A. Krogh, The number and distribution of capillaries in muscles with calculations of the oxygen pressure head necessary for supplying the tissue, The Journal of Physiology, vol.52, issue.6, pp.409-424, 1919.
DOI : 10.1113/jphysiol.1919.sp001839

B. J. Mcguire and A. Secomb, Estimation of capillary synthase from rat kidney and rat brain, J. Biol. Chem, vol.248, pp.8022-8052, 1973.

R. N. Pittman, Oxygen Transport and Exchange in the Microcirculation, Microcirculation, vol.12, issue.1, pp.59-70, 2005.
DOI : 10.1080/10739680590895064

D. A. Beard, H. Qian, and E. Book, Quantitative analysis of cellular system, Chemical Biophysics Cambridge Texts in Biomedical Enineering, 2008.

A. Kriete and R. Eils, Computational systems biology, pp.28-45, 2006.

R. G. Sargent, Validation and verification of simulation models, pp.28-45, 2004.

H. Kitano, Computational systems biology, Nature, vol.14, issue.6912, pp.206-210, 2002.
DOI : 10.1038/35002125

H. Kitano, Computational systems biology in cancer: modeling methods and applications , Gene regulation and systems biology, pp.91-110, 2007.

A. Farooqui, L. Horrocks, and T. Farooqui, Glycerophospholipids in brain: their metabolism, incorporation into membranes, functions, and involvement in neurological disorders, Chemistry and Physics of Lipids, vol.106, issue.1, pp.1-29, 2000.
DOI : 10.1016/S0009-3084(00)00128-6

C. Gupta, Phospholipids in disease, pp.895-908, 1993.

A. Regev and W. Shapiro, Representation and simulation of biochemical processes using the pi-calculus process algebra, Proceedings of the sixth Pacific Symposium of Biocomputing, pp.459-70, 2001.

M. Nagasaki, S. Onami, S. Miyano, and H. Kitano, Bio-calculus: Its concept and an application for molecular interaction, Computational Molecular Biology, vol.30, 2000.

R. Hofestadt and S. Thelen, Quantitative modelling of biochemical networks, In Silico Biology IOS Press, vol.1, pp.39-53, 1998.

L. Cardelli, Technical report of artificil biochemistry, Microsoft research, pp.1-43, 2006.

M. Israel, L. Schwartz, and E. Book, Cancer,a dysmethylation syndrome, 2005.

E. Kennedy and B. Roelofsen, The biosynthesis of phospholipids in Lipids and Membranes: Past, Present and Future, pp.171-206, 1986.

H. Kanoh, M. Kai, and I. Wada, Phosphatidic acid phosphatase from mammalian tissues: discovery of channel-like proteins with unexpected functions, Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism, vol.1348, issue.1-2, pp.56-62, 1348.
DOI : 10.1016/S0005-2760(97)00094-5

C. L. Jelsema and D. J. More, Distribution of phospholipid biosythetic enzymes among cell components of rat liver, J Biol Chem, vol.253, pp.7960-71, 1978.

M. Miller and C. Kent, Characterization of the pathways for phosphatidylethanolamine biosynthesis in Chinese hamster ovary mutant and parental cell lines, J Biol Chem, vol.261, pp.9753-61, 1986.

J. L. Reed, I. Famili, I. Thiele, and B. Palsson, Towards multidimensional genome annotation, Nature Reviews Genetics, vol.420, issue.2, pp.130-171, 2006.
DOI : 10.1038/nrg1769

N. C. Duarte, S. A. Becker, N. Jamshidi, I. Thiele, M. L. Mo et al., Global reconstruction of the human metabolic network based on genomic and bibliomic data, Proceedings of the National Academy of Sciences, vol.104, issue.6, pp.1777-82, 2007.
DOI : 10.1073/pnas.0610772104

R. Sundler, G. Arvidson, and B. Akesson, Pathways for the incorporation of choline into rat liver phosphatidylcholines in vivo, Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism, vol.280, issue.4, pp.559-68, 1972.
DOI : 10.1016/0005-2760(72)90136-1

R. Sundler and B. Akesson, Biosynthesis of phosphatidylethanolamines and phosphatidylcholines from ethanolamine and choline in rat liver, Biochemical Journal, vol.146, issue.2, pp.309-315, 1975.
DOI : 10.1042/bj1460309

S. A. Henry, J. L. Patton, and . Vogt, Genetic regulation of phospholipid metabolism in yeast, Progress in Nucleic Acid Research and Molecular Biology, pp.61-133, 1998.

