C. Approchée and .. , 244 B.5.1 Validation partielle de la condition approchée d'ordre, p.245

]. T. Annexeaa96a, H. Abboud, and . Ammari, Diffraction at a curved grating : approximation by an infinite plane grating, J. Math. Anal. Appl, vol.202, issue.3, pp.2461076-1100, 1996.

]. T. Aa96b, H. Abboud, and . Ammari, Diffraction at a curved grating : TM and TE cases, homogenization, J. Math. Anal. Appl, vol.202, issue.3, pp.995-1026, 1996.

C. Amrouche, C. Bernardi, M. Dauge, and V. Girault, Vector potentials in three-dimensional non-smooth domains, Mathematical Methods in the Applied Sciences, vol.2, issue.9, pp.823-864, 1998.
DOI : 10.1002/(SICI)1099-1476(199806)21:9<823::AID-MMA976>3.0.CO;2-B

]. M. Ac91a, M. Artola, and . Cessenat, Diffraction d'une onde électromagnétique par une couche composite mince accolée à un corps conducteur épais. I. Cas des inclusions fortement conductrices, C. R

]. M. Ac91b, M. Artola, and . Cessenat, Scattering of an electromagnetic wave by a slender composite slab in contact with a thick perfect conductor. II. Inclusions (or coated material) with high conductivity and high permeability, CR Acad. Sci. Paris Sér. I Math, issue.6, pp.313381-385, 1991.

]. Y. Ach89 and . Achdou, Etude de la réflexion d'une onde électromagnétique par un métal recouvert d'un revêtement métallisé, 1989.

]. R. Ada75 and . Adams, Sobolev spaces Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], Pure and Applied Mathematics, vol.65, 1975.

C. [. Ammari and . Latiri-grouz, Conditions aux limites approch??es pour les couches minces p??riodiques, ESAIM: Mathematical Modelling and Numerical Analysis, vol.33, issue.4, pp.673-693, 1999.
DOI : 10.1051/m2an:1999157

URL : http://archive.numdam.org/article/M2AN_1999__33_4_673_0.pdf

]. G. All02 and . Allaire, Shape optimization by the homogenization method, Applied Mathematical Sciences, vol.146, 2002.

A. [. Alonso and . Valli, Some remarks on the characterization of the space of tangential traces ofH(rot;??) and the construction of an extension operator, Manuscripta Mathematica, vol.16, issue.IV, pp.159-178, 1996.
DOI : 10.1007/BF02567511

N. Bartoli and A. Bendali, Robust and high-order effective boundary conditions for perfectly conducting scatterers coated by a thin dielectric layer, IMA Journal of Applied Mathematics, vol.67, issue.5, pp.479-508, 2002.
DOI : 10.1093/imamat/67.5.479

F. B. Belgacem, C. Bernardi, M. Costabel, and M. Dauge, Un r??sultat de densit?? pour les ??quations de Maxwell, Comptes Rendus de l'Acad??mie des Sciences - Series I - Mathematics, vol.324, issue.6, pp.731-736, 1997.
DOI : 10.1016/S0764-4442(97)86998-4

D. [. Bonnetier, V. Bresch, and . Milisic, A Priori Convergence Estimates for a Rough Poisson-Dirichlet Problem with Natural Vertical Boundary Conditions, Advances in Mathematical Fluid Mechanics, pp.105-134, 2010.
DOI : 10.1007/978-3-642-04068-9_7

URL : https://hal.archives-ouvertes.fr/hal-00321471

M. [. Buffa, D. Costabel, and . Sheen, On traces for H(curl,??) in Lipschitz domains, Journal of Mathematical Analysis and Applications, vol.276, issue.2, pp.845-867, 2002.
DOI : 10.1016/S0022-247X(02)00455-9

]. J. Bel10 and . Bellet, Diffusion d'ondes électromagnétiques par la peau, canum, 2010.

]. A. Ben07 and . Bendali, Développement asymptotiques singuliers, 2007.

A. Bendali, A. Huard, A. Tizaoui, S. Tordeux, and J. P. Vila, Asymptotic expansions of the eigenvalues of a 2-D boundary-value problem relative to two cavities linked by a hole of small size, C. R. Math. Acad. Sci. Paris, vol.347, pp.19-201147, 2009.
URL : https://hal.archives-ouvertes.fr/inria-00527437

K. [. Bendali and . Lemrabet, The Effect of a Thin Coating on the Scattering of a Time-Harmonic Wave for the Helmholtz Equation, SIAM Journal on Applied Mathematics, vol.56, issue.6, pp.1664-1693, 1996.
DOI : 10.1137/S0036139995281822

J. [. Bensoussan, G. Lions, and . Papanicolaou, Asymptotic analysis for periodic structures, of Studies in Mathematics and its Applications, 1978.

