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Introduction

Research on ultra-cold atoms is a very rich area of investigation, where di�erent �elds
of basic research merge, such as atomic, condensed-matter and many-body physics. The
�rst realisation of a Bose-Einstein condensate (BEC) has been observed almost simusta-
neously in 1995 by three groups working with di�erent alkali atoms (Rb [1],Na [2],Li [3]).
Before, BECs have usually been associated with super�uid helium, as it was �rstly pointed
out by London [4]. The exact link between super�uidity and Bose-Einstein condensation
still remains di�cult to be understood. However, degenerate dilute gases are much closer
to Einstein's original idea of a condensate [5] since atoms are only weakly interacting and
thus closer to an ideal gas than super�uid helium is. The �rst generation of experiments
on those quantum objects revealed that their behaviour is described by a macroscopic
wave-function [6] governed by a nonlinear Schrödinger equation [7, 8]. Most properties
of weakly-interacting Bose-Einstein condensates in three dimensions were investigated
in many details. Coherence properties and quantised vortices providing a striking evi-
dence for the super�uidity of Bose-Einstein condensates are well described in a mean-�eld
framework [9, 10, 11, 12]. At the same time, the �rst degenerate Fermi gases were exper-
imentally realised [13, 14, 15].

Within the last thirty years, research e�orts in this �eld are undergoing a continuous
expansion. The precise control of atomic interactions, taking advantage of Feshbach res-
onances [16, 17] in an external magnetic �eld, opened the way towards regimes of strong
correlations described by complex many-body theories [18].
Such correlation characteristics can also be achieved in optical lattices produced by far-
detuned standing waves of laser light. Thanks to the good control on the trapping po-
tentials and the detailed description of atomic interactions, the system is fully described
by a model Hamiltonian. Reference Hamiltonians were proposed and extensively stud-
ied in the �eld of condensed matter, for which numerical simulation is impossible. As a
consequence ultracold gases constitute a unique tool to investigate open problems from
condensed matter, via analogous simulation as initially proposed by Feynman [19].

0.1 About metastable Helium

0.1.1 Noble gases in the cold atom �eld

Noble gases constitute challenging candidates for Bose-Einstein condensation since optical
manipulation of their ground state would require light sources in the far UV. But they
show long-lived metastable states (7900 s for Helium), which can be considered as e�ective
ground states on the experimental times scales. From those levels atomic transitions can
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be induced using state-of-the-art lasers.

Their main speci�city is based on their large internal energy of the order of several eV.
This energy can be released when hitting any metallic or dielectric surface, emitting one
electron by Auger e�ect. This property allows for a very e�cient detection of metastable
atoms using electron multipliers (channeltrons or microchannel plates) leading to a single
atom sensitivity on a time scale of few nanoseconds. This opens the possibility of new
experimental studies, some of which are di�cult to realise with alkaline atoms, as for
instance the e�ect of �nite particle number working with small condensates. This possi-
bility has also been used for the direct measurement of correlation functions in the groups
of W. Vassen and A. Aspect, enlightening the atomic Hanbury-Brown and Twiss e�ect [20].

This large internal energy also makes metastable atoms intrinsically fragile and di�cult
to manipulate. Any atomic collision may lead to losses due to the ionisation of one of
the colliding particles. Two metastable Helium atoms have a very large probability to
undergo Penning ionisation, described by the following equation:

He� + He� ! He + He+ + e� (1)

! He+
2 + e� (2)

The collision rate of this reaction is of the order of 10� 10 cm3�s� 1 [21], which prevents
to achieve the large atomic densities characterising a degenerate gas. However, for He-
lium, if the colliding partners are spin polarised, the Penning ionisation is inhibited as
the electronic spin is not conserved between the initial and �nal states. A collision rate
of 10� 14cm3�s� 1 has been calculated and experimentally veri�ed [22, 23, 24].

Since the early experiments on slowing down beams of metastable Helium, four groups
achieved Bose-Einstein condensation of the isotope4He� : Orsay [25], Paris [26], Amster-
dam [27], Canberra [28] and recently in the group of W. Ketterle [29]. So far, Xenon,
Krypton and Neon atoms inP metastable states have been loaded into magneto-optical
traps and cooled down to the mK range. Neon metastable atoms have been loaded into
magnetic traps and brought to lower temperatures but the condensation has not been
achieved yet (Eindhoven [30], Darmstadt [31], Queensland [32]).

0.1.2 Speci�cities of Helium

The Helium atom o�ers another speci�c advantage : being the simplest atom next to
Hydrogen, its atomic sructure can be calculated ab initio with great accuracy [33]. On
the contrary to alkali atoms, the nuclear spin of4He is zero and thus the atomic structure
does not show an hyper�ne structure as can be seen in �gure 1.

In this thesis we report on the �rst spectroscopy measurement of the triplet-singlet
magnetic dipole transition23S1 ! 21S0 realised during my staying in the group of Wim
Vassen at the Vreije Universiteit (VU) in Amsterdam. The present experimental error
of 10 kHz on the frequency of the atomic transition is substantially smaller than esti-
mates of non-evaluated higher order terms in QED calculations (presently evaluated at
3 MHz [33]) and presents a signi�cant challenge for groups involved in atomic structure
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Figure 1: Energy levels of4He (not to scale). We work with the triplet23S1 metastable
state as an e�ective ground state. For cooling and trapping the23S1 ! 23P2 transition at
1083 nm is used. In [34], the23S1 ! 33P0 transition at 389 nm has been used to magneto-
optically trap 4He� . In this manuscript we report on a spectroscopy measurement of the
magnetic dipole transition23S1 ! 21S0, �rst direct link between the singlet and triplet
families of Helium.

theory. The very narrow natural linewidth of this transition (8 Hz) allows for possible
improvements in spectroscopy measurements and especially concerning the isotope shift
of Helium. This atomic transition at 1557 nm has indeed been measured in the group of
Wim Vassen for the fermionic isotope3He, providing a new and accurate determination
of the isotope shift and thus the charge radius. The result is competitive with the present
best measurement on the23S1 ! 23P of Helium [35] reaching an accuracy of 5 kHz.

Also molecular potentials between interacting helium atoms can be calculated ab initio
[36]. This enables accurate determination for thes � wavescattering length, the param-
eter describing fully the cold two-body collisions. Previously the ENS group realised
two successive measurements of this parameter, using one- and two-photon photoasso-
ciation [37, 38]. The basic idea is to deduce the energy of the least bound-statev= 14
in the 5� +

g molecular potential. The latest experiment leads to a very accurate value
a = 7.512 � 0.005 nm, from which a 1� s lifetime of the molecule can be extracted [39].
This value is in disagreement with the theoretically evaluated lifetime lying in the range
of 100� s [40], which assumes that the lifetime of this exotic dimer is limited by Penning
collisions. The new channeltron implemented in the ENS setup, as described in this thesis,
could solve this discrepancy. The ability to detect ions, allows to distinguish the losses
due to Penning ionisation from other possible decay channels, not considered by theory.
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0.2 Metastable Helium in optical potentials

This thesis work follows those photoassociation experiments and presents the construction
of a new experimental setup, conceived to allow the implementation of optical potentials
for metastable Helium.
The dipole force originating from far-detuned laser beams allows to create versatile optical
potentials for neutral atoms. The rapid development of those trapping potentials relies on
several advantages over the magnetic ones opening new experimental opportunities. Sev-
eral directions have been investigated for the future experiments, which could be realised
in our group:

� the study of the magnetic �eld dependancy of inelastic collisions in a crossed dipole
trap,

� the e�ect on the Penning collision rates of geometry of reduced dimensionality,

� the speci�ties of 4He� in a 3D optical lattice.

In optical traps, atoms are con�ned regardless from their spin state, opening the ex-
ploration of samples of spin states or mixtures which cannot be controlled in a magnetic
trap. The group of Institut d'Optique implemented a dipole trap for metastable Helium
and could measure spin-state-resolved Penning ionisation rates [41]. Another pro�table
aspect of those traps is the release of the constraint on the magnetic �eld, which hence
becomes a free parameter. In this work we present a theoretical study of the magnetic
�eld dependency of the Penning collision rate as �rst studied in [22, 23], which should be
measurable with the new experimental setup implemented.

Another possible application for optical lattices is the con�nement of the atomic sam-
ple in a geometry of reduced dimensionality, which has been �rst considered by Bagnato
and Keppler [42]. It is well established that con�nement of a gas can strongly modify both
the elastic and inelastic collision rates as established in 1D [43, 44] and 2D [45, 46]. The
�rst experimental realisation of traps in which the level spacing approaches the thermal
energy, freezing the movement in a plane or a tube, is reported in [47]. In order to ex-
perience low-dimensional collisions, the extension of the wave function has to be smaller
than the typical range of the interaction potential, which was experimentally achieved in
1D [48] and 2D [49]. Many experimental studies cover the new phenomena resulting from
the strong con�nement of a quantum gas [50, 51, 52].
Con�ning He � atoms in a 1D optical lattice at � = 1560 nm makes it possible to study the
modi�cation of the Penning inelastic collision rate induced by a tight axial con�nement.

Optical potentials are also easier to be shaped spatially and open the possibility to
study strongly correlated states. Optical lattices, resulting from the interference pattern
of counter-propagating laser beams, simulate a perfect model crystal in which all the ge-
ometry parameters are controlled by the experimentalist. The gas is then described by
a Hubbard Hamiltonian, a fundamental model introduced in solid state physics in order
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to describe the transition between conducting and insulating systems. As pointed out by
Jakschet al: [53], such optical potentials allow to convert a weakly interacting Bose gas
(super�uid) into a strongly interacting quantum state (Mott insulator). This predicted
quantum-phase transition has been observed by Greineret al: [54] : the destruction of the
long-range phase coherence of the super�uid state has been observed entering the Mott
insulator state.
Here on-site interaction are large enough to prevent the tunneling and induce strong
many-body interaction.

0.3 Outline of this thesis

This thesis work was carried out in the cold atom group at Laboratoire Kastler Brossel
under the supervision of Michèle Leduc.

The �rst two chapters of this manuscript describe the construction of a new experi-
mental setup for the condensation of metastable Helium. Chapter 1 is dedicated to the
improvements realised on the existing setup : a new computer-program has been imple-
mented, all the optics redesigned and �ber-coupled to achieve more stability. The glass
cell in which experiments are carried out has been replaced in order to gain more op-
tical access. Also a Channel Electron Multiplier (channeltron) has been added in the
science chamber providing new diagnostics, which are essential for the future experi-
ments. As detailed in this work, it allows us to characterise more precisely the atomic
beam of metastable Helium and its slowing process occurring in the Zeeman coils. The
magneto-optical trap (MOT), loaded from this slow beam, contains up to 2 108 atoms at
a temperature of 1 mK. Diagnostics provided by optical imaging and by the channeltron
will be discussed.
In Chapter 2, the implementation of a novel cloverleaf magnetic trap is detailed. This
trap has been speci�cally designed to produce the condensate and e�ciently load it in-situ
into an optical potential, either a dipole trap or optical lattices. Details about the electric
circuit and its performances are reported. Typically 108 atoms are loaded in this new
magnetic trap and a phase-space density of� � 7�10� 6 could be reached.

Chapter 3 presents the theoretical background of the di�erent experiments involving
optical potentials. After a brief overview of the general principle and properties of optical
trapping, we specify the parameters of the crossed dipole trap at� = 1560 nm, which will
be soon implemented in our setup. The tests done so far on optical modulators and laser
beam spatial pro�les are reported. In this dipole trap, we plan to verify the variations of
the Penning ionisation loss rates with the magnetic �eld value, which was �rst predicted
in [22, 23]. A new numerical evaluation, using the latest available molecular potentials
for metastable Helium [36], has been realised.

Concerning optical lattices, two thematics are developped in Chapter 4. First a
prospective study on the e�ect of con�nement in a 1D optical lattice on the inelastic Pen-
ning collision rates is detailed, demonstrating our ability to e�ectively enter the quasi-2D
collisional regime and to measure a modi�cation of the inelastic collision rates induced by
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the strong con�nement.
The description of metastable Helium in a three-dimensional optical lattice requires an
extension of the Bose-Hubbard model, in order to include the dissipation resulting from
Penning losses. Such open quantum systems are similar to systems studied in quantum
optics, which are driven by an external �eld and coupled to the environment inducing a
non-equilibrium dynamics. Diehlet al. suggested to take advantage of this novel possi-
bility to drive an atomic system into a many-body quantum state [55]. For metastable
Helium, Penning ionisation opens the way towards strongly correlated system, similarly
to a recent experiment realised in one dimension [56]. Large two-body losses thus result
in a stabilisation of the system, suppressing double occupancy of lattice sites and as a
consequence the losses events.

The last chapter constitutes a separate part of this work and represents the results of
four months of experimental work in the group of Wim Vassen at the Vrije Universiteit
(VU) in Amsterdam. We report on a spectroscopy experiment on the magnetic dipole
transition 23S1 ! 21S0 in 4He, �rst direct link between the ortho- and para-helium family.
This �rst direct measurement of the transition combines the advantages of the cold atoms
�eld, having a condensate of4He� atoms con�ned in a dipole trap, with state-of-the-art
frequency combs technology. The experimental techniques developed during my stay are
described in this chapter. The di�erent experimental shifts and broadening are evaluated
in detail, in order to determine the absolute atomic transition energy and the achieved
experimental accuracy.



Chapter 1

New experimental setup for the
trapping of He*

The experimental apparatus, aiming to produce Bose Einstein condensates of Helium
atoms in the23S1 metastable state, has been almost completely rebuilt. The main changes
and improvements accomplished since september 2007 will be detailed in this chapter. The
goals were twofolds: on one hand an improvement of the stability and performances of the
experiment and on the other hand the development of a more versatile trapping scheme
in order to diversify the experimental possibilities. A new detection device (Channel
Electron Multiplier or channeltron) has also been mounted in the science chamber to de-
tect either metastable atoms or charged paticles produced by Penning ionisation processes.

The �rst section will brie�y present the basic layout on which the whole experiment
relies, which means vacuum, optical, computer systems and the di�erent detectors.
The metastable Helium beam produced by supersonic expansion and its subsequent slow-
ing in the Zeeman decelerator are then analysed with the new insights o�ered by the
channeltron recently mounted in the science chamber.
The performances of the Magneto-Optical Trap (MOT) loaded from this slow atomic beam
are discussed in details in the last section. A larger quartz cell has been installed, o�ering
more optical access and thus a better geometrical arrangement of the MOT beams. We
obtain at this stage an atomic cloud of 2�108 atoms at a temperature of 2 mK.

1.1 The experimental apparatus

The general idea of our experiment is that of a 3 stages process which is sketched in �gure
1.1. Helium atoms in the23S1 metastable state are �rst produced and selected in the
source chamber before being slowed down to few tens of m�s� 1 during the Zeeman slowing
stage. Finally several108 atoms are trapped in a MOT, described in section 1.3.

1.1.1 Vacuum system

The pumping scheme, depicted in �gure 1.1, has been modi�ed to use turbomolecular
pumps instead of ion pumps or di�usion pumps. The three sections of the experiment are
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Figure 1.1: Overview of the experimental setup. The metastable atomic beam is succes-
sively collimated and de�ected in the source chamber, decelerated in the Zeeman slower
and trapped in the science chamber.

separated by gate valves with pneumatic actuators, all connected to a safety system. The
source chamber has its own primary membrane pump, but the two last sections share the
same primary vacuum system.
The source chamber consists of two distinct chambers, calledproduction chamberand
selection chamber, communicating only through a skimmer of 1 mm diameter. This hole
realises the �rst di�erential pumping stage of the experimental setup. As we will see in
the next section, the discharge source produces a high atomic �ux containing only a small
fraction of atoms in the metastable state. A turbo pump of high pumping speed (Varian
V-3KT) maintains a pressure of 2�10� 5 mbar when the source operates under optimal
conditions. In the selection chamber, where an atomic beam is shaped and propagated,
a lower pressure is required. The di�erential pumping stage and a second turbo pump
(Pfei�er TMH 521 P) allow to reach 5�10� 7 mbar.
The second di�erential pumping stage is located in front of the Zeeman slower using a
long cylindrical tube (� =1 cm, L=10 cm). A pressure of 10� 10 mbar is maintained in the
Zeeman slower using an additional turbo pump (Pfei�er TPU 2101 P).
The science chamber, a quartz cell connected to the Zeeman slower via a CF40 �ange, is
pumped using a last turbo pump (Pfei�er TPU 450 H) through the second part of the
Zeeman slower (� =2 cm, L=15 cm) in order to reach 10� 11 mbar, level required to get
lifetimes of several seconds for cold atomic samples.

1.1.2 Optical setup

As already detailed in the PhD thesis of Julien Dugué [57], the optical setup was entirely
designed using �ber-coupling o�ering a much larger stability and improving the optical
quality of the beams.

The light source for the laser system is a Di�racted Bragg Re�ector (DBR) laser
diode emitting at 1083 nm and placed in an external cavity to reduce its linewidth to
300 kHz. This seed is frequency-locked on the23S1 ! 23P2 transition using saturated
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spectroscopy. This transition has a linewidth� 0= 1.62 MHz and a saturation intensity
I sat= 167 � W�cm� 2.

Two �ber ampli�ers (Keopsys), providing respectively 3 W and 1 W, are placed in
series to produce enough power for the di�erent stages of the experiment. As depicted in
�gure 1.2, near resonant laser beams are needed in six phases of a typical experimental
sequence: the collimation and de�ection of the atomic beam, the Zeeman slowing, the
trapping and cooling in the MOT, the detection using absorption images and �nally the
optical pumping to a magnetically trapped state, which will be discussed in chapter 2.
The frequencies needed are derived using acousto-optical modulators (AOM) mounted in
double pass con�guration in order to have a stable �ber injection at di�erent detunings.
Table 1.1 summarizes the power needed for each of those optical beams and their detuning
from the atomic resonance.

Laser diode

Fiber amplifier (3W)

Saturation spectroscopy

Fiber amplifier (1W)

Collimation / deflectionZeeman slowing MOT Imaging 
 Optical pumping 

Locking system

120 mW 250 mW 2 mW 2 mW

8 mW

2 mW

Figure 1.2: Layout of the laser system. The laser diode, placed in an external cavity,
is locked using saturation spectroscopy and retroacting both on its current and the piezo-
electric control of the position of the cavity mirror. This seed injects a 3 W ampli�er
producing all the laser beams required at di�erent stages of the experiment. A 1 W am-
pli�er is dedicated to the optical beams, which collimates and de�ects the atomic beam in
the selection chamber.

Optical beam Power ( mW:cm� 2) Beam diameter ( cm) Detuning ( MHz )
Collimation 2 � 175 1.5 -1.6
De�ection 250 8� 2 (elliptical) -1.6
Slowing 60 2 -240
MOT (each beam) 8.5 2 -45
Imaging 0.02 1 0

Table 1.1: Typical power and detuning used for the di�erent optical beams. Those values
will be discussed in more details in the text.
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1.1.3 Computer control system

Bose-Einstein condensation experiments go through a complicated sequence each time
a degenerate gas is produced and require therefore a robust computer control. A new
LabView programm has been implemented to operate such sequences and analyse the
obtained data. The general layout presented in �gure 1.3 involves:

� a digital card (DIO 64) providing 64 digital outputs and generating a 20 MHz clock
signal,

� three National Instrument cards (PCI 6722, 6731, 6733) o�ering 20 analog outputs
each.

Those three cards are synchronized and triggered by the digital card which enables to
bene�t of the onboard 20 MHz clock time stability.

To protect the computer from over-voltage or short-circuit from the experiment, the
physical outputs are opto-isolated from the computer bus, each having its own �oating
ground. The cuto� frequency for the digital outputs is set by the optocouplers around
200 kHz. Therefore the minimal time step duration is limited to 5� s, which is short
regarding all the experimental time scales.

Control computer

CCD camera

Serial port

Counter SR430 

20 analog outputs

Bus system:
PCI 6722, 6731, 6733

64 digital outputs

DIO 64 card 

Protection circuit 

Experimental devices

Figure 1.3: Structure of the control system. The computer operates the di�erent devices
(shutter, AOMs, power supplies, ...) using a digital/analog outputs system. Data from
the CCD camera can be retrieved and analysed at the end of each experimental sequence.

This programm enables the realisation of any experimental sequences involving GPIB
or RS-232 communications to set device parameters and retrieve data. The time frame
of each sequence can be stored and recalled from the disk. Experimental scans of one or
several parameters can be automatically executed. Finally, at the end of each sequence,
the pictures taken by the Hamamatsu CCD camera are stored and analysed as well as
the data produced by the channeltron's counter (SR430 Stanford Research System).
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1.1.4 Channel Electron Multiplier

Channel Electron Multipliers (Channeltron) are vacuum-tube structures meant to detect
single incident particles. A channeltron has been mounted in our science cell in order to
detect either metastable Helium atoms hitting the front surface of the detector and re-
leasing their high internal energy, or charged particles produced during Penning collisions
and attracted by the front voltage. This work will illustrate the new diagnosis o�ered by
this detector for the cooling and trapping of metastable Helium atoms.

General principle: Assuming an incident energy higher than a few eV, one particle
impinging into the channeltron lead glass surface induces secondary electron emission.
Those electrons are then accelerated down the channel by a positive bias and create an
avalanche of electrons: each collision with the internal wall of the channel is creating 2 to
3 electrons for one.
With a bias voltage of 3 kV between the input and the output of the channel, called
respectivelyfront and back(see �gure 1.4), approximately 108 electrons are created and
collected by a metal anode, all having been triggered by just one particle. The curvature
of the channel is necessary to prevent ion feedback caused by the high electron density at
the end of the channel, which could repel them.
A resistor of 10M 
 has been implemented to maintain a potential di�erence of 100 V
between the collection electrode and the back. This voltage accelerates the electron cloud
out of the channeltron towards the anode, resulting in an easily detectable pulse of 80ns
duration at Full Width Half Maximum (FWHM). The corresponding current is 2 mA,
which means 100 mV peak voltage on a 50
 resistor. Those output pulses can be easily
detected using a counter (SRS-430 in our experiment).

(a) (b)

- 3 kV

Ground

Output Signal

�5���a���������0�Ÿ

Front

Back

~ 1 cm

Collection 
electrode

Output Signal

Front

Back

1 kV

�5���a���������0�Ÿ

3 kV

Collection 
electrode

�����0�Ÿ

Figure 1.4: Schematics of the electrical connections for the channeltron: a) to detect
positively charged particles, b) to detect negative particles.

Metastable atoms can be either directly when they hit the channeltron or indirectly
from the ions produced by Penning ionisation events.
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Detection of metastable Helium atoms: Metastable atoms are detected as soon as
they hit the channeltron. The atomic signal can not be �ltered out by means of electrical
�elds. But its contribution is temporally decoupled in the experimental sequence since it
only occurs during the loading process, when the atomic beam is on (this will be detailed
in section 1.2) or after releasing the atoms from the trap producing a time-of-�ight signal
analysed in section 1.3.

As will be detailed in this chapter, this signal provides a full characterisation of the
velocity distribution of the atomic beam at di�erent stages of the slowing process. The
analysis of the time-of-�ight signal, obtained after releasing the atoms from the trapping
potential, give acces to the cloud temperature. However, the total atom number is di�cult
to calibrate since the detector is saturated even for the smallest gain.

Detection of charged particles: By choosing the sign of the voltage applied to the
front of the channeltron, one can attract and thus detect either positive ions or electrons
produced in the trapped cloud. In �gure 1.4 the electronic circuits which are used to
detect positive or negative charged particle are detailed.

We choose to detect preferably ions because of their smaller velocity, hence being less
a�ected by the magnetic �elds present in the science chamber. An important time scale
is the delay between the production and the detection of one ion. In the experimental
setup, the channeltron is resting at the bottom of a quartz tube centered on the cell, 5cm
away from the trapped atomic cloud. Its front voltage of -3 kV produces an electrical �eld
in the cell, whose glass walls are assumed to be at ground potential. One ion resulting
from a Penning ionization collision has an initial kinetic energy ofEk;0 = Em � E i where
Em= 19.8 eV is the internal energy of the metastable atom andE i = 4.8 eV the ionization
energy for Helium from the23S1 level. Solving Newton's second law for one ion with an
initial velocity pointing in the direction opposite to the channeltron (worse case), the de-
lay is evaluated to be of the order of 2� s. The exact value of this delay is not important,
since it is negligible regarding the dynamics time scales in the trapped cloud.
The essential quality of this new detection device is its ability to detect single ion and
thus to obtain a precise evaluation of the Penning losses in the trapped cloud.
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1.2 Production of a slow beam of metastable Helium
atoms

This section presents a complete characterisation of the atomic beam: �ux, transverse
pro�l, longitudinal or transverse velocity distributions. All the measurements are realised
using three detectors positioned along the beam path. As already mentioned, the high
internal energy of Helium atoms in the metastable state can be released when hitting a
metallic surface, producing one electron. The�rst detector and second detectorare Fara-
day cups mounted on vertical translation stages one 1.2 m behind the source chamber
and the second in front of the cell (4 m behind the source). The current measured on
those devices is proportional to the atom number per second.
The third detector is the channeltron described more extensively in section 1.1.4.

1.2.1 Production of an atomic beam of metastable atoms

Helium atoms are excited in the23S1 metastable state in a discharge source described in
[58]. Helium gas is continuously injected into a cylindrical gas reservoir where an intense
discharge is produced by applying a voltage of 1 kV onto the cathode while the anode is
kept at ground potential. After undergoing electronic collisions, a small fraction (between
10� 4 and 10� 6) of the ground state atoms is excited to higher energetic states before de-
caying into the long lived23S1 metastable state. The source is cooled with liquid nitrogen
to avoid heating of the reservoir due to the discharge.
The extraction hole of the discharge cavity gives an optimal raw �ux for a diameter of
0.4 mm. With a pressure of 2�10� 5 mbar and a discharge current of 5 mA, 1 nA are col-
lected on the �rst detector (� =7 mm), corresponding to an atomic �ux of 1.2�109s� 1.
Increasing the gas pressure or the discharge current could improve this value, but the
e�ciency of the deceleration of the atomic beam would be reduced as studied in [58].

Collimation: At this stage the atomic beam undergoes a supersonic expansion through
the skimmer into the selection chamber converting thermal energy into kinetic energy. The
resulting mean longitudinal velocity is of the order of 1000 m�s� 1 and transverse velocities
vlat;i of the order of 60 m�s� 1 leading to a fast divergence of the beam. The propagation
of the atomic beam over 4 m in a 2 cm diameter tube sets a higher limit on the transverse
velocity of vmax = 2.5 m�s� 1.
To reduce the transverse velocities and thus increase the atomic �ux along the beam axis,
a collimation is realised with light slightly red-detuned from the transition23S1 ! 23P2

and therefore only a�ecting atoms in the metastable state. Several re�exions of the laser
beam are required to increase the interaction time between the fast atoms and the light.
The cooling occurs on a length of approximately 10 cm, corresponding to a cooling du-
ration of approximately 100� s. The large intensity of the laser beam (in the range of
600 I sat ) increases the capture range of this process.
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De�ection: Another drawback of the atomic beam produced is to contain not only He-
lium atoms in the metastable state but a mixture of di�erent energy states. The selection
of the proper internal state is done by using radiation pressure forces to de�ect the wanted
metastable atoms. Indeed if a plane wave illuminates at right angles the atomic beam,
red-detuned from the atomic transition, the radiation pressure force, directed along the
laser wave vectork, will de�ect the metastable atoms from their initial direction. Since
this de�ection is accompanied by a changing Doppler shift (equal to~k �~v) which brings the
atoms out of resonance, the de�ection process quickly becomes ine�cient. To avoid this,
a converging laser beam is used to change gradually the direction of the wave vector~k in
order to keep~k � ~v constant as the atom is de�ected. The di�erential pumping tube (� =1
cm, L=10 cm) located at the beginning of the Zeeman slowing stage is the diaphgram
used to discriminate the non collimated and non de�ected Helium atoms.
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Figure 1.5: Characterisation of the collimation and de�ection e�ciency. a) Atomic beam
pro�le 1.2 m behind the source: the raw �ux is in blue, the collimated beam in lila, the
collimated and de�ected beam in green. b) Atomic beam pro�le 4 m behind the source,
with collimation and de�ection.

Experimental e�ciency: The vertical pro�les of the atomic beam (�gure 1.5 a)) are
obtained by scanning the raw �ux, the collimated beam and then the de�ected beam
with the �rst detector. The broadening caused by the 7 mm size of the detector has been
deconvoluted.
After collimation, the width of the beam 1.2 m behind is reduced to 5.5� 0.5 mm diameter
(FWHM), corresponding to an atomic transverse velocity smaller than 5 m�s� 1.
The atomic beam is then de�ected with 70% of e�ciency (comparison of the areas) and
its diameter reduces to 3.5� 0.5 mm (FWHM): all the atoms de�ected will pass through
the diaphragm tube of diameter 1 cm.
Using the second Faraday cup standing very close from the cell the beam diameter is
measured to be 4� 1 mm (FWHM) after almost 4 m of propagation (see �gure 1.5 b)),
con�rming a negligeable atomic transverse velocity after this collimation/de�ection stage.
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1.2.2 Determination of the atomic longitudinal velocity distri-
bution before slowing

The longitudinal velocity distribution of the atomic beam before slowing can be deduced
from the study of the free propagation of one atomic packet. The collimation and de-
�ection laser beams are pulsed such that atomic bunches travel along the Zeeman slower
(without deceleration) before being detected by the channeltron placed right in front of
the cell. A typical signal registered by the detector is shown in �gure 1.6.
The atomic velocity distribution Pv(v) is assumed to be Gaussian just behind the source
and thus can be written as:

Pv(v) = P0 exp(�
(v � vmean )2

2� v2
) (1.1)

whereP0 is a normalization factor,vmean the mean velocity and� v the velocity spread.
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Figure 1.6: Arrival time distribution of di�erent velocity components of an atomic packet
detected on the channeltron. t=0 represents the rising edge of the pulse applied on the
collimation/de�ection stage. The dots are the experimental data and the line is the theo-
retical model, corresponding to the convolution of equation 1.2 ont0. This allows to deduce
the two parameters of the gaussian distribution for the velocity pro�le of the atomic beam
produced by the source:vmean = 840 m�s� 1 and � v = 200 m.s� 1.

After propagation over a lengthL tot , the probability Pt (t)dt to arrive at t � dt is equal
to the probability Pv(v)dv to have a velocityv � dv. The arrival time t and the atomic
velocity v are simply related viat � t0 = vL tot , wheret0 is the departure time. Hence the
arrival time distribution Pt (t) can be expressed as:

Pt (t) = P0
L tot

(t � t0)2
exp(�

( L tot
t � t0

� vmean )2

2� v2
): (1.2)

In order to detect a signi�cant atomic signal, the collimation/de�ection light pulse du-
ration cannot be shorter than 0.9 ms, which cannot be neglected regarding a typical
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propagation duration of typically 5 ms. As a consequence, several velocity classes can
have the same arrival time because atoms start at di�erent times 0� t0 � 9 ms. The
experimental data are thus �tted by the convolution of equation 1.2 ont0, where the
only free parameters arevmean and � v. The �tting procedure gives a mean longitudinal
velocity of vmean = 840 m�s� 1 and a velocity spread of� v = 200 m�s� 1. The good agree-
ment between the experimental data and the �t can be seen on �gure 1.6. This mean
velocity corresponds to a temperature of 70 K although the source, cooled with liquid
nitrogen, is expected to be warmer than its vaporisation temperatureTvap = 77 K. This
can be explained by the collimation/de�ection stage, which acts as a low pass �lter for
the velocity distribution: fast atoms having a not su�ciently long interaction time with
the light are not de�ected enough and �ltered before entering the Zeeman slower.

1.2.3 Zeeman slower

Numerous techniques for slowing atoms have been demonstrated to date. Those tech-
niques di�er in the way they compensate for the changing Doppler shift of the decelerated
atoms. The principle of Zeeman slowing, �rst introduced by W. D. Philipps in [59], has
been implemented in most of the cold atoms experiments. This paragraph intends to
characterise the slowing process of the atomic beam using the new diagnosis o�ered by
the channeltron, located in the science chamber. Atomic bunches, produced as described
in the previous paragraph, are launched in the Zeeman coils and detected as they reach
the glass cell. The slowing process is modeled and compared to the experimental data.

Basic principle: During the slowing process, atoms interact with a resonant counter-
propagating laser beam. In order to maintain this matching between the laser frequency
and the atomic transition frequency, the changes in the Doppler shift due to the deceler-
ation of the atoms have to be compensated. Therefore a spatial variation of an external
magnetic �eld B(z) will be used to shift the atomic transition frequency! 0 according to:

! a(z) = ! 0 + ( gP mJP � gSmJS )
� B B(z)

~
: (1.3)

wheregP =3/2 and gS=2 are the Lande factors of the23P2 excited state and of the23S1

metastable state respectively andmJP =2, mJS =1 the respective magnetic moments of
those two states.
The resonance condition linking the velocity vector of an atomv(z), kL and ! L the wave-
vector and frequency of the laser beam and! a(z):

! a(z) = ! L � kL :v(z): (1.4)

An atom will then keep its initial velocity vin until it reaches a positionz where the reso-
nance condition expressed in equation 1.4 is ful�lled and then follows the spatial variation
of the velocity imposed by the magnetic �eld pro�le.

Our Zeeman slower consists of two Zeeman coils creating a magnetic �eld ranging
from 540 G to -140 G and a circulary polarized laser beam detuned by� = -240 MHz
from the resonant frequency! 0. This double-Zeeman con�guration has been chosen
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to avoid the degeneracy of the two transitions23S1; mJ = +1 ! 23P2; mJ = +2 and
23S1; mJ = +1 ! 23P1; mJ = 0 occuring for a 600 G �eld. Although a � + laser po-
larization should allow only transitions to the 23P2; mJ = 2 Zeeman sub-state, possible
imperfections of this polarization can induce losses in the total number of slow atoms.
In addition, a non zero �eld at the end of the Zeeman slower suppresses almost completely
the e�ect of the Zeeman laser beam on the MOT. Indeed its frequency, resonant with slow
atoms only in a magnetic �eld of -140 G, is far detuned from the atomic resonance in the
MOT region where the magnetic �eld is zero (� 150 � 0).

The spatial variation of the magnetic �eld of one Zeeman coil follows:

B [z] = B0

s

1 �
2�a max

v2
0

z; (1.5)

where B0 is the magnetic �eld value for which an atom of initial velocity v0 is resonant
with the laser beam detuned by� . amax is the maximum acceleration resulting from
radiation pressure forceFpr expressed as:

Fpr =
~k� 0

2
s

s + 1
(1.6)

with s = I
I sat

the saturation parameter (s � 100 in our experiment) and� 0 is the linewidth
of the transition. Local defects in the experimental magnetic �eld pro�le and the �nite
laser intensity available are taken into account considering that only a fraction� of this
maximal acceleration is e�ectively decelerating the atom. This factor� is �xed by the
length of the Zeeman coil, chosen by the experimentalist.

First Zeeman slower: The �rst Zeeman coil, described in more details in [58], has
been designed to decelerate the atoms down to 250 m�s� 1 within a distance of 1.9 m. Our
experimental attenuation factor � can be evaluated to be 0.7.
The magnetic �eld B0 at the beginning of the coil is chosen such that atoms with a veloc-
ity v0 = 1100 m�s� 1 are resonant with the light detuned by� . Considering the velocity
distribution obtained in section 1.2.2, all the atoms slower thanv0 will be captured in the
slowing process, which represents 95% of the velocity distribution.

The �gure 1.7 shows the experimental arrival time distribution of one atomic bunch,
recorded by the channeltron, with and without deceleration by the �rst Zeeman slower.
To obtain the two �rst curves, the second Zeeman coil remains switched o�. The shape
of the decelerated pulse can be modeled quite accurately studying the deceleration of the
di�erent velocity classes produced by the source (see 1.2.2) in the �rst Zeeman and their
free propagation in the second slower.
The theoretical model determines for each arrival timetarrival , the range of possible initial
velocities for starting time 0� t0 � 9 ms. The probability of arriving at tarrival is then
given by the integration of the equation 1.2 over this initial velocity range and the arrival
time distribution can be generated.
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A �nal velocity of 220 m�s� 1 gives the best agreement with the experimental data.
The discrepancy with the expected 250 m�s� 1 �nal velocity can be explained by a further
deceleration occuring between the end of the �rst Zeeman and the detector, due to power
broadening of the resonance. The experimental temporal width of the decelerated bunch is
perfectly reproduced by the theoretical model. It is clearly reduced compared to the one of
the free propagating bunch because of the velocity synchronisation during the deceleration:
atoms starting with di�erent initial velocities will have the same �nal velocity. The
remaining width is mainly caused by the duration of the light pulse generating di�erent
starting times for the atoms.
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Figure 1.7: Arrival times on the channeltron of an atomic bunch slowed by the two Zeeman
slowers in green, by only the �rst Zeeman unit in purple, non slowed in blue. The dots
represents the experimental data, with a contribution of electronic noise around 0. The
plain lines represent the theoretical model assuming a �nal velocity ofv = 220 m�s� 1 in
purple (�rst Zeeman only) and vf = 55 m�s� 1 in green.

