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Introduction Générale

Résumé :

Cette thèse est constituée de deux parties pouvant être lues indépendamment.

Dans la première partie on s’intéresse à la modélisation mathématique du risque de liquidité.

L’aspect étudié ici est la contrainte sur les dates des transactions, c’est-à-dire que contrairement

aux modèles classiques où les investisseurs peuvent échanger les actifs en continu, on suppose

que les transactions sont uniquement possibles à des dates aléatoires discrètes. On utilise alors

des techniques de contrôle optimal (programmation dynamique, équations d’Hamilton-Jacobi-

Bellman) pour identifier les fonctions valeur et les stratégies d’investissement optimales sous

ces contraintes. Le premier chapitre étudie un problème de maximisation d’utilité en horizon

fini, dans un cadre inspiré des marchés de l’énergie. Dans le deuxième chapitre on considère

un marché illiquide à changements de régime, et enfin dans le troisième chapitre on étudie un

marché où l’agent a la possibilité d’investir à la fois dans un actif liquide et un actif illiquide,

ces derniers étant corrélés.

Dans la deuxième partie on présente des méthodes probabilistes de quantification pour ré-

soudre numériquement un problème de switching optimal. On considère d’abord une approxi-

mation en temps discret du problème et on prouve un taux de convergence. Ensuite on propose

deux méthodes numériques de quantification : une approche markovienne où on quantifie la loi

normale dans le schéma d’Euler, et dans le cas où la diffusion n’est pas contrôlée, une approche

de quantification marginale inspirée de méthodes numériques pour le problème d’arrêt optimal.

0.1 Première partie : Modélisation du risque de liquidité

Le risque de liquidité est un risque financier majeur, tout particulièrement dans les périodes

de crise où les marchés subissent différentes formes d’illiquidité. Il peut être défini comme l’en-

9



10 INTRODUCTION GÉNÉRALE

semble des contraintes sur la capacité d’un agent à acheter ou vendre un actif et évaluer son

portefeuille.

Dans les travaux pionniers de Merton sur l’optimisation de portefeuille et Black Scholes sur

la couverture d’option, ainsi que dans la majeure partie de la littérature en mathématiques

financières qui a suivi, il est fait l’hypothèse classique que les agents intervenant sur le marché

peuvent échanger continûment les actifs financiers sans contraintes et sans impact sur leurs prix.

Bien que très pratique d’un point de vue mathématique puisque permettant d’utiliser des outils

puissants de calcul stochastique, cette hypothèse n’est pas réaliste en pratique. Dans la dernière

décennie, de nombreuses études ont été réalisées dans le but de relaxer cette hypothèse.

Une première approche est de mesurer l’illiquidité en terme de coûts de transaction, voir

le livre de Kabanov et Safarian [38] pour un aperçu récent de la théorie. Dans ce contexte, les

échanges fréquents d’actifs sont soumis à des coûts potentiellement élevés, mais l’investisseur

peut acheter ou vendre des actifs quand il le désire.

D’autre part, il a été observé empiriquement que des transactions à haut volume ont un

impact sur le prix de l’actif échangé. On parle alors de modèle de grand investisseur. Ce facteur

a été étudié par Cetin, Jarrow et Protter [14], Bank et Baum [7] pour le problème d’arbitrage et

de pricing d’options, Schied et Schöneborn [67] pour un problème de liquidation de portefeuille.

Ly Vath, Mnif et Pham [50] considèrent un modèle combinant coûts de transaction et effets de

grands investisseurs dans un contexte de gestion de portefeuille.

Un autre aspect du risque de liquidité est le retard à l’exécution des ordres de transactions. En

pratique, ces ordres ne sont pas exécutés immédiatement et ont besoin d’un certain temps avant

d’atteindre le marché (voir par exemple Subramanian et Jarrow [70]). Ce délai à l’exécution a un

impact sur la dynamique du portefeuille, et on s’attend donc à ce qu’il modifie les comportements

des investisseurs. Ce problème a été étudié dans le contexte de contrôle impulsionnel stochastique

par Øksendal et Sulem [56] et Bruder et Pham [11].

Le type d’illiquidité que nous étudions dans cette thèse est la restriction sur les dates de

transaction et d’observation. En effet l’hypothèse classique de trading en temps continu est

peu réaliste dans le cas de marchés illiquides, où étant donné le faible volume d’ordres traités

il peut s’écouler un temps relativement long entre les possibilités successives de transaction.

Rogers [65] considère un agent pouvant uniquement rebalancer son portefeuille à des intervalles

fixes et montre que la perte causée est relativement faible par rapport à l’incertitude sur les



0.1. PARTIE I : RISQUE DE LIQUIDITÉ 11

paramètres du prix de l’actif. Rogers et Zane [66], Matsumoto [53] considèrent un modèle où les

dates successives de transaction sont données par les temps de saut d’un processus de Poisson

d’intensité λ constante, et étudient le comportement asymptotique quand λ est grand. Dans le

même cadre, Pham et Tankov [61, 62] étudient un problème de consommation/investissement en

horizon infini, caractérisent la fonction valeur comme unique solution (de viscosité) de l’équation

HJB et donnent un schéma numérique pour la calculer. Citons également Bayraktar et Ludkovski

[8] qui étudient dans un contexte similaire un problème de liquidation de portefeuille. Nous

prolongeons l’approche de ces articles sur trois problèmes différents développés ci-dessous.

0.1.1 Investissement optimal dans un marché illiquide avec dates discrètes

aléatoires de transaction

Dans le premier chapitre nous étudions un problème de maximisation d’utilité en horizon

fini dans un marché illiquide. La contrainte de liquidité s’exprime par le fait que l’agent peut

observer le prix de l’actif et effectuer des transactions uniquement à des dates aléatoires discrètes.

Une particularité importante de notre modèle est que l’intensité d’arrivée de ces dates est proche

de l’infini quand on approche l’horizon en temps T . Cette hypothèse est naturelle pour modéliser

ce qu’on observe par exemple dans le cas de contrats forward dans les marchés d’énergie : étant

donnés la nature physique de sous-jacent, plus on s’approche de la date d’échéance et plus

l’activité de trading sur le titre est importante.

Un problème similaire a été étudié par Matsumoto [53] pour une fonction d’utilité logarith-

mique. Les principale différences avec notre approche, outre le fait que nous prenons en compte

des fonctions d’utilité et des processus de prix plus généraux, sont que dans [53] la liquidité est

constante, et le prix de l’actif illiquide est observé en continu.

On s’intéresse donc à un marché comportant un actif sans rique (supposé constant sans perte

de généralité) et un actif risqué illiquide de processus de prix (St)0≤t≤T . On se donne également

une suite de temps d’arrêt (τn)n≥0 indépendants de S, représentant les dates auxquelles l’agent

peut observer le prix St et effectuer des transactions.

On suppose que S suit une dynamique de type log-Lévy, plus précisément St = E(L)t, où E
dénote l’exponentielle stochastique et

Lt =

∫ t

0
b(u) du+

∫ t

0
c(u) dBu +

∫ t

0

∫ ∞

−1
y(µ(dt, dy) − ν(dt, dy)), 0 ≤ t ≤ T,
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est une semimartingale à incréments indépendants de sauts ∆Lt > −1. On suppose de plus des

conditions naturelles d’intégrabilité sur les caractéristiques déterministes (b, c, ν) ainsi qu’une

condition de non arbitrage. On notera Zt,s = Ss−St

St
le rendement entre s et t et p(t, s, dz) =

P[Zt,s ∈ dz] sa distribution.

Les dates (τn) sont données par les temps de saut d’un processus de Poisson inhomogène

(Nt)0≤t≤T d’intensité déterministe λ(t). On fait l’hypothèse suivante sur λ :

∫ t

0
λ(u)du < ∞, ∀ 0 ≤ t < T et

∫ T

0
λ(u)du = ∞.

Sous cette condition la suite de temps d’arrêt (τn) satisfait presque sûrement

lim
n→∞

τn = T.

On définit la filtration d’observation discrète Fn = σ
{

(τk, Zτk−1,τk
) : 1 ≤ k ≤ n

}
. Une

stratégie d’investissement est alors une suite (αn), où αn, Fn-mesurable, représente le montant

détenu en actif risqué sur la période (τn, τn+1]. Le processus de richesse (Xτn) associé à une

stratégie α vérifie donc

Xτn+1 = Xτn + αnZτn,τn+1 .

Dans la suite on fixe un capital initial X0 > 0 et on se restreint à l’ensemble A des stratégies

admissibles telles que la richesse de l’investisseur soit positive à toute date : Xτn ≥ 0, n ≥ 0.

Etant donné nos hypothèses sur S, Zτn,τn+1 a pour support (−1,+∞) conditionellement à Fn, et

il est facile de voir que cette contrainte de positivité est équivalente à une interdiction de vente

à découvert (à la fois sur l’actif risqué et l’actif sans risque).

Etant donné une fonction d’utilité U satisfaisant des conditions générales, on s’intéresse au

problème de contrôle :

V0 = sup
α∈A

E[U(XT )].

On s’intéresse donc à résoudre ce problème d’optimisation, c’est-à-dire déterminer V0 et la

stratégie optimale α̂ correspondante. On va utiliser une approche par Programmation Dyna-

mique directe : on écrit formellement l’équation de Programmation Dynamique (EPD) pour

notre problème, puis par des arguments analytiques on montre l’existence d’une solution pour
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cette EPD, et enfin on conclut par un argument de vérification.

Dans notre contexte l’EPD peut s’écrire comme un problème de point fixe (avec une condition

terminale)





Lv = v

limtրT,x′→x v(t, x′) = U(x),
(0.1.1)

où étant donné une fonction w satisfaisant des conditions de croissance appropriées, Lw est

défini par :

Lw(t, x) = sup
π∈[0,1]

∫ T

t

∫

(−1,∞)
λ(s)e−

∫ s

t
λ(u)duw(s, x(1 + πz))p(t, s, dz)ds.

Pour montrer l’existence d’une solution à (0.1.1), on adopte une approche par itération de

fonctions valeurs, classique dans le cas de problèmes discrets (voir aussi [23]). On considère la

suite de fonctions (vm)m≥0 définie récursivement par :

v0 = U,

vm+1 = Lvm.

Alors on montre que :

• vm converge vers une fonction v∗, solution de (0.1.1).

• V0 = v∗(0, X0), et la stratégie optimale α̂ est donnée par :

α̂n = π̂(τn, X̂τn)X̂τn , n ≥ 0,

où π̂ est donné par

π̂(t, x) ∈ arg max
π∈[0,1]

∫ T

t

∫

(−1,∞)
λ(s)e−

∫ s

t
λ(u)duv∗(s, x(1 + πz))p(t, s, dz)ds.

De plus vm correspond au problème de contrôle suivant :

vm(0, X0) = sup
α∈Am

E[U(XT )],

où Am est l’ensemble des stratégies admissibles à investissement nul en actif risqué à partir de

la m-ième date de trading, i.e. αn = 0 pour n ≥ m.
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Dans la dernière partie de ce chapitre on s’intéresse à la convergence de notre problème vers

le problème classique de trading en continu. En effet, quand l’intensité d’arrivée de dates de

transaction λ est très grande à toute date, on s’attend à ce que la valeur correspondant V λ
0 soit

proche de celle où l’agent peut échanger l’actif en continu, en prenant en compte la contrainte

d’interdiction de vente à découvert.

On définit donc

V M
0 = sup

π∈D(S)
E [U(Xπ

T )] ,

où D(S) est l’ensemble des stratégies de trading continues sur l’actif S sans vente à découvert.

Le résultat obtenu est alors le suivant : étant donné une suite de fonctions d’intensité λk

telles que

λk(t) → ∞ quand k → ∞, ∀t ∈ [0, T ],

on a la convergence

V λk
0 → V M

0 quand k → ∞,

Ce chapitre est tiré d’un article rédigé en collaboration avec Huyên Pham et Mihai Sîrbu

[29], publié dans International Journal of Theoretical and Applied Finance.

0.1.2 Investissement/consommation optimaux dans un marché illiquide avec

changements de régime

Dans les premiers articles étudiant des modèles de risque de liquidité avec dates de transac-

tion discrètes (par exemple [66], [53], [61]), la fréquence de trading est constante en temps et

indépendante du prix des actifs. Cependant en pratique la liquidité du marché subit des fluctua-

tions à la fois déterministes et aléatoires et à différentes échelles de temps. Dans ce chapitre on

étudie un modèle simple de marché illiquide avec changements de régime, chaque régime ayant

différentes liquidités et dynamique de prix.

Les modèles à changements de régime ont déjà été étudiés à plusieurs reprises dans des

applications à la finance, voir les articles [69],[72] ou pour un point de vue statistique la thèse

[55]. Plus récemment du point de vue du risque de liquidité, les articles [21] et [49] étudient un
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marché subissant des chocs de liquidité aux cours desquels l’activité de trading est complètement

interrompue.

On considère donc un marché subissant des changements de régime, modélisés par une chaîne

de Markov (It) à espace d’états fini Id = {1, . . . , d} et de générateur infinitésimal Q = (qij). Le

marché comporte un actif sans risque supposé constant et un actif risqué de processus de prix

S. L’investisseur peut effectuer des transactions sur cet actif uniquement à des dates (τn)n≥0,

correspondant aux temps de saut d’un processus de Cox (Nt)t≥0 d’intensité λIt . Autrement dit

à chaque régime i du marché correspond une intensité λi d’arrivée de dates de transaction. Il

est important de noter que contrairement au modèle du premier chapitre ou à l’article [61], la

contrainte porte uniquement sur la capacité de transaction, et que le prix St est observé en

continu par l’agent.

Le prix St évolue dans chaque régime suivant un Brownien géométrique : quand It = i,

dSt = St(bidt+ σidWt),

où W est un Brownien standard indépendant de (I,N) et bi, σi, i = 1, . . . , d sont des constantes.

On suppose de plus que le prix subit des sauts à chaque changement de régime : quand I

passe du régime i au régime j à l’instant t,

∆St = −St−γij ,

où les γij < 1 sont des constantes.

On considère un agent investissant dans ce marché et consommant en continu ; une stratégie

est donc une paire de processus prévisibles (c, ζ) où c est la consommation et ζ la stratégie

d’investissement. Notant (Xt, Yt) les variables d’état correspondant à la richesse investie respec-

tivement en actif sans risque et en actif risqué, on a la dynamique :

dXt = −ctdt− ζtdNt,

dYt = Yt−
dSt

St−
+ ζtdNt.

Partant du régime i et des richesses initiales x, y on se restreint aux stratégies admissibles

(dénotées Ai(x, y)) telles que la richesse totale Rt := Xt +Yt est positive à toute date de transac-

tion τn. Comme dans le chapitre précédent, ceci est équivalent à une contrainte d’interdiction
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de vente à découvert : (c, ζ) ∈ Ai(x, y) ssi Xt, Yt ≥ 0 p.s. pour tout t.

On se donne ensuite une fonction d’utilité U satisfaisant les conditions habituelles et une

condition de croissance, et pour un facteur d’actualisation ρ > 0 on considère le problème

d’investissement/consommation en horizon infini :

vi(x, y) = sup
(ζ,c)∈Ai(x,y)

E

[∫ ∞

0
e−ρtU(ct)dt

]
. (x, y) ∈ R2

+,

On introduit également la fonction

v̂i(r) = sup
x∈[0,r]

vi(x, r − x), r ≥ 0,

correspondant à la valeur obtenue en rebalançant optimalement une richesse initiale r entre actif

risqué et sans risque. Autrement dit, vi est la fonction valeur entre deux dates de transaction,

alors que ṽi est la fonction valeur à une date de transaction.

Pour résoudre ce problème de contrôle, on caractérise les fonctions valeur vi comme solutions

de l’équation d’Hamilton-Jacobi-Bellman (HJB) associée. L’équation HJB est une équation aux

dérivées partielles, équivalent infinitésimal du principe de programmation dynamique de Bellman

(voir les livres [24] et [60] pour une introduction au contrôle markovien en temps continu). Pour

notre problème cette équation a la forme du système suivant :

ρvi − biy
∂vi

∂y
− 1

2
σ2

i y
2∂

2vi

∂y2
− sup

c≥0

[
U(c) − c

∂vi

∂x

]

−
∑

j 6=i

qij

[
vj

(
x, y(1 − γij)

)
− vi(x, y)

]
(0.1.2)

− λi
[

sup
−y≤ζ≤x

vi(x− ζ, y + ζ) − vi(x, y)
]

= 0.

sur Id × (0,∞) × R+, avec les conditions au bord :

vi(0, 0) = 0 (0.1.3)

vi(0, y) = Ei


 sup

0≤ζ≤y
Sτ1
S0

vIτ1

(
ζ, y

Sτ1

S0
− ζ

)

 . (0.1.4)

Il est bien connu que dans le cas général les fonctions vi ne sont pas suffisament différentiables
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pour interpréter cette équation au sens classique, et qu’il faut recourir à une notion plus faible

de solutions, appelées solutions de viscosité (voir par exemple [16]).

En utilisant un principe de programmation dynamique on montre que vi est solution de

viscosité de (0.1.2), et on obtient également un principe de comparaison pour cette équation.

Nos fonctions (vi) sont donc caractérisées comme l’unique solution du système (0.1.2) avec les

conditions au bord (0.1.3)-(0.1.4).

On s’intéresse ensuite à l’existence et à la caractérisation de solutions optimales pour notre

problème de contrôle. Dans le cas général de solutions de viscosité, il existe des résultats de

vérification (cf. [30]-[31]), mais les hypothèses sont trop restrictives pour être appliquées ici.

Nous cherchons donc à trouver des conditions sous lesquelles les fonctions vi seront suffisament

différentiables pour pouvoir appliquer les résultats de vérification classiques. Notre équation

étant dégénérée (seule la dérivée en y apparait dans les termes du second ordre), dans le cas de

fonction d’utilité U générale on ne peut pas espérer appliquer de résultats standards d’existence

pour les EDP elliptiques.

Cependant dans le cas particulier d’utilité puissance U(c) = cp

p , on peut réduire la dimension

de l’espace d’état. En effet, en faisant le changement de variable

r = x+ y,

z =
y

x+ y
,

la fonction valeur peut être réécrite

vi(x, y) = U(r)ϕi(z).

On est donc ramené à résoudre une équation différentielle en z, qui cette fois-ci satisfait une

condition d’ellipticité uniforme.

Dans ce cas particulier, on montre donc la régularité de la fonction valeur vi, et on en déduit

l’existence de contrôles optimaux caractérisés par une formule feedback.

Enfin, on s’intéresse à la résolution numérique de l’équation (0.1.2). La principale difficulté

vient des termes non-locaux, que l’on peut contourner par une procédure itérative. On définit



18 INTRODUCTION GÉNÉRALE

v0 = 0 et récursivement, vn+1 est définie comme l’unique solution (de viscosité) de

(ρ− qii + λi)v
n+1
i − biy

∂vn+1
i

∂y
− 1

2
σ2

i y
2∂

2vn+1
i

∂y2
− sup

c≥0

[
U(c) − c

∂vn+1
i

∂x

]

=
∑

j 6=i

qijv
n
j

(
x, y(1 − γij)

)
+ λi sup

−y≤ζ≤x
vn

i (x− ζ, y + ζ)

avec des conditions au bord appropriées.

Comme dans le premier chapitre on peut alors interpréter vn comme la fonction valeur d’un

problème de contrôle :

vn
i (x, y) = sup

(ζ,c)∈Ai(x,y)
E

[∫ θn

0
e−ρtU(ct)dt

]
.

où θn est le n-ième temps auquel on a une date de transaction ou un changement de régime. En

utilisant cette représentation, on montre que vn tend vers v et que la vitesse de convergence est

exponentielle.

On illustre nos résultats par des tests numériques pour des marchés à 1 ou 2 régimes. Dans

le cas de marché à un seul régime, on compare les résultats avec ceux de [61], où l’investisseur

observe uniquement l’actif risqué aux dates (τn). Dans le cas d’un marché à 2 régimes on observe

que typiquement l’existence de différents régimes augmente le "coût de liquidité" subi par l’agent.

Ce chapitre est tiré d’un article rédigé en collaboration avec Fausto Gozzi et Huyên Pham

[27].

0.1.3 Investissement/consommation optimaux dans un marché avec actifs

liquide et illiquide

La majorité des travaux étudiant le risque de liquidité considèrent des marchés constitués

uniquement d’actifs illiquides. Cependant en pratique les marchés sont constitués d’actifs corrélés

ayant différents degrés de liquidité. Par example, un indice boursier est souvent beaucoup plus

liquide que les actifs individuels suivis par cet indice, et est corrélé positivement avec leurs cours.

Un investisseur sur ce marché aura donc la possibilité de couvrir sa position en actif illiquide

en investissant dans cet indice et rebalançant fréquemment son investissement dans ce dernier.

Tebaldi et Schwartz [68] et Longstaff [48] considèrent un marché constitué d’un actif liquide et

un actif illiquide, ce dernier pouvant uniquement être échangé à la date initiale et liquidé à une

date finale T . Dans ce chapitre, nous prenons une approche moins restrictive et supposons que
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l’actif illiquide peut être échangé à des dates aléatoires discrètes.

Très récemment un problème similaire a été étudié par Ang, Papanikolaou et Westerfield

[2], avec principalement deux différences par rapport à nos résultats. Tout d’abord, les fonctions

d’utilités qu’ils considèrent sont de type CRRA avec paramètre d’aversion au risque γ ≥ 1, alors

que nous étudions le problème pour une classe de fonctions différentes, non nécessairement de

type CRRA. De plus, ils supposent que l’agent observe le prix de l’actif illiquide en continu, alors

que dans notre cas l’observation s’effectue uniquement aux dates de transaction. Notre hypothèse

semble plus naturelle, puisqu’en pratique les possibilités de transaction et l’observation du prix

des actifs coïncident via l’arrivée d’ordres d’achat ou de vente sur le marché.

On considère donc un marché constitué d’un actif sans risque supposé constant et de deux

actifs risqués :

• un actif liquide qui peut être échangé en continu, de processus de prix L,

• un actif illiquide de processus de prix I, qui peut être échangé et observé uniquement à

des dates (τn) correspondant aux temps de saut d’un processus de Poisson N d’intensité

λ.

On suppose que L et I suivent une dynamique de Black-Scholes :

dLt = Lt(bLdt+ σLdWt),

dIt = It(bIdt+ σI(ρdWt +
√

1 − ρ2dBt),

où W et B sont des Browniens indépendants (et indépendants de N), et ρ ∈ (−1, 1) est le

coefficient de corrélation.

On définit la filtration d’observation de notre agent :

G := (Gt)t≥0; Gt = σ(τn, Iτn ; τn ≤ t) ∨ FW
t ∨ N ,

où FW est la filtration engendrée par W (ou par L) et N est la tribu engendrée par les ensembles

P-négligeables.

Une stratégie d’investissement sur ce marché est alors un triplet (c, π, α), où :

• c = (ct) est un processus G-prévisible représentant le taux de consommation,

• π = (πt) également G-prévisible est le montant investi en actif liquide,
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• α = (αk) est une suite de variables aléatoires Gτk
-mesurables, représentant le montant

investi en actif illiquide à la date τk.

Etant donnée une richesse initiale r, on se restreint à la classe A(r) de stratégies vérifiant une

contrainte d’admissibilité, qui comme dans les chapitres précédents se réduit à une interdiction

de vente à découvert. On se donne ensuite une fonction d’utilité U et un facteur d’actualisation

β > 0, et on considère le problème de contrôle :

V (r) = sup
(c,π,α)∈A(r)

E

[∫ ∞

0
e−βsU(cs)ds

]
.

Ce problème de contrôle est un problème non standard, mixte discret/continu de par la

nature de la filtration d’observation G. On suit alors la même approche que dans Pham et

Tankov [61] : par programmation dynamique on se ramène à étudier le problème entre deux

dates de transaction, et on montre que ce problème est équivalent à un problème standard.

Le principe de programmation dynamique pour notre problème a la forme suivante :

V (r) = sup
(c,π,α)∈A(r)

E

[∫ τ1

0
e−βsU(cs)ds+ e−βτ1V (Rτ1)

]
,

où

Rτ1 = r +

∫ τ1

0
(−csds+ πs

dLs

Ls
) + α0

Iτ1 − I0

I0

est la richesse totale à la date τ1.

On va réécrire le terme de droite de la précédente égalité comme solution d’un problème de

contrôle stochastique standard pour la filtration FW .

Tout d’abord, en notant que comme seule la stratégie avant la date τ1 intervient dans ce

terme, on peut réécrire cette égalité comme

V (r) = sup
a≤r

sup
(c,π)∈A0(r−a)

E

[∫ τ1

0
e−βsU(cs)ds+ e−βτ1V (Rτ1)

]
,

où étant donné un investissement initial x en richesse liquide, A0(x) est l’ensemble des stratégies

(c, π) FW -prévisibles satisfaisant des conditions d’admissibilité.
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Ensuite on décompose le prix d’actif illiquide en It = EtJt, où

dEt

Et
=
ρσI

σL

dLt

Lt
= (ρbI

σI

σL
dt+ ρσIdWt),

dJt

Jt
= (bI − ρbI

σI

σL
)dt+ σI

√
1 − ρ2dBt.

Notons qu’alors (Et) est FW -adapté, tandis que (Jt) est indépendant de FW .

Etant donnée une richesse initiale r = x + y répartie initialement en un montant x d’actifs

liquides et un montant y d’actifs illiquides, et une stratégie (c, π) ∈ A0(x), on considère les

variables d’état X, Y définies par :

Xx,c,π
t = x+

∫ t

0
(−csds+ πs

dLs

Ls
),

Y y
t = yEt.

Autrement dit, Xs correspond à la richesse en actifs liquides, alors que Ys correspond à la richesse

investie initialement en actif illiquide modulée par l’information apportée par les variations du

prix de l’actif liquide depuis la date initiale.

En définissant l’opérateur G par

G[w](t, x, y) = E [w(x+ yJt)] ,

on obtient enfin

V (r) = sup
0≤a≤r

sup
(c,π)∈A0(x)

E

∫ ∞

0
e−(β+λ)s (U(cs) + λG[V ] (s,Xx,π,c

s , Y y
s )) ds.

Ceci est un problème de contrôle stochastique standard (inhomogène en temps). On définit

alors la fonction V̂ , version dynamique définie par :

V̂ (t, x, y) = sup
(c,π)∈At(x)

E

∫ ∞

t
e−(β+λ)(s−t)

(
U(cs) + λG[V ]

(
s,Xt,x,π,c

s , Y t,y
s

))
ds.

On remarque que V et V̂ sont reliés par la relation

V (r) =
[
HV̂

]
(r) := sup

0≤x≤r
V̂ (0, x, r − y).

Déterminer V revient donc à déterminer V̂ . Pour ce faire, on va utiliser l’approche classique par
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équations HJB. L’équation de HJB pour notre problème a la forme suivante :

−V̂t + (β + λ)V̂ − λG[HV̂ ](t, x, y) − sup
c≥0,π∈R

Hcv(y,D(x,y)V̂ , D
2
(x,y)V̂ ; c, π) = 0, (0.1.5)

où l’hamiltonien Hcv est défini par

Hcv(y, p, A; c, π) =

[
U(c) + (πbL − c)p1 +

ρbLσI

σL
yp2 +

σ2
Lπ

2

2
A11 + πρσIσLyA12 + ρ2σ

2
I

2
y2A22

]
.

Comme dans le chapitre précédent, on montre alors que V̂ est l’unique solution de viscosité de

(0.1.5) sur [0,+∞) × (0,+∞) × R+, satisfaisant la condition au bord

v̂(t, 0, y) = E

∫ ∞

t
e−(β+λ)(s−t)λG[Hv̂](s, 0, Ỹ t,y

s )ds

et une condition de croissance appropriée.

Cette caractérisation permet alors de calculer numériquement V̂ .

Comme dans les chapitres précédents on a recours à une méthode itérative : on part de

V̂ 0 = 0, et on définit récursivement V̂ n+1 comme la solution de (0.1.5) où le terme nonlocal est

remplacé par λG[HV̂ n](t, x, y). On a alors des résultats similaires à ceux obtenus au chapitre

2 : on montre que V̂ n correspond au problème de contrôle dans lequel l’agent ne consomme que

jusqu’à la date τn, et V̂ n converge vers V̂ exponentiellement en n.

De plus comme on a une EDP à horizon infini, en pratique pour la résoudre on considère

une approximation V n,T pour un horizon fixé T . On montre que pour T choisi assez grand, V n,T

approxime V n aussi précisément qu’on le souhaite (uniformément en n).

Enfin, on illustre numériquement nos résultats. On fixe les paramètres bL, σL, bI , σI , et on

observe les variations de la fonction valeur et des stratégies optimales obtenues en faisant varier

λ et ρ.

Ce chapitre est tiré d’un article écrit en collaboration avec Salvatore Federico.

0.2 Deuxième partie : Discrétisation en temps et méthodes de

quantification appliqués au problème de switching

Dans cette deuxième partie, on propose des schémas numériques pour un problème de swit-

ching optimal. Rappelons tout d’abord en quoi consiste ce problème.

On se donne un espace de probabilité filtré (Ω,F , (Ft),P), et un ensemble fini de régimes



0.2. PARTIE II : DISCRÉTISATION EN TEMPS ET QUANTIFICATION 23

Iq = {1, . . . , q}. Un contrôle de switching est alors une suite (τn, ιn)n≥0, où (τn) est une suite

croissante de temps d’arrêt et (ιn) est une suite de v.a. Fτn-mesurables à valeurs dans Iq. A

chaque α on associe la diffusion contrôlée

dXt = b(Xt, αt)dt+ σ(Xt, αt)dWt,

où W est un Brownien standard dans Rd, et αt = ιn sur [τn, τn+1). Le problème de contrôle

considéré est alors :

vi(t, x) = sup
α∈At,i

E
[ ∫ T

t
f(Xt, αt)dt+ g(XT , αT ) −

∑

τn≤T

c(Xτn , ιn−1, ιn)
]
.

Le switching optimal a de nombreuses applications, notamment en finance, et a fait l’objet de

nombreuses études : voir par exemple le chapitre 5 dans le livre de Pham [60]. D’un point de vue

numérique, la résolution de ces problèmes se fait généralement par une discrétisation en temps,

et une procédure de récursion rétrograde qui nécessite le calcul d’espérances conditionnelles.

Concernant l’erreur de discrétisation, dans le cas où la diffusion n’est pas contrôlée, des résultats

ont été obtenus par des méthodes d’Equations Différentielles Stochastiques Rétrogrades (EDSRs)

à réflexion oblique par Chassagneux, Elie et Kharroubi [13] (voir Hamadène et Zhang [34] et Hu

et Tang [35] pour les propriétés de ces EDSRs). Quant aux calculs d’espérance conditionnelle,

plusieurs méthodes ont été proposées pour le problème d’arrêt optimal : des techniques de calcul

de Malliavin (Lions et Regnier [47], Bouchard, Ekeland et Touzi [10]), de régression à la Longstaff-

Schwarz (Clément, Lamberton et Protter [15]) ou des méthodes de quantification (Bally-Pagès

[5]).

Dans ce chapitre on présente des schémas numériques basés sur cette dernière approche.

Rappelons que la quantification optimale consiste à approximer une variable aléatoire X par

un quantifieur X̂ à support fini, de façon à minimiser l’erreur de quantification
∥∥∥X − X̂

∥∥∥
p
.

On pourra consulter le livre de Graf et Luschgy [32] pour une introduction à la théorie de

la quantification. Cette dernière a connu un fort intérêt ces dernières années en Probabilités

Numériques, et notamment dans les applications à la finance, voir par exemple l’article [57]

pour une présentation globale.

Dans le cas étudié ici, on suppose que toutes les fonctions intervenant sont Lipschitz en la

variable d’espace, et que la fonction de coût satisfait une “condition triangulaire" naturelle.
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Dans un premier temps on étudie l’impact de la discrétisation en temps (nécessaire pour

tout schéma numérique) sur la fonction valeur de notre problème. Etant donné un pas de temps

h, on considère donc la fonction vh définie par :

vh
i (tk, x) = sup

α∈Ah
tk,i

E
[m−1∑

ℓ=k

f(Xtk,x,α
tℓ

, Itℓ
)h+ g(Xtk,x,α

tm
, Itm) −

N(α)∑

n=1

c(Xtk,x,α
τn

, ιn−1, ιn)
]
,

où Ah
tk,i est l’ensemble des contrôles tels que les τn sont à valeur dans {ℓh, ℓ = k, . . . ,m}. On

montre que le taux de convergence de vh vers v est de h1/2−ε, où h est le pas de discrétisation en

temps et ε > 0. Ceci étend les résultats obtenus par Chassagneux, Elie et Kharroubi [13] dans

le cas où la diffusion n’est pas contrôlée. Quand le coût de changement de régime c ne dépend

pas du processus X, on obtient un taux de convergence en h1/2 comme pour le problème d’arrêt

optimal (cf. Lamberton [45]).

Comme la diffusion Xs n’est pas forcément simulable en pratique, on considère donc à la

place le schéma d’Euler X̄s défini récursivement par :

X̄tk
= x,

X̄tℓ+1
= X̄tℓ

+ b(X̄tℓ
, αtℓ

)h+ σ(X̄tℓ
, αtℓ

)
√
hϑℓ+1, k ≤ ℓ ≤ m− 1,

où ϑk+1 = (Wtk+1
− Wtk

)/
√
h a pour distribution N (0, Id). On montre alors que la fonction

valeur correspondante v̄h converge vers vh en h1/2.

La principale difficulté de ces preuves vient du terme de coût de changement de régime, le

nombre de ces changements étant a priori illimités. En utilisant des outils d’EDSRs, on montre

des estimations sur les moments de ce nombre de switchings pour une stratégie optimale.

On étudie ensuite deux schémas numériques par quantification :

• Le premier schéma est une approche par quantification markovienne dans la veine de Pagès,

Pham et Printems [58]. On considère une grille de discrétisation en espace X = (δ/d)Zd ∩
B(0, R). On approxime le schéma d’Euler de la façon suivante : la gaussienne ϑℓ+1 est remplacée

par sa quantifiée ϑ̂ℓ+1, et le résultat obtenu est ensuite projeté sur la grille X. Autrement dit on
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considère le processus X̂(1) défini par :

X̂
(1)
tk

= x,

X̂
(1)
tℓ+1

= ProjX

(
X̂

(1)
tℓ

+ b(X̂
(1)
tℓ
, αtℓ

)h+ σ(X̂
(1)
tℓ
, αtℓ

)
√
hϑ̂ℓ+1

)
, k ≤ ℓ ≤ m− 1,

et on définit la fonction valeur associée v̂(1) :

v̂
(1)
i (tk, x) = sup

α∈Ah
tk,i

E
[m−1∑

ℓ=k

f(X̂
(1)
tℓ
, αtℓ

)h+ g(X̂
(1)
tm
, αtm) −

N(α)∑

n=1

c(X̂(1)
τn
, ιn−1, ιn)

]
.

En pratique, on peut calculer explicitement cette fonction par un algorithme récursif de pro-

grammation dynamique :

v̂i(tm, x) = gi(x), (x, i) ∈ X × Iq

v̂i(tk, x) = max
j∈Iq

[ N∑

l=1

πl v̂j

(
tk+1,ProjX

(
x+ b(x, j)h+ σ(x, j)

√
hwl

) )
+ fj(x)h− cij(x)

]
,

(x, i) ∈ X × Iq, 0 ≤ k ≤ m− 1,

où (wl)1≤l≤N est la grille de quantification de la loi normale utilisée, de poids associés (πl)1≤l≤N .

En suivant une méthode similaire à [58] (la principale différence étant que dans notre cas
la volatilité n’est pas supposée bornée), on obtient le résultat suivant sur la convergence de la
fonction v̂(1) :

∣∣v̄i(tk, x) − v̂
(1)
i (tk, x)

∣∣ ≤ K exp
(
Kh−1/2

∥∥ϑ− ϑ̂
∥∥

2

) (
1 + |x| +

δ

h

){ δ
h

+ h−1/2
∥∥ϑ− ϑ̂

∥∥
2

(
1 + |x| +

δ

h

)

+
1

Rh
exp(Kh−1/2

∥∥ϑ− ϑ̂
∥∥

4
)

(
1 + |x|2 + (

δ

h
)2

)}
.

Cette erreur dépend essentiellement de trois termes : δ
h , 1

Rh et h−1/2
∥∥ϑ − ϑ̂

∥∥
2
, et pour avoir

une bonne approximation les paramètres de discrétisation doivent donc être choisis de façon à

ce que ces termes soient négligeables.

• On propose également une approche par quantification marginale dans le cas particulier où
la diffusion n’est pas contrôlée, inspirée du schéma numérique de Bally et Pagès [5] pour le
problème d’arrêt optimal. Pour chaque pas de temps k = 0, . . . ,m, on se donne une grille

Γk = {x1
k, . . . , x

Nk

k } et on considère la quantification des marginales du schéma d’Euler : X̂
(2)
k

= Projk(X̄tk
). La fonction valeur est alors approximée par v̂(2) définie récursivement par un
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algorithme de descente d’arbre :

v̂
(2)
i (tm, x) = gi(x), x ∈ Γm

v̂
(2)
i (tk, x

l
k) = max

j∈Iq

[Nk+1∑

l′=1

πll′

k v̂
(2)
j (tk+1, x

l′

k+1) + hfj(xl
k) − cij(xl

k)
]
, l = 1, . . . , Nk,

k = 0, . . . ,m− 1,

où

πll′

k = P[X̂k+1 = xl′

k+1|X̂k = xl
k].

On montre alors l’estimation suivante sur la fonction valeur en fonction de l’erreur de quantifi-

cation :

max
i∈Iq

∣∣v̄i(0, x0) − v̂i
0(x0)

∣∣ ≤ K(1 + |x0|)
m∑

k=1

∥∥X̄tk
− X̂k

∥∥
2
.

Enfin dans la dernière partie de ce chapitre, on étudie des exemples numériques comparant

les résultats de nos schémas numériques aux formules explicites obtenues par Ly Vath et Pham

[51].

Cette partie est tirée d’un article réalisé en collaboration avec Idris Kharroubi et Huyên

Pham [28].



General Introduction

Abstract : This thesis is divided into two parts that may be read independently.

The first part is about the mathematical modelling of liquidity risk. The aspect of illiquidity

studied here is the constraint on the trading dates, meaning that in opposition to the classical

models where investors may trade continuously, we assume that trading is only possible at

discrete random times. We then use optimal control techniques (dynamic programming and

Hamilton-Jacobi-Bellman equations) to identify the value functions and optimal investment

strategies under these constraints. The first chapter focuses on a utility maximisation problem

in finite horizon, in a framework inspired by energy markets. In the second chapter we study an

illiquid market with regime-switching, and in the third chapter we consider a market in which

the agent has the possibility to invest in a liquid asset and an illiquid asset which are correlated.

In the second part we present probabilistic quantization methods to solve numerically an

optimal switching problem. We first consider a discrete time approximation of our problem and

prove a convergence rate. Then we propose two numerical quantization methods : a markovian

approach where we quantize the gaussian in the Euler scheme, and, in the case where the

underlying diffusion is not controlled, a marginal quantization approach inspired by numerical

methods for the optimal stopping problem.

0.1 First part : Liquidity risk modelling

Liquidity risk is one of the most important risks faced by the finance industry, especially

during periods of financial crisis when the markets feel various kinds of illiquidity. Roughly

speaking, liquidity risk may be defined as the risk associated to the impossibility of the agent

to buy or sell assets immediately and/or at each time, as well as to evaluate at each time the

value of his portfolio.

27
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In the seminal works of Merton on portfolio management and Black and Scholes on option

pricing, as well as in the majority of the following litterature in mathematical finance, it is

assumed that investors can buy and sell continuously, with immediate rebalancing, without

paying costs for trading and without affecting the assets’ price. It is clear that such point of

view is quite unrealistic in practice, as investors face various types of assets’ illiquidity. In the

last decade there have been various approaches to include these types of market’s illiquidity,

formalize and quantify the different aspects of this financial risk.

A first approach was to study illiquidity in terms of transaction costs, see for instance

Kabanov and Safarian’s book [38] for a recent overview of the theory. In this context frequent

trading of assets may induce potentially high costs, but the investor may buy or sell continuously.

In another direction, the market microstructure literature has shown both theoretically and

empirically that large trades move the price of the underlying assets. This factor has been studied

by Cetin, Jarrow et Protter [14], Bank et Baum [7] for arbitrage and option pricing, Schied and

Schöneborn [67] for a portfolio liquidation problem. Ly Vath, Mnif et Pham [50] consider a

model combining large investor effects and transaction costs in a portfolio management context.

Another aspect of illiquidity is the one due to the delay in the execution of the trading orders.

Trading orders are actually not executed immediately, requiring time to reach the market (see e.g.

Subramanian and Jarrow [70]). This time lag has an impact on the dynamics of the portfolio,

and consequently they are expected to lead to different investor’s choices. The problem of

execution delay has been investigated in the context of stochastic impulse control in Øksendal

and Sulem [56] for special kind of dynamics and in Bruder and Pham [11] in a quite general

setting.

The type of illiquidity that we study in this thesis is the restriction on trading/observation

times. The classical assumption of continuous trading is irrealistic in the case of illiquid markets

where, because of the low volume of buy/sell orders, a relatively long period may take place

between successive trading possibilities. Rogers [65] considers an agent that can only rebalance

his portfolio at fixed intervals and shows that the resulting loss is relatively small compared to

the uncertainty on the parameters of the asset. Rogers and Zane [66], Matsumoto [53] consider

a model where the successive trading dates are given by the jump time of a Poisson process

with constant intensity λ, and study the asymptotic behavior when λ is large. In the same

framework, Pham and Tankov [61, 62] study an investment/consumption problem over infinite
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horizon, characterize the value function as the unique (viscosity) solution of the HJB equation

and propose a numerical scheme to compute it. Let us also mention Bayraktar and Ludkovski

[8] that study in a similar context a portfolio liquidation problem. We extend the approach of

these papers over three different problems developped below.

0.1.1 Optimal investment on finite horizon with random discrete order flow

in illiquid markets

In the first chapter we study a utility maximisation problem over finite horizon in an illiquid

market where the agent can only observe and trade the asset at discrete random times. An

important feature of our model is that the arrival rate of these dates is close to infinity when

the time horizon T is close. This is a natural assumption to modelize what is for instance

observed in the case of forward contracts in energy markets : because of the physical nature of

the underlying asset, trading activity is really low far from the delivery, and is higher near the

delivery.

A similar problem has been studied by Matsumoto [53] in the cas of logarithmic utility. The

main differences with our approach, in addition to the fact that we consider a less restrictive

class of utility functions and price processes, are that in [53] liquidity is constant in time and

the asset price is observed continuously.

We study a market consisting of a riskless asset (assumed constant) and an illiquid risky

asset with price process (St)0≤t≤T . The dates at which the agent can observe the price St and

trade the illiquid asset are given by a sequence of stopping times (τn)n≥0 independent of S.

We assume that S follows log-Levy type dynamics, more precisely St = E(L)t, where E
denotes the stochastic exponential and

Lt =

∫ t

0
b(u) du+

∫ t

0
c(u) dBu +

∫ t

0

∫ ∞

−1
y(µ(dt, dy) − ν(dt, dy)), 0 ≤ t ≤ T,

is a semimartingale with independant increments and jumps ∆Lt > −1. We further assume

natural integrability conditions on the deterministic characteristics (b, c, ν) and a no-arbitrage

condition. We denote by Zt,s = Ss−St

St
the return between s and t and p(t, s, dz) = P[Zt,s ∈ dz]

its distribution.

The dates (τn) are given by the jump times of an inhomogeneous Poisson process (Nt)0≤t≤T
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of deterministic intensity λ(t). We make the following assumption for λ :

∫ t

0
λ(u)du < ∞, ∀ 0 ≤ t < T and

∫ T

0
λ(u)du = ∞.

Under this condition the sequence of stopping times (τn) satisfies almost surely

lim
n→∞

τn = T.

We define the discrete observation filtration Fn = σ
{

(τk, Zτk−1,τk
) : 1 ≤ k ≤ n

}
. An

investment strategy is then a sequence (αn), where αn, Fn-mesurable, represents the amount

held in the risky asset over the period (τn, τn+1]. The wealth process (Xτn) associated to a

strategy α verifies

Xτn+1 = Xτn + αnZτn,τn+1 .

In the sequel we fix an initial capital X0 > 0 and we restrict our attention to the set A of

admissible strategies such that the investor’s wealth is nonnegative at all times : Xτn ≥ 0, n ≥ 0.

Given our assumptions on S, Zτn,τn+1 has for support (−1,+∞) conditionally on Fn, and it is

easy to see that this admissibility constraint is equivalent to a no-shortselling constraint (both

on the riskless and risky assets).

Given a utility function U satisfying some general conditions, we study the following control

problem :

V0 = sup
α∈A

E[U(XT )].

We then solve this optimization problem, i.e. we characterize V0 and the corresponding

optimal strategy α̂. We use a direct Dynamic Programming approach : we formally write down

the Dynamic Programming Equation (DPE) for our problem, then by analytical arguments we

prove the existence of a solution to this DPE, and we conclude by a verification argument.

In our context the DPE is written as a fixed-point problem (with a terminal condition)





Lv = v

limtրT,x′→x v(t, x′) = U(x),
(0.1.1)
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where given a function w verifying appropriate growth conditions, Lw is defined by :

Lw(t, x) = sup
π∈[0,1]

∫ T

t

∫

(−1,∞)
λ(s)e−

∫ s

t
λ(u)duw(s, x(1 + πz))p(t, s, dz)ds.

To prove the existence of a solution to (0.1.1), we follow a value iteration approach, standard

in the case of discrete problems (see also [23]). We consider the sequence of functions (vm)m≥0

defined inductively by :

v0 = U,

vm+1 = Lvm.

We then show that:

• vm converges to a function v∗, solution to (0.1.1).

• V0 = v∗(0, X0), and the optimal strategy α̂ is given by :

α̂n = π̂(τn, X̂τn)X̂τn , n ≥ 0,

where π̂ is defined by

π̂(t, x) ∈ arg max
π∈[0,1]

∫ T

t

∫

(−1,∞)
λ(s)e−

∫ s

t
λ(u)duv∗(s, x(1 + πz))p(t, s, dz)ds.

Moreover, vm corresponds to the following control problem :

vm(0, X0) = sup
α∈Am

E[U(XT )],

where Am is the set of admissible strategies with no investment in the risky asset after the m-th

trading date, i.e. αn = 0 for n ≥ m.

In the last part of this chapter we focus on the convergence of our problem to the standard

continuous time trading problem. Indeed, when the intensity λ of arrival of trading dates is very

large at all times, we expect the corresponding value V λ
0 to be very close to the one where the

agent may trade continuously, taking into account the no-shortselling constraint.

We thus define

V M
0 = sup

π∈D(S)
E [U(Xπ

T )] ,
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where D(S) is the set of continous-time trading strategies in the asset S with no shortselling.

We obtain the following result : given a sequence of intensity functions λk such that

λk(t) → ∞ as k → ∞, ∀t ∈ [0, T ],

we have the convergence

V λk
0 → V M

0 as k → ∞,

This chapter is based on a paper written in collaboration with Huyên Pham et Mihai Sîrbu

[29], published in International Journal of Theoretical and Applied Finance.

0.1.2 Optimal investment/consumption in an illiquid market with regime

switching

In the first papers studying liquidity risk models with discrete trading times (for instance

[66], [53], [61]), the trading frequency is constant in time and independent from the assets’ price.

In practice the liquidity of the market exhibits a cyclical pattern, following both random and

deterministic fluctuations at various time scales, and the liquidity of the market is correlated

to price dynamics. In this chapter we study a simple model of an illiquid market with regime

switching, each regime having different liquidity and price dynamics.

Regime-switching models and their applications to finance have been studied in several works,

see e.g. the papers [69],[72] or from a statistical viewpoint the thesis [55]. More recently in a

liquidity risk concept, the papers [21] and [49] study a market undergoing liquidity shocks during

which trading activity is completely stopped.

We consider a market going through regime switches, modelled by a Markov chain (It) with

finite state space Id = {1, . . . , d} and infinitesimal generator Q = (qij). The market is composed

of a riskless asset assumed constant and a risky asset with price process S. The agent can only

trade this asset at times (τn)n≥0, corresponding to the jump times of a Cox process (Nt)t≥0 with

intensity λIt . In other words, at each market regime i corresponds an intensity λi of trading

times arrival. It is important to note that unlike in the model of the first chapter or the paper

[61], the constraint is only on the trading times, and that the price St is observed continuously

by the agent.
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In each regime, the price St follows geometric Brownian motion dynamics :when It = i,

dSt = St(bidt+ σidWt),

where W is a standard Brownian motion independent of (I,N), and bi, σi, i = 1, . . . , d are

constant.

Furthermore, we assume that the price jumps at each regime change : when I goes from

regime i to regime j at time t,

∆St = −St−γij ,

where the γij < 1 are given constants.

We consider an agent investing in this market and consuming continuously; a strategy is then

a pair of predictable processes (c, ζ) where c is the consumption and ζ the investment strategy.

