Contribution d'un modèle 3D de tracé de rayons dans un milieu complexe pour la localisation de sources infrasonores - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2007

Contribution d'un modèle 3D de tracé de rayons dans un milieu complexe pour la localisation de sources infrasonores

Résumé

Localisation of infrasound sources is a difficult task due to large propagation distances at stake and because of the atmospheric complexity. In order to resolve this problem, one can seek as many necessary information as the comprehension of wave propagation, the role and influence of the atmosphere and its spatio-temporal variations, the knowledge of sources and detection parameters, but also the configuration of the stations and their global spreading. Two methods based on the construction of propagation tables depending on station, date and time are introduced. Those tables require a long range propagation tool to simulate the propagation through a complex medium, which are carried out by WASP-3D Sph a 3D paraxial ray tracing based-theory tool integrating both amplitude estimation and horizontal wind fields in space and time. Tables are centred on the receptor. They describe spatial variations of the main observation parameters and offer a snapshot of the atmospheric propagation depending on the range for every simulated phase. For each path, celerity, azimuth deviation, attenuation and return altitude are predicted and allow building the tables. The latter help to identify detected phases and are integrated in an accurate localization procedure. The procedure is tested on three case study, such as the explosion of gas-pipeline in Belgium 2004 near Ghislenghien, the explosion of a military facility in 2007 in Novaky, Slovakia and the explosion of the Buncefield oil depot in 2005 in the United Kingdom, where event specificities, propagation parameters and used configurations are introduced. The accuracy and optimization of the localization are discussed. A validation study is presented regarding International Monitoring System stations along a meridian - I18DK (Greenland, Denmark), I51UK (Bermuda, United Kingdom), I25FR (Guyane, France), I08BO (La Paz, Bolivia), I01AR (Paso Flores, Argentina), I02AR (Ushuaia, Argentina), I54US (Antarctica, U.S.A.) - to evaluate spatial, seasonal and daily variations for various atmospheric models.
La localisation des sources infrasonores est un exercice difficile, de par les grandes distances de propagation en jeu et en raison de la complexité du milieu atmosphérique. La compréhension de la propagation des ondes, le rôle et l'influence de l'atmosphère et de ses variations spatiales et temporelles, la connaissance des sources et des différents paramètres de détection, mais aussi la configuration et la répartition des stations du réseau de surveillance sont autant d'informations essentielles pour appréhender cet exercice. Dans l'optique de de l'obtention de localisations précises des évènements infrasonores, deux méthodes de construction de tables de propagations dépendant des stations, de la date et de l'heure sont introduites. Ces tables se basent sur des simulations par tracé de rayons par WASP-3D Sph (Windy Atmospheric Sonic Propagation), outil intégrant l'estimation de l'amplitude à l'aide de rais paraxiaux et la prise en compte des champs de vents horizontaux, en espace et en temps, le longs des trajectoires des rais. Les deux méthodes sont ensuite discutées et leurs performances comparées. Les tables sont centrées sur le récepteur, elles décrivent les variations spatiales des principaux observables infrasonores. Celles-ci offrent alors un instantané de la propagation atmosphérique dépendant de la distance entre la source et le récepteur, pour tout type de phases simulées. Pour chaque trajectoire de rai, les paramètres de propagation tels que la célérité, la déviation d'azimut, l'atténuation et l'altitude de retour sont prédits et permettent la construction des tables. Ces dernières aident à identifier les phases détectées et sont intégrées dans une démarche précise de localisation de source. La procédure de localisation est ensuite testées sur plusieurs cas d'études, tels que l'explosion d'une conduite de gaz à Ghislenghien, Belgique, le 30 juillet 2004, l'explosion d'une usine militaire à Novaky, Slovaquie, le 2 mars 2007 ou encore l'explosion du dépôt de carburant de Buncefield, Angleterre, le 11 décembre 2005. Les spécificités de chacun des évènements, les paramètres de propagations et les configurations utilisées pour les trois cas sont également introduites. L'accent est mis sur la précision de la localisation et son optimisation. Une étude de validation des tables de propagation est enfin abordée en considérant des stations du Système de Surveillance Internationale (SSI) situées le long d'un méridien - I18DK (Groenland, Danemark), I51UK (Bermudes, Angleterre), I25FR (Guyane, France), I08BO (La Paz, Bolivie), I01AR (Paso Flores, Argentine), I02AR (Ushuaia, Argentine), I54US (Antarctique, États-Unis). Ces tables permettent d'évaluer les variabilités spatiales, saisonnières et quotidiennes obtenues pour différents modèles atmosphériques empiriques HWM-93/MSISE-90 et réalistes ECMWF.
Fichier principal
Vignette du fichier
These-Mialle-2007.pdf (99.13 Mo) Télécharger le fichier

Dates et versions

tel-00653258 , version 1 (19-12-2011)

Identifiants

  • HAL Id : tel-00653258 , version 1

Citer

Pierrick Mialle. Contribution d'un modèle 3D de tracé de rayons dans un milieu complexe pour la localisation de sources infrasonores. Géophysique [physics.geo-ph]. Université Nice Sophia Antipolis, 2007. Français. ⟨NNT : ⟩. ⟨tel-00653258⟩

Collections

UNIV-COTEDAZUR
164 Consultations
49 Téléchargements

Partager

Gmail Facebook X LinkedIn More