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Résumé

Ce mémoire d’habilitation comporte deux parties.

• Dans la première partie, nous étudions les propriétés générales d’une famille de mesures de
probabilité obtenues à partir de la loi du mouvement brownien via une certaine procédure
appelée pénalisation. Nous construisons une mesure σ-finie donnant une explication globale à
une partie des phénomènes observés, et nous généralisons cette mesure à d’autres contextes.
Nous faisons également le lien avec certains processus aléatoires modélisant la trajectoire des
polymères.

• Dans la deuxième partie, nous étudions différents modèles de matrices aléatoires, construits
à partir de matrices de permutations et de matrices unitaires. Nous construisons également
des objets infini-dimensionnels associés à ces modèles, afin d’améliorer notre compréhension
de leurs propriétés universelles.

Dans une serie d’articles écrits par Roynette, Vallois et Yor (voir [59], [60], [61], [62] et [64]
par exemple), de nombreuses mesures de probabilité sont construites sur l’espace C(R+,Rd) des
fonctions continues de R+ vers Rd (généralement pour d = 1). Le procédé de construction, appelé
pénalisation, est similaire dans la plupart des cas:

• On définit Pd comme la mesure de Wiener sur C(R+,Rd).

• On prend une famille (Γt)t≥0 de variables aléatoires positives, telles que 0 < EPd [Γt] < ∞
pour tout t ≥ 0.

• On considère la famille de probabilités (Qt)t≥0 définie par

Qt =
Γt

EPd [Γt]
· Pd.

Un phénomène intéressant a été observé par Roynette, Vallois et Yor: pour chacun des très nom-
breux exemples de poids (Γt)t≥0 qu’ils ont étudiés, il existe une mesure Q satisfaisant la propriété
suivante: pour tout s ≥ 0 et pour tout ensemble Λs dans la tribu engendrée par le processus canon-
ique jusqu’au temps s, Qt(Λs) tend vers Q(Λs) quand t tend vers l’infini. Ce résultat est d’autant
plus remarquable que le comportement du processus canonique sous cette mesure limite Q peut
être très différent selon les exemples considérés.

Il n’existe pour l’instant aucune explication globale de ce phénomène qui soit applicable à tous
les cas. Cependant, dans de nombreux exemples en dimension d = 1, la mesure Q est absolument
continue par rapport à une certaine mesure σ-finie W sur C(R+,R), construite et étudiée en détail
dans notre monographie écrite avec Roynette et Yor [48]. La mesure W peut être définie comme
suit:

• Le supremum g des valeurs d’annulation du processus canonique est fini W-presque partout.

• Pour tout t ≥ 0, et pour toute fonctionnelle Ft, mesurable par rapport à la tribu engendrée
par le processus canonique X pris jusqu’au temps t,

W[Ft1g≤t] = EP1 [Ft|Xt|].
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La trajectoire du processus canonique sous W peut également être décrite comme la concaténation
d’un mouvement brownien arrêté à un inverse de temps local, et d’un processus de Bessel de
dimension 3. La mesure W satisfait de nombreuses propriétes remarquables et dans [48], nous
construisons un analogue de cette mesure adapté aux contextes suivants: le mouvement brownien
plan, les diffusions linéaires et les châınes de Markov. Une autre généralisation est obtenue dans
une série de papiers en collaboration avec Nikeghbali (voir [40], [41], [43], [45]), dans le cadre des
sous-martingales de classe (Σ), i.e. dont le processus croissant est porté par les zéros. Une partie
des résultats obtenus sont liés à certains problèmes de mathématiques financières.

La technique de construction de mesures de probabilités par pénalisation est également liée
au modèle d’Edwards (voir [17]), qui correspond à une famille de mesures utilisées pour décrire la
forme des molécules de certains polymères. Plus précisément, les trajectoires correspondantes sont
aléatoires, mais présentent un phénomène d’auto-répulsion: deux parties distinctes du polymère
ont tendance à éviter d’occuper la même partie de l’espace. Informellement, pour une trajectoire
de longueur t, on considère la mesure Qt donnée par le poids de pénalisation

Γt := exp

(
−β

∫ t

0

∫ t

0
δ(Xs −Xu)ds du

)
, (1)

où X est le processus canonique, δ la mesure de Dirac en zéro et β > 0 un paramètre fixé à l’avance.
Le symbole δ ne représente pas une véritable fonction, aussi l’équation (1) ne donne-t-elle pas une
définition rigoureuse de Qt. La difficulté de la construction effective de cette mesure dépend de la
dimension d:

• Pour d = 1, Γt peut être défini rigoureusement à l’aide des temps locaux du processus canon-
ique. De plus, la mesure Qt converge vers une limite Q (au sens des pénalisations décrit plus
haut) quand t tend vers l’infini, ce qui définit une version du modèle d’Edwards unidimen-
sionnel pour des trajectoires infinies. La preuve de cette convergence est le principal résultat
de notre article [38].

• Pour d = 2, toute tentative raisonnable de donner un sens à Γt donne une valeur nulle, mais en
divisant formellement ce poids par une constante (nulle elle aussi), on peut se ramener à une
situation similaire à la dimension 1, et donc définir une mesure Qt, absolument continue par
rapport à la mesure de Wiener. Le procédé employé est appelé renormalisation de Varadhan
(voir [70]).

• Pour d = 3, la renormalisation de Varadhan ne suffit pas mais il est encore possible de
construire Qt, comme cela a été fait par Westwater (voir [73] et [74]) puis par Bolthausen
(voir [9]).

• Pour d ≥ 4, le mouvement brownien n’a pas d’auto-intersection et donc la construction du
modèle d’Edwards devient triviale.

Le cas le plus intéressant et le plus difficile est la dimension 3, pour laquelle Qt est singulière par
rapport à la mesure de Wiener P3. Dans [36], Chap. 5, nous construisons, en dimensions 1 et
2, une modification du modèle d’Edwards qui est singulière par rapport à la mesure de Wiener,
contrairement au modèle d’Edwards classique.

La deuxième partie du mémoire est consacrée à des modèles de matrices aléatoires et à certaines
de leurs généralisations infini-dimensionnelles. Une introduction à la théorie des matrices aléatoires
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est par exemple donnée par Mehta [33], ou plus récemment, par Anderson, Guionnet et Zeitouni
[2]. Parmi les modèles les plus classiques, on peut noter les deux suivants:

• L’ensemble gaussien unitaire (Gaussian Unitary Ensemble), correspondant à des matrices her-
mitiennes dont les coefficients sont construits à partir de variables gaussiennes indépendantes.

• L’ensemble circulaire unitaire (Circular Unitary Ensemble), correspondant à des matrices
dont la loi est la mesure de Haar sur un groupe unitaire.

Pour ces deux exemples, le comportement microscopique des valeurs propres en grande dimension
fait apparâıtre un processus ponctuel limite, appelé processus déterminantal de noyau sinus (deter-
minantal sine-kernel process). Ce processus peut informellement être défini de la manière suivante:
on considère un ensemble de points aléatoire, tel que pour tout p ≥ 1, et pour tous t1, . . . , tp ∈ R,
la probabilité d’avoir un point au voisinage de tj pour j ∈ {1, ..., p} est proportionnelle à

ρ(t1, . . . , tp) := det(K(ti, tj))1≤i,j≤k,

où K est une fonction de R2 vers R, donnée par

K(x, y) =
sin(π(x− y))

π(x− y)
.

Ce processus déterminantal apparâıt en fait dans le comportement limite de nombreux ensembles
de matrices aléatoires hermitiennes et unitaires: le fait d’obtenir le même processus limite pour de
nombreuses situations différentes est un phénomène appelé universalité, et dans le cas décrit ici, il
est encore compris de manière incomplète.

Une situation analogue (mais beaucoup plus simple) se produit dans le cadre du théorème
central limite: la loi gaussienne intervient de manière universelle, indépendamment de la loi des
variables indépendantes qui sont considérées au départ. Dans ce cadre, la compréhension que l’on
a du rôle particulier joué par la loi gaussienne est considérablement améliorée par la construction
d’un objet infini modélisant le comportement à grande échelle des sommes de variables aléatoires
indépendantes: le mouvement brownien. Afin de comprendre de manière analogue le comporte-
ment microscopique du spectre des matrices aléatoires, et en particulier leurs propriétés universelles,
nous nous intéressons à la construction d’objets limites infini-dimensionnels pouvant être naturelle-
ment associés à différents ensembles de matrices. Notre travail se focalise autour de deux types
d’ensembles:

• Des ensembles construits à partir de matrices de permutations.

• L’ensemble circulaire unitaire et certaines de ses généralisations.

L’avantage des permutations est qu’on peut directement calculer le spectre de leurs matrices à
partir de leur décomposition en cycles. L’ensemble de matrices de permutations le plus simple
que l’on puisse considérer est obtenu en choisissant aléatoirement une permutation, suivant la
loi uniforme sur le groupe symétrique SN pour N ≥ 1. Une généralisation de cet ensemble est
obtenue en choisissant un paramètre θ > 0, et en donnant à chaque permutation une probabilité
proportionnelle à θn, n désignant le nombre de cycles de la permutation (θ = 1 correspond à la loi
uniforme). Sous la mesure de probabilité ainsi construite, appelée mesure d’Ewens de paramètre
θ, le comportement asymptotique de la taille des grand cycles est connu: si (`k)k≥1 est la suite
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décroissante (complétée par des zéros) des longueurs de cycles associées à une permutation suivant
la mesure d’Ewens de paramètre θ sur SN , alors (`k/N)k≥1 converge en loi vers une distribution
de Poisson-Dirichlet de paramètre θ. Ce résultat implique que le processus ponctuel des angles
propres des matrices de permutation correspondantes, renormalisés à l’aide d’une multiplication
par N/2π (de manière à avoir un espacement moyen de 1 entre les points), converge en loi (en un
sens à préciser) vers un processus ponctuel limite, obtenu comme réunion des suites (2πm/λk)m∈Z
pour k ≥ 1, (λk)k≥1 étant un processus de Poisson-Dirichlet de paramètre θ.

Cette convergence peut être expliquée dans le cadre d’un modèle infini induisant des permu-
tations aléatoires dans tous les groupes symétriques (SN )N≥1 en même temps. L’objet central de
cette construction est la notion de permutation virtuelle introduite par Kerov, Olshanski et Vershik
(voir [24]) et étudiée en détail par Tsilevich (voir [66] et [67]). Une permutation virtuelle est une
suite de permutations (σN )N≥1, σN ∈ SN telle que pour tout N ≥ 1, la structure en cycles de σN
se déduit de celle de σN+1 en enlevant simplement l’élément N + 1 de son cycle. En considérant
une permutation virtuelle aléatoire, on définit ainsi, sur un espace de probabilité commun, une
matrice de permutation aléatoire d’ordre N pour tout N ≥ 1. De plus, pour tout θ > 0, il est
possible, grâce à une certaine relation de compatibilité satisfaite par les mesures d’Ewens, de faire
en sorte que pour tout N ≥ 1, la permutation d’ordre N suive la mesure d’Ewens de paramètre θ
sur SN . Dans ce cas, la convergence en loi du processus ponctuel des angles propres renormalisés
décrite ci-dessus se renforce en une convergence presque sûre. Il y a alors un lien déterministe
entre le processus ponctuel limite et la permutation virtuelle aléatoire considérée. De plus, dans un
papier écrit avec Nikeghbali [44], nous prouvons qu’il est possible d’exprimer ce processus ponctuel
limite comme le spectre d’un opérateur aléatoire, représentant le comportement infinitésimal de la
permutation virtuelle. En d’autres termes, la convergence en loi des angles propres renormalisés
correspondant à une permutation suivant une mesure d’Ewens peut être expliquée par une sorte de
convergence presque sûre d’opérateurs. Notons que dans [44], les mesures considérées sont en fait
plus générales que celles d’Ewens.

Comme indiqué plus haut, les modèles de matrices de permutations sont pratiques à étudier,
grâce aux calculs explicites de valeurs propres qu’ils permettent. Cependant, ces valeurs pro-
pres vérifient également des propriétés très particulières: par exemple, ce sont toutes des racines
complexes de l’unité d’ordre fini. Pour cette raison, les ensembles de matrices de permutations se
comportent de manière très différente des ensembles plus classiques de matrices unitaires et hermiti-
ennes. Un type d’ensemble ayant un comportement intermédiaire est obtenu en partant de matrices
de permutations et en remplaçant les coefficients égaux à 1 par des variables indépendantes, iden-
tiquement distribuées et non nulles. De tels ensembles, ainsi que les modèles infinis associés, sont
étudiés en détail dans [42].

Le cadre de l’ensemble circulaire unitaire est, de notre point de vue, plus difficile à étudier que
celui des matrices de permutations. Cependant, dans notre article avec Bourgade et Nikeghbali
[11], nous construisons les isométries virtuelles, qui sont des suites (uN )N≥1 de matrices unitaires,
uN ∈ U(N), vérifiant une relation de compatibilité généralisant celle qui définit les permutations
virtuelles. La notion d’isométrie virtuelle englobe donc celle de permutation virtuelle, et également
une notion similaire introduite précédemment par Neretin (voir [49]) et étudiée par Borodin, Olshan-
ski et Vershik (voir [10] et [51]). Une famille de mesures de probabilité remarquables, similaires aux
mesures d’Ewens et appelées mesures d’Hua-Pickrell (voir [20], [53] et [54]) peut alors être définie
sur l’espace des rotations virtuelles. Cette famille est indexée par un paramètre complexe, et per-
met de définir, sur un même espace de probabilité, un ensemble de matrices unitaires de dimension
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N pour tout N ≥ 1. Pour une des valeurs du paramètre, la loi obtenue est, pour tout N , la mesure
de Haar, i.e. la mesure qui définit l’ensemble circulaire unitaire. Dans ce cas, un résultat classique
implique que le processus ponctuel des angles propres renormalisés converge en loi vers un proces-
sus déterminantal de noyau sinus. Le cadre des isométries virtuelles permet, comme expliqué dans
[11], de remplacer la convergence en loi par une convergence presque sûre, comme dans le cadre des
ensembles de matrices de permutation. Cependant, contrairement au cas du groupe symétrique,
nous ne connaissons aucune manière naturelle d’interpréter le processus ponctuel limite comme le
spectre d’un opérateur aléatoire.

Dans nos perspectives de recherche, nous prévoyons d’étudier la possibilité de construire un
tel opérateur, qui modéliserait le comportement local des grandes matrices aléatoires hermiti-
ennes et unitaires. L’existence de cet opérateur permettrait d’améliorer de manière significative
notre compréhension des phénomènes d’universalité observés pour de nombreux ensembles de ma-
trices aléatoires. Cela pourrait peut-être également donner des informations sur les liens entre
matrices aléatoires et théorie des nombres (fonction zêta de Riemann par exemple), qui ne sont
pour le moment pas très bien compris. Nous prévoyons d’explorer ces liens, et plus généralement,
d’étudier les connections que l’on peut établir entre les matrices aléatoires et les autres domaines
des mathématiques.
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Part I

Some universal objects related to changes of
probability measures and penalization

The typical behavior of a stochastic process can be characterized by the almost sure properties
of its trajectories. For example, a Brownian path is almost surely unbounded, it tends to infinity
at infinity if the dimension is larger than of equal to 3, and it contains self-intersections if the
dimension is smaller than or equal to 3.

A question which naturally arises is the following: how these almost sure properties are modified
when one changes the probability law of the process? An general introduction to change of time
and change of measure is given by Barndorff-Nielsen and Shyriaev [6]. More specifically, one of the
simplest ways to do a change of measure is to replace the initial probability measure by another
one, absolutely continuous, whose density is explicitly given. This kind of change is often made in
statistical physics (e.g. for the Ising model), where on a given measurable space, one first considers
a probability measure P, and then a measure Q such that

Q :=
exp(−βH)

EP[exp(−βH)]
· P,

where the parameter β > 0 represents the inverse of the temperature, and the hamiltonian H
represents the energy: informally, the states of high energy are penalized by the exponential factor
e−βH . Another situation involving a similar change of measure is the framework of the Girsanov’s
theorem, which describes a way to change the law of a semi-martingale, in order to make it a
martingale. This result is very classical in mathematical finance.

In any case, if a probability measure P is changed to a measure Q given by

Q :=
Γ

EP[Γ]
· P,

for Γ ≥ 0 and 0 < E[Γ] < ∞, then any negligible set with respect to P remains negligible with
respect to Q, i.e. any property satisfied almost surely under P is also almost sure under Q. Hence,
if we want to modify the typical behavior of the model, we need to change the measure P in a
deeper way. As we will study in detail in several different situations, such a deeper change can
sometimes be obtained by passing to the limit. More precisely, if (Γt)t≥0 is a family of random
variables satisfying the same properties as Γ, and if (Qt)t≥0 is the family of probability measures
given by

Qt =
Γt

EP[Γt]
· P,

then one can ask if Qt converges, in a sense which has to be made precise, to a limit probability
measure Q, when the parameter t goes to infinity. Note that one can also consider discrete sequences
(Γn)n≥1. Moreover, the naive definition of the convergence by the fact that

Qt(A) −→
t→∞

Q(A)

for all measurable sets A is too strong in general: one needs to adapt, in a more subtle way, the
notion of weak convergence to the present setting.
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The particular case of the Brownian motion has been extensively studied by Roynette, Vallois
and Yor in a number of papers (for example, see [59], [60], [61], [62] and [64]), where the changes of
measure described above are referred as penalizations. In these articles, P is the Wiener measure on
the space C(R+,Rd) of continuous functions from R+ to Rd (generally for d = 1), and the notion of
convergence considered is the following: a sequence (Qt)t≥0 of probability measures on C(R+,Rd)
converges to a limit measure Q if and only if for all s ≥ 0, and for any event Λs in the σ-algebra
generated by the canonical process up to time s,

Qt(Λs) −→
t→∞

Q(Λs).

