O. Aichholzer, W. Aigner, F. Aurenhammer, T. Hackl, B. Jüttler et al., Divide-and-conquer for Voronoi diagrams revisited, Computational Geometry, vol.43, issue.8, pp.688-699, 2010.
DOI : 10.1016/j.comgeo.2010.04.004

L. Alberti, B. Mourrain, and J. Wintz, Topology and arrangement computation of semi-algebraic planar curves, Computer Aided Geometric Design, vol.25, issue.8, pp.631-651, 2008.
DOI : 10.1016/j.cagd.2008.06.009

URL : https://hal.archives-ouvertes.fr/inria-00343110

A. Alesina and M. Galuzzi, A new proof of Vincent's theorem

F. Anton, I. Emiris, B. Mourrain, and M. Teillaud, The Offset to an Algebraic Curve and an Application to Conics, Computational Science and Its Applications ? ICCSA 2005, pp.1-21, 2005.
DOI : 10.1007/11424758_71

URL : https://hal.archives-ouvertes.fr/inria-00350878

M. Atiyah and I. Macdonald, Introduction to Commutative Algebra, 1969.

C. Bajaj, A Laguerre Voronoi based scheme for meshing particle systems, Japan Journal of Industrial and Applied Mathematics, vol.4, issue.2, pp.167-177, 2005.
DOI : 10.1007/BF03167436

C. L. Bajaj and G. Xu, Regular algebraic curve segments (III)???applications in interactive design and data fitting, Computer Aided Geometric Design, vol.18, issue.3, pp.149-173, 2001.
DOI : 10.1016/S0167-8396(01)00010-3

M. Barto? and B. Jüttler, Computing roots of polynomials by quadratic clipping, Computer Aided Geometric Design, vol.24, issue.3, pp.125-141, 2007.
DOI : 10.1016/j.cagd.2007.01.003

S. Basu, R. Pollack, and M. Roy, Complexity of computing semialgebraic descriptions of the connected components of a semi-algebraic set, ISSAC '98: Proceedings of the 1998 international symposium on Symbolic and algebraic computation, pp.25-29, 1998.

S. Basu, R. Pollack, and M. Roy, Algorithms in Real Algebraic Geometry, pp.64-65, 2003.
DOI : 10.1007/978-3-662-05355-3

URL : https://hal.archives-ouvertes.fr/hal-01083587

S. Béla, Fat Arcs and Fat Spheres for Approximating Algebraic Curves and for Solving Polynomial Systems, 2011.

J. L. Bentley, Multidimensional divide-and-conquer, Communications of the ACM, vol.23, issue.4, pp.214-229, 1980.
DOI : 10.1145/358841.358850

L. Blum, F. Cucker, M. Shub, and S. Smale, COMPLEXITY AND REAL COMPUTATION: A MANIFESTO, International Journal of Bifurcation and Chaos, vol.06, issue.01, pp.3-26, 1996.
DOI : 10.1142/S0218127496001818

I. Boada, N. Coll, N. Madern, and J. A. Sellares, Approximations of 2D and 3D generalized Voronoi diagrams, International Journal of Computer Mathematics, vol.80, issue.7, pp.1003-1022, 2008.
DOI : 10.1142/S0218195998000114

J. Bochnak, M. Coste, and M. Roy, Géométrie Algébrique Réelle, 1987.

J. Boissonnat, C. Wormser, and M. Yvinec, Curved Voronoi Diagrams, Effective Computational Geometry for Curves and Surfaces, pp.67-116, 2006.
DOI : 10.1007/978-3-540-33259-6_2

URL : https://hal.archives-ouvertes.fr/hal-00488446

E. Bombieri and A. Van-der-poorten, Continued Fractions of Algebraic Numbers, Computational algebra and number theory, pp.137-152, 1992.
DOI : 10.1007/978-94-017-1108-1_10

L. Busé, Étude du résultant sur une variété algébrique. These, 2001.

S. Cheng, H. Na, A. Vigneron, and Y. Wang, Querying approximate shortest paths in anisotropic regions, Proceedings of the twenty-third annual symposium on Computational geometry, SCG '07, pp.84-91, 2007.

