B. Baranger, G. Baudin, L. Boudin, B. Després, F. Lagoutière et al., Liquid jet generation and break-up, Numerical methods for hyperbolic and kinetic problems, pp.149-176, 2005.
DOI : 10.4171/012-1/8

URL : https://hal.archives-ouvertes.fr/hal-00113386

L. [. Baranger, P. Boudin, S. Jabin, and . Mancini, A Modeling of Biospray for the Upper Airways, CEMRACS 2004 ? Mathematics and applications to biology and medicine de ESAIM Proc, pp.41-47, 2005.
DOI : 10.1051/proc:2005004

L. [. Blouza, S. M. Boudin, and . Kaber, Parallel in time algorithms with reduction methods for solving chemical kinetics, Communications in Applied Mathematics and Computational Science, vol.5, issue.2, pp.241-263, 2010.
DOI : 10.2140/camcos.2010.5.241

URL : https://hal.archives-ouvertes.fr/inria-00541025

L. Boudin, A Solution with Bounded Expansion Rate to the Model of Viscous Pressureless Gases, SIAM Journal on Mathematical Analysis, vol.32, issue.1, pp.172-193, 2000.
DOI : 10.1137/S0036141098346840

L. Boudin, Étude d'équations aux dérivées partielles cinétiques et hyperboliques de la physique, Thèse de doctorat, université d'Orléans, 2000.

B. [. Boudin, B. Boutin, T. Fornet, P. Goudon, F. Lafitte et al., MER- LET : Fluid-particles flows : a thin spray model with energy exchanges, CEM- RACS 2008 ? Modelling and numerical simulation of complex fluids de ESAIM Proc., p, pp.195-210, 2009.

L. Boudin and L. Desvillettes, On the Singularities of the Global Small Solutionsof the Full Boltzmann Equation, Monatshefte f???r Mathematik, vol.131, issue.2, pp.91-108, 2000.
DOI : 10.1007/s006050070015

L. [. Boudin, C. Desvillettes, and . Grandmont, MOUSSA : Global existence of solutions for the coupled Vlasov and Navier-Stokes equations, Differential Integral Equations, vol.22, pp.11-121247, 2009.

L. [. Boudin, R. Desvillettes, and . Motte, A particle-gas model for compressible droplets Actes du Congrès Trends in numerical and physical modeling for industrial multiphase flows, 2000.

L. [. Boudin, R. Desvillettes, and . Motte, A Modeling of Compressible Droplets in a Fluid, Communications in Mathematical Sciences, vol.1, issue.4, pp.657-669, 2003.
DOI : 10.4310/CMS.2003.v1.n4.a2

C. [. Boudin, B. Grandmont, and . Grec, YAKOUBI : Influence of the spray retroaction on the airflow, CEMRACS 2009 ? Mathematical Modelling in Medicine de ESAIM Proc, pp.153-165, 2010.

B. [. Boudin and . Grec, SALVARANI : A mathematical and numerical analysis of the Maxwell-Stefan diffusion equations, Discrete Contin. Dyn. Syst. Ser. B, 2011.

B. [. Boudin, F. Grec, and . Salvarani, The Maxwell-Stefan Diffusion Limit for a Kinetic Model of Mixtures, Acta Applicandae Mathematicae, vol.15, issue.5, 2011.
DOI : 10.1007/s10440-014-9886-z

URL : https://hal.archives-ouvertes.fr/hal-01303312

D. [. Boudin, B. Götz, and . Grec, Diffusion models of multicomponent mixtures in the lung, CEMRACS 2009 ? Mathematical Modelling in Medicine de ESAIM Proc., p, pp.91-104, 2010.
DOI : 10.1051/proc/2010008

URL : https://hal.archives-ouvertes.fr/hal-00455656

J. [. Boudin and . Mathiaud, A numerical scheme for the one-dimensional pressureless gases system, Numerical Methods for Partial Differential Equations, vol.22, issue.6, 2011.
DOI : 10.1002/num.20700

URL : https://hal.archives-ouvertes.fr/hal-00537145

A. [. Boudin, F. Mercier, and . Salvarani, Conciliatory and contradictory dynamics in opinion formation, Physica A: Statistical Mechanics and its Applications, vol.391, issue.22, 2011.
DOI : 10.1016/j.physa.2012.05.070

