dx

∫ ∞

−∞
φ(x − y)v(x)dy. (2.72)

It is assumed that all these integrals exist.

Proof. We have

∫ ∞

N

dx

∫ ∞

N

φ(x − y)v(y)dy =

∫ ∞

N

dx

∫ ∞

N

φ(x − y)v(x)dy.

If v is decreasing, then

∫ ∞

N

dx

∫ N

−∞
φ(x − y)v(y)dy �

∫ ∞

N

dx

∫ N

−∞
φ(x − y)v(x)dy
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since y � N � x in the domain of integration and, consequently, v(y) � v(N) � v(x). Taking

a sum of the last two relations, we obtain (2.71).

Consider now the second case. From the equality

∫ N

−∞
dx

∫ N

−∞
φ(x − y)v(y)dy =

∫ N

−∞
dx

∫ N

−∞
φ(x − y)v(x)dy

and inequality

∫ N

−∞
dx

∫ ∞

N

φ(x − y)v(y)dy �
∫ N

−∞
dx

∫ ∞

N

φ(x − y)v(x)dy,

which takes place since in the domain of integration x � N � y and v(x) � v(N) � v(y), we

obtain (2.72). The lemma is proved.

�

Let w0 < 1/2 be a solution of the equation u(1 − u) = α. Suppose that there exists a

decreasing solution u(x) of equation (2.47) such that u(x) → w0 as x → +∞. Put u(x) =

w0 + v(x). Then

v′′ + cv′ + (J(v)(1 − w0) − (w0 + J(v))v)(w0 + v) = 0. (2.73)

Consider first the linear equation

v′′ + cv′ + (J(v)(1 − w0) − w0v)w0 = 0 (2.74)

and integrate it from N to +∞ :

−v′(N) − cv(N) + I+(N) = 0, (2.75)

where

I+(N) = w0(1 − w0)

∫ ∞

N

dx

∫ ∞

−∞
φ(x − y)v(y)dy − w2

0

∫ ∞

N

dx

∫ ∞

−∞
φ(x − y)v(x)dy.

Since 1 − w0 > w0, then by virtue of Lemma 13, I+(N) > 0 for any N. We recall that v(x) is
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positive and decreasing. Therefore, equality (2.75) can take place only if c > 0.

The corresponding integral remains positive for equation (2.73) since J(v) → 0 as x → +∞
and for any ε > 0, w0 + J(v) � w0 + ε, x � N for N sufficiently large. Therefore, integrating

(2.73), we obtain, as before, that c > 0.

Suppose now that there exists a decreasing solution u(x) of equation (2.47) such that u(x) →
w0 as x → −∞. Put v(x) = w0 − u(x). Then v(x) is a positive increasing function. As above,

we obtain equation (2.74). Integrating it from −∞ to N , we obtain

v′(N) + cv(N) + I−(N) = 0, (2.76)

where

I−(N) = w0(1 − w0)

∫ N

−∞
dx

∫ ∞

−∞
φ(x − y)v(y)dy − w2

0

∫ N

−∞
dx

∫ ∞

−∞
φ(x − y)v(x)dy.

It follows from (2.72) that I−(N) � 0. Then from (2.76), c < 0. Thus, we have proved the

following lemma.

Lemma 14. If there exists a decreasing solution of equation (2.47) with the limits w(−∞) =

w−, w(+∞) = w0, then c > 0. If such solution has the limits w(−∞) = w0, w(+∞) = w+,

then c < 0.

9.3.5 A priori estimates of solutions

In this section we obtain a priori estimates of monotone solutions of equation (2.47) with

conditions (2.41). We begin with the lemma which states exponential behaviour of solutions at

infinity.

Lemma 15. There exists a constant ε > 0 such that the following estimates of monotone solu-

tions wτ (x) of problem (2.47), (2.41) hold

|wτ (x) − w+| � Ke−ax (2.77)
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for such x that |wτ (x) − w+| � ε, and

|wτ (x) − w−| � Ke−bx (2.78)

for such x that |wτ (x)−w−| � ε. Moreover, constants K > 0, a > 0 and b > 0 are independent

of τ and of solution wτ (x).

Proof. Consider first behavior of solutions of equation (2.47) as x → ∞. Since wτ → w+ = 0,

and it is monotonically decreasing, then for sufficiently large x we can estimate the integral

Jτ (w) by a small constant β > 0 such that β < α,

Jτ (w(x)) � β, ∀x > x0,

which provides

Jτ (w(x))w(x)(1 − w(x)) − αw(x) � (β − α)w(x), ∀x > x0.

We can now compare solutions of equation (2.47) with the equation

v′′ + cv′ + (β − α)v = 0, β < α

Exponential behaviour of solutions of this equation is well known. It remains to prove that

monotone solutions w(x) of equation (2.47) can be majorated by solutions v(x) of the previous

equation, i.e.

w(x) � v(x), ∀x > x0. (2.79)

To do so, consider the difference z(x) = v(x) − w(x). It satisfies the following equation :

z′′ + cz′ + (β − α)z + ((β − α)w − Jτ (w)w(1 − w) − αw) = 0.

It can be rewritten as

z′′ + cz′ + (β − α)z + g(x) = 0, (2.80)
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where g(x) � 0 for all x > x0. Consider this equation on the half-axis [x0, +∞) with the

boundary conditions z(x0) = 0 and z(x0) → 0 as x → 0. If we prove that solutions of this

problem satisfy z(x) � 0 for all x � x0, then estimate (2.79) will be proved. Let us assume that

this is not true. Hence z(x) has negative values. Since it converges to zero at infinity, then there

exists a point x2 > x0 where the function z(x) attains its negative minimum. At this point we

have z′′(x2) � 0, z′(x2) = 0, (β − α)z(x2) > 0 and g(x2) > 0. We obtain a contradiction in

signs in equation (2.80). Estimate (2.77) follows from (2.79). Estimate (2.78) can be proved in

a similar way.

�

Lemma 16. There exists a constant χ > 0 such that outside of the ε-neighbourhoods of the

points w+ and w− the following estimate holds |w′
τ (x)| � χ for arbitrary monotone solution

wτ (x) of the problem (2.47), (2.41). Constant χ is independent of the parameter τ and of solu-

tion wτ (x), constant ε is defined in Lemma 15.

Proof. Let us assume that the assertion of the lemma does not hold. Then there exist sequences

{τk}, {wτk
}, {xk} such that w′

τk
(xk) → 0 and points xk do not belong to ε-neighbourhoods of

points w− and w+. We can assume that τk → τ0 and ck → c0, where τ0 ∈ [0, 1], c0 is a constant,

and ck is the speed of the wave wτk
.

Since solutions of equation (2.47) are invariant relative to translation with respect to x, we

can assume that |wτk
(0) − w−| = ε. We can also assume that the sequences {wτk

(0)} and

{w′
τk

(0)} are convergent with limits y and z, respectively. Denote by v(1)(x) the solution of

equation (2.47) for c = c0, τ = τ0 with initial conditions v(1)(0) = y, v(1)′(0) = z. It is clear

that v(1)(x) → w− as x → −∞.

Let us suppose that v(1)(x) → w+ as x → ∞. Then, outside of the ε-neighbourhoods of

the points w−, w+, function v(1)(x) exists on a finite interval with respect to x. Since solutions

wτk
(x) converge to v(1)(x), then, for some x = x0, we have v(1)′(x0) = 0, and the point v(1)(x0)

lies outside the ε-neighbourhoods of the points w−, w+. This contradicts Lemma 9. Thus v(1)(x)

is a monotone (not necessarily strict) function not tending towards w+. Then v(1)(x) tends to

w0 as x → ∞, where w0 is such that w0(1 − w0) − α = 0.

In a similar way we may prove existence of function v(2)(x) having limits w0 as x → −∞
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and w+ as x → ∞. Thus we have simultaneously two solutions of equation (2.47) with the

same wave speed c = c0. This contradicts Lemma 14, which completes the proof of the lemma.

�

Lemma 17. Let Mr (r � 0) be the set of all monotone solutions of problem (2.47),(2.41) for

all τ such that for x0 defined by

wτ (x0) = w0

holds the estimation |x0| � r. Then there exists such a constant Mr that for all w ∈ Mr the

following estimate holds,

‖w − ψ‖C2+α
μ (R) � Mr. (2.81)

Proof. Let w be from Mr and points x1 and x2 be defined by the equalities

|w(x1) − w−| = ε, |w(x2) − w+| = ε,

where the constant ε is defined in Lemma 15, ε < w0. Then

x1 < x0 < x2, |x0| � r. (2.82)

Let χ be the constant in the estimate of w′(x), presented in Lemma 16. Then

0 < x2 − x1 < (w− − w+)/χ := N. (2.83)

We suppose that χ < 1. From (2.82) and (2.83) we obtain that

|x1| � N + r, |x2| � N + r.

From Lemma 15 we conclude that solutions w(x) approach ψ(x) exponentially outside the

interval [x1, x2]. Thus we conclude that

‖w − ψ‖C2+α
μ (R) = ‖w − ψ‖C2+α

μ ([x1,x2]).
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This norm, in turn, is

‖w − ψ‖C2+α
μ ([x1,x2]) = ‖(w − ψ)μ‖C2+α([x1,x2]).

The estimate of the norm in the right-hand side follows from the estimate of the Hölder norm

of the functions w and μ. The former follows from Lemma 11 for the function itself and its first

two derivative. The norm Cα of the second derivative can be obtained from the equation. The

estimate of the Hölder norm of μ follows from the boundedness of the interval.

�

Proposition 18. Consider the homotopy defined in Section 9.2.2 and the equation

w′′ + cw′ + Jτ (w)w(1 − w) − αw = 0, (τ ∈ [0, 1]).

1) The following estimate holds for all monotone solutions w(x) of problem (2.47), (2.41),

‖w − ψ‖C2+α
μ

� R,

where R > 0 is some constant.

2) For some r > 0 we have the estimate

‖wM − wN‖C2+α
μ

� r,

where wM and wN are, respectively, an arbitrary monotone and a nonmonotone solution of

problem (2.47), (2.41).

Proof. Up to now we considered c as a constant, now we consider it as a functional c(u) intro-

duced previously, u(x) = w(x) − ψ(x). Let us denote the solution of equation w(x) = w0 by

x0 and prove that there exists a constant r > 0 such that |x0| < r for all monotone solutions

of our problem and for all τ ∈ [0, 1]. Let us assume the contrary. Then there exists a sequence

{xk} such that |xk| → ∞ with k → ∞ and a sequence of solutions {wk(x)} with c = c(uk),
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uk(x) = wk(x) − ψ(x) are such that wk(xk) = w0. Let

vk(x) = wk(x + xk) − ψ(x),

so that vk + ψ ∈ M0 (see Lemma 17), and, thus, we have the estimate

‖vk‖C2+α
μ

� M0.

From functionalisation of parameter c we have

ρ(u) =

(∫
R

(u(x) + ψ(x) − w+)2σ(x)dx

)1/2

,

which provides

ρ(uk) =

(∫
R

(vk(x) + ψ(x) − w+)2σ(x + xk)dx

)1/2

.