G. Chèze, J. Yakoubsohn, A. Galligo, and B. Mourrain, Computing nearest Gcd with certification, Proceedings of the 2009 conference on Symbolic numeric computation, SNC '09, pp.29-34
DOI : 10.1145/1577190.1577200

G. E. Collins, Quantifier elimination for real closed fields by cylindrical algebraic decompostion, Proc. 2nd GI Conf. on Automata Theory and Formal Languages, pp.134-183, 1975.
DOI : 10.1007/3-540-07407-4_17

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms, 2001.

M. Coste, An introduction to semi-algebraic geometry. RAAG network school, 2002.

F. Cucker, T. Krick, G. Malajovich, and M. Wschebor, A numerical algorithm for zero counting, I: Complexity and accuracy, Journal of Complexity, vol.24, issue.5-6, pp.582-605, 2008.
DOI : 10.1016/j.jco.2008.03.001

URL : http://doi.org/10.1016/j.jco.2008.03.001

F. Cucker, T. Krick, G. Malajovich, and M. Wschebor, A numerical algorithm for zero counting. II: Distance to ill-posedness and smoothed analysis, Journal of Fixed Point Theory and Applications, vol.6, issue.2, pp.11784-11793, 1007.
DOI : 10.1007/s11784-009-0127-4

B. H. Dayton and Z. Zeng, Computing the multiplicity structure in solving polynomial systems, Proceedings of the 2005 international symposium on Symbolic and algebraic computation , ISSAC '05, pp.116-123, 2005.
DOI : 10.1145/1073884.1073902

J. Dedieu and J. Yakoubsohn, Computing the real roots of a polynomial by the exclusion algorithm, Numerical Algorithms, vol.20, issue.1, pp.1-24, 1993.
DOI : 10.1007/BF02142738

D. Diatta and . Niang, Calcul effectif de la topologie de courbes et surfaces algébriques réelles. These, 2009.

A. Dickenstein and I. Z. Emiris, Multihomogeneous resultant formulae by means of complexes, Journal of Symbolic Computation, vol.36, issue.3-4, pp.317-342, 2003.
DOI : 10.1016/S0747-7171(03)00086-5

M. S. Din and L. Zhi, Computing Rational Points in Convex Semialgebraic Sets and Sum of Squares Decompositions, SIAM Journal on Optimization, vol.20, issue.6, pp.2876-2889, 2010.
DOI : 10.1137/090772459

URL : https://hal.archives-ouvertes.fr/inria-00419983

H. Edelsbrunner and R. Seidel, Voronoi diagrams and arrangements, Discrete & Computational Geometry, vol.24, issue.1, pp.25-44, 1986.
DOI : 10.1007/BF02187681

A. Eigenwillig, V. Sharma, and C. K. Yap, Almost tight recursion tree bounds for the Descartes method, Proceedings of the 2006 international symposium on Symbolic and algebraic computation , ISSAC '06, pp.71-78, 2006.
DOI : 10.1145/1145768.1145786

D. Eisenbud and H. Levine, An Algebraic Formula for the Degree of a C ??? Map Germ, The Annals of Mathematics, vol.106, issue.1, pp.19-44, 1977.
DOI : 10.2307/1971156

G. Elber and M. Kim, Geometric constraint solver using multivariate rational spline functions, Proceedings of the sixth ACM symposium on Solid modeling and applications , SMA '01, pp.1-10, 2001.
DOI : 10.1145/376957.376958

M. Elkadi and B. Mourrain, Introduction à la résolution des systèmes d'équations algébriques, of Mathématiques et Applications, pp.45-56, 2007.

I. Emiris, A. Mantzaflaris, and B. Mourrain, Yet another algorithm for generalized Vorono?? Diagrams, Proceedings of the 27th Annual ACM Symposium on Applied Computing, SAC '12, 2011.
DOI : 10.1145/2245276.2245299

I. Z. Emiris, Sparse Elimination and Applications in Kinematics, 1994.

I. Z. Emiris and M. I. Karavelas, The predicates of the Apollonius diagram: Algorithmic analysis and implementation, Computational Geometry, vol.33, issue.1-2, pp.18-57, 2006.
DOI : 10.1016/j.comgeo.2004.02.006

I. Z. Emiris and A. Mantzaflaris, Multihomogeneous resultant formulae for systems with scaled support, ISSAC '09: Proceedings of the 2009 International Symposium on Symbolic and Algebraic Computation, pp.143-150, 2009.