Roynette, Vallois and Yor have considered many examples of families (Γt)t≥1 of weights and
have proven that in each case, the limit measure Q exists. Moreover, in the most interesting cases,
this measure is singular with respect to the Wiener measure, which implies that the behavior of the
canonical process under Q is radically different from the behavior of the Brownian motion. Here
are some examples they have studied:

• Γt = φ(St), where φ is an integrable function from R+ to R∗+, and St is the supremum of the
canonical trajectory up to time t.

• Γt = exp
(
−
∫ t

0 V (Xu) du
)

, where (Xu)u≥0 is the canonical process, and V is a function from

R to R+, such that 0 <
∫∞
−∞(1 + |y|)V (y)dy <∞.

• Γt = eλLt , where λ is a real parameter and Lt is the local time at level zero of the canonical
process up to time t.

• More generally, Γt = eλLt+µXt , where λ and µ are real parameters.

We have also studied other cases, which partially generalize the previous examples:

• The penalization by:
Γt = F ((Lyt )y∈R) ,

where (Lyt )y∈R is the continuous family of the local times of the canonical process, and where
F is a functional from C(R,R+) to R+, satisfying some technical conditions detailed in [37].

• The penalization by Γt := exp (−βHt), where β > 0 is a parameter, and where

Ht :=

∫ ∞
−∞

(Lyt )
2dy.

This example, studied in [38], also corresponds to a functional of the local times, but it does
not satisfy the technical assumptions involved in [37]. The quantity Ht represents the self-
intersection local time of the canonical trajectory, i.e. the time it spends to intersect itself.
The interest of this example is its connection with the so-called Edwards model (see [17]),
which was introduced to describe the trajectory of some long polymer chains.

• A generalization of the penalization by Γt = eλLt+µXt , studied in [35] and obtained by replac-
ing the Wiener measure P by the law of the so-called Brownian spider (or Walsh Brownian
motion). This process, introduced by Walsh [71], and studied in more detail by Barlow, Pit-
man and Yor [5], is informally a Brownian motion on a finite set of half-lines starting at a
common point (for two half-lines, we recover the standard Brownian motion).
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In general, we note that despite the fact that all these examples of penalization look very
different from each other, the existence of the limit measure is proven for each of them (and for
many others). However, the behavior of the canonical process under this limit measure changes a
lot with the different cases.

In other words, there seems to exist a property of universality, implying that for any family of
weights satisfying very general assumptions, the limit measure exists. In order to understand this
phenomenon in a better way, we have continued the work of Roynette, Vallois and Yor, and we
have obtained several results which are presented below.

Part I of this thesis is divided into three sections. In Section 1, we detail the example of penal-
ization studied in [38], and more generally, the link between the penalizations and some polymer
models. In Section 2, we construct a remarkable σ-finite measure which partially explains the
universal properties of the Brownian penalizations, and then we define an analog of this measure
in the following frameworks: the two-dimensional Brownian motion, the linear diffusions, and the
discrete Markov chains. In Section 3, we develop another generalization of this σ-finite measure,
which partially covers the results of Section 2, and which involves a particular class of submartin-
gales, called the class (Σ). Some of the results we obtain in Section 3 are related to problems in
mathematical finance.

1 Penalizations and polymer models

1.1 Penalization with the self-intersection local time: the infinite, one dimen-
sional Edwards model

In [38], we study the penalization of the one-dimensional Wiener measure P by the following weight:

Γt := exp (−βHt) ,

where β > 0 is a parameter, and where

Ht :=

∫ ∞
−∞

(Lyt )
2dy.

Here, (Lyt )y∈R,t≥0 is the continuous family of local times of the canonical process (Xt)t≥0: informally,
one can write

Ht =

∫ t

0

∫ t

0
δ(Xs −Xu) ds du,

where δ denotes the Dirac measure at zero. In other words, the so-called self-intersection local time
Ht measures the amount of time spent by the canonical trajectory to intersect itself: the more a
trajectory intersects itself on the time interval [0, t], the more this trajectory is penalized. The
restriction of the canonical trajectory to the interval [0, t], under the probability measure

Qt :=
Γt

EQt [Γt]
· P,

is a stochastic process with finite time horizon of time, which is called the one-dimensional Edwards
model (see [17]). Initially, such a model has been introduced in physics in order to represent
polymers, the penalization of the self-intersections corresponding to the physical repulsion which
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occurs between two different parts of a long molecular chain. Of course, in dimension one, the
Edwards model is less realistic than in dimension two or three (the polymer should be confined on
a line), but it is still interesting, and it has already been studied by Westwater in [75], and by van
der Hofstad, den Hollander and König in [68] and [69]. The behavior of the canonical trajectory
under Qt is ballistic, i.e. linear in t: more precisely, for t going to infinity, the law of Xt/t under
Qt tends to 1

2(δb∗β1/3 + δ−b∗β1/3), where δx is Dirac measure at x and b∗ is a universal constant
(approximately equal to 1.1). Note that the splitting of the limit law into two Dirac masses comes
from the symmetry of the model with respect to the origin: the typical trajectory goes either up
or down, in each case with asymptotic speed b∗β1/3. There is also a central limit theorem: under

Qt, the law of |Xt|−b
∗β1/3t√
t

tends to the distribution of a centered gaussian random variable, with

universal variance (approximately equal to 0.4, in particular smaller than one).
In all these results, one only considers Edwards model with a finite time horizon, even if one

looks at the behavior of the model for t going to infinity. It is natural to ask if there exists a similar
model with infinite time horizon. One way to do that is to seek a limit for the family of measures
(Qt)t≥0, when t goes to infinity. The main result of [38] is the following theorem, which shows that
the situation is similar to the other penalization examples stated before:

Theorem 1.1 There exists a unique probability measure Q such that for all s ≥ 0, and for all
Λs ∈ Fs := σ{Xu, 0 ≤ u ≤ s},

Qt(Λs) −→
t→∞

Q(Λs).

Moreover, there exists a P-martingale (Ms)s≥0 such that for all s ≥ 0, Λs ∈ Fs,

Q(Λs) = EP[1ΛsMs].

The martingale (Ms)s≥0 is explicitly described in [38]. Its expression is quite complicated: in
particular, it involves the eigenfunctions of a differential operator related to the semi-group of the
two-dimensional Bessel process.

When one knows that the measure Q exists, it is natural to study the behavior of the canonical
process under Q. However, for the moment, we are not able to obtain a result in this direction. In
[38], we conjecture that the behavior is ballistic:

Conjecture 1.2 Under Q, the canonical process is transient, and

Q(Xt −→
t→∞

+∞) = Q(Xt −→
t→∞

−∞) = 1/2.

Moreover, there exist universal strictly positive constants a and σ such that

|Xt|
t
−→
t→∞

a β1/3

almost surely, and such that the random variable

|Xt| − aβ1/3t√
t

converges in law to a centered Gaussian variable of variance σ2 (the factor β1/3 comes from the
Brownian scaling).
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1.2 The Edwards model and its modifications in dimensions 1, 2 and 3

As written above, the Edwards model is more realistic in dimensions two or three than in dimension
one. In any case, let us fix the dimension d ∈ {1, 2, 3}, the duration t ≥ 0 of the finite trajectories,
a parameter β > 0, and let us denote by P the Wiener measure on C([0, t],Rd). The d-dimensional
Edwards model should be represented by a measure Q on the space C([0, t],Rd), informally defined
by

Q :=
exp (−βH)

EP[exp (−βH)]
· P,

where

H =

∫ t

0

∫ t

0
δ(Xs −Xu) ds du,

for δ equal to the d-dimensional Dirac measure at zero.
In dimension one, H can be written as a function of the local times of X: the construction of

the Edwards model is straightforward, and the measure is absolutely continuous with respect to the
Wiener measure P (recall that we only consider finite trajectories). The almost sure properties of the
canonical process are the same under P and under Q: in particular, the quantity of self-intersection
of the trajectories is essentially not changed by the penalization.

In dimension two, the situation is more difficult to deal with, since the local times do not
exist anymore. Moreover, an informal computation suggests that the quantity H should be infinite
almost surely, due to the contribution of the couples (s, u) such that Xs = Xu and s− u is small:
the planar Brownian motion has many self-intersections at short-time scale. However, a solution
has been found by Varadhan [70], and informally, it consists to subtract an ”infinite constant” from
H in order to get a quantity which is almost surely finite. This technique has also been developed
by Rosen (see [57] and [58]), and by Hu and Yor (see [19]). A possible construction is the following:
one proves that there exists almost surely a random function Γ from R2\{(0, 0)} to R+, such that
for all bounded, measurable functions f from R2 to R, equal to zero in the neighborhood of zero,∫ t

0

∫ t

0
f(Xs −Xu) ds du =

∫
R2

f(x) Γ(x) dx.

Informally, Γ(x) represents the quantity of couples (s, u) such that Xs − Xu = x, i.e. the self-
intersections ”shifted by x”. The fact that H is infinite is confirmed by the almost sure infinite
limit of Γ(x) when x goes to zero. However, there exists a constant K > 0 such that γ : x 7→
Γ(x) − K log(1/||x||) can almost surely be extended to a continuous function from R2 to R: the
self-intersection local time is then given by H ′ := γ(0). Moreover, since EP[e−βH

′
] < ∞, the

two-dimensional Edwards model can be defined by

Q :=
exp (−βH ′)

EP[exp (−βH ′)]
· P.

Again, this measure is absolutely continuous with respect to the Wiener measure.
In dimension three, the quantity H is again infinite: moreover, the Varadhan renormalization

is not sufficient to give a convergence. The solution has been first obtained by Westwater in [73]
and [74], in a long proof involving in an essential way the dyadic splitting of the interval [0, t]. A
simpler solution has been found by Bolthausen in [9] and later, Albeverio and Zhou [1] have proven
that the two constructions give the same version of the three-dimensional Edwards model, i.e. the
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same probability measure Q. A remarkable phenomenon which occurs here is that this measure Q
is singular with respect to the Wiener measure: the penalization of the self-intersections changes
the trajectories in a deeper way in dimension three than in dimension one or two. However, the
change is not deep enough to prevent the paths to intersect themselves: more precisely, the fractal
dimension of the double points in the same as for the standard three-dimensional Brownian motion,
as proven by Zhou in [80].

A question which can now be asked is the following: does there exist a way to modify the
Edwards model in dimension one or two, in order to obtain a probability measure which is singular
with respect to the Wiener measure? A solution can be found in [36], Chap. 5, where we prove
that for d ∈ {1, 2}, for fixed t ≥ 0 and for β > 0 small enough, one can construct a measure Q̃
informally given by

Q̃ :=
exp

(
−βH̃

)
EP

[
exp

(
−βH̃

)] ,
where

H̃ :=

∫ t

0

∫ t

0

δ(Xs −Xu)

|s− u|(3−d)/2
ds du.

In other words, the self-intersections are more penalized if they occur at a short-time scale, with
a correcting factor 1/|s− u| in dimension one and 1/

√
|s− u| in dimension two. The construction

we have made involves a general result proven in [73] and used by Westwater to construct the
three-dimensional Edwards model. Any reasonable definition of H̃ should give an infinite value,
but it is possible to define, for all n ≥ 0, a finite random variable H̃n interpreted as follows:

H̃n :=

∫
R(n)

δ(Xs −Xu)

|s− u|(3−d)/2
ds du,

where R(n) is the set of (s, u) ∈ [0, t] × [0, t] such that the n + 1 first binary digits of s/t and u/t
do not all coincide. For n increasing to infinity, R(n) increases to a set containing almost every
element of [0, t]× [0, t]. Moreover, one can show that H̃n has negative exponential moments of any
order: one can define a sequence of measures Q̃n by

Q̃n :=
exp

(
−βH̃n

)
EP

[
exp

(
−βH̃n

)] · P.
Since H̃n looks like an approximation of H̃, it is natural to expect that Q̃n converges, in a certain
sense, to a limit measure which can be taken for Q̃ and which should define the modified Edwards
model in dimension one or two. The main result of [36], Chap. 5 is the proof that such a convergence
takes place:

Theorem 1.3 For m ≥ 0, let Fm be the σ-algebra generated by the random variables Xkt/2m, for

k ∈ {1, 2, . . . , 2m}. For fixed t, if β > 0 is small enough, there exists a unique measure Q̃ on
C([0, t],Rd) such that for all m ≥ 0, and Λm ∈ Fm,

Q̃n(Λm) −→
n→∞

Q̃(Λm).

Moreover, the measures Q̃ obtained for different values of β are pairwise singular, and they are
singular with respect to the Wiener measure.
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The type of convergence involved in this result is similar to the convergence considered by Roynette,
Vallois and Yor, except that the canonical filtration (Ft)t≥0 of C(R+,Rd) is replaced by the ”dyadic
filtration” (Fm)m≥0 of C([0, t],Rd).

We do not know whether the measure Q̃ exists for any β > 0 but conjecture that the answer is
positive, similarly to the case of the three-dimensional Edwards model. It would be interesting to
obtain some information on the canonical trajectory under Q̃, in particular on its self-intersections.
It is known (see Zhou [80]) that for the three-dimensional Edwards model, the fractal dimension
of the double points is the same as under the Wiener measure, and we expect that the situation is
similar for our model in dimension one or two. In particular, even if we obtain singular measures
with respect to the Wiener measure, we do not expect to avoid the self-intersections in a really
significant way.

Another perspective of research would be the study of a penalization informally given by the
hamiltonian

Hα :=

∫ t

0

∫ t

0

δ(Xs −Xu)

|s− u|α
ds du,

for more general values of α. We do not know what happens in this general case, but we suppose
that there exist critical values for α: for example, Varadhan renormalization should be sufficient
to construct the model if and only if α < (3 − d)/2. It may also be possible to construct, as
in dimension one, a version of the two- or three-dimensional Edwards model defined on the space
C(R+,Rd) of infinite trajectories, by proving that the measures associated to the finite-time versions
of the Edwards model converge, in the sense of Roynette, Vallois and Yor, when the length of the
trajectories goes to infinity. Such a measure may give some information about the long-term
behavior of the Edwards model, which is unknown for the moment. It is conjectured that under
the Edwards model on C([0, t],Rd), the expectation of ||Xt|| is equivalent to a constant times tγ(d),
where γ(2) = 3/4 and γ(3) is approximately equal to 0.588.

2 A universal measure related to Brownian penalization, and its
generalizations

As written previously, it has been observed that many different examples of penalization give a
limit measure when the time parameter goes to infinity. For the moment, we do not know whether
it is possible to obtain a really universal result which would explain this phenomenon for all the
examples studied up to now. However, it is possible to unify in a single setting a large class of
examples where the Wiener measure is penalized by a functional of the local times. The main topic
of the current section is to present a still more general result, gathering all the penalization weights
which satisfy some conditions of domination, stated below. In each of the examples covered by this
framework, the limit measure is absolutely continuous with respect to a universal σ-finite measure
W on the space C(R+,R), deeply related to the Bessel process of dimension three. After describing
this measure, we will show that one can construct similar measures in relation with the following
processes: the Brownian motion in dimension two, a certain class of linear diffusions, and a certain
class of discrete Markov processes. The main results of this section come from our monograph with
Roynette and Yor [48].
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2.1 The one-dimensional Brownian setting

A possible way to construct the measure W is to start from a particular example of Brownian
penalizations, originally studied by Roynette, Vallois and Yor in [61]. This example is related to
the Feynman-Kac formula, recently studied in a quite similar point of view by Lörinczi, Hiroshima
and Betz [31].

One obtains a remarkable phenomenon: all the limit measures obtained in the corresponding
framework are absolutely continuous with respect to each other. More precisely, the following result
holds:

Theorem 2.1 Let P be the Wiener measure on C(R+,R), and let V be a measurable function from
R to R+ such that 0 <

∫∞
−∞(1 + |y|)V (y)dy <∞. Then, for t ≥ 0 going to infinity, the measure

Q(V )
t :=

exp
(
−
∫ t

0 V (Xs) ds
)

EP

[
exp

(
−
∫ t

0 V (Xs) ds
)] · P

converges, in the usual sense of penalization, to a limit measure Q(V ). Moreover, the equivalence
class of Q(V ) does not depend on the choice of the function V : there exists a σ-finite measure W
on C(R+,R), independent of V , singular with respect to P, with infinite total mass, and such that

W
(∫ ∞

0
V (Xs) ds =∞

)
= 0,

0 <W
[
exp

(
−
∫ ∞

0
V (Xs) ds

)]
<∞

and

Q(V ) =
exp

(
−
∫∞

0 V (Xs) ds
)

W
[
exp

(
−
∫∞

0 V (Xs) ds
)] ·W.

The measure W defined by this theorem is infinite: in particular, it is not a probability measure.
Because of this fact, W enjoys some properties which may first look surprising: for example, for
all s ≥ 0 and Λs ∈ Fs := σ{Xu, u ≤ s}, the quantity W(Λs) is infinite if P(Λs) > 0, and it is
equal to zero if P(Λs) = 0. Consequently, any set with nontrivial measure should involve the whole
canonical trajectory (Xt)t≥0.

The definition of W given above is not the only one which can be stated: several properties of
W can be used to characterize the measure, and some of them may show more clearly its universal
properties.

Theorem 2.2 The measure W is the unique σ-finite measure on C(R+,R) enjoying the following
properties:

• The supremum g of the values of t ≥ 0 such that Xt = 0 is finite, W-almost everywhere.

• For all t ≥ 0, and for all bounded, Ft-measurable random variables Ft,

W[Ft1g≤t] = EP[Ft|Xt|]
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Moreover, W can be disintegrated with respect to L∞, the total local time at zero (which is finite
W-almost everywhere):

W =

∫ ∞
0

W`d`,

where W` is a probability measure under which the local time at zero is almost surely equal to `.
This probability measure can be defined as follows:

• One denotes by (Yt)t≥0 the standard Brownian motion, and τ` its inverse local time at `, for
the level zero.