Further we show that c(uk) = ln ρ(uk) is unbounded, which leads to a contradiction with the

a priori estimates of the speed obtained in Section 9.3.3. When xk → ∞, σ(x + xk) → 1 and

|vk| → 0. Function ψ(x) is different from w+ when −x is big, thus ρ(xk) → ∞ as xk → ∞. We

should consider as well the case when xk → −∞. From the definition of the norm in Hölder

spaces we obtain that |vk(x)| � N(μ(x))1/2. Thus there exists square summarible function y(x)

such that |vk(x)| < y(x). This allows the conclusion that ρ(uk) → 0 as xk → −∞.

Thus we have shown that all monotone solutions of problem (2.47),(2.41), in which c =

c(u), belong to Mr for some r > 0 and validity of the first part of the proposition follows from

Lemma 17.

Let us now prove the second part of the proposition. Introduce the notation,

uM = wM − ψ, uN = wN + ψ.

Assume that the assertion of the second part of the proposition does not hold. We can then find
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sequences of solutions of equation (2.47) {u(k)
M } and {u(k)

N } such that

‖u(k)
M − u

(k)
N ‖C2+α

μ
−−−→
k→∞

0. (2.84)

Since all the functions u
(k)
M are in the ball of radius R of the space C2+α

μ (R), we obtain the

strong convergence of {u(k)
M } to some u

(0)
M ,

‖u(k)
M − u

(0)
M ‖C2 −−−→

k→∞
0

We let w(0) = u
(0)
M + ψ. Then function w(0) is a solution of problem (2.47),(2.41) for some τ

and c and

‖w(k)
M − w(0)‖C2 −−−→

k→∞
0 (2.85)

Then from (2.84) and (2.85) we have

‖w(k)
N − w(0)‖C2 −−−→

k→∞
0 (2.86)

Applying Lemma 10 to sequence {w(k)
N } we obtain a contradiction, which completes the proof

of the proposition.

�

Consider a ball ‖u‖C2+α
μ

� R of space C2+α
μ (R), in which all solutions of equation (2.47) are

contained. We set R1 = R+1 and select r, 0 < r < 1, such that for solutions of equation (2.47)

in the ball ‖u‖C2+α
μ

� R1 we have the inequality

‖wM − wN‖C2+α
μ

� r.

In Theorem 7 we have proved that operator Aτ (u) is proper with respect to both τ and u. This

means that the set of solutions of equation Aτ (u) = 0 is compact in the ball ‖u‖C2+α
μ

� R1. For

a fixed solution uM(x) we construct the ball K(uM) of radius r and center at the point uM . By

virtue of compactness of the set of solutions uM , we can select from a covering of this set by

balls K(uM) a finite subcovering. We denote by Gk, k = 1, . . . , N, the set of domains formed

by the union of the balls from this subcovering, Γk are boundaries of these domains.
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It is obvious that any uN /∈ ⋃N
k=1[Gk + Γk] and all solutions uM belong to

⋃N
k=1 Gk for

all τ ∈ [0, 1]. We thus have separated all monotone solutions from all nonmonotone solutions,

which allows us to prove the main result of this work stated in Theorem 2.

Proof. Consider the homotopy (2.45)-(2.47). As it is shown in Section 9.2, the topological de-

gree can be introduced for the operator Aτ . By virtue of a priori estimates obtained in this

section we can use the Leray-Schauder method. As shown in [10], equation (2.47) with condi-

tions (2.41) has a solution in the form of monotone travelling wave when τ = 0. Thus topolo-

gical degree for the operator Aτ (u), introduced in (2.44), equals 1 for τ = 0. Consequently, the

topological degree for operator A1, corresponding to the initial equation (2.40) also equals 1,

whence the existence of a solution follows.

�
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Cell-to-cell communications are very important for the erythropoiesis regulation. One of

the appropriate approaches that allows taking into account this communication is the indivi-

dual based modelling. This considers each cell as an independent element of the whole system

and, thus, allows considering communications of every single cell with its neighbours that can

provide additional insights into the behaviour of cell populations.

In Section 10 a multi-agent software that describes such a communication is presented. It

allows us to numerically study spatial distribution of erythroid progenitors in the bone marrow,

see Section 11. Using this software we demonstrate that cell division can generate random cell

motion (Section 12). Random cell motion, in turn, can be described by a diffusion term when

dealing with continuous models.

10 Description of “Cell Dynamics” software

“Cell Dynamics” is an original software developed by N. Bessonov [21]. Several versions of

the software are available. In this section some features of version BC.v27c, which was released

in spring 2009, are presented. The software can be used to study various types of cell-to-cell in-

teractions. For instance, cell interactions that occur in the bone marrow during haematopoiesis.

10.1 User interface

In Figure 29 the main window of the application is shown. It consists of the plot area and

several buttons. The plot area is a domain of calculation, cells that leave this domain are removed

from the calculation. Several buttons of the interface are used to set up model parameters. Panels

presented in Figure 30 are accessible through the button "Tree". An example can be saved or

opened using the menu "File". The button "Data" allows to define some parameters determining

cell-to-cell interaction. In the current version only mechanical interaction is taken into account.

Note that this version does not take into account the exchange of chemical signals. Button

"Output" allows to determine a representation of output results. Other buttons are interface

related and ease the usage of the software.

Panels presented in Figure 30 are used to define domain settings and cell types. Domain

dimensions are defined in Panel A. Button "Create" creates the domain. To restart calculation,
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FIGURE 29 – Software description. Main window.

A B C

FIGURE 30 – Software description. The genealogical tree.
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all current cells and segments can be removed using button "Clean". "Get segment" button

allows to create obstacles in the domain, which cells cannot overpass. For example, in Figure 29

the top and bottom borders of the calculation area are such obstacles. This option can also be

used to model fibres of the bone marrow, which represent obstacles for cell motion. Several cell

types (generations), describing maturation process are defined in Panel C. Lifetime of cells is

defined in Panel B, edit-box "t0" defines average lifetime, edit-box "+/-" defines an interval of

stochasticity. The Panel C shows genealogical tree of cell generations. Letter "F" means that

cells of this type are fixed and do not move. A user can choose a color and a name for every cell

type. At the end of the cell cycle the cell makes a choice, which is described in the tree. Let us

explain how this tree is organised. Cells of type "p3" (Figure 30.C, blue discs) are produced by

cells of type "p2". In turn, a "p3" cell produces two daughter "p3" cells with probability 0.45

(self-renewal), two daughter cells of type "p4" with probability 0.44 (differentiation) and with

probability 0.11 one cell of type "ap". Cells of type "ap", which do not have children, are used

to model apoptosis, i.e. a "p3" cell produces an apoptotic cell that will die at the end of its cell

cycle with probability 0.11. Cell type "HSC" models haematopoietic stem cells. A cell of this

type gives birth to two daughter cells, one of the same type as mother cell, which replaces it,

and one cell of another type (an immature progenitor).

Cells push each other out of the domain that results in the cell motion. Stochastic cell divi-

sion results in homogeneous diffusion. This aspect is discussed in detail in Section 12.

An example of simulation can be found in Figure 31. Panel A represents configuration of

the plot area and stem cells inside (yellow discs in the middle) before starting the calculation.

Panel B shows the computational domain after some time. Stem cells (yellow discs) are fixed

and do not move. They give birth to their offsprings. The offsprings, in turn, proliferate and

move. After some time the domain is partially filled with cells of different types as shown in

Panel B.

The software can be used as well to model the appearance of malignant cells and their pro-

pagation. This is demonstrated in Figures 32 and 33. The probability of appearance of malignant

cells (yellow) is small, equals 0.001 (Figure 32), which models a rare genetic mutation. Once

such a cell appears, it proliferates and, if it survives producing enough daughter cells, then ma-

lignant cells propagate and finally fill the whole domain. Such application of the software can
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A B

FIGURE 31 – Software description. An example of simulation.

FIGURE 32 – Demonstration of the software. Propagation of malignant cells. Genealogical tree.
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FIGURE 33 – Demonstration of the software. Propagation of malignant cells (yellow).
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be done in order to study leukaemias. In the next section we present how the software can be

used to study spatial aspects of erythropoiesis.

10.2 Cell displacement

Each cell is considered as a disk in the plane. Cells of different types are shown with dif-

ferent colors. Cell behaviour is characterised by its interactions with other cells, its proliferation,

differentiation and apoptosis properties.

Interaction of two neighboring cells is determined by the interaction potential. The sum of

forces acting on each cell from other cells determines the cell motion according to Newton’s

law with a possible damping because of the friction with other cells. Thus, we use an approach

similar to molecular dynamics simulations even though the potential is different. We have

x
′′
i − εx

′
i +

1

m

∑
i �=j

fij = 0,

where xi is the coordinate of the center of the i-th cell, m is its mass, ε is the damping coefficient,

fij is the force acting between the cells i and j. We put

fij = −φ(|xi − xj|),

where the function φ(r, t) equals zero for r � ri + rj and it goes to infinity as r decreases. Here

ri and rj are the radii of the cells i and j, respectively (which can depend on time). Thus, two

cells push each other when the distance between their centers is less than the sum of their radii.

11 Simulations of erythropoiesis

In this section we present simulations of normal erythropoiesis. In the part I, devoted to

multi-scale modelling of erythropoiesis, we assumed that 8 maturity levels of erythroid pro-

genitors can be distinguished. That modelling provided values of self-renewal, differentiation

and apoptosis rates in normal erythropoiesis. Here we consider 8 cell types with the rates of

self-renewal, differentiation and apoptosis as obtained in Section 6.2. The objective of the si-
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mulations presented hereafter is to study spatial distributions of erythroid cells in the bone

marrow.

The multi-agent approach implies calculations for every single element of the system, i.e.

for every single cell, which is very resource-demanding. The number of individual elements in

the simulations is about 80 000. The number of primary cells in the domain that give birth to all

other cells is 9 with daily influx equals 2 cells per day (each primary cell divides every 4.5 days).

These cells are called "HSC" that means haematopoietic stem cells. The hierarchic tree of cell

generations is presented in Figure 34. Cell types "p1",...,"p8" model erythroid progenitor sub-

A B

FIGURE 34 – Genealogical tree of cell types for a model of erythropoiesis.

populations, "ap" – apoptotic cells, "er" – population of mature erythrocytes. Sub-populations

"p1",...,"p4" are self-renewing (means inclined preferentially to the self-renewal, discussed in

detail in Section 6), "p5",...,"p8" are differentiating. All progenitors are supposed to have ave-

rage lifetime of 1 day, erythrocytes have average lifetime of 40 days. This particular number

describes average lifetime of erythrocytes for mice. Progenitor volume decreases with matura-

tion from 0.015 to 0.01 units.

The calculation domain has the same form as that presented previously in Figure 31 with

two closed borders (top and bottom) and two others (left and right), through which cells leave

the domain. This domain is a schematic representation of bone marrow, cells leaving the domain

are supposed to get into the blood stream. To calculate cell densities, the domain is divided into
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11 vertical stripes, with one stripe in the middle of the domain, where stem cells are located.

All stripes have the same dimensions. We calculate the total number of cells as well as percen-

tages of erythrocytes, reticulocytes and of apoptotic cells in every stripe. These calculations are

carried out for several time moments. The results of spatial distributions of cells with respect to

the stripes are presented in Figure 35.