Denoting by (Xt, Yt) the state variables corresponding to the wealth invested respectively in the

riskless and the risky asset, we have the following dynamics :

dXt = −ctdt− ζtdNt,

dYt = Yt−
dSt

St−
+ ζtdNt.

Starting from regime i and initial wealths x, y we consider the admissible strategies (denoted

by Ai(x, y)) such that the total wealth Rt := Xt + Yt is nonnegative at any trading time τn. As

in the previous chapter, this is equivalent to a no-shortselling constraint : (c, ζ) ∈ Ai(x, y) iff

Xt, Yt ≥ 0 a.s. for all t.

Given a utility function U satisfying standard conditions and a growth condition, and for a

discount factor ρ > 0 we consider the investment/consumption problem over an infinite horizon

:

vi(x, y) = sup
(ζ,c)∈Ai(x,y)

E

[∫ ∞

0
e−ρtU(ct)dt

]
. (x, y) ∈ R2

+,

We also introduce the function

v̂i(r) = sup
x∈[0,r]

vi(x, r − x), r ≥ 0,
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corresponding to the value obtained by rebalancing optimally an initial wealth r between the

riskless and the risky asset. In other words, vi is the value function between two trading times,

while ṽi is the value function at a trading time.

In order to solve this control problem, we characterize the value functions vi as solutions

to the corresponding Hamilton-Jacobi-Bellman (HJB) equation. The HJB equation is a partial

differential equation, infinitesimal equivalent to Bellman’s dynamic programming principle (see

the books [24] an [60] for an introduction to markovian control in continuous time). In our case

this equation is the following system :

ρvi − biy
∂vi

∂y
− 1

2
σ2

i y
2∂

2vi

∂y2
− sup

c≥0

[
U(c) − c

∂vi

∂x

]

−
∑

j 6=i

qij

[
vj

(
x, y(1 − γij)

)
− vi(x, y)

]
(0.1.2)

− λi
[

sup
−y≤ζ≤x

vi(x− ζ, y + ζ) − vi(x, y)
]

= 0.

on Id × (0,∞) × R+, with boundary conditions :

vi(0, 0) = 0 (0.1.3)

vi(0, y) = Ei


 sup

0≤ζ≤y
Sτ1
S0

vIτ1

(
ζ, y

Sτ1

S0
− ζ

)

 . (0.1.4)

It is well known that in the general case the functions vi are not smooth enough to interpret

this equation in the classical sense, and a weaker class of solutions, namely viscosity solutions,

is required (see e.g. [16]).

Using a dynamic programming principle we show that vi is a viscosity solution to (0.1.2),

and we further prove a comparison principle for this equation. Our functions (vi) are thus

characterized as the unique solution to the system (0.1.2) with boundary conditions (0.1.3)-

(0.1.4).

We then focus on the existence and characterization of optimal solutions to our control

problem. In the general case of viscosity solutions, there are some verification results (see

[30]-[31]), but their assumptions are too restrictive to be applied here. We thus try to find

some conditions under which the functions vi are sufficiently differentiable to apply classical
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verification results. Since our equation is degenerate (the second order term only contains the

derivative with respect to y), in the case of a general utility function U we cannot hope to apply

standard existence results for elliptic PDEs.

However, in the special case of power utility U(c) = cp

p , we can reduce the dimension of the

state space. Indeed, applying the change of variables

r = x+ y,

z =
y

x+ y
,

the value function may be rewritten as

vi(x, y) = U(r)ϕi(z).

We are thus led to solving a differential equation in z, which this time satisfies a uniform

ellipticity condition.

In this particular case, we are then able to prove the regularity of the function vi, and we

deduce the existence of optimal controls characterized in feedback form.

Finally, we look into the numerical resolution of the equation (0.1.2). The main difficulty

comes from the nonlocal terms, which may be avoided by an iterative procedure. We define

v0 = 0 and inductively, vn+1 is defined as the unique (viscosity) solution to

(ρ− qii + λi)v
n+1
i − biy

∂vn+1
i

∂y
− 1

2
σ2

i y
2∂

2vn+1
i

∂y2
− sup

c≥0

[
U(c) − c

∂vn+1
i

∂x

]

=
∑

j 6=i

qijv
n
j

(
x, y(1 − γij)

)
+ λi sup

−y≤ζ≤x
vn

i (x− ζ, y + ζ)

with appropriate boundary conditions.

As in the first chapter vn may be interpreted as the value function for a control problem :

vn
i (x, y) = sup

(ζ,c)∈Ai(x,y)
E

[∫ θn

0
e−ρtU(ct)dt

]
,

where θn is the n-th time where there is either a trading date or a regime change. Using this

representations, whe show that vn converges to v and that the convergence speed is exponential.

We illustrate our results with numerical tests for markets with 1 or 2 regimes. In the single-

regime case, we compare the results to those of [61], where the agent observes the risky asset
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only at the dates (τn). In the case of a market with 2 regimes, we observe that typically the

existence of several regimes increases the "cost of illiquidity" for the agent.

This chapter is based on a paper written in collaboration with Fausto Gozzi and Huyên

Pham [27].

0.1.3 Optimal investment/consumption in a market with liquid and illiquid

assets

Tha majority of works on liuidity risk focus on an agent investing exclusively in an illiquid

asset. However, in practice it is common to have several correlated tradable assets with different

liquidity. For instance an index fund over some given financial market will be usually much

more liquid than the individual tracked assets, while sharing a positive correlation with those

assets. An investor in this market will then have the possibility of hedging his exposure in the

less liquid assets by investing in the index and rebalancing his position frequently. Tebaldi and

Schwartz [68], Longstaff [48] consider a market constituted of a liquid asset that can be traded

continuously, and an illiquid asset that may only be traded at the initial time and is liquidated at

a terminal date. Following the line of the latter papers, here we also consider a market composed

by a liquid asset and an illiquid one, but we take a less restrictive approach assuming that the

illiquid asset may be traded at discrete random times.

To this regard, we have to mention the recent paper by Ang, Papanikolaou and Westerfield

[2] that studies a very similar problem to the one studied here. However, we stress that our

results are different for two reasons. First, they consider utility functions of CRRA type with

risk aversion parameter γ ≥ 1, while we study the problem for a different class of functions,

not assumed of CRRA type. Second, they assume that the agent is able to observe the illiquid

asset’s price continuously, while in our case observation is restricted to the trading dates. We

believe this is a more natural assumption, as in practice trading possibilities and observation of

the price coincide via the arrival of buy/sell orders on the market.

We consider a market consisting of a riskless asset assumed constant and two risky assets :

• a liquid asset that may be traded continuously, with price process L,

• an illiquid asset with price process I, that can only be traded and observed at random

times (τn) corresponding to the jump times of a Poisson process N with intensity λ.
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We assume that L and I follow Black-Scholes dynamics :

dLt = Lt(bLdt+ σLdWt),

dIt = It(bIdt+ σI(ρdWt +
√

1 − ρ2dBt),

where W and B are independent Brownian motions (independent of N), and ρ ∈ (−1, 1) is the

correlation coefficient.

We define the observation filtration for the agent :

G := (Gt)t≥0; Gt = σ(τn, Iτn ; τn ≤ t) ∨ FW
t ∨ N ,

where FW is the filtration generated by W (or by L) and N is the σ-algebra generated by the

P-null sets.

A consumption/investment strategy on this market is then a triple (c, π, α), where:

• c = (ct) is a G-predictable process corresponding to the consumption rate,

• π = (πt) also G-predictable is the amount invested in the liquid asset,

• α = (αk) is a sequence of Gτk
-measurable random variables, representing the amount

invested in the illiquid asset at time τk.

Given a initial wealth r, we restrict our attention to the set A(r) of strategies satisfying an

admissibility condition, which like in the previous chapters reduces to a no-shortselling constraint.

We are then given a utility function U and a discount factor β > 0, and consider the control

problem :

V (r) = sup
(c,π,α)∈A(r)

E

[∫ ∞

0
e−βsU(cs)ds

]
.

This control problem is a nonstandard, mixed discrete/continuous (due to the nature of our

observation filtration G) problem . We then follow the same approach as Pham and Tankov in

[61] : by dynamic programming we are reduced to study the problem between two trading times,

and we show that it is equivalent to a standard control problem.
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In our context, the dynamic programming principle is written as :

V (r) = sup
(c,π,α)∈A(r)

E

[∫ τ1

0
e−βsU(cs)ds+ e−βτ1V (Rτ1)

]
,

where

Rτ1 = r +

∫ τ1

0
(−csds+ πs

dLs

Ls
) + α0

Iτ1 − I0

I0

is the wealth at time τ1.

We will rewrite the right-hand side of the previous equality as solution to a standard stochas-

tic control problem for the filtration FW .

First, noting that only this term only takes into account the strategy before τ1, we may

rewrite this equality as

V (r) = sup
a≤r

sup
(c,π)∈A0(r−a)

E

[∫ τ1

0
e−βsU(cs)ds+ e−βτ1V (Rτ1)

]
,

where given an initial investment x in liquid wealth, A0(x) is the set of FW -predictable strategies

satisfying some admissibility conditions.

We then decompose the illiquid asset price as It = EtJt, where

dEt

Et
=
ρσI

σL

dLt

Lt
= (ρbI

σI

σL
dt+ ρσIdWt),

dJt

Jt
= (bI − ρbI

σI

σL
)dt+ σI

√
1 − ρ2dBt.

Note that (Et) is FW -adapted, while (Jt) is independent of FW .

Given an initial wealth r = x + y split initially between an amount x of liquid wealth and

an amount y in the illiquid asset, and a strategy (c, π) ∈ A0(x), we consider the state variables

X, Y defined by :

Xx,c,π
t = x+

∫ t

0
(−csds+ πs

dLs

Ls
),

Y y
t = yEt.

In other words, Xs corresponds to the liquid wealth, while Ys corresponds to the wealth initially

invested in I, modulated by the information brought by the variations of the liquid asset’s price

since the initial date.
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Defining the operator G by

G[w](t, x, y) = E [w(x+ yJt)] ,

we finally obtain

V (r) = sup
0≤a≤r

sup
(c,π)∈A0(x)

E

∫ ∞

0
e−(β+λ)s (U(cs) + λG[V ] (s,Xx,π,c

s , Y y
s )) ds.

This is a standard (time-inhomogeneous) stochastic control problem. We then define the

dynamic value function V̂ by :

V̂ (t, x, y) = sup
(c,π)∈At(x)

E

∫ ∞

t
e−(β+λ)(s−t)

(
U(cs) + λG[V ]

(
s,Xt,x,π,c

s , Y t,y
s

))
ds.

Notice that V̂ and V are connected by

V (r) =
[
HV̂

]
(r) := sup

0≤x≤r
V̂ (0, x, r − y).

Computing V is thus equivalent to computing V̂ . To do so, we use the standard approach by

HJB equations. The HJB equation for our problem is written as

−V̂t + (β + λ)V̂ − λG[HV̂ ](t, x, y) − sup
c≥0,π∈R

Hcv(y,D(x,y)V̂ , D
2
(x,y)V̂ ; c, π) = 0, (0.1.5)

where the hamiltonian Hcv is defined by

Hcv(y, p, A; c, π) =

[
U(c) + (πbL − c)p1 +

ρbLσI

σL
yp2 +

σ2
Lπ

2

2
A11 + πρσIσLyA12 + ρ2σ

2
I

2
y2A22

]
.

As in the previous chapter, we then show that V̂ is the unique viscosity solution to (0.1.5)

on [0,+∞) × (0,+∞) × R+, satisfying the boundary condition

v̂(t, 0, y) = E

∫ ∞

t
e−(β+λ)(s−t)λG[Hv̂](s, 0, Ỹ t,y

s )ds

and an appropriate growth condition.

This characterization allows us to compute V̂ numerically.

Like in the previous chapters, we follow an iterative method : starting from V̂ 0 = 0,

we define recursively V̂ n+1 as the solution to (0.1.5) where the nonlocal term is replaced by
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λG[HV̂ n](t, x, y). We then obtain similar results as in chapter 2 : we show that V̂ n corresponds

to the control problem in which the agent only consumes up to time τn, and V̂ n converges to V̂

exponentially in n.

Moreover, since the PDE we need to solve is over an infinite horizon, in practice we consider

an approximate solution V n,T for a fixed horizon T . We prove that for T chosen large enough,

V n,T approximates V n with arbitrary small precision (uniformly in n).

Finally we present some numerical illustrations to our results. We fix the parameters

bL, σL, bI , σI , and we observe how the value function and the optimal strategies change when λ

and ρ vary.

This chapter is based on a paper written in collaboration with Salvatore Federico.

0.2 Second part : Time discretization and quantization methods

for optimal multiple switching problem

In this second part, we present numerical schemes for the optimal switching problem. Let

us first recall the definition of this problem.

We are given a filtered probability space (Ω,F , (Ft),P), and a finite set of regimes Iq =

{1, . . . , q}. A switching control is then a sequence (τn, ιn)n≥0, where (τn) is a nondecreasing

sequence of stopping times and (ιn) is a sequence of Fτn-measurables r.v.s valued in Iq. To each

α is associated the controlled diffusion

dXt = b(Xt, αt)dt+ σ(Xt, αt)dWt,

where W is a standard Brownian motion in Rd, and αt = ιn sur [τn, τn+1). The control problem

we consider is then :

vi(t, x) = sup
α∈At,i

E
[ ∫ T

t
f(Xt, αt)dt+ g(XT , αT ) −

∑

τn≤T

c(Xτn , ιn−1, ιn)
]
.

Optimal switching has numerous applications, in particular in finance, see e.g. chapter 5

in the book [60]. From a numerical point of view, these problems are usually solved by a

discretization in time, and a backward inductive procedure that requires the computation of

conditional expectations. Regarding the discretization error, in the case where the diffusion

is not controlled, some results have been obtained by Chassagneux, Elie and Kharroubi [13],
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using methods of Backward Stochastic Differential Equations (BSDEs) with oblique reflection

(see Hamadène and Zhang [34], Hu and Tang [35] for the properties of these BSDEs). For the

computation of conditional expectations, several methods have been developed for the optimal

stopping problem : Malliavin calculus techniques (Lions and Regnier [47], Bouchard, Ekeland

and Touzi [10]), Longstaff-Schwarz type regressions (Clément, Lamberton and Protter [15]), or

quantization methods (Bally-Pagés [5]).

In this chapter we present numerical schemes based on this latter approach. Let us recall

that optimal quantization consists in approximating a random variable X by a quantizer X̂

with finite support, in such a way that the quantization error
∥∥∥X − X̂

∥∥∥
p

is minimized. See for

instance the book by Graf and Luschgy [32] for an introduction to quantization theory. In the

last decade, optimal quantization has been intensively studied in numerical probability, and in

particular in finance, see the paper [57] for an overview.

In our case, we assume that all the functions we consider are Lipschitz in the space variable,

and that the cost function satisfies a natural "triangular condition".

We first study the impact of time discretization on the value function of our problem. Given

a time step h, we consider the function vh defined by :

vh
i (tk, x) = sup

α∈Ah
tk,i

E
[m−1∑

ℓ=k

f(Xtk,x,α
tℓ

, Itℓ
)h+ g(Xtk,x,α

tm
, Itm) −

N(α)∑

n=1

c(Xtk,x,α
τn

, ιn−1, ιn)
]
,

where Ah
tk,i is the set of controls such that the sequence (τn) takes its values in {ℓh, ℓ = k, . . . ,m}.

We show that the convergence rate of vh to v is in h1/2−ε, for any ε > 0. This extends the results

obtained by Chassagneux, Elie and Kharroubi [13] in the case where the diffusion is uncontrolled.

When the switching cost c does not depend on the process X, we recover the same convergence

rate in h1/2 as in the case of optimal stopping (see Lamberton [45]).

Since in practice the diffusion Xs may not always be simulated, we consider instead the Euler

scheme X̄s defined inductively by :

X̄tk
= x,

X̄tℓ+1
= X̄tℓ

+ b(X̄tℓ
, αtℓ

)h+ σ(X̄tℓ
, αtℓ

)
√
hϑℓ+1, k ≤ ℓ ≤ m− 1,

where ϑk+1 = (Wtk+1
−Wtk

)/
√
h has N (0, Id) law. We then prove that the corresponding value
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function v̄h converges to vh in h1/2.

The main difficulty in these proofs comes from the regime switching term, the number of

regime switches being a priori unbounded. Using some tools from BSDE theory, we prove some

estimates for the moments of this number in the case of an optimal strategy.

We then study two quantization schemes :

• The first scheme follows an approach by markovian quantization in the vein of Pagès, Pham et

Printems [58]. We consider a space discretization grid X = (δ/d)Zd ∩ B(0, R). We approximate

the Euler scheme in the following way : the gaussian ϑℓ+1 is replaced by its quantizer ϑ̂ℓ+1, and

the obtained result is then projected on the grid X. Hence we consider the process X̂(1) defined

by:

X̂
(1)
tk

= x,

X̂
(1)
tℓ+1

= ProjX

(
X̂

(1)
tℓ

+ b(X̂
(1)
tℓ
, αtℓ

)h+ σ(X̂
(1)
tℓ
, αtℓ

)
√
hϑ̂ℓ+1

)
, k ≤ ℓ ≤ m− 1,

and we defined the associated value function v̂(1) :

v̂
(1)
i (tk, x) = sup

α∈Ah
tk,i

E
[m−1∑

ℓ=k

f(X̂
(1)
tℓ
, αtℓ

)h+ g(X̂
(1)
tm
, αtm) −

N(α)∑

n=1

c(X̂(1)
τn
, ιn−1, ιn)

]
.

This function can be computed explicitly by a dynamic programming induction :

v̂i(tm, x) = gi(x), (x, i) ∈ X × Iq

v̂i(tk, x) = max
j∈Iq

[ N∑

l=1

πl v̂j

(
tk+1,ProjX

(
x+ b(x, j)h+ σ(x, j)

√
hwl

) )
+ fj(x)h− cij(x)

]
,

(x, i) ∈ X × Iq, 0 ≤ k ≤ m− 1,

where (wl)1≤l≤N is a quantization grid for the gaussian law, with weights (πl)1≤l≤N .

Following a similar method of proof as [58] (the main difference being that in our case the
volatility is not assumed bounded), we get the following result for the convergence of the function
v̂(1) :

∣∣v̄i(tk, x) − v̂
(1)
i (tk, x)

∣∣ ≤ K exp
(
Kh−1/2

∥∥ϑ− ϑ̂
∥∥

2

) (
1 + |x| +

δ

h

){ δ
h

+ h−1/2
∥∥ϑ− ϑ̂

∥∥
2

(
1 + |x| +

δ

h

)

+
1

Rh
exp(Kh−1/2

∥∥ϑ− ϑ̂
∥∥

4
)

(
1 + |x|2 + (

δ

h
)2

)}
.

This error is mainly a function of three terms : δ
h , 1

Rh et h−1/2
∥∥ϑ− ϑ̂

∥∥
2
, and to obtain a good
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approximation the discretization parameters must be chosen so that these terms are small.

• In the special case where the diffusion is not controlled, we also present a marginal quanti-
zation approach, inspired by the numerical scheme in Bally-Pagès [5] for the optimal stopping

problem. At each time step k = 0, . . . ,m is given a grid Γk = {x1
k, . . . , x

Nk

k }, and we consider

the quantization of the marginals of the Euler scheme : X̂
(2)
k = Projk(X̄tk

). The value function

is then approximated by v̂(2) defined inductively by a tree descent algorithm :

v̂
(2)
i (tm, x) = gi(x), x ∈ Γm

v̂
(2)
i (tk, x

l
k) = max

j∈Iq

[Nk+1∑

l′=1

πll′

k v̂
(2)
j (tk+1, x

l′

k+1) + hfj(xl
k) − cij(xl

k)
]
, l = 1, . . . , Nk,

k = 0, . . . ,m− 1,

where

πll′

k = P[X̂k+1 = xl′

k+1|X̂k = xl
k].

We then show the following estimate on this value function depending on the quantization error

:

max
i∈Iq

∣∣v̄i(0, x0) − v̂i
0(x0)

∣∣ ≤ K(1 + |x0|)
m∑

k=1

∥∥X̄tk
− X̂k

∥∥
2
.

Finally, in the last part of this chapter we present some numerical tests comparing the results

obtained by our numerical schemes to the explicit formulae obtained by Ly Vath and Pham [51].

This part is based on a paper written in collaboration with Idris Kharroubi et Huyên Pham

[28].
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Chapter 1

Optimal investment on finite horizon

with random discrete order flow in

illiquid markets

Abstract : We study the problem of optimal portfolio selection in an illiquid market with discrete

order flow. In this market, bids and offers are not available at any time but trading occurs more frequently

near a terminal horizon. The investor can observe and trade the risky asset only at exogenous random

times corresponding to the order flow given by an inhomogenous Poisson process. By using a direct

dynamic programming approach, we first derive and solve the fixed point dynamic programming equation

and then perform a verification argument which provides the existence and characterization of optimal

trading strategies. We prove the convergence of the optimal performance, when the deterministic intensity

of the order flow approaches infinity at any time, to the optimal expected utility for an investor trading

continuously in a perfectly liquid market model with no-short sale constraints.

Key words: liquidity modelling, discrete order flow, optimal investment, inhomogenous Poisson process,

dynamic programming.
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1.1 Introduction

Financial modeling very often relies on the assumption of continuous-time trading. This is

essentially due to the availability of the powerful tool of stochastic integration, which allows

for an elegant representation of continuous-time trading strategies, and the analytic tractability

of the stochastic calculus, typically illustrated by Itô’s formula. Sometimes this assumption

may not be very realistic in practice: illiquid markets provide a prime example. Indeed, an

important aspect of market liquidity is the time restriction both on trading and observation of

the assets. For example, in power markets, trading occurs through a brokered OTC market,

and the liquidity is really thin. There could be a possible lack of counterparty for a given order:

bids and offers are not available at any time, and may arrive randomly, while the investor can

observe the asset only at these arrival times. Moreover, in these markets, because of the physical

nature of the underlying asset, trading activity is really low far from the delivery, and is higher

near the delivery.

In this paper, we propose a framework that takes into account such liquidity features by

considering a discrete order flow. In our model, the investor can observe and trade over a finite

horizon only at random times given by an inhomogenous Poisson process encoding the quotes

in this illiquid market. To capture the high frequency of trading in the neighborhood of the

finite horizon, we assume that the deterministic intensity of this inhomogenous Poisson process

approaches infinity as time gets closer to the finite horizon. This is the crucial feature of our

model, which allows us to compare trading strategies using expected utility from terminal wealth.

Optimal investment problems with random discrete trading dates were studied by several

authors. Rogers and Zane [66] and Matsumoto [53] considered trading times associated to the

jump times of a Poisson process, but assumed that the price process is observed continuously,

so that trading strategies are actually in continuous-time. Recently, Pham and Tankov [61] (see

also [17]) investigated an optimal portfolio/consumption choice problem over an infinite horizon,

where the asset price, essentially extracted from a Black-Scholes model, can be observed and

traded only at the random times corresponding to a Poisson process with constant intensity.

Compared to the model of Matsumoto [53], which is closest to our work, the present paper

contributes to different levels. First, we allow for a general utility function, as opposed to

power/log utility, and the underlying continuous-time asset price process is no longer a Brownian
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motion but an inhomogenous Lévy process. Second, in our framework, the traded asset is

observed only at the sequence of Poisson arrivals, and not continuously. As we prove later

in Lemma 1.4.1, in this Markov model actually continuous and discrete observations lead to

the same solutions. However, this is not obvious from [53], so Lemma 1.4.1 is a part of our

contribution. However, the main contribution of our model is the possibility to account for

more and more frequent trading near maturity. The total wealth of an agent can be only

defined at the trading times, so we believe that the model we present here is the only case of

time-illiquidity where it actually makes sense to consider expected utility from terminal wealth

(see Remark 1.3.1). If the trading intensity is constant (or does not satisfy the hyper-intensity

condition (1.2.1) below), then total wealth cannot be defined at the terminal time horizon since

the agent will usually not be able to liquidate his position at maturity.

In order to analyze our model of portfolio selection, we use a direct dynamic programming

approach. We first derive the fixed point dynamic programming equation (DPE) and provide

a constructive proof for the existence of a solution to this DPE in a suitable functional space

by means of an iterative procedure. Then, by proving a verification theorem, we obtain the

existence and characterization of optimal policies. We also provide an approximation of the

optimal strategies that involves only a finite number of iterations. Finally, we address the

natural question of convergence of our optimal investment strategy/expected utility when the

arrival intensity rate becomes large at all times. We prove that the value function converges

to the value function of an agent who can trade continuously in a perfectly liquid market with

no-short sale constraints. A related convergence result was recently obtained by Kardaras and

Platen [39] by considering continuous-time trading strategies approximated by simple trading

strategies with constraints, but with asset prices observed continuously. Here we face some

additional subtleties induced by the discrete observation filtrations: the illiquid market investor

has less information coming from observing the asset, compared to the continuous-time investor,

but he/she has the additional information coming from the arrival times, which is lacking in the

perfectly liquid case.

The rest of the paper is organized as follows. Section 2 describes the illiquid market model

with the restriction on the trading times, and sets up all the assumptions of the model. We

formulate in Section 3 the optimal investment problem, and solve it by a dynamic programming

approach and verification argument. Finally, Section 4 is devoted to the convergence issue when
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the deterministic intensity of arrivals is very large at all times.

1.2 The illiquid market model and trading strategies

We consider an illiquid market in which an investor can trade a risky asset over a finite

horizon. In this market, bids and offers are not available at any time, but trading occurs more

frequently near the horizon. This is typically the case in power markets with forward contracts.

This market illiquidity feature is modelled by assuming that the arrivals of buy/sell orders occur

at the jumps of an inhomogeneous Poisson process with an increasing deterministic intensity

converging to infinity at the final horizon. In order to obtain an analytically tractable model, we

further assume that the discrete-time observed asset prices come from an unobserved continuous-

time stochastic process, which is independent of the sequence of arrival times. We may think

about the continuous time process as an asset price process based on fundamentals independent

of time-illiquidity, which would be actually observed if trading occurred at all times.

More precisely, fixing a probability space (Ω,G,P) and a finite horizon T < ∞, we consider

the fundamental unobserved positive asset price (St)0≤t≤T . An investor can observe and trade

the asset only at some exogenous random times (τn)n≥0, τ0 = 0, such that (τn)n≥0 and (St)0≤t≤T

are independent under the physical probability measure P.

In order to obtain a stochastic control problem of Markov type for the utility maximiza-

tion problem below, we assume an exponential-Lévy structure and some regularity/integrability

conditions on the continuous-time positive price process S. More precisely, we assume that

St = E(L)t, 0 ≤ t ≤ T,

where the process (Lt)0≤t≤T is a semimartingale on (Ω,G,P) with independent increments and

jumps strictly greater than minus one. We use E(L) to denote the Doléans-Dade stochastic

exponential of L. The assumption ∆L > −1 ensures that the asset S, as well as its left-limit

S−, are strictly positive at all times. It is well known that a semimartingale with independent

increments has deterministic predictable characteristics, see e.g. [36]. We then assume that the

Lévy-Khintchin-Itô decomposition of L has the form

(HL)

Lt =

∫ t

0
b(u) du+

∫ t

0
c(u) dWu +

∫ t

0

∫ ∞

−1
y(µ(dt, dy) − ν(dt, dy)), 0 ≤ t ≤ T,
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where (Wt)0≤T is a Brownian motion on (Ω,G,P) independent on the jump measure µ with

deterministic compensator ν, and integrable large jumps, i.e

∫ T

0

∫ ∞

−1
y ν(dt, dy) < ∞.

The deterministic functions b : [0, T ] → R, c : [0, T ] → (0,∞), satisfy

∫ T

0
|b(u)|du < ∞, and

∫ T

0
c2(u)du < ∞.

Since in our model the asset S is not observed at the terminal time T , there is no loss of generality

if we assume that ST = ST −, which can be translated in terms of predictable characteristics as

ν({T}, (−1,∞)) = 0. We will make this assumption for the rest of the paper.

We denote by

Zt,s =
Ss − St

St
=



e

(Ls−Lt− 1
2

∫ s

t
c2(u) du)

∏

t<u≤s

e−∆Lu(1 + ∆Lu)



− 1, 0 ≤ t ≤ s ≤ T,

the return between times t and s (if trading is allowed at both times) and denote by

p(t, s, dz) = P[Zt,s ∈ dz]

the distribution of the return.

The sequence of observation/trading times is represented by the jumps of an inhomogeneous

(and independent of S) Poisson process (Nt)t∈[0,T ] with deterministic intensity function t ∈ [0, T )

→ λ(t) ∈ (0,∞), such that:

∫ t

0
λ(u)du < ∞, (∀) 0 ≤ t < T and

∫ T

0
λ(u)du = ∞. (1.2.1)

The simplest way to actually define such an inhomogeneous Poisson process is to consider a

homogeneous Poisson process M with intensity equal to one, independent of S, and define

Nt = M∫ t

0
λ(u)du

for 0 ≤ t < T. (1.2.2)

Condition (1.2.1) is crucial in our illiquidity modelling, and ensures that the probability of

having no jumps between any interval [t, T ], t < T , is null, and so the sequence (τn) converges

increasingly to T almost surely when n goes to infinity. We also know that the process of jump
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times (τn)n≥0 is a homogeneous Markov chain on [0, T ), and its transition probability admits a

density given by:

P[τn+1 ∈ ds|τn = t] = λ(s)e−
∫ s

t
λ(u)du1{t≤s<T } ds, (1.2.3)

(which does not depend on n).

An investor trading in this market can only observe/trade the asset S at the discrete ar-

rival times τn. Therefore, the only information he/she has is coming from observing the two-

dimensional process (τn, Sτn)n≥0. Taking this into account, we introduce the discrete observation

filtration F = (Fn)n≥0, with F0 trivial and

Fn = σ
{

(τk, Zk) : 1 ≤ k ≤ n
}
, n ≥ 1, (1.2.4)

where we denote by

Zn = Zτn−1,τn , n ≥ 1,

the observed return process valued in (−1,∞).

In this model a (simple) trading strategy is a real-valued F-adapted process α = (αn)n≥0,

where αn represents the amount invested in the stock over the period (τn, τn+1] after observing

the stock price at time τn. Assuming that the money market pays zero interest rate, the observed

wealth process (Xτn)n≥0 associated to a trading strategy α is governed by:

Xτn+1 = Xτn + αnZn+1, n ≥ 0, (1.2.5)

where X0 is the initial capital of the investor. In order to simplify notation, we fix once and

for all an initial capital X0 > 0 and denote by A the set of trading strategies α such that the

wealth process stays nonnegative:

Xτn ≥ 0, n ≥ 1. (1.2.6)

For the rest of the paper, we will call simple these trading strategies where trading occurs only

at the discrete times τn, n ≥ 0.

Remark 1.2.1. Constrained strategies. From assumption (HL) we conclude that for each

0 ≤ t < s ≤ T the distribution p(t, s, dz) has full support on [−1,∞), so Zn has also full support
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on [−1,∞). Taking this into account and using (1.2.5), the admissibility condition (1.2.6) on

α ∈ A means that we have a no-short sale constraint (on both the risky and savings account

asset):

0 ≤ αn ≤ Xτn , for all n ≥ 0. (1.2.7)

Moreover, since Zn > −1 a.s. for all n ≥ 1, the wealth process associated to α ∈ A0 is actually

strictly positive:

Xτn > 0, n ≥ 0.

For technical reasons, some related to the asymptotic behavior in Section 1.4.1, we need to

define some continuous time filtrations along with the discrete filtration F. To avoid confusion,

we will denote by G (with different parameters) all continuous-time filtrations. In this spirit, we

define the filtration G = (Gt)0≤t≤T generated by observing continously the process S and the

arrival times as

Gt = σ
{
(Su, Nu), 0 ≤ u ≤ t} ∨ N , 0 ≤ t ≤ T, (1.2.8)

where N is the inhomogenous Poisson process in (1.2.2) and N are all the null sets of G under

the historical measure P. We would like to point out that, because of the Lévy structure of the

joint process (S,N), the filtration G is right continous, so it satisfies the usual conditions. In

addition, we have the strict inclusion:

Fn ⊂ Gτn for all n ≥ 1.

We make an additional assumption on the model, which, among others, precludes arbitrage

possibilities:

(NA)

∫ T

0

b2(u)

c2(u)
du < ∞.

Under this assumption we can then define the probability measure Q by

dQ

dP
= e

−
∫ T

0

b(u)
c(u)

dWu− 1
2

∫ T

0

(
b(u)
c(u)

)2
du
.

Under Q, the process N has the same law as under P, and (τn)n≥0 and (St)0≤t≤T are still
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independent under Q. Moreover, the process S is a positive (Q,G)-local martingale so a super-

martingale. This means that the discrete-time process (Sτn)n≥0 is a (Q,F) supermartingale as

well.

Remark 1.2.2. Embedding in a continuous-time wealth process. Given α ∈ A with correspond-

ing wealth process (Xτn)n in (1.2.5), let us define the continuous time process (Xt)0≤t<T by

Xt = Xτn + αnZτn,t, τn < t ≤ τn+1, n ≥ 0,

= X0 +

∫ t

0
HudSu, 0 ≤ t < T, (1.2.9)

where H is the simple and G-predictable process

Ht =
∞∑

n=0

αn

Sτn

I{τn<t≤τn+1}, 0 ≤ t < T,

representing the number of shares invested in the risky asset. From (1.2.7) and since St > 0, so

Zτn,t > −1, n ≥ 0, we notice that the continuous time process X is strictly positive: Xt > 0

for 0 ≤ t < T . Moreover, since S is a (Q,G)-local martingale, we also see that (Xt)0≤t<T is a

(Q,G)-local martingale, hence a super-martingale up to T . Consequently, we also have Xt− > 0

for 0 ≤ t < T . The definition of Xτn in (1.2.5) is consistent with (1.2.9), so (Xτn)n≥0 is a positive

F-supermartingale under Q. Therefore, for each α ∈ A we may define the terminal wealth value

by:

XT = lim
n→∞

Xτn = lim
tրT

Xt = X0 +
∞∑

n=0

αnZn+1,

and, since ST = ST − we also have

XT = X0 +

∫ T

0
HudSu,

where the integrand H is related to the simple trading strategy α as described above. The

supermartingale property implies the budget constraint

EQ[XT ] ≤ X0.

The continuous time wealth process X has the meaning of a shadow wealth process: it is not

observed except for at times τn, n ≥ 0. The no-short sale constraints (1.2.7) is translated in

terms of the number of shares held as

0 ≤ HtSt− ≤ Xt−, 0 ≤ t < T. (1.2.10)
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We denote by X the set of all wealth processes (Xt)0≤t≤T given by (1.2.9), by using simple

trading strategies under the no-short sale constraint (1.2.7)/(1.2.10). We denote by X̄ the set

of all positive wealth processes (Xt)0≤t≤T given by (1.2.9), by using general G-predictable and

S-integrable processes H satisfying (1.2.10). We clearly have X ⊂ X̄ .

For technical reasons, it is sometimes convenient to regard trading strategies equivalently in

terms of proportions of wealth. For any continuous time wealth process X ∈ X̄ associated to a

trading strategy H satisfying (1.2.10), let us consider the process π = (πt)0≤t≤T , defined by: πt

= HtSt−/Xt−, and notice that π is valued in [0, 1] by (1.2.10). We stress the dependence of the

wealth on the proportion π, and denote by X(π) = X, which is then written in a multiplicative

way as

X(π)
. = X0E

( ∫ .

0
π
dS

S−

)
= X0E

( ∫ .

0
πdL

)
, (1.2.11)

where E is the Doléans-Dade operator. Denote by D(G) the set of all G-predictable processes π

valued in [0, 1]. It is then clear that

X̄ = {X(π)| π ∈ D(G)}.

1.3 Optimal investment problem and dynamic programming

We investigate an optimal investment problem in the illiquid market described in the pre-

vious section. Let us consider an utility function U defined on (0,∞), strictly increasing, strictly

concave and C1 on (0,∞), and satisfying the Inada conditions: U ′(0+) = ∞, U ′(∞) = 0. We

make the following additional assumptions on the utility function U :

(HU) (i) there exist some constants C > 0 and p ∈ (0, 1) such that

U+(x) ≤ C(1 + xp), (∀) x > 0

where U+ = max(U, 0)

(ii) there exist some constants C ′ > 0 and p′ < 0 such that

U−(x) ≤ C ′(1 + xp′
), (∀) x > 0,

where U− = max(−U, 0).
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The above assumptions include most popular utility functions, in particular those with con-

stant relative risk aversion 1 − p > 0, in the form U(x) = (xp − 1)/p, x > 0.

Given the chosen positive initial wealth X0 > 0, we consider the optimal investment problem:

V0 = sup
α∈A

E[U(XT )] = sup
X∈X

E[U(XT )]. (1.3.1)

Remark 1.3.1. As noted in the Introduction, the hyper-intensity condition (1.2.1) allows us

to define the terminal wealth XT . Without such a condition, while one could always define

the continuous-time wealth process X as in Remark 1.2.2 for mathematical convenience, the

terminal wealth XT does not have economic meaning. Therefore, the condition (1.2.1) appears

as necessary if one wants to compare portfolios using expected utility from terminal wealth, as

we do here.

Our aim is to provide an analytic solution to the control problem (1.3.1) using direct dynamic

programming, i.e. first solve the Dynamic Programming Equation (DPE) analytically and then

perform a verification argument. Therefore, there is no need to either define the value function

at later times or to prove the Dynamic Programming Principle (DPP).

The Lemma below provides the intuition behind the (DPE):

Lemma 1.3.1. Assume (HL) holds true. Let α ∈ A and let (Xτn)n≥0 be the wealth process

associated with the trading strategy α. Consider a measurable function v : [0, T ) × (0,∞) → R.

For a fixed n ≥ 0, if v(τn+1, Xτn+1) ∈ L1(Ω,G,P), then

E
[
v(τn+1, Xτn+1)|Fn

]
=

∫ T

τn

∫

(−1,∞)
λ(s)e

−
∫ s

τn
λ(u)du

v(s,Xτn + αnz)p(τn, s, dz)ds,

where the above equality holds P-a.s.

Proof. Assumption (HL) together with the independence of S and N ensures that for all

n ≥ 0, the (regular) distribution of (τn+1, Zn+1) conditioned on Fn is given as follows:

1. P[τn+1 ∈ ds|Fn] = λ(s)e
−
∫ s

τn
λ(u)du

ds

2. further conditioning on knowing the next arrival time τn+1, the return Zn+1 has distribu-

tion

P[Zn+1 ∈ dz|Fn ∨ σ(τn+1)] = p(τn, τn+1, dz).
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We then get

E
[
v(τn+1, Xτn+1)|Fn

]
= E

[
E
[
v(τn+1, Xτn + αnZn+1)|Fn ∨ σ(τn+1)

]∣∣∣Fn

]

= E
[ ∫

(−1,∞)
v(τn+1, Xτn + αnz)p(τn, τn+1, dz)

∣∣∣Fn

]

=

∫ T

τn

∫

(−1,∞)
λ(s)e

−
∫ s

τn
λ(u)du

v(s,Xτn + αnz)p(τn, s, dz)ds.

✷

Taking into account the above Lemma, we can now formally write down the Dynamic Pro-

gramming Equation as

v(t, x) = sup
a∈[0,x]

∫ T

t

∫

(−1,∞)
λ(s)e−

∫ s

t
λ(u)duv(s, x+ az)p(t, s, dz)ds,

= sup
π∈[0,1]

∫ T

t

∫

(−1,∞)
λ(s)e−

∫ s

t
λ(u)duv(s, x(1 + πz))p(t, s, dz)ds, (1.3.2)

for all (t, x) ∈ [0, T ) × (0,∞) together with the natural terminal condition

lim
tրT,x′→x

v(t, x′) = U(x), x > 0. (1.3.3)

It appears that the right space of functions to be looking for a solution of (1.3.2)-(1.3.3) is

actually the space CU ([0, T ) × (0,∞)) of measurable functions w on [0, T ) × (0,∞), such that

1. w(t, .) is concave on (0,∞) for all t ∈ [0, T ), and

2. for some C = C(w) > 0, we have

U(x) ≤ w(t, x) ≤ C(1 + x), ∀(t, x) ∈ [0, T ) × (0,∞). (1.3.4)

For any w ∈ CU ([0, T ) × (0,∞)), we consider the measurable function Lw on [0, T ) × (0,∞)

defined by:

Lw(t, x) = sup
π∈[0,1]

∫ T

t

∫

(−1,∞)
λ(s)e−

∫ s

t
λ(u)duw(s, x(1 + πz))p(t, s, dz)ds. (1.3.5)

Lemma 1.3.2 below shows that the operator

L : CU ([0, T ) × (0,∞)) → CU ([0, T ) × (0,∞)),
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is well defined. Therefore, we are looking for a a solution w ∈ CU ([0, T ) × (0,∞)) to the DPE:





Lw = w

limtրT,x′→xw(t, x′) = U(x).
(1.3.6)

In order to solve the DPE and perform the verification argument, we need some technical details

collected in the subsection below:

1.3.1 A supersolution of the DPE and other technical details

Lemma 1.3.2. Assume that (HL) holds. For any w ∈ CU ([0, T ) × (0,∞)), Lw also belongs to

CU ([0, T )× (0,∞)). For each (t, x) ∈ [0, T )× (0,∞) the supremum in (1.3.5) is attained at some

π(t, x) which can be chosen measurable in (t, x).

Proof. Given w ∈ CU ([0, T ) × (0,∞)), let us consider the measurable function ŵ defined on

[0, T ) × (0,∞) × [0, 1] by:

ŵ(t, x, π) =

∫ T

t

∫

(−1,∞)
λ(s)e−

∫ s

t
λ(u)duw(s, x(1 + πz))p(t, s, dz)ds,

so that Lw(t, x) = supπ∈[0,1] ŵ(t, x, π). Under (HL), there exists some positive constant C

(which can be chosen actually as C = 1 + e
∫ T

0
|b(u)|du), s.t.

∫

(−1,∞)
|z|p(t, s, dz) ≤ C, 0 ≤ t ≤ s < T. (1.3.7)

Thus, for w satisfying (1.3.4), we see that ŵ is well-defined on [0, T )×(0,∞)× [0, 1] and satisfies:

−∞ ≤ ŵ(t, x, π) ≤ C(1 + x), ∀(t, x, π) ∈ [0, T ) × (0,∞) × [0, 1], (1.3.8)

for some positive constant C > 0. Moreover, for each (t, x) ∈ [0, T ) × (0,∞), we have

ŵ(t, x, 0) ≥ U(x). (1.3.9)

As a matter of fact, one can easily see that ŵ(t, x, π) is actually finite for any π ∈ [0, 1) and may

only equal negative infinity for π = 1. Consequently, for fixed (t, x) ∈ [0, T )× (0,∞), ŵ(t, x, .) is

a proper one-dimensional concave function defined on [0, 1] (concavity follows easily from that of

w). In addition, using the linear growth (1.3.4) together with Fatou lemma, we obtain that π ∈
[0, 1] → ŵ(t, x, π) is upper semicontinuous (this refers to the endpoints π = 0, 1 since the function

is continuous on (0, 1) being finite and concave). Therefore Lw(t, x) = maxπ∈[0,1] ŵ(t, x, π),
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where the maximum is attained at some π = π(t, x) which can be chosen measurable in (t, x),

see e.g. Ch. 11 in [9]. In addition, since π → ŵ(t, x, π) is continuous on (0, 1), the function Lw
has the additional representation

Lw(t, x) = sup
π∈[0,1]∩Q

ŵ(t, x, π),

which shows that Lw is measurable. The concavity of w(t, .) implies the concavity of (x, a) ∈
{(x, a) ∈ (0,∞)×R : a ∈ [0, x]} → ŵ(t, x, a/x) for all t ∈ [0, T ). This easily implies that Lw(t, .)

is also concave on (0,∞) for all t ∈ [0, T ). Finally, it is clear from (1.3.8) and (1.3.9) that Lw
satisfies also the growth condition:

U(x) ≤ Lw(t, x) ≤ C(1 + x), ∀(t, x) ∈ [0, T ) × (0,∞).

✷

The next lemma constructs a supersolution f ∈ CU ([0, T ) × (0,∞)) for the DPE:

Lemma 1.3.3. Assume that (HL), (NA) and (HU) hold. Define

f(t, x) = inf
y>0

{
E[Ũ(yYt,T )] + yx

}
(t, x) ∈ [0, T ] × (0,∞),

where

Yt,T = e
−
∫ T

t

b(u)
c(u)

dWu− 1
2

∫ T

t

(
b(u)
c(u)

)2
du
, (1.3.10)

and Ũ is the Fenchel-Legendre transform of U :

Ũ(y) = sup
x>0

[U(x) − xy] < ∞, ∀y > 0. (1.3.11)

Then, f lies in the set CU ([0, T ) × (0,∞)), and satisfies

{
Lf ≤ f

limtրT,x′→x f(t, x′) = U(x).
(1.3.12)

Proof. Jensen’s inequality gives E[Ũ(yYt,T )] ≥ Ũ(y), so

f(t, x) ≥ inf
y>0

{
Ũ(y) + yx

}
= U(x).
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From the definition of f we know that

f(t, x) ≤ E[Ũ(yYt,T )] + yx, (∀) y > 0. (1.3.13)

Fix a y0 > 0. We denote by

G′
t = σ{(Su − St, Nu −Nt), t ≤ u ≤ T},

the information accumulated from time t to maturity T by observing continuously the asset S

and the arrival times (the jumps of N). Jensen’s inequality together with Assumption (HU)(i)

shows that

E[Ũ(y0Yt,T )] = E[Ũ(y0E[Y0,T |G′
t])] ≤ E[E[Ũ(y0Y0,T )|G′

t]] = E[Ũ(y0Y0,T )] < ∞,

so

f(t, x) ≤ E[Ũ(y0Yt,T )] + y0x ≤ C(1 + x) (∀) (t, x) ∈ [0, T ] × (0,∞).

This shows that f ∈ CU ([0, T ) × (0,∞)). Using assumption (HU) (both (i) and (ii)) we obtain

that there exist constants C̃ > 0, q < 0 and 0 < q′ < 1 such that

Ũ+(y) ≤ C̃(1 + yq), Ũ−(y) ≤ C̃(1 + yq′
), (∀) y > 0.

Using the defintion of Yt,T (which is log-normal) and the explicit moments of log-normal random

variables we obtain that

sup
0≤t<T

E[|Ũ(yYt,T )|2] < ∞.

This means that the collection (Ũ(yYt,T ))0≤t<T of random variables is uniformly integrable, so

lim
tրT

E[Ũ(yYt,T )] = Ũ(y), (∀) y > 0.

We can now use this in (1.3.13) to deduce that

U(x) ≤ lim inf
tրT,x′→x

f(t, x′) ≤ lim sup
tրT,x′→x

f(t, x′) ≤ Ũ(y) + xy, (∀) y > 0.

Taking the infimum over y we obtain the terminal condition. For each fixed t, the function f(t, ·)
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is finite and concave on (0,∞), so the only thing left to check is the supersolution property. Fix

0 ≤ t ≤ s ≤ T and x > 0. Denote by h(z) = E[Ũ(zYs,T )] and fix y > 0 and π ∈ [0, 1]. By the

very definition of the function f we have that

f(s, x(1 + πZt,s)) ≤ h(yYt,s) + x(1 + πZt,s)yYt,s.

Using independence and the definition of h, we obtain

E[f(s, x(1 + πZt,s))] ≤ E[h(yYt,s) + x(1 + πZt,s)yYt,s] =

= E[Ũ(yYt,sYs,T )] + E[x(1 + πZt,s)yYt,s] ≤ E[Ũ(yYt,T )] + xy.

Taking the inf over all y and recalling the definition of f(t, x) we obtain

f(t, x) ≥ E[f(s, x(1 + πZt,s))] =

∫

(−1,∞)
f(s, x(1 + πz))p(t, s, dz)

for all π and s. For a fixed π, we can integrate over s to obtain

f(t, x) ≥
∫ T

t

∫

(−1,∞)
λ(s)e−

∫ s

t
λ(u)duf(s, x(1 + πz))p(t, s, dz)ds,

and then taking the supremum over π we obtain f(t, x) ≥ (Lf)(t, x), so the proof is complete.

Due to the linear growth condition of f and recalling (1.3.7), all expectations/integrals above

are well defined, but may be negative infinity. In other words, the positive parts in all expecta-

tions/integrals are actually integrable. ✷

Remark 1.3.2. The whole analysis in this paper extends to the case when the Brownian part

of the process L is degenerate, as long as the jumps have full support on (−1,∞) and the jump

measure allows for a martingale measure with density process Y that can replace the definition

(1.3.10) in the corresponding proofs. In other words, the assumptions (HL) and (NA) can be

relaxed to include the situation when the drift can be removed by changing the jump measure

appropriately, if the Gaussian part is missing.

It turns out that, for the verification arguments below, we also need an assumption on the

integrability of jumps.

(HI): (i) there exists q > 1 such that

∫ T

0

∫ ∞

0

(
(1 + y)q − 1 − qy

)
ν(dt, dy) < ∞.

(ii) If the utility function U satisfies U(0) = −∞ , then there exists r < p′ < 0 (where p′ is given



62 CHAPTER 1. OPTIMAL INVESTMENT ON FINITE HORIZON

in (HU)(ii)) such that

∫ T

0

∫ 0

−1

(
(1 + y)r − 1 − ry

)
ν(dt, dy) < ∞.

