.. Mise-en-pratique-numérique, 154 5.4. DIFFUSION ANISOTROPE 3D (a) terme source f -échelle : de -234, pp.238-283

T. Alarcón, H. M. Byrne, and P. K. Maini, A cellular automaton model for tumour growth in inhomogeneous environment, Journal of Theoretical Biology, vol.225, issue.2, pp.257-274, 2003.
DOI : 10.1016/S0022-5193(03)00244-3

T. Alarcón, H. M. Byrne, and P. K. Maini, A mathematical model of the effects of hypoxia on the cell-cycle of normal and cancer cells, Journal of Theoretical Biology, vol.229, issue.3, pp.395-411, 2004.
DOI : 10.1016/j.jtbi.2004.04.016

D. Ambrosi and L. Preziosi, ON THE CLOSURE OF MASS BALANCE MODELS FOR TUMOR GROWTH, Mathematical Models and Methods in Applied Sciences, vol.12, issue.05, p.737, 2002.
DOI : 10.1142/S0218202502001878

A. Anderson and M. Chaplain, Continuous and Discrete Mathematical Models of Tumor-induced Angiogenesis, Bulletin of Mathematical Biology, vol.60, issue.5, pp.857-899, 1998.
DOI : 10.1006/bulm.1998.0042

A. Anderson, K. Rejniak, P. Gerlee, and V. Quaranta, Microenvironment driven invasion: a multiscale multimodel investigation, Journal of Mathematical Biology, vol.67, issue.19, pp.579-624, 2009.
DOI : 10.1007/s00285-008-0210-2

P. Angot, C. Bruneau, and P. Fabrie, A penalization method to take into account obstacles in incompressible viscous flows, Numerische Mathematik, vol.81, issue.4, pp.497-520, 1999.
DOI : 10.1007/s002110050401

S. Balay, J. Brown, K. Buschelman, V. Eijkhout, W. D. Gropp et al., PETSc users manual, 2010.

S. Balay, W. D. Gropp, L. C. Mcinnes, and B. F. Smith, Efficient Management of Parallelism in Object-Oriented Numerical Software Libraries, Modern Software Tools in Scientific Computing, pp.163-202, 1997.
DOI : 10.1007/978-1-4612-1986-6_8

E. L. Bearer, J. S. Lowengrub, H. B. Frieboes, Y. Chuang, F. Jin et al., Multiparameter Computational Modeling of Tumor Invasion, Cancer Research, vol.69, issue.10, pp.694493-4501, 2009.
DOI : 10.1158/0008-5472.CAN-08-3834

F. Beux and A. Dervieux, Exact-gradient shape optimization of a 2-d euler flow. Finite Elements in Analysis and Design, pp.281-302, 1992.

F. Billy, B. Ribba, O. Saut, H. Morre-trouilhet, T. Colin et al., A pharmacologically based multiscale mathematical model of angiogenesis and its use in investigating the efficacy of a new cancer treatment strategy, Journal of Theoretical Biology, vol.260, issue.4, 2009.
DOI : 10.1016/j.jtbi.2009.06.026

URL : https://hal.archives-ouvertes.fr/inria-00440447

D. Bresch, . Colin, . Grenier, O. Ribba, and . Saut, A viscoelastic model for avascular tumor growth. Discrete and Continuous Dynamical Systems, Dynamical Systems, Differential Equations and Applications, 7th AIMS Conference, pp.101-108, 2009.
URL : https://hal.archives-ouvertes.fr/inria-00267292

D. Bresch, T. Colin, E. Grenier, B. Ribba, and O. Saut, Computational Modeling of Solid Tumor Growth: The Avascular Stage, SIAM Journal on Scientific Computing, vol.32, issue.4, pp.2321-2344, 2010.
DOI : 10.1137/070708895

URL : https://hal.archives-ouvertes.fr/inria-00148610

P. C. Burger, P. J. Dubois, S. C. Schold, K. R. Smith, G. L. Odom et al., Computerized tomographic and pathologic studies of the untreated, quiescent, and recurrent glioblastoma multiforme, Journal of Neurosurgery, vol.58, issue.2, pp.159-169, 1983.
DOI : 10.3171/jns.1983.58.2.0159

H. M. Byrne, J. R. King, D. L. Mcelwain, and L. Preziosi, A two-phase model of solid tumour growth, Applied Mathematics Letters, vol.16, issue.4, pp.567-573, 2003.
DOI : 10.1016/S0893-9659(03)00038-7