A B

C D

FIGURE 35 – Simulations of normal erythropoiesis. Cell distributions in the bone marrow, which

is divided into 11 vertical stripes, x = 6 is the center stripe that contains stem cells. Panel A :

total cell count in the bone marrow, Panel B : percentage of erythrocytes, Panel C : percentage

of reticulocytes, Panel D : percentage of apoptotic cells.

Horizontal axis x denotes the stripe number, x = 6 corresponds to the middle stripe with

stem cells, x = 1 and x = 11 correspond to the stripes located closely to open borders of the

domain. Since the domain and all model conditions are homogeneous (no preferred direction is

introduced), the distributions should be symmetric with respect to x = 6. It should be noted that
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the approach implies stochasticity, that is why the obtained results do not possess this symmetry.

Figure 35.A demonstrates that cell count decreases from the center to the exit borders with a

maximum value in the second or third stripe. The modelling provides that among erythroid cells

of the bone marrow 55% − 70% are mature erythrocytes, 4.5% − 7% are reticulocytes, 7% −
12% are apoptotic cells and others are immature progenitors. The percentage of erythrocytes is

maximal near open borders of the bone marrow.

12 Cell division and displacement in individual based model-

ling

We show the existence of random motion due to cell division and of directed motion due

to cell pressure. The contribution of each of these two factors can be different. In particular,

if the cell density is low, then their random motion prevails over directed motion. In this case

we can use reaction-diffusion systems of equations in order to describe the evolution of cell

populations.

Spatial cell distribution in the bone marrow should be taken into account in order to specify

the conditions of leukaemia development. This distribution is closely related to cell division

and displacement. In this section we investigate both cell division and displacement with the

individual based modelling approach. We also use it to explain the origin of random cell mo-

tion due to division. This justifies the usage of reaction-diffusion systems in the next section.

Simulations are performed using the software “Cell dynamics”, version “Soft sphere model”,

presented in Section 10.

As presented in Section 10.2, each particle moves according to the equation

ẍi + νẋi +
∑
j �=i

f(rij) = 0, (3.1)

where the second term in the left-hand side of this equation describes the friction of the particle

by the medium, the last term represents the force acting on the particle by all other particles.

This is one of possible models in the approach called dissipative particle dynamics [21]. The

force f(rij) between the i-th and the j-th particle depends on the distance rij between them. In
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molecular dynamics this is the Van der Waals force, which is nonlocal and usually described

by the Lennard-Jones potential. In the case of cell dynamics, the force between two particles is

nonzero only when they touch each other, that is when the distance between the centers of the

spherical particles is less than the sum of their radii.

Equation (3.1) allows us to determine the position of each cell in time. In addition, the

process of cell division, which changes the number of cells and the forces acting between them,

must be specified. This is done hereafter.

12.1 Cell division

When haematopoietic cells in the bone marrow divide, they push each other resulting in

their displacement. This mechanism determines motion of immature red blood cells, which are

the most represented cells in the bone marrow. Therefore, in order to study cell motion, we need

to begin with cell division.

When a cell divides, it is replaced by two other cells. If we neglect the mechanical interaction

with other cells, then the center of mass of the body composed by the two daughter cells does not

change in comparison with the center of mass of the mother cell. Hence, after each division, each

daughter cell is shifted with respect to its mother cell. Figure 36 shows several first consecutive

divisions simulated with the software “Cell dynamics”, version “Soft sphere model”. Cell size

and the frequency of division are given as parameters of the model.

There is one more parameter which should be specified in order to describe cell division : the

direction of division, that is the direction of the straight line connecting the centers of the new

cells. In some cases, the direction of division can be determined by the position of the mother

cell with respect to the surrounding cells. In particular, this can be the case in embryogenesis

or in plant growth. However, in the case of haematopoiesis, we can assume that this direction

is arbitrary. Therefore the angle of the straight line connecting the centers with respect to the

x-axis is chosen in a random way with a uniform distribution.

Let now focus on cell motion. Consider the following division process A → A + B (Figure

36) under the assumptions formulated above. After each division the cell A gives one cell, which

is identical to itself (self-renewal), and another cell which is different (differentiation). Hence,
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FIGURE 36 – Successive cell divisions simulated with the software “Cell dynamics”, version

“Soft sphere model”. Every division gives birth to two daughter cells (green for a self-renewing

division, purple for differentiating division). The direction of division is not specified.

there will always be one cell of the type A and a growing number of cells B. After each division

the cell A moves in a random direction at the distance equal to its radius. This means that the

cell A moves along the plane in a random way. In the case where there are many such cells and

we can consider them as a continuous medium, this motion becomes similar to diffusion and

can be described in a similar way. We discuss this question in more detail in the next section.

Each cell defined in the individual-based model must be able to divide, change its type,

or die (either by apoptosis or necrosis). Hence probabilities for such events are provided by the

user, for each type of cell defined. These probabilities are determined by intracellular regulatory

networks. In the case of erythroid progenitors they are discussed in Section 3.

In the example shown in Figure 37 (left), there is one stem cell (green) that divides in two

cells at each division, one cell is identical (this is self-renewal) and the other cell is of another

type (red). In turn, the red cell can self-renew with the probability 0.57, differentiate with the

probability 0.39, or die by apoptosis with the probability 0.04 (this probability does not appear

on Figure 37, it is obtained from the two other probabilities). In the first case, it divides giving

two cells identical to itself. In the second case, it gives two different cells (violet). If the cell

dies, it is removed from the computational domain. Red cells can also mutate with the proba-

bility 0.001. When this happens, a mutated cell (yellow) appears. Its properties are different in

comparison with the original cell (red). It self-renews with the probability 0.7, differentiates

with the probability 0.3, and does not die by apoptosis. These assumptions correspond, for ins-



144

tance, to properties of malignant cells. Their self-renewal ability is greater than for normal cells,

while differentiation and apoptosis abilities are lower (or absent). Therefore, we can expect that

after some time malignant cells will appear and will take over the normal cells. It is numerically

observed that malignant cells push out normal cells and gradually fill the whole computational

domain (Figure 37, right). This replacement corresponds to reaction-diffusion waves discussed

in Section 14.2.1, Theorem 19. Cell division occurs according to the algorithm described above,

presented in Figure 36.

FIGURE 37 – Simulation obtained with the software “Cell dynamics”. Left : Properties of the

different cells involved in the computations are listed, as self-renewing (same color), differentia-

ting (different color) and mutation (yellow) probabilities. Right : Computational domain, filled

with cells defined on the left panel.

12.2 Cell displacement

There are various mechanisms of cell displacement in the bone marrow. We discuss here

random cell motion, which is to some extent similar to diffusion, and directed cell motion, si-

milar to convection. Since biological cells are macroscopical objects, the usual Fickian diffusion

is not applicable for them. However they can move in a random way due to division.

Let us discuss the motion of a single dividing cell when it is surrounded by other cells.
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Obviously, cells push each other and create a preferential direction of motion. It is easier for a

cell to move in the direction where there are less cells. In order to study this phenomenon, we

consider the following numerical experiment. The cell A is placed at the bottom of an empty

rectangular box (Figure 38, left). It divides reproducing itself and some other cells which fill

the box. These latter cells do not divide and do not move unless they are pushed by other cells.

What will be the position of the cell A in time ? If it moves in a random way, its distance from

the initial position will grow proportionally to
√

t (with random perturbations). However, when

there are many other cells around it, they will influence its motion pushing it to the direction

where cell concentration is lower. If we introduce pressure, that is the force exerted by cells

on the unit surface, then, similar to Darcy’s law, cell velocity will be determined by pressure

gradient [27]. It can be verified on model examples that the cell will move in this case with a

constant speed, that is its displacement will be proportional to t.

FIGURE 38 – Trajectory and displacement of a cell A dividing according to the process A →
A + B + 2C. Left : Rectangular domain, center : cell trajectory, right : cell displacement.

We can vary the ratio of the directed and random motion. In order to do this, let us consider

the division scheme in the form A → A + B + 2C and assume that the cells A and B have

the same radius, the radius of the cell C is twice less, the cell B is located on one side of the

cell A after the division, and the cells C on the diametrically opposite side. The cell A is shown

in yellow in Figure 38, B and C in blue. Clearly, such a cell division is not realistic from the

biological point of view. We consider it in order to explain the mechanisms of cell motion.

We use here the advantage of mathematical modelling, which allows us to consider idealised

models, in order to study a symmetric division where the center of the cell A does not shift after
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cell division, and various asymmetric divisions where this center displaces due to division. In

the real biological situation, division is asymmetric. We will see below that it results in a random

cell motion. However, if cell density is sufficiently high, convective cell motion becomes also

important. To study it more precisely and independently of the random motion, we need to

consider a symmetric division.

With the division scheme shown in Figure 38, the center of the cell A before and after the

division remains at the same place. In fact, we consider here not the center of mass of the system

of cells but its geometrical center. Hence, cell division in this case does not provide random

motion. Figure 38 shows the cell trajectory and its displacement from the initial position. We

can see that its displacement is close to a linear function. Therefore, it is a directed motion with

a weak random component.

FIGURE 39 – Trajectory and displacement of a cell A dividing according to the process A →
A + B + C, where B and A have the same radius, and the radius of C equals one half of the

radius of A. Left : Rectangular domain, center : Cell trajectory, right : Cell displacement.

Figure 39 shows another scheme of cell division, A → A+B +C, where B and C are from

the opposite sides of A. Since the radius rC of C is twice less than the radius rB of B, then the

center of the cell A moves at rC/2 after each division. The cell displacement remains practically

linear. However its trajectory essentially changes in comparison with the previous case. The

projection of the cell speed on the vertical direction remains the same since it is determined by

the frequency of its division. In other words, by the rate with which it fills the box with other

cells. However, its local mobility becomes higher because of the increased random motion.

The cell motion has two components : small random displacements and large scale sinusoidal

motion from one side to another and upwards. This horizontal motion of the cell is caused by the



13. Discussion 147

pressure difference. Since the box is sufficiently large, the cell first fills one side, then another

side of the box. Its increased mobility makes it more sensitive to the pressure difference.

FIGURE 40 – Cell trajectory (left) and displacement (right) in the case of a strong random

component.

If we increase even more the random component of the cell motion by appropriately choo-

sing division scheme, then the directed component of its motion is not visible any more (Figure

40). Another parameter which determines the relative contribution of the random and directed

components of the cell motion is their concentration. If it is low, then mechanical interaction

with the surrounding cells will be negligible.

In Section 8 we modelled the evolution of cell populations by reaction-diffusion-convection

equations. We took into account their random motion described by the diffusion-terms and their

directed motion. Directed or convective motion should be taken into account if the density of cell

population is sufficiently high. In this case it can be described by reaction-diffusion equations

coupled with fluid dynamics in a porous medium. Such a model has been studied in previous

works [21, 44].

We note finally that the diffusion coefficient depends on the cell adhesion to the extracel-

lular matrix. In particular, leukaemic cells have a weaker adhesion and, consequently, a bigger

diffusion coefficient.

13 Discussion

In this part we presented the software which is based on the individual based modelling

and which can be applied to study cell interaction processes. The presented version of the soft-
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ware considers mechanical cell-to-cell interactions. Using this software we studied spatial cell

distributions of erythroid progenitors in bone marrow.