(iii) there are no predictable jumps, i.e. ν({t}, (−1,∞)) = 0 for each t

Remark 1.3.3. Using convexity, it is an easy exercise to see that assumption (HI) (i) can

actually be rephrased as νq([0, T ]) < ∞, and assumption (HI)(ii) as νr([0, T ]) < ∞ where

νl(dt) =

∫ ∞

−1
sup

π∈[0,1]

(
(1 + πy)l − 1 − lπy

)
ν(dt, dy).

We now prove a crucial uniform integrability condition, but before that we denote by T the

set of random times 0 ≤ τ < T which are stopping times with respect to the filtration G.

Lemma 1.3.4. Assume that (HL), (HU), (NA) and (HI) hold.

(1) For any X ∈ X̄ , the family (f+(τ,Xτ ))τ∈T is uniformly P-integrable.

(2) For any X ∈ X̄ , the family (U−(Xτ ))τ∈T , is uniformly P-integrable.

Proof. Assume νl([0, T ]) < ∞ for some l. Consider X = X(π) ∈ X̄ for some π ∈ D(G), and

recall that

dX
(π)
t = πtX

(π)
t− dLt, 0 ≤ t ≤ T. (1.3.14)

In order to simplify notation, we supress the upper indices of X. We apply Itô formula to (Xt)
l

to conclude that

X l
t = xl +

∫ t

0
(Xu−)l

(
lπub(u) +

l(l − 1)

2
c2(u)π2(u)

)
du+

∫ t

0

∫ ∞

−1
(Xu−)l

(
(1 + πuy)l − 1 − lπuy

)
ν(du, dy) +′′ local martingale′′

Fix a stopping time τ ∈ T . If T ′
n is a sequence of localizing stopping times for the local martingale

part, denote by Tn = T ′
n ∧ { inf t : (Xt)

l ≥ n
}
. Observe that Tn ր T a.s. since X− is locally

bounded and locally bounded away from zero. We then have, for each 0 ≤ t < T ,

E[(Xt∧τ∧Tn)l] = xl + E

[∫ t∧τ∧Tn

0
(Xu−)l

{(
lπub(u) +

l(l − 1)

2
c2(u)π2(u)

)
du

+

∫ ∞

−1

(
(1 + πuy)l − 1 − lπuy

)
ν(du, dy)

}]
(1.3.15)

≤ xl + E

[∫ t∧τ∧Tn

0
(Xu−)l

{(
|lb(u)| +

|l(l − 1)|
2

c2(u)

)
du+ νl(du)

}]
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Since (Xu−)l ≤ n for 0 ≤ u ≤ τ ∧ Tn and νl([0, T ]) < ∞, we conclude that

E[(Xt∧τ∧Tn)l] < ∞, 0 ≤ t < T. (1.3.16)

In addition, since the paths of the process X l are RCLL and νl({u}) = 0 for each 0 ≤ u ≤ T

(because of (HI) part (iii)), we have that, for each 0 ≤ t < T , with P-probability one

∫ t∧τ∧Tn

0
(Xu−)l

{(
|lb(u)| +

|l(l − 1)|
2

c2(u)

)
du+ νl(du)

}
=

∫ t∧τ∧Tn

0
(Xu)l

{(
|lb(u)| +

|l(l − 1)|
2

c2(u)

)
du+ νl(du)

}
≤

∫ t

0
(Xu∧τ∧Tn)l

{(
|lb(u)| +

|l(l − 1)|
2

c2(u)

)
du+ νl(du)

}
.

Replacing this in (1.3.16) and using Fubini, we obtain

E[(Xt∧τ∧Tn)l] ≤ xl +

∫ t

0
E[(Xu∧τ∧Tn)l]

{(
|lb(u)| +

|l(l − 1)|
2

c2(u)

)
du+ νl(du)

}
. (1.3.17)

Now, using (1.3.16) and νl([0, T ]) < ∞, we can apply Gronwall in (1.3.17) to conclude that

E[(Xt∧τ∧Tn)l] ≤ M(l) < ∞, for each 0 ≤ t < T , where M(l) does not depend on τ or n. Letting

n → ∞ and t → T , by Fatou, we obtain E[(Xτ )l] ≤ M(l) for each stopping time τ ∈ T .

We can finish the proof considering l = q for item (i) and l = r for item (ii), and also using

the upper bound f(t, x) ≤ C(1 + x) as well as Assumption (HU) part (ii). ✷

Remark 1.3.4. In case U(0) = −∞, we can follow the arguments in the Proof of Lemma 1.3.4

for the case π = 1 and l = r (taking into account that Xt = X0St for 0 ≤ t < T ) to conclude

that

E[(St)
r] = E[(1 + Z0,t)

r] < ∞ for 0 ≤ t < T.

(we assumed that S0 = 1 above, and we also used that the times 0 ≤ t < T , because are

deterministic, belong to T ). The same argument actually works if we start at any time 0 ≤ t < T ,

so we have

E[(1 + Zt,s)r] =

∫

(−1,∞)
(1 + z)rp(t, s, dz) < ∞, for t ≤ s < T.
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1.3.2 Construction of a solution for the DPE

We provide a constructive proof for the existence of a solution of (1.3.6) using an iteration

scheme. Let us define inductively the sequence of functions (vm)m in CU ([0, T ) × (0,∞)) by:

v0 = U, vm+1 = Lvm, m ≥ 0.

Lemma 1.3.5. Assume (HL), (NA), and (HU). Then the sequence of functions vm satisfies

vm ≤ vm+1 ≤ f, m ≥ 0.

Proof. We do the proof by induction. We obviously have U = v0 ≤ v1. In addition, since

the operator L is monotone and U ≤ f we have

v1 = LU ≤ Lf ≤ f,

so the statement is true for m = 0. Assume now the statement is true for m. We use again the

monotonicity of L to get

vm+2 = Lvm+1 ≥ Lvm = vm+1, vm+2 = Lvm+1 ≤ Lf ≤ f,

so the proof is finished. ✷

Under the conditions of the above Lemma, the nondecreasing sequence (vm)m converges

pointwise, and we may define

v∗ = lim
m→∞

vm ≤ f. (1.3.18)

We show next that v∗ satisfies the fixed point DP equation.

Theorem 1.3.1. Assume that (HL), (NA), (HU) and (HI) hold. Then, v∗ is solution to the

fixed point DP (1.3.6).

Proof. Fix π ∈ [0, 1]. We know by construction that

vm+1(t, x) ≥
∫ T

t

∫

(−1,∞)
λ(s)e−

∫ s

t
λ(u)duvm(s, x(1 + πz))p(t, s, dz)ds.

If 0 ≤ π < 1, then vm(s, x(1 +πz) ≥ U(x(1 −π)) so the integral on the right hand side is clearly

finite. If π = 1, according to Remark 1.3.4, the integral on the right hand side is still finite for
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each m ≥ 0. Therefore, we can let m ր ∞ and use the monotone convergence theorem to

obtain

v∗(t, x) ≥
∫ T

t

∫

(−1,∞)
λ(s)e−

∫ s

t
λ(u)duv∗(s, x(1 + πz))p(t, s, dz)ds.

Since this happens for each π, taking the supremum over π we get v∗ ≥ Lv∗. Conversely, for

ε > 0 there exists m such that v∗(t, x) − ε ≤ vm+1(t, x) and (because of convexity the maximum

is attained) πm(t, x) such that

vm+1(t, x) =

∫ T

t

∫

(−1,∞)
λ(s)e−

∫ s

t
λ(u)duvm(s, x(1 + πm(t, x)z))p(t, s, dz)ds.

Since vm ≤ v∗ it follows that

v∗(t, x) − ε ≤
∫ T

t

∫

(−1,∞)
λ(s)e−

∫ s

t
λ(u)duv∗(s, x(1 + πm(t, x)z))p(t, s, dz)ds

≤ Lv∗(t, x).

Letting ε → 0 we obtain v∗ = Lv∗. Finally, since U(t, x) ≤ v∗(t, x) ≤ f(t, x) and the function

f satisfies the boundary condition (1.3.3) by Lemma 1.3.3, we conclude that v∗ is a solution to

the fixed point DP equation (1.3.6). ✷

Remark 1.3.5. The previous theorem shows the existence of a fixed point to the DP equation

(1.3.6), and gives also an iterative procedure for constructing a fixed point. In the next subsection,

we shall prove that such a fixed point is equal to the value function v, which implies in particular

the uniqueness for the fixed point equation (1.3.6).

1.3.3 Verification and optimal strategies

Consider the solution v∗ to the fixed point DP equation (1.3.6), constructed in Theorem

1.3.1. We now state a verification theorem for the fixed point equation (1.3.6), which provides

the optimal portfolio strategy in feedback form.

Theorem 1.3.2. Assume that (HL), (NA), (HU) and (HI) hold. Then,

V0 = v∗(0, X0),

and an optimal control α̂ ∈ A is given by

α̂n = π̂(τn, X̂τn)X̂τn , n ≥ 0, (1.3.19)
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where π̂ is a measurable function on [0, T ) × (0,∞) solution to

π̂(t, x) ∈ arg max
π∈[0,1]

∫ T

t

∫

(−1,∞)
λ(s)e−

∫ s

t
λ(u)duv∗(s, x(1 + πz))p(t, s, dz)ds,

and (X̂τn)n≥0 is the wealth given by

X̂τn+1 = X̂τn + α̂nZn+1, n ≥ 0,

and starting from X̂0 = X0.

Proof. Consider α ∈ A and the corresponding positive wealth process (Xτn)n≥0. From

Lemma 1.3.4, we know that

E[|v∗(τn, Xτn)|] < ∞, (∀) n ≥ 0.

We apply Lemma 1.3.1 to get for any n ≥ 0:

E
[
v∗(τn+1, Xτn+1)|Fn

]
=

∫ T

τn

∫

(−1,∞)
λ(s)e

−
∫ s

τn
λ(u)du

v∗(s,Xτn + αnz)p(τn, s, dz)ds

≤ Lv∗(τn, Xτn) = v∗(τn, Xτn), (1.3.20)

so the process {v∗(τn, Xτn), n ≥ 0} is a (P,F)-supermartingale. Recalling that v∗(t, .) ≥ U we

obtain

E[U(Xτn)] ≤ E[v∗(τn, Xτn)] ≤ v∗(0, X0), (∀) n ≥ 0.

Now, by Lemma 1.3.4, the sequence (U(Xτn))n is uniformly integrable. By sending n to infinity

into the last inequality, we then get

E[U(XT )] ≤ v∗(0, X0).

Since α is arbitrary, we obtain V0 ≤ v∗(0, X0).

Conversely, let α̂ ∈ A be the portfolio strategy given by (1.3.19), and (X̂τn)n≥0 the associated

wealth process. Then, by the same calculations as in (1.3.20), we have now the equalities:

E
[
v∗(τn+1, X̂τn+1)|Fn

]
=

∫ T

τn

∫

(−1,∞)
λ(s)e

−
∫ s

τn
λ(u)du

v∗(s,Xτn + α̂nz)p(τn, s, dz)ds

= Lv∗(τn, X̂τn) = v∗(τn, X̂τn), n ≥ 0,
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by definition of L and α̂. This means that the process {v∗(τn, X̂τn), n ≥ 0} is a (P,F)-martingale,

and so:

E[v∗(τn, X̂τn)] = v∗(0, X0), (∀) n ≥ 0.

From the the bounds U ≤ v∗ ≤ f and Lemma 1.3.4, we know that the sequence (v∗(τn, X̂τn))n is

uniformly integrable. By sending n to infinity into the last equality, and recalling the terminal

condition for v∗, we then get

E[U(X̂T )] = v∗(0, X0).

Together with the inequality, V0 ≤ v∗(0, X0), this proves that V0 = v∗(0, X0) and α̂ is an optimal

control. ✷

An identical verification argument to the proof of Theorem 1.3.2 can be performed for an

investor starting at time t with initial capital x: this way we prove that v∗ is actually the

value function of the control problem. In addition, this shows that the Dynamic Programming

Equation (1.3.6) has a unique solution. For the sake of avoiding the heavy notation associated

with strategies starting at time t, we decided to only do the verification for time t = 0.

The Proposition below shows that actually we can approximate the optimal control, and not

only the maximal expected utility, using a finite number of iterations. The approximate optimal

control is actually very simple, since after the m-th arrival time all the wealth is invested in the

money market. In addition, a stochastic control representation for the iteration vm is provided.

Proposition 1.3.1. Assume that (HL), (NA), (HU) and (HI) hold. Then

vm(0, X0) = sup
α∈Am

E[U(XT )], (1.3.21)

where Am is the set of admissible controls α = (αn)≥0 ∈ A such that all money is invested in

the money market after m arrivals, i.e. αn = 0 for n ≥ m.

For any 0 ≤ n ≤ m− 1, consider the measurable function π̂n(·, ·) defined by

π̂n(t, x) = arg max
π∈[0,1]

∫ T

t

∫

(−1,∞)
λ(s)e−

∫ s

t
λ(u)duvm−n−1(s, x(1 + πz))p(t, s, dz)ds,

so that

vm−n(t, x) =

∫ T

t

∫

(−1,∞)
λ(s)e−

∫ s

t
λ(u)duvm−n−1(s, x(1 + πn(t, x)z))p(t, s, dz)ds.
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Define in feedback form the admissible strategy α̂m ∈ Am by αm
n = π̂n(τn, X̂

m
τn

)X̂m
τn

for 0 ≤ n ≤
m− 1 and αm

n = 0 for n ≥ m, where the wealth processes (X̂m
τn

)n≥0 is given by

X̂m
τn+1

= X̂m
τn

+ α̂m
n Zn+1, 0 ≤ n ≤ m− 1, X̂m

τn
= X̂m

τm
, n ≥ m,

starting from the initial wealth X0. Then αm ∈ Am is an optimal control for (1.3.21).

Proof. The proof is based on similar arguments to the proof of Theorem 1.3.2. Namely,

for each α ∈ Am, one can use Lemma 1.3.1 to conclude that (vm−n(τn, Xn))n=0,1,...,m is a

supermartingale and, for the particular choice of the control αm described above we actually

have that (vm−n(τn, X̂
m
n ))n=0,1,...,m is a true martingale. Since v0(t, x) = U(x) and for each

α ∈ Am the wealth process X is constant after the arrival time τm, it is easy to finish the proof.

✷

Theorems 1.3.1 and 1.3.2 together show how we can compute by iterations the maximal

expected utility and the optimal control. Since the control problem is finite-horizon in time

and infinite horizon in n, taking into account Proposition 1.3.1, the iteration procedure repre-

sents exactly the approximation of the infinite horizon problem by a sequence of finite horizon

problems.

1.4 Convergence in the illiquid market model

So far, we have considered the optimal investment problem (1.3.1) for a fixed arrival rate

function λ : [0, T ) → [0,∞) satisfying condition (1.2.1). To emphasize the dependence on the

arrival rate, let us denote by V λ
0 the value in (1.3.1). When the arrival rate is very large at

all times (in some sense to be precised), one would expect that V λ
0 is very close to the optimal

expected utility of an agent who can trade at all times (therefore continuously) in the asset S.

It is also expected that the constraint (1.2.7), which is implicitly contained in the admissibility

condition (1.2.6) in the time-illiquid case, becomes and explicit no-short sale constraint (1.2.10)

in the continuous time limit. This section is devoted to proving that this is actually true.

First, we need to define the optimization problem for the agent who can trade continuously.

We remind the reader that continuous time trading strategies can be defined by (1.2.9). We

denote by X S the set of positive wealth processes (Xt)0≤t≤T given by (1.2.9), by using GS-

predictable and S-integrable processes H satisfying the no-short sale constraint (1.2.10). The
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filtration GS = (GS
t )0≤t≤T is defined by

GS
t = σ{Ss, 0 ≤ s ≤ t} ∨ N ,

and represents the information one can get from following the asset S. Because of the Lévy

structure of S, GS satisfies the usual conditions. We also denote by D(S) the set of all GS-

predictable processes π valued in [0, 1]. It is then clear that

X S = {X(π)| π ∈ D(S)}.

The optimization problem for an agent trading continuously, under no-short selling constraints

can be formulated as

V M
0 = sup

X∈X S

E[U(XT )] = sup
π∈D(S)

E[U(X
(π)
T )]. (1.4.1)

The main result of this section is:

Theorem 1.4.1. Under Assumptions (HL), (NA), (HU) and (HI), consider a sequence (λk)k

of intensity functions such that each λk satisfies (1.2.1), and

λk(t) → ∞ as k → ∞, ∀t ∈ [0, T ]. (1.4.2)

Then V λk
0 → V M

0 as k → ∞, where V M
0 is defined by (1.4.1).

In order to prove Theorem 1.4.1, we first have to put all the optimization problems (1.3.1)

on the same physical probability space, independent of the intensity function λ. This is an easy

task actually. We consider a probability space (Ω,G,P) supporting two independent processes:

the continuous time stock price process (St)0≤t≤T (which has all the desired properties) and a

Poisson process (Mt)0≤t<∞ with intensity equal to one. After that, for each intensity function

λ we define the nonhomogenous Poisson process Nλ (actually its sequence of jumps) by (1.2.2).

Therefore, for different intensities, we still have the same physical space. We now denote by Fλ

and Gλ the discrete and continuous time filtrations on (Ω,G,P) defined by (1.2.4) and (1.2.8)

corresponding to the intensity λ, and by τλ
n the associated jump times.

The main obstacle in proving Theorem 1.4.1 is the fact that the filtration Fλ only observes

the process S at the arrival times, while the filtration GS used by the investor in (1.4.1) observes

the stock continuously. This problem is overcome in three steps
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Step 1: first, we show that in (1.3.1), the discrete-time filtration Fλ = (Fλ
n )n≥0 can be replaced

by the larger filtration (Gλ
τλ

n
)n≥0. In other words, due to the Markov structure of the model,

an investor who can only trade at the discrete arrival times, cannot improve his/her expected

utility by continuously observing the evolution of the stock between the arrival times. This is

done in Lemma 1.4.1 below.

Lemma 1.4.1. Fix an intensity function λ and define

V λ,c
0 := sup

α∈Aλ
c

E[U(XT )], (1.4.3)

where Aλ
c is the set of simple admissible strategies α = (αn)n≥0 with continuous observation,

which means that for each n ≥ 0 we have αn ∈ Gλ
τλ

n
and α satisfies the constraint (1.2.7) for the

wealth process (Xτn)n≥0 defined by (1.2.5).

Then, under Assumptions (HL), (NA), (HU) and (HI), we have V λ,c
0 = V λ

0 .

Proof. Assumption (HL) together with the independence of S and N ensures that for all

n ≥ 0, the (regular) distribution of (τn+1, Zn+1) conditioned on Gλ
τλ

n
is given by:

1. P[τλ
n+1 ∈ ds|Gλ

τλ
n

] = λ(s)e
−
∫ s

τn
λ(u)du

ds

2. further conditioning on knowing the next arrival time τλ
n+1, the return Zn+1 has distribu-

tion

P[Zn+1 ∈ dz|Gλ
τλ

n
∨ σ(τλ

n+1)] = p(τλ
n , τ

λ
n+1, dz).

Therefore, in Lemma 1.3.1, one can replace the filtration Fλ by the larger filtration (Gλ
τλ

n
)n≥0

and obtain that, for each α ∈ Aλ
c we have

E
[
v(τλ

n+1, Xτλ
n+1

)|Gλ
τλ

n

]
=

∫ T

τλ
n

∫

(−1,∞)
λ(s)e

−
∫ s

τλ
n

λ(u)du
v(s,Xτλ

n
+ αnz)p(τ

λ
n , s, dz)ds.

After that, one can just follow the verification arguments in the proof of Theorem 1.3.2 to show

that

V λ,c
0 = v∗,λ(0, X0),

which ends the proof. ✷

Step 2: we define the continuous time filtration G∞ = (G∞
t )0≤t≤T which contains all the

information from the arrival times right at time zero. This corresponds to an investor who knows
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in advance all the jumps of the homogeneous Poisson process M and also observes continuously

the stock S up to time t:

G∞
t = GS

t ∨ σ(Mu : 0 ≤ u < ∞), 0 ≤ t < T.

Because the information added is independent, the process S is still a semimartingale with

respect to the larger filtration G∞, which satisfies the usual conditions as well. Using again

the independence property, Lemma 1.4.2 below shows that if the investor in (1.4.1) has the

additional information in G∞, he/she cannot improve the maximal expected utility.

Lemma 1.4.2. Consider the set X̄c of wealth processes defined by (1.2.9) where the general

integrand H is G∞-predictable, S-integrable and satisfies (1.2.10). Define

V ∞
0 := sup

X∈X̄c

E[U(XT )].

Then V ∞
0 = V M

0 .

Proof. Since X S ⊂ X̄c, we obviously have V M
0 ≤ V ∞

0 . Now take some arbitrary X ∈ X̄c

associated to a no-short sale trading strategy H, which is G∞-predictable. Consider the GS-

predictable projection of H: Ĥs = E[Hs|GS
s− ], t ≤ s ≤ T . We then have (see e.g. Lemma 2.2.4

in [59])

X̂t := E[Xt|GS
t ] = X0 +

∫ t

0
ĤudSu, 0 ≤ t ≤ T.

This means that the process X̂ lies in X S . Since U is concave, we get by the law of iterated

conditional expectations and Jensen’s inequality

E[U(XT )] = E
[
E[U(XT )|GS

T ]
]

≤ E
[
U
(
E[XT |GS

T ]
)]

= E[U(X̂T )] ≤ V M
0 .

We conclude from the arbitrariness of X in X̄c. ✷

Step 3: Once we prove the step above and transform the Merton problem in a utility maximiza-

tion problem with no short-sale constraints under the filtration G∞, we can basically follow the

arguments in Theorems 3.1, 3.3 and 4.1 in [39], to finish the proof. In order to use the ideas in

[39] we still need the following technical lemma.

Lemma 1.4.3. Consider a sequence (λk)k of intensity functions such that each λk satisfies
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(1.2.1), and

λk(t) → ∞ as k → ∞, ∀t ∈ [0, T ].

Then, the jump times {(τk
n)n, k ∈ N} of {Nλk , k ∈ N}, satisfies up to a subsequence (in k),

sup
n

∣∣∣τk
n+1 − τk

n

∣∣∣ → 0 a.s. when k → ∞. (1.4.4)

Proof. Consider subdivisions 0 = tk0 < . . . < tkMk
= T such that supi=0,...,Mk−1(ti+1 − ti) ≤

1/2k. By Fatou’s lemma, liml→∞

∫ t
s λl(u)du = ∞ for all 0 ≤ s < t ≤ T , so up to a subsequence

indexed by lk we can assume that

Mk−1∑

i=0

exp
(

−
∫ tk

i+1

tk
i

λlk(u)du
)

≤ 2−k, ∀k ≥ 0.

Now, from the relations

P
[

sup
n

∣∣∣τ lk
n+1 − τ lk

n

∣∣∣ > 1/k
]

≤
Mk−1∑

i=0

P
[
∃n, τ lk

n ≤ tki < tki+1 < τ lk
n+1

]

=
Mk−1∑

i=0

P
[
N

λlk

tk
i

= N
λlk

tk
i+1

]

=
Mk−1∑

i=0

exp
(

−
∫ tk

i+1

tk
i

λlk(u) du
)
,

we see that for all ǫ > 0,

∞∑

k=0

P
[

sup
n

∣∣∣τ lk
n+1 − τ lk

n

∣∣∣ > ǫ
]

≤
∑

k<ǫ−1

P
[

sup
n

∣∣∣τ lk
n+1 − τ lk

n

∣∣∣ > ǫ
]

+
∑

k≥ǫ−1

2−k

< ∞,

and thus by Borel-Cantelli we have

sup
n

∣∣∣τ lk
n+1 − τ lk

n

∣∣∣ → 0 a.s. when k → ∞,

which ends the proof of the Lemma. ✷

Proof of Theorem 1.4.1. Using Lemma 1.4.3 and taking further subsequences of any sequence,

it is enough to prove Theorem 1.4.1 under the additional assumption (1.4.4).

We first represent continuous time trading strategies with no short sale constraints in terms

of proportion of wealth, for the larger filtration G∞. For any continuous time wealth process X
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∈ X̄c associated to a trading strategy H satisfying (1.2.10), we still denote by πt = HtSt−/Xt−,

and notice that the process (πt)0≤t≤T is valued in [0, 1] by (1.2.10). We also denote by X(π) the

process defined by (1.2.11) and define D∞ to be the set of all G∞-predictable processes π valued

in [0, 1]. It is then clear that

V ∞
0 = sup

π∈D∞
E[U(X

(π)
T )].

Using Lemma 1.4.1 and Lemma 1.4.2 we have, for each intensity function λ that

V λ
0 = V λ,c

0 ≤ V ∞
0 = V M

0 . (1.4.5)

Let now π ∈ D(S) ⊂ D∞ be a (proportional) trading strategy in (1.4.1) and let (λk)k a sequence

of intensity functions as in Theorem 1.4.1. We will follow the arguments in [39] to approximate

this continuous time trading strategy by a sequence of simple strategies αk ∈ Aλk
c , which are

discrete, but use information from continuous observations. First, according to Lemma 3.4 and

3.5 in [39], there exists a sequence πm ∈ D(S) such that each πm is LCRL (left continuous with

right limits) and such that

ucP − lim
m→∞

X(πm) = X(π),

so, in order to approximate π we can actually assume it is LCRL. Here, by ucP-convergence, we

mean the usual convergence of processes in probability, uniformly on [0, T ].

Next, let us define

πk
n = π

τλk
n +

, n ≥ 0,

where πt+ = limuցt πt. Because the filtration Gλk
satisfies the usual conditions we have that

the process (πt+)0≤t≤T is optional with respect to Gλk for each k. Since, in addition, τλk
n are

stopping times with respect to Gλk we obtain that, for each k,

πk
n ∈ Gλk

τ
λk
n

, k ≥ 0. (1.4.6)

Therefore, if we define, for each fixed k the discrete-time wealth process by

X
τ

λk
n+1

= X
τ

λk
n

(1 + πk
nZn+1), n ≥ 0, (1.4.7)
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and denote by αk
n = πk

nXτ
λk
n

we have αk = (αk
n)n≥0 ∈ Aλk

c . To each of the above defined αk, we

can associate by Remark 1.2.2 a continuous time simple integrand Hk which is Gλk -predictable

and the continuous time wealth process (Xk
t )0≤t≤T . The fundamental observation is now that all

Hk are predictable with respect to the same “large" filtration G∞. Using this universal filtration,

we can now follow the proof of Theorem 3.1 in [39], which actually works for stochastic partitions

under condition (1.4.4), to conclude that

X(π) = ucP − lim
k→∞

Xk.

Therefore, we can approximate any continuous time strategy in the Merton problem (1.4.1)

by simple trading strategies αk ∈ Aλk
c . The rather obvious details on how approximation of

strategies leads to approximation of optimal expected utility are identical to the arguments in

[39] Section 4, and are omitted: this means that for all π ∈ D(S), E[U(X
(π)
T )] = limk E[U(Xk

T )],

and so V M
0 ≤ lim infk V

λk,c
0 . Together with (1.4.5), this concludes the proof of Theorem 1.4.1.

✷



Chapter 2

Investment/consumption problem in

illiquid markets with regime

switching

Abstract: We consider an illiquid financial market with different regimes modeled by a continuous-

time finite-state Markov chain. The investor can trade a stock only at the discrete arrival times of a

Cox process with intensity depending on the market regime. Moreover, the risky asset price is subject

to liquidity shocks, which change its rate of return and volatility, and induce jumps on its dynamics. In

this setting, we study the problem of an economic agent optimizing her expected utility from consump-

tion under a non-bankruptcy constraint. By using the dynamic programming method, we provide the

characterization of the value function of this stochastic control problem in terms of the unique viscosity

solution to a system of integro-partial differential equations. We next focus on the popular case of CRRA

utility functions, for which we can prove smoothness C2 results for the value function. As an important

byproduct, this allows us to get the existence of optimal investment/consumption strategies characterized

in feedback forms. We analyze a convergent numerical scheme for the resolution to our stochastic control

problem, and we illustrate finally with some numerical experiments the effects of liquidity regimes in the

investor’s optimal decision.

Key words : Optimal consumption, liquidity effects, regime-switching models, viscosity solutions,

integro-differential system.
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2.1 Introduction

A classical assumption in the theory of optimal portfolio/consumption choice as in Merton

[54] is that assets are continuously tradable by agents. This is not always realistic in practice,

and illiquid markets provide a prime example. Indeed, an important aspect of market liquidity

is the time restriction on assets trading: investors cannot buy and sell them immediately, and

have to wait some time before being able to unwind a position in some financial assets. In the

past years, there was a significant strand of literature addressing these liquidity constraints. In

[66], [53], the price process is observed continuously but the trades succeed only at the jump

times of a Poisson process. Recently, the papers [61], [17], [29] relax the continuous-time price

observation by considering that asset is observed only at the random trading times. In all these

cited papers, the intensity of trading times is constant or deterministic. However, the market

liquidity is also affected by long-term macroeconomic conditions, for example by financial crisis

or political turmoil, and so the level of trading activity measured by its intensity should vary

randomly over time. Moreover, liquidity breakdowns would typically induce drops on the stock

price in addition to changes in its rate of return and volatility.

In this paper, we investigate the effects of such liquidity features on the optimal portfolio

choice. We model the index of market liquidity as an observable continuous-time Markov chain

with finite-state regimes, which is consistent with some cyclicality observed in financial markets.

The economic agent can trade only at the discrete arrival times of a Cox process with intensity

depending on the market regimes. Moreover, the risky asset price is subject to liquidity shocks,

which switch its rate of return and volatility, while inducing jumps on its dynamics. In this hybrid

jump-diffusion setting with regime switching, we study the optimal investment/consumption

problem over an infinite horizon under a nonbankruptcy state constraint. We first prove that

dynamic programming principle (DPP) holds in our framework. Due to the state constraints

in two dimensions, we have to slightly weaken the standard continuity assumption, see Remark

2.3.1. Then, using DPP, we characterize the value function of this stochastic control problem

as the unique constrained viscosity solution to a system of integro-partial differential equations.

In the particular case of CRRA utility function, we can go beyond the viscosity properties, and

prove C2 regularity results for the value function in the interior of the domain. As a consequence,

we show the existence of optimal strategies expressed in feedback form in terms of the derivatives
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of the value function. Due to the presence of state constraints, the value function is not smooth

at the boundary, and so the verification theorem cannot be proved with the classical arguments

of Dynkin’s formula. To overcome this technical problem, we use an ad hoc approximation

procedure (see Proposition 2.5.2). We also provide a convergent numerical scheme for solving the

system of equations characterizing our control problem, and we illustrate with some numerical

results the effect of liquidity regimes in the agent’s optimal investment/consumption. We also

measure the impact of continuous time observation with respect to a discrete time observation of

the stock prices. Our paper contributes and extends the existing literature in several ways. First,

we extend the papers [66] and [53] by considering stochastic intensity trading times and regime

switching in the asset prices. For a two-state Markov chain modulating the market liquidity,

and in the limiting case where the intensity in one regime goes to infinity, while the other one

goes to zero, we recover the setup of [21] and [49] where an investor can trade continuously in

the perfectly liquid regime but faces a threat of trading interruptions during a period of market

freeze. On the other hand, regime switching models in optimal investment problems was already

used in [72], [69] or [63] for continuous-time trading.

The rest of the paper is structured as follows. Section 2 describes our continuous-time

market model with regime-switching liquidity, and formulates the optimization problem for the

investor. In Section 3 we state some useful properties of the value function of our stochastic

control problem. Section 4 is devoted to the analytic characterization of the value function as

the unique viscosity solution to the dynamic programming equation. The special case of CRRA

utility functions is studied in Section 5: we show smoothness results for the value functions, and

obtain the existence of optimal strategies via a verification theorem. Some numerical illustrations

complete this last section. Finally two appendices are devoted to the proof of two technical

results: the dynamic programming principle, and the existence and uniqueness of viscosity

solutions.

2.2 A market model with regime-switching liquidity

Let us fix a probability space (Ω,F ,P) equipped with a filtration F = (Ft)t≥0 satisfying the

usual conditions. It is assumed that all random variables and stochastic processes are defined

on the stochastic basis (Ω,F ,F,P).

Let I be a continuous-time Markov chain valued in the finite state space Id = {1, . . . , d}, with
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intensity matrix Q = (qij). For i 6= j in Id, we can associate to the jump process I, a Poisson

process N ij with intensity rate qij ≥ 0, representing the number of switching from state i to j.

We interpret the process I as a proxy for market liquidity with states (or regimes) representing

the level of liquidity activity, in the sense that the intensity of trading times varies with the

regime value. This is modeled through a Cox process (Nt)t≥0 with intensity (λIt)t≥0, where

λi > 0 for each i ∈ Id . For example, if λi < λj , this means that trading times occur more often

in regime j than in regime i. The increasing sequence of jump times (τn)n≥0, τ0 = 0, associated

to the counting process N represents the random times when an investor can trade a risky asset

of price process S.

Remark 2.2.1. Notice that the jumps of I and N are a.s. disjoint. Indeed, for any n,

E
[
1{∆Iτn 6=0}|I, τn−1

]
=

∫ ∞

τn−1

1{∆It 6=0}λIte
−
∫ t

τn−1
λIu du

dt

= 0 a.s.,

since almost surely I has countably many jumps.

In the liquidity regime It = i, the stock price follows the dynamics

dSt = St(bidt+ σidWt),

where W is a standard Brownian motion independent of (I,N), and bi ∈ R, σi ≥ 0, for i ∈ Id.

Moreover, at the times of transition from It− = i to It = j, the stock changes as follows:

St = St−(1 − γij)

for a given γij ∈ (−∞, 1), so the stock price remains strictly positive, and we may have a relative

loss (if γij > 0), or gain (if γij ≤ 0). Typically, there is a drop of the stock price after a liquidity

breakdown, i.e. γij > 0 for λj < λi. Overall, the risky asset is governed by a regime-switching

jump-diffusion model:

dSt = St−

(
bI

t−dt+ σI
t−dWt − γ

I
t− ,It

dN
I

t− ,It

t

)
. (2.2.1)

Portfolio dynamics under liquidity constraint. We consider an agent investing and consuming

in this regime-switching market. We denote by (Yt) the total amount invested in the stock, and

by (ct) the consumption rate per unit of time, which is a nonnegative adapted process. Since the
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number of shares Yt/St in the stock held by the investor has to be kept constant between two

trading dates τn and τn+1, then between such trading times, the process Y follows the dynamics:

dYt = Yt−
dSt

St−

, τn ≤ t < τn+1, n ≥ 0,

The trading strategy is represented by a predictable process (ζt) such that at a trading time t

= τn+1, the rebalancing on the number of shares induces a jump ζt in the amount invested in

the stock :

∆Yt = ζt.

Overall, the càdlàg process Y is governed by the hybrid controlled jump-diffusion process

dYt = Yt−

(
bI

t−dt+ σI
t−dWt − γ

I
t− ,It

dN
I

t− ,It

t

)
+ ζtdNt. (2.2.2)

Assuming a constant savings account, i.e. zero interest rate, the amount (Xt) invested in cash

then follows

dXt = −ctdt− ζtdNt. (2.2.3)

The total wealth is defined at any time t ≥ 0, by Rt = Xt + Yt, and we shall require the

non-bankruptcy constraint at any trading time:

Rτn ≥ 0, a.s. ∀n ≥ 0. (2.2.4)

Actually, this non-bankruptcy constraint means a no-short sale constraint on both the stock and

savings account, as showed by the following Lemma.

Lemma 2.2.1. The nonbankruptcy constraint (2.2.4) is formulated equivalently in the no-short

sale constraint:

Xt ≥ 0, and Yt ≥ 0, ∀t ≥ 0. (2.2.5)

This is also written equivalently in terms of the controls as:

−Yt− ≤ ζt ≤ Xt− , t ≥ 0, (2.2.6)∫ τn+1

t
csds ≤ Xt, τn ≤ t < τn+1, n ≥ 0. (2.2.7)
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Proof. By writing by induction the wealth at any trading time as

Rτn+1 = Rτn + Yτn

(
Sτn+1

Sτn

− 1

)
−
∫ τn+1

τn

ctdt, n ≥ 0,

and since (conditionally on Fτn) the stock price Sτn+1 has full support in (0,∞), we see that the

nonbankruptcy condition Rτn+1 ≥ 0 is equivalent to a no-short sale constraint:

0 ≤ Yτn ≤ Rτn , n ≥ 0, (2.2.8)

together with the condition on the nonnegative consumption rate

∫ τn+1

τn

ctdt ≤ Rτn − Yτn = Xτn , n ≥ 0. (2.2.9)

Since Yτn = Yτn− + ζτn , and since Rτn = Rτn− by Remark 2.2.1, the no-short sale con-

straint (2.2.8) means equivalently that (2.2.6) is satisfied for t = τn. Since ζ is predictable,

this is equivalent to (2.2.6) being satisfied dP ⊗ dt almost everywhere. Indeed, letting Ht =

1{ζt<−Yt− or ζt>X
t−}, H is predictable, so that ∀t ≥ 0, 0 = E

[∑
τn≤tHτn

]
= E

[∫ t
0 HsλIsds

]
,

and we deduce that Ht = 0 dP ⊗ dt a.e. since λIt > 0.

Moreover, since Xt = Xτn − ∫ t
τn
csds for τn ≤ t < τn+1, the condition (2.2.9) is equivalent to

(2.2.7). By rewriting the conditions (2.2.8)-(2.2.9) as

Yτn ≥ 0, Xτn ≥ 0, X(τn+1)− ≥ 0, ∀n ≥ 0,

and observing that for τn ≤ t < τn+1,

Yt =
St

Sτn

Yτn , Xτn ≥ Xt ≥ X(τn+1)−,

we see that they are equivalent to (2.2.5). ✷

Remark 2.2.2. Under the nonbankruptcy (or no-short sale constraint), the wealth (Rt)t≥0 is

nonnegative, and follows the dynamics:

dRt = Rt−Zt−

(
bI

t−dt+ σI
t−dWt − γ

I
t− ,It

dN
I

t− ,It

t

)
− ctdt, (2.2.10)

where Z valued in [0, 1] is the proportion of wealth invested in the risky asset:

Zt =

{
Yt

Rt
, Rt > 0

0, Rt = 0,
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evolving according to the dynamics:

dZt = Zt−(1 − Zt−)
[(
bI

t− − Zt−σ2
I

t−

)
dt+ σI

t−dWt −
γ

I
t− ,It

1 − Zt−γ
I
t− ,It

dN
I

t− ,It

t

]

+
ζt

Rt−
dNt + Zt−

ct

Rt−
dt, (2.2.11)

for t < τ = inf{t ≥ 0 : Rt = 0}.

Given an initial state (i, x, y) ∈ Id × R+ × R+, we shall denote by Ai(x, y) the set of invest-

ment/consumption control process (ζ, c) such that the corresponding process (X,Y ) solution to

(2.2.2)-(2.2.3) with a liquidity regime I, and starting from (I0− , X0− , Y0−) = (i, x, y), satisfy the

non-bankruptcy constraint (2.2.5) (or equivalently (2.2.6)-(2.2.7)).

Optimal investment/consumption problem. The preferences of the agent are described by a

utility function U which is increasing, concave, C1 on (0,∞) with U(0) = 0, and satisfies the

usual Inada conditions: U ′(0) = ∞, U ′(∞) = 0. We assume the following growth condition on

U : there exist some positive constant K, and p ∈ (0, 1) s.t.

U(x) ≤ Kxp, x ≥ 0. (2.2.12)

We denote by Ũ the convex conjugate of U , defined from R into [0,∞] by:

Ũ(ℓ) = sup
x≥0

[U(x) − xℓ],

which satisfies under (2.2.12) the dual growth condition on R+:

Ũ(ℓ) ≤ K̃ℓ−p̃, ∀ℓ ≥ 0, with p̃ =
p

1 − p
> 0, (2.2.13)

for some positive constant K̃.

The agent’s objective is to maximize over portfolio/consumption strategies in the above

illiquid market model the expected utility from consumption rate over an infinite horizon. We

then consider, for each i ∈ Id, the value function

vi(x, y) = sup
(ζ,c)∈Ai(x,y)

E

[∫ ∞

0
e−ρtU(ct)dt

]
, (x, y) ∈ R2

+, (2.2.14)
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where ρ > 0 is a positive discount factor. We also introduce, for i ∈ Id, the function

v̂i(r) = sup
x∈[0,r]

vi(x, r − x), r ≥ 0, (2.2.15)

which represents the maximal utility performance that the agent can achieve starting from

an initial nonnegative wealth r and from the regime i. More generally, for any locally bounded

function wi on R2
+, we associate the function ŵi defined on R+ by: ŵi(r) = supx∈[0,r]wi(x, r−x),

so that:

ŵi(x+ y) = sup
e∈[−y,x]

wi(x− e, y + e), (x, y) ∈ R2
+.

In the sequel, we shall often identify a d-tuple function (wi)i∈Id
defined on R2

+ with the function

w defined on R2
+ × Id by w(x, y, i) = wi(x, y).

In this paper, we focus on the analytic characterization of the value functions vi (and so v̂i),

i ∈ Id, and on their numerical approximation.

2.3 Some properties of the value function

We state some preliminary properties of the value functions that will be used in the next

section for the PDE characterization. We first need to check that the value functions are well-

defined and finite. Let us consider for any p > 0, the positive constant:

k(p) := max
i∈Id,z∈[0,1]

[
pbiz − σ2

i

2
p(1 − p)z2 +

∑

j 6=i

qij((1 − zγij)
p − 1)

]
< ∞.

We then have the following lemma.

Lemma 2.3.1. Fix some initial conditions (i, x, y) ∈ Id × R+ × R+, and some p > 0. Then:

(1) For any admissible control (ζ, c) ∈ Ai(x, y) associated with wealth process R, the process

(e−k(p)tRp
t )t≥0 is a supermartingale. So, in particular, for ρ > k(p),

lim
t→∞

e−ρtE[Rp
t ] = 0. (2.3.1)

(2) For fixed T ∈ (0,∞), the family (Rp
T ∧τ )τ,ζ,c is uniformly integrable, when τ ranges over

all stopping times, and (ζ, c) runs over Ai(x, y).
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Proof. (1) By Itô’s formula and (2.2.10), we have

d(e−k(p)tRp
t ) = −k(p)e−k(p)tRp

t dt+ e−k(p)td(Rp
t )

= e−k(p)t
[

− k(p)Rp
t + pRp−1

t−

(−ct + bIt−Rt−Zt−
)

+
p(p− 1)

2
Rp−2

t−

(
σIt−Rt−Zt−

)2

+
∑

j 6=It−

qIt−,j(Rp
t−(1 − γIt−jZt−)p −Rp

t−)
]
dt+ dMt,

where M is a local martingale. Now, by definition of k(p), we have

pRp−1
t−

(−ct + bIt−Rt−Zt−
)

+
p(p− 1)

2
Rp−2

t−

(
σIt−Rt−Zt−

)2

+
∑

j 6=It−

qIt−,j(Rp
t−(1 − γIt−jZt−)p −Rp

t−) ≤ −pctR
p−1
t− + k(p)Rp

t−

≤ k(p)Rp
t−.

Since R has countable jumps, Rt = Rt−, dP ⊗ dt a.e., and so the drift term in d(e−k(p)tRp
t ) is

nonpositive. Hence (e−k(p)tRp
t )t≥0 is a local supermartingale, and since it is nonnegative, it is a

true supermartingale by Fatou’s lemma. In particular, we have

0 ≤ e−ρtE[Rp
t ] ≤ e−(ρ−k(p))t(x+ y)p (2.3.2)

which shows (2.3.1).

(2) For any q > 1, we get by the supermartingale property of the process (e−k(pq)tRpq
t )t≥0 and

the optional sampling theorem:

E
[(
Rp

T ∧τ

)q] ≤ ek(pq)T (x+ y)pq < ∞, ∀(ζ, c) ∈ Ai(x, y), τ stopping time ,

which proves the required uniform integrability. ✷

The next proposition states a comparison result, and, as a byproduct, a growth condition

for the value function.

Proposition 2.3.1.

(1) Let w = (wi)i∈Id
be a d-tuple of nonnegative functions on R2

+, twice differentiable on
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R2
+ \ {(0, 0)} such that

ρwi − biy
∂wi

∂y
− 1

2
σ2

i y
2∂

2wi

∂y2
−
∑

j 6=i

qij [wj(x, y(1 − γij)) − wi(x, y)]

− λi[ŵi(x+ y) − wi(x, y)] − Ũ

(
∂wi

∂x

)
≥ 0, (2.3.3)

for all i ∈ Id, (x, y) ∈ R2
+ \ {(0, 0)}. Then, for all i ∈ Id, vi ≤ wi, on R2

+.

(2) Under (2.2.12), suppose that ρ > k(p). Then, there exists some positive constant C s.t.

vi(x, y) ≤ C(x+ y)p, ∀(i, x, y) ∈ Id × R2
+. (2.3.4)

Proof. (1) First notice that for (x, y) = (0, 0), the only admissible control in Ai(x, y) is

the zero control ζ = 0, c = 0, so that vi(0, 0) = 0. Now, fix (x, y) ∈ R2
+ \ {(0, 0)}, i ∈ Id, and

consider an arbitrary admissible control (ζ, c) ∈ Ai(x, y). By Itô’s formula to e−ρtw(Xt, Yt, It),

we get:

d[e−ρtw(Xt, Yt, It)] = e−ρt
[

− ρw − ct
∂w

∂x
+ bI

t−Yt−
∂w

∂y
+

1

2
σ2

I
t−
Y 2

t−

∂2w

∂y2

+
∑

j 6=I
t−

q
I
t− j

[w(Xt− , Yt−(1 − γ
I
t− j

), j) − w(Xt− , Yt− , It−)]

+ λ
I
t−

[
w(Xt− − ζt, Yt− + ζt, It−) − w(Xt− , Yt− , It−)

]]
dt

+ e−ρtσ2
I

t−
Yt−

∂w

∂y
(Xt− , Yt− , It−)dWt

+e−ρt
∑

j 6=I
t−

[w(Xt− , Yt−(1 − γ
I
t− j

), j) − w(Xt− , Yt− , It−)]
(
dN I

t− j − q
I
t− j
dt
)

+e−ρt[w(Xt− − ζt, Yt− + ζt, It−) − w(Xt− , Yt− , It−)
]](
dNt − λ

I
t−
dt
)
.(2.3.5)

Denote by τ = inf{t ≥ 0 : (Xt, Yt) = (0, 0)}, and consider the sequence of bounded stopping

times τn = inf{t ≥ 0 : Xt + Yt ≥ n or Xt + Yt ≤ 1/n} ∧ n, n ≥ 1. Then, τn ր τ a.s. when n

goes to infinity, and ct = 0, Xt = Yt = 0 for t ≥ τ , and so

E
[ ∫ ∞

0
e−ρtU(ct)dt

]
= E

[ ∫ τ

0
e−ρtU(ct)dt

]
. (2.3.6)

From Itô’s formula (2.3.5) between time t = 0 and t = τn, and observing that the integrands of
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the local martingale parts are bounded for t ≤ τn, we obtain after taking expectation:

w(x, y, i) = E
[
e−ρτnw(Xτn , Yτn , Iτn)

+

∫ τn

0
e−ρt

(
ρw + ct

∂w

∂x
− bI

t−Yt−
∂w

∂y
− 1

2
σ2

I
t−
Y 2

t−

∂2w

∂y2

−
∑

j 6=I
t−

q
I
t− j

[w(Xt− , Yt−(1 − γ
I
t− j

), j) − w(Xt− , Yt− , It−)]

−λ
I
t−

[
w(Xt− − ζt, Yt− + ζt, It−) − w(Xt− , Yt− , It−)

])
dt
]

≥ E
[
e−ρτnw(Xτn , Yτn , Iτn) +

∫ τn

0
e−ρtU(ct)dt

]
≥ E

[ ∫ τn

0
e−ρtU(ct)dt

]
,

where we used (2.3.3), and the nonnegativity of w. By sending n to infinity with Fatou’s lemma,

and (2.3.6), we obtain the required inequality: wi ≥ vi since (c, ζ) are arbitrary.

(2) Consider the function wi(x, y) = C(x + y)p. Then, for (x, y) ∈ R2
+ \ {(0, 0)}, and denoting

by z = y/(x+ y) ∈ [0, 1], a straightforward calculation shows that

ρwi − biy
∂wi

∂y
− 1

2
σ2

i y
2∂

2wi

∂y2
−
∑

j 6=i

qij [wj(x, y(1 − γij)) − wi(x, y)]

− λi[ŵi(x+ y) − wi(x, y)] − Ũ(
∂wi

∂x
)

= C(x+ y)p
[
ρ− pbiz +

σ2
i

2
p(1 − p)z2 −

∑

j 6=i

qij((1 − zγij)
p − 1)

]
− Ũ((x+ y)p−1pC)

≥ (x+ y)p
(
C(ρ− k(p)) − K̃(pC)

− p

1−p

)
(2.3.7)

by (2.2.13). Hence, for ρ > k(p), and for C sufficiently large, the r.h.s. of (2.3.7) is nonnegative,

and we conclude by using the comparison result in assertion 1). ✷

In the sequel, we shall assume the standing condition that ρ > k(p) so that the value functions

are well-defined and satisfy the growth condition (2.3.4). We now prove continuity properties of

the value functions.