• One denotes by (Zt)t≥0 an independent Bessel process of dimension three.

• One denotes by ε an independent symmetric Bernoulli random variable.

• Then, W` is the law of a process (Ut)t≥0 obtained by concatenation of (Yt)t≤τ` and (εZt)t≥0:
Ut = Yt if t ≤ τ` and Ut = εZt−τ` if t ≥ τ`.

There exists also a disintegration of W with respect to g, the last hitting time of zero:

W =

∫ ∞
0

W(v) dv√
2πv

,

where W(v) is a probability measure under which g = v almost surely. The measure W(v) can
be defined as the law of the concatenation of a Brownian bridge on the interval [0, v], and an
independent process with the same law as (εZt)t≥0.

The two disintegrations of W given in this theorem have, in particular, the following consequences:

Corollary 2.3 Almost everywhere under W, the canonical process tends either to +∞ or to −∞.
The image measure of W by the total local time of (Xt)t≥0 at zero is equal to the Lebesgue masure
on R+, and the image of W by the last hitting time of zero has, at v ∈ R+, a density 1/

√
2πv with

respect to the Lebesgue measure on R+.

Note that the range of the trajectory (Xt)t≥0 is W-almost everywhere an interval of the form
[a,+∞) for a ≤ 0 or (−∞, a] for a ≥ 0. There also exists a disintegration of W with respect to the
bound a, which can be viewed as a dual form of the disintegration with respect to the local time.
This duality can be related to Levy’s equivalence theorem which links the supremum and the local
time of a Brownian motion.

The following result shows another deep link between the measure W and the Wiener measure
P. The intuitive meaning is that the behaviors of P and W cannot be distinguished when we only
look at a finite part of the trajectories.

Theorem 2.4 Let t ≥ 0, let Pt be the Wiener measure on C([0, t],R+), and let Φ be the application
from C([0, t],R) × C(R+,R) to C(R+,R) such that Φ((Xs)s≤t, (Yu)u≥0) = (Zu)u≥0 where Zu = Xu

for u ≤ t and Zu = Xt + (Yu−t − Y0) for u ≥ t. Then, the image of Pt ×W by Φ is equal to W.

Informally, one obtains a process following the σ-finite measure W by concatening a Brownian
motion stopped at a given time, and an ”independent” process following W (of course, to give a
meaning to this description, one has to take care of the fact that W is not a finite measure, and in
particular, not a probability measure). Note that this result is also true if we replace the measure
W by any linear combination of the three following measures:
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• The Wiener measure P.

• The restriction of W to the trajectories tending to +∞ at infinity.

• The restriction of W to the trajectories tending to −∞ at infinity.

We do not know if there are other σ-finite measures enjoying this property.
As stated in Theorem 2.1, a large class of limit measures obtained by penalization are absolutely

continuous with respect to W. This result can be deeply extended, as follows. Let (Γt)t≥0 be a
family of functionals from C(R+,R) to R+. We say that (Γt)t≥0 is in the class C when the following
holds:

• For all t ≥ 0, Γt is Ft-measurable.

• Γ0 is equal to a deterministic constant C > 0, and (Γt)t≥0 is a decreasing process: in particular,
0 ≤ Γt ≤ C.

• There exists a ≥ 0 such that for every t ≥ σa, with

σa := sup{t ≥ 0, |Xt| ≤ a},

we have Γt = Γσa = Γ∞.

• 0 <W(Γ∞) = W(Γσa) <∞.

Note that the class C is very large. For example, let La1t , L
a2
t , . . . , L

ar
t denote the local times at time

t and at fixed levels a1, . . . , ar, let V1, . . . , Vp be bounded, measurable functions from R to R, with
compact support, and let St be the supremum of (Xs)s≤t. If φ is a Borel function from Rr+p+1 to
R+, decreasing in each of its arguments, equal to zero if the last argument is large enough, and
strictly positive at (ε, ε, . . . , ε) for ε > 0 small enough, then the family (Γt)t≥0 of functionals defined
by

Γt := φ

(
La1t , L

a2
t , . . . , L

ar
t , exp

(
−
∫ t

0
V1(Xs) ds

)
, . . . , exp

(
−
∫ t

0
Vp(Xs) ds

)
, St

)
is in the class C. Therefore, the class C includes several examples of penalization discussed be-
fore, which look very different from each other: penalization by a functional of the local times,
penalization by the function of the unilateral supremum, Feynman-Kac penalization studied by
Roynette, Vallois and Yor in [61], etc. However, the technical conditions involved are generally
more restrictive in the framework of the class C than in the separate study of each particular case
(for example, contrarily to the setting of [61], V1, . . . , Vp need to have a compact support in order
to give a functional in the class C). Moreover, there are also penalization weights which do not
enter at all in the present setting, and for which the limit measure is not absolutely continuous
with respect to W. For example, it is the case when we penalize with Γt = eγLt for γ > 0, and even
if we have not yet found a rigorous proof, we expect that it is also the case for the one-dimensional
Edwards model:

Γt := exp

(
−β
∫ ∞
−∞

(Lyt )
2dy

)
.

The main penalization result of [48] is the following:
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Theorem 2.5 Let (Γt)t≥0 be a family of functionals in the class C. Then, the family (Qt)t≥0 of
probability measures given by

Qt :=
Γt

EP[Γt]
· P

converges to a limit measure Q in the sense of penalization. Moreover, Q is absolutely continuous
with respect to W: more precisely, one has

Q =
Γ∞

W[Γ∞]
·W.

The fact that such a large class of penalization results involves the same measure W explains
some similarities which were not clearly explained before: for example, the intervention of the
Bessel process of dimension 3 in the description of several limiting processes previously obtained
by Roynette, Vallois and Yor.

Because of our general penalization result, it is interesting to obtain some information about
the finite measures (in particular the probability measures) which are absolutely continuous with
respect to W. The following theorem gives some of their properties:

Theorem 2.6 Let Γ be a functional from C(R+,R) to R+, integrable with respect to W. Then,
W(Γ) := Γ.W is a finite measure on C(R+,R), and it is a probability measure if and only if W[Γ] = 1.
Moreover, there exists a nononegative (P, (Ft)t≥0))-martingale (Mt(Γ))t≥0 such that Mt(Γ) is the
density, with respect to P, of the restriction of W(Γ) to the σ-algebra Ft. In other words, for all
t ≥ 0, and for all bounded, Ft-measurable functionals Ft, one has:

W(Γ)[Ft] = W[Γ · Ft] = EP[Mt(Γ) · Ft].

The martingale (Mt(Γ))t≥0 tends P-almost surely to zero when t goes to infinity: in particular, it
is not uniformly integrable.

Note that there exist some functionals Γ for which the martingale (Mt(Γ))t≥0 can be explicitly
computed. For example, in relation with the penalization by a function of the supremum, studied
in [60], one can prove that

Mt(Γ) = ψ(St)(St −Xt) +

∫ ∞
St

ψ(y) dy,

if Γ = ψ(S∞)1S∞<∞, for an integrable function ψ from R+ to R+. One obtains similar results with
other examples of penalization.

2.2 The two-dimensional Brownian setting

In [63], Roynette, Vallois and Yor study some examples of Brownian penalizations in dimension
larger than or equal to 2. One of the important examples is the analog in dimension 2 of the
Feynman-Kac penalizations studied in [61]. Similarly to the one-dimensional case, the following
result holds:

Theorem 2.7 Let P(2) be the Wiener measure on C(R+,R2), and let V be a measurable function
from R2 to R+, bounded, with compact support and such that

∫
R2 V (y)dy > 0. Then, for t ≥ 0

19



going to infinity, the measure

Q(V )
t :=

exp
(
−
∫ t

0 V (Xs) ds
)

EP(2)

[
exp

(
−
∫ t

0 V (Xs) ds
)] · P(2)

converges, in the usual sense of penalization, to a limit measure Q(V ). Moreover, the equivalence
class of Q(V ) does not depend on the choice of the function V : there exists a σ-finite measure W(2)

on C(R+,R2), independent of V , singular with respect to P(2), with infinite total mass, and such
that

W(2)

(∫ ∞
0

V (Xs) ds =∞
)

= 0,

0 <W(2)

[
exp

(
−
∫ ∞

0
V (Xs) ds

)]
<∞

and

Q(V ) =
exp

(
−
∫∞

0 V (Xs) ds
)

W(2)
[
exp

(
−
∫∞

0 V (Xs) ds
)] ·W(2).

The definition of W(2) deduced from this theorem is, as in dimension one, strongly depending on a
particular family of penalization weights. It is then interesting to find a more intrinsic definition.
The characterization given at the beginning of Theorem 2.2 can be generalized in dimension 2, as
follows:

Theorem 2.8 The measure W(2) is the unique σ-finite measure on C(R+,R2) enjoying the follow-
ing properties:

• The supremum g of the values of t ≥ 0 such that ||Xt|| ≤ 1 is finite, W(2)-almost everywhere.

• For all t ≥ 0, and for all bounded, Ft-measurable random variables Ft,

W[Ft1g≤t] =
1

π
EP[Ft log+(||Xt||)],

where log+ denotes the positive part of the logarithm.

Note that the circle of center zero and radius one plays a particular role in Theorem 2.8. This
partially comes from the arbitrary choice of g.

There also exists a path description of the measure W(2), obtained by splitting the trajectory
into two pieces: before and after time g. However, this description is more difficult to state than
its equivalent in dimension one, given in Theorem 2.2. We need to define the following objects: the
local time at the unit circle, its right-continuous inverse, and a two-dimensional random process
(Vt)t≥0, playing a similar role as the signed three-dimensional Bessel process (εZt)t≥0 in dimension
one (see Theorem 2.2).

For t ∈ R+ or t = +∞, the local time (L
(C)
t )t≥0 at the unit circle is defined as follows:

L
(C)
t = lim

ε→0

1

2πε

∫ t

0
11−ε≤||Xs||≤1+εds,
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if the corresponding limit exists (P(2)-almost surely and W(2)-almost everywhere, it is the case for

all t ∈ R+). The right-continuous inverse of L
(C)
t is given by (τ

(C)
` )`≥0, where

τ
(C)
` := inf{t ≥ 0, L

(C)
t > `}.

The process (Vt)t≥0 is constructed as follows:

• One considers a Brownian motion (Bu)u≥0 and an independent three-dimensional Bessel pro-
cess (Zu)u≥0.

• One defines the clock process (Ht)t≥0 by

Ht := inf{u ≥ 0,

∫ u

0
e2Zsds = t}.

• Then, by identifying R2 with C, one can define:

Vt = exp(ZHt + iBHt).

Now, it is possible to give a full analog of Theorem 2.2:

Theorem 2.9 The measure W(2) can be disintegrated with respect to L
(C)
∞ , the total local time at

the unit circle, which is, W(2)-almost everywhere, finite and well-defined:

W(2) =

∫ ∞
0

W(2)
` d`,

where W(2)
` is a probability measure under which the local time is almost surely equal to `. This

probability measure can be defined as follows:

• One considers the two-dimensional process (Vt)t≥0, whose law is described just above.

• One denotes by (Yt)t≥0 an independent standard, two-dimensional Brownian motion, and τ
(C)
`

its inverse local time at `, on the unit circle.

• Then, W(2)
` is the law of a process (Ut)t≥0 obtained from a concatenation of (Yt)t≤τ (C)

`

and

(Vt)t≥0: Ut = Yt if t ≤ τ (C)
` and by identifying R2 and C, Ut = Y

τ
(C)
`

V
t−τ (C)

`

if t ≥ τ`.

There exists also a disintegration of W(2) with respect to g, the last hitting time of the unit circle:

W(2) =

∫ ∞
0

W(2,v) e
−1/v

2πv
dv,

where W(2,v) is a probability measure under which g = v almost surely. The measure W(2,v) can be
defined as follows:

• One considers the process (Vt)t≥0 above.

• One takes an independent uniform variable u on the unit circle.
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• One defines an independent two-dimensional Brownian bridge (Ps)s≤v of duration v, starting
at 0 and ending at 1.

• Then, W(2,v) is the law of a process (Ut)t≥0 such that Ut = uPt for t ≤ v, and Ut = uVt−v for
t ≥ v.

Similarly to the one-dimensional setting, there are strong links between the measure W(2), the
Wiener measure P(2) and a particular class of martingales. By doing some straightforward changes,
one can state analogs of Theorem 2.4 and Theorem 2.6. It is also natural to expect that there exists
a general penalization result similar to Theorem 2.5, even if this problem has not been studied in
detail.

2.3 The setting of linear diffusions

In the one-dimensional Brownian setting, the measure W can be constructed, by concatenation,
from a Brownian motion and a Bessel process of dimension 3. This Bessel process can be informally
interpreted as a Brownian motion conditioned not to reach zero: of course, such a conditioning
is not rigorous since the corresponding event has probability zero. One may now ask if such a
construction can be adapted to a more general class of one-dimensional processes, which can be
informally conditioned not to vanish, and for which the local time at zero is well-defined.

The setting studied in [48] was first stated by Salminen, Vallois and Yor in [65]. It can be
described as follows:

• One considers, for all x ∈ R+, a measure Px on the space C(R+,R+), under which the canonical
process (Xt)t≥0 is a linear diffusion starting from x (note that here, all the trajectories take
nonnegative values).

• One supposes that zero is an instantaneously reflecting barrier for this diffusion, whose in-
finitesimal generator G is given, for y > 0, by the formula

Gf(y) =
d

dm

d

dS
f(y),

where the scale function S is a continuous, strictly increasing function from R+ to R+, such
that S(0) = 0 and S(y) → ∞ when y → ∞, and where the speed measure m is carried by
R∗+.

• The semi-group of the diffusion admits a density with respect to the measure m: for t, x, y > 0,

Px(Xt ∈ dy) = p(t, x, y)m(dy),

where p is continuous with respect to the three variables, and symmetric in the two last
variables (p(t, x, y) = p(t, y, x)). One also defines the semi-group p̂ of the diffusion killed at
its first hitting time of zero:

Px(Xt ∈ dy,∀s ≤ t,Xs > 0) = p̂(t, x, y)m(dy).

• Almost surely under Px, one can define a jointly continuous family (Lyt )t≥0,y≥0 of local times
of (Xt)t≥0, satisfying the density occupation formula: for all Borel functions h from R+ to
R+, and for all t ≥ 0, ∫ t

0
h(Xs)ds =

∫ ∞
0

h(y)Lytm(dy).
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• Focusing on the level zero and setting Lt := L0
t , one can show that (S(Xt) − Lt)t≥0 is a

martingale under Px, and one can define the right-continuous inverse local time (τ`)`≥0 at
level zero by

τ` := inf{t ≥ 0, Lt > `}.

From the probability measures (Px)x∈R+ given here, it is then possible to construct another family
of measures (P+

x )x∈R+ , informally by conditioning with the event that the trajectories do not vanish.
The rigorous construction is obtained as follows:

• For x > 0, P+
x is obtained from Px by killing the trajectories when they reach zero, and then

by making a Doob h-transform with the scale function S: for all t ≥ 0 and for any bounded,
Ft-measurable functional Ft,

P+
x [Ft] =

1

S(x)
EPx [FtS(Xt)1∀s≤t,Xs>0] .

• For t, x > 0, the law of Xt under P+
x has density y 7→ p+(t, x, y) with respect to the speed

measure m, where

p+(t, x, y) =
S(y)

S(x)
p̂(t, x, y)

• The function p+, defined for t, x > 0 and y ≥ 0, can be extended to the case x = 0 by
continuity, which defines the semi-group of a diffusion, whose law is equal to P+

x for x > 0.

• The measure P+
0 is then defined by starting this diffusion at level zero.

Similarly to the description of the measure W given in Theorem 2.2, one can construct a σ-finite
measure on C(R+,R+) from the measures P0 and P+

0 , by concatenation of the trajectories. One
obtains the following result:

Theorem 2.10 There exists a unique σ-finite measure W0 on C(R+,R+) which satisfies the fol-
lowing properties:

• The supremum g of the values of t ≥ 0 such that Xt = 0 is finite, W0-almost everywhere.

• For all t ≥ 0, and for all bounded, Ft-measurable random variables Ft,

W0[Ft1g≤t] = EP0 [FtS(Xt)].

Moreover, W0 can be disintegrated with respect to L∞, the total local time at zero (which is finite
W0-almost everywhere):

W0 =

∫ ∞
0

W0,`d`,

where W0,` is a probability measure under which the local time at zero is almost surely equal to `.
This probability measure is the law of a process obtained by concatenation of a diffusion with law
P0, stopped at the inverse local time τ`, and an independent diffusion with law P+

0 .
There exists also a disintegration of W0 with respect to g, the last hitting time of zero:

W0 =

∫ ∞
0

W(v)
0 p(v, 0, 0) dv,
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where W(v)
0 is a probability measure under which g = v almost surely. If P(v)

0 is the law of the
bridge of P0 on the interval [0, v] (informally, a process with law P0, stopped at v and conditioned
to vanish at this time), then the measure W(v) can be defined as the law of the concatenation of two

independent processes with respective distributions P(v)
0 and P+

0 .

The relation between W0 and P0 is similar to the relation between W and the Wiener measure
on C(R+,R). Note that by translating the canonical trajectory, one obtains, from W, a family of
σ-finite measures, each of them starting from a different point of R. In the present situation, one
can also obtain an analog of W0 which starts at any point x ∈ R+, but the construction is slightly
more difficult than for the Brownian setting, since the semi-group of the diffusion is not invariant
by translation.

Theorem 2.11 For all x ∈ R, there exists a unique σ-finite measure Wx on C(R+,R+) which
satisfies the following properties:

• The supremum g of the values of t ≥ 0 such that Xt = 0 is finite, Wx-almost everywhere.