I. Z. Emiris and B. Mourrain, Matrices in Elimination Theory, Journal of Symbolic Computation, vol.28, issue.1-2, pp.3-43, 1999.
DOI : 10.1006/jsco.1998.0266

I. Z. Emiris, B. Mourrain, and E. P. Tsigaridas, Real Algebraic Numbers: Complexity Analysis and Experimentation, Reliable Implementations of Real Number Algorithms: Theory and Practice, pp.57-82
DOI : 10.1007/978-3-540-85521-7_4

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

I. Z. Emiris, B. Mourrain, and E. P. Tsigaridas, The DMM bound, Proceedings of the 2010 International Symposium on Symbolic and Algebraic Computation, ISSAC '10, pp.243-250, 2010.
DOI : 10.1145/1837934.1837981

URL : https://hal.archives-ouvertes.fr/inria-00393833

I. Z. Emiris, E. P. Tsigaridas, and G. M. Tzoumas, Exact Delaunay graph of smooth convex pseudo-circles, 2009 SIAM/ACM Joint Conference on Geometric and Physical Modeling on, SPM '09, pp.211-222, 2009.
DOI : 10.1145/1629255.1629282

G. Farin, Curves and surfaces for CAGD: a practical guide, pp.66-92, 2002.

J. Garloff and A. Smith, A Comparison of Methods for the Computation of Affine Lower Bound Functions for Polynomials, Global Optimization and Constraint Satisfaction, pp.364-364, 2005.
DOI : 10.1007/11425076_6

J. Garloff and A. P. Smith, Investigation of a subdivision based algorithm for solving systems of polynomial equations, Nonlinear Analysis: Theory, Methods & Applications, vol.47, issue.1, pp.167-178, 2001.
DOI : 10.1016/S0362-546X(01)00166-3

M. Giusti, G. Lecerf, B. Salvy, and J. Yakoubsohn, On Location and Approximation of Clusters of Zeros: Case of Embedding Dimension One, Foundations of Computational Mathematics, vol.7, issue.1, pp.1-58, 2007.
DOI : 10.1007/s10208-004-0159-5

URL : https://hal.archives-ouvertes.fr/hal-00186739

J. Gravesen, Z. ?ír, and B. Jüttler, Curves and surfaces represented by polynomial support functions, Theoretical Computer Science, vol.392, pp.141-157, 2008.

R. M. Hardt, Triangulation of subanalytic sets and proper light subanalytic maps, Inventiones Mathematicae, vol.2, issue.no. 4, pp.207-21777, 1976.
DOI : 10.1007/BF01403128

M. Hemmer, E. P. Tsigaridas, Z. Zafeirakopoulos, I. Z. Emiris, M. I. Karavelas et al., Experimental evaluation and cross-benchmarking of univariate real solvers, Proceedings of the 2009 conference on Symbolic numeric computation, SNC '09, pp.45-54, 2009.
DOI : 10.1145/1577190.1577202

URL : https://hal.archives-ouvertes.fr/inria-00340887

D. Henrion, J. Lasserre, and J. Lofberg, GloptiPoly 3: moments, optimization and semidefinite programming. Optimization Methods and Software, Rapport LAAS, vol.24, issue.4, pp.761-779, 2009.
DOI : 10.1080/10556780802699201

URL : https://hal.archives-ouvertes.fr/hal-00172442

H. Hironaka, Triangulations of algebraic sets, Algebraic geometry (Proc. Sympos. Pure Math, pp.165-185, 1974.
DOI : 10.1090/pspum/029/0374131

M. Hodorog, B. Mourrain, and J. Schicho, GENOM3CK -A Library for Genus Computation of Plane Complex Algebraic Curves Using Knot Theory, ACM SIGSAM Communications in Computer Algebra, vol.44, issue.174, pp.198-2001932, 2010.

M. Hodorog, B. Mourrain, and J. Schicho, An Adapted Version of the Bentley-Ottmann Algorithm for Invariants of Plane Curves Singularities, Proceedings of the 11th International Conference on Computational Science and Its Applications, Part III, Session: Computational Geometry and Applications, pp.121-131
DOI : 10.1007/978-3-540-72185-7_11

URL : https://hal.archives-ouvertes.fr/hal-00646566

M. Hodorog and J. Schicho, A regularization method for computing approximate invariants of plane curves singularities, Proceedings of the 2011 International Workshop on Symbolic-Numeric Computation, SNC '11, p.2011
DOI : 10.1145/2331684.2331692

W. Kahan, A more complete interval arithmetic. Lecture notes for a summer course at the University of Michigan, 1968.

G. N. Khim?ia?vili, The local degree of a smooth mapping, Sakharth. SSR Mecn. Akad. Moambe, vol.85, issue.2, pp.309-312, 1977.