URL : https://hal.archives-ouvertes.fr/hal-00613119

L. Boudin, R. Monaco, and F. Salvarani, Kinetic model for multidimensional opinion formation, Physical Review E, vol.81, issue.3, p.36109, 2010.
DOI : 10.1103/PhysRevE.81.036109

URL : https://hal.archives-ouvertes.fr/hal-00426284

F. [. Boudin and . Salvarani, A kinetic approach to the study of opinion formation, ESAIM: Mathematical Modelling and Numerical Analysis, vol.43, issue.3, pp.507-522, 2009.
DOI : 10.1051/m2an/2009004

URL : https://hal.archives-ouvertes.fr/hal-00256584

F. [. Boudin and . Salvarani, The quasi-invariant limit for a kinetic model of sociological collective behavior, Kinetic and Related Models, vol.2, issue.3, pp.433-449, 2009.
DOI : 10.3934/krm.2009.2.433

URL : https://hal.archives-ouvertes.fr/hal-00357592

L. Boudin and F. , SALVARANI : Modelling opinion formation by means of kinetic equations In Mathematical modeling of collective behavior in socio-economic and life sciences, Model. Simul. Sci. Eng. Technol, pp.245-270, 2010.

A. Moussa, T. Duparque, C. Grandmont, M. Grasseau, M. Thiriet et al., Aerosol deposition in a ventilator circuit : comparison between experimental results and numerical computations, J. Aerosol Med. Pulm. D, vol.22, issue.2, p.174, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00844575

A. [. Ayoub, Z. Bamberger, and . Benjelloun-dabaghi, Étude mathématique et numérique complète pour la réduction d'un schéma cinétique de production d'ozone. Rapport technique, 1994.

O. Anoshchenko, A. Boutet-de, and M. , The Existence of the Global Generalized Solution of the System of Equations Describing Suspension Motion, Mathematical Methods in the Applied Sciences, vol.6, issue.6, pp.495-519, 1997.
DOI : 10.1002/(SICI)1099-1476(199704)20:6<495::AID-MMA858>3.0.CO;2-O

]. A. Ams93, AMSDEN : KIVA-3: a KIVA program with block-structured mesh for complex geometries, 1993.

]. A. Ams97, AMSDEN : KIVA-3V: a block-structured KIVA program for engines with vertical or canted valves, 1997.

P. [. Amsden, T. D. O-'rourke, and . Butler, KIVA-II: A computer program for chemically reactive flows with sprays, 1989.

D. [. Agnew, S. W. Pavia, and . Clarke, Aerosol particle impaction in the conducting airways, Physics in Medicine and Biology, vol.29, issue.7, pp.767-777, 1984.
DOI : 10.1088/0031-9155/29/7/001

J. [. Amsden, P. J. Ramshaw, J. K. O-'rourke, and . Dukowicz, KIVA: A computer program for two-and three-dimensional fluid flows with chemical reactions and fuel spray, 1985.

A. [. Bowen and A. K. Acrivos, Singular perturbation refinement to quasi-steady state approximation in chemical kinetics, Chemical Engineering Science, vol.18, issue.3, pp.177-188, 1963.
DOI : 10.1016/0009-2509(63)85003-4

]. C. Bar04a, BARANGER : Modélisation, étude mathématique et simulation des collisions, Thèse de doctorat, 2004.

]. C. Bar04b, BARANGER : Modelling of oscillations, breakup and collisions for droplets : the establishment of kernels for the T, A.B. model. Math. Models Methods Appl. Sci, vol.14, issue.5, pp.775-794, 2004.

]. S. Bau01 and . Bauman, A spray model for an adaptive mesh refinement code, Thèse de doctorat, 2001.

F. [. Blouza, F. Coquel, and . Hamel, Reduction of linear kinetic systems with multiple scales, Combustion Theory and Modelling, vol.384, issue.3, pp.339-362, 2000.
DOI : 10.1016/S0069-8040(97)80019-2

L. [. Baranger and . Desvillettes, Study at the numerical level of the kernels of collision, coalescence and fragmentation for sprays, Actes du Congrès Multiphase and Complex Flow Simulation for Industry, 2003.