• For all t ≥ 0, and for all bounded, Ft-measurable random variables Ft,

Wx[Ft1g≤t] = EPx [FtS(Xt)]

One has the disintegration:

Wx = S(x)P+
x +

∫ ∞
0

Wx,` d`,

where Wx,` is the law of the concatenation of a process with law Px, stopped at its first hitting time
of zero, and an independent process with law W0,`.

The fact that one can construct a measure Wx for all x ≥ 0 is important, since it allows to state
an analog of Theorem 2.4, proving that Wx looks like Px if we only consider the beginning of the
trajectories. The following result can be deduced from the characterization of Wx given in Theorem
2.11:

Theorem 2.12 Let x ≥ 0, t > 0, and for y > 0, let P(t)
x,y be the law of the bridge of Px with

duration t and terminal value Xt = y. Then, one can disintegrate Wx with respect to the value of
Xt:

Wx =

∫ ∞
0

W(t)
x,y p(t, x, y) dy,

where W(t)
x,y is obtained from P(t)

x,y and Wy by concatenation of the trajectories.

Intuitively, the meaning of Theorem 2.12 is the following: one obtains Wx by concatenation of a
diffusion of law Px stopped at time t, and a trajectory ”following the measure WXt” (of course,
this last expression is informal).

One can also relate the measures (Wx)x≥0 to a certain class of martingales, as in Theorem 2.6,
and to penalization results. However, we have not proven a really general theorem of penalization
which can be applied to the present setting.

On the other hand, there are some examples of diffusions which are studied in detail in [48].
The first one corresponds to the case where Px is the law of a Bessel process of dimension d, for
0 < d < 2. Under these assumptions, one obtains, for P+

x , a Bessel process of dimension 4 − d. If
d = 1, one recovers the Brownian setting, after taking absolute values everywhere (recall that one
only considers trajectories in C(R+,R+)). It is also possible to do some explicit computation in the
case where Px is the law of a stable process.
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2.4 The Markov chains setting

In this last setting, we focus our study on discrete processes. This restriction allows to start from a
very large class of recurrent Markov chains, whereas the previous constructions of universal σ-finite
measures were only concerning very particular stochastic processes (Brownian motion and linear
diffusions). The intuitive meaning of the σ-finite measures we will construct is the following: in a
sense which has to be made precise, we ”condition recurrent Markov chains to become transient”.
This point of view was also previously available: for example, the measure W can be considered as
the ”law” of a Brownian motion ”conditioned to tend to +∞ or −∞ at infinity” (for a discussion
on this point of view, and more generally, on the main properties of the linear diffusions, see Knight
[28]).

In order to be more precise, let us define rigorously the objects studied here, as in [48]. We denote
by E a countable set, (Xn)n≥0 the canonical process on EN, (Fn)n≥0 its natural filtration, and F∞
the σ-algebra generated by (Xn)n≥0. We define the family (Px)x∈E of probability measures on EN

corresponding to a Markov chain whose transition probabilities are denoted py,z for all y, z ∈ E.
The only assumptions made on these probability measures are the following:

• For all x ∈ E, the set of y ∈ E such that px,y > 0 is finite, i.e. the graph associated to the
Markov chain is locally finite.

• For all x, y ∈ E, there exists n ≥ 0 such that Px(Xn = y) > 0, i.e. the graph of the Markov
chain is connected.

• For all x ∈ E, the canonical process is recurrent under Px.

In order to ”condition Px so that (Xn)n≥0 becomes transient”, we need to consider some kind of h-
transforms of the Markov chain, as in the examples studied above: the Bessel process of dimension
3 can be deduced from a Brownian motion by a h-transform, and there exists a similar link between
Px and P+

x in the setting of linear diffusions. The first step of our construction is to fix a function
which is nonnegative, and harmonic everywhere except at one particular point. More precisely, we
consider a point x0 and a function φ from E to R satisfying the following conditions:

• φ(x) ≥ 0 for all x ∈ E, φ(x0) = 0, and φ is not identically zero.

• For all x 6= x0,
∑

y∈E px,y φ(y) = EPx [φ(X1)] = φ(x).

The equivalent of the function φ in the one-dimensional Brownian setting is the absolute value, and
in the setting of linear diffusions, it is the scale function S. Note that there is no reason for φ to
be unique, even up to a multiplicative constant.

For a given choice of φ, we can now construct a family (Qx)x∈E of σ-finite measures, which
will enjoy similar properties as the measures (Wx)x∈E constructed above in the setting of linear
diffusions. The measure Qx is carried by the trajectories starting at x. The construction can be
made in the following way:

• For r ∈ (0, 1), one defines a function ψr from E to R+ by

ψr(x) :=
r

1− r
EPx0 [φ(X1)] + φ(x).

25



• For y ∈ E and k ≥ −1, one defines the local time Lyk at point y and time k by

Lyk :=
∑

0≤m≤k
1Xm=y,

in particular Ly−1 = 0 and Ly0 = 1X0=y.

• For every x ∈ E, the process
(
ψr(Xn) rL

x0
n−1

)
n≥0

is a martingale under Px, and one can

construct a finite measure µ
(r)
x such that the density, with respect to Px, of its restriction to

Fn is equal to ψr(Xn) rL
x0
n−1 .

• The total local time Lx0∞ of the canonical process is finite, µ
(r)
x -almost everywhere, and then

one can define a σ-finite measure Q(r)
x by

Q(r)
x := r−L

x0∞ · µ(r)
x .

• The measure Q(r)
x is independent of the choice of r ∈ (0, 1) made above, and then for all

x ∈ E, one can state Qx := Q(r)
x .

With the construction presented here, it is not clear that Qx enjoys the same properties as the σ-
finite measures constructed previously. The following result proves the similarity of the situations:

Theorem 2.13 For n ≥ 0, let Fn be a bounded, Fn-measurable functional, and let gx0 be the last
hitting time of x0 by the canonical process. Then, for all x ∈ E, the measure Qx satisfies the
following equality:

Qx

[
Fn 1gx0<n

]
= EPx [Fn φ(Xn)] .

Moreover, the random time gx0 is finite, Qx-almost everywhere: more generally, the canonical
process is transient under Qx.

It is also possible to describe the canonical process under Qx by splitting the trajectory at time gx0 ,
and by disintegrating the measure with respect to the total local time at x0. The decomposition
which is obtained involves the three following measures:

• The restriction Q[x0]
x of Qx to the trajectories which do not hit x0.

• The restriction Q̃x0 of Qx0 to the trajectories which do not return to x0.

• For k ≥ 1, the law Pτ
(x0)
k
x of a Markov chain which follows Px, and which is stopped at the

k-th hitting time of x0.

With this notation, we obtain the following result:

Theorem 2.14 One can write the measure Qx as a sum of finite measures:

Qx =
∑
k≥0

Qx,k,

where the total local time at x0 is, for all k ≥ 0, equal to k, Qx,k-almost everywhere. Moreover,

Qx,0 = Q[x0]
x and for all k ≥ 1, Qx,k is the image of Pτ

(x0)
k
x × Q̃x0 by the concatenation of the

canonical trajectories.
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Similarly to the previous cases (see Theorems 2.4 and 2.6), there are some direct links between
(Qx)x∈E , (Px)x∈E and a particular class of martingales. In the present setting, the main result is
the following:

Theorem 2.15 Let Γ be a nonnegative, F∞-measurable functional, integrable with respect to Qx

for all x ∈ E. For y0, . . . , yn ∈ E, let us define the quantity

M(Γ, y0, . . . , yn) := Qyn [Γ(y0, y1, . . . , yn = X0, X1, X2, . . . )].

Then, for all x ∈ E, n ≥ 0, and for every bounded, Fn-measurable functional Fn, one has

Qx[Γ · Fn] = EPx [M(Γ, X0, . . . , Xn) · Fn],

where (M(Γ, X0, . . . , Xn))n≥0 is a Px-martingale.

As we have seen before, the family (Qx)x∈E of σ-finite measures depends on the choice of a point
x0 ∈ E and a function φ. In fact, the choice of x0 is not so important as it may seem at first
sight. Indeed, if we consider any point y0 ∈ E, and if we define the function φ[y0] from E to R+ by
φ[y0](x) := Qx(Ly0∞ = 0), then our construction can be made by taking the point y0 and the function
φ[y0], instead of the point x0 and the function φ, and the σ-finite measures which are obtained in
this way are not changed. Note also that if we take y0 = x0, the function φ[x0] is precisely equal to
φ: in other words, φ(x) = Qx(Lx0∞ = 0).

In [48], we detail several examples for which the construction described above can be applied:

• The standard random walk, which gives a discrete version of the measure W: in fact, we
can take two linearly independent choices for the function φ, giving two families of σ-finite
measures for which the canonical trajectory tends respectively to +∞ and −∞.

• A random walk on the set of nonnegative integers, which is attracted by zero as soon as it
becomes strictly positive: in this case, the attraction becomes a repulsion when Px is changed
to Qx.

• A random walk on an infinite binary tree, for which one can obtain many different families of σ-
finite measures (Qx)x∈E , depending on the choice of the function φ. The linearly independent
families we have found are indexed by the leaves of the tree, which form an uncountable set.

We have also been able to construct (Qx)x∈E when (Px)x∈E corresponds to the standard random
walk on Z2.

3 A universal measure for general submartingales of class (Σ)

In the previous section, we have observed that, as studied in detail in [48], the same kind of σ-
finite measures can be constructed in several contexts, some of them looking very different from
each other. However, we still do not have a global result which explains simultaneously all the
constructions described above. Moreover, there are other situations for which we expect that
similar constructions are possible, even if we do not know how to deal with all the technical details:
for example, if one starts with a general Markov process in continuous time.

In all the situations for which we are able to construct ”universal σ-finite measures”, we have
observed that these measures are strongly related to a certain class of martingales. Because of this
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observation, it is natural to expect that a generalization of our previous results is possible if we
focus on a class of stochastic processes which has some suitable links with the martingale property.

The processes which are mainly studied in this section are the so-called submartingales of class
(Σ). Their definition has been first stated by Yor in [79], and most of its main properties, which
play an essential role in our work, are studied by Nikeghbali in [50].

Definition 3.1 Let (Ω,F , (Ft)t≥0,P) be a filtered probability space. A nonnegative submartingale
(Xt)t≥0 is of class (Σ) if and only if it can be decomposed as Xt = Nt + At, where (Nt)t≥0 and
(At)t≥0 are (Ft)t≥0-adapted processes satisfying the following assumptions:

• (Nt)t≥0 is a càdlàg martingale.

• (At)t≥0 is a continuous increasing process, with A0 = 0.

• The measure (dAt) is carried by the set {t ≥ 0, Xt = 0}.

In the sequel of this section, we will see that if some technical assumptions are satisfied, then one
can associate to any submartingale of class (Σ) a σ-finite measure Q which is related to the initial
probability measure P in the same way as the measure W above is related to the Wiener measure.

In order to define precisely the assumptions which are involved in our main result, we first
present a not very usual way to complete the filtrations, which solves some technical problems
related to the extension of probability measures and often neglected in the literature. Then, we
construct the σ-finite measure Q and we study some of its remarkable properties. At the end of
this section, we prove some penalization results, available in the present setting.

3.1 A new kind of augmentation of filtrations

If a stochastic process is defined on a filtered probability space (Ω,F , (Ft)t≥0,P) which does not
satisfy any technical assumption, then it is in general not possible to define a ”nice” version of
this process, satisfying some properties of regularity which turn to be useful for the applications.
For example, in general, the martingales do not admit a regular càdlàg version, and consequently,
if a Brownian motion is defined on the space C(R+,R) endowed with its uncompleted canonical
filtration, then it is not possible to define a version (Lt)t≥0 of its local time at level zero which is
both adapted and càdlàg everywhere.

For this reason, one generally considers spaces (Ω,F , (Ft)t≥0,P) which satisfy the so-called usual
assumptions, i.e. such that the following conditions are satisfied:

• For any P-negligible set A ∈ F , i.e. such that P(A) = 0, one has A ∈ F0, and then A ∈ Ft
for all t ≥ 0.

• The filtration is right-continuous, i.e. for all t ≥ 0, Ft = Ft+, where Ft+ =
⋂
s>tFs.

Moreover, if we start with a filtered probability space, it is always possible to transform it to a
space satisfying the usual assumptions, by performing the so-called usual augmentation, i.e. by
replacing, for all t ≥ 0, Ft by the filtration generated by Ft+ and the negligible sets of F .

However, the usual augmentation turns to cause some problems when we want to extend to the
whole σ-algebra F a consistent family of probability measures, defined on each of the σ-algebras
Ft for t ≥ 0. For example, let (Ω,F , (Ft)t≥0,P) be the usual augmentation of the space C(R+,R)
endowed with its canonical filtration and the Wiener measure. For t ≥ 0, let Qt be the probability
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measure on Ft, whose density with respect to the restriction of P to Ft is equal to eXt−t/2, where
X is the canonical process. The measures (Qt)t≥0 are compatible with each other, and under Qt,
(Xs)s≤t is a Brownian motion with drift one. Now, let us assume that this family of probability
measures can be extended to a measure Q defined on the whole σ-algebra F . If A is the event
that the canonical trajectory always stays above level −1, then A is P-negligible, hence in F0, and
therefore, Q-negligible since the restrictions of P and Q to F0 are equivalent. This contradicts the
fact that under Q, (Xt)t≥0 should be a Brownian motion with drift one.

With this example, we see that the usual augmentation is an inappropriate tool as soon as
one performs the simplest Girsanov transformation. The point is the following: when we complete
the filtration with all the P-negligible sets, we loose all information about any probability measure
which is singular with respect to P, even if its restriction to Ft is absolutely continuous. That is
why we need to consider a weaker augmentation, obtained by adding a smaller class of negligible
sets in a way which avoids simultaneously the two issues described above: it should be possible to
define regular versions of martingales, and also to extend compatible families of measures under
reasonably general conditions.

The augmentation which is used for this purpose was first introduced by Bichteler in [8], and
then studied in more detail in a joint work with Nikeghbali [46]. We say that a filtered probability
space (Ω,F , (Ft)t≥0,P) satisfies the natural conditions (or natural assumptions) if and only if the
following properties hold:

• For all t ≥ 0, and any P-negligible set A ∈ Ft, one has also A ∈ F0.

• The filtration (Ft)t≥0 is right-continuous.

Similarly to the case of the usual assumptions, one can construct the natural augmentation of any
filtered probability space (Ω,F , (Ft)t≥0,P), by first replacing Ft by Ft+ for all t ≥ 0, and then by
adding all the P-negligible sets of Fs to Ft, for all s, t ≥ 0.

The difference between the usual and the natural assumptions is that in the second case, the
only P-negligible events which are added in the σ-algebras depend only on the information available
in finite time, even if this time is a priori not bounded. In this way, for the example of Girsanov
transformation stated above, we can avoid to put in F0 an event like A, which directly depends on
the whole canonical trajectory, and then we have the possibility to define the measure Q without
the contradiction explained before. More precisely, the results of [46] can be summarized as follows:

• The most classical results in stochastic calculus which are usually proven under usual condi-
tions: existence of càdlàg versions of martingales, Doob-Meyer decomposition, début theorem,
etc., are in fact true if one only assumes natural conditions.

• Let us suppose that (Ω,F , (Ft)t≥0,P) is a filtered probability space and that any consistent
family (Qt)t≥0 of probability measures, Qt defined on Ft, can be extended to a probability
measure Q defined on F . Then, the same situation holds if (Ω,F , (Ft)t≥0,P) is replaced by
its natural augmentation, except that one needs to suppose that for all t ≥ 0, Qt is absolutely
continuous with respect to the restriction of P to Ft.

Because of the second point, it is important to construct some filtered spaces (Ω,F , (Ft)t≥0) for
which the extension of a consistent family of probability measures is always possible. Such condi-
tions, referred in [46] as property (P), have been already studied, in a slightly different form, by
Parthasarathy in [52]. Some particular examples of spaces satisfying property (P) are the following:
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• The space of continuous functions from R+ to Rd for d ≥ 1, endowed with its canonical
filtration.

• The space of càdlàg functions from R+ to Rd for d ≥ 1, endowed with its canonical filtration.

Now, we have all the technical tools needed to construct rigorously the σ-finite measure Q an-
nounced before.

3.2 The measure Q and its main properties

The σ-finite measure associated to a submartingale in the class (Σ) has been constructed and
studied in a series of papers with Nikeghbali (see [40], [41], [43], [45]). The techniques used in this
setting are very different from those involved in the results of Section 2: in particular, no Markov
or scaling property is needed for the stochastic processes which are considered.

Our main result can be stated as follows:

Theorem 3.2 Let (Xt)t≥0 be a submartingale of the class (Σ) defined on the natural augmentation
of a filtered probability space (Ω,F ,P, (Ft)t≥0) which satisfies the property (P). Then, there exists
a unique σ-finite measure Q, defined on (Ω,F ,P), such that for g := sup{t ≥ 0, Xt = 0}:

• Q[g =∞] = 0;

• For all t ≥ 0, and for all Ft-measurable, bounded random variables Ft,

Q [Ft 1g≤t] = EP [FtXt] . (2)

The link between the measure Q and the measure W constructed before is clear, especially if we
compare Theorem 3.2 to the first part of Theorem 2.2. The reason of this similarity is the fact
that under some technical assumptions, the absolute value of a Brownian motion is a class (Σ)
submartingale, and the local time at level zero is its increasing process: the measure W is, up to
technicalities, the measure Q associated to a reflected Brownian motion. Several particular cases
of Theorem 3.2 (which are not disjoint from each other) are studied in detail in [41]:

• The case where (Xt)t≥0 is the absolute value, or the positive part, of a continuous martingale.

• The case where (Xt)t≥0 is the draw-down of a martingale (Mt)t≥0 starting from zero and
without positive jumps, which means that for all t ≥ 0, Xt = sup{Ms, s ≤ t} −Mt.

• The case where (Xt)t≥0 is uniformly integrable. Under this assumption, Xt tends P-almost
surely to a limit X∞ when t goes to infinity, and Q = X∞ ·P. This result has essentially been
proven by Azéma, Meyer and Yor in [3].