V. [. Bresch and . Milisic, High order multi-scale wall-laws, part I : The periodic case. Arxiv preprint math, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00111058

. [. Sh, M. Z. Birman, and . Solomyak, L 2 -theory of the Maxwell operator in arbitrary domains, Uspekhi Mat. Nauk, vol.42, issue.247, pp.61-76, 1987.

M. [. Caloz, M. Costabel, G. Dauge, and . Vial, Asymptotic expansion of the solution of an interface problem in a polygonal domain with thin layer, Asymptot. Anal, vol.50, issue.12, pp.121-173, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00001555

M. [. Costabel and . Dauge, Singularities of Electromagnetic Fields??in Polyhedral Domains, Archive for Rational Mechanics and Analysis, vol.151, issue.3, pp.221-276, 2000.
DOI : 10.1007/s002050050197

M. [. Costabel, S. Dauge, and . Nicaise, Singularities of Maxwell interface problems, ESAIM: Mathematical Modelling and Numerical Analysis, vol.33, issue.3, pp.627-649, 1999.
DOI : 10.1051/m2an:1999155

M. [. Caloz, V. Dauge, and . Péron, Uniform estimates for transmission problems with high contrast in heat conduction and electromagnetism, Journal of Mathematical Analysis and Applications, vol.370, issue.2, pp.555-572, 2010.
DOI : 10.1016/j.jmaa.2010.04.060

URL : https://hal.archives-ouvertes.fr/hal-00422315

. S. Chh, H. Chun, J. S. Haddar, and . Hesthaven, High-order accurate thin layer approximatins for timedomain electromagnetics

]. P. Cia05 and J. Ciarlet, Augmented formulations for solving Maxwell equations, Comput. Methods Appl. Mech. Engrg, vol.194, issue.2-5, pp.559-586, 2005.

]. I. Cjp09a, M. Ciuperca, C. Jai, and . Poignard, Approximate transmission conditions through a rough thin layer. the case of the periodic roughness, 2009.

]. I. Cjp09b, M. Ciuperca, C. Jai, and . Poignard, Two-scale analysis for very rough thin layers. an explicit characterization of the polarization tensor, 2009.

M. [. Ciuperca, C. Jai, and . Poignard, Approximate transmission conditions through a rough thin layer: The case of periodic roughness, European Journal of Applied Mathematics, vol.320, issue.01, pp.51-75, 2010.
DOI : 10.1002/mma.1045

URL : https://hal.archives-ouvertes.fr/inria-00356124

R. [. Colton and . Kress, Inverse acoustic and electromagnetic scattering theory, Applied Mathematical Sciences, vol.93, 1998.
DOI : 10.1007/978-1-4614-4942-3

]. X. Cla08 and . Claeys, Analyse asymptotique et numérique de la diffraction d'ondes par des fils minces, 2008.

P. [. Cohen and . Monk, Gauss point mass lumping schemes for Maxwell's equations, Numerical Methods for Partial Differential Equations, vol.114, issue.1, pp.63-88, 1998.
DOI : 10.1002/(SICI)1098-2426(199801)14:1<63::AID-NUM4>3.0.CO;2-J

]. G. Coh02 and . Cohen, Higher-order numerical methods for transient wave equations. Scientific Computation, 2002.

]. M. Cos90 and . Costabel, A remark on the regularity of solutions of Maxwell's equations on Lipschitz domains, Math. Methods Appl. Sci, vol.12, issue.4, pp.365-368, 1990.

H. [. Durufle, P. Haddar, and . Joly, Higher order generalized impedance boundary conditions in electromagnetic scattering problems, Comptes Rendus Physique, vol.7, issue.5, pp.533-542, 2006.
DOI : 10.1016/j.crhy.2006.03.010

]. D. Dri03 and . Drissi, Simulation des silencieux d'échappement par une méthode d'éléments finis homogénéisés, 2003.

]. F. Dub00 and . Dubois, Du tourbillon au champ de vitesse, lectures notes, 2000.

]. M. Dur06 and . Duruflé, Montjoie's user guide, septembre, 2006.

J. [. Engquist and . Nédélec, Effective boundary conditions for acoustic and electro-magnetic scattering in thin layers, 1993.

G. [. Fernandes and . Gilardi, Magnetostatic and Electrostatic Problems in Inhomogeneous Anisotropic Media with Irregular Boundary and Mixed Boundary Conditions, Mathematical Models and Methods in Applied Sciences, vol.07, issue.07, pp.957-991, 1997.
DOI : 10.1142/S0218202597000487

]. S. Fli09 and . Fliss, Etude mathématique et numérique de la propagation des ondes dans des milieux périodiques localement perturbés, 2009.