Models of cell populations are often semi-empiric and based on some intuitive assumptions,

which seem in agreement with biological observations. We attempted to give here some more

rigorous justification of one of such assumptions about cell displacement. Although there are

different mechanisms of cell motion in the bone marrow, we did not discuss here biologically

active mechanisms such as chemotaxis but concentrated only on pure mechanical cell interac-

tion. Since new cells appear due to proliferation, cells push each other creating random motion,

which can be described by diffusion, and directed motion determined by pressure difference.

We carried out some analysis of this motion with individual based modelling.
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PK/PD Modelling of AML Treatment with
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Acute myeloid leukaemia (known also as non-lymphocytic or myelogenous) is a type of

leukaemia characterised by abnormal proliferation of myeloid cells. One of the most common

and effective chemotherapeutic agents against AML is AraC (cytosine arabinoside, cytarabine),

which is used in combination with other drugs. Pharmacokinetics-pharmacodynamics approach

is one of modern ways to study drug outcome on the disease. The last part of my work is devoted

to the PK/PD modelling of AML treatment with AraC.

We consider dynamics of normal and malignant cells, which are determined by AraC concen-

tration. We built a mathematical model of AraC distribution in the body and of its action. The

model consists of two parts. First part describes pharmacokinetics of AraC, that is drug delivery

to the bone marrow, penetration through cell membrane and its metabolism, which is a set of

interactions between the drug and intracellular proteins, its degradation, phosphorylation and

deamination. Then we describe AraC action on cells, that is pharmacodynamics.

We consider AraC distribution between two compartments, blood and bone marrow. Trans-

membrane transport is described as a process of passive diffusion that goes until concentrations

of AraC inside and outside cells are equal. Metabolism of AraC is described as a set of chemical

reactions and is modelled using Michaelis-Menten kinetics. Drug action on DNA synthesis and

thus on cell proliferation is presented as a dependance of proliferation rates and apoptosis on

AraCTP concentrations. This constitutes pharmacodynamics part.

14 Cell population dynamics

14.1 Normal erythropoiesis

In Section 4 we considered several erythroid progenitor sub-populations denoted by P1, . . . , Pn.

Each of them consists of identical cells with given rates of self-renewal si, differentiation di and

apoptosis ai, i = 1, . . . , n. As discussed in Section 3, these rates and their dependence on the

parameters are determined by the Erk/Fas regulatory system (see Figure 7). In the framework

of the model described in Section 3, they are determined by the basins of attraction of the cor-

responding stationary points.

Evolution of these population densities is described by the ordinary differential system of
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equations ⎧⎪⎨⎪⎩
dP1

dt
= H + (s1 − d1 − a1)P1,

dPi

dt
= (si − di − ai)Pi + 2di−1Pi−1, i = 2, . . . , n,

(4.1)

where H denotes a constant flux of haematopoietic stem cells differentiating in erythroid pro-

genitors, the coefficients si, di and ai depend on the values of the concentrations of intracellular

proteins Erk and Fas, Ei and Fi. These concentrations are regulated by intracellular networks

(see Section 3). In this section we do not take into account the external control feedback by hor-

mones (glucocorticoids or erythropoietin) discussed in Section 5. Hence, the source term α in

System (1.6) is assumed to be constant. Fas-ligand, the main external source for Fas activation

is produced by mature cells [39], hence we assume γ, in (1.6), is a function of Pj , j = 1, . . . , n.

Consequently, the protein concentrations are governed by the equations

⎧⎪⎨⎪⎩
dEi

dt
= Φ(α, Ei, Fi),

dFi

dt
= Ψ

(∑n
j=1 μijPj, Ei, Fi

)
,

(4.2)

where the functions Φ and Ψ are defined in (1.6), and μij are constant parameters accounting

for the weight of mature cell populations in the production of Fas-ligand.

We now introduce spatial cell distribution. We consider a one-dimensional problem with

the space variable x and assume cells can move in space in a random way. This motion can be

described by diffusion (see Section 12). The intracellular concentrations Ei and Fi are supposed

to be the same for all cells in the i-th population, therefore they do not depend on the space

variable, but can depend on time.

We also take into account a limitation of cell proliferation when cell density exceeds some

threshold level, by means of a chemical cell interaction. Let P0 be the maximal cell density. Then

System (4.1) can be rewritten in order to take into account both diffusion and the dependence
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of cell proliferation (self-renewal and differentiation) on P0 − P̄ , where P̄ =
∑n

i=1 Pi,

∂P1

∂t
= D

∂2P1

∂x2
+ H + (s1 − d1)P1(P0 − P̄ ) − a1P1,

∂Pi

∂t
= D

∂2Pi

∂x2
+ (si − di)Pi(P0 − P̄ ) − aiPi + 2di−1Pi−1(P0 − P̄ ), i = 2, . . . , n.

(4.3)

In order to be able to analyse the model, we first assume intracellular reactions are fast in the

time scale related to cell motion. Then, instead of System (4.2), we can consider the stationary

equations

Φ(α, Ei, Fi) = 0, Ψ

(
n∑

j=1

μijPj, Ei, Fi

)
= 0. (4.4)

Therefore, Ei and Fi can be expressed as functions of Pj , j = 1, . . . , n. As a consequence,

coefficients si, di, ai in (4.1) also become functions of Pj .

System (4.3) and (4.4) describes erythroid progenitor dynamics in normal erythropoiesis

under the assumption of fast intracellular reactions. Consider first the case of a single cell po-

pulation P1. Then System (4.3) is reduced to the first equation where P̄ = P1 :

∂P1

∂t
= D

∂2P1

∂x2
+ H + (s1 − d1)P1(P0 − a1

s1 − d1

− P1). (4.5)

Equation

H + (s1 − d1)P1(P0 − a1

s1 − d1

− P1) = 0

has a unique positive solution P1 = P ∗
1 if s1 − d1 > 0. It is a globally asymptotically stable

stationary solution of equation (4.5), that satisfies P ∗
1 � max{0, P0 − a1/(s1 − d1)}.

If P0 > a1/(s1 − d1), then P ∗
1 � P0 − a1/(s1 − d1), and P ∗

1 is positive even if H = 0.

This means that even in the absence of haematopoietic stem cells, erythroid progenitors keep a

positive concentration due to self-sustained proliferation. This case seems to be unrealistic from

the biological point of view. Therefore, we assume in what follows P0 � a1/(s1 − d1).

In the next section, we introduce a population of leukaemic cells and investigate the dy-

namics of the model. In particular, the attention is focused on the existence of a leukaemic

equilibrium.
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14.2 Erythroleukaemia

Consider two cell lineages, normal and mutated. The lineage of mutated cells will differ

by the rates of self-renewal, differentiation and apoptosis. Denote by Pi cells from the normal

lineage and by Qi cells from the mutated lineage. Both of them are described by the same model

(4.3) as in the previous section. However, we should take here into account that the total number

of cells include both lineages,

P̄ = P1 + · · · + Pn + Q1 + · · · + Qn.

In what follows we restrict ourselves to the case where each of these two lineages consists of

a single cell type. This is equivalent to the assumption that we neglect in the previous equality

all cell densities except for P1 and Q1. Then equations for P1 and Q1 become independent of

other equations and can be written in the form :⎧⎪⎪⎨⎪⎪⎩
∂P

∂t
= DP

∂2P

∂x2
+ H + (s − d)P (P0 − P − Q) − aP,

∂Q

∂t
= DQ

∂2Q

∂x2
+ (sm − dm)Q(P0 − P − Q) − amQ,

(4.6)

where the subscripts are omitted for simplicity of notation, and sm, dm, am denote the rates

of self-renewal, differentiation and apoptosis of mutated cells, respectively. In particular, since

there is only one generation of erythroid progenitors, denoted by P , the influence of progenitor

densities on the activation of Fas is neglected, so that (4.4) becomes

Φ(α, E, F ) = 0, Ψ (γ,E, F ) = 0,

with α > 0 and γ > 0 constant. Consequently, E and F no longer depend on P and, si-

milarly, the different rates do not depend on cell densities. This assumption has then strong

consequences, yet it allows drawing comprehensive conclusions on the existence of a leukae-

mic equilibrium and treatment of the disease (see below).

The constant source H is absent in the second equation of (4.6) because it is assumed in

the case of erythroleukaemia there is no permanent influx of mutated cells from the stem cell
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compartment. Different assumptions could of course be considered.

14.2.1 Existence of a Leukaemic Equilibrium

In order to analyse reaction-diffusion System (4.6), we first consider the system without

diffusion, ⎧⎪⎨⎪⎩
dP

dt
= H + (s − d)P (P0 − P − Q) − aP,

dQ

dt
= (sm − dm)Q(P0 − P − Q) − amQ,

(4.7)

and we assume s−d > 0, sm −dm > 0, and am/(sm −dm) < P0 < a/(s−d). The assumption

am/(sm − dm) < P0 ensures the possibility to have a leukaemic equilibrium (see (4.8)), as

shown below.

Zero lines of the right-hand side of (4.7) are given by the equalities

H + kP (−b − P − Q) = 0, kmQ(bm − P − Q) = 0, (4.8)

where

k = s − d, km = sm − dm, b = −P0 +
a

k
, bm = P0 − am

km

.

According to the above assumptions, all parameters, k, km, b and bm are positive.

From the first equation in (4.8),

Q = −b − P +
H

kP
, (4.9)

and from the second equation

Q = 0 or Q = bm − P. (4.10)

System (4.9)–(4.10) can have one or two stationary points (Figure 41). If we put Q = 0 in

(4.9), and denote by P ∗ the positive solution of this equation, then we find

P ∗ =
b

2

(√
1 +

4H

kb2
− 1

)
.
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FIGURE 41 – Graphical solution of System (4.9)–(4.10). Case 1 corresponds to the existence of

two stationary points, A and B, the case 3 to the existence of only one stationary point, B. In

case 2, the points A and B have the same location.

The stationary solution (P, Q) = (P ∗, 0) always exists.

On the other hand, from (4.9) and the second equation in (4.10), we obtain

P ∗
m + Q∗

m = −b +
H

kP ∗
m

and P ∗
m + Q∗

m = bm.

If bm > P ∗, then we have the case 1 in Figure 41. There exist two stationary points : A with the

coordinates (P ∗
m, Q∗

m), and B with the coordinates (P ∗, 0). If bm < P ∗, then we have the case 3

in Figure 41, there exists a unique stationary point B = (P ∗, 0). It follows that leukaemia may

develop only if bm > P ∗.

Condition bm > P ∗ can be written as

bm(bm + b) >
H

k

or equivalently (
μ − P0k

a

)
(μ − 1) >

Hk

a2
, (4.11)
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where

μ =
am

a

k

km

=
am

a

s − d

sm − dm

. (4.12)

We call the inverse parameter 1/μ the strength of mutation. If a malignant mutation decreases

the rate of apoptosis and differentiation and increases the rate of proliferation, then μ < 1. This

means that the strength of mutation is greater than 1.

We recall that the assumption b > 0 implies that P0k/a < 1. Moreover, from (4.12) and

the assumption bm > 0, one deduces μ < P0k/a. Consequently, the left-hand side of (4.11) is

positive. Furthermore, it is straightforward that inequality (4.11) is satisfied if and only if

P0 >
H

a
. (4.13)

This condition means that (4.11) is true for μ = 0. Indeed, the set of values of μ satisfying

(4.11) is an interval in the form [0, μ∗) with μ∗ < P0k/a < 1. If (4.13) is not satisfied, then

leukaemia will not develop, independently of the strength of mutation. This occurs if the influx

of normal cells from the stem cell compartment is sufficiently large.