P. Carmeliet and R. K. Jain, Angiogenesis in cancer and other diseases, Nature, vol.407, issue.6801, pp.249-257, 2000.
DOI : 10.1038/35025220

F. Chantalat, C. Bruneau, C. Galusinski, and A. Iollo, Level-set, penalization and cartesian meshes: A paradigm for inverse problems and optimal design, Journal of Computational Physics, vol.228, issue.17, pp.6291-6315, 2009.
DOI : 10.1016/j.jcp.2009.05.017

URL : https://hal.archives-ouvertes.fr/hal-00385460

M. Clatz, P. Sermesant, H. Bondiau, S. K. Delingette, G. Warfield et al., Realistic simulation of the 3-D growth of brain tumors in MR images coupling diffusion with biomechanical deformation, IEEE Transactions on Medical Imaging, vol.24, issue.10, pp.1334-1346, 2005.
DOI : 10.1109/TMI.2005.857217

T. Colin, H. Fathallah-shaykh, J. B. Lagaert, and O. Saut, A 3d model for glioblastoma, 2011.

T. Colin, A. Iollo, J. Lagaert, and O. Saut, Abstract, Journal of Inverse and Ill-posed Problems, vol.22, issue.6
DOI : 10.1515/jip-2013-0009

T. Colin, A. Iollo, D. Lombardi, and O. Saut, SYSTEM IDENTIFICATION IN TUMOR GROWTH MODELING USING SEMI-EMPIRICAL EIGENFUNCTIONS, Mathematical Models and Methods in Applied Sciences, vol.22, issue.06
DOI : 10.1142/S0218202512500030

T. Colin, A. Iollo, D. Lombardi, and O. Saut, Prediction of the evolution of thyroidal lung nodules using a mathematical model, ERCIM News, vol.82, pp.37-38, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01038030

D. Collins, V. Ap-zijdenbos, . Kollokian, . Sled, C. Kabani et al., Design and construction of a realistic digital brain phantom, IEEE Transactions on Medical Imaging, vol.17, issue.3, pp.463-468, 2002.
DOI : 10.1109/42.712135

V. Cristini and J. Lowengrub, Multiscale Modeling of Cancer : An Integrated Experimental and Mathematical Modeling Approach, 2010.
DOI : 10.1017/CBO9780511781452

D. Drasdo and S. Höhme, Individual-based approaches to birth and death in avascu1ar tumors, Mathematical and Computer Modelling, vol.37, issue.11, pp.1163-1175, 2003.
DOI : 10.1016/S0895-7177(03)00128-6

O. Drblikova, A. Handlovicova, and K. Mikula, Error estimates of the finite volume scheme for the nonlinear tensor-driven anisotropic diffusion, Applied Numerical Mathematics, vol.59, issue.10, pp.2548-2570, 2009.
DOI : 10.1016/j.apnum.2009.05.010

O. Drblikova and K. Mikula, Convergence Analysis of Finite Volume Scheme for Nonlinear Tensor Anisotropic Diffusion in Image Processing, SIAM Journal on Numerical Analysis, vol.46, issue.1, pp.37-60, 2007.
DOI : 10.1137/070685038

A. Eladdadi and D. Isaacson, A Mathematical Model for the Effects of HER2 Overexpression on Cell Proliferation in Breast Cancer, Bulletin of Mathematical Biology, vol.2, issue.2, pp.1707-1729, 2008.
DOI : 10.1007/s11538-008-9315-4

R. Eymard, T. Gallouet, and R. Herbin, Finite volume methods. Handbook of numerical analysis, pp.713-1018, 2000.
URL : https://hal.archives-ouvertes.fr/hal-00346077

H. B. Frieboes, F. Jin, Y. Chuang, S. M. Wise, J. S. Lowengrub et al., Three-dimensional multispecies nonlinear tumor growth???II: Tumor invasion and angiogenesis, Journal of Theoretical Biology, vol.264, issue.4, pp.1254-1278, 2010.
DOI : 10.1016/j.jtbi.2010.02.036

H. B. Frieboes, J. S. Lowengrub, S. Wise, X. Zheng, P. Macklin et al., Computer simulation of glioma growth and morphology, NeuroImage, vol.37, pp.37-59, 2007.
DOI : 10.1016/j.neuroimage.2007.03.008