Second Zeeman slower: The second Zeeman slower has been entirely rebuilt in order
to reduce its transverse size. It consists now of a 20 cm water-cooled cylindrical tube on
top of which 5 layers of copper wire are wound. A transverse cut exposes schematically
the wiring in �gure 1.8 a). The magnetic �eld measured for I= 3.6 A can be �tted using
a theoretical model similar to equation 1.5 used for the �rst Zeeman, with an attenuation
factor � = 0.3 as reported in �gure 1.8 b). A compensation coil minimizes the magnetic
leakage from the second Zeeman �eld into the MOT region (1 G for 3.6 A in the second
Zeeman coil).
Since all the atoms have the same velocity at the end of the �rst Zeeman unit, they will
spend the same time being decelerated from 250 m�s� 1 to vf in the second Zeeman slower.
Therefore the arrival time distribution after the second Zeeman should be the distribution
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Figure 1.8: a) Wiring scheme of the second Zeeman slower, each layer of copper wire
being represented by a rectangle of length proportional to the number of turns. The coil
shows di�erent number of turns per layer: 95 turns for the1st layer, 77 turns for the2nd ,
55 turns for the 3rd , 34 turns for the 4th and 5th , 19 turns for the 6th and 7th layers. b)
Magnetic �eld pro�le in the second Zeeman slower for a current of 3.6 A. The dots are
the experimental data and the plain line is the theoretical �eld �tted with the attenuation
factor � as a free parameter (see text).

obtained after the �rst Zeeman section shifted by a constant time delay. As shown by the
�gure 1.7 the temporal width of the decelerated atomic bunch is much larger after the
complete slowing process than after the �rst Zeeman. This model can not describe this
broadening but allows to determine the value of the �nal velocity to bevf =55 � 5 m�s� 1.

The e�ciency of the atomic beam deceleration can be evaluated comparing the areas of
the free propagating and slow atomic bunches. The deceleration tovf has an overall e�-
ciency of 80%, which is satisfactory. Indeed the capture velocityvc into a magneto-optical
trap (MOT) can be evaluated from the maximal deceleration,amax = ~k� 0=2m trans-
ferred to one atom by the light inside one MOT beam waist:vc=

p
wamax � 68 m�s� 1.

After the deceleration with our two Zeeman slowers, all the atoms will thus be captured
in the MOT.
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1.3 Magneto-optical trap

Suggested by J. Dalibard and �rst etablished by Raabet al. [60], magneto-optical trapping
allows to collect and cool large number (of the order of 108) of atoms captured from a
slow atomic beam or from a vapor.
The trapping scheme of our magneto-optical trap (MOT) has been considerably modi�ed
in the course of the rebuilding of the experiment in its current state. A new quartz cell
has been mounted and a completely new magnetic trap, which will be described in more
details in the next section, is now operational. With those modi�cations we can trap
typically 2�108 atoms at a temperature of 2 mK.

1.3.1 Performances

A magneto-optical trap (MOT) results from radiation pressure forces of 3 pairs of two
counter-propagating laser beams crossing at the center of a quadrupole, produced by two
coils in an anti-Helmoltz con�guration. The MOT beams are red-detuned and circularly
� + and � � polarized so that a cycling transition is excited when the atom moves away
from the trap center.

In the previous experimental setup two of the MOT beams had to share the path of
the Zeeman optical beam. This con�guration induced depumping of the atoms from the
deceleration process at two positions and thus to considerable losses (see [58]). Both a
repumping beam and a much higher power in the Zeeman beam were required. In this
regime the MOT was pushed by the Zeeman beam despite its large detuning from the
resonance, compromising a good transfer of the atomic cloud into the magnetic trap.
The larger dimensions of the new quartz cell (10� 4 � 6 cm3) o�er more optical access
and enable to choose other axis for those beams. The new geometry of the MOT beams
is schematically represented in �gure 1.9.
The center of the MOT is now located 14 cm behind the end of the second Zeeman. This
distance has been minimised within the geometrical constraints in order to limit the e�ect
of ballistic expansion of the slow atomic beam. Our residual lateral velocity of 5 m�s� 1

causes a 10 mm enlargement of the atomic beam diameter at the new position of the
MOT. Hence this expansion should not create losses since the MOT optical beams are
expanded to 2 cm diameter at1=e2.

The quadrupolar magnetic �eld is now produced by the two pinch coils of the clover-
leaf magnetic trap described in chapter 2. Three power supplies (Delta Elektronika, 70 V
- 45 A) connected in parallel provide 100 A resulting in an optimal gradient of 38 G�cm� 1.

A magneto-optical trap of metastable Helium atoms has some speci�cities due to the
Penning collisions introduced in chapter 0.1. For non polarised trapped atoms, the colli-
sion rate� is of the order of 10� 10 cm3�s� 1 and depends on the detuning and the intensity
of the MOT beams as studied in [61]. Indeed resonant light may induce an atomic tran-
sition to the 23P2 state, which is interacting more strongly with the atoms in the23S1

metastable state and has a higher probability to collide (more partial waves are involved)
and Penning ionise. To overcome this drawback the laser beams are far detuned from



1.3. MAGNETO-OPTICAL TRAP 27

2nd Zeeman slower
Pinch coil

Zeeman beam

MOT beams

Figure 1.9: New geometry of the experimental setup. The Zeeman beam is depicted in
red, the MOT beams in blue. Two MOT beams are crossing the cell at 45� in a vertical
plane and the third one is horizontal and orthogonal to the cell. For a simpler overview
the second pinch coil, used to create the MOT magnetic �eld, is missing.

the atomic transition in order to minimise the population of the excited state. The atom
number is maximal for a detuning of -45 MHz� 28 � 0. Also the atomic density is re-
duced, taking advantage of the large diameter of the MOT beams in order to form a large
size cloud.

After 500 ms of loading, 2�108 atoms are con�ned in the MOT as shown in �gure 1.10.
The temperature achieved at the MOT stage is deduced to be 2 mK from absorption
imaging (see Appendix A). From such a measurement of the expansion of the cloud widths
after release, the RMS radii in situ can be extrapolated to� vert = 3.3 mm and � hor = 4 mm.
With 2 �108 atoms in the trap, the central density is thusn(0; t0)=2�109 cm� 3.

1.3.2 Collisional regime in the MOT

In the magneto-optically trapped cloud described here, the atom number is limited by
two-body losses resulting from light-assisted Penning ionisation events. To demonstrate
this point, the atom number trapped in the stationnary regime is studied as a function of
the loading rate.

Considering one and two body losses (characterised respectively by a lifetime� and a
rate constant � ), the evolution of the atom numberN (t) under a loading rate� can be
expressed as a function of the densityn(x; t) in the trap:

dN
dt

= � �
N (t)

�
� �

Z
n2(~r; t)d3~r: (1.7)

The second term, linear in the atom number, is mainly due to Penning ionization with
background gases and the quadratic part is attributed to Penning collisions between
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(a) Absorption image after 1 ms TOF:
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Figure 1.10: Characterisation of a typical MOT at -45 MHz. a) Absorption image of the
MOT after 1 ms time-of-�ight. Such an image allows to deduce a total atom number
of 2�108 and also the cloud widths (see Appendix A). b) Measurement of the number of
atoms trapped in the MOT for di�erent loading durations. The maximum atom number,
expressed here as the integral of the optical density, is achieved after approximately 500 ms
loading.

trapped atoms, for which the collision rate constant� has been de�ned in section 1.3.1.
The atomic density in the trap presenting a cylindrical symetry around (Oz) is well de-
scribed by a Gaussian distribution which can be factorised as:

n(~�; z; t ) = n(0; t)e
� � 2

2� 2
� e

� z2

2� 2
z ; (1.8)

with � r and � z independent from the atom number and time. The integration of equation
1.7 leads to:

dN
dt

= � �
N (t)

�
�

�
2
p

2V
N 2(t); (1.9)

with V = (2 � )3=2� 2
� � z being the trap volume.

When the two body collisions can be neglected, the stationary atom number in the trap
is Ns = � � , depending linearly on the loading rate.
In the opposite case, where two body collisions dominate (�n s� � 1), the atom number
in the stationary regime is given by:

Ns =

vu
u
t 2

p
2V�
�

(1.10)

which is then proportional to the square root of the loading rate� . Figure 1.11 a)
reports on the scaling of the trapped atom number with the atomic �ux. The collima-
tion/de�ection light was modulated at 1 kHz and a MOT was loaded for various duty
cycles. The modulation period was carefully chosen to be both:

� larger than the time spent by an atom in the collimation de�ection section (of the
order of 0.1 ms) to maintain the de�ection angle constant
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Figure 1.11: a) Trapped atom number versus loading rate: the MOT �uorescence has
been measured for di�erent duty cycles. The plain line is a square root �t. b) Lifetime
measurement in a semi-logarithmic scale. This graph shows a clear non-exponential decay
of the atom number. The data are �tted by equation 1.11 with the Penning collision rate
constant as free parameter.

� smaller than the loading time of the MOT (in the range of 100 ms).

As expected, the atomic �ux, measured on the second Faraday cup, varies linearly with
the duty cycle of the modulation. The total atom number achieved in stationnary regime
was determined by �uorescence measurement. Its variation is well described by a square
root scaling on the loading rate. This experiment con�rms that two body losses are lim-
iting the atom number in the MOT for a given �ux, corresponding for metastable atoms
to light-assisted Penning ionisation.

Since light-assisted Penning collisions are limiting the lifetime, the expected decay of
the atom number in time follows [61]:

N (t) =
N (t0)

1 + �
2
p

2
n(0; t0) ( t � t0)

(1.11)

where� is the light-assisted Penning collision rate constant for non polarised atoms. The
lifetime of the MOT is determined experimentally from the evaluation of the atom number
at di�erent holding time using absorption imaging (see �gure 1.11 b)).
Assuming an initial density of n(0; t0)=2�109 cm� 3 determined from the other measure-
ments presented in this section, the �t of this model on the experimental data presented in
�gure 1.11 b) provides a determination of this inelastic collision rate:� =1.4 10� 9 cm3�s� 1

within a factor of 2 accuracy. This value depends both on the detuning of the MOT
beams �xed at -45 MHz and their intensity (50I sat ). This result is in agreement with the
results found in [58] for a comparable MOT beam detuning of and a larger intensity of
80 I sat .
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1.3.3 Channeltron diagnosis

Some characteristics of the MOT can also be determined taking advantage of the new
channeltron detector located in the science cell. Two kinds of signals can be recorded:
either ions produced by Penning ionisation processes in the trapped atomic cloud or
metastable atoms hitting the detector during their time-of-�ight (TOF).

Ion signal: In the MOT, the number of ions produced per unit time is given by:

dNion (t)
dt

= �
Z

n2(~r; t)d3~r: (1.12)

Assuming the trap volumeV independent of the atom number and time, as in the previous
paragraph, equation 1.12 can be rewritten as:

dNion (t)
dt

= �
N 2(t)
2
p

2V
(1.13)

The ion rate detected on the channeltron is thus simply proportional to the square of
the atom number. A second lifetime measurement has thus been realised, recording the
channeltron signal after the end of the MOT loading. Such a signal, shown in �gure 1.12,
allows to deduce the MOT lifetime from a single realisation of the experiment, on the
contrary to absorption imaging, where images are taken for di�erent holding times as
reported in �gure 1.11 b). The experimental data can be �tted by equation 1.11 in order
to deduce the productn(0; t0)� . The results obtained are in agreement with the lifetime
measurement obtained by absorption imaging reported in �gure 1.11 b).
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Figure 1.12: Ion rate recorded by the channeltron once the loading has been stopped. t=0
corresponds to the time at which the loading is stopped. The plain line corresponds to
N 2(t) as expressed in equation 1.11 with the productn(0; t0)� as �tting parameter.

Atomic signal: When the MOT beams and the quadrupole magnetic �eld are switched
o�, the atomic cloud expands under gravity and falls onto the channeltron. Only a frac-
tion of atoms will hit the detector which is lying 1.7 cm below the center of the MOT
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and 5 cm sideways (see �gure 1.13 a)). From this time-of-�ight signal, presented in �gure
1.13 b), one can retrieve the temperature of the atomic cloud.
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Figure 1.13: a) Schematic representation of the position of the channeltron inside the
quartz cell. b) Time-of-�ight signal of the MOT recorded on the channeltron. The line
represents the analytic model from equation 1.21, for a temperature T= 2 mK of the MOT,
in good agreement with the determination using optical imaging.

To model the experimental data, the cloud is assumed to be point-like and thus the
problem is reduced to a two-dimensional one in thez= 0 plane of the referential de�ned
in �gure 1.13 a). The origin of the coordinates is taken to be the initial location of the
atomic cloud, and the position of the detector will be denoted (xd; yd)=(-5 cm, -1.7 cm).
A Maxwell Boltzmann isotropic probability distribution for the velocities along x and y
is assumed:

N (vx ; vy) =
1

2�� 2
T

exp

 

�
v2

x + v2
y

2� 2
T

!

(1.14)

where� T =
q

kB T=m.
To retrieve the channeltron signal, one has to transform equation 1.14 from a function of
(vx ; vy) to a function of (y; t), the x position of the detector being �xed atxd.
We use Newton's equations for a ballistic motion of a particle accelerated by the earth's
gravitational �eld to �nd the relationship between those two coordinates systems:

xd = vx t (1.15)

y = vyt �
1
2

gt2 (1.16)

After inversion one gets:

vx =
xd

t
(1.17)

vy =
y
t

+
1
2

gt (1.18)
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To determine how the di�erential dvxdvy transforms into dydt, we use the Jacobian de-
terminant J which is:

J =
@vx
@y

@vx
@t

@vy
@y

@vy
@t

=
0 � xd

t2

� 1
t2 � y

t2 + g
2

=
xd

t3
(1.19)

Finally, the number of atoms detected at a timet at a position y is given by:

N (y; t) =
xd

t3

1
2�� 2

T
exp

 

�
(xd=t)2

2� 2
T

!

exp

 

�
(y=t + gt=2)2

2� 2
T

!

(1.20)

and the fraction of atoms detected reads:

Nd(t) =
Z yd+ L d

yd� L d

N (y; t)dy (1.21)

whereLd= 2 mm is the size of the detector alongy.
This analytic model is used to �t the experimental data reported in �gure 1.13 b). The
two �tting parameters were the temperature T and the detection e�ciency via a coef-
�cient A. The best adjustment is obtained forT= 2 mK, in agreement with the value
determined by absorption imaging (see Appendix A).
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1.4 Conclusion

In this chapter the main changes implemented on the experimental setup during this the-
sis work have been presented. The stability has been greatly improved by �ber coupling
all the optical beams involved in the production of a slow atomic beam of metastable
Helium atoms and the trapping of those atoms in a MOT. The experimental sequence is
now computer controled by a new LabView programm, which also retrieves and analyses
the data from the CCD camera.
This chapter also aims at demonstrating the new insights o�ered by the detection device
mounted inside the science chamber. Therefore the diagnosis provided by this channeltron
are modeled and analysed in order to obtain detailed informations on the experimental
setup.

The di�erent stages of the production of a slow atomic beam of metastable Helium
atoms are fully characterised with the help of the channeltron signal. A study of the ar-
rival time distribution of atomic bunches allowed to determine precisely the longitudinal
velocity pro�le of the atomic beam and to characterise its propagation inside the Zeeman
slower. The �nal velocity and the e�ciency of the slowing process have been quantita-
tively determined.

Finally, we demonstrate the trapping of 2�108 atoms in a MOT at a temperature of
2 mK. The setting up of a new quartz cell of larger dimensions o�ers a new geometrical
arrangement of the MOT beams, which avoids the use of the Zeeman axis as was done
previously [58] and thus losses during the slowing process.
The study of the number of trapped atoms in the stationnary regime as a function of the
loading rate provides a clear proof of a limitation due to inelastic light-assisted Penning
collisions. The MOT lifetime is studied both via absorption imaging and the ion signal
recorded by the new channeltron.
Finally the time-of-�ight signal of metastable atoms falling onto the channeltron after re-
lease from the MOT is modeled in order to deduce the temperature of the trapped cloud,
showing a good agreement with the value derived from absorption imaging (see Appendix
A).
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Chapter 2

Novel magnetic trap for Bose
Einstein Condensation

Temperatures achieved in a MOT or optical molasses are limited to a level of several
hundreds of�K by the heating e�ect due to spontaneous emission. To decrease further
the temperature and increase the phase-space density, atoms are transferred into the con-
servative potential of a magnetic trap, where evaporative cooling is realised.

The design of this novel magnetic trap allows to produce the condensate and e�ciently
load it in-situ into any optical potential. For experiments involving optical traps, optical
access constitutes a crucial issue. Several solutions have been developped, among which
two main trends appear: either reach the degeneracy in an all optical trap or perform the
MOT and the optical lattice in di�erent chambers. The �rst scheme does not easily apply
to a metastable helium MOT having a temperature of 2 mK and large dimensions (see
section 1.3.1): a direct loading would require an important dipole trap depth along with
a rather large beam focus. The second solution involves the transport of the cold cloud,
either by optical [47], magnetic [62] or mechanical [63] means into a science chamber of-
fering additional optical access. However, such a spatial displacement of atoms adds to
the complexity of the setup and induces losses in the metastable atomic cloud.

The new cloverleaf trap presented in this chapter, provides an optical arrangement
where the MOT, the Bose-Einstein condensate (BEC) and the optical lattice can be all
produced at the same place. As can be seen in �gure 2.1, gaps between the cloverleaf
coils have been enlarged so that eight optical beam axis are now available. The technical
di�culties resulting from the transport are thus avoided.
Technical details concerning the electrical circuit and its performances for the switching
of the currents are presented in the second section. Indeed the magnetic coils have a
small number of turns to keep a compact con�guration and thus large currents are used
(� 300 A).
The third section details the experimental sequence implemented to load the atoms into
the magnetic trap and achieve a phase-space density of� � 7�10� 6.
The �rst results obtained with RF frequency and evaporative cooling are �nally reported.

35



36CHAPTER 2. NOVEL MAGNETIC TRAP FOR BOSE EINSTEIN CONDENSATION

2.1 Cloverleaf magnetic trap

2.1.1 Io�e-Pritchard potential

The potential energy of an atom with a magnetic moment~� in an external �eld ~B is
expressed as a scalar product:

U(r ) = � ~� � ~B(r ): (2.1)

When the quantization axis is along the magnetic �eld vector, the projection of the mag-
netic moment becomes� = � gmJ � B , with � B the Bohr magneton andg the Lande
factor. For the 23S1 metastable state, the Lande factorg equals 2, allowing for a more
e�cient magnetic trapping than for alkali atoms. Atoms in the state (23S1, mJ =+1)
will be trapped at a minimum of the magnetic potential. Magnetic trapping of neutral
atoms was �rst demonstrated using a quadrupole magnetic �eld, produced by two coils in
an anti-Helmotz con�guration [64]. The zero-crossing of the magnetic �eld at the center
causing Majorana spin �ips [65] und thus atom losses, harmonic potentials as produced
by the Io�e Pritchard con�guration have been favoured [66].

Our setup (see �gure 2.1) is based on the cloverleaf trap geometry, modi�ed to o�er ad-
ditional corridors for laser beams to pass through. Two axial coils, calledpinch coils, are
arranged in a Helmoltz con�guration, providing axial con�nement along theZ-axis, well
approximated by a harmonic potential near the trap center. For the radial con�nement,
each pinch coil is surrounded by fourcloverleaf coilsand connected in an anti-Helmoltz
con�guration to produce a quadrupolar waveguide �eld along theZ-axis. Finally, two
larger axial Helmoltz coils, calledcompensation coils, are added. They create a quasi uni-
form �eld compensating for the large �eld produced by the pinch at the center of the trap.

The �eld produced by this arrangement, expressed in cylindrical coordinates, can be
approximated near the center by [67]:

B � = B 0�sin (2 ) � B 00z� (2.2)

B  = B 0�cos(2 ) (2.3)

Bz = B0 + B 00z2 �
B 00

2
� 2 (2.4)

whereB0 is the �eld value at the center. The axial curvatureB 00and the radial gradientB 0

can be changed independently via the current in the axial and the radial coils respectively.
The absolute �eld is given by:

jB j =

s

(B 02 � B0 B 00)� 2 + ( B0 + B 00z2)2 � 2B 0B 00z� 2sin(2 ) +
1
4

B 002� 4 (2.5)

For small He* clouds lying at the center of the trap,jB j can be approximated by the
second-order expansion of the square root giving a potential:

U(�; z;  ) � 2� B B0 + 2� B (B 00z2 +
1
2

(
B 02

B0
� B 00)� 2) � U0 +

1
2

m(! 2
zz2 + ! 2

� � 2) (2.6)
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Figure 2.1: Three-dimensional view of the coil and beam geometry. TheZ=0 plane is a
plane of symmetry for the coil arrangement. In theZ-positive direction the coils are not
represented to simplify the overview. The geometry o�ers distinct paths for the Zeeman
beam, the three MOT beams and up to three lattice beams.

with ! z and ! � the axial and radial frequencies:

! z =

s
4� B B 00

m
(2.7)

! � =

s
2� B (B 02=B0 � B 00)

m
(2.8)

Since the radial frequency depends onB0, the trap can be compressed radially while re-
ducing the axial bias �eld at the trap center.

The simulations of the magnetic �eld produced by this trap were realised for a cur-
rent of 300 A giving a radial gradient of B 0= 60 G�cm� 1 and an axial curvature of
B 00= 39 G�cm� 2. The resulting axial and radial frequencies are! z= 2� �74 Hz and
! � = 2� �500 Hz for a bias �eldB0= 1 G.

2.1.2 Trap design

The main advantage of the cloverleaf con�guration is to o�er a free optical access in the
full XY plane, as can be seen in �gure 2.1. The standard geometry has been adapted to
provide additional corridors in theXZ plane for optical beams.
A laser beam can propagate along theZ-axis through the central tunnel of the pinch
coils. Their conical shape and an increased spacing between the cloverleaf coils creates
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two additional corridors of 25 mm at 45� in the XZ plane. As sketched in �gure 2.1 the
mechanical arrangement leave enough optical access for two distinct sets of beams for the
MOT and the 3D optical lattice.

In order to obtain a compact geometry, the coils are designed with few turns (see
�gure 2.2) and large currents are used. The narrow dimensions of the new glass cell
(10 cm� 6 cm� 4 cm) enable to position the magnetic coils only few cm away from the
atomic cloud and therefore achieve large �elds.

The coils are made from copper bars with a square cross section of 5� 5 mm2 and
a 3� 3 mm2 central bore for water cooling. Electrical isolation of the conducting bars
is realised using Kapton �lm. The detail of the coils winding is shown in �gure 2.2 b),
where each square represents the external pro�le of the wire. All the coils are supported
by two platforms with the shape of the letter 'H' (each platform holding one compen-
sation, one pinch and 4 cloverleaf coils) connected by four non-conducting rods to avoid
conductive loops, which are made from re-enforced glass �ber, represented in �gure 2.2 a).

a) b)

Figure 2.2: a) Mechanical mount holding the coils. Two platforms having an 'H' shape are
connected with four non-conducting rods made from re-enforced glass �ber in order to avoid
conductive loops. Only four cloverleaf coils in green and one conical pinch coil in lila are
represented here to show the enlarged spacing between them opening new optical corridors
in the XZ plane. b) Cut through the coils to expose the wiring in a plane resulting from a
rotation of the XY -plane by 45� around theZ-axis. Each square represents the 5� 5 mm2

external pro�le of the copper bars. The two cloverleaf coils are represented in green, the
pinch coil in lila and the compensation coil in black.

A commercial chiller working in closed-circuit mode provides a pressure of 6 bars for
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the water cooling of the magnetic coils. A typical water �ow of 3 l.min� 1 is split between
�ve groups of coils having a comparable hydraulic resistance: the two compensation coils
are fed in parallel, each pinch coil is fed in series with 2 cloverleaf coils and the last group
consists of four cloverleaf coils in series. During a typical experimental sequence, for which
the magnetic trap current of 300 A is on during 15 s, no heating of the coils has been
resolved. Only the temperature of the feeding cables, non water-cooled, is increasing by
10 C� .
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2.2 Electric circuit

The magnetic coils produce both the quadrupolar magnetic �eld, required during the
MOT phase, and the Io�e-Pritchard potential presented in paragraph 2.1.1. Those two
�eld con�gurations require respectively an Helmoltz and an anti-Helmoltz con�guration
for the pinch coils. Therefore the current in one of the pinch coil has to be reversed
to load the atoms from the MOT into the magnetic trap. The large velocity of helium
atoms before loading sets a higher limit of 500� s on the duration of the switch between
the quadrupolar and the Io�e-Pritchard potentials. Another requirement is the ability to
switch o� the large currents in the coils within few hundreds of microseconds, to minimise
the perturbative e�ect of magnetic �elds during the probing of the released atomic cloud.
The complete electrical scheme conceived to satisfy those conditions is represented in �g-
ure 2.3.

It consists of four sections having speci�c functions and constraints. Two distinct sets
of power supplies are used for the quadrupolar and Io�e-Pritchard �eld con�gurations
and several insulted gate bipolar transitors (IGBT) control the current route. The third
section has been designed to accelerate the rising of the current at the beginning of the
magnetic trapping phase. The control on the bias �eld, essential to compress the atomic
cloud, is achieved with a last power supply feeding the compensation coils with a current
in the reverse direction.

2.2.1 Quadrupolar �eld for the MOT

Three identical power supplies (Delta Elektronika, 70 V - 45 A) connected in parallel
provide 100 A �owing through the pinch coils in an anti-Helmoltz con�guration. In �gure
2.3 they are denoted PS MOT and to drive the current the IGBTsI 1 and I 4 are open
whereasI 6 and I 7 are closed.
The gradient of the resulting quadrupolar �eld is measured to be 38 G�cm� 1.

Fast cut o� of the current is insured by the two IGBTs I 6 and I 7. At the moment
of switch o�, very large voltages proportional to the pinch coil inductance L= 30� H (see
table 2.1), the current of 100 A and inversely proportional to the switching time are ex-
perienced by the IGBTs. To protect the IGBTs from overvoltage, a varistor, mounted in
parallel maintain a constant voltageUV =275 V. The current decreases then within 100� s
as reported in �gure 2.4 a) and the magnetic �eld returns to zero within approximately
2 ms.

2.2.2 Io�e-Pritchard trap

In the magnetic trap con�guration, two power supplies connected in series (Agilent, 15
V - 440 A) produce a maximum current of 310 A. The IGBTsI 1 and I 4 are closed, in
order to feed all the coils in series.
To work with a stable current, those power supplies are kept in a current-control mode
using only I max = 280 A. For such a current, voltage drops on the diodeD3 and the two
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Figure 2.3: Electrical circuit conceived to provide either a quadrupolar or a Io�e-Pritchard
potential. I 1 and I 2 are the IGBTs used to switch the current in all the coils;I 6 and I 7
to switch the anti-Helmotz con�guration in the pinch coils andI 3 allows the current from
PS Bias to �ow in the compensation coils. C1, C2 and C3 are large electrolytic capac-
itors with C= 1 mF. The current route represented as a green dashed line corresponds
to the MOT con�guration and as a plain red line to the Io�e-Pritchard con�guration.
Two di�erent power supplies, denotedPS MOT and PS Magnetic trap , produce the
current during those two phases. The section in the blue box has been added in order to
accelerate the rising of the current at the beginning of the magnetic trapping phase, using
the capacitor C3. The last power supply, denotedPS Bias inside the blue border, is
used to change independently the current passing through the compensation coils and thus
control the bias �eld B0.

IGBTs (2 V on each) limit the available voltage to 24 V. All the electrical connections are
realised with large diameter cable and speci�c connectors to obtain a low total resistance.
The corresponding voltage drop is 3.9 V. The magnetic coils, whose resistances are listed
in table 2.1, require 18.2 V atI max .

As already mentioned, each IGBT and diode having a voltage of 2 V for a current
I max needs to dissipate a power of approximately 600 W. All those components are there-
fore mounted on a water-cooled aluminium plate. The temperature increase during one
sequence is less than 2� C.

Resistance (m
 ) Inductance (� H) Length (m)
Compensation coil 12 30 10

Pinch coil 6 15 5
Cloverleaf coil 3.6 8 3

Table 2.1: Measured resistance, inductance and length of the di�erent magnetic coils. The
trap consists in two compensation coils, two pinch coils and eight cloverleaf coils, corre-
sponding to a total resistance ofRtot = 65 m
 and a total inductance ofL tot = 154 � H.
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Figure 2.4: Switch of the current measured with a current clamp in one of the pinch coil.
The origin of times corresponds to the switch of the IGBTsI 6 and I 7 for the MOT phase
and I 1 and I 4 for the magnetic trap phase. a) After the MOT phase, the current is
decreasing from 100 A to 0 A within 50� s. b) In the magnetic trap, 300 A are �owing
through the coils and the current goes to zero after 100� s.

The IGBTs I 1 and I 4 have a maximum collector-emittor voltage ofVCE;max = 1.2 kV
and the collector current has to stay below 600 A. They are deliberately oversized in order
to limit the voltage drops reaching 2.5 V on each for I= 600 A. Large electrolyte capac-
itors of capacity C= 1 mF (denoted C1 and C2 in �gure 2.3), precharged at a voltage
of UC= 160 V by a separate power supply, protect each of the IGBT from overvoltage.
When the voltage in the main path rises aboveUC , the induced current will charge the
capacitors. The surcharge will subsequently be absorbed by the capacitor power supply.
The typical energy stored in the coils isEL = LI 2 � 14 W and is dissipated in the capac-
itor at the switch o�.
The voltageUC of the capacitorsC1 and C2 could be set higher (up to 1 kV), but is here
limited by the voltage available from the power supplies used to charge them. The com-
plete extinction of the currents in the magnetic coils is achieved after 100� s as reported
in �gure 2.4 b).

The three dimensional magnetic �eld has been measured both along theX -axis and
the Z-axis with a Hall probe. It matches the theoretical calculations obtained from the
Biot-Savart law and the measurement of the coils positions as shown in �gure 2.5.

2.2.3 Switch between the two con�gurations

The rising time of the current in the magnetic trap is set by the ratioL=R of the coil
inductance over their resistance. For the present setup this corresponds to� � 3 ms and
a measurement gives 5 ms (see �gure 2.6). As will be detailed in the next section, the
cloud temperature before loading the magnetic trap is approximately 300� K and thus
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Figure 2.5: Magnetic �eld produced by the magnetic trap for a current of 100 A. The three
dimensional �eld has been measured with a Hall probe both along theZ-axis a) and the
X -axis b) of the trap: the z-component of the magnetic �eld is shown as red dots, itsx-
component as the blue triangles and itsy-component as the green squares. The calculated
magnetic �eld components, represented by plain lines, are in agreement with the measured
�eld.

the thermal velocity of metastable helium atoms is of the order of 80 cm�s� 1. During
the switching time � the cloud widths expand by a factor of approximately 1.6 and the
phase-space density is thus reduced by a factor of the order of 4.

In order to reduce this rising time, a capacitorC3 is charged under a voltageUswitch ,
storing an energy of12CU2

switch . When the IGBTs I 1 and I 4 are closed, the capacitor un-
load in a quarter of period of the L-C circuit, which isT= �

2

p
LC � 500� s. The capacitor's

voltage decreases until it reaches the voltage of the magnetic trap power supplies, which
then provide the electrical power. The voltageUswitch of the precharged capacitor should
be such that the energyEL which has to be transferred to the magnetic coils is equal to
the energy stored in the capacitorEC . This corresponds to a voltageUswitch = 120 V. The
�nal voltage has been adjusted to optimise the magnetic trap loading atUswitch = 160 V.
Figure 2.6 a) shows the current rise in one of the pinch coils, measured with a current
clamp, with and without the capacitor C3. As expected, the current reaches its maximal
value within 500 � s (see �gure 2.6 b)).

2.2.4 Control of the bias �eld

The compensation coils are designed to overcompensate the �eld at the center when fed
with the same current than the pinch coils as measured and reported in �gure 2.5. A
last power supply (Agilent, 15 V - 440 A) drives a reverse current in the compensation
coils, so that the o�set �eld, denotedB0, returns to a positive value and can be controled.
Equation 2.8 shows that reducingB0 leads to an increase of the radial frequency12� ! � .
This is essential in order to compress the atomic cloud and increase its spatial density
before starting the evaporative cooling as will be detailed in the next section.
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Figure 2.6: Current rise in the magnetic trap coils. The current is measured with a current
clamp in one of the pinch coil. The origin of times corresponds to the switch of the IGBTs
I 1, I 3 and I 4. a) The red curve corresponds to the current driven by the magnetic power
supplies and the black one to the fast rise realised using the precharged capacitorC3. b)
Fast current rise on a shorter time scale. After 500� s the current reaches its stationnary
value.

The power supply, denoted PS Bias in �gure 2.3, drives an inverse currentI P SBias

ranging from 80 A to 68 A into the compensation coils. Its �uctuations are not corre-
lated to the one of the power supplies driving the main current through all the coils in
series, resulting in larger current �uctuations in the compensation coils than for the rest
of the trap. A 200 mA rms current �uctuations is speci�ed for the power supplies used.
As a consequence the �uctuations of the compensation coils current is expected to be of
the order of 300 mA, which corresponds to a 0.9 G rms �uctuation of the value of the
bias �eld. This may be overestimated since the current provided by the power supplies
are lower than their maximal values. Nevertheless instabilities of the bias �eld could be
observed and prevented a further optimisation of the evaporative cooling. The relative
positions of the magnetic coils have now been changed so to need less reverse current in
the compensation coil and achieve a better stability.

The bias �eld B0 has been measured using radio-frequency (RF) spectroscopy on an
atomic cloud stored in the Io�e-Pritchard trap, for di�erent values of the current driven
through the compensation coil. A RF excitation is applied during one second and, after
release, the remaining atom number is determined by absorption imaging. The RF-
frequencyf RF is scanned and the bias �eld value corresponds to the �rst RF-frequency at
which all the atoms are lost.B0 can be measured with an accuracy of 0.4 mG1, but the
current, measured with a current clamp, can only be determined within� 1.2 A. Figure
2.7 shows two scans of the RF frequency and a graph ofB0 as a function of the current

1This accuracy is essential to start evaporative cooling where the value ofB0 is set to 1 G, in order
to achieve large trapping frequencies.
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of PS Bias. The plain line represents a linear �t of the form:

B0 = �I m + � (I m � I P SBias ) (2.9)

where�I m and � (I m � I P SBias ) are the magnetic �elds created at the center respectively for
a current I m through the cloverleaf and pinch coils and for a currentI m � I P SBias through
the compensation coils. The adjustement to the data points withI m �xed at 294 A gives
� = 0.72 � 0.03 G�A � 1 and � = 0.93 � 0.04 G�A � 1. Those value are in agreement with
the calculated magnetic �eld: � = 0.75 � 0.05 G�A � 1 and � = 0.98 � 0.02 G�A � 1 (the er-
ror bars result from the measurement of the position of the di�erent coils).

Figure 2.7: a) and b) are two RF-spectroscopy scans: the remaining atom number after one
second of RF excitation is measured via absorption imaging for di�erent RF-frequencies.
The �rst RF frequency for which atoms are transferred to non-trappedmJ states and
therefore lost, is a measurement ofB0=hf RF /2 � B . On the right hand side, the measured
values of the bias �eld are reported as a function of the current in PS Bias. The blue and
purple points corresponds to the values extracted from the scans a) and b). The largest
error bars on the data points arise from the current measurement realised with a current
clamp limiting the accuracy to� 1.2 A. The plain line corresponds to the �t described in
the text.

Table 2.2 summarizes the values of the Io�e-Pritchard trap parameters (trap frequen-
cies and bias �eld) obtained for a current of 300 A and two di�erent values of the PS Bias
current, �owing through the compensation coils before and after compression of the trap
respectively.
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! � (Hz) ! z (Hz) B0 (G)
I P SBypass = 80 A 74 74 30
I P SBypass = 68 A 500 74 1

Table 2.2: Trap frequencies and bias �eld for a current of 300 A passing through all the
coils and I Bypass driven in the opposite direction in the compensation coils. The two sets
of values correspond to the Io�e-Pritchard trap before and after compression.

2.3 Loading of the magnetic trap

This section details the di�erent experimental steps required to load the atoms from the
MOT into the magnetic trap. After a stage of 3D molasse and optical pumping, the
atomic cloud trapped in the Io�e-Pritchard trap is compressed adiabatically, resulting in
an increase of its temperature. A 1D-Doppler cooling phase allows to increase the phase
space density by a factor of 8 and reaches� � 7�10� 6, similar value than previously in
our group before starting the evaporative cooling [58].