If (4.11) is satisfied, that is the mutation is sufficiently strong and the influx is not strong

enough, then System (4.7) has two stationary points A and B (Figure 41). It can be verified

that A is stable while B is unstable. This means that the disease will develop. The values of

the concentrations P ∗
m and Q∗

m in the leukaemic equilibrium depend on μ. In particular, the

concentration Q∗
m of malignant cells can be rather low if μ is close to the critical value. If (4.11)

is not satisfied (weak mutation or strong influx), then there exists a unique stable stationary

point B, which corresponds to the disease free situation.

The analysis of the ordinary differential system of equations (4.7) allows us to do some

conclusions about the behaviour of solutions of (4.6). More precisely, classical results on mo-

notone systems allow to conclude the existence of a travelling wave providing a transition from

the unstable disease free equilibrium B to the leukaemic equilibrium A, when (4.11) is satis-

fied. The existence and stability of travelling waves for monostable monotone reaction-diffusion

systems are well known [117]. The existence result is stated in the next theorem.

Theorem 19. Let condition (4.11) be satisfied. Then the endemic equilibrium (P ∗
m, Q∗

m) of

System (4.6) considered on the whole axis is globally asymptotically stable in the sense that
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any solution with the initial condition (P0(x), Q0(x)), where P0(x) � ε, Q0(x) � ε, ε is a

positive constant, converges uniformly to (P, Q) = (P ∗
m, Q∗

m) as t → ∞. The disease free

solution (P ∗, 0) is unstable.

Moreover there exists a minimal speed c0 such that for all speeds c � c0 there exist travelling

wave solutions of System (4.6), that is solutions of the form P (x, t) = p(x − ct), Q(x, t) =

q(x − ct). The functions p(x) and q(x) are monotone with respect to x and satisfy the system

DP p′′ + cp′ + H + (s − d)P (P0 − P − Q) − aP = 0,

DQ q′′ + cq′ + (sm − dm)Q(P0 − P − Q) − amQ = 0

and the conditions at infinity :

p(−∞) = P ∗
m, q(−∞) = Q∗

m, p(+∞) = P ∗, q(+∞) = 0.

For c < c0 such solutions do not exist.

The proof of the theorem is based on the reduction of System (4.6) to a monotone system

and on the application of the comparison principle. The interested reader may refer to [117] for

details.

It is known that the appearance of malignant cells is due to several rare consecutive mu-

tations. Once this event occurs, malignant cells start proliferating. If malignant cells appear

then they persist and spread in the whole bone marrow in the form of a travelling wave. Their

existence is stated in Theorem 19.

15 Pharmacokinetics modelling

Pharmacokinetics study drug distribution in the body and its delivery to target organs. Three

stages can be distinguished, delivery to target organs, transport inside cells and drug metabo-

lism.

To describe drug distribution in the body, several anatomical compartments should be cho-

sen. In [31] the authors suggest that it can be gastrointestinal tract, blood, liver, non eliminating
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tissue, efficacy and toxicity compartments. Efficacy compartment in leukaemic case is the bone

marrow. Considering many compartments introduce more complexity because of many unk-

nown parameters that should be estimated. In [54] the authors proposed methods of model

reduction, which can be used in PK/PD modelling. They presented how some compartments

can be removed without loosing relevant information in the model. In order to render our mo-

del simpler with a few parameters to estimate, we choose two compartments, blood and bone

marrow, and consider drug concentrations inside them (Section 15.1). Drug distribution in other

organs can be introduced, for example, as clearance from the blood.

Second step, membrane penetration, is very drug-specific, different drugs go through mem-

brane by different transport mechanism. AraC is brought into cells by nucleoside transporters

and can be considered as passive diffusion. A simple model of the transport is presented in

Section 15.2. For other drugs transmembrane transport can be due to different mechanisms.

Metabolism scheme is also drug-specific. Nevertheless, some similarities can be found for

certain drugs, for example for AraC and gemcitabine. This last stage of pharmacokinetics is

often described as a set of chemical reactions. Each reaction can be described using Michaelis-

Menten mechanism, the law of mass action or by other methods depending on the concrete

chemical reactions. We use Michaelis-Menten mechanism to describe the scheme of metabolism

of AraC, which is presented in Section 15.4. In Section 15.3 we explain this mechanism on three

example chemical reactions.

15.1 Drug distribution

In this section we propose a simple model of drug distribution in the body. We distinguish

two compartments, blood and bone marrow, see Figure 42. Let us denote by ab(t) and am(t)

respectively extracellular concentrations of AraC in the blood and in the bone marrow at time

t. Then their dynamics can be described by the following equations,

ȧb = I(t) − kbm(ab − am) − γbab, (4.14)

ȧm = kbm(ab − am) − g(am, ami) − γmam. (4.15)
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FIGURE 42 – Two compartment model of AraC distribution in the body is considered in the

modelling.

The term I(t) describes drug administration protocol, last term in each equation describes AraC

clearance, i.e. its destruction. The term kbm(ab − am) describes AraC transition between the

two compartments, in which constant kbm determines the rate of the distribution. The term

g(am, ami) describes AraC transmembrane transport inside the bone marrow and is discussed

in Section 15.2.

15.2 Transmembrane transport of AraC

In Section 15.1 we considered a model that describes drug distribution in the body. We inclu-

ded two compartments, blood and bone marrow. The term g(am, ami) described transmembrane

transport.

AraC penetrates inside a cell by a mechanism relayed essentially by human equivibrative nu-

cleoside transporter-1 (hENT1), which can be considered as facilitated diffusion, see Figure 43.

The process does not need energy and goes in accordance with the gradient of concentration up

FIGURE 43 – Transmembrane transport of AraC is implemented by hENT1 transporter.
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to the equilibrium between intracellular and extracellular concentrations of AraC [62, 125].

For weak AraC plasma concentrations (less than 0.5–1μM), obtained after administration of

a standard dose of AraC (100–200 mg/m2) the transmembrane transport is a limiting factor for

AraCTP formation. In case of strong AraC plasma concentrations (more than 10μM), obtained

after administration of a strong dose of AraC, the transmembrane transport is no more a limiting

factor. In this case intracellular processes such as phosphorylation, deamination, nucleoside

half-life and AraCTP incorporation into DNA determine drug efficacy.

We propose the following simple model of the transmembrane transport. The rate of intra-

cellular AraC accumulation due to transmembrane transport is

g(am, ami) = khENT1(am − ami),

where ami is intracellular concentration of AraC, am is extracellular concentration of AraC,

khENT1 is a constant that describes the rate of transmembrane penetration and is determined

by the activity of hENT transporter. If extracellular concentration is greater than intracellular

concentration (am > ami), then intracellular concentration increases, extracellular decreases

and vice versa. When both concentrations are equal, the transport stops.

Hence, Equations (4.14), (4.15) describing dynamics of extracellular concentrations of AraC

in the blood and in the bone marrow become

ȧb = I(t) − kbm(ab − am) − γbab, (4.16)

ȧm = kbm(ab − am) − khENT1(am − ami) − γmam. (4.17)

This simple model allows us to take into account the transmembrane transport.

In Section 15.4 we describe kinetics of intracellular AraC, determined by the scheme of

metabolism, using Michaelis-Menten kinetics presented in the next section.

15.3 Michaelis-Menten kinetics

The Michaelis-Menten mechanism for the catalysis of biological chemical reactions is one

of the most common approaches in biochemistry. Catalysis is a process in which the rate of
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a chemical reaction is either increased or decreased by a catalyst. Enzymes are large protein

molecules that are natural catalysts. The vast majority of chemical reactions that keep living

systems alive are too slow without a catalyst to sustain life and it becomes rapid in presence of

a catalyst. Let us demonstrate this mechanism on several example chemical reactions.

15.3.1 Enzyme without inhibitor

Consider a chemical reaction,

E + S
k1−−→

k−1

ES
k2−→ E + products, (4.18)

where E is the enzyme, S is the "substrate" (the molecule on which the enzyme does its work),

and ES is an enzyme-substrate complex. It is presumed that the substrate binds somehow to the

enzyme before the enzyme can do its work. The step of complex formation of [ES] goes very

fast with respect to the product formation. Constants k1, k−1 denote rates of reaction in both

directions.

Let us show how the approach is generally used in chemical kinetics. The rate of formation

of product, called the reaction rate, v, is defined as

v =
[product]

dt
= k2[ES]. (4.19)

The enzyme-substrate complex, ES, is an intermediate complex. A steady-state approximation

provides
d[ES]

dt
= k1[E][S] − k−1[ES] − k2[ES] ≈ 0, (4.20)

where [E] is the concentration of free (uncomplexed) enzyme, which is usually unknown. The

concentration of the substrate is defined by [S]. From Equation (4.20) we obtain

[ES] =
k1[E][S]

k−1 + k2

=
[E][S]

KM

, (4.21)

where

KM =
k−1 + k2

k1

.
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This constant is called the Michaelis-Menten constant. Substitute (4.21) into Equation (4.19),

v =
d[product]

dt
= k2

[E][S]

KM

. (4.22)

Total concentration [E]0 of the enzyme, which is supposed to remain constant, is

[E]0 = [E] + [ES] = [E] +
[E][S]

KM

= [E]

(
1 +

[S]

KM

)
.

Deriving from this equation [E] and substituting it into (4.22) we obtain

v = k2
[E]0[S]

KM + [S]
. (4.23)

The reaction velocity, v, is zero when [S] is zero and it increases if [S] increases. It reaches its

maximum when [S] becomes very large. Define the maximal velocity, vmax, as

vmax = lim
[S]→∞

k2
[E]0[S]

KM + [S]
= k2[E]0.

Then Equation (4.23) can be written as

v =
vmax[S]

KM + [S]
.

The kinetics of the reaction are characterised by two parameters, vmax and KM . These are

the parameters that are usually given in the literature in studies of the kinetics of biochemical

reactions.

15.3.2 Enzyme with inhibitor

Let us suppose now that for the chemical reaction defined in (4.18), an inhibitor I interferes

with enzyme E but not with the complex ES,

E + I
k′
1−−→

k′
−1

EI.
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The condition of quasi-steady state for the complex [EI] provides

d[EI]

dt
= k′

1[E][I] − k′
−1[EI] ≈ 0,

which gives

[EI] =
k′

1

k′
−1

[E][I]. (4.24)

Expression (4.22) remains valid in this case, the only difference that should be introduced

in the reasoning presented in the previous section is that now the total quantity of the enzyme is

[E]0 = [E] + [ES] + [EI]. (4.25)

Substituting (4.21), (4.24) into (4.25) we obtain

[E]0 = [E]

(
1 +

[S]

KM

+
k′

1

k′
−1

[I]

)
.

Resolve [E] from this equation and substitute it into (4.22),

v = k2
[E0][S]

KM + [S] + KM
k′
1

k′
−1

[I]
.

The maximal velocity vmax = k2E0 in this case remains the same as in the previous section,

then

v =
vmax[S]

KM + [S] + KM
k′
1

k′
−1

[I]
.