]. R. Gad03, Gadyl shin. The method of matching asymptotic expansions in a singularly perturbed boundary value problem for the Laplace operator, Sovrem. Mat. Prilozh. Asimptot. Metody Funkts. Anal, issue.5, pp.3-32, 2003.

P. [. Girault and . Raviart, Finite element methods for Navier-Stokes equations Theory and algo- rithms, of Springer Series in Computational Mathematics, 1986.

P. [. Haddar and . Joly, Stability of thin layer approximation of electromagnetic waves scattering by linear and nonlinear coatings, Journal of Computational and Applied Mathematics, vol.143, issue.2, pp.201-236, 2002.
DOI : 10.1016/S0377-0427(01)00508-8

URL : https://hal.archives-ouvertes.fr/hal-00744183

P. [. Haddar, H. M. Joly, and . Nguyen, GENERALIZED IMPEDANCE BOUNDARY CONDITIONS FOR SCATTERING BY STRONGLY ABSORBING OBSTACLES: THE SCALAR CASE, Mathematical Models and Methods in Applied Sciences, vol.15, issue.08, pp.1273-1300, 2005.
DOI : 10.1142/S021820250500073X

URL : https://hal.archives-ouvertes.fr/hal-00743895

P. [. Haddar, H. M. Joly, and . Nguyen, GENERALIZED IMPEDANCE BOUNDARY CONDITIONS FOR SCATTERING PROBLEMS FROM STRONGLY ABSORBING OBSTACLES: THE CASE OF MAXWELL'S EQUATIONS, Mathematical Models and Methods in Applied Sciences, vol.18, issue.10, pp.1787-1827, 2008.
DOI : 10.1142/S0218202508003194

J. [. Hardy, G. Littlewood, and . Pólya, Inequalities. Cambridge Mathematical Library, 1988.
URL : https://hal.archives-ouvertes.fr/hal-01374624

J. [. Harrington and . Mautz, An impedance sheet approximation for thin dielectric shells, IEEE Transactions on Antennas and Propagation, vol.23, issue.4, pp.531-534, 1975.
DOI : 10.1109/TAP.1975.1141099

A. [. Il-in, S. V. Danilin, and . Zakharov, Application of the method of matching asymptotic expansions to the solution of boundary value problems, Sovrem. Mat. Prilozh. Asimptot. Metody Funkts. Anal, issue.5, pp.33-78, 2003.

C. [. Joly, J. E. Poirier, P. Roberts, and . Trouve, A New Nonconforming Finite Element Method for the Computation of Electromagnetic Guided Waves. I: Mathematical Analysis, SIAM Journal on Numerical Analysis, vol.33, issue.4, pp.1494-1525, 1996.
DOI : 10.1137/S0036142993256817

URL : https://hal.archives-ouvertes.fr/inria-00074603

A. [. Joly and . Semin, Construction and analysis of improved Kirchoff conditions for acoustic wave propagation in a junction of thin slots, Paris-Sud Working Group on Modelling and Scientific Computing, pp.44-67, 2007.
DOI : 10.1051/proc:082504

URL : https://hal.archives-ouvertes.fr/hal-00976404

S. [. Joly, . [. Tordeux, S. Joly, . [. Tordeux, P. Kirsch et al., Matching of asymptotic expansions for wave propagation in media with thin slots. I. The asymptotic expansion Matching of asymptotic expansions for waves propagation in media with thin slots. II. The error estimates A finite element/spectral method for approximating the time-harmonic Maxwell system in R 3, Multiscale Model. Simul. M2AN Math. Model. Numer. Anal. SIAM J. Appl. Math, vol.5, issue.555, pp.304-336193, 1995.
URL : https://hal.archives-ouvertes.fr/inria-00527588

P. [. Kirsch, . Monk, and . Corrigendum, A Finite Element/Spectral Method for Approximating the Time-Harmonic Maxwell System in $\mathbb{R}^3 $, SIAM Journal on Applied Mathematics, vol.55, issue.5, pp.1324-1344, 1995.
DOI : 10.1137/S0036139993259891

P. [. Krizek and . Neittaanmaki, Solvability of a first order system in three-dimensional nonsmooth domains, Apl. Mat, vol.30, issue.4, pp.307-315, 1985.

]. M. Kri84 and . Krizek, On the validity of Friedrichs' inequalities, Math. Scand, vol.54, issue.1, pp.17-26, 1984.

]. M. Leo48 and . Leontovitch, Approximate boundary conditions for the electromagnetic field on the surface of good conductor, 1948.

]. A. Mak08 and . Makhlouf, Justification et amÈlioration de modèles d'antenne patch par la méthode des développements asymptotiques raccordés, 2008.