Proposition 2.3.2. The value functions vi, i ∈ Id, are concave, nondecreasing in both vari-

ables, and continuous on R2
+. This implies also that v̂i, i ∈ Id, are nondecreasing, concave and

continuous on R+. Moreover, we have the boundary conditions for vi, i ∈ Id, on {0} × R+:

vi(0, y) =





0, if y = 0

E
[
e−ρτ1 v̂

Ii
τ1

(
y

Sτ1
S0

)]
, if y > 0.

(2.3.8)
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Here Ii denotes the continuous-time Markov chain I starting from i at time 0.

Proof. Fix some (x, y, i) ∈ R2
+ × Id, δ1 ≥ 0, δ2 ≥ 0, and take an admissible control (ζ, c) ∈

Ai(x, y). Denote by R and R′ the wealth processes associated to (ζ, c), starting from initial state

(x, y, i) and (x+ δ1, y+ δ2, i). We thus have R′ = R+ δ1 + δ2S/S0. This implies that (ζ, c) is also

an admissible control for (x+ δ1, y+ δ2, i), which shows clearly the nondecreasing monotonicity

of vi in x and y, and thus also the nondecreasing monotonicity of v̂i by its very definition.

The concavity of vi in (x, y) follows from the linearity of the admissibility constraints in

X,Y, ζ, c, and the concavity of U . This also implies the concavity of v̂i(r) by its definition.

Since vi is concave, it is continuous on the interior of its domain R2
+. From (2.3.4), and since

vi is nonnegative, we see that vi is continuous on (x0, y0) = (0, 0) with vi(0, 0) = 0. Then, v̂i is

continuous on R+ with v̂i(0) = 0. It remains to prove the continuity of vi at (x0, y0) when x0 = 0

or y0 = 0. We shall rely on the following implication of the dynamic programming principle

vi(x, y) = sup
c∈C(x)

E
[ ∫ τ1

0
e−ρtU(ct)dt+ e−ρτ1 v̂

Ii
τ1

(Rτ1)
]

(2.3.9)

= sup
c∈C(x)

E
[ ∫ τ1

0
e−ρtU(ct)dt+ e−ρτ1 v̂

Ii
τ1

(
x−

∫ τ1

0
ctdt+ y

Sτ1

S0

)]
, ∀(x, y) ∈ R2

+,

where C(x) denotes the set of nonnegative adapted processes (ct) s.t.
∫ τ1

0 ctdt ≤ x a.s.

(i) We first consider the case x0 = 0 (and y0 > 0).

In this case, the constraint on consumption c in C(x0) means that ct = 0, t ≤ τ1, so that (2.3.9)

implies (2.3.8). Now, since vi is nondecreasing in x, we have: vi(x, y) ≥ vi(0, y). Moreover,

by concavity and thus continuity of vi(0, .), we have: limy→y0 vi(0, y) = vi(0, y0). This implies

that lim inf(x,y)→(0,y0) vi(x, y) ≥ vi(0, y0). The proof of the converse inequality requires more

technical arguments. For any x, y ≥ 0, we have:

vi(x, y) = sup
c∈C(x)

E
[ ∫ τ1

0
e−ρsU(cs)ds+ e−ρτ1 v̂

Ii
τ1

(
x−

∫ τ1

0
csds+ y

Sτ1

S0

)]

≤ sup
c∈C(x)

E
[ ∫ τ1

0
e−ρsU(cs)ds

]
+ E

[
e−ρτ1 v̂Iτ1

(
x+ y

Sτ1

S0

)]

=: E1(x) + E2(x, y). (2.3.10)

Now, by Jensen’s inequality, and since U is concave, we have:

∫ ∞

0
U
(
cs1{s≤τ1}

)
ρe−ρsds ≤ U

(∫ ∞

0
cs1{s≤τ1}ρe

−ρsds

)
,
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and thus:

∫ τ1

0
e−ρsU(cs)ds ≤ U(ρx)

ρ
, a.s. ∀c ∈ C(x), (2.3.11)

by using the fact that
∫ τ1

0 ctdt ≤ x a.s. By continuity of U in 0 with U(0) = 0, this shows

that E1(x) converges to zero when x goes to x0 = 0. Next, by continuity of v̂i, we have:

v̂
Ii
τ1

(
x + y

Sτ1
S0

) → v̂
Ii
τ1

(
y0

Sτ1
S0

)
a.s. when (x, y) → (0, y0). Let us check that this convergence is

dominated. Indeed from (2.3.4), there is some positive constant C s.t.

v̂
Ii
τ1

(
x+ y

Sτ1

S0

) ≤ C
(
x+ y

Sτ1

S0

)p ≤ C(x+ y)p
(
1 ∨

(Sτ1

S0

)p)
.

Moreover,

E
[
e−ρτ1

(Sτ1

S0

)p∣∣∣I,W
]

=

∫ ∞

0
λIte

−
∫ t

0
λIse−ρt

(St

S0

)p
dt ≤ max

i∈Id

λi

∫ ∞

0
e−ρt

(
St

S0

)p

dt,

and so

E
[
e−ρτ1

(Sτ1

S0

)p]
≤ max

i∈Id

λi

∫ ∞

0
E
[
e−ρt

(St

S0

)p]
dt

≤ max
i∈Id

λi

∫ ∞

0
e−(ρ−k(p))tdt < ∞,

where we used in the second inequality the supermartingale property in Lemma 2.3.1 (and,

more precisely, equation (2.3.2)) for x = 0, y = 1, c ≡ ζ ≡ 0. One can then apply the dominated

convergence theorem to E2(x, y), to deduce that E2(x, y) converges to E
[
e−ρτ1 v̂

Ii
τ1

(
y0

Sτ1
S0

)]
when

(x, y) → (0, y0). This, together with (2.3.8), (2.3.10), proves that lim sup(x,y)→(0,y0) vi(x, y) ≤
vi(0, y0), and thus the continuity of vi at (0, y0).

(ii) We consider the case y0 = 0 (and x0 > 0).

Similarly, as in the first case, from the nondecreasing and continuity properties of vi(., 0), we

have: lim inf(x,y)→(x0,0) vi(x, y) ≥ vi(x0, 0). Conversely, for any x ≥ 0, and c ∈ C(x), let us

consider the stopping time τc = inf
{
t ∈≥ 0 :

∫ t
0 csds = x0

}
. Then, the nonnegative adapted

process c′ defined by: c′
t = ct1{t≤τc∧τ1

}, lies obviously in C(x0). Furthermore,

∫ τ1

0
e−ρsU(cs)ds =

∫ τc∧τ1

0
e−ρsU(c′

s)ds+

∫ τ1

τc∧τ1

e−ρsU(cs)ds

≤
∫ τ1

0
e−ρsU(c′

s)ds +
U(ρ(x− x0)+)

ρ
, (2.3.12)
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by the same Jensen’s arguments as in (2.3.11), and for all y ≥ 0,

v̂
Ii
τ1

(
x−

∫ τ1

0
ctdt+ y

Sτ1

S0

)
≤ v̂

Ii
τ1

(
x0 −

∫ τ1

0
c′

tdt+ (x− x0)+ + y
Sτ1

S0

)

≤ v̂
Ii
τ1

(
x0 −

∫ τ1

0
c′

tdt
)

+ v̂
Ii
τ1

(
(x− x0)+ + y

Sτ1

S0

)
, (2.3.13)

where we have used the fact that v̂i is nondecreasing, and subadditive (as a concave function

with v̂i(0) ≥ 0). By adding the two inequalities (2.3.12)-(2.3.13), and taking expectation, we

obtain from (2.3.9):

vi(x, y) ≤ vi(x0, 0) +
U(ρ(x− x0)+)

ρ
+ E

[
e−ρτ1 v̂

Ii
τ1

(
(x− x0)+ + y

Sτ1

S0

)]
,

and by the same domination arguments as in the first case, this shows that

lim sup
(x,y)→(x0,0)

vi(x, y) ≤ vi(x0, 0),

which ends the proof. ✷

Remark 2.3.1. The above proof of continuity of the value functions at the boundary by means

of the dynamic programming principle is somehow different from other similar proofs that one

can find e.g. in [20, 61, 72]. Indeed in such problems the proof of dynamic programming

principle is done (or referred to) in two parts: the “easy” one (≤) which does not require

continuity of the value function, and the ‘difficult” one (≥) which requires the continuity of the

value function up to the boundary. The proof of continuity at the boundary in such cases uses

only the “easy” inequality. In our case, due to the specific boundary condition of our problem,

the “easy” inequality is not enough to prove the continuity at the boundary. We need also the

“hard” inequality. For this reason we give, in Appendix A, a proof of the dynamic programming

principle in our case that, in the “hard” inequality part, uses the continuity of vi in the interior

and the continuity of its restriction to the boundary (which are both implied by the concavity

and by the growth condition (2.3.4)).

We shall also need the following lemma.

Lemma 2.3.2. There exists some positive constant C > 0 s.t.

∂vi

∂x
(x+, y) := lim

δ↓0

vi(x+ δ, y) − vi(x, y)

δ
≥ C U ′(2x), ∀ x, y ∈ R+, i ∈ Id. (2.3.14)

Proof. Fix some x, y ≥ 0, and set x1 = x+δ for δ > 0. For any (ζ, c) ∈ Ai(x, y) with associated

cash/amount in shares (X,Y ), notice that (ζ̃ , c̃) := (ζ, c + δ1[0,1∧τ1]) is admissible for (x1, y).
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Indeed, the associated cash amount satisfies

X̃t = Xt + (x1 − x) −
∫ t

0
δ1[0,1∧τ1](s)ds ≥ Xt ≥ 0,

while the amount in cash Ỹt = Yt ≥ 0 since ζ is unchanged. Thus, (ζ̃, c̃) ∈ Ai(x1, y), and we

have

vi(x1, y) ≥ E

[∫ ∞

0
e−ρtU(c̃t)dt

]

= E

[∫ ∞

0
e−ρtU(ct)dt

]
+ E

[∫ 1∧τ1

0
e−ρt (U(ct + δ) − U(ct)) dt

]
. (2.3.15)

Now, by concavity of U : U(ct + δ) − U(ct) ≥ δU ′(ct + δ), and

∫ 1∧τ1

0
e−ρt(U(ct + δ) − U(ct))dt ≥

∫ 1∧τ1

0
e−ρtδU ′(ct + δ)dt

≥ δe−ρ(1∧τ1)
∫ 1∧τ1

0
U ′(ct + δ)dt

≥ δe−ρ(1∧τ1)U ′(2x+ δ)

∫ 1∧τ1

0
1{ct<2x}dt. (2.3.16)

Moreover,

2x

∫ 1∧τ1

0
1{ct≥2x}dt ≤

∫ 1∧τ1

0
ctdt ≤ x,

since (ζ, c) is admissible for (x, y), so that

∫ 1∧τ1

0
1{ct<2x}dt ≥ (1 ∧ τ1) −

(
1

2
∧ τ1

)
≥ 1

2
1{τ1≥1}. (2.3.17)

By combining (2.3.16) and (2.3.17), and taking the expectation, we get

E

[∫ 1∧τ1

0
e−ρt(U(ct + δ) − U(ct))dt

]
≥ δU ′(2x+ δ)E

[
e−ρ(1∧τ1) 1

2
1{τ1≥1}

]
.

By taking the supremum over (ζ, c) in (2.3.15), we thus obtain with the above inequality

vi(x+ δ, y) ≥ vi(x, y) + δU ′(2x+ δ)E

[
e−ρ(1∧τ1) 1

2
1{τ1≥1}

]
.

Finally, by choosing C = E
[
e−ρ(1∧τ1) 1

21{τ1≥1}

]
> 0, and letting δ go to 0, we obtain the required

inequality (2.3.14). ✷
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2.4 Dynamic programming and viscosity characterization

In this section, we provide an analytic characterization of the value functions vi, i ∈ Id, to

our control problem (2.2.14), by relying on the dynamic programming principle, which is shown

to hold and formulated as:

Proposition 2.4.1. (Dynamic programming principle) For all (x, y, i) ∈ R2
+ × Id, and any

stopping time τ , we have

vi(x, y) = sup
(ζ,c)∈Ai(x,y)

E
[ ∫ τ

0
e−ρtU(ct)dt+ e−ρτv

Iτ
(Xτ , Yτ )

]
. (2.4.1)

Proof. See Appendix A. ✷

The associated dynamic programming system (also called Hamilton-Jacobi-Bellman or HJB

system) for vi, i ∈ Id, is written as

ρvi − biy
∂vi

∂y
− 1

2
σ2

i y
2∂

2vi

∂y2
− Ũ

(
∂vi

∂x

)
(2.4.2)

−
∑

j 6=i

qij

[
vj
(
x, y(1 − γij)

)− vi(x, y)
]

− λi
[
v̂i(x+ y) − vi(x, y)

]
= 0, (x, y) ∈ (0,∞) × R+, i ∈ Id,

together with the boundary condition (2.3.8) on {0} ×R+ for vi, i ∈ Id. Notice that, arguing as

one does for the deduction of the HJB system above, the boundary condition (2.3.8) may also

be written as:

ρvi(0, .) − biy
∂vi

∂y
(0, .) − 1

2
σ2

i y
2∂

2vi

∂y2
(0, .)

−
∑

j 6=i

qij

[
vj
(
0, y(1 − γij)

)− vi(0, y)
]

− λi
[
v̂i(y) − vi(0, y)

]
= 0, y > 0, i ∈ Id. (2.4.3)

Notice that in this boundary condition the term Ũ

(
∂vi

∂x

)
has disappeared. This implicitly

comes from the fact that, on the boundary x = 0 the only admissible consumption rate is c = 0.

We will say more on this in studying the case of CRRA utility function in Section 5.1.

In our context, the notion of viscosity solution to the non local second-order system (E) is

defined as follows.

Definition 2.4.1. (i) A d-tuple w = (wi)i∈Id
of continuous functions on R2

+ is a viscosity
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supersolution (resp. subsolution) to (2.4.2) if

ρϕi(x̄, ȳ) − biȳ
∂ϕi

∂y
(x̄, ȳ) − 1

2
σ2

i ȳ
2∂

2ϕi

∂y2
(x̄, ȳ) − Ũ

(
∂ϕi

∂x
(x̄, ȳ)

)

−
∑

j 6=i

qij

[
ϕj
(
x̄, ȳ(1 − γij)

)− ϕi(x̄, ȳ)
]

− λi
[
ϕ̂i(x̄+ ȳ) − ϕi(x̄, ȳ)

] ≥ ( resp. ≤) 0,

for all d-tuple ϕ = (ϕi)i∈Id
of C2 functions on R2

+, and any (x̄, ȳ, i) ∈ (0,∞) × R+ × Id, such

that wi(x̄, ȳ) = ϕi(x̄, ȳ), and w ≥ (resp. ≤) ϕ on R2
+ × Id.

(ii) A d-tuple w = (wi)i∈Id
of continuous functions on R2

+ is a viscosity solution to (2.4.2) if it

is both a viscosity supersolution and subsolution to (2.4.2).

The main result of this section is to provide an analytic characterization of the value functions

in terms of viscosity solutions to the dynamic programming system.

Theorem 2.4.1. The value function v = (vi)i∈Id
is the unique viscosity solution to (2.4.2)

satisfying the boundary condition (2.3.8), and the growth condition (2.3.4).

Proof. The proof of viscosity property follows as usual from the dynamic programming

principle. The uniqueness and comparison result for viscosity solutions is proved by rather

standard arguments, up to some specificities related to the non local terms and state constraints

induced by our hybrid jump-diffusion control problem. We postponed the details in Appendix

B. ✷

2.5 The case of CRRA utility

In this section, we consider the case where the utility function is of CRRA type in the form:

U(x) =
xp

p
, x > 0, for some p ∈ (0, 1). (2.5.1)

We shall exploit the homogeneity property of the CRRA utility function, and go beyond the

viscosity characterization of the value function in order to prove some regularity results, and

provide an explicit characterization of the optimal control through a verification theorem. We

next give a numerical analysis for computing the value functions and optimal strategies, and

illustrate with some tests for measuring the impact of our illiquidity features.
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2.5.1 Regularity results and verification theorem

For any (i, x, y) ∈ Id × R2
+, (ζ, c) ∈ A(x, y) with associated state process (X,Y ), we notice

from the dynamics (2.2.3)-(2.2.2) that for any k ≥ 0, the state (kX, kY ) is associated to the

control (kζ, kc). Thus, for k > 0,we have (ζ, c) ∈ Ai(x, y) iff (kζ, kc) ∈ A(kx, kc), and so from

the homogeneity property of the power utility function U in (2.5.1), we have:

vi(kx, ky) = kpvi(x, y), ∀(i, x, y) ∈ Id × R2
+, k ∈ R+. (2.5.2)

Let us now consider the change of variables:

(x, y) ∈ R2
+ \ {(0, 0)} −→ (

r = x+ y, z =
y

x+ y

) ∈ (0,∞) × [0, 1].

Then, from (2.5.2), we have vi(x, y) = vi(r(1 − z), rz) = rpvi(1 − z, z), and we can separate the

value function vi into:

vi(x, y) = U(x+ y)ϕi

( y

x+ y

)
, ∀(i, x, y) ∈ Id × (R2

+ \ {(0, 0)}) (2.5.3)

where ϕi(z) = p vi(1−z, z) is a continuous function on [0, 1]. By substituting this transformation

for vi into the dynamic programming equation (2.4.2) and the boundary condition (2.4.3), and

after some straightforward calculations, we see that ϕ = (ϕi)i∈Id
should solve the system of

(nonlocal) ordinary differential equations (ODEs):

(ρ− pbiz +
1

2
p(1 − p)σ2

i z
2)ϕi − (1 − p)

(
ϕi − z

p
ϕ′

i

)− p

1−p
(2.5.4)

− z(1 − z)(bi − z(1 − p)σ2
i )ϕ′

i − 1

2
z2(1 − z)2σ2

i ϕ
′′
i

−
∑

j 6=i

qij

[
(1 − zγij)

pϕj

(z(1 − γij)

1 − zγij

)
− ϕi(z)

]

− λi sup
π∈[0,1]

[
ϕi(π) − ϕi(z)

]
= 0, z ∈ [0, 1), i ∈ Id,

together with the boundary condition for z = 1:

(ρ− pbi +
1

2
p(1 − p)σ2

i )ϕi(1)

−
∑

j 6=i

qij
[
(1 − γij)pϕj(1) − ϕi(1)

]− λi sup
π∈[0,1]

[
ϕi(π) − ϕi(1)

]
= 0, i ∈ Id. (2.5.5)
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The following boundary condition for z = 0, obtained formally by taking z = 0 in (2.5.4),

ρϕi(0) − (1 − p)
(
ϕi(0)

)− p

1−p

−
∑

j 6=i

qij
[
ϕj(0) − ϕi(0)

]− λi sup
π∈[0,1]

[
ϕi(π) − ϕi(0)

]
= 0, i ∈ Id, (2.5.6)

is proved rigorously in the below Proposition.

Proposition 2.5.1. The d-tuple ϕ = (ϕi)i∈Id
is concave on [0, 1], C2 on (0, 1). We further have

lim
z→0

zϕ′
i(z) = 0, (2.5.7)

lim
z→0

z2ϕ′′
i (z) = 0, (2.5.8)

lim
z→1

(1 − z)ϕ′
i(z) = 0, (2.5.9)

lim
z→1

(1 − z)2ϕ′′
i (z) = 0, (2.5.10)

lim
z→1

ϕ′
i(z) = −∞, (2.5.11)

and ϕ is the unique bounded classical solution of (2.5.4) on (0, 1), with boundary conditions

(2.5.5)-(2.5.6).

Proof. Since ϕi(z) = p vi(1 − z, z), and by concavity of vi(., .) in both variables, it is clear

that ϕi is concave on [0, 1]. From the viscosity property of vi in Theorem 2.4.1, and the change

of variables (2.5.3), this implies that ϕ is the unique bounded viscosity solution to (2.5.4) on

[0, 1), satisfying the boundary condition (2.5.5). Now, recalling that qii = −∑j 6=i qij , we observe

that the system (2.5.4) can be written as:

(ρ− qii + λi − pbiz +
1

2
p(1 − p)σ2

i z
2)ϕi − z(1 − z)(bi − z(1 − p)σ2

i )ϕ′
i

− 1

2
z2(1 − z)2σ2

i ϕ
′′
i − (1 − p)

(
ϕi − z

p
ϕ′

i

)− p

1−p

=
∑

j 6=i

qij

[
(1 − zγij)pϕj

(z(1 − γij)

1 − zγij

)]
+ λi sup

π∈[0,1]
ϕi(π), z ∈ (0, 1), i ∈ Id. (2.5.12)
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Let us fix some i ∈ Id, and an arbitrary compact [a, b] ⊂ (0, 1). By standard results, see e.g.

[16], we know that the second-order ODE:

(ρ− qii + λi − pbiz +
1

2
p(1 − p)σ2

i z
2)wi − z(1 − z)(bi − z(1 − p)σ2

i )w′
i

−1

2
z2(1 − z)2σ2

iw
′′
i − (1 − p)

(
wi − z

p
w′

i

)− p

1−p

=
∑

j 6=i

qij

[
(1 − zγij)pϕj

(z(1 − γij)

1 − zγij

)]
+ λi sup

π∈[0,1]
ϕi(π) (2.5.13)

has a unique viscosity solution wi satisfying wi(a) = ϕi(a), wi(b) = ϕi(b), and that this solution

wi is twice differentiable on [a, b] since the second term z(1 − z)σ2
i is uniformly elliptic on [a, b],

see [44]. Since ϕi is a viscosity solution to (2.5.13) by (2.5.12), we deduce by uniqueness that

ϕi = wi on [a, b]. Since a, b are arbitrary, this means that ϕ is C2 on (0, 1). By concavity of ϕi,

we have for all z ∈ (0, 1),

ϕi(1) − ϕi(z)

1 − z
≤ ϕ′

i(z) ≤ ϕi(z) − ϕi(0)

z
.

Letting z → 0 and z → 1, and by continuity of ϕi, we obtain (2.5.7) and (2.5.9).

Now letting z go to 0 in (2.5.4), we obtain limz→0 z
2ϕ′′

i (z) = l for some finite l ≤ 0. If l < 0,

z2ϕ′′
i (z) ≤ l

2 whenever z ≤ η, for some η > 0. By writing that

z(ϕ′
i(z) − ϕ′

i(η)) = z

∫ z

η
ϕ′′

i (u)du ≥ − l

2
z

∫ η

z

du

u2
=
l

2
z

(
1

η
− 1

z

)
,

and sending z → 0, we get lim infz→0 zϕ
′
i(z) ≥ −l/2, which contradicts (2.5.7). Thus l = 0, and

the boundary condition (2.5.6) follows by letting z → 0 in (2.5.4). In the same way, letting z →
1 in (2.5.4) and comparing with (2.5.5), we have

lim
z→1

1

2
(1 − z)2ϕ′′

i (z) =
(
ϕi(1) − ϕ′

i(1−)
)− p

1−p ∈ [0,∞].

(2.5.9) implies that this limit is 0, and we obtain (2.5.10) and (2.5.11). ✷

Remark 2.5.1. From (2.5.3) and the above Proposition, we deduce that the value functions

vi, i ∈ Id, are C2 on (0,∞) × (0,∞), and so are solutions to the dynamic programming system

(2.4.2) on (0,∞) × (0,∞) in classical sense.

We now provide an explicit construction of the optimal investment/consumption strategies

in feedback form in terms of the smooth solution ϕ to (2.5.4)-(2.5.6)-(2.5.5). We start with the
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following Lemma.

Lemma 2.5.1. For any i ∈ Id, let us define:

c∗(i, z) =





(
ϕi(z) − z

pϕ
′
i(z)

) −1
1−p when 0 < z < 1

(ϕi(0))
−1

1−p when z = 0

0 when z = 1

,

π∗(i) ∈ arg max
π∈[0,1]

ϕi(π).

Then for each i ∈ Id, c∗(i, .) is continuous on [0, 1], C1 on (0, 1), and given any initial conditions

(r, z) ∈ Id × R+ × [0, 1], there exists a solution (R̂t, Ẑt)t≥0 valued in R+ × [0, 1] to the SDE:

dR̂t = R̂t−Ẑt−

(
bI

t−dt+ σI
t−dWt − γ

I
t− ,It

dN
I

t− ,It

t

)
− R̂t−c

∗(It−, Ẑt−)dt, (2.5.14)

dẐt = Ẑt−(1 − Ẑt−)
[(
bI

t− − Ẑt−σ2
I

t−

)
dt+ σI

t−dWt −
γ

I
t− ,It

1 − Ẑt−γ
I
t− ,It

dN
I

t− ,It

t

]

+ (π∗(It−) − Ẑt−)dNt + Ẑtc
∗(It−, Ẑt−)dt. (2.5.15)

Moreover, if r > 0, then R̂t > 0, a.s. for all t ≥ 0.

Proof. First notice that Lemma 2.3.2, written in terms of the variables (r, z), is formulated

equivalently as

ϕi(z) − z

p
ϕ′

i(z) ≥ C2p−1(1 − z)p−1, z ∈ (0, 1).

This implies that c∗(i, .) is well-defined on (0, 1), and C1 since ϕ is C2. The continuity of c∗(i, .)

at 0 and 1 comes from (2.5.7) and (2.5.11).

Let us show the existence of a solution Z to the SDE (2.5.15). We start by the existence of

a solution for t < τ1 (recall that (τn) is the sequence of jump times of N). In the case where

z = 1 (resp. z = 0), then Zt ≡ 1 (resp. Zt ≡ 0) is clearly a solution on [0, τ1). Consider now

the case where z ∈ (0, 1). From the local Lipschitz property of z 7→ zc∗(i, z), and recalling that

γij < 1, we know, adapting e.g. the result of Theorem 38, page 303 of [64], that there exists a

solution to

dẐt = Ẑt−(1 − Ẑt−)
[(
bI

t− − Ẑt−σ2
I

t−

)
dt+ σI

t−dWt −
γ

I
t− ,It

1 − Ẑt−γ
I
t− ,It

dN
I

t− ,It

t

]

+ Ẑtc
∗(It−, Ẑt−)dt, (2.5.16)
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which is valued in [0, 1] up to time t < τ ′
1 := τ1 ∧

(
limε→0 inf

{
t ≥ 0|Ẑt(1 − Ẑt) ≤ ε

})
. By noting

that Ẑt ≥ Z0
t , where

Z0
t =

z St

S0

z St

S0
+ (1 − z)

, t ≥ 0,

is the solution to (2.5.16) without the consumption term, and since S is locally bounded away

from 0, we have limt→τ ′
1
Zt = 1 on {τ ′

1 < τ1}. By extending Ẑt ≡ 1 on [τ ′
1, τ1), we obtain actually

a solution on [0, τ1). Then at τ1, by taking Ẑτ1 = π∗(Iτ1−), we obtain a solution to (2.5.15)

valued in [0, 1] on [0, τ1]. Next, we obtain similarly a solution to (2.5.15) on [τ1, τ2] starting from

Ẑτ1 . Finally, since τn ր ∞, a.s., by pasting we obtain a solution to (2.5.15) for t ∈ R+.

Given a solution Ẑ to (2.5.15), the solution R̂ to (2.5.14) starting from r at time 0 is

determined by the stochastic exponential:

R̂t = r · E
(∫ ·

0
Ẑs−

(
bI

s−ds+ σI
s−dWs − γ

I
s− ,Is

dN
I

s− ,Is

s

)
− c∗(Is−, Ẑs−)dt

)

t
.

Since −Ẑt−γI
t− ,It

> −1, we see that Rt > 0, t ≥ 0, whenever r > 0, while R ≡ 0 if r = 0. ✷

Proposition 2.5.2. Given some initial conditions (i, x, y) ∈ Id × (R2
+ \{(0, 0)}), let us consider

the pair of processes (ζ̂, ĉ) defined by:

ζ̂t = R̂t−(π∗(It−) − Ẑt−) (2.5.17)

ĉt = R̂t−c
∗(It−, Ẑt−), (2.5.18)

where the functions (c∗, π∗) are defined in Lemma 2.5.1, and (R̂, Ẑ) are solutions to (2.5.14)-

(2.5.15), starting from r = x + y, z = y/(x + y), with I starting from i. Then, (ζ̂, ĉ) is an

optimal investment/consumption strategy in Ai(x, y), with associated state process (X̂, Ŷ ) =

(R̂(1 − Ẑ), R̂Ẑ), for vi(x, y) = U(r)ϕi(z).

Proof. For such choice of (ζ̂, ĉ), the dynamics of (R̂, Ẑ) evolve according to (2.2.10)-(2.2.11)

with a feedback control (ζ̂, ĉ), and thus correspond (via Itô’s formula) to a state process (X̂, Ŷ ) =

(R̂(1−Ẑ), R̂Ẑ) governed by (2.2.2)-(2.2.3), starting from (x, y), and satisfying the nonbankruptcy

constraint (2.2.5). Thus, (ζ̂, ĉ) ∈ Ai(x, y). Moreover, since r = x+ y > 0, this implies that R̂ >

0, and so (X̂, Ŷ ) lies in R2
+ \ {(0, 0)}.

As in the proof of the standard verification theorem, we would like to apply Itô’s formula to

the function e−ρtv(X̂t, Ŷt, It) (denoting by v(x, y, i) = vi(x, y) = U(x+y)ϕi(y/(x+y))). However

this is not immediately possible since the process (X̂t, Ŷt) may reach the boundary of R2 where
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the derivatives of v do not have classical sense. To overcome this problem, we approximate the

function ϕi (and so v(x, y, i)) as follows. We define, for every ε > 0 a function ϕε = (ϕε)i∈Id
∈

C2([0, 1],Rd) as in the proof of Theorem 4.24 in [20], such that ϕε
i = ϕi on [ε, 1 − ε], and ϕε

i is

affine on [0, ε] and [1 − ε, 1]. It is then easy to see that this implies

• ϕε
i → ϕi uniformly on [0, 1] as ε → 0,

• z(1 − z)(ϕε
i )′ → z(1 − z)ϕ′

i uniformly on [0, 1] as ε → 0,

• z2(1 − z)2(ϕε
i )′′ → z2(1 − z)2ϕ′′

i uniformly on [0, 1] as ε → 0,

• ((ϕε
i )′)−1 → (ϕ′

i)
−1 uniformly on [0, η] for some η > 0 as ε → 0.

Now we can apply Dynkin’s formula to the function vε(x, y, i) = U(x+y)ϕε
i (y/(x+y)) calculated

on the process (X̂, Ŷ , I) between time 0 and τn ∧ T , where τn = inf{t ≥ 0 : X̂t + Ŷt ≥ n} :

vε(x, y, i) = E
[
e−ρ(τn∧T )vε(X̂τn∧T , Ŷτn∧T , Iτn∧T )

+

∫ τn∧T

0
e−ρt

(
ρvε + ĉt

∂vε

∂x
− bI

t− Ŷt−
∂vε

∂y
− 1

2
σ2

I
t−
Ŷ 2

t−

∂2vε

∂y2

−
∑

j 6=I
t−

q
I
t− j

[vε(X̂t− , Ŷt−(1 − γ
I
t− j

), j) − vε(X̂t− , Ŷt− , It−)]

−λ
I
t−

[
vε(X̂t− − ζ̂t, Ŷt− + ζ̂t, It−) − vε(X̂t− , Ŷt− , It−)

])
dt
]

(2.5.19)

We denote by ζ̂(i, r, z) = r(π∗(i) − z), ĉ(i, r, z) = rc∗(i, z), and define gε on (R2
+ \ {(0, 0)}) × Id

by

ρvε
i − biy

∂vε
i

∂y
− 1

2
σ2

i y
2∂

2vε
i

∂y2
+ ĉ(i, x+ y,

y

x+ y
)
∂vε

i

∂x
− U

(
ĉ(i, x+ y,

y

x+ y
)
)

−
∑

j 6=i

qij

[
vε

j

(
x, y(1 − γij)

)− vε
i (x, y)

]

− λi

[
vε

i

(
x− ζ̂

(
i, x+ y,

y

x+ y

)
, y + ζ̂

(
i, x+ y,

y

x+ y

))− vε
i (x, y)

]
=: gε

i (x, y),

so that from (2.5.19):

vε(i, x, y) = E
[
e−ρ(τn∧T )vε(X̂τn∧T , Ŷτn∧T , Iτn∧T )

+

∫ τn∧T

0
e−ρt(U(ĉt) + gε(X̂t, Ŷt, It))dt

]
. (2.5.20)
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Notice that denoting r = x+ y, z = y/(x+ y), we have

ĉ(i, x+ y,
y

x+ y
)
∂vi

∂x
= rp

(
ϕi − z

p
ϕ′

i

)− p

1−p

,

y
∂vi

∂y
= rpz

(
ϕi +

1 − z

p
ϕ′

i

)
,

y2∂
2vi

∂y2
= rpz2

(
(p− 1)ϕi − 2(1 − z)

(1 − p)

p
ϕ′

i +
(1 − z)2

p
ϕ′′

i

)
,

so that the properties of ϕε imply :

• vε
i = vi on

{
ε ≤ y

x+y ≤ 1 − ε
}

,

• vε
i → vi uniformly on bounded subsets of R2

+,

• ĉ(i, x+y, y
x+y )

∂vε
i

∂x
→




c(i, x+ y, y

x+y )
∂vi

∂x
, x > 0

0, x = 0
uniformly on bounded subsets of R2

+,

• y
∂vε

i

∂y
→




y
∂vi

∂y
, y > 0

0, y = 0
uniformly on bounded subsets of R2

+,

• y2∂
2vε

i

∂y2
→




y2∂

2vi

∂y2
, y > 0

0, y = 0

uniformly on bounded subsets of R2
+.

Since v is a classical solution of (2.4.2) on (0,∞) × (0,∞), this implies that gε converges to 0

uniformly on bounded subsets of R2
+ when ε goes to 0. We then obtain by letting ε → 0 in

(2.5.20):

v(x, y, i) = E
[
e−ρ(τn∧T )v(X̂τn∧T , Ŷτn∧T , Iτn∧T ) +

∫ τn∧T

0
e−ρtU(ĉt)dt

]
,

From the growth condition (2.3.4) we get

E
[
e−ρ(τn∧T )v(X̂τn∧T , Ŷτn∧T , Iτn∧T )

]
≤ CE

[
e−ρ(τn∧T )Rp

τn∧T

]
.

So, using Lemma 2.3.1, sending n to infinity, and then T to infinity, we get

lim
T →∞

lim
n→∞

E
[
e−ρ(τn∧T )v(X̂τn∧T , Ŷτn∧T , Iτn∧T )

]
= 0.
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Applying monotone convergence theorem to the second term in the r.h.s. of (2.5.20), we then

obtain

vi(x, y) = E
[ ∫ ∞

0
e−ρtU(ĉt)dt

]
,

which proves the optimality of (ζ̂ , ĉ). ✷

2.5.2 Numerical analysis

We focus on the numerical resolution of the system of ODEs (2.5.4)-(2.5.6)-(2.5.5) satisfied

by (ϕi)i∈Id
, and rewritten for all i ∈ Id as:

(ρ− qii + λi − pbiz +
1

2
p(1 − p)σ2

i z
2)ϕi − z(1 − z)(bi − z(1 − p)σ2

i )ϕ′
i

− 1

2
z2(1 − z)2σ2

i ϕ
′′
i − (1 − p)

(
ϕi − z

p
ϕ′

i

)− p

1−p

=
∑

j 6=i

qij

[
(1 − zγij)pϕj

(z(1 − γij)

1 − zγij

)]
+ λi sup

π∈[0,1]
ϕi(π), z ∈ (0, 1),

(ρ− qii + λi)ϕi(0) − (1 − p)ϕi(0)
− p

1−p =
∑

j 6=i

qijϕj(0) + λi sup
π∈[0,1]

ϕi(π),

(ρ− qii + λi − pbi +
1

2
p(1 − p)σ2

i )ϕi(1) =
∑

j 6=i

qij(1 − γij)pϕj(1) + λi sup
π∈[0,1]

ϕi(π).

The main numerical difficulty comes from the nonlocal terms in the r.h.s. of these equations.

We shall adopt an iterative method as follows: starting with ϕ0 = (ϕ0
i )i∈Id

= 0, we solve ϕn+1 =

(ϕn+1
i )i∈Id

as the (classical) solution to the local ODEs where the non local terms are calculated

from (ϕn
i ) :

(ρ− qii + λi − pbiz +
1

2
p(1 − p)σ2

i z
2)ϕn+1

i − z(1 − z)(bi − z(1 − p)σ2
i )(ϕn+1

i )′

−1

2
z2(1 − z)2σ2

i (ϕn+1
i )′′ − (1 − p)

(
ϕn+1

i − z

p
(ϕn+1

i )′)− p

1−p

=
∑

j 6=i

qij

[
(1 − zγij)pϕn

j

(z(1 − γij)

1 − zγij

)]
+ λi sup

π∈[0,1]
ϕn

i (π),
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with boundary conditions

(ρ− qii + λi)ϕ
n+1
i (0) − (1 − p)ϕn+1

i (0)− p

1−p =
∑

j 6=i

qijϕ
n
j (0) + λi sup

π∈[0,1]
ϕn

i (π),

(ρ− qii + λi − pbi +
1

2
p(1 − p)σ2

i )ϕn+1
i (1) =

∑

j 6=i

qij(1 − γij)pϕn
j (1) + λi sup

π∈[0,1]
ϕn

i (π).

Let us denote by:

vn
i (x, y) =




U(x+ y)ϕn

i

(
y

x+y

)
, for (i, x, y) ∈ Id × (R2

+ \ {(0, 0)})

0, for i ∈ Id, (x, y) = (0, 0).

A straightforward calculation shows that vn = (vn
i )i∈Id

are solutions to the iterative local PDEs:

(ρ− qii + λi)v
n+1
i − biy

∂vn+1
i

∂y
− 1

2
σ2

i y
2∂

2vn+1
i

∂y2
− Ũ

(∂vn+1
i

∂x

)

=
∑

j 6=i

qijv
n
j

(
x, y(1 − γij)

)
+ λiv̂

n
i (x+ y), (x, y) ∈ (0,∞) × R+, i ∈ Id, (2.5.21)

together with the boundary condition (2.3.8) on {0} × (0,∞) for vi, i ∈ Id:

(ρ− qii + λi)v
n+1
i (0, .) − biy

∂vn+1
i

∂y
(0, .) − 1

2
σ2

i y
2∂

2vn+1
i

∂y2
(0, .)

=
∑

j 6=i

qijv
n
j

(
0, y(1 − γij)

)
+ λiv̂

n
i (y), y > 0, i ∈ Id. (2.5.22)

We then have the stochastic control representation for vn (and so for ϕn).

Proposition 2.5.3. For all n ≥ 0, we have

vn
i (x, y) = sup

(ζ,c)∈Ai(x,y)
E
[ ∫ θn

0
e−ρtU(ct)dt

]
, (i, x, y) ∈ Id × R2

+, (2.5.23)

where the sequence of random times (θn)n≥0 are defined by induction from θ0 = 0, and:

θn+1 = inf
{
t > θn : ∆Nt 6= 0 or ∆N

It−,It

t 6= 0
}
,

i.e. θn is the n-th time where we have either a change of regime or a trading time.

Proof. Denoting by wn
i (x, y) the r.h.s. of (2.5.23), we need to show that wn

i = vn
i . First

(with a similar proof to Proposition 2.4.1) we have the following Dynamic Programming Principle
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for the wn : for each finite stopping time τ ,

wn+1
i (x, y) = sup

(ζ,c)∈Ai(x,y)
E

[∫ τ∧θ1

0
e−ρtU(ct)dt+ 1{τ≥θ1}e

−ρθ1wn
Iθ1

(Xθ1 , Yθ1)

+1{τ<θ1}e
−ρτwn+1

Iτ
(Xτ , Yτ )

]
(2.5.24)

The only difference with the statement of Proposition 2.4.1 is the fact that when τ ≥ θ1, we

substitute wn+1 with wn since there are only n stopping times remaining before consumption is

stopped due to the finiteness of the horizon in the definition of wn.

By using (2.5.24), we can show as in Theorem 2.4.1 that wn is the unique viscosity solution

to (2.5.21), satisfying boundary condition (2.5.22) and growth condition (2.3.4) (it is actually

easier since there are only local terms in this case). Since we already know that vn is such a

solution, it follows that wn = vn. ✷

As a consequence, we obtain the following convergence result for the sequence (vn)n.

Proposition 2.5.4. The sequence (vn)n converges increasingly to v, and there exists some

positive constants C and δ < 1 s.t.

0 ≤ vi − vn
i ≤ Cδn(x+ y)p, ∀(i, x, y) ∈ Id × R2

+. (2.5.25)

Proof. First let us show that

δ := sup
(c, ζ) ∈ Ai(x, y)

{(x, y) ∈ R
2
+

: x + y = 1}

E
[
e−ρθ1Rp

θ1

]
< 1. (2.5.26)

By writing that e−ρtRp
t = DtLt, where (Lt)t = (e−k(p)tRp

t )t is a nonnegative supermartingale by

Lemma 2.3.1, and (Dt)t = (e−(ρ−k(p))t)t is a decreasing process, we see that (e−ρtRp
t )t is also a

nonnegative supermartingale for all (ζ, c) ∈ Ai(x, y), and so:

E
[
e−ρθ1Rp

θ1

]
≤ E

[
e−ρ(θ1∧1)Rp

θ1∧1

]

= E
[
e−(ρ−k(p))(θ1∧1)e−k(p)(θ1∧1)Rp

θ1∧1

]
.

Now, since e−(ρ−k(p))(θ1∧1) < 1 a.s., E
[
e−k(p)(θ1∧1)Rp

θ1∧1

]
≤ 1, for all (ζ, c) ∈ Ai(x, y) with x+y =

1 (recall the supermartingale property of (e−k(p)tRp
t )t), and by using also the uniform integrability

of the family
(
e−k(p)(θ1∧1)Rp

θ1∧1

)
c,ζ

from Lemma 2.3.1, we obtain the relation (2.5.26).
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The nondecreasing property of the sequence (vn
i )n follows immediately from the representa-

tion (2.5.23), and we have: vn
i ≤ vn+1

i ≤ v for all n ≥ 0. Moreover, the dynamic programming

principle (2.5.24) applied to τ = θ1 gives

vn+1
i (x, y) = sup

(ζ,c)∈Ai(x,y)
E

[∫ θ1

0
e−ρtU(ct)dt+ e−ρθ1vn

Iθ1

(Xθ1 , Yθ1)

]
(2.5.27)

Let us show (2.5.25) by induction on n. The case n = 0 is simply the growth condition (2.3.4)

since v0 = 0. Assume now that (2.5.25) holds true at step n. From the dynamic programming

principle (2.4.1) and (2.5.27) for v and vn+1, we then have:

vn+1
i (x, y) ≥ vi(x, y) − sup

(ζ,c)∈Ai(x,y)
E
[
e−ρθ1(vIθ1

− vn
Iθ1

)
(
Xθ1 , Yθ1

)]

≥ vi(x, y) − sup
(ζ,c)∈Ai(x,y)

E
[
e−ρθ1CδnRp

θ1

]

= vi(x, y) − Cδn+1(x+ y)p,

by definition of δ. This proves the required inequality at step n+ 1, and ends the proof. ✷

In the next section, we solve the local ODEs for ϕn with Newton’s method by a finite-

difference scheme (see section 3.2 in [42]).

2.5.3 Numerical illustrations

Single-regime case

In this paragraph, we consider the case where there is only one regime (d = 1). In this case,

our model is similar to the one studied in [61], with the key difference that in their model, the

investor only observes the stock price at the trading times, so that the consumption process is

piecewise-deterministic. We want to compare our results with [61], and take the same values for

our parameters ρ = 0.2, b = 0.4, σ = 1.

Defining the cost of liquidity P (x) as the extra amount needed to have the same utility as

in the Merton case : v(x + P (x)) = vM (x), we compare the results in our model and in the

discrete observation model in [61]. The results in Table 1 indicate that the impact of the lack

of continuous observation is quite large, and more important than the constraint of only being

able to trade at discrete times.

In Figure 1 we have plotted the graph of ϕ(z) and of the optimal consumption rate c∗(z) for
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λ Discrete observation Continuous observation

1 0.275 0.153
5 0.121 0.016
40 0.054 0.001

Table 2.1: Cost of liquidity P (1) as a function of λ.

different values of λ. Notice how the value function, the optimal proportion and the optimal

consumption rate converge to the Merton values when λ increases.

We observe that the optimal investment proportion is increasing with λ. When z is close to

1 i.e. the cash proportion in the portfolio is small, the investor faces the risk of “having nothing

more to consume" and the further away the next trading date is the smaller the consumption

rate should be, i.e. c∗ is increasing in λ. When z is far from 1 it is the opposite : when λ is

smaller the investor will not be able to invest optimally to maximize future income and should

consume more quickly.
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Figure 2.1:
Value function ϕ(z) (left) and optimal consumption rate c∗(z)(right) for different values of λ

Two regimes

In this paragraph, we consider the case of d = 2 regimes. We assume that the asset price is

continuous, i.e. γ12 = γ21 = 0. In this case, the value functions and optimal strategies for the

continuous trading (Merton) problem are explicit, see [69]: vi,M (r) = rp

p ϕi,M where (ϕi,M )i=1,2
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is the only positive solution to the equations:

(
ρ− qii − b2

i p

2σ2
i (1 − p)

)
ϕi,M − (1 − p)ϕ

− p

1−p

i,M = qijϕj,M , i, j ∈ {1, 2}, i 6= j.

The optimal proportion invested in the asset π∗
i,M = bi

(1−p)σ2
i

is the same as in the single-regime

case, and the optimal consumption rate is c∗
i,M = (ϕi,M )− 1

p . We take for values of the parameters

p = 0.5,

q12 = q21 = 1,

b1 = b2 = 0.4,

σ1 = 1, σ2 = 2,

i.e. the difference between the two market regimes is the volatility of the asset. In Figure 2.2,

we plot the value function and optimal consumption for each of the two regimes in this market,

for various values of the liquidity parameters (λ1, λ2). As in the single-regime case, when the

liquidity increases, ϕ and c∗ converge to the Merton value.

To quantify the impact of regime-switching on the investor, it is also interesting to compare

the cost of liquidity with the single-regime case, see Tables 2.2 and 2.3. We observe that, for

equivalent trading intensity, the cost of liquidity is higher in the regime-switching case. This is

economically intuitive : in each regime the optimal investment proportion is different, so that

the investor needs to rebalance his portfolio more often (at every change of regime).

(λ1, λ2) P1(1) P2(1)

(1,1) 0.257 0.224

(5,5) 0.112 0.103

(10,10) 0.069 0.064

Table 2.2: Cost of liquidity Pi(1) as a
function of (λ1, λ2).

λ P1(1) P2(1)

1 0.153 0.087

5 0.015 0.042

10 0.004 0.024

Table 2.3: Cost of liquidity Pi(1) for the
single-regime case.
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Figure 2.2: ϕi and c∗
i for different values of (λ1, λ2)

2.6 Appendix A : Dynamic Programming Principle

We introduce the weak formulation of the control problem.

Definition 2.6.1. Given (i, x, y) ∈ Id × R+ × R+, a control U is a 9-tuple

(Ω,F ,P,F = (Ft)t≥0,W, I,N, c, ζ), where :

1. (Ω,F ,P,F) is a filtered probability space satisfying the usual conditions.

2. I is a Markov chain with space state Id and generator Q, I0 = i a.s., N is a Cox process

with intensity (λIt), and W is an F-Brownian motion independent of (I,N).

3. Ft = σ(Ws, Is, Ns; s ≤ t) ∨ N , where N is the collection of all P-null sets of F .

4. (ct) is F-progressively measurable, (ζt) is F-predictable.

We say that U is admissible, (writing U ∈ Aw
i (x, y)), if the solution (X,Y ) to (2.2.3)-(2.2.2)

with X0 = x, Y0 = y, satisfies Xt ≥ 0, Yt ≥ 0 a.s.
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Given U ∈ Aw
i (x, y), define J(U) = E [

∫∞
0 e−ρsU(cs)ds], and the value function

vi(x, y) = sup
U∈Aw

i
(x,y)

J(U).

Proposition 2.6.1. For every finite stopping time τ and initial conditions i, x, y,

vi(x, y) = sup
(ζ,c)∈Aw

i
(x,y)

E

[∫ τ

0
e−ρtU(ct)dt+ e−ρτvIτ (Xτ , Yτ )

]
. (2.6.1)

Before proving this proposition we state some technical lemmas.

Lemma 2.6.1. Given (Ω,F ,P,F = (Ft),W, I,N) satisfying the conditions of Definition 2.6.1,

define F0 = (F0
t )t≥0, where F0

t = σ(Ws, Is, Ns; s ≤ t). Then if (ct) is F-progressively measurable

(resp. predictable), there exists c1 F0-progressively measurable (resp. predictable) such that c = c1

dP ⊗ dt a.e..