C. Konaxis, Algebraic algorithms for polynomial system solving and applications, 2010.

R. Krawczyk, Newton-algorithms for evaluation of roots with error bounds, Computing, vol.47, issue.3, pp.187-201, 1969.
DOI : 10.1007/BF02234767

F. Labelle and J. R. Shewchuk, Anisotropic voronoi diagrams and guaranteed-quality anisotropic mesh generation, Proceedings of the nineteenth conference on Computational geometry , SCG '03, pp.191-200, 2003.
DOI : 10.1145/777792.777822

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

J. B. Lasserre, Moments, Positive Polynomials and their Applications, volume 1 of Optimization Series, 2009.

G. Lecerf, Quadratic Newton Iteration for Systems with Multiplicity, Foundations of Computational Mathematics, vol.2, issue.3, pp.247-293, 2002.
DOI : 10.1007/s102080010026

URL : https://hal.archives-ouvertes.fr/hal-00186730

P. Lévy, Sur les lois de probabilitié dont dependent les quotients complets et incomplets d' une fraction continue, Bull. Soc. Math, vol.57, pp.178-194, 1929.

A. Leykin, J. Verschelde, and Z. A. , Newton's method with deflation for isolated singularities of polynomial systems, Theoretical Computer Science, vol.359, issue.1-3, pp.111-122, 2006.
DOI : 10.1016/j.tcs.2006.02.018

A. Leykin, J. Verschelde, and A. Zhao, Higher-Order Deflation for Polynomial Systems With Isolated Singular Solutions
DOI : 10.1007/978-0-387-75155-9_5

A. Schreyer and . Sommese, Algorithms in Algebraic Geometry, volume 146 of The IMA Volumes in Mathematics and its Applications, pp.79-97, 2008.

C. Liang, B. Mourrain, and J. Pavone, Subdivision Methods for the Topology of 2d and 3d Implicit Curves, Geometric Modeling and Algebraic Geometry, pp.199-214, 2008.
DOI : 10.1007/978-3-540-72185-7_11

URL : https://hal.archives-ouvertes.fr/inria-00130216

T. and L. Ba, Représentation matricielle implicite de coubres et surface algériques et applications, 2011.

F. Macaulay, The algebraic theory of modular systems, pp.41-46, 1916.

A. Mantzaflaris and B. Mourrain, A Subdivision Approach to Planar Semi-algebraic Sets, Advances in Geometric Modeling and Processing, pp.104-123, 2010.
DOI : 10.1007/978-3-642-13411-1_8

URL : https://hal.archives-ouvertes.fr/inria-00463491

A. Mantzaflaris and B. Mourrain, Deflation and certified isolation of singular zeros of polynomial systems, Proceedings of the 36th international symposium on Symbolic and algebraic computation, ISSAC '11, pp.249-256, 2011.
DOI : 10.1145/1993886.1993925

URL : https://hal.archives-ouvertes.fr/inria-00556021

A. Mantzaflaris, B. Mourrain, and E. Tsigaridas, Continued fraction expansion of real roots of polynomial systems, Proceedings of the 2009 conference on Symbolic numeric computation, SNC '09, pp.85-94, 2009.
DOI : 10.1145/1577190.1577207

URL : https://hal.archives-ouvertes.fr/inria-00387399

A. Mantzaflaris, B. Mourrain, and E. Tsigaridas, On continued fraction expansion of real roots of polynomial systems, complexity and condition numbers, Theoretical Computer Science, vol.412, issue.22, pp.2312-2330, 2011.
DOI : 10.1016/j.tcs.2011.01.009

URL : https://hal.archives-ouvertes.fr/inria-00530756

M. Marden, Geometry of Polynomials, 1966.
DOI : 10.1090/surv/003

M. G. Marinari, T. Mora, and H. Möller, Gröbner duality and multiplicities in polynomial system solving, Proceedings of the 1995 international symposium on Symbolic and algebraic computation, ISSAC '95, pp.167-179, 1995.