J. Galle, M. Loeffler, and D. Drasdo, Modeling the Effect of Deregulated Proliferation and Apoptosis on the Growth Dynamics of Epithelial Cell Populations In Vitro, Biophysical Journal, vol.88, issue.1, pp.62-75, 2005.
DOI : 10.1529/biophysj.104.041459

L. B. Gardner, Q. Li, M. S. Park, W. M. Flanagan, G. L. Semenza et al., Hypoxia Inhibits G1/S Transition through Regulation of p27 Expression, Journal of Biological Chemistry, vol.276, issue.11, pp.2767919-7926, 2001.
DOI : 10.1074/jbc.M010189200

R. A. Gatenby and R. J. Gillies, Why do cancers have high aerobic glycolysis?, Nature Reviews Cancer, vol.62, issue.11, pp.891-899, 2004.
DOI : 10.1038/nrc1478

A. Gerisch and M. A. Chaplain, Mathematical modelling of cancer cell invasion of tissue: Local and non-local models and the effect of adhesion, Journal of Theoretical Biology, vol.250, issue.4, pp.684-704, 2008.
DOI : 10.1016/j.jtbi.2007.10.026

P. Gerlee and A. R. Anderson, An evolutionary hybrid cellular automaton model of solid tumour growth, Journal of Theoretical Biology, vol.246, issue.4, pp.583-603, 2007.
DOI : 10.1016/j.jtbi.2007.01.027

P. Gerlee and A. R. Anderson, Evolution of cell motility in an individual-based model of tumour growth, Journal of Theoretical Biology, vol.259, issue.1, pp.67-83, 2009.
DOI : 10.1016/j.jtbi.2009.03.005

URL : https://hal.archives-ouvertes.fr/hal-00554584

F. Gibou, R. P. Fedkiw, L. Cheng, and M. Kang, A Second-Order-Accurate Symmetric Discretization of the Poisson Equation on Irregular Domains, Journal of Computational Physics, vol.176, issue.1, pp.205-227, 2002.
DOI : 10.1006/jcph.2001.6977

A. Giese, Glioma invasion ??? Pattern of dissemination by mechanisms of invasion and surgical intervention, pattern of gene expression and its regulatory control by tumorsuppressor p53 and proto-oncogene ETS-1, Acta Neurochir, vol.88, pp.153-162, 2003.
DOI : 10.1007/978-3-7091-6090-9_21

L. He, C. Kao, and S. Osher, Incorporating topological derivatives into shape derivatives based level set methods, Journal of Computational Physics, vol.225, issue.1, pp.891-909, 2007.
DOI : 10.1016/j.jcp.2007.01.003

C. Hogea, C. Davatzikos, and G. Biros, An image-driven parameter estimation problem for a reaction???diffusion glioma growth model with mass effects, Journal of Mathematical Biology, vol.10, issue.3, pp.793-825, 2008.
DOI : 10.1007/s00285-007-0139-x

G. Jiang and D. Peng, Weighted ENO Schemes for Hamilton--Jacobi Equations, SIAM Journal on Scientific Computing, vol.21, issue.6, pp.2126-2143, 2000.
DOI : 10.1137/S106482759732455X

G. S. Jiang and C. W. Shu, Efficient Implementation of Weighted ENO Schemes, Journal of Computational Physics, vol.126, issue.1, pp.202-228, 1996.
DOI : 10.1006/jcph.1996.0130

Y. Kim, S. Lawler, M. O. Nowicki, E. A. Chiocca, and A. Friedman, A mathematical model for pattern formation of glioma cells outside the tumor spheroid core, Journal of Theoretical Biology, vol.260, issue.3, pp.359-371, 2009.
DOI : 10.1016/j.jtbi.2009.06.025

E. Konukoglu, O. Clatz, H. M. Bjoern, M. Wever, B. Stieltjes et al., Image Guided Personalization of Reaction-Diffusion Type Tumor Growth Models Using Modified Anisotropic Eikonal Equations, IEEE Transactions on Medical Imaging, vol.29, issue.1, pp.77-95, 2010.
DOI : 10.1109/TMI.2009.2026413

URL : https://hal.archives-ouvertes.fr/inria-00616100

E. Konukoglu, O. Clatz, P. Bondiau, H. Delingette, and N. Ayache, Extrapolating glioma invasion margin in brain magnetic resonance images: Suggesting new irradiation margins, Medical Image Analysis, vol.14, issue.2, pp.111-125, 2010.
DOI : 10.1016/j.media.2009.11.005