L. [. Baranger and . Desvillettes, COUPLING EULER AND VLASOV EQUATIONS IN THE CONTEXT OF SPRAYS: THE LOCAL-IN-TIME, CLASSICAL SOLUTIONS, Journal of Hyperbolic Differential Equations, vol.03, issue.01, pp.1-26, 2006.
DOI : 10.1142/S0219891606000707

E. [. Brenier and . Grenier, Sticky Particles and Scalar Conservation Laws, SIAM Journal on Numerical Analysis, vol.35, issue.6
DOI : 10.1137/S0036142997317353

F. [. Bardos, C. D. Golse, and . Levermore, Sur les limites asymptotiques de la théorie cinétique conduisant à la dynamique des fluides incompressibles, C. R. Acad. Sci. Paris Sér. I Math, vol.309, issue.11, pp.727-732, 1989.

F. [. Bardos, C. D. Golse, F. Bardos, and C. D. Golse, LEVERMORE : Fluid dynamic limits of kinetic equations. I. Formal derivations LEVERMORE : Fluid dynamic limits of kinetic equations. II. Convergence proofs for the Boltzmann equation, J. Statist. Phys. Comm. Pure Appl. Math, vol.63, issue.465, pp.323-344667, 1991.

C. [. Baffico, B. Grandmont, and . Maury, MULTISCALE MODELING OF THE RESPIRATORY TRACT, Mathematical Models and Methods in Applied Sciences, vol.20, issue.01, pp.59-93, 2010.
DOI : 10.1142/S0218202510004155

F. [. Bouchut and . James, One-dimensional transport equations with discontinuous coefficients, Nonlinear Analysis: Theory, Methods & Applications, vol.32, issue.7, pp.891-933, 1998.
DOI : 10.1016/S0362-546X(97)00536-1

F. [. Bouchut and . James, Duality solutions for pressureless gases, monotone scalar conservation laws, and uniqueness, Comm. Partial Differential Equations, vol.24, pp.11-122173, 1999.

S. [. Bouchut, X. Jin, and . Li, Numerical Approximations of Pressureless and Isothermal Gas Dynamics, SIAM Journal on Numerical Analysis, vol.41, issue.1, pp.135-158, 2003.
DOI : 10.1137/S0036142901398040

M. Bendahmane, T. Lepoutre, and A. Marrocco, PERTHAME : Conservative cross diffusions and pattern formation through relaxation, J. Math. Pures Appl, issue.96, pp.92651-667, 2009.
DOI : 10.1016/j.matpur.2009.05.003

URL : http://doi.org/10.1016/j.matpur.2009.05.003

Y. [. Bal, A ???Parareal??? Time Discretization for Non-Linear PDE???s with Application to the Pricing of an American Put, Recent developments in domain decomposition methods, pp.189-202, 2002.
DOI : 10.1007/978-3-642-56118-4_12

[. Ben-naim, Opinion dynamics: Rise and fall of political parties, Europhysics Letters (EPL), vol.69, issue.5, pp.671-677, 2005.
DOI : 10.1209/epl/i2004-10421-1

S. [. Brenier and . Osher, The discrete one-sided Lipschitz condition for convex scalar conservation laws BOUCHUT : On zero pressure gas dynamics, Advances in kinetic theory and computing, pp.8-23, 1988.

T. [. Chapman and . Cowling, The mathematical theory of nonuniform gases. Cambridge Mathematical Library An account of the kinetic theory of viscosity , thermal conduction and diffusion in gases, 1990.

A. [. Cossali, M. Coghe, and . Marengo, The impact of a single drop on a wetted solid surface, Experiments in Fluids, vol.283, issue.6, pp.463-472, 1997.
DOI : 10.1007/s003480050073

L. [. Champmartin, J. Desvillettes, and . Mathiaud, A BGK-type model for inelastic Boltzmann equations with internal energy, Riv. Math. Univ. Parma (N.S.), vol.1, issue.2, pp.271-305, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00589307

L. [. Comincioli and G. Della-croce, A Boltzmann-like equation for choice formation, Kinetic and Related Models, vol.2, issue.1, pp.135-149, 2009.
DOI : 10.3934/krm.2009.2.135

]. C. Cer00 and . Cercignani, Rarefied gas dynamics. Cambridge Texts in Applied Mathematics, 2000.