K. Mehlhorn and S. Ray, Faster algorithms for computing Hong???s bound on absolute positiveness, Journal of Symbolic Computation, vol.45, issue.6, pp.677-683, 2010.
DOI : 10.1016/j.jsc.2010.02.002

R. Moore, A Test for Existence of Solutions to Nonlinear Systems, SIAM Journal on Numerical Analysis, vol.14, issue.4, pp.611-615, 1977.
DOI : 10.1137/0714040

B. Mourrain, Approche effective de la théorie des invariants des groupes classiques, 1991.

B. Mourrain, Isolated points, duality and residues, Journal of Pure and Applied Algebra, pp.117-118469, 1997.
DOI : 10.1016/S0022-4049(97)00023-6

URL : https://hal.archives-ouvertes.fr/inria-00125278

B. Mourrain and J. Pavone, Subdivision methods for solving polynomial equations, Polynomial System Solving in honor of Daniel Lazard, pp.292-306, 2009.
DOI : 10.1016/j.jsc.2008.04.016

URL : https://hal.archives-ouvertes.fr/inria-00070350

B. Mourrain, F. Rouillier, and M. Roy, Bernstein's basis and real root isolation Mathematical Sciences Research Institute Publications, pp.459-478, 2005.

T. Ojika, S. Watanabe, and T. Mitsui, Deflation algorithm for the multiple roots of a system of nonlinear equations, Journal of Mathematical Analysis and Applications, vol.96, issue.2, pp.463-479, 1983.
DOI : 10.1016/0022-247X(83)90055-0

V. Pan, Solving a Polynomial Equation: Some History and Recent Progress, SIAM Review, vol.39, issue.2, pp.187-220, 1997.
DOI : 10.1137/S0036144595288554

V. Pan, Univariate polynomials, Proceedings of the 2001 international symposium on Symbolic and algebraic computation , ISSAC '01, pp.701-733, 2002.
DOI : 10.1145/384101.384136

J. Pavone, Auto-intersection de surfaces pamatrées réelles, 2004.

J. Peters and X. Wu, SLEVEs for planar spline curves, Computer Aided Geometric Design, vol.21, issue.6, pp.615-635, 2004.
DOI : 10.1016/j.cagd.2004.04.004

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

S. Pope and A. Szanto, Nearest multivariate system with given root multiplicities, Journal of Symbolic Computation, vol.44, issue.6, pp.606-625, 2009.
DOI : 10.1016/j.jsc.2008.03.005

URL : http://doi.org/10.1016/j.jsc.2008.03.005

A. Poteaux, Calcul de développements de Puiseux et application au calcul du groupe de monodrmie d'une courbe algébrique plane, 2008.

U. Reif, Best bounds on the approximation of polynomials and splines by their control structure, Computer Aided Geometric Design, vol.17, issue.6, pp.579-589, 2000.
DOI : 10.1016/S0167-8396(00)00014-5

S. Rump and S. Graillat, Verified error bounds for multiple roots of systems of nonlinear equations, Numerical Algorithms, vol.43, issue.3/4, pp.359-377, 2010.
DOI : 10.1007/s11075-009-9339-3

M. Safey-el-din, Resolution reelle des systemes polynomiaux en dimension positive, 2001.

M. Safey-el-din, Testing Sign Conditions on a Multivariate Polynomial and Applications, Mathematics in Computer Science, vol.1, issue.1, pp.177-207, 2007.
DOI : 10.1007/s11786-007-0003-9

URL : https://hal.archives-ouvertes.fr/inria-00105835

J. Seong, E. Cohen, and G. Elber, Voronoi diagram computations for planar NURBS curves, Proceedings of the 2008 ACM symposium on Solid and physical modeling , SPM '08, pp.67-77, 2008.
DOI : 10.1145/1364901.1364913

O. Setter, M. Sharir, and D. Halperin, Constructing two-dimensional voronoi diagrams via divide-and-conquer of envelopes in space, Transactions on computational science IX, pp.1-27

V. Sharma, Complexity of real root isolation using continued fractions, Theoretical Computer Science, vol.409, issue.2, pp.292-310, 2008.
DOI : 10.1016/j.tcs.2008.09.017

URL : https://hal.archives-ouvertes.fr/inria-00190865

E. C. Sherbrooke and N. M. Patrikalakis, Computation of the solutions of nonlinear polynomial systems, Computer Aided Geometric Design, vol.10, issue.5, pp.379-405, 1993.
DOI : 10.1016/0167-8396(93)90019-Y

M. Shub and S. Smale, Complexity of bezout's theorem i: Geometric aspects, Journal of the American Mathematical Society, vol.6, issue.24, pp.459-501, 1993.