URL : https://hal.archives-ouvertes.fr/inria-00616107

E. Konukoglu, O. Clatz, H. Delingette, and N. Ayache, Personalization of reactiondiffusion tumor growth models in mr images : Application to brain gliomas characterization and radiotherapy planning, Multiscale Cancer Modeling, 2010.
URL : https://hal.archives-ouvertes.fr/inria-00616111

K. Lamszus, M. A. Brockmann, C. Eckerich, P. Bohlen, C. May et al., Inhibition of Glioblastoma Angiogenesis and Invasion by Combined Treatments Directed Against Vascular Endothelial Growth Factor Receptor-2, Epidermal Growth Factor Receptor, and Vascular Endothelial-Cadherin, Clinical Cancer Research, vol.11, issue.13, pp.114934-4940, 2005.
DOI : 10.1158/1078-0432.CCR-04-2270

K. Lamszus, P. Kunkel, and M. Westphal, Invasion as limitation to anti-angiogenic glioma therapy, Acta Neurochir, vol.88, pp.169-177, 2003.
DOI : 10.1007/978-3-7091-6090-9_23

W. Liu, T. Hillen, and H. I. Freedman, A mathematical model for m-phase specific chemotherapy including the g0-phase and immunoresponse, Math Biosci Eng, vol.4, issue.2, pp.239-259, 2007.

X. D. Liu, S. Osher, and T. Chan, Weighted Essentially Non-oscillatory Schemes, Journal of Computational Physics, vol.115, issue.1, pp.200-212, 1994.
DOI : 10.1006/jcph.1994.1187

D. Louis, H. Ohgaki, O. Wiestler, W. Cavenee, P. Burger et al., The 2007 WHO Classification of Tumours of the Central Nervous System, Acta Neuropathologica, vol.64, issue.2, pp.97-109, 2007.
DOI : 10.1007/s00401-007-0243-4

P. Macklin, S. Mcdougall, M. Anderson, A. Chaplain, V. Cristini et al., Multiscale modelling and nonlinear simulation of vascular tumour growth, Journal of Mathematical Biology, vol.67, issue.2, pp.765-798, 1007.
DOI : 10.1007/s00285-008-0216-9

Y. Mansury, M. Kimura, J. Lobo, and T. S. Deisboeck, Emerging Patterns in Tumor Systems: Simulating the Dynamics of Multicellular Clusters with an Agent-based Spatial Agglomeration Model, Journal of Theoretical Biology, vol.219, issue.3, pp.343-370, 2002.
DOI : 10.1006/jtbi.2002.3131

N. Mantzaris, S. Webb, and H. Othmer, Mathematical modeling of tumorinduced angiogenesis, Journal of Mathematical Biology, vol.49, pp.111-187, 2004.

G. I. Marchuk, Adjoint Equation and Analysis of Complex Systems, Number 295 in Mathematics and its Applications, 1995.
DOI : 10.1007/978-94-017-0621-6

L. Preziosi and A. Tosin, Multiphase modelling of tumour growth and extracellular matrix interaction: mathematical tools and applications, Journal of Mathematical Biology, vol.114, issue.4, pp.625-656, 2009.
DOI : 10.1007/s00285-008-0218-7

J. Qiu and C. Shu, Conservative high order semi-Lagrangian finite difference WENO methods for advection in incompressible flow, Journal of Computational Physics, vol.230, issue.4, pp.863-889, 2011.
DOI : 10.1016/j.jcp.2010.04.037

I. Ramis-conde, D. Drasdo, A. R. Anderson, and M. A. Chaplain, Modeling the Influence of the E-Cadherin-??-Catenin Pathway in Cancer Cell Invasion: A Multiscale Approach, Biophysical Journal, vol.95, issue.1, pp.155-165, 2008.
DOI : 10.1529/biophysj.107.114678

B. Ribba, T. Colin, and S. Schnell, A multiscale mathematical model of cancer, and its use in analyzing irradiation therapies, Theoretical Biology and Medical Modelling, vol.3, issue.1, p.7, 2006.
DOI : 10.1186/1742-4682-3-7

URL : https://hal.archives-ouvertes.fr/hal-00756367

B. Ribba, O. Saut, T. Colin, D. Bresch, E. Grenier et al., A multiscale mathematical model of avascular tumor growth to investigate the therapeutic benefit of anti-invasive agents, Journal of Theoretical Biology, vol.243, issue.4, pp.532-541, 2006.
DOI : 10.1016/j.jtbi.2006.07.013