S. [. Castellano, V. Fortunato, and . Loreto, Statistical physics of social dynamics, Reviews of Modern Physics, vol.81, issue.2, pp.591-646, 2009.
DOI : 10.1103/RevModPhys.81.591

J. [. Clift and M. E. Graces, WEBER : Bubbles, drops and particles, 1978.

]. H. Cha80 and . Chang, Multicomponent diffusion in the lung, Fed. Proc, vol.39, issue.10, pp.2759-2764, 1980.

R. [. Cercignani, M. Illner, and . Pulvirenti, The mathematical theory of dilute gases, de Applied Mathematical Sciences, 1994.
DOI : 10.1007/978-1-4419-8524-8

A. [. Chen and . Jüngel, Analysis of a Multidimensional Parabolic Population Model with Strong Cross-Diffusion, SIAM Journal on Mathematical Analysis, vol.36, issue.1, pp.301-322, 2004.
DOI : 10.1137/S0036141003427798

A. [. Chertock and Y. G. Kurganov, A New Sticky Particle Method for Pressureless Gas Dynamics, SIAM Journal on Numerical Analysis, vol.45, issue.6, pp.2408-2441, 2007.
DOI : 10.1137/050644124

C. [. Comer, Z. Kleinstreuer, and . Zhang, Flow structures and particle deposition patterns in double bifurcation airway models. Part 1. Air flow fields. Part 2. Aerosol transport and deposition, J. Fluid Mech, vol.435, pp.25-80, 2001.

G. [. Campiti and . Metafune, Degenerate Self-adjoint Evolution Equations on the Unit Interval, Semigroup Forum, vol.57, issue.1, pp.1-36, 1998.
DOI : 10.1007/PL00005959

D. [. Cordier, L. Maldarella, C. Pareschi, and . Piatecki, Microscopic and kinetic models in financial markets, Mathematical modeling of collective behavior in socio-economic and life sciences, pp.51-80, 2010.
DOI : 10.1007/978-0-8176-4946-3_3

]. T. Cor00 and . Corcoran, Medical Nebulizers : Improved Device Design and a Study of Spray Dynamics in the Human Throat, Thèse de doctorat, 2000.

G. [. Caflisch, Dynamic Theory of Suspensions with Brownian Effects, SIAM Journal on Applied Mathematics, vol.43, issue.4, pp.885-906, 1983.
DOI : 10.1137/0143057

L. [. Cordier and . Pareschi, On a Kinetic Model for a Simple Market Economy, Journal of Statistical Physics, vol.4, issue.7, pp.253-277, 2005.
DOI : 10.1007/s10955-005-5456-0

URL : https://hal.archives-ouvertes.fr/hal-00003648

]. J. Cra75 and . Crank, The mathematics of diffusion, 1975.

[. Chua and R. L. , WHEEDEN : Sharp conditions for weighted 1- dimensional Poincaré inequalities, Indiana Univ. Math. J, vol.49, issue.1, pp.143-175, 2000.

]. L. Des10 and . Desvillettes, Some aspects of the modeling at different scales of multiphase flows, Comput. Methods Appl. Mech. Engrg, vol.199, pp.21-221265, 2010.

J. [. Desvillettes and . Mathiaud, Some Aspects of the Asymptotics Leading from??Gas-Particles Equations Towards Multiphase Flows Equations, Journal of Statistical Physics, vol.34, issue.8, pp.120-141, 2010.
DOI : 10.1007/s10955-010-0044-3

P. [. Düring, J. Markowich, M. Pietschmann, R. Desvillettes, and F. Monaco, Boltzmann and Fokker-Planck equations modelling opinion formation in the presence of strong leaders SALVARANI : A kinetic model allowing to obtain the energy law of polytropic gases in the presence of chemical reactions, Proc. R. Soc. A Eur. J. Mech. B Fluids, vol.24, issue.2, pp.4652687-3708219, 2005.