15.3.3 Mixed inhibition

Consider the same chemical reaction (4.18) and the case when inhibitor can bind to both [E]

and [ES],

E + I
k′
1−−→

k′
−1

EI,

ES + I
k′′
1−−→

k′′
−1

ESI.
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Conditions for quasi steady states for complexes [EI] and [ESI] are

d[EI]

dt
= k′

1[E][I] − k′
−1[EI] ≈ 0,

d[ESI]

dt
= k′′

1 [ES][I] − k′′
−1[ESI] ≈ 0,

which provide

[EI] =
k′

1

k′
−1

[E][I], (4.26)

[ESI] =
k′′

1

k′′
−1

[ES][I]. (4.27)

The total quantity of the enzyme is

[E]0 = [E] + [ES] + [EI] + [ESI]. (4.28)

Substituting (4.21), (4.26) and (4.27) into (4.28) we obtain

[E]0 = [E]

(
1 +

[S]

KM

(
1 +

k′′
1

k′′
−1

[I]

)
+

k′
1

k′
−1

[I]

)
.

Resolve [E] from this equation and substitute it into (4.22),

v = k2
[E0][S]

KM + [S]
(
1 +

k′′
1

k′′
−1

[I]
)

+ KM
k′
1

k′
−1

[I]
.

When [S] tends to infinity very small amount of free inhibitor remains, thus [I] → 0. The

maximal velocity is then as before vmax = k2E0, so

v =
vmax[S]

KM + [S]
(
1 +

k′′
1

k′′
−1

[I]
)

+ KM
k′
1

k′
−1

[I]
.

We demonstrated how Michaelis-Menten mechanism is applied to describe kinetics of che-

mical reactions. In the next section we describe the metabolism of AraC using this approach.
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15.4 Metabolism of AraC

Metabolism scheme of AraC is presented in Figure 44. The enzymatic paths of AraC me-

FIGURE 44 – The metabolism of AraC, adapted from [76].

tabolism are the same as that of deoxycytidine dC [73]. AraC should pass through three steps

of phosphorylation to form its active metabolite AraC triphosphate (AraCTP), which arrests the

DNA synthesis and thus prevents cells from proliferating.

Let us briefly present the most important components of the metabolism. Monophospho-

rylation is catalysed by deoxycytidine kinase (dCK). This step of AraC phosphorylation is

rate determining. The activity of dCK is inhibited by dCTP (regulation by retroinhibition) and

AraCTP. The phosphate is taken from ATP (adenosine triphosphate) and UTP (uridine triphos-

phate), see [11, 101] for more details. The diphosphorylation and triphosphorylation are ca-

talysed by other kinases and the phosphate is taken from ATP. These two stages go fast with

respect to the monophosphorylation. Dephosphorylation AraCMP → AraC is catalysed by 5’-

nucleotidases [6]. Deamination AraC → AraU is catalysed by cytidine deaminase (CDA). Dea-

mination AraCMP → AraUMP is catalysed by deoxycytidilate deaminase (dCMPDA). This

step of the deamination is of secondary importance and is not introduced in the model. The

phosphorylation AraU → araUMP is observed in vitro. In human leukaemic cells this phos-

phorylation is not observed, the only source of AraUMP, which accumulates in cells, is due to

deamination of AraCMP by dCMPDA.
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First step of AraC phosphorylation, which is catalysed by dCK, is of particular importance.

Its mixed kinetics for AraC phosphorylation appears in Figure 45. Deoxycytidine kinase is

FIGURE 45 – The monosubstrate kinetics of deoxycytidine kinase and AraC at saturating le-

vels of ATP. The equilibrium constants are given here in the mixed inhibition notation used

commonly in enzyme kinetics. The figure is adapted from [76].

inhibited by both dCTP and AraCTP. Normal substrate, deoxycytidine (dC), is also an inhibitor

of the enzyme with respect to AraC phosphorylation. dCTP and AraCTP form a complex with

dCK that interferes with AraC.

Let us describe the first step of phosphorylation using Michaelis-Menten kinetics for mixed

inhibition as explained in Section 15.3. Introduce the following notations,

– ami – intracellular AraC concentration ;

– ap3 – intracellular AraCTP concentration ;

– ap1, ap2 – AraCMP and AraCDP concentrations respectively ;

– c – dCTP (deoxycytidine triphosphate) concentration ;

– dC – deoxycytidine concentration ;
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Then phosphorylation rate of AraC is given by

ṙp ≡
[
d(ap1 + ap2 + ap3)

dt

]
p

=
Vk

1 + Km

ami

(
1 + c

Ki
+ dC

KI
+ ap3

K′
i

)
+ Km

(
c

KiK′
m

+ ap3

K′
iK

′′
m

) ,

(4.29)

where KI is the deoxycytidine inhibitor constant, Km is the competitive Michaelis-Menten

constant, Ki, K
′
i, K

′
m, K ′′

m are mixed inhibition constants, Vk is the kinase activity. It should be

noted that in the left part of (4.29) we should write the sum of all three forms of AraC. This is

because two other steps of phosphorylation go very fast with respect to the first step and, thus,

a part of obtained by phosphorylation AraCMP is transmitted rapidly to AraCDP and AraCTP.

We can suppose that the fractions ap3/ap2 and ap2/ap1 are constant,

ap3

ap2

= α1,
ap2

ap1

= α2,

which provides

ṙp =

(
1 +

1

α1

+
1

α1α2

)
d ap3

dt
.

The 5′-nucleotidase is the most important enzyme that catalyses the dephosphorylation of

AraCMP → AraC. We do not consider mixed inhibition for this enzyme, hence the dephospho-

rylation rate of intracellular AraC is given by a simple Michaelis-Menten equation,

ṙdp ≡
[
d(ap1 + ap2 + ap3)

dt

]
dp

=

(
1 +

1

α1α2

+
1

α1

)[
d ap3

dt

]
dp

=
Vdp

1 +
α1α2Kdp

ap3

, (4.30)

where Kdp is the Michaelis constant, Vdp is the nucleotidase activity, ap3

α1α2
= ap1.

The last component, which we take into account, is deamination AraC → AraU. We consider

the deamination only by cytidine deaminase (CDA) and other mechanisms are omitted due to

their minor effects. To describe it we use a simple Michelis-Menten equation,

ṙda =
da

dt
=

Vda

1 + Kda

ami

, (4.31)

where Kda is the Michaelis constant and Vda is CDA activity.
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The overall kinetics of intracellular AraC is then described by the following equation,

dami

dt
= −ṙp + ṙdp − ṙda.

Taking into account transmembrane transport (see Section 15.2) of AraC this equation becomes

dami

dt
= khENT1(am − ami) − ṙp + ṙdp − ṙda, (4.32)

where am is extracellular AraC concentration in bone marrow. Denote for brievity,

α̃ =

(
1 +

1

α1

+
1

α1α2

)
. (4.33)

Then, dynamics of intracellular AraCTP (ap3) is described by the following equation,

dap3

dt
= (ṙp − ṙdp)/α̃. (4.34)

Hence Equations (4.29)-(4.34) describe intracellular kinetics of AraC and AraCTP inside

bone marrow cells. Let us note that AraCTP consumption due to its incorporation into DNA is

not included into the model, which can slightly modify AraCTP kinetics.

15.5 Resistances

Several mechanisms of resistance to AraC are known nowadays, deficiency of transmem-

brane transport, problems with dCK kinase and high CDA activity, which deaminate AraC to

its inactive form AraU. It has been demonstrated that relapsed leukaemia patients show decrea-

sed dCK mRNA expression [59]. In addition, reduced dCK mRNA expression and a deficiency

of functional dCK have often been associated with resistance to AraC [82]. The deamination

of AraC into AraU by CDA prevents the formation of AraCTP and decreases the cytotoxicity

of AraC. In [60] the authors concluded that decreased hENT-1 expression and function is res-

ponsible for the acquisition of Ara-C resistance. In Section 17.2 we study numerically these

mechanisms of resistance.
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16 Pharmacodynamics modelling

Pharmacodynamics describes what drug does to organism. In Section 14 we introduced

System (4.7) that describes a model of cell populations, in which a population of malignant and

a population of normal cells are considered. We introduced self-renewal, differentiation and

apoptosis rates for each cell population. AraCTP exerts cytotoxic effect on all dividing cells

arresting DNA synthesis. This results in increased apoptosis rate and reduced proliferation rate.

We describe drug action as a dependence of the three rates on AraCTP concentration,

s = s(ap3), d = d(ap3), a = a(ap3), (4.35)

where s(ap3) and d(ap3) are decreasing bounded functions. Hill functions can be used to des-

cribe such dependencies. Let us denote rates of self-renewal, differentiation and apoptosis by

s∗, d∗, a∗ for population of normal cells and by s∗m, d∗
m, a∗

m for population of malignant cells in

non-treated case, which provides,

s(0) = s∗, d(0) = d∗, a(0) = a∗.

17 Simulations

In previous sections of this chapter we constructed WBPBPK/PD model that consists of

cell population dynamics (4.7), AraC distribution in the body (4.16)-(4.17), Equations (4.29)-

(4.34) describing AraC metabolism inside bone marrow cells and drug action described by

Equation (4.35). In Section 17.1 we present simulations of the Whole Body Physiologically

Based PharmacoKinetic (WBPBPK) model. The simulations demonstrate AraC distribution in

the body and kinetics of AraCTP (AraC active form) under some protocols of administration,

including high-dose and standard dose AraC. We introduce the notions of minimal cytotoxic

and cytostatic AraCTP concentrations and study the efficacy of treatment with respect to them.

In Section 17.2 we present simulations of WBPBPK model within resistant cells. Then, in

Section 17.3 we present PK/PD model of AraC, which provides the dynamics of malignant as

well as of normal bone marrow cells under chemotherapy treatment.
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17.1 WBPBPK model

Let us first introduce parameters of metabolism scheme, their values are taken from [76]

and correspond to AraC metabolism in mice, see Table 6. In Section 15.4 we introduced two

TABLE 6 – Parameter values of the metabolism scheme of AraC.

Parameter Value Unit

Vk deoxycytidine kinase activity 1.28 μM.min−1

Km 27.0 μM

Ki 1.0 μM

K ′
i 17.9 μM

KI 0.84 μM

K ′
m 309 μM

K ′′
m 101.9 μM

Vdp nucleotidase activity 300 μM.min−1

Kdp Michaelis-Menten constant 900 μM

Vda CDA activity 16.45 μM.min−1

Kda Michaelis-Menten constant 1011.7 μM

parameters, α1 and α2 which denote proportions between concentrations AraCTP/AraCDP and

AraCDP/AraCMP respectively. We took the following values for them, α1 = 7.83 and α2 =

5.67, which provided α̃ = 1.30, see (4.33). Deoxycytidine triphosphate (dCTP) concentration

was supposed to equal 10μM and deoxycytidine concentration (dC) equals to 4μM.

Two phases of AraC distribution in the body can be distinguished. Each stage is charac-

terised by its own half-life and different processes interfere into its fate. Once administered

in the blood, AraC is distributed between different compartments and penetrates into cells.

Clearance is also present during this initial phase, but is less important than physiological

processes. On the second phase, when drug concentrations are equalised in different com-

partments and inside cells, clearance becomes important. Secondary half-life, which represents

AraC clearance, is known to equal one to three hours. We choose two hours, which provides

γb = 0.0058min−1. We suppose that AraC clearance in the blood and in the bone marrow is the

same, γm = 0.0058min−1. In Section 6.2.1 we presented how to obtain clearance constant γ of

a degradating substance if its half-life is known.