2.3.1 Optical molasse

To further decrease the temperature after the MOT phase, the magnetic �elds are switched
o� and the MOT beams are brought close from resonance while reducing their intensity
in order to realise an optical molasse.

At the intersect of six counterpropagating beams, red-detuned from the atomic tran-
sition by � , the slowing force is proportional to velocity, resulting in a viscous damping.
In a one dimensional model and for low intensities, insuring that the two light waves of
vector k= 2� / � act independently on the atoms, the force can be approximated by [68]:

F = 4~k
I

I sat

kv(2� =� 0)

[1 + (2� =� 0)]2 = �v (2.10)

where� 0= 2� �1.62 MHz is the linewidth andI sat= 167 � W�cm� 2 the saturation intensity
of the 23S1 ! 23P2 atomic transition. Atoms are not trapped because there is no restoring
forces on atoms that have been displaced from the center.

The damping forceF leads to a kinetic energy loss rate ofFv= �v 2 and thus a typical
time-scale of� damping = m/ � , wherem is the atomic mass. For He� this corresponds to a
typical duration of 10 � s, for I= 0.5I sat and � = � 0.

The average forceF damps the atomic velocity but its �uctuations produce heating.
At the equilibrium, the heating and cooling rate are equal and the �nal temperature
achieved can be expressed as:

kB T =
~� 0

4
1 + (2� =� 0)2

2� =� 0
(2.11)

With the laser detuning �xed at � = � 0, the achieved temperature should beTD = 50 � K.
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The low laser intensity is required here to reduce the e�ect of stimulated emission: an
atom could absorb a photon from one beam and reemit in the counterpropagating beam,
resulting in large, velocity-independent changes in the atom's velocity. Typically, 3% of
the MOT beams intensity is still de�ected by the AOM at this detuning, corresponding
to an intensity of 0.5 I sat per beam.

Experimentally, after an optical molasse stage of 500� s the cloud temperature reaches
Tmolasse= 300 � K.
Two main technical reasons limit the cloud temperature. First, the magnetic �elds are
not zero during the short optical molasse stage and therefore not all the atoms are seeing
the optimum detuning. For � = 5 � 0, which corresponds to a �eld of 2 G, the achieved
temperature is only 200� K.
A second reason lies in the retrore�ection of the MOT and molasse beams. Indeed optical
molasse are highly sensitive to beam imbalance inducing large drift velocities. The imbal-
ance between two counterpropagating beam is here of the order of 5%, due to absorption
from the atomic cloud (the absorption can be evaluated to be of the order of 37% at res-
onance, corresponding to 7% at a detuning � = � 0). Nevertheless the lack of laser power
does not allow to produce six independent beams.

The atomic losses occuring during this short duration of the optical molasse are neg-
ligeable, even if the Penning rate constant is increasing for small detunings of the laser
light. The lifetime of the molasse is indeed of the order of 100 ms, so that the losses are
at the % level.

Additional compensation coils have been added to match the three dimensional posi-
tion of the molasse with the magnetic trap center. They produce typically 1 G for 1 A
of current to compensate for stray magnetic �elds, especially from the second Zeeman
slower.
Perfect mode-matching of the MOT and the magnetic trap [69] is not required since a
1D Doppler cooling phase has been implemented, increasing the �nal phase-space density
achieved in the compressed trap. The atomic transfer into the magnetic trap has thus
been optimised in order to maximise the atom number and not the phase-space density.

2.3.2 Optical pumping

At the end of the optical molasse stage, atoms are equally distributed between the di�erent
Zeeman substates. In order to maximise the trapped atom number, an optical pumping
stage drives the atoms in themJ = +1 magnetically trappable state. The optical pumping
beam has a circular polarisation (� + ) and is retro-re�ected to form a standing wave along
the Z-axis and thus avoid any acceleration e�ect induced by radiation pressure. Its in-
tensity is typically of 7 I sat in total and has been choosen to optimise the atomic transfer
into the magnetic trap.

The optical pumping pulse lasts 50� s and is shined during the rise of the magnetic
�elds (150 � s after the switch of the current). Its detuning is adjusted experimentally to
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match the atomic resonance in presence of the rising �eld. Since the currents in the coils
are rising over 500� s, the magnetic �eld can be considered as constant over the short
duration of the optical pumping and de�nes a proper quantisation axis.

The channeltron positionned in the cell can detect small numbers of trapped atoms
after time-of-�ight. The channeltron signals recorded with and without optical pumping
con�rm the expected change by a factor of three for the atom number.

The e�ciency of the loading is of the order 50% and typically 108 atoms are trans-
ferred into the magnetic trap. The cloud is subsequently compressed by reducing the bias
�eld B0 from 30 G to 12 G, increasing the magnetically trapped cloud temperature to
approximately Tl= 800 � K.

2.3.3 1D Doppler cooling

Before further compression, another retrore�ected� + -polarised beam along the trap axis
cooling the sample to about 0.2 mK. For this 1D-Doppler cooling the laser is red-detuned
from the atomic resonance frequency in presence of the bias �eld. As a consequence,
atoms will preferentially absorb photons from the beam directed against their direction of
propagation and the sample is cooled along theZ-direction. Cooling of the radial degrees
of freedom relies on reabsorption of scattered photons and requires thus optically dense
clouds [70].

Figure 2.8: a) Scan of the detuning of the Doppler beam from the atomic transition. The
horizontal and vertical widths (FWHM on the CCD camera) are obtained from the �t of
the imaged cloud after 2 ms time-of-�ight. Minimal widths are obtained for f = 17 MHz
corresponding to a red-detuned beam forB0= 12 G. The most left black points represent
the widths of the cloud without 1D-Doppler cooling stage. b) Scan of the 1D-Doppler
duration. The optimum duration is 800 ms with respect to the minimisation of the cloud
widths after 2 ms time-of-�ight and losses.
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This 1D-Doppler cooling stage is realised at a large bias �eld of 12 G. The di�erent
optical transitions are separated by 16.8 MHz, which prevents o�-resonant excitations
and thus losses due to depumping to non-trapped spin states. The laser frequency is
red-detuned from the atomic resonance in an external �eld ofB0 so that absorption pref-
erentially occurs at the trap minimum where velocity is highest in order to cool e�ciently.
The intensity has to be small compared toI sat to avoid light-pressure forces due to inten-
sity imbalance between the two counterpropagating cooling beams. Indeed the optically
dense atomic sample absorbs almost 40% of the incident beam intensity.

The Doppler beam has an intensity of the order of 10� 3 I sat and is shined during
800 ms. The detuning is adjusted experimentally in order to maximise the cooling e�ect
as shown in �gure 2.8 a). The FWHM widths after 2 ms time-of-�ight are measured by
optical imaging for di�erent frequencies of the Doppler beam. A clear e�ect of heating as
the laser frequency is blue detuned from the atomic transition can be observed.
The duration of the 1D-Doppler stage has also been optimised (see �gure 2.8 b)).

This 1D-Doppler cooling stage increases the phase-space density by a factor of 8 with-
out losses. We achieve a �nal temperature similar to the other groups having implemented
1D-Doppler cooling for magnetically trapped metastable Helium [27, 71, 72, 73]. A deter-
mination of the temperature, analysing the time-of-�ight signal on the channeltron as in
section 1.3.3 is presented in �gure 2.9:TD = 250� 20 � K. Because the atomic transition
is narrow (� 0 = 1.62�106 MHz) and sensitive to magnetic �eld (1.4 MHz/G), short time
scale �uctuations of B0 may reduce the e�ciency of this method.

Figure 2.9: Time-of-�ight signal recorded on the channeltron for a Doppler cooled cloud.
The experimental data are reported as the red thick line and the �t function from section
1.3.3 is represented as the black plain line. The temperature obtained is:TD = 250� 20 � K.
The slowest atoms from the distribution are not properly detected, presumably because of
their curved trajectories. An acceptance angle for the detector has been included in the
model describing the time-of-�ight signal, but the results were critically depending on the
chosen cut value and were therefore abandoned.
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2.3.4 Characteristics of the atomic sample in the compressed
trap

Figure 2.10: Temporal sequence for the loading of the magnetic trap (not to scale). The
current in the pinch and compensation coils are depicted for the di�erent phases of the
sequence: (1) MOT phase, (2) Molasse cooling, (3) Spin polarisation, (4) First compres-
sion, (5) 1D Doppler cooling, (6) Second compression.

Further compression to a �nal bias �eld B0 � 1 G is realised, increasing the central
density and ellipticity of the trapped cloud. For an adiabatic transformation, the entropy
is conserved and thus the �nal temperature, higher than the Doppler one, can be evalu-
ated. Let us consider a thermal cloud ofN atoms, at a temperatureT in a trap of mean
frequency! mean . The fugacity z = e�=k B T can been introduced. The chemical potential
� is related to the total atom number by:

N =

 
kB T

~! mean

! 3

g3(z); (2.12)

whereg� (z) is de�ned as:

g� (z) =
1X

p=1

zp

p�
: (2.13)

The entropy of such a thermal gas is equal to [11]:

S = kB N

 

4
g4(z)
g3(z)

� logz

!

: (2.14)

For a starting temperature after 1D Doppler coolingTi = 200 � K and an initial radial fre-
quency of 70 Hz, the temperature achieved after compression to a typical radial frequency



2.3. LOADING OF THE MAGNETIC TRAP 51

of 500 Hz is:Tf � 320 � K.
In order to ful�ll the adiabatic requirement, the compression is realised over approxi-
mately 1 s, which is long compared to the slowest trapping oscillations of 15 ms. The
temperature has been measured to increase to 300� K. A more pronounced heating could
be observed for durations shorter then 300 ms.

The complete temporal sequence is depicted in �gure 2.10. The MOT is loaded during
800 ms, followed by a molasse cooling stage during 300� s. The spin polarisation stage
covers 50� s during the rise of the magnetic �elds, which takes 500� s. The compression
is done in two stages, separated by a 1D Doppler cooling phase.
The temperature of the atoms has been measured after di�erent holding times in the mag-
netic trap and over 10 s no heating could be resolved. The �nal temperature has been
measured via absorption imaging of the cloud expansion and via an RF-spectroscopy in
the magnetic trap has reported in section 2.4:Tf = 300 � K.

The lifetime of the atomic cloud has been measured to be 25 s at1=e as can be seen
in �gure 5.2, favorable to start evaporative cooling. It is essentially limited by collisions
with the background gas. Indeed with a central density ofn0= 6�1010 cm� 3, the Penning
ionisation in a spin-polarised atomic sample would result in a lifetime of� 100 s and is
thus not the limiting factor here.
The e�ect of the source pressure has been investigated as it impacts on the vacuum of the
science cell, but the lifetime remains constant in the range of our working parameters.

Figure 2.11: Lifetime of the trapped cloud in a logarithmic scale. The points represents
experimental data, averaged over �ve images, and the plain line a �t of f(t)=Aexp (� t=� ),
with � = 25� 1 s.
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2.4 Towards evaporative cooling

In the compressed magnetic trap of trapping frequencies! � = 500 Hz and ! z= 70 Hz,
with 108 atoms at a temperature Tf � 300 � K, the spatial density at the center is
n0= 6�1010 cm� 3. The phase-space density� can be evaluated from:

� = n0� 3
dB = n0

0

@ h
q

2�mk B Tf

1

A

3

(2.15)

where� dB is the de Broglie wavelength. With the parameters characteristic of the atomic
sample in the compressed magnetic trap:� � 7�10� 6, similar to the starting conditions
in [58].

2.4.1 RF spectroscopy

A radio-frequency (RF) spectroscopy of the atomic sample in the Io�e-Pritchard trap
allows to determine two essential parameters: the cloud temperature and the bias �eld
B0. We are working with a RF antenna positioned 5 cm away from the atomic cloud
along theX axis of the trap. The coil is composed of three turns of dimensions 4� 6 cm2.
The frequency generator (HP-Agilent E4400B) is ampli�ed up to 40 dB by a separated
ampli�er, corresponding to a maximal power of 15 W.

Radio-frequency waves induce transitions between the trapped spin statemJ =1 to
the mJ =0 and mJ =-1 states, which are non trapped. For a RF excitation of frequency
f RF with 1 W of RF power, it has been experimentally veri�ed that all the atoms with
energies above� t= h(f RF � f 0) leave the trap within 1 s. The energyhf 0 corresponds
to the magnetic potential energy due to the non-zero bias �eld. Since the gravitational
potential energy can be neglected for Helium atoms, this spilling experiment directly
probes the Boltzmann energy distribution. The number of atoms outcoupled from the
trapping potential by the RF denoted N loss is thus expressed as:

N loss =
Z 1

� t

� (� )f (� )d� (2.16)

where� (� ) is the energy density of states andf (� ) represents the Boltzmann distribution
de�ned as:

f (� ) = n0� 3
dB e� �=k B T : (2.17)

n0� 3
dB corresponds to the occupation number of the lowest energy state in the trapping

potential.
Assuming an harmonic trapping potential for simplicity (which is not exactely true con-
sidering the temperature of the cloud), the energy density of states is proportional to� 2.
Integrating equation 2.16 one can deduce the number of remaining atoms, denotedNr :

Nr = Ne� � t =kB T

 

1 +
� t

kB T
+

1
2

� � t

kB T

� 2
!

: (2.18)
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The number of remaining atoms after 1 s of RF excitation was determined by optical
imaging for di�erent RF frequencies. Adjusting the experimental data with equation 2.18
enable us to deduce the temperature of the atomic cloud from the data presented in the
top of �gure 2.12. An independent determination of the temperature from the expan-
sion of the cloud during time-of-�ight (absorption imaging) has been realised in the same
experimental conditions: before and after the 1D Doppler stage (botom graphs of �gure
2.12). Both measurements are in agreement as one can see from table 2.3.

Figure 2.12: Temperature detremination of the atomic cloud in the fully compressed trap,
without a) and with b) the 1D Doppler cooling stage. The two top graphs present the
experimental data of the RF spectroscopy measurement described in the text: the number
of remaining atoms after 1 s of RF excitation at di�erent frequencies has been evaluated
with optical imaging and �tted using the function of equation 2.18 withB0 �xed. The two
bottom graphs report the expansion of the vertical width of the atomic cloud, determined by
absorption imaging, allowing to deduce the temperature (see Appendix A). The comparison
of the temperature obtained by those two independent measurements are reported in table
2.3.

2.4.2 Evaporative cooling principle

For a cloud at temperatureT, in thermal equilibrium in a magnetic trap, the velocity dis-
tribution is maxwellian. The evaporative cooling consists in removing the hottest atoms
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From absorption imaging From RF spectroscopy
Without 1D Doppler cooling 800� 30 � K 800� 100 � K

With Doppler cooling 270� 40 � K 310� 60 � K

Table 2.3: Temperatures determined before and after the 1D Doppler cooling stage by two
independent measures: the expansion of the cloud during time-of-�ight using absorption
imaging and the RF spectroscopy of the magnetically trapped sample.

from the distribution, having a kinetic energy much larger thankB T. The mean kinetic
energy per particle is thus reduced. Subsequently, via elastic collisions the thermal equi-
librium can be reached again, with a temperature lower than the initial one.

Evaporative cooling has been �rst proposed by H. F. Hess in 1986 [74] for spin-polarised
Hydrogen and is realised here with RF outcoupling of the hottest atoms [75]. As in-
troduced in the previous paragraph, the frequencyf RF determines the minimal kinetic
energy � t = h(f RF � f 0) of the particles undergoing the transition. If elastic collisions
insure thermalisation, the parameter� = � t

kB T for a �xed RF frequency increases with
time. Simustaneously the probability for an atom of having a kinetic energy larger than
� t decreases and the cooling process becomes slower. To decrease further the temperature,
one has to diminue the value off RF continuously, to force the evaporation. Kinetics is
therefore an essential parameter of evaporative cooling.

Three times scales are thus involved in the evaporative cooling process: the thermali-
sation time, the time scale on whichf RF is changed and �nally the lifetime of the trapped
cloud, denoted� l � 25 s.

2.4.3 Thermalisation rate

First the thermalisation time has to be short compared to the lifetime of the trapped
cloud, meaning that the elastic collision rate� el has to be large compared to the inelastic
loss rate � in = 1=� l . The critical value of this ratio can be evaluated from a study of
the kinetics of the evaporative cooling (in the case where� = � t=kB T remains constant
during the cooling) [76, 77] and depends only on the geometry of the magnetic poten-
tial. In the case of a semi-linear trap, the elastic collision rates increases if� el � 34� in [76].

In order to evaluate the elastic collision rate in the magnetic trap, before starting the
evaporation, a thermalisation experiment has been realised as done in [58]. The atomic
cloud is prepared in a non-equilibrium state, by compressing non adiabatically the mag-
netic potential over 10 ms, increasing the temperature in the radial plane. The time
needed for the cloud to reach a �nal equilibrium state, denoted� therm , is evaluated from
the ellipticity of the cloud as shown in �gure 2.13. Just after the compression, the elliptic-
ity remains equal to its value in the starting isotropic potential. After thermalisation, the
ellipticity corresponds to the trapping frequency ratio of the compressed trap, which gives
e= 7. After 1.5 ms time-of-�ight, one expectse= 1.7 which is larger than the measured
value. This discrepancy could result from a wrong theoretical evaluation of the trapping
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frequencies.
Since elastic collisions insure the energy exchange between the di�erent degrees of freedom,
� thermalisation is inversely proportional to� el. With a Monte-Carlo simulation, the authors
of [78, 79] found, for an harmonic potential, that the number of collisions needed to ther-
malise is 2.7 (� therm = 2.7 � � 1

el ). From the data reported in �gure 2.13, � therm = 130 ms
and one can �nally deduce: � el � 21 s� 1 and thus � el=� in � 540, which is favorable to
start evaporative cooling.
This number of collisions required to thermalise the sample has the right order of magni-
tude but has been evaluated theoretically under the hypothesis of an harmonic trapping
potential and for an initial temperature of 30� K. The temperature di�erence between
the initial and �nal states in fact matters and could change the proportionality factor
between� therm and � el.

Figure 2.13:Evolution of the cloud ellipticity (temperature independent) during the rether-
malisation in the magnetic trap after a sudden compression. The initial ellipticity is
around 1 as expected in an isotropic potential. The �nal ellipticity is expected to be of
the order of 1.7 after 1.5 ms time-of-�ight di�ers from the obtained result. This discrep-
ancy could result from a wrong theoretical evaluation of the trapping frequencies. The
plain line represents an exponential �t, from which a thermalisation time can be deduced:
� therm = 130� 4 ms.

2.4.4 RF ramp for forced evaporative cooling

The study of the kinetics also shows that the parameter� has to be �xed and maintained
constant at a value close to 6. For a starting temperature of 400� K and a bias �eld of
the order of 1 G, this corresponds tof RF;start � 40 MHz. The time-scale at whichf RF

is varied has to be slow compared to the thermalisation time, but its appropriate value
is �xed experimentally. The collision rate should not decrease during the evaporation in
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order to reach low temperatures. In an harmonic trap, the elastic collision rate is propor-
tional to the ratio of the atom number N over the temperatureT, corresponding to the
optical density at the center of the cloud.

The radio-frequency ramp is divided into segments for which the start and end values
are �xed and the duration is varied in order to keep a constant optical density at the cen-
ter. The �rst segment covers the interval from 40 MHz to 20 MHz and we could observe
a division of both the temperature and the atom number by a factor two. As reported
in �gure 2.14, the optical density at the center remains constant for a RF power of the
order of 1 W and the atom number is divided by a factor of two. The temperature has
been determined by optical means to be 150� 50 � K.

Figure 2.14:E�ect of a linear ramp of the RF frequency from 40 MHz to 20 MHz on a) the
central density and b) the atom number. The ramp duration is varied between 200 ms and
600 ms. The large black data points correspond to the central density and atom number of
the initial atomic cloud. The red (light grey) points corresponds to a power of -15 dB and
the lila (black) points to a power of -5 dB, corresponding to a RF power of approximately
1 W.

Reproducible results were until now di�cult to obtain, mainly because of the insta-
bility of the bias �eld, �uctuating by 500 mG. Such �uctuations a�ect mainly the 1D
Doppler cooling, changing its e�ciency and thus the initial temperature of the evapora-
tive cooling over time because of the narrow linewidth� 0= 1.6 MHz. An optimisation
of the ramp parameters was therefore di�cult to realise. Hence, it has been decided to
change the relative positions of the coils in order to inject less current in the overcompen-
sating compensation coil: a bias �eldB0= 1 G is now achieved for an inverse current of
few amperes only, provided by a more stable power supply. We hope to gain in stability
and pursue the evaporative cooling process.
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2.5 Conclusion

In this chapter the design and the construction of a novel magnetic trap for metastable
Helium atoms are presented. This cloverleaf trap con�guration allows to load in situ a
Bose-Einstein condensate into optical lattices of di�erent dimensionalities.

The performances of the electrical circuit detailed in section 2.2 ful�ll the require-
ments of fast switching of the currents. The typical switching o� last 500� s both for the
currents of the MOT quadrupolar �eld and of the Io�e Pritchard trap. An additional
capacitor permits a fast rising of the current during the switch between the two magnetic
�eld con�gurations, in order to limit the atomic cloud expansion and thus achieve a higher
loading e�ciency into the magnetic trap.

Up to 108 atoms are loaded into an isotropic magnetic potential, having a trapping
frequency of 70 Hz. The loading e�ciency can be evaluated to be 50%. Subsequently a
1D Doppler cooling stage increases the phase-space density by a factor of 8, before �nal
compression of the radial frequencies to 500 Hz achieved for a bias �eld of 1 G. The �nal
phase-space density� � 7�10� 6 is similar to the one previously obtained in [58].
The lifetime of the trapped atomic sample is limited by collisions with background gases
to � l= 25� 1 s.

To reach the degeneracy, an evaporative cooling stage has to be implemented. A
'spilling' experiment demonstrates a selective RF outcoupling of the trapped atoms and
provides an additional determination of the cloud temperature. In order to start evapo-
rative cooling the ratio of the thermalisation rate� el over the inelastic collision rate� in

has to be larger than 34 (semi-linear magnetic trap) [76]. An experimental determination
of � el is presented, setting� el=� in � 540. Under those favorable conditions, the �rst
RF frequency ramp to force the evaporative cooling has been optimised to reach a �nal
temperature Tf = 150 � K.

Reproducible lower temperatures could not be achieved, mainly because of the insta-
bility of the bias �eld B0. The e�ciency of the 1D Doppler cooling stage, and thus the
phase-space density, depends indeed critically on the value of the bias �eld. The relative
positions of the magnetic trap coils have been changed to improve the bias stability. Less
reverse current in the compensation coils is now needed and a more stable power supply
is used. Further optimisation of the evaporative cooling is continued.
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Chapter 3

Prospects for experiments in an
optical dipole trap

For neutral atoms, it has become routine to produce ensembles in the microkelvin region
on the basis of three di�erent interactions, each class having speci�c properties. We have
already described theradiation-pressure traps[80, 60] resulting from the dissipative force
caused by the momentum transfer of absorbed and emitted photons. With near-resonant
light the typical depth reaches few kelvins, allowing for the capture of atoms from a vapor
or a slow beam. But the attainable temperature is limited by the photon recoil and the
density by light-assisted inelastic collisions.
Therefore magnetic trapswere developped, based on the state dependent force on the
magnetic dipole moment in an inhomogeneous �eld [81, 82]. They represent ideal con-
servative traps with typical depth of hundreds of mK. A fundamental restriction is then
that the trapping mechanism relies on the internal atomic state.

Optical traps rely on the electric dipole interaction with the light �eld, which is much
weaker than all mechanism discussed above. This interaction causes a shift of the atomic
energy levels, also called AC-Stark shift. The laser light is usually tuned far away from
an atomic resonance frequency, such that spontaneous emission e�ects from resonant ex-
citations can be neglected and the resulting trapping potential is purely conservative in
nature [83].
The rapid development of optical traps since 2000 is a consequence of two main advantages
over magnetic ones. First, all spin states can be trapped allowing for more �exibility in
the choice of the atomic internal state. Second the magnetic �eld can be then varied freely.
Nowadays Bose Einstein condensate or degenerate Fermi gases are produced without the
implementation of a magnetic trap, loading directly the MOT into an optical dipole trap
[84, 85].

Those optical potentials and their properties will be presented in the �rst section (a
complete review can be found in [86]). Also the parameters required to implement a
crossed dipole trap at� = 1560 nm for metastable helium atoms will be detailled.

To date, experiments involving metastable helium have been largely based upon mag-
netic trapping that guarantees the spin polarization and thus enables the high density

59
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needed to reach degeneracy. However all-optical potentials formed from far-detuned laser
beams present great advantages for novel studies especially of the Penning collisions and
were therefore recently implemented by most of the group working with this atom. In
such a trap atoms are con�ned regardless from their spin state, opening the exploration
of sample of spin state or mixtures which cannot be controlled in a magnetic trap. This
spin degree of freedom has been used to measure spin-state-resolved two-body inelastic
loss rate coe�cients in [41].

Another new external degree of freedom is the magnetic �eld: this experimental pa-
rameter can now be varied without modifying the trapping conditions. This allows to
study the variations of the Penning ionisation rates with the magnetic �eld value pre-
dicted by Schlyapnikov in [22, 23] as detailled in the next chapter.
A new numerical evaluation of the inelastic decay processes in presence of an external
magnetic �eld, using the latest available molecular potentials for metastable helium from
[36], will be presented in the second section. The faisability of an experimental test of
those theoretical predictions will be discussed.

3.1 Optical trapping potential

In a classical desciption, optical traps rely on the interaction between an induced dipole
moment in an atom and an external electric �eld. Such a �eld can, for example, be
provided by the oscillating electric light �eld from a laser, which induces an oscillating
dipole moment in the atom while at the same time interacts with this dipole moment in
order to create a trapping potential.

3.1.1 Trapping potential

The interaction between atom and light can be described semi-classically using the dipolar
Hamiltonian: H =- ~� E, where ~� = � er represents the electric dipole operator. The
perturbation of far-detuned laser light on the atomics levels can be treated according
to the second order time-dependent pertubation theory. For non-degenerate states, an
interaction described by an hamiltonianH leads to an energy shift of thei th state of
unperturbated energyE i due to non-resonant transitions to �nal statesj :

� E i =
X

j

jhj jH j i ij 2

E i � E j
(3.1)

To obtain the non pertubated energiesE i , the dressed state view has to be applied [87, 88].
In its ground state the atom has a zero internal energy and the �eld energy isn~! where
n is the photon number and! the �eld frequency. When the absorption of a photon
promotes the atom in an excited level, the total energy is then the sum of the atomic
internal energy~! 0 and the �eld energy(n � 1)~! . Thus the denominator in 3.1 becomes
E i � E j = ~(! � ! 0) = ~� ij , denoting � ij the detuning of the laser from the considered
atomic transition.
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For a two-levels atom the interaction Hamiltonian reduces toH =- � E, and the energy
shift for the ground jgi and excitedjei states respectively:

� E = �

�
�
�
D
ej� jgij 2

�
jE j2 : (3.2)

Introducing the more readable parameters wich are the laser intensity I=2� 0cjE j2 and the
spontaneous decay rate from the excited level� via:

� =
! 3

0

3�� 0~c3
jhej� j gij 2 (3.3)

one gets the expression of the AC Stark shifts of the energies level of the two level atoms
due to far-detuned light:

� E =
3�c 2

2! 3
0

�
�

I: (3.4)

However, for multilevel atoms one has to sum over several excited levels, all involved in
the energy shift of the ground state. For a metastable helium atom interacting with laser
light at � =1560 nm, the main atomic transition involved in the shift of the metastable
level 23S1 is the cooling transition 23S1 ! 23P at � 0=1083 nm. The other non resonant
atomic transitions are too far detuned to contribute in a quantitative way. Moreover,
since the laser detuning is very large (� � 1014 Hz) compared to the typical frequency
scale of the �ne structure energy levels (� 109 Hz), the latter is not resolved. Therefore
the He* atom can be considered as a pure two-level atom coupled via a unique transition,
yielding the equation 3.4 as exact.

Equation 3.4 indicates that a spatial variation of the laser intensity creates a spatial
variation of the AC Stark shift of the two levels denotedjg; ni and je; n � 1i as depicted
in �gure 3.1. If one neglects the spontaneous emission, the atomic wave packet will adia-
batically follow the spatial variations of eitherjg; ni or je; n � 1i , experiencing an e�ective
potential energy. For a �xed laser detuning� , the sign of the dipolar force depends on
the internal state of the atom.
Spontaneous emission will change the atomic internal state and thus the sign of the force
acting on it. The mean dipolar force acting on an atom is the average of the two opposite
forces weighted by the time spent in the ground and excited atomic levels. For far-detuned
light, the atom will spend most of the time in the ground internal level and therefore the
e�ective trapping potential is produced by the spatial change in the energy of the dressed
state jg; ni .

The sign of the detuning will then determine the region of trapping:

� blue-detuned traps : above resonance, the dipole interaction repels the atoms
from the light maxima. Since several years, experimentalist developped speci�c
methods to trap the atoms at a minimum of the laser light (for example light sheets
[89], hollow laser beams [90], evanescent waves [91])
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Figure 3.1: Variation of the AC-Stark shifts for a two level atom across a red-detuned
focused laser beam.

� red-detuned traps : below resonance, atoms are trapped at positions of maximum
intensity. In this case, a single focused Gaussian beam constitutes a dipole trap
con�ning the atom in the waist region, where the intensity is maximum.

3.1.2 Scattering losses

The scattering losses can be expressed as [86]:

� sc(r ) = � e� =
3�c 2

2! 3
0

 
�
�

! 2

I (r ): (3.5)

where� e is the population in the excited state. From equations 3.4 and 3.5, the advantage
of this potential appears: the scattering rate proportional toI=� 2 decays faster with the
detuning from the atomic transition than the trap depth, which is proportional to I=� .
One may thus achieve the situation of a non-dissipative potential.

In the case of metastable helium, the depolarisation of the sample due to spontaneous
emission is critical because it produces high Penning losses. To reduce� sc, a large detun-
ing is necessary and a red-detuning is choosen to produce both a dipole trap and optical
lattices as it will be detailled in the two next sections. Amoung the lasers available, which
are red-detuned from� 0=1083 nm, lasers at� =1560 nm providing an interesting com-
promise between the trap depth and the scattering losses have been retained.

3.1.3 Red-detuned crossed dipole trap

In order to create a quasi-isotropic trap, two orthogonal red-detuned Gaussian beams at
� =1560 nm intersects at their waist ofw0= 100 � m.
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From equation 3.4, a single focused Gaussian beam propagating along thez axis will
create a trapping potential depending on its waistw(z) and powerP:

Udip (r; z) =
3�c 2

2! 3
0

�
�

2P
�w (z)2

e� 2r 2=w(z)2
(3.6)

where: w(z) = w0

q
1 + ( z=zR)2 and zR = �w 2

0=� is the Rayleigh length.
The potential depth U0 created by this single beam at the center can be expressed as:

U0 =
3�c 2

2! 3
0

�
�

2P
�w 2

0
(3.7)

For two crossed beams, propagating respectively along x and y, each of them having a
power of 5 W and a waist of 100� m, the achieved trap depth is 70� K, corresponding to
35 Erec (de�ned from the unperturbated energy level). For metastable Helium the recoil
energyErec = h2=2� 2m (where � = 1083 nm is the wavelength of the atomic transition)
is large since the atomic massm is 20 times smaller than for rubidium. One thus needs
to compensate with larger intensities in the dipole trap beams, or smaller waists. The
resulting dipolar potential is shown in �gure 3.2. This potential can be considered har-
monic when the cloud sizes are small compared to the beam waistw0 and approximated
by:

Udip (x; y; z) = � 2U0

"

1 �

 
x2 + y2 + 2z2

w2
0

!#

(3.8)

x and y being the propagation axis of the two laser beams. The trapping frequencies are
such that:

! x = ! y = ! r =

s
4U0

mw2
0

(3.9)

! z =
p

2! r (3.10)

For our experimental parameters:! r = 2� 1.2 kHz and! z= 2� 1.7 kHz.

The light source is an Erbium Micro Fiber Module from NP Photonics providing
60 mW of linearly polarised light at � =1560 nm. The wavelength can be tuned 20 GHz
around the central frequency by changing the temperature of two internal gratings. The
output power is then splitted to inject two Erbium doped ampli�ers (Keopsys) providing
10 W of output power each.

Each of the dipole trap beam will single-pass through acousto-optic modulators (AA
Opto-Electronic) with di�erent central frequencies (80 MHz and 110 MHz) in order to
produce a di�erential frequency shift and thus avoid interferences in the trapping volume.
These AOMs also enable fast changes in the trap depth, and especially fast switching of
the laser beams. The AOMs are made of TeO2 material and have an active aperture of
33 mm2 which is speci�ed for a laser beam diameter of 1 to 2.5 mm. This material has
been tested to withstand a maximum power intensity of up to 5 W�mm� 2 and can be
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Figure 3.2: Dipolar potential created by two orthogonal beams having a power of 5 W each
and of waistw0= 100 � m. The trap presents a cylindrical symetry around thez axis and
its depth is then 70� K.

driven with a maximum RF power of 2.2 W with no obvious heating.

At the output of the ampli�er �ber, the beam is Gaussian and has a measured waist
of 0.59� 0.03 mm. The AOM, placed just after, has a de�ection e�ciency of 87% and
preserves the gaussian pro�le and the initial waist of the beam. We implemented a
telescope to expand the beam using two lenses of respective focal lengths 50 mm and
100 mm. Since a collimated Gaussian beam of waistw and wavelength� is focused by a
lens of focal lengthf to a waist w0 which can be approximated by:

w0 =
f �
�w

(3.11)

one expects to achieve the desired waistw0 of 100� m with f = 250 mm.
The �nal beam waist has been characterised to bew0= 95� 20 � m from measurements,
using a pinhole, for di�erent distances from the �nal lens as presented in �gure 3.3 a).
The Rayleigh length being large (zR � 1.5 cm) compared to the size of the cold atomic
cloud (less than 2 mm), the intensity can be considered to be constant across the sample.

The coil arrangement of the cloverleaf magnetic trap, presented in chapter 2, o�ers a
large optical access and enables to create the dipole trap at the position of the MOT and
the magnetic trap center, avoiding the transport of the cold cloud. Di�erent choices for
the propagation axis, free from other optical beams, for the two dipole trap beams are
possible as shown in �gure 3.3 b).

The atomic cloud will be �rst evaporatively cooled in the magnetic trap to load e�-
ciently the atoms into the crossed dipole trap of depth 70� K. An adiabatic loading from
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Figure 3.3: a) Measurement of the beam waist for di�erent distances from the �nal lens.
The experimental data have been �tted by the theoretical longitudinal pro�le of a converging
Gaussian beam: f(z)=w0

q
1 + ( z� z0

zR
)2, with z0; zR and w0 as free parameters. One obtains:

w0= 95� 20 � m, z0= 22.6� 0.2 cm andzR= 1.5� 0.3 cm. b) Possible axis for the dipole
trap beams around the science cell. The propagation axis are the one planned for the
lattice beams and are free of other optical beams.

the actual cloverleaf magnetic trap will heat the cloud since the trapping frequencies of the
optical trapping potential are larger. The trapping frequencies of the harmonic magnetic
potential have been characterised to be:! �;mag = 2� 500 Hz and! z;mag = 2� 70 Hz. Since
the entropy is conserved, the initial temperature required in the magnetic trap after evap-
orative cooling is approximately 15� K, in order to achieve a �nal temperature of 70� K
in the crossed dipole trap of frequencies:! �;opt = 2� 1.2 kHz and! z;mag = 2� 1.7 kHz.
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3.2 Variations of the Penning collision rates with the
magnetic �eld value in a dipole trap

This section is dedicated to the study of the Penning ionisation in a sample of spin-
polarised atoms, regime in which they are largely inhibited. Indeed, as explained in
section 0.1, the collision rate is reduced by four orders of magnitude allowing to reach the
degeneracy for metastable atoms. However those inelastic processes are still occuring due
to the spin-dipole interaction, described in 3.2.2, which tends to depolarise the sample.
The leading mechanism involves then virtual spin-relaxation transitions in the colliding
pair of atoms from the initial S=2 quasimolecular state5� +

g to the S=0 state 1� +
g , which

autoionizes through the ordinary Penning mechanism.

To start, a brief review on the di�erent models for the interaction potential in the5� +
g

electronic state is presented.
After introducing the spin-dipole Hamiltonian and its characteristics, two inelastic colli-
sion rates will be de�ned in order to describe both the depolarisation of the atomic sample
and the Penning collisions induced by this depolarisation.
Their theoretical changes in di�erent magnetic �eld values has been studied in [22, 23].
Here the lastab initio molecular potentials for the5� +

g electronic state from [36] has been
used to numerically evaluate the inelastic collision rates in an external magnetic �eld at
T = 0 K.
The last part of this section will focus on the experiment planned to test those theoretical
predictions and its faisability.