Proof. We only give a sketch as the arguments is standard. We first use Lemma 3.2.4 page 133

in [41] to find, for each n ∈ N, an approximating Ft-simple process cn converging to c in the

L2(dt⊗dP) norm. Then, using Lemma 1.25 page 13 in [40], we can change every cn on a null-set

and find a sequence of F t,0
s -simple process cn

1 (t) that again converges to c in the L2(dt ⊗ dP)

norm. We now extract a subsequence (denoted again by cn
1 ) such that cn

1 → c a.e. and we

define c1 := lim infn→+∞ cn
1 . This is F t,0

s -progressively measurable and c = c1, dt ⊗ dP a.e. on

[0,+∞) × Ω. This concludes the proof. ✷

Remark 2.6.1. With the notations of the previous lemma, it is easy to check that (Xc′,ζ′
, Y c′,ζ′

)

∼ (Xc,ζ , Y c,ζ) in law. Hence without loss of generality we can assume that c is F0-progressively

measurable and ζ is F0-predictable.

Define W as the space of continuous functions on R+, I the space of cadlag Id-valued

functions, N the space of nondecreasing cadlag N-valued functions. On W × I × N , define the

filtration (B0
t )t≥0, where B0

t is the smallest σ-algebra making the coordinate mappings for s ≤ t

measurable, and define B0
t+ =

⋂
s>t B0

s .

Lemma 2.6.2. If c is F0-progressively measurable (resp. F0-predictable), there exists a B0
t+-

progressively measurable (resp. B0
t -predictable) process fc : R+ × W × I × N → R, such that

ct = fc(t,W.∧t, I.∧t, N.∧t), for P − a.e ω, for all t ∈ R+
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Proof. For the progressively measurable part one can see e.g. Theorem 2.10 in [71]. For c

predictable, notice that this is true if c = X1(t,s], where X is F0
t -measurable, and conclude with

a monotone class argument. ✷

Proof of Proposition A.1. Let Vi(x, y) be the right hand side of (2.6.1).

Step 1. vi(x, y) ≤ Vi(x, y): Take U ∈ Aw
i (x, y). Then

E

[∫ ∞

0
e−ρtU(ct)dt |Fτ

]
=

∫ τ

0
e−ρtU(ct)dt+ e−ρτE

[∫ ∞

0
e−ρsU(cτ+s)ds |Fτ

]
. (2.6.2)

By Remark 2.6.1, w.l.o.g. we can assume that c is F0-progressively measurable (resp. ζ F0-

predictable). For ω0 ∈ Ω, define the shifted control Ũω0 = (Ω, F̃ τ ,Pω0 , F̃τ
t , W̃ , Ĩ, Ñ , c̃, ζ̃), where

:

• Pω0 = P(.|Fτ )(ω0)

• W̃t = Wτ+t −Wτ

• Ĩt = Iτ+t

• N ′
t = Nτ+t −Nτ

• F̃ τ is the augmentation of F by the Pω0-null sets, and F̃τ
t is the augmented filtration

generated by (W̃ , Ĩ, Ñ).

• c̃t = ct+τ , ζ̃t = ζt+τ

Then we can check that for almost all ω0, Ũω0 satisfies the conditions of Definition 2.6.1 (with

initial conditions (Iτ (ω0), Xτ (ω0), Yτ (ω0))) : 2. comes from the independence of W and (I,N)

and the strong Markov property, and 4. is verified because for almost all ω0 F0
t+τ ⊂ F̃τ

t .

Moreover, there is a modification (X ′, Y ′) of (X,Y ) s.t. (X ′
τ+t, Y

′
τ+t) is F̃ τ -adapted, and a

solution of (2.2.3)-(2.2.2) for (W̃ , Ĩ, Ñ). Hence Ũω0 ∈ Aw
Iτ (ω0)(Xτ (ω0), Yτ (ω0)), and

E

[∫ ∞

0
e−ρsU(cτ+s)ds |Fτ

]
(ω0) = J(Ũω0) ≤ vIτ (Xτ , Yτ )(ω0).

Hence taking the expectation over ω0 in (2.6.2),

E

[∫ ∞

0
e−ρtU(ct)dt

]
≤ E

[∫ τ

0
e−ρtU(ct)dt+ e−ρτvIτ (Xτ , Yτ )

]
,
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and taking the supremum over U , we obtain vi(x, y) ≤ Vi(x, y).

Step 2. vi(x, y) ≥ Vi(x, y): Recall that in the proof of Proposition 2.3.2 we only needed the DPP

to prove the continuity of vi up to the boundary. Hence we know a priori that vi is continuous

on Int(R2
+), and that the restriction of vi to the boundary is continuous. One can then find a

countable sequence (Uk)k≥0 s.t.

(i) (Uk)k is a partition of R2
+,

(ii) ∀(x, y), (x′, y′) ∈ Uk,∀i, |vi(x, y) − vi(x
′, y′)| ≤ ε,

(iii) Uk contains its bottom-left corner (xk, yk) =
(
min(x,y)∈Uk

x,min(x,y)∈Uk
y
)
.

Indeed, we can construct such a partition in the following way: vi is continuous on the boundary

so we can partition each of the boundary lines into a countable number of segments verifying (ii)

and (iii). Then in the interior we have first a partition in “squared rings" : Int(R2
+) = ∪n≥1Kn,

where Kn = [1/(n+1), n+1]2 \ [1/n, n]2. Since vi is continuous on the interior, we can partition

each Kn into a finite number of squares verifying (ii) and (iii). By taking the union of the line

segments and the squares for each Kn, we obtain a sequence (Uk) satisfying (i)-(iii).

Notice that (iii) implies the inclusion Ai(xk, yk) ⊂ Ai(x, y), for all (x, y) ∈ Uk. For each k,

take U i,k = (Ωi,k,F i,k,Pi,k,Fi,k,W i,k, Ii,k, N i,k, ci,k, ζi,k) ε-optimal for (i, xk, yk), and f i,k
c , f i,k

ζ

associated to (ci,k, ζi,k) by Lemma 2.6.2. Then for each (c, ζ) ∈ Ai(x, y), let us define c̃, ζ̃ by :

c̃t =




ct when t < τ

f i,k
c (t− τ, W̃ (. ∧ (t− τ)), Ĩ(. ∧ (t− τ)), Ñ(. ∧ (t− τ))) when t ≥ τ, Iτ = i, (Xτ , Yτ ) ∈ Uk.

Then c̃ (resp. ζ̃) is F- progressively measurable (resp. predictable). Furthermore, for almost all

ω0, with i = Iτ (ω0) and (Xτ , Yτ )(ω0) ∈ Uk,

LPω0 (W̃ , Ĩ, Ñ , (c̃t+τ ), (ζ̃t+τ )) = LPi,k(W i,k, Ii,k, N i,k, ci,k, ζi,k),

and since Ai(xk, yk) ⊂ AIτ (ω0)(Xτ (ω0), Yτ (ω0)), this implies X c̃,ζ̃
t , Y c̃,ζ̃

t ≥ 0 a.s., and (c̃, ζ̃) ∈
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Ai(x, y). We also have

E

[∫ ∞

0
e−ρsU(c̃τ+s)ds |Fτ

]
(ω0) = Ei,k

[∫ ∞

0
e−ρsU(ci,k

s )ds

]

≥ vi(xk, yk) − ε

≥ vIτ (Xτ , Yτ )(ω0) − 2ε.

By taking expectation in (2.6.2), we have

E

[∫ ∞

0
e−ρtU(c̃t)dt

]
≥ E

[∫ τ

0
e−ρtU(ct)dt+ e−ρτvIτ (Xτ , Yτ )

]
− 2ε.

Finally, by taking the supremum over U , and letting ε go to 0, we obtain vi(x, y) ≥ Vi(x, y). ✷

Remark 2.6.2. Actually the weak value function is equal to the value function defined in

(2.2.14) for any (Ω,F ,P,F,W, I,N) satisfying (1)-(3) in Definition 2.6.1. Indeed, given any

U ′ = (Ω′,F ′,P′,F′,W ′, I ′, N ′) ∈ Aw
i (x, y), letting fc′ and fζ′ being associated to c′ and ζ ′ by

Lemmas 2.6.1 and 2.6.2, and defining (almost surely) ct = fc′(t,W, I,N), ζt = fζ′(t,W, I,N),

by the same arguments as in the Proof of Proposition 2.6.1, U := (Ω,F ,P,F,W, I,N, c, ζ) ∈
Aw

i (x, y), and J(U) = J(U ′). Hence

sup
U ′∈Aw

i
(x,y)

J(U ′) = sup
(c,ζ)∈Ai(x,y)

E

[∫ ∞

0
e−ρsU(cs)ds

]
.

2.7 Appendix B : Viscosity characterization

We first prove the viscosity property of the value function to its dynamic programming

system (2.4.2), written as:

Fi(x, y, vi(x, y), Dvi(x, y), D2vi(x, y)) +Gi(x, y, v) = 0, (x, y) ∈ (0,∞) × R+,

for any i ∈ Id, where Fi is the local operator defined by:

Fi(x, y, u, p, A) = ρu− biyp2 − 1

2
σ2

i y
2a22 − Ũ(p1)
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for (x, y) ∈ (0,∞)×R+, u ∈ R, p = (p1 p2) ∈ R2, A =


 a11 a12

a12 a22


 ∈ S2 (the set of symmetric

2 × 2 matrices), and Gi is the nonlocal operator defined by:

Gi(x, y, w) = −
∑

j 6=i

qij
[
wj(x, y(1 − γij)) − wi(x, y)

]− λi
[
ŵi(x+ y) − wi(x, y)

]

for w = (wi)i∈Id
d-tuple of continuous functions on R2

+.

Proposition 2.7.1. The value function v = (vi)i∈Id
is a viscosity solution of (E).

Proof. Viscosity supersolution: Let (i, x̄, ȳ) ∈ Id × (0,∞) × R+, ϕ = (ϕi)i∈Id
, C2 test

functions s.t. vi(x̄, ȳ) = ϕi(x̄, ȳ), and v ≥ ϕ. Take some arbitrary e ∈ (−ȳ, x̄), and c ∈ R+.

Since x̄ > 0, there exists a strictly positive stopping time τ > 0 a.s. such that the control

process (ζ̄, c̄) defined by:

ζ̄t = e1t≤τ , c̄t = c1t≤τ , t ≥ 0, (2.7.1)

with associated state process (X̄, Ȳ , I) starting from (x, y, i) at time 0, satisfies X̄t ≥ 0, Ȳt ≥ 0,

for all t. Thus, (ζ̄, c̄) ∈ Ai(x, y). Let V be a compact neighbourhood of (x, y, i) in (0,∞)×R+×Id,

and consider the sequence of stopping time: θn = θ∧hn, where θ = inf
{
t ≥ 0 : (X̄t, Ȳt, It) /∈ V

}
,

and (hn) is a strictly positive sequence converging to zero. From the dynamic programming

principle (2.4.1), and by applying Itô’s formula to e−ρtϕ(X̄t, Ȳt, It) between 0 and θn, we get:

ϕ(x̄, ȳ, i) = v(x, y, i) ≥ E

[∫ θn

0
e−ρtU(c̄t)dt+ e−ρθnv(X̄θn

, Ȳθn
, Iθn

)

]

≥ E
[ ∫ θn

0
e−ρtU(c̄t)dt+ e−ρθnϕ(X̄θn

, Ȳθn
, Iθn

)
]

= ϕ(x̄, ȳ, i) + E
[ ∫ θn

0
e−ρt

(
U(c̄t) − ρϕ− c̄t

∂ϕ

∂x

+ bI
t− Ȳt−

∂ϕ

∂y
+

1

2
σ2

I
t−
Ȳ 2

t−

∂2ϕ

∂y2

+
∑

j 6=I
t−

q
I
t− j

[ϕ(X̄t− , Ȳt−(1 − γ
I
t− j

), j) − ϕ(X̄t− , Ȳt− , It−)]

+λ
I
t−

[
ϕ(X̄t− − ζ̄t, Ȳt− + ζ̄t, It−) − ϕ(X̄t− , Ȳt− , It−)

])
dt
]
,
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and so

E
[ 1

hn

∫ θn

0
e−ρt

(
ρϕ− U(c̄t) + c̄t

∂ϕ

∂x
− bI

t− Ȳt−
∂ϕ

∂y
− 1

2
σ2

I
t−
Ȳ 2

t−

∂2ϕ

∂y2

−
∑

j 6=I
t−

q
I
t− j

[ϕ(X̄t− , Ȳt−(1 − γ
I
t− j

), j) − ϕ(X̄t− , Ȳt− , It−)]

−λ
I
t−

[
ϕ(X̄t− − ζ̄t, Ȳt− + ζ̄t, It−) − ϕ(X̄t− , Ȳt− , It−)

])
dt
]

≥ 0 (2.7.2)

Now, we have almost surely for n large enough, θ ≥ hn, i.e. θn = hn, so that by using also

(2.7.1)

1

hn

∫ θn

0
e−ρt

(
ρϕ− U(c̄t) + c̄t

∂ϕ

∂x
− bI

t− Ȳt−
∂ϕ

∂y
− 1

2
σ2

I
t−
Ȳ 2

t−

∂2ϕ

∂y2

−
∑

j 6=I
t−

q
I
t− j

[ϕ(X̄t− , Ȳt−(1 − γ
I
t− j

), j) − ϕ(X̄t− , Ȳt− , It−)]

−λ
I
t−

[
ϕ(X̄t− − ζ̄t, Ȳt− + ζ̄t, It−) − ϕ(X̄t− , Ȳt− , It−)

])
dt
]

−→ ρϕi(x̄, ȳ) − U(c) + c
∂ϕi

∂x
(x̄, ȳ) − biȳ

∂ϕi

∂y
(x̄, ȳ) − 1

2
σ2

i ȳ
2∂

2ϕi

∂y2
(x̄, ȳ)

−
∑

j 6=i

qij [ϕj(x̄, ȳ(1 − γij)) − ϕi(x̄, ȳ)] − λi[ϕi(x̄− e, ȳ + e) − ϕi(x̄, ȳ)], a.s.

when n goes to infinity. Moreover, since the integrand of the Lebesgue integral term in (2.7.2)

is bounded for t ≤ θ, one can apply the dominated convergence theorem in (2.7.2), which gives:

ρϕi(x̄, ȳ) − U(c) + c
∂ϕi

∂x
(x̄, ȳ) − biȳ

∂ϕi

∂y
(x̄, ȳ) − 1

2
σ2

i ȳ
2∂

2ϕi

∂y2
(x̄, ȳ)

−
∑

j 6=i

qij [ϕj(x̄, ȳ(1 − γij)) − ϕi(x̄, ȳ)] − λi[ϕi(x̄− e, ȳ + e) − ϕi(x̄, ȳ)] ≥ 0.

Since c and e are arbitrary, we obtain the required viscosity supersolution inequality by taking

the supremum over c ∈ R+ and e ∈ (−ȳ, x̄).

Viscosity subsolution: Let (̄i, x̄, ȳ) ∈ Id×(0,∞)×R+, ϕ = (ϕi)i∈Id
, C2 test functions s.t. v(x̄, ȳ, ī)

= ϕ(x̄, ȳ, ī), and v ≤ ϕ. We can also assume w.l.o.g. that v < ϕ outside (x̄, ȳ, ī). We argue by

contradiction by assuming that

ρϕī(x̄, ȳ) − bīȳ
∂ϕī

∂y
(x̄, ȳ) − 1

2
σ2

ī ȳ
2∂

2ϕī

∂y2
(x̄, ȳ) − Ũ

(∂ϕī

∂x
(x̄, ȳ)

)

−
∑

j 6=ī

qīj [ϕj(x̄, ȳ(1 − γīj)) − ϕī(x̄, ȳ)] − λī[ϕ̂ī(x̄+ ȳ) − ϕī(x̄, ȳ)] > 0.
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By continuity of ϕ, and of its derivatives, there exist some compact neighbourhood V̄ of (x̄, ȳ, ī)

in (0,∞) × R+ × Id, and ε > 0, such that

ρϕi(x, y) − biy
∂ϕi

∂y
(x, y) − 1

2
σ2

i y
2∂

2ϕi

∂y2
(x, y) − Ũ

(∂ϕi

∂x
(x, y)

)
(2.7.3)

−
∑

j 6=i

qij [ϕj(x, y(1 − γij)) − ϕi(x, y)] − λi[ϕ̂i(x+ y) − ϕi(x, y)] ≥ ε, ∀(x, y, i) ∈ V̄.

Since v < ϕ outside (x̄, ȳ, ī), there exists some δ > 0 s.t. v < ϕ − δ outside of V̄. We can also

assume that ε ≤ δρ. By the DPP (2.4.1), there exists (ζ, c) ∈ Aī(x̄, ȳ) s.t.

v(x̄, ȳ, ī) − ε
1 − e−ρ

2ρ
≤ E

[∫ θ∧1

0
e−ρtU(ct)dt+ e−ρ(θ∧1)v(Xθ∧1, Yθ∧1, Iθ∧1)

]
,

where (X,Y, I) is controlled by (ζ, c), and we take θ = inf
{
t ≥ 0 : (Xt, Yt, It) /∈ V̄

}
. We then

get:

ϕ(x̄, ȳ, ī) − ε
1 − e−ρ

2ρ

= v(x̄, ȳ, ī) − ε
1 − e−ρ

2ρ

≤ E

[∫ θ∧1

0
e−ρtU(ct)dt+ e−ρ(θ∧1)ϕ(Xθ∧1, Yθ∧1, Iθ∧1) − e−ρθδ1{θ<1}

]

= ϕ(x̄, ȳ, ī) + E
[ ∫ θ∧1

0
e−ρt

(
U(ct) − ρϕ− ct

∂ϕ

∂x

+ bI
t−Yt−

∂ϕ

∂y
+

1

2
σ2

I
t−
Y 2

t−

∂2ϕ

∂y2

+
∑

j 6=I
t−

q
I
t− j

[ϕ(Xt− , Yt−(1 − γ
I
t− j

), j) − ϕ(Xt− , Yt− , It−)]

+λ
I
t−

[
ϕ(Xt− − ζt, Yt− + ζt, It−) − ϕ(Xt− , Yt− , It−)

])
dt− e−ρθδ1{θ<1}

]

≤ ϕ(x̄, ȳ, ī) + E

[∫ θ∧1

0
−εe−ρtdt− e−ρθδ1{θ<1}

]

where we applied Itô’s formula in the second equality, and used (2.7.3) in the last inequality.

This means that

−ε1 − e−ρ

2ρ
≤ E

[∫ θ∧1

0
−εe−ρtdt− e−ρθδ1{θ<1}

]

= E

[
−ε

ρ
+
ε

ρ
e−ρ(θ∧1) − e−ρθδ1{θ<1}

]
≤ −ε

ρ
(1 − e−ρ),
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since ε/ρ ≤ δ, and we get the required contradiction. ✷

Let us now prove comparison principle for our dynamic programming system. As usual, it

is convenient to formulate an equivalent definition for viscosity solutions to (2.4.2) in terms of

semi-jets. We shall use the notation X = (x, y) for R+ ×R+-valued vectors. Given w = (wi)i∈Id

a d-tuple of continuous functions on R2
+, the second-order superjet of wi at X ∈ R2

+ is defined

by:

P2,+wi(X) =
{

(p,A) ∈ R2 × S2 s.t. wi(X
′) ≤ wi(X) +

〈
p,X ′ −X

〉

+
1

2

〈
A(X ′ −X), X ′ −X

〉
+ o

(∣∣X ′ −X
∣∣2
)

as X ′ → X
}
,

and its closure P2,+
wi(X) as the set of elements (p,A) ∈ R2 × S2 for which there exists a

sequence (Xm, pm, Am)m of R2
+ × P2,+wi(Xm) satisfying (Xm, pm, Am) → (X, p,A). We also

define the second-order subjet P2,−wi(X) = −P2,+(−wi)(X), and P2,−
wi(X) = −P2,+

(−wi)(X).

By standard arguments (see e.g. [3] for equations with nonlocal terms), one has an equivalent

definition of viscosity solutions in terms of semijets:

A d-tuple w = (wi)i∈Id
of continuous functions on R2

+ is a viscosity supersolution (resp. subso-

lution) of (2.4.2) if and only if for all (i, x, y) ∈ Id × (0,∞) × R+, and all (p,A) ∈ P2,−
wi(x, y)

(resp. P2,+
wi(x, y)):

Fi(x, y, wi(x, y), p, A) +Gi(x, y, w) ≥ 0, (resp. ≤ 0).

We then prove the following comparison theorem.

Theorem 2.7.1. Let V = (Vi)i∈Id
(resp. W = (Wi)i∈Id

) be a viscosity subsolution (resp. su-

persolution) of (2.4.2), satisfying the growth condition (2.3.4), and the boundary conditions

Vi(0, 0) ≤ 0 (2.7.4)

Vi(0, y) ≤ Ei

[
V̂

Ii
τ1

(
y
Sτ1

S0

)]
, ∀y > 0, (2.7.5)

(resp. ≥ for W ). Then V ≤ W .

Proof. Step 1: Take p′ > p such that k(p′) < ρ, and define ψi(x, y) = (x + y)p′
, i ∈

Id. Let us check that Wn = W + 1
nψ is still a supersolution of (E). Notice that P2,−Wn

i =
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P2,−Wi + 1
n(Dψi, D

2ψi), and we have for all (p,A) ∈ P2,−Wi(x, y):

Fi
(
x, y,Wn

i (x, y), p+
1

n
Dψi, A+

1

n
D2ψi

)
+Gi(x, y,W

n)

= Fi
(
x, y,Wi(x, y), p, A) +Gi(x, y,W )

+
1

n
(x+ y)p′

(
ρ− p′bi

y

x+ y
+ p′(1 − p′)

σ2
i

2

(
y

x+ y

)2

−
∑

j 6=i

qij((1 − y

x+ y
γij)p′ − 1)

)

+ Ũ(p1) − Ũ
(
p1 +

1

n
p′xp′−1) (2.7.6)

≥ 0.

Indeed, the three lines in the r.h.s. of (2.7.6) are nonnegative: the first one since W is a

supersolution, the second one by k(p′) < ρ, and the last one since Ũ is nonincreasing.

Moreover, by the growth condition (2.3.4) on V and W , we have:

lim
r→∞

max
i∈Id

(V̂i − Ŵn
i )(r) = −∞. (2.7.7)

In the next step, our aim is to show that for all n ≥ 1, V ≤ Wn, which would imply that V ≤
W . We shall argue by contradiction.

Step 2: Assume that there exists some n ≥ 1 s.t.

M := sup
i∈Id,(x,y)∈R2

+

(Vi −Wn
i )(x, y) > 0.

By (2.7.7), there exists i ∈ Id, some compact subset C of R2
+, and X = (x, y) ∈ C such that

M = max
C

(Vi −Wn
i ) = (Vi −Wn

i )(x, y). (2.7.8)

Note that by (2.7.4), (x, y) 6= (0, 0). We then have two possible cases:

• Case 1 : x = 0. Notice that the boundary condition (2.7.5) implies the viscosity subsolution

property for Vi also at X̄ = (0, ȳ):

Fi(X̄, Vi(X̄), p, A) +Gi(X̄, V ) ≤ 0, ∀(p,A) ∈ P2,+
Vi(X̄)

However the viscosity supersolution property fot Wn does not hold at (0, ȳ). Let (Xk)k =

(xk, yk)k be a sequence converging to X, with xk > 0, and εk :=
∣∣∣Xk −X

∣∣∣. We then consider

the function
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Φk(X,X ′) = Vi(X) −Wn
i (X ′) − ψk(X,X ′),

ψk(x, y, x′, y′) = x4 + (y − y)4 +
|X −X ′|2

2εk
+

(
x′

xk
− 1

)3

−

Since Φk is continuous, there exists (X̂k, X̂
′
k) ∈ C2 s.t.

Mk := sup
C2

Φk = Φk(X̂k, X̂
′
k),

and a subsequence, still denoted (X̂k, X̂
′
k), converging to some (X̂, X̂ ′) as k goes to ∞. By

writing that Φk(X,Xk) ≤ Φk(X̂k, X̂
′
k), we have :

Vi(X) −Wn
i (Xk) −

∣∣∣X −Xk

∣∣∣
2

(2.7.9)

≤ Vi(X̂k) −Wn
i (X̂ ′

k) − (x̂4
k + (ŷk − y)4) −Rk (2.7.10)

≤ Vi(X̂k) −Wn
i (X̂ ′

k) − (x̂4
k + (ŷk − y)4), (2.7.11)

where we set

Rk =

∣∣∣X̂k − X̂ ′
k

∣∣∣
2

2εk
+

(
x̂′

k

xk
− 1

)3

−

Since Vi and Wn
i are bounded on C, we deduce by inequality (2.7.10) the boundedness of the

sequence (Rk)k≥0, which implies X̂ = X̂ ′. Then by sending k to infinity in (2.7.9) and (2.7.11),

with the continuity of Vi and Wn
i , we obtain M = Vi(X) − Wn

i (X) ≤ Vi(X̂) − Wn
i (X̂) − (x̂4

k +

(ŷk − y)4), and by definition of M this shows

X̂ = X̂ ′ = X (2.7.12)

Sending again k to infinity in (2.7.9)-(2.7.10)-(2.7.11), we obtain M ≤ M − lim supk Rk ≤ M ,

and so

∣∣∣X̂k − X̂ ′
k

∣∣∣
2

2εk
+

(
x̂′

k

xk
− 1

)3

−
→ 0, (2.7.13)

as k goes to infinity. In particular for k large enough x̂′
k ≥ xk

2 > 0. We can then apply Ishii’s
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lemma (see Theorem 3.2 in [16]) to obtain A,A′ ∈ S2 s.t.

(p,A) ∈ P2,+
Vi(X̂k),

(
p′, A′) ∈ P2,−

Wn
i (X̂ ′

k) (2.7.14)

 A 0

0 −A′


 ≤ D + εkD

2, (2.7.15)

where

p = DXψk(X̂k, X̂ ′
k), p′ = DX′ψk(X̂k, X̂

′
k), D = D2

X,X′ψk(X̂k, X̂ ′
k).

Now, we write

ρM ≤ ρMk ≤ ρ(Vi(X̂k) −Wn
i (X̂ ′

k))

= Fi
(
X̂k, Vi(X̂k), p, A

)− Fi
(
X̂k,W

n
i (X̂ ′

k), p, A
)

= Fi
(
X̂k, Vi(X̂k), p, A

)
+Gi(X̂k, V ) (2.7.16)

− Fi
(
X̂ ′

k,W
n
i (X̂ ′

k), p′, A′)−Gi(X̂
′
k,W

n)

+ Gi(X̂
′
k,W

n) −Gi(X̂k, V )

+ Fi
(
X̂ ′

k,W
n
i (X̂ ′

k), p′, A′)− Fi
(
X̂k,W

n
i (X̂ ′

k), p, A
)

From the viscosity subsolution property for V at X̂k, and the viscosity supersolution property

for Wn at X̂ ′
k, the first two lines in the r.h.s. of (2.7.16) are nonpositive. For the third line, by

sending k to infinity, we have:

Gi(X̂
′
k,W

n) −Gi(X̂k, V )

→ Gi(X,W
n) −Gi(X,V )

=
∑

j 6=i

qij

[
(Vj −Wn

j )
(
x, y(1 − γij)

)
− (Vi −Wn

i )(x, y)
]

+λi

[(
V̂i − Ŵn

i

)
(x+ y) − (Vi −Wn

i )(x, y)
]

≤ 0
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by (2.7.8). For the fourth line of (2.7.16), we have

Fi
(
X̂ ′

k,W
n
i (X̂ ′

k), p′, A′)− Fi
(
X̂k,W

n
i (X̂ ′

k), p, A
)

= bi(ŷkp2 − ŷ′
kp

′
2) + Ũ(p1) − Ũ(p′

1) +
σ2

i

2

(
ŷ2

ka22 − (ŷ′
k)2a′

22

)

Now

ŷkp2 − ŷ′
kp

′
2 = ŷk

(
4(ŷk − y)3 +

ŷk − ŷ′
k

εk

)
− ŷ′

k

(
ŷk − ŷ′

k

εk

)

≤ 4ŷk(ŷk − y)3 +

∣∣∣X̂k − x̂′
k

∣∣∣
2

εk

→ 0, as k → ∞,

by (2.7.12) and (2.7.13). Moreover,

Ũ(p1) − Ũ(p′
1) = Ũ

(
x̂k − x̂′

k

εk
+ 4x̂3

k

)
− Ũ

(
x̂k − x̂′

k

εk
− 3

xk

(
x̂′

k

xk
− 1

)2

−

)

≤ 0,

since Ũ is nonincreasing. Finally,

ŷ2
ka22 − (ŷ′

k)2a′
22 =

(
0 ŷk 0 ŷ′

k

)

 A 0

0 −A′







0

ŷk

0

ŷ′
k




≤
(

0 ŷk 0 ŷ′
k

) (
D + εkD

2
)




0

ŷk

0

ŷ′
k




by (2.7.15). Since

D2ψk(x, y, x′, y′) =




12x2 0 − 1
εk

0

0 12(y − y)2 + 1
εk

0 − 1
εk

− 1
εk

0 1
εk

+ 6
x2

k

(
x′

xk
− 1

)
−

0

0 − 1
εk

0 − 1
εk



,
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a direct calculation gives

(
0 ŷk 0 ŷ′

k

) (
D + εkD

2
)




0

ŷk

0

ŷ′
k




=
3

εk
(ŷk − ŷ′

k)2 − 12(ŷk − y)2ŷkŷ
′
k

+
(
36(ŷk − y)2 + εk

(
12(ŷk − y)2

))
ŷ2

k

→ 0, as k → ∞,

where we used again (2.7.12) and (2.7.13), and the boundedness of (ŷk, ŷ′
k).

Finally by letting k go to infinity in (2.7.16) we obtain ρM ≤ 0, which is the required

contradiction.

• Case 2 : x > 0. This is the easier case, and we can obtain a contradiction similarly as in the

first case, by considering for instance the function

Φk(X,X ′) = Vi(X) −Wn
i (X ′) − (x− x)4 − (y − y)4 − k

|X −X ′|2
2

.

✷



Chapter 3

Investment/consumption problem in

a market with liquid and illiquid

assets

Abstract: We consider a market consisting of a liquid asset and an illiquid asset. The liquid asset can

be traded continuously, while the illiquid one can only be traded and observed at discrete random times. In

this setting, we study the problem of an economic agent optimizing his expected utility from consumption

under a non-bankruptcy constraint. This is a nonstandard, mixed discrete/continuous control problem.

By a dynamic programming approach, we reduce this problem to a standard continuous time stochastic

control problem, and we give an analytical characterization of the value function as a viscosity solution

to a PDE. We present an iterative numerical scheme to compute it, and we finally illustrate the impact

of illiquidity on the investor and his strategies by some numerical experiments.

Key words : liquidity, random trading times, portfolio/consumption problem, integrodifferential equa-

tions, viscosity solutions.
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3.1 Introduction

Following the seminal works of Merton on portfolio management, a classical assumption

in mathematical finance is to suppose that assets may be continuously traded by the agents

operating on the market. However, this assumption is unrealistic in practice, especially in the

case of less liquid markets, where investors cannot buy and sell assets immediately, and have to

wait some time before being able to unwind a position.

In the recent years, several works have studied the impact of this type of illiquidity on the

investors. Rogers and Zane [66], Matsumoto [53], Pham and Tankov [61] consider an investment

model where the discrete trading times are given by the jump times of a Poisson process with

constant intensity λ > 0. Bayraktar and Ludkovski [8] study a portfolio liquidation problem in

a similar context.

The aforementioned works focus on an agent investing exclusively in an illiquid asset. How-

ever, in practice it is common to have several correlated tradable assets with different liquidity.

For instance an index fund over some given financial market will be usually much more liquid

than the individual tracked assets, while sharing a positive correlation with those assets. An

investor in this market will then have the possibility of hedging his exposure in the less liquid

assets by investing in the index and rebalancing his position frequently. Tebaldi and Schwartz

[68], Longstaff [48] consider a market constituted of a liquid asset that can be traded continu-

ously, and an illiquid asset that may only be traded at the initial time and is liquidated at a

terminal date. Following the line of the latter papers, here we also consider a market composed

by a liquid asset and an illiquid one, but we take a less restrictive approach assuming, as in

[66, 53, 61], that the illiquid asset may be traded at discrete random times.

To this regard, we have to mention the recent paper by Ang, Papanikolaou and Westerfield

[2] that studies a very similar problem to the one studied here. However, we stress that our

results are different for two reasons. First, they consider utility functions of CRRA type with

risk aversion parameter R ≥ 1, while we study the problem for a different class of functions,

not assumed of CRRA type. Second, they assume that the agent is able to observe the illiquid

asset’s price continuously, while in our case observation is restricted to the trading dates. We

believe this is a more natural assumption, as in practice trading possibilities and observation of

the price coincide via the arrival of buy/sell orders on the market.
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We study a problem of optimal investment/consumption over an infinite horizon in a market

consisting of a liquid and an illiquid asset. The liquid asset is observed and can be traded

continuously, while the illiquid one can only be traded and observed at discrete random times

corresponding to the jumps of a Poisson process with intensity λ. This makes the problem a

nonstandard mixed discrete/continuous problem, which we solve by following the same approach

as in [61]. By means of dynamic programming, we show that the stochastic control problem

“between trading times" can be written as a standard continuous time-inhomogeneous problem.

Then we apply the usual machinery of Dynamic Programming and characterize the value function

as the unique (viscosity) solution of an HJB equation. This allows to perform a numerical

analysis of the solution via a suitable numerical scheme that we describe in detail.

The plan of the paper is as follows. Section 2 describes our illiquid market model and

formulates the investment/consumption problem for the investor. In Section 3 we show how, by a

suitable Dynamic Programming Principle, the problem can be reduced to a standard continuous-

time stochastic control problem. Section 4 presents some useful properties satisfied by our value

functions. In Section 5, we first prove an analytical characterization of our value function by

means of viscosity solutions to the associated HJB equation, and then show the special form

taken by the HJB equation in the case of power utility. Finally, Section 6 introduces an iterative

scheme to solve our problem numerically, and presents some numerical results.

3.2 The model

In this section we present the model and the optimization problem we deal with.

Let us consider a complete filtered probability space (Ω,F , (Ft)t≥0,P) satisfying the usual con-

ditions, on which there are defined:

• A Poisson process (Nt)t≥0, with intensity λ > 0; we denote by (Nt)t≥0 the filtration

generated by this process and by (τn)n≥1 its jump times; moreover we set τ0 = 0.

• Two independent standard Brownian motions (Bt)t≥0, (Wt)t≥0, independent also on the

Poisson process (Nt)t≥0; we denote by (FB
t )t≥0 and (FW

t )t≥0 the filtration generated by

B and W respectively.
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The market model we consider on this probability space consists of two risky assets with corre-

lation ρ ∈ (−1, 1):

• A liquid risky asset that can be traded continuously; it is described by a stochastic process

denoted by Lt whose dynamics is

dLt = Lt(bLdt+ σLdWt),

where bL ∈ R and σL > 0.

• An illiquid risky asset that can only be traded at the trading times τn; it is described by

a stochastic process denoted by It, whose dynamics is

dIt = It(bIdt+ σI(ρdWt +
√

1 − ρ2dBt)),

where bI ∈ R and σI > 0.

Without loss of generality we assume L0 = I0 = 1. We also suppose that on the market is

present a riskless asset with deterministic dynamics. Without loss of generality we assume that

the interest rate of such asset is constant and equal to 0.

Define the σ-algebra

It = σ(Iτn1{τn≤t}, n ≥ 0), t ≥ 0.

Moreover define the filtration

G0 := (Gt)t≥0; G0
t = Nt ∨ It ∨ FW

t = σ(τn, Iτn ; τn ≤ t) ∨ FW
t .

The observation filtration we consider is

G = (Gt)t≥0; Gt = G0
t ∨ σ(P-null sets).

This means that at time t we know the past of the liquid asset up to time t, the trading dates

of the illiquid assets occurred before t and the values of the illiquid asset at such trading dates.
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3.2.1 Trading/consumption strategies

In the setting above, we define the set of admissible trading/consumption strategies in the

following way. Consider all the triplets of processes (ct, πt, αk) such that

(h1) c = (ct) is a nonnegative locally integrable process (Gt)-predictable; ct represents the

consumption rate at time t;

(h2) π = (πt) is a locally square integrable process (Gt)-predictable; πt represents the amount

of money invested in the liquid asset at time t;

(h3) α = (αk), is a discrete process where αk is Gτk
-measurable; αk represents the amount of

money invested in the illiquid asset in the interval (τk, τk+1].

Given a triplet (ct, πt, αk) satisfying the requirements (h1)-(h3) above, we can consider the

process Rt representing the wealth associated to such strategy. Its dynamics can be defined by

recursion on k by

R0 = r, (3.2.1)

Rt = Rτk
+

∫ t

τk

(−csds+ πs(bLds+ σLdWs)) + αk

(
It

Iτk

− 1

)
, t ∈ (τk, τk+1]. (3.2.2)

We observe that the process R is not G-predictable, as I is not. At time t ∈ [τk, τk+1) the last

information carried by the illiquid asset is given by the σ-algebra

It = Iτk
= σ(Iτh

, h = 0, ..., k).

However we can split R in a predictable part related to the observation Gt and a not-predictable

one related to the unknown information on the illiquid asset in the interval [τk, t). Let τ be a

generic G-stopping time and consider the auxiliary processes on [τ,+∞) E, J whose dynamics

are

dEτ
t

Eτ
t

=
ρσI

σL

dLt

Lt
= (ρbL

σI

σL
dt+ ρσIdWt), Eτ

τ = 1; (3.2.3)

dJτ
t

Jτ
t

= (bI − ρbL
σI

σL
)dt+ σI

√
1 − ρ2dBt, Jτ

τ = 1. (3.2.4)
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Recursively in the intervals (τk, τk+1] define the processes

Xt = Rτk
− αk +

∫ t

τk

(−csds+ πs(bLds+ σLdWs)), Yt = αkE
τk
t , Zt = YtJ

τk
t . (3.2.5)

In the interval (τk, τk+1], the process Xt represents the liquid part of the wealth Rt, while the

process Zt represents the illiquid part; so we have

Rt = Xt + Zt, ∀t ≥ 0.

As a class of admissible controls we consider the triplets of processes (ct, πt, αk) satisfying the

measurability and integrability conditions above and such that the corresponding wealth process

Rt is nonnegative (no-bankruptcy constraint). One can see without big difficulty that this

requirement is equivalent to require that both the liquid and the illiquid wealth have to be

nonnegative at each time, i.e. that Xt ≥ 0, Zt ≥ 0 for every t ≥ 0. So, the admissibility of a

strategy (ct, πt, αk) amounts to require

0 ≤ αk ≤ Rτk
, ∀k ≥ 0,

∫ t

τk

((cs − bLπs)ds− σLπsdWs) ≤ Rτk
− αk, ∀t ∈ [τk, τk+1).

The class of admissible controls depends on the initial wealth R0 = r. We denote this class by

A(r).

3.2.2 Optimization problem

Let R0 = r. The optimization problem consists in maximizing over the set of admissible

strategies A(r) the expected discounted utility from consumption over an infinite horizon. In

other terms, chosen a utility function U and a discount factor β > 0, the optimization problem

we consider is the mixed discrete/continuous stochastic control problem

Maximize E

[∫ ∞

0
e−βsU(cs)ds

]
, over (c, π, α) ∈ A(r).

The value function of such optimal stochastic control problem is denoted by V :

V (r) = sup
(c,π,α)∈A(r)

E

[∫ ∞

0
e−βsU(cs)ds

]
.

About the function U we assume the following
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Assumption 3.2.1. The preference of the agent are described by a utility function

U : [0,+∞) → R

which is continuous, increasing, concave, C1 on (0,+∞), such that U(0) = 0 and satisfies the

usual Inada’s conditions:

U ′(0+) = +∞, U ′(∞) = 0.

Moreover we assume the following growth condition on U : there exist constants KU > 0 and

p ∈ (0, 1) such that

U(c) ≤ KU c
p. (3.2.6)

We observe that, due to the assumption on U , the Legendre tranform of U on [0,+∞), i.e.

the function

Ũ(q) = sup
c≥0

{U(c) − cq}, q > 0,

is finite, decreasing and convex. Moreover, the growth condition (3.2.6) yields the following

growth condition for Ũ : there exist KŨ > 0 such that

Ũ(q) ≤ KŨ q
− p

1−p . (3.2.7)

About the discount rate β we assume the following.

Assumption 3.2.2. We assume that

β > kM (p) := sup
πL∈R,πI∈[0,1]

p(πLbL + πIbI) − p(1 − p)

2
(π2

Lσ
2
L + π2

Iσ
2
I + 2ρπLπIσLσI)

=
p

2(1 − p)

b2
L

σ2
L

+ kJ(p), (3.2.8)

where

kJ(p) = sup
πI∈[0,1]

p(bI − ρbLσI

σL
)πI − p(1 − p)

2
σ2

I (1 − ρ2)π2
I .

Remark 3.2.1. This assumption on β is related to the investment/consumption problem with

the same assets but in a liquid market.

Indeed, consider an agent with initial wealth r, consuming at rate ct and investing in Lt and

It continuously with respective proportions πL
t and πI

t , with the constraint that πI
t ∈ [0, 1]. If
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we denote AM (r) the strategies s.t. wealth remains nonnegative and define the value function

V
(p)

M (r) = sup
(πL,πI ,c)∈AM (r)

E

[∫ ∞

0
e−βtcp

tdt

]
, (3.2.9)

it is then easy to see (for instance by solving the HJB equation) that V
(p)

M is finite if and only if

(3.2.8) is satisfied, and that in this case

V
(p)

M (r) =

(
1 − p

β − kM (p)

)1−p

rp. (3.2.10)

Further note that the liquid investment/consumption problem can always be reduced to the

case where the two assets are independent, because

πL
t

dLt

Lt
+ πI

t

dIt

It
=

(
πL

t +
ρbLσI

σL
πI

t

)
dLt

Lt
+ πI

t

dJt

Jt
,

and the problem is equivalent to an agent investing in L and J (with the same constraint for

the proportion invested in J).

However this reduction does not work for the illiquid problem that we consider : neither

the observation constraint (the integrand in L being G-predictable) nor the trading constraint

(the amount held in the illiquid asset being constant between τk and τk+1) are preserved by this

transformation.

3.3 Dynamic Programming

Following [61], we state a suitable Dynamic Programming Principle (DPP) to reduce our

mixed discrete/continuous problem to a standard one between two trading times.

Proposition 3.3.1 (DPP). We have the following equality:

V (r) = sup
(c,π,α)∈A(r)

E

[∫ τ1

0
e−βsU(cs)ds+ e−βτ1V (Rτ1)

]
. (3.3.11)

Proof. The proof is long and technical, but similar to the one in [62] and we omit it. Note

however that unlike in [62], there is some additional random information between 0 and τ1

(brought by W ), so that the “shifting" procedure is slightly more technical to achieve, see for

instance Appendix B in [27] for details. ✷
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Now we will use this DPP to rewrite our original problem into a standard continuous-time con-

trol problem. For each x ≥ 0, let A0(x) be the set of couples of stochastic processes (cs, πs)s≥0

such that

• (cs)s≥0 is (FW
s )-predictable, nonnegative and locally integrable;

• (πs)s≥0 is (FW
s )-predictable and locally square-integrable;

• x+
∫ T

0 (−csds+ πs(bLds+ σLdWs)) ≥ 0, ∀T ≥ 0.

Lemma 3.3.1. Given r ≥ 0, for any (c, π, α) ∈ A(r), there exists (c0, π0) ∈ A0(r − α0) such

that

(c, π)1{t≤τ1} = (c0, π0)1{t≤τ1}, dP ⊗ ds a.e. . (3.3.12)

Proof. First, using the definition of G, by a simple monotone class argument, for any (c, π)

G-predictable we may find (c0, π0) FW -predictable satisfying (3.3.12). It is then easy to see that

the admissibility constraint (c, π, α) ∈ A(r) implies (c0, π0) ∈ A0(r − α0). ✷

By the previous Lemma, (3.3.11) may actually be rewritten as

V (r) = sup
a≤r

sup
(c,π)∈A0(r−a)

E

[∫ τ1

0
e−βsU(cs)ds+ e−βτ1V (Rτ1)

]
. (3.3.13)

We want somehow to rewrite the inner optimization problem in (3.3.13). To this purpose,

consider the linear operator (M denotes the space of measurable functions; also recall that Jτ

has been defined in (3.2.3))

G : M(R+;R) −→ M([0,+∞) × R2
+;R) (3.3.14)

ϕ 7−→ G[ϕ](t, x, y) := E
[
ϕ(x+ yJ0

t )
]
. (3.3.15)

Let us see the properties of this operator.

Proposition 3.3.2.

(i) G is well defined on the set of measurable functions with at most linear growth.
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(ii) G is linear and positive, in the sense that it maps positive functions in positive ones. As

a consequence G is increasing in the sense that

ϕ ≤ ψ =⇒ G[ϕ] ≤ G[ψ].

(iii) G maps increasing functions in functions which are increasing with respect to both x and

y.

(iv) G maps concave functions in functions which are concave with respect to (x, y).

(v) If ϕ(r) = rp, p ∈ (0, 1), then

G[ϕ](t, αx, αy) = αpG[ϕ](t, x, y), ∀t ≥ 0, (x, y) ∈ R2
+, α ≥ 0. (3.3.16)

G[ϕ](t, x, y) ≤ ekJ (p)t(x+ y)p, ∀t ≥ 0, (x, y) ∈ R2
+. (3.3.17)

(vi) Let p ∈ (0, 1], and v a p-Hölder continuous function on R2
+ with Hölder coefficient C. Then

for all t, x, x′, y, y′, and 0 ≤ h ≤ 1, there exists some constant C1 ≥ C s.t. the following

are true :

|G[v](t, x, y) −G[v](t, x′, y)| ≤ C|x− x′|p, (3.3.18)

|G[v](t, x, y) −G[v](t, x, y′)| ≤ CekJ (p)t|y − y′|p, (3.3.19)

|G[v](t, x, y) −G[v](t+ h, x, y)| ≤ C1e
kJ (p)typhp/2, (3.3.20)

Proof. (i)-(iv) are straightforward.

We prove (v). (3.3.16) comes directly from the definition of G. Let us prove (3.3.17). If

x = y = 0 the claim is obvious, so we assume x+ y > 0. By Itô’s formula,

d(e−kJ (p)t(x+ yJ0
t )p) = e−kJ (p)t(x+ yJ0

t )p
{(

−kJ(p) + p(bI − ρbLσI

σL
)

yJt

x+ yJ0
t

−1

2
p(1 − p)

(yJ0
t )2

(x+ yJ0
t )2

σ2
I (1 − ρ2)

)
dt

+p
yJ0

t

x+ yJ0
t

σI

√
1 − ρ2dBt

}
.

By definition of kJ(p), the drift term above is nonpositive, so it follows that the process

(e−kJ (p)t(x+ yJ0
t )p)t≥0 is a supermartingale, implying (3.3.17).
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Now we turn to (vi). (3.3.18) is obvious, and (3.3.19) follows directly from (v). To prove

(3.3.20) we fix t, x, y and h, and write

|G[v](t, x, y) −G[v](t+ h, x, y)| ≤ CypE
[
|J0

t − J0
t+h|p

]

= CypE
[
|J0

t |p
]
E
[
|1 − J t

t+h|p
]

≤ CekJ (p)typE
[
|1 − J0

h|p
]

Now we write J0
h = F (h,

√
hN) where N ∼ N (0, 1) and F verifies F (0, 0) = 1. Checking that

the derivatives of F satisfy reasonable growth conditions, it is then straightforward to obtain

E
[
|1 − J0

h|p
]

≤ C1h
p/2, for 0 ≤ h ≤ 1.

✷

Given (c, π) ∈ A0(x), let (X̃x,c,π
s )s≥0, (Ỹ

y
s )s≥0 be the solutions starting from x, y to the SDEs

dX̃s = −csds+ πs(bLds+ σLdWs), (3.3.21)

dỸs = Ỹs(ρ
bLσI

σL
dt+ ρσIdWs). (3.3.22)

Given w a nonnegative measurable function on R+ and x, y ≥ 0, let us consider the functional

on A0(x)

J 0
w(x, y; c, π) = E

∫ ∞

0
e−(β+λ)s

(
U(cs) + λG[w]

(
s, X̃x,π,c

s , Ỹ y
s

))
ds.

The importance of the operator G relies in the following result.