URL : https://hal.archives-ouvertes.fr/hal-00428053

T. Roose, S. J. Chapman, and P. K. Maini, Mathematical Models of Avascular Tumor Growth, SIAM Review, vol.49, issue.2, pp.179-208, 2007.
DOI : 10.1137/S0036144504446291

G. Russo and P. Smereka, A Remark on Computing Distance Functions, Journal of Computational Physics, vol.163, issue.1, pp.51-67, 2000.
DOI : 10.1006/jcph.2000.6553

M. Simeoni, P. Magni, C. Cammia, G. De-nicolao, V. Croci et al., Predictive Pharmacokinetic-Pharmacodynamic Modeling of Tumor Growth Kinetics in Xenograft Models after Administration of Anticancer Agents, Cancer Research, vol.64, issue.3, pp.1094-1101, 2004.
DOI : 10.1158/0008-5472.CAN-03-2524

K. Smallbone, R. A. Gatenby, and P. K. Maini, Mathematical modelling of tumour acidity, Journal of Theoretical Biology, vol.255, issue.1, pp.106-112, 2008.
DOI : 10.1016/j.jtbi.2008.08.002

K. Smallbone, D. J. Gavaghan, R. A. Gatenby, and P. K. Maini, The role of acidity in solid tumour growth and invasion, Journal of Theoretical Biology, vol.235, issue.4, pp.476-484, 2005.
DOI : 10.1016/j.jtbi.2005.02.001

R. Sullivan and C. H. Graham, Hypoxia-driven selection of the metastatic phenotype, Cancer and Metastasis Reviews, vol.23, issue.Pt 13, pp.319-331, 2007.
DOI : 10.1007/s10555-007-9062-2

K. R. Swanson, Quantifying glioma cell growth and invasion in vitro, Mathematical and Computer Modelling, vol.47, issue.5-6, pp.638-648, 2008.
DOI : 10.1016/j.mcm.2007.02.024

K. R. Swanson, E. C. Alvord, and J. D. Murray, Virtual resection of gliomas: Effect of extent of resection on recurrence, Mathematical and Computer Modelling, vol.37, issue.11, pp.1177-1190, 2003.
DOI : 10.1016/S0895-7177(03)00129-8

K. R. Swanson, C. Bridge, J. D. Murray, and E. C. Alvord, Virtual and real brain tumors: using mathematical modeling to quantify glioma growth and invasion, Journal of the Neurological Sciences, vol.216, issue.1, pp.1-10, 2003.
DOI : 10.1016/j.jns.2003.06.001

J. C. Tonn and R. Goldbrunner, Mechanisms of glioma cell invasion, Acta Neurochir, vol.88, pp.163-167, 2003.
DOI : 10.1007/978-3-7091-6090-9_22

S. M. Wise, J. S. Lowengrub, H. B. Frieboes, and V. Cristini, Three-dimensional multispecies nonlinear tumor growth???I, Journal of Theoretical Biology, vol.253, issue.3, pp.524-543, 2008.
DOI : 10.1016/j.jtbi.2008.03.027

.. Représentation-des-méninges-et-du-cerveaujpg, Domaine public, source MedlinePlus (http://upload.wikimedia.org/wikipedia

.. Schéma-d-'un-neurone-entouré-de-cellules-gliales, Source : JDifool, licence CC-BY-SA-3.0-2.5-2.0-1.0 (www.creativecommons.org/licenses/by-sa/3.0), via Wikimedia Commons (http://commons.wikimedia.org/wiki/File:Neuron_ glial_cells_diagram_dumb.svg), p.20

. Réprésentation-d-'un-neurone-et-de-son-axone-myélinisé, Par LadyofHats, domaine public, via Wikimedia Commons, File:Complete_neuron_cell_diagram_en.svg), vol.21

I. Bergonié and .. , Source : service radiologie, Quelques IRMs de tumeurs cérébrales, p.26

. Evolution-de-la-tumeur,-de-la-gauche-vers-la-droite, La première ligne représente la croissance obtenue avec anisotropie, la seconde lorsque le cerveau est considéré comme étant un milieu isotrope (les plus hautes densités de cellules proliférantes sont en blanc

.. Evolution-d-'une-tumeur,-de-la-gauche-vers-la-droite,-localisée-différemment, La première ligne représente la croissance obtenue avec anisotropie, la seconde sans (les plus hautes densités sont en blanc, les plus basses en noir), p.99

.. Du-cerveau, Croissance de glioblastome : temps nécessaire à l'invasion d'une portion donnée, p.106