3.2.1 Di�erent evaluations for the interaction potential in 5� +
g

In this problem, a pair of spin-polarised atoms in the (23S1,mJ =1) metastable state col-
lide with a low relative energy (typically T < 70 � K for an atomic cloud trapped in the
crossed dipole trap). The collision can be studied within the Born-Oppenheimer approx-
imation, which treats separately the position and impulsion variables of the nuclei and
the electronic ones. The eigenenergy of each electronic state is determined under the
assumption of a �xed inter-nuclear distancer . Subsequently, the movement of the nuclei
is described as governed by a potential energyV(r ) associated to a particular electronic
state. The quantum state of an atomic pair is then the product of a rovibratonal state
j� i and an electronic statej� i : j	 i = j� i 
 j � i .
The electronic state of the atomic pairj� i can be written in the basis of the product
states of two independent atoms. In the absence of interactions, such product states are
eigenstates of the Hamiltonian.
Nevertheless, if the Hamiltonian includes an interaction, those product states are cou-
pled and the new eigenstates, denotedmolecular states, are linear combinations of di�er-
ent atomic orbitals. The initial state can be described by the following quantum state:
jS = 2; MS = 2; l = 0; M l = 0i corresponding to a5� +

g electronic state and a zero orbital
momentum1. The spin-dipole Hamiltonian presented in the paragraph 3.2.2 couples the

1In this notations S represents the total spin of the atomic pair l its total orbital momentum ; M S

and M l corresponds to their respective projections on the quantisation axis.
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initial 5� +
g electronic state with zero orbital momentum to di�erents �nal states among

which the (1� +
g , l=2) state, from which Penning ionisation is allowed.

The theoretical description of such collisions relies on the chosen modelisation of the
interaction potential Vq(r ). Its consists of two distinct parts: a repulsive short range part
and an attractive long range one.
The repulsive short range part of this potential is due to the exchange interaction, result-
ing from the overlap of the electronic wave functions of the two atoms. The size of an
electronic cloud of a metastable helium atom is of the order of 3a0 (mean value of the size
of an hydrogen atom in the electronic state (n=2,l=0)) and therefore 6a0 corresponds to
a 'rough' range of the interaction reponsible for the repulsive part of the potential. The
minimum of the di�erent potentials lies indeed at rmin = 7.3 a0 as can be seen in �gure
3.4.
At large distance, the interaction is attractive due to the electrostatic interaction of the
charge distributions of the two neutral atoms. The lowest order in1=r corresponds to the
dipole-dipole interaction (1=r3), which can be treated perturbatively. As the atoms are in
a S state, the �rst order of the perturbative treatment contains only terms proportional
to the zero matrix element

D
L = 0jD̂ jL = 0

E
, whereD̂ is the electric dipole operator. The

order two of the perturbation is then proportional to 1=r6, when the retardation e�ect
due to the �nite speed of light is neglected [92]. As a consequence, this attractiv long
range part of the potential is modeled by a term written asC6=r6. Higher orders term
due to the electric quadrupole and octopole are also taken into account via coe�cients
denotedC8 and C10.
Those long range coe�cients can be determined from a method, considered as exact,
where the polarisability of the electric dipole, quadrupole and octopole, together with
the coupled dispersive coe�cients, are calculated from the wave functions composed from
an ensemble of basis variationaly determined [93]. Those dispersive coe�cients correct
the various terms of the expansion for charge overlap e�ects, via a damped incomplete
Gamma function.

The �rst potential, which was accurate enough to predict the proper number of bound
states, has been proposed by J. Starck and W. Meyer in [94]. This article presents the
advantage of providing an analytical expression of the potential. However, the long range
part of this potential is inexact (the C6, C8 and C10 coe�cients are not in agreement with
the one determined in [93]) and no error bar has been provided. This potential is the one
used in the evaluation of the variations of the inelastic collision rates with the magnetic
�eld value in [22, 23].

Another potential has been proposed in [95] and [96] based onab initio calculations
for interatomic distances smaller than 18a0 and on perturbative calculations for the long
range part. The main di�culty lies in the interpolation of those two parts of the potential.
Depending on the position of the transition between short range and long range inter-
actions, the resulting position of the last bound state and thus the scattering length varies.

The latest theoretical evaluation of this potential has been realised by M. Przybytek
and B. Jeziorski in [36]. It is based on the Born-Oppenheimer potential adding adiabatic,
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Figure 3.4: Potential energy curvesVq for the 5� +
g electronic state as a function of the

interatomic distance in Bohr radius a0. The energy are expressed in atomic units. The
dashed line corresponds to the potential obtained by J. Starck and W. Meyer [94] and used
in the evaluation of the magnetic �eld dependency in [22, 23]. The plain line represents
the potential derived by M. Przybytek and B. Jeziorski in [36].

relativistic and QED corrections. They provide an analytical expression of the potential
valid for any interatomic distance. The error bar results from the weight of the di�erent
corrections (estimated at� 10% for adiabatic corrections and� 20% for relativist and
QED corrections) as well as the choice of the mass (atomic or nuclear) of Helium in the
Schrödinger equation. The scattering length of a= 7.64� 0.2 nm determined from this
potential is in remarkable agreement with the experimental results obtained in our group
[38].

As can be seen in �gure 3.4, the two models from [94] and [36] di�er by up to 10% at
the position of the potential minimum. This will lead to notable changes in the evaluation
of the inelastic scattering rates as detailled in paragraph 3.2.4.

3.2.2 Spin-dipole Hamiltonian

The spin-dipole Hamiltonian describes the interaction between the magnetic dipolesM 1

and M 2 of two helium atoms (see �gure 3.5). The magnetic momenta are related to
the atomic spin via M i = gS� B Si , with gS= 2 the Lande factor for the state 23S1 and
� B = e~2me the Bohr magneton expressed as a function of the electron chargee and mass
me. This Hamiltonian expresses the interaction energy of the dipole momentumM 2 with
the magnetic �eld created byM 1. Denoting asr the interatomic vector, this long-range
interaction Hamiltonian can be written as (see [97], AppendixBXI ):

Hsd(r ) = �
� 0

4�
(gS� B )2

r 5
(3(S1 � r )(S2 � r ) � (S1 � S2)r 2): (3.12)
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Figure 3.5: Relative disposition of two magnetic dipoles. The magnetic operators are
usually expressed in a basis linked to the experimental magnetic �eldB , de�ning the
quantum axis. On the contrary, the cinetic momentum related to the atomic rotation is
naturally expressed in a basis linked tor , colinear to the molecule axis.

The action of this Hamiltonian has now to be expressed in the basis of the electronic
states jS(S1S2)MSi using the total electronic spinS = S1 + S2 of projection MS along
the laboratory quanti�cation axis, and in the basis of the spherical harmonicsjlM l i .
Di�erent spin states but also di�erent spherical harmonics will be coupled as the spin-
dipole coupling is anisotropic. Only the total angular momentumJ = S + l is conserved.
The details for this decomposition can be found in [98] and �nally the initial state
jS = 2; MS = 2; l = 0; M l = 0i is coupled to the three �nal states:

jS = 2; MS = 1; l = 2; M l = 1i
jS = 2; MS = 0; l = 2; M l = 2i
jS = 0; MS = 0; l = 2; M l = 2i

(3.13)

with spin-dipole Hamiltonian matrix elements equal to:

h2; 2; 0; 0jHsd j2; 1; 2; 1i = �

s
6
5

�
r 3

(3.14)

h2; 2; 0; 0jHsd j2; 0; 2; 2i = �
2

p
5

�
r 3

(3.15)

h2; 2; 0; 0jHsd j0; 0; 2; 2i = �

s
2
5

�
r 3

(3.16)

with � = � 0
4� (gS� B )2. This expression is di�erent from [22, 23] where cgs units are used

and the integration is done only on the spin variables.

3.2.3 Inelastic collision rates

In the case of transitions whereSf = Si =2, the �nal states of the scattering process can not
lead to Penning ionisation since the atoms remains in the electronic state5� +

g . The scat-
tered part of the wavefunction in the statejS = 2; MS; l = 2; M l = 2 � MSi will propagate
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in an e�ective potential:

V
S=2 ;M Sf

ef f = Vq(r ) +
l(l + 1)

2�r 2
� Em (MSf ) (3.17)

where l=2 is the �nal orbital momentum and Em (MS) = 2 � B B(2� MS) the �nal magnetic
energy of the atomic pair.

In the case ofSf =0, an autoionisation process may happen since the atoms are no
longer spin-polarised. As Penning ionisation occur with probability close to unity at
inter-particular distance smaller than7a0 [99], the interatomic potential is modeled by a
perfectly absorbing boundary at a distancer0 = 7a0 and ,at largerr , by the purely elastic
potential 1� +

g , denotedVs(r ) and taken from [99]. The e�ective potential is in this case:

V
S=0 ;M Sf =0

ef f = Vs(r ) +
l(l + 1)

2�r 2
� Em (0) (3.18)

where again l=2 is the �nal orbital momentum.

The collision between two spin-polarised metastable atoms is thus fully described by
the following coupled Schrödinger equations:
 

�
~2

2�
� + Vq(r )

!

yq
l=0 (r ) = �

s
6
5

�
r 3

yq
l=2 ;m l =1 (r ) �

2
p

5
�
r 3

yq
l=2 ;m l =2 (r ) �

s
2
5

�
r 3

ys
l=2 ;m l =2 (r )

(3.19)
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2�r 2
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!

yq
l=2 ;m l =1 (r ) = �

s
6
5

�
r 3

yq
l=0 (r ) (3.20)
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�
r 3

yq
l=0 (r ) (3.21)

 

�
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l(l + 1)
2�r 2

� Em (0)

!

ys
l=2 ;m l =2 (r ) = �

s
2
5

�
r 3

yq
l=0 (r ) (3.22)

Transitions to di�erent �nal electronic states are then characterised by the radial
�ux scattered for r ! 1 in the di�erent �nal states jS = 2; MS = 1; l = 2; M l = 1i ,
jS = 2; MS = 0; l = 2; M l = 0i and jS = 0; MS = 0; l = 2; M l = 2i , which is called spin-
relaxation rate and denoted� rel . Using the formalism introduced in Appendix??:

� rel =
2� ~
k�

� �
�
�S2;0;2;0

2;2;0;0

�
�
�
2

+
�
�
�S2;1;2;1

2;2;0;0

�
�
�
2
�

(3.23)

whereS2;0;2;0
2;2;0;0 and S2;1;2;1

2;2;0;0 are the S matrix elements for the corresponding transitions.
The radial �ux of the wavefunction of the �nal state jS = 0; MS = 0; l = 2; M l = 2i onto
the absorbing boundary atr = r0 corresponds the spin-relaxation induced ionization rate,
denoted� ri . Indeed an atomic pair in the1� +

g electronic state, will Penning ionise if their
internuclear distance becomes smaller thanr0.
It is important to notice that those inelastic collision rates correspond to di�erent limits
for the interparticular distances, describing respectively the depolarisation of the initial
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Figure 3.6: Interaction potentials (5� +
g ,l=0) for the initial state, ( 5� +

g ,l=2) and ( 1� +
g ,l=2)

for the di�erent �nal states as a function of the interatomic distance expressed in Bohr
radius. The quintet and singlet potentials are coupled by the spin-dipole Hamiltonian and
separated by the Zeeman energyEM Sf

= 2gS� B B. E i is the initial energy of the two
colliding spin-polarised metastable helium atoms.r0 = 7a0 is the distance at which the
absorbing boundary is set on the potential (1� +

g ,l=2) to describe Penning ionisation losses.

sample and the Penning ionisation losses occuring only at short interparticular distances.

The initial and �nal interaction potentials involved are represented in �gure 3.6 as a
function of the interparticular distance r . Any variation of the magnetic �eld value will
change their relative positions and therefore modify the inelastic collision rates� rel and
� ri .

3.2.4 Discussion of the theoretical evaluation

To obtain the magnetic �eld dependency of the collision rates, those coupled Schrödinger
equations have been solved for each value of the �eld, a�ecting the relative position of
the electronic potential via Em (MSf ), with an exact numerical method described in Ap-
pendix ??. The results obtained are reported in �gure 4.3, together with the evaluation
from [22, 23].

In low magnetic �elds (B < 100 G) relaxation-induced ionisation is �eld independent
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Figure 3.7: Variation of the two inelastic rate constants with the magnetic �eld (logarith-
mic scales). In both graphs, the plain line represent the present evaluation and the dashed
line the result from [22, 23]. a) Variations of the spin-relaxation induced ionisation� ri

with the magnetic �eld, radial �ux in the scattered wavejS = 0; MS = 0; l = 2; M l = 2i
for r = R0 (position of the absorbing boundary to describe the Penning ionisation) in a)
and of the spin-relaxation� rel , radial �ux in the scattered waves forr ! 1 in b).

with a rate constant of � ri � 2.10� 14cm3�s� 1, and is the main two-body decay channel
of the spin polarized helium gas. In higher �elds,� ri decreases and spin relaxation,
which is strongly �eld dependent, produces the main losses from the cloud. The rate
constant � rel reduces in higher magnetic �eld but never dropes below the low-�eld value
of the relaxation-induced ionisation. Therefore low �elds are better to form and study
metastable helium Bose-Einstein condensates.

To get an intuition of the typical distance at which the interaction occurs, the energy
conservation in the quintet potential can be expressed:

ET =
~2l (l + 1)

mR2
int

� Em (MSf ) (3.24)

whereET is the thermal energy of the initial particles (neglected here). In the regime of
low �elds where Em � ET the interaction occurs at distance such thatRint � 1=kT . For
larger �elds: Rint � 1=kf , wherekf is due to the magnetic energy. The larger the value
of the magnetic �eld, the smaller this interaction radius becomes.

Concerning the spin-relaxation rate, one may notice a strong cancellation at magnetic
�elds of the order of 60 G, for whichRint � 1=kf � a. This can be interpreted in the
framework of the �rst order approximation adopted in [22, 23]. The spin-relaxation rate
is proportional to:

� S;M /

�
�
�
�
�

Z 1

0
� 2;l i (ki ; R)� S;l f (kf ; R)

dR
R3

�
�
�
�
�

2

(3.25)

where the function� S;l describesl elastic scattering in the potentialUS. From the selec-
tion rules of the spin-dipole Hamiltonian: l i = 0 and l f = 2.
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At large distance � 2;0 can be approximated by thes � wave scattering function propor-
tional to (1-as=R), leading to a strong cancellation in the integral 3.25. As a consequence,
the position of the dip in the spin-relaxation rate � rel is a measure of the scattering
length as of metastable Helium. From the potentials evaluated in [22, 23], one can deduce
as= 167.7 a0. The value extracted from the new evaluation isas= 141.9 a0, which is in
agreement with the last experimental measurement of this quantity [38].

E�ect of the interaction potential: As can been seen in �gure 4.3, this evaluation
is strongly dependant from the modelisation of the interatomic potential in the electronic
state 5� +

g . Measuring those collisions rates may therefore improve our knowledge on the
short range part of this potential. Since the long range part of the potential is well deter-
mined, simulations have been realised by multiplying the short range part of the potential
either by 1.01 or 0.99 and the resulting curves are presented in �gure 3.8.

Figure 3.8: E�ect of a multiplication of the short range part of the potential by either 1.01
or 0.99. in both graphs, the plain line represents the actual evaluation. a)� ri is larger for
a multiplication of the short range part of the potential by a factor 1.01. b) The variations
of � rel with the magnetic �eld and especially the position of the dip are strongly modi�ed
by a change of 1% in the short range part of the potential.

E�ect of the temperature: This evaluation is restricted to the zero temperature case
but the in�uence of temperature has been investigated in [23]. Relaxation-induced ion-
isation conserves the same behaviour with the magnetic �eld, but has higher collision
rate for lower temperature: 30% changes are expected between 0 K and 1 mK. The spin-
relaxation rate is more temperature sensitive and the strong dip at 40 G cancels for larger
temperature.

3.2.5 Experimental measurement of the inelastic rates

The experimental determination of those inelastic collision rates for di�erent magnetic
�elds may improve our knowledge about the interaction potentialVq(r ) in the 5� +

g elec-
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tronic state.

Assuming the ultracold sample of spin-polarised atoms is trapped in the crossed dipole
trap, it is now possible to perform a measurement of the relaxation rates presented above
as a function of the magnetic �eld. The coils will produce a constant magnetic �eld up to
500 G. In order to distinguish the two loss mechanisms, the channeltron located in the
quartz cell will be used as a complementary detection method from the usual absorption
imaging.

The channeltron, polarised by -3 kV, will attract and detect each ion produced dur-
ing Penning ionisation events. Therefore the relaxation-induced ionisation rate� ri will
be directly recorded by the channeltron. As one can see from �gure 4.3,� ri is ranging
from 2�10� 14 cm3�s� 1 for B < 100 G, to 1�10� 15 cm3�s� 1 for B = 500 G. For a cold cloud
with 106 atoms and sizes of 100� 10� 10 � m3, this corresponds to a change from 0.13 to
0.013 Penning ionisation per second. The single-ion detection e�ciency will enable a very
accurate determination of this loss rate.

Figure 3.9: Variation of the measurable inelastic collision rates with the magnetic �eld.
The relaxation-induced ionisation rate� ri will be deduced from the channeltron signal.
The total atomic losses evaluated via absorption imaging are due to the contribution of
the two inelastic loss channels and characterise� in = � ri + � rel . The coils will produce a
magnetic �eld up to 500 G.

The spin relaxation rate � rel can also be observed experimentally, although not in
a direct way. During a spin-dipole transition, the change of Zeeman energy is given
by EM Sf

= 2� B B(2 � MSf ), which is minimum for MSf = 1 with E1 � 130 � K�G� 1.
Consequently, for magnetic �eld larger than 1 G, the �nal states of a spin-dipole will
acquire su�cient kinetic energy to escape from the optical trap. The measurement the
total atom losses via an absorption imaging technique, characterises the sum of the two
inelastic collision rates� ri and � rel , whose variation with the magnetic �eld is depicted
in �gure 3.9. Finally the spin-relaxation rate will be deduced from� rel = � in � � ri , but
will be limited by the accuracy of the measurement of� in . Indeed the atom number
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determination may be too unaccurate to obtain low values� rel for B < 100 G.
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3.3 Conclusion

The �rst section of this chapter presented the characteritics of the crossed optical dipole
trap, which will be implemented on the experimental setup. This optical trap, releasing
the constraint on trapped spin states and on magnetic �eld, opens novel studies on the
properties of the inelastic collision rates of4He� . A single beam dipole trap, implemented
in the group from Institut d'Optique (Palaiseau), has allowed a recent measurement of
spin-state-resolved Penning inelastic rate coe�cients [41].

An exact numerical evaluation of the spin-relaxation and spin-relaxation induced ion-
isation rates in di�erent magnetic �elds has been presented. The scattering lengthas,
deduced from the cancellation of the spin-relaxation, shows a good agreement with the
experimental result obtained in a previous work [38].
The new detection device implemented recently constitute a key element for the experi-
mental measurement of the spin-relaxation and spin-relaxation induced ionisation rates.
The core of this measurement is indeed the ability to distinguish between losses due to
Penning ionisation, producing a signal on the channeltron, from the others. The comple-
mentary diagnosis of absorption imaging will provide a complete determination of those
inelastic rates.

One could also take advantage of this channeltron to verify wether the limiting process
for the lifetime of a dimer of metastable Helium4He�

2 is the autoionisation Penning induced
by spin relaxation. This assumption indeed leads to a theoretical evaluation of� 120 � s
lifetime [40], two orders of magnitude larger than the measured value of 1.4� 0.3 � s [39].



Chapter 4

Metastable Helium in optical lattices

Taking advantage of the dipolar interaction presented in chapter 3, periodic potentials can
be formed simply by overlapping two counter-propagating laser beams. The interference
between the two laser beams forms an optical standing wave with period�= 2, which can
trap the atoms. By interfering more laser beams, one can obtain one-, two- and three-
dimensional periodic potentials. The implementation of the novel cloverleaf magnetic
trap, presented in chapter 2, constitutes an essential step towards a new generation of
experiments involving such optical lattices.
Storing ultracold quantum gases in those arti�cial periodic potentials of light has opened
innovative manipulation and control possibilities. Indeed, the geometry and depth of the
potential are under the complete control of the experimentalist. The inelastic Penning
collisions occuring in metastable Helium present intriguing additional features over other
atomic species.

Collisional properties of ultracold gases strongly con�ned in one or two directions
attract a great deal of interest since low-dimensional geometry can be experimentally
achieved using optical lattices. It is well established that con�nement of a gas can strongly
modify both the elastic and inelastic collision rates as established in 1D [43, 44] and 2D
[45, 46].
Con�nement-induced resonances (CIR) [51], occuring in such regimes, have been recently
experimentally observed. The investigation of mixed-scattering occuring when the colli-
sional partners are con�ned in di�erent dimensions (3D and 2D in this case) have revealed
mixed-dimensional resonances [52].
The �rst section is thus dedicated to a prospective study of the modi�cation of the in-
elastic Penning collision rates induced by a quasi-2D geometry in a deep 1D optical lattice.

The second section focuses on the description of metastable Helium atoms stored in a
3D optical lattice. To account for the dissipation induced by Penning ionisation events,
the Bose-Hubbard model has to be modi�ed. Dissipative Bose-Hubbard models have al-
ready been investigated both theoretically and experimentally [56, 100, 55]. The e�ect
of the dissipation will be described in the frame of a three-level model both in the limit
of weak losses (polarised sample of4He� ) and of strong losses (non-polarised sample of
4He� ). In the later case, a strongly correlated quantum system can be reached, in which
tunneling is suppressed. Large two-body losses thus result in a stabilisation of the system,

77
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suppressing double occupancy of lattice sites and as a consequence the losses.

4.1 1D optical lattices: collisional properties in con-
�ned dimensions

Con�ning He � atoms in a 1D optical lattice at � =1560 nm makes it possible to study the
modi�cation of the inelastic collision rate induced by a tight axial con�nement. The deep
con�nement achieved allows to enter the quasi-2D collisional regime as de�ned in [45, 46].
This regime presents peculiar features, which will be recalled in this section.

The idea is to freeze the motion along one dimension, taking advantage of a tight
harmonic trapping of frequency! z. Working at temperatures lower than the energy spac-
ing of the axial harmonic oscillator of frequency! z, forces the atomic wave-function into
the ground-state of this oscillator. From a thermodynamic point of view, the gas is thus
considered to be 2D ifkB T � ~! z.
However this criterion does not determine if two-body collisions can be regarded as two-
dimensional. Concerning collision, the relevant quantities are the extension of the wave
function in the axial direction lz =

q
~=m! z and the scattering lengthas. This section

presents an evaluation of the modi�cation of the inelastic Penning collision rate induced
by the con�nement, in a strongly con�ned regime wherelz= 4.3 as. Such regimes, in
which lz becomes comparable toas, have not been accessed experimentally except for a
two-component Fermi gas [101].

4.1.1 The con�ning potential, a 1D optical lattice

A red detuned Gaussian standing wave alongz creates several traps, spaced byd = � =2,
with a high con�nement along the laser direction according to:

U1D (r; z) = 4 U0 cos2(
2�z
�

) exp(�
2r 2

w2
0

) (4.1)

where the factor 4 is coming from interference andU0 is the trap depth produced by a
single beam of waistw0 and power P. The expansion ofU1D around the trap center
results in the following expressions for the trapping frequencies:

! r =

s
4U0

mw2
0

(4.2)

! z =

s
4� 24U0

m� 2
(4.3)

in the radial and axial directions respectively.

For a power P= 5 W and a waist w0= 20 � m, the trapping potentiel is represented
in �gure 4.1. The trap depth reachesU0 = 3625 Erec corresponding to 3.6 mK. In this
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large intensity regime, the scattering losses of� scat= 0.45 s� 1 remains small compared to
the dynamical time scales.
The trapping frequencies are then:! r = 2� �43 kHz and! z = 2� �2.5 MHz.

Figure 4.1: Optical lattice created by a single laser beam having a powerP= 5 W and
a waist w0= 20 � m. The trap depth reaches 3625Erec corresponding to 3.6 mK and
the axial frequency is! z= 2� �2.5 MHz. Typically 150 di�erent traps are produced, all
separated by a distanced = � =2.

A degenerated atomic sample will be loaded into this 1D optical lattice in order to
obtain an array of highly isotropic trapped clouds. For a condensate of 100� m width
(FWHM), typically 100 pancake-shaped clouds will be formed.
Two main consequences result from the large trapping frequencies achieved in the optical
potential:

� An adiabatic loading in such a con�ned trap from a magnetic trap will induce a
large heating. The loading may thus be followed by an evaporative cooling stage to
achieve a kinetic energy� in each of the atomic cloud lower than~! z � 120 � K.

� The di�erent atomic clouds can be considered as independent since the axial exten-
sion of the cloudlz is much smaller than the lattice spacingd for typical experimental
parameters and tunneling is strongly forbiden.

Let us consider from now one single cloud ofNp atoms trapped in an optical potential
of frequencies! z and ! r :

U1D =
m
2

�
! 2

zz2 + ! 2
r � 2

�
(4.4)

In this deep trapping potential, the energy spacing between the eigenstates of the axial
harmonic oscillator reaches~! z � 120 � K, which opens the possibility to reach a regime
where only the ground state of this oscillator is populated. To enter this regime, both
the typical relative kinetic energy � as well as the interaction energy per particle for a
non ideal gas must be small compare to~! z. The axial part of the wave function is then
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simply described by the ground state� 0 of the axial harmonic oscillator:

� 0(z) =
1

� 1=4
p

lz
exp(�

z2

2l2
z
) (4.5)

with lz =
q

~=m! z the axial extension of the atomic wave function. For the largest
trapping frequencies, one getslz= 32 nm= 4.3 as, regime in which the geometrical con-
�nement will have the largest e�ect on the collisional properties.
The radial harmonic oscillator having an energy spacing of the order of~! r � 2 � K, the
xy motion will be treated classically. If the motion alongz is completely frozen, the 2D
character of the relative motion of the particles will manisfest itself both for elastic or
inelastic collisions.

4.1.2 Elastic scattering in axially con�ned geometries

The e�ect of a strong con�nement along one dimension on the atomic collisional properties
has been studied in [45, 46]. To enlight the peculiar properties of the elastic collisions in
con�ned geometry, it is interesting to study their link to the three-dimensional results.

Three-dimensional collision: In three dimensions, elastic collisions are characterised
by the scattering amplitude f 3D (k) which only depends on the relative kinetic energy
E = ~2k2=m of the colliding particles of massm. In cold atoms experiments, one may
frequently regard the limit of this quantity for zero relative energy: thes-wave scattering
length denoted as (for He� , as=7.51 nm [38]). The elastic collision rate� 3D is equal
to h� 3D vi where � 3D = 4�a 2

s in the scattering cross section andv = ~k=m the atomic
velocity:

� 3D (k) =
~k
m

4�a 2
s (4.6)

in the low energy limit.

Quasi-2D regime: This problem contains two length scales: the extensionlz of the
wave function in the z direction and the characteristic radiusr int = 70 a0 (a0 being the
Bohr radius) of the 5� +

g interaction potential denoted Uint and described in chapter 3.2.
For typical experimental parameters,lz � r int which insures that the relative motion of
the atoms in the region of interatomic interaction is not in�uenced by the tight axial
con�nement. In the two limits r � lz and r � r int , the solution of the scattering problem
can be expressed easily.

At separation r larger than the ranger int of the interaction potential Uint , the station-
ary state can thus be written as a linear combination of products of an harmonic-oscillator
eigenstate (labelled by a quantum number� ) in the con�ned direction and a free wave
(labelled by a wave vectorq corresponding to a relative kinetic energy� = ~2q2=m) in
the radial plane. In the quasi-2D regime, due to the condition� � ~! z, the incident
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and scattered waves have quantum number� = � 0=0 for the motion in the axial harmonic
potential U1D . As a consequence the scattered 2D wave function may be written as:

 2D
scat(�; z; q) ! � 0(z)ei q :� + f0(q)� 0(z)

s
i

8�q�
eiq� (4.7)

wheref0(q) is the e�ective 2D scattering amplitude in the low energy limit. By de�nition,
the corresponding 2D scattering cross-section is given by the integration of this quantity
over the angular variable:

� 2D (~q) =
Z jf 0(q)j2

8�q�
d~� =

jf 0(q)j2

4q
(4.8)

The 2D elastic collision rate� 2D , equal to h� 2D v2D i , is thus given by:

� 2D (~q) =
~
m

jf 0(q)j2

4
: (4.9)

At short separations such thatr � lz, one can neglect the con�ning trap and the
collision recovers the aspects of a usual 3D collision at energy� . As a result, there is a
region where the wave function is proportional to the usual 3D s-wave scattering wave
function:

 scat(r ) = � (� )� 0(0)(1 �
as

r
) (4.10)

writing the normalisation coe�cient as � (� )� 0(0).

Using Green's formalism to match 2D
scat with the free-space expression scat , one �nds

the relation between the e�ective 2D scattering amplitudef 0 and the 3D scattering length
as [45, 46]:

f0(� ) = 4 �� 2
0(0)as� (� ) (4.11)

where

� (� ) =

"

1 +
as

lz

1
p

2�

 

ln

 
B~! z

��

!

+ i�

!# � 1

(4.12)

with B= 0.915.

The 2D elastic collision rate can now be linked to the 3D one:

� 2D (� ) =
~
m

jf 0(� )j2

4
= � 3D (� )

1
kl2

z
j� (� )j2 (4.13)

with k the 3D wave vector de�ned as� = ~2k2=m.
Omitting the factor j� (� )j2, this expression can be easily derivated from the reduction from
3 to 2 dimensions. For temperatureT � ~! z, a characteristic value of the 3D density is
n3D � n2D =lz and thus the elastic collisional frequency can be written as
 el � � 3D n2D =lz
giving � 2D = � 3D =lz. One the other hand, the total kinetic energy for two colliding atoms
with relative energy � can be expressed as:

� =
~2k2

m
=

~2q2

m
+

~2

l2
zm

(4.14)
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As a consequence, forq ! 0 one getsk � 1=lz. One �nally obtains a similar expression
to equation 4.13 without the corrective factorj� (� )j2: � 2D = � 3D

1
kl 2

z
.

As a consequence, the 2D kinematics of the relative motion manifests itself via the adi-
mensional parameters�=~! z and as=lz in the geometrical factorj� (� )j2 (see equation 4.12).
One can see that foras=lz � 1, this factor is equal to 1. In �gure 4.2 a), j� (� )j2 is rep-
resented as a function ofas=lz in the range of experimentally accessible parameters: the
higher the trapping frequency, the larger the deviation from 1. Large changes of the or-
der of 50% can be observed. For the largest con�nement available,as=lz can be set to
approximately 0.25 and thus the logarithmic temperature dependency can be observed:
j� (� )j2 varies by 20% as reported in �gure 4.2b).

Figure 4.2: a) j� (� )j2 as a function ofas=lz for � = 0.01~! z. The ratio as=lz can be varied
up to 0.25 corresponding to the maximal con�nement of the 1D optical lattice. In the
limit of large lz, the corrective factor is equal to 1, as expected. b) Variations ofj� (� )j2

with the temperature in a logarithmic scale. In the ratio�=~! z, ! z was �xed at the highest
frequency achievable for whichlz= 4.3 as. The temperature range considered is well in the
quasi-2D regime since� � 0.01 ~! z. As the temperature is decreased, the corrective factor
further deviates from 1. For � � 0.01~! z, the radial motion can no longer be considered
as classical.

The modi�cation of the 2D coupling constant g2D induced by the axial con�nement
can be written as [45, 46]:

g2D =
2
p

2� ~2

m
as

lz

1

1 + as
2�l z

�
ln( B ~! z

�� ) + i�
� : (4.15)

For as � 0, g2D has a resonant dependence inlz: the interaction changes from attractive
for very large lz to repulsive for l � (jaj=

p
2� ) ln (B~! z=�� ). Such a resonance is called

con�nement induced resonance (CIR) analog to the 1D case [43, 44].
One may introduce the dimensionless coupling parameter~g2D =

p
8�a s=lz, quantifying the

con�nement. Until now, most of the experiments involving 2D gas have been performed
in the weak con�nement limit (~g2D � 1), in which the logarithm and the imaginary term
in equation 4.15 can be neglected [18]. The deep con�nement provided by the 1D optical
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lattice allows here to reach the strong con�nement regime, since typically~g2D � 0.9 . It
appears that such a quasi-2D regime is peculiar in the sense that the coupling coe�cient is
intrinsically energy dependent, by contrast to 1D and 3D systems. Another particularity
is contained in the imaginary part, which lacks of physical interpretation. Recently, CIR
in a strongly con�ned two-component Fermi gas have been studied [101]. The authors
suggest that at a position where the coupling constant is purely imaginary, the gas is not
collisionless because the total cross section� 2D = �= (f (q))=q = 4=q retains a non zero
value.

4.1.3 Inelastic scattering in a quasi-2D regime

Inelastic scattering is also in�uenced by the tight axial con�nement of the atomic motion.
The inelastic collisions are caused by the weak spin-dipole interaction studied in chapter
3.2 and therefore can be treated within perturbation theory.
To �rst order in perturbation theory the amplitude of inelastic scattering is given by the
general expression:

fin; 2D (� ) =
m
~2

Z
 2D

i (r )Uint (r ) 2D
f (r )d3r (4.16)

Here 2D
i and  2D

f are the true wave functions of the initial and �nal states of the relative
motion of colliding atoms. Since inelastic collisions occur at very short interparticular
distances, much shorter thanlz, the collision recovers the aspects of a free-space one,
described by the 3D potentialUint (r ).
The wave function  2D

f is also the same than in 3D because the relative kinetic energy
in the �nal state is much larger than ~! z. Thus the only di�erence from the 3D case is
related to the form of the wave function 2D

i in such a con�ned geometry.
As for elastic collisions, the matching of the free space expression 4.10 with 2D

i gives a
relation between the 2D scattering amplitudef in; 2D and the free space one denotedf in; 3D :

fin; 2D (� ) = � (� )� 0(0)fin; 3D (4.17)

Therefore, the 2D mean rate constant� 2D can be expressed as:

� 2D (� ) = jfin; 2D j2 = j� (� )j2
�

p
�l z

(4.18)

where � = jfin; 3D j2 is the 3D inelastic collision rate at zero energy. Omitting the fac-
tor j� (� )j2, characterising the quasi-2D collisional regime, this expression can be simply
derived from the conversion of the 3D atomic density into a 2D atomic density:

�n = �
n2Dp

�l z
= � 0n2D (4.19)

where� 0 = �p
�l z

is then a two-dimensional inelastic collision rate, obtained while neglect-
ing the quasi-2D collisional regime.
Again, the e�ect of the quasi-2D collisional regime is contained into the factorj� (� )j2,
which is intrinsically energy dependent as reported in �gure 4.2 b). Figure 4.3 represents
the 2D inelastic collision rate� 2D as a function of the ratio�=~! z.
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For metastable Helium atoms, one has to be careful: sinceas � r int , the three dimen-
sional collision rate� depends also on the relative momentumk of the particles [46]:

� (� ) =

*
�

1 + k2a2
s

+

�

(4.20)

where the brackets stand for a thermal average. Anyway this produces very small changes
in the studied temperature range as one can see from �gure 4.3.

Figure 4.3: Inelastic collision rates as a function of�=~! z. The black dashed line corre-
sponds to� 0 = �p

�l z
obtained assuming three-dimensional collisions, almost constant in

the studied temperature range. The red plain line represents� 2D , varying by more than
20%.

4.1.4 Experimental observation of the quasi-2D collisional regime

To e�ectively observe the behaviour described in the previous paragraph, two conditions
have to be experimentally realised:

� the possibility to vary freely the temperature of the atomic cloud, only realistic if
the cloud remains thermal. Indeed if the atomic cloud is degenerated, the energy�
is �xed at the value of the chemical potential� [102],

� the interaction energy in the cloud has to remain small compared to~! z.

Description of the atomic cloud: Assuming both conditions of the quasi-2D colli-
sional regime ful�lled, the number of atomsN 0 occupying the excited states of the trap
cannot exceed the critical valueN 0

c [102]:

N 0
c =

1X

j =1

j + 1
exp (j� ~! r ) � 1

(4.21)

where� = 1=kB T and ! r is the radial trapping frequency. As a consequence, for temper-
atures lower than 10� K, a cloud of more than 50 atoms will be degenerate andg2D will
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depends on� .