If we do not take into account the problems related to the natural augmentation, the first particular
case essentially includes the measure W studied in Chap. 1 of [48], by taking, for (Ω,F , (Ft)t≥0,P),
the natural augmentation of C(R+,R) endowed with its canonical filtration and the Wiener measure,
and for (Xt)t≥0, the absolute value of the canonical process. Moreover, one can also consider, on
the same space, the draw-down of the canonical Brownian motion: in this case, one obtains another
σ-finite measure, which turns out to be equal to the restriction of W to the trajectories tending to
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−∞ at infinity. It is also possible to construct, with the help of Theorem 3.2, the σ-finite measures
introduced in Chap. 3 of [48], and associated to linear diffusions.

Let us notice that the measure Q has links with some problems in mathematical finance. For
example, the results obtained by Cheridito, Nikeghbali and Platen in [13] are directly related to
the construction of Q for the draw-down of the stock price, which turns out to be a martingale
under the risk-neutral probability measure. Another motivation in the study of the measure Q is
its relation with some results stated by Madan, Roynette and Yor in [32], and by Bentata and Yor
in [7], where the authors study the representation of the price of a European put option in terms of
the probability distribution of some last passage time. More precisely, they prove that if (Mt)t≥0 is
a continuous, nonnegative local martingale defined on a filtered probability space (Ω,F , (Ft)t≥0,P)
satisfying the usual assumptions, and such that Mt tends to zero when t tends to infinity, then
(K −Mt)+ = K P(gK ≤ t | Ft), where K ≥ 0 is a constant and gK = sup{t ≥ 0, Mt = K}. This
formula, which informally says that it is enough to know the terminal value of the submartingale
((K−Mt)+)t≥0 and its last zero gK to reconstruct it, is in fact equivalent to (2), for Xt = (K−Mt)+,
and Q = K · P. For this reason, the problem of the existence of Q under general assumptions was
already posed in [32] and [7]. Note that this motivation is not a priori related to the penalization
problems at the origin of the construction of W in [48].

Once the measure Q is constructed, it is natural to see which properties such a σ-finite measure
should enjoy. This is the main topic of [40], and its turns out that a part of the properties of the
σ-finite measures studied in [48] are also satisfied in the present setting. For example, there is an
analog of Theorem 2.6, which can be stated as follows:

Theorem 3.3 Let as suppose that the assumptions of Theorem 3.2 are satisfied, and let us take
the same notation. Let Γ be a Q-integrable, nonnegative functional defined on (Ω,F). Then, there
exists a càdlàg P-martingale (Mt(Γ))t≥0 such that the measure MΓ := Γ · Q is the unique finite
measure satisfying, for all t ≥ 0, and for all bounded, Ft-measurable functionals Ft:

MΓ[Ft] = P[Ft ·Mt(Γ)].

There are some cases where Mt(Γ) can be explicitly computed: for example, if Γ = f(A∞) where
f is an integrable function from R+ to R+, or if (Xt)t≥0 is a strictly positive martingale. An
interesting problem is to find the behavior at infinity of (Mt(Γ))t≥0. We are able to answer to this
question if A∞ = ∞, P-almost surely, and this condition is satisfied in the particular case where
(Xt)t≥0 is the absolute value of a Brownian motion and (At)t≥0 its local time at level zero. The
behavior of the martingale is in fact different under P and under Q:

Theorem 3.4 Let us assume the conditions of Theorem 3.2, let us suppose that A∞ =∞, P-almost
surely, and let Γ be a Q-integrable, nonnegative functional defined on (Ω,F). Then for t tending
to infinity:

• Almost surely under P, Mt(Γ) tends to zero.

• Q-almost everywhere, Xt tends to infinity and Mt(Γ)/Xt tends to Γ: in particular, Mt(Γ)
tends to infinity as soon as Γ > 0.

Remark 3.5 If Γ > 0, Q-almost everywhere (which, for example, occurs for Γ = e−A∞), then
the behaviors of (Xt)t≥0 under P and under Q are incompatible, which confirms the fact that the
measures P and Q are singular. Note that this fact is a direct consequence of the assumptions we
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made: by definition of Q, A∞ <∞, Q-almost everywhere, and by assumption, A∞ =∞, P-almost
surely.

Note that the martingales (Mt(Γ))t≥0 are involved in the following general theorem of decomposition
of the nonnegative supermartingales:

Theorem 3.6 Let us assume the conditions of Theorem 3.2, and let us suppose that A∞ = ∞,
P-almost surely. Let Z be a nonnegative, càdlàg P-supermartingale. We denote by Z∞ the P-almost
sure limit of Zt when t goes to infinity. Then, Q-almost everywhere, the quotient Zt/Xt is well-
defined for t large enough and converges, when t goes to infinity, to a limit z∞, integrable with
respect to Q, and (Zt)t≥0 decomposes as

(Zt = Mt(z∞) + P[Z∞|Ft] + ξt)t≥0 ,

where (P[Z∞|Ft])t≥0 denotes a càdlàg version of the conditional expectation of Z∞ with respect to
Ft, and (ξt)t≥0 is a nonnegative, càdlàg P-supermartingale, such that:

• Z∞ ∈ L1(F ,P), hence P[Z∞|Ft] converges P-almost surely and in L1(F ,P) towards Z∞.

• Q-almost everywhere, P[Z∞|Ft]/Xt and ξt/Xt tend to zero when t goes to infinity.

• P-almost surely, Mt(z∞) and ξt tend to zero when t goes to infinity.

This decomposition is strongly related to the decomposition of the probability measures on (Ω,F)
into three parts:

• A part which is absolutely continuous with respect to P.

• A part which is absolutely continuous with respect to Q.

• A part which is singular with respect to P and Q.

3.3 Some penalization results related to the measure Q

Since the measure Q enjoys similar properties as the σ-finite measures described in the previous
section and studied in [48], it is natural to look whether Q also has some link with penalization
problems. This question is studied in [39] and [40]. The general result obtained in [40] comes from
an estimate of the expectation of a suitable class of functionals, which can be stated as follows:

Theorem 3.7 Let us assume the conditions of Theorem 3.2, and let us suppose that A∞ = ∞,
P-almost surely. Let (Γt)t≥0 be a càdlàg, adapted, nonnegative process such that its limit Γ∞ exists
Q-almost everywhere. We assume that there exists a Q-integrable, nonnegative functional H, such
that for all t ≥ 0, one has ΓtXt ≤ Mt(H), P-almost surely, where (Mt(H))t≥0 is the martingale
introduced in Theorem 3.3. Then, Γ∞ is Q-integrable and

EP[ΓtXt] −→
t→∞

Q[Γ∞].

From this estimate, we can easily deduce a general penalization result:

32



Theorem 3.8 Let us assume the conditions of Theorem 3.2, and let us suppose that A∞ = ∞,
P-almost surely. Let (Γt)t≥0 be a càdlàg, adapted, nonnegative process such that its limit Γ∞ exists
Q-almost everywhere and is not Q-almost everywhere equal to zero. We assume that there exists a
Q-integrable, nonnegative functional H, such that for all t ≥ 0, one has ΓtXt ≤ Mt(H), P-almost
surely, where (Mt(H))t≥0 is the martingale introduced in Theorem 3.3. Then, for t sufficiently
large, 0 < EP[ΓtXt] <∞ and one can define a measure Qt by

Qt :=
ΓtXt

EP[ΓtXt]
· P.

Moreover, there exists a probability measure Q∞ such that for all s ≥ 0, and for all events Λs ∈ Fs,

Qt(Λs) −→
t→∞

Q∞(Λs).

The measure Q∞ is absolutely continuous with respect to Q:

Q∞ =
Γ∞
Q[Γ∞]

· Q

where 0 < Q[Γ∞] <∞.

It is quite satisfactory to get such a general result, but unfortunately, in the case where (Xt)t≥0 is the
absolute value of a Brownian motion, this theorem does not cover any of the classical examples of
penalizations studied by Roynette, Vallois and Yor. In order to deal with more classical penalization
weights, we need to restrict in an important way the class of processes (Xt)t≥0 which are considered.
This restriction is made in [39], where we only consider a certain class of linear diffusions, as in
[48], Chap. 3. The precise setting is the following:

• We define Ω := C(R+,R+), we denote by (F0
s )s≥0 the canonical filtration of Ω and by F0 the

σ-algebra generated by (F0
s )s≥0.

• We consider a probability measure P0 on (Ω,F0), under which the canonical process is a
recurrent diffusion in linear scale, starting from a fixed point x0 ≥ 0 and with zero as an
instantaneously reflected barrier.

• We suppose that the speed measure of this diffusion is absolutely continuous with respect to
the Lebesgue measure on R+, with a continuous density m : R∗+ → R∗+.

• We assume that m(x) is equivalent to cxβ when x goes to infinity, for some c > 0 and β > −1,
and we suppose that there exists C > 0 such that for all x > 0, m(x) ≤ Cxβ if β ≤ 0, and
m(x) ≤ C(1 + xβ) if β > 0.

• The filtered probability space (Ω,F , (Ft)t≥0,P) is defined as the natural augmentation of
(Ω,F0, (F0

t )t≥0,P0).

Under P, the canonical process (Xt)t≥0 is a diffusion in natural scale, and as in [48], Chap. 3, one
can show that (Xt)t≥0 is a class (Σ) submartingale, and that its increasing process is the local time
(Lt)t≥0 at level zero. Therefore, one can construct the σ-finite measure Q defined in Theorem 3.2.
The main penalization result proven in [39] is then the following:
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Theorem 3.9 We suppose that the filtered probability space (Ω,F , (Fs)s≥0,P), the diffusion process
X and the σ-finite measure Q are defined as above. Let (Γt)t≥0 be a process satisfying the following
properties:

• (Γt)t≥0 is nonnegative, uniformly bounded, nonincreasing, càdlàg and adapted with respect to
(Ft)t≥0.

• There exists a > 0 such that for all t ≥ 0, Γt = Γg[a] on the set {g[a] ≤ t}, where g[a] denotes
the supremum of s ≥ 0 such that Xs ≤ a.

• One has 0 < Q[Γ∞] < ∞, where Γ∞ denotes the nonincreasing limit of Γt when t goes to
infinity.

Then, for all t ≥ 0, 0 < EP[Γt] <∞ and one can define a probability measure Qt on (Ω,F) by

Qt :=
Γt

EP[Γt]
· P.

Moreover, the probability measure

Q∞ :=
Γ∞
Q[Γ∞]

· Q

is the weak limit of (Qt)t≥0 in the sense of penalization, i.e. for all s ≥ 0, and for any event
Λs ∈ Fs,

Qt[Λs] −→
t→∞

Q∞[Λs].

This result is essentially a generalization of Theorem 2.5, where the assumptions made on (Γt)t≥0

correspond to the class C. In particular, we recover some of the penalization results studied by
Roynette, Vallois and Yor.
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Part II

Some models of random matrices and their
infinite-dimensional extensions

Random matrix theory is a very large and rich mathematical subject, which has much developed
in the last decades, and which interconnects various parts of mathematics (e.g. complex analysis,
theory of representations, number theory) and theoretical physics (statistical physics, quantum
mechanics). The first results on the topic were obtained in 1928 by Wishart [77] in relation with
problems in statistics, and an intensive research began with the work of Wigner in the 1950s (see
[76]), on the energy levels of heavy nuclei: this research has taken many different directions, several
of them are discussed in a book by Mehta [33], and more recently, by Anderson, Guionnet and
Zeitouni [2].

Two of the most classical ensembles of random matrices are the following:

• The Gaussian Unitary Ensemble, corresponding to a random hermitian matrix, for which the
entries, on the diagonal and above, are independent and gaussian.

• The Circular Unitary Ensemble, corresponding to a random matrix following the Haar mea-
sure on a unitary group.

For these two models, some remarkable results have been proven on the local bahavior of the cor-
responding eigenvalues, when the dimension goes to infinity. These results involve a limiting point
process, called the determinantal sine-kernel point process, and informally described as follows: for
all integers p ≥ 1, and for all t1, . . . , tp ∈ R, the probability to have a point in the neighborhood of
tj for j ∈ {1, ..., p} is proportional to

ρ(t1, . . . , tp) := det(K(ti, tj))1≤i,j≤k,

where K is the function from R2 to R given by

K(x, y) =
sin(π(x− y))

π(x− y)
.

The determinantal sine-kernel process enjoys a property of universality: it appears as a limiting
point process for a large class of random matrix models. This situation looks quite similar to the
central limit theorem, which universally involves the gaussian distribution, independently of the
common law of the random variables considered.

Behind the central limit theorem, there exists a universal limiting object which models the long
term behavior of the sum of i.i.d., square-integrable random variables, namely the Brownian motion.
The existence of such a process gives a great improvement for our understanding of the universal
properties of the gaussian distribution. Similarly, it is natural to expect that the universal properties
of the sine-kernel process can be explained by an infinite-dimensional random object modeling the
limiting behavior of large random matrices. That is why we focus a part of our research on the
infinite-dimensional objects which can be related to different random matrix ensembles.

In Section 4, we study several random objects constructed from permutation matrices. The im-
portant advantage of these models is that essentially, all the corresponding eigenvalues are directly
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related to the cycle lengths of the permutations, thus allowing very explicit computations, which
are not always possible for the most classical ensembles. In Section 5, we present some models
of unitary and hermitian matrices, and we prove that a part of the infinite objects constructed in
Section 4 can be generalized to this setting. In particular, we obtain a deterministic link between
the Circular Unitary Ensemble and the determinantal sine-kernel process. In Section 6, we present
some other promising directions of research we plan to explore in the near future.

4 The framework of the symmetric group

4.1 The spaces of virtual permutations

The notion of permutations is still meaningful for infinite sets, even if the symmetric groups are
generally studied when their orders are finite. However, relatively few results can be obtained for
the infinite symmetric groups, since these groups have, in a certain sense, too many elements, which
do not enjoy the same properties as the permutations of finite order. For example, a permutation of
infinite order cannot, in general, be written in terms of a cycle structure. That is one of the reasons
why some other infinite objects have been constructed to generalize the notion of permutation of
finite order.

One of these objects can be constructed by taking the inductive limit of all the finite symmetric
groups: in this way, one obtains the space containing the permutations of an infinite set which fix
all but finitely many elements. This space is a group, which can be written as an increasing union
of the finite symmetric groups, and all its elements enjoy essentially the same properties as the
finite permutations (for example, decomposition as a product of cycles). These properties are very
convenient to use, but on the other hand, the situation is quite disappointing, since one often does
not observe really new phenomena, compared to the finite symmetric groups.

Another way to construct infinite analogs of finite permutations is to take a projective limit.
This construction has been first introduced by Kerov, Olshanski and Vershik in [24], and then
studied in more detail by Tsilevich in [66] and [67]: the object obtained in this way is the space
of the so-called virtual pemutations. By definition, a virtual permutation is a sequence (σN )N≥1 of
permutations, σN in the N -th symmetric group SN , such that for all N ≥ 1, the cycle structure
of σN is deduced from the structure of σN+1 by removing the element N + 1 from its cycle. The
virtual permutations are in bijection with the sequences (kN )N≥2 such that kN ∈ {1, 2, . . . , N} for
all N ≥ 2. The construction of (σN )N≥1 from (kN )N≥2 can be made inductively, as follows:

• σ1 is the unique permutation of S1.

• If N ≥ 1 and kN+1 = N + 1, then the cycle structure of σN+1 is obtained from σN by adding
N + 1 as a fixed point.

• If N ≥ 1 and kN+1 ≤ N , then the cycle structure of σN+1 is obtained from σN by inserting
N + 1 inside the cycle of kN+1, just before this element: σN+1(N + 1) = kN+1.

This algorithm, sometimes called the chinese restaurant process (see Pitman [55], Chap. 3), is
directly related to the splitting of a permutation as a product of tranpositions: here, for all N ≥ 2,
one has σN = τN,kN ◦ τN−1,kN−1

◦ · · · ◦ τ2,k2 , where τi,j is the transposition of i and j for i 6= j, and
the identity for i = j.
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In the definition of the virtual permutations given above, the natural order on the set of positive
integers plays an explicit role: if (σN )N≥1 is a virtual permutation, then σN permutes the N smallest
positive integers. However, in most of the limiting results on virtual permutations, all the integers
play in fact the same role: that is why in a joint paper with Nikeghbali [44], we have generalized
the notion of virtual permutations to arbitrary sets. The precise definition is the following:

Definition 4.1 A virtual permutation of a given set E is a family of permutations (σI)I∈F(E),
indexed by the set F(E) of the finite subsets of E, such that for all I ∈ F(E), σI is a permutation
of the set I, and for I, J ∈ F(E), I ⊂ J , the permutation σI is obtained by removing the elements
of J\I from the cycle structure of σJ .

One can check the two following facts:

• If E is finite, then (σI)I∈F(E) can be identified with σE , and then a virtual permutation is
essentially a permutation.

• If E is the set of positive integers, then a virtual permutation, in the classical sense, is
equivalent to a virtual permutation on E in the sense of Definition 4.1. Indeed (σN )N≥1 can
be identified with (σI)I∈F(E), where for I ∈ F(E) and for N equal to the largest element of
I, σI is deduced from σN by restricting its cycle structure to I.

Notice that the set SE of the virtual permutations of E is not a group if E is infinite. However,

the set S
(0)
E of the permutations of E which fix all but finitely many elements of E is a group. This

group acts on SE by conjugation, as follows: for σ = (σI)I∈F(E), and for g ∈ S
(0)
E fixing each of

the elements of E\J for J ∈ F(E), one defines gσg−1 as the unique virtual permutation (τI)I∈F(E)

such that for I ∈ F(E) containing J , τI = gIσIg
−1
I , where gI denotes the restriction of g to I.