G. Deffuant, D. Neau, F. Amblard, and G. Weisbuch, Mixing beliefs among interacting agents, Advances in Complex Systems, vol.03, issue.01n04, pp.87-98, 2000.
DOI : 10.1142/S0219525900000078

J. [. Domelevo and . Roquejoffre, Existence and stability of travelling wave solutions in a kinetic model of two-phase flows, Communications in Partial Differential Equations, vol.152, issue.1-2, pp.61-108, 1999.
DOI : 10.1016/0001-8708(76)90098-0

]. D. Dre83 and . Drew, Mathematical modeling of two-phase flow, Ann. Rev. Fluid Mech, vol.15, pp.261-291, 1983.

H. [. Duncan, An experimental study of three component gas diffusion, AIChE Journal, vol.8, issue.1, pp.38-41, 1962.
DOI : 10.1002/aic.690080112

]. J. Duk80, DUKOWICZ : A particle-fluid numerical model for liquid sprays, J. Comp. Phys, vol.35, pp.229-253, 1980.

[. Duparque, Étude par imagerie scintigraphique des dépôts d'aérosols dans un circuit de respirateur, Mémoire de stage de Master 2, 2007.

V. [. Ern and . Giovangigli, Multicomponent transport algorithms, de Lecture Notes in Physics. New Series M : Monographs, 1994.

V. [. Ern and . Giovangigli, Projected iterative algorithms with application to multicomponent transport, Linear Algebra and its Applications, vol.250, pp.289-315, 1997.
DOI : 10.1016/0024-3795(95)00502-1

M. [. Engel and . Paiva, Gas mixing and distribution in the lung, volume 25 de Lung biology in health and disease, 1985.

Y. [. Et-ya, SINAI : Generalized variational principles, global weak solutions and behavior with random initial data for systems of conservation laws arising in adhesion particle dynamics, Comm. Math. Phys, vol.177, issue.2, pp.349-380, 1996.

]. L. Eva10 and . Evans, Partial differential equations, volume 19 de Graduate Studies in Mathematics, 2010.

M. [. Farhat and . Chandesris, Time-decomposed parallel time-integrators: theory and feasibility studies for fluid, structure, and fluid-structure applications, International Journal for Numerical Methods in Engineering, vol.36, issue.9, pp.1397-1434, 2003.
DOI : 10.1002/nme.860

]. A. Fic55a, FICK : On liquid diffusion, Phil. Mag, vol.10, issue.63, pp.30-39

]. A. Fic55b, FICK : Über Diffusion. Poggendorff's Annalen der Physik und Chemie, pp.59-86

]. S. Gal97 and . Galam, Rational group decision making: a random field Ising model at T = 0, Phys. A, vol.238, issue.1-4, pp.66-80, 1997.

]. S. Gal04 and . Galam, Contrarian deterministic effects on opinion dynamics: " the hung elections scenario, pp.453-460, 2004.

]. S. Gal07 and . Galam, Italian elections: voting at fifty-fifty and the contrarian effect, Gal08] S. GALAM : Sociophysics : a review of Galam models, pp.579-589409, 2000.

T. [. Gemci and N. Corcoran, A Numerical and Experimental Study of Spray Dynamics in a Simple Throat Model, Aerosol Science and Technology, vol.9, issue.1, pp.18-38, 2002.
DOI : 10.1080/02786829708965417

Y. [. Galam, Y. Gefen, and . Shapir, Sociophysics: A new approach of sociological collective behaviour. I. mean???behaviour description of a strike, The Journal of Mathematical Sociology, vol.12, issue.1, pp.1-23, 1982.
DOI : 10.1080/0022250X.1982.9989929

E. [. Gander and . Hairer, Nonlinear Convergence Analysis for the Parareal Algorithm, Lect. Notes Comput. Sci. Eng, vol.60, pp.45-56
DOI : 10.1007/978-3-540-75199-1_4

L. [. Goudon, A. He, P. Moussa, and . Zhang, The Navier???Stokes???Vlasov???Fokker???Planck System near Equilibrium, SIAM Journal on Mathematical Analysis, vol.42, issue.5, pp.2177-2202, 2010.
DOI : 10.1137/090776755

URL : https://hal.archives-ouvertes.fr/inria-00384364

]. V. Gio91 and . Giovangigli, Convergent iterative methods for multicomponent diffusion, Impact Comput. Sci. Engrg, vol.3, issue.3, pp.244-276, 1991.