The radial pro�le of the cloud may thus be described by a 2D Thomas-Fermi model.
The coupling constant for elastic scattering will be taken equal to the real part of~g2D .
The three-dimensional atomic densityn(~r; z) of the trapped cloud is thus described by
the product of j� 0(z)j2 along z and of a Thomas-Fermi pro�le in the radial direction:

n(~r; z) =
1

< (g2D )

�

� �
1
2

m! 2
r r 2

� e� z2=l2z
p

�l z
(4.22)

where the value of the chemical potential� is �xed by the normalisation of the atom
number to Np:

� =

s
< (g2D (� ))m! 2

r Np

�
(4.23)

which is a self-consistent equation for� .
Solving this equation, with up to 103 atoms per pancake, the central 2D density is below
2�1010 cm� 2 and � � 40 � K � ~! z. This last inequality demonstrates that the second
requirement of the quasi-2D regime is ful�lled.

Inelastic losses: To induce changes in the geometrical factorj� j2, one may modify the
chemical potential � via the number of atoms for instance. The variation ofj� j2 with
the atom number is shown in �gure 4.4. As the inelastic collision rate� 2D is directly
proportional to this factor, its value varies by almost 30% over the studied range, change
which is accessible to a measurement.

Figure 4.4: j� j2 as a function of the atom number per pancake (logarithmic scale). A
change of almost 30% can be observed over the studied range.

Collecting the ions produced by Penning ionisation events, the channeltron inside the sci-
ence cell allows to determine the inelastic mean collision frequency (directly proportional
to j� j2) averaged over all the atomic clouds. It is then essential to insure that the studied
atomic clouds have the same chemical potential, wich means an equal �lling. This can be
conveniently achieved by conserving only the central pancakes.
Another advantage of working with a channeltron for the detection is the possibility to
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work with small atom number, since ions can be very e�ciently detected.

The typical lifetime of an atomic cloud can be obtained from a numerical integration
of the following equation:

dN
dt

= � � 2D

Z
n2

2D (~r; t)d~r = �
�

p
�l z

j� (� )j2
Z

n2
2D (~r; t)d~r (4.24)

where the inelastic collision rate� 2D depends on the density via the chemical potential
� . The decay of the atom number will change the value of the chemical potential.
An order of magnitude of the typical lifetimes of such clouds can be deduced while ne-
glecting the logarithmic variation of g2D in � . With this approximation the di�erential
equation 4.24 can be written has:

dN(t)
dt

= � � 2D (� )C3N (t)3=2 (4.25)

with C3 =
q

m=~g2D ! r =3
p

�
The 1=e lifetime ranges from 20 ms to 800 ms for atom number varying from 103 to 10.
Those lifetimes are short compared to the time scale of the losses due to the scattering of
photons from the lattice beams (� scat= 0.45 s� 1), so that the later can be neglected.
It is interesting to notice that the ion signal produced over time scales shorter than the
1=e lifetime of the cloud provides a direct access to� 2D (� i ) and thus to a clear signature
of the quasi-2D regime.
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4.2 3D optical lattice: Mott Insulator - Super�uid
phase transition

The Mott Insulator - Super�uid transition for bosonic atoms illustrates how cold atoms
can be used to study many-body phenomena in dilute gases, as �rst suggested by Jaksch
et. al. [53]. The Bose-Hubbard model has been �rst introduced in the context of the
super�uid 4He in [103] and is used in solid state physics. Within this framework, a com-
parative study between Helium in an optical lattice at� = 1560 nm and Rubidium with
� 0= 852 nm is conducted.

The behaviour of inelastic collisions in optical lattices has been �rst investigated with
metastable Xenon, Argon and Krypton atoms [104, 105] in a four beam lattice con�gura-
tion, for which the detuning was small. Inhibition of the inelastic collision rates resulting
from the localisation of the atoms on the lattice sites could be observed.
Modeling the dynamics of metastable Helium atoms in a 3D optical lattice requires an
extension of the Bose-Hubbard model in order to include dissipation e�ects, resulting
from Penning ionisations. This problem has been recently investigated both for two-body
losses [56, 100] and three-body losses [106] and presents intriguing features, especially the
production of strongly correlated systems in which tunneling is suppressed. A remarkable
example in one dimension is the Tonks-Girardeau (TG) gas, where bosons with strong
repulsive interactions minimize their interaction energy by avoiding spatial overlap and
acquire fermionic properties [50]. Such a strongly correlated phase could also be studied
with He� taking advantage of the Penning ionisation losses.

A rigorous analysis of the dissipation involves a master equation on the density matrix
of the system, which can be interpreted in terms of an e�ective Hamiltonian, sum of the
Bose-Hubbard Hamiltonian and a supplementary loss term.
A prospective study, describing the Penning collisions in the framework of a three-level
system, demonstrate the occurrence of a strongly correlated many-body state within the
range of our experimental parameters.

4.2.1 3D optical lattice properties

The optical access of the present cloverleaf magnetic trap has been optimised to allow the
implementation of a three-dimensional optical lattice at� = 1560 nm. Three orthogonal
standing waves, of wave vectork= 2� / � , will be overlaped on a waistw0= 100 � m creat-
ing a lattice whose minima are spaced by� /2. To have independent laser �elds for each
axis and avoid interferences between the three lattice beams, three AOMs will shift the
beam frequencies by 110 MHz, 80 MHz and 40 MHz. Their e�ciency can be analogicaly
controled to vary the beam intensity during the loading the lattice or the release of the
atoms.

Neglecting the gaussian enveloppe of the focused lattice beam (which creates addition-
nal trapping frequencies of the order of few kHz), the trapping potential can be expressed
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as:
U3D (x; y; z) = 12U0

�
sin2 (kx) + sin 2 (ky) + sin 2 (kz)

�
(4.26)

whith U0 the tunable trap depth created by a single beam of waistw0 and powerP, as
in the previous section.
The expansion ofU3D (x; y; z) around the trap center give access to the trapping frequency,
identical for the three directions:

! 3D =

s
4� 224U0

m� 2
(4.27)

The photon recoil energy for Helium atoms in a lattice of wavelength� (Erec = ~2k2=2m)
is approximately 20 kHz. The depth reachesU0= 145 Erec for the maximum power of
5 W in each lattice beam. The trapping frequency is then:! 3D = 2� �850 kHz.

As a consequence deep optical lattices can be generated in which each well supports
many eigenstates (up to 103) spaced by~! 3D . In the regime whereT � Erec, all the
atoms are in the lowest vibrational level at each site and their motion is frozen except for
the small tunneling amplitude to neighbouring sites.

4.2.2 The Super�uid to Mott-insulator transition for Helium

The Bose-Hubbard model, which is commonly used to model this quantum phase transi-
tion, describes boson hopping with amplitudeJ to nearest neighbors on a regular lattice
of sites labeled by indexl. The particles interact with a zero-range on-site repulsionU
disfavouring con�gurations with more than one atom per site. Writingbby

l the creation op-
erator of a boson at sitel and bnl = bby

l
bbl the associated number operator, the Hamiltonian

reads:
cH = � J

X

hll 0i

bby
l
bbl0 +

U
2

X

l

bnl (bnl � 1) +
X

l

� l bnl (4.28)

where hll 0i denotes a sum over nearest neighbour pairs. The last term is introduced to
describe the e�ect of the non regular trapping potential via a variable on-site energy� l .

For T � Erec, atoms are con�ned in the lowest band of the lattice. The width of this
lowest band corresponds to the gain in kinetic energyJ due to the nearest neighbour
tunneling (more preciselyw = 4J ). An analytic expression can be obtained in this limit
[107]:

J =
4

p
�

Erec

� U0

Erec

� 3=4

exp

 

� 2

s
U0

Erec

!

(4.29)

h=J is the tunneling time scale increasing exponentially with the trap depthU0. In �gure
4.5 a) the behaviour ofh=J with the trap depth expressed inErec is reported together
with h=JRb evaluated for Rubidium atoms in a lattice at 852 nm as in [54]. One can no-
tice that the tunneling dynamics is approximately 6 times faster for Helium atoms, which
corresponds to the ratio of the recoil energies.
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Figure 4.5: a) Tunneling time scale as a function of the trap depth in recoil energy in
a semi-logarithmic scale. b) On-site interaction energy as a function of the trap depth
in recoil energy. For both graphs the plain line corresponds to the evaluation for Helium
atoms in a lattice at � = 1560 nm and the dashed line for Rubidium atoms in a lattice at
� 0= 852 nm.

The interaction between atoms is described by a zero-range potentialUint , only de-
pending on thes-wavescattering lengthas:

Uint (~x) =
4� ~2as

m
� (~x) = g� (~x) (4.30)

The interaction energyU on one lattice site then reads:

U = g
Z

jw(~x)j4 d~x =

s
8
�

kasErec

� U0

Erec

� 3=4

(4.31)

where the analytic expression is obtained by takingw(~x) as the Gaussian ground state of
the harmonic oscillator potential of the site, which is a good approximation in the limit
whereU0 � Erec [107]. The on-site interactionU increases with the trap depth because
of the squeezing of the atomic wave function.
The behaviour of the on-site interaction energyU as a function of the trap depth is re-
ported both for Helium and Rubidium in �gure 4.5. Since the photon recoil energy is
more than 6 times larger for Helium, a deeper trap depthU0 is needed to achieve the
same depth in recoil units than for Rubidium. As a consequence, for a trap depth of
50 Erec the interaction energy reaches 20 kHz for Helium whereas it remains below 4 kHz
for Rubidium.
The assumption that the atoms occupy the ground state of the harmonic oscillator poten-
tial of each lattice site remains valid as long asU � ~! 3D , which is valid on the studied
interval (for a trap depth of 50 Erec: U

~! 3D
� 0.01).

The ratio U=J determines which from kinetic or on-site interaction energy dominates.
For large values ofU=J, the on-site interaction dominates and the ground state is a
product of local Fock-states with one or more atoms per site. As long as the gain in
kinetic energyJ is smaller than the on-site interactionU, atoms remain localised, forming
a Mott-insulator state. OnceJ becomes larger than 2U, the double occupancies become
favorable and the atoms are delocalised over the lattice, corresponding to a super�uid
state.
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Erec (kHz) Uc
0 (Erec) Uc

0 (kHz)
He� 20 13.7 280
Rb 3 12.4 40

Table 4.1: Comparison of the trap depths required to cross the super�uid to Mott-insulator
transition both for Helium in a 3D lattice at � = 1560 nm and Rubidium in a lattice at
� 0= 852 nm.

For a cubic three-dimensional lattice, the critical value for the transition from a Mott-
insultor to a super�uid phase is expected at(J=U)c= 5.8� 6.
Experimentally the ratio U=J can be tuned via the laser intensity as it obeys the following
equation, obtained from the ratio of equations 4.29 and 4.31:

U
J

=
1

p
2

kas exp

 

2

s
U0

Erec

!

: (4.32)

This ratio depends on the atomic specie used to study this phase transition, only viakas,
which has a bounded value. As a consequence the transition will occur at a comparable
trap depth in recoil units (but di�erent in absolute units) for Helium and Rubidium atoms
as summarised in table 4.1.

4.2.3 Dissipative Bose-Hubbard model

In a recent experiment [56], it has been shown in a 1D lattice that strong inelastic two-
body losses can simulate a Pauli exclusion principle, allowing to create a dissipative but
long-lived strongly correlated system. The experiment was realised with87Rb molecules,
presenting similar two-body inelastic losses as metastable Helium atoms. The complete
theoretical derivation of the e�ective model presented in this paragraph can be found in
[100]. It is here extended to the case of a 3D optical lattice.

4.2.3.1 E�ective losses on a single site

In a three dimensional gas, Pennning losses are described by a rate constant� p;u intro-
duced in chapter 0.1, where the indexp or u speci�es wether the atomic sample is spin
polarised or not. The aim of this paragraph is �rst to derivate a loss rate� u;p for two
atoms at the same lattice site.
In presence of inelastic collision, the strength of the interparticle interaction (g = 4� ~2a=m)
can be described by a complex scattering amplitudea: < (a) = as describes elastic colli-
sions whereas= (a) � 0 describes inelastic losses. In this treatment the on-site interaction
matrix element contains both the real partU, introduced in the previous paragraph, and
an imaginary part:

~� u;p

2
= = (gu;p)

Z
jw(~x)j4 d~x =

~� u;p

2

Z
jw(~x)j4 d~x (4.33)
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since the rate constant� u;p is related to = (gu;p) via: � = 8� ~= (au;p)=m. This imaginary
part of the interaction constant governs the decay of the number of particles at the sitel :

dhnl i
dt

= � � u;p hnl (nl � 1)i (4.34)

where � u;p = � u;p
R

jw(~x)j4 d~x = � u;pU=<(g) is the loss rate for two atoms at one lattice
site.

For a spin polarised sample of metastable Helium atoms (� p= 10� 14cm3�s� 1), � p is
represented as a function of the trap depth expressed in recoil energy in �gure 4.6 a). A
lattice site, initially containing two atoms, will thus be emptied within a second with a
probability 1/2. If the atoms are not spin polarised, the inelastic rate constant is four
orders of magnitude larger and this typical time reduces to 0.1 ms as depicted in �gure 4.6
b). Those time-scales have to be compared with the tunneling time scale given byh=J,
which is approximately 5 ms at the quantum phase transition and increases up to one
second forU0= 50 Erec (see �gure 4.5). As a consequence Penning collisions are a small
perturbation to the non-dissipative Bose-Hubbard model for spin polarised atoms as long
as the trap depth remains below 35Erec (corresponding to� p � J=~) but constitute a
major loss factor if the atoms have di�erent spin states.

Figure 4.6: Loss rate � p (spin-polarised case) a) and� u (non-polarised case) b) as a
function of the trap depth in recoil units. In both graphs, the tunneling rateJ=~ is reported
to ease the distinction of the di�erent regimes.

4.2.3.2 E�ective losses over the lattice

To describe this problem, a three-levels model is introduced in �gure 4.7. Starting from
a Mott insulator state with unit �lling, losses arises from a tunneling event followed by
a decay of the resulting doubly occupied site. The initial statej1i containing two atoms
at each lattice site is thus coupled to the statej2i via tunneling of amplitude 
 = 2 J=~
(since two �nal states are possible: two atoms on the left or right lattice site). Those
levels are spaced by an energyU, corresponding to the energy cost of a double occupancy,
which will be written as a detuning � = U=~. The lifetime of the state j2i is limited by
a decay rate� u;p, corresponding to Penning ionisation events, which empty the doubly
occupied lattice site. Due to the coupling
 , the initial state j1i decays into the level
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j3i with an e�ective rate � ef f , for which analytical expressions can be derived in the two
limits of strong or weak losses (compared to
 ).

Figure 4.7: Particle losses in a double-well modeled as a three-level system described in
the text.

The corresponding non-hermitian e�ective Hamiltonian can be written within the re-
solvante theory as [88]:

H = ~

 
0 


 � � i � u;p

2

!

(4.35)

The new eigenstates of this Hamiltonian will be denoted
�
�
�~1

E
and

�
�
�~2

E
, with eigenenergies

~E1 and ~E2 respectively. The eigenergies, complex solutions of the equationdet(H � �I )
( I being the identity matrix), can be expressed in the two interesting limits of either a
spin-polarised or an unpolarised atomic sample.

Regime of weak losses ( � p � 
 ): In such a regime, describing a polarised sample of
metastable Helium, Penning losses constitute a non-perturbative probe of the dynamics
in the lattice. The eigenvalues of the matrix 4.35 can be expressed up to the second order
in the small parameter� p=
 following [88]:

~E1 =
~�
2

�
~
 ef f

2
� i

~� 2

2
(4.36)

~E2 =
~�
2

+
~
 ef f

2
� i

~� 1

2
(4.37)

with:


 ef f =
p

4
 2 + � 2 (4.38)
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(4.39)

� 2 =
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1 +
�


 ef f
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(4.40)

Two limits are here interesting to discuss:
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� � � 
 , corresponding to the limit of a deep Mott insulator: the non-perturbated
states are only weakly coupled. The lowest correction order in the decay rate� 1 of
the state

�
�
�~1

E
then gives:

� 1 � � p

 


�

! 2

(4.41)

� � � 
 , corresponding to a super�uid state: in such a case the instability of the
level j2i is equally shared between

�
�
�~1

E
and

�
�
�~2

E
, both having a decay rate equal to

� p=2.

The evolution from the initial state j1i is a complicated damped Rabi oscillation between
the two eigenstates of the matrix 4.35. The dominant loss rate will be a smooth interpo-
lation from � p=2 in the super�uid regime towards� 1 given by equation 4.41. The losses
will thus remain weak and the polarised sample of metastable Helium can be described
within the non-dissipative Bose-Hubbard model.

Regime of strong losses ( � u � 
 ): This limit is achieved for unpolarised atoms for
a trap depth U0 � 20Erec. The coupling being weak, the eigenvalues of the matrix 4.35
will only slightly deviate from the initial energies and thus one may write:~E1 = ~E (1)

1 and
~E2 = ~� � i~� u=2 + ~E (1)

2 . The corrective terms ~E (1)
1 and ~E (1)

2 can be obtained up to the
second order in
 =� u and one gets:

~E1 = ~� 0 � i~
� 0

2
(4.42)

~E2 = ~� � ~� 0 � i~
� u

2
(4.43)

where:

� 0 = � �
4
 2

� u

1

1 +
�

2�
� u

� 2 (4.44)

� 0 =
4
 2

� u

1

1 +
�

2�
� u

� 2 (4.45)

The system initially in the state j1i will thus evolve, under the tunneling coupling, to the
perturbated state

�
�
�~1

E
in the stationary regime and one concludes that the atoms remain

on their original sites with only a minor loss rate� ef f
1:

� ef f = � 0 =
8J 2

~2� u

 
1

1 + (2U=~� u)2

!

(4.46)

which is inversely proportional to the inelastic collision rate� u. This shows that for strong
inelastic collisions (� u � J=~) particle losses are inhibited:� ef f � J=~. This can be
understood in terms of a quantum Zeno e�ect: losses act as a continuous measurement,

1We �nd here the same result than in [56], working in a similar limit.
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preventing tunneling events and thus losses.

From this decay rate of two atoms in neighboring sites, one has to deduce the e�ective
decay rate� over the optical lattice. Equation 4.34 may be rewritten by introducing the
pair correlation function g(2) = hnl (nl � 1)i =hnl i

2:

dhnl i
dt

= � � ug(2) hnl i
2 (4.47)

As J=~ � � u, the probability to have more than two atoms at a lattice site is negligible
and one may write: g(2) = 2p2=p2

1, wherepi is the probability of having i particle at the
considered sitel . On the site l , p2 and p1 are linked via the expression of the losses:

p2� u = 6p2
1� ef f (4.48)

where 6p2
1 is the probability of having an atom at sitel and a second atom in one of the

six neighboring sites.
Finally equation 4.47 can be summed over the lattice sites, assuming an initial unit
�lling for all the lattice sites. In this regime where � ef f � J=~, the particles have time to
redistribute accross the lattice between successive loss events. Therefore in the summation
over the lattice site, one may consider that the temporal evolution is the same on all the
sites and so:

P
l hnl i = N0�n, where N0 is the number of sites or equivalently the initial

number of atoms in the lattice. As a consequence the temporal evolution of the number
of atoms in the lattice follows:

dN
dt

= �
�

N0
N 2(t) (4.49)

where� = 12 � ef f .

Figure 4.8: a) E�ective loss rate over the lattice in the regime of strong inelastic losses.
The naive evaluation leading to a loss rate equal to6J=~ (black dashed line) largely over-
estimate the e�ective loss rate� (red plain line) resulting from a Zeno blockade of the
system dynamics. b) Pair correlation functiong(2) = �= � u for di�erent trap depths.

Without this quantum Zeno e�ect, a naive evaluation of the loss rate over the lattice
would only involve the tunneling rate J=~, limiting time scale of the problem. In a 3D
lattice one atom may tunnel towards 6 neighnouring sites, one would expect the loss rate
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to be equal to6J=~. The variations of � and 6J=~ with the trapping depth are shown
in �gure 4.8 and show a strong reduction of the losses resulting from the fast dissipation,
which freezes the initial state. This situation di�ers fundamentaly from experiments in-
volving deep Mott-insulator states where tunneling is negligible on the experimental time
scale and thus losses are suppressed. The mechanism presented here drives the system
into a strongly correlated regime. In this limit, the pair correlation functiong(2) vanishes,
as a result of the fermionisation of the atomic wave-functions. Figure 4.8b) shows an
evaluation of g(2) = �= � u as a function of the trap depth, which ranges from 10� 7 to
10� 11, much smaller than the typical values (� 10� 4) reported in [56].

The e�ective realisation of such a strongly correlated system with metastable Helium
atoms in a lattice is delicate. One may �rst load a polarised sample into the optical lattice
of desired depth, avoiding then large Penning losses during this stage. Once a unit �lling
is insured, the atomic sample could be depolarised by means of RF induced transitions
between Zeeman substates, which can be done localy using magnetic �eld gradients for
instance [108].
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4.3 Conclusion

The cloverleaf magnetic trap presented in chapter 2 has been designed in view of load-
ing a cold cloud of metastable Helium into optical lattices of di�erent dimensionalities.
Many interesting phenomenouns could be investigated taking advantage of the inelastic
Penning losses characteristic of this metastable atom. Among them, two possible experi-
mental studies are described in this chapter.

A one-dimensional optical lattice at� = 1560 nm allows to reach a quasi-2D collisional
regime as de�ned in [45, 46]. The motion along the lattice can be frozen, forcing the atomic
wave-function into the ground-state of the axial harmonic oscillator of frequency! z. It
has been demonstrated that the two conditions to enter this quasi-2D regime can be
ful�lled ( kB T and � � ~! z). The deep con�nement provided by the 1D optical lattice
allows here to reach the strong con�nement regime, since typically~g2D � 0.9 , on the
contrary to most of the experiments involving 2D gas, which have been performed in the
weak con�nement limit (~g2D � 1).
In such a case, the elastic and inelastic collision rates are modi�ed by a geometrical factor
j� j2, showing an intriguing temperature dependency. This e�ect can not be studied di-
rectly as the atomic cloud will be degenerated, even for small atom number. The kinetic
energy is then replaced by the chemical potential. It has been shown, that varying the
number of atoms and thus the chemical potential, strong modi�cations in the geometrical
factor can be induced. The channeltron positioned in the science cell provides a direct
access to the inelastic collision rate, without any restriction on the atom number. The
quasi-2D collisional regime should thus induce a measurable change in the inelastic Pen-
ning collision rates.

The description of metastable Helium in a three-dimensional optical lattice requires an
extension of the Bose-Hubbard model, in order to describe the losses induced by Penning
ionisations.
In this chapter, a simple three-levels system models those losses, either for a polarised
gas (weak losses) or for an unpolarised one (strong losses). In the case of weak losses,
metastable Helium is well described within the non-dissipative Bose-Hubbard model and
should undergo a Mott Insulator - Super�uid transition at a trap depth of U0= 13.7 Erec.
In this regime, the ion signal contitutes a probe of the atomic density and of the dynamics
in the optical lattice.
For strong losses, the ability to reach a strongly correlated system, in which tunneling is
suppressed by a strong dissipation, has been demonstrated. Large two-body losses thus
result in a stabilisation of the system, suppressing double occupancy of lattice sites and
as a consequence the losses events. Such open quantum systems are similar to systems
studied in quantum optics, which are driven by an external �eld and coupled to the envi-
ronment inducing a non-equilibrium dynamics. Diehlet al. suggested to take advantage
of this novel possibility to drive an atomic system into a many-body quantum state [55].



Chapter 5

Spectroscopy of a forbidden line of
4He

In atomic systems, theoretical predictions as well as experimental measurements, have
reached an impressive accuracy. As a two-electron atom, Helium has been the favorite test-
ing ground for fundamental two-electron quantum electrodynamics (QED) theory. There-
fore many frequency metrology studies have been conducted on Helium [109, 110, 35], all
involving atomic beam or gas discharges.
The recent production of degenerate gases of4He [25, 111] and later3He [112, 113] marks
a further step in those studies, allowing to reach a higher experimental accuracy.

This chapter presents experimental results achieved during a visit in the group of Wim
Vassen at the Vreij Universiteit (VU - Amsterdam) between October 2009 and January
2010. Within 4 months of experimental work, together with R. Van Roij, PhD student
in the group, and later on with M. Hoogerland, visitor from the University of Auckland,
the �rst observation of the forbidden 23S1 ! 21S0 transition 4He at � = 1557 nm was
realised. Combining the techniques of ultracold atoms and of the optical frequency comb
[114, 115], we measured the transition frequency within 10 kHz accuracy corresponding
to a relative accuracy of 10� 11.

The narrow natural linewidth of this transition (8 Hz) presents an opportunity to test
atomic structure calculations and especially quantum electrodynamics (QED) corrections.
This transition is also the �rst direct link between singlet (para-helium) and triplet (ortho-
helium) states since electric dipole transitions are forbidden between those two families.
The transition at 1557 nm is a magnetic dipole transition, also called "forbidden transi-
tion" due to its very low transition rate � ts � 10� 7 Hz [116], fourteen orders of magnitude
smaller than the one of the cooling transition23S1 ! 23P2. As a consequence, two main
experimental requirements have to be ful�lled: a long probing duration and a narrow
linewidth for the spectroscopy light.

The �rst section presents the main features of the experimental setup at the VU-
Amsterdam along with the characterisation of the implemented crossed dipole trap at
1.5 � m. A trapped cloud of cold He� constitutes an ideal experimental situation for
frequency metrology allowing long probing duration.

97
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The measurement of the23S1 ! 21S0 transition, observed via losses in trapped ultracold
23S1 atoms is described in the second section. The obtained accuracy relies notably on
the frequency comb technique, which will be brie�y recalled and detailed in Appendix B.
The di�erent experimental shifts are then explained and evaluated, in order to deduce an
intrinsic value for the atomic transition frequency.
Most of the �nal data have been taken and analysed by R. Van Roij and M. Hoogerland
after my stay. The last section details the data analysis procedure and the evaluation of
the �nal accuracy of this spectroscopy measurement.

5.1 Experimental setup

The experimental setup at the VU-Amsterdam o�ers the unique possibility to produce
degenerate samples of both the bosonic4He and fermionic3He isotopes [112, 113]. This
advantage enabled in 2007 a comparative study of the Hanbury Brown-Twiss e�ect for
boson and fermion: two particles interference lead to bunching or antibunching behaviour,
depending on their quantum statistics as experimentally shown in [20].

For 4He, Bose-Einstein condensation has been achieved in 2006 [27]. As the experi-
mental techniques to produce bosonic degenerate gases at the VU are very similar to the
one used at the ENS (see chapters 1 and 2), no detailed description will be provided here.
A complete characterisation of the experimental setup can be found in the latest PhD
thesis from the group of W. Vassen [71, 72, 117].
This section focuses on the experimental and detection techniques, which constitute key
features of the present measurement. I contributed to the full characterisation of the
crossed dipole trap, prerequisite of the spectroscopy experiment.

5.1.1 Main features of the experimental setup at the VU-Amsterdam

In Amsterdam, the Bose-Einstein condensate is produced in a large vacuum chamber
(roughly 300 mm diameter) and not in a quartz cell. A better collection e�ciency at the
MOT stage is achieved using large diameter MOT beams (� = 4 cm) trapping up to few
109 atoms. After loading a cloverleaf magnetic trap, a 12 s RF evaporation ramp produces
degenerate gases with typically several 106 atoms.

The large dimensions of the vacuum chamber also give the opportunity to use large
microchannel plate (MCP) detectors. A microchannel plate consists in an array of 12� m
diameter channels over an active area of 14.5 mm diameter. Each microchannel is an
electron multiplier, in which the multiplication is induced by a strong electric �eld as
already described in chapter 1.1.4.
Two MCP detectors have been mounted inside the vacuum chamber to detect speci�cally
He� atoms falling after release and He+ ions produced by Penning ionisations in the cloud.
MCPs, if equipped with delay line-anodes or phosphorescent screens, are utilised to obtain
spatial information. This mode of operation was not applied here, but the time-resolved
signals provide useful diagnosis.
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The atomic detector, �rst MCP, is mounted on a translation stage 17 cm below the
trapped cloud and is isolated by a metal grounded grid to prevent positively charged
particles from being attracted to its surface (see �gure 5.5).
When the trap is switched o�, due to their large internal energy, He� atoms falling upon
the detector produce a time-of-�ight (TOF) signal. The temporal width of the signal is
a direct measure of the temperature of the sample (as detailed in chapter 1) and of the
fraction of atoms which are condensed. The signal area corresponding to the absolute
atom number has been calibrated with absorption imaging.

The second MCP detector is located 10 cm above the trap center and is biased with
a voltage of -2 kV to attract He+ ions. With the maximal gain, single particles produce
a voltage pulse which can be distinguished from the noise by discriminators and counted.
The ion detector has been used in such a counting mode during the spectroscopy experi-
ment.

5.1.2 Optical dipole trap

The dipole trap light is produced by a NP-Photonics erbium doped �ber laser ampli�ed to
provide 2 W of output power at 1557 nm. The central wavelength is tunable over 30 GHz
and the speci�ed linewidth at short time scales (� 1 ms) reaches 10 kHz (FWHM). The
optical crossed dipole trap consists of a single beam, passing twice through the vacuum
chamber with orthogonal polarisations to avoid interferences. The two resulting beams,
focused to waists of 80� m and 90� m, intersect at their foci under an angle of 19� as
sketched in �gure 5.1. The main disadvantage of this scheme is the loss of power on the
returning beam induced by the vacuum windows, non-coated at 1.5� m (approximately
85% of transmission each pass).

Figure 5.1: a) Dipole trap setup. The �ber output of the �ber laser at 1557 nm is expanded
by a factor 5 into a two-lenses telescope. The resulting beam is passing twice through the
vacuum chamber, providing two focused beams, which are crossing under an angle of 19�

at waists of 90� m � 80 � m. To avoid interferences, the polarisation is rotated by 90�

before the re�ection using a half waveplate denoted�= 2 positioned after a high quality
polarised beam splitter.
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Because of the large dimensions of the vacuum chamber and the restricted optical
access, the minimal distance between the lenses for the dipole trap and the atomic cloud
is of the order of 40 cm. We worked with a focal lengthf = 50 cm, which provides a waist
w0= 100 � m for an incoming beam of waistw= 2.5 mm, following the relation w = f �

�w 0
.

A telescope, schematised in �gure 5.1, expands the output beam from the �ber laser source
(wf iber � 0.5 mm) by a factor of 5. The two lenses are mounted on a two-dimensional
micrometric translational stage in order to overlap precisely the waists of the two beams.

The minimal power needed to trap atoms is 40 mW (measured on the powermeter
after the two passes through the vacuum chamber depicted in �gure 5.1). The power
can be increased up to 500 mW, which corresponds to trap depths ranging from 1� K
(1 Erec) to 15 � K (14 Erec). For a power of 400 mW the measured trapping frequencies
are 1

2� (! x ,! y,! z)=(140, 840, 960) Hz in good agreement with a theoretical evaluation (the
x,y,z axis are de�ned on �gure 5.1).
Since the optical trap is shallow, He� atoms are �rst evaporatively cooled in the magnetic
trap close to degeneracy (T > Tc � 2 � K for 2�106 atoms in the magnetic trap). The
dipole trap is switched on during the last 2 seconds of evaporative cooling and the mag-
netic �elds are ramped down within 60 ms. The loading e�ciency is of the order of 50%,
leading to a transfer of typically 106 atoms.

The 1/e-lifetime of the trapped cloud is limited by background collisions to 13.5 s,
similar as in the magnetic trap (see �gure 5.2). The spin-polarisation of the sample is
maintained applying a constant bias magnetic �eldB0= 2.1 G in order to inhibite the
inelastic Penning collisions. After 2 seconds in the dipole trap, the atomic TOF signal on
the MCP detector shows a clear signature of Bose-Einstein condensation.

Figure 5.2: Lifetime measurement of 2�105 atoms in the dipole trap. The points represents
the experimental and the plain line an exponential �t setting a1=e lifetime of 13.5� 0.3 s.

The degenerate cloud is thus described in the Thomas-Fermi approximation [11], where
the density pro�le follows:

n(r ) = j	( r )j2 =
� � V(r )

g
(5.1)

with V(r ) is the harmonic trapping potential, g = 4� ~2as=m the and � the chemical
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potential depending on the atom numberN , the scattering lengthas:

� =
1
2

~�!
� 15Nas

�R

� 2=5

(5.2)

Here we have introduced the average harmonic oscillator frequency�! = ( ! x ! y! z)1=3 and
the associated length�R =

q
~=m�! .

The edge of the cloud is therefore given byV(r ) = � providing the Thomas-Fermi radii:

Ri =

s
2�

m! 2
i

(5.3)

The typical Thomas-Fermi radii of the obtained degenerate cloud are ranging from 11� m
to 18 � m along they and z axis, and from 107� m to 64 � m along thex axis. The central
density of the cloud is approximately 5�1013 cm� 3.

This degenerate cloud of 106 atoms in the 23S1 metastable state constitutes the start-
ing point of the spectroscopy experiment.
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5.2 Spectroscopy measurement

The metrology at 1.5� m is a project already investigated by W. Vassen in [113] for a
measurement realised on an atomic beam or atoms con�ned in an optical lattice.
Here we report on the �rst direct measurement of the23S1 ! 21S0 transition in a Bose-
Einstein condensate of4He metastable atoms con�ned in an optical dipole trap.
An overview on earlier frequency metrology studies in Helium motivates the spectroscopy
of this narrow transition, which brings a �rst direct link between ortho- and para-helium.
Our measurement relies on optical frequency comb techniques [114, 115] to reach a kHz
accuracy on the laser frequency determination. The frequency comb allows also to stabilise
the frequency of the spectroscopy light on long time scales (several seconds).

5.2.1 Frequency metrology studies on Helium

Precision spectroscopy on Helium provides sensitive tests of quantum electrodynamics
(QED). The QED of free particles (electrons and muons) is a well-established theory
providing accurate cross sections among others. In contrast, the QED theory of bound
states, determining the atomic energy levels and their lifetimes, needs further precision
tests. Three small parameters play a key role:

� the �ne structure constant � , involved in relativistic corrections,

� the strengh of the Coulomb interactionZ� with Z the atomic number, related to
the e�ect of �nite nuclear size,

� the ratio me=M between the electron and the nucleus masses accounting for the
motion of the nucleus induced by the electron.

Theoreticians are confronted to two kinds of problems: �rst calculating the expansion of
the energy levels in those three parameters up to a certain order and second �nding an
e�ective approach to estimate the size of uncalculated higher-order corrections.

The simplicity of this two-electron system allows very accurate calculations of its spec-
trum. An Helium energy level is conventionally expressed as the sum of three terms: the
nonrelativistic energy, the lowest order relativistic correction (up to the second order in
the �ne structure constant � ) and the Lamb shift, which includes QED corrections and
the high order relativistic terms. For the two �rst terms the achieved theoretical uncer-
tainties are smaller than the experimental ones. Present day theory focus on higher order
corrections and cross terms for the Lamb shift (including terms up toO(� 3)). Due to the
large electron density at the position of the nucleus, measurement of S-state energies are
the most sensitive to quantum electrodynamics (QED) and nuclear size e�ects. Low-lying
S-states, having the largest higher-order corrections, are the most sensitive tests of atomic
structure calculations.

For Helium, optical spectroscopy involving the ground state11S0 poses unique exper-
imental challenges because of the huge energy gap of about 20 eV to the lowest excited
level 23S1. To excite the 21P1 state, one photon of 58 nm wavelength is required [118]
and for the 21S0 two photons of 120 nm.
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Figure 5.3: Energy levels of4He (not to scale) and main results of frequency metrology in
4He. The present spectroscopy is realised between the two metastable states23S1 and 21S0

at 1557 nm, �rst direct link between singlet and triplet states in4He.

Most spectroscopic studies realised so far use the23S1 or 21S0 metastable states as lower
levels and are reported on the energy level scheme (�gure 5.3). Metrology measurements
inside the para-helium family were dedicated to the11S0 ! 21P1 transition at 58 nm
[118] and the series of21S0 ! n1P transitions [119].
Transitions measured from the23S1 state reached33D1 [109] with two photons and33P0

[120], both in the ortho-helium family. The �ne structure splitting of the 23P level has
been studied with the highest grade of accuracy in [35], and the one of the33P level in
[121]. A good summary of the overall status of the Helium energy level spectrum, both
theoretical and experimental, is provided in a recent publication by Morton, Wu and
Drake [33].

The transition excited here links two metastable states: the23S1 triplet state having
a lifetime of 7900 s and the21S0 singlet state with a lifetime of 20 ms, only limited by
decay to the ground state11S0 via two UV photons [122]. The natural linewith of 8 Hz
is 2�105 times narrower than for the transition to 23P, which has been most prominently
used for spectroscopy in Helium so far. The 1557 nm transition, also because it involves
two S-states, constitutes therefore an ideal testing ground for QED calculations [33].