J. K. Blusztajn, DEVELOPMENTAL NEUROSCIENCE:Enhanced: Choline, a Vital Amine, Science, vol.281, issue.5378, p.794, 1998.
DOI : 10.1126/science.281.5378.794

J. L. Patton-vogt, P. Griac, A. Sreenivas, V. Bruno, S. Dowd et al., Role of the Yeast Phosphatidylinositol/Phosphatidylcholine Transfer Protein (Sec14p) in Phosphatidylcholine Turnover andINO1 Regulation, Journal of Biological Chemistry, vol.272, issue.33, p.20873, 1997.
DOI : 10.1074/jbc.272.33.20873

R. Sundler and B. Akesson, Biosynthesis of phosphatidylethanolamines and phosphatidylcholines from ethanolamine and choline in rat liver, Biochemical Journal, vol.146, issue.2, pp.309-324, 1975.
DOI : 10.1042/bj1460309

R. Sundler, Biosynthesis of rat liver phosphatidylethanolamines from intraportally injected ethanolamine, Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism, vol.306, issue.2, pp.218-244, 1973.
DOI : 10.1016/0005-2760(73)90227-0

D. E. Vance and C. J. Walkey, Roles for the methylation of phosphatidylethanolamine, Current Opinion in Lipidology, vol.9, issue.2, pp.125-155, 1998.
DOI : 10.1097/00041433-199804000-00008

D. E. Vance, M. Houweling, M. Lee, and Z. Cui, Phosphatidylethanolamine methylation and hepatoma cell growth, Anticancer Res, vol.16, pp.1413-1429, 1996.

F. Podo, Tumour phospholipid metabolism, NMR in Biomedicine, vol.269, issue.7, p.413, 1999.
DOI : 10.1002/(SICI)1099-1492(199911)12:7<413::AID-NBM587>3.0.CO;2-U

E. Ackerstaff, B. Pflug, J. B. Nelson, and Z. M. Bhujwalla, Detection of increased choline compounds with proton nuclear magnetic resonance spectroscopy subsequent to malignant transformation of human prostatic epithelial cells, Cancer Res, pp.61-3598, 2001.

N. V. Reo, M. Adinehzadeh, and B. D. Foy, Kinetic analyses of liver phosphatidylcholine and phosphatidylethanolamine biosynthesis using (13)C NMR spectroscopy, Biochim. Biophys. Acta, pp.171-88, 1580.

A. A. Farooqui, L. A. Horrocks, and T. Farooqui, Glycerophospholipids in brain: their metabolism, incorporation into membranes, functions, and involvement in neurological disorders, Chemistry and Physics of Lipids, vol.106, issue.1, pp.1-29, 2000.
DOI : 10.1016/S0009-3084(00)00128-6

C. M. Gupta, Phospholipids in disease, pp.895-908, 1993.

J. Kanfer and E. P. Kennedy, Metabolism and function of bacterial lipids.II. Biosynthesis of phospholipids in escherchia coli, J Biol Chem, vol.239, pp.1720-1726, 1964.

S. Schuster, T. Dandekar, and D. A. , Detection of elementary flux modes in biochemical networks: a promising tool for pathway analysis and metabolic engineering, Trends in Biotechnology, vol.17, issue.2, p.53, 1999.
DOI : 10.1016/S0167-7799(98)01290-6

I. H. Segel, Enzyme Kinetics, BioScience, vol.26, issue.7, 1975.
DOI : 10.2307/1297475

W. Karush, W. Kuhn, and W. Tucker, Characterization of the pathways for Nonlinear Programming, the Karush-Kuhn-Tucker Theorem, pp.481-92, 1951.

W. Karush, Minima of Functions of Several Variables with Inequalities as Side Constraints, M.Sc. Dissertation. Dept. of Mathematics, 1939.

K. A. Clements, P. W. Davis, and K. D. Frey, An interior point algorithm for weighted least absolute value power system state estimation, 1991.