F. Stenger, Computing the topological degree of a mapping inR n, Numerische Mathematik, vol.2, issue.1, pp.23-38, 1975.
DOI : 10.1007/BF01419526

H. J. Stetter, Analysis of zero clusters in multivariate polynomial systems, Proceedings of the 1996 international symposium on Symbolic and algebraic computation , ISSAC '96, pp.127-136, 1996.
DOI : 10.1145/236869.236919

Z. Szafraniec, Topological degree and quadratic forms, Journal of Pure and Applied Algebra, vol.141, issue.3, pp.299-314, 1999.
DOI : 10.1016/S0022-4049(98)00055-3

URL : http://doi.org/10.1016/s0022-4049(98)00055-3

A. Tarski, A Decision Method for Elementary Algebra and Geometry, 1951.
DOI : 10.1007/978-3-7091-9459-1_3

P. Trébuchet, Vers une résolution stable et rapide des équations algébriques, 2002.

E. P. Tsigaridas, Algebraic algorithms and applications to geometry, 2006.

E. P. Tsigaridas and I. Z. Emiris, On the complexity of real root isolation using continued fractions, Theoretical Computer Science, vol.392, issue.1-3, pp.158-173, 2008.
DOI : 10.1016/j.tcs.2007.10.010

URL : https://hal.archives-ouvertes.fr/inria-00116990

G. Tzoumas, Computational geometry for curved objects Voronoi diagrams in the plane, 2009.

J. Van-der-hoeven, G. Lecerf, B. Mourrain, P. Trebuchet, J. Berthomieu et al., Mathemagix, ACM Communications in Computer Algebra, vol.45, issue.3/4, pp.2011-2045
DOI : 10.1145/2110170.2110180

URL : https://hal.archives-ouvertes.fr/hal-00771214

A. Van-der-poorten, An introduction to continued fractions, Diophantine analysis, pp.99-138, 1986.
DOI : 10.1017/CBO9780511721304.007

J. Zur-gathen and J. Gerhard, Fast algorithms for Taylor shifts and certain difference equations, Proceedings of the 1997 international symposium on Symbolic and algebraic computation , ISSAC '97, pp.40-47, 1997.
DOI : 10.1145/258726.258745

M. N. Vrahatis, A short proof and a generalization of Miranda's existence theorem, Proceedings of the American Mathematical Society, vol.107, issue.3, pp.701-703, 1989.

X. Wu and L. Zhi, Determining singular solutions of polynomial systems via symbolic???numeric reduction to geometric involutive forms, Journal of Symbolic Computation, vol.47, issue.3, pp.104-122, 2008.
DOI : 10.1016/j.jsc.2011.10.001

G. Xu, C. L. Bajaj, and C. I. Chu, Regular algebraic curve segments (II)???Interpolation and approximation, Computer Aided Geometric Design, vol.17, issue.6, pp.503-519, 2000.
DOI : 10.1016/S0167-8396(00)00013-3

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

G. Xu, C. L. Bajaj, and W. Xue, Regular algebraic curve segments (I)???Definitions and characteristics, Computer Aided Geometric Design, vol.17, issue.6, pp.485-501, 2000.
DOI : 10.1016/S0167-8396(00)00012-1

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

J. Yakoubsohn, Approximating the zeros of analytic functions by the exclusion algorithm, Numerical Algorithms, vol.4, issue.1, pp.63-88, 1994.
DOI : 10.1007/BF02149763

C. Yap, Fundamental Problems of Algorithmic Algebra, 2000.

Y. Yomdin and G. Comte, Tame geometry with applications in smooth analysis . LNM 1834, 2004.

Z. Zeng, The closedness subspace method for computing the multiplicity structure of a polynomial system, Interactions of Classical and Numerical Algebraic Geometry, pp.347-362, 2009.
DOI : 10.1090/conm/496/09733