Due to spin-conservation rules, the spectra of para-helium and ortho-helium are not
connected via electric dipole transitions. So far, triplet and singlet states energies were
only linked via the continuum, relying on theoretical evaluations of ionisation energies
[123]. Thus the23S1 ! 21S0 transition frequency was deduced from a combination of two
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Transition and reference Transition frequency (MHz)
Measurement of23S1 ! 33D1 [109] 786 823 850.002(56)

33D1 ionisation energy [123] 366 018 892.97(2)
Measurement of21S0 ! 71D2 [110] 893 162 323.880(120)

71D2 ionisation energy [123] 67 169 717.156(2)
23S1 ! 21S0 192 510 701.94(13) MHz

Table 5.1: Value and accuracy of the indirect evaluation of the23S1 ! 21S0 transition
relying on two experimental results and theoretical evaluation of ionisation energies. Er-
rors on the �nal digits are quoted in the usual way in parantheses. The �nal error is
the quadratic sum of all the contributing errors. This indirect determination reaches an
accuracy of 130 kHz.

spectroscopy measurements and theoretical ionisation energies from highn states. The
values are summarised in table 5.1. Error bars in the theoretical evaluation of ionisation
energies are indeed smaller for high lyingn levels since the main source of uncertainty
comes from relativistic and QED corrections of order� 4, which are the highest for low
lying S-states. This indirect evaluation of the transition frequency reaches an accuracy
of 130 kHz.
In this section we will describe the spectroscopy of the23S1 ! 21S0 transition, �rst direct
link between singlet and triplet states of Helium. This magnetic dipole (M1) transition
has a transition rate of � ts= 9.1 10� 8 Hz [116], which is fourteen orders of magnitude
smaller than for the cooling transition23S1 ! 23P2. As a consequence long probing du-
ration is required in this experiment. Cold atoms techniques, allowing the storage of4He�

atoms in a crossed dipole trap for several seconds, constitutes therefore a major advantage
over atomic beam experiments.

5.2.2 Measurement and lock of the laser frequency

The NP-Photonics �ber laser produces both the dipole trap and the spectroscopy beams
(see �gure 5.5). As already mentioned, the laser wavelength is tunable over 30 GHz and
will be scanned around the23S1 ! 21S0 transition frequency. The frequency is precisely
determined from a comparison with an optical frequency comb, which is the key point of
the spectroscopy measurement.

Frequency comb technology [114, 115], based on lasers which are mode-locked to a
resonant optical cavity, enabled the relative link of optical frequency to radio-frequency
where direct electronic frequency counting is possible (up to hundreds of GHz). Mode-
locking introduces a �xed phase relationship between the modes of a laser cavity and
produces a serie of optical pulses separated in time by the round-trip time in the laser
cavity. The spectrum of such a pulse train is a series of equally spaced sharp spectral lines
separated by therepetition rate, denoted f rep , as schematised in �gure 5.4. A constant
frequency o�set f ceo, the carrier envelope frequency, shifts the comb. A complete review
on frequency combs can be found in [124] and the principles are presented in Appendix
B.
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Figure 5.4: Principle of a frequency comb. A mode-locked laser produces short optical
pulses, equally spaced in time. The frequency spectrum is a comb of sharp spectral lines
spaced byf rep having an o�set f ceo resulting from the phase�� accumulated during each
round trip in the cavity.

In the VU-Amsterdam laboratories, such combs are a daily used technique in the
group of K. Eikema, working on high precision metrology [125, 126, 127]. We had the
opportunity to use a frequency comb based on a mode-locked erbium doped �ber laser at
1.5 � m (Menlo System) with a repetition rate of 250 MHz. Both the repetition rate and
the carrier envelope o�set frequency are referenced to a GPS-controlled Rubidium clock
(PRS10 Stanford Research).

As depicted in �gure 5.5, a part of the laser light is split and �ber coupled to the
frequency comb. We measure the beat note frequency between our laser and one of the
comb mode on a fast photodiode. The lowest frequency beatf beat matches exactly the
di�erence between the laser frequencyf laser and the comb mode frequencyf ceo + nf rep,
wheren is the unknown integer number of the closest comb mode:

f laser = f ceo + nf rep + f beat (5.4)

With this technique, a few kHz accuracy for the laser frequency measurement is achieved
but the value is provided only modulo 250 MHz. For an absolute determination, a
wavemeter accurate to 200 MHz can be used. As wavelength measurement of infra-red
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light is not standard, a part of the 1.5� m light is passing through a doubling crys-
tal (PPLN type from Thorlabs) to generate a 778 nm laser beam, which is sent into a
wavemeter.

This measurement of the beat frequency also allows for an active stabilisation of the
laser frequency at a preset value. Indeed the NP-Photonics laser has a speci�ed linewidth
of 10 kHz (FWHM) on time scales shorter than 1 ms, but drifts over 1 MHz within 2 s.
Aiming for long probing duration (few seconds), the laser frequency has to be locked.
Therefore the beat frequency is continuously measured by a counter. Its value is sent
to the computer via GPIB and regulated by a numerical feed-back loop (proportional-
integrator type, PI) to match a set-point value. The analogic error signal produced by
the PI loop controls the piezo-electric element of our laser. Although the lock to the fre-
quency comb provides a good long-term stability (corresponding to the Rubidium clock
stability), the large comb linewidth of 300 kHz (FWHM) could broaden our laser narrow
linewidth. To avoid this, the time scale of our numerical regulation is limited to 0.2 ms
so that the laser is not to tightly lock to the frequency comb. This locking scheme results
�nally in a measured long-term laser linewidth of 70 kHz (FWHM).
The set frequency is known within the comb accuracy on long time-scale (several seconds
for a typical scan), which is below 2�10� 12, corresponding to 400 Hz at for the laser fre-
quency.

5.2.3 Spectroscopy of the forbidden transition

One last point needs to be clari�ed before describing the experimental sequence: the
detection of the fraction of atoms excited in the singlet state. As detailed in paragraph
5.3.3 where AC Stark shifts are evaluated for the triplet and singlet states, atoms promoted
in the 21S0 state are expelled from the laser �eld. The interplay between three time scales
has to be considered here:

� time needed to exit the dipole trap volume: assuming a temperature of 9� K
(Tc � 1 � K and maximal trap depth corresponding to 9� K), an atom needs one� s
to leave the 80� m beam waist;

� lifetime of the singlet state: the21S0 state has a lifetime of 20 ms, only limited by
the decay to the ground state via two UV photons [122];

� time scale of the Rabi transitions: considering an intensityI 0 of resonant light on
the atomic cloud, the Rabi pulsation
 Rabi can be evaluated from:


 Rabi =

s
6�c 2

~! 3
ts

� ts hJ1; M1; 1 � qjJ2; M2i 2 I 0 (5.5)

where ! ts=2� is the transition frequency at 1557 nm,� ts=9.1 10� 8 Hz [116] the
transition rate constant and hJ1; M1; 1 � qjJ2; M2i 2 the squared Clebsh-Gordan co-
e�cient of the jJ1; M1 > ! j J2; M2 > transition excited by light with polarisation
q=-1,0,1. For the most intense probe beam intensity used, the Rabi frequency
reaches 200 Hz corresponding to a 5 ms time scale.
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Since the time needed to escape the cloud is much shorter than the other two time scales,
each atom in the singlet state will be lost from the atomic cloud. The excitation of the
23S1 ! 21S0 transition is thus detected by probingatomic losses .

Figure 5.5: Schematics of the experimental setup. The laser output is divided into three
beams: thedipole trap beam , the probe beam , up-shifted by 40 MHz with an AOM
and the reference beam �ber-coupled to the frequency comb to measure and lock the
laser frequency. The probe-beam is overlapped with the returning dipole trap beam and
its waist at the cloud position is measured to be 120� m. HWP denotes half-waveplates,
PBS polarised beamsplitters,MCP refers to the atomic microchannel detector andP:D:
is the fast photodiode used for the measurement of the beat frequency.

The experiment is now carried out as follows: atoms are transferred from the magnetic
trap into the dipole trap and a rethermalisation time of 2 seconds enables to obtain a
degenerate gas of atoms in the metastable23S1 state. Subsequently, a spectroscopy beam
up-shifted by 40 MHz as compared to the dipole trap light illuminates the atomic cloud.
This beam has a waist of 120� m at the position of the atoms and is overlapped with the
returning dipole trap beam. After a speci�c interaction time t int , the probe and dipole
trap beams are switched o�. Atoms released from the trap fall onto the MCP detector
and their number is recorded. The complete experimental setup is schematised in �gure
5.5.
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This sequence is repeated for di�erent laser frequencies, changed by 20 kHz steps over
typically 800 kHz, in order to scan accross the atomic transition. The dipole trap fre-
quency is also scanned but remains 40 MHz away from resonance and thus the weak
23S1 ! 21S0 transition is not a�ecting the trapping potential.
As soon as atoms are promoted to the21S0 state, atom losses are observed as shown in
�gure 5.6. After 2 s of probing, approximately 80% of the atoms are lost. The line shape
is �tted by a Gaussian of 56� 3 kHz � -width and a center position known within 1.4 kHz
accuracy (one-� con�dence interval).

Figure 5.6: a) Remaining atom number after 2 s probing as a function of the beat
frequency. The beat frequency is measured between the reference beam and the fre-
quency comb. A Gaussian �t of the data gives a� -width of 56� 3 kHz for a center at
60,219� 1.4 kHz. The error bars corresponds to shot-to-shot �uctuations of the initial
atom number of 20%, which are directly reported onto the �nal atom number, assuming
a constant excitation probability. b) Number of ions produced during the 2 s probing as
a function of the frequency (scan realised at a di�erent date than the losses signal). The
plain line corresponds to a gaussian �t having a width of 182� 8 kHz (FWHM).

For longer interaction time t int (t int � 4 s) between the spectroscopy beam and the
atomic sample, all the atoms can be transferred in the singlet state. However,t int is set
to 2 seconds in order to avoid a broadening of the experimental line, induced by a too
large e�ciency. With this settings, the signal over noise ratio reaches 80%.
Shot-to-shot �uctuations in the atom number, measured to be of the order of 20%, a�ects
the precision of the determination of the line center. This e�ects, taken into account in
the statistical error bar on each data point (see �gure 5.6), leads to the determination of
the transition frequency within 1.4 kHz accuracy. The stability of the transfer from the
magnetic trap into the optical, mainly responsible of those �uctuations, has now been
improved.
The error bar on the set frequency determination does not appear in �gure 5.6 since it is
below 1 kHz (see section 5.2.2).
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5.2.4 Resonance observed on the ion signal

As mentioned in section 5.1.1, a second MCP detector, located above the trapping vol-
ume, is dedicated to the ion detection. During the probing duration, the ions produced
by Penning collisions in the cloud are counted. The atoms in the23S1 are spin-polarised
by a bias �eld of B0= 2.1 G in order to avoid losses due to Penning collisions (see chapter
0.1). On the contrary singlet atoms should Penning ionise with the polarised triplet ones
and give raise to a coincidence between atomic losses and ion production. A typical ion
signal recorded during a scan accross the resonance is shown in �gure 5.6 b) and has the
expected behaviour.

To roughly estimate the ion production rate, one has to determine the probability
of a Penning collision between singlet and triplet atoms. The number of collisionsNc

experienced by a singlet atom duringdt is given by:

Nc = � stdt
Z

nt (r )ns(r )d3r (5.6)

where � st is the Penning collision rate constant between singlet and triplet atoms. This
constant, which has never been measured, will be supposed here similar to the Penning
ionisation rate constant of unpolarised triplet atoms: � st � 10� 10 cm3.s� 1. For this
evaluation the space dependent densitiesnt (r ) for triplet atoms and ns(r ) for singlet
ones are replaced by the central densitiesnt;0 and ns;0 and thus the spatial integral by a
multiplication by the trap volume V. Concerning the triplet atoms the central density is
nt;0 � 1013 cm� 3 for 106 trapped atoms. Since typically half of the atoms are promoted
into the 21S0 state over 2 s, on short time scales of the order of 1� s, only one singlet
atom is present in the trap volume andns;0V=1.
Because singlet atoms, which are anti-trapped in the dipole trap, leave the cloud within
� = 1 � s (see paragraph 5.2.3), the probability of Penning ionising with a triplet atom is:

Pc = � stnt;0� = 10� 3 (5.7)

During the 2 s probing at resonance, 5�102 ions should be produced by Penning ionisation.
In [71] a 5% detection e�ciency for the ion MCP detector has been measured. This naive
estimation predicts the detection of 25 ions at resonance, which is of the same order of
magnitude than the measurement. This number depends of course on the exact value of
the triplet-singlet Penning rate constant � st and on the average time� spent by singlet
atoms in the cloud.

The background signal of 5 to 10 ions results from Penning collisions between spin-
polarised triplet atoms. Indeed the Penning collision rate for spin-polarised atoms is
approximately 2�10� 14 cm� 3�s� 1, corresponding for a central density ofnt;0 � 1013 cm� 3

to a production of 20 ions per second. Due to the 5% detection e�ciency of the ion de-
tector, one expects to record few ions over the 2 seconds probing. The ion signal provides
thus a clear additional diagnosis on the transition.

This signal has been used to discrimate bad shots (no atoms loaded in the trap and
thus no ions detected) from real atom losses due to the probe beam (where more than 30
ions detected). It could in addition provide the �rst measurement of the singlet-triplet
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Penning rate constant� st . Indeed, with a better knowledge of the singlet dynamics and
thus of � , a measurement of the number of ions produced for di�erent triplet densities is
a direct measurement of� st .



5.3. EVALUATION OF THE EXPERIMENTAL FREQUENCY SHIFTS 111

5.3 Evaluation of the experimental frequency shifts

The position of the line, obtained as described in the previous section, is in�uenced by
all non-zero magnetic or electrical �elds required for the measurement and also by atomic
interactions. To extract an intrinsic value for the transition frequency, those systematic
experimental shifts have to be evaluated precisely.
For low-temperature samples, where only s-wave collisions occur, triplet and singlet atoms
experience a di�erent mean �eld energy, inducing amean-�eld shift in the atomic transi-
tion.
Another frequency shift arises from the bias magnetic �eldB0= 2.1 G maintaining the
spin polarisation of the triplet atoms: aZeeman shiftof the resonance frequency has to
be taken into account.
Third, intimely connected to the principle of this experiment, anAC Stark shift, produced
by both the dipole trap and the spectroscopy beams, a�ects di�erently the triplet and
singlet states and thus the atomic transition.

5.3.1 Mean �eld shift

The shift discussed here results from the non ideality of the considered atomic gas. The
vector of interactions are collisions and more speci�cally in a very dilute gas, binary
collisions. The collision is then characterised by a scattering amplitude, which depends
on the energy of the colliding particles. In the limit of low temperatures where only s-
wave scattering occurs, a single scalar parameter, the scattering lengthas, characterises
entirely the collision. The interation between one atom and the others can be treated
within a mean-�eld approximation, resulting in an additional energy term, called mean
�eld energy:

Emeanf ield =
4�n
m

as: (5.8)

It is proportional to the atomic density n and the scattering lengtha bewteen one atom
and all the others, and inversely proportional to the atomic massm.
A cold collision frequency shift [128] originates from the di�erence in mean �eld energy be-
tween the ground and excited states. The corresponding frequency di�erence� � meanf ield

can be expressed as:

� � meanf ield =
4�n t

m

�
ats

s � att
s

�
; (5.9)

wherent is the atomic density in the23S1 triplet state, att
s and ats

s the triplet-triplet and
triplet-singlet scattering lengths respectively. In contrast toatt

s which has been accurately
measured (att

s =7.51 nm [38]), ats
s is not known. As this shift is proportional to the atomic

cloud density nt , spectroscopy measurements have been performed varying this parame-
ter. At our level of accuracy no e�ect on the resonance frequency could be observed.

For a typical atomic density nt= 3 1013 cm� 3, the mean �eld energy of atoms in the
triplet state contributes to a 6 kHz frequency shift, smaller than our �nal error bar. If the
triplet-singlet scattering length ats

s is of the same order of magnitude thanatt
s , the total

shift involving the di�erence between those two scattering lengths could be much smaller
than 6 kHz and may thus be neglected in the evaluation of the total error.
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An improvement of this accuracy could provide a �rst measurement ofatt
s or at least an

upper bound for its value.

5.3.2 Zeeman shift

A bias magnetic �eld B0= 2.1 G is required to maintain the spin polarisation of the atoms
in the 23S1 state and thus inhibite Penning collisions. It induces also a large shift in the
measured transition frequency. The potential energy of an atom with a magnetic moment
~� in a constant external �eld ~B0 is expressed as a scalar product:

U = � ~� � ~B0: (5.10)

When the quantisation axis is along the magnetic �eld vector, the projection of the mag-
netic moment becomes� = � gmJ � B , with � B the Bohr magneton,g the Lande factor
(g= 2 for 23S1 Helium atoms) andmJ the spin projection quantum number.
In this measurement, only the triplet state atoms, in amJ =1 Zeeman state, are sensitive
to the magnetic �eld B0. Atoms in the 21S0 singlet state have indeedmJ =0. The total
frequency shift on the atomic transition is then equal to2� B B0=h.

This Zeeman shift is directly measured inducing RF-transition between the Zeeman
substates of the triplet state. A RF wave of frequencyf RF is applied during 0.5 ms on
the (23S1, mJ =1) atoms trapped in the crossed dipole trap. Subsequently the di�erent
Zeeman substates are separated during their 5 ms time-of-�ight (TOF) by a magnetic
�eld gradient and imaged. Whenf RF = 2� B B0=h, the mJ = 0 and mJ = � 1 spin states
are populated and three well separated clouds are imaged as shown in �gure 5.7.
As will be detailed in section 5.3.3, this method provides a measurement of a pure Zeeman
shift, with no di�erential AC Stark shift 1.

The population of the mJ = 0 and mJ = � 1 spin states is then plotted as a function
of the RF frequency (�gure 5.7 b)), leading to a determination of the large Zeeman shift
(typically 6.1 MHz) accurate at the 10 kHz level, which corresponds to a 4 mG accuracy
on the magnetic �eld value. However, despite this very accurate measurement, the Zeeman
shift remains the main source of unaccuracy in this experiment. Indeed the magnetic �eld
value �uctuates at the level of 6 mG during a scan of the spectroscopy beam accross the
transition, resulting in a 15 kHz rms error on the measured shift. To correct for magnetic
�eld drifts on long time scales, the Zeeman shift is measured before each spectrosopy scan.

To supress those problems, one could think of working on the23S1; mJ = 0 !
21S0; mJ = 0 atomic transition unsensitive to magnetic �elds. But the large Penning
collision constant for triplet atoms in anmJ = 0 state (� 00=6.6(4)�10� 10 cm3�s� 1 [41]) is
incompatible with the long probing duration required in this spectroscopy experiment.
A more realistic approach is to implement an active stabilisation in order to reduce the
drifts of the bias �eld below the 1 mG level (typical for metrology experiments).

1Since the laser light is far detuned from the23S1 ! 21S0, the �ne structure of the triplet state is not
resolved and the AC Stark shift is the same (at the 10 Hz level) for the di�erent Zeeman substates (see
paragraph 5.3.3).
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Figure 5.7: a) Absorption image of the trapped atoms taken after a resonant RF excitation
of frequencyf RF = 2� B B0=h. The di�erent spin populations are separated during a 5 ms
TOF in a magnetic �eld gradient. The RF pulse duration is too long to induce a coherent
transfer in one or the other spin states and therefore the relative population ofmJ = 0
and mJ = � 1 is varying from shot to shot. b) Number of atoms inmJ = 0 and mJ = � 1
states as a function of the RF frequency. Each point corresponds to the average of three
measurements. The plain line represents a gaussian �t yielding a width of� = 26.5 kHz
(FWHM). The center position is then known within an accuracy of�= 2.This scan provides
a measurement of a 6.16(1) MHz Zeeman shift, corresponding to a bias magnetic �eld
B0= 2.200(4) G.

5.3.3 AC Stark shift

As explained in chapter 3.1, laser electric �elds a�ect the energy levels of a non-resonant
two-level system producing an e�ective trapping potential when its intensity varies spa-
tially. For all electric �elds produced experimentally, this interaction can be treated within
perturbation theory. S-states having no permanent electric dipole, the �rst order pertur-
bation cancels.
The second order Stark shift on the energy leveli due to non-resonant transitions to levels
k, of frequency! ki , is expressed as:

E (2)
Stark =

X

q

(E q
0)2

2~

X

k

(dq
ki )

2 ! ki

! 2
ki � ! 2

l
(5.11)

where E q
0 is the electric �eld component of polarisationq, dq

ki is the matrix transition
element including the Clebsh-Gordan coe�cient of the transition from the statei to the
state k with a polarisation q. Thus the AC Stark shift varies linearly with the laser in-
tensity equal to: I = c�0E 2=2.
Here both the dipole trap and the probe beam will contribute to this light shift.

Concerning the triplet level, the main shift is induced by the non-resonant23S1 ! 23P
cooling transition at 1083 nm. This produces a red-shift, responsible for the trapping of
the 23S1 atoms inside the spatially varying intensity pro�le. As can be seen in equation
5.11, the three polarisations of the light �eld (q=1,0,-1) will induce di�erent AC Stark
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Level considered Transition considered AC Stark shift (kHz/100 mW)
23S1 23S1 ! 23P - 23(7)
21S0 21S0 ! 21P1 40(12)

21S0 ! 31P1 -0.60(0.18)
21S0 ! 41P1 -0.23(0.07)

Total AC Stark shift 23S1 ! 21S0 63(19)

Table 5.2: AC Stark shifts induced on the triplet23S1 and singlet 21S0 states by the
main non-resonant transitions by 100 mW of measured power, with a ratio of 2 between
the spectroscopy and dipole trap beams. The error bars quoted in parentheses correspond
to a 10% error on the measurement of the beam waists and a 10% error on the power
measurement. The total light shift expected on the transition frequency is then 63(19) kHz
per 100 mW of laser power measured on the photodiode denotedPref in �gure 5.5, power
which is quoted on the horizontal axis in �gure 5.8.

shifts. Corrections for the di�erent polarisation states of the light are of the order of
the ratio between the �ne structure splitting (� 109 Hz) and the laser detuning from the
transition at 1083 nm (� 1014 Hz). This corresponds to corrections at the 10� 5 level cor-
responding to few Hz on shift of few tens of kHz. Those small corrections can thus be
omitted together with the exact repartition of the light intensity between the di�erent
polarisation statesq=1,0,-1.

The singlet level will be shifted by non-resonant transitions to the states21P1

(� = 2058.7 nm, � =0.0197�108 Hz), 31P1 (� = 501.7 nm) and 41P1 (� = 396.6 nm) from
the para-helium family. The transition frequencies and rate coe�cient are taken from the
NIST database. The total shift is dominated by the e�ect of the21P1 state, producing a
blue shift and thus expelling the atoms in the21S0 state from the light �eld.

The AC Stark shifts have been evaluated for both the triplet and singlet levels and are
presented in table 5.2 for 100 mW of laser intensity measured on the powermeter. The
transmission of the vacuum windows and the waists of the dipole trap and probe beams
have been measured and used as input parameters in this theoretical evaluation. Taking
a 10 % error into account on both measurements, the evaluated light shift has a 30%
uncertainty.

5.3.4 Conclusion on systematic experimental shifts

Two last sources of systematic frequency shift need to be discussed before concluding this
section. First, since the atomic sample consists in a pure Bose-Einstein condensate, no
Doppler shift has to be taken into account here.

An incompressible shift results from the momentum transfer from a 1557 nm photon
to an atom and is calculated to be 20.6 kHz for4He. No further shift due to the ab-
sorption of photons from the beam is involved in this experiment. Indeed as explained in
paragraph 5.2.3, triplet atoms absorb only one photon from the spectroscopy beam before
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escaping the trap. As a consequence no cooling or heating processes is induced and no
light-force-induced line center shift is expected.

Each measured position of the atomic transition is then systematically shifted by the
recoil shift of 20.6 kHz, the Zeeman shift and the AC Stark shift. The mean-�eld shift is
neglected at our level of accuracy. The data analysis procedure implemented to correct
the line position for those shifts is detailed in the next section.
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5.4 Intrinsic transition frequency and measurement
accuracy

This section is dedicated to the determination of the �eld-free resonance position and the
evaluation of the �nal measurement accuracy.

5.4.1 Derivation of the �eld-free transition frequency

Each scan accross the resonance provides a position of the resonance accurate to 1.4 kHz
(one-� con�dence interval). The Zeeman shift is measured, following the procedure de-
scribed in paragraph 5.3.2, and substracted to the line position. Another possibility would
have been to take advantage of the linear variation of this shift with the bias magnetic
�eld B0: obtaining the line position for di�erent values ofB0 allows to extrapolate to the
magnetic-�eld free atomic resonance. Since the Zeeman shift measurement has a 5 kHz
accuracy, the accuracy improvement resulting from this long procedure is not required.

Figure 5.8: Measured transition frequency as a function of the total laser power. Each
point is obtained by performing three measurements, all having been corrected for the
Zeeman shift and the recoil shift. The error bars on each point takes several e�ects into
account: the �t accuracy to assign the transition frequency of typically 1.4 kHz (one-� con-
�dence interval), the error of 15 kHz rms due to the magnetic �eld drifts and the Doppler
broadening. The red line represents a linear �t of the experimental data intersecting the
y axis at f =192 510 702.151(6) MHz. The slope is evaluated to 85� 2 kHz/100 mW.

In order to correct for the AC Stark shif, the previous procedure has been realised for
�ve di�erent laser intensities. As shown in �gure 5.8, the total power (measured for both
beams on the photodiodePref ) has been varied between 40 mW and 700 mW, keeping
a ratio of 2 between the power in the dipole trap and in the spectroscopy beams. The
slope of the obtained line is 85� 2 kHz/100 mW, of the same order than expected from
the evaluation reported in table 5.2.

As the light shift increases linearly with the total laser power, an extrapolation to zero
intensity is possible. The intersect with they axis in �gure 5.8 gives the intrinsic transi-
tion frequencyf =192 510 702.150(6) MHz for4He. This value is in good agreement with
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the QED calculations [33] and the ionisation energies of those states [123] as summarised
in table 5.3.

5.4.2 Experimental broadening and measurement accuracy

Each step of the procedure leading to the intrinsic frequency transition has now to be anal-
ysed regarding its contribution to the �nal measurement accuracy. Indeed the position of
the line determined from one measurement has to be shifted by the di�erent systematic
shifts (recoil, Zeeman and Stark shift) as described above, and thus the accuracy on the
position of the intrinsic transition is limited by the accuracy on the evaluation of those
di�erent shifts.

The atom number �uctuations contribute for a 1.4 kHz unaccuracy (see paragraph
5.2.3) on the line position but has no impact on the systematic shifts taken into account
in this study. Indeed only the mean �eld shift, neglected here, is density dependent.

An additional source of unaccuracy are the magnetic �eld drifts during one scan ac-
cross the transition. As already discussed in paragraph 5.3.2, the Zeeman shift evaluation
contains a 15 kHz error corresponding to 5 mG �uctuations of the bias �eldB0. Working
in a magnetic trap would have induced a larger broadening because the shot-to-shot sta-
bility of the bias �eld, resulting of the compensation of two large magnetic �elds, is more
di�cult to insure. The cloverleaf magnetic trap design described in [129], similar to the
one of Wim Vassen's group, results in �uctuations of 30 mG corresponding to a 84 kHz
error. The dipole trap is therefore more appropriate for a spectroscopy measurement at
the 10 kHz level.

Finally, even if the atomic sample consists in a pure condensate at zero-temperature,
this spectroscopy experiment involves Doppler broadening. The �nite size of the con-
densate indeed implies a distribution of non-zero momenta. In the Thomas-Fermi ap-
proximation, the condensate wave function	( x; y; z) in an harmonic trapping potential
is:

j	( x; y; z)j2 = n0
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where Ri are the Thomas-Fermi radii de�ned in paragraph 5.1.2. The distribution of
momenta pi along the i axis is given by the square of the Fourier transform of the wave
function 	( x; y; z) [69]:
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with J2 the Bessel function of order 2 having a rms width of� pi =
q

21=8~=Ri . The
corresponding Doppler broadening is inversely proportional to the condensate sizeRi and
therefore more pronounced along tightly con�ning axis:
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: (5.14)



118 CHAPTER 5. SPECTROSCOPY OF A FORBIDDEN LINE OF 4HE

Experimentally the �nite size of the condensate contributes to a maximum 1.5 kHz addi-
tional broadening, one order of magnitude smaller than the other broadening sources.

After correcting the line position for the Zeeman shift and the recoil shift, the error
attributed to the point is the quadratic sum of the errors induced by the shot-to-shot
changes of the atom number, the magnetic �eld drifts and the Doppler broadening, all
acting independentely. Since the measurement duration is long compared to the time
scales of power �uctuations, one may consider the latest as being averaged. The total
error is thus of the order of 15.6 kHz, constant for all data points and dominated by the
error on the magnetic �eld determination.
At a particular laser intensity, the measurement is reproduced 3 to 4 times, the resulting
statistical error is reduced to 9 kHz.
As a consequence, the �nal accuracy of our measurement is set by the accuracy of the
linear �t on the measured transition frequencies for di�erent laser intensities (see �gure
5.8). We �nally achieve a 6 kHz (one-� con�dence interval) accuracy, corresponding to a
measurement of the23S1 ! 21S0 transition at a 10� 11 level. This error is substantially
smaller than the errors quoted for both the QED calculations and the indirect evaluation
detailed in table 5.1 as summarized in table 5.3.

Source 23S1 ! 21S0 transition frequency (MHz)
QED calculations [33] 192 510 703.4(3.0)

Indirect evaluation (table 5.1) 192 510 701.96(13)
Present experiment 192 510 702.150(6)

Table 5.3: Values for the 23S1 ! 21S0 transition frequency. Our experimental result
is in good agrement with both the QED calculations and the indirect evaluation using
experimental data and ionisation energies (see table 5.1).
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5.5 Conclusion and perspectives

During my stay at the VU-Amsterdam in the group of Wim Vassen, a crossed dipole trap
for metastable Helium, producing a degenerate sample of up to 106 metastable atoms,
has been implemented and characterised. We realised the �rst direct observation of the
23S1 ! 21S0 magnetic dipole transition via losses in a trapped condensate of metastable
4He atoms. After a careful evaluation of the statistical errors and systematic shifts,
the transition frequency is determined within 6 kHz (one-� con�dence interval) to be
f =192 510 702.150(6) MHz. This measurement is in agreement with both the QED eval-
uations and the indirect evaluation combining experimental and theoretical knowledge
(see table 5.1).

This �rst direct measurement of the transition linking the para- and ortho-states family
in the 4He spectrum combines the advantages of the cold atoms �eld, having a conden-
sate of4He� atoms, with state-of-the-art frequency combs technology. Active stabilisation
of the magnetic �elds and a more advanced method to lock the laser frequency (using
an optical cavity to keep a narrow linewidth) should lead to a kHz accuracy. However
the present experimental error of 6 kHz is substantially smaller than estimates of non-
evaluated higher order terms in QED calculations (presently evaluated at 3 MHz [33])
and presents a signi�cant challenge for groups involved in atomic structure theory.

New insights in the scattering between triplet and singlet atoms may be investigated
improving the present experimental setup. As already mentioned, improving the exper-
imental accuracy could allow for a determination of the triplet-singlet scattering length
ats via the mean-�eld shift which is density dependent (see paragraph 5.3.1).
Moreover, the ion signal recorded on the MCP detector while exciting atoms into the
21S0 state could provide a �rst measurement of the singlet-triplet Penning ionisation rate
constant � st as explained in paragraph 5.2.4.

This study has also demonstrated the principle of an e�cient source of cold atoms
in the singlet state: all the triplet atoms can indeed be transferred into this state. A
dipole trap could be designed to trap them simultaneously with the cold11S0 ground
state atoms that are produced after two-photon decay, allowing for a precise spectroscopy
on the 21S $ 11S.

Finally, this spectroscopy measurement o�ers an alternative to the so far best mea-
surement of the isotope shift realised on the23S1 ! 23P cooling transition [35] achieving
a 5 kHz accuracy. Indeed the experimental setup in Amsterdam provides degenerate gases
of both isotopes3He and 4He. The transition frequency for3He has been measured in
March 2010 by the Amsterdam group within the same accuracy than4He (article to be
submitted).
In the isotope shift QED e�ects cancel partly giving access to accurate measurement of
nuclear charge radius di�erences between both isotopes, testing nuclear size calculations of
few-nucleons systems. An accuracy of 1 kHz would provide a measurement of the charge
radius di�ence at the level of 0.001 fm, competitive with the present best determination.
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Chapter 6

Conclusion

As mentioned in the introduction of this thesis, working with ultracold metastable Helium
atoms presents two majors advantages:

� the atomic properties such as energy levels or interaction potential are theoreti-
cally well studied and a comparison of the experimental results with the theory is
challenging,

� the large inelastic Penning losses constitute a non-destructive diagnostics of the
collision dynamics.

The di�erent topics addressed in this work illustrate those two features, either via exper-
imental results or prospective studies.

The two �rst chapters present the �rst construction steps towards a new generation
of experiments with condensed metastable Helium gas in either an optical dipole trap or
an optical lattice. The new detection device added to the setup provides a key feature
for the future experiments. The signals obtained so far, either from ions produced in the
trapped cloud by Penning collisions or by metastable atoms, have been analysed and pro-
vide quantitative evaluations of the dynamics of the trapped sample or of its temperature.
A novel cloverleaf magnetic trap, allowing an in-situ loading of a magnetically trapped
cold atomic cloud into an optical lattice of various dimensionality, has been implemented.
We could load e�ciently 108 atoms and achieve a phase-space density of� � 7�10� 6 af-
ter a 1D Doppler cooling stage. The �rst approaches in evaporative cooling this atomic
sample demonstrated a critical instability of the bias �eld. The relative position of the
magnetic coils has now been changed in order to reach more stability.

Prospective experiments involving metastable Helium atoms in optical potential are
detailed in chapters 3 and 4. After a brief introduction on optical potentials, the dipole
trap, which will be implemented in the next future, is characterised. The magnetic �eld
being a free parameter, the variation of the spin relaxation and relaxation induced Penning
ionisation rate constants can be experimentally determined. Following the theoretical re-
sults from [22, 23], we present a new theoretical evaluation integrating the latest molecular
potential available [36]. The realisation of the measurement could provide new informa-
tions on the interatomic potential of the 5� +

g electronic state. This measurement relies
on the ability to distinguish between losses due to Penning ionisation, producing a signal
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on the channeltron detector, from other loss mechanisms.
This ability opens many other possibilities. It would for instance allow to verify whether
the limiting process for the lifetime of a dimer of metastable Helium4He�

2 is the au-
toionisation Penning induced by spin relaxation. This assumption leads to a theoretical
evaluation of � 120 � s lifetime [40], two orders of magnitude larger than the measured
value of 1.4� 0.3 � s [39].
The channeltron provides also a direct detection of ions produced during the decay of
photoassociated exotic molecules, as realised previously in our group [38, 39,?]. Pho-
toassociation experiments on BEC attracted a lot of interest from the theoretical point
of view, but only few experimental realisations: saturation of the photoassociation rate
[130, 131], dynamics of the molecule formation [132, 131], creation of correlated atom
pairs [133].

Chapter 4 focuses on prospective studies of intriguing aspects of Penning losses in 1D
and 3D optical lattices.
The deep trapping potential produced by a 1D optical lattice at� = 1560 nm allows to
reach the strong con�nement regime, freezing the atomic motion along one direction. In
this reduced dimensionality, both elastic and inelastic collisions are modi�ed [45, 46] and
present interesting signature. Con�nement-induced resonances (CIR), occuring in such
regimes, have been recently experimentally observed in 2D lattices [51]. The investiga-
tion of mixed-scattering occuring when the collision partners are con�ned in di�erent
dimensions (3D and 2D in this case) have revealed mixed-dimensional resonances [52].
Nevertheless until recently the strong con�nement regime had no experimental realisation
[101]. A prospective study demonstrates that quasi-2D collisional e�ects could be mea-
sured on inelastic Penning rates in independent degenerated clouds of metastable Helium.
The study of strongly correlated many-body systems has motivated many experimental
studies. A remarkable example in one dimension is the Tonks-Girardeau (TG) gas, where
bosons with strong repulsive interactions minimize their interaction energy by avoiding
spatial overlap and hence acquire fermionic properties [50]. This strongly correlated phase
could also be studied with He� taking advantage of the Penning ionisation losses. Within
the formalism of a three-level model, the losses in a 3D optical lattice of metastable Helium
atoms, either polarised or not, are evaluated. This study demonstrates the possibility to
achieve a strongly correlated regime, as in which large two-body losses result in a stabili-
sation of the system, suppressing double occupancy of lattice sites and as a consequence
the losses (similar e�ect than in one dimension [56]).