E. Silberberg and W. Suen, The Structure of Economics, A Mathematical Analysis, p.253, 2001.

J. J. More and S. A. , Vavasis, On the solution of concave knapsack problems, Mathematical Programming, p.397, 1990.

H. Luss and S. K. Gupta, Technical Note???Allocation of Effort Resources among Competing Activities, Operations Research, vol.23, issue.2, pp.360-66, 1975.
DOI : 10.1287/opre.23.2.360

J. Tyson, Modeling the cell division cycle: cdc2 and cyclin interactions., Proceedings of the National Academy of Sciences, vol.88, issue.16, pp.7328-7360, 1991.
DOI : 10.1073/pnas.88.16.7328

C. W. Gear, Numerical initial value problems in ordinary differential equations Prentice-Hall, 1971.

M. Adinehzadeh and N. V. Reo, Effects of Peroxisome Proliferators on Rat Liver Phospholipids:?? Sphingomyelin Degradation May Be Involved in Hepatotoxic Mechanism of Perfluorodecanoic Acid, Chemical Research in Toxicology, vol.11, issue.5, pp.428-468, 1998.
DOI : 10.1021/tx970155t

M. Adinehzadeh and N. V. Reo, NMR analysis of liver phospholipids: temperature dependence of 31P chemical shifts and absolute quantitation, Biol. Med, vol.3, pp.171-177, 1996.

Z. Cuia and M. Houwelingb, Phosphatidylcholine and cell death, Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, vol.1585, issue.2-3, p.137, 2003.
DOI : 10.1016/S1388-1981(02)00328-1

L. Tessitor, Expression of Phosphatidylethanolamine N-Methyltransferase in Human Hepatocellular Carcinomas, Oncology, vol.65, issue.2, pp.152-160, 2003.
DOI : 10.1159/000072341

D. Morvan, A. Demidem, J. Papon, and J. C. Madelmont, Quantitative HRMAS proton total correlation spectroscopy applied to cultured melanoma cells treated by chloroethyl nitrosourea: Demonstration of phospholipid metabolism alterations, Magnetic Resonance in Medicine, vol.269, issue.2, pp.241-289, 2003.
DOI : 10.1002/mrm.10368

D. Morvan, A. Demidem, S. Guenin, and J. C. Madelmont, Methionine-dependence phenotype of tumors: Metabolite profiling in a melanoma model usingL-[methyl-13C]methionine and high-resolution magic angle spinning1H???13C nuclear magnetic resonance spectroscopy, Magnetic Resonance in Medicine, vol.226, issue.5, pp.948-96, 2006.
DOI : 10.1002/mrm.20869

P. Merle, D. Morvan, J. C. Madelmont, D. Caillaud, and A. Demidem, CENU treatment induced bystander effects which are effective on parental and non-parental tumors and have a phospholipid metabolism proton NMR spectroscopy signature, International Journal of Oncology, vol.29, pp.637-679, 2006.
DOI : 10.3892/ijo.29.3.637

P. Merle, D. Morvan, J. C. Madelmont, D. Caillaud, and A. Demidem, Chemotherapyinduced Bystander Effect in Response to Several Chloroethylnitrosoureas: An origin independent of DNA damage?, Anticancer Research, vol.28, pp.21-28, 2008.

D. Morvan and A. Demidem, Metabolomics by Proton Nuclear Magnetic Resonance Spectroscopy of the Response to Chloroethylnitrosourea Reveals Drug Efficacy and Tumor Adaptive Metabolic Pathways, Cancer Research, vol.67, issue.5, pp.2150-59, 2007.
DOI : 10.1158/0008-5472.CAN-06-2346

A. Demidem, D. Morvan, P. J. Papon, M. De-latour, and J. C. Madelmont, Cystemustine induces redifferentiation of primary tumors and confers protection against secondary tumor growth in a melanoma murine model, Cancer Res, pp.61-2294, 2001.

S. Guenin, D. Morvan, E. Thivat, G. Stepien, and A. Demidem, Combined methionine stress and Chloro-ethylnitrosourea treatment have a time-dependent synergy effect which NMR-based metabolomics explains by methionine metabolism reprogramming of melanoma tumors, Nutr. Cancer, pp.61-518, 2009.

M. Behzadi, A. Demidem, D. Morvan, L. Schwartz, G. Stepien et al., A model of phospholipid biosynthesis in tumor in response to an anticancer agent in Vivo, J Integrative Bioinfo, vol.7, p.129, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00781422

M. D. Morris, Factorial Sampling Plans for Preliminary Computational Experiments, Technometrics, vol.1, issue.2, pp.161-74, 1991.
DOI : 10.2307/1266468

M. Hucka, The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models, Bioinformatics, vol.19, issue.4, p.524, 2003.
DOI : 10.1093/bioinformatics/btg015

A. Finney and M. Hucka, Systems biology markup language: Level 2 and beyond, Systems Biology Markup Language: Level 2 and Beyond, p.1472, 2003.
DOI : 10.1042/bst0311472

J. H. Van-beek, A. C. Hauschild, H. Hettling, and T. W. Binsl, Robust modelling, measurement and analysis of human and animal metabolic systems, philosophical 138 transactions, Series A, Mathematical, Physical, and Engineering Sciences, 1971.