Let us now describe transmembrane transport. To determine the rate of transmembrane pe-

netration, we introduce the notion of half-exchange. Let us explain it. Consider a substrate that
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is able to penetrate through cell membrane. Suppose that its transmembrane transport rate is

constant and equals k. The exchange stops when intracellular and extracellular concentrations

are equal, otherwise it goes from the compartment with greater concentration to that with lower

concentration. Denote by ce(t) and ci(t) respectively its extracellular and intracellular concen-

trations at time t. Then, the substrate behaviour can be described by the following equations,

dci(t)

dt
= k(ce(t) − ci(t)),

dce(t)

dt
= k(ci(t) − ce(t)). (4.36)

The total concentration of the substrate remains constant, denote it by cT . Then, ce(t) = cT −
ci(t). Substitute it into the first equation of (4.36),

dci(t)

dt
= k(cT − 2ci(t)).

The solution is given by

ci =
cT

2
− ci0

2
e−2kt, ce =

cT

2
+

ci0

2
e−2kt.

This provides ce(t) − ci(t) = ci0e
−2kt. At time t0 = 0 the difference is ce(0) − ci(0) = ci0. We

call the half-exchange time, the time T2 such that

ce(T2) − ci(T2) =
1

2
(ce(0) − ci(0)) ,

i.e. the time after which the difference between intracellular and extracellular concentrations is

decreased twice. This provides

k =
ln 2

2T2

.

This formulae allows the estimation of constant khENT1 in Equation (4.17). We suppose that

the difference between intracellular and extracellular concentrations decreases twice in a half

an hour, i.e. half-exchange time equals 30 minutes. Then, we obtain khENT1 = 0.0116min−1.

In [76] the authors determined limits of cytotoxic and cytostatic effects of AraCTP. As mi-

nimum cytotoxic level of AraCTP concentration, below which AraCTP is no more cytotoxic,

they determined 1μM. As minimum cytostatic level of AraCTP concentration 0.1μM was deter-
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mined. With this concentration, AraCTP is supposed to inhibit 50% of DNA synthesis. Thus for

the simulations, we assume that AraC treatment kills cells when intracellular AraCTP concen-

tration is above 1μM. Cytostatic effect is not included in the model.

Results of simulations of different regimens of AraC administration are presented in Fi-

gure 46 and Figure 47. Figure 46 demonstrates kinetics of AraC in blood, bone marrow and

inside bone marrow cells as well as kinetics of intracellular AraCTP concentrations. For stan-

dard protocol (200mg/m2), AraC is cytotoxic during about 7 hours (Panel A), for high-dose

protocol (3g/m2), AraC is cytotoxic during about 14 hours (Panel B). Let us note that high dose

of AraC represents 15-fold standard dose of AraC. Panel C demonstrates that similar cytotoxic

effect can be obtained through two standard dose injections of AraC, one at the beginning and

another after 7 hours after the first dose. Similar cytotoxic effect can be obtained through three

injections of 100mg/m2 at hours 0, 4 and 10, which divides the amount of administered drug

by 10 with respect to high-dose. Hence, our model suggests that high-dose regimen can be not

benefit for patients, taking into account many side effects that emerge during chemotherapy. Fi-

gure 47 demonstrates another treatment protocol, with continuous infusion of AraC, that allows

obtaining similar cytotoxic effect as high-dose treatment.

Standard protocol used in induction therapy on patients diagnosed with AML consists of

100-200mg/m2/day given in bolus (impulse doses) or as continuous intravenous infusion during

first 7 days. AraC is generally given in combination with daunorubicin. Results of simulations

of standard protocol are presented in Figure 48.

17.2 Pharmacokinetics of AraC within resistant cells

As discussed in Section 15.5, three mechanisms of resistance are known nowadays, decrea-

sed dCK activity, problems with transmembrane transport and high deamination rate of AraC

to its inactive form AraU. In this section we carry out simulations which describe these mecha-

nisms.

In normal cells we use the following parameter values, dCK activity is V n
k = 1.28μM.min−1,

half-exchange time equals 30 minutes, which provides kn
hENT1 = 0.0116min−1 and cytidine

deaminase activity equals V n
da = 16.45μM.min−1. We consider the three sources of resistance
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FIGURE 46 – WBPBPK modelling of AraC. Panel A : Standard dose treatment (200mg/m2),

Panel B : High dose treatment (3g/m2). Panel C : Two injections of standard dose of AraC

(200mg/m2) at hours 0 and 7. Panel D : Three injections of low dose of AraC (100mg/m2)

at hours 0, 4 and 10. Parameters of metabolism are taken for murine L1210 cell line. Red

solid lines represent AraCTP concentration, green dash-dot lines represent extracellular AraC

concentration in blood, blue dash lines represent extracellular AraC concentration in bone mar-

row, magenta dash lines represent intracellular AraC concentration in bone marrow cells.
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FIGURE 47 – WBPBPK modelling of AraC. Standard dose injection at the beginning

(200mg/m2), followed by continuous infusion of 150mg/m2 administered during hours 4-13.
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FIGURE 48 – Simulations of AraC/AraCTP kinetics during standard protocol of induction the-

rapy. Panel A : in bolus intravenous injection of standard dose (200mg/m2) of AraC, Panel B :

continuous infusion of standard dose (200mg/m2) of AraC. Parameters of metabolism are ta-

ken for murine L1210 cell line. Red solid lines represent AraCTP concentration, green dash-dot

lines represent extracellular AraC concentration in blood, blue dash lines represent extracellular

AraC concentration in bone marrow, magenta dash lines represent intracellular AraC concen-

tration in bone marrow cells.
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separately. We suppose that dCK activity within resistant cells is twice lower than in normal

cells, V r
k = V n

k /2 = 0.64μM.min−1, half-exchange time is doubled, to equal one hours, which

provides kr
hENT1 = kn

hENT1/2 = 0.0058min−1 and and deaminase activity is doubled and

equals V r
da = 2V n

da = 32.9μM.min−1. Below we compare AraCTP kinetics within normal cells

and within defected cells with three sources of resistances.
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FIGURE 49 – Kinetics of AraCTP within normal cells (blue solid line) and resistance cells.

Three types of resistance are considered separately, resistance due to low dCK activity (green

dash line), to problems with transmembrane transport (violet dash dot line) and due to high

cytidine deaminase activity (red dot line).

Results of simulations for standard dose of AraC are presented in Figure 49. As shown in

this Figure, all the three mechanisms of resistance decrease cytotoxic time of AraC and, thus,

its efficacy. We can conclude that mechanism of resistance due to dCK deficiency is stronger

than the two others, reducing almost twice the period when AraC is cytotoxic.

17.3 PK/PD model

Dynamics of cell sub-populations are defined in (4.7), where rates s, d, a and sm, dm, am de-

pend on AraCTP concentration. We should then introduce functions s(ap3), d(ap3), a(ap3) and

sm(ap3), dm(ap3), am(ap3). As said above, s(ap3), d(ap3) are decreasing bounded functions.
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We use Hill functions to describe these dependencies,

s(ap3) = s∗
θns

s

θns
s + apns

3

, d(ap3) = d∗ θnd
d

θnd
d + apnd

3

, (4.37)

where s∗ and d∗ represent self-renewal and differentiation rates of untreated bone marrow cells.

Hence, greater AraCTP concentrations in the body, smaller self-renewal and differentiation

rates. Cells killed by AraCTP increase apoptosis rate, which provides

a(ap3) = a∗ + s∗
apns

3

θns
s + apns

3

+ d∗ apnd
3

θnd
d + apnd

3

, (4.38)

where a∗ represents apoptosis rate of untreated bone marrow cells. The rates for malignant

cell population are defined by similar functions, denoted respectively by sm(ap3), dm(ap3) and

am(ap3). In previous section we obtained that even during high-dose AraC treatment, intracellu-

lar AraCTP concentration does not exceed 10μM. Hence, we assume that functions s(ap3) and

d(ap3) are only relevant on the interval ap3 ∈ [0, 10]. Plots of functions s(ap3), d(ap3), a(ap3)
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FIGURE 50 – Functions s(ap3), d(ap3), a(ap3) as well as sm(ap3), dm(ap3), am(ap3) describing

self-renewal, differentiation and apoptosis rates of normal and malignant cells as a function

of intracellular AraCTP concentration. Panel A : the three rates in sub-population of normal

cells, Panel B : the three rates in sub-population of malignant cells. Green solid lines represent

self-renewal rates, red dash lines represent differentiation rates, black dash-dot lines represent

apoptosis rates.
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and sm(ap3), dm(ap3), am(ap3) can be found in Figure 50, their parameter values are indicated

in Table 7. Dynamics of cell populations are presented in Figure 51.

TABLE 7 – Parameters that define how self-renewal, differentiation and apoptosis rates depend

on AraCTP concentrations, see (4.37)-(4.38), their plots can be found in Figure 50.

Parameter Value Unit

s∗ normal self-renewal rate 0.3 d−1

ns sensitivity of s(ap3) 5 N.U.

θs threshold value of s(ap3) 0.5 μM

d∗ normal differentiation rate 0.4 d−1

nd sensitivity of d(ap3) 5 N.U.

θd threshold value of d(ap3) 0.5 μM

a∗ normal apoptosis rate 0.3 d−1

s∗m normal self-renewal rate 0.7 d−1

nsm sensitivity of sm(ap3) 5 N.U.

θsm threshold value of sm(ap3) 0.5 μM

d∗
m normal differentiation rate 0.2 d−1

ndm sensitivity of dm(ap3) 5 N.U.

θdm threshold value of dm(ap3) 0.5 μM

a∗
m normal apoptosis rate 0.1 d−1
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FIGURE 51 – Dynamics of cell populations during standard dose treatment (Panel A) and high

dose treatment (Panel B). Blue solid line represents normal cell population, red dash line repre-

sents malignant cell population. Kinetics of AraCTP concentrations for these two examples are

presented in Figure 46.A-B.
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One can notice, even the high-dose protocol does not allow killing all malignant cells. This

can be due to the parameter values which are not well estimated. Nevertheless, the dynamics of

populations demonstrates that if the administered dose of AraC is increased then all malignant

cells are killed and some of the normal cells remain alive (not shown here). On the contrary, if

not all malignant cells are removed, then they recover much faster than normal cells, once the

chemotherapy effect is over.

18 Discussion

In this chapter we presented a PK/PD model of AML treatment with AraC. We first introdu-

ced a model of cell populations, in which we considered a population of normal and a population

of malignant cells. We studied steady states of this system and found conditions when leukaemic

steady state is stable. Dynamics of cell populations were described by their self-renewal, dif-

ferentiation and apoptosis rates. Pharmacodynamics was modelled as the dependence of these

rates upon AraC active form.

Pharmacokinetics model consists of several parts. We introduced a model of drug distribu-

tion between two compartments, blood and bone marrow. Drug penetration through cell mem-

brane was described as passive diffusion. We explained the Michaelis-Menten mechanism on

several model reactions and then applied it to describe the AraC metabolism scheme.