]. V. Gio99 and . Giovangigli, Multicomponent flow modeling. Modeling and Simulation in Science, Engineering and Technology, 1999.

F. [. Gosse and . James, Numerical approximations of one-dimensional linear conservation equations with discontinuous coefficients, Mathematics of Computation, vol.69, issue.231, pp.987-1015, 2000.
DOI : 10.1090/S0025-5718-00-01185-6

URL : https://hal.archives-ouvertes.fr/hal-00419729

]. T. Gjv04a, P. Goudon, A. Jabin, and . Vasseur, Hydrodynamic limit for the Vlasov- Navier-Stokes equations. I. Light particles regime, Indiana Univ. Math. J, vol.53, issue.6, pp.1495-1515, 2004.

]. T. Gjv04b, P. Goudon, A. Jabin, and . Vasseur, Hydrodynamic limit for the Vlasov- Navier-Stokes equations. II. Fine particles regime, Indiana Univ. Math. J, vol.53, issue.6, pp.1517-1536, 2004.

S. [. Galam and . Moscovici, Towards a theory of collective phenomena: Consensus and attitude changes in groups, European Journal of Social Psychology, vol.6, issue.1, pp.49-74, 1991.
DOI : 10.1002/ejsp.2420210105

C. Grandmont, Y. Maday, B. Maury-[-gms08-]-c, B. Grandmont, and . Maury, A multiscale/multimodel approach of the respiration tree In New trends in continuum mechanics, volume 3 de Theta Ser SOUALAH : Multiscale modelling of the respiratory track : a theoretical framework, Mathematical and numerical modelling of the human lung de ESAIM Proc, pp.147-157, 2005.

]. T. Gou01 and . Goudon, Asymptotic problems for a kinetic model of two-phase flow, Proc. R. Soc. Edinb., Sect. A, Math, vol.131, issue.6, pp.1371-1384, 2001.

L. [. Gekle, S. Peliti, and . Galam, Opinion dynamics in a three-choice system, The European Physical Journal B, vol.1, issue.4, pp.569-575, 2005.
DOI : 10.1140/epjb/e2005-00215-3

]. H. Gra58 and . Grad, Principles of the kinetic theory of gases, Handbuch der Physik (herausgegeben von S. Flügge), Bd. 12, Thermodynamik der Gase, pp.205-294, 1958.

]. E. Gre95 and . Grenier, Existence globale pour le système des gaz sans pression, C. R. Acad. Sci. Paris Sér. I Math, vol.321, issue.2, pp.171-174, 1995.

]. J. Gro01, GROTBERG : Respiratory fluid mechanics and transport processes

L. [. Golse and . Saint-raymond, The Navier???Stokes limit of the Boltzmann equation for bounded collision kernels, Inventiones mathematicae, vol.203, issue.1, pp.81-161, 2004.
DOI : 10.1007/s00222-003-0316-5

URL : https://hal.archives-ouvertes.fr/hal-00021089

S. [. Gander and . Vandewalle, Analysis of the Parareal Time???Parallel Time???Integration Method, SIAM Journal on Scientific Computing, vol.29, issue.2, pp.556-578, 2007.
DOI : 10.1137/05064607X

]. K. Ham98 and . Hamdache, Global existence and large time behaviour of solutions for the Vlasov-Stokes equations, Japan J. Indust. Appl. Math, vol.15, issue.1, pp.51-74, 1998.

]. D. Hel93a and . Helbing, Boltzmann-like and Boltzmann-Fokker-Planck equations as a foundation of behavioral models, Phys. A, vol.196, issue.4, pp.546-573, 1993.

]. D. Hel93b and . Helbing, Stochastic and Boltzmann-like models for behavioral changes, and their relation to game theory, Phys. A, vol.193, issue.2, pp.241-258, 1993.

]. D. Hil02 and . Hilbert, Mathematical problems, Bull. Amer. Math. Soc, vol.8, issue.10, pp.437-479, 1902.