Lemma 3.3.2. Let x, y > 0, (c, π) ∈ A0(x), and w nonnegative measurable on R+. Then

denoting Rτ1 := X̃x,c,π
τ1

+ Ỹ x,c,π
τ1

,

E

[∫ τ1

0
e−βsU(cs)ds+ e−βτ1w(Rτ1)

]
= J 0

w (x, y; c, π) ,
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Proof. Let (c, π) ∈ A(x) and set (X̃s, Ỹs) = (X̃x,π,c
s , Ỹ y

s ), Z̃s = ỸsJ
0
s . Since τ1 is independent

from FW and FB with distribution E(λ), we have

E

[∫ τ1

0
e−βsU(cs)ds+ e−βτ1w(Rτ1)

∣∣∣FW ,FB
]

=

∫ ∞

0
λe−λt

(∫ t

0
e−βsU(cs)ds+ e−βtw(X̃t + Z̃t)

)
dt

=

∫ ∞

0
e−βsU(cs)

∫ ∞

s
λe−λtdtds+

∫ ∞

0
λe−(λ+β)tw(X̃t + Z̃t)dt

=

∫ ∞

0
e−(β+λ)t

(
U(ct) + λw(X̃t + Z̃t)

)
dt,

where in the second inequality we have used Fubini’s theorem. Now since Z̃t = ỸtJ
0
t , with J0

t

independent from FW , we have for all t ≥ 0

E
[
w(X̃t + Z̃t))

∣∣∣FW
]

= E
[
w(x+ yJ0

t )
]
∣∣∣∣∣∣
x = X̃t

y = Ỹt

= G[w](t, X̃t, Ỹt),

and we obtain

E

[∫ τ1

0
e−βsU(cs)ds+ e−βτ1w(Rτ1)

]
= E

[
E

[∫ τ1

0
e−βsU(cs)ds+ e−βτ1w(Rτ1)

∣∣∣ FW
]]

= E

[∫ ∞

0
e−(β+λ)t

(
U(ct) + λG[w](t, X̃t, Ỹt)

)
dt

]

= J 0
w (x, y; c, π) .

�

Due to Lemma 3.3.2, from (3.3.13) we obtain

V (r) = sup
a≤r

sup
(c,π)∈A0(r−a)

J 0
V (r − a, a; c, π) . (3.3.23)

In order to solve the inner optimization problem in (3.3.23), we define a dynamic version of

it. Given t ≥ 0 we define the process (W t
s)s≥t = (Ws − Wt)s≥t and the filtration (FW t

)s ≥ t

generated by this process. For each t, x ≥ 0, let At(x) be the set of couples of stochastic processes

(cs, πs)s≥t such that
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• (cs)s≥t is (FW t

s )-predictable, nonnegative and locally integrable;

• (πs)s≥t is (FW t

s )-predictable and locally square-integrable;

• x+
∫ T

t (−csds+ πs(bLds+ σLdWs)) ≥ 0, ∀T ≥ t.

Given (c, π) ∈ At(x), let (X̃t,x,c,π
s )s≥0, (Ỹ

t,y
s )s≥0 be the solutions starting at time t from x, y to

the SDEs

dX̃s = −csds+ πs(bLds+ σLdWs), (3.3.24)

dỸs = Ỹs(ρ
bLσI

σL
dt+ ρσIdWs). (3.3.25)

Given w a nonnegative measurable function on R+ and t, x, y ≥ 0, let us consider the functional

on At(x)

Jw(t, x, y; c, π) = E

∫ ∞

t
e−(β+λ)(s−t)

(
U(cs) + λG[w]

(
s, X̃t,x,π,c

s , Ỹ t,y
s

))
ds.

Finally consider the optimization problem

V̂ (t, x, y) = sup
(c,π)∈At(x)

JV (t, x, y; c, π), (3.3.26)

For any locally bounded function v̂ on [0,+∞) × R2
+, we associate the function Hv̂ defined on

R+ by :

[Hv̂](r) = sup
0≤a≤r

v̂(0, a, r − a).

By (3.3.23), we can rewrite the original problem in terms of V̂ as

V = HV̂ . (3.3.27)

3.4 Properties of the value functions

Let us see some first properties of the functions V, V̂ .

Proposition 3.4.1. V is concave, p-Hölder continuous and nondecreasing. Moreover

V (r) ≤ Krp, for some K > 0. (3.4.1)
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Proof. First of all we note that we clearly have 0 ≤ V ≤ KUV
(p)

M , where V
(p)

M is the value

function of the problem when I is also liquid for utility U (p)(c) = cp. By (3.2.10), we have the

estimate

V
(p)

M (r) ≤ Krp, for some K > 0,

which in turn yields (3.4.1).

Concavity of V comes from concavity of U and linearity of the state equation by standard

arguments. Also monotonicity is consequence of standard arguments due to the monotonicity

of U . p-Hölder continuity follows from concavity and monotonicity of V and from (3.4.1). �

Before examining the properties of V̂ we state a lemma that will be needed repeatedly.

Lemma 3.4.1. For (t, x, y) ∈ [0,+∞), (π, c) ∈ At(x), p ∈ (0, 1),

E
[
(X̃t,x,c,π

s + Ỹ t,y
s )p

]
≤ e

p

1−p

b2
L

2σ2
L

(s−t)
(x+ y)p, (3.4.2)

for all s ≥ t. In particular, combining with Proposition 3.3.2(v), denoting ϕ(r) = rp,

E
[
G[ϕ](s, X̃t,x,c,π

s , Ỹ t,y
s )

]
≤ ekJ (p)tekM (p)(s−t)(x+ y)p. (3.4.3)

Proof. The proof follows the same arguments as that of Proposition 3.3.2(v), noticing that

p

1 − p

b2
L

2σ2
L

= sup
π∈R

{
pbLπ − p(1 − p)

2
σ2

Lπ
2
}
.

�

Proposition 3.4.2. V̂ (t, ·) is concave and nondecreasing with respect to both x, y for every

t ≥ 0. Moreover,

V̂ (t, 0, y) = E

∫ ∞

t
e−(β+λ)(s−t)λG[V ](s, 0, Ỹ t,y

s )ds; (3.4.4)

In particular, due to Proposition 3.3.2-(v),

V̂ (t, 0, 0) = 0. (3.4.5)

Furthermore, V̂ is continuous on [0,+∞) × R2
+, and for some KV̂ > 0,

V̂ (t, x, y) ≤ KV̂ e
kJ (p)t(x+ y)p (3.4.6)

for every (t, x, y) ∈ [0,+∞) × R2
+.
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Proof. Since V is concave and nondecreasing, by Proposition 3.3.2-(iii, iv), G[V ](t, ·) is

concave and nondecreasing in both x, y on R2
+. Then concavity and monotonicity properties of

V̂ follow by standard arguments, considering also the linearity of the SDE’s (3.3.24)-(3.3.25).

Equality (3.4.4) is due to the fact that At(0) = {(0, 0)}, so

V̂ (t, 0, y) = JV (t, 0, y; 0, 0) = E

∫ ∞

t
e−(β+λ)(s−t)λG[V ](s, 0, Ỹ t,y

s )ds. (3.4.7)

We prove the continuity of V̂ in several steps.

1) Continuity of V̂ (t, ·) in (0,+∞)2 follows from its concavity.

2) Here we prove the continuity of V̂ (t, ·, y) at x = 0+. First of all notice that (3.4.7) holds

at x = 0, so using monotonicity of V and 3.3.2-(iii) we get

0 ≤ JV (t, x, y; 0, 0) − JV (t, x, 0; 0, 0) ≤ V̂ (t, x, y) − V̂ (t, x, 0). (3.4.8)

On the other hand, using Proposition 3.3.2-(vi) and Hölder continuity of V , we have for some

K > 0 and all (c, π) ∈ At(x)

JV (t, x, y; c, π) − V (t, 0, y)

≤ E

[∫ ∞

t
e−(β+λ)(s−t)

{
U(cs) + λ

∣∣∣G[V ](s, X̃t,x,c,π
s , Ỹ t,y

s ) −G[V ](s, 0, Ỹ t,y
s )

∣∣∣
}
ds

]

≤ E

[∫ ∞

t
e−(β+λ)(s−t)

(
U(cs) +K|X̃t,x,c,π

s |p
)
ds

]
.

Taking the supremum over (c, π) ∈ At(x) and combining with (3.4.8) we get

0 ≤ V̂ (t, x, y) − V̂ (t, 0, y)

≤ sup
(c,π)∈At(x)

E

[∫ ∞

t
e−(β+λ)(s−t)

(
U(cs) +K|X̃t,x,c,π

s |p
)
ds

]
. (3.4.9)

We have to estimate the right handside of (3.4.9). By definition of At(x), we have

0 ≤ X̃t,x,c,π
s = x+

∫ s

t
πu
dLu

Lu
−
∫ s

t
cudu. (3.4.10)

Denoting by QL the probability with density process given by Zt = exp

(
− b2

L

2σ2
L

t− bL

σL
Wt

)
, L is

a QL-martingale. The process X̃t,x,c,π is then a QL-local supermartingale and, being bounded

from below, it is a true QL-supermartingale. Hence, we have E[ZsX̃
t,x,c,π
s ] ≤ x. Now, writing
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|X̃t,x,c,π
s |p = |ZsX̃

t,x,c,π
s |pZ−p

s , by Hölder’s inequality we get

E[|X̃t,x,c,π
s |p] ≤ E[ZsX̃

t,x,c,π
s ]p E[Z

− p

1−p
s ]1−p ≤ xp exp

((
p

1 − p

b2
L

2σ2
L

)
s

)
. (3.4.11)

Note also that since
∫∞

t e−(β+λ)(s−t)U(cs)ds is the utility obtained by the agent trading only in

L,

sup
(c,π)∈At(x)

E

[∫ ∞

t
e−(β+λ)(s−t)U(cs)ds

]
≤ V (x)

≤ Kxp, (3.4.12)

by (3.4.1). Combining (3.4.9), (3.4.11), (3.4.12), and using (3.2.8), we get for some K > 0

0 ≤ V̂ (t, x, y) − V̂ (t, 0, y) ≤ Kxp, (3.4.13)

and we conclude.

3) Here we prove the continuity of V̂ (t, x, ·) at y = 0+.

Using monotonicity of V and 3.3.2(iii) (in the first inequality below), Proposition 3.3.2-(vi)

(in the second inequality below) and (3.4.2) (in the third inequality below), we have for some

K > 0 and for all (c, π) ∈ At(x)

0 ≤ JV (t, x, y; c, π) − JV (t, x, 0; c, π) ≤ KeKJ (p)t
∫ ∞

t
e−(β+λ−kJ (p))(s−t)λE[(Y t,y

s )p]ds

≤ KeKJ (p)typ
∫ ∞

t
e−(β+λ−kM (p))(s−t)ds = K

λ

β + λ− kM (p)
eKJ (p)typ.

Therefore, taking the supremum over (c, π) ∈ At(x) we get

0 ≤ V̂ (t, x, y) − V̂ (t, x, 0) ≤ Kλ

β + λ− kM (p)
ekJ (p)typ. (3.4.14)

Letting y → 0 we have the claim.

4) Since (3.4.14) and (3.4.13) are uniform estimates in x, y respectively, also using the conti-

nuity on the lines provided by (2)-(3), we get the joint continuity of V̂ with repect to (x, y) at

the boundary {(x, y) ∈ R2
+ | x = 0 or y = 0}.

5) Here we prove the continuity of V̂ (·, x, y). Let t, t′ ≥ 0 and suppose that t′ = t + h for

some 0 ≤ h ≤ 1. There is a one-to-one correspondence between At(x) and At′(x) associating to

a control (ct
s, π

t
s)s≥t ∈ At(x) a control (ct′

s , π
t′

s )s≥t′ ∈ At′(x) with the same law (see [71, Th. 2.10,
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Ch. 1]). So, let (ct
s, π

t
s)s≥t ∈ At(x) and let (ct′

s , π
t′

s )s≥t′ ∈ At′(x) be the associated control by this

one-to-one correspondence. We have

|JV (t, x, y, ct, πt) − JV (t′, x, y, ct′
, πt′

)|

≤
∣∣∣∣E
[∫ ∞

t
e−(β+λ)(s−t)

(
U(ct

s) + λG[V ](s, X̃t,x,ct,πt

, Ỹ t,y
s )

)
ds

−
∫ ∞

t′
e−(β+λ)(s−t′)

(
U(ct′

s ) + λG[V ](s, X̃t′,x,ct′
,πt′

, Ỹ t′,y
s )

)
ds

]∣∣∣∣

≤ E

∫ ∞

t
e−(β+λ)(s−t)λ

∣∣∣G[V ](s, X̃t,x,ct,πt

, Ỹ t,y
s )ds−G[V ](s+ h, X̃t,x,ct,πt

, Ỹ t,y
s )

∣∣∣ ds

≤ K1E

∫ ∞

t
e−(β+λ)(s−t)λhp/2ekJ (p)s|Y t,y

s |pds

≤ K1
λ

β + λ− kM (p)
ekJ (p)thp/2,

where like in 3) we have used Proposition 3.3.2(vi) and (3.4.2). Passing to the supremum over

(ct
s, π

t
s)s≥t ∈ At(x) and taking into account Proposition 3.3.2-(iii) and Proposition 3.4.1, we get

for some K > 0

|V̂ (t, x, y) − V̂ (t+ h, x, y)| ≤ KekJ (p)typhp/2. (3.4.15)

Hence V̂ is locally p/2-Hölder with respect to t.

6) Putting together all the information collected we get continuity of V on [0,+∞) × R2
+.

Finally, the growth condition (3.4.6) is proved by combining (3.4.13),(3.4.14) and (3.4.5). �

3.5 The HJB equation

By standard arguments we can associate to V̂ a HJB equation. It reads as

−v̂t + (β + λ)v̂ − λG[Hv̂](t, x, y) − sup
c≥0,π∈R

Hcv(y,D(x,y)v̂, D
2
(x,y)v̂ : c, π) = 0, (3.5.1)

where for (y, p, A) ∈ R+ × R2 × S2 (S2 is the space of symmetric 2 × 2 matrices), c ≥ 0, π ∈ R,

Hcv is defined by

Hcv(y, p, A; c, π) =

[
U(c) + (πbL − c)p1 +

ρbLσI

σL
yp2 +

σ2
Lπ

2

2
A11 + πρσIσLyA12 + ρ2σ

2
I

2
y2A22

]
.



136 CHAPTER 3. MARKETS WITH LIQUID AND ILLIQUID ASSETS

Note that supc≥0,π∈RHcv(y, p, A; c, π) is finite if p1 > 0, A11 < 0, in which case we have

sup
c≥0,π∈R

Hcv(y, p, A; c, π) = Ũ(p1) − (bLp1 + ρσLσIyA12)2

2σ2
LA11

+
ρbLσI

σL
yp2 + ρ2σ

2
I

2
y2A22.

A Dirichlet type boundary condition can be associated to equation (3.5.1) above. It is provided

by (3.4.4) which leads to impose

v̂(t, 0, y) = E

∫ ∞

t
e−(β+λ)(s−t)λG[Hv̂](s, 0, Ỹ t,y

s )ds. (3.5.2)

3.5.1 Viscosity solutions

Let us denote by X = (x, y) vectors in R2
+. We are going to prove that V̂ is the unique

constrained viscosity solution to (3.5.1) according to the following definition.

Definition 3.5.1. (1) Given w a continuous function on [0,+∞) × R2
+, the parabolic superjet

of w at (t,X) ∈ [0,+∞) × R2
+ is defined by:

P1,2,+w(t,X) =
{

(q, p, A) ∈ R × R2 × S2 s.t. w(s,X ′) ≤ w(t,X) + q(s− t) +
〈
p,X ′ −X

〉

+
1

2

〈
A(X ′ −X), X ′ −X

〉
+ o

(∣∣X ′ −X
∣∣2
)

as X ′ → X
}
,

and its closure P1,2,+
w(t,X) as the set of elements (q, p, A) ∈ R×R2 ×S2 for which there exists a

sequence (tm, Xm, qm, pm, Am)m of [0,+∞)×R2
+×P1,2,+w(tm, Xm) satisfying (tm, Xm, qm, pm, Am)

→ (t,X, q, p, A). We also define the subjets P1,2,−wi(t,X) = −P1,2,+(−wi)(t,X) and P1,2,−
w(t,X)

= −P1,2,+
(−w)(t,X).

(2) We say that w is a viscosity subsolution (resp. supersolution) to (3.5.1) at (t,X) ∈ [0,+∞)×
R2

+ if

−q + (β + λ)w(t, x, y) − λG[Hw](t, x, y) − sup
c≥0,π∈R

Hcv(y, p, A; c, π) ≤ 0,

for all (q, p, A) ∈ P1,2,+
w(t,X) (resp. ≥, P1,2,−

w(t,X)).

(3) w is a constrained viscosity solution to (3.5.1) if it is a subsolution on [0,+∞) × R2
+, a

supersolution on [0,+∞) × (0,+∞) × R+ and satisfies boundary condition (3.5.2).

Remark 3.5.1. The concept of constrained viscosity solution we use comes naturally from

the stochastic control problem. The boundaries {x = 0} and {y = 0} are both absorbing for

the control problem (in the sense that starting from these boundaries, the trajectories of the

control problem remain therein), but they have different features. Indeed starting from the

boundary {y = 0} the control problem degenerates in a one dimensional control problem; the

associated HJB equation is nothing else but our HJB equation restricted to this boundary and
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this is why we require viscosity sub- and supersolution properties to the value function at this

boundary. Instead starting from at the boundary {x = 0} there is no control problem (since

At(0) = {(0, 0)}) and the natural condition to impose is a Dirichlet boundary condition.

Theorem 3.5.1. V̂ is the unique constrained viscosity solution to (3.5.1) satisfying the growth

condition (3.4.6).

Proof. The fact that v̂ is a viscosity subsolution on [0,+∞) ×R2
+ and a viscosity supersolu-

tion on [0,+∞) × (0,+∞)2 is standard (see, e.g., [71, Ch. 4]). The Dirichlet boundary condition

(3.5.2) is verified due to (3.4.4) and the growth condition

Therefore, it remains to show that V̂ is a supersolution when y = 0. In this case, as noticed

in Remark (3.5.1) the control problem degenerates in a one dimensional one and again standard

arguments applied to this control problem give the viscosity supersolution property.

Uniqueness is consequence of the comparison principle Proposition 3.5.1 below. �

Proposition 3.5.1. Let w1 (resp. w2) be a viscosity subsolution (resp. supersolution) to (3.5.1)

on [0,+∞) × (0,∞) × R+. Assume that w1, w2 satisfy the growth condition (3.4.6), and the

boundary condition

w1(t, 0, y) ≤ E

∫ ∞

t
e−(β+λ)(s−t)λG[Hw1](s, 0, Y t,y

s )ds (3.5.3)

(resp. ≥ for w2). Then w1 ≤ w2 on [0,+∞) × R2
+.

Proof. The argument are quite standard in viscosity PDE’s theory, but we provide the

proof here for sake of completeness.

The proof is done in two steps :

Step 1. Fix some q > p such that

β ≥ kM (q) =
q

1 − q

b2
L

2σ2
L

+ kJ(q) (3.5.4)

(this is possible by (3.2.8) and the fact that kM is continuous in q), and define

f q(t, x, y) = ekJ (q)t(x+ y)q.

First we claim that on [0,+∞) × (0,∞) × R+

−f q
t + (β + λ)f q − λG[Hf q]

− sup
π∈R

[
πbLf

q
x + y

ρbLσI

σL
f qy +

σ2
Lπ

2

2
f q

xx + πρσIσLyf
q
xy + ρ2σ

2
I

2
y2f q

yy

]
≥ 0. (3.5.5)
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Indeed, we first have

G[Hf q] ≤ f q

by Proposition 3.3.2(v), and furthermore by straightforward computations we check that

sup
π∈R

[
πbLf

q
x + y

ρbLσI

σL
f q +

σ2
Lπ

2

2
f q

xx + πρσIσLyf
q
xy + ρ2σ

2
I

2
y2f̂ q

yy

]

= f q




(
qbL − q(1 − q)ρσIσL

y
x+y

)2

2σ2
Lq(1 − q)

+ q
ρbLσI

σL

y

x+ y
− q(1 − q)

2
ρ2σ2

I

y2

(x+ y)2




= f q q

1 − q

b2
L

2σ2
L

,

and by (3.5.4) we obtain (3.5.5).

Now given an integer n ≥ 1, consider w2,n := w2 + 1
nf

q.

Let us check that for any (t, x, y) with x > 0, w2,n is a supersolution to (3.5.1) at (t, x, y).

Notice that P1,2,−ŵ2,n(t, x, y) = P1,2,−ŵ2(t, x, y) + 1
n(∂tf̂

l,r, Dx,yf̂
l,r, D2

x,yf̂
l,r)(t, x, y), and

we have for all (q, p, A) ∈ P1,2,−w2(t, x, y) :

−(q +
1

n
f q

t ) + (β + λ)(w2 +
1

n
f q) − Ũ

(
p+

1

n
f q

x

)
− λG[H(w2 +

1

n
f q)](t, x, y)

− sup
π∈R

[
πbL(p1 +

1

n
f q

x) + y
ρbLσI

σL
(p2 +

1

n
f q

y ) +
σ2

Lπ
2

2
(A11 +

1

n
f q

xx)

+πρσIσLy(A12 +
1

n
f q

xy) + ρ2σ
2
I

2
y2(A22 +

1

n
f q

yy)

]

≥ −q + (β + λ)w2 − Ũ (p) − λG[Hw2](t, x, y)

− sup
π∈R

[
πbLp1 + y

ρbLσI

σL
p2 +

σ2
Lπ

2

2
A11 + πρσIσLyA12 + ρ2σ

2
I

2
y2A22

]

+
1

n
{−f q

t + (β + λ)f q − λG[Hf q](t, x, y)

− sup
π∈R

[
πbLf

q
x + y

ρbLσI

σL
fy +

σ2
Lπ

2

2
f q

xx + πρσIσLyf
q
xy + ρ2σ

2
I

2
y2f̂ q

yy

]}

≥ 0,

where we have used the fact that Ũ is nonincreasing and f q
x ≥ 0, and (3.5.5).
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Moreover,

λE

∫ ∞

t
e−(β+λ)(s−t)G[Hf q](s, 0, Y t,y

s )ds ≤ ekJ (q)tyqλE

∫ ∞

t
e(−β−λ+kJ (q))(s−t)(Y t,1

s )qds

≤ f q(t, 0, y)λ

∫ ∞

t
e(−β−λ+kM (q))(s−t)ds

=
λ

β − kM (q) + λ
f q(t, 0, y)

≤ f q(t, 0, y),

where in the second inequality we have used (3.4.2). By the subadditivity of H and linearity of

G, it follows that w2,n also satisfies the boundary condition at (t, 0, y).

Finally, notice that by the growth condition on ŵ1 and ŵ2 we have

lim
|(t,x,y)|→∞

(ŵ1 − ŵ2,n)(t, x, y) = −∞. (3.5.6)

Step 2. We show that for all n ≥ 1, w1 ≤ w2,n on [0,+∞) × R2
+, and thus w1 ≤ w2. Fix

n ≥ 1 and define

M := sup
[0,+∞)×R2

+

w1 − w2,n > 0.

By (3.5.6) and continuity of w1, w2,n,

M = max
[0,T0]×C2

w1 − w2,n = (w1 − w2,n)(t̄, x̄, ȳ),

where T0 > 0 and C is a compact subset of R2
+. We now distinguish between two cases.

Case 1 : x̄ = 0. First note that Hw1 − Hw2,n ≤ M . Using the boundary condition (3.5.3), we

then have

M = (ŵ1 − ŵ2,n)(t̄, 0, ȳ)

≤ E

∫ ∞

t̄
e−(β+λ)(s−t)λG[Hw1 − Hw2,n](s, 0, Y t̄,ȳ

s )ds

≤
∫ ∞

t̄
e−(β+λ)(s−t)λMds

=
λ

β + λ
M,

and it follows that M ≤ 0.
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Case 2 : x̄ > 0. Define on [0, T0] × (C)2

Φε(t,X,X ′) = ŵ1(t,X) − ŵ2,n(t,X ′) − |X −X ′|2
2ε

.

Since Φε is continuous on the compact set [0, T0] × (C)2, there exists (tε, Xε, X
′
ε) s.t.

Mε := sup
[0,T0]×(C)2

Φε = Φε(tε, Xε, X
′
ε),

and a subsequence, still denoted (tε, Xε, X
′
ε) converging to some (t̂, X̂, X̂ ′). By standard argu-

ments (see e.g. Lemma 3.1 in [16]), X̂ = X̂ ′ and (t̂, X̂) is a maximum point of (ŵ1 − ŵ2,n, hence

w.l.o.g. (t̂, X̂) = (t̄, X̄), and we further have

lim
ε→0

|Xε −X ′
ε|2

2ε
= 0. (3.5.7)

Now we apply the parabolic Ishii lemma (Theorem 8.3 in [16]) to obtain q, q′ ∈ R, A,A′ in

S2 such that

(q,
Xε −X ′

ε

ε
,A) ∈ P̄1,2,+ŵ1(tε, Xε), (q′,

Xε −X ′
ε

ε
,A′) ∈ P̄1,2,−ŵ2,n(tε, X

′
ε), (3.5.8)


 A 0

0 −A′


 ≤ 3

ε


 I2 −I2

−I2 I2


 , (3.5.9)

q + q′ = 0. (3.5.10)

Since Xε converges to X̄, xε > 0 for ε small enough, and we can use the viscosity subsolution

property of ŵ1 to obtain

−q + (β + λ)w1(tε, Xε) − Ũ

(
xε − x′

ε

ε

)
− λG[Hw1](tε, xε, yε) (3.5.11)

− sup
π∈R

[
π
xε − x′

ε

ε
+
ρbLσI

σL
yε
yε − y′

ε

ε
+
σ2

Lπ
2

2
A11 + πρσIσLyεA12 + ρ2σ

2
I

2
y2

εA22

]
≤ 0,

and the supersolution property of ŵ2,n to get

−q′ + (β + λ)w2,n(tε, X
′
ε) − Ũ

(
xε − x′

ε

ε

)
− λG[Hw2,n](tε, x

′
ε, y

′
ε) (3.5.12)

− sup
π∈R

[
π
xε − x′

ε

ε
+
ρbLσI

σL
y′

ε

yε − y′
ε

ε
+
σ2

Lπ
2

2
A′

11 + πρσIσLy
′
εA

′
12 + ρ2σ

2
I

2
(y′

ε)2A′
22

]
≥ 0.

Substracting (3.5.11) by (3.5.12), and using the fact that the difference of the supremum is less



3.5. THE HJB EQUATION 141

than the supremum of the difference, and (3.5.10), we obtain

(β + λ)(w1(tε, Xε) − w2,n(tε, X
′
ε))

≤ sup
π∈R

[
σ2

Lπ
2

2
(A11 −A′

11) + πρσIσL(yεA12 − y′
εA

′
12) + ρ2σ

2
I

2
(y2

εA22 − (y′
ε)2A′

22)

]

+
ρbLσI

σL

(yε − y′
ε)2

ε
+ λ

(
G[Hw1](tε, Xε) −G[Hw2,n](tε, X

′
ε)
)
. (3.5.13)

First notice that

lim
ε→0

G[Hw1](tε, Xε) −G[Hw2,n](tε, X
′
ε) = G[Hw1](t̄, X̄) −G[Hw2,n](t̄, X̄)

≤ sup
R+

(Hw1 − Hw2,n)

≤ sup
x,y∈R+

(ŵ1 − ŵ2,n)(0, x, y)

≤ M. (3.5.14)

Furthermore, for all π ∈ R,

σ2
Lπ

2

2
(A11 −A′

11) + πρσIσL(yεA12 − y′
εA

′
12) + ρ2σ

2
I

2
(y2

εA22 − (y′
ε)2A′

22)

=
1

2

(
σLπ ρσIyε σLπ ρσIy

′
ε

)

 A 0

0 −A′







σLπ

ρσIyε

σLπ

ρσIy
′
ε




≤ 1

2

(
σLπ ρσIyε σLπ ρσIy

′
ε

)

 I2 −I2

−I2 I2







σLπ

ρσIyε

σLπ

ρσIy
′
ε




= (ρσI)2 3

2ε
|yε − y′

ε|2. (3.5.15)

where we have used (3.5.9).

Recall that by (3.5.7),

(yε − y′
ε)2

ε
→ 0 when ε → 0. (3.5.16)
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Letting ε go to 0 in (3.5.13), and combining (3.5.14),(3.5.15) and (3.5.16), we finally obtain

(β + λ)M ≤ λM,

and M ≤ 0. ✷

3.5.2 Power utility

In this subsection we consider the problem in the case U(c) = cp

p , for some p in (0, 1).

In this case, due to the fact that the utility function is homothetic, the HJB equation can be

reduced to a PDE involving just a one-dimensional state variable. Indeed let x, y ≥ 0, x+ y > 0

and set

r = x+ y ≥ 0, z =
y

x+ y
∈ [0, 1], (3.5.17)

Since (with a slight but clear abuse of notation) A(αr) = αA(r) for all α ≥ 0, taking into

account the fact that U is homothetic of degree p, it is straightforward to show that

V (r) = Φ0
rp

p
, ∀α ≥ 0. (3.5.18)

for some Φ0 ≥ 0. We have also At(αx) = αAt(x) for all α ≥ 0, so it is straightforward to show

that also

V̂ (t, αx, αy) = αp V̂ (t, x, y), ∀α ≥ 0. (3.5.19)

Therefore, by the change of variables (3.5.17), we can rewrite V̂ in separated form as

V̂ (t, x, y) =
rp

p
Φ̂ (t, z) , (3.5.20)

where

Φ̂ : Q̄ → R+, Q := [0,+∞) × (0, 1)

and

Φ̂(t, z) = V̂ (t, z, 1 − z). (3.5.21)
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On the other hand, we have also (3.3.27), so

Φ0 = sup
z∈[0,1]

Φ̂(0, z). (3.5.22)

Plugging the expression above for V̂ (3.5.20) into (3.5.1), we can get rid of the terms involving

the variable r, remaining with an equation for Φ̂. Set

c̃ =
c

x+ y
, π̃ =

π

x+ y
.

The variables c̃, π̃ express the consumption and the investment in the liquid asset in terms of

the variable x + y, which is in our case the counterpart of the total wealth in [2] (indeed, due

to the lack of full information, the variable Xt + Yt is somehow what we know about the total

wealth, which is only partially observable).

Taking into account (3.3.16) and dividing everything by (x+ y)p/p it becomes

−Φ̂t + (β + λ)Φ̂ − λpΦ0G[U ](t, 1 − z, z) − sup
c̃≥0,π̃∈R

H̃cv(z, Φ̂, Φ̂z, Φ̂zz; c̃, π̃) = 0, (3.5.23)

where

H̃cv(z, Φ̂, Φ̂z, Φ̂zz; c̃, π̃) = pU(c̃) − c̃ (pΦ̂ − zΦ̂z)

+ ρ
bLσI

σL

(
pzΦ̂ − z(1 − z)Φ̂z

)
+ ρ2σ

2
I

2
z2
(
p(p− 1)Φ̂ − 2(1 − z)(1 − p)Φ̂z + (1 − z)2Φ̂zz

)

+ π̃
(
bL(pΦ̂ − zΦ̂z) + ρσLσIz

(
p(p− 1)Φ̂ − (1 − 2z)(1 − p)Φ̂z − z(1 − z)Φ̂zz

))

+ π̃2σ
2
L

2

(
p(p− 1)Φ̂ + 2z(1 − p)Φ̂z + z2Φ̂zz

)
. (3.5.24)

Moreover (3.4.4) becomes

Φ̂(t, 1) = λpΦ0 E

[∫ ∞

t
e−(β+λ)(s−t)G[U ](s, 0, rEt

s)ds

]
, (3.5.25)

and (3.4.6) becomes

Φ̂(t, z) ≤ KV̂ e
kJ (p)t, (t, z) ∈ Q. (3.5.26)

Due to the results of the previous section and to the argument above, we get the following (with

standard meaning of viscosity solution in the interior region Q).
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Proposition 3.5.2. The function Φ̂ is the unique viscosity solution over Q of (3.5.23) fulfilling

boundary condition (3.5.25) and growth condition (3.5.26).

3.6 Numerical analysis

In this section we present an iterative scheme to approximate the value functions V and V̂ ,

and present some numerical results.

3.6.1 Iterative procedure

Because of the nonlocal term G[HV̂ ] in (3.5.1), we have to couple the standard numerical

scheme with an iterative procedure as we are going to describe.

We start with

V 0 = 0 (3.6.1)

and inductively :

• Given V n we define V̂ n+1 on [0,+∞) ×R2
+ as the unique (constrained viscosity) solution to

−V̂ n+1
t + (β + λ)V̂ n+1 − λG[V n](t, x, y)

− sup
c≥0,π∈R

Hcv(y,D(x,y)V̂
n+1, D2

(x,y)V̂
n+1; c, π) = 0, (3.6.2)

with boundary condition

V̂ n+1(t, 0, y) = E

∫ ∞

t
e−(β+λ)(s−t)λG[V n](s, 0, Ỹ t,y

s )ds. (3.6.3)

and growth condition

|V̂ n+1(t, x, y)| ≤ KekJ (p)t(x+ y)p. (3.6.4)

• Given V̂ n+1, V n+1 is defined by

V n+1 = HV̂ n+1. (3.6.5)
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We provide a stochastic control representation for (V̂ n, V n)n in the proposition below.

Proposition 3.6.1. For n ≥ 0, define

V n(r) = sup
(c,π,α)∈A(r)

E

∫ τn

0
e−βtU(cs)ds, (3.6.6)

and

V̂ n+1(t, x, y) = sup
(c,π)∈At(x)

E

∫ ∞

t

e−(β+λ)(s−t)
(
U(cs) + λG[V n]

(
s, X̃t,x,π,c

s , Ỹ t,y
s

))
ds. (3.6.7)

Then (V n, V̂ n)n≥0 is the unique solution to (3.6.1) and (3.6.2)-(3.6.3)-(3.6.4), n ≥ 0.

Proof. V 0 = 0 is obvious, and by induction we assume that (3.6.2) − (3.6.3) − (3.6.4) has a

unique solution for k ≤ n, given by (3.6.6)-(3.6.7).

The fact that V̂ n+1 is a constrained viscosity solution to (3.6.2) follows from the same

arguments as for V̂ in Theorem 3.5.1, (3.6.3)is satisfied by definition. Since V n(r) ≤ V (r) ≤ Krp,

the growth condition (3.6.4) is also verified. The uniqueness of this solution is proved by a

comparison principle as in the proof of Proposition 3.5.1 (actually even easier since there is no

nonlocal term).

Furthermore, in the same way as Proposition 3.3.1 and Lemma 3.3.2, we have the following

DPP for the V n :

V n+1(r) = sup
(c,π,α)∈A(r)

E

[∫ τ1

0
e−βsU(cs)ds+ e−βτ1V n(Rτ1)

]

= sup
0≤a≤r

sup
(c,π)∈A0(r−a)

E

∫ ∞

0
e−(β+λ)(s−t)

(
U(cs) + λG[V n]

(
s, X̃t,x,π,c

s , Ỹ t,y
s

))
ds

= (HV̂ n+1)(r),

which proves (3.6.5). ✷

We now prove that V n converges to V at an exponential rate.

Proposition 3.6.2. For some K > 0, we have

0 ≤ (V − V n)(r) ≤ Krpδn, (3.6.8)

0 ≤ (V̂ − V̂ n)(t, x, y) ≤ KekJ (p)t(x+ y)pδn, (3.6.9)



146 CHAPTER 3. MARKETS WITH LIQUID AND ILLIQUID ASSETS

where

δ :=
λ

λ+ β − kM (p)
< 1.

Proof. We will prove the claim by induction. The case n = 0 follows from (3.4.1) and

(3.4.6), and we assume that (3.6.8)-(3.6.9) are true for some n. Fixing t, x, y and (c, π) ∈ At(x),

we have

0 ≤ JV (t, x, y; c, π) − JV n(t, x, y; c, π) ≤ E

∫ ∞

t
e−(β+λ)(s−t)λG[(V − V n)]

(
s, X̃t,x,π,c

s , Ỹ t,y
s

)
ds

≤ E

∫ ∞

t
e−(β+λ)(s−t)λKrpδnekJ (p)tekM (p)(s−t)(x+ y)p

= KekJ (p)tδn+1(x+ y)p,

where we have used the induction hypothesis and Lemma 3.4.1. Taking the supremum over

(c, π) ∈ At(x) we obtain (3.6.9) for n+ 1, and (3.6.8) follows by (3.6.6).

3.6.2 Finite horizon problem

To solve the PDE (3.6.2) we approximate it by a finite horizon PDE. We fix some time T > 0,

and we consider the functions V̂ n,T , V n,T defined recursively by V 0,T = V̂ 0,T = 0,

V̂ n+1,T (t, x, y) = sup
(c,π)∈At(x)

E

[∫ T

t
e−(β+λ)(s−t)

(
U(cs) + λG[V n,T ]

(
s, X̃t,x,π,c

s , Ỹ t,y
s

))
ds

+e−(β+λ)(T −t)φn+1,T (X̃t,x,π,c
s , Ỹ t,y

s )
]
,

(t, x, y) ∈ [0, T ] × R2
+ where φn+1,T is some given terminal condition, and

V n,T = HV̂ n,T (3.6.10)

By the same methods as above it is then straightforward to check that V̂ n+1,T is a constrained

viscosity solution to

−V̂ n+1,T
t + (β + λ)V̂ n+1 − λG[V n,T ](t, x, y)

− sup
c≥0,π∈R

Hcv(y,D(x,y)V̂
n+1,T , D2

(x,y)V̂
n+1,T ; c, π) = 0, (3.6.11)
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on [0, T ) × R2
+, with boundary conditions

V̂ n+1,T (T, x, y) = φn+1,T (x, y),

V̂ n+1,T (t, 0, y) = E

[∫ T

t
e−(β+λ)(s−t)λG[V n,T ](s, 0, Ỹ t,y

s )ds+ e−(β+λ)(T −t)φn+1,T (0, Ỹ t,x,π,c
s )

]
.

We assume that the terminal condition φn+1,T satisfies :

∣∣∣φn+1,T (x, y) − V̂ n+1(T, x, y)
∣∣∣ ≤ EekJ (p)T (x+ y)p, (3.6.12)

for some E not depending on n. Note that this assumption is not restrictive since

0 ≤ V̂ n+1 ≤ V̂ , and by (3.4.6), (3.6.12) is satisfied by taking φn+1,T = 0.

We then have the following estimate for the numerical error induced by the finite horizon

approximation :

Proposition 3.6.3. For all n ≥ 0, for all r ∈ R+ :

|(V n,T − V n)(r)| ≤ E
1 − δ

e−(β+λ−kM (p))T rp,

Proof. We prove by induction that

|(V n,T − V n)(r)| ≤ (1 + . . .+ δn−1)Ee−(β+λ−kM (p))T rp. (3.6.13)

V 0 = V 0,T = 0, so the claim is satisfied for n = 0. Assume that it is satisfied by some n.

By the dynamic programming principle applied to V̂ n+1,

V̂ n+1(t, x, y) = sup
(c,π)∈At(x)

E

[∫ T

t
e−(β+λ)(s−t)

(
U(cs) + λG[V n]

(
s, X̃t,x,π,c

s , Ỹ t,y
s

))
ds

+e−(β+λ)(T −t)V̂ n+1(X̃t,x,π,c
s , Ỹ t,y

s )
]
,
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so that

∣∣∣(V̂ n+1,T − V̂ n+1)(t, x, y)
∣∣∣

≤ sup
(c,π)∈At(x)

E

[∫ T

t
e−(β+λ)(s−t)λG[|V n,T − V n|]

(
s, X̃t,x,π,c

s , Ỹ t,y
s

)
ds

+e−(β+λ)(T −t)
∣∣∣V̂ n+1,T − V̂ n+1

∣∣∣ (X̃t,x,π,c
s , Ỹ t,y

s )
]

≤ ekJ (p)tλ
1 − e−(β−kM (p)+λ)(T −t)

β − kM (p) + λ
(1 + . . .+ δn−1)Ee−(β+λ−kM (p))T (x+ y)p

+Ee−(β+λ−kM (p))(T −t)ekJ (p)t(x+ y)p

≤ ekJ (p)te−(β+λ−kM (p))T (x+ y)pE
(
(δ + . . .+ δn) + e−(β+λ−kM (p))(t)

)
,

where we have used Lemma 3.4.1, (3.6.12) and (3.6.13). Taking t = 0, we obtain

∣∣∣V n+1,T − V n+1(r)
∣∣∣ =

∣∣∣HV̂ n+1,T − HV̂ n+1(r)
∣∣∣

≤ H
∣∣∣V̂ n+1,T − V̂ n+1

∣∣∣ (r)

≤ e−(β+λ−kM (p))T rpE(1 + . . .+ δn).

✷

By combining Propositions 3.6.2 and 3.6.3, we can choose n and T large enough to compute

V with any required precision. The choice of n and T will mainly depend on λ :

• When λ is large, δ is close to 1 so that the number of iterations n must be chosen large.

• The finite horizon error is roughly of order (λ+ 1)e−(1+λ)T so that T may be chosen small

for large λ, and must be reasonably large for small λ.

3.6.3 Numerical results

We now focus on the numerical resolution in the case of power utility. Recall that in that

case with the change of variables described in subsection 3.5.2 we are reduced to one space

variable z ∈ [0, 1]. (3.6.11)-(3.6.10) then take the form

−Φ̂n+1,T
t + (β + λ)Φ̂n+1,T − λpΦn,T

0 G[U ](t, 1 − z, z)

− sup
c̃≥0,π̃∈R

H̃cv(z, Φ̂n+1,T , Φ̂n+1,T
z , Φ̂n+1,T

zz ; c̃, π̃) = 0,
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where H̃cv is the hamiltonian defined in (3.5.24), and

Φn,T
0 = sup

z∈[0,1]
Φ̂n,T (0, z).

We solved these PDEs using an explicit finite-difference scheme for parabolic viscosity solu-

tions (see e.g. chapter IX in [24]). We have taken T between 1 and 5 (depending on λ) and

used a uniform grid on [0, T ] × [0, 1] with time step 5.10−4 and space step 0.02. The num-

bers G[U ](t, z, 1 − z) were computed beforehand at each point of the grid using an L2-optimal

quantization grid for the gaussian law with N = 5000 points.

We have taken for value of the parameters

β = 0.2, p = 0.5, bL = 0.15, σL = 1, bI = 0.2, σI = 1,

and make vary λ and ρ.

In Figures 3.1 and 3.2, we look at the value function Φ0 and the optimal proportion in the

illiquid asset z∗. We also include the values for the Merton problem (i.e. the fully liquid problem

as defined in Remark 3.2.1). For both of these values, we observe convergence to the Merton

values, the optimal investment in I increasing with λ. However, when the optimal Merton

proportion is close to 1, this convergence is much slower. This is intuitive : in the illiquid case

the agent consumes from his liquid wealth, and must ensure that it remains positive; so, having

most of his wealth invested in the illiquid asset is costly for the agent, as he may find himself in

a position where he has "nothing more to consume" (or, more rigorously, very little) before the

next trading time.

We also look at the optimal consumption and investment in the liquid asset. Even if we do

not have proved theoretically sufficient regularity of the value function to justify the structure

of the optimal strategies as feedbacks, we can still look formally at c̃∗(t, z), π̃∗(t, z) defined by

(c̃∗(t, z), π̃∗(t, z)) = arg max
c̃≥0,π̃∈R

H̃cv(z, Φ̂(t, z),∆1Φ̂(t, z),∆2Φ̂(t, z); c̃, π̃),

where ∆1Φ̂, ∆2Φ̂ are the finite difference approximations to Φ̂z, Φ̂zz corresponding to our dis-

cretization grid, and guess that they are good approximations for the optimal policies.

First in Figure 3.3 we have plotted the optimal investment proportion π̃∗ in the illiquid asset

at time 0 for an agent investing the optimal proportion z∗ in the illiquid asset. Again, we observe
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convergence to the Merton value for large λ. At a rough look, it seems that π̃∗ is higher than

the Merton proportion for positive ρ, and lower for negative ρ. This may be interpreted in the

following way : for an agent forced to keep a invested proportion z in the asset I, the optimal

investment in L may be written as

π∗(z) =
bL

(1 − p)σ2
L

− σI

σL
ρz. (3.6.14)

Hence the sign of the dependence in z depends on the sign of ρ. Since we have seen in Figure

3.2 that in illiquid markets the optimal investment z∗
λ will be smaller than z∗

M this explains the

behavior of π̃∗ (see also Figures 3.5-3.8).

It is also interesting to look at the functions c̃∗, π̃∗ in function of the repartition z of the

wealth. We plot these functions at time t = 0 (later dates give qualitatively similar profiles).

In Figure 3.4 we have plotted the optimal proportional consumption rate c̃∗ for ρ = 0

(different correlations give similar results). As in [27] we observe that the influence of λ on

the optimal consumption rate depends on z : when z is close to 1 i.e. most of the portfolio is

constituted of illiquid wealth, the investor faces the risk of “having nothing more to consume"

and the further away the next trading date is the smaller the consumption rate should be, i.e.

c∗ is increasing in λ. When z is far from 1 it is the opposite : when λ is smaller the investor will

not be able to invest optimally to maximize future income and should consume more quickly.

In Figures 3.5-3.6-3.7-3.8 we have plotted the optimal investment π̃∗ in the liquid asset for

ρ = 0,ρ = −0.5 and ρ = 0.5. The “Merton" line corresponds to (3.6.14). We have also plotted

the optimal consumption for λ = 0. In that case, the proportion z invested in I is actually lost,

and the optimal investment in the liquid asset is then

π̃∗
0(z) =

bL

(1 − p)σ2
L

(1 − z).

Notice that when λ increases, π̃∗ goes increasingly or decreasingly depending on the value of ρ

from π̃∗
0(z) to π̃∗

M (z). More precisely it seems that, when ρ < 0.3 the convergence is monotone

increasing, while when ρ > 0.3 it is monotone decreasing. The value ρ = 0.3 is therefore a

critical value for the allocation in the liquid asset: in this case π̃∗
λ(z) = π̃∗

0(z) = π̃∗
M (z) for all

values of λ and z.

Finally, we compare our investment strategy in the illiquid asset with the case where no
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liquid asset is present in the market. This case as well as its numerical resolution are studied

in Pham-Tankov[61]. In Table 3.1 we present the optimal investment proportion z∗
P T in I in

function of λ. Numerically, this strategy coincides with the one we obtain in the uncorrelated

case ρ = 0. Hence this model (which is numerically easier to solve than ours) can be used

without much loss when the liquid and illiquid assets are only weakly correlated.
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Figure 3.1: Value function Φ0 as a function of ρ

λ 1 5 10 50 Merton

z∗ 0.18 0.34 0.36 0.4 0.4

Table 3.1: Optimal investment proportion z∗
P T in the illiquid asset on a market with no liquid

asset
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Figure 3.2: Optimal proportion in the illiquid asset in function of ρ
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Figure 3.3: Optimal proportion in the liquid asset in function of ρ
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Figure 3.4: Optimal consumption rate c̃∗(0, ·) in function of z for ρ = 0
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Figure 3.5: Optimal proportion in the liquid asset π̃∗(0, ·) in function of z for ρ = 0
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Figure 3.6: Optimal proportion in the liquid asset π̃∗(0, ·) in function of z for ρ = −0.5
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Figure 3.7: Optimal proportion in the liquid asset π̃∗(0, ·) in function of z for ρ = 0.5
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Figure 3.8: Optimal proportion in the liquid asset π̃∗(0, ·) in function of z for ρ = 0.3
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Chapter 4

Time discretization and quantization

methods for optimal multiple

switching problem

Abstract : In this paper, we study probabilistic numerical methods based on optimal quan-

tization algorithms for computing the solution to optimal multiple switching problems with

regime-dependent state process. We first consider a discrete-time approximation of the optimal

switching problem, and analyze its rate of convergence. The error is of order 1
2 −ε, ε > 0, and of

order 1
2 when the switching costs do not depend on the state process. We next propose quanti-

zation numerical schemes for the space discretization of the discrete-time Euler state process. A

Markovian quantization approach relying on the optimal quantization of the normal distribution

arising in the Euler scheme is analyzed. In the particular case of uncontrolled state process, we

describe an alternative marginal quantization method, which extends the recursive algorithm

for optimal stopping problems as in [5]. A priori Lp-error estimates are stated in terms of quan-

tization errors. Finally, some numerical tests are performed for an optimal switching problem

with two regimes.

Key words: Optimal switching, quantization of random variables, discrete-time approxi-

mation, Markov chains, numerical probability.
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4.1 Introduction

On some filtered probability space (Ω,F ,F = (Ft)t≥0
,P), let us introduce the controlled

regime-switching diffusion in Rd governed by

dXt = b(Xt, αt)dt+ σ(Xt, αt)dWt,

where W is a standard d-dimensional Brownian motion, α = (τn, ιn)n ∈ A is the switching control

represented by a nondecreasing sequence of stopping times (τn) together with a sequence (ιn) of

Fτn-measurable random variables valued in a finite set {1, . . . , q}, and αt is the current regime

process, i.e. αt = ιn for τn ≤ t < τn+1. We then consider the optimal switching problem over a

finite horizon:

V0 = sup
α∈A

E
[ ∫ T

0
f(Xt, αt)dt+ g(XT , αT ) −

∑

τn≤T

c(Xτn , ιn−1, ιn)
]
. (4.1.1)

Optimal switching problems can be seen as sequential optimal stopping problems belonging to

the class of impulse control problems, and arise in many applied fields, for example in real option

pricing in economics and finance. It has attracted a lot of interest during the past decades, and

we refer to Chapter 5 in the book [60] and the references therein for a survey of some applications

and results in this topic. It is well-known that optimal switching problems are related via the

dynamic programming approach to a system of variational inequalities with inter-connected

obstacles in the form:

min
[

− ∂vi

∂t
− b(x, i).Dxvi − 1

2
tr(σ(x, i)σ(x, i)′D2

xvi) − f(x, i) , (4.1.2)

vi − max
j 6=i

(vj − c(x, i, j))
]

= 0 on [0, T ) × Rd,

together with the terminal condition vi(T, x) = g(x, i), for any i = 1, . . . , q. Here vi(t, x) is the

value function to the optimal switching problem starting at time t ∈ [0, T ] from the state Xt

= x ∈ Rd and the regime αt = i ∈ {1, . . . , q}, and the solution to the system (4.1.2) has to be

understood in the weak sense, e.g. viscosity sense.