The last chapter reports on a direct spectroscopy measurement of the23S1 ! 23P2

transition of 4He, realised in the group of W. Vassen at the VU-Amsterdam. This de-
termination involved the state-of-the-art techniques of cold atoms, probing a degenerate
sample of metastable Helium trapped in an optical dipole trap, and of optical frequency
combs, allowing both to lock and accurately control the laser frequency (within the exper-
imental time-scale). The obtained value off =192 510 702.150(6) MHz is in agreement
with the actual determinations, either from QED or from indirect evaluations.
Several results concerning spectroscopy studies conducted on Helium are recalled, showing
the strong interest raised by its simple energy level structure. This spectroscopy mea-
surement o�ers an alternative to the so far best measurement of the isotope shift realised
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on the 23S1 ! 23P cooling transition [35] achieving a 5 kHz accuracy. The experimental
setup at the VU-Amsterdam provides degenerate gases of both isotopes3He and4He and
allowed a determination of the transition frequency for3He, which has been measured in
March 2010 within a comparable accuracy than4He (to be submitted). In the calculation
of isotope shift QED e�ects cancel partly. As a consequence accurate measurements of
nuclear charge radii di�erences between the two isotopes, testing nuclear size calculations
of few-nucleons systems. An accuracy of 1 kHz would provide a measurement of the
charge radius di�erence at the level of 0.001 fm, which is competitive with the present
best determination.
With an improved accuracy, di�erent properties of the scattering between triplet and
singlet atoms (more speci�cally: the scattering length and the Penning ionisation rate)
could also be deduced.
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Appendix A

Optical imaging

This appendix details the method used to determine the atom number via absorption
imaging on the23S1 ! 23P2 transition. The main limits result from the 2% quantum ef-
�ciency of our CCD camera at� 0= 1083 nm. Working with large photon number impose
a trade o� between the intensity of the imaging beam, which has to remain belowI sat in
order to remain in the limit of a linear absorption and the probing duration, which has
to remain short compare to the cloud expansion after release from the trap.

The �rst section provides a description of the present imaging system and the general
framework for the determination of the atom number.
The second section adresses the problems linked to the unpure polarisation of the probe
beam and discusses the corrective factors, accounting for optical transitions between de-
generated levels.
A third section presents the chosen parameters for the beam intensity and probe duration
and their impact on the determination of the atom number and the cloud temperature.

A.1 Absorption imaging

A.1.1 Experimental setup

The imaging beam is propagating in thex= 0 plane of the magnetic trap along an axis
making an angle of 45� with the z axis as depicted in �gure A.1 and linearly polarised.
After a single pass through the cloud, it is retrore�ected with an orthogonal polarisation
in order to avoid any radiation pressure e�ects as will be detailed in the following section.

The imaging system consists of two lenses of focal lengthsf 1= 20 cm and f 2= 15 cm
respectively. The choice off 1 is imposed by the geometry of the magnetic trap, which
sets the smallest distance from the cell center at 20 cm. The magni�cation on the CCD
camera is thusg= 0.75.
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Figure A.1: Schematics of the imaging system. The probe beam is retrore�ected with an
orthogonal polarisation and extracted with a polarising beam splitter. The imaging lenses
have focal length off 1= 20 cm and f 2= 15 cm. The magni�cation on the CCD camera
has been measured to beg= 0.75.

A.1.2 Absorption from the atomic cloud

For a two level system, the total scattering rate p from the light �eld having detuning �
from the atomic transition can be expressed as [134]:

 p =
s� 0=2

1 + s + (2� =�) 2 (A.1)

with � 0 = 2� 1:62MHz the linewidth of the considered atomic transition ands the satu-
ration parameter de�ned as the ratio of the beam intensityI over the saturation intensity
I sat = � ~c� =3� 3

0. The amount of absorbed power per unit of volume is then given by
~! 0 pn, wheren is the atomic density.

If the probe beam intensityI is small compared toI sat , the population of the excited
state and thus stimulated emission (adding photons into the probe beam) may be ne-
glected. In this limit the power dP absorbed from the probe in a volumedx0dy0dz0 can
be simply expressed as:

dP = ~! 0 pn(x0; y0; z0)dx0dy0dz0 = � dI (x0; y0; z0)dx0dy0 (A.2)

where the atomic density is denotedn(x0; y0; z0)dx0 and the probe intensity variation
dI (x0; y0; z0). In this model a new referential is chosen so that the probe beam propa-
gates along thez0 axis.
The cross section� for light absorption is then de�ned asdP = �nI and written as:

� = � 0
1

1 + s + (2� =�) 2
(A.3)
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with s � 1 and � 0 the resonant cross section:

� 0 =
~! 0�
2I sat

=
3� 2

0

2�
(A.4)

In this limit, the pro�le of a probe beam with an initial intensity I 0 after propagation
along an axisz0 through the atomic cloud is then:

I abs(x0; y0) = I 0 exp
�

� �
Z

n(x0; y0; z0)dz0
�

(A.5)

A.1.3 Determination of the atom number

The atom number is determined for a resonant probe (� = 0) in the limit of a small
intensity compared to the saturation intensity. The analysed image results from three
images: the �rst one records the absorption of the atomic cloudI abs, the second is taken
few hundreds of ms after releasing the cloud to calibrate the intensity sent onto the atoms
I 0. The third image is taken without probe beam in order to substract the background
light, denoted I b from the two �rst images.

Since the probe beam is retrore�ected, it is absorbed twice by the atomic cloud and
one obtains:

I abs(x0; y0) = I 0(x0; y0) exp
�

� 2�
Z

n(x0; y0; z0)dz0
�

(A.6)

whereI 0 is the initial intensity of the probe beam.

For a thermal cloud having a gaussian shape with radii denoted� x0;y0;z0, the atomic
density can be written as:

n(x0; y0; z0) =
N0

(2� )3=2 � x0� y0� z0

exp

 

�
x02

2� 2
x0

!

exp

 

�
y02

2� 2
y0

!

exp

 

�
z02

2� 2
z0

!

(A.7)

and thus the atom numberN0 is obtained by integration of this density alongx0, y0 and
z0. From equation A.6,N0 is extracted from the three images taken by a two-dimensional
integration:

N0 =
1

2�

Z
ln

 
I abs(x0; y0) � I b(x0; y0)
I 0(x0; y0) � I b(x0; y0)

!

dx0dy0 (A.8)

One has now to convert the integration over the continuous variablesx0 and y0 into a
summation over the pixels of the camera, by taking into account the magni�cation of the
systemg and the pixel sizep. One pixel corresponds to a squared surface of sizep=g in
the volume containing the cloud:

N0 =
1

2�
p
g

X

k;l

ln

 
I abs(k; l ) � I b(k; l )
I 0(k; l ) � I b(k; l )

!

(A.9)
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wherek and l denotes the pixel numbers.
Since the probe pro�le is imaged on a 20% fraction of the CCD array, a squared box limits
the range for the integration around it. Indeed outside the probe, one hasI abs(k; l ) �
I b(k; l ) � I 0(k; l ) and the corresponding pixels will produce non negligeable numerical
noise. Therefore they are not considered in the summation.

To obtain the widths of the cloud, the optical density is summed along one direction
and �tted by a gaussian along the orthogonal direction. Nevertheless, because the probe
beam is not propagating along one of the trap axis, the cloud widths related to the
trapping frequencies (denoted� x and � y) are given by:

� x = � x0 (A.10)

� y =

s
� 2

x0 + � 2
y0

2
(A.11)

The determination of those quantities is essential to evaluate the cloud temperature as
detailed in section A.3.
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A.2 Polarisation

A.2.1 Degenerated system

The 23S1 ! 23P2 transition used for imaging is not a pure two-level system as described
in the previous section. Indeed both the initial and �nal states are degenerate in a zero
magnetic �eld as depicted in �gure A.2.

If the levels are degenerate, several transitions may be excited depending on the probe
beam polarisation. The decay rate frommj to mi is a fraction Ci;j of the total decay rate
� , whereCi;j is the jhJ11mi (mj � mi )jJ11J2mj ij

2 Clebsch-Gordan coe�cient. The values
of the Clebsch-Gordan coe�cients for the di�erent (23S1; mi ) ! (23P2; mj ) transitions
are reported in �gure A.2.

Figure A.2: Value of the Clebsch-Gordan coe�cients Cij for each subtransition
(J2 = 2; mj ) ! (J2 = 1; mi ). The relation

P
i Ci;j = 1 is veri�ed from each degenerate

level mj .

A.2.2 Imaging

Imaging of the MOT: In the MOT, the quadrupole �eld is pointing in all directions
and no quantisation axis is properly de�ned. Taking this quantisation along the probe
beam, the polarisation is linear during the imaging. Assuming that all sub-Zeeman levels
of the 23S1 metastable state are equally populated, with respective population denoted
� i , three degenerate transitions are involved. The summation

P
j Cij � i contributes for

5/9. This factor is taken into account in the analyses of the images.

Imaging of a magnetically trapped atomic cloud In the cloverleaf trap, the mag-
netic �eld direction is along the z axis of the magnetic trap and only themi = 1 state is
populated. Imaging occurs only 1 or 2 ms after switching o� the currents. At this time,
the magnetic �eld is not zero and its direction depends on the inductance of the di�erent
coils. If one assumes that the compensation coils are responsible of the dominant mag-
netic �eld during the release of the atoms from the trap, the quantisation axis remains



130 APPENDIX A. OPTICAL IMAGING

along z during the imaging procedure.

The probe beam propagating at 45� of the quantisation axis contains then a mixture
of circular and linear polarisations. The corresponding decomposition is: (1p

2
� , 1

2
p

2
� + ,

1
2
p

2
� � ) for the incoming beam and(0; 1

2 � + ; 1
2 � � ) for the returning beam (see �gure A.3).

Assuming that the atoms remain in themi = 1 during the switching of the �elds, the
corrective factorC reads:

C =
1

4
p

2
+

1
4

 

1 +
1

p
2

!

+
1
24

 

1 +
1

p
2

!

� 0:67: (A.12)

Figure A.3: Schematic representation of the polarisation vectors of the probe beam, prop-
agating along an axis making a 45� angle with the quantisation axis. The incoming beam
polarisation can be decomposed as (1p

2
� , 1

2
p

2
� + , 1

2
p

2
� � ). The retrore�ected beam is a

superposition of the two circular polarisations:(0; 1
2 � + ; 1

2 � � ).

The present analysis of the images from a magnetically trapped atomic cloud are
realised under two assumptions: the direction of the �eld remains constant during the
switching o� of the magnetic �eld and the atoms remain in themi = 1 Zeeman state. For
a colder cloud, one could realise a Stern and Gerlach separation of the di�erent spin states
after the switching o� of the �elds to quantify the population in the di�erent Zeeman-
sublevels.
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A.3 Linear absorption regime

The camera used is an Hamamatsu CCD camera with 512� 512 pixels ofp= 24 � m size.

A.3.1 Long duration imaging

The low quantum e�ciency of the CCD camera (� q= 0.02) requires to send a large photon
number onto the atomic cloud. One pixel can record at mostNmax = 2 14 photoelectrons
(14 bits memory CCD camera), setting a higher bound for the number of incident photons
N inc which has to be smaller thanNmax / � q. We typically work with Nmean = Nmax /4 � q.
For a probe duration of� this corresponds to a minimal incident intensity expressed as:

I mean =
~! 0Nmax

4� q� (p=g)2 (A.13)

wherep is the size of one pixel andg the magni�cation of the imaging system. In terms
of the saturation parameters, one gets:

s =
I mean

I sat
(A.14)

As one can notice from equation A.13, a small magni�cationg allows to image the
atomic cloud over shorter durations� for a �xed saturation parameter. However to have
enough resolution on the spatial pro�le of the atomic cloud, the magni�cation has been
�xed to g= 0.75. In these conditions, a typical BEC of length 100� m is imaged in situ
over 3 to 4 pixels.

With g= 0.75, a probing duration of 50� s corresponds tos � 1. For this intensity
range, the atom number is underestimated by a factor11+ s (see equation A.3 for resonant
light). In order to remain in the linear absorption limit for which s � 1 we work with
� = 300 � s corresponding tos= 0.1.

A.3.2 Retrore�ection of the imaging beam

While probing with a single pass beam, the cloud is disturbed and the atoms are de-
tuned from resonance because of the Doppler shift. For Helium, the recoil velocity is
vrec= ~k/m= 9.2 cm �s� 1 with k= 2� / � 0 the wave vector of the light. After � absorp-
tions, the extra Doppler detuning is expressed as� = � �kv rec. For a probe resonant
with an atom at rest, the absorption rate de�ned in equation A.1 can be related to� :

 p =
d�
dt

=
� 0

2
s

1 + s + (2 �kv rec=� 0)2 (A.15)

The average time� beforen photons have been absorbed can be deduced from the discrete
sum � (n)=

P n
� =0 dt=d� . Introducing the velocity v = nvrec as the parameter instead of
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the number of absorbed photonsn, one obtains after summation:

� (v) =
2

� 0s
v

vrec

 

1 + s +
4
� 2

0

� 1
3

k2v2 +
1
3

k2vvrec +
1
6

k2v2
rec

� !

(A.16)

For large velocity v, the terms proportional to vvrec or v2
rec can be neglected. Solving

equation A.16 with s= 0.1, an Helium atom absorbs up to 27 photons over 300� s and
the absorption rate drops by 88%.

To avoid this Doppler detuning, the probe beam is retrore�ected to from a standing
wave. The incoming beam and its retrore�ection have orthogonal polarisations to prevent
interferences. No more radiation pressure forces are exerted on the atoms which remain
thus resonant with the probe, except for those due to an intensity imbalance in the two
beams. Indeed, between 10% and 30% of the incoming beam intensity is absorbed by
the cloud before being retrore�ected (depending on the cloud optical density, higher in a
molasse). It is therefore essential to have a low saturation parameter in order to reduce
the radiation pressure forces as much as possible.

A.3.3 Imaging to probe the stray magnetic �elds

Since the linewidth of the23S1 ! 23P2 is narrow (� 0= 2� �1.62 MHz), a spectroscopy of
the probe frequency allows to compensate or evaluate the stray magnetic �elds.

Cancellation of the stray magnetic �elds: In �gure A.4, two scans of the probe
frequency are realised in a zero �eld in a) and in a deliberate 3 G �eld along the direc-
tion of the Zeeman slower in b). In the �rst case, the 2� 0.2 MHz linewidth obtained
from a lorentzian �t is in agreement with an intensity broadened linewidth� 0

p
1 + s, for

s= 0.4� 0.15 during the probing. The maximal atom number is obtained at resonance.

In presence of the magnetic �eld, three distincts lines can be observed corresponding
to transitions between di�erent mi and mj . Those data have been taken for a molasse
where all the Zeeman sublevels are equally populated. In the presence of a magnetic
�eld, the 23S1 and 23P2 levels are no longer degenerated and the detunings of all possible
transitions are reported in �gure A.4c) in MHz/G. Also the spectroscopy beam, prop-
agating at 45� from the quanti�cation axis contains all polarisations allowing to excite
any transition. In a calibrated 3 G �eld, the detunings of the observed lines corresponds
to the following transitions: (2) mi =0 ! mj =0, insensitive to the magnetic �eld, (1)
mi =-1 ! mj =-1 (+ 0.7 MHz/G) and (3) mi =-1 ! mj =-2 (- 1.4 MHz/G). For smaller
values of the magnetic �eld, the lines are no longer separated, but clearly disturb the
symetry of the lorentzian pro�le. This spectroscopy makes it possible to cancel the stray
magnetic �elds.

Magnetic �eld decay after swicthing o� the magnetic trap: It is also possible to
monitor the decay of the magnetic �eld after the switching o� of the magnetic trap cur-
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Figure A.4: a) Spectroscopy of the probe frequency after 1.5 ms time-of-�ight of the atomic
cloud initially trapped in the MOT. A lorentzian �t of the atom number gives the line cen-
ter at resonance and a linewidth of 2� 0.2 MHz, larger than the natural linewidth due to
residual stray magnetic �elds. b) Spectroscopy of the probe frequency in a calibrated mag-
netic �eld along the Zeeman. Three lines corresponding to di�erent optical transitions can
be distinguished:mi =0 ! mj =0, insensitive to the magnetic �eld,mi =-1 ! mj =-1 and
mi =-1 ! mj =-2. The positions of their center are in agreement with the corresponding
detunings for a 3 G magnetic �eld as detailed in the text. c) Detuning from the resonance
of the di�erent possiblemi ! j transitions in the presence of a magnetic �eld expressed in
MHz/G. Since the 23S1 and 23P2 levels have di�erent Lande factorsg (as reported in the
�gure), only the mi =0 ! mj =0 transition is �eld insensitive.

rents from the evolution of the probe detuning with time as reported in �gure A.5. In
this case, the imaging transition ismi =1 ! mj =2 having a 1.4 MHz/G detuning from
the resonance. The magnetic �eld decay shows two time scales: a fast exponential decay
occurs during 2 ms, followed by a slower decay corresponding to the slow cancellation of
the eddy currents. Given the temperature of the magnetically trapped cloud, time-of-
�ights longer than 4 ms could not be resolved. The time-of-�ights shorter than 1.25 ms
require a large detuning of the probe frequency for which the probe intensity was to small
to image the atomic cloud.
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Figure A.5: Magnetic �eld value corresponding to the probe detuning for di�erent delays
after switching o� the currents in the magnetic trap. The curves shows a fast exponential
during the 2 �rst ms followed by a much slower decay. The probe detuning remains almost
constant detuning between 3 and 4 ms.

A.3.4 Determination of the temperature

The temperatureT is determined by the expansion of the cloud after being released from
the trap. Along one direction, the width � can be expressed as a function of timet:

� (t) =

s

� 2
i +

kB T
m

t2 (A.17)

with � i the initial width of the cloud along this direction. Many pertubative e�ects due to
the long probing duration and the scattering of large photon number may have an impact
on the temperature determination.

As a consequence of the long probing duration of the present imaging system, the
cloud expansion is integrated during� = 300 � s. The averaged value of� (tp) obtained
from a gaussian �t of the integrated cloud pro�le is assimilated to the width of the cloud
at the time tp.
For 100 � K< T < 3 mK, it has been veri�ed by numerical integration that this produces
an error of at most 10% on the determination of the temperature (for measurements up
to 4 ms time-of-�ight as for typical data, see �gure A.6 a)). For large time-of-�ights, the
width is simply proportional to time and the cloud width is always overestimated by the
same quantity (� � (tp) = ( kB T=m)� ). This produces a global shift, but does not a�ect
the slope and thus the temperature. The determination is only a�ected by the non-linear
regime at short time-of-�ights.
As the temperature reduces, the kinetics of the expansion is slower and the long probing
duration a�ects less the temperature determination (�gure A.6 b)). ForT< 100 � K, er-
rors are smaller than 6%.
Nevertheless, those errors are small compared to the statistical ones and can be neglected.

A red-detuned retro-re�ected probe beam is analog to a 1D molasse, reducing the
temperature along its axis. The spatial density density remains frozen over the probing
time scale. The widths deduced from the gaussian �ts on both direction are, in this limit,
non perturbated by the imaging beam.
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Figure A.6: a) Expansion of a cloud of initial width � i = 1 mm and of temperature
T= 1 mK. The red data points represent the cloud width integrated over the� = 300 � s
probing duration, �tted by equation A.17. The dashed line represents the real evolution
of the cloud width according to equation A.17. Neglecting the probing duration� induces
an error of 8% in the temperature determination. b) Same curves for T= 100� K. The
temperature di�ers only by 3% with our determination.

Photon scattering also induces a broadening of the spatial distribution as detailed in
[135]. The increase of the cloud widths is evaluated to be of the order of 0.2 mm and is
therefore neglected.

It is worth noticing that the temperature has also been deduced from an RF spec-
troscopy in the magnetic trap and from the time-of-�ight signal recorded on the chan-
neltron. These three independent determinations are in good agreement as reported in
chapter 2.
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Appendix B

Frequency comb

Whereas frequencies up to 100 GHz are determined with a great accuracy with electron-
ical counters, optical frequencies of several 100 THz are challenging to measure. The ten
last years have shown a great advance in the control of the frequency spectrum produced
by mode-locked lasers, which enable to generate a regular comb of frequency lines. For a
su�cient broad comb, it is possible to determine the absolute frequencies of all the comb
lines. This ability has revolutionised optical frequency metrology [114, 115].

In the group of W. Vassen (VU-Amsterdam), such a device allowed to both stabilise
and measure accurately the frequency of the laser at 1560 nm exciting the23S1 ! 21S0

magnetic dipolar transition of metastable4He atoms as presented in chapter 5. This ap-
pendix is dedicated to the presentation of the general principle of a frequency comb, on
which a complete review can be found in [124].

B.1 Mode locked lasers

This section is dedicated to the mode-locking technique, which produces the frequency
spectrum of a frequency comb. It relies on the cancellation of the variations of the group
velocity with the wavelength, so that the discret frequencies selected by an optical cavity
conserve a �xed phase relationship.

B.1.1 Compensation of the group velocity dispersion

The coupling of a continuous spectrum emitted by a laser into an optical cavity of lengthL
produces a discret set of frequencies. Constructive interference only occur for frequencies
� p such that the phase is repeated identically after a round trip through the cavity:

� p = p
c

n(� p)L
(B.1)

with c the speed of light andn the index of the cavity material. Those longitudinal modes
oscillate independently from each others, as the phase of the light between di�erent modes
varies randomly. If many standing waves are coupled into the cavity, interference e�ects
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tend to average to a near-constant output intensity.

Let us note k(! ) the wave vector of the electric �eld of the modep, so that equation
B.1 can simply be rewritten asLk (! p) = 2 �p . Since the refractive index of the material
depends on the frequency, the phase changes from mode to mode, so that each mode has
a di�erent phase velocity expressed asv�;p = ! p=k(! p). If the variation of k(! ) is small
around a central frequency denoted! c it can be developped following:

k(! ) = k(! c)+
dk
d!

j ! c (! � ! c)+
1
2

d2k
d2!

j ! c (! � ! c)2+
1
6

d3k
d3!

j ! c (! � ! c)3+ O((! � ! c)4): (B.2)

The second term corresponds to the delay introduced by the propagation through the
cavity at a velocity ( dk

d! j ! c )
� 1 called group velocity and denotedvg, identical for all the

longitudinal modes. The third term represents a dispersive e�ect, due to the variation
of the group velocity with the frequency. Higher orders terms also contribute to further
dispersion but signi�cantly less.

From equation B.2, one can express the frequency di�erence between the modep and
p + 1 which is:

! p+1 � ! p =
2�
L

vg �
k00(! c)

2
vg(( ! p+1 � ! c)2 � (! p � ! c)2) + O((! p � ! c)3) (B.3)

The dispersion of the group velocityk00(! c) and the terms of higher orders prevent to
obtain a constant frequency spacing between consecutive longitudinal modes. In order
to obtain a mode-locked laser, the dispersion of the group velocity along a round trip in
the cavity is reduced as much as possible. In this case the frequency spacing between the
longitudinal modes is �xed and equal to� rep= vg/L.

The �rst femtosecond lasers had an intra-cavity compensation for the group velocity
dispersion, with two prims expanding the optical path for the red-component of the spec-
trum.
A new solution relies on chirped mirrors having a negative group velocity. They consist
of multiple layers of dielectric mirrors, whose widths increase with their depth. The lay-
ers re�ect preferentially the blue wavelengths and the deepest one the red wavelengths.
Accumulating several such mirrors in the cavity allows to equal in an acceptable way the
optical length of the optical cavity seen by all the frequencies.

B.1.2 Spectrum of a mode-locked laser

For a mode-locked laser, all the longitudinal frequencies� p are equally spaced by� rep

and centered around a central frequency denoted� c. Each longitudinal mode can thus be
decomposed under the form:� p= � c + np� rep .This spectrum spans an interval� � , corre-
sponding to the bandwidth of the laser injected into the optical cavity.
The width of each frequency peak of the comb resides in the quality factor of the cavity.
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The electric �eld, E(t), of the laser can thus be written as:

E(t) = <

 
X

n
Ane� i (! c+ n! rep )t

!

= <

  
X

n
Ane� in! rep t

!

e� i! c t

!

(B.4)

where the amplitudesAn obey to a gaussian distribution of width� ! and centered around
! c.
In the second equality of equation B.4:

P
n Ane� in! rep t corresponds to the Fourier trans-

form of a periodical function A(t) of period 2�=! rep . This shows that the temporal
behaviour of the electric �eld is that of equally spaced laser pulses at a carrier frequency
� c = ! c=2� and a temporal pro�l A(t). The temporal width of such pulses is inversely
proportional to the laser bandwidth following:

� t =
2 ln (2)

�
1

� �
(B.5)

for a gaussian distribution of the amplitudesAn . Such pulsed lasers are widely used
and achieve pulse duration of the order of 5 fs. The time-frequency correspondance for a
mode-locked laser is depicted in �gure B.1.

Figure B.1: a) Gaussian spectral intensity of a mode-locked laser. b) Corresponding in-
tensity variation with time.

The dispersion inside the cavity results in a phase change after a round trip, denoted
� � :

� � =

 
1
vg

�
1
v�

!

L! c mod [2� ] (B.6)

which shifts the carrier phase after each round trip with respect to the pulse envelope
as depicted in �gure B.2. Since this shift is a�ecting all the optical frequencies of the
spectrum in the same way, it can be factorised and corresponds to an o�set frequency
� 0. As a consequence of the di�erence between phase and group velocities in the cavity,
the central frequency� c is not an integer multiple of the repetition rate � rep and can be
written as:

� c = nc� rep + � 0 (B.7)

where� 0 � � rep .
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Figure B.2: Evolution of the phase between successive pulses.

To obtain the maximum laser bandwidth or the shortest pulse, spectrum broaden-
ing of monomode optical �bers has been �rst used. Recently, microstructured �bers (or
photonic crystal �bers) have been designed [136], enlarging the spectrum up to 300 THz.
Inside the �ber, the pulse spectrum is broadened by self-phase modulation due to the
intensity dependent refractive index, soliton splitting, shock wave formation, and other
nonlinear optical processes. The emerging white light can be dispersed with a grating
to form a rainbow of colors. However, this is not ordinary white light. Remarkably, the
processes generating the white light can be so highly reproducible that successive pulses
are still correlated in their phases and can interfere in the spectrum to form a comb of
several hundred thousand sharp spectral lines.
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B.2 Frequency combs

For a frequency measurement to be absolute, it must be referenced to the hyper�ne tran-
sition of 133Cs that de�nes the second. The correspondong microwave frequency is de�ned
to be exactly 9 192 631 770 Hz, which is approximately 105 smaller than optical frequen-
cies. Thus a large frequency gap must be spanned to make an absolute optical frequency
measurement.
The �rst optical frequency measurements required complexe synthesis frequency chains,
creating successive harmonics from the cesium radio frequency reference up to the optical
domain. The choice of the studied transitions was constrained by the coincidence between
the excitation laser and the etalon lasers available.

A laser frequency comb is the frequency spectrum of a mode locked laser, as depicted
in �gure B.3. As detailed in this section it provides a direct link between optical frequen-
cies and microwave frequencies and makes it possible to realise an absolute measurement
of optical frequencies.

Figure B.3: Fourier transformation of a mode-locked laser of carrier frequency� c and
phase shift� � , giving regular frequency lines spaced by� rep and o�set by � 0.

B.2.1 Absolute frequency measurement

The frequency spectrum of a comb relies on only two radio frequencies: the repetition rate
� rep and the o�set frequency� 0. Any unknown frequency� can then be determined by
�rst making a wavelength measurement with a conventional wavemeter that is su�ciently
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accurate to determine the integer numberm of the nearest comb line. The precise distance
from this reference line is then measured by feeding a beat signal of frequency� beat to a
microwave counter. It is thus essential to access and control the values of� rep and � 0 to
reconstitute the optical frequency� given by:

� = � 0 + m� rep + � beat (B.8)

The repetition frequency� rep , typically of the order of 100 MHz, can be simply mea-
sured from a fast photodiode. This repetition rate is directly linked to the length of the
cavity L, which �utuates resulting for instance from temperature changes.� rep can thus
be locked at a �xe value, retroacting on the length of the cavity, and referenced to a
cesium or rubidium atomic clock.
The measurement of the o�set frequency is not so simple. However, if the optical spec-
trum of the frequency comb spans an octave in frequency (meaning that the highest
frequency is a factor of 2 larger than the lowest frequency), it is possible to access� 0 from
an interferometric measurement. A second harmonic crystal can be used to frequency
double the lowest frequency having indexk and produce almost the same frequency than
the high-frequency comb line of index 2k. Measuring the heterodyne beat between these
yields a di�erence frequency:

2� k � � 2k = 2( k� rep + � 0) � (2k� rep + � 0) = � 0 (B.9)

which is just the o�set frequency. This scheme �rst proposed by T.W. Hansch [114] is
called autoreferencedf � 2f . The control on � 0 is realised via the power of the pump
laser, which modi�es the index of the non-linear �ber and thus the group velocityvg from
which the o�set frequency depends.

B.2.2 Accuracy of an optical frequency measurement based on
a frequency comb

Such a control on both� rep and � 0 enables to synthesize several hundred thousands sharp
optical reference frequencies which are precisely known in terms of the primary standard
of time. The accuracy of an absolute frequency measurement using a frequency comb is
thus linked to the quality of the radiofrequency standard, which is multiplied by a large
integer m of the order of 105. Experimental observation has clearly con�rmed that the
actual limitation with frequency comb measurements is the quality of the radio-frequency
reference [137].
Optical clocks open the way to promising improvements of the accuracy of frequency
measurements. Instead of running the frequency comb from microwave frequencies up
to optical frequencies, it appears to be advantageous to stabilise the comb by an optical
frequency standard. Such optical atomic clocks produce then stable clock signal in the
radio-frequency domain [138, 139]. The most accurate absolute frequency determinations
have been obtained using optical standards [140, 141].
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Comparison bewteen two separate frequency combs, both linked to a common refer-
ence source allows one to examine the intrinsic accuracy of the system, currently at a
level of few parts in 1016 with no measurable systematic e�ects [142].

The metrology measurement, presented in chapter 5 relies on frequency comb tech-
nique allowing to reach a kHz accuracy on the laser frequency determination. In the
Amsterdam VU laboratories, such combs are a daily used technique in the group of K.
Eikema, working on high precision metrology. We had the opportunity to use a frequency
comb based on a mode-locked erbium doped �ber laser at 1.5� m (Menlo System) with a
repetition rate of 250 MHz. Both the repetition rate and the carrier envelope o�set fre-
quency are referenced to a GPS-controlled Rubidium clock (PRS10 Stanford Research).
Such a clock achieves an accuracy of about 5� 10� 12.
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B.3 Determination of an absolute optical frequency
using two combs

This section describes a technique used at the VU in Amsterdam during my stay in the
group of Wim Vassen to determine the absolute frequency of the infrared laser at 1.5� m.
The laser frequency was referenced to one of the comb (Erbium doped) in order to insure
its long term stability as described in chapter??. As mentionned in section B.2, the
integer number m of the nearest comb line can be obtained from a �rst measurement
with a spectrometer having an accuracy smaller than� rep . Laking a spectrometer, this
integer can also be retrieved from two successive measurements with di�erent values of
� rep so that:

� l = � 0 + m1� rep;1 + � beat;1 (B.10)

= � 0 + m2� rep;2 + � beat;2 (B.11)

and thus m1� rep;1 � m2� rep;2 = � beat;2 � � beat;1, which can be solved for integer couples
(m1; m2).

Because of the large temporal drift of the laser, such a measurement was not possible.
Therefore a second comb, centered around 800 nm, has been used to obtain two simulta-
neous measurements of the laser frequency. A part of the laser light was frequency doubled
in a PPLN crystal (Thorlabs) and the beat frequency with the nearest comb modes both
at 1557 nm and 778.5 nm were measured simultaneously leading to the following equation:

� l = � 0;1 + m1� rep;1 + � beat;1 = 2 ( � 0;2 + m2� rep;2 + � beat;2) (B.12)

wherem1 and m2 are two unknow integers.
From this equation m2 can be expressed as a function ofm1. m1 can be varied around its
probable value and the fractionnal part of the resultingm2 can be evaluated (m2 � E(m2),
where E(x) denotes the integer part ofx). This provides typically one pair of integers
(m1; m2) ful�lling equation B.12 over 0.12 nm as shown in �gure B.4.

Figure B.4: Fractional part of m2 as a function of the integerm1 recentered around
its most favorable value 770776. The right graph corresponds to a zoom of the �rst graph
around zero, selecting the most favorable value form1. The error bar provided corresponds
to the measurement error on� beat;1 and � beat;2. Only one pair of integers (m1; m2) ful�l l
the relation B.12 over a span of 15 GHz corresponding to 0.12 nm.



Bibliography

[1] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cor-
nell. Observation of Bose - Einstein condensation in a dilute atomic vapor.Sci-
ence, 269(5221):198�201, 1995. URL:http://www.sciencemag.org/cgi/content/
abstract/269/5221/198 , doi:10.1126/science.269.5221.198 .

[2] K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M.
Kurn, and W. Ketterle. Bose-Einstein condensation in a gas of sodium atoms.Phys.
Rev. Lett., 75(22):3969�3973, Nov 1995. URL:http://link.aps.org/abstract/
PRL/v75/p3969, doi:10.1103/PhysRevLett.75.3969 .

[3] C. C. Bradley, C. A. Sackett, J. J. Tollett, and R. G. Hulet. Evidence of Bose-
Einstein condensation in an atomic gas with attractive interactions.Phys. Rev.
Lett., 75(9):1687�1690, Aug 1995. URL:http://link.aps.org/abstract/PRL/
v75/p1687, doi:10.1103/PhysRevLett.75.1687 .

[4] F. London. The lambda-phenomenon of liquid helium and the bose-einstein degen-
eracy. Nature, 141:643, 1938.

[5] A. Einstein. Quantentheorie des einatomigen idealen gases.Sitzungsber. Kgl. Preuss.
Aka. Wiss., 1924:261, 1924.

[6] L.D. Landau and V.L. Ginzburg. On the theory of superconductivity. JETP,
20:1064, 1950.

[7] E.P. Gross. Structure of a quantized vortex in boson system.Il Nuovo Cimento,
20:454, 1961.

[8] L. P. Pitaevskii. Votex lines in an imperfect bose gas.Sov. Phys. JETP, 13:451,
1961.

[9] Franco Dalfovo, Stefano Giorgini, Lev P. Pitaevskii, and Sandro Stringari. Theory
of bose-einstein condensation in trapped gases.Rev. Mod. Phys., 71(3):463�512,
Apr 1999. doi:10.1103/RevModPhys.71.463 .

[10] Anthony J. Leggett. Bose-einstein condensation in the alkali gases: Some fun-
damental concepts. Rev. Mod. Phys., 73(2):307�356, Apr 2001. doi:10.1103/
RevModPhys.73.307.

[11] C. J. Pethick and H. Smith.Bose-Einstein condensation in dilute gases. Cambridge
University Press, 2002.

145



146 BIBLIOGRAPHY

[12] L. P. Pitaevskii and S. Stringari. Bose-Einstein Condensation. Clarendon Press,
2003.

[13] B. DeMarco and D. Jin. Onset of fermi degeneracy in a trapped atomic gas.Science,
285:5434, 1999.

[14] F. Schreck, L. Khaykovich, K. L. Corwin, G. Ferrari, T. Bourdel, J. Cubizolles, and
C. Salomon. Quasipure bose-einstein condensate immersed in a fermi sea.Phys.
Rev. Lett., 87(8):080403, Aug 2001.doi:10.1103/PhysRevLett.87.080403 .

[15] A. Truscott, K. Strecker, W. McAlexander, G. B. Partridge, and R. G. Hulet.
Observation of fermi pressure in a gas of trapped atoms.Science, 291:2570, 2001.

[16] Ph. Courteille, R. S. Freeland, D. J. Heinzen, F. A. van Abeelen, and B. J. Verhaar.
Observation of a Feshbach resonance in cold atom scattering.Phys. Rev. Lett.,
81(1):69�72, Jul 1998. URL:http://link.aps.org/doi/10.1103/PhysRevLett.
81.69, doi:10.1103/PhysRevLett.81.69 .

[17] S. Inouye, M. R. Andrews, J. Stenger, H.-J. Miesner, D. M. Stamper-Kurn, and
W. Ketterle. Observation of feshbach resonances in a bose-einstein condensate.
Nature, 392:151, 1998.

[18] Immanuel Bloch, Jean Dalibard, and Wilhelm Zwerger. Many-body physics
with ultracold gases. Rev. Mod. Phys., 80(3):885�964, Jul 2008. doi:10.1103/
RevModPhys.80.885.

[19] R. Feynman. Simulating pysics with computers.International jouornal of theoretical
physics, 21:467, 1982.

[20] T. Jeltes, J. M. McNamara, W. Hogervorst, V. Vassen, W.and Krachmalnico�,
M. Schellekens, A. Perrin, H. Chang, D. Boiron, A. Aspect, and C. I. Westbrook.
Comparison of the hanbury browntwiss e�ect for bosons and fermions.Nature,
445:402�405, 2007.