Another interesting fact is that a virtual permutation (σI)I∈F(E) on a set E induces a partition
of E. Indeed, for all x, y ∈ E, one of the two following possibilities holds:

• For all I ∈ F(E) containing x and y, these two elements belong to the same cycle of the
permutation σI .

• For all I ∈ F(E) containing x and y, these two elements belong to different cycles of σI .

One can then check that the first possibility induces an equivalence relation on E, and then a
partition of this set.

4.2 The central probability measures on SE

For the moment, we have not introduced any randomness in the discussion. In order to change this
situation, we need to define a σ-algebra SE on SE , and then a probability measure on (SE ,SE).
From now on, we suppose that E is countable, and that SE is the σ-algebra generated by the
coordinate maps (σI)I∈F(E) 7→ σJ , for all J ∈ F(E). Under this assumption, the following result
shows that one can construct probability measures on SE from probability measures on SI , I ∈
F(E), if a certain compatibility property is satisfied:

Proposition 4.2 For I ∈ F(E), let PI be a probability measure on SI . We assume that for
I, J ∈ F(E), I ⊂ J , PI is the image of PJ by the map from SJ to SI which removes J\I from the
cycle structure of the permutations. Then, there exists a unique probability measure P on (SE ,SE)
such that for all J ∈ F(E), the image of P by the map (σI)I∈F(E) 7→ σJ is equal to PJ .
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Example 4.3 Let θ ∈ R∗+, and for all I ∈ F(E), let PI be the Ewens measure of parameter θ on
SI , i.e. the unique measure such that for all σ ∈ SI ,

PI(σ) =
θn−1

(θ + 1)(θ + 2) . . . (θ +N − 1)
,

where n is the number of cycles of σ and N the cardinality of I. Then, by the classical properties
of the Ewens measure, the family of probability measures (PI)I∈F(E) satisfies the compatibility
conditions given in Proposition 4.2, which then induces a probability measure P on (SE ,SE). The
measure P is also called the Ewens measure of parameter θ. For θ = 1, it is also called the uniform
measure on (SE ,SE).

Note that in this example, the measure PI is invariant by conjugation for all I ∈ F(E). One
deduces that P is also invariant by conjugation, i.e. P is a central measure on the space (SE ,SE).
One can ask if there exist some other measures satisfying this property. The answer is positive
and in [44], we obtain a complete characterization of these measures, which can be summarized as
follows:

Theorem 4.4 Let Λ be the set containing all the nonincreasing sequences (λ1, λ2, . . . , λn, . . . ) of
elements of R+, such that

∑
k≥1 λk ≤ 1. For λ := (λ1, λ2, . . . , λn, . . . ) ∈ Λ, let C be a the disjoint

union of the following sets:

• A segment L of length λ0 := 1−
∑

k≥1 λk.

• For each k ≥ 1, a circle Ck of perimeter λk (the empty set if λk = 0).

Let (Xx)x∈E be a family of i.i.d., uniform random points on C, i.e. for any subset A of C which
is either an arc of one of the circles Ck for k ≥ 1, or a segment included in L, the probability that
Xx ∈ A is equal to the length of A. Let (σI)I∈F(E) be a random family of permutations, defined as
follows:

• If I ∈ F(E), x ∈ I and Xx ∈ Ck for some k ≥ 1, then σI(x) = y, where Xy is the first point
of Ck ∩ {Xz, z ∈ I} encountered by turning counterclockwise on the circle Ck, starting just
after Xx. Note that if Xx is the unique point of Ck ∩ {Xz, z ∈ I}, then σI(x) = x.

• If I ∈ F(E), x ∈ I and Xx ∈ L, then σI(x) = x.

Then, (σI)I∈F(E) is a random virtual permutation, and its distribution Pλ is a central measure.
Moreover, for each central measure P on (SE ,SE), there exists a unique probability measure ν on
Λ (endowed with the σ-algebra generated by the coordinate maps) such that for all A ∈ SE,

P(A) =

∫
Λ
Pλ(A) dν(A), (3)

where the integral is well-defined, since λ 7→ Pλ(A) is measurable. Conversely, each probability
measure ν on Λ defines a central measure Pν on (SE ,SE) given by (3).

Example 4.5 For θ ∈ R∗+, the Ewens measure on (SE ,SE) is equal to Pν , where ν is the law of
a Poisson-Dirichlet process of parameter θ.
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The classification of the central measures given in Theorem 4.4 is strongly related to a similar
result proven by Tsilevich in [67], using the properties of the exchangeable partitions stated by
Kingman (see [25], [26], [27]). The cycle structure of a virtual permutation following a central
measure can be characterized in a quite precise way. Since any central measure can be written as a
convex combination of the measures Pλ for λ ∈ Λ, one may focus the discussion on these particular
measures.

Theorem 4.6 Let λ = (λ1, λ2, . . . ) ∈ Λ, and let σ = (σI)I∈F(E) be a random virtual permutation
following the measure Pλ. The cycle structure of (σI)I∈E induces a random exchangeable partition
Π of E. If for x ∈ E, Cx denotes the set of Π containing x, then the random variable |Cx ∩ I|/|I|
tends in L1 to a limit random variable λ(x) when the cardinality |I| of I ∈ F(E) goes to infinity.
Almost surely, the variable λ(x) depends only on the set of Π containing x, and λ(x) = 0 if and
only if Cx = {x}, i.e. x is a fixed point of σI for all I ∈ F(E) containing x. Moreover, if (xk)k≥1

is a random sequence of points in E containing exactly one element in each infinite set of Π, and
if λ(xk) decreases with k, then almost surely, λ(xk) = λk for all k ≥ 1.

More informally, this result says that for a random virtual permutation following the measure
Pλ, the renormalized cycle lengths are almost surely well-defined, and form the sequence λ when
they are taken in decreasing order. By the law of large numbers, this fact is consistent with the
description of Pλ given in Theorem 4.4.

Theorem 4.6 gives some information about the cycle lengths of a random virtual permutation.
The following result, also consistent with Theorem 4.4, implies that the relative position of the
elements of E in their cycle has also a limiting behavior:

Theorem 4.7 Let λ = (λ1, λ2, . . . ) ∈ Λ, and let σ = (σI)I∈F(E) be a random virtual permutation
following the measure Pλ. If x and y are two points in E, then on the event {σ{x,y}(x) = y}:

• For all I ∈ F(E) containing x and y, these two points are in the same cycle of σI . If K
denotes the length of this cycle, then there exists a unique integer kI(x, y) ∈ {0, 1, 2, . . . ,K−1}
such that σ

kI(x,y)
I (x) = y.

• The random variable kI(x, y)/|I| converges in L1 to a limit ∆(x, y) when the cardinality |I|
of I ∈ F(E) goes to infinity.

Now, let δ(x, y) be the congruence class of ∆(x, y), modulo λ(x). Then for x, y, z ∈ E, the following
relation holds almost surely:

δ(x, y) + δ(y, z) = δ(x, z)

modulo λ(x), in the case where x, y, z belong to the same cycle of σ{x,y,z}.

Intuitively, δ(x, y) represents the asymptotic behavior of the number of iterations of σ needed to
go from x to y. This random variable induces a random distance d on E, defined as follows:

• If σ{x,y}(x) 6= y, then d(x, y) = 1.

• If σ{x,y}(x) = y, then d(x, y) is the minimum of |δ|, for δ ≡ δ(x, y) modulo λ(x).

The set E can then be completed for the distance d. This gives a random metric space Ê, which
can be explicitly described up to an isometry:
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Proposition 4.8 The space Ê is isometric to the metric space (C,D), where C is the set introduced
in Theorem 4.4, and where the distance D is described as follows:

• For a, b in a common circle Ck for k ≥ 1, D(a, b) is the length of the smallest circle arc of
Ck which joins a and b.

• For a, b ∈ C not in a common circle Ck for any k ≥ 1, D(a, b) = 1.

4.3 A flow of operators associated to random virtual permutations

Let σ := (σI)I∈F(E) be a random virtual permutation following the central measure Pλ for λ ∈ Λ.

Then, by using the complete random metric space Ê defined just above, one can construct a flow of
isometries from Ê to Ê, which describes the asymptotic behavior of σ when the permutations σI are
iterated a number of times approximately proportional to the cardinality of I. This construction
is given by the following result:

Theorem 4.9 For x ∈ Ê and α ∈ R, there exists a random element Sα(x) of Ê such that all the
following properties hold:

• Almost surely, for all x ∈ Ê and for all α, β ∈ R, S0(x) = x and Sα+β(x) = Sα(Sβ(x)).

• Almost surely, the map (x, α) 7→ Sα(x) is continuous.

• For all x ∈ E, α ∈ R, the distance between Sα(x) and σ
[α|I|]
I (x) tends to zero in L1 when the

cardinality |I| of I ∈ F(E) goes to infinity ([α|I|] denotes the integer part of α|I|).

If the space Ê is identified with the set C described in Theorem 4.4, then the transformation Sα

fixes the segment L, and turns each circle Ck counterclockwise, by an angle corresponding to an
arc of length α.

Moreover, the random flow of transformations (Sα)α∈R can be viewed as a flow of operators
(Tα)α∈R acting on the random space of continuous functions from Ê to C. For α ∈ R, the operator
Tα is defined as follows: for any continuous function f from Ê to C, and for all y ∈ Ê, one has
(Tα(f))(y) = f(Sα(y)). As we have seen above, the operator Tα models the asymptotic behavior of

σ
[α|I|]
I for a set I ∈ F(E) containing a large number of elements. If we want to get some information

on the permutation σI itself, without iterating it, we need to consider the operator Tα for α very
small, i.e. with order of magnitude 1/|I|. That is why it is natural to study the infinitesimal
generator of (Tα)α∈R.

This operator is defined on the space of continuously differentiable functions from Ê to C, i.e.
the space of continuous functions f for which there exists g, continuous, such that for all y ∈ Ê,

(Tα(f))(y)− f(y)

α
−→
α→0

g(y).

The infinitesimal generator U of (Tα)α∈R is then the operator from the space of continuously
differentiable functions to the space of continuous functions from Ê to C, which maps f to g.

The spectrum of the random operator U can be explicitly described in terms of the sequence
λ = (λ1, λ2, . . . ) ∈ Λ, for which the random virtual permutation (σI)I∈F(E) used to construct U
follows the law Pλ.

40



Theorem 4.10 The eigenvalues of U can be obtained by taking the union, with multiplicity, of
the sequences (2imπ/λk)m∈Z for all k ≥ 1 such that λk > 0. Moreover, if

∑
k≥1 λk < 1, 0 is an

eigenvalue with infinite multiplicity.

The spectrum of U can be compared with the asymptotic behavior of the spectrum of the per-
mutation matrix of σI for I ∈ F(E) with large cardinality. Indeed, under Pλ, one can prove, by
studying the asymptotic behavior of the cycle lengths of σI , that the eigenangles of the correspond-
ing matrix, multiplied by the cardinality of I, converge (in a sense which can be made precise) to
the eigenangles of iU . The precise statement is the following:

Theorem 4.11 Let (σI)I∈F(E) be a virtual permutation following a central measure on SE. Let X
be the spectrum of the random operator iU , and for I ∈ F(E), let XI be the set of the eigenangles
of the matrix of σI , multiplied by the cardinality of I. For γ ∈ X (resp. γ ∈ XI), let m(γ) (resp.
mI(γ)) be the multiplicity of the corresponding eigenvalue (resp. rescaled eigenangle). Then, X and
XI , I ∈ F(E) are included in R, and for all continuous functions f from R to R+, with compact
support, the following convergence in probability holds:∑

γ∈XI

mI(γ)f(γ) −→
|I|→∞

∑
γ∈X

m(γ)f(γ).

Remark 4.12 A priori, the random operator U has only been defined under the probability mea-
sures Pλ for λ ∈ Λ. However, U is almost surely well-defined under any central measure P on SE,
since P can always be written as a convex combination of the measures Pλ for λ ∈ Λ.

The intuitive meaning of Theorem 4.11 is that the convergence in distribution of the rescaled
eigenangles of a random permutation matrix to a limiting point process X, when the dimension
goes to infinity, can be explained by the existence of a limiting random operator whose spectrum
is given by X. Indeed, for N ≥ 1 and θ ∈ R∗+, let σN be a random permutation of order N ,
following Ewens measure of parameter θ (for θ = 1, σN is uniform on SN ). The point process of
the eigenangles of the matrix of σN , multiplied by N , tends in law to a point process X, obtained
as the union of the sets (2πm/λk)m∈Z for k ≥ 1, (λk)k≥1 being a Poisson-Dirichlet process of
parameter θ. Now, X has exactly the distribution of the spectrum of iU , where U is the random
operator associated to a virtual permutation following the Ewens measure of parameter θ.

Such a convergence of the renormalized eigenangles, when the dimension goes to infinity, also
occurs for the Circular Unitary Ensemble, i.e. the Haar measure on the unitary group. The limiting
point process is a determinantal sine-kernel process, and one may ask if it can be naturally viewed
as the spectrum of a random operator. In Section 5, this question is discussed in detail.

4.4 The spectrum of randomized permutation matrices

The permutation matrices have the advantage that one can directly compute their spectrum in
terms of their cycle structures. The behavior of the corresponding eigenvalues is very different
from what one obtains for a general unitary matrix: for example, all the eigenvalues are roots of
unity of finite order. However, this very strong property is relaxed when one takes matrices in a
group which is larger than the symmetric group.

In our joint paper with Nikeghbali [42], we study random matrices which are contained in the
wreath product of the symmetric group and the group C∗, i.e. the group of matrices obtained from
permutation matrices by changing the entries equal to one by arbitrary non-zero entries. More
precisely, in [42], we introduce the following groups, for any N ≥ 1:
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• The group G(N) of matricesM such that there exists a permutation σ ∈ SN , and z1, z2, . . . , zN ∈
C∗, such that Mjk = zj1j=σ(k) for all j, k ∈ {1, 2, . . . , N}.

• The group H(N) of matrices in G(N) whose non-zero entries z1, z2, . . . , zN are in the group
U of complex numbers of modulus one.

• For all k ≥ 1, the group Hk(N) of matrices in H(N) whose non-zero entries are roots of unity
of order dividing k.

Then, we define a particular family of probability measures on each of these groups, for which the
underlying permutation follows the Ewens measure of parameter θ for some θ > 0, and the non-zero
entries are i.i.d. random variables.

Definition 4.13 Let θ > 0, let k be a strictly positive integer, and let L be a probability distribution
on C∗ (resp. U, Uk). The probability measure P(N, θ,L) on G(N) (resp. H(N), Hk(N)) is the law
of the matrix M(σ, z1, z2, . . . , zN ), where:

• The permutation σ follows the Ewens measure of parameter θ on SN .

• For all j ∈ {1, . . . , N}, zj is a random variable following the probability law L.

• The random permutation σ and the random variables z1, . . . , zN are all independent.

• M(σ, z1, . . . , zN ) is the matrix M ∈ G(N) (resp. H(N), Hk(N)) such that for all j, k ∈
{1, . . . , N}, Mjk = zj1j=σ(k).

In this definition, as usually done in random matrix theory, we consider ensembles of random
matrices of a given order N . As above, if we want to consider infinite-dimensional objects, and
then obtain results of strong convergence when the dimension goes to infinity, we need to define all
the finite-dimensional ensembles on a single probability space. This can be done by using virtual
permutations, as follows:

Definition 4.14 Let θ > 0, and let L be a probability distribution on C∗ (resp. U, Uk). The
probability measure P(∞, θ,L), defined on the product of the probability spaces G(N) (resp. H(N),
Hk(N)) for N ≥ 1, is the law of the sequence of random matrices (MN )N≥1, such that MN =
M(σN , z1, . . . , zN ), where:

• The sequence (σN )N≥1 is a random virtual permutation following the Ewens measure of pa-
rameter θ.

• For all j ≥ 1, zj is a random variable following the distribution L.

• The virtual permutation (σN )N≥1 and the random variables (zj)j≥1 are independent.

Notice that the eigenvalues of a matrix in G(N) can be easily computed in function of the corre-
sponding cycle structure and the non-zero entries. More precisely, each cycle of length m ≥ 1, for
which the corresponding non-zero entries are zj1 , zj2 , . . . , zjm , gives m eigenvalues: the m-th roots
of the product zj1zj2 · · · zjm , which form a regular polygon centered at the origin.

Now, let N ≥ 1, θ > 0, and suppose that L is a probability distribution on C∗, which does
not charge too much the elements with very large or very small modulus. For a random matrix
following P(N, θ,L), the large cycles give polygons with a large number of vertices, whose distance
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to the origin is given by the geometric mean of many i.i.d. random variables with law L. By a
geometric version of the law of large numbers, one can expect that this distance is close to the
geometric mean R of the distribution L. Since for N large, most of the eigenvalues correspond to
large cycles, it is natural to expect that these eigenvalue are mostly concentrated around the circle
of center 0 and radius R. The corresponding rigorous statement is the following:

Theorem 4.15 Let (MN )N≥1 be a sequence of matrices following the distribution P(∞, θ,L) for
some θ > 0 and some probability measure L on C∗. We suppose that for a random variable Z
following the law L, log(|Z|) is integrable, and we define R := exp(E[log(|Z|)]). Then, almost
surely, the probability measure µ(MN )/N , where µ(MN ) is the counting measure (with multiplicity)
of the eigenvalues of MN , converges weakly to the uniform distribution on the circle of center zero
and radius R.

Let us emphasize that in this result, the introduction of virtual permutations gives the possibility
to obtain a strong convergence. Of course, this almost sure convergence implies the corresponding
convergence in distribution for the finite-dimensional matrix ensembles, when the dimension goes
to infinity.