The purpose of this paper is to solve numerically the optimal switching problem (4.1.1),

and consequently the system of variational inequalities (4.1.2). These equations can be solved

by analytical methods (finite differences, finite elements, etc ...), see e.g. [52], but are known
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to require heavy computations, especially in high dimension. Alternatively, when the state

process is uncontrolled, i.e. regime-independent, optimal switching problems are connected to

multi-dimensional reflected Backward Stochastic Differential Equations (BSDEs) with oblique

reflections, as shown in [34] and [35], and the recent paper [13] introduced a discretely obliquely

reflected numerical scheme to solve such BSDEs. From a computational viewpoint, there are

rather few papers dealing with numerical experiments for optimal switching problems. The

special case of two regimes for switching problems can be reduced to the resolution of a single

BSDE with two reflecting barriers when considering the difference value process, and is exploited

numerically in [33]. We mention also the paper [12], which solves an optimal switching problem

with three regimes by considering a cascade of reflected BSDEs with one reflecting barrier derived

from an iteration on the number of switches.

We propose probabilistic numerical methods based on dynamic programming and optimal

quantization methods combined with a suitable time discretization procedure for computing the

solution to optimal multiple switching problem. Quantization methods were introduced in [5]

for solving variational inequality with given obstacle associated to optimal stopping problem

of some diffusion process (Xt). The basic idea is the following. One first approximates the

(continuous-time) optimal stopping problem by the Snell envelope for the Markov chain (X̄tk
)

defined as the Euler scheme of the (uncontrolled) diffusion X, and then spatially discretize each

random vector X̄tk
by a random vector taking finite values through a quantization procedure.

More precisely, (X̄tk
)k is approximated by (X̂k)k where X̂k is the projection of X̄tk

on a finite

grid in the state space following the closest neighbor rule. The induced Lp-quantization error,

‖X̄tk
− X̂k‖p, depends only on the distribution of X̄tk

and the grid, which may be chosen in

order to minimize the quantization error. Such an optimal choice, called optimal quantization,

is achieved by the competitive learning vector quantization algorithm (or Kohonen algorithm)

developed in full details in [5]. One finally computes the approximation of the optimal stopping

problem by a quantization tree algorithm, which mimics the backward dynamic programming

of the Snell envelope. In this paper, we develop quantization methods to our general framework

of optimal switching problem. With respect to standard optimal stopping problems, some new

features arise on one hand from the regime-dependent state process, and on the other hand from

the multiple switching times, and the discrete sum for the cumulated switching costs.

We first study a time discretization of the optimal switching problem by considering an



162 CHAPTER 4. TIME DISCRETIZATION AND QUANTIZATION METHODS

Euler-type scheme with step h = T/m for the regime-dependent state process (Xt) controlled

by the switching strategy α:

X̄tk+1
= X̄tk

+ b(X̄tk
, αtk

)h+ σ(X̄tk
, αtk

)
√
h ϑk+1, tk = kh, k = 0, . . . ,m, (4.1.3)

where ϑk, k = 1, . . . ,m, are iid, and N (0, Id)-distributed. We then introduce the optimal

switching problem for the discrete-time process (X̄tk
) controlled by switching strategies with

stopping times valued in the discrete time grid {tk, k = 0, . . . ,m}. The convergence of this

discrete-time problem is analyzed, and we prove that the error is in general of order h
1
2

−ε, and

this estimate holds true with ε = 0, as for optimal stopping problems, when the switching costs

c(i, j) do not depend on the state process. Arguments of the proof rely on a regularity result

of the controlled diffusion with respect to the switching strategy, and moment estimates on the

number of switches. This extends the convergence rate result in [13] derived in the case where

X is regime-independent.

Next, we propose approximation schemes by quantization for computing explicitly the solu-

tion to the discrete-time optimal switching problem. Since the controlled Markov chain (X̄tk
)k

cannot be directly quantized as in standard optimal stopping problems, we adopt a Markovian

quantization approach in the spirit of [57], by considering an optimal quantization of the Gaus-

sian random vector ϑk+1 arising in the Euler scheme (4.1.3). A quantization tree algorithm is

then designed for computing the approximating value function, and we provide error estimates

in terms of the quantization errors ‖ϑk − ϑ̂k‖p and state space grid parameters. Alternatively,

in the case of regime-independent state process, we propose a quantization algorithm in the

vein of [5] based on marginal quantization of the uncontrolled Markov chain (X̄tk
)k. A priori

Lp-error estimates are also established in terms of quantization errors ‖X̄tk
− X̂k‖p. Finally,

some numerical tests on the two quantization algorithms are performed for an optimal switching

problem with two regimes.

The plan of this paper is organized as follows. Section 2 formulates the optimal switching

problem and sets the standing assumptions. We also show some preliminary results about

moment estimates on the number of switches. We describe in Section 3 the time discretization

procedure, and study the rate of convergence of the discrete-time approximation for the optimal

switching problem. Section 4 is devoted to the approximation schemes by quantization for the

explicit computation of the value function to the discrete-time optimal switching problem, and
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to the error analysis. Finally, we illustrate our results with some numerical tests in Section 5.

4.2 Optimal switching problem

4.2.1 Formulation and assumptions

We formulate the finite horizon multiple switching problem. Let us fix a finite time T ∈
(0,∞), and some filtered probability space (Ω,F ,F = (Ft)t≥0

,P) satisfying the usual conditions.

Let Iq = {1, . . . , q} be the set of all possible regimes (or activity modes). A switching control

is a double sequence α = (τn, ιn)n≥0, where (τn) is a nondecreasing sequence of stopping times,

and ιn are Fτn-measurable random variables valued in Iq. The switching control α = (τn, ιn) is

said to be admissible, and denoted by α ∈ A, if there exists an integer-valued random variable

N with τN > T a.s. Given α = (τn, ιn)n≥0 ∈ A, we may then associate the indicator of the

regime value defined at any time t ∈ [0, T ] by

It = ι01{0≤t<τ0} +
∑

n≥0

ιn1{τn≤t<τn+1},

which we shall sometimes identify with the switching control α, and we introduce N(α) the

(random) number of switches before T :

N(α) = #
{
n ≥ 1 : τn ≤ T

}
.

For α ∈ A, we consider the controlled regime-switching diffusion process valued in Rd, governed

by the dynamics

dXs = b(Xs, Is)ds+ σ(Xs, Is)dWs, X0 = x0 ∈ Rd, (4.2.1)

where W is a standard d-dimensional Brownian motion on (Ω,F ,F = (Ft)0≤t≤T ,P). We shall

assume that the coefficients bi = b(., i): Rd → Rd, and σi(.) = σ(., i) : Rd → Rd×d, i ∈ Iq, satisfy

the usual Lipschitz conditions.

We are given a running reward, terminal gain functions f, g : Rd×Iq → R, and a cost function

c : Rd × Iq × Iq → R, and we set fi(.) = f(., i), gi(.) = g(., i), cij(.) = c(., i, j), i, j ∈ Iq. We shall

assume the Lipschitz condition:

(Hl) The coefficients fi, gi and cij , i, j ∈ Iq are Lipschitz continuous on Rd.
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We also make the natural triangular condition on the functions cij representing the instan-

taneous cost for switching from regime i to j:

(Hc)

cii(.) = 0, i ∈ Iq,

inf
x∈Rd

cij(x) > 0, for i, j ∈ Iq, j 6= i,

inf
x∈Rd

[
cij(x) + cjk(x) − cik(x)] > 0, for i, j, k ∈ Iq, j 6= i, k.

The triangular condition on the switching costs cij in (Hc) means that when one changes from

regime i to some regime j, then it is not optimal to switch again immediately to another regime,

since it would induce a higher total cost, and so one should stay for a while in the regime j.

The expected total profit over [0, T ] for running the system with the admissible switching

control α = (τn, ιn) ∈ A is given by:

J0(α) = E
[ ∫ T

0
f(Xt, It)dt+ g(XT , IT ) −

N(α)∑

n=1

c(Xτn , ιn−1, ιn)
]
.

The maximal profit is then defined by

V0 = sup
α∈A

J0(α). (4.2.2)

The dynamic version of this optimal switching problem is formulated as follows. For (t, i) ∈
[0, T ] × Iq, we denote by At,i the set of admissible switching controls α = (τn, ιn) starting from

i at time t, i.e. τ0 = t, ι0 = i. Given α ∈ At,i, and x ∈ Rd, and under the Lipschitz conditions

on b, σ, there exists a unique strong solution to (4.2.1) starting from x at time t, and denoted

by {Xt,x,α
s , t ≤ s ≤ T}. It is then given by

Xt,x,α
s = x+

∑

τn≤s

∫ τn+1∧s

τn

bιn(Xt,x,α
u )du+

∫ τn+1∧s

τn

σιn(Xt,x,α
u )dWu, t ≤ s ≤ T. (4.2.3)

The value function of the optimal switching problem is defined by

vi(t, x) = sup
α∈At,i

E
[ ∫ T

t
f(Xt,x,α

s , Is)ds+ g(Xt,x,α
T , IT ) −

N(α)∑

n=1

c(Xt,x,α
τn

, ιn−1, ιn)
]
, (4.2.4)

for any (t, x, i) ∈ [0, T ] × Rd × Iq, so that V0 = maxi∈Iq
vi(0, x0).
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For simplicity, we shall also make the assumption

gi(x) ≥ max
j∈Iq

[gj(x) − cij(x)], ∀(x, i) ∈ Rd × Iq. (4.2.5)

This means that any switching decision at horizon T induces a terminal profit, which is smaller

than a no-decision at this time, and is thus suboptimal. Therefore, the terminal condition for

the value function is given by:

vi(T, x) = gi(x), (x, i) ∈ Rd × Iq.

Otherwise, it is given in general by vi(T, x) = maxj∈Iq
[gj(x) − cij(x)].

Notations. |.| will denote the canonical Euclidian norm on Rd, and (.|.) the corresponding inner

product. For any p ≥ 1, and Y random variable on (Ω,F ,P), we denote by ‖Y ‖p = (E|Y |p)
1
p .

4.2.2 Preliminaries

We first show that one can restrict the optimal switching problem to controls α with bounded

moments of N(α). More precisely, let us associate to a strategy α ∈ At,i, the cumulated cost

process Ct,x,α defined by

Ct,x,α
u =

∑

n≥1

c(Xt,x,α
τn

, ιn−1, ιn)1τn≤u, t ≤ u ≤ T.

We then consider for x ∈ Rd and a positive sequence K = (Kp)p∈N the subset AK
t,i(x) of At,i

defined by

AK
t,i(x) =

{
α ∈ At,i : E

∣∣Ct,x,α
T

∣∣p ≤ Kp(1 + |x|p), ∀p ≥ 1
}
.

In the sequel, we shall assume that for each (t, x, i) ∈ [0, T ] × Rd × Iq, the optimal switching

problem vi(t, x) admits an optimal strategy α∗ satisfying E
[|Ct,x,α∗

T |2] < ∞. The existence of

an optimal strategy α∗ with E|Ct,x,α∗

T |2 < ∞ is a wide assumption that is valid under (Hl) and

(Hg) in the case where the diffusion X is not controlled i.e. the functions b and σ do not depend

on the variable i and the function c does not depend on the variable x, as shown in Theorem

3.1 of [35].

Proposition 4.2.1. Assume that (Hl) and (Hc) holds. Then there exists a positive sequence
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K̄ = (K̄p)p such that

vi(t, x) = sup
α∈AK̄

t,i
(x)

E
[ ∫ T

t
f(Xt,x,α

s , Is)ds+ g(Xt,x,α
T , IT ) −

N(α)∑

n=1

c(Xt,x,α
τn

, ιn−1, ιn)
]
(4.2.6)

for any (t, x, i) ∈ [0, T ] × Rd × Iq.

Remark 4.2.1. Under the uniformly strict positive condition on the switching costs in (Hc),

there exists some positive constant η > 0 s.t. N(α) ≤ ηCt,x,α
T for any (t, x, i) ∈ [0, T ] × Rd × Iq,

α ∈ At,i. Thus, for any α ∈ AK
t,i(x), we have

E
∣∣N(α)

∣∣p ≤ ηKp(1 + |x|p),

which means that in the value functions vi(t, x) of optimal switching problems, one can restrict

to controls α for which the moments of N(α) are bounded by a constant depending on x.

Before proving Proposition 4.2.1, we need the following Lemmata.

Lemma 4.2.1. For all p ≥ 1, there exists a positive constant Kp such that

sup
α∈At,i

∥∥∥ sup
s∈[t,T ]

∣∣Xt,x,α
s

∣∣
∥∥∥

p
≤ Kp(1 + |x|) ,

for all (t, x, i) ∈ [0, T ] × Rd × Iq.

Proof. Fix p ≥ 1. Then, we have from the definition of Xt,x,α
s in(4.2.3), for (t, x, i) ∈

[0, T ] × Rd × Iq, α ∈ At,i:

E
[

sup
s∈[t,r]

∣∣Xt,x,α
s

∣∣p
]

≤ Kp

(
|x|p + E

[ ∑

τn≤r

∫ τn+1∧r

τn

∣∣bιn(Xt,x,α
u )

∣∣pdu
]

+ E
[

sup
s∈[t,r]

∣∣∣
∑

τn≤s

∫ τn+1∧s

τn

σιn(Xt,x,α
u )dWu

∣∣∣
p])

,

for all r ∈ [t, T ]. From the linear growth conditions on bi and σi, for i ∈ Iq, and Burkholder-

Davis-Gundy’s (BDG) inequality, we then get by Hölder inequality when p ≥ 2:

E
[

sup
s∈[t,r]

∣∣Xt,x,α
s

∣∣p
]

≤ Kp

(
1 + |x|p +

∫ r

t
E
[

sup
s∈[t,u]

∣∣Xt,x,α
s

∣∣pdu
])
,

for all r ∈ [t, T ]. By applying Gronwall’s Lemma, we obtain the required estimate for p ≥ 2 ,

and then also for p ≥ 1 by Hölder inequality. ✷
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Lemma 4.2.2. Under (Hl) and (Hc), the functions vi, i ∈ Iq, satisfy a linear growth condition,

i.e. there exists a constant K such that

|vi(t, x)| ≤ K
(
1 + |x|) ,

for all (t, x, i) ∈ [0, T ] × Rd × Iq.

Proof. Under the linear growth condition on fi, gi in (Hl), and the nonnegativity of the

switching costs in (Hc), there exists some positive constant K s.t.

E
[ ∫ T

t
f(Xt,x,α

s , Is)ds+ g(Xt,x,α
T , IT ) −

N(α)∑

n=1

c(Xt,x,α
τn

, ιn−1, ιn)
]

≤ K
(
1 + E

[
sup

u∈[0,T ]

∣∣Xt,x,α
u

∣∣
])
,

for all (t, x, i) ∈ [0, T ] ×Rd × Iq, α ∈ At, i. By combining with the estimate in Lemma 4.2.1, this

shows that

vi(t, x) ≤ K(1 + |x|) .

Moreover, by considering the strategy α0 with no intervention i.e. N(α0) = 0, we have

vi(t, x) ≥ E
[ ∫ T

t
f(Xt,x,α0

s , i)ds+ g(Xt,x,α0

T , i)
]

≥ −K
(
1 + E

[
sup

u∈[0,T ]

∣∣Xt,x,α
u

∣∣
])
.

Again, by the estimate in Lemma 4.2.1, this proves that

vi(t, x) ≥ −K(1 + |x|) ,

and therefore the required linear growth condition on vi. ✷

We now turn to the proof of the Proposition.

Proof of Proposition 4.2.1. Fix (t, x, i) ∈ [0, T ] × Rd × Iq. Denote by α∗ = (τ∗
n, ζ

∗
n)n≥0 an

optimal strategy associated to vi(t, x):

vi(t, x) = E
[ ∫ T

t
f(Xt,x,α∗

s , I∗
s )ds+ g(Xt,x,α∗

T , I∗
T ) −

N(α∗)∑

n=1

c(Xt,x,α∗

τn
, ι∗n−1, ι

∗
n)
]
. (4.2.7)

where I∗ is the indicator regime associated to α∗. Consider the process (Y t,x,α∗
, Zt,x,α∗

) solution
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to the following Backward Stochastic Differential Equation (BSDE)

Y t,x,α∗

u = g(Xt,x,α∗

T , I∗
T ) +

∫ T

u
f(Xt,x,α∗

s , I∗
s )ds (4.2.8)

−
∫ T

u
Zt,x,α∗

s dWs − Ct,x,α∗

T + Ct,x,α∗

u , t ≤ u ≤ T

and satisfying the condition

E
[

sup
s∈[t,T ]

|Y t,x,α∗

s |2
]

+ E
[ ∫ T

t
|Zt,x,α∗

s |2ds
]

< ∞.

Such a solution exists under (Hl), Lemma 4.2.1 and E
[|Ct,x,α∗

T |2] < ∞. Moreover, by taking

expectation in (4.2.8) and from the dynamic programming principle for the value function in

(4.2.7), we have

Y t,x,α∗

u = vI∗
u

(
u,Xt,x,α∗

u

)
, t ≤ u ≤ T.

From Lemma 4.2.1 and 4.2.2, there exists for each p ≥ 1 a constant Kp such that

E
[

sup
u∈[t,T ]

|Y t,x,α∗

u |p
]

≤ Kp
(
1 + |x|p) . (4.2.9)

We now prove that there exists a sequence K̄ = (K̄p)p which does not depend on (t, x, i) such

that

E
[|Ct,x,α∗

T |p] ≤ K̄p(1 + |x|p) . (4.2.10)

Applying Itô’s formula to |Y t,x,α∗ |2 in (4.2.8), we have

|Y t,x,α∗

t |2 +

∫ T

t
|Zt,x,α∗

s |2ds = |g(Xt,x,α∗

T , I∗
T )|2 + 2

∫ T

t
Y t,x,α∗

s f(Xt,x,α∗

s , I∗
s )ds

− 2

∫ T

t
Y t,x,α∗

s Zt,x,α∗

s dWs − 2

∫ T

t
Y t,x,α∗

s dCt,x,α∗

s .

Using (Hl) and the inequality 2ab ≤ a2 + b2 for a, b ∈ R, we get

∫ T

t
|Zt,x,α∗

s |2ds ≤ K
(
1 + sup

s∈[t,T ]
|Xt,x,α∗

s |2 + sup
s∈[t,T ]

|Y t,x,α∗

s |2 + |Ct,x,α∗

T − Ct,x,α∗

t | sup
s∈[t,T ]

|Y t,x,α∗

s |
)

−2

∫ T

t
Y t,x,α∗

s Zt,x,α∗

s dWs . (4.2.11)
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Moreover, from (4.2.8), we have

|Ct,x,α∗

T − Ct,x,α∗

t |2 ≤ K
(
1 + sup

s∈[t,T ]
|Xt,x,α∗

s |2 + sup
s∈[t,T ]

|Y t,x,α∗

s |2

+
∣∣∣
∫ T

t
Zt,x,α∗

s dWs

∣∣∣
2)

(4.2.12)

Combining (4.2.11) and (4.2.12) and using the inequality ab ≤ a2

2ε + εb2

2 , for a, b ∈ R and ε > 0,

we obtain

∫ T

t
|Zt,x,α∗

s |2ds ≤ K
(
(1 + ε)

(
1 + sup

s∈[t,T ]
|Xt,x,α∗

s |2
)

+ sup
s∈[t,T ]

|Y t,x,α∗

s |2(ε+
1

ε

)

+ ε
∣∣∣
∫ T

t
Zt,x,α∗

s dWs

∣∣∣
2)

− 2

∫ T

t
Y t,x,α∗

s Zt,x,α∗

s dWs .

Elevating the previous estimate to the power p/2 and taking expectation, it follows from BDG

inequality, Lemma 4.2.1 and (4.2.9) that

E
[( ∫ T

t
|Zt,x,α∗

s |2ds
) p

2
]

≤ Kp

(
(1 + ε

p

2 )
(
1 + E sup

s∈[t,T ]
|Xt,x,α∗

s |p
)

+
(
ε

p

2 +
1

ε
p

2

)
E sup

s∈[t,T ]
|Y t,x,α∗

s |p

+ ε
p

2 E
∣∣∣
∫ T

t
Zt,x,α∗

s dWs

∣∣∣
p

+ E
∣∣∣
∫ T

t
Y t,x,α∗

s Zt,x,α∗

s dWs

∣∣∣
p

2
)

≤ Kp

(
(1 + |x|p)

(
1 + ε

p

2 +
1

ε
p

2

)
+ ε

p

2 E
[( ∫ T

t
|Zt,x,α∗

s |2ds
) p

2
]

+ E
[( ∫ T

t
|Y t,x,α∗

s Zt,x,α∗

s |2ds
) p

4
])

(4.2.13)

≤ Kp

(
(1 + |x|p)

(
1 + ε

p

2 +
1

ε
p

2

)
+ ε

p

2 E
[( ∫ T

t
|Zt,x,α∗

s |2ds
) p

2
])
,

where we used again the inequality ab ≤ a2

2ε + εb2

2 for the last term in the r.h.s of (4.2.13). Taking

ε small enough, this yields

E
[( ∫ T

t
|Zt,x,α∗

s |2ds
) p

2
]

≤ Kp
(
1 + |x|p) ,

Elevating now inequality (4.2.12) to the power p/2, and using the previous inequality together

with BDG inequality, we get with the estimate of Lemma 4.2.1 and (4.2.9):

E|Ct,x,α∗

T − Ct,x,α∗

t |p ≤ K̄p(1 + |x|p), (4.2.14)

for some positive constant K̄p. Since α∗ is optimal, and from the triangular condition in (Hc),
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we know that at the initial time t, there is at most one decision time τ∗
1 . Thus, from the linear

growth condition on the switching cost, E[|Ct,x,α∗

t |p] ≤ K̄p(1 + |x|p), which implies with (4.2.14)

that α∗ ∈ AK̄
t,i, and proves the required result. ✷

In the sequel of this paper, we shall assume that (Hl) and (Hc) stand in force.

4.3 Time discretization

We first consider a time discretization of [0, T ] with time step h = T/m ≤ 1, and partition

Th = {tk = kh, k = 0, . . . ,m}. For (tk, i) ∈ Th × Iq, we denote by Ah
tk,i the set of admissible

switching controls α = (τn, ιn)n in Atk,i, such that τn are valued in {ℓh, ℓ = k, . . . ,m}, and we

consider the value functions for the discretized optimal switching problem:

vh
i (tk, x) = sup

α∈Ah
tk,i

E
[m−1∑

ℓ=k

f(Xtk,x,α
tℓ

, Itℓ
)h+ g(Xtk,x,α

tm
, Itm)

−
N(α)∑

n=1

c(Xtk,x,α
τn

, ιn−1, ιn)
]
, (4.3.1)

for (tk, i, x) ∈ Th × Iq × Rd.

The next result provides an error analysis between the continuous-time optimal switching

problem and its discrete-time version.

Theorem 4.3.1. For any ε > 0, there exists a positive constant Kε (not depending on h) such

that

|vi(tk, x) − vh
i (tk, x)| ≤ Kε(1 + |x|)h 1

2
−ε,

for all (tk, x, i) ∈ Th ×Rd × Iq. Moreover if the cost functions cij, i, i ∈ Iq, do not depend on x,

then the previous inequality also holds for ε = 0.

Remark 4.3.1. For optimal stopping problems, it is known that the approximation by the

discrete-time version gives an error of order h
1
2 , see e.g. [45] and [4]. We recover this rate of

convergence for multiple switching problems when the switching costs do not depend on the

state process. However, in the general case, the error is of order h
1
2

−ε for any ε > 0. Such

feature was showed in [13] in the case of uncontrolled state process X, and is extended here

when X may be influenced through its drift and diffusion coefficient by the switching control.

Before proving this Theorem, we need the two following lemmata. The first one deals with
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the regularity in time of the controlled diffusion uniformly in the control, and the second one

deals with the regularity of the controlled diffusion with respect to the control.

Lemma 4.3.1. For any p ≥ 1, there exists a constant Kp such that

sup
α∈Atk,i

max
k≤ℓ≤m−1

∥∥∥ sup
s∈[tℓ,tℓ+1]

∣∣Xtk,x,α
s −Xtk,x,α

tℓ

∣∣
∥∥∥

p
≤ Kp(1 + |x|)h 1

2 ,

for all x ∈ Rd, i ∈ Iq, k = 0, . . . , n.

Proof. Fix p ≥ 1. From the definition of Xt,x,α in (4.2.3), we have for all (tk, x, i) ∈
Th × Rd × Iq and α ∈ Atk,i,

E
[

sup
u∈[tℓ,s]

∣∣Xt,x,α
u −Xt,x,α

tℓ

∣∣p
]

≤ Kp

(
E
[( ∫ s

tℓ

|bIu(Xt,x,α
u )|du

)p]

+ E
[

sup
u∈[tℓ,s]

∣∣∣
∫ u

tℓ

σIr (Xt,x,α
r )dWr

∣∣∣
p])

,

for all s ∈ [tℓ, tℓ+1]. From BDG and Jensen inequalities for p ≥ 2, we then have

E
[

sup
u∈[tℓ,s]

∣∣Xt,x,α
u −Xt,x,α

tℓ

∣∣p
]

≤ Kph
p

2
−1
(
E
[ ∫ s

tℓ

∣∣bIu(Xt,x,α
u )

∣∣pdu
]

+ E
[ ∫ s

tℓ

∣∣σIu(Xt,x,α
u )

∣∣pdu
])
,

From the linear growth conditions on bi and σi, for i ∈ Iq, and Lemma 4.2.1, we conclude that

the following inequality

E
[

sup
s∈[tℓ,tℓ+1]

∣∣Xt,x,α
s −Xt,x,α

tℓ

∣∣p
]

≤ Kp(1 + |x|p)h
p

2 ,

holds for p ≥ 2, and then also for p ≥ 1 by Hölder inequality. ✷

For a strategy α = (τn, ιn)n ∈ Atk,i we denote by α̃ = (τ̃n, ι̃n)n the strategy of Ah
tk,i defined

by

τ̃n = min{tℓ ∈ Th : tℓ ≥ τn} , ι̃n = ιn, n ∈ N.

The strategy α̃ can be seen as the approximation of the strategy α by an element of Ah
tk,i. We

then have the following regularity result of the diffusion in the control α.

Lemma 4.3.2. There exists a constant K such that

∥∥∥ sup
s∈[tk,T ]

∣∣Xtk,x,α
s −Xtk,x,α̃

s

∣∣
∥∥∥

2
≤ K

(
E[N(α)2]

) 1
4
(1 + |x|)h 1

2 ,
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for all x ∈ Rd, i ∈ Iq, k = 0, . . . , n and α ∈ Atk,i.

Proof. From the definition of Xt,x,α and Xt,x,α̃, for (tk, x, i) ∈ Th × Rd × Iq, α ∈ AK
tk,i, we

have by BDG inequality:

E
[

sup
u∈[tk,s]

∣∣Xt,x,α
u −Xt,x,α̃

u

∣∣2
]

≤ K
(
E
[ ∫ s

tk

∣∣b(Xt,x,α
u , Iu) − b(Xt,x,α̃

u , Ĩu)
∣∣2du

]

+ E
[ ∫ s

tk

∣∣σ(Xt,x,α
u , Iu) − σ(Xt,x,α̃

u , Ĩu)
∣∣2du

])
,

for all s ∈ [tk, T ]. Then using Lipschitz property of bi and σi for i ∈ Iq we get:

E
[

sup
u∈[tk,s]

∣∣Xt,x,α
s −Xt,x,α̃

s

∣∣2
]

≤ K
(
E
[ ∫ s

tk

∣∣Xt,x,α
u −Xt,x,α̃

u

∣∣2du
]

+ E
[ ∫ s

tk

∣∣b(Xt,x,α
u , Iu) − b(Xt,x,α

u , Ĩu)
∣∣2du

]

+ E
[ ∫ s

tk

∣∣σ(Xt,x,α
u , Iu) − σ(Xt,x,α

u , Ĩu)
∣∣2du

])

≤ K
(
E
[ ∫ s

tk

sup
r∈[tk,u]

∣∣Xt,x,α
r −Xt,x,α̃

r

∣∣2du
]

(4.3.2)

+ E
[(

sup
u∈[tk,T ]

∣∣Xt,x,α
u

∣∣2 + 1
) ∫ s

tk

1Is 6=Ĩs
ds
])
,

for all s ∈ [tk, T ]. From the definition of α̃ we have

∫ s

tk

1Is 6=Ĩs
ds ≤ N(α)h ,

which gives with (4.3.2), Lemma 4.2.1, Remark 4.2.1 and Hölder inequality:

E
[

sup
u∈[tk,s]

∣∣Xt,x,α
u −Xt,x,α̃

u

∣∣2
]

≤ K
(
E
[ ∫ s

tk

sup
r∈[tk,u]

∣∣Xt,x,α
r −Xt,x,α̃

r

∣∣2du
]

+
(
E[N(α)2]

) 1
2 (1 + |x|2)h

)
,

for all s ∈ [tk, T ]. We conclude with Gronwall’s Lemma. ✷

We are now ready to prove the convergence result for the time discretization of the optimal

switching problem.
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Proof of Theorem 4.3.1. We introduce the auxiliary function ṽh
i defined by

ṽh
i (tk, x) = sup

α∈Ah
tk,i

E
[ ∫ T

tk

f(Xtk,x,α
s , Is)ds+ g(Xtk,x,α

T , IT ) −
N(α)∑

n=1

c(Xtk,x,α
τn

, ιn−1, ιn)
]
,

for all (tk, x) ∈ Th × Rd. We then write

|vi(tk, x) − vh
i (tk, x)| ≤ |vi(tk, x) − ṽh

i (tk, x)| + |ṽh
i (tk, x) − vh

i (tk, x)| ,

and study each of the two terms in the right-hand side.

• Let us investigate the first term. By definition of the approximating strategy α̃ = (τ̃n, ι̃n)n ∈
Ah

tk,i of α ∈ Atk,i, we see that the auxiliary value function ṽh
i may be written as

ṽh
i (tk, x) = sup

α∈Atk,i

E
[ ∫ T

tk

f(Xtk,x,α̃
s , Ĩs)ds+ g(Xtk,x,α̃

T , ĨT ) −
N(α)∑

n=1

c(Xtk,x,α̃
τ̃n

, ι̃n−1, ι̃n)
]
,

where Ĩ is the indicator of the regime value associated to α̃. Fix now a positive sequence K̄ =

(K̄p)p s.t. relation (4.2.6) in Proposition 4.2.1 holds, and observe that

sup
α∈AK̄

tk,i
(x)

E
[ ∫ T

tk

f(Xtk,x,α̃
s , Ĩs)ds+ g(Xtk,x,α̃

T , ĨT ) −
N(α)∑

n=1

c(Xtk,x,α̃
τ̃n

, ι̃n−1, ι̃n)
]

≤ ṽh
i (tk, x) ≤ vi(tk, x)

= sup
α∈AK̄

tk,i
(x)

E
[ ∫ T

tk

f(Xtk,x,α
s , Is)ds+ g(Xtk,x,α

T , IT ) −
N(α)∑

n=1

c(Xtk,x,α
τn

, ιn−1, ιn)
]
.

We then have

|vi(tk, x) − ṽh
i (tk, x)| ≤ sup

α∈AK̄
tk,i

(x)

[
∆1

tk,x(α) + ∆2
tk,x(α)

]
, (4.3.3)

with

∆1
tk,x(α) = E

[ ∫ T

tk

∣∣f(Xtk,x,α
s , Is) − f(Xtk,x,α̃

s , Ĩs)
∣∣ds+

∣∣g(Xtk,x,α
T , IT ) − g(Xt,x,α̃

T , ĨT )
∣∣
]
,

∆2
tk,x(α) = E

[N(α)∑

n=1

∣∣c(Xtk,x,α
τn

, ιn−1, ιn) − c(Xtk,x,α̃
τ̃n

, ι̃n−1, ι̃n)
∣∣
]
.
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Under (Hl), and by definition of α̃, there exists some positive constant K s.t.

∆1
tk,x(α) ≤ K

(
sup

s∈[tk,T ]
E
[∣∣Xtk,x,α

s −Xtk,x,α̃
s

∣∣
]

+ E
[(

sup
s∈[tk,T ]

∣∣Xtk,x,α
s

∣∣+ 1
) ∫ T

tk

1Is 6=Ĩs
ds
])
.

≤ K
(

sup
s∈[tk,T ]

E
[∣∣Xtk,x,α

s −Xtk,x,α̃
s

∣∣
]

(4.3.4)

+
(
1 +

∥∥∥ sup
s∈[tk,T ]

∣∣Xtk,x,α
s

∣∣
∥∥∥

2

)(
E
[ ∫ T

tk

1Is 6=Ĩs
ds
]) 1

2
)
,

by Cauchy-Schwarz inequality. For α ∈ AK̄
tk,i(x), we have by Remark 4.2.1

E
[ ∫ T

tk

1Is 6=Ĩs
ds
]

≤ hE
[
N(α)

]
≤ ηK̄1(1 + |x|)h,

for some positive constant η > 0. By using this last estimate together with Lemmata 4.2.1 and

4.3.2 into (4.3.4), we obtain the existence of some constant K s.t.

sup
α∈AK̄

tk,i
(x)

∆1
tk,x(α) ≤ K(1 + |x|)h 1

2 , (4.3.5)

for all (tk, x, i) ∈ Th × Rd × Iq.

We now turn to the term ∆2
t,x(α). Under (Hl), and by definition of α̃, there exists some

positive constant K s.t.

∆2
tk,x(α) ≤ KE

[N(α)∑

n=1

∣∣Xtk,x,α
τn

−Xtk,x,α̃
τ̃n

∣∣
]

≤ K
(
E
[N(α)∑

n=1

∣∣Xtk,x,α
τn

−Xtk,x,α
τ̃n

∣∣
]

+ E
[
N(α) sup

s∈[tk,T ]

∣∣Xtk,x,α
s −Xtk,x,α̃

s

∣∣
])

≤ K
(
E
[N(α)∑

n=1

∣∣Xtk,x,α
τn

−Xtk,x,α
τ̃n

∣∣
]

+
∥∥∥N(α)

∥∥∥
2

∥∥∥ sup
s∈[tk,T ]

∣∣Xtk,x,α
s −Xtk,x,α̃

s

∣∣
∥∥∥

2

)
, (4.3.6)

by Cauchy-Schwarz inequality. For α ∈ AK̄
tk,i(x) with Remark 4.2.1, and from Lemma 4.3.2, we

get the existence of some positive constant K s.t.

∥∥∥N(α)
∥∥∥

2

∥∥∥ sup
s∈[tk,T ]

∣∣Xtk,x,α
s −Xtk,x,α̃

s

∣∣
∥∥∥

2
≤ K(1 + |x|)h 1

2 . (4.3.7)

On the other hand, for any ε ∈ (0, 1], we have from Hölder inequality applied to expectation
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and Jensen’s inequality applied to the summation:

E
[N(α)∑

n=1

∣∣Xtk,x,α
τn

−Xtk,x,α
τ̃n

∣∣
]

≤
(
E
[N(α)∑

n=1

∣∣Xtk,x,α
τn

−Xtk,x,α
τ̃n

∣∣
] 1

ε
)ε

≤
(
E
[
|N(α)| 1

ε
−1

N(α)∑

n=1

∣∣Xtk,x,α
τn

−Xtk,x,α
τ̃n

∣∣ 1
ε

])ε

≤ 2
( n−1∑

ℓ=k

E
[
|N(α)| 1

ε sup
s∈[tℓ,tℓ+1]

∣∣Xt,x,α
s −Xt,x,α

tℓ

∣∣ 1
ε

])ε

≤ 2

hε

∥∥∥N(α)|
∥∥∥

2
ε

max
k≤ℓ≤m−1

∥∥∥ sup
s∈[tℓ,tℓ+1]

∣∣Xt,x,α
s −Xt,x,α

tℓ

∣∣
∥∥∥

2
ε

by Cauchy-Schwarz inequality. By Lemma 4.3.1, this yields the existence of some positive

constant Kε s.t.

E
[N(α)∑

n=1

∣∣Xtk,x,α
τn

−Xtk,x,α
τ̃n

∣∣
]

≤ Kε(1 + |x|)h 1
2

−ε. (4.3.8)

By plugging (4.3.7) and (4.3.8) into (4.3.6), we then get

∆2
t,x(α) ≤ Kε(1 + |x|)h 1

2
−ε . (4.3.9)

Combining (4.3.5) and (4.3.9), we obtain with (4.3.3)

|vi(tk, x) − ṽh
i (tk, x)| ≤ Kε(1 + |x|)h 1

2
−ε .

In the case where c does not depend on the variable x, we have ∆2
t,x(α) = 0, and so by (4.3.3),

(4.3.5):

|vi(tk, x) − ṽh
i (tk, x)| ≤ K(1 + |x|)h 1

2 .

• For the second term, we have by definition of vh
i and ṽh

i :

|ṽh
i (tk, x) − vh

i (tk, x)| ≤ sup
α∈Ah

tk,i

E
[m−1∑

ℓ=k

∫ tℓ+1

tℓ

∣∣f(Xt,x,α
s , Is) − f(Xt,x,α

tℓ
, Is)

∣∣ds
]
,
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since Is = Itℓ
on [tℓ, tℓ+1). Under (Hl), we get

|ṽh
i (tk, x) − vh

i (tk, x)| ≤ K sup
α∈Ah

tk,i

max
k≤ℓ≤m−1

sup
s∈[tℓ,tℓ+1]

E
[∣∣Xt,x,α

s −Xt,x,α
tℓ

∣∣
]
,

for some positive constant K, and by Lemma 4.3.1, this shows that

|ṽh
i (tk, x) − vh

i (tk, x)| ≤ K(1 + |x|)h 1
2 .

✷

In a second step, we approximate the continuous-time (controlled) diffusion by a discrete-

time (controlled) Markov chain following an Euler type scheme. For any (tk, x, i) ∈ Th ×Rd × Iq,

α ∈ Ah
tk,i, we introduce (X̄h,tk,x,α

tℓ
)k≤ℓ≤m defined by:

X̄h,tk,x,α
tk

= x, X̄h,tk,x,α
tℓ+1

= F h
Itℓ

(X̄h,tk,x,α
tℓ

, ϑℓ+1), k ≤ ℓ ≤ m− 1,

where

F h
i (x, ϑk+1) = x+ bi(x)h+ σi(x)

√
h ϑk+1,

and ϑk+1 = (Wtk+1
− Wtk

)/
√
h, k = 0, . . . ,m− 1, are iid, N (0, Id)-distributed, independent of

Ftk
. Similarly as in Lemma 4.2.1, we have the Lp-estimate:

sup
α∈Ah

tk,i

∥∥∥ max
ℓ=k,...,m

∣∣X̄h,tk,x,α
tℓ

∣∣
∥∥∥

p
≤ Kp(1 + |x|), (4.3.10)

for some positive constant Kp, not depending on (h, tk, x, i). Moreover, one can also derive the

standard estimate for the Euler scheme, as e.g. in section 10.2 of [43]:

sup
α∈Ah

tk,i

∥∥∥ max
ℓ=k,...,m

∣∣Xtk,x,α
tℓ

− X̄h,tk,x,α
tℓ

∣∣
∥∥∥

p
≤ Kp(1 + |x|)

√
h. (4.3.11)

We then associate to the Euler controlled Markov chain, the value functions v̄h
i , i ∈ Iq, for the
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optimal switching problem:

v̄h
i (tk, x) = sup

α∈Ah
tk,i

E
[m−1∑

ℓ=k

f(X̄h,tk,x,α
tℓ

, Itℓ
)h+ g(X̄h,tk,x,α

tm
, Itm)

−
N(α)∑

n=1

c(X̄h,tk,x,α
τn

, ιn−1, ιn)
]
. (4.3.12)

The next result provides the error analysis between vh
i by v̄h

i , and thus of the continuous

time optimal switching problem vi by its Euler discrete-time approximation v̄h
i .

Theorem 4.3.2. There exists a constant K (not depending on h) such that

∣∣vh
i (tk, x) − v̄h

i (tk, x)
∣∣ ≤ K(1 + |x|)

√
h, (4.3.13)

for all (tk, x, i) ∈ Th × Rd × Iq.

Remark 4.3.2. The above theorem combined with Theorem 4.3.1 gives the rate of convergence

for the approximation of the continuous time optimal switching problem by its Euler discrete-

time version: For any ε > 0, there exists a positive constant Kε s.t.

|vi(tk, x) − v̄h
i (tk, x)| ≤ Kε(1 + |x|)h 1

2
−ε, (4.3.14)

for all (tk, x, i) ∈ Th × Rd × Iq. Moreover if the cost functions cij , i, i ∈ Iq, do not depend on x,

then the previous inequality also holds for ε = 0.

Proof of Theorem 4.3.2.

• Step 1. For (tk, x, i) ∈ Th ×Rd × Iq, denote by αh,∗ (resp. ᾱh,∗) the optimal switching strategy

corresponding to vh
i (tk, x) (resp. v̄h

i (tk, x)). Let us prove that there exists some constant K, not

depending on (tk, x, i, h), such that

E
∣∣N(αh,∗)

∣∣2 + E
∣∣N(ᾱh,∗)

∣∣2 ≤ K(1 + |x|2). (4.3.15)

We use discrete-time arguments, which are analog to the continuous-time case in the proof of

Proposition 4.2.1. For αh,∗ optimal strategy to vh
i (tk, x) with corresponding indicator regime

Ih,∗ , and to alleviate notations, we denote by Yℓ = vh
Ih,∗

tℓ

(tk, X
tk,x,αh,∗

tℓ
), Fℓ = f(Xtk,x,αh,∗

tℓ
, Ih,∗

tℓ
),

cℓ = c(Xtk,x,αh,∗

tℓ
, Ih,∗

tℓ−1
, Ih,∗

tℓ
), for ℓ = k, . . . ,m. From the estimates on Xtk,x,α

tℓ
in Lemma 4.2.1,

we know that

E
[

sup
k≤ℓ≤m

(|Yℓ|2 + |Fℓ|2 + |cℓ|2
)] ≤ K(1 + |x|2), (4.3.16)
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for some positive constant K. Moreover, by the DPP for the value function vh
i , we have :

Yℓ = E [Yℓ+1|Ftℓ
] + hFℓ − cℓ, ℓ = k, . . . ,m− 1.

Letting ∆Mℓ+1 := Yℓ+1 − E[Yℓ+1|Ftℓ
], we obtain in particular

m−1∑

ℓ=k

cℓ = h
m−1∑

ℓ=k

Fℓ −
m−1∑

ℓ=k

∆Mℓ+1 + (Ym − Yk),

and so by (4.3.16)

E
∣∣∣

m∑

ℓ=k

cℓ

∣∣∣
2

≤ K(1 + |x|2) + 3 E



(

m−1∑

ℓ=k

∆Mℓ+1

)2



= K(1 + |x|2) + 3 E

[
m−1∑

ℓ=k

∆M2
ℓ+1

]
. (4.3.17)

Now by writing that

Y 2
m − Y 2

0 =
m−1∑

ℓ=k

(
Y 2

ℓ+1 − Y 2
ℓ

)
=

m−1∑

ℓ=k

(Yℓ+1 − Yℓ)(Yℓ+1 + Yℓ)

=
m−1∑

ℓ=k

(∆Mℓ+1 − hFℓ + cℓ)(2Yℓ + ∆Mℓ+1 − hFℓ + cℓ),

we get

m−1∑

ℓ=k

∆M2
ℓ+1 = Y 2

m − Y 2
0 −

m−1∑

ℓ=0

hFℓ(hFℓ − 2Yℓ − 2cl) − 2
m−1∑

ℓ=0

clYl

−
m−1∑

ℓ=0

∆Mℓ+1(2Yℓ − 2hFℓ + 2cℓ) −
m−1∑

ℓ=0

c2
ℓ .

Since E
[
∆Mℓ+1|Ftℓ

]
= 0, this shows that

E
[m−1∑

ℓ=k

∆M2
ℓ+1

]
≤ E

[
Y 2

m −
m−1∑

ℓ=0

hFℓ(hFℓ − 2Yℓ − 2cℓ) − 2
m−1∑

ℓ=0

cℓYℓ

]

≤ K(1 + |x|2) + 2E
[∣∣∣

m−1∑

ℓ=0

cℓYℓ

∣∣∣
]
, (4.3.18)
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where we used again (4.3.16). Now since cℓ ≥ 0,

E
[∣∣∣

m−1∑

ℓ=0

cℓYℓ

∣∣∣
]

≤ E
[(m−1∑

ℓ=0

cℓ

)
sup

k≤ℓ≤m−1
|Yℓ|

]

≤ εE
[m−1∑

ℓ=k

∆M2
ℓ+1

]
+K

(
1 +

1

ε

)
(1 + |x|2),

for all ε > 0, by (4.3.16), (4.3.17) and Cauchy-Schwarz inequality. Hence taking ε small enough

and plugging this estimate into (4.3.18), we obtain

E
[m−1∑

ℓ=k

∆M2
ℓ+1

]
≤ K(1 + |x|2).

Using (4.3.17) one more time and recalling that N(αh,∗) ≤ η
∑

ℓ cℓ for some η > 0 under the

uniformly lower bound condition in (Hc), we thus obtain

E
∣∣N(αh,∗)

∣∣2 ≤ K(1 + |x|2).

The proof for N(ᾱh,∗) is the same, by using estimate (4.3.10) on
∥∥X̄h,tk,x,α

tℓ

∥∥
2
.

• Step 2. By Step 1, the supremum in the definitions (4.3.1) and (4.3.12) of vh
i (tk, x) and

v̄h
i (tk, x) can be taken over Ah,K

tk,i (x) =
{
α ∈ Ah

tk,i s.t. E|N(α)|2 ≤ K(1 + |x|2)
}
. Now, for any

α ∈ Ah,K
tk,i (x), we have under (Hl) and by Cauchy-Schwarz inequality

E
[m−1∑

ℓ=k

h
∣∣f(Xtk,x,α

tℓ
, Itℓ

) − f(X̄h,tk,x,α
tℓ

, Itℓ
)
∣∣+

∣∣g(Xtk,x,α
tm

, Itm) − g(X̄h,tk,x,α
tm

, Itm)
∣∣

+

N(α)∑

n=1

∣∣c(Xtk,x,α
τn

, ιn−1, ιn) − c(X̄h,tk,x,α
τn

, ιn−1, ιn)
∣∣
]

≤ KE
[
(1 +N(α))

(
sup

k≤ℓ≤m

∣∣Xtk,x,α
tℓ

− X̄h,tk,x,α
tℓ

∣∣)
]

≤ K(1 + |x|)
∥∥∥ sup

k≤ℓ≤m

∣∣Xtk,x,α
tℓ

− X̄h,tk,x,α
tℓ

∣∣
∥∥∥

2

≤ K(1 + |x|2)
√
h, (4.3.19)

by (4.3.11). Taking the supremum over α ∈ Ah,K
tk,i (x) into (4.3.19), this shows that

∣∣vh
i (tk, x) − v̄h

i (tk, x)
∣∣ ≤ K(1 + |x|2)

√
h.
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✷

4.4 Approximation schemes by optimal quantization

In this section, for a fixed time discretization step h, we focus on a computational appro-

ximation for the value functions v̄h
i , i ∈ Iq, defined in (4.3.12). To alleviate notations, we shall

often omit the dependence on h in the superscripts, and write e.g. v̄i = v̄h
i . The corresponding

dynamic programming relation for v̄i is written in the backward induction:

v̄i(tm, x) = gi(x),

v̄i(tk, x) = max
{
E
[
v̄i(tk+1, X̄

tk,x,i
tk+1

)
]

+ fi(x)h , max
j 6=i

[v̄j(tk, x) − cij(x)]
}
,

for k = 0, . . . ,m− 1, (i, x) ∈ Iq × Rd, where X̄tk,x,i is the solution to the Euler scheme:

X̄tk,x,i
tk+1

= F h
i (x, ϑk+1) := x+ bi(x)h+ σi(x)

√
h ϑk+1.

Observe that under the triangular condition on the switching costs cij in (Hc), these backward

relations can be written as an explicit discrete-time scheme. Indeed, if v̄i(tk, x) = v̄j(tk, x)−cij(x)

for some j 6= i, for l 6= i, j, we have

v̄j(tk, x) − cij(x) ≥ v̄l(tk, x) − cil(x)

> v̄l(tk, x) − cij(x) − cjl(x),

so that v̄j(tk, x) > v̄l(tk, x) − cjl(x). By positivity of the switching costs, we also have

v̄j(tk, x) = v̄i(tk, x) + cij(x) > v̄i(tk, x) − cji(x).