]. D. Hof83 and . Hoff, The sharp form of Ole? ?nik's entropy condition in several space variables, Trans. Amer. Math. Soc, vol.276, issue.2, pp.707-714, 1983.

]. J. Hyl99, HYLKEMA : Modélisation cinétique et simulation numérique d'un brouillard dense de gouttelettes

C. [. Kalantari and . Tropea, Spray impact onto flat and rigid walls: Empirical characterization and modelling, International Journal of Multiphase Flow, vol.33, issue.5, pp.525-544, 2007.
DOI : 10.1016/j.ijmultiphaseflow.2006.09.008

[. Krishna and J. A. Wesselingh, The Maxwell-Stefan approach to mass transfer, Chemical Engineering Science, vol.52, issue.6, pp.861-911, 1997.
DOI : 10.1016/S0009-2509(96)00458-7

]. R. Lev92 and . Leveque, Numerical methods for conservation laws, Lectures in Mathematics ETH ZürichLL67] L. D. LANDAU et E. M. LIFCHITZ : Physique théorique tome 5 : physique statistique. Mir, 1967.

[. Lions and Y. Maday, R??solution d'EDP par un sch??ma en temps ??parar??el ??, Comptes Rendus de l'Acad??mie des Sciences - Series I - Mathematics, vol.332, issue.7, pp.661-668, 2001.
DOI : 10.1016/S0764-4442(00)01793-6

W. [. Lou, Diffusion, Self-Diffusion and Cross-Diffusion, Journal of Differential Equations, vol.131, issue.1, pp.79-131, 1996.
DOI : 10.1006/jdeq.1996.0157

. [. Lo and . Schiavo, Kinetic modelling and electoral competition, Math. Comput . Modelling, issue.13, pp.421463-1486, 2005.

. [. Lo and . Schiavo, A dynamical model of electoral competition, Math. Comput. Modelling, vol.43, issue.1112, pp.1288-1309, 2006.

]. J. Mat06 and . Mathiaud, Étude de systèmes de type gaz-particules, Thèse de doctorat, 2006.

]. J. Mat10 and . Mathiaud, Local smooth solutions of a thin spray model with collisions, Math. Models Methods Appl. Sci, vol.20, issue.2, pp.191-221, 2010.

]. J. Max66 and . Maxwell, On the dynamical theory of gases, Phil. Trans. R. Soc, vol.157, pp.49-88, 1866.

]. R. Mot00 and . Motte, A numerical method for solving particle-fluid equations Actes du Congrès Trends in numerical and physical modeling for industrial multiphase flows, 2000.

]. A. Mou09 and . Moussa, Étude mathématique et numérique du transport d'aérosols dans le poumon humain, Thèse de doctorat, 2009.

M. [. Mundo, C. Sommerfeld, and . Tropea, Droplet-wall collisions: Experimental studies of the deformation and breakup process, International Journal of Multiphase Flow, vol.21, issue.2, pp.151-173, 1995.
DOI : 10.1016/0301-9322(94)00069-V

M. [. Mundo, C. Sommerfeld, and . Tropea, ON THE MODELING OF LIQUID SPRAYS IMPINGING ON SURFACES, Atomization and Sprays, vol.8, issue.6, pp.625-652, 1998.
DOI : 10.1615/AtomizSpr.v8.i6.20

J. [. Maday, G. Salomon, and . Turinici, Monotonic Parareal Control for Quantum Systems, SIAM Journal on Numerical Analysis, vol.45, issue.6, pp.2468-2482, 2007.
DOI : 10.1137/050647086

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.570.4832

M. Massot and P. Villedieu, Mod??lisation multi-fluide eul??rienne pour la simulation de brouillards denses polydispers??s, Comptes Rendus de l'Acad??mie des Sciences - Series I - Mathematics, vol.332, issue.9, pp.869-874, 2001.
DOI : 10.1016/S0764-4442(01)01937-1

]. A. Mv07a and . Mellet, VASSEUR : Global weak solutions for a

. Planck, Navier-Stokes system of equations, Math. Models Methods Appl. Sci, vol.17, issue.7, pp.1039-1063, 2007.