Once we know that most of the eigenvalues are concentrated around a given circle, it is natural
to ask about the behavior of the few eigenvalues which remain far from this circle. These eigenvalues
are associated to the small cycles, and we know that asymptotically, the number of small cycles
of a permutation following Ewens measure can be approximated in function of some independent
Poisson random variables. More precisely, if σN ∈ SN is a permutation following Ewens measure
of parameter θ > 0, and if for k ≥ 1, aN,k denotes the number of k-cycles in the permutation σN ,
then for p ≥ 1, (aN,1, aN,2, . . . , aN,p) converges in law to (a1, . . . , ap), where (ak)k≥1 is a family of
independent Poisson random variables, ak having parameter θ/k. On the other hand, by looking
carefully at the definitions, it is not difficult to check that for a random matrix MN following
P(N, θ,L), the counting measure µ(MN ) of the eigenvalues of MN can be given as follows:

µ(MN ) =
∞∑
k=1

aN,k∑
p=1

∑
ωk=Tk,p

δω, (4)

where for k ≥ 1, aN,k is the number of k-cycles of the permutation induced by MN , where for
k, p ≥ 1, the law of Tk,p is the multiplicative convolution of k copies of L, and where (aN,k)k≥1

and the variables Tk,p, k, p ≥ 1 are independent. In relation with (4), it is natural to introduce the
following random measure:

µ∞ =

∞∑
k=1

ak∑
p=1

∑
ωk=Tk,p

δω

where the Poisson random variables (ak)k≥1 defined above are supposed to be independent of Tk,p,
k, p ≥ 1. One can then prove, under some technical assumptions, that the distribution of µ(MN )
converges to the distribution of µ∞, if the measures are restricted to the points which are far from
the circle considered in Theorem 4.15.

Theorem 4.16 Let (MN )N≥1 be a sequence of matrices such that MN ∈ G(N) follows the distribu-
tion P(N, θ,L) for some θ > 0 and some probability measure L on C∗. We suppose that for a random
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variable Z following the law L, log(|Z|) is square-integrable. Then, for all bounded, continuous func-
tions f from C to R, such that f = 0 on a neighborhood of the circle |z| = R := exp(E[log(|Z|)]), f
is almost surely integrable with respect to µ∞, and the following convergence in distribution holds:∫

C
f dµ(MN ) −→

N→∞

∫
C
f dµ∞.

Remark 4.17 For virtual permutations following the Ewens measure, the number of small cycles
does not converge almost surely. Hence, it is not possible to prove a strong convergence in Theorem
4.16, even by introducing the measure P(∞, θ,L).

The results stated until now are available only if the geometric law of large numbers applies under
the measure L. It is natural to ask what happens if this condition is not satisfied.

In this new setting, we are not able to obtain a general result, but we know how to deal with
some particular cases, where the law L is constructed from a symmetric stable distribution.

Proposition 4.18 Let ρ > 0, and let L be the law of eiΘ+ρSα, where Θ is a uniform random vari-
able on [0, 2π) and Sα an independent standard symmetric stable random variable, with index α < 1.
For θ > 0, let (MN )N≥1 be a sequence of random matrices such that MN follows the distribution
P(N, θ,L). Then, the distribution of the random probability measure µ(MN )/N converges to the
law of the random measure Gθδ0, where Gθ is a beta random variable with parameters (θ/2, θ/2),
in the following sense: for all continuous functions f from C to R, with compact support,

1

N

∫
C
f dµ(MN ) −→

N→∞
Gθf(0)

in distribution.

The intuitive meaning of this result is that, since the stable random variables of index α < 1
have heavy tail, the eigenvalues of MN tend to be either close to zero or very large. The random
variable Gθ represents the proportion of eigenvalues which remain small.

For the critical case α = 1, corresponding to symmetric Cauchy random variables, the behavior
of the eigenvalues is different: asymptotically, they concentrate around a family of circles centered
at zero (corresponding to the cycle structure of the underlying random permutation), whose radii
are given by exponentials of i.i.d., symmetric, Cauchy random variables. Notice that for α > 1, the
stable laws are integrable and then Theorem 4.15 applies.

The results we have previously stated are available for distributions L which are not a priori
supposed to be carried by the unit circle U. If we make this extra assumption, then the corre-
sponding matrices are unitary, and one can study the behavior of their eigenangles, in particular
in short scale. This problem is studied in the two last sections of [42].

More precisely, let L be a probability distribution on U, and let (MN )N≥1 be a sequence of
matrices following the distribution P(∞, θ,L) (in particular, MN has law P(N, θ,L) for all N ≥ 1).
For N ≥ 1, we consider the random point measure τN (MN ) on R which charges the values x ∈ R
(counted with multiplicity) such that e2iπx/N is an eigenvalue of MN . The measure τN (MN ) is
N -periodic, and τN (MN )([0, N)) = N , since MN has N eigenvalues. In other words, the scaling
of the eigenangles, which are multiplied by N/2π, is chosen to get a point process whose average
spacing is one.

Now, for N,m ≥ 1, let σN be the permutation induced by MN , let ZN,m ∈ U be the product of
the non-zero entries of MN which correspond to the m-th largest cycle of σN (if several cycles have
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the same length, they are ordered arbitrarily, if σN has less than m cycles, ZN,m = 1), let `N,m be
the length of this cycle (`N,m = 0 if σN has less than m cycles), and let yN,m := `N,m/N . Then,
the measure τN (MN ) is explicitly written as follows:

τN (MN ) =

∞∑
m=1

1yN,m>0

∑
k∈Z

δ(γN,m+k)/yN,m , (5)

where δx denotes the Dirac measure at x, and where γN,m, defined modulo one, is 1/2π times the
argument of ZN,m.

For all m ≥ 1, by the general properties of the virtual permutations (for example, see Tsilevich
[66]), the renormalized cycle length yN,m converges almost surely, when N goes to infinity, to a limit
ym, and the sequence (ym)m≥1 is a Poisson-Dirichlet process of parameter θ. In the case where the
distribution L is the Dirac measure at one, i.e. the matrices (MN )N≥1 are permutation matrices,
the formula (5) is simplified by the fact that γN,m = 0, and one naturally expects a convergence of
the measure τN (MN ) towards the following limit measure

τ∞((MN )N≥1) :=
∞∑
m=1

∑
k∈Z

δk/ym .

Note that this measure has an infinite mass at zero, which reflects the fact that the number of
cycles of σN tends to infinity with N . The precise result we obtain is the following:

Proposition 4.19 Let (MN )N≥1 be a sequence of matrices following the distribution P(∞, θ, δ1)
for some θ > 0. Then, the measure τN (MN ) converges a.s. to τ∞((MN )N≥1), in the following
sense: for all continuous functions from R to R+, with compact support:∫

R
f dτN (MN ) −→

N→∞

∫
R
f dτ∞((MN )N≥1),

almost surely.

In the case where L is not the Dirac measure at one, the shifts γN,m introduced in (5) do not
vanish in general, and one cannot expect that they converge almost surely. Hence, it is not possible
to obtain an almost sure convergence of the measures τN (MN ) when N goes to infinity: however, a
weak convergence is still possible. More precisely, the convergence of the renormalized cycle lengths
yN,m holds for any choice of the distribution L, and then one can expect a convergence in law of
the random measures τN (MN ) if the distribution of γN,m converges.

Intuitively, for N large, ZN,m is the product of many i.i.d. random variables on the unit circle,
and then it is plausible, by some kind of mixing property, that ZN,m tends to a uniform distribution
on the unit circle, implying a convergence of γN,m to a uniform law on [0, 1). This very informal
argument is certainly not completely true: the case L = δ0 stated just above is a counterexample,
and more generally, if L is carried by Uk for some k ≥ 1, then ZN,m is always a k-th root of unity
and γN,m is a multiple of 1/k. However, up to a technical condition stated below, this case is
essentially the only possible obstruction for a convergence of γN,m to a uniform distribution. More
precisely, the limiting measure of γN,m is, under very general assumptions, given by the following
definition:

Definition 4.20 Let L be a distribution on the unit circle, and let k0 be the infimum of the integers
k ≥ 1 such that L is carried by Uk. Then, the probability measure D(L) on [0, 1) is defined as follows:
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• If k0 <∞, then D(L) is the uniform distribution on {0, 1/k0, 2/k0, . . . , (k0 − 1)/k0}.

• If k0 = ∞, i.e. L is not carried by Uk for any k ≥ 1, then D(L) is the uniform distribution
on [0, 1).

A more careful version of the mixing argument above suggests that the law of γN,m converges to
D(L), and that the measure τN (MN ) converges in distribution to the random measure

τ∞ :=
∞∑
m=1

∑
k∈Z

δ(γm+k)/ym , (6)

where (ym)m≥1 is a Poisson-Dirichlet process of parameter θ, independent of the sequence (γm)m≥1

of i.i.d. random variables on [0, 1) with law D(L). The following result gives a precise meaning to
this intuition:

Proposition 4.21 Let (MN )N≥1 be a sequence of random matrices, such that for all N ≥ 1, MN

follows the distribution P(N, θ,L), where θ > 0 and where L is a probability measure on U. We
assume that L satisfies one of the two following conditions:

• L is carried by Uk for some k ≥ 1.

• There exists v > 1 such that for ε > 0 small enough, and for any arc A in U of size ε,
L(A) ≤ | log(ε)|−v.

Then, with the notation above, the random measure τN (MN ) converges in distribution to the mea-
sure τ∞, in the following sense: for all continuous functions f from R to R+, with compact support,

• If f(0) > 0 and L is carried by Uk for some k ≥ 1, then∫
R
f dτ∞ =∞

a.s., and for all A > 0,

P
[∫

R
f dτN (MN ) ≤ A

]
−→
N→∞

0.

• If f(0) = 0 or L is not carried by Uk for any k ≥ 1, then∫
R
f dτ∞ <∞,

and ∫
R
f dτN (MN ) −→

N→∞

∫
R
f dτ∞.

In this result, the distinction of two cases comes from the fact that τ∞({0}) is a.s. infinite if L is
carried by Uk for some k ≥ 1, and a.s. equal to zero otherwise.

A particularly simple case where Proposition 4.21 applies corresponds to a measure L equal to
the uniform distribution on U. In this case, and more generally in any situation for which L is not
carried by Uk for any k ≥ 1, the law of the measure τ∞ is uniquely determined by the parameter
θ, and in (6), the random variables (γm)m≥1 are i.i.d., uniform on [0, 1).
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In the case of the Circular Unitary Ensemble, we have seen that the point process of the
renormalized eigenangles converges, in distribution, to a determinantal sine-kernel process. The
point process induced by the measure τ∞ is then the analogue of the sine-kernel process in the
context of randomized permutation matrices. These two point processes have the following common
properties:

• They have only simple points.

• Their distribution is invariant by translation.

However, there are important differences between the two processes. For example, since τ∞ is
obtained by taking unions of arithmetic progressions, the probability that there exist three points
x, y, z ∈ R in τ∞, such that x + z = 2y, is equal to one, whereas it is zero in the case of the
sine-kernel process. For the same reason, the r-point correlation functions are not defined for τ∞
as soon as r ≥ 3. For r = 1, the average density is equal to one by translation invariance, and for
r = 2, the correlation function ρ is well-defined and computed in [42]: one has ρ(x, y) = φ(x− y),
where the function φ from R to R is given by

φ(x) =
θ

θ + 1
+

θ

x2

∑
a∈N,0<a≤|x|

a

(
1− a

|x|

)θ−1

.

The correlation function ρ is always larger than or equal to θ/(θ + 1): in particular, is does not
tend to zero with the distance between the two points. In other words, there does not exist the
same phenomenon of repulsion as in the unitary framework. On the other hand, one can check that
ρ(x, y) tends to one when |x− y| goes to infinity: two points which are far from each other behave
almost independently. In this point of the view, the situation is the same as for the sine-kernel
process.

In [42], we also study the behavior of the smallest strictly positive point charged by the measure
τ∞. For the sine-kernel process, it is given in terms of a Painlevé differential equation. For τ∞, we
do not obtain a direct formula, but we get the following result:

Proposition 4.22 For x ≥ 0, let G(x) be the probability that the point process τ∞ has no point in
the interval (0, x), and for x ∈ R, let us set

H(x) := 1x>0x
θ−1G(x).

Then H is integrable and satisfies the following equation:

xH(x) = θ

∫ 1

0
(1− y)H(x− y)dy.

Moreover, the Fourier transform Ĥ of H satisfies the following:

Ĥ(λ) = Ĥ(0) exp

(
−iθ

∫ λ

0

1− e−iµ − iµ
µ2

dµ

)
.
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5 The framework of the unitary group

5.1 The extreme eigenvalues of generalized Cauchy ensembles

As written in Section 4, the Ewens measure on the symmetric group SN , with parameter θ > 0, is
the measure giving to each permutation σ a probability proportional to w(σ) := θk, where k is the
number of cycles. This weight w(σ) can be interpreted in the point of view of the random matrices:
if Mσ denotes the matrix of σ, then w(σ) is the limit of

[det(x Id−Mσ)]log(θ)/ log(x−1)

when x tends to one from above.
This remark suggests to define an analog of the Ewens measure for the unitary matrices: for

N ≥ 1 and s ∈ C such that <(s) > −1/2, one considers a measure µN,s on the unitary group U(N),
whose density with respect to the Haar measure µN,0 is given by

dµN,s
dµN,0

(u) := CN,s det(Id−u)s̄ det(Id−u−1)s,

for u ∈ U(N), CN,s > 0 being a normalization constant. The complex powers are determined by
assuming their continuity with respect to u and the restriction made on the real part of s is given
in order to ensure the integrability of the density. Such samplings have first been introduced by
Hua in [20], and have more recently been studied by Pickrell in [53] and [54], by Neretin in [49]
and by Bourgade, Nikeghbali and Rouault in [12].

The punctured unit circle U\{1} can be transformed to the real line R by the so-called Cayley
transform, given by the bijective map:

z 7→ i
1 + z

1− z
.

This measure can be extended to a map from the space of unitary matrices whose eigenvalues are
different from one, to the space of hermitian matrices.

The image, by the Cayley transform, of the measures introduced just above corresponds to the
so-called Generalized Cauchy Ensemble. For N ≥ 1 and <(s) > −1/2, this ensemble is given by
the probability measure PN,s on the space of N -dimensional hermitian matrices, defined by

PN,s(dX) = C ′N,s det((Id +iX)−s−N ) det((Id−iX)−s̄−N )
∏

1≤j<k≤N
d<(Xj,k)d=(Xj,k)

N∏
j=1

dXj,j ,

where C ′N,s > 0 is a normalization constant. The distribution of the eigenvalues of a random matrix
following the measure PN,s is given, up to a normalization constant, by the following formula:∏

1≤j<k≤N
(xk − xj)2

∏
1≤j≤k

wH(xj) dxj , (7)

where the eigenvalues are (xj)1≤j≤N , and where the weight wH is given by

wH(x) = (1 + ix)−s−N (1− ix)−s̄−N .

The repulsion between the eigenvalues of the matrix, which corresponds to the factors (xk−xj)2, is
involved in most of the classical ensembles of random hermitian or unitary matrices (e.g. Gaussian
Unitary Ensemble and Circular Unitary Ensemble).
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The point process whose density is given by (7) is determinantal an has been studied in detail
by Borodin and Olshanski in [10], and by Forrester and Witte in [18] and [78]. By using the classical
theory of orthogonal polynomials, applied to the particular case of the weight wH , Borodin and
Olshanski prove the following result:

Proposition 5.1 For 1 ≤ n ≤ N , the n-point correlation of the eigenvalue distribution given by
(7) is expressed as follows:

ρN,sn (x1, x2, . . . , xn) = det (KN,s(xj , xk))1≤j,k≤n ,

where the kernel KN,s is defined, for x 6= y, by

KN,s(x, y) = C ′′N,s
p(x)q(y)− q(x)p(y)

x− y
√
wH(x)wH(y),

for

p(x) := (x− i)N 2F1

[
−N, s, 2<(s) + 1;

2

1 + ix

]
,

q(x) := (x− i)N−1
2F1

[
1−N, s+ 1, 2<(s) + 2;

2

1 + ix

]
,

and

CN,s :=
22<(s)

π

Γ(2<(s) +N + 1)Γ(s+ 1)Γ(s̄+ 1)

Γ(N)Γ(2<(s) + 1)Γ(2<(s) + 2)
.

For x = y, the kernel is extended by continuity.

Here 2F1 corresponds to the classical notation of the hypergeometric functions. Moreover, in [10],
the authors give a scaling limit for the kernel KN,s when N goes to infinity. Namely, for fixed s ∈ C
(<(s) > −1/2) and x, y ∈ R∗,

N Sgn(xy)N KN,s(Nx,Ny) −→
N→∞

K∞,s(x, y),

where for x 6= y, the kernel K∞,s is given by

K∞,s(x, y) =
1

2π

Γ(s+ 1)Γ(s̄+ 1)

Γ(2<(s) + 1)Γ(2<(s) + 2)

P (x)Q(y)−Q(x)P (y)

x− y
, (8)

for

P (x) = |2/x|<(s)e−i/x+π=(s) sgn(x)/2
1F1

[
s, 2<(s) + 1;

2i

x

]
(9)

and

Q(x) = (2/x)|2/x|<(s)e−i/x+π=(s) sgn(x)/2
1F1

[
s+ 1, 2<(s) + 2;

2i

x

]
. (10)

Again, the kernel K∞,s is extended by continuity for x = y.
This kernel defines a determinantal point process Xs, containing infinitely many points on the

punctured real line R∗. In the particular case s = 0, for which

K∞,0(x, y) =
sin[(1/y)− (1/x)]

π(x− y)
,
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the image of Xs by the map x 7→ 1/πx is a determinantal sine-kernel process.
It is natural to expect that the convergence of the kernel KN,s to the kernel K∞,s implies

the convergence, in a sense which has to be made precise, of the eigenvalue point process of the
Generalized Cauchy Ensemble towards the determinantal process Xs. In our joint work with
Nikeghbali and Rubin [47], we study this problem in detail for the largest eigenvalue. We obtain
the expected convergence, with an estimation of its rate:

Theorem 5.2 For N ≥ 1 and <(s) > −1/2, let λ(N, s) be the largest eigenvalue of a random
hermitian matrix following the distribution PN,s, and let λ(s) be the largest point of the determi-
nantal process Xs described above. Then, for all s, <(s) > −1/2, and for all x0 > 0, there exists
C(x0, s) > 0 such that for all N ≥ 1 and x ≥ x0,∣∣∣∣P(λ(N, s)

N
≤ x

)
− P(λ(s) ≤ x)

∣∣∣∣ ≤ C(x0, s)

N
. (11)

In particular,

P
(
λ(N, s)

N
≤ x

)
−→
N→∞

P(λ(s) ≤ x)

Notice the scaling factor 1/N , which shows that the largest point of a Generalized Cauchy Ensemble
has the same order of magnitude as its dimension. In [47], the proof of Theorem 5.2 uses some
estimates of the Fredholm determinants giving the probabilities involved in (11). Our method is
rather technical: in particular, we do some heavy computations on hypergeometric functions in
order to get good majorizations of the kernel KN,s and its derivatives. However, our proof has the
advantage to use only elementary tools, contrarily to the most common situation in random matrix
theory.