It follows that

v̄j(tk, x) = E
[
v̄j(tk+1, X̄

tk,x,j
tk+1

)
]

+ fj(x)h,

and (recalling that cii(·) = 0), the backward induction may be rewritten as

v̄i(tm, x) = gi(x) (4.4.1)

v̄i(tk, x) = max
j∈Iq

{
E
[
v̄j(tk+1, X̄

tk,x,j
tk+1

)
]

+ fj(x)h− cij(x)
}
, (4.4.2)
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for k = 0, . . . ,m−1, (i, x) ∈ Iq ×Rd. Next, the practical implementation for this scheme requires

a computational approximation of the expectations arising in the above dynamic programming

formulae, and a space discretization for the state process X valued in Rd. We shall propose

two numerical approximations schemes by optimal quantization methods, the second one in the

particular case where the state process X is not controlled by the switching control.

4.4.1 A Markovian quantization method

Let X be a bounded lattice grid on Rd with step δ/d and size R, namely X = (δ/d)Zd ∩
B(0, R) = {x ∈ Rd : x = (δ/d)z for some z ∈ Zd, and |x| ≤ R}. We then denote by ProjX the

projection on the grid X according to the closest neighbour rule, which satisfies

|x− ProjX(x)| ≤ max(|x| −R, 0) + δ, ∀x ∈ Rd. (4.4.3)

At each time step tk ∈ Th, and point space-grid x ∈ X, we have to compute in (4.4.2) expectations

in the form E
[
ϕ(X̄tk,x,i

tk+1
)
]
, for ϕ(.) = v̄h

i (tk+1, .), i ∈ Iq. We shall then use an optimal quantization

for the Gaussian random variable ϑk+1, which consists in approximating the distribution of ϑ

❀ N (0, Id) by the discrete law of a random variable ϑ̂ of support N points wl, l = 1, . . . , N , in

Rd, and defined as the projection of ϑ on the grid {w1, . . . , wN } following the closest neighbor

rule. The grid {w1, . . . , wN } is optimized in order to minimize the distorsion error, i.e. the

quadratic L2-norm
∥∥ϑ − ϑ̂

∥∥
2
. This optimal grid and the associated weights {π1, . . . , πN } are

downloaded from the website: “http://www.quantize.maths-fi.com/downloads". We refer to the

survey article [57] for more details on the theoretical and computational aspects of optimal

quantization methods. In the vein of [58], we introduce the quantized Euler scheme:

X̂tk,x,i
tk+1

= ProjX(F h
i (x, ϑ̂)),

and define the value functions v̂i on Tm × X, i ∈ Iq in backward induction by

v̂i(tm, x) = gi(x)

v̂i(tk, x) = max
j∈Iq

{
E
[
v̂j(tk+1, X̂

tk,x,j
tk+1

)
]

+ fj(x)h− cij(x)
}
, k = 0, . . . ,m− 1.
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This numerical scheme can be computed explicitly according to the following recursive algorithm:

v̂i(tm, x) = gi(x), (x, i) ∈ X × Iq

v̂i(tk, x) = max
j∈Iq

[ N∑

l=1

πl v̂j
(
tk+1,ProjX(F h

j (x,wl))
)

+ fj(x)h− cij(x)
]
, (x, i) ∈ X × Iq,

for k = 0, . . . ,m− 1. At each time step, we need to make O(N) computations for each point of

the grid X. Therefore, the global complexity of the algorithm is of order O(mN(R/δ)d).

The main result of this paragraph is to provide an error analysis and rate of convergence for

the approximation of v̄i by v̂i.

Theorem 4.4.1. There exists a constant K (not depending on h) such that

∣∣v̄i(tk, x) − v̂i(tk, x)
∣∣ ≤ K exp

(
Kh−1

∥∥ϑ− ϑ̂
∥∥2

2

)(
1 + |x| +

δ

h

)

[ δ
h

+ h−1/2
∥∥ϑ− ϑ̂

∥∥
2

(
1 + |x| +

δ

h

)

+
1

Rh
exp

(
Kh−2

∥∥ϑ− ϑ̂
∥∥4

4

)(
1 + |x|2 + (

δ

h
)2
)]
,

for all (tk, x, i) ∈ Th ×X× Iq. In the case where the switching costs cij do not depend on x, the

above estimation is stengthened into:

∣∣v̄i(tk, x) − v̂i(tk, x)
∣∣ ≤ K

[
h−1/2

∥∥ϑ− ϑ̂
∥∥

2
exp

(
Kh−1

∥∥ϑ− ϑ̂
∥∥2

2

)(
1 + |x| +

δ

h

)

+
δ

h
+

1

Rh
exp

(
Kh−2

∥∥ϑ− ϑ̂
∥∥4

4

)(
1 + |x|2 +

( δ
h

)2)]
.

Remark 4.4.1. The estimation in Theorem 4.4.1 consists of error terms related to

• the space discretization parameters δ, R, which have to be chosen s.t. δ/h and 1/Rh go

to zero.

• the quantization error
∥∥ϑ − ϑ̂

∥∥
p

of the normal distribution N (0, Id), which converges to

zero at a rate N
1
d , where N is the number of grid points chosen s.t. h

−1
2 N

−1
d goes to zero.

By combining with the discrete-time approximation error (4.3.14), and by choosing grid param-

eters δ, 1/R of order h
3
2 , and a number of points N of order 1/hd, we see that the error estimate

between the value function of the continuous-time optimal switching problem and its approxi-

mation by Markovian quantization is of order h
1
2 . With these values of the parameters, we then

see that the complexity of this Markovian quantization algorithm is of order O(1/h4d+1).

Let us now focus on the proof of Theorem 4.4.1. First, notice from the dynamic programming
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principle that the value functions v̂i, i ∈ Iq, admit the Markov control problem representation:

v̂i(tk, x) = sup
α∈Ah

tk,i

E
[m−1∑

ℓ=k

f(X̂tk,x,α
tℓ

, Itℓ
)h+ g(X̂tk,x,α

tm
, Itm)

−
N(α)∑

n=1

c(X̂tk,x,α
τn

, ιn−1, ιn)
]
, (4.4.4)

where X̂tk,x,α is defined by

X̂tk,x,α
tk

= x, X̂tk,x,α
tℓ+1

= ProjX
(
F h

Itℓ
(X̂tk,x,α

tℓ
, ϑ̂ℓ+1)

)
, k ≤ ℓ ≤ m− 1,

for α ∈ Ah
tk,i, and ϑ̂k+1, k = 0, . . . ,m − 1, are iid, ϑ̂-distributed, and independent of Ftk

. We

first prove several estimates on X̂tk,x,α.

Lemma 4.4.1. For each p ≥ 1 there exists a constant Kp (not depending on h) such that

sup
α∈Ah

tk,i
,k≤ℓ≤m

∥∥∥X̂tk,x,α
tℓ

∥∥∥
p

+ sup
α∈Ah

tk,i
,k≤ℓ≤m−1

∥∥∥F h
Itℓ

(
X̂tk,x,α

tℓ
, ϑ̂k+1

)∥∥∥
p

(4.4.5)

≤ Kp exp
(
Kph

−p/2
∥∥ϑ− ϑ̂

∥∥p

p

)(
1 + |x| +

δ

h

)
,

for all (tk, x, i) ∈ Th × X × Iq.

Proof. We fix (tk, x, i) ∈ Th ×X×Iq, α ∈ Ah
tk,i, and denote X̂tℓ

= X̂tk,x,α
tℓ

, k ≤ ℓ ≤ m. Denoting

by El the conditional expectation w.r.t. Ftℓ
, by a standard use of Gronwall’s lemma and linear

growth of bi, σi, we have

Eℓ

∣∣∣F h
Itℓ

(X̂tℓ
, ϑℓ+1)

∣∣∣
p

≤ eKph
∣∣∣X̂tℓ

∣∣∣
p

+Kph. (4.4.6)

We will use the following convexity inequality : for a, b ∈ R+, h ∈ [0, 1],

(a+ hb)p ≤ (1 +Kph)ap +Kphb
p. (4.4.7)

By definition of F h, and the fact that |ProjX(y)| ≤ |y| + δ for all y ∈ Rd,

∣∣∣X̂tℓ+1

∣∣∣ ≤
∣∣∣F h

Itℓ
(X̂tℓ

, ϑℓ+1)
∣∣∣+ h1/2σItℓ

(X̂tℓ
)
∣∣ϑ̂ℓ+1 − ϑℓ+1

∣∣+ δ

=
∣∣∣F h

Itℓ
(X̂tℓ

, ϑℓ+1)
∣∣∣+ h

(
σItℓ

(X̂tℓ
)
∣∣ϑ̂ℓ+1 − ϑℓ+1

∣∣

h1/2
+
δ

h

)
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Combining this last inequality with (4.4.6), (4.4.7), linear growth of σi and the fact that

ϑ̂ℓ+1, ϑℓ+1 are independent of Ftℓ
, we obtain

Eℓ

∣∣∣X̂tℓ+1

∣∣∣
p

≤ (1 +Kph)
(
eKph

∣∣X̂tℓ

∣∣p +Kph
)

+Kph


σItℓ

(X̂tℓ
)
∥∥ϑ− ϑ̂

∥∥p

p

hp/2
+
δp

hp




≤
(
1 +Kph+Kph

1−p/2
∥∥ϑ− ϑ̂

∥∥p

p

)∣∣X̂tℓ

∣∣p +Kph
(
1 +

∥∥ϑ− ϑ̂
∥∥p

p
h−p/2 +

δp

hp

)
.

By induction, taking the expectation, recalling that h = T
m , and since

(
1 + y

m

)m ≤ ey for all

y ≥ 0, we obtain

E
∣∣∣X̂tℓ+1

∣∣∣
p

≤ Kp exp
(
Kph

−p/2
∥∥ϑ− ϑ̂

∥∥p

p

)(
1 + |x|p +

δp

hp
+ h−p/2

∥∥ϑ− ϑ̂
∥∥p

p

)

≤ Kp exp
(
K ′

ph
−p/2

∥∥ϑ− ϑ̂
∥∥p

p

)(
1 + |x|p +

δp

hp

)
,

for all k ≤ ℓ ≤ m. The estimate for F h(X̂tℓ
, ϑℓ+1) then follows from (4.4.6). ✷

Lemma 4.4.2. There exists some constant K (not depending on h) such that

sup
α∈Ah

tk,i

∥∥∥ sup
k≤ℓ≤m

∣∣X̂tk,x,α
tℓ

− X̄tk,x,α
tℓ

∣∣
∥∥∥

2

≤ K
[
h−1/2

∥∥ϑ− ϑ̂
∥∥

2
exp

(
Kh−1/2

∥∥ϑ− ϑ̂
∥∥

2

)(
1 + |x| +

δ

h

)

+
δ

h
+

1

Rh
exp

(
Kh−2

∥∥ϑ− ϑ̂
∥∥4

4

)(
1 + |x|2 +

( δ
h

)2)]
, (4.4.8)

for all (tk, x, i) ∈ Th × X × Iq.

Proof. As before we fix (tk, x, i), α and omit the dependence on (tk, x, i, α) in X̂tℓ
. Let us first

show an estimate on
∥∥∥X̂tℓ+1

− X̄tℓ+1

∥∥∥
2
. For k ≤ ℓ ≤ m− 1, we get

∥∥∥X̂tℓ+1
− X̄tℓ+1

∥∥∥
2

≤
∥∥∥X̂tℓ+1

− F h
Itℓ

(X̂tℓ
, ϑ̂ℓ+1)

∥∥∥
2

+
∥∥∥F h

Itℓ
(X̂tℓ

, ϑ̂ℓ+1) − F h
Itℓ

(X̂tℓ
, ϑℓ+1)

∥∥∥
2

+
∥∥∥F h

Itℓ
(X̂tℓ

, ϑℓ+1) − F h
Itℓ

(X̄tℓ
, ϑℓ+1)

∥∥∥
2
. (4.4.9)

On the other hand, since

∣∣y − ProjX(y)
∣∣ ≤ δ + |y|1{|y|≥R} ≤ δ +

|y|2
R
,
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by inequality (4.4.3), we have

∥∥∥X̂tℓ+1
− F h

Itℓ
(X̂tℓ

, ϑ̂ℓ+1)
∥∥∥

2
≤ δ +

∥∥∥F h
Itℓ

(X̂tℓ
, ϑ̂ℓ+1)

∥∥∥
2

4

R
. (4.4.10)

Furthermore by standard estimates for the Euler scheme (see e.g. Lemma A.1 in [58]), we have

∥∥∥F h
Itℓ

(X̂tℓ
, ϑℓ+1) − F h

Itℓ
(X̄tℓ

, ϑℓ+1)
∥∥∥

2
≤ (1 +Kh)

∥∥∥X̂tℓ
− X̄tℓ

∥∥∥
2
,

and by the linear growth property of σ and the fact that ϑ̂ℓ+1, ϑℓ+1 are independent of Ftℓ
,

∥∥∥F h
Itℓ

(X̂tℓ
, ϑℓ+1) − F h

Itℓ
(X̂tℓ

, ϑ̂ℓ+1)
∥∥∥

2
≤ Kh1/2

(
1 +

∥∥∥X̂tℓ

∥∥∥
2

)∥∥ϑ− ϑ̂
∥∥

2
. (4.4.11)

Plugging these three inequalities into (4.4.9), we get :

∥∥∥X̂tℓ+1
− X̄tℓ+1

∥∥∥
2

≤ (1 +Kh)
∥∥∥X̂tℓ

− X̄tℓ

∥∥∥
2

+Kh1/2
(∥∥∥X̂tℓ

∥∥∥
2

+ 1

)∥∥ϑ− ϑ̂
∥∥

2

+ δ +

∥∥∥F h
Itℓ

(X̂tℓ
, ϑ̂ℓ+1)

∥∥∥
2

4

R
.

Finally since X̂tk
= X̄tk

= x, we obtain by induction, and using the estimates (4.4.5) on∥∥∥F h
Itℓ

(X̂tℓ
, ϑ̂ℓ+1)

∥∥∥
4
:

∥∥∥X̂tℓ
− X̄tℓ

∥∥∥
2

≤ K
[
h−1/2

∥∥ϑ− ϑ̂
∥∥

2
exp

(
Kh−1

∥∥ϑ− ϑ̂
∥∥2

2

)(
1 + |x| +

δ

h

)
+
δ

h

+
1

Rh
exp

(
Kh−2

∥∥ϑ− ϑ̂
∥∥4

4

)(
1 + |x|2 +

( δ
h

)2)]
, (4.4.12)

for all k ≤ ℓ ≤ m. Now by definition of X̂tk
, X̄tk

, we may write for k ≤ ℓ ≤ m− 1:

X̂tℓ+1
− X̄tℓ+1

= (X̂tℓ
− X̄tℓ

) + h
(
b(X̂tℓ

, Itℓ
) − b(X̄tℓ

, Itℓ
)
)

+
√
h
(
σ(X̂tℓ

, Itℓ
)ϑ̂ℓ+1 − σ(X̄tℓ

, Itℓ
)ϑℓ+1

)

+ ProjX
(
F h

Itℓ

(
X̂tℓ

, ϑ̂ℓ+1)
)− F h

Itℓ

(
X̂tℓ

, ϑ̂ℓ+1

)
,
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Since X̂tk
= X̄tk

(= x), we obtain by induction:

∥∥∥∥∥ sup
k≤ℓ≤m

∣∣∣X̂tℓ
− X̄tℓ

∣∣∣
∥∥∥∥∥

2

≤ h
m−1∑

ℓ=k

∥∥∥b(X̂tℓ
, Itℓ

) − b(X̄tℓ
, Itℓ

)
∥∥∥

2

+
√
h
∥∥∥ sup

k≤ℓ≤m

∣∣∑

r≤ℓ

σ(X̂tr , Itr )ϑ̂r+1 − σ(X̄tr , Itr)ϑr+1

∣∣
∥∥∥

2

+
m−1∑

ℓ=k

∥∥∥ProjX
(
F h

Itℓ
(X̂tℓ

, ϑ̂ℓ+1)
)− F h

Itℓ

(
X̂tℓ

, ϑ̂ℓ+1

)∥∥∥
2
. (4.4.13)

We now bound each of the three terms in the right hand side of (4.4.13). First, by the Lipschitz

property of b and (4.4.12), we have

h
m−1∑

ℓ=k

∥∥b(X̂tℓ
, Itℓ

) − b(X̄tℓ
, Itℓ

)
∥∥

2

≤ K
[
h−1/2

∥∥ϑ− ϑ̂
∥∥

2
exp

(
Kh−1

∥∥ϑ− ϑ̂
∥∥2

2

)(
1 + |x| +

δ

h

)

+
δ

h
+

1

Rh
exp

(
Kh−2

∥∥ϑ− ϑ̂
∥∥4

4

)(
1 + |x|2 +

( δ
h

)2)]
.

Next, recalling that ϑ̂ℓ+1 is independent of Ftℓ
, with distribution law ϑ̂, and since ϑ̂ is an

optimal L2-quantizer of ϑ, it follows that E[ϑ̂ℓ+1|Ftℓ
] = E[ϑ̂] = E[ϑ] = 0. Thus, the process

(
∑

r≤ℓ σ(X̂tr , Itr )ϑ̂r+1 − σ(X̄tr , Itr )ϑr+1)ℓ is a Ftℓ
-martingale, and from Doob’s inequality, we

have:

∥∥∥ sup
k≤ℓ≤m

∣∣∑

r≤ℓ

σ(X̂tr , Itr )ϑ̂r+1 − σ(X̄tr , Itr)ϑr+1

∣∣
∥∥∥

2

≤ K
(
E
[m−1∑

ℓ=k

∣∣σ(X̂tℓ
, Itℓ

)ϑ̂ℓ+1 − σ(X̄tℓ
, Itℓ

)ϑℓ+1

∣∣2
]) 1

2
.

By writing from the Lipschitz condition on σi that

∣∣σ(X̂tℓ
, Itℓ

)ϑ̂ℓ+1 − σ(X̄tℓ
, Itℓ

)ϑℓ+1

∣∣2 ≤ K
(∣∣X̂tℓ

− X̄tℓ

∣∣2∣∣ϑℓ+1

∣∣2

+
(
1 +

∣∣X̂tℓ

∣∣2)∣∣ϑℓ+1 − ϑ̂ℓ+1

∣∣2
)
,
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and since ϑℓ+1, ϑ̂ℓ+1 are independent of Ftℓ
, we then obtain

√
h
∥∥∥ sup

k≤ℓ≤m

∣∣∑

r≤ℓ

σ(X̂tr , Itr)ϑ̂r+1 − σ(X̄tr , Itr )ϑr+1

∣∣
∥∥∥

2

≤ K sup
k≤ℓ≤m−1

[∥∥X̂tℓ
− X̄tℓ

∥∥
2

+
(
1 +

∥∥X̂tℓ

∥∥
2

)∥∥ϑ− ϑ̂
∥∥

2

]

≤ K
[
h−1/2

∥∥ϑ− ϑ̂
∥∥

2
exp

(
Kh−1

∥∥ϑ− ϑ̂
∥∥2

2

)(
1 + |x| +

δ

h

)

+
δ

h
+

1

Rh
exp

(
Kh−2

∥∥ϑ− ϑ̂
∥∥4

4

)(
1 + |x|2 +

( δ
h

)2)]
,

where we used the estimates (4.4.5) and (4.4.12). Finally the third term in (4.4.13) is bounded

as before by (4.4.10). ✷

Proof of Theorem 4.4.1. For (tk, x, i) ∈ Th × X × Iq, denote by α̂∗ the optimal switching

strategy corresponding to v̂i(tk, x). Then, similarly as in the derivation of (4.3.15), by using the

estimation (4.4.5) for
∥∥X̂tk,x,α

tℓ

∥∥
2
, we get the existence of some constant K, not depending on

(tk, x, i, h), such that

E
∣∣N(α̂∗)

∣∣2 ≤ K exp
(
Kh−1

∥∥ϑ− ϑ̂
∥∥2

2

)(
1 + |x|2 +

δ2

h2

)
.

Therefore, the supremum in the representation (4.3.1) of v̂i(tk, x) can be taken over the subset

Âh,K
tk,i (x) =

{
α ∈ Ah

tk,i s.t. E|N(α)|2 ≤ K exp
(
Kh−1

∥∥ϑ− ϑ̂
∥∥2

2

) (
1 + |x|2 + δ2

h2

)}
. Then, for α ∈

Âh,K
tk,i (x), we have under (Hl) and by Cauchy-Schwarz inequality

E
[m−1∑

ℓ=k

h
∣∣f(X̄tk,x,α

tℓ
, Itℓ

) − f(X̂tk,x,α
tℓ

, Itℓ
)
∣∣+

∣∣g(X̄tk,x,α
tm

, Itm) − g(X̂tk,x,α
tm

, Itm)
∣∣

+

N(α)∑

n=1

∣∣c(X̄tk,x,α
τn

, ιn−1, ιn) − c(X̂h,tk,x,α
τn

, ιn−1, ιn)
∣∣
]

≤ KE
[
(1 +N(α))

(
sup

k≤ℓ≤m

∣∣X̄tk,x,α
tℓ

− X̂tk,x,α
tℓ

∣∣)
]

≤ K exp
(
Kh−1

∥∥ϑ− ϑ̂
∥∥2

2

) (
1 + |x| +

δ

h

)∥∥∥ sup
k≤ℓ≤m

∣∣X̄tk,x,α
tℓ

− X̂tk,x,α
tℓ

∣∣
∥∥∥

2

≤ K exp
(
Kh−1

∥∥ϑ− ϑ̂
∥∥2

2

)(
1 + |x| +

δ

h

)[ δ
h

+ h−1/2
∥∥ϑ− ϑ̂

∥∥
2

(
1 + |x| +

δ

h

)

+
1

Rh
exp

(
Kh−2

∥∥ϑ− ϑ̂
∥∥4

4

)(
1 + |x|2 +

( δ
h

)2)]
, (4.4.14)

by Lemma 4.4.2. Taking the supremum over α ∈ Âh,K
tk,i (x) in the above inequality, we obtain



188 CHAPTER 4. TIME DISCRETIZATION AND QUANTIZATION METHODS

an estimate for |v̄i(tk, x) − v̂i(tk, x)| with an upper bound given by the r.h.s. of (4.4.14), which

gives the required result.

Finally, notice that in the special case where the switching cost functions cij do not depend

on x, we have

∣∣v̄i(tk, x) − v̂i(tk, x)
∣∣ ≤ sup

α∈Ah
tk,i

E
[m−1∑

ℓ=k

h
∣∣f(X̄tk,x,α

tℓ
, Itℓ

) − f(X̂tk,x,α
tℓ

, Itℓ
)
∣∣

+
∣∣g(X̄tk,x,α

tm
, Itm) − g(X̂tk,x,α

tm
, Itm)

∣∣
]

≤ K sup
α∈Ah

tk,i
,k≤ℓ≤m

E
∣∣X̄tk,x,α

tℓ
− X̂tk,x,α

tℓ

∣∣

≤ K
[
h−1/2

∥∥ϑ− ϑ̂
∥∥

2
exp

(
Kh−1

∥∥ϑ− ϑ̂
∥∥2

2

)(
1 + |x| +

δ

h

)

+
δ

h
+

1

Rh
exp

(
Kh−2

∥∥ϑ− ϑ̂
∥∥4

4

)(
1 + |x|2 +

( δ
h

)2)]
,

by the estimate in Lemma 4.4.2. ✷

4.4.2 Marginal quantization in the uncontrolled diffusion case

In this paragraph, we consider the special case where the diffusion X is not controlled, i.e.

bi = b, σi = σ. The Euler scheme for X, denoted by X̄, is given by:

X̄0 = X0, X̄tk+1
= F h(X̄tk

, ϑk+1)

:= X̄tk
+ b(X̄tk

)h+ σ(X̄tk
)
√
h ϑk+1, k = 0, . . . ,m− 1,

where ϑk+1 = (Wtk+1
− Wtk

)/
√
h, k = 0, . . . ,m − 1, are iid, N (0, Id)-distributed, independent

of Ftk
. Let us recall the well-known estimate: for any p ≥ 1, there exists some Kp s.t.

∥∥X̄tk

∥∥
p

≤ Kp
(
1 +

∥∥X0

∥∥
p

)
. (4.4.15)

Notice that the backward dynamic programming formulae (4.4.1)-(4.4.2) for v̄i can be written

in this case as:

v̄i(tm, .) = gi(.), i ∈ Iq

v̄i(tk, .) = max
j∈Iq

[P hv̄j(tk+1, .) + hfj − cij ]. (4.4.16)
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Here P h is the probability transition kernel of the Markov chain X̄, given by:

P hϕ(x) = E
[
ϕ(X̄tk+1

)|X̄tk
= x

]
= E[ϕ(F h(x, ϑ))], (4.4.17)

where ϑ is N (0, Id)-distributed. Let us next consider the family of discrete-time processes

(Ȳ i
tk

)k=0,...,m, i ∈ Iq, defined by:

Ȳ i
tk

= v̄i(tk, X̄tk
), k = 0, . . . ,m, i ∈ Iq.

Remark 4.4.2. By the Markov property of the Euler scheme X̄ w.r.t. (Ftk
)k, we see that

(Ȳ i
tk

)k=0,...,m, i ∈ Iq, satisfy the backward induction:

Ȳ i
tm

= gi(X̄tm) = gi(X̄T ), i ∈ Iq

Ȳ i
tk

= max
j∈Iq

{
E
[
Ȳ j

tk+1

∣∣Ftk

]
+ hfj(X̄tk

) − cij(X̄tk
)
}
, k = 0, . . . ,m− 1,

and is represented as

Ȳ i
tk

= ess sup
α∈Ah

tk,i

E
[m−1∑

ℓ=k

f(X̄tℓ
, Itℓ

)h+ g(X̄tm , Itm) −
N(α)∑

n=1

c(X̄τn , ιn−1, ιn)
∣∣∣Ftk

]
.

On the other hand, the continuous-time optimal switching problem (4.2.4) admits a representa-

tion in terms of the following reflected Backward Stochastic Differential Equations (BSDE):

Y i
t = gi(XT ) +

∫ T

t
f(Xs)ds−

∫ T

t
Zi

sdWs +Ki
T −Ki

t , i ∈ Iq, 0 ≤ t ≤ T,

Y i
t ≥ max

j 6=i
[Y j

t − cij(Xt)] and

∫ T

0

(
Y i

t − max
j 6=i

[Y j
t − cij(Xt)]

)
dKi

t = 0. (4.4.18)

We know from [22], [35] or [34] that there exists a unique solution (Y, Z,K) = (Y i, Zi,Ki)i∈Iq

solution to (4.4.18) with Y ∈ S2(Rq), the set of adapted continuous processes valued in Rq

s.t. E[sup0≤t≤T |Yt|2] < ∞, Z ∈ M2(Rq), the set of predictable processes valued in Rq s.t.

E[
∫ T

0 |Zt|2dt] < ∞, and Ki ∈ S2(R), Ki
0 = 0, Ki is nondecreasing. Moreover, we have

Y i
t = vi(t,Xt), i ∈ Iq,

= ess sup
α∈At,i

E
[ ∫ T

t
f(Xs, Is)ds+ g(XT , IT ) −

N(α)∑

n=1

c(Xτn , ιn−1, ιn)
∣∣∣Ft

]
, 0 ≤ t ≤ T.

We recall from [13] the error estimation: for any ε > 0, there exists some constant Kε s.t.

max
k=0,...,m

∥∥∥Y i
tk

− Ȳ i
tk

∥∥∥
2

≤ Kε
(
1 +

∥∥X0

∥∥
2

)
h

1
2

−ε,
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for all i ∈ Iq, and ε can be chosen equal to zero when the switching costs cij do not depend on

x.

We propose now an optimal quantization method in the vein of [4] for optimal stopping

problems, for a computational approximation of (Ȳ i
tk

)k=0,...,m. This is based on results about

optimal quantization of each marginal distribution of the Markov chain (X̄tk
)0≤k≤m. Let us

recall the construction. For each time step k = 0, . . . ,m, we are given a grid Γk = {x1
k, . . . , x

Nk

k }
of Nk points in Rd, and we define the quantizer X̂k = Projk(X̄tk

) of X̄tk
where Projk denotes

a closest neighbour projection on Γk. For Nk being fixed, the grid Γk is said to be Lp-optimal

if it minimizes the Lp-quantization error: ‖X̄tk
− Projk(X̄tk

)‖p . Optimal grids Γk are produced

by a stochastic recursive algorithm, called Competitive Learning Vector Quantization (or also

Kohonen Algorithm), and relying on Monte-Carlo simulations of X̄tk
, k = 0, . . . ,m. We refer to

[57] for details about the CLVQ algorithm. We also compute the transition weights

πll′

k = P[X̂k+1 = xl′

k+1|X̂k = xl
k] =

P
[
(X̄tk+1

, X̄tk
) ∈ Cl′(Γk+1) × Cl(Γk)

]

P
[
X̄tk

∈ Cl(Γk)
] ,

where Cl(Γk) ⊂ {x ∈ Rd : |x− xl
k| = miny∈Γk

|x− y|}, l = 1, . . . , Nk, is a Voronoi tesselation of

Γk. These weights can be computed either during the CLVQ phase, or by a regular Monte-Carlo

simulation once the grids Γk are settled. The associated discrete probability transition P̂k from

X̂k to X̂k+1, k = 0, . . . ,m− 1, is given by:

P̂kϕ(xl
k) :=

Nk+1∑

l′=1

πll′

k ϕ(xl′

k+1) = E
[
ϕ(X̂k+1)

∣∣X̂k = xl
k

]
.

One then defines by backward induction the sequence of Rq-valued functions v̂k = (v̂i
k)i∈Iq

computed explicitly on Γk, k = 0, . . . ,m, by the quantization tree algorithm:

v̂i
m = gi, i ∈ Iq,

v̂i
k = max

j∈Iq

[
P̂kv̂

j
k+1 + hfj − cij

]
, k = 0, . . . ,m− 1. (4.4.19)

The discrete-time processes (Ȳ i
tk

)k=0,...,m, i ∈ Iq, are then approximated by the quantized pro-

cesses (Ŷ i
k )k=0,...,m, i ∈ Iq defined by

Ŷ i
k = v̂i

k(X̂k), k = 0, . . . ,m, i ∈ Iq.
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The rest of this section is devoted to the error analysis between Ȳ i and Ŷ i. The analysis

follows arguments as in [5] for optimal stopping problems, but has to be slightly modified since

the functions v̄i(tk, .) are not Lipschitz in general when the switching costs depend on x. Let us

introduce the subset LLip(Rd) of measurable functions ϕ on Rd satisfying:

|ϕ(x) − ϕ(y)| ≤ K(1 + |x| + |y|)|x− y|, ∀x, y ∈ Rd,

for some positive constant K, and denote by

[ϕ]
LLip

= sup
x,y∈Rd,x 6=y

|ϕ(x) − ϕ(y)|
(1 + |x| + |y|)|x− y| .

Lemma 4.4.3. The functions v̄i(tk, .), k = 0, . . . ,m, i ∈ Iq, lie in LLip(Rd), and [v̄i(tk, .)]LLip

is bounded by a constant not depending on (k, i, h).

Proof. We set v̄i
k = v̄i(tk, .). From the representation (4.3.12), we have

v̄i
k(x) = sup

α∈Ah
tk,i

E
[m−1∑

ℓ=k

f(X̄tk,x
tℓ

, Itℓ
)h+ g(X̄tk,x

tm
, Itm) −

N(α)∑

n=1

c(X̄tk,x
τn

, ιn−1, ιn)
]
,

where X̄tk,x is the solution to the Euler scheme starting from x at time tk. From (4.3.15),

notice that in the above representation for v̄i
k(x), one can restrict the supremum to Ah,K

tk,i (x)

=
{
α ∈ Ah

tk,i s.t. E|N(α)|2 ≤ K(1 + |x|2)
}

for some positive constant K not depending on

(tk, x, i, h). Then, as in the proof of Theorem 4.4.1, we have for any x, y ∈ Rd, and α ∈ Ah,K
tk,i (x)

∪ Ah,K
tk,i (y),

E
[m−1∑

ℓ=k

h
∣∣f(X̄tk,x

tℓ
, Itℓ

) − f(X̄tk,y
tℓ

, Itℓ
)
∣∣+

∣∣g(X̄tk,x
tm

, Itm) − g(X̄tk,y
tm

, Itm)
∣∣

+

N(α)∑

n=1

∣∣c(X̄tk,x
τn

, ιn−1, ιn) − c(X̄tk,x
τn

, ιn−1, ιn)
∣∣
]

≤ K
(
1 +

∥∥N(α)
∥∥

2

)∥∥∥ sup
k≤ℓ≤m

∣∣X̄tk,x
tℓ

− X̄tk,y
tℓ

∣∣
∥∥∥

2

≤ K(1 + |x| + |y|)|x− y|,

by standard Lipschitz estimates on the Euler scheme. By taking the supremum over Ah,K
tk,i (x) ∪

Ah,K
tk,i (y) in the above inequality, this shows that

|v̄i
k(x) − v̄i

k(y)| ≤ K(1 + |x| + |y|)|x− y|,
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i.e. v̄i
k ∈ LLip(Rd) with [v̄i

k]
LLip

≤ K. ✷

The next Lemma shows that the probability transition kernel of the Euler scheme preserves

the growth linear Lipschitz property.

Lemma 4.4.4. For any ϕ ∈ LLip(Rd), the function P hϕ also lies in LLip(Rd), and there exists

some constant K, not depending on h, such that

[P hϕ]
LLip

≤
√

3(1 +O(h))[ϕ]
LLip

,

where O(h) denotes any function s.t. O(h)/h is bounded when h goes to zero.

Proof. From (4.4.17) and Cauchy-Schwarz inequality, we have for any x, y ∈ Rd:

|P hϕ(x) − P hϕ(y)|

≤
(
E
∣∣ϕ(F h(x, ϑ)) − ϕ(F h(y, ϑ))

∣∣2
)1/2

≤ [ϕ]
LLip

(
E
∣∣(1 + |F h(x, ϑ)| + |F h(y, ϑ)|)2

∣∣F h(x, ϑ) − F h(y, ϑ)
∣∣2
)1/2

≤
√

3[ϕ]
LLip

(
E
[
(1 + |F h(x, ϑ)|2 + |F h(y, ϑ)|2)|F h(x, ϑ) − F h(y, ϑ)|2]

) 1
2
, (4.4.20)

where we used the relation (a+ b+ c)2 ≤ 3(a2 + b2 + c2). Since ϑ has a symmetric distribution,

we have

E
[(

1 + |F h(x, ϑ)|2 + |F h(y, ϑ)|2)|F h(x, ϑ) − F h(y, ϑ)|2
]

=
1

2
E
[(

1 + |F h(x, ϑ)|2 + |F h(y, ϑ)|2)|F h(x, ϑ) − F h(y, ϑ)|2

+
(
1 + |F h(x,−ϑ)|2 + |F h(y,−ϑ)|2)|F h(x,−ϑ) − F h(y,−ϑ)|2

]

A straightforward calculation gives

1

2

[(
1 + |F h(x, ϑ)|2 + |F h(y, ϑ)|2)|F h(x, ϑ) − F h(y, ϑ)|2

+
(
1 + |F h(x,−ϑ)|2 + |F h(y,−ϑ)|2)|F h(x,−ϑ) − F h(y,−ϑ)|2

]

=
(
1 + |x+ hb(x)|2 + |y + hb(y)|2 + h|σ(x)ϑ|2 + h|σ(y)ϑ|2)

∣∣x− y + h(b(x) − b(y))
∣∣2

+ h|(σ(x) − σ(y))ϑ|2(|x+ hb(x)|2 + |y + hb(y)|2)

+ 4h
[(
x+ hb(x)|σ(x)ϑ

)
+
(
y + hb(y)|σ(y)ϑ

)](
x− y + h(b(x) − b(y))|(σ(x) − σ(y))ϑ

)

+ h2(|σ(x)ϑ|2 + |σ(y)ϑ|2)|(σ(x) − σ(y))ϑ|2.
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By Lipschitz continuity of b and σ, and the fact that E|ϑ|4 < ∞, we deduce that

E
[
(1 + |F h(x, ϑ)|2 + |F h(y, ϑ)|2)|F h(x, ϑ) − F h(y, ϑ)|2

]

≤ (1 +O(h))(1 + |x|2 + |y|2)|x− y|2.

Plugging this last inequality into (4.4.20) shows the required result. ✷

We now pass to the main result of this section by providing some a priori estimates for

‖Ȳtk
− Ŷk‖ in terms of the quantization error ‖X̄tk

− X̂k‖.

Theorem 4.4.2. There exists some positive constant K, not depending on h, such that

max
i∈Iq

∥∥Ȳ i
tk

− Ŷ i
k

∥∥
p

≤ K
m∑

ℓ=k

(1 + ‖X0‖r + ‖X̂ℓ‖r)
∥∥X̄tℓ

− X̂ℓ

∥∥
s
, (4.4.21)

for any k = 0, . . . ,m, and (p, r, s) ∈ (1,∞) s.t. 1
p = 1

r + 1
s .

Proof. We set v̄i
k = v̄i(tk, .), and by misuse of notations, we also set Ȳ i

k = Ȳ i
tk

= v̄i
k(X̄k). From

the recursive induction (4.4.16) (resp. (4.4.19)) on v̄i
k (resp. v̂i

k), and the trivial inequality

| maxj āj − maxj âj | ≤ maxj |āj − âj |, we have for all i ∈ Iq:

|Ȳ i
k − Ŷ i

k | = |v̄i
k(X̄tk

) − v̂i
k(X̂k)|

≤ max
j∈Iq

∣∣[P hv̄j
k+1(X̄tk

) + hfj(X̄tk
) − cij(X̄tk

)
]− [

P̂kv̂
j
k+1(X̂k) + hfj(X̂k) − cij(X̂k)

]∣∣

≤ max
j∈Iq

[∣∣P hv̄j
k+1(X̄tk

) − P̂kv̂
j
k+1(X̂k)

∣∣+ h
∣∣fj(X̄tk

) − fj(X̂k)
∣∣+

∣∣cij(X̄tk
) − cij(X̂k)

∣∣
]

≤ K
∣∣X̄tk

− X̂k

∣∣+ max
j∈Iq

∣∣P hv̄j
k+1(X̄tk

) − P̂kv̂
j
k+1(X̂k)

∣∣

by the Lipschitz property of fj and cij , and so

max
i∈Iq

∥∥∥Ȳ i
k − Ŷ i

k

∥∥∥
p

≤ K
∥∥∥X̄tk

− X̂k

∥∥∥
p

+ max
i∈Iq

∥∥∥P hv̄i
k+1(X̄tk

) − P̂kv̂
i
k+1(X̂k)

∥∥∥
p

(4.4.22)
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Writing Êk for the conditional expectation w.r.t. X̂k, we have for any i ∈ Iq

∣∣P hv̄i
k+1(X̄tk

) − P̂kv̂
i
k+1(X̂k)

∣∣

≤
∣∣P hv̄i

k+1(X̄tk
) − P hv̄i

k+1(X̂k)
∣∣+

∣∣P hv̄i
k+1(X̂k) − Êk[P hvi

k+1(X̄tk
)]
∣∣

+
∣∣Êk[P hv̄i

k+1(X̄tk
)] − P̂kv̂

i
k+1(X̂k)

∣∣

=
∣∣P hv̄i

k+1(X̄tk
) − P hv̄i

k+1(X̂k)
∣∣+

∣∣Êk[P hv̄i
k+1(X̂k) − P hv̄i

k+1(X̄tk
)]
∣∣

+
∣∣Êk[Ȳ i

k+1 − Ŷ i
k+1]

∣∣.

Since Êk is a Lp-contraction, we then obtain

∥∥∥P hv̄i
k+1(X̄tk

) − P̂kv̂
i
k+1(X̂k)

∥∥∥
p

≤ 2
∥∥∥P hv̄i

k+1(X̄tk
) − P hv̄i

k+1(X̂k)
∥∥∥

p
+
∥∥∥Ȳ i

k+1 − Ŷ i
k+1

∥∥∥
p

≤ K(1 +O(h))
∥∥∥
(
1 +

∣∣X̄tk

∣∣+
∣∣X̂k

∣∣)∣∣X̄tk
− X̂k

∣∣
∥∥∥

p
+
∥∥∥Ȳ i

k+1 − Ŷ i
k+1

∥∥∥
p

≤ K(1 +O(h))
(
1 +

∥∥X0

∥∥
r

+
∥∥X̂k

∥∥
r

)∥∥∥X̄tk
− X̂k

∥∥∥
s

+
∥∥∥Ȳ i

k+1 − Ŷ i
k+1

∥∥∥
p
, (4.4.23)

where we used Lemmata 4.4.4 and 4.4.3, Hölder’s inequality and (4.4.15). Substituting (4.4.23)

into (4.4.22), we get

max
i∈Iq

∥∥∥Ȳ i
k − Ŷ i

k

∥∥∥
p

≤ K(1 +O(h))
(
1 +

∥∥X0

∥∥
r

+
∥∥X̂k

∥∥
r

)∥∥∥X̄tk
− X̂k

∥∥∥
s

+ max
i∈Iq

∥∥∥Ȳ i
k+1 − Ŷ i

k+1

∥∥∥
p
,

for all k = 0, . . . ,m− 1. Since maxi∈Iq

∥∥Ȳ i
m − Ŷ i

m

∥∥
p

= maxi∈Iq

∥∥gi(X̄tm) − g(X̂m)
∥∥

p
≤ K

∥∥X̄tm −
X̂m

∥∥
p

by the Lipschitz condition on gi, we conclude by induction. ✷

Remark 4.4.3. Assume that X̂k is chosen to be an L2-optimal quantizer of X̄tk
for each k =

0, . . . ,m. It is in particular a stationary quantizer in the sense that E[X̄tk
|X̂k] = X̂k (see [57]),

and by Jensen’s inequality, we deduce that
∥∥X̂k

∥∥
2

≤ ‖X̄tk

∥∥
2
. Recalling (4.4.15), the inequality

(4.4.21) in Theorem 4.4.2 gives

max
i∈Iq

∥∥Ȳ i
tk

− Ŷ i
k

∥∥
1

≤ K(1 +
∥∥X0

∥∥
2
)

m∑

ℓ=k

∥∥X̄tℓ
− X̂ℓ

∥∥
2
,

for all k = 0, . . . ,m. In particular, if X0 = x0 is deterministic, then X̂0 = x0, and we have

an error estimation by quantization of the value function function for the discrete-time optimal
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switching problem at the initial date measured by:

max
i∈Iq

∣∣v̄i(0, x0) − v̂i
0(x0)

∣∣ ≤ K(1 + |x0|)
m∑

k=1

∥∥X̄tk
− X̂k

∥∥
2

(4.4.24)

Suppose that one has at hand a global stack of N̄ points for the whole space-time grid, to be

dispatched with Nk points for each kth-time step, i.e.
∑m

k=1Nk = N̄ . Then, as in [5], in the

case of uniformly elliptic diffusion with bounded Lipschitz coefficients b and σ, one can optimize

over the Nk’s by using the rate of convergence for the miminal L2-quantization error given by

Zador’s theorem:

∥∥X̄tk
− X̂k

∥∥
2

∼
J2,d

∥∥ϕk

∥∥ 1
2

d
d+2

N
1
d

k

as Nk → ∞,

where ϕk is the probability density function of X̄tk
, and

∥∥ϕ
∥∥

r
= (
∫ |ϕ(u)|rdu)

1
r . From [6], we have

the bound
∥∥ϕk

∥∥ 1
2

d
d+2

≤ K
√
tk, for some constant K depending only on b, σ, T , d. Substituting

into (4.4.24) with Zador’s theorem, we obtain

max
i∈Iq

∣∣v̄i(0, x0) − v̂i
0(x0)

∣∣ ≤ K(1 + |x0|)
m∑

k=1

√
tk

N
1
d

k

.

For fixed h = T/m and N̄ , the sum in the upper bound of the above inequality is minimized

over the size of the grids Γk, k = 1, . . . ,m with

Nk =




t
d

2(d+1)

k N̄

∑m
k=1 t

d
2(d+1)

k



,

where ⌈x⌉ := min{k∈ N, k ≥ x}, and we have a global rate of convergence given by:

max
i∈Iq

∣∣v̄i(0, x0) − v̂i
0(x0)

∣∣ ≤ K(1 + |x0|)
h(N̄h)

1
d

.

By combining with the estimate (4.3.14), we obtain an error bound between the value function

of the continuous-time optimal switching problem and its approximation by marginal quanti-

zation of order h
1
2 when choosing a number of points by grid N̄h of order 1/h

3d
2 . This has to

be compared with the number of points N of lower order 1/hd in the Markovian quantization

approach, see Remark 4.4.1. The complexity of this marginal quantization algorithm is of order

O (
∑m

k=1NkNk+1). In terms of h, if we take Nk = N̄h = 1/h
3d
2 , we then need O(1/h3d+1) opera-

tions to compute the value function. Recall that the Markovian quantization method requires a

complexity of higher order O(1/h4d+1), but provides in compensation an approximation of the
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value function in the whole space grid X.

4.5 Numerical tests

We test our quantization algorithms by comparison results with explicit formulae for optimal

switching problems derived from chapter 5 in [60]. The formulae are obtained for infinite horizon

problems, that we adapt to our case by taking as the final gain the (discounted) value function

for the infinite horizon problem.

We consider a two-regime switching problem where the diffusion is independent of the regime

and follows a geometric Brownian motion, i.e. b(x, i) = bx, σ(x, i) = σx, and the switching costs

are constant c(x, i, j) = cij ,i, j = 1, 2. The profit functions are in the form fi(t, x) = e−βtkix
γi ,

i = 1, 2. From Theorem 5.3.5 in [60]), the value functions are given by:

v1(0, x) =





A1x
m+

+K1k1x
γ1 , x < x∗

1

B2x
m−

+K2k2x
γ2 − c12, x ≥ x∗

1

v2(0, x) =





A2x
m+

+K2k2x
γ2 , x < x∗

2

A1x
m+

+K1k1x
γ1 − c21 x∗

2 ≤ x ≤ x∗
2

B2x
m−

+K2k2x
γ2 , x > x∗

2

,

where Ai, Bi, Ki, x
∗
2 and x∗

2 depend explicitly on the parameters. In the sequel, we take for

value of the parameters:

b = 0, σ = 1, c01 = c10 = 0.5, k1 = 2, k2 = 1, γ1 = 1/3, γ2 = 2/3, β = 1.

We compute the value function in regime 2 taken at X0 = 3.0 by means of the first algorithm

(Markovian quantization). We take R = 10X0 and vary m, δ and N . The results are compared

with the exact value in Table 1. Notice that the algorithm seems to be quite robust and provides

good results even when δm and m
R do not satisfy the constraints given by our theoretical estimates

in Remark 4.4.1.

In Table 2, we have computed the value with the marginal quantization algorithm. We make

vary the number of time steps m and the total number of grid points N̄ (dispatched between

the different time steps as described in Remark 4.4.3). We have used optimal quantization

of the Brownian motion, and the transition probabilities πll′
k were computed by Monte-Carlo
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simulations with 106 sample paths (for an analysis of the error induced by this Monte-Carlo ap-

proximation, see Section 4 in [4]). We have also indicated the time spent for these computations.

Actually, almost all of this time comes from the Monte-Carlo computations, as the tree descent

algorithm is very fast (less than 1s for all the tested parameters).

For the two methods, we look at the impact of the quantization number for each time step

(resp. N and N̄h) on the precision of the results. As our theoretical estimates showed (see

Remarks 4.4.1 and 4.4.3), for the first method, increasing N higher than h−1 does not seem to

improve the precision, whereas for the second method, we can see for several values of h that

changing N̄h from h−1 to h−2 or h−3 improves the precision.

Comparing the two tables, the first method seems to provide precise estimates with slightly

faster computation times, and it has the further advantage of computing simultaneously the

value functions at any points of the space discretization grid X. However, since most of the time

spent by our second algorithm was devoted to the calculation of the transition probabilities

πll′
k , if these were computed beforehand and stored offline, the marginal quantization method

becomes more competitive.

(m, 1/δ,N) v̂2(0, 3.0) Numerical error (%) Algorithm time (s)

(10,10,10) 2.1925 3.0 0.2
(10,10,100) 2.1863 2.7 0.5
(10,10,1000) 2.1852 2.7 1.4
(10,100,1000) 2.1882 2.8 8.5
(10,100,5000) 2.1882 2.8 40
(100,10,100) 2.1218 0.31 1.0
(100,10,1000) 2.1213 0.33 8.0
(100,10,5000) 2.1213 0.33 39
(100,100,100) 2.1250 0.16 8.6
(100,100,1000) 2.1250 0.16 82

Exact value 2.1285

Table 4.1: Results obtained by Markovian quantization
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(m, N̄) Ŷ 2
0 Numerical error (%) Algorithm time (s)

(10,100) 2.2080 3.7 4.4
(10,1000) 2.2174 4.2 4.9
(10,10000) 2.1276 0.04 5.8
(100,1000) 2.1233 0.24 36
(100,10000) 2.1316 0.15 48
(100,50000) 2.1301 0.07 65
(1000,10000) 2.1161 0.58 353
(1000,50000) 2.1213 0.34 498

Table 4.2: Results obtained by marginal quantization
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