[21] P. J. Leo, V. Venturi, I. B. Whittingham, and J. F. Babb. Ultracold collisions of
metastable helium atoms. Phys. Rev. A, 64(4):042710, Sep 2001.doi:10.1103/
PhysRevA.64.042710.

[22] G. V. Shlyapnikov, J. T. M. Walraven, U. M. Rahmanov, and M. W. Reynolds.
Decay kinetics and Bose condensation in a gas of spin-polarized triplet helium.
Phys. Rev. Lett., 73(24):3247�3250, Dec 1994. URL:http://link.aps.org/doi/
10.1103/PhysRevLett.73.3247 , doi:10.1103/PhysRevLett.73.3247 .

[23] P. O. Fedichev, M. W. Reynolds, U. M. Rahmanov, and G. V. Shlyapnikov. Inelastic
decay processes in a gas of spin-polarized triplet helium.Phys. Rev. A, 53(3):1447�
1453, Mar 1996. URL:http://link.aps.org/doi/10.1103/PhysRevA.53.1447 ,
doi:10.1103/PhysRevA.53.1447 .

[24] O. Sirjean, S. Seidelin, J. Viana Gomes, D. Boiron, C. I. Westbrook, A. Aspect,
and G. V. Shlyapnikov. Ionization rates in a bose-einstein condensate of metastable



BIBLIOGRAPHY 147

helium. Phys. Rev. Lett., 89(22):220406, Nov 2002.doi:10.1103/PhysRevLett.
89.220406.

[25] A. Robert, O. Sirjean, A. Browaeys, J. Poupard, S. Nowak, D. Bo-
iron, C. I. Westbrook, and A. Aspect. A Bose-Einstein condensate
of metastable atoms. Science, 292(5516):461�464, 2001. URL:http:
//www.sciencemag.org/cgi/content/abstract/292/5516/461 , arXiv:http://
www.sciencemag.org/cgi/reprint/292/5516/461.pdf , doi:10.1126/science.
1060622.

[26] F. Pereira Dos Santos, J. Léonard, Junmin Wang, C.J. Barrelet, F. Perales, E. Rasel,
C.S. Unnikrishnan, M. Leduc, and C. Cohen-Tannoudji. Production of a Bose
Einstein condensate of metastable helium atoms.The European Physical Journal
D, 19(1):103�109, apr 2002. URL:http://dx.doi.org/10.1140/epjd/e20020061 ,
doi:10.1140/epjd/e20020061 .

[27] A. S. Tychkov, T. Jeltes, J. M. McNamara, P. J. J. Tol, N. Herschbach, W. Hoger-
vorst, and W. Vassen. Metastable helium bose-einstein condensate with a large
number of atoms.Phys. Rev. A, 73(3):031603, Mar 2006.doi:10.1103/PhysRevA.
73.031603.

[28] R. G. Dall and A. G. Truscott. Bose-Einstein condensation of metastable helium in
a bi-planar quadrupole Io�e con�guration trap. Optics Communications, 270:255�
261, feb 2007. URL:http://dx.doi.org/10.1016/j.optcom.2006.09.031 , doi:
10.1016/j.optcom.2006.09.031 .

[29] S. Charles Doret, Colin B. Connolly, Wolfgang Ketterle, and John M. Doyle. Bu�er-
gas cooled bose-einstein condensate.Phys. Rev. Lett., 103(10):103005, Sep 2009.
doi:10.1103/PhysRevLett.103.103005 .

[30] V. P. Mogendor�, E. J. D. Vredenbregt, and H. C. W. Beijerinck. Coupled-channel
analysis ofne� thermalization cross section.Phys. Rev. A, 73(1):012712, Jan 2006.
doi:10.1103/PhysRevA.73.012712 .

[31] P. Spoden, M. Zinner, N. Herschbach, W. J. van Drunen, W. Ertmer, and G. Birkl.
Collisional properties of cold spin-polarized metastable neon atoms.Phys. Rev.
Lett., 94(22):223201, Jun 2005.doi:10.1103/PhysRevLett.94.223201 .

[32] K. J. Matherson, R. D. Glover, D. E. Laban, and R. T. Sang. Measurement of
low-energy total absolute atomic collision cross sections with the metastable3p2

state of neon using a magneto-optical trap.Phys. Rev. A, 78(4):042712, Oct 2008.
doi:10.1103/PhysRevA.78.042712 .

[33] G. Drake and Z.-C Yan. High precision spectroscopy as a test of quantum electro-
dynamics in light atomic systems.Canadian Journal of Physics, 86:45�54, 2008.

[34] J. C. J. Koelemeij, R. J. W. Stas, W. Hogervorst, and W. Vassen. Magneto-optical
trap for metastable helium at 389 nm. Phys. Rev. A, 67(5):053406, May 2003.
doi:10.1103/PhysRevA.67.053406 .



148 BIBLIOGRAPHY

[35] P. Cancio Pastor, G. Giusfredi, P. De Natale, G. Hagel, C. de Mauro, and
M. Inguscio. Absolute frequency measurements of the23s1 ! 23p0;1;2 atomic
helium transitions around 1083 nm. Phys. Rev. Lett., 92(2):023001, Jan 2004.
doi:10.1103/PhysRevLett.92.023001 .

[36] Michal Przybytek and Bogumil Jeziorski. Bounds for the scattering length of spin-
polarized helium from high-accuracy electronic structure calculations.The Journal
of Chemical Physics, 123(13):134315, 2005. URL:http://link.aip.org/link/
?JCP/123/134315/1, doi:10.1063/1.2042453 .

[37] J. Kim, U. D. Rapol, S. Moal, M. Walhout, and M. Leduc. Photoassociation experi-
ments with ultracold metastable helium.The European Physical Journal D, 31:227,
2004.

[38] S. Moal, M. Portier, J. Kim, J. Dugue, U. D. Rapol, M. Leduc, and C. Cohen-
Tannoudji. Accurate determination of the scattering length of metastable helium
atoms using dark resonances between atoms and exotic molecules.Physical Re-
view Letters, 96(2):023203, 2006. URL:http://link.aps.org/abstract/PRL/
v96/e023203, doi:10.1103/PhysRevLett.96.023203 .

[39] S. Moal, M. Portier, N. Zahzam, and M. Leduc. Lifetime of weakly bound
dimers of ultracold metastable helium studied by photoassociation.Phys. Rev.
A, 75(3):033415, Mar 2007.doi:10.1103/PhysRevA.75.033415 .

[40] Timothy J. Beams, Gillian Peach, and Ian B. Whittingham. Spin-dipole-induced
lifetime of the least-bound 5� +

g state of he(23s1) + he(23s1). Phys. Rev. A,
74(1):014702, Jul 2006.doi:10.1103/PhysRevA.74.014702 .

[41] G. B. Partridge, J.-C. Jaskula, M. Bonneau, D. Boiron, and C. I. Westbrook. Bose-
einstein condensation and spin mixtures of optically trapped metastable helium.
Phys. Rev. A, 81(5):053631, May 2010.doi:10.1103/PhysRevA.81.053631 .

[42] Vanderlei Bagnato, David E. Pritchard, and Daniel Kleppner. Bose-einstein con-
densation in an external potential. Phys. Rev. A, 35(10):4354�4358, May 1987.
doi:10.1103/PhysRevA.35.4354 .

[43] M. Olshanii. Atomic scattering in the presence of an external con�nement and
a gas of impenetrable bosons.Phys. Rev. Lett., 81(5):938�941, Aug 1998. doi:
10.1103/PhysRevLett.81.938 .

[44] T. Bergeman, M. G. Moore, and M. Olshanii. Atom-atom scattering under cylin-
drical harmonic con�nement: Numerical and analytic studies of the con�nement
induced resonance. Phys. Rev. Lett., 91(16):163201, Oct 2003.doi:10.1103/
PhysRevLett.91.163201 .

[45] D. S. Petrov, M. Holzmann, and G. V. Shlyapnikov. Bose-einstein condensation
in quasi-2d trapped gases.Phys. Rev. Lett., 84(12):2551�2555, Mar 2000.doi:
10.1103/PhysRevLett.84.2551 .



BIBLIOGRAPHY 149

[46] D. S. Petrov and G. V. Shlyapnikov. Interatomic collisions in a tightly con�ned bose
gas. Phys. Rev. A, 64(1):012706, Jun 2001.doi:10.1103/PhysRevA.64.012706 .

[47] T. L. Gustavson, A. P. Chikkatur, A. E. Leanhardt, A. Görlitz, S. Gupta, D. E.
Pritchard, and W. Ketterle. Transport of bose-einstein condensates with optical
tweezers. Phys. Rev. Lett., 88(2):020401, Dec 2001.doi:10.1103/PhysRevLett.
88.020401.

[48] T. Kinoshita, B. Engeser, and D. S. Weiss. Observation of a one-dimensional tonks-
girardeau gas.Science, 305:1125, 2004.

[49] D. Rychtarik, B. Engeser, H.-C. Nägerl, and R. Grimm. Two-dimensional bose-
einstein condensate in an optical surface trap.Phys. Rev. Lett., 92(17):173003, Apr
2004. doi:10.1103/PhysRevLett.92.173003 .

[50] Elmar Haller, Mattias Gustvasson, Manfred J. Mark, Johann G. Danzl, Russell
Hart, Guido Pupillo, and Hanns-Christoph Nägerl. Realization of an excited,
strongly-correlated quantum gas phase.Science, 325:1224, 2009.

[51] Elmar Haller, Manfred J. Mark, Russell Hart, Johann G. Danzl, Lukas Re-
ichsöllner, Vladimir Melezhik, Peter Schmelcher, and Hanns-Christoph Nägerl.
Con�nement-induced resonances in low-dimensional quantum systems.Phys. Rev.
Lett., 104(15):153203, Apr 2010.doi:10.1103/PhysRevLett.104.153203 .

[52] G. Lamporesi, J. Catani, G. Barontini, Y. Nishida, M. Inguscio, and F. Mi-
nardi. Scattering in mixed dimensions with ultracold gases.Phys. Rev. Lett.,
104(15):153202, Apr 2010.doi:10.1103/PhysRevLett.104.153202 .

[53] D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, and P. Zoller. Cold
bosonic atoms in optical lattices. Phys. Rev. Lett., 81(15):3108�3111, Oct
1998. URL: http://link.aps.org/doi/10.1103/PhysRevLett.81.3108 , doi:
10.1103/PhysRevLett.81.3108 .

[54] Markus Greiner, Olaf Mandel, Tilman Esslinger, Theodor W. Hansch, and Im-
manuel Bloch. Quantum phase transition from a Super�uid to a Mott insula-
tor in a gas of ultracold atoms. Nature, 415(6867):39�44, 2002. URL:http:
//dx.doi.org/10.1038/415039a , doi:doi:10.1038/415039a .

[55] S. Diehl, A. Micheli, A. Kantian, B. Kraus, H.P. Buchler, and P. Zoller. Quantum
states and phases in driven open quantum systems with cold atoms.Nature Physics,
4:878, 2008.

[56] N. Syassen, D. M. Bauer, T. Volz, D. Dietze, J. J. Garcia-Ripoll, J. I. Cirac,
G. Rempe, and S. Durr. Strong dissipation inhibits losses and induces correlations
in cold molecular gases.Science, 320:1329, 2008.

[57] J. Dugué.Sources Ultrafroides Avancées pour l'Interférométrie et la Physique Atom-
ique. PhD thesis, 2009.



150 BIBLIOGRAPHY

[58] J. Pereira Dos Santos, F. Condensation de Bose-Einstein de l'hélium mé-
tastable. PhD thesis, Université Pierre et Marie Curie, 2002. URL:http:
//tel.archives-ouvertes.fr/tel-00002267 .

[59] William D. Phillips and Harold Metcalf. Laser deceleration of an atomic beam.
Phys. Rev. Lett., 48(9):596�599, Mar 1982. URL:http://link.aps.org/doi/10.
1103/PhysRevLett.48.596 , doi:10.1103/PhysRevLett.48.596 .

[60] E. L. Raab, M. Prentiss, Alex Cable, Steven Chu, and D. E. Pritchard. Trapping of
neutral sodium atoms with radiation pressure.Phys. Rev. Lett., 59(23):2631�2634,
Dec 1987.doi:10.1103/PhysRevLett.59.2631 .

[61] A. Browaeys. Two body loss rate in a magneto-optical trap of metastable helium.
Eur. Phys. J. D., 8:199, 2000.

[62] Markus Greiner, Immanuel Bloch, Theodor W. Hänsch, and Tilman Esslinger.
Magnetic transport of trapped cold atoms over a large distance.Phys. Rev. A,
63(3):031401, Feb 2001.doi:10.1103/PhysRevA.63.031401 .

[63] H. J. Lewandowski, D. M. Harber, D. L. Whitaker, and E. A. Cornell. Simpli�ed
system for creating a bose-einstein condensate.Journal of Low Temperature Physics,
132(5/6):309, Sept 2003.

[64] Alan L. Migdall, John V. Prodan, William D. Phillips, Thomas H. Bergeman, and
Harold J. Metcalf. First observation of magnetically trapped neutral atoms.Phys.
Rev. Lett., 54(24):2596�2599, Jun 1985.doi:10.1103/PhysRevLett.54.2596 .

[65] Wolfgang Petrich, Michael H. Anderson, Jason R. Ensher, and Eric A. Cornell. Sta-
ble, tightly con�ning magnetic trap for evaporative cooling of neutral atoms.Phys.
Rev. Lett., 74(17):3352�3355, Apr 1995.doi:10.1103/PhysRevLett.74.3352 .

[66] M.-O. Mewes, M. R. Andrews, N. J. van Druten, D. M. Kurn, D. S. Durfee, and
W. Ketterle. Bose-einstein condensation in a tightly con�ning dc magnetic trap.
Phys. Rev. Lett., 77(3):416�419, Jul 1996.doi:10.1103/PhysRevLett.77.416 .

[67] T. Bergeman, Gidon Erez, and Harold J. Metcalf. Magnetostatic trapping �elds for
neutral atoms. Phys. Rev. A, 35(4):1535�1546, Feb 1987.doi:10.1103/PhysRevA.
35.1535.

[68] P. D. Lett, W. D. Phillips, S. L. Rolston, C. E. Tanner, R. N. Watts, and C. I.
Westbrook. Optical molasses.J. Opt. Soc. Am. B, 6:2084, 1989.

[69] Durfee D. S. Ketterle, W. and D. M. Stamper-Kurn. Making, probing and un-
derstanding bose-einstein condensates.Proceedings of the International School of
Physics "Enrico Fermi", Course CXL, 1999.doi:cond-mat/9904034 .

[70] P. O. Schmidt, S. Hensler, J. Werner, T. Binhammer, A. Gorlitz, and T. Pfau.
Doppler cooling of an optically dense cloud of magnetically trapped atoms.J. Opt.
Soc. Am. B, 20:960, 2003.



BIBLIOGRAPHY 151

[71] A. Tychkov. Bose-Einstein condensation of metastable helium atoms. PhD thesis,
Vreij Universiteit - Amsterdam, 2008.

[72] T. Jeltes. Quantum Statistical e�ects in ultracold gases of metastable helium. PhD
thesis, Vreij Universiteit - Amsterdam, 2008.

[73] V. Krachmalnico�. Deux expériences de corrélations quantiques sur des gaz d'Hélium
métastable: dégroupement de fermions et étude de bosons corrélés par collision de
condensats. PhD thesis, Université Paris XI, 2009.

[74] Harald F. Hess. Evaporative cooling of magnetically trapped and compressed spin-
polarized hydrogen.Phys. Rev. B, 34(5):3476�3479, Sep 1986. URL:http://link.
aps.org/doi/10.1103/PhysRevB.34.3476 , doi:10.1103/PhysRevB.34.3476 .

[75] A. G. Martin, K. Helmerson, V. S. Bagnato, G. P. Lafyatis, and D. E. Pritchard.
rf spectroscopy of trapped neutral atoms.Phys. Rev. Lett., 61(21):2431�2434, Nov
1988. doi:10.1103/PhysRevLett.61.2431 .

[76] C. Cohen-Tannoudji. Piegage non dissipatif d'atomes neutres et refroidissement
evaporatif. In Cours de Physique atomique et moleculaire, College de France, 1996.

[77] D. Guéry-Odelin.Dynamique collisionnelle des gaz d'alcalins lourds: du refroidisse-
ment évaporatif à la condensation de Bose-Einstein. PhD thesis, Université Paris
VI, 1998.

[78] C. R. Monroe, E. A. Cornell, C. A. Sackett, C. J. Myatt, and C. E. Wieman.
Measurement of cs-cs elastic scattering at t=30� k. Phys. Rev. Lett., 70:414, 1993.

[79] H. Wu and C. Foot. Direct simulation of evaporative cooling.J. Phys. B., 29:L321,
1996.

[80] D. E. Pritchard, E. L. Raab, V. Bagnato, C. E. Wieman, and R. N. Watts. Light
traps using spontaneous forces.Phys. Rev. Lett., 57(3):310�313, Jul 1986. doi:
10.1103/PhysRevLett.57.310 .

[81] Alan L. Migdall, John V. Prodan, William D. Phillips, Thomas H. Bergeman, and
Harold J. Metcalf. First observation of magnetically trapped neutral atoms.Phys.
Rev. Lett., 54(24):2596�2599, Jun 1985.doi:10.1103/PhysRevLett.54.2596 .

[82] T. Bergeman, Gidon Erez, and Harold J. Metcalf. Magnetostatic trapping �elds for
neutral atoms. Phys. Rev. A, 35(4):1535�1546, Feb 1987.doi:10.1103/PhysRevA.
35.1535.

[83] Steven Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable. Experimental obser-
vation of optically trapped atoms. Phys. Rev. Lett., 57(3):314�317, Jul 1986.
URL: http://link.aps.org/doi/10.1103/PhysRevLett.57.314 , doi:10.1103/
PhysRevLett.57.314 .

[84] M. D. Barrett, J. A. Sauer, and M. S. Chapman. All-optical formation of an atomic
bose-einstein condensate.Phys. Rev. Lett., 87(1):010404, Jun 2001.doi:10.1103/
PhysRevLett.87.010404 .



152 BIBLIOGRAPHY

[85] S. R. Granade, M. E. Gehm, K. M. O'Hara, and J. E. Thomas. All-optical pro-
duction of a degenerate fermi gas.Phys. Rev. Lett., 88(12):120405, Mar 2002.
doi:10.1103/PhysRevLett.88.120405 .

[86] R. Grimm, M. Weidemüller, and Y. B. Ovchinnikov.Advances in atomic, molecular
and optical physics. Academic Press, 2000.

[87] Cohen-Tannoudji C. Dalibard, J. Dressed-atom approach to atomic motion in laser
light: the dipole force revisited.J.O.S.A., 2:1707, 1985.

[88] Dupont-Roc J. Grynberg G. Cohen-Tannoudji, C. Processus d'interaction entre
photons et atomes. Editions du CNRS, 1996.

[89] Nir Davidson, Heun Jin Lee, Charles S. Adams, Mark Kasevich, and Steven Chu.
Long atomic coherence times in an optical dipole trap.Phys. Rev. Lett., 74(8):1311�
1314, Feb 1995. URL:http://link.aps.org/doi/10.1103/PhysRevLett.74.
1311, doi:10.1103/PhysRevLett.74.1311 .

[90] Roee Ozeri, Lev Khaykovich, and Nir Davidson. Long spin relaxation times in
a single-beam blue-detuned optical trap.Phys. Rev. A, 59(3):R1750�R1753, Mar
1999. URL: http://link.aps.org/doi/10.1103/PhysRevA.59.R1750 , doi:10.
1103/PhysRevA.59.R1750.

[91] J.P. Dowling and J. GeaBanacloche. Evanescent light-wave atom mirrors, resonators
waveguides and traps.Advances in Atomic, Molecular, and Optical Physics, 37:1�94,
1996.

[92] J. Léonard. Photo-association de l'hélium métastable au voisinage de la condensa-
tion de Bose-Einstein et formation de dimères géants. PhD thesis, Université Pierre
et Marie Curie, 2003. URL:http://tel.archives-ouvertes.fr/tel-00004295 .

[93] Zong-Chao Yan and J. F. Babb. Long-range interactions of metastable helium
atoms. Phys. Rev. A, 58(2):1247�1252, Aug 1998.doi:10.1103/PhysRevA.58.
1247.

[94] J. Stärck and W. Meyer. Long-range interaction potential of the 3[sigma]g+
state of he2. Chemical Physics Letters, 225(1-3):229�232, 1994. URL:
http://www.sciencedirect.com/science/article/B6TFN-44WCW8J-75/2/
043679120e0c27207a076bf270d97339.

[95] F. X. Gad

ea, T. Leininger, and A. S. Dickinson. Calculated scattering length for spin-polarized
metastable helium.Journal of Chemical Physics, 117:7122, 2002.

[96] A. S. Dickinson, F. X. Gad

ea, and T. Leininger. Scattering lenghts for spin-polarized metastable helium-3 and
helium-4. J. Phys. B., 37:587, 2004.

[97] C. Cohen-Tannoudji, B. Diu, and F. Laloë.Mécanique Quantique. Hermann, 1973.



BIBLIOGRAPHY 153

[98] M. Portier. Molécules exotiques d'Hélium. PhD thesis, Université Pierre et Marie
Curie (Paris VI), 2007.

[99] M. W. Müller, A. Merz, M. W. Ruf, H. Hotop, W. Meyer, and M. Movre. Experimen-
tal and theoretical studies of the Bi-excited collision systems He*(23S)+He*(23S,
21S) at thermal and subthermal kinetic energies.Zeitschrift für Physik D Atoms,
Molecules and Clusters, 21(2):89�112, 1991. URL:http://dx.doi.org/10.1007/
BF01425589.

[100] J. J. Garcia-Ripoll, S. Duerr, N. Syassen, D. M. Bauer, M. Lettner, G. Rempe, and
I. Cirac. Dissipation-induced hard-core boson gas in an optical lattice.New Journal
of Physics, 11:013053, 2009.

[101] B. Fröhlich, M. Feld, E. Vogt, M. Koschorreck, W. Zwerger, and M. Köhl. Radiofre-
quency spectroscopy of a strongly interacting two-dimensional Fermi gas.ArXiv
e-prints, November 2010.arXiv:1012.0049 .

[102] Z. Hadzibabic, P. Kruger, M. Cheneau, S.P. Rath, and J. Dalibard. The trapped
two-dimensional bose gas: from bose-einstein condensation to berezinskii-kosterlitz-
thouless physics.New Journal of Physics, 10:045006, 2008.

[103] Matthew P. A. Fisher, Peter B. Weichman, G. Grinstein, and Daniel S. Fisher.
Boson localization and the super�uid-insulator transition.Phys. Rev. B, 40(1):546�
570, Jul 1989. URL:http://link.aps.org/doi/10.1103/PhysRevB.40.546 , doi:
10.1103/PhysRevB.40.546.

[104] C. Orzel, S. D. Bergeson, S. Kulin, and S. L. Rolston. Time-resolved studies of
ultracold ionizing collisions. Phys. Rev. Lett., 80(23):5093�5096, Jun 1998.doi:
10.1103/PhysRevLett.80.5093 .

[105] Hideyuki Kunugita, Tetsuya Ido, and Fujio Shimizu. Ionizing collisional rate of
metastable rare-gas atoms in an optical lattice.Phys. Rev. Lett., 79(4):621�624, Jul
1997. doi:10.1103/PhysRevLett.79.621 .

[106] A. J. Daley, J. M. Taylor, S. Diehl, M. Baranov, and P. Zoller. Atomic three-body
loss as a dynamical three-body interaction.Phys. Rev. Lett., 102(4):040402, Jan
2009. doi:10.1103/PhysRevLett.102.040402 .

[107] Wilhelm Zwerger. Mott-Hubbard transition of cold atoms in optical lattices.Journal
of Optics B: Quantum and Semiclassical Optics, 5(2):S9�S16, 2003. URL:http:
//stacks.iop.org/1464-4266/5/S9 , doi:10.1088/1464-4266/5/2/352 .

[108] Immanuel Bloch, Markus Greiner, Olaf Mandel, and Theodor W. Hänsch. Co-
herent cold collisions with neutral atoms in optical lattices.Philosophical Trans-
actions of the Royal Society A: Mathematical, Physical and Engineering Sciences,
361(1808):1409�1416, 2003. URL:http://dx.doi.org/10.1098/rsta.2003.1210 ,
doi:10.1098/rsta.2003.1210 .

[109] C. Dorrer, F. Nez, B. de Beauvoir, L. Julien, and F. Biraben. Accurate measurement
of the 23s1 � 33d1 two-photon transition frequency in helium: New determination of



154 BIBLIOGRAPHY

the 23s1 lamb shift. Phys. Rev. Lett., 78(19):3658�3661, May 1997.doi:10.1103/
PhysRevLett.78.3658 .

[110] W. Lichten, D. Shiner, and Zhi-Xiang Zhou. Measurement of the lamb shifts in
singlet levels of atomic helium. Phys. Rev. A, 43(3):1663�1665, Feb 1991.doi:
10.1103/PhysRevA.43.1663.

[111] F. Pereira Dos Santos, J. Léonard, Junmin Wang, C.J. Barrelet, F. Perales, E.
Rasel, C.S. Unnikrishnan, M. Leduc, and C. Cohen-Tannoudji. Production of a
Bose-Einstein condensate of metastable helium atoms.The European Physical Jour-
nal D, 19(1):103�109, apr 2002. URL:http://dx.doi.org/doi/10.1140/epjd/
e20020061, doi:10.1140/epjd/e20020061 .

[112] R. J. W. Stas, J. M. McNamara, W. Hogervorst, and W. Vassen. Simultaneous
magneto-optical trapping of a boson-fermion mixture of metastable helium atoms.
Phys. Rev. Lett., 93(5):053001, Jul 2004.doi:10.1103/PhysRevLett.93.053001 .

[113] J. M. McNamara, T. Jeltes, A. S. Tychkov, W. Hogervorst, and W. Vassen. Degen-
erate bose-fermi mixture of metastable atoms.Phys. Rev. Lett., 97(8):080404, Aug
2006. doi:10.1103/PhysRevLett.97.080404 .

[114] R. Holzwarth, Th. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and
P. St. J. Russell. Optical frequency synthesizer for precision spectroscopy.Phys.
Rev. Lett., 85(11):2264�2267, Sep 2000.doi:10.1103/PhysRevLett.85.2264 .

[115] Scott A. Diddams, David J. Jones, Jun Ye, Steven T. Cundi�, John L. Hall, Ji-
nendra K. Ranka, Robert S. Windeler, Ronald Holzwarth, Thomas Udem, and
T. W. Hänsch. Direct link between microwave and optical frequencies with a
300 thz femtosecond laser comb.Phys. Rev. Lett., 84(22):5102�5105, May 2000.
doi:10.1103/PhysRevLett.84.5102 .

[116] Grzegorz Šach and Krzysztof Pachucki. Forbidden transitions in the helium atom.
Phys. Rev. A, 64(4):042510, Sep 2001.doi:10.1103/PhysRevA.64.042510 .

[117] R. J. W. Stas. Trapping fermionic and bosonic helium atoms. PhD thesis, Vreij
Universiteit - Amsterdam, 2005.

[118] K. S. E. Eikema, W. Ubachs, W. Vassen, and W. Hogervorst. Precision measure-
ments in helium at 58 nm: Ground state lamb shift and the11s-21p transition isotope
shift. Phys. Rev. Lett., 76(8):1216�1219, Feb 1996.doi:10.1103/PhysRevLett.76.
1216.

[119] Craig J. Sansonetti and J. D. Gillaspy. Absolute ionization energy of the 21s level
of helium. Phys. Rev. A, 45(1):R1�R3, Jan 1992.doi:10.1103/PhysRevA.45.R1 .

[120] F. S. Pavone, F. Marin, P. De Natale, M. Inguscio, and F. Biraben. First pure
frequency measurement of an optical transition in helium: Lamb shift of the
23s1 metastable level. Phys. Rev. Lett., 73(1):42�45, Jul 1994. doi:10.1103/
PhysRevLett.73.42 .



BIBLIOGRAPHY 155

[121] P. Mueller, L.-B. Wang, G. W. F. Drake, K. Bailey, Z.-T. Lu, and T. P. O'Connor.
Fine structure of the 1s3p 3pJ level in atomic 4he: Theory and experiment. Phys.
Rev. Lett., 94(13):133001, Apr 2005.doi:10.1103/PhysRevLett.94.133001 .

[122] Robert S. Van Dyck, Charles E. Johnson, and Howard A. Shugart. Radiative lifetime
of the 2 1s0 metastable state of helium.Phys. Rev. A, 4(4):1327�1336, Oct 1971.
doi:10.1103/PhysRevA.4.1327 .

[123] D.C. Morton, Q. Wu, and G. Drake. Energy levels for the stable isotopes of atomic
helium. Canadian Journal of Physics, 84:83�105, 2006.

[124] Steven T. Cundi� and Jun Ye. Colloquium: Femtosecond optical frequency combs.
Rev. Mod. Phys., 75(1):325�342, Mar 2003.doi:10.1103/RevModPhys.75.325 .

[125] A. L. Wolf, S. A. van den Berg, C. Gohle, E. J. Salumbides, W. Ubachs, and
K. S. E. Eikema. Frequency metrology on the4s2s1?2 � � 4p2p1?2 transition in
40ca+ for a comparison with quasar data.Phys. Rev. A, 78(3):032511, Sep 2008.
doi:10.1103/PhysRevA.78.032511 .

[126] A. L. Wolf, S. A. van den Berg, W. Ubachs, and K. S. E. Eikema. Direct frequency
comb spectroscopy of trapped ions.Phys. Rev. Lett., 102(22):223901, Jun 2009.
doi:10.1103/PhysRevLett.102.223901 .

[127] Dominik Z. Kandula, Christoph Gohle, Tjeerd J. Pinkert, Wim Ubachs, and Kjeld
S. E. Eikema. Extreme ultraviolet frequency comb metrology.Phys. Rev. Lett.,
105(6):063001, Aug 2010.doi:10.1103/PhysRevLett.105.063001 .

[128] Thomas C. Killian, Dale G. Fried, Lorenz Willmann, David Landhuis, Stephen C.
Moss, Thomas J. Greytak, and Daniel Kleppner. Cold collision frequency shift of
the 1s- 2s transition in hydrogen. Phys. Rev. Lett., 81(18):3807�3810, Nov 1998.
doi:10.1103/PhysRevLett.81.3807 .

[129] O. Sirjean. Collisions ionisantes: un nouveau diagnostic pour les condensats
d'Hélium métastable. PhD thesis, Université Paris XI, Orsay, 2003.

[130] Ionut D. Prodan, Marin Pichler, Mark Junker, Randall G. Hulet, and John L. Bohn.
Intensity dependence of photoassociation in a quantum degenerate atomic gas.Phys.
Rev. Lett., 91(8):080402, Aug 2003.doi:10.1103/PhysRevLett.91.080402 .

[131] Thomas Gasenzer. High-light-intensity photoassociation in a bose-einstein conden-
sate. Phys. Rev. A, 70(2):021603, Aug 2004.doi:10.1103/PhysRevA.70.021603 .

[132] Pascal Naidon and Fran çoise Masnou-Seeuws. Pair dynamics in the formation of
molecules in a bose-einstein condensate.Phys. Rev. A, 68(3):033612, Sep 2003.
doi:10.1103/PhysRevA.68.033612 .

[133] Pascal Naidon and Fran çoise Masnou-Seeuws. Photoassociation and optical fes-
hbach resonances in an atomic bose-einstein condensate: Treatment of correlation
e�ects. Phys. Rev. A, 73(4):043611, Apr 2006.doi:10.1103/PhysRevA.73.043611 .

[134] H. J. Metcalf and P. van der Straten.Laser Cooling and Trapping. Springer, 1999.



156 BIBLIOGRAPHY

[135] M. A. Jo�e, W. Ketterle, A. Marin, and D. E. Pritchard. Transverse cooling and
de�ection of an atomic beam inside a zeeman slower.JOSA B, 10:2257, 1993.

[136] J. K. Ranka, R. S. Windeler, and A. J. Stentz. Visible continuum generation in
air-silica microstructure optical �bers with anomalous dispersion at 800 nm.Opt.
Lett., 25:25, 2000.

[137] J. Ye, J. L. Hall, and S. A. Diddams. Precision phase control of ultrawide bandwidth
laser - a network of ultrastable frequency marks accross the visible spectrum.Opt.
Lett., 25:1675, 2000.

[138] et al. Diddams, S. A. An optical clock based on a single trapped hg-199(+) ion.
Science, 293:825, 2001.

[139] Jun Ye, Long Sheng Ma, and John L. Hall. Molecular iodine clock.Phys. Rev.
Lett., 87(27):270801, Dec 2001.doi:10.1103/PhysRevLett.87.270801 .

[140] M. Niering, R. Holzwarth, J. Reichert, P. Pokasov, Th. Udem, M. Weitz, T. W. Hän-
sch, P. Lemonde, G. Santarelli, M. Abgrall, P. Laurent, C. Salomon, and A. Clairon.
Measurement of the hydrogen1s- 2s transition frequency by phase coherent com-
parison with a microwave cesium fountain clock.Phys. Rev. Lett., 84(24):5496�5499,
Jun 2000. doi:10.1103/PhysRevLett.84.5496 .

[141] X. Baillard, M. Fouché, R. Le Targat, P. G. Westergaard, A. Lecallier, F. Chapelet,
M. Abgrall, G. D. Rovera, P. Laurent, P. Rosenbusch, S. Bize, G. Santarelli,
A. Clairon, P. Lemonde, G. Grosche, B. Lipphardt, and H. Schnatz. An optical
lattice clock with spin-polarized &lt;sup&gt;87&lt;/sup&gt;sr atoms. The Euro-
pean Physical Journal D - Atomic, Molecular, Optical and Plasma Physics, 48:11�
17, 2008. 10.1140/epjd/e2007-00330-3. URL:http://dx.doi.org/10.1140/epjd/
e2007-00330-3.

[142] S. A. Diddams, L. Hollberg, S. A. Ma, and L. Robertsson. Femtosecond-laser-based
optical clockwork with instability smaller than 6.3� 10� 16 in 1s. Opt. Lett., 27:58,
2002.



Résumé :

Les thématiques abordées dans ce mémoire illustrent deux spéci�cités des gaz ultra-
froids d'Hélium métastable : la possibilité de comparer les résultats expérimentaux à des
évaluations théoriques précises (niveaux d'énergie, potentiels d'interaction) et une méth-
ode de détection originale fournie par les ionisations Penning.
Nous présentons la construction et la caractérisation d'un nouveau piège magnétique of-
frant un large accès optique et permettant ainsi de combiner la production d'un condensat
de Bose-Einstein et son chargementin situ dans un réseau optique 3D.
Les fondements théoriques des expériences prévues dans ces potentiels optiques sont en-
suite détaillés. Dans un piège dipolaire croisé, l'in�uence du champ magnétique, devenu
un paramètre libre, sur les taux de collisions Penning peut être mesurée et comparée à
une nouvelle évaluation théorique.
Concernant l'Hélium dans des réseaux optiques, deux sujets sont développés : l'e�et du
con�nement sur les collisions inélastiques Penning (réseau 1D), ainsi que la modélisation
des pertes Penning dans un modèle de Bose-Hubbard dissipatif (réseau 3D).
En�n, nous présentons la première mesure directe de la transition dipolaire magnétique
23S1 ! 23P2, liant les familles singulet et triplet de l'4He. Cette expérience de spec-
troscopie, réalisée dans le groupe de W. Vassen, allie le domaine des atomes froids aux
techniques des peignes de fréquences, a�n d'obtenir une précision de 5 kHz.

Summary :

The thematics treated in this manuscript illustrate two speci�cities of ultracold metastable
Helium gases: the ability to compare experimental measurement with precise theoretical
evaluations (simplicity of the atomic structure) and to easily detect products of Penning
ionisations.
We present the building and the characterisation of a novel magnetic trap with large op-
tical access, allowing to combine the production of a Bose-Einstein condensate with its in
situ loading into a 3D optical lattice.
The theoretical fundaments of the experiments planned in those optical potentials are
then detailed. In a crossed dipole trap, the in�uence of the magnetic �eld, now a free
parameter, on the Penning collision rates can be measured and compared to a new theo-
retical evaluation.
Concerning Helium in optical lattices, two subjects are developped: the e�ect of the con-
�nement on the inelastic Penning collisions (1D optical lattice) and the modelisation of
the Penning losses via a dissipative Bose-Hubbard model (3D lattice).
Finally we present the �rst direct measurement of the dipolar magnetic transition23S1 !
23P2, linking the singlet and triplet families in 4He. This spectroscopy experiment, re-
alised in the group of W. Vassen, combines cold atoms knowledge with the frequency
comb technique, in order to reach an accuracy of 5 kHz.
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