Note that the probablity distribution of λ(N, s) satisfies a differential equation, explicitly com-
puted by Forrester and Witte in [18]:

Theorem 5.3 Let σ be the function from R to R, given by

σ(t) := (1 + t2)
d

dt
logP(λ(N, s) ≤ t).

Then, σ is well-defined, twice differentiable and satisfies the following equation, for all t ∈ R:

(1+ t2)(σ′′(t))2 +4(1+ t2)(σ′(t))3−8t(σ′(t))2σ(t)+4(σ(t))2(σ′(t)− (<(s))2)+8[t(<(s))2−<(s)=(s)

−N=(s)]σ(t)σ′(t) + 4[2t=(s)(N + <(s))− (=(s))2 − t2(<(s))2 +N(2<(s) +N)](σ′(t))2 = 0.

Theorem 5.2 suggests that the distribution of λ(s) should satisfy some kind of scaling limit of the
differential equation given in Theorem 5.3. In [47], we prove that this intuition is good and we
obtain the following result:

Theorem 5.4 Let θ be the function from R∗+ to R, given by

θ(τ) = τ
d

dτ
logP(λ(s) ≤ 1/τ).

Then θ is well-defined, twice differentiable, and satisfies the following differential equation:

− τ2(θ′′(τ))2 =
[
2(τθ′(τ)− θ(τ)) + (θ′(τ))2 + i(s̄− s)θ′(τ)

]2 − (θ′(τ))2(θ′(τ)− 2is)(θ′(τ) + 2is̄).
(12)
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This theorem implies in particular the result of Jimbo, Miwa, Môri and Sato [22], which says that
the probability distribution of the smallset positive point of a determinantal sine-kernel process
satisfies the Painlevé V equation (12) for s = 0.

5.2 The space of virtual isometries

As proven by Hua [20] and Pickrell [53], and also stated by Borodin and Olshanski in [10], the
measures PN,s (N ≥ 1, <(s) > −1/2) corresponding to the Generalized Cauchy Ensemble admit
the following property of consistency: if for N ≥ 2, a N ×N random hermitian matrix follows the
distribution PN,s, then its (N − 1) × (N − 1) upper left corner has law PN−1,s. This property of
compatibility implies that for all s ∈ C, <(s) > −1/2, the family of measures (PN,s)N≥1 induces a
probability measure P∞,s on the space H of “infinite hermitian matrices”, defined as follows: H is
the set of families (Mj,k)j,k≥1 of complex numbers such that Mj,k = Mk,j for all integers j, k ≥ 1.
The measures P∞,s have been studied in detail in [10], where they are called Hua-Pickrell measures.

On the other hand, as we have seen before, it is natural to consider the Generalized Cauchy
Ensembles as the images, by the Cayley transform, of the ensembles of unitary matrices studied by
Bourgade, Nikeghbali and Rouault in [12]. The case where s = 0 is particularly simple in this point
of view, since PN,0 is the image of the Haar measure on U(N). A question which then naturally
arises is the following: what becomes the compatibility property between the upper left corners of
an infinite hermitian matrix when we look at their inverse images by the Cayley transform?

This question has been answered by Neretin in [49]: in the unitary point of view, the infinite her-
mitian matrices become the so-called virtual isometries (or virtual rotations), which are sequences
(uN )N≥1 of unitary matrices, uN ∈ U(N), satisfying a relation of compatibility explicitly described
in [49]. Now, the virtual permutations can also be identified to particular sequences of unitary
matrices of increasing dimensions. Note that these two kinds of sequences are incompatible:

• If (uN )N≥1 is a virtual isometry in the sense of Neretin, then 1 is not an eigenvalue of uN for
any N ≥ 1, since the inverse image of R by the Cayley transform is U\{1}.

• If (uN )N≥1 is a sequence of permutations matrices, then 1 is an eigenvalue of uN for all N ≥ 1.

However, the virtual isometries in the sense of Neretin and the virtual permutations can be proven
to be particular cases of a more general notion of virtual isometries (or virtual rotations), which is
the main topic of our joint work with Bourgade and Nikeghbali [11].

The first step of the construction given in [11] is to define, for all N ≥ M ≥ 1, a map πN,M
from U(N) to U(M). This map can be described as follows: for all u ∈ U(N), πN,M (u) is the

unique matrix v ∈ U(M) such that the rank of u −
(
v 0
0 IdN-M

)
is minimal. The uniqueness of

v is proven in [11], and in the case where 1 is not an eigenvalue of u, the minimal rank is equal
to N −M . Moreover, the maps (πN,M )N≥M≥1 satisfy the following projective property: for all
N ≥M ≥ P ≥ 1, πN,P = πM,P ◦ πN,M . A virtual isometry is then defined as follows:

Definition 5.5 A virtual isometry is a sequence (uN )N≥1 of unitary matrices, uN ∈ U(N), such
that for all N ≥ 2, uN−1 = πN,N−1(uN ).

The projective property of (πN,M )N≥M≥1 implies that for any virtual isometry (uN )N≥1, and for all
N ≥M ≥ 1, uM = πN,M (uN ). The link between the virtual isometries and the virtual permutations
can be precisely stated as follows:
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Proposition 5.6 Let (σN )N≥1 be a sequence of permutations (σN ∈ SN ) identified with the cor-
responding permutation matrices. Then, (σN )N≥1 is a virtual permutation if and only if it is a
virtual isometry.

As we have seen in Section 4, the virtual permutations can be constructed as formal infinite products
of transpositions, via the Chinese restaurant process (see Pitman [55], Chap. 3). This construction
can be generalized to the unitary setting, replacing transpositions by the complex reflections, i.e.
the unitary matrices u ∈ U(N) such that u − Id has rank one. Notice that a transposition is
a particular case of a reflection, if the permutations are identified with their matrices. Another
property is important for our purpose: for all distinct vectors x, y on the unit sphere of CN , there
exists a unique reflection r ∈ U(N) such that r(x) = y. This property is used in the following
result, generalizing the construction of the Chinese restaurant process:

Proposition 5.7 Let (xN )N≥1 be a sequence of vectors, xN lying on the complex unit sphere of
CN . For k ≥ 1, let rk ∈ U(k) be defined as follows:

• If xk is not the last canonical basis vector ek of Ck, then rk is the unique reflection such that
rk(ek) = xk.

• If xk = ek, then rk = Idk.

Then, there exists a unique virtual isometry (uN )N≥1 such that uN (eN ) = xN for all N ≥ 1: this
isometry is given by

uN = rN ◦
(
rN−1 0

0 1

)
◦ · · · ◦

(
r2 0
0 IdN−2

)
◦
(
r1 0
0 IdN−1

)
.

Moreover, in the particular case where for all N ≥ 1, xN is the kN -th canonical basis vector of CN
for kN ∈ {1, 2, . . . , N}, (uN )N≥1 is identified with the virtual permutation (σN )N≥1 constructed by
the Chinese restaurant process, as in Section 4:

σN = τN,kN ◦ τN−1,kN−1
◦ · · · ◦ τ2,k2 ,

where τj,k is the identity for j = k, and the transposition (j, k) for j 6= k.

As we have seen before, the Generalized Cauchy Ensemble corresponds to a particular class of prob-
ability measures on the space of infinite hermitian matrices, which are called Hua-Pickrell measures
in [10]. Applying the inverse Cayley transform gives a family of measures on the space of virtual
isometries, which can also be called Hua-Pickrell measures. More precisely, the following result,
stated in our paper [11], can be immediately proven by using the results obtained by Bourgade,
Nikeghbali and Rouault in [12]:

Proposition 5.8 Let (xN )N≥1 be a random sequence of independent vectors such that for all N ≥
1, the distribution of xN is the h-sampling of the uniform law on the unit sphere of CN , where

h(x) = (1− 〈eN |x〉)s̄
(

1− 〈eN |x〉
)s
.

Let (uN )N≥1 be the unique virtual isometry such that uN (eN ) = xN for all N ≥ 1. Then, the law
of (uN )N≥1 is the Hua-Pickrell measure of parameter s, and for all N ≥ 1, the distribution of uN
is the h-sampling of the Haar measure on U(N), for

h(u) = det(IdN −u)s̄ det(IdN −u−1)s,
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where the logarithm of IdN −u is taken in the unique way such that it is continuous on the connected
set {u ∈ U(n), det(IdN −u) 6= 0} and real for u = − IdN .

Remark 5.9 In the particular case s = 0, and for all N ≥ 1, xN is uniform on the unit sphere of
CN and uN follows the Haar measure on U(N). Is it then natural to say that the law of (uN )N≥1

is the Haar measure on the space of virtual isometries.

5.3 A determinantal sine-kernel process associated to virtual rotations

The probability measures on the space of infinite hermitian matrices which are invariant by conju-
gation have been classified by Olshanski and Vershik in [51]. In [10], Borodin and Olshanski study
the particular case of the Hua-Pickrell measures, for which the following result holds:

Theorem 5.10 Let M be a random infinite hermitian matrix following the Hua-Pickrell measure
of parameter s ∈ C (<(s) > −1/2). For N ≥ 1, let MN be the upper left corner of M , and
for N ≥ k ≥ 1, let λ+

k (N) (resp. λ−k (N)) be the k-th largest (resp. smallest) eigenvalue of MN .
Then almost surely, for all k ≥ 1, λ+

k (N) (resp. λ−k (N)) converges to a strictly positive (resp.
strictly negative) limit λ+

k (resp. λ−k ). Moreover, the point process {λ+
k , k ≥ 1} ∪ {λ−k , k ≥ 1} is

determinantal, and its kernel is given by the equations (8), (9) and (10).

This statement can be translated in the unitary framework. In this case, one obtains, after a
suitable rescaling, an almost sure convergence of the small eigenangles towards a limiting point
process. This process, obtained by transforming the point process involved in Theorem 5.10 via the
map x 7→ 1/πx, is also determinantal and its kernel is explicitly described in [12]. In the particular
case of the Haar measure, i.e. s = 0, one gets the following:

Theorem 5.11 Let (uN )N≥1 be a random virtual isometry, following the Haar measure. For

N ≥ 1, k ≥ 1, let θ
(N)
k be the k-th smallest strictly positive eigenangle of uN , and let θ

(N)
1−k be the

k-th largest nonnegative eigenangle of uN . Then almost surely, for all k ∈ Z, Nθ
(N)
k /2π converges

to a limit xk when N goes to infinity, and the point process (xk)k∈Z is a determinantal sine-kernel
process.

This theorem can be easily deduced from the general results given by Olshanski and Vershik in
[51], and from the study of the Hua-Pickrell measures made in [10]. However, the proof in [51] uses
quite sophisticated tools, including representation theory. In [11], we give another proof of Theorem
5.11, more direct and purely probabilistic, using a recurrence relation between the characteristic
polynomials of (uN )N≥1, and some martingale arguments. Another advantage of our proof is that
it gives an estimate of the rate of convergence of the rescaled eigenvalues: there exists a universal
constant ε > 0 such that almost surely, for all k ∈ Z,

Nθ
(N)
k /2π = xk +O(N−ε).

It is well-known that the rescaled eigenangles of the Circular Unitary Ensemble weakly converge
to a determinantal sine-kernel process, when the dimension goes to infinity. Theorem 5.11 gives
a strong version of this classical result, and provides a deterministic link between the random
virtual isometry (uN )N≥1 and the sine-kernel process (xk)k∈Z. In this respect, the situation is
similar to the setting of virtual permutations, for which there also exists a strong convergence
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of the rescaled eigenangles. More precisely, for a random virtual permutation (σN )N≥1 following
the Ewens measure of parameter θ > 0, a result similar to Theorem 5.11 can be stated, and the
limiting point process (xk)k≥1 is the union of the sets (2πm/λk)m∈Z for k ≥ 1, where (λk)k≥1 is a
Poisson-Dirichlet process of parameter θ.

As stated in Section 4, in the context of virtual permutations, the limiting point process (xk)k∈Z
can be interpreted as the spectrum of an operator, which is naturally related to the corresponding
virtual permutation (σN )N≥1. In the context of Haar measure on virtual isometries, one may expect
a similar situation, for which the sine-kernel process (xk)k∈Z is the spectrum of a random hermitian
operator. However, we are still not able to construct such an operator in a fully satisfactory way.

6 Some other perspectives of research

A first direction of research we plan to explore is given by the problem suggested at the end of
Section 5, i.e. the construction, for almost every virtual isometry (under Haar measure), of a
suitable hermitian operator whose spectrum is given by the point process (xk)k∈Z of the limiting
rescaled eigenangles. If we success in this construction, then the corresponding operator may satisfy
some universal properties, which should improve our understanding of the universality of the sine-
kernel process, still very incomplete. More precisely, the operator may represent, in a natural way,
the typical microscopic behavior of a general random matrix around a point in the bulk of the
spectrum, and it should play a role which can be compared to the role of the Brownian motion
in the explanation of the universal properties of the gaussian distribution. Note that a stochastic
operator whose eigenvalues form a determinantal Airy kernel point process (which appears in the
limiting behavior of the Gaussian Unitary Ensemble, at the edge of the spectrum) has already been
constructed by Ramı́rez, Rider and Virág [56]. It is perhaps possible to construct another random
operator with the same distribution of the spectrum, for which one can see even more clearly the
corresponding properties of universality. One may also be able to extend this kind of construction
to more general point processes.

Another interest of a universal operator with sine-kernel process as its spectrum is that it can
improve our understanding of the links between random matrices and other parts of mathematics,
e.g. number theory. In 1973, Montgomery [34] made a conjecture about the asymptotic repartition
of the zeros of the Riemann zeta function on the critical line, and Dyson remarked that the cor-
responding limit behavior is similar to what one obtains by considering the classical ensembles of
random hermitian or unitary matrices. In other words, the zeros of the zeta function should locally
behave like a determinantal sine-kernel process. On the other hand, if a remarkable set of com-
plex numbers is studied, then it is particularly interesting to find a spectral interpretation of this
set: in relation with the Riemann hypothesis, it has been conjectured, first by Hilbert and Pólya,
that the nontrivial zeros of the function t 7→ ζ(1/2 + it) are the eigenvalues of some remarkable
hermitian operator. If such an operator exists (a construction has been suggested by Connes [14]),
it should involve some kind of randomness, since its eigenvalues seem to behave like the spectrum
of a large random matrix. Now, if we are able to construct a universal random hermitian operator
whose spectrum is a sine-kernel process, then it may give some indication about the nature of the
randomness involved in the hypothetical operator of Hilbert and Pólya.

It should also be interesting to construct, in a natural way, some random holomorphic functions
whose zeros form a determinantal sine-kernel process: such functions may be used to model the
asymptotic behavior of the Riemann zeta function. They may also be interpreted as an analog of
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the characteristic polynomial for virtual isometries, if we are still able to prove a result of strong
convergence in this context. More generally, the conjectural link between random matrix theory
and the Riemann zeta function suggests to compare this function to the characteristic polynomial
of a random matrix.

Note that this conjectural link is supported by some similar results proven for zeta functions of
function fields, which are constructed from the number of points of an algebraic curve on different
extensions of a finite field. An analog of the Riemann hypothesis has been stated by Weil [72] and
proven by Deligne (see [15] and [16]), and some other results about the repartition of the zeros have
been obtained by Katz and Sarnak [23].

More generally, there are many links between probability theory and number theory, which have
been much developed in the last years. For example, by working on the asymptotic behavior of
the characteristic polynomial of random matrices on one hand, and by studying some problems in
arithmetic on the other hand (number of prime factors of integers, zeta functions of function fields),
Barbour, Jacod, Kowalski and Nikeghbali (see [4], [21], [29], [30]) have introduced a new notion of
convergence of random variables, called mod-* convergence. A particular case of this notion can be
stated as follows: a family of real random variables (Xn)n≥1 converges in the mod-gaussian sense,
if and only if there exists a sequence (Yn)n≥1 of gaussian variables such that for all λ ∈ R,

E[eiλXn ]

E[eiλYn ]
−→
n→∞

Φ(λ),

where Φ is a continuous function. This convergence can be considered to be a natural extension of
the convergence in law, and it has many potential applications in probability and number theory.
Since this notion is involved in the asymptotic behavior of the characteristic polynomial of random
matrices, it is natural to expect that there are some deep links between mod-* convergence and the
infinite-dimensional objects we are studying. These links should also be present in the conjectures
one can make on the zeta or on the L-functions.

To conclude, the infinite-dimensional objects associated to random matrix models give a very
promising topic of research, from which one can prove a number of new results improving our
understanding of most of the classical results in random matrix theory. The area of research we
are now exploring has also many links with other parts of mathematics, and even with theoretical
physics: we have a good hope to find new connections in the near future of our research. This
would give us the possibility to prove some results which were not expected until now.
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