S. [. Maz-'ya, B. Nazarov, and . Plamenevskij, Asymptotic theory of elliptic boundary value problems in singularly perturbed domains of Operator Theory : Advances and Applications, 2000.

]. P. Bibliographie-[-mon03 and . Monk, Finite element methods for Maxwell's equations. Numerical Mathematics and Scientific Computation, 2003.

F. [. Madureira and . Valentin, Asymptotics of the Poisson Problem in Domains with Curved Rough Boundaries, SIAM Journal on Mathematical Analysis, vol.38, issue.5, pp.1450-147307, 2006.
DOI : 10.1137/050633895

]. J. Néd01 and . Nédélec, Acoustic and electromagnetic equations Integral representations for harmonic problems, of Applied Mathematical Sciences, 2001.

A. [. Poirier, P. Bendali, and . Borderies, Impedance Boundary Conditions for the Scattering of Time-Harmonic Waves by Rapidly Varying Surfaces, IEEE Transactions on Antennas and Propagation, vol.54, issue.3, pp.995-1005, 2006.
DOI : 10.1109/TAP.2006.869900

J. Poirier, A. Bendali, P. Borderies, and S. Tournier, High order asymptotic expansion for the scattering of fast oscillating periodic surfaces, 2009.

]. V. Per09 and . Peron, Modélisation mathématique des phénomènes électromagnétiques dans des matériaux à fort contraste, 2009.

]. R. Pic81 and . Picard, On the boundary value problems of electro-magnetostatics. SFB 72, preprint 442, Poi94] C. Poirier. Guides d'ondes électromagnétiques : analyse mathématique et numérique, 1981.

V. [. Rohan and . Lukes, Homogenization of the acoustic transmission through a perforated layer, Journal of Computational and Applied Mathematics, vol.234, issue.6, pp.1876-1885, 2010.
DOI : 10.1016/j.cam.2009.08.059

]. J. Sar82 and . Saranen, On an inequality of Friedrichs, Math. Scand, vol.51, issue.2, pp.310-322, 1982.

]. A. Sem10 and . Semin, Propagation d'ondes dans des jonctions de fentes minces, 2010.

. [. Sánchez-palencia, Nonhomogeneous media and vibration theory, Lecture Notes in Physics, vol.127, 1980.

. [. Sánchez-palencia, Un problème d' écoulement lent d'une fluide visqueux incompressible au travers d'une paroi finement perforée, 1985.

S. [. Schmidt and . Tordeux, Asymptotic modelling of conductive thin sheets, Zeitschrift f "ur Angewandte Mathematik und Physik (ZAMP), pp.603-626, 2010.
DOI : 10.1007/s00033-009-0043-x

URL : https://hal.archives-ouvertes.fr/inria-00527608

J. [. Senior and . Volakis, Approximate boundary conditions in electromagnetics. The Institution of Electrical Engineers, 1995.

]. M. Tle09 and . Tlemcani, A Two-Scale Asymptotic Analysis of a Time-Harmonic Scattering Problem with a Multi Layered Thin Periodic Domain, Communications in Computational Physics, vol.6, pp.758-776, 2009.

]. S. Tor04 and . Tordeux, Méthode asymptotiques pour la propagation des ondes dans des milieux comportant des fentes, 2004.

]. F. Tre07 and . Treyssède, Numerical investigation of elastic modes of propagation in helical waveguides, The Journal of the Acoustical Society of America, vol.121, p.3398, 2007.

]. F. Tre08 and . Treyssède, Elastic waves in helical waveguides, Wave motion, vol.45, issue.4, pp.457-470, 2008.

G. [. Tordeux, M. Vial, and . Dauge, Matching and multiscale expansions for a model singular perturbation problem, Comptes Rendus Mathematique, vol.343, issue.10, pp.343637-642, 2006.
DOI : 10.1016/j.crma.2006.10.010

URL : https://hal.archives-ouvertes.fr/hal-00453366

. M. Vd64 and . Van-dyke, Perturbation methods in fluid mechanics, Applied Mathematics and Mechanics, vol.8, 1964.

]. G. Via03, . A. Vialwal58-]-r, and . Waldron, Analyse multi-échelle et conditions aux limites approchées pour un probleme avec couche mince dans un domaine à coin A helical coordinate system and its applications in electromagnetic theory, The Quarterly Journal of Mechanics and Applied Mathematics, vol.11, issue.4, p.438, 1958.

]. Web80, . Ch, and . Weber, A local compactness theorem for Maxwell's equations, Math. Methods Appl. Sci, vol.2, issue.1, pp.12-25, 1980.

]. A. Zeb94 and . Zebic, Conditions de frontière équivalentes en électromagnétisme, 1994.