]. A. Mv07b, A. Mellet, and . Vasseur, On the barotropic compressible Navier-Stokes equations, Comm. Partial Differential Equations, vol.32, issue.1-3, pp.431-452, 2007.

. [. O-'rourke, Collective drop effects on vaporizing liquid sprays, Thèse de doctorat, 1981.

]. F. Pou02 and . Poupaud, Diagonal defect measures, adhesion dynamics and Euler equation, Methods Appl. Anal, vol.9, issue.4, pp.533-561, 2002.

M. [. Poupaud and . Rascle, Measure solutions to the linear multidimensional transport equation with non-smooth coefficients, Comm. Partial Differential Equations, vol.22, issue.12, pp.337-358, 1997.

]. R. Rei87 and . Reitz, Modeling atomization processes in high-pressure vaporizing sprays, Atom. Spray Tech, vol.3, pp.309-337, 1987.

W. [. Ranz and . Marshall, Evaporization from drops, parts I-II, Chem. Eng. Prog, vol.48, issue.3, pp.141-180, 1952.

. [. Soualah and . Alila, Modélisation mathématique et numérique du poumon humain, Thèse de doctorat, 2007.

]. L. Sai95 and . Sainsaulieu, Contribution à la modélisation mathématique et numérique des écoulements diphasiques constitués d'un nuage de particules dans un écoulement de gaz. Habilitation à diriger des recherches, 1995.

]. N. Seg11 and . Seguin, Étude des équations différentielles hyperboliques en mécanique des fluides. Habilitation à diriger des recherches, 2011.

]. L. Sir62 and . Sirovich, Kinetic modeling of gas mixtures, Phys. Fluids, vol.5, pp.908-918, 1962.

]. B. Spo07 and . Sportisse, Modélisation et simulation de la pollution atmosphérique. Habilitation à diriger des recherches, université Pierre et Marie Curie, 2007.

M. [. Segel and . Slemrod, The Quasi-Steady-State Assumption: A Case Study in Perturbation, SIAM Review, vol.31, issue.3, pp.446-477, 1989.
DOI : 10.1137/1031091

]. J. Ste71 and . Stefan, Über das gleichgewicht und die bewegung insbesondere die diffusion von gasgemengen, Akad. Wiss. Wien, vol.63, pp.63-124, 1871.

J. [. Sznajd-weron and . Sznajd, OPINION EVOLUTION IN CLOSED COMMUNITY, International Journal of Modern Physics C, vol.11, issue.06, pp.1157-1166, 2000.
DOI : 10.1142/S0129183100000936

. Tdb-+-79-]-m, D. Thiriet, J. Douguet, C. Bonnet, C. Canonne et al., Influence du mélange He-O 2 sur la mixique dans les bronchopneumopathies obstructives chroniques, Bull. Eur. Physiopathol. Respir, vol.15, issue.5, pp.1053-1068, 1979.

R. [. Taylor and . Krishna, Multicomponent mass transfer, 1993.

]. G. Tos06 and . Toscani, Kinetic models of opinion formation, Commun. Math. Sci, vol.4, issue.3, pp.481-496, 2006.

I. [. Tropea, ROISMAN : Modeling of spray impact on solid surfaces. Atomization and sprays, pp.387-408, 2000.

M. [. Torres and . Trujillo, KIVA-4: An unstructured ALE code for compressible gas flow with sprays, Journal of Computational Physics, vol.219, issue.2, pp.943-975, 2006.
DOI : 10.1016/j.jcp.2006.07.006

]. C. Van09, VANNIER : Modélisation mathématique du poumon humain, Thèse de doctorat, 2009.

]. C. Vil02, VILLANI : A review of mathematical topics in collisional kinetic theory, Handbook of mathematical fluid dynamics, pp.71-305, 2002.

]. W. Wei71 and . Weidlich, The statistical description of polarization phenomena in society, Br. J. Math. Stat. Psychol, vol.24, pp.251-266, 1971.

]. E. Wei84 and . Weibel, The pathway for oxygen : structure and function in the mammalian respiratory system, 1984.

]. C. Wil50 and . Wilke, Diffusional properties of multicomponent gases, Chem

]. F. Wil85 and . Williams, Combustion Theory, 1985.