We carried out simulations of pharmacokinetic model of the whole body. Several treatment

protocols were studied. The values of parameters were chosen to describe AraC metabolism in

mice. Simulations have shown different kinetics of AraC and AraCTP concentrations. AraCTP

remains longer within cells than AraC. We tested standard dose treatment and high dose treat-

ment. Simulations demonstrated that high dose treatment is not advantageous and can be re-

placed by several injections of standard dose in order to reduce the overall administered dose

and thus its toxicity to organism. We carried out several simulations, in which the total dose is

reduced with respect to high-dose and which have similar effect on malignant cells. This allows

stating an optimal control problem, to find a treatment protocol with a given administered dose

to maximise its efficacy.

We also studied numerically AraC distribution within resistant cells. We considered sepa-
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rately three possible mechanisms of resistance (due to transmembrane transport, due to dCK

deficiency and due to increased CDA activity). We concluded with simulations of PK/PD mo-

del.

Thus, the model presented in this chapter can serve as a basis of the modelling of AML

treatment with AraC. It can be used to describe treatment of humans. To do so, the values of

parameters should be experimentally estimated.



Cinquième partie

Conclusions and Perspectives

181





183

This PhD thesis is devoted to mathematical modelling of haematopoiesis and blood diseases.

We investigated several models, which consider different aspects of blood production process.

First we studied a multi-scale model of erythropoiesis in which we coupled intracellular

protein interactions, which determine cell behaviour, with dynamics of cell sub-populations.

The model allowed the evaluation of the roles of different feedback mechanisms in response to

stress erythropoiesis.

We studied spatial distribution of cells in bone marrow, using a system of reaction-diffusion-

convection equations. We demonstrated the existence of a solution of this system and computed

the speed of propagation of malignant cells. Bone marrow cells exchange different signals that

regulate cell behaviour. We considered an integro-differential equation which describes cell

communication. We proved the existence of travelling wave solutions using topological degree

and the Leray-Schauder method. Individual based approach was used to study mechanical cell

interactions and cell distributions in bone marrow. Using this approach we demonstrated that

cell division can result in random cell motion.

Erythropoiesis can sometimes exhibit disorders, such as excessive proliferation of immature

cells, as observed in acute leukaemias. We then considered a physiologically based pharmacoki-

netics-pharmacodynamics model of treatment of acute myeloid leukaemia with AraC. We in-

vestigated numerically pharmacokinetics of AraC and efficacy of several treatment protocols.

Below we discuss possible perspectives for this work.

Multiscale modelling of haematopoiesis. The intracellular regulatory network studied

in this work is simplified. A more sophisticated model can be considered (Figure 52). Every

protein-protein interaction can be presented as a chemical reaction. Taking into account parti-

cular conditions of these interactions, they could be described by different chemical kinetics

mechanisms (Michaelis-Menten kinetics, law of mass action, etc.). However, such a regulatory

network would necessitate to go deeper in the nature of proteins involved in erythropoiesis

regulation and their interactions. Although meaningful, such an approach will also add com-

plexity to the model. It is however expected to obtain in a future work a more precise model of

intracellular regulatory mechanisms.

In this work we assumed that all erythroid progenitors with the same maturity had similar
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FIGURE 52 – Intracellular regulatory network that controls erythroid progenitor fate. Red

flashes represent fast reactions, blue flashes represent slow reactions. For notations, see Sec-

tion 3.

concentrations of Erk and Fas. Thus, our model does not take into account stochasticity in these

expressions, which can play an important role in the regulation of erythropoiesis. One of the

appropriate approaches that would allow taking into account the stochasticity is the individual

based modelling, presented in Chapter III. It considers each cell as an independent element of

the whole system and, consequently, every cell can have its own properties and protein concen-

trations.

It is known that Epo level rises due to the lack of haemoglobin. In this work we did not

consider haemoglobin and we assumed that erythrocyte count alters Epo levels (thus impli-

citly supposing that erythrocyte count and haemoglobin are linearly dependent). Nevertheless,

as shown in [29], there is no linear dependence between haemoglobin and erythrocyte (or red

blood cell) count during anaemia. This point can be relevant for the modelling of the response

to anaemia. Studies like [5, 115] can clarify dependencies between haemoglobin, erythrocyte

count and reticulocyte count in stress erythropoiesis. It should be noted as well that during

anaemia there is no clear distinctions between erythrocytes and circulating reticulocytes, both

circulate in the blood and fulfil functions of red blood cells. Here, we only considered erythro-

cytes to be red blood cells, which is not exact. Reticulocytes also contain haemoglobin but in

smaller volumes. Another point is that no information is currently available about how sensiti-
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vity to Epo evolves with maturation. All these aspects of Epo regulation should be investigated

to improve erythropoiesis modelling.

Spatial modelling of haematopoiesis. Spatial models of haematopoiesis considered in

this work are generic from the mathematical point of view but do not take into account detailed

biological mechanisms. In the future we will consider more specific models that allow taking

into account more biological information.

Individual based modelling. The software presented in this work takes into account me-

chanical cell interactions. Nevertheless, it is well known that chemical interactions between

cells can play an important role for cell population behaviour. Moreover, cell proliferation is

controlled by certain extracellular substances, such as nutrients, oxygen, growth factors, etc.

Thus, introducing chemical interactions between cells into the modelling as well as cell interac-

tions with extracellular substances will allow approaching the biological reality of the processes

under consideration.

One of the applications of the software is modelling of haematopoiesis and, in particular, of

erythropoiesis. As we demonstrated in Chapter I, during erythropoiesis cell behaviour crucially

depends on the intracellular regulatory network. This regulatory network is controlled by growth

factors, which are extracellular substances, and by some enzymes which are expressed on the

surface of mature cells. This means that cell fate depends also on neighbouring cells. Conside-

ring the intracellular regulatory network for every single cell would additionally improve the

individual based modelling.

PK/PD modelling. The considered PK/PD model of AML treatment with AraC consisted

of two parts, drug pharmacokinetics and pharmacodynamics. In order to describe the pharma-

codynamics, we introduced two interacting between each other cell populations, a population of

normal and a population of malignant cells. Drug action on cell proliferation was modelled by

a simple dependence of the proliferation and apoptosis rates on the concentration of drug active

form. This is a simplified pharmacodynamics model. Considering several sub-populations of

malignant and of normal cells depending on the cell cycle phase (including quiescent cells) will



186

allow introducing a cell cycle model. In this more precise model, we can take into account that

the considered drug is a cycle active agent and kills only cells that are in S-phase.

The metabolism scheme is well described in the model. To carry out simulations, we consi-

dered the values of parameters that describe murine metabolism. Although the scheme of me-

tabolism remains similar for humans, chemical constants are not the same, they should be es-

timated experimentally. Thresholds of cytotoxic and cytostatic effects will also change. In the

present model we did not consider cytostatic effect of the drug, which should also be taken into

account.

When we describe drug distribution in the body, in order to reduce the number of constants

to estimate, we considered two compartments, blood and the bone marrow. To study a more

precise model of drug distribution we can introduce additional compartments. To estimate all

the necessary constants, experimental data will be needed.
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Résumé

Cette thèse est consacrée à la modélisation mathématique de l’hématopöıèse et des maladies sanguines.
Plusieurs modèles traitant d’aspects différents et complémentaires de l’hématopöıèse y sont étudiés.

Tout d’abord, un modèle multi-échelle de l’érythropöıèse est analysé, dans lequel sont décrits à la fois le
réseau intracellulaire, qui détermine le comportement individuel des cellules, et la dynamique des populations
de cellules. En utilisant des données expérimentales sur les souris, nous évaluons les rôles des divers mécanismes
de retro-contrôle en réponse aux situations de stress.

Ensuite, nous tenons compte de la distribution spatiale des cellules dans la mœlle osseuse, question qui
n’avait pas été étudiée auparavant. Nous décrivons l’hématopöıèse normale à l’aide d’un système d’équations de
réaction-diffusion-convection et nous démontrons l’existence d’une distribution stationnaire des cellules. Puis,
nous introduisons dans le modèle les cellules malignes. Pour certaines valeurs des paramètres, la solution
”disease-free” devient instable et une autre solution, qui correspond à la leucémie, apparâıt. Cela mène à la
formation d’une tumeur qui se propage dans la mœlle osseuse comme une onde progressive. La vitesse de
cette propagation est étudiée analytiquement et numériquement. Les cellules de la mœlle osseuse échangent
des signaux qui régulent le comportement cellulaire. Nous étudions ensuite une équation integro-différentielle
qui décrit la communication cellulaire et nous prouvons l’existence d’une solution du type onde progressive en
utilisant la théorie du degré topologique et la méthode de Leray et Schauder. L’approche multi-agent est utilisée
afin d’étudier la distribution des differents types de cellules dans la mœlle osseuse.

Finalement, nous étudions un modèle de type ”Physiologically Based Pharmacokinetics-Pharmacodynamics”
du traitement de la leucémie par l’AraC. L’AraC agit comme chimiothérapie et induit l’apoptose de toutes les
cellules proliférantes, saines et malignes. La pharmacocinétique donne accès à la concentration intracellulaire
d’AraC. Cette dernière, à son tour, détermine la dynamique des populations cellulaires et, par conséquent,
l’efficacité de différents protocoles de traitement.

Mots-clés: modèle multi-échelle de l’érythropöıèse, réseau de régulation intracellulaire, ondes progressives,
équation integro-différentielle, modèle multi-agent, méthode de Leray-Schauder, PK/PD, modélisation du traite-
ment de leucémie.

Mathematical modelling of haematopoiesis and blood diseases

Abstract

This PhD thesis is devoted to mathematical modelling of haematopoiesis and blood diseases. We investigate
several models, which deal with different and complementary aspects of haematopoiesis.

The first part of the thesis concerns a multi-scale model of erythropoiesis where intracellular regulatory
networks, which determine cell choice between self-renewal, differentiation and apoptosis, are coupled with
dynamics of cell populations. Using experimental data on anemia in mice, we evaluate the roles of different
feedback mechanisms in response to stress situations.

At the next stage of modelling, spatial cell distribution in the bone marrow is taken into account, the
question which has not been studied before. We describe normal haematopoiesis with a system of reaction-
diffusion-convection equations and prove existence of a stationary cell distribution. We then introduce malignant
cells into the model. For some parameter values the disease free solution becomes unstable and another one,
which corresponds to leukaemia, appears. This leads to the formation of tumour which spreads in the bone
marrow as a travelling wave. The speed of its propagation is studied analytically and numerically. Bone marrow
cells exchange different signals that regulate cell behaviour. We study, next, an integro-differential equation
which describes cell communication and prove the existence of travelling wave solutions using topological degree
and the Leray-Schauder method. Individual based approach is used to study distribution of different cell types
in the bone marrow.

Finally, we investigate a Physiologically Based Pharmacokinetics-Pharmacodynamics model of leukaemia
treatment with AraC drug. AraC acts as chemotherapy, inducing apoptosis of all proliferating cells, normal
and malignant. Pharmacokinetics provides the evolution of intracellular AraC. This, in turn, determines cell
population dynamics and, consequently, efficacy of treatment with different protocols.

Keywords: multi-scale model of erythropoiesis, intracellular regulatory network, travelling wave solutions,
integro-differential equation, individual based model, Leray-Schauder method, PK/PD, Michaelis-Menten ki-
netics.