D. Gonze and M. Kaufman, Lecture notes: Chemical and enzyme kinetics, Master en Bioinformatique et Modelisation, pp.2009-2019

G. E. Briggs and J. B. Haldane, A Note on the Kinetics of Enzyme Action, Biochemical Journal, vol.19, issue.2, pp.338-377, 1925.
DOI : 10.1042/bj0190338

E. O. Voit and J. Almeida, Decoupling dynamical systems for pathway identification from metabolic profiles, Bioinformatics, vol.20, issue.11, pp.1670-81, 2004.
DOI : 10.1093/bioinformatics/bth140

G. Goel, I. C. Chou, and E. O. Voit, Biological systems modeling and analysis: A biomolecular technique of the twenty-first century, J. Biomol. Tech, vol.17, pp.252-69, 2006.

F. Mao, H. Wu, P. Dam, I. C. Chou, E. O. Voit et al., Prediction of biological pathways through data mining and information fusion. Computational Methods for Understanding Bacterial and Archaeal Genomes, pp.553-77, 2008.

M. R. Roussel, Note de lecture, Rue Descartes, vol.48, issue.2, 2005.
DOI : 10.3917/rdes.048.0122

D. Kondepundi and I. Prigogine, Modern thermodynamics, 1998.

D. Morvan, A. Demidem, J. Papon, M. De-latour, and J. C. Madelmont, Melanoma tumors acquire a new phospholipid metabolism phenotype under cystemustine as revealed by high-resolution magic angle spinning proton nuclear magnetic resonance spectroscopy of intact tumor samples, Cancer research, pp.1890-1897, 2002.

E. Hernando, J. Sarmentero-estrada, T. Koppie, and C. Belda-iniesta, A critical role for choline kinase-?? in the aggressiveness of bladder carcinomas, Oncogene, vol.26, issue.26, pp.2425-2460, 2009.
DOI : 10.1038/nrc1697

M. Bayet-robert, D. Loiseau, P. Roi, A. Demidem, C. Barthomeuf et al., Quantitative two-dimensional HRMAS 1H-NMR spectroscopy-based metabolite profiling of human cancer cell lines and response to chemotherapy, Magnetic Resonance in Medicine, vol.74, issue.5, pp.1172-83, 2010.
DOI : 10.1002/mrm.22303

D. Drnevich and T. C. Vary, Analysis of physiological amino acids using dabsyl derivatization and reversed-phase liquid chromatography, Journal of Chromatography B: Biomedical Sciences and Applications, vol.613, issue.1, pp.137-181, 1993.
DOI : 10.1016/0378-4347(93)80207-K

J. Y. Chang, R. Knecht, and D. G. Braun, [7] Amino acid analysis in the picomole range by precolumn derivatization and high-performance liquid chromatography, Methods Enzymol, vol.91, pp.41-49, 1983.
DOI : 10.1016/S0076-6879(83)91009-1

N. D. Ridgway and D. E. Vance, Specificity of rat hepatic phosphatidylethanolamine N-methyltransferase for molecular species of diacyl phosphatidylethanolamine, J Biol Chem, vol.263, pp.16856-63, 1988.

L. Tessitore, I. Dianzani, Z. Cui, and D. E. Vance, Diminished expression of phosphatidylethanolamine N-methyltransferase 2 during hepatocarcinogenesis, Biochem J Pt, vol.1, issue.337, pp.23-30, 1999.

I. Baburina and S. Jackowski, Cellular Responses to Excess Phospholipid, Journal of Biological Chemistry, vol.274, issue.14, pp.9400-9408, 1999.
DOI : 10.1074/jbc.274.14.9400

M. Houweling, Z. Cui, L. Tessitore, and D. E. Vance, Induction of hepatocyte proliferation after partial hepatectomy is accompanied by a markedly reduced expression of phosphatidylethanolamine N-methyltransferase-2, Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism, vol.1346, issue.1, pp.1-9, 1346.
DOI : 10.1016/S0005-2760(97)00011-8

C. J. Walkey, L. Yu, L. B. Agellon, and D. E. Vance, Biochemical and Evolutionary Significance of Phospholipid Methylation, Journal of Biological Chemistry, vol.273, issue.42, pp.27043-27049, 1998.
DOI : 10.1074/jbc.273.42.27043

N. Detich, S. Hamm, G. Just, J. D. Knox, and M. Szyf, -Adenosylmethionine Inhibits Active Demethylation of DNA, Journal of Biological Chemistry, vol.278, issue.23, pp.20812-20832, 2003.
DOI : 10.1074/jbc.M211813200

D. Morvan, A. Demidem, J. Papon, and J. C. Madelmont, Quantitative HRMAS proton total correlation spectroscopy applied to cultured melanoma cells treated by chloroethyl nitrosourea: Demonstration of phospholipid metabolism alterations, Magnetic Resonance in Medicine, vol.269, issue.2, pp.241-249, 2003.
DOI : 10.1002/mrm.10368

D. Morvan and A. Demidem, Metabolomics by Proton Nuclear Magnetic Resonance Spectroscopy of the Response to Chloroethylnitrosourea Reveals Drug Efficacy and Tumor Adaptive Metabolic Pathways, Cancer Research, vol.67, issue.5, pp.2150-2159, 2007.
DOI : 10.1158/0008-5472.CAN-06-2346

R. A. Leach and M. T. Tuck, Methionine depletion induces transcription of the mRNA (N6-adenosine)methyltransferase, The International Journal of Biochemistry & Cell Biology, vol.33, issue.11, pp.1116-1144, 2007.
DOI : 10.1016/S1357-2725(01)00072-3

D. M. Kokkinakis, A. G. Brickner, J. M. Kirkwood, X. Liu, J. E. Goldwasser et al., Mitotic Arrest, Apoptosis, and Sensitization to Chemotherapy of Melanomas by Methionine Deprivation Stress, Molecular Cancer Research, vol.4, issue.8, pp.575-89, 2006.
DOI : 10.1158/1541-7786.MCR-05-0240

V. Janssens and J. Goris, Protein phosphatase 2A: a highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling, Biochemical Journal, vol.353, issue.3, pp.417-456, 2001.
DOI : 10.1042/bj3530417

S. Guenin, L. Schwartz, D. Morvan, J. M. Steyaert, A. Poignet et al., PP2A activity is controlled by methylation and regulates oncoprotein expression in melanoma cells: A mechanism which participates in growth inhibition induced by chloroethylnitrosourea treatment, International Journal of Oncology, vol.32, pp.49-57, 2008.
DOI : 10.3892/ijo.32.1.49

P. P. Ruvolo, Intracellular signal transduction pathways activated by ceramide and its metabolites, Pharmacological Research, vol.47, issue.5, pp.383-92, 2003.
DOI : 10.1016/S1043-6618(03)00050-1

. Cho, GPC (Glycero-PhosphoCholine, PtdCho (Phosphatidyle- Choline) Eth (Ethanolamine), PE (Phospho-Ethanolamine), PtdEth (Phosphatidyle-Ethanolamine), GPE (Glycero-PhosphoEthanolamine). Enzymes: CK (Choline-Kinase)

E. /. Transferase-) and . Ept, PhosphoEthanolamine-Cytidyl-Transferase), PEMT (PhosphatidyleEthanolamine-N-methyl-Transferase, PlpA2 (PhosphoLipase A2), PlpC (PhosphoLipase C), PlpD (PhosphoLipase D)

. Ptdcho, Phosphatidyle-Choline), PE(Phospho-Ethanolamine, p.142

. Ptdeth, Parameters: VM (Michaelis maximum reaction rate) The Memory effect group's parameters and the related pathway are shown by blue color. The Definitively changed group's parameters and the related pathway are shown by red color. The Finally changed group's parameters and the related pathway are shown by green color, p.74

. Ptdeth, Parameters: VM (Michaelis maximum reaction rate) The Memory effect group's parameters and the related pathway are shown by blue color. The Definitively changed group's parameters and the related pathway are shown by red color, p.75

. Ptdeth, Parameters: VM (Michaelis maximum reaction rate) The Memory effect group's parameters and the related pathway are shown in blue color. The Definitively changed group's parameters and the related pathway are shown in red color, p.82